1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "compiler/disassembler.hpp" 28 #include "compiler/compilerDefinitions.inline.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateTable.hpp" 36 #include "memory/universe.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/method.inline.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/resolvedFieldEntry.hpp" 42 #include "oops/resolvedIndyEntry.hpp" 43 #include "oops/resolvedMethodEntry.hpp" 44 #include "prims/jvmtiExport.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/synchronizer.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 53 54 // Address computation: local variables 55 56 static inline Address iaddress(int n) { 57 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 58 } 59 60 static inline Address laddress(int n) { 61 return iaddress(n + 1); 62 } 63 64 static inline Address faddress(int n) { 65 return iaddress(n); 66 } 67 68 static inline Address daddress(int n) { 69 return laddress(n); 70 } 71 72 static inline Address aaddress(int n) { 73 return iaddress(n); 74 } 75 76 static inline Address iaddress(Register r) { 77 return Address(rlocals, r, Address::lsl(3)); 78 } 79 80 static inline Address laddress(Register r, Register scratch, 81 InterpreterMacroAssembler* _masm) { 82 __ lea(scratch, Address(rlocals, r, Address::lsl(3))); 83 return Address(scratch, Interpreter::local_offset_in_bytes(1)); 84 } 85 86 static inline Address faddress(Register r) { 87 return iaddress(r); 88 } 89 90 static inline Address daddress(Register r, Register scratch, 91 InterpreterMacroAssembler* _masm) { 92 return laddress(r, scratch, _masm); 93 } 94 95 static inline Address aaddress(Register r) { 96 return iaddress(r); 97 } 98 99 static inline Address at_rsp() { 100 return Address(esp, 0); 101 } 102 103 // At top of Java expression stack which may be different than esp(). It 104 // isn't for category 1 objects. 105 static inline Address at_tos () { 106 return Address(esp, Interpreter::expr_offset_in_bytes(0)); 107 } 108 109 static inline Address at_tos_p1() { 110 return Address(esp, Interpreter::expr_offset_in_bytes(1)); 111 } 112 113 static inline Address at_tos_p2() { 114 return Address(esp, Interpreter::expr_offset_in_bytes(2)); 115 } 116 117 static inline Address at_tos_p3() { 118 return Address(esp, Interpreter::expr_offset_in_bytes(3)); 119 } 120 121 static inline Address at_tos_p4() { 122 return Address(esp, Interpreter::expr_offset_in_bytes(4)); 123 } 124 125 static inline Address at_tos_p5() { 126 return Address(esp, Interpreter::expr_offset_in_bytes(5)); 127 } 128 129 // Condition conversion 130 static Assembler::Condition j_not(TemplateTable::Condition cc) { 131 switch (cc) { 132 case TemplateTable::equal : return Assembler::NE; 133 case TemplateTable::not_equal : return Assembler::EQ; 134 case TemplateTable::less : return Assembler::GE; 135 case TemplateTable::less_equal : return Assembler::GT; 136 case TemplateTable::greater : return Assembler::LE; 137 case TemplateTable::greater_equal: return Assembler::LT; 138 } 139 ShouldNotReachHere(); 140 return Assembler::EQ; 141 } 142 143 144 // Miscellaneous helper routines 145 // Store an oop (or null) at the Address described by obj. 146 // If val == noreg this means store a null 147 static void do_oop_store(InterpreterMacroAssembler* _masm, 148 Address dst, 149 Register val, 150 DecoratorSet decorators) { 151 assert(val == noreg || val == r0, "parameter is just for looks"); 152 __ store_heap_oop(dst, val, r10, r11, r3, decorators); 153 } 154 155 static void do_oop_load(InterpreterMacroAssembler* _masm, 156 Address src, 157 Register dst, 158 DecoratorSet decorators) { 159 __ load_heap_oop(dst, src, r10, r11, decorators); 160 } 161 162 Address TemplateTable::at_bcp(int offset) { 163 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 164 return Address(rbcp, offset); 165 } 166 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 168 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 169 int byte_no) 170 { 171 if (!RewriteBytecodes) return; 172 Label L_patch_done; 173 174 switch (bc) { 175 case Bytecodes::_fast_aputfield: 176 case Bytecodes::_fast_bputfield: 177 case Bytecodes::_fast_zputfield: 178 case Bytecodes::_fast_cputfield: 179 case Bytecodes::_fast_dputfield: 180 case Bytecodes::_fast_fputfield: 181 case Bytecodes::_fast_iputfield: 182 case Bytecodes::_fast_lputfield: 183 case Bytecodes::_fast_sputfield: 184 { 185 // We skip bytecode quickening for putfield instructions when 186 // the put_code written to the constant pool cache is zero. 187 // This is required so that every execution of this instruction 188 // calls out to InterpreterRuntime::resolve_get_put to do 189 // additional, required work. 190 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 191 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 192 __ load_field_entry(temp_reg, bc_reg); 193 if (byte_no == f1_byte) { 194 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 195 } else { 196 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 197 } 198 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 199 __ ldarb(temp_reg, temp_reg); 200 __ movw(bc_reg, bc); 201 __ cbzw(temp_reg, L_patch_done); // don't patch 202 } 203 break; 204 default: 205 assert(byte_no == -1, "sanity"); 206 // the pair bytecodes have already done the load. 207 if (load_bc_into_bc_reg) { 208 __ movw(bc_reg, bc); 209 } 210 } 211 212 if (JvmtiExport::can_post_breakpoint()) { 213 Label L_fast_patch; 214 // if a breakpoint is present we can't rewrite the stream directly 215 __ load_unsigned_byte(temp_reg, at_bcp(0)); 216 __ cmpw(temp_reg, Bytecodes::_breakpoint); 217 __ br(Assembler::NE, L_fast_patch); 218 // Let breakpoint table handling rewrite to quicker bytecode 219 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg); 220 __ b(L_patch_done); 221 __ bind(L_fast_patch); 222 } 223 224 #ifdef ASSERT 225 Label L_okay; 226 __ load_unsigned_byte(temp_reg, at_bcp(0)); 227 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc)); 228 __ br(Assembler::EQ, L_okay); 229 __ cmpw(temp_reg, bc_reg); 230 __ br(Assembler::EQ, L_okay); 231 __ stop("patching the wrong bytecode"); 232 __ bind(L_okay); 233 #endif 234 235 // patch bytecode 236 __ strb(bc_reg, at_bcp(0)); 237 __ bind(L_patch_done); 238 } 239 240 241 // Individual instructions 242 243 void TemplateTable::nop() { 244 transition(vtos, vtos); 245 // nothing to do 246 } 247 248 void TemplateTable::shouldnotreachhere() { 249 transition(vtos, vtos); 250 __ stop("shouldnotreachhere bytecode"); 251 } 252 253 void TemplateTable::aconst_null() 254 { 255 transition(vtos, atos); 256 __ mov(r0, 0); 257 } 258 259 void TemplateTable::iconst(int value) 260 { 261 transition(vtos, itos); 262 __ mov(r0, value); 263 } 264 265 void TemplateTable::lconst(int value) 266 { 267 __ mov(r0, value); 268 } 269 270 void TemplateTable::fconst(int value) 271 { 272 transition(vtos, ftos); 273 switch (value) { 274 case 0: 275 __ fmovs(v0, 0.0); 276 break; 277 case 1: 278 __ fmovs(v0, 1.0); 279 break; 280 case 2: 281 __ fmovs(v0, 2.0); 282 break; 283 default: 284 ShouldNotReachHere(); 285 break; 286 } 287 } 288 289 void TemplateTable::dconst(int value) 290 { 291 transition(vtos, dtos); 292 switch (value) { 293 case 0: 294 __ fmovd(v0, 0.0); 295 break; 296 case 1: 297 __ fmovd(v0, 1.0); 298 break; 299 case 2: 300 __ fmovd(v0, 2.0); 301 break; 302 default: 303 ShouldNotReachHere(); 304 break; 305 } 306 } 307 308 void TemplateTable::bipush() 309 { 310 transition(vtos, itos); 311 __ load_signed_byte32(r0, at_bcp(1)); 312 } 313 314 void TemplateTable::sipush() 315 { 316 transition(vtos, itos); 317 __ load_unsigned_short(r0, at_bcp(1)); 318 __ revw(r0, r0); 319 __ asrw(r0, r0, 16); 320 } 321 322 void TemplateTable::ldc(LdcType type) 323 { 324 transition(vtos, vtos); 325 Label call_ldc, notFloat, notClass, notInt, Done; 326 327 if (is_ldc_wide(type)) { 328 __ get_unsigned_2_byte_index_at_bcp(r1, 1); 329 } else { 330 __ load_unsigned_byte(r1, at_bcp(1)); 331 } 332 __ get_cpool_and_tags(r2, r0); 333 334 const int base_offset = ConstantPool::header_size() * wordSize; 335 const int tags_offset = Array<u1>::base_offset_in_bytes(); 336 337 // get type 338 __ add(r3, r1, tags_offset); 339 __ lea(r3, Address(r0, r3)); 340 __ ldarb(r3, r3); 341 342 // unresolved class - get the resolved class 343 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass); 344 __ br(Assembler::EQ, call_ldc); 345 346 // unresolved class in error state - call into runtime to throw the error 347 // from the first resolution attempt 348 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError); 349 __ br(Assembler::EQ, call_ldc); 350 351 // resolved class - need to call vm to get java mirror of the class 352 __ cmp(r3, (u1)JVM_CONSTANT_Class); 353 __ br(Assembler::NE, notClass); 354 355 __ bind(call_ldc); 356 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0); 357 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 358 __ push_ptr(r0); 359 __ verify_oop(r0); 360 __ b(Done); 361 362 __ bind(notClass); 363 __ cmp(r3, (u1)JVM_CONSTANT_Float); 364 __ br(Assembler::NE, notFloat); 365 // ftos 366 __ adds(r1, r2, r1, Assembler::LSL, 3); 367 __ ldrs(v0, Address(r1, base_offset)); 368 __ push_f(); 369 __ b(Done); 370 371 __ bind(notFloat); 372 373 __ cmp(r3, (u1)JVM_CONSTANT_Integer); 374 __ br(Assembler::NE, notInt); 375 376 // itos 377 __ adds(r1, r2, r1, Assembler::LSL, 3); 378 __ ldrw(r0, Address(r1, base_offset)); 379 __ push_i(r0); 380 __ b(Done); 381 382 __ bind(notInt); 383 condy_helper(Done); 384 385 __ bind(Done); 386 } 387 388 // Fast path for caching oop constants. 389 void TemplateTable::fast_aldc(LdcType type) 390 { 391 transition(vtos, atos); 392 393 Register result = r0; 394 Register tmp = r1; 395 Register rarg = r2; 396 397 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 398 399 Label resolved; 400 401 // We are resolved if the resolved reference cache entry contains a 402 // non-null object (String, MethodType, etc.) 403 assert_different_registers(result, tmp); 404 __ get_cache_index_at_bcp(tmp, 1, index_size); 405 __ load_resolved_reference_at_index(result, tmp); 406 __ cbnz(result, resolved); 407 408 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 409 410 // first time invocation - must resolve first 411 __ mov(rarg, (int)bytecode()); 412 __ call_VM(result, entry, rarg); 413 414 __ bind(resolved); 415 416 { // Check for the null sentinel. 417 // If we just called the VM, it already did the mapping for us, 418 // but it's harmless to retry. 419 Label notNull; 420 421 // Stash null_sentinel address to get its value later 422 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr()); 423 __ ldr(tmp, Address(rarg)); 424 __ resolve_oop_handle(tmp, r5, rscratch2); 425 __ cmpoop(result, tmp); 426 __ br(Assembler::NE, notNull); 427 __ mov(result, 0); // null object reference 428 __ bind(notNull); 429 } 430 431 if (VerifyOops) { 432 // Safe to call with 0 result 433 __ verify_oop(result); 434 } 435 } 436 437 void TemplateTable::ldc2_w() 438 { 439 transition(vtos, vtos); 440 Label notDouble, notLong, Done; 441 __ get_unsigned_2_byte_index_at_bcp(r0, 1); 442 443 __ get_cpool_and_tags(r1, r2); 444 const int base_offset = ConstantPool::header_size() * wordSize; 445 const int tags_offset = Array<u1>::base_offset_in_bytes(); 446 447 // get type 448 __ lea(r2, Address(r2, r0, Address::lsl(0))); 449 __ load_unsigned_byte(r2, Address(r2, tags_offset)); 450 __ cmpw(r2, (int)JVM_CONSTANT_Double); 451 __ br(Assembler::NE, notDouble); 452 453 // dtos 454 __ lea (r2, Address(r1, r0, Address::lsl(3))); 455 __ ldrd(v0, Address(r2, base_offset)); 456 __ push_d(); 457 __ b(Done); 458 459 __ bind(notDouble); 460 __ cmpw(r2, (int)JVM_CONSTANT_Long); 461 __ br(Assembler::NE, notLong); 462 463 // ltos 464 __ lea(r0, Address(r1, r0, Address::lsl(3))); 465 __ ldr(r0, Address(r0, base_offset)); 466 __ push_l(); 467 __ b(Done); 468 469 __ bind(notLong); 470 condy_helper(Done); 471 472 __ bind(Done); 473 } 474 475 void TemplateTable::condy_helper(Label& Done) 476 { 477 Register obj = r0; 478 Register rarg = r1; 479 Register flags = r2; 480 Register off = r3; 481 482 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 483 484 __ mov(rarg, (int) bytecode()); 485 __ call_VM(obj, entry, rarg); 486 487 __ get_vm_result_metadata(flags, rthread); 488 489 // VMr = obj = base address to find primitive value to push 490 // VMr2 = flags = (tos, off) using format of CPCE::_flags 491 __ mov(off, flags); 492 __ andw(off, off, ConstantPoolCache::field_index_mask); 493 494 const Address field(obj, off); 495 496 // What sort of thing are we loading? 497 // x86 uses a shift and mask or wings it with a shift plus assert 498 // the mask is not needed. aarch64 just uses bitfield extract 499 __ ubfxw(flags, flags, ConstantPoolCache::tos_state_shift, 500 ConstantPoolCache::tos_state_bits); 501 502 switch (bytecode()) { 503 case Bytecodes::_ldc: 504 case Bytecodes::_ldc_w: 505 { 506 // tos in (itos, ftos, stos, btos, ctos, ztos) 507 Label notInt, notFloat, notShort, notByte, notChar, notBool; 508 __ cmpw(flags, itos); 509 __ br(Assembler::NE, notInt); 510 // itos 511 __ ldrw(r0, field); 512 __ push(itos); 513 __ b(Done); 514 515 __ bind(notInt); 516 __ cmpw(flags, ftos); 517 __ br(Assembler::NE, notFloat); 518 // ftos 519 __ load_float(field); 520 __ push(ftos); 521 __ b(Done); 522 523 __ bind(notFloat); 524 __ cmpw(flags, stos); 525 __ br(Assembler::NE, notShort); 526 // stos 527 __ load_signed_short(r0, field); 528 __ push(stos); 529 __ b(Done); 530 531 __ bind(notShort); 532 __ cmpw(flags, btos); 533 __ br(Assembler::NE, notByte); 534 // btos 535 __ load_signed_byte(r0, field); 536 __ push(btos); 537 __ b(Done); 538 539 __ bind(notByte); 540 __ cmpw(flags, ctos); 541 __ br(Assembler::NE, notChar); 542 // ctos 543 __ load_unsigned_short(r0, field); 544 __ push(ctos); 545 __ b(Done); 546 547 __ bind(notChar); 548 __ cmpw(flags, ztos); 549 __ br(Assembler::NE, notBool); 550 // ztos 551 __ load_signed_byte(r0, field); 552 __ push(ztos); 553 __ b(Done); 554 555 __ bind(notBool); 556 break; 557 } 558 559 case Bytecodes::_ldc2_w: 560 { 561 Label notLong, notDouble; 562 __ cmpw(flags, ltos); 563 __ br(Assembler::NE, notLong); 564 // ltos 565 __ ldr(r0, field); 566 __ push(ltos); 567 __ b(Done); 568 569 __ bind(notLong); 570 __ cmpw(flags, dtos); 571 __ br(Assembler::NE, notDouble); 572 // dtos 573 __ load_double(field); 574 __ push(dtos); 575 __ b(Done); 576 577 __ bind(notDouble); 578 break; 579 } 580 581 default: 582 ShouldNotReachHere(); 583 } 584 585 __ stop("bad ldc/condy"); 586 } 587 588 void TemplateTable::locals_index(Register reg, int offset) 589 { 590 __ ldrb(reg, at_bcp(offset)); 591 __ neg(reg, reg); 592 } 593 594 void TemplateTable::iload() { 595 iload_internal(); 596 } 597 598 void TemplateTable::nofast_iload() { 599 iload_internal(may_not_rewrite); 600 } 601 602 void TemplateTable::iload_internal(RewriteControl rc) { 603 transition(vtos, itos); 604 if (RewriteFrequentPairs && rc == may_rewrite) { 605 Label rewrite, done; 606 Register bc = r4; 607 608 // get next bytecode 609 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 610 611 // if _iload, wait to rewrite to iload2. We only want to rewrite the 612 // last two iloads in a pair. Comparing against fast_iload means that 613 // the next bytecode is neither an iload or a caload, and therefore 614 // an iload pair. 615 __ cmpw(r1, Bytecodes::_iload); 616 __ br(Assembler::EQ, done); 617 618 // if _fast_iload rewrite to _fast_iload2 619 __ cmpw(r1, Bytecodes::_fast_iload); 620 __ movw(bc, Bytecodes::_fast_iload2); 621 __ br(Assembler::EQ, rewrite); 622 623 // if _caload rewrite to _fast_icaload 624 __ cmpw(r1, Bytecodes::_caload); 625 __ movw(bc, Bytecodes::_fast_icaload); 626 __ br(Assembler::EQ, rewrite); 627 628 // else rewrite to _fast_iload 629 __ movw(bc, Bytecodes::_fast_iload); 630 631 // rewrite 632 // bc: new bytecode 633 __ bind(rewrite); 634 patch_bytecode(Bytecodes::_iload, bc, r1, false); 635 __ bind(done); 636 637 } 638 639 // do iload, get the local value into tos 640 locals_index(r1); 641 __ ldr(r0, iaddress(r1)); 642 643 } 644 645 void TemplateTable::fast_iload2() 646 { 647 transition(vtos, itos); 648 locals_index(r1); 649 __ ldr(r0, iaddress(r1)); 650 __ push(itos); 651 locals_index(r1, 3); 652 __ ldr(r0, iaddress(r1)); 653 } 654 655 void TemplateTable::fast_iload() 656 { 657 transition(vtos, itos); 658 locals_index(r1); 659 __ ldr(r0, iaddress(r1)); 660 } 661 662 void TemplateTable::lload() 663 { 664 transition(vtos, ltos); 665 __ ldrb(r1, at_bcp(1)); 666 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 667 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 668 } 669 670 void TemplateTable::fload() 671 { 672 transition(vtos, ftos); 673 locals_index(r1); 674 // n.b. we use ldrd here because this is a 64 bit slot 675 // this is comparable to the iload case 676 __ ldrd(v0, faddress(r1)); 677 } 678 679 void TemplateTable::dload() 680 { 681 transition(vtos, dtos); 682 __ ldrb(r1, at_bcp(1)); 683 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 684 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 685 } 686 687 void TemplateTable::aload() 688 { 689 transition(vtos, atos); 690 locals_index(r1); 691 __ ldr(r0, iaddress(r1)); 692 } 693 694 void TemplateTable::locals_index_wide(Register reg) { 695 __ ldrh(reg, at_bcp(2)); 696 __ rev16w(reg, reg); 697 __ neg(reg, reg); 698 } 699 700 void TemplateTable::wide_iload() { 701 transition(vtos, itos); 702 locals_index_wide(r1); 703 __ ldr(r0, iaddress(r1)); 704 } 705 706 void TemplateTable::wide_lload() 707 { 708 transition(vtos, ltos); 709 __ ldrh(r1, at_bcp(2)); 710 __ rev16w(r1, r1); 711 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 712 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 713 } 714 715 void TemplateTable::wide_fload() 716 { 717 transition(vtos, ftos); 718 locals_index_wide(r1); 719 // n.b. we use ldrd here because this is a 64 bit slot 720 // this is comparable to the iload case 721 __ ldrd(v0, faddress(r1)); 722 } 723 724 void TemplateTable::wide_dload() 725 { 726 transition(vtos, dtos); 727 __ ldrh(r1, at_bcp(2)); 728 __ rev16w(r1, r1); 729 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 730 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 731 } 732 733 void TemplateTable::wide_aload() 734 { 735 transition(vtos, atos); 736 locals_index_wide(r1); 737 __ ldr(r0, aaddress(r1)); 738 } 739 740 void TemplateTable::index_check(Register array, Register index) 741 { 742 // destroys r1, rscratch1 743 // sign extend index for use by indexed load 744 // __ movl2ptr(index, index); 745 // check index 746 Register length = rscratch1; 747 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes())); 748 __ cmpw(index, length); 749 if (index != r1) { 750 // ??? convention: move aberrant index into r1 for exception message 751 assert(r1 != array, "different registers"); 752 __ mov(r1, index); 753 } 754 Label ok; 755 __ br(Assembler::LO, ok); 756 // ??? convention: move array into r3 for exception message 757 __ mov(r3, array); 758 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 759 __ br(rscratch1); 760 __ bind(ok); 761 } 762 763 void TemplateTable::iaload() 764 { 765 transition(itos, itos); 766 __ mov(r1, r0); 767 __ pop_ptr(r0); 768 // r0: array 769 // r1: index 770 index_check(r0, r1); // leaves index in r1, kills rscratch1 771 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 772 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 773 } 774 775 void TemplateTable::laload() 776 { 777 transition(itos, ltos); 778 __ mov(r1, r0); 779 __ pop_ptr(r0); 780 // r0: array 781 // r1: index 782 index_check(r0, r1); // leaves index in r1, kills rscratch1 783 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 784 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 785 } 786 787 void TemplateTable::faload() 788 { 789 transition(itos, ftos); 790 __ mov(r1, r0); 791 __ pop_ptr(r0); 792 // r0: array 793 // r1: index 794 index_check(r0, r1); // leaves index in r1, kills rscratch1 795 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 796 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 797 } 798 799 void TemplateTable::daload() 800 { 801 transition(itos, dtos); 802 __ mov(r1, r0); 803 __ pop_ptr(r0); 804 // r0: array 805 // r1: index 806 index_check(r0, r1); // leaves index in r1, kills rscratch1 807 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 808 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 809 } 810 811 void TemplateTable::aaload() 812 { 813 transition(itos, atos); 814 __ mov(r1, r0); 815 __ pop_ptr(r0); 816 // r0: array 817 // r1: index 818 index_check(r0, r1); // leaves index in r1, kills rscratch1 819 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 820 do_oop_load(_masm, 821 Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), 822 r0, 823 IS_ARRAY); 824 } 825 826 void TemplateTable::baload() 827 { 828 transition(itos, itos); 829 __ mov(r1, r0); 830 __ pop_ptr(r0); 831 // r0: array 832 // r1: index 833 index_check(r0, r1); // leaves index in r1, kills rscratch1 834 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 835 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg); 836 } 837 838 void TemplateTable::caload() 839 { 840 transition(itos, itos); 841 __ mov(r1, r0); 842 __ pop_ptr(r0); 843 // r0: array 844 // r1: index 845 index_check(r0, r1); // leaves index in r1, kills rscratch1 846 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 847 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 848 } 849 850 // iload followed by caload frequent pair 851 void TemplateTable::fast_icaload() 852 { 853 transition(vtos, itos); 854 // load index out of locals 855 locals_index(r2); 856 __ ldr(r1, iaddress(r2)); 857 858 __ pop_ptr(r0); 859 860 // r0: array 861 // r1: index 862 index_check(r0, r1); // leaves index in r1, kills rscratch1 863 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 864 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 865 } 866 867 void TemplateTable::saload() 868 { 869 transition(itos, itos); 870 __ mov(r1, r0); 871 __ pop_ptr(r0); 872 // r0: array 873 // r1: index 874 index_check(r0, r1); // leaves index in r1, kills rscratch1 875 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1); 876 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 877 } 878 879 void TemplateTable::iload(int n) 880 { 881 transition(vtos, itos); 882 __ ldr(r0, iaddress(n)); 883 } 884 885 void TemplateTable::lload(int n) 886 { 887 transition(vtos, ltos); 888 __ ldr(r0, laddress(n)); 889 } 890 891 void TemplateTable::fload(int n) 892 { 893 transition(vtos, ftos); 894 __ ldrs(v0, faddress(n)); 895 } 896 897 void TemplateTable::dload(int n) 898 { 899 transition(vtos, dtos); 900 __ ldrd(v0, daddress(n)); 901 } 902 903 void TemplateTable::aload(int n) 904 { 905 transition(vtos, atos); 906 __ ldr(r0, iaddress(n)); 907 } 908 909 void TemplateTable::aload_0() { 910 aload_0_internal(); 911 } 912 913 void TemplateTable::nofast_aload_0() { 914 aload_0_internal(may_not_rewrite); 915 } 916 917 void TemplateTable::aload_0_internal(RewriteControl rc) { 918 // According to bytecode histograms, the pairs: 919 // 920 // _aload_0, _fast_igetfield 921 // _aload_0, _fast_agetfield 922 // _aload_0, _fast_fgetfield 923 // 924 // occur frequently. If RewriteFrequentPairs is set, the (slow) 925 // _aload_0 bytecode checks if the next bytecode is either 926 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 927 // rewrites the current bytecode into a pair bytecode; otherwise it 928 // rewrites the current bytecode into _fast_aload_0 that doesn't do 929 // the pair check anymore. 930 // 931 // Note: If the next bytecode is _getfield, the rewrite must be 932 // delayed, otherwise we may miss an opportunity for a pair. 933 // 934 // Also rewrite frequent pairs 935 // aload_0, aload_1 936 // aload_0, iload_1 937 // These bytecodes with a small amount of code are most profitable 938 // to rewrite 939 if (RewriteFrequentPairs && rc == may_rewrite) { 940 Label rewrite, done; 941 const Register bc = r4; 942 943 // get next bytecode 944 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 945 946 // if _getfield then wait with rewrite 947 __ cmpw(r1, Bytecodes::Bytecodes::_getfield); 948 __ br(Assembler::EQ, done); 949 950 // if _igetfield then rewrite to _fast_iaccess_0 951 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 952 __ cmpw(r1, Bytecodes::_fast_igetfield); 953 __ movw(bc, Bytecodes::_fast_iaccess_0); 954 __ br(Assembler::EQ, rewrite); 955 956 // if _agetfield then rewrite to _fast_aaccess_0 957 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 958 __ cmpw(r1, Bytecodes::_fast_agetfield); 959 __ movw(bc, Bytecodes::_fast_aaccess_0); 960 __ br(Assembler::EQ, rewrite); 961 962 // if _fgetfield then rewrite to _fast_faccess_0 963 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 964 __ cmpw(r1, Bytecodes::_fast_fgetfield); 965 __ movw(bc, Bytecodes::_fast_faccess_0); 966 __ br(Assembler::EQ, rewrite); 967 968 // else rewrite to _fast_aload0 969 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 970 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0); 971 972 // rewrite 973 // bc: new bytecode 974 __ bind(rewrite); 975 patch_bytecode(Bytecodes::_aload_0, bc, r1, false); 976 977 __ bind(done); 978 } 979 980 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 981 aload(0); 982 } 983 984 void TemplateTable::istore() 985 { 986 transition(itos, vtos); 987 locals_index(r1); 988 // FIXME: We're being very pernickerty here storing a jint in a 989 // local with strw, which costs an extra instruction over what we'd 990 // be able to do with a simple str. We should just store the whole 991 // word. 992 __ lea(rscratch1, iaddress(r1)); 993 __ strw(r0, Address(rscratch1)); 994 } 995 996 void TemplateTable::lstore() 997 { 998 transition(ltos, vtos); 999 locals_index(r1); 1000 __ str(r0, laddress(r1, rscratch1, _masm)); 1001 } 1002 1003 void TemplateTable::fstore() { 1004 transition(ftos, vtos); 1005 locals_index(r1); 1006 __ lea(rscratch1, iaddress(r1)); 1007 __ strs(v0, Address(rscratch1)); 1008 } 1009 1010 void TemplateTable::dstore() { 1011 transition(dtos, vtos); 1012 locals_index(r1); 1013 __ strd(v0, daddress(r1, rscratch1, _masm)); 1014 } 1015 1016 void TemplateTable::astore() 1017 { 1018 transition(vtos, vtos); 1019 __ pop_ptr(r0); 1020 locals_index(r1); 1021 __ str(r0, aaddress(r1)); 1022 } 1023 1024 void TemplateTable::wide_istore() { 1025 transition(vtos, vtos); 1026 __ pop_i(); 1027 locals_index_wide(r1); 1028 __ lea(rscratch1, iaddress(r1)); 1029 __ strw(r0, Address(rscratch1)); 1030 } 1031 1032 void TemplateTable::wide_lstore() { 1033 transition(vtos, vtos); 1034 __ pop_l(); 1035 locals_index_wide(r1); 1036 __ str(r0, laddress(r1, rscratch1, _masm)); 1037 } 1038 1039 void TemplateTable::wide_fstore() { 1040 transition(vtos, vtos); 1041 __ pop_f(); 1042 locals_index_wide(r1); 1043 __ lea(rscratch1, faddress(r1)); 1044 __ strs(v0, rscratch1); 1045 } 1046 1047 void TemplateTable::wide_dstore() { 1048 transition(vtos, vtos); 1049 __ pop_d(); 1050 locals_index_wide(r1); 1051 __ strd(v0, daddress(r1, rscratch1, _masm)); 1052 } 1053 1054 void TemplateTable::wide_astore() { 1055 transition(vtos, vtos); 1056 __ pop_ptr(r0); 1057 locals_index_wide(r1); 1058 __ str(r0, aaddress(r1)); 1059 } 1060 1061 void TemplateTable::iastore() { 1062 transition(itos, vtos); 1063 __ pop_i(r1); 1064 __ pop_ptr(r3); 1065 // r0: value 1066 // r1: index 1067 // r3: array 1068 index_check(r3, r1); // prefer index in r1 1069 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 1070 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg); 1071 } 1072 1073 void TemplateTable::lastore() { 1074 transition(ltos, vtos); 1075 __ pop_i(r1); 1076 __ pop_ptr(r3); 1077 // r0: value 1078 // r1: index 1079 // r3: array 1080 index_check(r3, r1); // prefer index in r1 1081 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 1082 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg); 1083 } 1084 1085 void TemplateTable::fastore() { 1086 transition(ftos, vtos); 1087 __ pop_i(r1); 1088 __ pop_ptr(r3); 1089 // v0: value 1090 // r1: index 1091 // r3: array 1092 index_check(r3, r1); // prefer index in r1 1093 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 1094 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg); 1095 } 1096 1097 void TemplateTable::dastore() { 1098 transition(dtos, vtos); 1099 __ pop_i(r1); 1100 __ pop_ptr(r3); 1101 // v0: value 1102 // r1: index 1103 // r3: array 1104 index_check(r3, r1); // prefer index in r1 1105 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 1106 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg); 1107 } 1108 1109 void TemplateTable::aastore() { 1110 Label is_null, ok_is_subtype, done; 1111 transition(vtos, vtos); 1112 // stack: ..., array, index, value 1113 __ ldr(r0, at_tos()); // value 1114 __ ldr(r2, at_tos_p1()); // index 1115 __ ldr(r3, at_tos_p2()); // array 1116 1117 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop)); 1118 1119 index_check(r3, r2); // kills r1 1120 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 1121 1122 // do array store check - check for null value first 1123 __ cbz(r0, is_null); 1124 1125 // Move subklass into r1 1126 __ load_klass(r1, r0); 1127 // Move superklass into r0 1128 __ load_klass(r0, r3); 1129 __ ldr(r0, Address(r0, 1130 ObjArrayKlass::element_klass_offset())); 1131 // Compress array + index*oopSize + 12 into a single register. Frees r2. 1132 1133 // Generate subtype check. Blows r2, r5 1134 // Superklass in r0. Subklass in r1. 1135 __ gen_subtype_check(r1, ok_is_subtype); 1136 1137 // Come here on failure 1138 // object is at TOS 1139 __ b(Interpreter::_throw_ArrayStoreException_entry); 1140 1141 // Come here on success 1142 __ bind(ok_is_subtype); 1143 1144 // Get the value we will store 1145 __ ldr(r0, at_tos()); 1146 // Now store using the appropriate barrier 1147 // Clobbers: r10, r11, r3 1148 do_oop_store(_masm, element_address, r0, IS_ARRAY); 1149 __ b(done); 1150 1151 // Have a null in r0, r3=array, r2=index. Store null at ary[idx] 1152 __ bind(is_null); 1153 __ profile_null_seen(r2); 1154 1155 // Store a null 1156 // Clobbers: r10, r11, r3 1157 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1158 1159 // Pop stack arguments 1160 __ bind(done); 1161 __ add(esp, esp, 3 * Interpreter::stackElementSize); 1162 } 1163 1164 void TemplateTable::bastore() 1165 { 1166 transition(itos, vtos); 1167 __ pop_i(r1); 1168 __ pop_ptr(r3); 1169 // r0: value 1170 // r1: index 1171 // r3: array 1172 index_check(r3, r1); // prefer index in r1 1173 1174 // Need to check whether array is boolean or byte 1175 // since both types share the bastore bytecode. 1176 __ load_klass(r2, r3); 1177 __ ldrw(r2, Address(r2, Klass::layout_helper_offset())); 1178 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit()); 1179 Label L_skip; 1180 __ tbz(r2, diffbit_index, L_skip); 1181 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1182 __ bind(L_skip); 1183 1184 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 1185 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg); 1186 } 1187 1188 void TemplateTable::castore() 1189 { 1190 transition(itos, vtos); 1191 __ pop_i(r1); 1192 __ pop_ptr(r3); 1193 // r0: value 1194 // r1: index 1195 // r3: array 1196 index_check(r3, r1); // prefer index in r1 1197 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 1198 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg); 1199 } 1200 1201 void TemplateTable::sastore() 1202 { 1203 castore(); 1204 } 1205 1206 void TemplateTable::istore(int n) 1207 { 1208 transition(itos, vtos); 1209 __ str(r0, iaddress(n)); 1210 } 1211 1212 void TemplateTable::lstore(int n) 1213 { 1214 transition(ltos, vtos); 1215 __ str(r0, laddress(n)); 1216 } 1217 1218 void TemplateTable::fstore(int n) 1219 { 1220 transition(ftos, vtos); 1221 __ strs(v0, faddress(n)); 1222 } 1223 1224 void TemplateTable::dstore(int n) 1225 { 1226 transition(dtos, vtos); 1227 __ strd(v0, daddress(n)); 1228 } 1229 1230 void TemplateTable::astore(int n) 1231 { 1232 transition(vtos, vtos); 1233 __ pop_ptr(r0); 1234 __ str(r0, iaddress(n)); 1235 } 1236 1237 void TemplateTable::pop() 1238 { 1239 transition(vtos, vtos); 1240 __ add(esp, esp, Interpreter::stackElementSize); 1241 } 1242 1243 void TemplateTable::pop2() 1244 { 1245 transition(vtos, vtos); 1246 __ add(esp, esp, 2 * Interpreter::stackElementSize); 1247 } 1248 1249 void TemplateTable::dup() 1250 { 1251 transition(vtos, vtos); 1252 __ ldr(r0, Address(esp, 0)); 1253 __ push(r0); 1254 // stack: ..., a, a 1255 } 1256 1257 void TemplateTable::dup_x1() 1258 { 1259 transition(vtos, vtos); 1260 // stack: ..., a, b 1261 __ ldr(r0, at_tos()); // load b 1262 __ ldr(r2, at_tos_p1()); // load a 1263 __ str(r0, at_tos_p1()); // store b 1264 __ str(r2, at_tos()); // store a 1265 __ push(r0); // push b 1266 // stack: ..., b, a, b 1267 } 1268 1269 void TemplateTable::dup_x2() 1270 { 1271 transition(vtos, vtos); 1272 // stack: ..., a, b, c 1273 __ ldr(r0, at_tos()); // load c 1274 __ ldr(r2, at_tos_p2()); // load a 1275 __ str(r0, at_tos_p2()); // store c in a 1276 __ push(r0); // push c 1277 // stack: ..., c, b, c, c 1278 __ ldr(r0, at_tos_p2()); // load b 1279 __ str(r2, at_tos_p2()); // store a in b 1280 // stack: ..., c, a, c, c 1281 __ str(r0, at_tos_p1()); // store b in c 1282 // stack: ..., c, a, b, c 1283 } 1284 1285 void TemplateTable::dup2() 1286 { 1287 transition(vtos, vtos); 1288 // stack: ..., a, b 1289 __ ldr(r0, at_tos_p1()); // load a 1290 __ push(r0); // push a 1291 __ ldr(r0, at_tos_p1()); // load b 1292 __ push(r0); // push b 1293 // stack: ..., a, b, a, b 1294 } 1295 1296 void TemplateTable::dup2_x1() 1297 { 1298 transition(vtos, vtos); 1299 // stack: ..., a, b, c 1300 __ ldr(r2, at_tos()); // load c 1301 __ ldr(r0, at_tos_p1()); // load b 1302 __ push(r0); // push b 1303 __ push(r2); // push c 1304 // stack: ..., a, b, c, b, c 1305 __ str(r2, at_tos_p3()); // store c in b 1306 // stack: ..., a, c, c, b, c 1307 __ ldr(r2, at_tos_p4()); // load a 1308 __ str(r2, at_tos_p2()); // store a in 2nd c 1309 // stack: ..., a, c, a, b, c 1310 __ str(r0, at_tos_p4()); // store b in a 1311 // stack: ..., b, c, a, b, c 1312 } 1313 1314 void TemplateTable::dup2_x2() 1315 { 1316 transition(vtos, vtos); 1317 // stack: ..., a, b, c, d 1318 __ ldr(r2, at_tos()); // load d 1319 __ ldr(r0, at_tos_p1()); // load c 1320 __ push(r0) ; // push c 1321 __ push(r2); // push d 1322 // stack: ..., a, b, c, d, c, d 1323 __ ldr(r0, at_tos_p4()); // load b 1324 __ str(r0, at_tos_p2()); // store b in d 1325 __ str(r2, at_tos_p4()); // store d in b 1326 // stack: ..., a, d, c, b, c, d 1327 __ ldr(r2, at_tos_p5()); // load a 1328 __ ldr(r0, at_tos_p3()); // load c 1329 __ str(r2, at_tos_p3()); // store a in c 1330 __ str(r0, at_tos_p5()); // store c in a 1331 // stack: ..., c, d, a, b, c, d 1332 } 1333 1334 void TemplateTable::swap() 1335 { 1336 transition(vtos, vtos); 1337 // stack: ..., a, b 1338 __ ldr(r2, at_tos_p1()); // load a 1339 __ ldr(r0, at_tos()); // load b 1340 __ str(r2, at_tos()); // store a in b 1341 __ str(r0, at_tos_p1()); // store b in a 1342 // stack: ..., b, a 1343 } 1344 1345 void TemplateTable::iop2(Operation op) 1346 { 1347 transition(itos, itos); 1348 // r0 <== r1 op r0 1349 __ pop_i(r1); 1350 switch (op) { 1351 case add : __ addw(r0, r1, r0); break; 1352 case sub : __ subw(r0, r1, r0); break; 1353 case mul : __ mulw(r0, r1, r0); break; 1354 case _and : __ andw(r0, r1, r0); break; 1355 case _or : __ orrw(r0, r1, r0); break; 1356 case _xor : __ eorw(r0, r1, r0); break; 1357 case shl : __ lslvw(r0, r1, r0); break; 1358 case shr : __ asrvw(r0, r1, r0); break; 1359 case ushr : __ lsrvw(r0, r1, r0);break; 1360 default : ShouldNotReachHere(); 1361 } 1362 } 1363 1364 void TemplateTable::lop2(Operation op) 1365 { 1366 transition(ltos, ltos); 1367 // r0 <== r1 op r0 1368 __ pop_l(r1); 1369 switch (op) { 1370 case add : __ add(r0, r1, r0); break; 1371 case sub : __ sub(r0, r1, r0); break; 1372 case mul : __ mul(r0, r1, r0); break; 1373 case _and : __ andr(r0, r1, r0); break; 1374 case _or : __ orr(r0, r1, r0); break; 1375 case _xor : __ eor(r0, r1, r0); break; 1376 default : ShouldNotReachHere(); 1377 } 1378 } 1379 1380 void TemplateTable::idiv() 1381 { 1382 transition(itos, itos); 1383 // explicitly check for div0 1384 Label no_div0; 1385 __ cbnzw(r0, no_div0); 1386 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1387 __ br(rscratch1); 1388 __ bind(no_div0); 1389 __ pop_i(r1); 1390 // r0 <== r1 idiv r0 1391 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false); 1392 } 1393 1394 void TemplateTable::irem() 1395 { 1396 transition(itos, itos); 1397 // explicitly check for div0 1398 Label no_div0; 1399 __ cbnzw(r0, no_div0); 1400 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1401 __ br(rscratch1); 1402 __ bind(no_div0); 1403 __ pop_i(r1); 1404 // r0 <== r1 irem r0 1405 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true); 1406 } 1407 1408 void TemplateTable::lmul() 1409 { 1410 transition(ltos, ltos); 1411 __ pop_l(r1); 1412 __ mul(r0, r0, r1); 1413 } 1414 1415 void TemplateTable::ldiv() 1416 { 1417 transition(ltos, ltos); 1418 // explicitly check for div0 1419 Label no_div0; 1420 __ cbnz(r0, no_div0); 1421 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1422 __ br(rscratch1); 1423 __ bind(no_div0); 1424 __ pop_l(r1); 1425 // r0 <== r1 ldiv r0 1426 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false); 1427 } 1428 1429 void TemplateTable::lrem() 1430 { 1431 transition(ltos, ltos); 1432 // explicitly check for div0 1433 Label no_div0; 1434 __ cbnz(r0, no_div0); 1435 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1436 __ br(rscratch1); 1437 __ bind(no_div0); 1438 __ pop_l(r1); 1439 // r0 <== r1 lrem r0 1440 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true); 1441 } 1442 1443 void TemplateTable::lshl() 1444 { 1445 transition(itos, ltos); 1446 // shift count is in r0 1447 __ pop_l(r1); 1448 __ lslv(r0, r1, r0); 1449 } 1450 1451 void TemplateTable::lshr() 1452 { 1453 transition(itos, ltos); 1454 // shift count is in r0 1455 __ pop_l(r1); 1456 __ asrv(r0, r1, r0); 1457 } 1458 1459 void TemplateTable::lushr() 1460 { 1461 transition(itos, ltos); 1462 // shift count is in r0 1463 __ pop_l(r1); 1464 __ lsrv(r0, r1, r0); 1465 } 1466 1467 void TemplateTable::fop2(Operation op) 1468 { 1469 transition(ftos, ftos); 1470 switch (op) { 1471 case add: 1472 // n.b. use ldrd because this is a 64 bit slot 1473 __ pop_f(v1); 1474 __ fadds(v0, v1, v0); 1475 break; 1476 case sub: 1477 __ pop_f(v1); 1478 __ fsubs(v0, v1, v0); 1479 break; 1480 case mul: 1481 __ pop_f(v1); 1482 __ fmuls(v0, v1, v0); 1483 break; 1484 case div: 1485 __ pop_f(v1); 1486 __ fdivs(v0, v1, v0); 1487 break; 1488 case rem: 1489 __ fmovs(v1, v0); 1490 __ pop_f(v0); 1491 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1492 break; 1493 default: 1494 ShouldNotReachHere(); 1495 break; 1496 } 1497 } 1498 1499 void TemplateTable::dop2(Operation op) 1500 { 1501 transition(dtos, dtos); 1502 switch (op) { 1503 case add: 1504 // n.b. use ldrd because this is a 64 bit slot 1505 __ pop_d(v1); 1506 __ faddd(v0, v1, v0); 1507 break; 1508 case sub: 1509 __ pop_d(v1); 1510 __ fsubd(v0, v1, v0); 1511 break; 1512 case mul: 1513 __ pop_d(v1); 1514 __ fmuld(v0, v1, v0); 1515 break; 1516 case div: 1517 __ pop_d(v1); 1518 __ fdivd(v0, v1, v0); 1519 break; 1520 case rem: 1521 __ fmovd(v1, v0); 1522 __ pop_d(v0); 1523 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1524 break; 1525 default: 1526 ShouldNotReachHere(); 1527 break; 1528 } 1529 } 1530 1531 void TemplateTable::ineg() 1532 { 1533 transition(itos, itos); 1534 __ negw(r0, r0); 1535 1536 } 1537 1538 void TemplateTable::lneg() 1539 { 1540 transition(ltos, ltos); 1541 __ neg(r0, r0); 1542 } 1543 1544 void TemplateTable::fneg() 1545 { 1546 transition(ftos, ftos); 1547 __ fnegs(v0, v0); 1548 } 1549 1550 void TemplateTable::dneg() 1551 { 1552 transition(dtos, dtos); 1553 __ fnegd(v0, v0); 1554 } 1555 1556 void TemplateTable::iinc() 1557 { 1558 transition(vtos, vtos); 1559 __ load_signed_byte(r1, at_bcp(2)); // get constant 1560 locals_index(r2); 1561 __ ldr(r0, iaddress(r2)); 1562 __ addw(r0, r0, r1); 1563 __ str(r0, iaddress(r2)); 1564 } 1565 1566 void TemplateTable::wide_iinc() 1567 { 1568 transition(vtos, vtos); 1569 // __ mov(r1, zr); 1570 __ ldrw(r1, at_bcp(2)); // get constant and index 1571 __ rev16(r1, r1); 1572 __ ubfx(r2, r1, 0, 16); 1573 __ neg(r2, r2); 1574 __ sbfx(r1, r1, 16, 16); 1575 __ ldr(r0, iaddress(r2)); 1576 __ addw(r0, r0, r1); 1577 __ str(r0, iaddress(r2)); 1578 } 1579 1580 void TemplateTable::convert() 1581 { 1582 // Checking 1583 #ifdef ASSERT 1584 { 1585 TosState tos_in = ilgl; 1586 TosState tos_out = ilgl; 1587 switch (bytecode()) { 1588 case Bytecodes::_i2l: // fall through 1589 case Bytecodes::_i2f: // fall through 1590 case Bytecodes::_i2d: // fall through 1591 case Bytecodes::_i2b: // fall through 1592 case Bytecodes::_i2c: // fall through 1593 case Bytecodes::_i2s: tos_in = itos; break; 1594 case Bytecodes::_l2i: // fall through 1595 case Bytecodes::_l2f: // fall through 1596 case Bytecodes::_l2d: tos_in = ltos; break; 1597 case Bytecodes::_f2i: // fall through 1598 case Bytecodes::_f2l: // fall through 1599 case Bytecodes::_f2d: tos_in = ftos; break; 1600 case Bytecodes::_d2i: // fall through 1601 case Bytecodes::_d2l: // fall through 1602 case Bytecodes::_d2f: tos_in = dtos; break; 1603 default : ShouldNotReachHere(); 1604 } 1605 switch (bytecode()) { 1606 case Bytecodes::_l2i: // fall through 1607 case Bytecodes::_f2i: // fall through 1608 case Bytecodes::_d2i: // fall through 1609 case Bytecodes::_i2b: // fall through 1610 case Bytecodes::_i2c: // fall through 1611 case Bytecodes::_i2s: tos_out = itos; break; 1612 case Bytecodes::_i2l: // fall through 1613 case Bytecodes::_f2l: // fall through 1614 case Bytecodes::_d2l: tos_out = ltos; break; 1615 case Bytecodes::_i2f: // fall through 1616 case Bytecodes::_l2f: // fall through 1617 case Bytecodes::_d2f: tos_out = ftos; break; 1618 case Bytecodes::_i2d: // fall through 1619 case Bytecodes::_l2d: // fall through 1620 case Bytecodes::_f2d: tos_out = dtos; break; 1621 default : ShouldNotReachHere(); 1622 } 1623 transition(tos_in, tos_out); 1624 } 1625 #endif // ASSERT 1626 // static const int64_t is_nan = 0x8000000000000000L; 1627 1628 // Conversion 1629 switch (bytecode()) { 1630 case Bytecodes::_i2l: 1631 __ sxtw(r0, r0); 1632 break; 1633 case Bytecodes::_i2f: 1634 __ scvtfws(v0, r0); 1635 break; 1636 case Bytecodes::_i2d: 1637 __ scvtfwd(v0, r0); 1638 break; 1639 case Bytecodes::_i2b: 1640 __ sxtbw(r0, r0); 1641 break; 1642 case Bytecodes::_i2c: 1643 __ uxthw(r0, r0); 1644 break; 1645 case Bytecodes::_i2s: 1646 __ sxthw(r0, r0); 1647 break; 1648 case Bytecodes::_l2i: 1649 __ uxtw(r0, r0); 1650 break; 1651 case Bytecodes::_l2f: 1652 __ scvtfs(v0, r0); 1653 break; 1654 case Bytecodes::_l2d: 1655 __ scvtfd(v0, r0); 1656 break; 1657 case Bytecodes::_f2i: 1658 { 1659 Label L_Okay; 1660 __ clear_fpsr(); 1661 __ fcvtzsw(r0, v0); 1662 __ get_fpsr(r1); 1663 __ cbzw(r1, L_Okay); 1664 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i)); 1665 __ bind(L_Okay); 1666 } 1667 break; 1668 case Bytecodes::_f2l: 1669 { 1670 Label L_Okay; 1671 __ clear_fpsr(); 1672 __ fcvtzs(r0, v0); 1673 __ get_fpsr(r1); 1674 __ cbzw(r1, L_Okay); 1675 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l)); 1676 __ bind(L_Okay); 1677 } 1678 break; 1679 case Bytecodes::_f2d: 1680 __ fcvts(v0, v0); 1681 break; 1682 case Bytecodes::_d2i: 1683 { 1684 Label L_Okay; 1685 __ clear_fpsr(); 1686 __ fcvtzdw(r0, v0); 1687 __ get_fpsr(r1); 1688 __ cbzw(r1, L_Okay); 1689 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i)); 1690 __ bind(L_Okay); 1691 } 1692 break; 1693 case Bytecodes::_d2l: 1694 { 1695 Label L_Okay; 1696 __ clear_fpsr(); 1697 __ fcvtzd(r0, v0); 1698 __ get_fpsr(r1); 1699 __ cbzw(r1, L_Okay); 1700 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); 1701 __ bind(L_Okay); 1702 } 1703 break; 1704 case Bytecodes::_d2f: 1705 __ fcvtd(v0, v0); 1706 break; 1707 default: 1708 ShouldNotReachHere(); 1709 } 1710 } 1711 1712 void TemplateTable::lcmp() 1713 { 1714 transition(ltos, itos); 1715 Label done; 1716 __ pop_l(r1); 1717 __ cmp(r1, r0); 1718 __ mov(r0, (uint64_t)-1L); 1719 __ br(Assembler::LT, done); 1720 // __ mov(r0, 1UL); 1721 // __ csel(r0, r0, zr, Assembler::NE); 1722 // and here is a faster way 1723 __ csinc(r0, zr, zr, Assembler::EQ); 1724 __ bind(done); 1725 } 1726 1727 void TemplateTable::float_cmp(bool is_float, int unordered_result) 1728 { 1729 Label done; 1730 if (is_float) { 1731 // XXX get rid of pop here, use ... reg, mem32 1732 __ pop_f(v1); 1733 __ fcmps(v1, v0); 1734 } else { 1735 // XXX get rid of pop here, use ... reg, mem64 1736 __ pop_d(v1); 1737 __ fcmpd(v1, v0); 1738 } 1739 if (unordered_result < 0) { 1740 // we want -1 for unordered or less than, 0 for equal and 1 for 1741 // greater than. 1742 __ mov(r0, (uint64_t)-1L); 1743 // for FP LT tests less than or unordered 1744 __ br(Assembler::LT, done); 1745 // install 0 for EQ otherwise 1 1746 __ csinc(r0, zr, zr, Assembler::EQ); 1747 } else { 1748 // we want -1 for less than, 0 for equal and 1 for unordered or 1749 // greater than. 1750 __ mov(r0, 1L); 1751 // for FP HI tests greater than or unordered 1752 __ br(Assembler::HI, done); 1753 // install 0 for EQ otherwise ~0 1754 __ csinv(r0, zr, zr, Assembler::EQ); 1755 1756 } 1757 __ bind(done); 1758 } 1759 1760 void TemplateTable::branch(bool is_jsr, bool is_wide) 1761 { 1762 __ profile_taken_branch(r0); 1763 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1764 InvocationCounter::counter_offset(); 1765 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1766 InvocationCounter::counter_offset(); 1767 1768 // load branch displacement 1769 if (!is_wide) { 1770 __ ldrh(r2, at_bcp(1)); 1771 __ rev16(r2, r2); 1772 // sign extend the 16 bit value in r2 1773 __ sbfm(r2, r2, 0, 15); 1774 } else { 1775 __ ldrw(r2, at_bcp(1)); 1776 __ revw(r2, r2); 1777 // sign extend the 32 bit value in r2 1778 __ sbfm(r2, r2, 0, 31); 1779 } 1780 1781 // Handle all the JSR stuff here, then exit. 1782 // It's much shorter and cleaner than intermingling with the non-JSR 1783 // normal-branch stuff occurring below. 1784 1785 if (is_jsr) { 1786 // Pre-load the next target bytecode into rscratch1 1787 __ load_unsigned_byte(rscratch1, Address(rbcp, r2)); 1788 // compute return address as bci 1789 __ ldr(rscratch2, Address(rmethod, Method::const_offset())); 1790 __ add(rscratch2, rscratch2, 1791 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); 1792 __ sub(r1, rbcp, rscratch2); 1793 __ push_i(r1); 1794 // Adjust the bcp by the 16-bit displacement in r2 1795 __ add(rbcp, rbcp, r2); 1796 __ dispatch_only(vtos, /*generate_poll*/true); 1797 return; 1798 } 1799 1800 // Normal (non-jsr) branch handling 1801 1802 // Adjust the bcp by the displacement in r2 1803 __ add(rbcp, rbcp, r2); 1804 1805 assert(UseLoopCounter || !UseOnStackReplacement, 1806 "on-stack-replacement requires loop counters"); 1807 Label backedge_counter_overflow; 1808 Label dispatch; 1809 if (UseLoopCounter) { 1810 // increment backedge counter for backward branches 1811 // r0: MDO 1812 // r2: target offset 1813 __ cmp(r2, zr); 1814 __ br(Assembler::GT, dispatch); // count only if backward branch 1815 1816 // ECN: FIXME: This code smells 1817 // check if MethodCounters exists 1818 Label has_counters; 1819 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1820 __ cbnz(rscratch1, has_counters); 1821 __ push(r0); 1822 __ push(r2); 1823 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 1824 InterpreterRuntime::build_method_counters), rmethod); 1825 __ pop(r2); 1826 __ pop(r0); 1827 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1828 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory 1829 __ bind(has_counters); 1830 1831 Label no_mdo; 1832 int increment = InvocationCounter::count_increment; 1833 if (ProfileInterpreter) { 1834 // Are we profiling? 1835 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 1836 __ cbz(r1, no_mdo); 1837 // Increment the MDO backedge counter 1838 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) + 1839 in_bytes(InvocationCounter::counter_offset())); 1840 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset())); 1841 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1842 r0, rscratch1, false, Assembler::EQ, 1843 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1844 __ b(dispatch); 1845 } 1846 __ bind(no_mdo); 1847 // Increment backedge counter in MethodCounters* 1848 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1849 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset())); 1850 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask, 1851 r0, rscratch2, false, Assembler::EQ, 1852 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1853 __ bind(dispatch); 1854 } 1855 1856 // Pre-load the next target bytecode into rscratch1 1857 __ load_unsigned_byte(rscratch1, Address(rbcp, 0)); 1858 1859 // continue with the bytecode @ target 1860 // rscratch1: target bytecode 1861 // rbcp: target bcp 1862 __ dispatch_only(vtos, /*generate_poll*/true); 1863 1864 if (UseLoopCounter && UseOnStackReplacement) { 1865 // invocation counter overflow 1866 __ bind(backedge_counter_overflow); 1867 __ neg(r2, r2); 1868 __ add(r2, r2, rbcp); // branch bcp 1869 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1870 __ call_VM(noreg, 1871 CAST_FROM_FN_PTR(address, 1872 InterpreterRuntime::frequency_counter_overflow), 1873 r2); 1874 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode 1875 1876 // r0: osr nmethod (osr ok) or null (osr not possible) 1877 // w1: target bytecode 1878 // r2: scratch 1879 __ cbz(r0, dispatch); // test result -- no osr if null 1880 // nmethod may have been invalidated (VM may block upon call_VM return) 1881 __ ldrb(r2, Address(r0, nmethod::state_offset())); 1882 if (nmethod::in_use != 0) 1883 __ sub(r2, r2, nmethod::in_use); 1884 __ cbnz(r2, dispatch); 1885 1886 // We have the address of an on stack replacement routine in r0 1887 // We need to prepare to execute the OSR method. First we must 1888 // migrate the locals and monitors off of the stack. 1889 1890 __ mov(r19, r0); // save the nmethod 1891 1892 JFR_ONLY(__ enter_jfr_critical_section();) 1893 1894 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1895 1896 // r0 is OSR buffer, move it to expected parameter location 1897 __ mov(j_rarg0, r0); 1898 1899 // remove activation 1900 // get sender esp 1901 __ ldr(esp, 1902 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1903 // remove frame anchor 1904 __ leave(); 1905 1906 JFR_ONLY(__ leave_jfr_critical_section();) 1907 1908 // Ensure compiled code always sees stack at proper alignment 1909 __ andr(sp, esp, -16); 1910 1911 // and begin the OSR nmethod 1912 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset())); 1913 __ br(rscratch1); 1914 } 1915 } 1916 1917 1918 void TemplateTable::if_0cmp(Condition cc) 1919 { 1920 transition(itos, vtos); 1921 // assume branch is more often taken than not (loops use backward branches) 1922 Label not_taken; 1923 if (cc == equal) 1924 __ cbnzw(r0, not_taken); 1925 else if (cc == not_equal) 1926 __ cbzw(r0, not_taken); 1927 else { 1928 __ andsw(zr, r0, r0); 1929 __ br(j_not(cc), not_taken); 1930 } 1931 1932 branch(false, false); 1933 __ bind(not_taken); 1934 __ profile_not_taken_branch(r0); 1935 } 1936 1937 void TemplateTable::if_icmp(Condition cc) 1938 { 1939 transition(itos, vtos); 1940 // assume branch is more often taken than not (loops use backward branches) 1941 Label not_taken; 1942 __ pop_i(r1); 1943 __ cmpw(r1, r0, Assembler::LSL); 1944 __ br(j_not(cc), not_taken); 1945 branch(false, false); 1946 __ bind(not_taken); 1947 __ profile_not_taken_branch(r0); 1948 } 1949 1950 void TemplateTable::if_nullcmp(Condition cc) 1951 { 1952 transition(atos, vtos); 1953 // assume branch is more often taken than not (loops use backward branches) 1954 Label not_taken; 1955 if (cc == equal) 1956 __ cbnz(r0, not_taken); 1957 else 1958 __ cbz(r0, not_taken); 1959 branch(false, false); 1960 __ bind(not_taken); 1961 __ profile_not_taken_branch(r0); 1962 } 1963 1964 void TemplateTable::if_acmp(Condition cc) 1965 { 1966 transition(atos, vtos); 1967 // assume branch is more often taken than not (loops use backward branches) 1968 Label not_taken; 1969 __ pop_ptr(r1); 1970 __ cmpoop(r1, r0); 1971 __ br(j_not(cc), not_taken); 1972 branch(false, false); 1973 __ bind(not_taken); 1974 __ profile_not_taken_branch(r0); 1975 } 1976 1977 void TemplateTable::ret() { 1978 transition(vtos, vtos); 1979 locals_index(r1); 1980 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 1981 __ profile_ret(r1, r2); 1982 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 1983 __ lea(rbcp, Address(rbcp, r1)); 1984 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 1985 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1986 } 1987 1988 void TemplateTable::wide_ret() { 1989 transition(vtos, vtos); 1990 locals_index_wide(r1); 1991 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 1992 __ profile_ret(r1, r2); 1993 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 1994 __ lea(rbcp, Address(rbcp, r1)); 1995 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 1996 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1997 } 1998 1999 2000 void TemplateTable::tableswitch() { 2001 Label default_case, continue_execution; 2002 transition(itos, vtos); 2003 // align rbcp 2004 __ lea(r1, at_bcp(BytesPerInt)); 2005 __ andr(r1, r1, -BytesPerInt); 2006 // load lo & hi 2007 __ ldrw(r2, Address(r1, BytesPerInt)); 2008 __ ldrw(r3, Address(r1, 2 * BytesPerInt)); 2009 __ rev32(r2, r2); 2010 __ rev32(r3, r3); 2011 // check against lo & hi 2012 __ cmpw(r0, r2); 2013 __ br(Assembler::LT, default_case); 2014 __ cmpw(r0, r3); 2015 __ br(Assembler::GT, default_case); 2016 // lookup dispatch offset 2017 __ subw(r0, r0, r2); 2018 __ lea(r3, Address(r1, r0, Address::uxtw(2))); 2019 __ ldrw(r3, Address(r3, 3 * BytesPerInt)); 2020 __ profile_switch_case(r0, r1, r2); 2021 // continue execution 2022 __ bind(continue_execution); 2023 __ rev32(r3, r3); 2024 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0))); 2025 __ add(rbcp, rbcp, r3, ext::sxtw); 2026 __ dispatch_only(vtos, /*generate_poll*/true); 2027 // handle default 2028 __ bind(default_case); 2029 __ profile_switch_default(r0); 2030 __ ldrw(r3, Address(r1, 0)); 2031 __ b(continue_execution); 2032 } 2033 2034 void TemplateTable::lookupswitch() { 2035 transition(itos, itos); 2036 __ stop("lookupswitch bytecode should have been rewritten"); 2037 } 2038 2039 void TemplateTable::fast_linearswitch() { 2040 transition(itos, vtos); 2041 Label loop_entry, loop, found, continue_execution; 2042 // bswap r0 so we can avoid bswapping the table entries 2043 __ rev32(r0, r0); 2044 // align rbcp 2045 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2046 // this instruction (change offsets 2047 // below) 2048 __ andr(r19, r19, -BytesPerInt); 2049 // set counter 2050 __ ldrw(r1, Address(r19, BytesPerInt)); 2051 __ rev32(r1, r1); 2052 __ b(loop_entry); 2053 // table search 2054 __ bind(loop); 2055 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2056 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt)); 2057 __ cmpw(r0, rscratch1); 2058 __ br(Assembler::EQ, found); 2059 __ bind(loop_entry); 2060 __ subs(r1, r1, 1); 2061 __ br(Assembler::PL, loop); 2062 // default case 2063 __ profile_switch_default(r0); 2064 __ ldrw(r3, Address(r19, 0)); 2065 __ b(continue_execution); 2066 // entry found -> get offset 2067 __ bind(found); 2068 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2069 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt)); 2070 __ profile_switch_case(r1, r0, r19); 2071 // continue execution 2072 __ bind(continue_execution); 2073 __ rev32(r3, r3); 2074 __ add(rbcp, rbcp, r3, ext::sxtw); 2075 __ ldrb(rscratch1, Address(rbcp, 0)); 2076 __ dispatch_only(vtos, /*generate_poll*/true); 2077 } 2078 2079 void TemplateTable::fast_binaryswitch() { 2080 transition(itos, vtos); 2081 // Implementation using the following core algorithm: 2082 // 2083 // int binary_search(int key, LookupswitchPair* array, int n) { 2084 // // Binary search according to "Methodik des Programmierens" by 2085 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2086 // int i = 0; 2087 // int j = n; 2088 // while (i+1 < j) { 2089 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2090 // // with Q: for all i: 0 <= i < n: key < a[i] 2091 // // where a stands for the array and assuming that the (inexisting) 2092 // // element a[n] is infinitely big. 2093 // int h = (i + j) >> 1; 2094 // // i < h < j 2095 // if (key < array[h].fast_match()) { 2096 // j = h; 2097 // } else { 2098 // i = h; 2099 // } 2100 // } 2101 // // R: a[i] <= key < a[i+1] or Q 2102 // // (i.e., if key is within array, i is the correct index) 2103 // return i; 2104 // } 2105 2106 // Register allocation 2107 const Register key = r0; // already set (tosca) 2108 const Register array = r1; 2109 const Register i = r2; 2110 const Register j = r3; 2111 const Register h = rscratch1; 2112 const Register temp = rscratch2; 2113 2114 // Find array start 2115 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2116 // get rid of this 2117 // instruction (change 2118 // offsets below) 2119 __ andr(array, array, -BytesPerInt); 2120 2121 // Initialize i & j 2122 __ mov(i, 0); // i = 0; 2123 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array); 2124 2125 // Convert j into native byteordering 2126 __ rev32(j, j); 2127 2128 // And start 2129 Label entry; 2130 __ b(entry); 2131 2132 // binary search loop 2133 { 2134 Label loop; 2135 __ bind(loop); 2136 // int h = (i + j) >> 1; 2137 __ addw(h, i, j); // h = i + j; 2138 __ lsrw(h, h, 1); // h = (i + j) >> 1; 2139 // if (key < array[h].fast_match()) { 2140 // j = h; 2141 // } else { 2142 // i = h; 2143 // } 2144 // Convert array[h].match to native byte-ordering before compare 2145 __ ldr(temp, Address(array, h, Address::lsl(3))); 2146 __ rev32(temp, temp); 2147 __ cmpw(key, temp); 2148 // j = h if (key < array[h].fast_match()) 2149 __ csel(j, h, j, Assembler::LT); 2150 // i = h if (key >= array[h].fast_match()) 2151 __ csel(i, h, i, Assembler::GE); 2152 // while (i+1 < j) 2153 __ bind(entry); 2154 __ addw(h, i, 1); // i+1 2155 __ cmpw(h, j); // i+1 < j 2156 __ br(Assembler::LT, loop); 2157 } 2158 2159 // end of binary search, result index is i (must check again!) 2160 Label default_case; 2161 // Convert array[i].match to native byte-ordering before compare 2162 __ ldr(temp, Address(array, i, Address::lsl(3))); 2163 __ rev32(temp, temp); 2164 __ cmpw(key, temp); 2165 __ br(Assembler::NE, default_case); 2166 2167 // entry found -> j = offset 2168 __ add(j, array, i, ext::uxtx, 3); 2169 __ ldrw(j, Address(j, BytesPerInt)); 2170 __ profile_switch_case(i, key, array); 2171 __ rev32(j, j); 2172 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2173 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2174 __ dispatch_only(vtos, /*generate_poll*/true); 2175 2176 // default case -> j = default offset 2177 __ bind(default_case); 2178 __ profile_switch_default(i); 2179 __ ldrw(j, Address(array, -2 * BytesPerInt)); 2180 __ rev32(j, j); 2181 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2182 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2183 __ dispatch_only(vtos, /*generate_poll*/true); 2184 } 2185 2186 2187 void TemplateTable::_return(TosState state) 2188 { 2189 transition(state, state); 2190 assert(_desc->calls_vm(), 2191 "inconsistent calls_vm information"); // call in remove_activation 2192 2193 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2194 assert(state == vtos, "only valid state"); 2195 2196 __ ldr(c_rarg1, aaddress(0)); 2197 __ load_klass(r3, c_rarg1); 2198 __ ldrb(r3, Address(r3, Klass::misc_flags_offset())); 2199 Label skip_register_finalizer; 2200 __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer); 2201 2202 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2203 2204 __ bind(skip_register_finalizer); 2205 } 2206 2207 // Issue a StoreStore barrier after all stores but before return 2208 // from any constructor for any class with a final field. We don't 2209 // know if this is a finalizer, so we always do so. 2210 if (_desc->bytecode() == Bytecodes::_return) 2211 __ membar(MacroAssembler::StoreStore); 2212 2213 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2214 Label no_safepoint; 2215 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 2216 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint); 2217 __ push(state); 2218 __ push_cont_fastpath(rthread); 2219 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)); 2220 __ pop_cont_fastpath(rthread); 2221 __ pop(state); 2222 __ bind(no_safepoint); 2223 } 2224 2225 // Narrow result if state is itos but result type is smaller. 2226 // Need to narrow in the return bytecode rather than in generate_return_entry 2227 // since compiled code callers expect the result to already be narrowed. 2228 if (state == itos) { 2229 __ narrow(r0); 2230 } 2231 2232 __ remove_activation(state); 2233 __ ret(lr); 2234 } 2235 2236 // ---------------------------------------------------------------------------- 2237 // Volatile variables demand their effects be made known to all CPU's 2238 // in order. Store buffers on most chips allow reads & writes to 2239 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2240 // without some kind of memory barrier (i.e., it's not sufficient that 2241 // the interpreter does not reorder volatile references, the hardware 2242 // also must not reorder them). 2243 // 2244 // According to the new Java Memory Model (JMM): 2245 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2246 // writes act as acquire & release, so: 2247 // (2) A read cannot let unrelated NON-volatile memory refs that 2248 // happen after the read float up to before the read. It's OK for 2249 // non-volatile memory refs that happen before the volatile read to 2250 // float down below it. 2251 // (3) Similar a volatile write cannot let unrelated NON-volatile 2252 // memory refs that happen BEFORE the write float down to after the 2253 // write. It's OK for non-volatile memory refs that happen after the 2254 // volatile write to float up before it. 2255 // 2256 // We only put in barriers around volatile refs (they are expensive), 2257 // not _between_ memory refs (that would require us to track the 2258 // flavor of the previous memory refs). Requirements (2) and (3) 2259 // require some barriers before volatile stores and after volatile 2260 // loads. These nearly cover requirement (1) but miss the 2261 // volatile-store-volatile-load case. This final case is placed after 2262 // volatile-stores although it could just as well go before 2263 // volatile-loads. 2264 2265 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2266 Register Rcache, 2267 Register index) { 2268 const Register temp = r19; 2269 assert_different_registers(Rcache, index, temp); 2270 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2271 2272 Label resolved, clinit_barrier_slow; 2273 2274 Bytecodes::Code code = bytecode(); 2275 __ load_method_entry(Rcache, index); 2276 switch(byte_no) { 2277 case f1_byte: 2278 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset()))); 2279 break; 2280 case f2_byte: 2281 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset()))); 2282 break; 2283 } 2284 // Load-acquire the bytecode to match store-release in InterpreterRuntime 2285 __ ldarb(temp, temp); 2286 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2287 __ br(Assembler::EQ, resolved); 2288 2289 // resolve first time through 2290 // Class initialization barrier slow path lands here as well. 2291 __ bind(clinit_barrier_slow); 2292 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2293 __ mov(temp, (int) code); 2294 __ call_VM_preemptable(noreg, entry, temp); 2295 2296 // Update registers with resolved info 2297 __ load_method_entry(Rcache, index); 2298 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset 2299 // so all clients ofthis method must be modified accordingly 2300 __ bind(resolved); 2301 2302 // Class initialization barrier for static methods 2303 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2304 __ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset()))); 2305 __ load_method_holder(temp, temp); 2306 __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow); 2307 } 2308 } 2309 2310 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2311 Register Rcache, 2312 Register index) { 2313 const Register temp = r19; 2314 assert_different_registers(Rcache, index, temp); 2315 2316 Label resolved; 2317 2318 Bytecodes::Code code = bytecode(); 2319 switch (code) { 2320 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2321 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2322 default: break; 2323 } 2324 2325 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2326 __ load_field_entry(Rcache, index); 2327 if (byte_no == f1_byte) { 2328 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2329 } else { 2330 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2331 } 2332 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 2333 __ ldarb(temp, temp); 2334 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2335 __ br(Assembler::EQ, resolved); 2336 2337 // resolve first time through 2338 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2339 __ mov(temp, (int) code); 2340 __ call_VM_preemptable(noreg, entry, temp); 2341 2342 // Update registers with resolved info 2343 __ load_field_entry(Rcache, index); 2344 __ bind(resolved); 2345 } 2346 2347 void TemplateTable::load_resolved_field_entry(Register obj, 2348 Register cache, 2349 Register tos_state, 2350 Register offset, 2351 Register flags, 2352 bool is_static = false) { 2353 assert_different_registers(cache, tos_state, flags, offset); 2354 2355 // Field offset 2356 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2357 2358 // Flags 2359 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2360 2361 // TOS state 2362 if (tos_state != noreg) { 2363 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2364 } 2365 2366 // Klass overwrite register 2367 if (is_static) { 2368 __ ldr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2369 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2370 __ ldr(obj, Address(obj, mirror_offset)); 2371 __ resolve_oop_handle(obj, r5, rscratch2); 2372 } 2373 } 2374 2375 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2376 Register method, 2377 Register flags) { 2378 2379 // setup registers 2380 const Register index = flags; 2381 assert_different_registers(method, cache, flags); 2382 2383 // determine constant pool cache field offsets 2384 resolve_cache_and_index_for_method(f1_byte, cache, index); 2385 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2386 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2387 } 2388 2389 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2390 Register method, 2391 Register ref_index, 2392 Register flags) { 2393 // setup registers 2394 const Register index = ref_index; 2395 assert_different_registers(method, flags); 2396 assert_different_registers(method, cache, index); 2397 2398 // determine constant pool cache field offsets 2399 resolve_cache_and_index_for_method(f1_byte, cache, index); 2400 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2401 2402 // maybe push appendix to arguments (just before return address) 2403 Label L_no_push; 2404 __ tbz(flags, ResolvedMethodEntry::has_appendix_shift, L_no_push); 2405 // invokehandle uses an index into the resolved references array 2406 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2407 // Push the appendix as a trailing parameter. 2408 // This must be done before we get the receiver, 2409 // since the parameter_size includes it. 2410 Register appendix = method; 2411 __ load_resolved_reference_at_index(appendix, ref_index); 2412 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2413 __ bind(L_no_push); 2414 2415 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2416 } 2417 2418 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2419 Register klass, 2420 Register method_or_table_index, 2421 Register flags) { 2422 // setup registers 2423 const Register index = method_or_table_index; 2424 assert_different_registers(method_or_table_index, cache, flags); 2425 2426 // determine constant pool cache field offsets 2427 resolve_cache_and_index_for_method(f1_byte, cache, index); 2428 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2429 2430 // Invokeinterface can behave in different ways: 2431 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2432 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2433 // vtable index is placed in the register. 2434 // Otherwise, the registers will be populated with the klass and method. 2435 2436 Label NotVirtual; Label NotVFinal; Label Done; 2437 __ tbz(flags, ResolvedMethodEntry::is_forced_virtual_shift, NotVirtual); 2438 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal); 2439 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2440 __ b(Done); 2441 2442 __ bind(NotVFinal); 2443 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2444 __ b(Done); 2445 2446 __ bind(NotVirtual); 2447 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2448 __ ldr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2449 __ bind(Done); 2450 } 2451 2452 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2453 Register method_or_table_index, 2454 Register flags) { 2455 // setup registers 2456 const Register index = flags; 2457 assert_different_registers(method_or_table_index, cache, flags); 2458 2459 // determine constant pool cache field offsets 2460 resolve_cache_and_index_for_method(f2_byte, cache, index); 2461 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2462 2463 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2464 Label NotVFinal; Label Done; 2465 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal); 2466 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2467 __ b(Done); 2468 2469 __ bind(NotVFinal); 2470 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2471 __ bind(Done); 2472 } 2473 2474 // The rmethod register is input and overwritten to be the adapter method for the 2475 // indy call. Link Register (lr) is set to the return address for the adapter and 2476 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered 2477 void TemplateTable::load_invokedynamic_entry(Register method) { 2478 // setup registers 2479 const Register appendix = r0; 2480 const Register cache = r2; 2481 const Register index = r3; 2482 assert_different_registers(method, appendix, cache, index, rcpool); 2483 2484 __ save_bcp(); 2485 2486 Label resolved; 2487 2488 __ load_resolved_indy_entry(cache, index); 2489 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2490 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2491 __ ldar(method, method); 2492 2493 // Compare the method to zero 2494 __ cbnz(method, resolved); 2495 2496 Bytecodes::Code code = bytecode(); 2497 2498 // Call to the interpreter runtime to resolve invokedynamic 2499 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2500 __ mov(method, code); // this is essentially Bytecodes::_invokedynamic 2501 __ call_VM_preemptable(noreg, entry, method); 2502 // Update registers with resolved info 2503 __ load_resolved_indy_entry(cache, index); 2504 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2505 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2506 __ ldar(method, method); 2507 2508 #ifdef ASSERT 2509 __ cbnz(method, resolved); 2510 __ stop("Should be resolved by now"); 2511 #endif // ASSERT 2512 __ bind(resolved); 2513 2514 Label L_no_push; 2515 // Check if there is an appendix 2516 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2517 __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push); 2518 2519 // Get appendix 2520 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2521 // Push the appendix as a trailing parameter 2522 // since the parameter_size includes it. 2523 __ push(method); 2524 __ mov(method, index); 2525 __ load_resolved_reference_at_index(appendix, method); 2526 __ verify_oop(appendix); 2527 __ pop(method); 2528 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2529 __ bind(L_no_push); 2530 2531 // compute return type 2532 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2533 // load return address 2534 // Return address is loaded into link register(lr) and not pushed to the stack 2535 // like x86 2536 { 2537 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2538 __ mov(rscratch1, table_addr); 2539 __ ldr(lr, Address(rscratch1, index, Address::lsl(3))); 2540 } 2541 } 2542 2543 // The registers cache and index expected to be set before call. 2544 // Correct values of the cache and index registers are preserved. 2545 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2546 bool is_static, bool has_tos) { 2547 // do the JVMTI work here to avoid disturbing the register state below 2548 // We use c_rarg registers here because we want to use the register used in 2549 // the call to the VM 2550 if (JvmtiExport::can_post_field_access()) { 2551 // Check to see if a field access watch has been set before we 2552 // take the time to call into the VM. 2553 Label L1; 2554 assert_different_registers(cache, index, r0); 2555 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2556 __ ldrw(r0, Address(rscratch1)); 2557 __ cbzw(r0, L1); 2558 2559 __ load_field_entry(c_rarg2, index); 2560 2561 if (is_static) { 2562 __ mov(c_rarg1, zr); // null object reference 2563 } else { 2564 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it 2565 __ verify_oop(c_rarg1); 2566 } 2567 // c_rarg1: object pointer or null 2568 // c_rarg2: cache entry pointer 2569 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2570 InterpreterRuntime::post_field_access), 2571 c_rarg1, c_rarg2); 2572 __ load_field_entry(cache, index); 2573 __ bind(L1); 2574 } 2575 } 2576 2577 void TemplateTable::pop_and_check_object(Register r) 2578 { 2579 __ pop_ptr(r); 2580 __ null_check(r); // for field access must check obj. 2581 __ verify_oop(r); 2582 } 2583 2584 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) 2585 { 2586 const Register cache = r4; 2587 const Register obj = r4; 2588 const Register index = r3; 2589 const Register tos_state = r3; 2590 const Register off = r19; 2591 const Register flags = r6; 2592 const Register bc = r4; // uses same reg as obj, so don't mix them 2593 2594 resolve_cache_and_index_for_field(byte_no, cache, index); 2595 jvmti_post_field_access(cache, index, is_static, false); 2596 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2597 2598 if (!is_static) { 2599 // obj is on the stack 2600 pop_and_check_object(obj); 2601 } 2602 2603 // 8179954: We need to make sure that the code generated for 2604 // volatile accesses forms a sequentially-consistent set of 2605 // operations when combined with STLR and LDAR. Without a leading 2606 // membar it's possible for a simple Dekker test to fail if loads 2607 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 2608 // the stores in one method and we interpret the loads in another. 2609 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){ 2610 Label notVolatile; 2611 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2612 __ membar(MacroAssembler::AnyAny); 2613 __ bind(notVolatile); 2614 } 2615 2616 const Address field(obj, off); 2617 2618 Label Done, notByte, notBool, notInt, notShort, notChar, 2619 notLong, notFloat, notObj, notDouble; 2620 2621 assert(btos == 0, "change code, btos != 0"); 2622 __ cbnz(tos_state, notByte); 2623 2624 // Don't rewrite getstatic, only getfield 2625 if (is_static) rc = may_not_rewrite; 2626 2627 // btos 2628 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 2629 __ push(btos); 2630 // Rewrite bytecode to be faster 2631 if (rc == may_rewrite) { 2632 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2633 } 2634 __ b(Done); 2635 2636 __ bind(notByte); 2637 __ cmp(tos_state, (u1)ztos); 2638 __ br(Assembler::NE, notBool); 2639 2640 // ztos (same code as btos) 2641 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg); 2642 __ push(ztos); 2643 // Rewrite bytecode to be faster 2644 if (rc == may_rewrite) { 2645 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2646 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2647 } 2648 __ b(Done); 2649 2650 __ bind(notBool); 2651 __ cmp(tos_state, (u1)atos); 2652 __ br(Assembler::NE, notObj); 2653 // atos 2654 do_oop_load(_masm, field, r0, IN_HEAP); 2655 __ push(atos); 2656 if (rc == may_rewrite) { 2657 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1); 2658 } 2659 __ b(Done); 2660 2661 __ bind(notObj); 2662 __ cmp(tos_state, (u1)itos); 2663 __ br(Assembler::NE, notInt); 2664 // itos 2665 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 2666 __ push(itos); 2667 // Rewrite bytecode to be faster 2668 if (rc == may_rewrite) { 2669 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1); 2670 } 2671 __ b(Done); 2672 2673 __ bind(notInt); 2674 __ cmp(tos_state, (u1)ctos); 2675 __ br(Assembler::NE, notChar); 2676 // ctos 2677 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 2678 __ push(ctos); 2679 // Rewrite bytecode to be faster 2680 if (rc == may_rewrite) { 2681 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1); 2682 } 2683 __ b(Done); 2684 2685 __ bind(notChar); 2686 __ cmp(tos_state, (u1)stos); 2687 __ br(Assembler::NE, notShort); 2688 // stos 2689 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 2690 __ push(stos); 2691 // Rewrite bytecode to be faster 2692 if (rc == may_rewrite) { 2693 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1); 2694 } 2695 __ b(Done); 2696 2697 __ bind(notShort); 2698 __ cmp(tos_state, (u1)ltos); 2699 __ br(Assembler::NE, notLong); 2700 // ltos 2701 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 2702 __ push(ltos); 2703 // Rewrite bytecode to be faster 2704 if (rc == may_rewrite) { 2705 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1); 2706 } 2707 __ b(Done); 2708 2709 __ bind(notLong); 2710 __ cmp(tos_state, (u1)ftos); 2711 __ br(Assembler::NE, notFloat); 2712 // ftos 2713 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2714 __ push(ftos); 2715 // Rewrite bytecode to be faster 2716 if (rc == may_rewrite) { 2717 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1); 2718 } 2719 __ b(Done); 2720 2721 __ bind(notFloat); 2722 #ifdef ASSERT 2723 __ cmp(tos_state, (u1)dtos); 2724 __ br(Assembler::NE, notDouble); 2725 #endif 2726 // dtos 2727 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2728 __ push(dtos); 2729 // Rewrite bytecode to be faster 2730 if (rc == may_rewrite) { 2731 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1); 2732 } 2733 #ifdef ASSERT 2734 __ b(Done); 2735 2736 __ bind(notDouble); 2737 __ stop("Bad state"); 2738 #endif 2739 2740 __ bind(Done); 2741 2742 Label notVolatile; 2743 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2744 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2745 __ bind(notVolatile); 2746 } 2747 2748 2749 void TemplateTable::getfield(int byte_no) 2750 { 2751 getfield_or_static(byte_no, false); 2752 } 2753 2754 void TemplateTable::nofast_getfield(int byte_no) { 2755 getfield_or_static(byte_no, false, may_not_rewrite); 2756 } 2757 2758 void TemplateTable::getstatic(int byte_no) 2759 { 2760 getfield_or_static(byte_no, true); 2761 } 2762 2763 // The registers cache and index expected to be set before call. 2764 // The function may destroy various registers, just not the cache and index registers. 2765 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2766 transition(vtos, vtos); 2767 2768 if (JvmtiExport::can_post_field_modification()) { 2769 // Check to see if a field modification watch has been set before 2770 // we take the time to call into the VM. 2771 Label L1; 2772 assert_different_registers(cache, index, r0); 2773 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2774 __ ldrw(r0, Address(rscratch1)); 2775 __ cbz(r0, L1); 2776 2777 __ mov(c_rarg2, cache); 2778 2779 if (is_static) { 2780 // Life is simple. Null out the object pointer. 2781 __ mov(c_rarg1, zr); 2782 } else { 2783 // Life is harder. The stack holds the value on top, followed by 2784 // the object. We don't know the size of the value, though; it 2785 // could be one or two words depending on its type. As a result, 2786 // we must find the type to determine where the object is. 2787 __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset()))); 2788 Label nope2, done, ok; 2789 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2790 __ cmpw(c_rarg3, ltos); 2791 __ br(Assembler::EQ, ok); 2792 __ cmpw(c_rarg3, dtos); 2793 __ br(Assembler::NE, nope2); 2794 __ bind(ok); 2795 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2796 __ bind(nope2); 2797 } 2798 // object (tos) 2799 __ mov(c_rarg3, esp); 2800 // c_rarg1: object pointer set up above (null if static) 2801 // c_rarg2: cache entry pointer 2802 // c_rarg3: jvalue object on the stack 2803 __ call_VM(noreg, 2804 CAST_FROM_FN_PTR(address, 2805 InterpreterRuntime::post_field_modification), 2806 c_rarg1, c_rarg2, c_rarg3); 2807 __ load_field_entry(cache, index); 2808 __ bind(L1); 2809 } 2810 } 2811 2812 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2813 transition(vtos, vtos); 2814 2815 const Register cache = r2; 2816 const Register index = r3; 2817 const Register tos_state = r3; 2818 const Register obj = r2; 2819 const Register off = r19; 2820 const Register flags = r0; 2821 const Register bc = r4; 2822 2823 resolve_cache_and_index_for_field(byte_no, cache, index); 2824 jvmti_post_field_mod(cache, index, is_static); 2825 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2826 2827 Label Done; 2828 __ mov(r5, flags); 2829 2830 { 2831 Label notVolatile; 2832 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2833 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2834 __ bind(notVolatile); 2835 } 2836 2837 // field address 2838 const Address field(obj, off); 2839 2840 Label notByte, notBool, notInt, notShort, notChar, 2841 notLong, notFloat, notObj, notDouble; 2842 2843 assert(btos == 0, "change code, btos != 0"); 2844 __ cbnz(tos_state, notByte); 2845 2846 // Don't rewrite putstatic, only putfield 2847 if (is_static) rc = may_not_rewrite; 2848 2849 // btos 2850 { 2851 __ pop(btos); 2852 if (!is_static) pop_and_check_object(obj); 2853 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 2854 if (rc == may_rewrite) { 2855 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no); 2856 } 2857 __ b(Done); 2858 } 2859 2860 __ bind(notByte); 2861 __ cmp(tos_state, (u1)ztos); 2862 __ br(Assembler::NE, notBool); 2863 2864 // ztos 2865 { 2866 __ pop(ztos); 2867 if (!is_static) pop_and_check_object(obj); 2868 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 2869 if (rc == may_rewrite) { 2870 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no); 2871 } 2872 __ b(Done); 2873 } 2874 2875 __ bind(notBool); 2876 __ cmp(tos_state, (u1)atos); 2877 __ br(Assembler::NE, notObj); 2878 2879 // atos 2880 { 2881 __ pop(atos); 2882 if (!is_static) pop_and_check_object(obj); 2883 // Store into the field 2884 // Clobbers: r10, r11, r3 2885 do_oop_store(_masm, field, r0, IN_HEAP); 2886 if (rc == may_rewrite) { 2887 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no); 2888 } 2889 __ b(Done); 2890 } 2891 2892 __ bind(notObj); 2893 __ cmp(tos_state, (u1)itos); 2894 __ br(Assembler::NE, notInt); 2895 2896 // itos 2897 { 2898 __ pop(itos); 2899 if (!is_static) pop_and_check_object(obj); 2900 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 2901 if (rc == may_rewrite) { 2902 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no); 2903 } 2904 __ b(Done); 2905 } 2906 2907 __ bind(notInt); 2908 __ cmp(tos_state, (u1)ctos); 2909 __ br(Assembler::NE, notChar); 2910 2911 // ctos 2912 { 2913 __ pop(ctos); 2914 if (!is_static) pop_and_check_object(obj); 2915 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 2916 if (rc == may_rewrite) { 2917 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no); 2918 } 2919 __ b(Done); 2920 } 2921 2922 __ bind(notChar); 2923 __ cmp(tos_state, (u1)stos); 2924 __ br(Assembler::NE, notShort); 2925 2926 // stos 2927 { 2928 __ pop(stos); 2929 if (!is_static) pop_and_check_object(obj); 2930 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 2931 if (rc == may_rewrite) { 2932 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no); 2933 } 2934 __ b(Done); 2935 } 2936 2937 __ bind(notShort); 2938 __ cmp(tos_state, (u1)ltos); 2939 __ br(Assembler::NE, notLong); 2940 2941 // ltos 2942 { 2943 __ pop(ltos); 2944 if (!is_static) pop_and_check_object(obj); 2945 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 2946 if (rc == may_rewrite) { 2947 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no); 2948 } 2949 __ b(Done); 2950 } 2951 2952 __ bind(notLong); 2953 __ cmp(tos_state, (u1)ftos); 2954 __ br(Assembler::NE, notFloat); 2955 2956 // ftos 2957 { 2958 __ pop(ftos); 2959 if (!is_static) pop_and_check_object(obj); 2960 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 2961 if (rc == may_rewrite) { 2962 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no); 2963 } 2964 __ b(Done); 2965 } 2966 2967 __ bind(notFloat); 2968 #ifdef ASSERT 2969 __ cmp(tos_state, (u1)dtos); 2970 __ br(Assembler::NE, notDouble); 2971 #endif 2972 2973 // dtos 2974 { 2975 __ pop(dtos); 2976 if (!is_static) pop_and_check_object(obj); 2977 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 2978 if (rc == may_rewrite) { 2979 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no); 2980 } 2981 } 2982 2983 #ifdef ASSERT 2984 __ b(Done); 2985 2986 __ bind(notDouble); 2987 __ stop("Bad state"); 2988 #endif 2989 2990 __ bind(Done); 2991 2992 { 2993 Label notVolatile; 2994 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2995 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 2996 __ bind(notVolatile); 2997 } 2998 } 2999 3000 void TemplateTable::putfield(int byte_no) 3001 { 3002 putfield_or_static(byte_no, false); 3003 } 3004 3005 void TemplateTable::nofast_putfield(int byte_no) { 3006 putfield_or_static(byte_no, false, may_not_rewrite); 3007 } 3008 3009 void TemplateTable::putstatic(int byte_no) { 3010 putfield_or_static(byte_no, true); 3011 } 3012 3013 void TemplateTable::jvmti_post_fast_field_mod() { 3014 if (JvmtiExport::can_post_field_modification()) { 3015 // Check to see if a field modification watch has been set before 3016 // we take the time to call into the VM. 3017 Label L2; 3018 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3019 __ ldrw(c_rarg3, Address(rscratch1)); 3020 __ cbzw(c_rarg3, L2); 3021 __ pop_ptr(r19); // copy the object pointer from tos 3022 __ verify_oop(r19); 3023 __ push_ptr(r19); // put the object pointer back on tos 3024 // Save tos values before call_VM() clobbers them. Since we have 3025 // to do it for every data type, we use the saved values as the 3026 // jvalue object. 3027 switch (bytecode()) { // load values into the jvalue object 3028 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break; 3029 case Bytecodes::_fast_bputfield: // fall through 3030 case Bytecodes::_fast_zputfield: // fall through 3031 case Bytecodes::_fast_sputfield: // fall through 3032 case Bytecodes::_fast_cputfield: // fall through 3033 case Bytecodes::_fast_iputfield: __ push_i(r0); break; 3034 case Bytecodes::_fast_dputfield: __ push_d(); break; 3035 case Bytecodes::_fast_fputfield: __ push_f(); break; 3036 case Bytecodes::_fast_lputfield: __ push_l(r0); break; 3037 3038 default: 3039 ShouldNotReachHere(); 3040 } 3041 __ mov(c_rarg3, esp); // points to jvalue on the stack 3042 // access constant pool cache entry 3043 __ load_field_entry(c_rarg2, r0); 3044 __ verify_oop(r19); 3045 // r19: object pointer copied above 3046 // c_rarg2: cache entry pointer 3047 // c_rarg3: jvalue object on the stack 3048 __ call_VM(noreg, 3049 CAST_FROM_FN_PTR(address, 3050 InterpreterRuntime::post_field_modification), 3051 r19, c_rarg2, c_rarg3); 3052 3053 switch (bytecode()) { // restore tos values 3054 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break; 3055 case Bytecodes::_fast_bputfield: // fall through 3056 case Bytecodes::_fast_zputfield: // fall through 3057 case Bytecodes::_fast_sputfield: // fall through 3058 case Bytecodes::_fast_cputfield: // fall through 3059 case Bytecodes::_fast_iputfield: __ pop_i(r0); break; 3060 case Bytecodes::_fast_dputfield: __ pop_d(); break; 3061 case Bytecodes::_fast_fputfield: __ pop_f(); break; 3062 case Bytecodes::_fast_lputfield: __ pop_l(r0); break; 3063 default: break; 3064 } 3065 __ bind(L2); 3066 } 3067 } 3068 3069 void TemplateTable::fast_storefield(TosState state) 3070 { 3071 transition(state, vtos); 3072 3073 ByteSize base = ConstantPoolCache::base_offset(); 3074 3075 jvmti_post_fast_field_mod(); 3076 3077 // access constant pool cache 3078 __ load_field_entry(r2, r1); 3079 3080 // R1: field offset, R2: field holder, R5: flags 3081 load_resolved_field_entry(r2, r2, noreg, r1, r5); 3082 3083 { 3084 Label notVolatile; 3085 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3086 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 3087 __ bind(notVolatile); 3088 } 3089 3090 Label notVolatile; 3091 3092 // Get object from stack 3093 pop_and_check_object(r2); 3094 3095 // field address 3096 const Address field(r2, r1); 3097 3098 // access field 3099 switch (bytecode()) { 3100 case Bytecodes::_fast_aputfield: 3101 // Clobbers: r10, r11, r3 3102 do_oop_store(_masm, field, r0, IN_HEAP); 3103 break; 3104 case Bytecodes::_fast_lputfield: 3105 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 3106 break; 3107 case Bytecodes::_fast_iputfield: 3108 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 3109 break; 3110 case Bytecodes::_fast_zputfield: 3111 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 3112 break; 3113 case Bytecodes::_fast_bputfield: 3114 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 3115 break; 3116 case Bytecodes::_fast_sputfield: 3117 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 3118 break; 3119 case Bytecodes::_fast_cputfield: 3120 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 3121 break; 3122 case Bytecodes::_fast_fputfield: 3123 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3124 break; 3125 case Bytecodes::_fast_dputfield: 3126 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 3127 break; 3128 default: 3129 ShouldNotReachHere(); 3130 } 3131 3132 { 3133 Label notVolatile; 3134 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3135 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3136 __ bind(notVolatile); 3137 } 3138 } 3139 3140 3141 void TemplateTable::fast_accessfield(TosState state) 3142 { 3143 transition(atos, state); 3144 // Do the JVMTI work here to avoid disturbing the register state below 3145 if (JvmtiExport::can_post_field_access()) { 3146 // Check to see if a field access watch has been set before we 3147 // take the time to call into the VM. 3148 Label L1; 3149 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3150 __ ldrw(r2, Address(rscratch1)); 3151 __ cbzw(r2, L1); 3152 // access constant pool cache entry 3153 __ load_field_entry(c_rarg2, rscratch2); 3154 __ verify_oop(r0); 3155 __ push_ptr(r0); // save object pointer before call_VM() clobbers it 3156 __ mov(c_rarg1, r0); 3157 // c_rarg1: object pointer copied above 3158 // c_rarg2: cache entry pointer 3159 __ call_VM(noreg, 3160 CAST_FROM_FN_PTR(address, 3161 InterpreterRuntime::post_field_access), 3162 c_rarg1, c_rarg2); 3163 __ pop_ptr(r0); // restore object pointer 3164 __ bind(L1); 3165 } 3166 3167 // access constant pool cache 3168 __ load_field_entry(r2, r1); 3169 3170 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3171 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3172 3173 // r0: object 3174 __ verify_oop(r0); 3175 __ null_check(r0); 3176 const Address field(r0, r1); 3177 3178 // 8179954: We need to make sure that the code generated for 3179 // volatile accesses forms a sequentially-consistent set of 3180 // operations when combined with STLR and LDAR. Without a leading 3181 // membar it's possible for a simple Dekker test to fail if loads 3182 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3183 // the stores in one method and we interpret the loads in another. 3184 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3185 Label notVolatile; 3186 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3187 __ membar(MacroAssembler::AnyAny); 3188 __ bind(notVolatile); 3189 } 3190 3191 // access field 3192 switch (bytecode()) { 3193 case Bytecodes::_fast_agetfield: 3194 do_oop_load(_masm, field, r0, IN_HEAP); 3195 __ verify_oop(r0); 3196 break; 3197 case Bytecodes::_fast_lgetfield: 3198 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 3199 break; 3200 case Bytecodes::_fast_igetfield: 3201 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 3202 break; 3203 case Bytecodes::_fast_bgetfield: 3204 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 3205 break; 3206 case Bytecodes::_fast_sgetfield: 3207 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 3208 break; 3209 case Bytecodes::_fast_cgetfield: 3210 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 3211 break; 3212 case Bytecodes::_fast_fgetfield: 3213 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3214 break; 3215 case Bytecodes::_fast_dgetfield: 3216 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3217 break; 3218 default: 3219 ShouldNotReachHere(); 3220 } 3221 { 3222 Label notVolatile; 3223 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3224 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3225 __ bind(notVolatile); 3226 } 3227 } 3228 3229 void TemplateTable::fast_xaccess(TosState state) 3230 { 3231 transition(vtos, state); 3232 3233 // get receiver 3234 __ ldr(r0, aaddress(0)); 3235 // access constant pool cache 3236 __ load_field_entry(r2, r3, 2); 3237 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3238 3239 // 8179954: We need to make sure that the code generated for 3240 // volatile accesses forms a sequentially-consistent set of 3241 // operations when combined with STLR and LDAR. Without a leading 3242 // membar it's possible for a simple Dekker test to fail if loads 3243 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3244 // the stores in one method and we interpret the loads in another. 3245 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3246 Label notVolatile; 3247 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3248 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3249 __ membar(MacroAssembler::AnyAny); 3250 __ bind(notVolatile); 3251 } 3252 3253 // make sure exception is reported in correct bcp range (getfield is 3254 // next instruction) 3255 __ increment(rbcp); 3256 __ null_check(r0); 3257 switch (state) { 3258 case itos: 3259 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3260 break; 3261 case atos: 3262 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP); 3263 __ verify_oop(r0); 3264 break; 3265 case ftos: 3266 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3267 break; 3268 default: 3269 ShouldNotReachHere(); 3270 } 3271 3272 { 3273 Label notVolatile; 3274 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3275 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3276 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3277 __ bind(notVolatile); 3278 } 3279 3280 __ decrement(rbcp); 3281 } 3282 3283 3284 3285 //----------------------------------------------------------------------------- 3286 // Calls 3287 3288 void TemplateTable::prepare_invoke(Register cache, Register recv) { 3289 3290 Bytecodes::Code code = bytecode(); 3291 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3292 3293 // save 'interpreter return address' 3294 __ save_bcp(); 3295 3296 // Load TOS state for later 3297 __ load_unsigned_byte(rscratch2, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3298 3299 // load receiver if needed (note: no return address pushed yet) 3300 if (load_receiver) { 3301 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3302 __ add(rscratch1, esp, recv, ext::uxtx, 3); 3303 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1))); 3304 __ verify_oop(recv); 3305 } 3306 3307 // load return address 3308 { 3309 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3310 __ mov(rscratch1, table_addr); 3311 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3))); 3312 } 3313 } 3314 3315 3316 void TemplateTable::invokevirtual_helper(Register index, 3317 Register recv, 3318 Register flags) 3319 { 3320 // Uses temporary registers r0, r3 3321 assert_different_registers(index, recv, r0, r3); 3322 // Test for an invoke of a final method 3323 Label notFinal; 3324 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, notFinal); 3325 3326 const Register method = index; // method must be rmethod 3327 assert(method == rmethod, 3328 "Method must be rmethod for interpreter calling convention"); 3329 3330 // do the call - the index is actually the method to call 3331 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3332 3333 // It's final, need a null check here! 3334 __ null_check(recv); 3335 3336 // profile this call 3337 __ profile_final_call(r0); 3338 __ profile_arguments_type(r0, method, r4, true); 3339 3340 __ jump_from_interpreted(method, r0); 3341 3342 __ bind(notFinal); 3343 3344 // get receiver klass 3345 __ load_klass(r0, recv); 3346 3347 // profile this call 3348 __ profile_virtual_call(r0, rlocals, r3); 3349 3350 // get target Method & entry point 3351 __ lookup_virtual_method(r0, index, method); 3352 __ profile_arguments_type(r3, method, r4, true); 3353 // FIXME -- this looks completely redundant. is it? 3354 // __ ldr(r3, Address(method, Method::interpreter_entry_offset())); 3355 __ jump_from_interpreted(method, r3); 3356 } 3357 3358 void TemplateTable::invokevirtual(int byte_no) 3359 { 3360 transition(vtos, vtos); 3361 assert(byte_no == f2_byte, "use this argument"); 3362 3363 load_resolved_method_entry_virtual(r2, // ResolvedMethodEntry* 3364 rmethod, // Method* or itable index 3365 r3); // flags 3366 prepare_invoke(r2, r2); // recv 3367 3368 // rmethod: index (actually a Method*) 3369 // r2: receiver 3370 // r3: flags 3371 3372 invokevirtual_helper(rmethod, r2, r3); 3373 } 3374 3375 void TemplateTable::invokespecial(int byte_no) 3376 { 3377 transition(vtos, vtos); 3378 assert(byte_no == f1_byte, "use this argument"); 3379 3380 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry* 3381 rmethod, // Method* 3382 r3); // flags 3383 prepare_invoke(r2, r2); // get receiver also for null check 3384 __ verify_oop(r2); 3385 __ null_check(r2); 3386 // do the call 3387 __ profile_call(r0); 3388 __ profile_arguments_type(r0, rmethod, rbcp, false); 3389 __ jump_from_interpreted(rmethod, r0); 3390 } 3391 3392 void TemplateTable::invokestatic(int byte_no) 3393 { 3394 transition(vtos, vtos); 3395 assert(byte_no == f1_byte, "use this argument"); 3396 3397 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry* 3398 rmethod, // Method* 3399 r3); // flags 3400 prepare_invoke(r2, r2); // get receiver also for null check 3401 3402 // do the call 3403 __ profile_call(r0); 3404 __ profile_arguments_type(r0, rmethod, r4, false); 3405 __ jump_from_interpreted(rmethod, r0); 3406 } 3407 3408 void TemplateTable::fast_invokevfinal(int byte_no) 3409 { 3410 __ call_Unimplemented(); 3411 } 3412 3413 void TemplateTable::invokeinterface(int byte_no) { 3414 transition(vtos, vtos); 3415 assert(byte_no == f1_byte, "use this argument"); 3416 3417 load_resolved_method_entry_interface(r2, // ResolvedMethodEntry* 3418 r0, // Klass* 3419 rmethod, // Method* or itable/vtable index 3420 r3); // flags 3421 prepare_invoke(r2, r2); // receiver 3422 3423 // r0: interface klass (from f1) 3424 // rmethod: method (from f2) 3425 // r2: receiver 3426 // r3: flags 3427 3428 // First check for Object case, then private interface method, 3429 // then regular interface method. 3430 3431 // Special case of invokeinterface called for virtual method of 3432 // java.lang.Object. See cpCache.cpp for details. 3433 Label notObjectMethod; 3434 __ tbz(r3, ResolvedMethodEntry::is_forced_virtual_shift, notObjectMethod); 3435 3436 invokevirtual_helper(rmethod, r2, r3); 3437 __ bind(notObjectMethod); 3438 3439 Label no_such_interface; 3440 3441 // Check for private method invocation - indicated by vfinal 3442 Label notVFinal; 3443 __ tbz(r3, ResolvedMethodEntry::is_vfinal_shift, notVFinal); 3444 3445 // Get receiver klass into r3 3446 __ load_klass(r3, r2); 3447 3448 Label subtype; 3449 __ check_klass_subtype(r3, r0, r4, subtype); 3450 // If we get here the typecheck failed 3451 __ b(no_such_interface); 3452 __ bind(subtype); 3453 3454 __ profile_final_call(r0); 3455 __ profile_arguments_type(r0, rmethod, r4, true); 3456 __ jump_from_interpreted(rmethod, r0); 3457 3458 __ bind(notVFinal); 3459 3460 // Get receiver klass into r3 3461 __ restore_locals(); 3462 __ load_klass(r3, r2); 3463 3464 Label no_such_method; 3465 3466 // Preserve method for throw_AbstractMethodErrorVerbose. 3467 __ mov(r16, rmethod); 3468 // Receiver subtype check against REFC. 3469 // Superklass in r0. Subklass in r3. Blows rscratch2, r13 3470 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3471 r3, r0, noreg, 3472 // outputs: scan temp. reg, scan temp. reg 3473 rscratch2, r13, 3474 no_such_interface, 3475 /*return_method=*/false); 3476 3477 // profile this call 3478 __ profile_virtual_call(r3, r13, r19); 3479 3480 // Get declaring interface class from method, and itable index 3481 3482 __ load_method_holder(r0, rmethod); 3483 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset())); 3484 __ subw(rmethod, rmethod, Method::itable_index_max); 3485 __ negw(rmethod, rmethod); 3486 3487 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3488 __ mov(rlocals, r3); 3489 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3490 rlocals, r0, rmethod, 3491 // outputs: method, scan temp. reg 3492 rmethod, r13, 3493 no_such_interface); 3494 3495 // rmethod,: Method to call 3496 // r2: receiver 3497 // Check for abstract method error 3498 // Note: This should be done more efficiently via a throw_abstract_method_error 3499 // interpreter entry point and a conditional jump to it in case of a null 3500 // method. 3501 __ cbz(rmethod, no_such_method); 3502 3503 __ profile_arguments_type(r3, rmethod, r13, true); 3504 3505 // do the call 3506 // r2: receiver 3507 // rmethod,: Method 3508 __ jump_from_interpreted(rmethod, r3); 3509 __ should_not_reach_here(); 3510 3511 // exception handling code follows... 3512 // note: must restore interpreter registers to canonical 3513 // state for exception handling to work correctly! 3514 3515 __ bind(no_such_method); 3516 // throw exception 3517 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3518 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3519 // Pass arguments for generating a verbose error message. 3520 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16); 3521 // the call_VM checks for exception, so we should never return here. 3522 __ should_not_reach_here(); 3523 3524 __ bind(no_such_interface); 3525 // throw exception 3526 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3527 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3528 // Pass arguments for generating a verbose error message. 3529 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3530 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0); 3531 // the call_VM checks for exception, so we should never return here. 3532 __ should_not_reach_here(); 3533 return; 3534 } 3535 3536 void TemplateTable::invokehandle(int byte_no) { 3537 transition(vtos, vtos); 3538 assert(byte_no == f1_byte, "use this argument"); 3539 3540 load_resolved_method_entry_handle(r2, // ResolvedMethodEntry* 3541 rmethod, // Method* 3542 r0, // Resolved reference 3543 r3); // flags 3544 prepare_invoke(r2, r2); 3545 3546 __ verify_method_ptr(r2); 3547 __ verify_oop(r2); 3548 __ null_check(r2); 3549 3550 // FIXME: profile the LambdaForm also 3551 3552 // r13 is safe to use here as a scratch reg because it is about to 3553 // be clobbered by jump_from_interpreted(). 3554 __ profile_final_call(r13); 3555 __ profile_arguments_type(r13, rmethod, r4, true); 3556 3557 __ jump_from_interpreted(rmethod, r0); 3558 } 3559 3560 void TemplateTable::invokedynamic(int byte_no) { 3561 transition(vtos, vtos); 3562 assert(byte_no == f1_byte, "use this argument"); 3563 3564 load_invokedynamic_entry(rmethod); 3565 3566 // r0: CallSite object (from cpool->resolved_references[]) 3567 // rmethod: MH.linkToCallSite method 3568 3569 // Note: r0_callsite is already pushed 3570 3571 // %%% should make a type profile for any invokedynamic that takes a ref argument 3572 // profile this call 3573 __ profile_call(rbcp); 3574 __ profile_arguments_type(r3, rmethod, r13, false); 3575 3576 __ verify_oop(r0); 3577 3578 __ jump_from_interpreted(rmethod, r0); 3579 } 3580 3581 3582 //----------------------------------------------------------------------------- 3583 // Allocation 3584 3585 void TemplateTable::_new() { 3586 transition(vtos, atos); 3587 3588 __ get_unsigned_2_byte_index_at_bcp(r3, 1); 3589 Label slow_case; 3590 Label done; 3591 Label initialize_header; 3592 3593 __ get_cpool_and_tags(r4, r0); 3594 // Make sure the class we're about to instantiate has been resolved. 3595 // This is done before loading InstanceKlass to be consistent with the order 3596 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3597 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3598 __ lea(rscratch1, Address(r0, r3, Address::lsl(0))); 3599 __ lea(rscratch1, Address(rscratch1, tags_offset)); 3600 __ ldarb(rscratch1, rscratch1); 3601 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class); 3602 __ br(Assembler::NE, slow_case); 3603 3604 // get InstanceKlass 3605 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1); 3606 3607 // make sure klass is initialized 3608 assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks"); 3609 __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case); 3610 3611 // get instance_size in InstanceKlass (scaled to a count of bytes) 3612 __ ldrw(r3, 3613 Address(r4, 3614 Klass::layout_helper_offset())); 3615 // test to see if it is malformed in some way 3616 __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case); 3617 3618 // Allocate the instance: 3619 // If TLAB is enabled: 3620 // Try to allocate in the TLAB. 3621 // If fails, go to the slow path. 3622 // Initialize the allocation. 3623 // Exit. 3624 // 3625 // Go to slow path. 3626 3627 if (UseTLAB) { 3628 __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case); 3629 3630 if (ZeroTLAB) { 3631 // the fields have been already cleared 3632 __ b(initialize_header); 3633 } 3634 3635 // The object is initialized before the header. If the object size is 3636 // zero, go directly to the header initialization. 3637 int header_size = oopDesc::header_size() * HeapWordSize; 3638 assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned"); 3639 __ sub(r3, r3, header_size); 3640 __ cbz(r3, initialize_header); 3641 3642 // Initialize object fields 3643 { 3644 __ add(r2, r0, header_size); 3645 Label loop; 3646 __ bind(loop); 3647 __ str(zr, Address(__ post(r2, BytesPerLong))); 3648 __ sub(r3, r3, BytesPerLong); 3649 __ cbnz(r3, loop); 3650 } 3651 3652 // initialize object header only. 3653 __ bind(initialize_header); 3654 if (UseCompactObjectHeaders) { 3655 __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset())); 3656 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3657 } else { 3658 __ mov(rscratch1, (intptr_t)markWord::prototype().value()); 3659 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3660 __ store_klass_gap(r0, zr); // zero klass gap for compressed oops 3661 __ store_klass(r0, r4); // store klass last 3662 } 3663 3664 if (DTraceAllocProbes) { 3665 // Trigger dtrace event for fastpath 3666 __ push(atos); // save the return value 3667 __ call_VM_leaf( 3668 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0); 3669 __ pop(atos); // restore the return value 3670 3671 } 3672 __ b(done); 3673 } 3674 3675 // slow case 3676 __ bind(slow_case); 3677 __ get_constant_pool(c_rarg1); 3678 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3679 __ call_VM_preemptable(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3680 __ verify_oop(r0); 3681 3682 // continue 3683 __ bind(done); 3684 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3685 __ membar(Assembler::StoreStore); 3686 } 3687 3688 void TemplateTable::newarray() { 3689 transition(itos, atos); 3690 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3691 __ mov(c_rarg2, r0); 3692 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3693 c_rarg1, c_rarg2); 3694 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3695 __ membar(Assembler::StoreStore); 3696 } 3697 3698 void TemplateTable::anewarray() { 3699 transition(itos, atos); 3700 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3701 __ get_constant_pool(c_rarg1); 3702 __ mov(c_rarg3, r0); 3703 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3704 c_rarg1, c_rarg2, c_rarg3); 3705 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3706 __ membar(Assembler::StoreStore); 3707 } 3708 3709 void TemplateTable::arraylength() { 3710 transition(atos, itos); 3711 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes())); 3712 } 3713 3714 void TemplateTable::checkcast() 3715 { 3716 transition(atos, atos); 3717 Label done, is_null, ok_is_subtype, quicked, resolved; 3718 __ cbz(r0, is_null); 3719 3720 // Get cpool & tags index 3721 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3722 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3723 // See if bytecode has already been quicked 3724 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3725 __ lea(r1, Address(rscratch1, r19)); 3726 __ ldarb(r1, r1); 3727 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3728 __ br(Assembler::EQ, quicked); 3729 3730 __ push(atos); // save receiver for result, and for GC 3731 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3732 __ get_vm_result_metadata(r0, rthread); 3733 __ pop(r3); // restore receiver 3734 __ b(resolved); 3735 3736 // Get superklass in r0 and subklass in r3 3737 __ bind(quicked); 3738 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check 3739 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass 3740 3741 __ bind(resolved); 3742 __ load_klass(r19, r3); 3743 3744 // Generate subtype check. Blows r2, r5. Object in r3. 3745 // Superklass in r0. Subklass in r19. 3746 __ gen_subtype_check(r19, ok_is_subtype); 3747 3748 // Come here on failure 3749 __ push(r3); 3750 // object is at TOS 3751 __ b(Interpreter::_throw_ClassCastException_entry); 3752 3753 // Come here on success 3754 __ bind(ok_is_subtype); 3755 __ mov(r0, r3); // Restore object in r3 3756 3757 // Collect counts on whether this test sees nulls a lot or not. 3758 if (ProfileInterpreter) { 3759 __ b(done); 3760 __ bind(is_null); 3761 __ profile_null_seen(r2); 3762 } else { 3763 __ bind(is_null); // same as 'done' 3764 } 3765 __ bind(done); 3766 } 3767 3768 void TemplateTable::instanceof() { 3769 transition(atos, itos); 3770 Label done, is_null, ok_is_subtype, quicked, resolved; 3771 __ cbz(r0, is_null); 3772 3773 // Get cpool & tags index 3774 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3775 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3776 // See if bytecode has already been quicked 3777 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3778 __ lea(r1, Address(rscratch1, r19)); 3779 __ ldarb(r1, r1); 3780 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3781 __ br(Assembler::EQ, quicked); 3782 3783 __ push(atos); // save receiver for result, and for GC 3784 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3785 __ get_vm_result_metadata(r0, rthread); 3786 __ pop(r3); // restore receiver 3787 __ verify_oop(r3); 3788 __ load_klass(r3, r3); 3789 __ b(resolved); 3790 3791 // Get superklass in r0 and subklass in r3 3792 __ bind(quicked); 3793 __ load_klass(r3, r0); 3794 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); 3795 3796 __ bind(resolved); 3797 3798 // Generate subtype check. Blows r2, r5 3799 // Superklass in r0. Subklass in r3. 3800 __ gen_subtype_check(r3, ok_is_subtype); 3801 3802 // Come here on failure 3803 __ mov(r0, 0); 3804 __ b(done); 3805 // Come here on success 3806 __ bind(ok_is_subtype); 3807 __ mov(r0, 1); 3808 3809 // Collect counts on whether this test sees nulls a lot or not. 3810 if (ProfileInterpreter) { 3811 __ b(done); 3812 __ bind(is_null); 3813 __ profile_null_seen(r2); 3814 } else { 3815 __ bind(is_null); // same as 'done' 3816 } 3817 __ bind(done); 3818 // r0 = 0: obj == nullptr or obj is not an instanceof the specified klass 3819 // r0 = 1: obj != nullptr and obj is an instanceof the specified klass 3820 } 3821 3822 //----------------------------------------------------------------------------- 3823 // Breakpoints 3824 void TemplateTable::_breakpoint() { 3825 // Note: We get here even if we are single stepping.. 3826 // jbug inists on setting breakpoints at every bytecode 3827 // even if we are in single step mode. 3828 3829 transition(vtos, vtos); 3830 3831 // get the unpatched byte code 3832 __ get_method(c_rarg1); 3833 __ call_VM(noreg, 3834 CAST_FROM_FN_PTR(address, 3835 InterpreterRuntime::get_original_bytecode_at), 3836 c_rarg1, rbcp); 3837 __ mov(r19, r0); 3838 3839 // post the breakpoint event 3840 __ call_VM(noreg, 3841 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3842 rmethod, rbcp); 3843 3844 // complete the execution of original bytecode 3845 __ mov(rscratch1, r19); 3846 __ dispatch_only_normal(vtos); 3847 } 3848 3849 //----------------------------------------------------------------------------- 3850 // Exceptions 3851 3852 void TemplateTable::athrow() { 3853 transition(atos, vtos); 3854 __ null_check(r0); 3855 __ b(Interpreter::throw_exception_entry()); 3856 } 3857 3858 //----------------------------------------------------------------------------- 3859 // Synchronization 3860 // 3861 // Note: monitorenter & exit are symmetric routines; which is reflected 3862 // in the assembly code structure as well 3863 // 3864 // Stack layout: 3865 // 3866 // [expressions ] <--- esp = expression stack top 3867 // .. 3868 // [expressions ] 3869 // [monitor entry] <--- monitor block top = expression stack bot 3870 // .. 3871 // [monitor entry] 3872 // [frame data ] <--- monitor block bot 3873 // ... 3874 // [saved rfp ] <--- rfp 3875 void TemplateTable::monitorenter() 3876 { 3877 transition(atos, vtos); 3878 3879 // check for null object 3880 __ null_check(r0); 3881 3882 const Address monitor_block_top( 3883 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3884 const Address monitor_block_bot( 3885 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 3886 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3887 3888 Label allocated; 3889 3890 // initialize entry pointer 3891 __ mov(c_rarg1, zr); // points to free slot or null 3892 3893 // find a free slot in the monitor block (result in c_rarg1) 3894 { 3895 Label entry, loop, exit; 3896 __ ldr(c_rarg3, monitor_block_top); // derelativize pointer 3897 __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize))); 3898 // c_rarg3 points to current entry, starting with top-most entry 3899 3900 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3901 3902 __ b(entry); 3903 3904 __ bind(loop); 3905 // check if current entry is used 3906 // if not used then remember entry in c_rarg1 3907 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset())); 3908 __ cmp(zr, rscratch1); 3909 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ); 3910 // check if current entry is for same object 3911 __ cmp(r0, rscratch1); 3912 // if same object then stop searching 3913 __ br(Assembler::EQ, exit); 3914 // otherwise advance to next entry 3915 __ add(c_rarg3, c_rarg3, entry_size); 3916 __ bind(entry); 3917 // check if bottom reached 3918 __ cmp(c_rarg3, c_rarg2); 3919 // if not at bottom then check this entry 3920 __ br(Assembler::NE, loop); 3921 __ bind(exit); 3922 } 3923 3924 __ cbnz(c_rarg1, allocated); // check if a slot has been found and 3925 // if found, continue with that on 3926 3927 // allocate one if there's no free slot 3928 { 3929 Label entry, loop; 3930 // 1. compute new pointers // rsp: old expression stack top 3931 3932 __ check_extended_sp(); 3933 __ sub(sp, sp, entry_size); // make room for the monitor 3934 __ sub(rscratch1, sp, rfp); 3935 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 3936 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 3937 3938 __ ldr(c_rarg1, monitor_block_bot); // derelativize pointer 3939 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 3940 // c_rarg1 points to the old expression stack bottom 3941 3942 __ sub(esp, esp, entry_size); // move expression stack top 3943 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom 3944 __ mov(c_rarg3, esp); // set start value for copy loop 3945 __ sub(rscratch1, c_rarg1, rfp); // relativize pointer 3946 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 3947 __ str(rscratch1, monitor_block_bot); // set new monitor block bottom 3948 3949 __ b(entry); 3950 // 2. move expression stack contents 3951 __ bind(loop); 3952 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3953 // word from old location 3954 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location 3955 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word 3956 __ bind(entry); 3957 __ cmp(c_rarg3, c_rarg1); // check if bottom reached 3958 __ br(Assembler::NE, loop); // if not at bottom then 3959 // copy next word 3960 } 3961 3962 // call run-time routine 3963 // c_rarg1: points to monitor entry 3964 __ bind(allocated); 3965 3966 // Increment bcp to point to the next bytecode, so exception 3967 // handling for async. exceptions work correctly. 3968 // The object has already been popped from the stack, so the 3969 // expression stack looks correct. 3970 __ increment(rbcp); 3971 3972 // store object 3973 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 3974 __ lock_object(c_rarg1); 3975 3976 // check to make sure this monitor doesn't cause stack overflow after locking 3977 __ save_bcp(); // in case of exception 3978 __ generate_stack_overflow_check(0); 3979 3980 // The bcp has already been incremented. Just need to dispatch to 3981 // next instruction. 3982 __ dispatch_next(vtos); 3983 } 3984 3985 3986 void TemplateTable::monitorexit() 3987 { 3988 transition(atos, vtos); 3989 3990 // check for null object 3991 __ null_check(r0); 3992 3993 const Address monitor_block_top( 3994 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3995 const Address monitor_block_bot( 3996 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 3997 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3998 3999 Label found; 4000 4001 // find matching slot 4002 { 4003 Label entry, loop; 4004 __ ldr(c_rarg1, monitor_block_top); // derelativize pointer 4005 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 4006 // c_rarg1 points to current entry, starting with top-most entry 4007 4008 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 4009 // of monitor block 4010 __ b(entry); 4011 4012 __ bind(loop); 4013 // check if current entry is for same object 4014 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 4015 __ cmp(r0, rscratch1); 4016 // if same object then stop searching 4017 __ br(Assembler::EQ, found); 4018 // otherwise advance to next entry 4019 __ add(c_rarg1, c_rarg1, entry_size); 4020 __ bind(entry); 4021 // check if bottom reached 4022 __ cmp(c_rarg1, c_rarg2); 4023 // if not at bottom then check this entry 4024 __ br(Assembler::NE, loop); 4025 } 4026 4027 // error handling. Unlocking was not block-structured 4028 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4029 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4030 __ should_not_reach_here(); 4031 4032 // call run-time routine 4033 __ bind(found); 4034 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps) 4035 __ unlock_object(c_rarg1); 4036 __ pop_ptr(r0); // discard object 4037 } 4038 4039 4040 // Wide instructions 4041 void TemplateTable::wide() 4042 { 4043 __ load_unsigned_byte(r19, at_bcp(1)); 4044 __ mov(rscratch1, (address)Interpreter::_wentry_point); 4045 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3))); 4046 __ br(rscratch1); 4047 } 4048 4049 4050 // Multi arrays 4051 void TemplateTable::multianewarray() { 4052 transition(vtos, atos); 4053 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions 4054 // last dim is on top of stack; we want address of first one: 4055 // first_addr = last_addr + (ndims - 1) * wordSize 4056 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3))); 4057 __ sub(c_rarg1, c_rarg1, wordSize); 4058 call_VM(r0, 4059 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 4060 c_rarg1); 4061 __ load_unsigned_byte(r1, at_bcp(3)); 4062 __ lea(esp, Address(esp, r1, Address::uxtw(3))); 4063 }