1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "compiler/compilerDefinitions.inline.hpp"
  29 #include "gc/shared/barrierSetAssembler.hpp"
  30 #include "gc/shared/collectedHeap.hpp"
  31 #include "gc/shared/tlab_globals.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "interpreter/interp_masm.hpp"
  35 #include "interpreter/templateTable.hpp"
  36 #include "memory/universe.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/method.inline.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/resolvedFieldEntry.hpp"
  42 #include "oops/resolvedIndyEntry.hpp"
  43 #include "oops/resolvedMethodEntry.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/methodHandles.hpp"
  46 #include "runtime/frame.inline.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/synchronizer.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  53 
  54 // Address computation: local variables
  55 
  56 static inline Address iaddress(int n) {
  57   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
  58 }
  59 
  60 static inline Address laddress(int n) {
  61   return iaddress(n + 1);
  62 }
  63 
  64 static inline Address faddress(int n) {
  65   return iaddress(n);
  66 }
  67 
  68 static inline Address daddress(int n) {
  69   return laddress(n);
  70 }
  71 
  72 static inline Address aaddress(int n) {
  73   return iaddress(n);
  74 }
  75 
  76 static inline Address iaddress(Register r) {
  77   return Address(rlocals, r, Address::lsl(3));
  78 }
  79 
  80 static inline Address laddress(Register r, Register scratch,
  81                                InterpreterMacroAssembler* _masm) {
  82   __ lea(scratch, Address(rlocals, r, Address::lsl(3)));
  83   return Address(scratch, Interpreter::local_offset_in_bytes(1));
  84 }
  85 
  86 static inline Address faddress(Register r) {
  87   return iaddress(r);
  88 }
  89 
  90 static inline Address daddress(Register r, Register scratch,
  91                                InterpreterMacroAssembler* _masm) {
  92   return laddress(r, scratch, _masm);
  93 }
  94 
  95 static inline Address aaddress(Register r) {
  96   return iaddress(r);
  97 }
  98 
  99 static inline Address at_rsp() {
 100   return Address(esp, 0);
 101 }
 102 
 103 // At top of Java expression stack which may be different than esp().  It
 104 // isn't for category 1 objects.
 105 static inline Address at_tos   () {
 106   return Address(esp,  Interpreter::expr_offset_in_bytes(0));
 107 }
 108 
 109 static inline Address at_tos_p1() {
 110   return Address(esp,  Interpreter::expr_offset_in_bytes(1));
 111 }
 112 
 113 static inline Address at_tos_p2() {
 114   return Address(esp,  Interpreter::expr_offset_in_bytes(2));
 115 }
 116 
 117 static inline Address at_tos_p3() {
 118   return Address(esp,  Interpreter::expr_offset_in_bytes(3));
 119 }
 120 
 121 static inline Address at_tos_p4() {
 122   return Address(esp,  Interpreter::expr_offset_in_bytes(4));
 123 }
 124 
 125 static inline Address at_tos_p5() {
 126   return Address(esp,  Interpreter::expr_offset_in_bytes(5));
 127 }
 128 
 129 // Condition conversion
 130 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 131   switch (cc) {
 132   case TemplateTable::equal        : return Assembler::NE;
 133   case TemplateTable::not_equal    : return Assembler::EQ;
 134   case TemplateTable::less         : return Assembler::GE;
 135   case TemplateTable::less_equal   : return Assembler::GT;
 136   case TemplateTable::greater      : return Assembler::LE;
 137   case TemplateTable::greater_equal: return Assembler::LT;
 138   }
 139   ShouldNotReachHere();
 140   return Assembler::EQ;
 141 }
 142 
 143 
 144 // Miscellaneous helper routines
 145 // Store an oop (or null) at the Address described by obj.
 146 // If val == noreg this means store a null
 147 static void do_oop_store(InterpreterMacroAssembler* _masm,
 148                          Address dst,
 149                          Register val,
 150                          DecoratorSet decorators) {
 151   assert(val == noreg || val == r0, "parameter is just for looks");
 152   __ store_heap_oop(dst, val, r10, r11, r3, decorators);
 153 }
 154 
 155 static void do_oop_load(InterpreterMacroAssembler* _masm,
 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   if (!RewriteBytecodes)  return;
 172   Label L_patch_done;
 173 
 174   switch (bc) {
 175   case Bytecodes::_fast_aputfield:
 176   case Bytecodes::_fast_bputfield:
 177   case Bytecodes::_fast_zputfield:
 178   case Bytecodes::_fast_cputfield:
 179   case Bytecodes::_fast_dputfield:
 180   case Bytecodes::_fast_fputfield:
 181   case Bytecodes::_fast_iputfield:
 182   case Bytecodes::_fast_lputfield:
 183   case Bytecodes::_fast_sputfield:
 184     {
 185       // We skip bytecode quickening for putfield instructions when
 186       // the put_code written to the constant pool cache is zero.
 187       // This is required so that every execution of this instruction
 188       // calls out to InterpreterRuntime::resolve_get_put to do
 189       // additional, required work.
 190       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 191       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 192       __ load_field_entry(temp_reg, bc_reg);
 193       if (byte_no == f1_byte) {
 194         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));
 195       } else {
 196         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset())));
 197       }
 198       // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
 199       __ ldarb(temp_reg, temp_reg);
 200       __ movw(bc_reg, bc);
 201       __ cbzw(temp_reg, L_patch_done);  // don't patch
 202     }
 203     break;
 204   default:
 205     assert(byte_no == -1, "sanity");
 206     // the pair bytecodes have already done the load.
 207     if (load_bc_into_bc_reg) {
 208       __ movw(bc_reg, bc);
 209     }
 210   }
 211 
 212   if (JvmtiExport::can_post_breakpoint()) {
 213     Label L_fast_patch;
 214     // if a breakpoint is present we can't rewrite the stream directly
 215     __ load_unsigned_byte(temp_reg, at_bcp(0));
 216     __ cmpw(temp_reg, Bytecodes::_breakpoint);
 217     __ br(Assembler::NE, L_fast_patch);
 218     // Let breakpoint table handling rewrite to quicker bytecode
 219     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg);
 220     __ b(L_patch_done);
 221     __ bind(L_fast_patch);
 222   }
 223 
 224 #ifdef ASSERT
 225   Label L_okay;
 226   __ load_unsigned_byte(temp_reg, at_bcp(0));
 227   __ cmpw(temp_reg, (int) Bytecodes::java_code(bc));
 228   __ br(Assembler::EQ, L_okay);
 229   __ cmpw(temp_reg, bc_reg);
 230   __ br(Assembler::EQ, L_okay);
 231   __ stop("patching the wrong bytecode");
 232   __ bind(L_okay);
 233 #endif
 234 
 235   // patch bytecode
 236   __ strb(bc_reg, at_bcp(0));
 237   __ bind(L_patch_done);
 238 }
 239 
 240 
 241 // Individual instructions
 242 
 243 void TemplateTable::nop() {
 244   transition(vtos, vtos);
 245   // nothing to do
 246 }
 247 
 248 void TemplateTable::shouldnotreachhere() {
 249   transition(vtos, vtos);
 250   __ stop("shouldnotreachhere bytecode");
 251 }
 252 
 253 void TemplateTable::aconst_null()
 254 {
 255   transition(vtos, atos);
 256   __ mov(r0, 0);
 257 }
 258 
 259 void TemplateTable::iconst(int value)
 260 {
 261   transition(vtos, itos);
 262   __ mov(r0, value);
 263 }
 264 
 265 void TemplateTable::lconst(int value)
 266 {
 267   __ mov(r0, value);
 268 }
 269 
 270 void TemplateTable::fconst(int value)
 271 {
 272   transition(vtos, ftos);
 273   switch (value) {
 274   case 0:
 275     __ fmovs(v0, 0.0);
 276     break;
 277   case 1:
 278     __ fmovs(v0, 1.0);
 279     break;
 280   case 2:
 281     __ fmovs(v0, 2.0);
 282     break;
 283   default:
 284     ShouldNotReachHere();
 285     break;
 286   }
 287 }
 288 
 289 void TemplateTable::dconst(int value)
 290 {
 291   transition(vtos, dtos);
 292   switch (value) {
 293   case 0:
 294     __ fmovd(v0, 0.0);
 295     break;
 296   case 1:
 297     __ fmovd(v0, 1.0);
 298     break;
 299   case 2:
 300     __ fmovd(v0, 2.0);
 301     break;
 302   default:
 303     ShouldNotReachHere();
 304     break;
 305   }
 306 }
 307 
 308 void TemplateTable::bipush()
 309 {
 310   transition(vtos, itos);
 311   __ load_signed_byte32(r0, at_bcp(1));
 312 }
 313 
 314 void TemplateTable::sipush()
 315 {
 316   transition(vtos, itos);
 317   __ load_unsigned_short(r0, at_bcp(1));
 318   __ revw(r0, r0);
 319   __ asrw(r0, r0, 16);
 320 }
 321 
 322 void TemplateTable::ldc(LdcType type)
 323 {
 324   transition(vtos, vtos);
 325   Label call_ldc, notFloat, notClass, notInt, Done;
 326 
 327   if (is_ldc_wide(type)) {
 328     __ get_unsigned_2_byte_index_at_bcp(r1, 1);
 329   } else {
 330     __ load_unsigned_byte(r1, at_bcp(1));
 331   }
 332   __ get_cpool_and_tags(r2, r0);
 333 
 334   const int base_offset = ConstantPool::header_size() * wordSize;
 335   const int tags_offset = Array<u1>::base_offset_in_bytes();
 336 
 337   // get type
 338   __ add(r3, r1, tags_offset);
 339   __ lea(r3, Address(r0, r3));
 340   __ ldarb(r3, r3);
 341 
 342   // unresolved class - get the resolved class
 343   __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass);
 344   __ br(Assembler::EQ, call_ldc);
 345 
 346   // unresolved class in error state - call into runtime to throw the error
 347   // from the first resolution attempt
 348   __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError);
 349   __ br(Assembler::EQ, call_ldc);
 350 
 351   // resolved class - need to call vm to get java mirror of the class
 352   __ cmp(r3, (u1)JVM_CONSTANT_Class);
 353   __ br(Assembler::NE, notClass);
 354 
 355   __ bind(call_ldc);
 356   __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0);
 357   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 358   __ push_ptr(r0);
 359   __ verify_oop(r0);
 360   __ b(Done);
 361 
 362   __ bind(notClass);
 363   __ cmp(r3, (u1)JVM_CONSTANT_Float);
 364   __ br(Assembler::NE, notFloat);
 365   // ftos
 366   __ adds(r1, r2, r1, Assembler::LSL, 3);
 367   __ ldrs(v0, Address(r1, base_offset));
 368   __ push_f();
 369   __ b(Done);
 370 
 371   __ bind(notFloat);
 372 
 373   __ cmp(r3, (u1)JVM_CONSTANT_Integer);
 374   __ br(Assembler::NE, notInt);
 375 
 376   // itos
 377   __ adds(r1, r2, r1, Assembler::LSL, 3);
 378   __ ldrw(r0, Address(r1, base_offset));
 379   __ push_i(r0);
 380   __ b(Done);
 381 
 382   __ bind(notInt);
 383   condy_helper(Done);
 384 
 385   __ bind(Done);
 386 }
 387 
 388 // Fast path for caching oop constants.
 389 void TemplateTable::fast_aldc(LdcType type)
 390 {
 391   transition(vtos, atos);
 392 
 393   Register result = r0;
 394   Register tmp = r1;
 395   Register rarg = r2;
 396 
 397   int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
 398 
 399   Label resolved;
 400 
 401   // We are resolved if the resolved reference cache entry contains a
 402   // non-null object (String, MethodType, etc.)
 403   assert_different_registers(result, tmp);
 404   __ get_cache_index_at_bcp(tmp, 1, index_size);
 405   __ load_resolved_reference_at_index(result, tmp);
 406   __ cbnz(result, resolved);
 407 
 408   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 409 
 410   // first time invocation - must resolve first
 411   __ mov(rarg, (int)bytecode());
 412   __ call_VM(result, entry, rarg);
 413 
 414   __ bind(resolved);
 415 
 416   { // Check for the null sentinel.
 417     // If we just called the VM, it already did the mapping for us,
 418     // but it's harmless to retry.
 419     Label notNull;
 420 
 421     // Stash null_sentinel address to get its value later
 422     __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr());
 423     __ ldr(tmp, Address(rarg));
 424     __ resolve_oop_handle(tmp, r5, rscratch2);
 425     __ cmpoop(result, tmp);
 426     __ br(Assembler::NE, notNull);
 427     __ mov(result, 0);  // null object reference
 428     __ bind(notNull);
 429   }
 430 
 431   if (VerifyOops) {
 432     // Safe to call with 0 result
 433     __ verify_oop(result);
 434   }
 435 }
 436 
 437 void TemplateTable::ldc2_w()
 438 {
 439   transition(vtos, vtos);
 440   Label notDouble, notLong, Done;
 441   __ get_unsigned_2_byte_index_at_bcp(r0, 1);
 442 
 443   __ get_cpool_and_tags(r1, r2);
 444   const int base_offset = ConstantPool::header_size() * wordSize;
 445   const int tags_offset = Array<u1>::base_offset_in_bytes();
 446 
 447   // get type
 448   __ lea(r2, Address(r2, r0, Address::lsl(0)));
 449   __ load_unsigned_byte(r2, Address(r2, tags_offset));
 450   __ cmpw(r2, (int)JVM_CONSTANT_Double);
 451   __ br(Assembler::NE, notDouble);
 452 
 453   // dtos
 454   __ lea (r2, Address(r1, r0, Address::lsl(3)));
 455   __ ldrd(v0, Address(r2, base_offset));
 456   __ push_d();
 457   __ b(Done);
 458 
 459   __ bind(notDouble);
 460   __ cmpw(r2, (int)JVM_CONSTANT_Long);
 461   __ br(Assembler::NE, notLong);
 462 
 463   // ltos
 464   __ lea(r0, Address(r1, r0, Address::lsl(3)));
 465   __ ldr(r0, Address(r0, base_offset));
 466   __ push_l();
 467   __ b(Done);
 468 
 469   __ bind(notLong);
 470   condy_helper(Done);
 471 
 472   __ bind(Done);
 473 }
 474 
 475 void TemplateTable::condy_helper(Label& Done)
 476 {
 477   Register obj = r0;
 478   Register rarg = r1;
 479   Register flags = r2;
 480   Register off = r3;
 481 
 482   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 483 
 484   __ mov(rarg, (int) bytecode());
 485   __ call_VM(obj, entry, rarg);
 486 
 487   __ get_vm_result_metadata(flags, rthread);
 488 
 489   // VMr = obj = base address to find primitive value to push
 490   // VMr2 = flags = (tos, off) using format of CPCE::_flags
 491   __ mov(off, flags);
 492   __ andw(off, off, ConstantPoolCache::field_index_mask);
 493 
 494   const Address field(obj, off);
 495 
 496   // What sort of thing are we loading?
 497   // x86 uses a shift and mask or wings it with a shift plus assert
 498   // the mask is not needed. aarch64 just uses bitfield extract
 499   __ ubfxw(flags, flags, ConstantPoolCache::tos_state_shift,
 500            ConstantPoolCache::tos_state_bits);
 501 
 502   switch (bytecode()) {
 503     case Bytecodes::_ldc:
 504     case Bytecodes::_ldc_w:
 505       {
 506         // tos in (itos, ftos, stos, btos, ctos, ztos)
 507         Label notInt, notFloat, notShort, notByte, notChar, notBool;
 508         __ cmpw(flags, itos);
 509         __ br(Assembler::NE, notInt);
 510         // itos
 511         __ ldrw(r0, field);
 512         __ push(itos);
 513         __ b(Done);
 514 
 515         __ bind(notInt);
 516         __ cmpw(flags, ftos);
 517         __ br(Assembler::NE, notFloat);
 518         // ftos
 519         __ load_float(field);
 520         __ push(ftos);
 521         __ b(Done);
 522 
 523         __ bind(notFloat);
 524         __ cmpw(flags, stos);
 525         __ br(Assembler::NE, notShort);
 526         // stos
 527         __ load_signed_short(r0, field);
 528         __ push(stos);
 529         __ b(Done);
 530 
 531         __ bind(notShort);
 532         __ cmpw(flags, btos);
 533         __ br(Assembler::NE, notByte);
 534         // btos
 535         __ load_signed_byte(r0, field);
 536         __ push(btos);
 537         __ b(Done);
 538 
 539         __ bind(notByte);
 540         __ cmpw(flags, ctos);
 541         __ br(Assembler::NE, notChar);
 542         // ctos
 543         __ load_unsigned_short(r0, field);
 544         __ push(ctos);
 545         __ b(Done);
 546 
 547         __ bind(notChar);
 548         __ cmpw(flags, ztos);
 549         __ br(Assembler::NE, notBool);
 550         // ztos
 551         __ load_signed_byte(r0, field);
 552         __ push(ztos);
 553         __ b(Done);
 554 
 555         __ bind(notBool);
 556         break;
 557       }
 558 
 559     case Bytecodes::_ldc2_w:
 560       {
 561         Label notLong, notDouble;
 562         __ cmpw(flags, ltos);
 563         __ br(Assembler::NE, notLong);
 564         // ltos
 565         __ ldr(r0, field);
 566         __ push(ltos);
 567         __ b(Done);
 568 
 569         __ bind(notLong);
 570         __ cmpw(flags, dtos);
 571         __ br(Assembler::NE, notDouble);
 572         // dtos
 573         __ load_double(field);
 574         __ push(dtos);
 575         __ b(Done);
 576 
 577        __ bind(notDouble);
 578         break;
 579       }
 580 
 581     default:
 582       ShouldNotReachHere();
 583     }
 584 
 585     __ stop("bad ldc/condy");
 586 }
 587 
 588 void TemplateTable::locals_index(Register reg, int offset)
 589 {
 590   __ ldrb(reg, at_bcp(offset));
 591   __ neg(reg, reg);
 592 }
 593 
 594 void TemplateTable::iload() {
 595   iload_internal();
 596 }
 597 
 598 void TemplateTable::nofast_iload() {
 599   iload_internal(may_not_rewrite);
 600 }
 601 
 602 void TemplateTable::iload_internal(RewriteControl rc) {
 603   transition(vtos, itos);
 604   if (RewriteFrequentPairs && rc == may_rewrite) {
 605     Label rewrite, done;
 606     Register bc = r4;
 607 
 608     // get next bytecode
 609     __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 610 
 611     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 612     // last two iloads in a pair.  Comparing against fast_iload means that
 613     // the next bytecode is neither an iload or a caload, and therefore
 614     // an iload pair.
 615     __ cmpw(r1, Bytecodes::_iload);
 616     __ br(Assembler::EQ, done);
 617 
 618     // if _fast_iload rewrite to _fast_iload2
 619     __ cmpw(r1, Bytecodes::_fast_iload);
 620     __ movw(bc, Bytecodes::_fast_iload2);
 621     __ br(Assembler::EQ, rewrite);
 622 
 623     // if _caload rewrite to _fast_icaload
 624     __ cmpw(r1, Bytecodes::_caload);
 625     __ movw(bc, Bytecodes::_fast_icaload);
 626     __ br(Assembler::EQ, rewrite);
 627 
 628     // else rewrite to _fast_iload
 629     __ movw(bc, Bytecodes::_fast_iload);
 630 
 631     // rewrite
 632     // bc: new bytecode
 633     __ bind(rewrite);
 634     patch_bytecode(Bytecodes::_iload, bc, r1, false);
 635     __ bind(done);
 636 
 637   }
 638 
 639   // do iload, get the local value into tos
 640   locals_index(r1);
 641   __ ldr(r0, iaddress(r1));
 642 
 643 }
 644 
 645 void TemplateTable::fast_iload2()
 646 {
 647   transition(vtos, itos);
 648   locals_index(r1);
 649   __ ldr(r0, iaddress(r1));
 650   __ push(itos);
 651   locals_index(r1, 3);
 652   __ ldr(r0, iaddress(r1));
 653 }
 654 
 655 void TemplateTable::fast_iload()
 656 {
 657   transition(vtos, itos);
 658   locals_index(r1);
 659   __ ldr(r0, iaddress(r1));
 660 }
 661 
 662 void TemplateTable::lload()
 663 {
 664   transition(vtos, ltos);
 665   __ ldrb(r1, at_bcp(1));
 666   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 667   __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 668 }
 669 
 670 void TemplateTable::fload()
 671 {
 672   transition(vtos, ftos);
 673   locals_index(r1);
 674   // n.b. we use ldrd here because this is a 64 bit slot
 675   // this is comparable to the iload case
 676   __ ldrd(v0, faddress(r1));
 677 }
 678 
 679 void TemplateTable::dload()
 680 {
 681   transition(vtos, dtos);
 682   __ ldrb(r1, at_bcp(1));
 683   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 684   __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 685 }
 686 
 687 void TemplateTable::aload()
 688 {
 689   transition(vtos, atos);
 690   locals_index(r1);
 691   __ ldr(r0, iaddress(r1));
 692 }
 693 
 694 void TemplateTable::locals_index_wide(Register reg) {
 695   __ ldrh(reg, at_bcp(2));
 696   __ rev16w(reg, reg);
 697   __ neg(reg, reg);
 698 }
 699 
 700 void TemplateTable::wide_iload() {
 701   transition(vtos, itos);
 702   locals_index_wide(r1);
 703   __ ldr(r0, iaddress(r1));
 704 }
 705 
 706 void TemplateTable::wide_lload()
 707 {
 708   transition(vtos, ltos);
 709   __ ldrh(r1, at_bcp(2));
 710   __ rev16w(r1, r1);
 711   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 712   __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 713 }
 714 
 715 void TemplateTable::wide_fload()
 716 {
 717   transition(vtos, ftos);
 718   locals_index_wide(r1);
 719   // n.b. we use ldrd here because this is a 64 bit slot
 720   // this is comparable to the iload case
 721   __ ldrd(v0, faddress(r1));
 722 }
 723 
 724 void TemplateTable::wide_dload()
 725 {
 726   transition(vtos, dtos);
 727   __ ldrh(r1, at_bcp(2));
 728   __ rev16w(r1, r1);
 729   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 730   __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 731 }
 732 
 733 void TemplateTable::wide_aload()
 734 {
 735   transition(vtos, atos);
 736   locals_index_wide(r1);
 737   __ ldr(r0, aaddress(r1));
 738 }
 739 
 740 void TemplateTable::index_check(Register array, Register index)
 741 {
 742   // destroys r1, rscratch1
 743   // sign extend index for use by indexed load
 744   // __ movl2ptr(index, index);
 745   // check index
 746   Register length = rscratch1;
 747   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 748   __ cmpw(index, length);
 749   if (index != r1) {
 750     // ??? convention: move aberrant index into r1 for exception message
 751     assert(r1 != array, "different registers");
 752     __ mov(r1, index);
 753   }
 754   Label ok;
 755   __ br(Assembler::LO, ok);
 756     // ??? convention: move array into r3 for exception message
 757   __ mov(r3, array);
 758   __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 759   __ br(rscratch1);
 760   __ bind(ok);
 761 }
 762 
 763 void TemplateTable::iaload()
 764 {
 765   transition(itos, itos);
 766   __ mov(r1, r0);
 767   __ pop_ptr(r0);
 768   // r0: array
 769   // r1: index
 770   index_check(r0, r1); // leaves index in r1, kills rscratch1
 771   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 772   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 773 }
 774 
 775 void TemplateTable::laload()
 776 {
 777   transition(itos, ltos);
 778   __ mov(r1, r0);
 779   __ pop_ptr(r0);
 780   // r0: array
 781   // r1: index
 782   index_check(r0, r1); // leaves index in r1, kills rscratch1
 783   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
 784   __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 785 }
 786 
 787 void TemplateTable::faload()
 788 {
 789   transition(itos, ftos);
 790   __ mov(r1, r0);
 791   __ pop_ptr(r0);
 792   // r0: array
 793   // r1: index
 794   index_check(r0, r1); // leaves index in r1, kills rscratch1
 795   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
 796   __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 797 }
 798 
 799 void TemplateTable::daload()
 800 {
 801   transition(itos, dtos);
 802   __ mov(r1, r0);
 803   __ pop_ptr(r0);
 804   // r0: array
 805   // r1: index
 806   index_check(r0, r1); // leaves index in r1, kills rscratch1
 807   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 808   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 809 }
 810 
 811 void TemplateTable::aaload()
 812 {
 813   transition(itos, atos);
 814   __ mov(r1, r0);
 815   __ pop_ptr(r0);
 816   // r0: array
 817   // r1: index
 818   index_check(r0, r1); // leaves index in r1, kills rscratch1
 819   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 820   do_oop_load(_masm,
 821               Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)),
 822               r0,
 823               IS_ARRAY);
 824 }
 825 
 826 void TemplateTable::baload()
 827 {
 828   transition(itos, itos);
 829   __ mov(r1, r0);
 830   __ pop_ptr(r0);
 831   // r0: array
 832   // r1: index
 833   index_check(r0, r1); // leaves index in r1, kills rscratch1
 834   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 835   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 836 }
 837 
 838 void TemplateTable::caload()
 839 {
 840   transition(itos, itos);
 841   __ mov(r1, r0);
 842   __ pop_ptr(r0);
 843   // r0: array
 844   // r1: index
 845   index_check(r0, r1); // leaves index in r1, kills rscratch1
 846   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
 847   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
 848 }
 849 
 850 // iload followed by caload frequent pair
 851 void TemplateTable::fast_icaload()
 852 {
 853   transition(vtos, itos);
 854   // load index out of locals
 855   locals_index(r2);
 856   __ ldr(r1, iaddress(r2));
 857 
 858   __ pop_ptr(r0);
 859 
 860   // r0: array
 861   // r1: index
 862   index_check(r0, r1); // leaves index in r1, kills rscratch1
 863   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
 864   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
 865 }
 866 
 867 void TemplateTable::saload()
 868 {
 869   transition(itos, itos);
 870   __ mov(r1, r0);
 871   __ pop_ptr(r0);
 872   // r0: array
 873   // r1: index
 874   index_check(r0, r1); // leaves index in r1, kills rscratch1
 875   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1);
 876   __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
 877 }
 878 
 879 void TemplateTable::iload(int n)
 880 {
 881   transition(vtos, itos);
 882   __ ldr(r0, iaddress(n));
 883 }
 884 
 885 void TemplateTable::lload(int n)
 886 {
 887   transition(vtos, ltos);
 888   __ ldr(r0, laddress(n));
 889 }
 890 
 891 void TemplateTable::fload(int n)
 892 {
 893   transition(vtos, ftos);
 894   __ ldrs(v0, faddress(n));
 895 }
 896 
 897 void TemplateTable::dload(int n)
 898 {
 899   transition(vtos, dtos);
 900   __ ldrd(v0, daddress(n));
 901 }
 902 
 903 void TemplateTable::aload(int n)
 904 {
 905   transition(vtos, atos);
 906   __ ldr(r0, iaddress(n));
 907 }
 908 
 909 void TemplateTable::aload_0() {
 910   aload_0_internal();
 911 }
 912 
 913 void TemplateTable::nofast_aload_0() {
 914   aload_0_internal(may_not_rewrite);
 915 }
 916 
 917 void TemplateTable::aload_0_internal(RewriteControl rc) {
 918   // According to bytecode histograms, the pairs:
 919   //
 920   // _aload_0, _fast_igetfield
 921   // _aload_0, _fast_agetfield
 922   // _aload_0, _fast_fgetfield
 923   //
 924   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 925   // _aload_0 bytecode checks if the next bytecode is either
 926   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 927   // rewrites the current bytecode into a pair bytecode; otherwise it
 928   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 929   // the pair check anymore.
 930   //
 931   // Note: If the next bytecode is _getfield, the rewrite must be
 932   //       delayed, otherwise we may miss an opportunity for a pair.
 933   //
 934   // Also rewrite frequent pairs
 935   //   aload_0, aload_1
 936   //   aload_0, iload_1
 937   // These bytecodes with a small amount of code are most profitable
 938   // to rewrite
 939   if (RewriteFrequentPairs && rc == may_rewrite) {
 940     Label rewrite, done;
 941     const Register bc = r4;
 942 
 943     // get next bytecode
 944     __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 945 
 946     // if _getfield then wait with rewrite
 947     __ cmpw(r1, Bytecodes::Bytecodes::_getfield);
 948     __ br(Assembler::EQ, done);
 949 
 950     // if _igetfield then rewrite to _fast_iaccess_0
 951     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 952     __ cmpw(r1, Bytecodes::_fast_igetfield);
 953     __ movw(bc, Bytecodes::_fast_iaccess_0);
 954     __ br(Assembler::EQ, rewrite);
 955 
 956     // if _agetfield then rewrite to _fast_aaccess_0
 957     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 958     __ cmpw(r1, Bytecodes::_fast_agetfield);
 959     __ movw(bc, Bytecodes::_fast_aaccess_0);
 960     __ br(Assembler::EQ, rewrite);
 961 
 962     // if _fgetfield then rewrite to _fast_faccess_0
 963     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 964     __ cmpw(r1, Bytecodes::_fast_fgetfield);
 965     __ movw(bc, Bytecodes::_fast_faccess_0);
 966     __ br(Assembler::EQ, rewrite);
 967 
 968     // else rewrite to _fast_aload0
 969     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 970     __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0);
 971 
 972     // rewrite
 973     // bc: new bytecode
 974     __ bind(rewrite);
 975     patch_bytecode(Bytecodes::_aload_0, bc, r1, false);
 976 
 977     __ bind(done);
 978   }
 979 
 980   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
 981   aload(0);
 982 }
 983 
 984 void TemplateTable::istore()
 985 {
 986   transition(itos, vtos);
 987   locals_index(r1);
 988   // FIXME: We're being very pernickerty here storing a jint in a
 989   // local with strw, which costs an extra instruction over what we'd
 990   // be able to do with a simple str.  We should just store the whole
 991   // word.
 992   __ lea(rscratch1, iaddress(r1));
 993   __ strw(r0, Address(rscratch1));
 994 }
 995 
 996 void TemplateTable::lstore()
 997 {
 998   transition(ltos, vtos);
 999   locals_index(r1);
1000   __ str(r0, laddress(r1, rscratch1, _masm));
1001 }
1002 
1003 void TemplateTable::fstore() {
1004   transition(ftos, vtos);
1005   locals_index(r1);
1006   __ lea(rscratch1, iaddress(r1));
1007   __ strs(v0, Address(rscratch1));
1008 }
1009 
1010 void TemplateTable::dstore() {
1011   transition(dtos, vtos);
1012   locals_index(r1);
1013   __ strd(v0, daddress(r1, rscratch1, _masm));
1014 }
1015 
1016 void TemplateTable::astore()
1017 {
1018   transition(vtos, vtos);
1019   __ pop_ptr(r0);
1020   locals_index(r1);
1021   __ str(r0, aaddress(r1));
1022 }
1023 
1024 void TemplateTable::wide_istore() {
1025   transition(vtos, vtos);
1026   __ pop_i();
1027   locals_index_wide(r1);
1028   __ lea(rscratch1, iaddress(r1));
1029   __ strw(r0, Address(rscratch1));
1030 }
1031 
1032 void TemplateTable::wide_lstore() {
1033   transition(vtos, vtos);
1034   __ pop_l();
1035   locals_index_wide(r1);
1036   __ str(r0, laddress(r1, rscratch1, _masm));
1037 }
1038 
1039 void TemplateTable::wide_fstore() {
1040   transition(vtos, vtos);
1041   __ pop_f();
1042   locals_index_wide(r1);
1043   __ lea(rscratch1, faddress(r1));
1044   __ strs(v0, rscratch1);
1045 }
1046 
1047 void TemplateTable::wide_dstore() {
1048   transition(vtos, vtos);
1049   __ pop_d();
1050   locals_index_wide(r1);
1051   __ strd(v0, daddress(r1, rscratch1, _masm));
1052 }
1053 
1054 void TemplateTable::wide_astore() {
1055   transition(vtos, vtos);
1056   __ pop_ptr(r0);
1057   locals_index_wide(r1);
1058   __ str(r0, aaddress(r1));
1059 }
1060 
1061 void TemplateTable::iastore() {
1062   transition(itos, vtos);
1063   __ pop_i(r1);
1064   __ pop_ptr(r3);
1065   // r0: value
1066   // r1: index
1067   // r3: array
1068   index_check(r3, r1); // prefer index in r1
1069   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
1070   __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg);
1071 }
1072 
1073 void TemplateTable::lastore() {
1074   transition(ltos, vtos);
1075   __ pop_i(r1);
1076   __ pop_ptr(r3);
1077   // r0: value
1078   // r1: index
1079   // r3: array
1080   index_check(r3, r1); // prefer index in r1
1081   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
1082   __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg);
1083 }
1084 
1085 void TemplateTable::fastore() {
1086   transition(ftos, vtos);
1087   __ pop_i(r1);
1088   __ pop_ptr(r3);
1089   // v0: value
1090   // r1:  index
1091   // r3:  array
1092   index_check(r3, r1); // prefer index in r1
1093   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1094   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1095 }
1096 
1097 void TemplateTable::dastore() {
1098   transition(dtos, vtos);
1099   __ pop_i(r1);
1100   __ pop_ptr(r3);
1101   // v0: value
1102   // r1:  index
1103   // r3:  array
1104   index_check(r3, r1); // prefer index in r1
1105   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1106   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1107 }
1108 
1109 void TemplateTable::aastore() {
1110   Label is_null, ok_is_subtype, done;
1111   transition(vtos, vtos);
1112   // stack: ..., array, index, value
1113   __ ldr(r0, at_tos());    // value
1114   __ ldr(r2, at_tos_p1()); // index
1115   __ ldr(r3, at_tos_p2()); // array
1116 
1117   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1118 
1119   index_check(r3, r2);     // kills r1
1120   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1121 
1122   // do array store check - check for null value first
1123   __ cbz(r0, is_null);
1124 
1125   // Move subklass into r1
1126   __ load_klass(r1, r0);
1127   // Move superklass into r0
1128   __ load_klass(r0, r3);
1129   __ ldr(r0, Address(r0,
1130                      ObjArrayKlass::element_klass_offset()));
1131   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1132 
1133   // Generate subtype check.  Blows r2, r5
1134   // Superklass in r0.  Subklass in r1.
1135   __ gen_subtype_check(r1, ok_is_subtype);
1136 
1137   // Come here on failure
1138   // object is at TOS
1139   __ b(Interpreter::_throw_ArrayStoreException_entry);
1140 
1141   // Come here on success
1142   __ bind(ok_is_subtype);
1143 
1144   // Get the value we will store
1145   __ ldr(r0, at_tos());
1146   // Now store using the appropriate barrier
1147   // Clobbers: r10, r11, r3
1148   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1149   __ b(done);
1150 
1151   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1152   __ bind(is_null);
1153   __ profile_null_seen(r2);
1154 
1155   // Store a null
1156   // Clobbers: r10, r11, r3
1157   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1158 
1159   // Pop stack arguments
1160   __ bind(done);
1161   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1162 }
1163 
1164 void TemplateTable::bastore()
1165 {
1166   transition(itos, vtos);
1167   __ pop_i(r1);
1168   __ pop_ptr(r3);
1169   // r0: value
1170   // r1: index
1171   // r3: array
1172   index_check(r3, r1); // prefer index in r1
1173 
1174   // Need to check whether array is boolean or byte
1175   // since both types share the bastore bytecode.
1176   __ load_klass(r2, r3);
1177   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));
1178   int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit());
1179   Label L_skip;
1180   __ tbz(r2, diffbit_index, L_skip);
1181   __ andw(r0, r0, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1182   __ bind(L_skip);
1183 
1184   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
1185   __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg);
1186 }
1187 
1188 void TemplateTable::castore()
1189 {
1190   transition(itos, vtos);
1191   __ pop_i(r1);
1192   __ pop_ptr(r3);
1193   // r0: value
1194   // r1: index
1195   // r3: array
1196   index_check(r3, r1); // prefer index in r1
1197   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
1198   __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg);
1199 }
1200 
1201 void TemplateTable::sastore()
1202 {
1203   castore();
1204 }
1205 
1206 void TemplateTable::istore(int n)
1207 {
1208   transition(itos, vtos);
1209   __ str(r0, iaddress(n));
1210 }
1211 
1212 void TemplateTable::lstore(int n)
1213 {
1214   transition(ltos, vtos);
1215   __ str(r0, laddress(n));
1216 }
1217 
1218 void TemplateTable::fstore(int n)
1219 {
1220   transition(ftos, vtos);
1221   __ strs(v0, faddress(n));
1222 }
1223 
1224 void TemplateTable::dstore(int n)
1225 {
1226   transition(dtos, vtos);
1227   __ strd(v0, daddress(n));
1228 }
1229 
1230 void TemplateTable::astore(int n)
1231 {
1232   transition(vtos, vtos);
1233   __ pop_ptr(r0);
1234   __ str(r0, iaddress(n));
1235 }
1236 
1237 void TemplateTable::pop()
1238 {
1239   transition(vtos, vtos);
1240   __ add(esp, esp, Interpreter::stackElementSize);
1241 }
1242 
1243 void TemplateTable::pop2()
1244 {
1245   transition(vtos, vtos);
1246   __ add(esp, esp, 2 * Interpreter::stackElementSize);
1247 }
1248 
1249 void TemplateTable::dup()
1250 {
1251   transition(vtos, vtos);
1252   __ ldr(r0, Address(esp, 0));
1253   __ push(r0);
1254   // stack: ..., a, a
1255 }
1256 
1257 void TemplateTable::dup_x1()
1258 {
1259   transition(vtos, vtos);
1260   // stack: ..., a, b
1261   __ ldr(r0, at_tos());  // load b
1262   __ ldr(r2, at_tos_p1());  // load a
1263   __ str(r0, at_tos_p1());  // store b
1264   __ str(r2, at_tos());  // store a
1265   __ push(r0);                  // push b
1266   // stack: ..., b, a, b
1267 }
1268 
1269 void TemplateTable::dup_x2()
1270 {
1271   transition(vtos, vtos);
1272   // stack: ..., a, b, c
1273   __ ldr(r0, at_tos());  // load c
1274   __ ldr(r2, at_tos_p2());  // load a
1275   __ str(r0, at_tos_p2());  // store c in a
1276   __ push(r0);      // push c
1277   // stack: ..., c, b, c, c
1278   __ ldr(r0, at_tos_p2());  // load b
1279   __ str(r2, at_tos_p2());  // store a in b
1280   // stack: ..., c, a, c, c
1281   __ str(r0, at_tos_p1());  // store b in c
1282   // stack: ..., c, a, b, c
1283 }
1284 
1285 void TemplateTable::dup2()
1286 {
1287   transition(vtos, vtos);
1288   // stack: ..., a, b
1289   __ ldr(r0, at_tos_p1());  // load a
1290   __ push(r0);                  // push a
1291   __ ldr(r0, at_tos_p1());  // load b
1292   __ push(r0);                  // push b
1293   // stack: ..., a, b, a, b
1294 }
1295 
1296 void TemplateTable::dup2_x1()
1297 {
1298   transition(vtos, vtos);
1299   // stack: ..., a, b, c
1300   __ ldr(r2, at_tos());  // load c
1301   __ ldr(r0, at_tos_p1());  // load b
1302   __ push(r0);                  // push b
1303   __ push(r2);                  // push c
1304   // stack: ..., a, b, c, b, c
1305   __ str(r2, at_tos_p3());  // store c in b
1306   // stack: ..., a, c, c, b, c
1307   __ ldr(r2, at_tos_p4());  // load a
1308   __ str(r2, at_tos_p2());  // store a in 2nd c
1309   // stack: ..., a, c, a, b, c
1310   __ str(r0, at_tos_p4());  // store b in a
1311   // stack: ..., b, c, a, b, c
1312 }
1313 
1314 void TemplateTable::dup2_x2()
1315 {
1316   transition(vtos, vtos);
1317   // stack: ..., a, b, c, d
1318   __ ldr(r2, at_tos());  // load d
1319   __ ldr(r0, at_tos_p1());  // load c
1320   __ push(r0)            ;      // push c
1321   __ push(r2);                  // push d
1322   // stack: ..., a, b, c, d, c, d
1323   __ ldr(r0, at_tos_p4());  // load b
1324   __ str(r0, at_tos_p2());  // store b in d
1325   __ str(r2, at_tos_p4());  // store d in b
1326   // stack: ..., a, d, c, b, c, d
1327   __ ldr(r2, at_tos_p5());  // load a
1328   __ ldr(r0, at_tos_p3());  // load c
1329   __ str(r2, at_tos_p3());  // store a in c
1330   __ str(r0, at_tos_p5());  // store c in a
1331   // stack: ..., c, d, a, b, c, d
1332 }
1333 
1334 void TemplateTable::swap()
1335 {
1336   transition(vtos, vtos);
1337   // stack: ..., a, b
1338   __ ldr(r2, at_tos_p1());  // load a
1339   __ ldr(r0, at_tos());  // load b
1340   __ str(r2, at_tos());  // store a in b
1341   __ str(r0, at_tos_p1());  // store b in a
1342   // stack: ..., b, a
1343 }
1344 
1345 void TemplateTable::iop2(Operation op)
1346 {
1347   transition(itos, itos);
1348   // r0 <== r1 op r0
1349   __ pop_i(r1);
1350   switch (op) {
1351   case add  : __ addw(r0, r1, r0); break;
1352   case sub  : __ subw(r0, r1, r0); break;
1353   case mul  : __ mulw(r0, r1, r0); break;
1354   case _and : __ andw(r0, r1, r0); break;
1355   case _or  : __ orrw(r0, r1, r0); break;
1356   case _xor : __ eorw(r0, r1, r0); break;
1357   case shl  : __ lslvw(r0, r1, r0); break;
1358   case shr  : __ asrvw(r0, r1, r0); break;
1359   case ushr : __ lsrvw(r0, r1, r0);break;
1360   default   : ShouldNotReachHere();
1361   }
1362 }
1363 
1364 void TemplateTable::lop2(Operation op)
1365 {
1366   transition(ltos, ltos);
1367   // r0 <== r1 op r0
1368   __ pop_l(r1);
1369   switch (op) {
1370   case add  : __ add(r0, r1, r0); break;
1371   case sub  : __ sub(r0, r1, r0); break;
1372   case mul  : __ mul(r0, r1, r0); break;
1373   case _and : __ andr(r0, r1, r0); break;
1374   case _or  : __ orr(r0, r1, r0); break;
1375   case _xor : __ eor(r0, r1, r0); break;
1376   default   : ShouldNotReachHere();
1377   }
1378 }
1379 
1380 void TemplateTable::idiv()
1381 {
1382   transition(itos, itos);
1383   // explicitly check for div0
1384   Label no_div0;
1385   __ cbnzw(r0, no_div0);
1386   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1387   __ br(rscratch1);
1388   __ bind(no_div0);
1389   __ pop_i(r1);
1390   // r0 <== r1 idiv r0
1391   __ corrected_idivl(r0, r1, r0, /* want_remainder */ false);
1392 }
1393 
1394 void TemplateTable::irem()
1395 {
1396   transition(itos, itos);
1397   // explicitly check for div0
1398   Label no_div0;
1399   __ cbnzw(r0, no_div0);
1400   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1401   __ br(rscratch1);
1402   __ bind(no_div0);
1403   __ pop_i(r1);
1404   // r0 <== r1 irem r0
1405   __ corrected_idivl(r0, r1, r0, /* want_remainder */ true);
1406 }
1407 
1408 void TemplateTable::lmul()
1409 {
1410   transition(ltos, ltos);
1411   __ pop_l(r1);
1412   __ mul(r0, r0, r1);
1413 }
1414 
1415 void TemplateTable::ldiv()
1416 {
1417   transition(ltos, ltos);
1418   // explicitly check for div0
1419   Label no_div0;
1420   __ cbnz(r0, no_div0);
1421   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1422   __ br(rscratch1);
1423   __ bind(no_div0);
1424   __ pop_l(r1);
1425   // r0 <== r1 ldiv r0
1426   __ corrected_idivq(r0, r1, r0, /* want_remainder */ false);
1427 }
1428 
1429 void TemplateTable::lrem()
1430 {
1431   transition(ltos, ltos);
1432   // explicitly check for div0
1433   Label no_div0;
1434   __ cbnz(r0, no_div0);
1435   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1436   __ br(rscratch1);
1437   __ bind(no_div0);
1438   __ pop_l(r1);
1439   // r0 <== r1 lrem r0
1440   __ corrected_idivq(r0, r1, r0, /* want_remainder */ true);
1441 }
1442 
1443 void TemplateTable::lshl()
1444 {
1445   transition(itos, ltos);
1446   // shift count is in r0
1447   __ pop_l(r1);
1448   __ lslv(r0, r1, r0);
1449 }
1450 
1451 void TemplateTable::lshr()
1452 {
1453   transition(itos, ltos);
1454   // shift count is in r0
1455   __ pop_l(r1);
1456   __ asrv(r0, r1, r0);
1457 }
1458 
1459 void TemplateTable::lushr()
1460 {
1461   transition(itos, ltos);
1462   // shift count is in r0
1463   __ pop_l(r1);
1464   __ lsrv(r0, r1, r0);
1465 }
1466 
1467 void TemplateTable::fop2(Operation op)
1468 {
1469   transition(ftos, ftos);
1470   switch (op) {
1471   case add:
1472     // n.b. use ldrd because this is a 64 bit slot
1473     __ pop_f(v1);
1474     __ fadds(v0, v1, v0);
1475     break;
1476   case sub:
1477     __ pop_f(v1);
1478     __ fsubs(v0, v1, v0);
1479     break;
1480   case mul:
1481     __ pop_f(v1);
1482     __ fmuls(v0, v1, v0);
1483     break;
1484   case div:
1485     __ pop_f(v1);
1486     __ fdivs(v0, v1, v0);
1487     break;
1488   case rem:
1489     __ fmovs(v1, v0);
1490     __ pop_f(v0);
1491     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1492     break;
1493   default:
1494     ShouldNotReachHere();
1495     break;
1496   }
1497 }
1498 
1499 void TemplateTable::dop2(Operation op)
1500 {
1501   transition(dtos, dtos);
1502   switch (op) {
1503   case add:
1504     // n.b. use ldrd because this is a 64 bit slot
1505     __ pop_d(v1);
1506     __ faddd(v0, v1, v0);
1507     break;
1508   case sub:
1509     __ pop_d(v1);
1510     __ fsubd(v0, v1, v0);
1511     break;
1512   case mul:
1513     __ pop_d(v1);
1514     __ fmuld(v0, v1, v0);
1515     break;
1516   case div:
1517     __ pop_d(v1);
1518     __ fdivd(v0, v1, v0);
1519     break;
1520   case rem:
1521     __ fmovd(v1, v0);
1522     __ pop_d(v0);
1523     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1524     break;
1525   default:
1526     ShouldNotReachHere();
1527     break;
1528   }
1529 }
1530 
1531 void TemplateTable::ineg()
1532 {
1533   transition(itos, itos);
1534   __ negw(r0, r0);
1535 
1536 }
1537 
1538 void TemplateTable::lneg()
1539 {
1540   transition(ltos, ltos);
1541   __ neg(r0, r0);
1542 }
1543 
1544 void TemplateTable::fneg()
1545 {
1546   transition(ftos, ftos);
1547   __ fnegs(v0, v0);
1548 }
1549 
1550 void TemplateTable::dneg()
1551 {
1552   transition(dtos, dtos);
1553   __ fnegd(v0, v0);
1554 }
1555 
1556 void TemplateTable::iinc()
1557 {
1558   transition(vtos, vtos);
1559   __ load_signed_byte(r1, at_bcp(2)); // get constant
1560   locals_index(r2);
1561   __ ldr(r0, iaddress(r2));
1562   __ addw(r0, r0, r1);
1563   __ str(r0, iaddress(r2));
1564 }
1565 
1566 void TemplateTable::wide_iinc()
1567 {
1568   transition(vtos, vtos);
1569   // __ mov(r1, zr);
1570   __ ldrw(r1, at_bcp(2)); // get constant and index
1571   __ rev16(r1, r1);
1572   __ ubfx(r2, r1, 0, 16);
1573   __ neg(r2, r2);
1574   __ sbfx(r1, r1, 16, 16);
1575   __ ldr(r0, iaddress(r2));
1576   __ addw(r0, r0, r1);
1577   __ str(r0, iaddress(r2));
1578 }
1579 
1580 void TemplateTable::convert()
1581 {
1582   // Checking
1583 #ifdef ASSERT
1584   {
1585     TosState tos_in  = ilgl;
1586     TosState tos_out = ilgl;
1587     switch (bytecode()) {
1588     case Bytecodes::_i2l: // fall through
1589     case Bytecodes::_i2f: // fall through
1590     case Bytecodes::_i2d: // fall through
1591     case Bytecodes::_i2b: // fall through
1592     case Bytecodes::_i2c: // fall through
1593     case Bytecodes::_i2s: tos_in = itos; break;
1594     case Bytecodes::_l2i: // fall through
1595     case Bytecodes::_l2f: // fall through
1596     case Bytecodes::_l2d: tos_in = ltos; break;
1597     case Bytecodes::_f2i: // fall through
1598     case Bytecodes::_f2l: // fall through
1599     case Bytecodes::_f2d: tos_in = ftos; break;
1600     case Bytecodes::_d2i: // fall through
1601     case Bytecodes::_d2l: // fall through
1602     case Bytecodes::_d2f: tos_in = dtos; break;
1603     default             : ShouldNotReachHere();
1604     }
1605     switch (bytecode()) {
1606     case Bytecodes::_l2i: // fall through
1607     case Bytecodes::_f2i: // fall through
1608     case Bytecodes::_d2i: // fall through
1609     case Bytecodes::_i2b: // fall through
1610     case Bytecodes::_i2c: // fall through
1611     case Bytecodes::_i2s: tos_out = itos; break;
1612     case Bytecodes::_i2l: // fall through
1613     case Bytecodes::_f2l: // fall through
1614     case Bytecodes::_d2l: tos_out = ltos; break;
1615     case Bytecodes::_i2f: // fall through
1616     case Bytecodes::_l2f: // fall through
1617     case Bytecodes::_d2f: tos_out = ftos; break;
1618     case Bytecodes::_i2d: // fall through
1619     case Bytecodes::_l2d: // fall through
1620     case Bytecodes::_f2d: tos_out = dtos; break;
1621     default             : ShouldNotReachHere();
1622     }
1623     transition(tos_in, tos_out);
1624   }
1625 #endif // ASSERT
1626   // static const int64_t is_nan = 0x8000000000000000L;
1627 
1628   // Conversion
1629   switch (bytecode()) {
1630   case Bytecodes::_i2l:
1631     __ sxtw(r0, r0);
1632     break;
1633   case Bytecodes::_i2f:
1634     __ scvtfws(v0, r0);
1635     break;
1636   case Bytecodes::_i2d:
1637     __ scvtfwd(v0, r0);
1638     break;
1639   case Bytecodes::_i2b:
1640     __ sxtbw(r0, r0);
1641     break;
1642   case Bytecodes::_i2c:
1643     __ uxthw(r0, r0);
1644     break;
1645   case Bytecodes::_i2s:
1646     __ sxthw(r0, r0);
1647     break;
1648   case Bytecodes::_l2i:
1649     __ uxtw(r0, r0);
1650     break;
1651   case Bytecodes::_l2f:
1652     __ scvtfs(v0, r0);
1653     break;
1654   case Bytecodes::_l2d:
1655     __ scvtfd(v0, r0);
1656     break;
1657   case Bytecodes::_f2i:
1658   {
1659     Label L_Okay;
1660     __ clear_fpsr();
1661     __ fcvtzsw(r0, v0);
1662     __ get_fpsr(r1);
1663     __ cbzw(r1, L_Okay);
1664     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i));
1665     __ bind(L_Okay);
1666   }
1667     break;
1668   case Bytecodes::_f2l:
1669   {
1670     Label L_Okay;
1671     __ clear_fpsr();
1672     __ fcvtzs(r0, v0);
1673     __ get_fpsr(r1);
1674     __ cbzw(r1, L_Okay);
1675     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1676     __ bind(L_Okay);
1677   }
1678     break;
1679   case Bytecodes::_f2d:
1680     __ fcvts(v0, v0);
1681     break;
1682   case Bytecodes::_d2i:
1683   {
1684     Label L_Okay;
1685     __ clear_fpsr();
1686     __ fcvtzdw(r0, v0);
1687     __ get_fpsr(r1);
1688     __ cbzw(r1, L_Okay);
1689     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
1690     __ bind(L_Okay);
1691   }
1692     break;
1693   case Bytecodes::_d2l:
1694   {
1695     Label L_Okay;
1696     __ clear_fpsr();
1697     __ fcvtzd(r0, v0);
1698     __ get_fpsr(r1);
1699     __ cbzw(r1, L_Okay);
1700     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1701     __ bind(L_Okay);
1702   }
1703     break;
1704   case Bytecodes::_d2f:
1705     __ fcvtd(v0, v0);
1706     break;
1707   default:
1708     ShouldNotReachHere();
1709   }
1710 }
1711 
1712 void TemplateTable::lcmp()
1713 {
1714   transition(ltos, itos);
1715   Label done;
1716   __ pop_l(r1);
1717   __ cmp(r1, r0);
1718   __ mov(r0, (uint64_t)-1L);
1719   __ br(Assembler::LT, done);
1720   // __ mov(r0, 1UL);
1721   // __ csel(r0, r0, zr, Assembler::NE);
1722   // and here is a faster way
1723   __ csinc(r0, zr, zr, Assembler::EQ);
1724   __ bind(done);
1725 }
1726 
1727 void TemplateTable::float_cmp(bool is_float, int unordered_result)
1728 {
1729   Label done;
1730   if (is_float) {
1731     // XXX get rid of pop here, use ... reg, mem32
1732     __ pop_f(v1);
1733     __ fcmps(v1, v0);
1734   } else {
1735     // XXX get rid of pop here, use ... reg, mem64
1736     __ pop_d(v1);
1737     __ fcmpd(v1, v0);
1738   }
1739   if (unordered_result < 0) {
1740     // we want -1 for unordered or less than, 0 for equal and 1 for
1741     // greater than.
1742     __ mov(r0, (uint64_t)-1L);
1743     // for FP LT tests less than or unordered
1744     __ br(Assembler::LT, done);
1745     // install 0 for EQ otherwise 1
1746     __ csinc(r0, zr, zr, Assembler::EQ);
1747   } else {
1748     // we want -1 for less than, 0 for equal and 1 for unordered or
1749     // greater than.
1750     __ mov(r0, 1L);
1751     // for FP HI tests greater than or unordered
1752     __ br(Assembler::HI, done);
1753     // install 0 for EQ otherwise ~0
1754     __ csinv(r0, zr, zr, Assembler::EQ);
1755 
1756   }
1757   __ bind(done);
1758 }
1759 
1760 void TemplateTable::branch(bool is_jsr, bool is_wide)
1761 {
1762   __ profile_taken_branch(r0);
1763   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1764                              InvocationCounter::counter_offset();
1765   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1766                               InvocationCounter::counter_offset();
1767 
1768   // load branch displacement
1769   if (!is_wide) {
1770     __ ldrh(r2, at_bcp(1));
1771     __ rev16(r2, r2);
1772     // sign extend the 16 bit value in r2
1773     __ sbfm(r2, r2, 0, 15);
1774   } else {
1775     __ ldrw(r2, at_bcp(1));
1776     __ revw(r2, r2);
1777     // sign extend the 32 bit value in r2
1778     __ sbfm(r2, r2, 0, 31);
1779   }
1780 
1781   // Handle all the JSR stuff here, then exit.
1782   // It's much shorter and cleaner than intermingling with the non-JSR
1783   // normal-branch stuff occurring below.
1784 
1785   if (is_jsr) {
1786     // Pre-load the next target bytecode into rscratch1
1787     __ load_unsigned_byte(rscratch1, Address(rbcp, r2));
1788     // compute return address as bci
1789     __ ldr(rscratch2, Address(rmethod, Method::const_offset()));
1790     __ add(rscratch2, rscratch2,
1791            in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
1792     __ sub(r1, rbcp, rscratch2);
1793     __ push_i(r1);
1794     // Adjust the bcp by the 16-bit displacement in r2
1795     __ add(rbcp, rbcp, r2);
1796     __ dispatch_only(vtos, /*generate_poll*/true);
1797     return;
1798   }
1799 
1800   // Normal (non-jsr) branch handling
1801 
1802   // Adjust the bcp by the displacement in r2
1803   __ add(rbcp, rbcp, r2);
1804 
1805   assert(UseLoopCounter || !UseOnStackReplacement,
1806          "on-stack-replacement requires loop counters");
1807   Label backedge_counter_overflow;
1808   Label dispatch;
1809   if (UseLoopCounter) {
1810     // increment backedge counter for backward branches
1811     // r0: MDO
1812     // r2: target offset
1813     __ cmp(r2, zr);
1814     __ br(Assembler::GT, dispatch); // count only if backward branch
1815 
1816     // ECN: FIXME: This code smells
1817     // check if MethodCounters exists
1818     Label has_counters;
1819     __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1820     __ cbnz(rscratch1, has_counters);
1821     __ push(r0);
1822     __ push(r2);
1823     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
1824             InterpreterRuntime::build_method_counters), rmethod);
1825     __ pop(r2);
1826     __ pop(r0);
1827     __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1828     __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory
1829     __ bind(has_counters);
1830 
1831     Label no_mdo;
1832     int increment = InvocationCounter::count_increment;
1833     if (ProfileInterpreter) {
1834       // Are we profiling?
1835       __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
1836       __ cbz(r1, no_mdo);
1837       // Increment the MDO backedge counter
1838       const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) +
1839                                          in_bytes(InvocationCounter::counter_offset()));
1840       const Address mask(r1, in_bytes(MethodData::backedge_mask_offset()));
1841       __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1842                                  r0, rscratch1, false, Assembler::EQ,
1843                                  UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1844       __ b(dispatch);
1845     }
1846     __ bind(no_mdo);
1847     // Increment backedge counter in MethodCounters*
1848     __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1849     const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset()));
1850     __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask,
1851                                r0, rscratch2, false, Assembler::EQ,
1852                                UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1853     __ bind(dispatch);
1854   }
1855 
1856   // Pre-load the next target bytecode into rscratch1
1857   __ load_unsigned_byte(rscratch1, Address(rbcp, 0));
1858 
1859   // continue with the bytecode @ target
1860   // rscratch1: target bytecode
1861   // rbcp: target bcp
1862   __ dispatch_only(vtos, /*generate_poll*/true);
1863 
1864   if (UseLoopCounter && UseOnStackReplacement) {
1865     // invocation counter overflow
1866     __ bind(backedge_counter_overflow);
1867     __ neg(r2, r2);
1868     __ add(r2, r2, rbcp);     // branch bcp
1869     // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1870     __ call_VM(noreg,
1871                CAST_FROM_FN_PTR(address,
1872                                 InterpreterRuntime::frequency_counter_overflow),
1873                r2);
1874     __ load_unsigned_byte(r1, Address(rbcp, 0));  // restore target bytecode
1875 
1876     // r0: osr nmethod (osr ok) or null (osr not possible)
1877     // w1: target bytecode
1878     // r2: scratch
1879     __ cbz(r0, dispatch);     // test result -- no osr if null
1880     // nmethod may have been invalidated (VM may block upon call_VM return)
1881     __ ldrb(r2, Address(r0, nmethod::state_offset()));
1882     if (nmethod::in_use != 0)
1883       __ sub(r2, r2, nmethod::in_use);
1884     __ cbnz(r2, dispatch);
1885 
1886     // We have the address of an on stack replacement routine in r0
1887     // We need to prepare to execute the OSR method. First we must
1888     // migrate the locals and monitors off of the stack.
1889 
1890     __ mov(r19, r0);                             // save the nmethod
1891 
1892     JFR_ONLY(__ enter_jfr_critical_section();)
1893 
1894     call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1895 
1896     // r0 is OSR buffer, move it to expected parameter location
1897     __ mov(j_rarg0, r0);
1898 
1899     // remove activation
1900     // get sender esp
1901     __ ldr(esp,
1902         Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
1903     // remove frame anchor
1904     __ leave();
1905 
1906     JFR_ONLY(__ leave_jfr_critical_section();)
1907 
1908     // Ensure compiled code always sees stack at proper alignment
1909     __ andr(sp, esp, -16);
1910 
1911     // and begin the OSR nmethod
1912     __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset()));
1913     __ br(rscratch1);
1914   }
1915 }
1916 
1917 
1918 void TemplateTable::if_0cmp(Condition cc)
1919 {
1920   transition(itos, vtos);
1921   // assume branch is more often taken than not (loops use backward branches)
1922   Label not_taken;
1923   if (cc == equal)
1924     __ cbnzw(r0, not_taken);
1925   else if (cc == not_equal)
1926     __ cbzw(r0, not_taken);
1927   else {
1928     __ andsw(zr, r0, r0);
1929     __ br(j_not(cc), not_taken);
1930   }
1931 
1932   branch(false, false);
1933   __ bind(not_taken);
1934   __ profile_not_taken_branch(r0);
1935 }
1936 
1937 void TemplateTable::if_icmp(Condition cc)
1938 {
1939   transition(itos, vtos);
1940   // assume branch is more often taken than not (loops use backward branches)
1941   Label not_taken;
1942   __ pop_i(r1);
1943   __ cmpw(r1, r0, Assembler::LSL);
1944   __ br(j_not(cc), not_taken);
1945   branch(false, false);
1946   __ bind(not_taken);
1947   __ profile_not_taken_branch(r0);
1948 }
1949 
1950 void TemplateTable::if_nullcmp(Condition cc)
1951 {
1952   transition(atos, vtos);
1953   // assume branch is more often taken than not (loops use backward branches)
1954   Label not_taken;
1955   if (cc == equal)
1956     __ cbnz(r0, not_taken);
1957   else
1958     __ cbz(r0, not_taken);
1959   branch(false, false);
1960   __ bind(not_taken);
1961   __ profile_not_taken_branch(r0);
1962 }
1963 
1964 void TemplateTable::if_acmp(Condition cc)
1965 {
1966   transition(atos, vtos);
1967   // assume branch is more often taken than not (loops use backward branches)
1968   Label not_taken;
1969   __ pop_ptr(r1);
1970   __ cmpoop(r1, r0);
1971   __ br(j_not(cc), not_taken);
1972   branch(false, false);
1973   __ bind(not_taken);
1974   __ profile_not_taken_branch(r0);
1975 }
1976 
1977 void TemplateTable::ret() {
1978   transition(vtos, vtos);
1979   locals_index(r1);
1980   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1981   __ profile_ret(r1, r2);
1982   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1983   __ lea(rbcp, Address(rbcp, r1));
1984   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1985   __ dispatch_next(vtos, 0, /*generate_poll*/true);
1986 }
1987 
1988 void TemplateTable::wide_ret() {
1989   transition(vtos, vtos);
1990   locals_index_wide(r1);
1991   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1992   __ profile_ret(r1, r2);
1993   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1994   __ lea(rbcp, Address(rbcp, r1));
1995   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1996   __ dispatch_next(vtos, 0, /*generate_poll*/true);
1997 }
1998 
1999 
2000 void TemplateTable::tableswitch() {
2001   Label default_case, continue_execution;
2002   transition(itos, vtos);
2003   // align rbcp
2004   __ lea(r1, at_bcp(BytesPerInt));
2005   __ andr(r1, r1, -BytesPerInt);
2006   // load lo & hi
2007   __ ldrw(r2, Address(r1, BytesPerInt));
2008   __ ldrw(r3, Address(r1, 2 * BytesPerInt));
2009   __ rev32(r2, r2);
2010   __ rev32(r3, r3);
2011   // check against lo & hi
2012   __ cmpw(r0, r2);
2013   __ br(Assembler::LT, default_case);
2014   __ cmpw(r0, r3);
2015   __ br(Assembler::GT, default_case);
2016   // lookup dispatch offset
2017   __ subw(r0, r0, r2);
2018   __ lea(r3, Address(r1, r0, Address::uxtw(2)));
2019   __ ldrw(r3, Address(r3, 3 * BytesPerInt));
2020   __ profile_switch_case(r0, r1, r2);
2021   // continue execution
2022   __ bind(continue_execution);
2023   __ rev32(r3, r3);
2024   __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0)));
2025   __ add(rbcp, rbcp, r3, ext::sxtw);
2026   __ dispatch_only(vtos, /*generate_poll*/true);
2027   // handle default
2028   __ bind(default_case);
2029   __ profile_switch_default(r0);
2030   __ ldrw(r3, Address(r1, 0));
2031   __ b(continue_execution);
2032 }
2033 
2034 void TemplateTable::lookupswitch() {
2035   transition(itos, itos);
2036   __ stop("lookupswitch bytecode should have been rewritten");
2037 }
2038 
2039 void TemplateTable::fast_linearswitch() {
2040   transition(itos, vtos);
2041   Label loop_entry, loop, found, continue_execution;
2042   // bswap r0 so we can avoid bswapping the table entries
2043   __ rev32(r0, r0);
2044   // align rbcp
2045   __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2046                                     // this instruction (change offsets
2047                                     // below)
2048   __ andr(r19, r19, -BytesPerInt);
2049   // set counter
2050   __ ldrw(r1, Address(r19, BytesPerInt));
2051   __ rev32(r1, r1);
2052   __ b(loop_entry);
2053   // table search
2054   __ bind(loop);
2055   __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2056   __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt));
2057   __ cmpw(r0, rscratch1);
2058   __ br(Assembler::EQ, found);
2059   __ bind(loop_entry);
2060   __ subs(r1, r1, 1);
2061   __ br(Assembler::PL, loop);
2062   // default case
2063   __ profile_switch_default(r0);
2064   __ ldrw(r3, Address(r19, 0));
2065   __ b(continue_execution);
2066   // entry found -> get offset
2067   __ bind(found);
2068   __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2069   __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt));
2070   __ profile_switch_case(r1, r0, r19);
2071   // continue execution
2072   __ bind(continue_execution);
2073   __ rev32(r3, r3);
2074   __ add(rbcp, rbcp, r3, ext::sxtw);
2075   __ ldrb(rscratch1, Address(rbcp, 0));
2076   __ dispatch_only(vtos, /*generate_poll*/true);
2077 }
2078 
2079 void TemplateTable::fast_binaryswitch() {
2080   transition(itos, vtos);
2081   // Implementation using the following core algorithm:
2082   //
2083   // int binary_search(int key, LookupswitchPair* array, int n) {
2084   //   // Binary search according to "Methodik des Programmierens" by
2085   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2086   //   int i = 0;
2087   //   int j = n;
2088   //   while (i+1 < j) {
2089   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2090   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2091   //     // where a stands for the array and assuming that the (inexisting)
2092   //     // element a[n] is infinitely big.
2093   //     int h = (i + j) >> 1;
2094   //     // i < h < j
2095   //     if (key < array[h].fast_match()) {
2096   //       j = h;
2097   //     } else {
2098   //       i = h;
2099   //     }
2100   //   }
2101   //   // R: a[i] <= key < a[i+1] or Q
2102   //   // (i.e., if key is within array, i is the correct index)
2103   //   return i;
2104   // }
2105 
2106   // Register allocation
2107   const Register key   = r0; // already set (tosca)
2108   const Register array = r1;
2109   const Register i     = r2;
2110   const Register j     = r3;
2111   const Register h     = rscratch1;
2112   const Register temp  = rscratch2;
2113 
2114   // Find array start
2115   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2116                                           // get rid of this
2117                                           // instruction (change
2118                                           // offsets below)
2119   __ andr(array, array, -BytesPerInt);
2120 
2121   // Initialize i & j
2122   __ mov(i, 0);                            // i = 0;
2123   __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array);
2124 
2125   // Convert j into native byteordering
2126   __ rev32(j, j);
2127 
2128   // And start
2129   Label entry;
2130   __ b(entry);
2131 
2132   // binary search loop
2133   {
2134     Label loop;
2135     __ bind(loop);
2136     // int h = (i + j) >> 1;
2137     __ addw(h, i, j);                           // h = i + j;
2138     __ lsrw(h, h, 1);                                   // h = (i + j) >> 1;
2139     // if (key < array[h].fast_match()) {
2140     //   j = h;
2141     // } else {
2142     //   i = h;
2143     // }
2144     // Convert array[h].match to native byte-ordering before compare
2145     __ ldr(temp, Address(array, h, Address::lsl(3)));
2146     __ rev32(temp, temp);
2147     __ cmpw(key, temp);
2148     // j = h if (key <  array[h].fast_match())
2149     __ csel(j, h, j, Assembler::LT);
2150     // i = h if (key >= array[h].fast_match())
2151     __ csel(i, h, i, Assembler::GE);
2152     // while (i+1 < j)
2153     __ bind(entry);
2154     __ addw(h, i, 1);          // i+1
2155     __ cmpw(h, j);             // i+1 < j
2156     __ br(Assembler::LT, loop);
2157   }
2158 
2159   // end of binary search, result index is i (must check again!)
2160   Label default_case;
2161   // Convert array[i].match to native byte-ordering before compare
2162   __ ldr(temp, Address(array, i, Address::lsl(3)));
2163   __ rev32(temp, temp);
2164   __ cmpw(key, temp);
2165   __ br(Assembler::NE, default_case);
2166 
2167   // entry found -> j = offset
2168   __ add(j, array, i, ext::uxtx, 3);
2169   __ ldrw(j, Address(j, BytesPerInt));
2170   __ profile_switch_case(i, key, array);
2171   __ rev32(j, j);
2172   __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2173   __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2174   __ dispatch_only(vtos, /*generate_poll*/true);
2175 
2176   // default case -> j = default offset
2177   __ bind(default_case);
2178   __ profile_switch_default(i);
2179   __ ldrw(j, Address(array, -2 * BytesPerInt));
2180   __ rev32(j, j);
2181   __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2182   __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2183   __ dispatch_only(vtos, /*generate_poll*/true);
2184 }
2185 
2186 
2187 void TemplateTable::_return(TosState state)
2188 {
2189   transition(state, state);
2190   assert(_desc->calls_vm(),
2191          "inconsistent calls_vm information"); // call in remove_activation
2192 
2193   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2194     assert(state == vtos, "only valid state");
2195 
2196     __ ldr(c_rarg1, aaddress(0));
2197     __ load_klass(r3, c_rarg1);
2198     __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2199     Label skip_register_finalizer;
2200     __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2201 
2202     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2203 
2204     __ bind(skip_register_finalizer);
2205   }
2206 
2207   // Issue a StoreStore barrier after all stores but before return
2208   // from any constructor for any class with a final field.  We don't
2209   // know if this is a finalizer, so we always do so.
2210   if (_desc->bytecode() == Bytecodes::_return)
2211     __ membar(MacroAssembler::StoreStore);
2212 
2213   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2214     Label no_safepoint;
2215     __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2216     __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2217     __ push(state);
2218     __ push_cont_fastpath(rthread);
2219     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2220     __ pop_cont_fastpath(rthread);
2221     __ pop(state);
2222     __ bind(no_safepoint);
2223   }
2224 
2225   // Narrow result if state is itos but result type is smaller.
2226   // Need to narrow in the return bytecode rather than in generate_return_entry
2227   // since compiled code callers expect the result to already be narrowed.
2228   if (state == itos) {
2229     __ narrow(r0);
2230   }
2231 
2232   __ remove_activation(state);
2233   __ ret(lr);
2234 }
2235 
2236 // ----------------------------------------------------------------------------
2237 // Volatile variables demand their effects be made known to all CPU's
2238 // in order.  Store buffers on most chips allow reads & writes to
2239 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2240 // without some kind of memory barrier (i.e., it's not sufficient that
2241 // the interpreter does not reorder volatile references, the hardware
2242 // also must not reorder them).
2243 //
2244 // According to the new Java Memory Model (JMM):
2245 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2246 //     writes act as acquire & release, so:
2247 // (2) A read cannot let unrelated NON-volatile memory refs that
2248 //     happen after the read float up to before the read.  It's OK for
2249 //     non-volatile memory refs that happen before the volatile read to
2250 //     float down below it.
2251 // (3) Similar a volatile write cannot let unrelated NON-volatile
2252 //     memory refs that happen BEFORE the write float down to after the
2253 //     write.  It's OK for non-volatile memory refs that happen after the
2254 //     volatile write to float up before it.
2255 //
2256 // We only put in barriers around volatile refs (they are expensive),
2257 // not _between_ memory refs (that would require us to track the
2258 // flavor of the previous memory refs).  Requirements (2) and (3)
2259 // require some barriers before volatile stores and after volatile
2260 // loads.  These nearly cover requirement (1) but miss the
2261 // volatile-store-volatile-load case.  This final case is placed after
2262 // volatile-stores although it could just as well go before
2263 // volatile-loads.
2264 
2265 void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
2266                                             Register Rcache,
2267                                             Register index) {
2268   const Register temp = r19;
2269   assert_different_registers(Rcache, index, temp);
2270   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2271 
2272   Label resolved, clinit_barrier_slow;
2273 
2274   Bytecodes::Code code = bytecode();
2275   __ load_method_entry(Rcache, index);
2276   switch(byte_no) {
2277     case f1_byte:
2278       __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset())));
2279       break;
2280     case f2_byte:
2281       __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset())));
2282       break;
2283   }
2284   // Load-acquire the bytecode to match store-release in InterpreterRuntime
2285   __ ldarb(temp, temp);
2286   __ subs(zr, temp, (int) code);  // have we resolved this bytecode?
2287   __ br(Assembler::EQ, resolved);
2288 
2289   // resolve first time through
2290   // Class initialization barrier slow path lands here as well.
2291   __ bind(clinit_barrier_slow);
2292   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2293   __ mov(temp, (int) code);
2294   __ call_VM_preemptable(noreg, entry, temp);
2295 
2296   // Update registers with resolved info
2297   __ load_method_entry(Rcache, index);
2298   // n.b. unlike x86 Rcache is now rcpool plus the indexed offset
2299   // so all clients ofthis method must be modified accordingly
2300   __ bind(resolved);
2301 
2302   // Class initialization barrier for static methods
2303   if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2304     __ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset())));
2305     __ load_method_holder(temp, temp);
2306     __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow);
2307   }
2308 }
2309 
2310 void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
2311                                             Register Rcache,
2312                                             Register index) {
2313   const Register temp = r19;
2314   assert_different_registers(Rcache, index, temp);
2315 
2316   Label resolved;
2317 
2318   Bytecodes::Code code = bytecode();
2319   switch (code) {
2320   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2321   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2322   default: break;
2323   }
2324 
2325   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2326   __ load_field_entry(Rcache, index);
2327   if (byte_no == f1_byte) {
2328     __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset())));
2329   } else {
2330     __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset())));
2331   }
2332   // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
2333   __ ldarb(temp, temp);
2334   __ subs(zr, temp, (int) code);  // have we resolved this bytecode?
2335   __ br(Assembler::EQ, resolved);
2336 
2337   // resolve first time through
2338   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2339   __ mov(temp, (int) code);
2340   __ call_VM_preemptable(noreg, entry, temp);
2341 
2342   // Update registers with resolved info
2343   __ load_field_entry(Rcache, index);
2344   __ bind(resolved);
2345 }
2346 
2347 void TemplateTable::load_resolved_field_entry(Register obj,
2348                                               Register cache,
2349                                               Register tos_state,
2350                                               Register offset,
2351                                               Register flags,
2352                                               bool is_static = false) {
2353   assert_different_registers(cache, tos_state, flags, offset);
2354 
2355   // Field offset
2356   __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
2357 
2358   // Flags
2359   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset())));
2360 
2361   // TOS state
2362   if (tos_state != noreg) {
2363     __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset())));
2364   }
2365 
2366   // Klass overwrite register
2367   if (is_static) {
2368     __ ldr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2369     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2370     __ ldr(obj, Address(obj, mirror_offset));
2371     __ resolve_oop_handle(obj, r5, rscratch2);
2372   }
2373 }
2374 
2375 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache,
2376                                                                  Register method,
2377                                                                  Register flags) {
2378 
2379   // setup registers
2380   const Register index = flags;
2381   assert_different_registers(method, cache, flags);
2382 
2383   // determine constant pool cache field offsets
2384   resolve_cache_and_index_for_method(f1_byte, cache, index);
2385   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2386   __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2387 }
2388 
2389 void TemplateTable::load_resolved_method_entry_handle(Register cache,
2390                                                       Register method,
2391                                                       Register ref_index,
2392                                                       Register flags) {
2393   // setup registers
2394   const Register index = ref_index;
2395   assert_different_registers(method, flags);
2396   assert_different_registers(method, cache, index);
2397 
2398   // determine constant pool cache field offsets
2399   resolve_cache_and_index_for_method(f1_byte, cache, index);
2400   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2401 
2402   // maybe push appendix to arguments (just before return address)
2403   Label L_no_push;
2404   __ tbz(flags, ResolvedMethodEntry::has_appendix_shift, L_no_push);
2405   // invokehandle uses an index into the resolved references array
2406   __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset())));
2407   // Push the appendix as a trailing parameter.
2408   // This must be done before we get the receiver,
2409   // since the parameter_size includes it.
2410   Register appendix = method;
2411   __ load_resolved_reference_at_index(appendix, ref_index);
2412   __ push(appendix);  // push appendix (MethodType, CallSite, etc.)
2413   __ bind(L_no_push);
2414 
2415   __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2416 }
2417 
2418 void TemplateTable::load_resolved_method_entry_interface(Register cache,
2419                                                          Register klass,
2420                                                          Register method_or_table_index,
2421                                                          Register flags) {
2422   // setup registers
2423   const Register index = method_or_table_index;
2424   assert_different_registers(method_or_table_index, cache, flags);
2425 
2426   // determine constant pool cache field offsets
2427   resolve_cache_and_index_for_method(f1_byte, cache, index);
2428   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2429 
2430   // Invokeinterface can behave in different ways:
2431   // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will
2432   // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or
2433   // vtable index is placed in the register.
2434   // Otherwise, the registers will be populated with the klass and method.
2435 
2436   Label NotVirtual; Label NotVFinal; Label Done;
2437   __ tbz(flags, ResolvedMethodEntry::is_forced_virtual_shift, NotVirtual);
2438   __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2439   __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2440   __ b(Done);
2441 
2442   __ bind(NotVFinal);
2443   __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2444   __ b(Done);
2445 
2446   __ bind(NotVirtual);
2447   __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2448   __ ldr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset())));
2449   __ bind(Done);
2450 }
2451 
2452 void TemplateTable::load_resolved_method_entry_virtual(Register cache,
2453                                                        Register method_or_table_index,
2454                                                        Register flags) {
2455   // setup registers
2456   const Register index = flags;
2457   assert_different_registers(method_or_table_index, cache, flags);
2458 
2459   // determine constant pool cache field offsets
2460   resolve_cache_and_index_for_method(f2_byte, cache, index);
2461   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2462 
2463   // method_or_table_index can either be an itable index or a method depending on the virtual final flag
2464   Label NotVFinal; Label Done;
2465   __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2466   __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2467   __ b(Done);
2468 
2469   __ bind(NotVFinal);
2470   __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2471   __ bind(Done);
2472 }
2473 
2474 // The rmethod register is input and overwritten to be the adapter method for the
2475 // indy call. Link Register (lr) is set to the return address for the adapter and
2476 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered
2477 void TemplateTable::load_invokedynamic_entry(Register method) {
2478   // setup registers
2479   const Register appendix = r0;
2480   const Register cache = r2;
2481   const Register index = r3;
2482   assert_different_registers(method, appendix, cache, index, rcpool);
2483 
2484   __ save_bcp();
2485 
2486   Label resolved;
2487 
2488   __ load_resolved_indy_entry(cache, index);
2489   // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2490   __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2491   __ ldar(method, method);
2492 
2493   // Compare the method to zero
2494   __ cbnz(method, resolved);
2495 
2496   Bytecodes::Code code = bytecode();
2497 
2498   // Call to the interpreter runtime to resolve invokedynamic
2499   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2500   __ mov(method, code); // this is essentially Bytecodes::_invokedynamic
2501   __ call_VM_preemptable(noreg, entry, method);
2502   // Update registers with resolved info
2503   __ load_resolved_indy_entry(cache, index);
2504   // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2505   __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2506   __ ldar(method, method);
2507 
2508 #ifdef ASSERT
2509   __ cbnz(method, resolved);
2510   __ stop("Should be resolved by now");
2511 #endif // ASSERT
2512   __ bind(resolved);
2513 
2514   Label L_no_push;
2515   // Check if there is an appendix
2516   __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2517   __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push);
2518 
2519   // Get appendix
2520   __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2521   // Push the appendix as a trailing parameter
2522   // since the parameter_size includes it.
2523   __ push(method);
2524   __ mov(method, index);
2525   __ load_resolved_reference_at_index(appendix, method);
2526   __ verify_oop(appendix);
2527   __ pop(method);
2528   __ push(appendix);  // push appendix (MethodType, CallSite, etc.)
2529   __ bind(L_no_push);
2530 
2531   // compute return type
2532   __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2533   // load return address
2534   // Return address is loaded into link register(lr) and not pushed to the stack
2535   // like x86
2536   {
2537     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2538     __ mov(rscratch1, table_addr);
2539     __ ldr(lr, Address(rscratch1, index, Address::lsl(3)));
2540   }
2541 }
2542 
2543 // The registers cache and index expected to be set before call.
2544 // Correct values of the cache and index registers are preserved.
2545 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2546                                             bool is_static, bool has_tos) {
2547   // do the JVMTI work here to avoid disturbing the register state below
2548   // We use c_rarg registers here because we want to use the register used in
2549   // the call to the VM
2550   if (JvmtiExport::can_post_field_access()) {
2551     // Check to see if a field access watch has been set before we
2552     // take the time to call into the VM.
2553     Label L1;
2554     assert_different_registers(cache, index, r0);
2555     __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2556     __ ldrw(r0, Address(rscratch1));
2557     __ cbzw(r0, L1);
2558 
2559     __ load_field_entry(c_rarg2, index);
2560 
2561     if (is_static) {
2562       __ mov(c_rarg1, zr); // null object reference
2563     } else {
2564       __ ldr(c_rarg1, at_tos()); // get object pointer without popping it
2565       __ verify_oop(c_rarg1);
2566     }
2567     // c_rarg1: object pointer or null
2568     // c_rarg2: cache entry pointer
2569     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2570                                        InterpreterRuntime::post_field_access),
2571                c_rarg1, c_rarg2);
2572     __ load_field_entry(cache, index);
2573     __ bind(L1);
2574   }
2575 }
2576 
2577 void TemplateTable::pop_and_check_object(Register r)
2578 {
2579   __ pop_ptr(r);
2580   __ null_check(r);  // for field access must check obj.
2581   __ verify_oop(r);
2582 }
2583 
2584 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2585 {
2586   const Register cache     = r4;
2587   const Register obj       = r4;
2588   const Register index     = r3;
2589   const Register tos_state = r3;
2590   const Register off       = r19;
2591   const Register flags     = r6;
2592   const Register bc        = r4; // uses same reg as obj, so don't mix them
2593 
2594   resolve_cache_and_index_for_field(byte_no, cache, index);
2595   jvmti_post_field_access(cache, index, is_static, false);
2596   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2597 
2598   if (!is_static) {
2599     // obj is on the stack
2600     pop_and_check_object(obj);
2601   }
2602 
2603   // 8179954: We need to make sure that the code generated for
2604   // volatile accesses forms a sequentially-consistent set of
2605   // operations when combined with STLR and LDAR.  Without a leading
2606   // membar it's possible for a simple Dekker test to fail if loads
2607   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2608   // the stores in one method and we interpret the loads in another.
2609   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2610     Label notVolatile;
2611     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2612     __ membar(MacroAssembler::AnyAny);
2613     __ bind(notVolatile);
2614   }
2615 
2616   const Address field(obj, off);
2617 
2618   Label Done, notByte, notBool, notInt, notShort, notChar,
2619               notLong, notFloat, notObj, notDouble;
2620 
2621   assert(btos == 0, "change code, btos != 0");
2622   __ cbnz(tos_state, notByte);
2623 
2624   // Don't rewrite getstatic, only getfield
2625   if (is_static) rc = may_not_rewrite;
2626 
2627   // btos
2628   __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
2629   __ push(btos);
2630   // Rewrite bytecode to be faster
2631   if (rc == may_rewrite) {
2632     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2633   }
2634   __ b(Done);
2635 
2636   __ bind(notByte);
2637   __ cmp(tos_state, (u1)ztos);
2638   __ br(Assembler::NE, notBool);
2639 
2640   // ztos (same code as btos)
2641   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2642   __ push(ztos);
2643   // Rewrite bytecode to be faster
2644   if (rc == may_rewrite) {
2645     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2646     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2647   }
2648   __ b(Done);
2649 
2650   __ bind(notBool);
2651   __ cmp(tos_state, (u1)atos);
2652   __ br(Assembler::NE, notObj);
2653   // atos
2654   do_oop_load(_masm, field, r0, IN_HEAP);
2655   __ push(atos);
2656   if (rc == may_rewrite) {
2657     patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2658   }
2659   __ b(Done);
2660 
2661   __ bind(notObj);
2662   __ cmp(tos_state, (u1)itos);
2663   __ br(Assembler::NE, notInt);
2664   // itos
2665   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2666   __ push(itos);
2667   // Rewrite bytecode to be faster
2668   if (rc == may_rewrite) {
2669     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2670   }
2671   __ b(Done);
2672 
2673   __ bind(notInt);
2674   __ cmp(tos_state, (u1)ctos);
2675   __ br(Assembler::NE, notChar);
2676   // ctos
2677   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2678   __ push(ctos);
2679   // Rewrite bytecode to be faster
2680   if (rc == may_rewrite) {
2681     patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1);
2682   }
2683   __ b(Done);
2684 
2685   __ bind(notChar);
2686   __ cmp(tos_state, (u1)stos);
2687   __ br(Assembler::NE, notShort);
2688   // stos
2689   __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
2690   __ push(stos);
2691   // Rewrite bytecode to be faster
2692   if (rc == may_rewrite) {
2693     patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1);
2694   }
2695   __ b(Done);
2696 
2697   __ bind(notShort);
2698   __ cmp(tos_state, (u1)ltos);
2699   __ br(Assembler::NE, notLong);
2700   // ltos
2701   __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
2702   __ push(ltos);
2703   // Rewrite bytecode to be faster
2704   if (rc == may_rewrite) {
2705     patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1);
2706   }
2707   __ b(Done);
2708 
2709   __ bind(notLong);
2710   __ cmp(tos_state, (u1)ftos);
2711   __ br(Assembler::NE, notFloat);
2712   // ftos
2713   __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2714   __ push(ftos);
2715   // Rewrite bytecode to be faster
2716   if (rc == may_rewrite) {
2717     patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1);
2718   }
2719   __ b(Done);
2720 
2721   __ bind(notFloat);
2722 #ifdef ASSERT
2723   __ cmp(tos_state, (u1)dtos);
2724   __ br(Assembler::NE, notDouble);
2725 #endif
2726   // dtos
2727   __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2728   __ push(dtos);
2729   // Rewrite bytecode to be faster
2730   if (rc == may_rewrite) {
2731     patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1);
2732   }
2733 #ifdef ASSERT
2734   __ b(Done);
2735 
2736   __ bind(notDouble);
2737   __ stop("Bad state");
2738 #endif
2739 
2740   __ bind(Done);
2741 
2742   Label notVolatile;
2743   __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2744   __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2745   __ bind(notVolatile);
2746 }
2747 
2748 
2749 void TemplateTable::getfield(int byte_no)
2750 {
2751   getfield_or_static(byte_no, false);
2752 }
2753 
2754 void TemplateTable::nofast_getfield(int byte_no) {
2755   getfield_or_static(byte_no, false, may_not_rewrite);
2756 }
2757 
2758 void TemplateTable::getstatic(int byte_no)
2759 {
2760   getfield_or_static(byte_no, true);
2761 }
2762 
2763 // The registers cache and index expected to be set before call.
2764 // The function may destroy various registers, just not the cache and index registers.
2765 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2766   transition(vtos, vtos);
2767 
2768   if (JvmtiExport::can_post_field_modification()) {
2769     // Check to see if a field modification watch has been set before
2770     // we take the time to call into the VM.
2771     Label L1;
2772     assert_different_registers(cache, index, r0);
2773     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2774     __ ldrw(r0, Address(rscratch1));
2775     __ cbz(r0, L1);
2776 
2777     __ mov(c_rarg2, cache);
2778 
2779     if (is_static) {
2780       // Life is simple.  Null out the object pointer.
2781       __ mov(c_rarg1, zr);
2782     } else {
2783       // Life is harder. The stack holds the value on top, followed by
2784       // the object.  We don't know the size of the value, though; it
2785       // could be one or two words depending on its type. As a result,
2786       // we must find the type to determine where the object is.
2787       __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset())));
2788       Label nope2, done, ok;
2789       __ ldr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2790       __ cmpw(c_rarg3, ltos);
2791       __ br(Assembler::EQ, ok);
2792       __ cmpw(c_rarg3, dtos);
2793       __ br(Assembler::NE, nope2);
2794       __ bind(ok);
2795       __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2796       __ bind(nope2);
2797     }
2798     // object (tos)
2799     __ mov(c_rarg3, esp);
2800     // c_rarg1: object pointer set up above (null if static)
2801     // c_rarg2: cache entry pointer
2802     // c_rarg3: jvalue object on the stack
2803     __ call_VM(noreg,
2804                CAST_FROM_FN_PTR(address,
2805                                 InterpreterRuntime::post_field_modification),
2806                c_rarg1, c_rarg2, c_rarg3);
2807     __ load_field_entry(cache, index);
2808     __ bind(L1);
2809   }
2810 }
2811 
2812 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2813   transition(vtos, vtos);
2814 
2815   const Register cache     = r2;
2816   const Register index     = r3;
2817   const Register tos_state = r3;
2818   const Register obj       = r2;
2819   const Register off       = r19;
2820   const Register flags     = r0;
2821   const Register bc        = r4;
2822 
2823   resolve_cache_and_index_for_field(byte_no, cache, index);
2824   jvmti_post_field_mod(cache, index, is_static);
2825   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2826 
2827   Label Done;
2828   __ mov(r5, flags);
2829 
2830   {
2831     Label notVolatile;
2832     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2833     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2834     __ bind(notVolatile);
2835   }
2836 
2837   // field address
2838   const Address field(obj, off);
2839 
2840   Label notByte, notBool, notInt, notShort, notChar,
2841         notLong, notFloat, notObj, notDouble;
2842 
2843   assert(btos == 0, "change code, btos != 0");
2844   __ cbnz(tos_state, notByte);
2845 
2846   // Don't rewrite putstatic, only putfield
2847   if (is_static) rc = may_not_rewrite;
2848 
2849   // btos
2850   {
2851     __ pop(btos);
2852     if (!is_static) pop_and_check_object(obj);
2853     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
2854     if (rc == may_rewrite) {
2855       patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no);
2856     }
2857     __ b(Done);
2858   }
2859 
2860   __ bind(notByte);
2861   __ cmp(tos_state, (u1)ztos);
2862   __ br(Assembler::NE, notBool);
2863 
2864   // ztos
2865   {
2866     __ pop(ztos);
2867     if (!is_static) pop_and_check_object(obj);
2868     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
2869     if (rc == may_rewrite) {
2870       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2871     }
2872     __ b(Done);
2873   }
2874 
2875   __ bind(notBool);
2876   __ cmp(tos_state, (u1)atos);
2877   __ br(Assembler::NE, notObj);
2878 
2879   // atos
2880   {
2881     __ pop(atos);
2882     if (!is_static) pop_and_check_object(obj);
2883     // Store into the field
2884     // Clobbers: r10, r11, r3
2885     do_oop_store(_masm, field, r0, IN_HEAP);
2886     if (rc == may_rewrite) {
2887       patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2888     }
2889     __ b(Done);
2890   }
2891 
2892   __ bind(notObj);
2893   __ cmp(tos_state, (u1)itos);
2894   __ br(Assembler::NE, notInt);
2895 
2896   // itos
2897   {
2898     __ pop(itos);
2899     if (!is_static) pop_and_check_object(obj);
2900     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
2901     if (rc == may_rewrite) {
2902       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2903     }
2904     __ b(Done);
2905   }
2906 
2907   __ bind(notInt);
2908   __ cmp(tos_state, (u1)ctos);
2909   __ br(Assembler::NE, notChar);
2910 
2911   // ctos
2912   {
2913     __ pop(ctos);
2914     if (!is_static) pop_and_check_object(obj);
2915     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
2916     if (rc == may_rewrite) {
2917       patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no);
2918     }
2919     __ b(Done);
2920   }
2921 
2922   __ bind(notChar);
2923   __ cmp(tos_state, (u1)stos);
2924   __ br(Assembler::NE, notShort);
2925 
2926   // stos
2927   {
2928     __ pop(stos);
2929     if (!is_static) pop_and_check_object(obj);
2930     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
2931     if (rc == may_rewrite) {
2932       patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no);
2933     }
2934     __ b(Done);
2935   }
2936 
2937   __ bind(notShort);
2938   __ cmp(tos_state, (u1)ltos);
2939   __ br(Assembler::NE, notLong);
2940 
2941   // ltos
2942   {
2943     __ pop(ltos);
2944     if (!is_static) pop_and_check_object(obj);
2945     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
2946     if (rc == may_rewrite) {
2947       patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no);
2948     }
2949     __ b(Done);
2950   }
2951 
2952   __ bind(notLong);
2953   __ cmp(tos_state, (u1)ftos);
2954   __ br(Assembler::NE, notFloat);
2955 
2956   // ftos
2957   {
2958     __ pop(ftos);
2959     if (!is_static) pop_and_check_object(obj);
2960     __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
2961     if (rc == may_rewrite) {
2962       patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no);
2963     }
2964     __ b(Done);
2965   }
2966 
2967   __ bind(notFloat);
2968 #ifdef ASSERT
2969   __ cmp(tos_state, (u1)dtos);
2970   __ br(Assembler::NE, notDouble);
2971 #endif
2972 
2973   // dtos
2974   {
2975     __ pop(dtos);
2976     if (!is_static) pop_and_check_object(obj);
2977     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
2978     if (rc == may_rewrite) {
2979       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
2980     }
2981   }
2982 
2983 #ifdef ASSERT
2984   __ b(Done);
2985 
2986   __ bind(notDouble);
2987   __ stop("Bad state");
2988 #endif
2989 
2990   __ bind(Done);
2991 
2992   {
2993     Label notVolatile;
2994     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2995     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
2996     __ bind(notVolatile);
2997   }
2998 }
2999 
3000 void TemplateTable::putfield(int byte_no)
3001 {
3002   putfield_or_static(byte_no, false);
3003 }
3004 
3005 void TemplateTable::nofast_putfield(int byte_no) {
3006   putfield_or_static(byte_no, false, may_not_rewrite);
3007 }
3008 
3009 void TemplateTable::putstatic(int byte_no) {
3010   putfield_or_static(byte_no, true);
3011 }
3012 
3013 void TemplateTable::jvmti_post_fast_field_mod() {
3014   if (JvmtiExport::can_post_field_modification()) {
3015     // Check to see if a field modification watch has been set before
3016     // we take the time to call into the VM.
3017     Label L2;
3018     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3019     __ ldrw(c_rarg3, Address(rscratch1));
3020     __ cbzw(c_rarg3, L2);
3021     __ pop_ptr(r19);                  // copy the object pointer from tos
3022     __ verify_oop(r19);
3023     __ push_ptr(r19);                 // put the object pointer back on tos
3024     // Save tos values before call_VM() clobbers them. Since we have
3025     // to do it for every data type, we use the saved values as the
3026     // jvalue object.
3027     switch (bytecode()) {          // load values into the jvalue object
3028     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3029     case Bytecodes::_fast_bputfield: // fall through
3030     case Bytecodes::_fast_zputfield: // fall through
3031     case Bytecodes::_fast_sputfield: // fall through
3032     case Bytecodes::_fast_cputfield: // fall through
3033     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3034     case Bytecodes::_fast_dputfield: __ push_d(); break;
3035     case Bytecodes::_fast_fputfield: __ push_f(); break;
3036     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3037 
3038     default:
3039       ShouldNotReachHere();
3040     }
3041     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3042     // access constant pool cache entry
3043     __ load_field_entry(c_rarg2, r0);
3044     __ verify_oop(r19);
3045     // r19: object pointer copied above
3046     // c_rarg2: cache entry pointer
3047     // c_rarg3: jvalue object on the stack
3048     __ call_VM(noreg,
3049                CAST_FROM_FN_PTR(address,
3050                                 InterpreterRuntime::post_field_modification),
3051                r19, c_rarg2, c_rarg3);
3052 
3053     switch (bytecode()) {             // restore tos values
3054     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3055     case Bytecodes::_fast_bputfield: // fall through
3056     case Bytecodes::_fast_zputfield: // fall through
3057     case Bytecodes::_fast_sputfield: // fall through
3058     case Bytecodes::_fast_cputfield: // fall through
3059     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3060     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3061     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3062     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3063     default: break;
3064     }
3065     __ bind(L2);
3066   }
3067 }
3068 
3069 void TemplateTable::fast_storefield(TosState state)
3070 {
3071   transition(state, vtos);
3072 
3073   ByteSize base = ConstantPoolCache::base_offset();
3074 
3075   jvmti_post_fast_field_mod();
3076 
3077   // access constant pool cache
3078   __ load_field_entry(r2, r1);
3079 
3080   // R1: field offset, R2: field holder, R5: flags
3081   load_resolved_field_entry(r2, r2, noreg, r1, r5);
3082 
3083   {
3084     Label notVolatile;
3085     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3086     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3087     __ bind(notVolatile);
3088   }
3089 
3090   Label notVolatile;
3091 
3092   // Get object from stack
3093   pop_and_check_object(r2);
3094 
3095   // field address
3096   const Address field(r2, r1);
3097 
3098   // access field
3099   switch (bytecode()) {
3100   case Bytecodes::_fast_aputfield:
3101     // Clobbers: r10, r11, r3
3102     do_oop_store(_masm, field, r0, IN_HEAP);
3103     break;
3104   case Bytecodes::_fast_lputfield:
3105     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3106     break;
3107   case Bytecodes::_fast_iputfield:
3108     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3109     break;
3110   case Bytecodes::_fast_zputfield:
3111     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3112     break;
3113   case Bytecodes::_fast_bputfield:
3114     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3115     break;
3116   case Bytecodes::_fast_sputfield:
3117     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3118     break;
3119   case Bytecodes::_fast_cputfield:
3120     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
3121     break;
3122   case Bytecodes::_fast_fputfield:
3123     __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3124     break;
3125   case Bytecodes::_fast_dputfield:
3126     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3127     break;
3128   default:
3129     ShouldNotReachHere();
3130   }
3131 
3132   {
3133     Label notVolatile;
3134     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3135     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3136     __ bind(notVolatile);
3137   }
3138 }
3139 
3140 
3141 void TemplateTable::fast_accessfield(TosState state)
3142 {
3143   transition(atos, state);
3144   // Do the JVMTI work here to avoid disturbing the register state below
3145   if (JvmtiExport::can_post_field_access()) {
3146     // Check to see if a field access watch has been set before we
3147     // take the time to call into the VM.
3148     Label L1;
3149     __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3150     __ ldrw(r2, Address(rscratch1));
3151     __ cbzw(r2, L1);
3152     // access constant pool cache entry
3153     __ load_field_entry(c_rarg2, rscratch2);
3154     __ verify_oop(r0);
3155     __ push_ptr(r0);  // save object pointer before call_VM() clobbers it
3156     __ mov(c_rarg1, r0);
3157     // c_rarg1: object pointer copied above
3158     // c_rarg2: cache entry pointer
3159     __ call_VM(noreg,
3160                CAST_FROM_FN_PTR(address,
3161                                 InterpreterRuntime::post_field_access),
3162                c_rarg1, c_rarg2);
3163     __ pop_ptr(r0); // restore object pointer
3164     __ bind(L1);
3165   }
3166 
3167   // access constant pool cache
3168   __ load_field_entry(r2, r1);
3169 
3170   __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3171   __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3172 
3173   // r0: object
3174   __ verify_oop(r0);
3175   __ null_check(r0);
3176   const Address field(r0, r1);
3177 
3178   // 8179954: We need to make sure that the code generated for
3179   // volatile accesses forms a sequentially-consistent set of
3180   // operations when combined with STLR and LDAR.  Without a leading
3181   // membar it's possible for a simple Dekker test to fail if loads
3182   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3183   // the stores in one method and we interpret the loads in another.
3184   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3185     Label notVolatile;
3186     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3187     __ membar(MacroAssembler::AnyAny);
3188     __ bind(notVolatile);
3189   }
3190 
3191   // access field
3192   switch (bytecode()) {
3193   case Bytecodes::_fast_agetfield:
3194     do_oop_load(_masm, field, r0, IN_HEAP);
3195     __ verify_oop(r0);
3196     break;
3197   case Bytecodes::_fast_lgetfield:
3198     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3199     break;
3200   case Bytecodes::_fast_igetfield:
3201     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3202     break;
3203   case Bytecodes::_fast_bgetfield:
3204     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3205     break;
3206   case Bytecodes::_fast_sgetfield:
3207     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3208     break;
3209   case Bytecodes::_fast_cgetfield:
3210     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3211     break;
3212   case Bytecodes::_fast_fgetfield:
3213     __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3214     break;
3215   case Bytecodes::_fast_dgetfield:
3216     __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3217     break;
3218   default:
3219     ShouldNotReachHere();
3220   }
3221   {
3222     Label notVolatile;
3223     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3224     __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3225     __ bind(notVolatile);
3226   }
3227 }
3228 
3229 void TemplateTable::fast_xaccess(TosState state)
3230 {
3231   transition(vtos, state);
3232 
3233   // get receiver
3234   __ ldr(r0, aaddress(0));
3235   // access constant pool cache
3236   __ load_field_entry(r2, r3, 2);
3237   __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3238 
3239   // 8179954: We need to make sure that the code generated for
3240   // volatile accesses forms a sequentially-consistent set of
3241   // operations when combined with STLR and LDAR.  Without a leading
3242   // membar it's possible for a simple Dekker test to fail if loads
3243   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3244   // the stores in one method and we interpret the loads in another.
3245   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3246     Label notVolatile;
3247     __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3248     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3249     __ membar(MacroAssembler::AnyAny);
3250     __ bind(notVolatile);
3251   }
3252 
3253   // make sure exception is reported in correct bcp range (getfield is
3254   // next instruction)
3255   __ increment(rbcp);
3256   __ null_check(r0);
3257   switch (state) {
3258   case itos:
3259     __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3260     break;
3261   case atos:
3262     do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP);
3263     __ verify_oop(r0);
3264     break;
3265   case ftos:
3266     __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3267     break;
3268   default:
3269     ShouldNotReachHere();
3270   }
3271 
3272   {
3273     Label notVolatile;
3274     __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3275     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3276     __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3277     __ bind(notVolatile);
3278   }
3279 
3280   __ decrement(rbcp);
3281 }
3282 
3283 
3284 
3285 //-----------------------------------------------------------------------------
3286 // Calls
3287 
3288 void TemplateTable::prepare_invoke(Register cache, Register recv) {
3289 
3290   Bytecodes::Code code = bytecode();
3291   const bool load_receiver       = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic);
3292 
3293   // save 'interpreter return address'
3294   __ save_bcp();
3295 
3296   // Load TOS state for later
3297   __ load_unsigned_byte(rscratch2, Address(cache, in_bytes(ResolvedMethodEntry::type_offset())));
3298 
3299   // load receiver if needed (note: no return address pushed yet)
3300   if (load_receiver) {
3301     __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
3302     __ add(rscratch1, esp, recv, ext::uxtx, 3);
3303     __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1)));
3304     __ verify_oop(recv);
3305   }
3306 
3307   // load return address
3308   {
3309     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3310     __ mov(rscratch1, table_addr);
3311     __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3)));
3312   }
3313 }
3314 
3315 
3316 void TemplateTable::invokevirtual_helper(Register index,
3317                                          Register recv,
3318                                          Register flags)
3319 {
3320   // Uses temporary registers r0, r3
3321   assert_different_registers(index, recv, r0, r3);
3322   // Test for an invoke of a final method
3323   Label notFinal;
3324   __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, notFinal);
3325 
3326   const Register method = index;  // method must be rmethod
3327   assert(method == rmethod,
3328          "Method must be rmethod for interpreter calling convention");
3329 
3330   // do the call - the index is actually the method to call
3331   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3332 
3333   // It's final, need a null check here!
3334   __ null_check(recv);
3335 
3336   // profile this call
3337   __ profile_final_call(r0);
3338   __ profile_arguments_type(r0, method, r4, true);
3339 
3340   __ jump_from_interpreted(method, r0);
3341 
3342   __ bind(notFinal);
3343 
3344   // get receiver klass
3345   __ load_klass(r0, recv);
3346 
3347   // profile this call
3348   __ profile_virtual_call(r0, rlocals, r3);
3349 
3350   // get target Method & entry point
3351   __ lookup_virtual_method(r0, index, method);
3352   __ profile_arguments_type(r3, method, r4, true);
3353   // FIXME -- this looks completely redundant. is it?
3354   // __ ldr(r3, Address(method, Method::interpreter_entry_offset()));
3355   __ jump_from_interpreted(method, r3);
3356 }
3357 
3358 void TemplateTable::invokevirtual(int byte_no)
3359 {
3360   transition(vtos, vtos);
3361   assert(byte_no == f2_byte, "use this argument");
3362 
3363   load_resolved_method_entry_virtual(r2,      // ResolvedMethodEntry*
3364                                      rmethod, // Method* or itable index
3365                                      r3);     // flags
3366   prepare_invoke(r2, r2); // recv
3367 
3368   // rmethod: index (actually a Method*)
3369   // r2: receiver
3370   // r3: flags
3371 
3372   invokevirtual_helper(rmethod, r2, r3);
3373 }
3374 
3375 void TemplateTable::invokespecial(int byte_no)
3376 {
3377   transition(vtos, vtos);
3378   assert(byte_no == f1_byte, "use this argument");
3379 
3380   load_resolved_method_entry_special_or_static(r2,      // ResolvedMethodEntry*
3381                                                rmethod, // Method*
3382                                                r3);     // flags
3383   prepare_invoke(r2, r2);  // get receiver also for null check
3384   __ verify_oop(r2);
3385   __ null_check(r2);
3386   // do the call
3387   __ profile_call(r0);
3388   __ profile_arguments_type(r0, rmethod, rbcp, false);
3389   __ jump_from_interpreted(rmethod, r0);
3390 }
3391 
3392 void TemplateTable::invokestatic(int byte_no)
3393 {
3394   transition(vtos, vtos);
3395   assert(byte_no == f1_byte, "use this argument");
3396 
3397   load_resolved_method_entry_special_or_static(r2,      // ResolvedMethodEntry*
3398                                                rmethod, // Method*
3399                                                r3);     // flags
3400   prepare_invoke(r2, r2);  // get receiver also for null check
3401 
3402   // do the call
3403   __ profile_call(r0);
3404   __ profile_arguments_type(r0, rmethod, r4, false);
3405   __ jump_from_interpreted(rmethod, r0);
3406 }
3407 
3408 void TemplateTable::fast_invokevfinal(int byte_no)
3409 {
3410   __ call_Unimplemented();
3411 }
3412 
3413 void TemplateTable::invokeinterface(int byte_no) {
3414   transition(vtos, vtos);
3415   assert(byte_no == f1_byte, "use this argument");
3416 
3417   load_resolved_method_entry_interface(r2,      // ResolvedMethodEntry*
3418                                        r0,      // Klass*
3419                                        rmethod, // Method* or itable/vtable index
3420                                        r3);     // flags
3421   prepare_invoke(r2, r2); // receiver
3422 
3423   // r0: interface klass (from f1)
3424   // rmethod: method (from f2)
3425   // r2: receiver
3426   // r3: flags
3427 
3428   // First check for Object case, then private interface method,
3429   // then regular interface method.
3430 
3431   // Special case of invokeinterface called for virtual method of
3432   // java.lang.Object.  See cpCache.cpp for details.
3433   Label notObjectMethod;
3434   __ tbz(r3, ResolvedMethodEntry::is_forced_virtual_shift, notObjectMethod);
3435 
3436   invokevirtual_helper(rmethod, r2, r3);
3437   __ bind(notObjectMethod);
3438 
3439   Label no_such_interface;
3440 
3441   // Check for private method invocation - indicated by vfinal
3442   Label notVFinal;
3443   __ tbz(r3, ResolvedMethodEntry::is_vfinal_shift, notVFinal);
3444 
3445   // Get receiver klass into r3
3446   __ load_klass(r3, r2);
3447 
3448   Label subtype;
3449   __ check_klass_subtype(r3, r0, r4, subtype);
3450   // If we get here the typecheck failed
3451   __ b(no_such_interface);
3452   __ bind(subtype);
3453 
3454   __ profile_final_call(r0);
3455   __ profile_arguments_type(r0, rmethod, r4, true);
3456   __ jump_from_interpreted(rmethod, r0);
3457 
3458   __ bind(notVFinal);
3459 
3460   // Get receiver klass into r3
3461   __ restore_locals();
3462   __ load_klass(r3, r2);
3463 
3464   Label no_such_method;
3465 
3466   // Preserve method for throw_AbstractMethodErrorVerbose.
3467   __ mov(r16, rmethod);
3468   // Receiver subtype check against REFC.
3469   // Superklass in r0. Subklass in r3. Blows rscratch2, r13
3470   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3471                              r3, r0, noreg,
3472                              // outputs: scan temp. reg, scan temp. reg
3473                              rscratch2, r13,
3474                              no_such_interface,
3475                              /*return_method=*/false);
3476 
3477   // profile this call
3478   __ profile_virtual_call(r3, r13, r19);
3479 
3480   // Get declaring interface class from method, and itable index
3481 
3482   __ load_method_holder(r0, rmethod);
3483   __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset()));
3484   __ subw(rmethod, rmethod, Method::itable_index_max);
3485   __ negw(rmethod, rmethod);
3486 
3487   // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3488   __ mov(rlocals, r3);
3489   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3490                              rlocals, r0, rmethod,
3491                              // outputs: method, scan temp. reg
3492                              rmethod, r13,
3493                              no_such_interface);
3494 
3495   // rmethod,: Method to call
3496   // r2: receiver
3497   // Check for abstract method error
3498   // Note: This should be done more efficiently via a throw_abstract_method_error
3499   //       interpreter entry point and a conditional jump to it in case of a null
3500   //       method.
3501   __ cbz(rmethod, no_such_method);
3502 
3503   __ profile_arguments_type(r3, rmethod, r13, true);
3504 
3505   // do the call
3506   // r2: receiver
3507   // rmethod,: Method
3508   __ jump_from_interpreted(rmethod, r3);
3509   __ should_not_reach_here();
3510 
3511   // exception handling code follows...
3512   // note: must restore interpreter registers to canonical
3513   //       state for exception handling to work correctly!
3514 
3515   __ bind(no_such_method);
3516   // throw exception
3517   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
3518   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3519   // Pass arguments for generating a verbose error message.
3520   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16);
3521   // the call_VM checks for exception, so we should never return here.
3522   __ should_not_reach_here();
3523 
3524   __ bind(no_such_interface);
3525   // throw exception
3526   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
3527   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3528   // Pass arguments for generating a verbose error message.
3529   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3530                    InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0);
3531   // the call_VM checks for exception, so we should never return here.
3532   __ should_not_reach_here();
3533   return;
3534 }
3535 
3536 void TemplateTable::invokehandle(int byte_no) {
3537   transition(vtos, vtos);
3538   assert(byte_no == f1_byte, "use this argument");
3539 
3540   load_resolved_method_entry_handle(r2,      // ResolvedMethodEntry*
3541                                     rmethod, // Method*
3542                                     r0,      // Resolved reference
3543                                     r3);     // flags
3544   prepare_invoke(r2, r2);
3545 
3546   __ verify_method_ptr(r2);
3547   __ verify_oop(r2);
3548   __ null_check(r2);
3549 
3550   // FIXME: profile the LambdaForm also
3551 
3552   // r13 is safe to use here as a scratch reg because it is about to
3553   // be clobbered by jump_from_interpreted().
3554   __ profile_final_call(r13);
3555   __ profile_arguments_type(r13, rmethod, r4, true);
3556 
3557   __ jump_from_interpreted(rmethod, r0);
3558 }
3559 
3560 void TemplateTable::invokedynamic(int byte_no) {
3561   transition(vtos, vtos);
3562   assert(byte_no == f1_byte, "use this argument");
3563 
3564   load_invokedynamic_entry(rmethod);
3565 
3566   // r0: CallSite object (from cpool->resolved_references[])
3567   // rmethod: MH.linkToCallSite method
3568 
3569   // Note:  r0_callsite is already pushed
3570 
3571   // %%% should make a type profile for any invokedynamic that takes a ref argument
3572   // profile this call
3573   __ profile_call(rbcp);
3574   __ profile_arguments_type(r3, rmethod, r13, false);
3575 
3576   __ verify_oop(r0);
3577 
3578   __ jump_from_interpreted(rmethod, r0);
3579 }
3580 
3581 
3582 //-----------------------------------------------------------------------------
3583 // Allocation
3584 
3585 void TemplateTable::_new() {
3586   transition(vtos, atos);
3587 
3588   __ get_unsigned_2_byte_index_at_bcp(r3, 1);
3589   Label slow_case;
3590   Label done;
3591   Label initialize_header;
3592 
3593   __ get_cpool_and_tags(r4, r0);
3594   // Make sure the class we're about to instantiate has been resolved.
3595   // This is done before loading InstanceKlass to be consistent with the order
3596   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3597   const int tags_offset = Array<u1>::base_offset_in_bytes();
3598   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3599   __ lea(rscratch1, Address(rscratch1, tags_offset));
3600   __ ldarb(rscratch1, rscratch1);
3601   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3602   __ br(Assembler::NE, slow_case);
3603 
3604   // get InstanceKlass
3605   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3606 
3607   // make sure klass is initialized
3608   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3609   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3610 
3611   // get instance_size in InstanceKlass (scaled to a count of bytes)
3612   __ ldrw(r3,
3613           Address(r4,
3614                   Klass::layout_helper_offset()));
3615   // test to see if it is malformed in some way
3616   __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3617 
3618   // Allocate the instance:
3619   //  If TLAB is enabled:
3620   //    Try to allocate in the TLAB.
3621   //    If fails, go to the slow path.
3622   //    Initialize the allocation.
3623   //    Exit.
3624   //
3625   //  Go to slow path.
3626 
3627   if (UseTLAB) {
3628     __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
3629 
3630     if (ZeroTLAB) {
3631       // the fields have been already cleared
3632       __ b(initialize_header);
3633     }
3634 
3635     // The object is initialized before the header.  If the object size is
3636     // zero, go directly to the header initialization.
3637     int header_size = oopDesc::header_size() * HeapWordSize;
3638     assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned");
3639     __ sub(r3, r3, header_size);
3640     __ cbz(r3, initialize_header);
3641 
3642     // Initialize object fields
3643     {
3644       __ add(r2, r0, header_size);
3645       Label loop;
3646       __ bind(loop);
3647       __ str(zr, Address(__ post(r2, BytesPerLong)));
3648       __ sub(r3, r3, BytesPerLong);
3649       __ cbnz(r3, loop);
3650     }
3651 
3652     // initialize object header only.
3653     __ bind(initialize_header);
3654     if (UseCompactObjectHeaders) {
3655       __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset()));
3656       __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3657     } else {
3658       __ mov(rscratch1, (intptr_t)markWord::prototype().value());
3659       __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3660       __ store_klass_gap(r0, zr);  // zero klass gap for compressed oops
3661       __ store_klass(r0, r4);      // store klass last
3662     }
3663 
3664     if (DTraceAllocProbes) {
3665       // Trigger dtrace event for fastpath
3666       __ push(atos); // save the return value
3667       __ call_VM_leaf(
3668            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3669       __ pop(atos); // restore the return value
3670 
3671     }
3672     __ b(done);
3673   }
3674 
3675   // slow case
3676   __ bind(slow_case);
3677   __ get_constant_pool(c_rarg1);
3678   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3679   __ call_VM_preemptable(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3680   __ verify_oop(r0);
3681 
3682   // continue
3683   __ bind(done);
3684   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3685   __ membar(Assembler::StoreStore);
3686 }
3687 
3688 void TemplateTable::newarray() {
3689   transition(itos, atos);
3690   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3691   __ mov(c_rarg2, r0);
3692   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3693           c_rarg1, c_rarg2);
3694   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3695   __ membar(Assembler::StoreStore);
3696 }
3697 
3698 void TemplateTable::anewarray() {
3699   transition(itos, atos);
3700   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3701   __ get_constant_pool(c_rarg1);
3702   __ mov(c_rarg3, r0);
3703   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3704           c_rarg1, c_rarg2, c_rarg3);
3705   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3706   __ membar(Assembler::StoreStore);
3707 }
3708 
3709 void TemplateTable::arraylength() {
3710   transition(atos, itos);
3711   __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes()));
3712 }
3713 
3714 void TemplateTable::checkcast()
3715 {
3716   transition(atos, atos);
3717   Label done, is_null, ok_is_subtype, quicked, resolved;
3718   __ cbz(r0, is_null);
3719 
3720   // Get cpool & tags index
3721   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3722   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3723   // See if bytecode has already been quicked
3724   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3725   __ lea(r1, Address(rscratch1, r19));
3726   __ ldarb(r1, r1);
3727   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3728   __ br(Assembler::EQ, quicked);
3729 
3730   __ push(atos); // save receiver for result, and for GC
3731   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3732   __ get_vm_result_metadata(r0, rthread);
3733   __ pop(r3); // restore receiver
3734   __ b(resolved);
3735 
3736   // Get superklass in r0 and subklass in r3
3737   __ bind(quicked);
3738   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3739   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3740 
3741   __ bind(resolved);
3742   __ load_klass(r19, r3);
3743 
3744   // Generate subtype check.  Blows r2, r5.  Object in r3.
3745   // Superklass in r0.  Subklass in r19.
3746   __ gen_subtype_check(r19, ok_is_subtype);
3747 
3748   // Come here on failure
3749   __ push(r3);
3750   // object is at TOS
3751   __ b(Interpreter::_throw_ClassCastException_entry);
3752 
3753   // Come here on success
3754   __ bind(ok_is_subtype);
3755   __ mov(r0, r3); // Restore object in r3
3756 
3757   // Collect counts on whether this test sees nulls a lot or not.
3758   if (ProfileInterpreter) {
3759     __ b(done);
3760     __ bind(is_null);
3761     __ profile_null_seen(r2);
3762   } else {
3763     __ bind(is_null);   // same as 'done'
3764   }
3765   __ bind(done);
3766 }
3767 
3768 void TemplateTable::instanceof() {
3769   transition(atos, itos);
3770   Label done, is_null, ok_is_subtype, quicked, resolved;
3771   __ cbz(r0, is_null);
3772 
3773   // Get cpool & tags index
3774   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3775   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3776   // See if bytecode has already been quicked
3777   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3778   __ lea(r1, Address(rscratch1, r19));
3779   __ ldarb(r1, r1);
3780   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3781   __ br(Assembler::EQ, quicked);
3782 
3783   __ push(atos); // save receiver for result, and for GC
3784   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3785   __ get_vm_result_metadata(r0, rthread);
3786   __ pop(r3); // restore receiver
3787   __ verify_oop(r3);
3788   __ load_klass(r3, r3);
3789   __ b(resolved);
3790 
3791   // Get superklass in r0 and subklass in r3
3792   __ bind(quicked);
3793   __ load_klass(r3, r0);
3794   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1);
3795 
3796   __ bind(resolved);
3797 
3798   // Generate subtype check.  Blows r2, r5
3799   // Superklass in r0.  Subklass in r3.
3800   __ gen_subtype_check(r3, ok_is_subtype);
3801 
3802   // Come here on failure
3803   __ mov(r0, 0);
3804   __ b(done);
3805   // Come here on success
3806   __ bind(ok_is_subtype);
3807   __ mov(r0, 1);
3808 
3809   // Collect counts on whether this test sees nulls a lot or not.
3810   if (ProfileInterpreter) {
3811     __ b(done);
3812     __ bind(is_null);
3813     __ profile_null_seen(r2);
3814   } else {
3815     __ bind(is_null);   // same as 'done'
3816   }
3817   __ bind(done);
3818   // r0 = 0: obj == nullptr or  obj is not an instanceof the specified klass
3819   // r0 = 1: obj != nullptr and obj is     an instanceof the specified klass
3820 }
3821 
3822 //-----------------------------------------------------------------------------
3823 // Breakpoints
3824 void TemplateTable::_breakpoint() {
3825   // Note: We get here even if we are single stepping..
3826   // jbug inists on setting breakpoints at every bytecode
3827   // even if we are in single step mode.
3828 
3829   transition(vtos, vtos);
3830 
3831   // get the unpatched byte code
3832   __ get_method(c_rarg1);
3833   __ call_VM(noreg,
3834              CAST_FROM_FN_PTR(address,
3835                               InterpreterRuntime::get_original_bytecode_at),
3836              c_rarg1, rbcp);
3837   __ mov(r19, r0);
3838 
3839   // post the breakpoint event
3840   __ call_VM(noreg,
3841              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3842              rmethod, rbcp);
3843 
3844   // complete the execution of original bytecode
3845   __ mov(rscratch1, r19);
3846   __ dispatch_only_normal(vtos);
3847 }
3848 
3849 //-----------------------------------------------------------------------------
3850 // Exceptions
3851 
3852 void TemplateTable::athrow() {
3853   transition(atos, vtos);
3854   __ null_check(r0);
3855   __ b(Interpreter::throw_exception_entry());
3856 }
3857 
3858 //-----------------------------------------------------------------------------
3859 // Synchronization
3860 //
3861 // Note: monitorenter & exit are symmetric routines; which is reflected
3862 //       in the assembly code structure as well
3863 //
3864 // Stack layout:
3865 //
3866 // [expressions  ] <--- esp               = expression stack top
3867 // ..
3868 // [expressions  ]
3869 // [monitor entry] <--- monitor block top = expression stack bot
3870 // ..
3871 // [monitor entry]
3872 // [frame data   ] <--- monitor block bot
3873 // ...
3874 // [saved rfp    ] <--- rfp
3875 void TemplateTable::monitorenter()
3876 {
3877   transition(atos, vtos);
3878 
3879   // check for null object
3880   __ null_check(r0);
3881 
3882   const Address monitor_block_top(
3883         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3884   const Address monitor_block_bot(
3885         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3886   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3887 
3888   Label allocated;
3889 
3890   // initialize entry pointer
3891   __ mov(c_rarg1, zr); // points to free slot or null
3892 
3893   // find a free slot in the monitor block (result in c_rarg1)
3894   {
3895     Label entry, loop, exit;
3896     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
3897     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
3898     // c_rarg3 points to current entry, starting with top-most entry
3899 
3900     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3901 
3902     __ b(entry);
3903 
3904     __ bind(loop);
3905     // check if current entry is used
3906     // if not used then remember entry in c_rarg1
3907     __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset()));
3908     __ cmp(zr, rscratch1);
3909     __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ);
3910     // check if current entry is for same object
3911     __ cmp(r0, rscratch1);
3912     // if same object then stop searching
3913     __ br(Assembler::EQ, exit);
3914     // otherwise advance to next entry
3915     __ add(c_rarg3, c_rarg3, entry_size);
3916     __ bind(entry);
3917     // check if bottom reached
3918     __ cmp(c_rarg3, c_rarg2);
3919     // if not at bottom then check this entry
3920     __ br(Assembler::NE, loop);
3921     __ bind(exit);
3922   }
3923 
3924   __ cbnz(c_rarg1, allocated); // check if a slot has been found and
3925                             // if found, continue with that on
3926 
3927   // allocate one if there's no free slot
3928   {
3929     Label entry, loop;
3930     // 1. compute new pointers            // rsp: old expression stack top
3931 
3932     __ check_extended_sp();
3933     __ sub(sp, sp, entry_size);           // make room for the monitor
3934     __ sub(rscratch1, sp, rfp);
3935     __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
3936     __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
3937 
3938     __ ldr(c_rarg1, monitor_block_bot);   // derelativize pointer
3939     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
3940     // c_rarg1 points to the old expression stack bottom
3941 
3942     __ sub(esp, esp, entry_size);         // move expression stack top
3943     __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
3944     __ mov(c_rarg3, esp);                 // set start value for copy loop
3945     __ sub(rscratch1, c_rarg1, rfp);      // relativize pointer
3946     __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
3947     __ str(rscratch1, monitor_block_bot);  // set new monitor block bottom
3948 
3949     __ b(entry);
3950     // 2. move expression stack contents
3951     __ bind(loop);
3952     __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3953                                                    // word from old location
3954     __ str(c_rarg2, Address(c_rarg3, 0));          // and store it at new location
3955     __ add(c_rarg3, c_rarg3, wordSize);            // advance to next word
3956     __ bind(entry);
3957     __ cmp(c_rarg3, c_rarg1);        // check if bottom reached
3958     __ br(Assembler::NE, loop);      // if not at bottom then
3959                                      // copy next word
3960   }
3961 
3962   // call run-time routine
3963   // c_rarg1: points to monitor entry
3964   __ bind(allocated);
3965 
3966   // Increment bcp to point to the next bytecode, so exception
3967   // handling for async. exceptions work correctly.
3968   // The object has already been popped from the stack, so the
3969   // expression stack looks correct.
3970   __ increment(rbcp);
3971 
3972   // store object
3973   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
3974   __ lock_object(c_rarg1);
3975 
3976   // check to make sure this monitor doesn't cause stack overflow after locking
3977   __ save_bcp();  // in case of exception
3978   __ generate_stack_overflow_check(0);
3979 
3980   // The bcp has already been incremented. Just need to dispatch to
3981   // next instruction.
3982   __ dispatch_next(vtos);
3983 }
3984 
3985 
3986 void TemplateTable::monitorexit()
3987 {
3988   transition(atos, vtos);
3989 
3990   // check for null object
3991   __ null_check(r0);
3992 
3993   const Address monitor_block_top(
3994         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3995   const Address monitor_block_bot(
3996         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3997   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3998 
3999   Label found;
4000 
4001   // find matching slot
4002   {
4003     Label entry, loop;
4004     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4005     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4006     // c_rarg1 points to current entry, starting with top-most entry
4007 
4008     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4009                                         // of monitor block
4010     __ b(entry);
4011 
4012     __ bind(loop);
4013     // check if current entry is for same object
4014     __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
4015     __ cmp(r0, rscratch1);
4016     // if same object then stop searching
4017     __ br(Assembler::EQ, found);
4018     // otherwise advance to next entry
4019     __ add(c_rarg1, c_rarg1, entry_size);
4020     __ bind(entry);
4021     // check if bottom reached
4022     __ cmp(c_rarg1, c_rarg2);
4023     // if not at bottom then check this entry
4024     __ br(Assembler::NE, loop);
4025   }
4026 
4027   // error handling. Unlocking was not block-structured
4028   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4029                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4030   __ should_not_reach_here();
4031 
4032   // call run-time routine
4033   __ bind(found);
4034   __ push_ptr(r0); // make sure object is on stack (contract with oopMaps)
4035   __ unlock_object(c_rarg1);
4036   __ pop_ptr(r0); // discard object
4037 }
4038 
4039 
4040 // Wide instructions
4041 void TemplateTable::wide()
4042 {
4043   __ load_unsigned_byte(r19, at_bcp(1));
4044   __ mov(rscratch1, (address)Interpreter::_wentry_point);
4045   __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3)));
4046   __ br(rscratch1);
4047 }
4048 
4049 
4050 // Multi arrays
4051 void TemplateTable::multianewarray() {
4052   transition(vtos, atos);
4053   __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions
4054   // last dim is on top of stack; we want address of first one:
4055   // first_addr = last_addr + (ndims - 1) * wordSize
4056   __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3)));
4057   __ sub(c_rarg1, c_rarg1, wordSize);
4058   call_VM(r0,
4059           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
4060           c_rarg1);
4061   __ load_unsigned_byte(r1, at_bcp(3));
4062   __ lea(esp, Address(esp, r1, Address::uxtw(3)));
4063 }