1 /* 2 * Copyright (c) 2008, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "interpreter/bytecodeHistogram.hpp" 30 #include "interpreter/interp_masm.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "interpreter/templateInterpreterGenerator.hpp" 34 #include "interpreter/templateTable.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/methodData.hpp" 37 #include "oops/method.inline.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/resolvedIndyEntry.hpp" 40 #include "oops/resolvedMethodEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiThreadState.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/arguments.hpp" 45 #include "runtime/deoptimization.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/jniHandles.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "runtime/stubRoutines.hpp" 50 #include "runtime/synchronizer.hpp" 51 #include "runtime/timer.hpp" 52 #include "runtime/vframeArray.hpp" 53 #include "utilities/align.hpp" 54 #include "utilities/debug.hpp" 55 #include "utilities/macros.hpp" 56 57 // Size of interpreter code. Increase if too small. Interpreter will 58 // fail with a guarantee ("not enough space for interpreter generation"); 59 // if too small. 60 // Run with +PrintInterpreter to get the VM to print out the size. 61 // Max size with JVMTI 62 int TemplateInterpreter::InterpreterCodeSize = 180 * 1024; 63 64 #define __ _masm-> 65 66 //------------------------------------------------------------------------------------------------------------------------ 67 68 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 69 address entry = __ pc(); 70 71 // callee-save register for saving LR, shared with generate_native_entry 72 const Register Rsaved_ret_addr = Rtmp_save0; 73 74 __ mov(Rsaved_ret_addr, LR); 75 76 __ mov(R1, Rmethod); 77 __ mov(R2, Rlocals); 78 __ mov(R3, SP); 79 80 81 // Safer to save R9 (when scratched) since callers may have been 82 // written assuming R9 survives. This is suboptimal but 83 // probably not important for this slow case call site. 84 // Note for R9 saving: slow_signature_handler may copy register 85 // arguments above the current SP (passed as R3). It is safe for 86 // call_VM to use push and pop to protect additional values on the 87 // stack if needed. 88 __ call_VM(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), true /* save R9 if needed*/); 89 __ add(SP, SP, wordSize); // Skip R0 90 __ pop(RegisterSet(R1, R3)); // Load arguments passed in registers 91 #ifdef __ABI_HARD__ 92 // Few alternatives to an always-load-FP-registers approach: 93 // - parse method signature to detect FP arguments 94 // - keep a counter/flag on a stack indicationg number of FP arguments in the method. 95 // The later has been originally implemented and tested but a conditional path could 96 // eliminate any gain imposed by avoiding 8 double word loads. 97 __ fldmiad(SP, FloatRegisterSet(D0, 8), writeback); 98 #endif // __ABI_HARD__ 99 100 __ ret(Rsaved_ret_addr); 101 102 return entry; 103 } 104 105 106 // 107 // Various method entries (that c++ and asm interpreter agree upon) 108 //------------------------------------------------------------------------------------------------------------------------ 109 // 110 // 111 112 // Abstract method entry 113 // Attempt to execute abstract method. Throw exception 114 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 115 address entry_point = __ pc(); 116 117 118 __ empty_expression_stack(); 119 120 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 121 122 DEBUG_ONLY(STOP("generate_abstract_entry");) // Should not reach here 123 return entry_point; 124 } 125 126 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 127 address entry_point = nullptr; 128 Register continuation = LR; 129 bool use_runtime_call = false; 130 switch (kind) { 131 case Interpreter::java_lang_math_abs: 132 entry_point = __ pc(); 133 #ifdef __SOFTFP__ 134 use_runtime_call = true; 135 __ ldrd(R0, Address(SP)); 136 #else // !__SOFTFP__ 137 __ ldr_double(D0, Address(SP)); 138 __ abs_double(D0, D0); 139 #endif // __SOFTFP__ 140 break; 141 case Interpreter::java_lang_math_sqrt: 142 entry_point = __ pc(); 143 #ifdef __SOFTFP__ 144 use_runtime_call = true; 145 __ ldrd(R0, Address(SP)); 146 #else // !__SOFTFP__ 147 __ ldr_double(D0, Address(SP)); 148 __ sqrt_double(D0, D0); 149 #endif // __SOFTFP__ 150 break; 151 case Interpreter::java_lang_math_sin: 152 case Interpreter::java_lang_math_cos: 153 case Interpreter::java_lang_math_tan: 154 case Interpreter::java_lang_math_log: 155 case Interpreter::java_lang_math_log10: 156 case Interpreter::java_lang_math_exp: 157 entry_point = __ pc(); 158 use_runtime_call = true; 159 #ifdef __SOFTFP__ 160 __ ldrd(R0, Address(SP)); 161 #else // !__SOFTFP__ 162 __ ldr_double(D0, Address(SP)); 163 #endif // __SOFTFP__ 164 break; 165 case Interpreter::java_lang_math_pow: 166 entry_point = __ pc(); 167 use_runtime_call = true; 168 #ifdef __SOFTFP__ 169 __ ldrd(R0, Address(SP, 2 * Interpreter::stackElementSize)); 170 __ ldrd(R2, Address(SP)); 171 #else // !__SOFTFP__ 172 __ ldr_double(D0, Address(SP, 2 * Interpreter::stackElementSize)); 173 __ ldr_double(D1, Address(SP)); 174 #endif // __SOFTFP__ 175 break; 176 case Interpreter::java_lang_math_fmaD: 177 case Interpreter::java_lang_math_fmaF: 178 case Interpreter::java_lang_math_tanh: 179 // TODO: Implement intrinsic 180 break; 181 default: 182 ShouldNotReachHere(); 183 } 184 185 if (entry_point != nullptr) { 186 __ mov(SP, Rsender_sp); 187 if (use_runtime_call) { 188 __ mov(Rtmp_save0, LR); 189 continuation = Rtmp_save0; 190 generate_math_runtime_call(kind); 191 } 192 __ ret(continuation); 193 } 194 return entry_point; 195 } 196 197 void TemplateInterpreterGenerator::generate_math_runtime_call(AbstractInterpreter::MethodKind kind) { 198 address fn; 199 switch (kind) { 200 #ifdef __SOFTFP__ 201 case Interpreter::java_lang_math_abs: 202 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dabs); 203 break; 204 case Interpreter::java_lang_math_sqrt: 205 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); 206 break; 207 #endif // __SOFTFP__ 208 case Interpreter::java_lang_math_sin: 209 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 210 break; 211 case Interpreter::java_lang_math_cos: 212 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 213 break; 214 case Interpreter::java_lang_math_tan: 215 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 216 break; 217 case Interpreter::java_lang_math_log: 218 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 219 break; 220 case Interpreter::java_lang_math_log10: 221 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 222 break; 223 case Interpreter::java_lang_math_exp: 224 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 225 break; 226 case Interpreter::java_lang_math_pow: 227 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 228 break; 229 default: 230 ShouldNotReachHere(); 231 fn = nullptr; // silence "maybe uninitialized" compiler warnings 232 } 233 __ call_VM_leaf(fn); 234 } 235 236 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 237 address entry = __ pc(); 238 239 // Note: There should be a minimal interpreter frame set up when stack 240 // overflow occurs since we check explicitly for it now. 241 // 242 #ifdef ASSERT 243 { Label L; 244 __ sub(Rtemp, FP, - frame::interpreter_frame_monitor_block_top_offset * wordSize); 245 __ cmp(SP, Rtemp); // Rtemp = maximal SP for current FP, 246 // (stack grows negative) 247 __ b(L, ls); // check if frame is complete 248 __ stop ("interpreter frame not set up"); 249 __ bind(L); 250 } 251 #endif // ASSERT 252 253 // Restore bcp under the assumption that the current frame is still 254 // interpreted 255 __ restore_bcp(); 256 257 // expression stack must be empty before entering the VM if an exception 258 // happened 259 __ empty_expression_stack(); 260 261 // throw exception 262 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); 263 264 __ should_not_reach_here(); 265 266 return entry; 267 } 268 269 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 270 address entry = __ pc(); 271 272 // index is in R4_ArrayIndexOutOfBounds_index 273 274 // expression stack must be empty before entering the VM if an exception happened 275 __ empty_expression_stack(); 276 277 // setup parameters 278 // Array expected in R1. 279 __ mov(R2, R4_ArrayIndexOutOfBounds_index); 280 281 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R1, R2); 282 283 __ nop(); // to avoid filling CPU pipeline with invalid instructions 284 __ nop(); 285 __ should_not_reach_here(); 286 287 return entry; 288 } 289 290 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 291 address entry = __ pc(); 292 293 // object is in R2_ClassCastException_obj 294 295 // expression stack must be empty before entering the VM if an exception 296 // happened 297 __ empty_expression_stack(); 298 299 __ mov(R1, R2_ClassCastException_obj); 300 __ call_VM(noreg, 301 CAST_FROM_FN_PTR(address, 302 InterpreterRuntime::throw_ClassCastException), 303 R1); 304 305 __ should_not_reach_here(); 306 307 return entry; 308 } 309 310 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { 311 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 312 address entry = __ pc(); 313 314 InlinedString Lname(name); 315 InlinedString Lmessage(message); 316 317 if (pass_oop) { 318 // object is at TOS 319 __ pop_ptr(R2); 320 } 321 322 // expression stack must be empty before entering the VM if an exception happened 323 __ empty_expression_stack(); 324 325 // setup parameters 326 __ ldr_literal(R1, Lname); 327 328 if (pass_oop) { 329 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), R1, R2); 330 } else { 331 if (message != nullptr) { 332 __ ldr_literal(R2, Lmessage); 333 } else { 334 __ mov(R2, 0); 335 } 336 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), R1, R2); 337 } 338 339 // throw exception 340 __ b(Interpreter::throw_exception_entry()); 341 342 __ nop(); // to avoid filling CPU pipeline with invalid instructions 343 __ nop(); 344 __ bind_literal(Lname); 345 if (!pass_oop && (message != nullptr)) { 346 __ bind_literal(Lmessage); 347 } 348 349 return entry; 350 } 351 352 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 353 address entry = __ pc(); 354 355 __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__); 356 357 // Restore stack bottom in case i2c adjusted stack 358 __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 359 // and null it as marker that SP is now tos until next java call 360 __ mov(Rtemp, (int)NULL_WORD); 361 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 362 363 __ restore_method(); 364 __ restore_bcp(); 365 __ restore_dispatch(); 366 __ restore_locals(); 367 368 const Register Rcache = R2_tmp; 369 const Register Rindex = R3_tmp; 370 371 if (index_size == sizeof(u4)) { 372 __ load_resolved_indy_entry(Rcache, Rindex); 373 __ ldrh(Rcache, Address(Rcache, in_bytes(ResolvedIndyEntry::num_parameters_offset()))); 374 } else { 375 // Pop N words from the stack 376 assert(index_size == sizeof(u2), "Can only be u2"); 377 __ load_method_entry(Rcache, Rindex); 378 __ ldrh(Rcache, Address(Rcache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 379 } 380 381 __ check_stack_top(); 382 __ add(Rstack_top, Rstack_top, AsmOperand(Rcache, lsl, Interpreter::logStackElementSize)); 383 384 __ convert_retval_to_tos(state); 385 386 __ check_and_handle_popframe(); 387 __ check_and_handle_earlyret(); 388 389 __ dispatch_next(state, step); 390 391 return entry; 392 } 393 394 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) { 395 address entry = __ pc(); 396 397 __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__); 398 399 // The stack is not extended by deopt but we must null last_sp as this 400 // entry is like a "return". 401 __ mov(Rtemp, 0); 402 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 403 404 __ restore_method(); 405 __ restore_bcp(); 406 __ restore_dispatch(); 407 __ restore_locals(); 408 409 // handle exceptions 410 { Label L; 411 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset())); 412 __ cbz(Rtemp, L); 413 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); 414 __ should_not_reach_here(); 415 __ bind(L); 416 } 417 418 if (continuation == nullptr) { 419 __ dispatch_next(state, step); 420 } else { 421 __ jump_to_entry(continuation); 422 } 423 424 return entry; 425 } 426 427 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) { 428 address entry = __ pc(); 429 430 switch (type) { 431 case T_CHAR : /* Nothing to do */ break; 432 case T_BYTE : /* Nothing to do */ break; 433 case T_SHORT : /* Nothing to do */ break; 434 case T_INT : /* Nothing to do */ break; 435 case T_LONG : /* Nothing to do */ break; 436 case T_VOID : /* Nothing to do */ break; 437 case T_DOUBLE : /* Nothing to do */ break; 438 case T_FLOAT : /* Nothing to do */ break; 439 case T_BOOLEAN : __ c2bool(R0); break; 440 case T_OBJECT : 441 __ ldr(R0, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize)); 442 __ verify_oop(R0); 443 break; 444 default : __ should_not_reach_here(); break; 445 } 446 447 __ ret(); 448 return entry; 449 } 450 451 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) { 452 address entry = __ pc(); 453 __ push(state); 454 __ call_VM(noreg, runtime_entry); 455 456 // load current bytecode 457 __ ldrb(R3_bytecode, Address(Rbcp)); 458 __ dispatch_only_normal(vtos); 459 return entry; 460 } 461 462 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() { 463 return nullptr; 464 } 465 466 467 // Helpers for commoning out cases in the various type of method entries. 468 // 469 470 // increment invocation count & check for overflow 471 // 472 // Note: checking for negative value instead of overflow 473 // so we have a 'sticky' overflow test 474 // 475 // In: Rmethod. 476 // 477 // Uses R0, R1, Rtemp. 478 // 479 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 480 Label done; 481 const Register Rcounters = Rtemp; 482 const Address invocation_counter(Rcounters, 483 MethodCounters::invocation_counter_offset() + 484 InvocationCounter::counter_offset()); 485 486 // Note: In tiered we increment either counters in MethodCounters* or 487 // in MDO depending if we're profiling or not. 488 int increment = InvocationCounter::count_increment; 489 Label no_mdo; 490 if (ProfileInterpreter) { 491 // Are we profiling? 492 __ ldr(R1_tmp, Address(Rmethod, Method::method_data_offset())); 493 __ cbz(R1_tmp, no_mdo); 494 // Increment counter in the MDO 495 const Address mdo_invocation_counter(R1_tmp, 496 in_bytes(MethodData::invocation_counter_offset()) + 497 in_bytes(InvocationCounter::counter_offset())); 498 const Address mask(R1_tmp, in_bytes(MethodData::invoke_mask_offset())); 499 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, R0_tmp, Rtemp, eq, overflow); 500 __ b(done); 501 } 502 __ bind(no_mdo); 503 __ get_method_counters(Rmethod, Rcounters, done); 504 const Address mask(Rcounters, in_bytes(MethodCounters::invoke_mask_offset())); 505 __ increment_mask_and_jump(invocation_counter, increment, mask, R0_tmp, R1_tmp, eq, overflow); 506 __ bind(done); 507 } 508 509 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 510 // InterpreterRuntime::frequency_counter_overflow takes one argument 511 // indicating if the counter overflow occurs at a backwards branch (non-null bcp). 512 // The call returns the address of the verified entry point for the method or null 513 // if the compilation did not complete (either went background or bailed out). 514 __ mov(R1, (int)false); 515 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R1); 516 517 // jump to the interpreted entry. 518 __ b(do_continue); 519 } 520 521 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 522 // Check if we've got enough room on the stack for 523 // - overhead; 524 // - locals; 525 // - expression stack. 526 // 527 // Registers on entry: 528 // 529 // R3 = number of additional locals 530 // Rthread 531 // Rmethod 532 // Registers used: R0, R1, R2, Rtemp. 533 534 const Register Radditional_locals = R3; 535 const Register RmaxStack = R2; 536 537 // monitor entry size 538 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 539 540 // total overhead size: entry_size + (saved registers, thru expr stack bottom). 541 // be sure to change this if you add/subtract anything to/from the overhead area 542 const int overhead_size = (frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset)*wordSize + entry_size; 543 544 // Pages reserved for VM runtime calls and subsequent Java calls. 545 const int reserved_pages = StackOverflow::stack_shadow_zone_size(); 546 547 // Thread::stack_size() includes guard pages, and they should not be touched. 548 const int guard_pages = StackOverflow::stack_guard_zone_size(); 549 550 __ ldr(R0, Address(Rthread, Thread::stack_base_offset())); 551 __ ldr(R1, Address(Rthread, Thread::stack_size_offset())); 552 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); 553 __ ldrh(RmaxStack, Address(Rtemp, ConstMethod::max_stack_offset())); 554 __ sub_slow(Rtemp, SP, overhead_size + reserved_pages + guard_pages + Method::extra_stack_words()); 555 556 // reserve space for additional locals 557 __ sub(Rtemp, Rtemp, AsmOperand(Radditional_locals, lsl, Interpreter::logStackElementSize)); 558 559 // stack size 560 __ sub(R0, R0, R1); 561 562 // reserve space for expression stack 563 __ sub(Rtemp, Rtemp, AsmOperand(RmaxStack, lsl, Interpreter::logStackElementSize)); 564 565 __ cmp(Rtemp, R0); 566 567 __ mov(SP, Rsender_sp, ls); // restore SP 568 __ b(SharedRuntime::throw_StackOverflowError_entry(), ls); 569 } 570 571 572 // Allocate monitor and lock method (asm interpreter) 573 // 574 void TemplateInterpreterGenerator::lock_method() { 575 // synchronize method 576 577 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 578 assert ((entry_size % StackAlignmentInBytes) == 0, "should keep stack alignment"); 579 580 #ifdef ASSERT 581 { Label L; 582 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 583 __ tbnz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 584 __ stop("method doesn't need synchronization"); 585 __ bind(L); 586 } 587 #endif // ASSERT 588 589 // get synchronization object 590 { Label done; 591 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 592 __ tst(Rtemp, JVM_ACC_STATIC); 593 __ ldr(R0, Address(Rlocals, Interpreter::local_offset_in_bytes(0)), eq); // get receiver (assume this is frequent case) 594 __ b(done, eq); 595 __ load_mirror(R0, Rmethod, Rtemp); 596 __ bind(done); 597 } 598 599 // add space for monitor & lock 600 601 602 __ sub(Rstack_top, Rstack_top, entry_size); 603 __ check_stack_top_on_expansion(); 604 // add space for a monitor entry 605 __ str(Rstack_top, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 606 // set new monitor block top 607 __ str(R0, Address(Rstack_top, BasicObjectLock::obj_offset())); 608 // store object 609 __ mov(R1, Rstack_top); // monitor entry address 610 __ lock_object(R1); 611 } 612 613 614 // 615 // Generate a fixed interpreter frame. This is identical setup for interpreted methods 616 // and for native methods hence the shared code. 617 618 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 619 // Generates the following stack layout: 620 // 621 // [ expr. stack bottom ] 622 // [ saved Rbcp ] 623 // [ current Rlocals ] 624 // [ cache ] 625 // [ mdx ] 626 // [ Method* ] 627 // [ last_sp ] 628 // [ sender_sp ] 629 // [ saved FP ] <--- FP 630 // [ saved LR ] 631 632 // initialize fixed part of activation frame 633 __ push(LR); // save return address 634 __ push(FP); // save FP 635 __ mov(FP, SP); // establish new FP 636 637 __ push(Rsender_sp); 638 639 __ mov(R0, 0); 640 __ push(R0); // leave last_sp as null 641 642 // setup Rbcp 643 if (native_call) { 644 __ mov(Rbcp, 0); // bcp = 0 for native calls 645 } else { 646 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); // get ConstMethod* 647 __ add(Rbcp, Rtemp, ConstMethod::codes_offset()); // get codebase 648 } 649 650 __ push(Rmethod); // save Method* 651 // Get mirror and store it in the frame as GC root for this Method* 652 __ load_mirror(Rtemp, Rmethod, Rtemp); 653 __ push(Rtemp); 654 655 if (ProfileInterpreter) { 656 __ ldr(Rtemp, Address(Rmethod, Method::method_data_offset())); 657 __ tst(Rtemp, Rtemp); 658 __ add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()), ne); 659 __ push(Rtemp); // set the mdp (method data pointer) 660 } else { 661 __ push(R0); 662 } 663 664 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); 665 __ ldr(Rtemp, Address(Rtemp, ConstMethod::constants_offset())); 666 __ ldr(Rtemp, Address(Rtemp, ConstantPool::cache_offset())); 667 __ push(Rtemp); // set constant pool cache 668 __ sub(Rtemp, Rlocals, FP); 669 __ logical_shift_right(Rtemp, Rtemp, Interpreter::logStackElementSize); // Rtemp = Rlocals - fp(); 670 __ push(Rtemp); // set relativized Rlocals, see frame::interpreter_frame_locals() 671 __ push(Rbcp); // set bcp 672 __ push(R0); // reserve word for pointer to expression stack bottom 673 __ str(SP, Address(SP, 0)); // set expression stack bottom 674 } 675 676 677 // End of helpers 678 679 //------------------------------------------------------------------------------------------------------------------------ 680 // Entry points 681 // 682 // Here we generate the various kind of entries into the interpreter. 683 // The two main entry type are generic bytecode methods and native call method. 684 // These both come in synchronized and non-synchronized versions but the 685 // frame layout they create is very similar. The other method entry 686 // types are really just special purpose entries that are really entry 687 // and interpretation all in one. These are for trivial methods like 688 // accessor, empty, or special math methods. 689 // 690 // When control flow reaches any of the entry types for the interpreter 691 // the following holds -> 692 // 693 // Arguments: 694 // 695 // Rmethod: Method* 696 // Rthread: thread 697 // Rsender_sp: sender sp 698 // Rparams (SP on 32-bit ARM): pointer to method parameters 699 // 700 // LR: return address 701 // 702 // Stack layout immediately at entry 703 // 704 // [ parameter n ] <--- Rparams (SP on 32-bit ARM) 705 // ... 706 // [ parameter 1 ] 707 // [ expression stack ] (caller's java expression stack) 708 709 // Assuming that we don't go to one of the trivial specialized 710 // entries the stack will look like below when we are ready to execute 711 // the first bytecode (or call the native routine). The register usage 712 // will be as the template based interpreter expects. 713 // 714 // local variables follow incoming parameters immediately; i.e. 715 // the return address is saved at the end of the locals. 716 // 717 // [ expr. stack ] <--- Rstack_top (SP on 32-bit ARM) 718 // [ monitor entry ] 719 // ... 720 // [ monitor entry ] 721 // [ expr. stack bottom ] 722 // [ saved Rbcp ] 723 // [ current Rlocals ] 724 // [ cache ] 725 // [ mdx ] 726 // [ mirror ] 727 // [ Method* ] 728 // 729 // 32-bit ARM: 730 // [ last_sp ] 731 // 732 // [ sender_sp ] 733 // [ saved FP ] <--- FP 734 // [ saved LR ] 735 // [ optional padding(*)] 736 // [ local variable m ] 737 // ... 738 // [ local variable 1 ] 739 // [ parameter n ] 740 // ... 741 // [ parameter 1 ] <--- Rlocals 742 // 743 744 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 745 // Code: _aload_0, _getfield, _areturn 746 // parameter size = 1 747 // 748 // The code that gets generated by this routine is split into 2 parts: 749 // 1. The "intrinsified" code performing an ON_WEAK_OOP_REF load, 750 // 2. The slow path - which is an expansion of the regular method entry. 751 // 752 // Notes:- 753 // * An intrinsic is always executed, where an ON_WEAK_OOP_REF load is performed. 754 // * We may jump to the slow path iff the receiver is null. If the 755 // Reference object is null then we no longer perform an ON_WEAK_OOP_REF load 756 // Thus we can use the regular method entry code to generate the NPE. 757 // 758 // Rmethod: Method* 759 // Rthread: thread 760 // Rsender_sp: sender sp, must be preserved for slow path, set SP to it on fast path 761 // Rparams: parameters 762 763 address entry = __ pc(); 764 Label slow_path; 765 const Register Rthis = R0; 766 const Register Rret_addr = Rtmp_save1; 767 assert_different_registers(Rthis, Rret_addr, Rsender_sp); 768 769 const int referent_offset = java_lang_ref_Reference::referent_offset(); 770 771 // Check if local 0 != nullptr 772 // If the receiver is null then it is OK to jump to the slow path. 773 __ ldr(Rthis, Address(Rparams)); 774 __ cbz(Rthis, slow_path); 775 776 // Preserve LR 777 __ mov(Rret_addr, LR); 778 779 // Load the value of the referent field. 780 const Address field_address(Rthis, referent_offset); 781 __ load_heap_oop(R0, field_address, Rtemp, R1_tmp, R2_tmp, ON_WEAK_OOP_REF); 782 783 // _areturn 784 __ mov(SP, Rsender_sp); 785 __ ret(Rret_addr); 786 787 // generate a vanilla interpreter entry as the slow path 788 __ bind(slow_path); 789 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 790 return entry; 791 } 792 793 // Not supported 794 address TemplateInterpreterGenerator::generate_currentThread() { return nullptr; } 795 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { return nullptr; } 796 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return nullptr; } 797 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return nullptr; } 798 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 799 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 800 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 801 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 802 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; } 803 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; } 804 805 // 806 // Interpreter stub for calling a native method. (asm interpreter) 807 // This sets up a somewhat different looking stack for calling the native method 808 // than the typical interpreter frame setup. 809 // 810 811 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 812 // determine code generation flags 813 bool inc_counter = UseCompiler || CountCompiledCalls; 814 815 // Incoming registers: 816 // 817 // Rmethod: Method* 818 // Rthread: thread 819 // Rsender_sp: sender sp 820 // Rparams: parameters 821 822 address entry_point = __ pc(); 823 824 // Register allocation 825 const Register Rsize_of_params = R6; 826 const Register Rsig_handler = Rtmp_save0; // R4 827 const Register Rnative_code = Rtmp_save1; // R5 828 const Register Rresult_handler = R6; 829 830 const Register Rsaved_result_lo = Rtmp_save0; // R4 831 const Register Rsaved_result_hi = Rtmp_save1; // R5 832 FloatRegister saved_result_fp; 833 834 835 __ ldr(Rsize_of_params, Address(Rmethod, Method::const_offset())); 836 __ ldrh(Rsize_of_params, Address(Rsize_of_params, ConstMethod::size_of_parameters_offset())); 837 838 // native calls don't need the stack size check since they have no expression stack 839 // and the arguments are already on the stack and we only add a handful of words 840 // to the stack 841 842 // compute beginning of parameters (Rlocals) 843 __ sub(Rlocals, Rparams, wordSize); 844 __ add(Rlocals, Rlocals, AsmOperand(Rsize_of_params, lsl, Interpreter::logStackElementSize)); 845 846 // reserve stack space for oop_temp 847 __ mov(R0, 0); 848 __ push(R0); 849 850 generate_fixed_frame(true); // Note: R9 is now saved in the frame 851 852 // make sure method is native & not abstract 853 #ifdef ASSERT 854 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 855 { 856 Label L; 857 __ tbnz(Rtemp, JVM_ACC_NATIVE_BIT, L); 858 __ stop("tried to execute non-native method as native"); 859 __ bind(L); 860 } 861 { Label L; 862 __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L); 863 __ stop("tried to execute abstract method in interpreter"); 864 __ bind(L); 865 } 866 #endif 867 868 // increment invocation count & check for overflow 869 Label invocation_counter_overflow; 870 if (inc_counter) { 871 if (synchronized) { 872 // Avoid unlocking method's monitor in case of exception, as it has not 873 // been locked yet. 874 __ set_do_not_unlock_if_synchronized(true, Rtemp); 875 } 876 generate_counter_incr(&invocation_counter_overflow); 877 } 878 879 Label continue_after_compile; 880 __ bind(continue_after_compile); 881 882 if (inc_counter && synchronized) { 883 __ set_do_not_unlock_if_synchronized(false, Rtemp); 884 } 885 886 // check for synchronized methods 887 // Must happen AFTER invocation_counter check and stack overflow check, 888 // so method is not locked if overflows. 889 // 890 if (synchronized) { 891 lock_method(); 892 } else { 893 // no synchronization necessary 894 #ifdef ASSERT 895 { Label L; 896 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 897 __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 898 __ stop("method needs synchronization"); 899 __ bind(L); 900 } 901 #endif 902 } 903 904 // start execution 905 #ifdef ASSERT 906 { Label L; 907 __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 908 __ cmp(Rtemp, Rstack_top); 909 __ b(L, eq); 910 __ stop("broken stack frame setup in interpreter 3"); 911 __ bind(L); 912 } 913 #endif 914 __ check_extended_sp(Rtemp); 915 916 // jvmti/dtrace support 917 __ notify_method_entry(); 918 #if R9_IS_SCRATCHED 919 __ restore_method(); 920 #endif 921 922 { 923 Label L; 924 __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset())); 925 __ cbnz(Rsig_handler, L); 926 __ mov(R1, Rmethod); 927 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1, true); 928 __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset())); 929 __ bind(L); 930 } 931 932 { 933 Label L; 934 __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset())); 935 __ cbnz(Rnative_code, L); 936 __ mov(R1, Rmethod); 937 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1); 938 __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset())); 939 __ bind(L); 940 } 941 942 // Allocate stack space for arguments 943 944 945 // C functions need aligned stack 946 __ bic(SP, SP, StackAlignmentInBytes - 1); 947 // Multiply by BytesPerLong instead of BytesPerWord, because calling convention 948 // may require empty slots due to long alignment, e.g. func(int, jlong, int, jlong) 949 __ sub(SP, SP, AsmOperand(Rsize_of_params, lsl, LogBytesPerLong)); 950 951 #ifdef __ABI_HARD__ 952 // Allocate more stack space to accommodate all GP as well as FP registers: 953 // 4 * wordSize 954 // 8 * BytesPerLong 955 int reg_arguments = align_up((4*wordSize) + (8*BytesPerLong), StackAlignmentInBytes); 956 #else 957 // Reserve at least 4 words on the stack for loading 958 // of parameters passed on registers (R0-R3). 959 // See generate_slow_signature_handler(). 960 // It is also used for JNIEnv & class additional parameters. 961 int reg_arguments = 4 * wordSize; 962 #endif // __ABI_HARD__ 963 964 __ sub(SP, SP, reg_arguments); 965 966 967 // Note: signature handler blows R4 besides all scratch registers. 968 // See AbstractInterpreterGenerator::generate_slow_signature_handler(). 969 __ call(Rsig_handler); 970 #if R9_IS_SCRATCHED 971 __ restore_method(); 972 #endif 973 __ mov(Rresult_handler, R0); 974 975 // Pass JNIEnv and mirror for static methods 976 { 977 Label L; 978 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 979 __ add(R0, Rthread, in_bytes(JavaThread::jni_environment_offset())); 980 __ tbz(Rtemp, JVM_ACC_STATIC_BIT, L); 981 __ load_mirror(Rtemp, Rmethod, Rtemp); 982 __ add(R1, FP, frame::interpreter_frame_oop_temp_offset * wordSize); 983 __ str(Rtemp, Address(R1, 0)); 984 __ bind(L); 985 } 986 987 __ set_last_Java_frame(SP, FP, true, Rtemp); 988 989 // Changing state to _thread_in_native must be the last thing to do 990 // before the jump to native code. At this moment stack must be 991 // safepoint-safe and completely prepared for stack walking. 992 #ifdef ASSERT 993 { 994 Label L; 995 __ ldr_u32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 996 __ cmp_32(Rtemp, _thread_in_Java); 997 __ b(L, eq); 998 __ stop("invalid thread state"); 999 __ bind(L); 1000 } 1001 #endif 1002 1003 // Force all preceding writes to be observed prior to thread state change 1004 __ membar(MacroAssembler::StoreStore, Rtemp); 1005 1006 __ mov(Rtemp, _thread_in_native); 1007 __ str(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1008 1009 __ call(Rnative_code); 1010 #if R9_IS_SCRATCHED 1011 __ restore_method(); 1012 #endif 1013 1014 // Set FPSCR/FPCR to a known state 1015 if (AlwaysRestoreFPU) { 1016 __ restore_default_fp_mode(); 1017 } 1018 1019 // Do safepoint check 1020 __ mov(Rtemp, _thread_in_native_trans); 1021 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1022 1023 // Force this write out before the read below 1024 if (!UseSystemMemoryBarrier) { 1025 __ membar(MacroAssembler::StoreLoad, Rtemp); 1026 } 1027 1028 // Protect the return value in the interleaved code: save it to callee-save registers. 1029 __ mov(Rsaved_result_lo, R0); 1030 __ mov(Rsaved_result_hi, R1); 1031 #ifdef __ABI_HARD__ 1032 // preserve native FP result in a callee-saved register 1033 saved_result_fp = D8; 1034 __ fcpyd(saved_result_fp, D0); 1035 #else 1036 saved_result_fp = fnoreg; 1037 #endif // __ABI_HARD__ 1038 1039 { 1040 Label call, skip_call; 1041 __ safepoint_poll(Rtemp, call); 1042 __ ldr_u32(R3, Address(Rthread, JavaThread::suspend_flags_offset())); 1043 __ cmp(R3, 0); 1044 __ b(skip_call, eq); 1045 __ bind(call); 1046 __ mov(R0, Rthread); 1047 __ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), relocInfo::none); 1048 __ bind(skip_call); 1049 1050 #if R9_IS_SCRATCHED 1051 __ restore_method(); 1052 #endif 1053 } 1054 1055 // Perform Native->Java thread transition 1056 __ mov(Rtemp, _thread_in_Java); 1057 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1058 1059 // Zero handles and last_java_sp 1060 __ reset_last_Java_frame(Rtemp); 1061 __ ldr(R3, Address(Rthread, JavaThread::active_handles_offset())); 1062 __ str_32(__ zero_register(Rtemp), Address(R3, JNIHandleBlock::top_offset())); 1063 if (CheckJNICalls) { 1064 __ str(__ zero_register(Rtemp), Address(Rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1065 } 1066 1067 // Unbox oop result, e.g. JNIHandles::resolve result if it's an oop. 1068 { 1069 Label Lnot_oop; 1070 __ mov_slow(Rtemp, AbstractInterpreter::result_handler(T_OBJECT)); 1071 __ cmp(Rtemp, Rresult_handler); 1072 __ b(Lnot_oop, ne); 1073 Register value = Rsaved_result_lo; 1074 __ resolve_jobject(value, // value 1075 Rtemp, // tmp1 1076 R1_tmp); // tmp2 1077 // Store resolved result in frame for GC visibility. 1078 __ str(value, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize)); 1079 __ bind(Lnot_oop); 1080 } 1081 1082 1083 // reguard stack if StackOverflow exception happened while in native. 1084 { 1085 __ ldr_u32(Rtemp, Address(Rthread, JavaThread::stack_guard_state_offset())); 1086 __ cmp_32(Rtemp, StackOverflow::stack_guard_yellow_reserved_disabled); 1087 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), relocInfo::none, eq); 1088 #if R9_IS_SCRATCHED 1089 __ restore_method(); 1090 #endif 1091 } 1092 1093 // check pending exceptions 1094 { 1095 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset())); 1096 __ cmp(Rtemp, 0); 1097 __ mov(Rexception_pc, PC, ne); 1098 __ b(StubRoutines::forward_exception_entry(), ne); 1099 } 1100 1101 if (synchronized) { 1102 // address of first monitor 1103 __ sub(R0, FP, - (frame::interpreter_frame_monitor_block_bottom_offset - frame::interpreter_frame_monitor_size()) * wordSize); 1104 __ unlock_object(R0); 1105 } 1106 1107 // jvmti/dtrace support 1108 // Note: This must happen _after_ handling/throwing any exceptions since 1109 // the exception handler code notifies the runtime of method exits 1110 // too. If this happens before, method entry/exit notifications are 1111 // not properly paired (was bug - gri 11/22/99). 1112 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI, true, Rsaved_result_lo, Rsaved_result_hi, saved_result_fp); 1113 1114 // Restore the result. Oop result is restored from the stack by the 1115 // result handler. 1116 __ mov(R0, Rsaved_result_lo); 1117 __ mov(R1, Rsaved_result_hi); 1118 1119 #ifdef __ABI_HARD__ 1120 // reload native FP result 1121 __ fcpyd(D0, D8); 1122 #endif // __ABI_HARD__ 1123 1124 __ blx(Rresult_handler); 1125 1126 // Restore FP/LR, sender_sp and return 1127 __ mov(Rtemp, FP); 1128 __ ldmia(FP, RegisterSet(FP) | RegisterSet(LR)); 1129 __ ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1130 1131 __ ret(); 1132 1133 if (inc_counter) { 1134 // Handle overflow of counter and compile method 1135 __ bind(invocation_counter_overflow); 1136 generate_counter_overflow(continue_after_compile); 1137 } 1138 1139 return entry_point; 1140 } 1141 1142 // 1143 // Generic interpreted method entry to (asm) interpreter 1144 // 1145 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1146 // determine code generation flags 1147 bool inc_counter = UseCompiler || CountCompiledCalls; 1148 1149 // Rmethod: Method* 1150 // Rthread: thread 1151 // Rsender_sp: sender sp (could differ from SP if we were called via c2i) 1152 // Rparams: pointer to the last parameter in the stack 1153 1154 address entry_point = __ pc(); 1155 1156 const Register RconstMethod = R3; 1157 1158 1159 __ ldr(RconstMethod, Address(Rmethod, Method::const_offset())); 1160 1161 __ ldrh(R2, Address(RconstMethod, ConstMethod::size_of_parameters_offset())); 1162 __ ldrh(R3, Address(RconstMethod, ConstMethod::size_of_locals_offset())); 1163 1164 // setup Rlocals 1165 __ sub(Rlocals, Rparams, wordSize); 1166 __ add(Rlocals, Rlocals, AsmOperand(R2, lsl, Interpreter::logStackElementSize)); 1167 1168 __ sub(R3, R3, R2); // number of additional locals 1169 1170 1171 // see if we've got enough room on the stack for locals plus overhead. 1172 generate_stack_overflow_check(); 1173 1174 // allocate space for locals 1175 // explicitly initialize locals 1176 1177 // Loop is unrolled 4 times 1178 Label loop; 1179 __ mov(R0, 0); 1180 __ bind(loop); 1181 1182 // #1 1183 __ subs(R3, R3, 1); 1184 __ push(R0, ge); 1185 1186 // #2 1187 __ subs(R3, R3, 1, ge); 1188 __ push(R0, ge); 1189 1190 // #3 1191 __ subs(R3, R3, 1, ge); 1192 __ push(R0, ge); 1193 1194 // #4 1195 __ subs(R3, R3, 1, ge); 1196 __ push(R0, ge); 1197 1198 __ b(loop, gt); 1199 1200 // initialize fixed part of activation frame 1201 generate_fixed_frame(false); 1202 1203 __ restore_dispatch(); 1204 1205 // make sure method is not native & not abstract 1206 #ifdef ASSERT 1207 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 1208 { 1209 Label L; 1210 __ tbz(Rtemp, JVM_ACC_NATIVE_BIT, L); 1211 __ stop("tried to execute native method as non-native"); 1212 __ bind(L); 1213 } 1214 { Label L; 1215 __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L); 1216 __ stop("tried to execute abstract method in interpreter"); 1217 __ bind(L); 1218 } 1219 #endif 1220 1221 // increment invocation count & check for overflow 1222 Label invocation_counter_overflow; 1223 if (inc_counter) { 1224 if (synchronized) { 1225 // Avoid unlocking method's monitor in case of exception, as it has not 1226 // been locked yet. 1227 __ set_do_not_unlock_if_synchronized(true, Rtemp); 1228 } 1229 generate_counter_incr(&invocation_counter_overflow); 1230 } 1231 Label continue_after_compile; 1232 __ bind(continue_after_compile); 1233 1234 if (inc_counter && synchronized) { 1235 __ set_do_not_unlock_if_synchronized(false, Rtemp); 1236 } 1237 #if R9_IS_SCRATCHED 1238 __ restore_method(); 1239 #endif 1240 1241 // check for synchronized methods 1242 // Must happen AFTER invocation_counter check and stack overflow check, 1243 // so method is not locked if overflows. 1244 // 1245 if (synchronized) { 1246 // Allocate monitor and lock method 1247 lock_method(); 1248 } else { 1249 // no synchronization necessary 1250 #ifdef ASSERT 1251 { Label L; 1252 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 1253 __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 1254 __ stop("method needs synchronization"); 1255 __ bind(L); 1256 } 1257 #endif 1258 } 1259 1260 // start execution 1261 #ifdef ASSERT 1262 { Label L; 1263 __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 1264 __ cmp(Rtemp, Rstack_top); 1265 __ b(L, eq); 1266 __ stop("broken stack frame setup in interpreter 4"); 1267 __ bind(L); 1268 } 1269 #endif 1270 __ check_extended_sp(Rtemp); 1271 1272 // jvmti support 1273 __ notify_method_entry(); 1274 #if R9_IS_SCRATCHED 1275 __ restore_method(); 1276 #endif 1277 1278 __ dispatch_next(vtos); 1279 1280 // invocation counter overflow 1281 if (inc_counter) { 1282 // Handle overflow of counter and compile method 1283 __ bind(invocation_counter_overflow); 1284 generate_counter_overflow(continue_after_compile); 1285 } 1286 1287 return entry_point; 1288 } 1289 1290 //------------------------------------------------------------------------------------------------------------------------ 1291 // Exceptions 1292 1293 void TemplateInterpreterGenerator::generate_throw_exception() { 1294 // Entry point in previous activation (i.e., if the caller was interpreted) 1295 Interpreter::_rethrow_exception_entry = __ pc(); 1296 // Rexception_obj: exception 1297 1298 // Clear interpreter_frame_last_sp. 1299 __ mov(Rtemp, 0); 1300 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1301 1302 #if R9_IS_SCRATCHED 1303 __ restore_method(); 1304 #endif 1305 __ restore_bcp(); 1306 __ restore_dispatch(); 1307 __ restore_locals(); 1308 1309 1310 // Entry point for exceptions thrown within interpreter code 1311 Interpreter::_throw_exception_entry = __ pc(); 1312 1313 // expression stack is undefined here 1314 // Rexception_obj: exception 1315 // Rbcp: exception bcp 1316 __ verify_oop(Rexception_obj); 1317 1318 // expression stack must be empty before entering the VM in case of an exception 1319 __ empty_expression_stack(); 1320 // find exception handler address and preserve exception oop 1321 __ mov(R1, Rexception_obj); 1322 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), R1); 1323 // R0: exception handler entry point 1324 // Rexception_obj: preserved exception oop 1325 // Rbcp: bcp for exception handler 1326 __ push_ptr(Rexception_obj); // push exception which is now the only value on the stack 1327 __ jump(R0); // jump to exception handler (may be _remove_activation_entry!) 1328 1329 // If the exception is not handled in the current frame the frame is removed and 1330 // the exception is rethrown (i.e. exception continuation is _rethrow_exception). 1331 // 1332 // Note: At this point the bci is still the bxi for the instruction which caused 1333 // the exception and the expression stack is empty. Thus, for any VM calls 1334 // at this point, GC will find a legal oop map (with empty expression stack). 1335 1336 // In current activation 1337 // tos: exception 1338 // Rbcp: exception bcp 1339 1340 // 1341 // JVMTI PopFrame support 1342 // 1343 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1344 1345 1346 __ empty_expression_stack(); 1347 1348 // Set the popframe_processing bit in _popframe_condition indicating that we are 1349 // currently handling popframe, so that call_VMs that may happen later do not trigger new 1350 // popframe handling cycles. 1351 1352 __ ldr_s32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1353 __ orr(Rtemp, Rtemp, (unsigned)JavaThread::popframe_processing_bit); 1354 __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1355 1356 { 1357 // Check to see whether we are returning to a deoptimized frame. 1358 // (The PopFrame call ensures that the caller of the popped frame is 1359 // either interpreted or compiled and deoptimizes it if compiled.) 1360 // In this case, we can't call dispatch_next() after the frame is 1361 // popped, but instead must save the incoming arguments and restore 1362 // them after deoptimization has occurred. 1363 // 1364 // Note that we don't compare the return PC against the 1365 // deoptimization blob's unpack entry because of the presence of 1366 // adapter frames in C2. 1367 Label caller_not_deoptimized; 1368 __ ldr(R0, Address(FP, frame::return_addr_offset * wordSize)); 1369 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), R0); 1370 __ cbnz_32(R0, caller_not_deoptimized); 1371 1372 // Compute size of arguments for saving when returning to deoptimized caller 1373 __ restore_method(); 1374 __ ldr(R0, Address(Rmethod, Method::const_offset())); 1375 __ ldrh(R0, Address(R0, ConstMethod::size_of_parameters_offset())); 1376 1377 __ logical_shift_left(R1, R0, Interpreter::logStackElementSize); 1378 // Save these arguments 1379 __ restore_locals(); 1380 __ sub(R2, Rlocals, R1); 1381 __ add(R2, R2, wordSize); 1382 __ mov(R0, Rthread); 1383 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R0, R1, R2); 1384 1385 __ remove_activation(vtos, LR, 1386 /* throw_monitor_exception */ false, 1387 /* install_monitor_exception */ false, 1388 /* notify_jvmdi */ false); 1389 1390 // Inform deoptimization that it is responsible for restoring these arguments 1391 __ mov(Rtemp, JavaThread::popframe_force_deopt_reexecution_bit); 1392 __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1393 1394 // Continue in deoptimization handler 1395 __ ret(); 1396 1397 __ bind(caller_not_deoptimized); 1398 } 1399 1400 __ remove_activation(vtos, R4, 1401 /* throw_monitor_exception */ false, 1402 /* install_monitor_exception */ false, 1403 /* notify_jvmdi */ false); 1404 1405 // Finish with popframe handling 1406 // A previous I2C followed by a deoptimization might have moved the 1407 // outgoing arguments further up the stack. PopFrame expects the 1408 // mutations to those outgoing arguments to be preserved and other 1409 // constraints basically require this frame to look exactly as 1410 // though it had previously invoked an interpreted activation with 1411 // no space between the top of the expression stack (current 1412 // last_sp) and the top of stack. Rather than force deopt to 1413 // maintain this kind of invariant all the time we call a small 1414 // fixup routine to move the mutated arguments onto the top of our 1415 // expression stack if necessary. 1416 __ mov(R1, SP); 1417 __ ldr(R2, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1418 // PC must point into interpreter here 1419 __ set_last_Java_frame(SP, FP, true, Rtemp); 1420 __ mov(R0, Rthread); 1421 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), R0, R1, R2); 1422 __ reset_last_Java_frame(Rtemp); 1423 1424 // Restore the last_sp and null it out 1425 __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1426 __ mov(Rtemp, (int)NULL_WORD); 1427 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1428 1429 __ restore_bcp(); 1430 __ restore_dispatch(); 1431 __ restore_locals(); 1432 __ restore_method(); 1433 1434 // The method data pointer was incremented already during 1435 // call profiling. We have to restore the mdp for the current bcp. 1436 if (ProfileInterpreter) { 1437 __ set_method_data_pointer_for_bcp(); 1438 } 1439 1440 // Clear the popframe condition flag 1441 assert(JavaThread::popframe_inactive == 0, "adjust this code"); 1442 __ str_32(__ zero_register(Rtemp), Address(Rthread, JavaThread::popframe_condition_offset())); 1443 1444 #if INCLUDE_JVMTI 1445 { 1446 Label L_done; 1447 1448 __ ldrb(Rtemp, Address(Rbcp, 0)); 1449 __ cmp(Rtemp, Bytecodes::_invokestatic); 1450 __ b(L_done, ne); 1451 1452 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1453 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null. 1454 1455 // get local0 1456 __ ldr(R1, Address(Rlocals, 0)); 1457 __ mov(R2, Rmethod); 1458 __ mov(R3, Rbcp); 1459 __ call_VM(R0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R1, R2, R3); 1460 1461 __ cbz(R0, L_done); 1462 1463 __ str(R0, Address(Rstack_top)); 1464 __ bind(L_done); 1465 } 1466 #endif // INCLUDE_JVMTI 1467 1468 __ dispatch_next(vtos); 1469 // end of PopFrame support 1470 1471 Interpreter::_remove_activation_entry = __ pc(); 1472 1473 // preserve exception over this code sequence 1474 __ pop_ptr(R0_tos); 1475 __ str(R0_tos, Address(Rthread, JavaThread::vm_result_offset())); 1476 // remove the activation (without doing throws on illegalMonitorExceptions) 1477 __ remove_activation(vtos, Rexception_pc, false, true, false); 1478 // restore exception 1479 __ get_vm_result(Rexception_obj, Rtemp); 1480 1481 // In between activations - previous activation type unknown yet 1482 // compute continuation point - the continuation point expects 1483 // the following registers set up: 1484 // 1485 // Rexception_obj: exception 1486 // Rexception_pc: return address/pc that threw exception 1487 // SP: expression stack of caller 1488 // FP: frame pointer of caller 1489 __ mov(c_rarg0, Rthread); 1490 __ mov(c_rarg1, Rexception_pc); 1491 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), c_rarg0, c_rarg1); 1492 // Note that an "issuing PC" is actually the next PC after the call 1493 1494 __ jump(R0); // jump to exception handler of caller 1495 } 1496 1497 1498 // 1499 // JVMTI ForceEarlyReturn support 1500 // 1501 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 1502 address entry = __ pc(); 1503 1504 1505 __ restore_bcp(); 1506 __ restore_dispatch(); 1507 __ restore_locals(); 1508 1509 __ empty_expression_stack(); 1510 1511 __ load_earlyret_value(state); 1512 1513 // Clear the earlyret state 1514 __ ldr(Rtemp, Address(Rthread, JavaThread::jvmti_thread_state_offset())); 1515 1516 assert(JvmtiThreadState::earlyret_inactive == 0, "adjust this code"); 1517 __ str_32(__ zero_register(R2), Address(Rtemp, JvmtiThreadState::earlyret_state_offset())); 1518 1519 __ remove_activation(state, LR, 1520 false, /* throw_monitor_exception */ 1521 false, /* install_monitor_exception */ 1522 true); /* notify_jvmdi */ 1523 1524 // According to interpreter calling conventions, result is returned in R0/R1, 1525 // so ftos (S0) and dtos (D0) are moved to R0/R1. 1526 // This conversion should be done after remove_activation, as it uses 1527 // push(state) & pop(state) to preserve return value. 1528 __ convert_tos_to_retval(state); 1529 __ ret(); 1530 1531 return entry; 1532 } // end of ForceEarlyReturn support 1533 1534 1535 //------------------------------------------------------------------------------------------------------------------------ 1536 // Helper for vtos entry point generation 1537 1538 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { 1539 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 1540 Label L; 1541 1542 #ifdef __SOFTFP__ 1543 dep = __ pc(); // fall through 1544 #else 1545 fep = __ pc(); __ push(ftos); __ b(L); 1546 dep = __ pc(); __ push(dtos); __ b(L); 1547 #endif // __SOFTFP__ 1548 1549 lep = __ pc(); __ push(ltos); __ b(L); 1550 1551 if (VerifyOops) { // can't share atos entry if VerifyOops 1552 aep = __ pc(); __ push(atos); __ b(L); 1553 } else { 1554 aep = __ pc(); // fall through 1555 } 1556 1557 #ifdef __SOFTFP__ 1558 fep = __ pc(); // fall through 1559 #endif // __SOFTFP__ 1560 1561 bep = cep = sep = // fall through 1562 iep = __ pc(); __ push(itos); // fall through 1563 vep = __ pc(); __ bind(L); // fall through 1564 generate_and_dispatch(t); 1565 } 1566 1567 //------------------------------------------------------------------------------------------------------------------------ 1568 1569 // Non-product code 1570 #ifndef PRODUCT 1571 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 1572 address entry = __ pc(); 1573 1574 // prepare expression stack 1575 __ push(state); // save tosca 1576 1577 // pass tosca registers as arguments 1578 __ mov(R2, R0_tos); 1579 __ mov(R3, R1_tos_hi); 1580 __ mov(R1, LR); // save return address 1581 1582 // call tracer 1583 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), R1, R2, R3); 1584 1585 __ mov(LR, R0); // restore return address 1586 __ pop(state); // restore tosca 1587 1588 // return 1589 __ ret(); 1590 1591 return entry; 1592 } 1593 1594 1595 void TemplateInterpreterGenerator::count_bytecode() { 1596 __ inc_global_counter((address) &BytecodeCounter::_counter_value, 0, Rtemp, R2_tmp, true); 1597 } 1598 1599 1600 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 1601 __ inc_global_counter((address)&BytecodeHistogram::_counters[0], sizeof(BytecodeHistogram::_counters[0]) * t->bytecode(), Rtemp, R2_tmp, true); 1602 } 1603 1604 1605 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 1606 const Register Rindex_addr = R2_tmp; 1607 Label Lcontinue; 1608 InlinedAddress Lcounters((address)BytecodePairHistogram::_counters); 1609 InlinedAddress Lindex((address)&BytecodePairHistogram::_index); 1610 const Register Rcounters_addr = R2_tmp; 1611 const Register Rindex = R4_tmp; 1612 1613 // calculate new index for counter: 1614 // index = (_index >> log2_number_of_codes) | (bytecode << log2_number_of_codes). 1615 // (_index >> log2_number_of_codes) is previous bytecode 1616 1617 __ ldr_literal(Rindex_addr, Lindex); 1618 __ ldr_s32(Rindex, Address(Rindex_addr)); 1619 __ mov_slow(Rtemp, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 1620 __ orr(Rindex, Rtemp, AsmOperand(Rindex, lsr, BytecodePairHistogram::log2_number_of_codes)); 1621 __ str_32(Rindex, Address(Rindex_addr)); 1622 1623 // Rindex (R4) contains index of counter 1624 1625 __ ldr_literal(Rcounters_addr, Lcounters); 1626 __ ldr_s32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex)); 1627 __ adds_32(Rtemp, Rtemp, 1); 1628 __ b(Lcontinue, mi); // avoid overflow 1629 __ str_32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex)); 1630 1631 __ b(Lcontinue); 1632 1633 __ bind_literal(Lindex); 1634 __ bind_literal(Lcounters); 1635 1636 __ bind(Lcontinue); 1637 } 1638 1639 1640 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 1641 // Call a little run-time stub to avoid blow-up for each bytecode. 1642 // The run-time runtime saves the right registers, depending on 1643 // the tosca in-state for the given template. 1644 assert(Interpreter::trace_code(t->tos_in()) != nullptr, 1645 "entry must have been generated"); 1646 address trace_entry = Interpreter::trace_code(t->tos_in()); 1647 __ call(trace_entry, relocInfo::none); 1648 } 1649 1650 1651 void TemplateInterpreterGenerator::stop_interpreter_at() { 1652 Label Lcontinue; 1653 const Register stop_at = R2_tmp; 1654 1655 __ ldr_global_s32(Rtemp, (address) &BytecodeCounter::_counter_value); 1656 __ mov_slow(stop_at, StopInterpreterAt); 1657 1658 // test bytecode counter 1659 __ cmp(Rtemp, stop_at); 1660 __ b(Lcontinue, ne); 1661 1662 __ trace_state("stop_interpreter_at"); 1663 __ breakpoint(); 1664 1665 __ bind(Lcontinue); 1666 } 1667 #endif // !PRODUCT