1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2024 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/barrierSetAssembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "nativeInst_ppc.hpp"
  36 #include "oops/compressedKlass.inline.hpp"
  37 #include "oops/compressedOops.inline.hpp"
  38 #include "oops/klass.inline.hpp"
  39 #include "oops/methodData.hpp"
  40 #include "prims/methodHandles.hpp"
  41 #include "register_ppc.hpp"
  42 #include "runtime/icache.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/objectMonitor.hpp"
  45 #include "runtime/os.hpp"
  46 #include "runtime/safepoint.hpp"
  47 #include "runtime/safepointMechanism.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/vm_version.hpp"
  51 #include "utilities/macros.hpp"
  52 #include "utilities/powerOfTwo.hpp"
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) // nothing
  56 #else
  57 #define BLOCK_COMMENT(str) block_comment(str)
  58 #endif
  59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  60 
  61 #ifdef ASSERT
  62 // On RISC, there's no benefit to verifying instruction boundaries.
  63 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
  64 #endif
  65 
  66 void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) {
  67   assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range");
  68   if (Assembler::is_simm(si31, 16)) {
  69     ld(d, si31, a);
  70     if (emit_filler_nop) nop();
  71   } else {
  72     const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31);
  73     const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31);
  74     addis(d, a, hi);
  75     ld(d, lo, d);
  76   }
  77 }
  78 
  79 void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) {
  80   assert_different_registers(d, a);
  81   ld_largeoffset_unchecked(d, si31, a, emit_filler_nop);
  82 }
  83 
  84 void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base,
  85                                       size_t size_in_bytes, bool is_signed) {
  86   switch (size_in_bytes) {
  87   case  8:              ld(dst, offs, base);                         break;
  88   case  4:  is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break;
  89   case  2:  is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break;
  90   case  1:  lbz(dst, offs, base); if (is_signed) extsb(dst, dst);    break; // lba doesn't exist :(
  91   default:  ShouldNotReachHere();
  92   }
  93 }
  94 
  95 void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base,
  96                                        size_t size_in_bytes) {
  97   switch (size_in_bytes) {
  98   case  8:  std(dst, offs, base); break;
  99   case  4:  stw(dst, offs, base); break;
 100   case  2:  sth(dst, offs, base); break;
 101   case  1:  stb(dst, offs, base); break;
 102   default:  ShouldNotReachHere();
 103   }
 104 }
 105 
 106 void MacroAssembler::align(int modulus, int max, int rem) {
 107   int padding = (rem + modulus - (offset() % modulus)) % modulus;
 108   if (padding > max) return;
 109   for (int c = (padding >> 2); c > 0; --c) { nop(); }
 110 }
 111 
 112 void MacroAssembler::align_prefix() {
 113   if (is_aligned(offset() + BytesPerInstWord, 64)) { nop(); }
 114 }
 115 
 116 // Issue instructions that calculate given TOC from global TOC.
 117 void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16,
 118                                                        bool add_relocation, bool emit_dummy_addr) {
 119   int offset = -1;
 120   if (emit_dummy_addr) {
 121     offset = -128; // dummy address
 122   } else if (addr != (address)(intptr_t)-1) {
 123     offset = MacroAssembler::offset_to_global_toc(addr);
 124   }
 125 
 126   if (hi16) {
 127     addis(dst, R29_TOC, MacroAssembler::largeoffset_si16_si16_hi(offset));
 128   }
 129   if (lo16) {
 130     if (add_relocation) {
 131       // Relocate at the addi to avoid confusion with a load from the method's TOC.
 132       relocate(internal_word_Relocation::spec(addr));
 133     }
 134     addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset));
 135   }
 136 }
 137 
 138 address MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) {
 139   const int offset = MacroAssembler::offset_to_global_toc(addr);
 140 
 141   const address inst2_addr = a;
 142   const int inst2 = *(int *)inst2_addr;
 143 
 144   // The relocation points to the second instruction, the addi,
 145   // and the addi reads and writes the same register dst.
 146   const int dst = inv_rt_field(inst2);
 147   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 148 
 149   // Now, find the preceding addis which writes to dst.
 150   int inst1 = 0;
 151   address inst1_addr = inst2_addr - BytesPerInstWord;
 152   while (inst1_addr >= bound) {
 153     inst1 = *(int *) inst1_addr;
 154     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 155       // Stop, found the addis which writes dst.
 156       break;
 157     }
 158     inst1_addr -= BytesPerInstWord;
 159   }
 160 
 161   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 162   set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset));
 163   set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset));
 164   return inst1_addr;
 165 }
 166 
 167 address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) {
 168   const address inst2_addr = a;
 169   const int inst2 = *(int *)inst2_addr;
 170 
 171   // The relocation points to the second instruction, the addi,
 172   // and the addi reads and writes the same register dst.
 173   const int dst = inv_rt_field(inst2);
 174   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 175 
 176   // Now, find the preceding addis which writes to dst.
 177   int inst1 = 0;
 178   address inst1_addr = inst2_addr - BytesPerInstWord;
 179   while (inst1_addr >= bound) {
 180     inst1 = *(int *) inst1_addr;
 181     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 182       // stop, found the addis which writes dst
 183       break;
 184     }
 185     inst1_addr -= BytesPerInstWord;
 186   }
 187 
 188   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 189 
 190   int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0);
 191   // -1 is a special case
 192   if (offset == -1) {
 193     return (address)(intptr_t)-1;
 194   } else {
 195     return global_toc() + offset;
 196   }
 197 }
 198 
 199 #ifdef _LP64
 200 // Patch compressed oops or klass constants.
 201 // Assembler sequence is
 202 // 1) compressed oops:
 203 //    lis  rx = const.hi
 204 //    ori rx = rx | const.lo
 205 // 2) compressed klass:
 206 //    lis  rx = const.hi
 207 //    clrldi rx = rx & 0xFFFFffff // clearMS32b, optional
 208 //    ori rx = rx | const.lo
 209 // Clrldi will be passed by.
 210 address MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) {
 211   assert(UseCompressedOops, "Should only patch compressed oops");
 212 
 213   const address inst2_addr = a;
 214   const int inst2 = *(int *)inst2_addr;
 215 
 216   // The relocation points to the second instruction, the ori,
 217   // and the ori reads and writes the same register dst.
 218   const int dst = inv_rta_field(inst2);
 219   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 220   // Now, find the preceding addis which writes to dst.
 221   int inst1 = 0;
 222   address inst1_addr = inst2_addr - BytesPerInstWord;
 223   bool inst1_found = false;
 224   while (inst1_addr >= bound) {
 225     inst1 = *(int *)inst1_addr;
 226     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; }
 227     inst1_addr -= BytesPerInstWord;
 228   }
 229   assert(inst1_found, "inst is not lis");
 230 
 231   uint32_t data_value = CompressedOops::narrow_oop_value(data);
 232   int xc = (data_value >> 16) & 0xffff;
 233   int xd = (data_value >>  0) & 0xffff;
 234 
 235   set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo
 236   set_imm((int *)inst2_addr,        (xd)); // unsigned int
 237   return inst1_addr;
 238 }
 239 
 240 // Get compressed oop constant.
 241 narrowOop MacroAssembler::get_narrow_oop(address a, address bound) {
 242   assert(UseCompressedOops, "Should only patch compressed oops");
 243 
 244   const address inst2_addr = a;
 245   const int inst2 = *(int *)inst2_addr;
 246 
 247   // The relocation points to the second instruction, the ori,
 248   // and the ori reads and writes the same register dst.
 249   const int dst = inv_rta_field(inst2);
 250   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 251   // Now, find the preceding lis which writes to dst.
 252   int inst1 = 0;
 253   address inst1_addr = inst2_addr - BytesPerInstWord;
 254   bool inst1_found = false;
 255 
 256   while (inst1_addr >= bound) {
 257     inst1 = *(int *) inst1_addr;
 258     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;}
 259     inst1_addr -= BytesPerInstWord;
 260   }
 261   assert(inst1_found, "inst is not lis");
 262 
 263   uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff));
 264   uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16);
 265 
 266   return CompressedOops::narrow_oop_cast(xl | xh);
 267 }
 268 #endif // _LP64
 269 
 270 // Returns true if successful.
 271 bool MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a,
 272                                                 Register toc, bool fixed_size) {
 273   int toc_offset = 0;
 274   // Use RelocationHolder::none for the constant pool entry, otherwise
 275   // we will end up with a failing NativeCall::verify(x) where x is
 276   // the address of the constant pool entry.
 277   // FIXME: We should insert relocation information for oops at the constant
 278   // pool entries instead of inserting it at the loads; patching of a constant
 279   // pool entry should be less expensive.
 280   address const_address = address_constant((address)a.value(), RelocationHolder::none);
 281   if (const_address == nullptr) { return false; } // allocation failure
 282   // Relocate at the pc of the load.
 283   relocate(a.rspec());
 284   toc_offset = (int)(const_address - code()->consts()->start());
 285   ld_largeoffset_unchecked(dst, toc_offset, toc, fixed_size);
 286   return true;
 287 }
 288 
 289 bool MacroAssembler::is_load_const_from_method_toc_at(address a) {
 290   const address inst1_addr = a;
 291   const int inst1 = *(int *)inst1_addr;
 292 
 293    // The relocation points to the ld or the addis.
 294    return (is_ld(inst1)) ||
 295           (is_addis(inst1) && inv_ra_field(inst1) != 0);
 296 }
 297 
 298 int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) {
 299   assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc");
 300 
 301   const address inst1_addr = a;
 302   const int inst1 = *(int *)inst1_addr;
 303 
 304   if (is_ld(inst1)) {
 305     return inv_d1_field(inst1);
 306   } else if (is_addis(inst1)) {
 307     const int dst = inv_rt_field(inst1);
 308 
 309     // Now, find the succeeding ld which reads and writes to dst.
 310     address inst2_addr = inst1_addr + BytesPerInstWord;
 311     int inst2 = 0;
 312     while (true) {
 313       inst2 = *(int *) inst2_addr;
 314       if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) {
 315         // Stop, found the ld which reads and writes dst.
 316         break;
 317       }
 318       inst2_addr += BytesPerInstWord;
 319     }
 320     return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
 321   }
 322   ShouldNotReachHere();
 323   return 0;
 324 }
 325 
 326 // Get the constant from a `load_const' sequence.
 327 long MacroAssembler::get_const(address a) {
 328   assert(is_load_const_at(a), "not a load of a constant");
 329   const int *p = (const int*) a;
 330   unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48);
 331   if (is_ori(*(p+1))) {
 332     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32);
 333     x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16);
 334     x |= (((unsigned long) (get_imm(a,4) & 0xffff)));
 335   } else if (is_lis(*(p+1))) {
 336     x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32);
 337     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16);
 338     x |= (((unsigned long) (get_imm(a,3) & 0xffff)));
 339   } else {
 340     ShouldNotReachHere();
 341     return (long) 0;
 342   }
 343   return (long) x;
 344 }
 345 
 346 // Patch the 64 bit constant of a `load_const' sequence. This is a low
 347 // level procedure. It neither flushes the instruction cache nor is it
 348 // mt safe.
 349 void MacroAssembler::patch_const(address a, long x) {
 350   assert(is_load_const_at(a), "not a load of a constant");
 351   int *p = (int*) a;
 352   if (is_ori(*(p+1))) {
 353     set_imm(0 + p, (x >> 48) & 0xffff);
 354     set_imm(1 + p, (x >> 32) & 0xffff);
 355     set_imm(3 + p, (x >> 16) & 0xffff);
 356     set_imm(4 + p, x & 0xffff);
 357   } else if (is_lis(*(p+1))) {
 358     set_imm(0 + p, (x >> 48) & 0xffff);
 359     set_imm(2 + p, (x >> 32) & 0xffff);
 360     set_imm(1 + p, (x >> 16) & 0xffff);
 361     set_imm(3 + p, x & 0xffff);
 362   } else {
 363     ShouldNotReachHere();
 364   }
 365 }
 366 
 367 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
 368   assert(oop_recorder() != nullptr, "this assembler needs a Recorder");
 369   int index = oop_recorder()->allocate_metadata_index(obj);
 370   RelocationHolder rspec = metadata_Relocation::spec(index);
 371   return AddressLiteral((address)obj, rspec);
 372 }
 373 
 374 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
 375   assert(oop_recorder() != nullptr, "this assembler needs a Recorder");
 376   int index = oop_recorder()->find_index(obj);
 377   RelocationHolder rspec = metadata_Relocation::spec(index);
 378   return AddressLiteral((address)obj, rspec);
 379 }
 380 
 381 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
 382   assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 383   int oop_index = oop_recorder()->allocate_oop_index(obj);
 384   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 385 }
 386 
 387 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
 388   assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 389   int oop_index = oop_recorder()->find_index(obj);
 390   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 391 }
 392 
 393 #ifndef PRODUCT
 394 void MacroAssembler::pd_print_patched_instruction(address branch) {
 395   Unimplemented(); // TODO: PPC port
 396 }
 397 #endif // ndef PRODUCT
 398 
 399 // Conditional far branch for destinations encodable in 24+2 bits.
 400 void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) {
 401 
 402   // If requested by flag optimize, relocate the bc_far as a
 403   // runtime_call and prepare for optimizing it when the code gets
 404   // relocated.
 405   if (optimize == bc_far_optimize_on_relocate) {
 406     relocate(relocInfo::runtime_call_type);
 407   }
 408 
 409   // variant 2:
 410   //
 411   //    b!cxx SKIP
 412   //    bxx   DEST
 413   //  SKIP:
 414   //
 415 
 416   const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 417                                                 opposite_bcond(inv_boint_bcond(boint)));
 418 
 419   // We emit two branches.
 420   // First, a conditional branch which jumps around the far branch.
 421   const address not_taken_pc = pc() + 2 * BytesPerInstWord;
 422   const address bc_pc        = pc();
 423   bc(opposite_boint, biint, not_taken_pc);
 424 
 425   const int bc_instr = *(int*)bc_pc;
 426   assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition");
 427   assert(opposite_boint == inv_bo_field(bc_instr), "postcondition");
 428   assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))),
 429                                      opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))),
 430          "postcondition");
 431   assert(biint == inv_bi_field(bc_instr), "postcondition");
 432 
 433   // Second, an unconditional far branch which jumps to dest.
 434   // Note: target(dest) remembers the current pc (see CodeSection::target)
 435   //       and returns the current pc if the label is not bound yet; when
 436   //       the label gets bound, the unconditional far branch will be patched.
 437   const address target_pc = target(dest);
 438   const address b_pc  = pc();
 439   b(target_pc);
 440 
 441   assert(not_taken_pc == pc(),                     "postcondition");
 442   assert(dest.is_bound() || target_pc == b_pc, "postcondition");
 443 }
 444 
 445 // 1 or 2 instructions
 446 void MacroAssembler::bc_far_optimized(int boint, int biint, Label& dest) {
 447   if (dest.is_bound() && is_within_range_of_bcxx(target(dest), pc())) {
 448     bc(boint, biint, dest);
 449   } else {
 450     bc_far(boint, biint, dest, MacroAssembler::bc_far_optimize_on_relocate);
 451   }
 452 }
 453 
 454 bool MacroAssembler::is_bc_far_at(address instruction_addr) {
 455   return is_bc_far_variant1_at(instruction_addr) ||
 456          is_bc_far_variant2_at(instruction_addr) ||
 457          is_bc_far_variant3_at(instruction_addr);
 458 }
 459 
 460 address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) {
 461   if (is_bc_far_variant1_at(instruction_addr)) {
 462     const address instruction_1_addr = instruction_addr;
 463     const int instruction_1 = *(int*)instruction_1_addr;
 464     return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr);
 465   } else if (is_bc_far_variant2_at(instruction_addr)) {
 466     const address instruction_2_addr = instruction_addr + 4;
 467     return bxx_destination(instruction_2_addr);
 468   } else if (is_bc_far_variant3_at(instruction_addr)) {
 469     return instruction_addr + 8;
 470   }
 471   // variant 4 ???
 472   ShouldNotReachHere();
 473   return nullptr;
 474 }
 475 void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) {
 476 
 477   if (is_bc_far_variant3_at(instruction_addr)) {
 478     // variant 3, far cond branch to the next instruction, already patched to nops:
 479     //
 480     //    nop
 481     //    endgroup
 482     //  SKIP/DEST:
 483     //
 484     return;
 485   }
 486 
 487   // first, extract boint and biint from the current branch
 488   int boint = 0;
 489   int biint = 0;
 490 
 491   ResourceMark rm;
 492   const int code_size = 2 * BytesPerInstWord;
 493   CodeBuffer buf(instruction_addr, code_size);
 494   MacroAssembler masm(&buf);
 495   if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) {
 496     // Far branch to next instruction: Optimize it by patching nops (produce variant 3).
 497     masm.nop();
 498     masm.endgroup();
 499   } else {
 500     if (is_bc_far_variant1_at(instruction_addr)) {
 501       // variant 1, the 1st instruction contains the destination address:
 502       //
 503       //    bcxx  DEST
 504       //    nop
 505       //
 506       const int instruction_1 = *(int*)(instruction_addr);
 507       boint = inv_bo_field(instruction_1);
 508       biint = inv_bi_field(instruction_1);
 509     } else if (is_bc_far_variant2_at(instruction_addr)) {
 510       // variant 2, the 2nd instruction contains the destination address:
 511       //
 512       //    b!cxx SKIP
 513       //    bxx   DEST
 514       //  SKIP:
 515       //
 516       const int instruction_1 = *(int*)(instruction_addr);
 517       boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))),
 518           opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1))));
 519       biint = inv_bi_field(instruction_1);
 520     } else {
 521       // variant 4???
 522       ShouldNotReachHere();
 523     }
 524 
 525     // second, set the new branch destination and optimize the code
 526     if (dest != instruction_addr + 4 && // the bc_far is still unbound!
 527         masm.is_within_range_of_bcxx(dest, instruction_addr)) {
 528       // variant 1:
 529       //
 530       //    bcxx  DEST
 531       //    nop
 532       //
 533       masm.bc(boint, biint, dest);
 534       masm.nop();
 535     } else {
 536       // variant 2:
 537       //
 538       //    b!cxx SKIP
 539       //    bxx   DEST
 540       //  SKIP:
 541       //
 542       const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 543                                                     opposite_bcond(inv_boint_bcond(boint)));
 544       const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord;
 545       masm.bc(opposite_boint, biint, not_taken_pc);
 546       masm.b(dest);
 547     }
 548   }
 549   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 550 }
 551 
 552 // Emit a NOT mt-safe patchable 64 bit absolute call/jump.
 553 void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) {
 554   // get current pc
 555   uint64_t start_pc = (uint64_t) pc();
 556 
 557   const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last
 558   const address pc_of_b  = (address) (start_pc + (0*BytesPerInstWord)); // b is first
 559 
 560   // relocate here
 561   if (rt != relocInfo::none) {
 562     relocate(rt);
 563   }
 564 
 565   if ( ReoptimizeCallSequences &&
 566        (( link && is_within_range_of_b(dest, pc_of_bl)) ||
 567         (!link && is_within_range_of_b(dest, pc_of_b)))) {
 568     // variant 2:
 569     // Emit an optimized, pc-relative call/jump.
 570 
 571     if (link) {
 572       // some padding
 573       nop();
 574       nop();
 575       nop();
 576       nop();
 577       nop();
 578       nop();
 579 
 580       // do the call
 581       assert(pc() == pc_of_bl, "just checking");
 582       bl(dest, relocInfo::none);
 583     } else {
 584       // do the jump
 585       assert(pc() == pc_of_b, "just checking");
 586       b(dest, relocInfo::none);
 587 
 588       // some padding
 589       nop();
 590       nop();
 591       nop();
 592       nop();
 593       nop();
 594       nop();
 595     }
 596 
 597     // Assert that we can identify the emitted call/jump.
 598     assert(is_bxx64_patchable_variant2_at((address)start_pc, link),
 599            "can't identify emitted call");
 600   } else {
 601     // variant 1:
 602     mr(R0, R11);  // spill R11 -> R0.
 603 
 604     // Load the destination address into CTR,
 605     // calculate destination relative to global toc.
 606     calculate_address_from_global_toc(R11, dest, true, true, false);
 607 
 608     mtctr(R11);
 609     mr(R11, R0);  // spill R11 <- R0.
 610     nop();
 611 
 612     // do the call/jump
 613     if (link) {
 614       bctrl();
 615     } else{
 616       bctr();
 617     }
 618     // Assert that we can identify the emitted call/jump.
 619     assert(is_bxx64_patchable_variant1b_at((address)start_pc, link),
 620            "can't identify emitted call");
 621   }
 622 
 623   // Assert that we can identify the emitted call/jump.
 624   assert(is_bxx64_patchable_at((address)start_pc, link),
 625          "can't identify emitted call");
 626   assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest,
 627          "wrong encoding of dest address");
 628 }
 629 
 630 // Identify a bxx64_patchable instruction.
 631 bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) {
 632   return is_bxx64_patchable_variant1b_at(instruction_addr, link)
 633     //|| is_bxx64_patchable_variant1_at(instruction_addr, link)
 634       || is_bxx64_patchable_variant2_at(instruction_addr, link);
 635 }
 636 
 637 // Does the call64_patchable instruction use a pc-relative encoding of
 638 // the call destination?
 639 bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) {
 640   // variant 2 is pc-relative
 641   return is_bxx64_patchable_variant2_at(instruction_addr, link);
 642 }
 643 
 644 // Identify variant 1.
 645 bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) {
 646   unsigned int* instr = (unsigned int*) instruction_addr;
 647   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 648       && is_mtctr(instr[5]) // mtctr
 649     && is_load_const_at(instruction_addr);
 650 }
 651 
 652 // Identify variant 1b: load destination relative to global toc.
 653 bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) {
 654   unsigned int* instr = (unsigned int*) instruction_addr;
 655   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 656     && is_mtctr(instr[3]) // mtctr
 657     && is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr);
 658 }
 659 
 660 // Identify variant 2.
 661 bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) {
 662   unsigned int* instr = (unsigned int*) instruction_addr;
 663   if (link) {
 664     return is_bl (instr[6])  // bl dest is last
 665       && is_nop(instr[0])  // nop
 666       && is_nop(instr[1])  // nop
 667       && is_nop(instr[2])  // nop
 668       && is_nop(instr[3])  // nop
 669       && is_nop(instr[4])  // nop
 670       && is_nop(instr[5]); // nop
 671   } else {
 672     return is_b  (instr[0])  // b  dest is first
 673       && is_nop(instr[1])  // nop
 674       && is_nop(instr[2])  // nop
 675       && is_nop(instr[3])  // nop
 676       && is_nop(instr[4])  // nop
 677       && is_nop(instr[5])  // nop
 678       && is_nop(instr[6]); // nop
 679   }
 680 }
 681 
 682 // Set dest address of a bxx64_patchable instruction.
 683 void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) {
 684   ResourceMark rm;
 685   int code_size = MacroAssembler::bxx64_patchable_size;
 686   CodeBuffer buf(instruction_addr, code_size);
 687   MacroAssembler masm(&buf);
 688   masm.bxx64_patchable(dest, relocInfo::none, link);
 689   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 690 }
 691 
 692 // Get dest address of a bxx64_patchable instruction.
 693 address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) {
 694   if (is_bxx64_patchable_variant1_at(instruction_addr, link)) {
 695     return (address) (unsigned long) get_const(instruction_addr);
 696   } else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) {
 697     unsigned int* instr = (unsigned int*) instruction_addr;
 698     if (link) {
 699       const int instr_idx = 6; // bl is last
 700       int branchoffset = branch_destination(instr[instr_idx], 0);
 701       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 702     } else {
 703       const int instr_idx = 0; // b is first
 704       int branchoffset = branch_destination(instr[instr_idx], 0);
 705       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 706     }
 707   // Load dest relative to global toc.
 708   } else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) {
 709     return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord,
 710                                                                instruction_addr);
 711   } else {
 712     ShouldNotReachHere();
 713     return nullptr;
 714   }
 715 }
 716 
 717 void MacroAssembler::clobber_volatile_gprs(Register excluded_register) {
 718   const int magic_number = 0x42;
 719 
 720   // Preserve stack pointer register (R1_SP) and system thread id register (R13);
 721   // although they're technically volatile
 722   for (int i = 2; i < 13; i++) {
 723     Register reg = as_Register(i);
 724     if (reg == excluded_register) {
 725       continue;
 726     }
 727 
 728     li(reg, magic_number);
 729   }
 730 }
 731 
 732 void MacroAssembler::clobber_carg_stack_slots(Register tmp) {
 733   const int magic_number = 0x43;
 734 
 735   li(tmp, magic_number);
 736   for (int m = 0; m <= 7; m++) {
 737     std(tmp, frame::native_abi_minframe_size + m * 8, R1_SP);
 738   }
 739 }
 740 
 741 // Uses ordering which corresponds to ABI:
 742 //    _savegpr0_14:  std  r14,-144(r1)
 743 //    _savegpr0_15:  std  r15,-136(r1)
 744 //    _savegpr0_16:  std  r16,-128(r1)
 745 void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) {
 746   std(R14, offset, dst);   offset += 8;
 747   std(R15, offset, dst);   offset += 8;
 748   std(R16, offset, dst);   offset += 8;
 749   std(R17, offset, dst);   offset += 8;
 750   std(R18, offset, dst);   offset += 8;
 751   std(R19, offset, dst);   offset += 8;
 752   std(R20, offset, dst);   offset += 8;
 753   std(R21, offset, dst);   offset += 8;
 754   std(R22, offset, dst);   offset += 8;
 755   std(R23, offset, dst);   offset += 8;
 756   std(R24, offset, dst);   offset += 8;
 757   std(R25, offset, dst);   offset += 8;
 758   std(R26, offset, dst);   offset += 8;
 759   std(R27, offset, dst);   offset += 8;
 760   std(R28, offset, dst);   offset += 8;
 761   std(R29, offset, dst);   offset += 8;
 762   std(R30, offset, dst);   offset += 8;
 763   std(R31, offset, dst);   offset += 8;
 764 
 765   stfd(F14, offset, dst);   offset += 8;
 766   stfd(F15, offset, dst);   offset += 8;
 767   stfd(F16, offset, dst);   offset += 8;
 768   stfd(F17, offset, dst);   offset += 8;
 769   stfd(F18, offset, dst);   offset += 8;
 770   stfd(F19, offset, dst);   offset += 8;
 771   stfd(F20, offset, dst);   offset += 8;
 772   stfd(F21, offset, dst);   offset += 8;
 773   stfd(F22, offset, dst);   offset += 8;
 774   stfd(F23, offset, dst);   offset += 8;
 775   stfd(F24, offset, dst);   offset += 8;
 776   stfd(F25, offset, dst);   offset += 8;
 777   stfd(F26, offset, dst);   offset += 8;
 778   stfd(F27, offset, dst);   offset += 8;
 779   stfd(F28, offset, dst);   offset += 8;
 780   stfd(F29, offset, dst);   offset += 8;
 781   stfd(F30, offset, dst);   offset += 8;
 782   stfd(F31, offset, dst);
 783 }
 784 
 785 // Uses ordering which corresponds to ABI:
 786 //    _restgpr0_14:  ld   r14,-144(r1)
 787 //    _restgpr0_15:  ld   r15,-136(r1)
 788 //    _restgpr0_16:  ld   r16,-128(r1)
 789 void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) {
 790   ld(R14, offset, src);   offset += 8;
 791   ld(R15, offset, src);   offset += 8;
 792   ld(R16, offset, src);   offset += 8;
 793   ld(R17, offset, src);   offset += 8;
 794   ld(R18, offset, src);   offset += 8;
 795   ld(R19, offset, src);   offset += 8;
 796   ld(R20, offset, src);   offset += 8;
 797   ld(R21, offset, src);   offset += 8;
 798   ld(R22, offset, src);   offset += 8;
 799   ld(R23, offset, src);   offset += 8;
 800   ld(R24, offset, src);   offset += 8;
 801   ld(R25, offset, src);   offset += 8;
 802   ld(R26, offset, src);   offset += 8;
 803   ld(R27, offset, src);   offset += 8;
 804   ld(R28, offset, src);   offset += 8;
 805   ld(R29, offset, src);   offset += 8;
 806   ld(R30, offset, src);   offset += 8;
 807   ld(R31, offset, src);   offset += 8;
 808 
 809   // FP registers
 810   lfd(F14, offset, src);   offset += 8;
 811   lfd(F15, offset, src);   offset += 8;
 812   lfd(F16, offset, src);   offset += 8;
 813   lfd(F17, offset, src);   offset += 8;
 814   lfd(F18, offset, src);   offset += 8;
 815   lfd(F19, offset, src);   offset += 8;
 816   lfd(F20, offset, src);   offset += 8;
 817   lfd(F21, offset, src);   offset += 8;
 818   lfd(F22, offset, src);   offset += 8;
 819   lfd(F23, offset, src);   offset += 8;
 820   lfd(F24, offset, src);   offset += 8;
 821   lfd(F25, offset, src);   offset += 8;
 822   lfd(F26, offset, src);   offset += 8;
 823   lfd(F27, offset, src);   offset += 8;
 824   lfd(F28, offset, src);   offset += 8;
 825   lfd(F29, offset, src);   offset += 8;
 826   lfd(F30, offset, src);   offset += 8;
 827   lfd(F31, offset, src);
 828 }
 829 
 830 // For verify_oops.
 831 void MacroAssembler::save_volatile_gprs(Register dst, int offset, bool include_fp_regs, bool include_R3_RET_reg) {
 832   std(R2,  offset, dst);   offset += 8;
 833   if (include_R3_RET_reg) {
 834     std(R3, offset, dst);  offset += 8;
 835   }
 836   std(R4,  offset, dst);   offset += 8;
 837   std(R5,  offset, dst);   offset += 8;
 838   std(R6,  offset, dst);   offset += 8;
 839   std(R7,  offset, dst);   offset += 8;
 840   std(R8,  offset, dst);   offset += 8;
 841   std(R9,  offset, dst);   offset += 8;
 842   std(R10, offset, dst);   offset += 8;
 843   std(R11, offset, dst);   offset += 8;
 844   std(R12, offset, dst);   offset += 8;
 845 
 846   if (include_fp_regs) {
 847     stfd(F0, offset, dst);   offset += 8;
 848     stfd(F1, offset, dst);   offset += 8;
 849     stfd(F2, offset, dst);   offset += 8;
 850     stfd(F3, offset, dst);   offset += 8;
 851     stfd(F4, offset, dst);   offset += 8;
 852     stfd(F5, offset, dst);   offset += 8;
 853     stfd(F6, offset, dst);   offset += 8;
 854     stfd(F7, offset, dst);   offset += 8;
 855     stfd(F8, offset, dst);   offset += 8;
 856     stfd(F9, offset, dst);   offset += 8;
 857     stfd(F10, offset, dst);  offset += 8;
 858     stfd(F11, offset, dst);  offset += 8;
 859     stfd(F12, offset, dst);  offset += 8;
 860     stfd(F13, offset, dst);
 861   }
 862 }
 863 
 864 // For verify_oops.
 865 void MacroAssembler::restore_volatile_gprs(Register src, int offset, bool include_fp_regs, bool include_R3_RET_reg) {
 866   ld(R2,  offset, src);   offset += 8;
 867   if (include_R3_RET_reg) {
 868     ld(R3,  offset, src);   offset += 8;
 869   }
 870   ld(R4,  offset, src);   offset += 8;
 871   ld(R5,  offset, src);   offset += 8;
 872   ld(R6,  offset, src);   offset += 8;
 873   ld(R7,  offset, src);   offset += 8;
 874   ld(R8,  offset, src);   offset += 8;
 875   ld(R9,  offset, src);   offset += 8;
 876   ld(R10, offset, src);   offset += 8;
 877   ld(R11, offset, src);   offset += 8;
 878   ld(R12, offset, src);   offset += 8;
 879 
 880   if (include_fp_regs) {
 881     lfd(F0, offset, src);   offset += 8;
 882     lfd(F1, offset, src);   offset += 8;
 883     lfd(F2, offset, src);   offset += 8;
 884     lfd(F3, offset, src);   offset += 8;
 885     lfd(F4, offset, src);   offset += 8;
 886     lfd(F5, offset, src);   offset += 8;
 887     lfd(F6, offset, src);   offset += 8;
 888     lfd(F7, offset, src);   offset += 8;
 889     lfd(F8, offset, src);   offset += 8;
 890     lfd(F9, offset, src);   offset += 8;
 891     lfd(F10, offset, src);  offset += 8;
 892     lfd(F11, offset, src);  offset += 8;
 893     lfd(F12, offset, src);  offset += 8;
 894     lfd(F13, offset, src);
 895   }
 896 }
 897 
 898 void MacroAssembler::save_LR(Register tmp) {
 899   mflr(tmp);
 900   std(tmp, _abi0(lr), R1_SP);
 901 }
 902 
 903 void MacroAssembler::restore_LR(Register tmp) {
 904   assert(tmp != R1_SP, "must be distinct");
 905   ld(tmp, _abi0(lr), R1_SP);
 906   mtlr(tmp);
 907 }
 908 
 909 void MacroAssembler::save_LR_CR(Register tmp) {
 910   mfcr(tmp);
 911   std(tmp, _abi0(cr), R1_SP);
 912   save_LR(tmp);
 913   // Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad)
 914 }
 915 
 916 void MacroAssembler::restore_LR_CR(Register tmp) {
 917   restore_LR(tmp);
 918   ld(tmp, _abi0(cr), R1_SP);
 919   mtcr(tmp);
 920 }
 921 
 922 address MacroAssembler::get_PC_trash_LR(Register result) {
 923   Label L;
 924   bl(L);
 925   bind(L);
 926   address lr_pc = pc();
 927   mflr(result);
 928   return lr_pc;
 929 }
 930 
 931 void MacroAssembler::resize_frame(Register offset, Register tmp) {
 932 #ifdef ASSERT
 933   assert_different_registers(offset, tmp, R1_SP);
 934   andi_(tmp, offset, frame::alignment_in_bytes-1);
 935   asm_assert_eq("resize_frame: unaligned");
 936 #endif
 937 
 938   // tmp <- *(SP)
 939   ld(tmp, _abi0(callers_sp), R1_SP);
 940   // addr <- SP + offset;
 941   // *(addr) <- tmp;
 942   // SP <- addr
 943   stdux(tmp, R1_SP, offset);
 944 }
 945 
 946 void MacroAssembler::resize_frame(int offset, Register tmp) {
 947   assert(is_simm(offset, 16), "too big an offset");
 948   assert_different_registers(tmp, R1_SP);
 949   assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned");
 950   // tmp <- *(SP)
 951   ld(tmp, _abi0(callers_sp), R1_SP);
 952   // addr <- SP + offset;
 953   // *(addr) <- tmp;
 954   // SP <- addr
 955   stdu(tmp, offset, R1_SP);
 956 }
 957 
 958 void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) {
 959   // (addr == tmp1) || (addr == tmp2) is allowed here!
 960   assert(tmp1 != tmp2, "must be distinct");
 961 
 962   // compute offset w.r.t. current stack pointer
 963   // tmp_1 <- addr - SP (!)
 964   subf(tmp1, R1_SP, addr);
 965 
 966   // atomically update SP keeping back link.
 967   resize_frame(tmp1/* offset */, tmp2/* tmp */);
 968 }
 969 
 970 void MacroAssembler::push_frame(Register bytes, Register tmp) {
 971 #ifdef ASSERT
 972   assert(bytes != R0, "r0 not allowed here");
 973   andi_(R0, bytes, frame::alignment_in_bytes-1);
 974   asm_assert_eq("push_frame(Reg, Reg): unaligned");
 975 #endif
 976   neg(tmp, bytes);
 977   stdux(R1_SP, R1_SP, tmp);
 978 }
 979 
 980 // Push a frame of size `bytes'.
 981 void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
 982   long offset = align_addr(bytes, frame::alignment_in_bytes);
 983   if (is_simm(-offset, 16)) {
 984     stdu(R1_SP, -offset, R1_SP);
 985   } else {
 986     load_const_optimized(tmp, -offset);
 987     stdux(R1_SP, R1_SP, tmp);
 988   }
 989 }
 990 
 991 // Push a frame of size `bytes' plus native_abi_reg_args on top.
 992 void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) {
 993   push_frame(bytes + frame::native_abi_reg_args_size, tmp);
 994 }
 995 
 996 // Setup up a new C frame with a spill area for non-volatile GPRs and
 997 // additional space for local variables.
 998 void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes,
 999                                                       Register tmp) {
1000   push_frame(bytes + frame::native_abi_reg_args_size + frame::spill_nonvolatiles_size, tmp);
1001 }
1002 
1003 // Pop current C frame.
1004 void MacroAssembler::pop_frame() {
1005   ld(R1_SP, _abi0(callers_sp), R1_SP);
1006 }
1007 
1008 #if defined(ABI_ELFv2)
1009 address MacroAssembler::branch_to(Register r_function_entry, bool and_link) {
1010   // TODO(asmundak): make sure the caller uses R12 as function descriptor
1011   // most of the times.
1012   if (R12 != r_function_entry) {
1013     mr(R12, r_function_entry);
1014   }
1015   mtctr(R12);
1016   // Do a call or a branch.
1017   if (and_link) {
1018     bctrl();
1019   } else {
1020     bctr();
1021   }
1022   _last_calls_return_pc = pc();
1023 
1024   return _last_calls_return_pc;
1025 }
1026 
1027 // Call a C function via a function descriptor and use full C
1028 // calling conventions. Updates and returns _last_calls_return_pc.
1029 address MacroAssembler::call_c(Register r_function_entry) {
1030   return branch_to(r_function_entry, /*and_link=*/true);
1031 }
1032 
1033 // For tail calls: only branch, don't link, so callee returns to caller of this function.
1034 address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) {
1035   return branch_to(r_function_entry, /*and_link=*/false);
1036 }
1037 
1038 address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) {
1039   load_const(R12, function_entry, R0);
1040   return branch_to(R12,  /*and_link=*/true);
1041 }
1042 
1043 #else
1044 // Generic version of a call to C function via a function descriptor
1045 // with variable support for C calling conventions (TOC, ENV, etc.).
1046 // Updates and returns _last_calls_return_pc.
1047 address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
1048                                   bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) {
1049   // we emit standard ptrgl glue code here
1050   assert((function_descriptor != R0), "function_descriptor cannot be R0");
1051 
1052   // retrieve necessary entries from the function descriptor
1053   ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor);
1054   mtctr(R0);
1055 
1056   if (load_toc_of_callee) {
1057     ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor);
1058   }
1059   if (load_env_of_callee) {
1060     ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor);
1061   } else if (load_toc_of_callee) {
1062     li(R11, 0);
1063   }
1064 
1065   // do a call or a branch
1066   if (and_link) {
1067     bctrl();
1068   } else {
1069     bctr();
1070   }
1071   _last_calls_return_pc = pc();
1072 
1073   return _last_calls_return_pc;
1074 }
1075 
1076 // Call a C function via a function descriptor and use full C calling
1077 // conventions.
1078 // We don't use the TOC in generated code, so there is no need to save
1079 // and restore its value.
1080 address MacroAssembler::call_c(Register fd) {
1081   return branch_to(fd, /*and_link=*/true,
1082                        /*save toc=*/false,
1083                        /*restore toc=*/false,
1084                        /*load toc=*/true,
1085                        /*load env=*/true);
1086 }
1087 
1088 address MacroAssembler::call_c_and_return_to_caller(Register fd) {
1089   return branch_to(fd, /*and_link=*/false,
1090                        /*save toc=*/false,
1091                        /*restore toc=*/false,
1092                        /*load toc=*/true,
1093                        /*load env=*/true);
1094 }
1095 
1096 address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) {
1097   if (rt != relocInfo::none) {
1098     // this call needs to be relocatable
1099     if (!ReoptimizeCallSequences
1100         || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1101         || fd == nullptr   // support code-size estimation
1102         || !fd->is_friend_function()
1103         || fd->entry() == nullptr) {
1104       // it's not a friend function as defined by class FunctionDescriptor,
1105       // so do a full call-c here.
1106       load_const(R11, (address)fd, R0);
1107 
1108       bool has_env = (fd != nullptr && fd->env() != nullptr);
1109       return branch_to(R11, /*and_link=*/true,
1110                             /*save toc=*/false,
1111                             /*restore toc=*/false,
1112                             /*load toc=*/true,
1113                             /*load env=*/has_env);
1114     } else {
1115       // It's a friend function. Load the entry point and don't care about
1116       // toc and env. Use an optimizable call instruction, but ensure the
1117       // same code-size as in the case of a non-friend function.
1118       nop();
1119       nop();
1120       nop();
1121       bl64_patchable(fd->entry(), rt);
1122       _last_calls_return_pc = pc();
1123       return _last_calls_return_pc;
1124     }
1125   } else {
1126     // This call does not need to be relocatable, do more aggressive
1127     // optimizations.
1128     if (!ReoptimizeCallSequences
1129       || !fd->is_friend_function()) {
1130       // It's not a friend function as defined by class FunctionDescriptor,
1131       // so do a full call-c here.
1132       load_const(R11, (address)fd, R0);
1133       return branch_to(R11, /*and_link=*/true,
1134                             /*save toc=*/false,
1135                             /*restore toc=*/false,
1136                             /*load toc=*/true,
1137                             /*load env=*/true);
1138     } else {
1139       // it's a friend function, load the entry point and don't care about
1140       // toc and env.
1141       address dest = fd->entry();
1142       if (is_within_range_of_b(dest, pc())) {
1143         bl(dest);
1144       } else {
1145         bl64_patchable(dest, rt);
1146       }
1147       _last_calls_return_pc = pc();
1148       return _last_calls_return_pc;
1149     }
1150   }
1151 }
1152 
1153 // Call a C function.  All constants needed reside in TOC.
1154 //
1155 // Read the address to call from the TOC.
1156 // Read env from TOC, if fd specifies an env.
1157 // Read new TOC from TOC.
1158 address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
1159                                          relocInfo::relocType rt, Register toc) {
1160   if (!ReoptimizeCallSequences
1161     || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1162     || !fd->is_friend_function()) {
1163     // It's not a friend function as defined by class FunctionDescriptor,
1164     // so do a full call-c here.
1165     assert(fd->entry() != nullptr, "function must be linked");
1166 
1167     AddressLiteral fd_entry(fd->entry());
1168     bool success = load_const_from_method_toc(R11, fd_entry, toc, /*fixed_size*/ true);
1169     mtctr(R11);
1170     if (fd->env() == nullptr) {
1171       li(R11, 0);
1172       nop();
1173     } else {
1174       AddressLiteral fd_env(fd->env());
1175       success = success && load_const_from_method_toc(R11, fd_env, toc, /*fixed_size*/ true);
1176     }
1177     AddressLiteral fd_toc(fd->toc());
1178     // Set R2_TOC (load from toc)
1179     success = success && load_const_from_method_toc(R2_TOC, fd_toc, toc, /*fixed_size*/ true);
1180     bctrl();
1181     _last_calls_return_pc = pc();
1182     if (!success) { return nullptr; }
1183   } else {
1184     // It's a friend function, load the entry point and don't care about
1185     // toc and env. Use an optimizable call instruction, but ensure the
1186     // same code-size as in the case of a non-friend function.
1187     nop();
1188     bl64_patchable(fd->entry(), rt);
1189     _last_calls_return_pc = pc();
1190   }
1191   return _last_calls_return_pc;
1192 }
1193 #endif // ABI_ELFv2
1194 
1195 void MacroAssembler::post_call_nop() {
1196   // Make inline again when loom is always enabled.
1197   if (!Continuations::enabled()) {
1198     return;
1199   }
1200   // We use CMPI/CMPLI instructions to encode post call nops.
1201   // Refer to NativePostCallNop for details.
1202   relocate(post_call_nop_Relocation::spec());
1203   InlineSkippedInstructionsCounter skipCounter(this);
1204   Assembler::emit_int32(Assembler::CMPLI_OPCODE | Assembler::opp_u_field(1, 9, 9));
1205   assert(is_post_call_nop(*(int*)(pc() - 4)), "post call not not found");
1206 }
1207 
1208 int MacroAssembler::ic_check_size() {
1209   bool implicit_null_checks_available = ImplicitNullChecks && os::zero_page_read_protected(),
1210        use_fast_receiver_null_check   = implicit_null_checks_available || TrapBasedNullChecks,
1211        use_trap_based_null_check      = !implicit_null_checks_available && TrapBasedNullChecks;
1212 
1213   int num_ins;
1214   if (use_fast_receiver_null_check && TrapBasedICMissChecks) {
1215     num_ins = 3;
1216     if (use_trap_based_null_check) num_ins += 1;
1217   } else {
1218     num_ins = 7;
1219     if (!implicit_null_checks_available) num_ins += 2;
1220   }
1221   return num_ins * BytesPerInstWord;
1222 }
1223 
1224 int MacroAssembler::ic_check(int end_alignment) {
1225   bool implicit_null_checks_available = ImplicitNullChecks && os::zero_page_read_protected(),
1226        use_fast_receiver_null_check   = implicit_null_checks_available || TrapBasedNullChecks,
1227        use_trap_based_null_check      = !implicit_null_checks_available && TrapBasedNullChecks;
1228 
1229   Register receiver = R3_ARG1;
1230   Register data = R19_inline_cache_reg;
1231   Register tmp1 = R11_scratch1;
1232   Register tmp2 = R12_scratch2;
1233 
1234   // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
1235   // before the inline cache check, so we don't have to execute any nop instructions when dispatching
1236   // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
1237   // before the inline cache check here, and not after
1238   align(end_alignment, end_alignment, end_alignment - ic_check_size());
1239 
1240   int uep_offset = offset();
1241 
1242   if (use_fast_receiver_null_check && TrapBasedICMissChecks) {
1243     // Fast version which uses SIGTRAP
1244 
1245     if (use_trap_based_null_check) {
1246       trap_null_check(receiver);
1247     }
1248     if (UseCompressedClassPointers) {
1249       lwz(tmp1, oopDesc::klass_offset_in_bytes(), receiver);
1250     } else {
1251       ld(tmp1, oopDesc::klass_offset_in_bytes(), receiver);
1252     }
1253     ld(tmp2, in_bytes(CompiledICData::speculated_klass_offset()), data);
1254     trap_ic_miss_check(tmp1, tmp2);
1255 
1256   } else {
1257     // Slower version which doesn't use SIGTRAP
1258 
1259     // Load stub address using toc (fixed instruction size, unlike load_const_optimized)
1260     calculate_address_from_global_toc(tmp1, SharedRuntime::get_ic_miss_stub(),
1261                                       true, true, false); // 2 instructions
1262     mtctr(tmp1);
1263 
1264     if (!implicit_null_checks_available) {
1265       cmpdi(CCR0, receiver, 0);
1266       beqctr(CCR0);
1267     }
1268     if (UseCompressedClassPointers) {
1269       lwz(tmp1, oopDesc::klass_offset_in_bytes(), receiver);
1270     } else {
1271       ld(tmp1, oopDesc::klass_offset_in_bytes(), receiver);
1272     }
1273     ld(tmp2, in_bytes(CompiledICData::speculated_klass_offset()), data);
1274     cmpd(CCR0, tmp1, tmp2);
1275     bnectr(CCR0);
1276   }
1277 
1278   assert((offset() % end_alignment) == 0, "Misaligned verified entry point");
1279 
1280   return uep_offset;
1281 }
1282 
1283 void MacroAssembler::call_VM_base(Register oop_result,
1284                                   Register last_java_sp,
1285                                   address  entry_point,
1286                                   bool     check_exceptions) {
1287   BLOCK_COMMENT("call_VM {");
1288   // Determine last_java_sp register.
1289   if (!last_java_sp->is_valid()) {
1290     last_java_sp = R1_SP;
1291   }
1292   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1);
1293 
1294   // ARG1 must hold thread address.
1295   mr(R3_ARG1, R16_thread);
1296   address return_pc = call_c(entry_point, relocInfo::none);
1297 
1298   reset_last_Java_frame();
1299 
1300   // Check for pending exceptions.
1301   if (check_exceptions) {
1302     // We don't check for exceptions here.
1303     ShouldNotReachHere();
1304   }
1305 
1306   // Get oop result if there is one and reset the value in the thread.
1307   if (oop_result->is_valid()) {
1308     get_vm_result(oop_result);
1309   }
1310 
1311   _last_calls_return_pc = return_pc;
1312   BLOCK_COMMENT("} call_VM");
1313 }
1314 
1315 void MacroAssembler::call_VM_leaf_base(address entry_point) {
1316   BLOCK_COMMENT("call_VM_leaf {");
1317   call_c(entry_point);
1318   BLOCK_COMMENT("} call_VM_leaf");
1319 }
1320 
1321 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
1322   call_VM_base(oop_result, noreg, entry_point, check_exceptions);
1323 }
1324 
1325 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1,
1326                              bool check_exceptions) {
1327   // R3_ARG1 is reserved for the thread.
1328   mr_if_needed(R4_ARG2, arg_1);
1329   call_VM(oop_result, entry_point, check_exceptions);
1330 }
1331 
1332 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
1333                              bool check_exceptions) {
1334   // R3_ARG1 is reserved for the thread
1335   assert_different_registers(arg_2, R4_ARG2);
1336   mr_if_needed(R4_ARG2, arg_1);
1337   mr_if_needed(R5_ARG3, arg_2);
1338   call_VM(oop_result, entry_point, check_exceptions);
1339 }
1340 
1341 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3,
1342                              bool check_exceptions) {
1343   // R3_ARG1 is reserved for the thread
1344   assert_different_registers(arg_2, R4_ARG2);
1345   assert_different_registers(arg_3, R4_ARG2, R5_ARG3);
1346   mr_if_needed(R4_ARG2, arg_1);
1347   mr_if_needed(R5_ARG3, arg_2);
1348   mr_if_needed(R6_ARG4, arg_3);
1349   call_VM(oop_result, entry_point, check_exceptions);
1350 }
1351 
1352 void MacroAssembler::call_VM_leaf(address entry_point) {
1353   call_VM_leaf_base(entry_point);
1354 }
1355 
1356 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
1357   mr_if_needed(R3_ARG1, arg_1);
1358   call_VM_leaf(entry_point);
1359 }
1360 
1361 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
1362   assert_different_registers(arg_2, R3_ARG1);
1363   mr_if_needed(R3_ARG1, arg_1);
1364   mr_if_needed(R4_ARG2, arg_2);
1365   call_VM_leaf(entry_point);
1366 }
1367 
1368 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1369   assert_different_registers(arg_2, R3_ARG1);
1370   assert_different_registers(arg_3, R3_ARG1, R4_ARG2);
1371   mr_if_needed(R3_ARG1, arg_1);
1372   mr_if_needed(R4_ARG2, arg_2);
1373   mr_if_needed(R5_ARG3, arg_3);
1374   call_VM_leaf(entry_point);
1375 }
1376 
1377 // Check whether instruction is a read access to the polling page
1378 // which was emitted by load_from_polling_page(..).
1379 bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext,
1380                                                address* polling_address_ptr) {
1381   if (!is_ld(instruction))
1382     return false; // It's not a ld. Fail.
1383 
1384   int rt = inv_rt_field(instruction);
1385   int ra = inv_ra_field(instruction);
1386   int ds = inv_ds_field(instruction);
1387   if (!(ds == 0 && ra != 0 && rt == 0)) {
1388     return false; // It's not a ld(r0, X, ra). Fail.
1389   }
1390 
1391   if (!ucontext) {
1392     // Set polling address.
1393     if (polling_address_ptr != nullptr) {
1394       *polling_address_ptr = nullptr;
1395     }
1396     return true; // No ucontext given. Can't check value of ra. Assume true.
1397   }
1398 
1399 #ifdef LINUX
1400   // Ucontext given. Check that register ra contains the address of
1401   // the safepoing polling page.
1402   ucontext_t* uc = (ucontext_t*) ucontext;
1403   // Set polling address.
1404   address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds;
1405   if (polling_address_ptr != nullptr) {
1406     *polling_address_ptr = addr;
1407   }
1408   return SafepointMechanism::is_poll_address(addr);
1409 #else
1410   // Not on Linux, ucontext must be null.
1411   ShouldNotReachHere();
1412   return false;
1413 #endif
1414 }
1415 
1416 void MacroAssembler::bang_stack_with_offset(int offset) {
1417   // When increasing the stack, the old stack pointer will be written
1418   // to the new top of stack according to the PPC64 abi.
1419   // Therefore, stack banging is not necessary when increasing
1420   // the stack by <= os::vm_page_size() bytes.
1421   // When increasing the stack by a larger amount, this method is
1422   // called repeatedly to bang the intermediate pages.
1423 
1424   // Stack grows down, caller passes positive offset.
1425   assert(offset > 0, "must bang with positive offset");
1426 
1427   long stdoffset = -offset;
1428 
1429   if (is_simm(stdoffset, 16)) {
1430     // Signed 16 bit offset, a simple std is ok.
1431     if (UseLoadInstructionsForStackBangingPPC64) {
1432       ld(R0, (int)(signed short)stdoffset, R1_SP);
1433     } else {
1434       std(R0,(int)(signed short)stdoffset, R1_SP);
1435     }
1436   } else if (is_simm(stdoffset, 31)) {
1437     const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1438     const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1439 
1440     Register tmp = R11;
1441     addis(tmp, R1_SP, hi);
1442     if (UseLoadInstructionsForStackBangingPPC64) {
1443       ld(R0,  lo, tmp);
1444     } else {
1445       std(R0, lo, tmp);
1446     }
1447   } else {
1448     ShouldNotReachHere();
1449   }
1450 }
1451 
1452 // If instruction is a stack bang of the form
1453 //    std    R0,    x(Ry),       (see bang_stack_with_offset())
1454 //    stdu   R1_SP, x(R1_SP),    (see push_frame(), resize_frame())
1455 // or stdux  R1_SP, Rx, R1_SP    (see push_frame(), resize_frame())
1456 // return the banged address. Otherwise, return 0.
1457 address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) {
1458 #ifdef LINUX
1459   ucontext_t* uc = (ucontext_t*) ucontext;
1460   int rs = inv_rs_field(instruction);
1461   int ra = inv_ra_field(instruction);
1462   if (   (is_ld(instruction)   && rs == 0 &&  UseLoadInstructionsForStackBangingPPC64)
1463       || (is_std(instruction)  && rs == 0 && !UseLoadInstructionsForStackBangingPPC64)
1464       || (is_stdu(instruction) && rs == 1)) {
1465     int ds = inv_ds_field(instruction);
1466     // return banged address
1467     return ds+(address)uc->uc_mcontext.regs->gpr[ra];
1468   } else if (is_stdux(instruction) && rs == 1) {
1469     int rb = inv_rb_field(instruction);
1470     address sp = (address)uc->uc_mcontext.regs->gpr[1];
1471     long rb_val = (long)uc->uc_mcontext.regs->gpr[rb];
1472     return ra != 1 || rb_val >= 0 ? nullptr         // not a stack bang
1473                                   : sp + rb_val; // banged address
1474   }
1475   return nullptr; // not a stack bang
1476 #else
1477   // workaround not needed on !LINUX :-)
1478   ShouldNotCallThis();
1479   return nullptr;
1480 #endif
1481 }
1482 
1483 void MacroAssembler::reserved_stack_check(Register return_pc) {
1484   // Test if reserved zone needs to be enabled.
1485   Label no_reserved_zone_enabling;
1486 
1487   ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
1488   cmpld(CCR0, R1_SP, R0);
1489   blt_predict_taken(CCR0, no_reserved_zone_enabling);
1490 
1491   // Enable reserved zone again, throw stack overflow exception.
1492   push_frame_reg_args(0, R0);
1493   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
1494   pop_frame();
1495   mtlr(return_pc);
1496   load_const_optimized(R0, SharedRuntime::throw_delayed_StackOverflowError_entry());
1497   mtctr(R0);
1498   bctr();
1499 
1500   should_not_reach_here();
1501 
1502   bind(no_reserved_zone_enabling);
1503 }
1504 
1505 void MacroAssembler::getandsetd(Register dest_current_value, Register exchange_value, Register addr_base,
1506                                 bool cmpxchgx_hint) {
1507   Label retry;
1508   bind(retry);
1509   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1510   stdcx_(exchange_value, addr_base);
1511   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1512     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1513   } else {
1514     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1515   }
1516 }
1517 
1518 void MacroAssembler::getandaddd(Register dest_current_value, Register inc_value, Register addr_base,
1519                                 Register tmp, bool cmpxchgx_hint) {
1520   Label retry;
1521   bind(retry);
1522   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1523   add(tmp, dest_current_value, inc_value);
1524   stdcx_(tmp, addr_base);
1525   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1526     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1527   } else {
1528     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1529   }
1530 }
1531 
1532 // Word/sub-word atomic helper functions
1533 
1534 // Temps and addr_base are killed if size < 4 and processor does not support respective instructions.
1535 // Only signed types are supported with size < 4.
1536 // Atomic add always kills tmp1.
1537 void MacroAssembler::atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value,
1538                                                    Register addr_base, Register tmp1, Register tmp2, Register tmp3,
1539                                                    bool cmpxchgx_hint, bool is_add, int size) {
1540   // Sub-word instructions are available since Power 8.
1541   // For older processors, instruction_type != size holds, and we
1542   // emulate the sub-word instructions by constructing a 4-byte value
1543   // that leaves the other bytes unchanged.
1544   const int instruction_type = VM_Version::has_lqarx() ? size : 4;
1545 
1546   Label retry;
1547   Register shift_amount = noreg,
1548            val32 = dest_current_value,
1549            modval = is_add ? tmp1 : exchange_value;
1550 
1551   if (instruction_type != size) {
1552     assert_different_registers(tmp1, tmp2, tmp3, dest_current_value, exchange_value, addr_base);
1553     modval = tmp1;
1554     shift_amount = tmp2;
1555     val32 = tmp3;
1556     // Need some preparation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
1557 #ifdef VM_LITTLE_ENDIAN
1558     rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
1559     clrrdi(addr_base, addr_base, 2);
1560 #else
1561     xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
1562     clrrdi(addr_base, addr_base, 2);
1563     rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
1564 #endif
1565   }
1566 
1567   // atomic emulation loop
1568   bind(retry);
1569 
1570   switch (instruction_type) {
1571     case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
1572     case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
1573     case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
1574     default: ShouldNotReachHere();
1575   }
1576 
1577   if (instruction_type != size) {
1578     srw(dest_current_value, val32, shift_amount);
1579   }
1580 
1581   if (is_add) { add(modval, dest_current_value, exchange_value); }
1582 
1583   if (instruction_type != size) {
1584     // Transform exchange value such that the replacement can be done by one xor instruction.
1585     xorr(modval, dest_current_value, is_add ? modval : exchange_value);
1586     clrldi(modval, modval, (size == 1) ? 56 : 48);
1587     slw(modval, modval, shift_amount);
1588     xorr(modval, val32, modval);
1589   }
1590 
1591   switch (instruction_type) {
1592     case 4: stwcx_(modval, addr_base); break;
1593     case 2: sthcx_(modval, addr_base); break;
1594     case 1: stbcx_(modval, addr_base); break;
1595     default: ShouldNotReachHere();
1596   }
1597 
1598   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1599     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1600   } else {
1601     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1602   }
1603 
1604   // l?arx zero-extends, but Java wants byte/short values sign-extended.
1605   if (size == 1) {
1606     extsb(dest_current_value, dest_current_value);
1607   } else if (size == 2) {
1608     extsh(dest_current_value, dest_current_value);
1609   };
1610 }
1611 
1612 // Temps, addr_base and exchange_value are killed if size < 4 and processor does not support respective instructions.
1613 // Only signed types are supported with size < 4.
1614 void MacroAssembler::cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value,
1615                                        RegisterOrConstant compare_value, Register exchange_value,
1616                                        Register addr_base, Register tmp1, Register tmp2,
1617                                        Label &retry, Label &failed, bool cmpxchgx_hint, int size) {
1618   // Sub-word instructions are available since Power 8.
1619   // For older processors, instruction_type != size holds, and we
1620   // emulate the sub-word instructions by constructing a 4-byte value
1621   // that leaves the other bytes unchanged.
1622   const int instruction_type = VM_Version::has_lqarx() ? size : 4;
1623 
1624   Register shift_amount = noreg,
1625            val32 = dest_current_value,
1626            modval = exchange_value;
1627 
1628   if (instruction_type != size) {
1629     assert_different_registers(tmp1, tmp2, dest_current_value, compare_value.register_or_noreg(), exchange_value, addr_base);
1630     shift_amount = tmp1;
1631     val32 = tmp2;
1632     modval = tmp2;
1633     // Need some preparation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
1634 #ifdef VM_LITTLE_ENDIAN
1635     rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
1636     clrrdi(addr_base, addr_base, 2);
1637 #else
1638     xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
1639     clrrdi(addr_base, addr_base, 2);
1640     rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
1641 #endif
1642     // Transform exchange value such that the replacement can be done by one xor instruction.
1643     xorr(exchange_value, compare_value, exchange_value);
1644     clrldi(exchange_value, exchange_value, (size == 1) ? 56 : 48);
1645     slw(exchange_value, exchange_value, shift_amount);
1646   }
1647 
1648   // atomic emulation loop
1649   bind(retry);
1650 
1651   switch (instruction_type) {
1652     case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
1653     case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
1654     case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
1655     default: ShouldNotReachHere();
1656   }
1657 
1658   if (instruction_type != size) {
1659     srw(dest_current_value, val32, shift_amount);
1660   }
1661   if (size == 1) {
1662     extsb(dest_current_value, dest_current_value);
1663   } else if (size == 2) {
1664     extsh(dest_current_value, dest_current_value);
1665   };
1666 
1667   cmpw(flag, dest_current_value, compare_value);
1668   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1669     bne_predict_not_taken(flag, failed);
1670   } else {
1671     bne(                  flag, failed);
1672   }
1673   // branch to done  => (flag == ne), (dest_current_value != compare_value)
1674   // fall through    => (flag == eq), (dest_current_value == compare_value)
1675 
1676   if (instruction_type != size) {
1677     xorr(modval, val32, exchange_value);
1678   }
1679 
1680   switch (instruction_type) {
1681     case 4: stwcx_(modval, addr_base); break;
1682     case 2: sthcx_(modval, addr_base); break;
1683     case 1: stbcx_(modval, addr_base); break;
1684     default: ShouldNotReachHere();
1685   }
1686 }
1687 
1688 // CmpxchgX sets condition register to cmpX(current, compare).
1689 void MacroAssembler::cmpxchg_generic(ConditionRegister flag, Register dest_current_value,
1690                                      RegisterOrConstant compare_value, Register exchange_value,
1691                                      Register addr_base, Register tmp1, Register tmp2,
1692                                      int semantics, bool cmpxchgx_hint, Register int_flag_success,
1693                                      Label* failed_ext, bool contention_hint, bool weak, int size) {
1694   Label retry;
1695   Label failed_int;
1696   Label& failed = (failed_ext != nullptr) ? *failed_ext : failed_int;
1697   Label done;
1698 
1699   // Save one branch if result is returned via register and
1700   // result register is different from the other ones.
1701   bool use_result_reg    = (int_flag_success != noreg);
1702   bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value.register_or_noreg() &&
1703                             int_flag_success != exchange_value && int_flag_success != addr_base &&
1704                             int_flag_success != tmp1 && int_flag_success != tmp2);
1705   assert(!weak || flag == CCR0, "weak only supported with CCR0");
1706   assert(int_flag_success == noreg || failed_ext == nullptr, "cannot have both");
1707   assert(size == 1 || size == 2 || size == 4, "unsupported");
1708 
1709   if (use_result_reg && preset_result_reg) {
1710     li(int_flag_success, 0); // preset (assume cas failed)
1711   }
1712 
1713   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1714   if (contention_hint) { // Don't try to reserve if cmp fails.
1715     switch (size) {
1716       case 1: lbz(dest_current_value, 0, addr_base); extsb(dest_current_value, dest_current_value); break;
1717       case 2: lha(dest_current_value, 0, addr_base); break;
1718       case 4: lwz(dest_current_value, 0, addr_base); break;
1719       default: ShouldNotReachHere();
1720     }
1721     cmpw(flag, dest_current_value, compare_value);
1722     bne(flag, failed);
1723   }
1724 
1725   // release/fence semantics
1726   if (semantics & MemBarRel) {
1727     release();
1728   }
1729 
1730   cmpxchg_loop_body(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
1731                     retry, failed, cmpxchgx_hint, size);
1732   if (!weak || use_result_reg || failed_ext) {
1733     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1734       bne_predict_not_taken(CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
1735     } else {
1736       bne(                  CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
1737     }
1738   }
1739   // fall through    => (flag == eq), (dest_current_value == compare_value), (swapped)
1740 
1741   // Result in register (must do this at the end because int_flag_success can be the
1742   // same register as one above).
1743   if (use_result_reg) {
1744     li(int_flag_success, 1);
1745   }
1746 
1747   if (semantics & MemBarFenceAfter) {
1748     fence();
1749   } else if (semantics & MemBarAcq) {
1750     isync();
1751   }
1752 
1753   if (use_result_reg && !preset_result_reg) {
1754     b(done);
1755   }
1756 
1757   bind(failed_int);
1758   if (use_result_reg && !preset_result_reg) {
1759     li(int_flag_success, 0);
1760   }
1761 
1762   bind(done);
1763   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1764   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1765 }
1766 
1767 // Performs atomic compare exchange:
1768 //   if (compare_value == *addr_base)
1769 //     *addr_base = exchange_value
1770 //     int_flag_success = 1;
1771 //   else
1772 //     int_flag_success = 0;
1773 //
1774 // ConditionRegister flag       = cmp(compare_value, *addr_base)
1775 // Register dest_current_value  = *addr_base
1776 // Register compare_value       Used to compare with value in memory
1777 // Register exchange_value      Written to memory if compare_value == *addr_base
1778 // Register addr_base           The memory location to compareXChange
1779 // Register int_flag_success    Set to 1 if exchange_value was written to *addr_base
1780 //
1781 // To avoid the costly compare exchange the value is tested beforehand.
1782 // Several special cases exist to avoid that unnecessary information is generated.
1783 //
1784 void MacroAssembler::cmpxchgd(ConditionRegister flag, Register dest_current_value,
1785                               RegisterOrConstant compare_value, Register exchange_value,
1786                               Register addr_base,
1787                               int semantics, bool cmpxchgx_hint, Register int_flag_success,
1788                               Label* failed_ext, bool contention_hint, bool weak) {
1789   Label retry;
1790   Label failed_int;
1791   Label& failed = (failed_ext != nullptr) ? *failed_ext : failed_int;
1792   Label done;
1793 
1794   // Save one branch if result is returned via register and result register is different from the other ones.
1795   bool use_result_reg    = (int_flag_success!=noreg);
1796   bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value.register_or_noreg() &&
1797                             int_flag_success!=exchange_value && int_flag_success!=addr_base);
1798   assert(!weak || flag == CCR0, "weak only supported with CCR0");
1799   assert(int_flag_success == noreg || failed_ext == nullptr, "cannot have both");
1800 
1801   if (use_result_reg && preset_result_reg) {
1802     li(int_flag_success, 0); // preset (assume cas failed)
1803   }
1804 
1805   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1806   if (contention_hint) { // Don't try to reserve if cmp fails.
1807     ld(dest_current_value, 0, addr_base);
1808     cmpd(flag, dest_current_value, compare_value);
1809     bne(flag, failed);
1810   }
1811 
1812   // release/fence semantics
1813   if (semantics & MemBarRel) {
1814     release();
1815   }
1816 
1817   // atomic emulation loop
1818   bind(retry);
1819 
1820   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1821   cmpd(flag, dest_current_value, compare_value);
1822   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1823     bne_predict_not_taken(flag, failed);
1824   } else {
1825     bne(                  flag, failed);
1826   }
1827 
1828   stdcx_(exchange_value, addr_base);
1829   if (!weak || use_result_reg || failed_ext) {
1830     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1831       bne_predict_not_taken(CCR0, weak ? failed : retry); // stXcx_ sets CCR0
1832     } else {
1833       bne(                  CCR0, weak ? failed : retry); // stXcx_ sets CCR0
1834     }
1835   }
1836 
1837   // result in register (must do this at the end because int_flag_success can be the same register as one above)
1838   if (use_result_reg) {
1839     li(int_flag_success, 1);
1840   }
1841 
1842   if (semantics & MemBarFenceAfter) {
1843     fence();
1844   } else if (semantics & MemBarAcq) {
1845     isync();
1846   }
1847 
1848   if (use_result_reg && !preset_result_reg) {
1849     b(done);
1850   }
1851 
1852   bind(failed_int);
1853   if (use_result_reg && !preset_result_reg) {
1854     li(int_flag_success, 0);
1855   }
1856 
1857   bind(done);
1858   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1859   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1860 }
1861 
1862 // Look up the method for a megamorphic invokeinterface call.
1863 // The target method is determined by <intf_klass, itable_index>.
1864 // The receiver klass is in recv_klass.
1865 // On success, the result will be in method_result, and execution falls through.
1866 // On failure, execution transfers to the given label.
1867 void MacroAssembler::lookup_interface_method(Register recv_klass,
1868                                              Register intf_klass,
1869                                              RegisterOrConstant itable_index,
1870                                              Register method_result,
1871                                              Register scan_temp,
1872                                              Register temp2,
1873                                              Label& L_no_such_interface,
1874                                              bool return_method) {
1875   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
1876 
1877   // Compute start of first itableOffsetEntry (which is at the end of the vtable).
1878   int vtable_base = in_bytes(Klass::vtable_start_offset());
1879   int itentry_off = in_bytes(itableMethodEntry::method_offset());
1880   int logMEsize   = exact_log2(itableMethodEntry::size() * wordSize);
1881   int scan_step   = itableOffsetEntry::size() * wordSize;
1882   int log_vte_size= exact_log2(vtableEntry::size_in_bytes());
1883 
1884   lwz(scan_temp, in_bytes(Klass::vtable_length_offset()), recv_klass);
1885   // We should store the aligned, prescaled offset in the klass.
1886   // Then the next several instructions would fold away.
1887 
1888   sldi(scan_temp, scan_temp, log_vte_size);
1889   addi(scan_temp, scan_temp, vtable_base);
1890   add(scan_temp, recv_klass, scan_temp);
1891 
1892   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1893   if (return_method) {
1894     if (itable_index.is_register()) {
1895       Register itable_offset = itable_index.as_register();
1896       sldi(method_result, itable_offset, logMEsize);
1897       if (itentry_off) { addi(method_result, method_result, itentry_off); }
1898       add(method_result, method_result, recv_klass);
1899     } else {
1900       long itable_offset = (long)itable_index.as_constant();
1901       // static address, no relocation
1902       add_const_optimized(method_result, recv_klass, (itable_offset << logMEsize) + itentry_off, temp2);
1903     }
1904   }
1905 
1906   // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
1907   //   if (scan->interface() == intf) {
1908   //     result = (klass + scan->offset() + itable_index);
1909   //   }
1910   // }
1911   Label search, found_method;
1912 
1913   for (int peel = 1; peel >= 0; peel--) {
1914     // %%%% Could load both offset and interface in one ldx, if they were
1915     // in the opposite order. This would save a load.
1916     ld(temp2, in_bytes(itableOffsetEntry::interface_offset()), scan_temp);
1917 
1918     // Check that this entry is non-null. A null entry means that
1919     // the receiver class doesn't implement the interface, and wasn't the
1920     // same as when the caller was compiled.
1921     cmpd(CCR0, temp2, intf_klass);
1922 
1923     if (peel) {
1924       beq(CCR0, found_method);
1925     } else {
1926       bne(CCR0, search);
1927       // (invert the test to fall through to found_method...)
1928     }
1929 
1930     if (!peel) break;
1931 
1932     bind(search);
1933 
1934     cmpdi(CCR0, temp2, 0);
1935     beq(CCR0, L_no_such_interface);
1936     addi(scan_temp, scan_temp, scan_step);
1937   }
1938 
1939   bind(found_method);
1940 
1941   // Got a hit.
1942   if (return_method) {
1943     int ito_offset = in_bytes(itableOffsetEntry::offset_offset());
1944     lwz(scan_temp, ito_offset, scan_temp);
1945     ldx(method_result, scan_temp, method_result);
1946   }
1947 }
1948 
1949 // virtual method calling
1950 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1951                                            RegisterOrConstant vtable_index,
1952                                            Register method_result) {
1953 
1954   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
1955 
1956   const ByteSize base = Klass::vtable_start_offset();
1957   assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1958 
1959   if (vtable_index.is_register()) {
1960     sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord);
1961     add(recv_klass, vtable_index.as_register(), recv_klass);
1962   } else {
1963     addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord);
1964   }
1965   ld(R19_method, in_bytes(base + vtableEntry::method_offset()), recv_klass);
1966 }
1967 
1968 /////////////////////////////////////////// subtype checking ////////////////////////////////////////////
1969 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1970                                                    Register super_klass,
1971                                                    Register temp1_reg,
1972                                                    Register temp2_reg,
1973                                                    Label* L_success,
1974                                                    Label* L_failure,
1975                                                    Label* L_slow_path,
1976                                                    RegisterOrConstant super_check_offset) {
1977 
1978   const Register check_cache_offset = temp1_reg;
1979   const Register cached_super       = temp2_reg;
1980 
1981   assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super);
1982 
1983   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1984   int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
1985 
1986   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1987   bool need_slow_path = (must_load_sco || super_check_offset.constant_or_zero() == sco_offset);
1988 
1989   Label L_fallthrough;
1990   int label_nulls = 0;
1991   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
1992   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
1993   if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
1994   assert(label_nulls <= 1 ||
1995          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
1996          "at most one null in the batch, usually");
1997 
1998   // If the pointers are equal, we are done (e.g., String[] elements).
1999   // This self-check enables sharing of secondary supertype arrays among
2000   // non-primary types such as array-of-interface. Otherwise, each such
2001   // type would need its own customized SSA.
2002   // We move this check to the front of the fast path because many
2003   // type checks are in fact trivially successful in this manner,
2004   // so we get a nicely predicted branch right at the start of the check.
2005   cmpd(CCR0, sub_klass, super_klass);
2006   beq(CCR0, *L_success);
2007 
2008   // Check the supertype display:
2009   if (must_load_sco) {
2010     // The super check offset is always positive...
2011     lwz(check_cache_offset, sco_offset, super_klass);
2012     super_check_offset = RegisterOrConstant(check_cache_offset);
2013     // super_check_offset is register.
2014     assert_different_registers(sub_klass, super_klass, cached_super, super_check_offset.as_register());
2015   }
2016   // The loaded value is the offset from Klass.
2017 
2018   ld(cached_super, super_check_offset, sub_klass);
2019   cmpd(CCR0, cached_super, super_klass);
2020 
2021   // This check has worked decisively for primary supers.
2022   // Secondary supers are sought in the super_cache ('super_cache_addr').
2023   // (Secondary supers are interfaces and very deeply nested subtypes.)
2024   // This works in the same check above because of a tricky aliasing
2025   // between the super_cache and the primary super display elements.
2026   // (The 'super_check_addr' can address either, as the case requires.)
2027   // Note that the cache is updated below if it does not help us find
2028   // what we need immediately.
2029   // So if it was a primary super, we can just fail immediately.
2030   // Otherwise, it's the slow path for us (no success at this point).
2031 
2032 #define FINAL_JUMP(label) if (&(label) != &L_fallthrough) { b(label); }
2033 
2034   if (super_check_offset.is_register()) {
2035     beq(CCR0, *L_success);
2036     cmpwi(CCR0, super_check_offset.as_register(), sc_offset);
2037     if (L_failure == &L_fallthrough) {
2038       beq(CCR0, *L_slow_path);
2039     } else {
2040       bne(CCR0, *L_failure);
2041       FINAL_JUMP(*L_slow_path);
2042     }
2043   } else {
2044     if (super_check_offset.as_constant() == sc_offset) {
2045       // Need a slow path; fast failure is impossible.
2046       if (L_slow_path == &L_fallthrough) {
2047         beq(CCR0, *L_success);
2048       } else {
2049         bne(CCR0, *L_slow_path);
2050         FINAL_JUMP(*L_success);
2051       }
2052     } else {
2053       // No slow path; it's a fast decision.
2054       if (L_failure == &L_fallthrough) {
2055         beq(CCR0, *L_success);
2056       } else {
2057         bne(CCR0, *L_failure);
2058         FINAL_JUMP(*L_success);
2059       }
2060     }
2061   }
2062 
2063   bind(L_fallthrough);
2064 #undef FINAL_JUMP
2065 }
2066 
2067 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
2068                                                    Register super_klass,
2069                                                    Register temp1_reg,
2070                                                    Register temp2_reg,
2071                                                    Label* L_success,
2072                                                    Register result_reg) {
2073   const Register array_ptr = temp1_reg; // current value from cache array
2074   const Register temp      = temp2_reg;
2075 
2076   assert_different_registers(sub_klass, super_klass, array_ptr, temp);
2077 
2078   int source_offset = in_bytes(Klass::secondary_supers_offset());
2079   int target_offset = in_bytes(Klass::secondary_super_cache_offset());
2080 
2081   int length_offset = Array<Klass*>::length_offset_in_bytes();
2082   int base_offset   = Array<Klass*>::base_offset_in_bytes();
2083 
2084   Label hit, loop, failure, fallthru;
2085 
2086   ld(array_ptr, source_offset, sub_klass);
2087 
2088   // TODO: PPC port: assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated.");
2089   lwz(temp, length_offset, array_ptr);
2090   cmpwi(CCR0, temp, 0);
2091   beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0
2092 
2093   mtctr(temp); // load ctr
2094 
2095   bind(loop);
2096   // Oops in table are NO MORE compressed.
2097   ld(temp, base_offset, array_ptr);
2098   cmpd(CCR0, temp, super_klass);
2099   beq(CCR0, hit);
2100   addi(array_ptr, array_ptr, BytesPerWord);
2101   bdnz(loop);
2102 
2103   bind(failure);
2104   if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss)
2105   b(fallthru);
2106 
2107   bind(hit);
2108   std(super_klass, target_offset, sub_klass); // save result to cache
2109   if (result_reg != noreg) { li(result_reg, 0); } // load zero result (indicates a hit)
2110   if (L_success != nullptr) { b(*L_success); }
2111   else if (result_reg == noreg) { blr(); } // return with CR0.eq if neither label nor result reg provided
2112 
2113   bind(fallthru);
2114 }
2115 
2116 // Try fast path, then go to slow one if not successful
2117 void MacroAssembler::check_klass_subtype(Register sub_klass,
2118                          Register super_klass,
2119                          Register temp1_reg,
2120                          Register temp2_reg,
2121                          Label& L_success) {
2122   Label L_failure;
2123   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success, &L_failure);
2124   check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success);
2125   bind(L_failure); // Fallthru if not successful.
2126 }
2127 
2128 // scans count pointer sized words at [addr] for occurrence of value,
2129 // generic (count must be >0)
2130 // iff found: CR0 eq, scratch == 0
2131 void MacroAssembler::repne_scan(Register addr, Register value, Register count, Register scratch) {
2132   Label Lloop, Lexit;
2133 
2134 #ifdef ASSERT
2135   {
2136     Label ok;
2137     cmpdi(CCR0, count, 0);
2138     bgt(CCR0, ok);
2139     stop("count must be positive");
2140     bind(ok);
2141   }
2142 #endif
2143 
2144   mtctr(count);
2145 
2146   bind(Lloop);
2147   ld(scratch, 0 , addr);
2148   xor_(scratch, scratch, value);
2149   beq(CCR0, Lexit);
2150   addi(addr, addr, wordSize);
2151   bdnz(Lloop);
2152 
2153   bind(Lexit);
2154 }
2155 
2156 // Ensure that the inline code and the stub are using the same registers.
2157 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS                       \
2158 do {                                                                  \
2159   assert(r_super_klass  == R4_ARG2                                 && \
2160          r_array_base   == R3_ARG1                                 && \
2161          r_array_length == R7_ARG5                                 && \
2162          (r_array_index == R6_ARG4      || r_array_index == noreg) && \
2163          (r_sub_klass   == R5_ARG3      || r_sub_klass   == noreg) && \
2164          (r_bitmap      == R11_scratch1 || r_bitmap      == noreg) && \
2165          (result        == R8_ARG6      || result        == noreg), "registers must match ppc64.ad"); \
2166 } while(0)
2167 
2168 void MacroAssembler::lookup_secondary_supers_table(Register r_sub_klass,
2169                                                    Register r_super_klass,
2170                                                    Register temp1,
2171                                                    Register temp2,
2172                                                    Register temp3,
2173                                                    Register temp4,
2174                                                    Register result,
2175                                                    u1 super_klass_slot) {
2176   assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
2177 
2178   Label L_done;
2179 
2180   BLOCK_COMMENT("lookup_secondary_supers_table {");
2181 
2182   const Register
2183     r_array_base   = temp1,
2184     r_array_length = temp2,
2185     r_array_index  = temp3,
2186     r_bitmap       = temp4;
2187 
2188   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
2189 
2190   ld(r_bitmap, in_bytes(Klass::bitmap_offset()), r_sub_klass);
2191 
2192   // First check the bitmap to see if super_klass might be present. If
2193   // the bit is zero, we are certain that super_klass is not one of
2194   // the secondary supers.
2195   u1 bit = super_klass_slot;
2196   int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit;
2197 
2198   // if (shift_count == 0) this is used for comparing with 0:
2199   sldi_(r_array_index, r_bitmap, shift_count);
2200 
2201   li(result, 1); // failure
2202   // We test the MSB of r_array_index, i.e. its sign bit
2203   bge(CCR0, L_done);
2204 
2205   // We will consult the secondary-super array.
2206   ld(r_array_base, in_bytes(Klass::secondary_supers_offset()), r_sub_klass);
2207 
2208   // The value i in r_array_index is >= 1, so even though r_array_base
2209   // points to the length, we don't need to adjust it to point to the
2210   // data.
2211   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
2212 
2213   // Get the first array index that can contain super_klass.
2214   if (bit != 0) {
2215     popcntd(r_array_index, r_array_index);
2216     // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
2217     sldi(r_array_index, r_array_index, LogBytesPerWord); // scale
2218     ldx(result, r_array_base, r_array_index);
2219   } else {
2220     // Actually use index 0, but r_array_base and r_array_index are off by 1 word
2221     // such that the sum is precise.
2222     ld(result, BytesPerWord, r_array_base);
2223     li(r_array_index, BytesPerWord); // for slow path (scaled)
2224   }
2225 
2226   xor_(result, result, r_super_klass);
2227   beq(CCR0, L_done); // Found a match (result == 0)
2228 
2229   // Is there another entry to check? Consult the bitmap.
2230   testbitdi(CCR0, /* temp */ r_array_length, r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK);
2231   beq(CCR0, L_done); // (result != 0)
2232 
2233   // Linear probe. Rotate the bitmap so that the next bit to test is
2234   // in Bit 2 for the look-ahead check in the slow path.
2235   if (bit != 0) {
2236     rldicl(r_bitmap, r_bitmap, 64 - bit, 0);
2237   }
2238 
2239   // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
2240   // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
2241   // Kills: r_array_length.
2242   // Returns: result.
2243   address stub = StubRoutines::lookup_secondary_supers_table_slow_path_stub();
2244   Register r_stub_addr = r_array_length;
2245   add_const_optimized(r_stub_addr, R29_TOC, MacroAssembler::offset_to_global_toc(stub), R0);
2246   mtctr(r_stub_addr);
2247   bctrl();
2248 
2249   bind(L_done);
2250   BLOCK_COMMENT("} lookup_secondary_supers_table");
2251 
2252   if (VerifySecondarySupers) {
2253     verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
2254                                   temp1, temp2, temp3);
2255   }
2256 }
2257 
2258 // Called by code generated by check_klass_subtype_slow_path
2259 // above. This is called when there is a collision in the hashed
2260 // lookup in the secondary supers array.
2261 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
2262                                                              Register r_array_base,
2263                                                              Register r_array_index,
2264                                                              Register r_bitmap,
2265                                                              Register result,
2266                                                              Register temp1) {
2267   assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, result, temp1);
2268 
2269   const Register
2270     r_array_length = temp1,
2271     r_sub_klass    = noreg;
2272 
2273   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
2274 
2275   Label L_done;
2276 
2277   // Load the array length.
2278   lwa(r_array_length, Array<Klass*>::length_offset_in_bytes(), r_array_base);
2279   // And adjust the array base to point to the data.
2280   // NB! Effectively increments current slot index by 1.
2281   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
2282   addi(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
2283 
2284   // Linear probe
2285   Label L_huge;
2286 
2287   // The bitmap is full to bursting.
2288   // Implicit invariant: BITMAP_FULL implies (length > 0)
2289   cmpwi(CCR0, r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2);
2290   bgt(CCR0, L_huge);
2291 
2292   // NB! Our caller has checked bits 0 and 1 in the bitmap. The
2293   // current slot (at secondary_supers[r_array_index]) has not yet
2294   // been inspected, and r_array_index may be out of bounds if we
2295   // wrapped around the end of the array.
2296 
2297   { // This is conventional linear probing, but instead of terminating
2298     // when a null entry is found in the table, we maintain a bitmap
2299     // in which a 0 indicates missing entries.
2300     // The check above guarantees there are 0s in the bitmap, so the loop
2301     // eventually terminates.
2302 
2303 #ifdef ASSERT
2304     {
2305       // We should only reach here after having found a bit in the bitmap.
2306       // Invariant: array_length == popcount(bitmap)
2307       Label ok;
2308       cmpdi(CCR0, r_array_length, 0);
2309       bgt(CCR0, ok);
2310       stop("array_length must be positive");
2311       bind(ok);
2312     }
2313 #endif
2314 
2315     // Compute limit in r_array_length
2316     addi(r_array_length, r_array_length, -1);
2317     sldi(r_array_length, r_array_length, LogBytesPerWord);
2318 
2319     Label L_loop;
2320     bind(L_loop);
2321 
2322     // Check for wraparound.
2323     cmpd(CCR0, r_array_index, r_array_length);
2324     isel_0(r_array_index, CCR0, Assembler::greater);
2325 
2326     ldx(result, r_array_base, r_array_index);
2327     xor_(result, result, r_super_klass);
2328     beq(CCR0, L_done); // success (result == 0)
2329 
2330     // look-ahead check (Bit 2); result is non-zero
2331     testbitdi(CCR0, R0, r_bitmap, 2);
2332     beq(CCR0, L_done); // fail (result != 0)
2333 
2334     rldicl(r_bitmap, r_bitmap, 64 - 1, 0);
2335     addi(r_array_index, r_array_index, BytesPerWord);
2336     b(L_loop);
2337   }
2338 
2339   { // Degenerate case: more than 64 secondary supers.
2340     // FIXME: We could do something smarter here, maybe a vectorized
2341     // comparison or a binary search, but is that worth any added
2342     // complexity?
2343     bind(L_huge);
2344     repne_scan(r_array_base, r_super_klass, r_array_length, result);
2345   }
2346 
2347   bind(L_done);
2348 }
2349 
2350 // Make sure that the hashed lookup and a linear scan agree.
2351 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
2352                                                    Register r_super_klass,
2353                                                    Register result,
2354                                                    Register temp1,
2355                                                    Register temp2,
2356                                                    Register temp3) {
2357   assert_different_registers(r_sub_klass, r_super_klass, result, temp1, temp2, temp3);
2358 
2359   const Register
2360     r_array_base   = temp1,
2361     r_array_length = temp2,
2362     r_array_index  = temp3,
2363     r_bitmap       = noreg; // unused
2364 
2365   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
2366 
2367   BLOCK_COMMENT("verify_secondary_supers_table {");
2368 
2369   Label passed, failure;
2370 
2371   // We will consult the secondary-super array.
2372   ld(r_array_base, in_bytes(Klass::secondary_supers_offset()), r_sub_klass);
2373   // Load the array length.
2374   lwa(r_array_length, Array<Klass*>::length_offset_in_bytes(), r_array_base);
2375   // And adjust the array base to point to the data.
2376   addi(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
2377 
2378   // convert !=0 to 1
2379   normalize_bool(result, R0, true);
2380   const Register linear_result = r_array_index; // reuse
2381   li(linear_result, 1);
2382   cmpdi(CCR0, r_array_length, 0);
2383   ble(CCR0, failure);
2384   repne_scan(r_array_base, r_super_klass, r_array_length, linear_result);
2385   bind(failure);
2386 
2387   // convert !=0 to 1
2388   normalize_bool(linear_result, R0, true);
2389 
2390   cmpd(CCR0, result, linear_result);
2391   beq(CCR0, passed);
2392 
2393   assert_different_registers(R3_ARG1, r_sub_klass, linear_result, result);
2394   mr_if_needed(R3_ARG1, r_super_klass);
2395   assert_different_registers(R4_ARG2, linear_result, result);
2396   mr_if_needed(R4_ARG2, r_sub_klass);
2397   assert_different_registers(R5_ARG3, result);
2398   neg(R5_ARG3, linear_result);
2399   neg(R6_ARG4, result);
2400   const char* msg = "mismatch";
2401   load_const_optimized(R7_ARG5, (intptr_t)msg, R0);
2402   call_VM_leaf(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure));
2403   should_not_reach_here();
2404 
2405   bind(passed);
2406 
2407   BLOCK_COMMENT("} verify_secondary_supers_table");
2408 }
2409 
2410 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
2411   assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
2412 
2413   Label L_fallthrough;
2414   if (L_fast_path == nullptr) {
2415     L_fast_path = &L_fallthrough;
2416   } else if (L_slow_path == nullptr) {
2417     L_slow_path = &L_fallthrough;
2418   }
2419 
2420   // Fast path check: class is fully initialized
2421   lbz(R0, in_bytes(InstanceKlass::init_state_offset()), klass);
2422   cmpwi(CCR0, R0, InstanceKlass::fully_initialized);
2423   beq(CCR0, *L_fast_path);
2424 
2425   // Fast path check: current thread is initializer thread
2426   ld(R0, in_bytes(InstanceKlass::init_thread_offset()), klass);
2427   cmpd(CCR0, thread, R0);
2428   if (L_slow_path == &L_fallthrough) {
2429     beq(CCR0, *L_fast_path);
2430   } else if (L_fast_path == &L_fallthrough) {
2431     bne(CCR0, *L_slow_path);
2432   } else {
2433     Unimplemented();
2434   }
2435 
2436   bind(L_fallthrough);
2437 }
2438 
2439 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
2440                                                    Register temp_reg,
2441                                                    int extra_slot_offset) {
2442   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2443   int stackElementSize = Interpreter::stackElementSize;
2444   int offset = extra_slot_offset * stackElementSize;
2445   if (arg_slot.is_constant()) {
2446     offset += arg_slot.as_constant() * stackElementSize;
2447     return offset;
2448   } else {
2449     assert(temp_reg != noreg, "must specify");
2450     sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize));
2451     if (offset != 0)
2452       addi(temp_reg, temp_reg, offset);
2453     return temp_reg;
2454   }
2455 }
2456 
2457 void MacroAssembler::tlab_allocate(
2458   Register obj,                      // result: pointer to object after successful allocation
2459   Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2460   int      con_size_in_bytes,        // object size in bytes if   known at compile time
2461   Register t1,                       // temp register
2462   Label&   slow_case                 // continuation point if fast allocation fails
2463 ) {
2464   // make sure arguments make sense
2465   assert_different_registers(obj, var_size_in_bytes, t1);
2466   assert(0 <= con_size_in_bytes && is_simm16(con_size_in_bytes), "illegal object size");
2467   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
2468 
2469   const Register new_top = t1;
2470   //verify_tlab(); not implemented
2471 
2472   ld(obj, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
2473   ld(R0, in_bytes(JavaThread::tlab_end_offset()), R16_thread);
2474   if (var_size_in_bytes == noreg) {
2475     addi(new_top, obj, con_size_in_bytes);
2476   } else {
2477     add(new_top, obj, var_size_in_bytes);
2478   }
2479   cmpld(CCR0, new_top, R0);
2480   bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case);
2481 
2482 #ifdef ASSERT
2483   // make sure new free pointer is properly aligned
2484   {
2485     Label L;
2486     andi_(R0, new_top, MinObjAlignmentInBytesMask);
2487     beq(CCR0, L);
2488     stop("updated TLAB free is not properly aligned");
2489     bind(L);
2490   }
2491 #endif // ASSERT
2492 
2493   // update the tlab top pointer
2494   std(new_top, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
2495   //verify_tlab(); not implemented
2496 }
2497 
2498 address MacroAssembler::emit_trampoline_stub(int destination_toc_offset,
2499                                              int insts_call_instruction_offset, Register Rtoc) {
2500   // Start the stub.
2501   address stub = start_a_stub(64);
2502   if (stub == nullptr) { return nullptr; } // CodeCache full: bail out
2503 
2504   // Create a trampoline stub relocation which relates this trampoline stub
2505   // with the call instruction at insts_call_instruction_offset in the
2506   // instructions code-section.
2507   relocate(trampoline_stub_Relocation::spec(code()->insts()->start() + insts_call_instruction_offset));
2508   const int stub_start_offset = offset();
2509 
2510   // For java_to_interp stubs we use R11_scratch1 as scratch register
2511   // and in call trampoline stubs we use R12_scratch2. This way we
2512   // can distinguish them (see is_NativeCallTrampolineStub_at()).
2513   Register reg_scratch = R12_scratch2;
2514 
2515   // Now, create the trampoline stub's code:
2516   // - load the TOC
2517   // - load the call target from the constant pool
2518   // - call
2519   if (Rtoc == noreg) {
2520     calculate_address_from_global_toc(reg_scratch, method_toc());
2521     Rtoc = reg_scratch;
2522   }
2523 
2524   ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, Rtoc, false);
2525   mtctr(reg_scratch);
2526   bctr();
2527 
2528   const address stub_start_addr = addr_at(stub_start_offset);
2529 
2530   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
2531   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
2532          "encoded offset into the constant pool must match");
2533   // Trampoline_stub_size should be good.
2534   assert((uint)(offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
2535   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
2536 
2537   // End the stub.
2538   end_a_stub();
2539   return stub;
2540 }
2541 
2542 // "The box" is the space on the stack where we copy the object mark.
2543 void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
2544                                                Register temp, Register displaced_header, Register current_header) {
2545   assert(LockingMode != LM_LIGHTWEIGHT, "uses fast_lock_lightweight");
2546   assert_different_registers(oop, box, temp, displaced_header, current_header);
2547   Label object_has_monitor;
2548   Label cas_failed;
2549   Label success, failure;
2550 
2551   // Load markWord from object into displaced_header.
2552   ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop);
2553 
2554   if (DiagnoseSyncOnValueBasedClasses != 0) {
2555     load_klass(temp, oop);
2556     lbz(temp, in_bytes(Klass::misc_flags_offset()), temp);
2557     testbitdi(flag, R0, temp, exact_log2(KlassFlags::_misc_is_value_based_class));
2558     bne(flag, failure);
2559   }
2560 
2561   // Handle existing monitor.
2562   // The object has an existing monitor iff (mark & monitor_value) != 0.
2563   andi_(temp, displaced_header, markWord::monitor_value);
2564   bne(CCR0, object_has_monitor);
2565 
2566   if (LockingMode == LM_MONITOR) {
2567     // Set NE to indicate 'failure' -> take slow-path.
2568     crandc(flag, Assembler::equal, flag, Assembler::equal);
2569     b(failure);
2570   } else {
2571     assert(LockingMode == LM_LEGACY, "must be");
2572     // Set displaced_header to be (markWord of object | UNLOCK_VALUE).
2573     ori(displaced_header, displaced_header, markWord::unlocked_value);
2574 
2575     // Load Compare Value application register.
2576 
2577     // Initialize the box. (Must happen before we update the object mark!)
2578     std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2579 
2580     // Must fence, otherwise, preceding store(s) may float below cmpxchg.
2581     // Compare object markWord with mark and if equal exchange scratch1 with object markWord.
2582     cmpxchgd(/*flag=*/flag,
2583              /*current_value=*/current_header,
2584              /*compare_value=*/displaced_header,
2585              /*exchange_value=*/box,
2586              /*where=*/oop,
2587              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2588              MacroAssembler::cmpxchgx_hint_acquire_lock(),
2589              noreg,
2590              &cas_failed,
2591              /*check without membar and ldarx first*/true);
2592     assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2593     // If the compare-and-exchange succeeded, then we found an unlocked
2594     // object and we have now locked it.
2595     b(success);
2596 
2597     bind(cas_failed);
2598     // We did not see an unlocked object so try the fast recursive case.
2599 
2600     // Check if the owner is self by comparing the value in the markWord of object
2601     // (current_header) with the stack pointer.
2602     sub(current_header, current_header, R1_SP);
2603     load_const_optimized(temp, ~(os::vm_page_size()-1) | markWord::lock_mask_in_place);
2604 
2605     and_(R0/*==0?*/, current_header, temp);
2606     // If condition is true we are cont and hence we can store 0 as the
2607     // displaced header in the box, which indicates that it is a recursive lock.
2608     std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box);
2609 
2610     if (flag != CCR0) {
2611       mcrf(flag, CCR0);
2612     }
2613     beq(CCR0, success);
2614     b(failure);
2615   }
2616 
2617   // Handle existing monitor.
2618   bind(object_has_monitor);
2619   // The object's monitor m is unlocked iff m->owner is null,
2620   // otherwise m->owner may contain a thread or a stack address.
2621 
2622   // Try to CAS m->owner from null to current thread.
2623   addi(temp, displaced_header, in_bytes(ObjectMonitor::owner_offset()) - markWord::monitor_value);
2624   cmpxchgd(/*flag=*/flag,
2625            /*current_value=*/current_header,
2626            /*compare_value=*/(intptr_t)0,
2627            /*exchange_value=*/R16_thread,
2628            /*where=*/temp,
2629            MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2630            MacroAssembler::cmpxchgx_hint_acquire_lock());
2631 
2632   // Store a non-null value into the box.
2633   std(box, BasicLock::displaced_header_offset_in_bytes(), box);
2634   beq(flag, success);
2635 
2636   // Check for recursive locking.
2637   cmpd(flag, current_header, R16_thread);
2638   bne(flag, failure);
2639 
2640   // Current thread already owns the lock. Just increment recursions.
2641   Register recursions = displaced_header;
2642   ld(recursions, in_bytes(ObjectMonitor::recursions_offset() - ObjectMonitor::owner_offset()), temp);
2643   addi(recursions, recursions, 1);
2644   std(recursions, in_bytes(ObjectMonitor::recursions_offset() - ObjectMonitor::owner_offset()), temp);
2645 
2646   // flag == EQ indicates success, increment held monitor count
2647   // flag == NE indicates failure
2648   bind(success);
2649   inc_held_monitor_count(temp);
2650   bind(failure);
2651 }
2652 
2653 void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
2654                                                  Register temp, Register displaced_header, Register current_header) {
2655   assert(LockingMode != LM_LIGHTWEIGHT, "uses fast_unlock_lightweight");
2656   assert_different_registers(oop, box, temp, displaced_header, current_header);
2657   Label success, failure, object_has_monitor, notRecursive;
2658 
2659   if (LockingMode == LM_LEGACY) {
2660     // Find the lock address and load the displaced header from the stack.
2661     ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2662 
2663     // If the displaced header is 0, we have a recursive unlock.
2664     cmpdi(flag, displaced_header, 0);
2665     beq(flag, success);
2666   }
2667 
2668   // Handle existing monitor.
2669   // The object has an existing monitor iff (mark & monitor_value) != 0.
2670   ld(current_header, oopDesc::mark_offset_in_bytes(), oop);
2671   andi_(R0, current_header, markWord::monitor_value);
2672   bne(CCR0, object_has_monitor);
2673 
2674   if (LockingMode == LM_MONITOR) {
2675     // Set NE to indicate 'failure' -> take slow-path.
2676     crandc(flag, Assembler::equal, flag, Assembler::equal);
2677     b(failure);
2678   } else {
2679     assert(LockingMode == LM_LEGACY, "must be");
2680     // Check if it is still a light weight lock, this is is true if we see
2681     // the stack address of the basicLock in the markWord of the object.
2682     // Cmpxchg sets flag to cmpd(current_header, box).
2683     cmpxchgd(/*flag=*/flag,
2684              /*current_value=*/current_header,
2685              /*compare_value=*/box,
2686              /*exchange_value=*/displaced_header,
2687              /*where=*/oop,
2688              MacroAssembler::MemBarRel,
2689              MacroAssembler::cmpxchgx_hint_release_lock(),
2690              noreg,
2691              &failure);
2692     assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2693     b(success);
2694   }
2695 
2696   // Handle existing monitor.
2697   bind(object_has_monitor);
2698   STATIC_ASSERT(markWord::monitor_value <= INT_MAX);
2699   addi(current_header, current_header, -(int)markWord::monitor_value); // monitor
2700   ld(temp,             in_bytes(ObjectMonitor::owner_offset()), current_header);
2701 
2702   // In case of LM_LIGHTWEIGHT, we may reach here with (temp & ObjectMonitor::ANONYMOUS_OWNER) != 0.
2703   // This is handled like owner thread mismatches: We take the slow path.
2704   cmpd(flag, temp, R16_thread);
2705   bne(flag, failure);
2706 
2707   ld(displaced_header, in_bytes(ObjectMonitor::recursions_offset()), current_header);
2708 
2709   addic_(displaced_header, displaced_header, -1);
2710   blt(CCR0, notRecursive); // Not recursive if negative after decrement.
2711   std(displaced_header, in_bytes(ObjectMonitor::recursions_offset()), current_header);
2712   if (flag == CCR0) { // Otherwise, flag is already EQ, here.
2713     crorc(CCR0, Assembler::equal, CCR0, Assembler::equal); // Set CCR0 EQ
2714   }
2715   b(success);
2716 
2717   bind(notRecursive);
2718 
2719   // Set owner to null.
2720   // Release to satisfy the JMM
2721   release();
2722   li(temp, 0);
2723   std(temp, in_bytes(ObjectMonitor::owner_offset()), current_header);
2724   // We need a full fence after clearing owner to avoid stranding.
2725   // StoreLoad achieves this.
2726   membar(StoreLoad);
2727 
2728   // Check if the entry lists are empty.
2729   ld(temp,             in_bytes(ObjectMonitor::EntryList_offset()), current_header);
2730   ld(displaced_header, in_bytes(ObjectMonitor::cxq_offset()), current_header);
2731   orr(temp, temp, displaced_header); // Will be 0 if both are 0.
2732   cmpdi(flag, temp, 0);
2733   beq(flag, success);  // If so we are done.
2734 
2735   // Check if there is a successor.
2736   ld(temp, in_bytes(ObjectMonitor::succ_offset()), current_header);
2737   cmpdi(flag, temp, 0);
2738   bne(flag, success);  // If so we are done.
2739 
2740   // Save the monitor pointer in the current thread, so we can try
2741   // to reacquire the lock in SharedRuntime::monitor_exit_helper().
2742   std(current_header, in_bytes(JavaThread::unlocked_inflated_monitor_offset()), R16_thread);
2743 
2744   crxor(flag, Assembler::equal, flag, Assembler::equal); // Set flag = NE => slow path
2745   b(failure);
2746 
2747   // flag == EQ indicates success, decrement held monitor count
2748   // flag == NE indicates failure
2749   bind(success);
2750   dec_held_monitor_count(temp);
2751   bind(failure);
2752 }
2753 
2754 void MacroAssembler::compiler_fast_lock_lightweight_object(ConditionRegister flag, Register obj, Register box,
2755                                                            Register tmp1, Register tmp2, Register tmp3) {
2756   assert_different_registers(obj, box, tmp1, tmp2, tmp3);
2757   assert(flag == CCR0, "bad condition register");
2758 
2759   // Handle inflated monitor.
2760   Label inflated;
2761   // Finish fast lock successfully. MUST reach to with flag == NE
2762   Label locked;
2763   // Finish fast lock unsuccessfully. MUST branch to with flag == EQ
2764   Label slow_path;
2765 
2766   if (UseObjectMonitorTable) {
2767     // Clear cache in case fast locking succeeds.
2768     li(tmp1, 0);
2769     std(tmp1, in_bytes(BasicObjectLock::lock_offset()) + BasicLock::object_monitor_cache_offset_in_bytes(), box);
2770   }
2771 
2772   if (DiagnoseSyncOnValueBasedClasses != 0) {
2773     load_klass(tmp1, obj);
2774     lbz(tmp1, in_bytes(Klass::misc_flags_offset()), tmp1);
2775     testbitdi(CCR0, R0, tmp1, exact_log2(KlassFlags::_misc_is_value_based_class));
2776     bne(CCR0, slow_path);
2777   }
2778 
2779   const Register mark = tmp1;
2780   const Register t = tmp3; // Usage of R0 allowed!
2781 
2782   { // Lightweight locking
2783 
2784     // Push lock to the lock stack and finish successfully. MUST reach to with flag == EQ
2785     Label push;
2786 
2787     const Register top = tmp2;
2788 
2789     // Check if lock-stack is full.
2790     lwz(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
2791     cmplwi(CCR0, top, LockStack::end_offset() - 1);
2792     bgt(CCR0, slow_path);
2793 
2794     // The underflow check is elided. The recursive check will always fail
2795     // when the lock stack is empty because of the _bad_oop_sentinel field.
2796 
2797     // Check if recursive.
2798     subi(t, top, oopSize);
2799     ldx(t, R16_thread, t);
2800     cmpd(CCR0, obj, t);
2801     beq(CCR0, push);
2802 
2803     // Check for monitor (0b10) or locked (0b00).
2804     ld(mark, oopDesc::mark_offset_in_bytes(), obj);
2805     andi_(t, mark, markWord::lock_mask_in_place);
2806     cmpldi(CCR0, t, markWord::unlocked_value);
2807     bgt(CCR0, inflated);
2808     bne(CCR0, slow_path);
2809 
2810     // Not inflated.
2811 
2812     // Try to lock. Transition lock bits 0b01 => 0b00
2813     assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid a lea");
2814     atomically_flip_locked_state(/* is_unlock */ false, obj, mark, slow_path, MacroAssembler::MemBarAcq);
2815 
2816     bind(push);
2817     // After successful lock, push object on lock-stack.
2818     stdx(obj, R16_thread, top);
2819     addi(top, top, oopSize);
2820     stw(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
2821     b(locked);
2822   }
2823 
2824   { // Handle inflated monitor.
2825     bind(inflated);
2826 
2827     // mark contains the tagged ObjectMonitor*.
2828     const uintptr_t monitor_tag = markWord::monitor_value;
2829     const Register monitor = mark;
2830     const Register owner_addr = tmp2;
2831     Label monitor_locked;
2832 
2833     if (!UseObjectMonitorTable) {
2834       // Compute owner address.
2835       addi(owner_addr, mark, in_bytes(ObjectMonitor::owner_offset()) - monitor_tag);
2836     } else {
2837       Label monitor_found;
2838       Register cache_addr = tmp2;
2839 
2840       // Load cache address
2841       addi(cache_addr, R16_thread, in_bytes(JavaThread::om_cache_oops_offset()));
2842 
2843       const int num_unrolled = 2;
2844       for (int i = 0; i < num_unrolled; i++) {
2845         ld(tmp3, 0, cache_addr);
2846         cmpd(CCR0, tmp3, obj);
2847         beq(CCR0, monitor_found);
2848         addi(cache_addr, cache_addr, in_bytes(OMCache::oop_to_oop_difference()));
2849       }
2850 
2851       Label loop;
2852 
2853       // Search for obj in cache.
2854       bind(loop);
2855 
2856       // Check for match.
2857       ld(tmp3, 0, cache_addr);
2858       cmpd(CCR0, tmp3, obj);
2859       beq(CCR0, monitor_found);
2860 
2861       // Search until null encountered, guaranteed _null_sentinel at end.
2862       addi(cache_addr, cache_addr, in_bytes(OMCache::oop_to_oop_difference()));
2863       cmpdi(CCR1, tmp3, 0);
2864       bne(CCR1, loop);
2865       // Cache Miss, CCR0.NE set from cmp above
2866       b(slow_path);
2867 
2868       bind(monitor_found);
2869       ld(monitor, in_bytes(OMCache::oop_to_monitor_difference()), cache_addr);
2870 
2871       // Compute owner address.
2872       addi(owner_addr, monitor, in_bytes(ObjectMonitor::owner_offset()));
2873     }
2874 
2875     // CAS owner (null => current thread).
2876     cmpxchgd(/*flag=*/CCR0,
2877             /*current_value=*/t,
2878             /*compare_value=*/(intptr_t)0,
2879             /*exchange_value=*/R16_thread,
2880             /*where=*/owner_addr,
2881             MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2882             MacroAssembler::cmpxchgx_hint_acquire_lock());
2883     beq(CCR0, monitor_locked);
2884 
2885     // Check if recursive.
2886     cmpd(CCR0, t, R16_thread);
2887     bne(CCR0, slow_path);
2888 
2889     // Recursive.
2890     if (!UseObjectMonitorTable) {
2891       assert_different_registers(tmp1, owner_addr);
2892       ld(tmp1, in_bytes(ObjectMonitor::recursions_offset() - ObjectMonitor::owner_offset()), owner_addr);
2893       addi(tmp1, tmp1, 1);
2894       std(tmp1, in_bytes(ObjectMonitor::recursions_offset() - ObjectMonitor::owner_offset()), owner_addr);
2895     } else {
2896       assert_different_registers(tmp2, monitor);
2897       ld(tmp2, in_bytes(ObjectMonitor::recursions_offset()), monitor);
2898       addi(tmp2, tmp2, 1);
2899       std(tmp2, in_bytes(ObjectMonitor::recursions_offset()), monitor);
2900     }
2901 
2902     bind(monitor_locked);
2903     if (UseObjectMonitorTable) {
2904       std(monitor, BasicLock::object_monitor_cache_offset_in_bytes(), box);
2905     }
2906   }
2907 
2908   bind(locked);
2909   inc_held_monitor_count(tmp1);
2910 
2911 #ifdef ASSERT
2912   // Check that locked label is reached with flag == EQ.
2913   Label flag_correct;
2914   beq(CCR0, flag_correct);
2915   stop("Fast Lock Flag != EQ");
2916 #endif
2917   bind(slow_path);
2918 #ifdef ASSERT
2919   // Check that slow_path label is reached with flag == NE.
2920   bne(CCR0, flag_correct);
2921   stop("Fast Lock Flag != NE");
2922   bind(flag_correct);
2923 #endif
2924   // C2 uses the value of flag (NE vs EQ) to determine the continuation.
2925 }
2926 
2927 void MacroAssembler::compiler_fast_unlock_lightweight_object(ConditionRegister flag, Register obj, Register box,
2928                                                              Register tmp1, Register tmp2, Register tmp3) {
2929   assert_different_registers(obj, tmp1, tmp2, tmp3);
2930   assert(flag == CCR0, "bad condition register");
2931 
2932   // Handle inflated monitor.
2933   Label inflated, inflated_load_monitor;
2934   // Finish fast unlock successfully. MUST reach to with flag == EQ.
2935   Label unlocked;
2936   // Finish fast unlock unsuccessfully. MUST branch to with flag == NE.
2937   Label slow_path;
2938 
2939   const Register mark = tmp1;
2940   const Register top = tmp2;
2941   const Register t = tmp3;
2942 
2943   { // Lightweight unlock
2944     Label push_and_slow;
2945 
2946     // Check if obj is top of lock-stack.
2947     lwz(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
2948     subi(top, top, oopSize);
2949     ldx(t, R16_thread, top);
2950     cmpd(CCR0, obj, t);
2951     // Top of lock stack was not obj. Must be monitor.
2952     bne(CCR0, inflated_load_monitor);
2953 
2954     // Pop lock-stack.
2955     DEBUG_ONLY(li(t, 0);)
2956     DEBUG_ONLY(stdx(t, R16_thread, top);)
2957     stw(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
2958 
2959     // The underflow check is elided. The recursive check will always fail
2960     // when the lock stack is empty because of the _bad_oop_sentinel field.
2961 
2962     // Check if recursive.
2963     subi(t, top, oopSize);
2964     ldx(t, R16_thread, t);
2965     cmpd(CCR0, obj, t);
2966     beq(CCR0, unlocked);
2967 
2968     // Not recursive.
2969 
2970     // Check for monitor (0b10).
2971     ld(mark, oopDesc::mark_offset_in_bytes(), obj);
2972     andi_(t, mark, markWord::monitor_value);
2973     if (!UseObjectMonitorTable) {
2974       bne(CCR0, inflated);
2975     } else {
2976       bne(CCR0, push_and_slow);
2977     }
2978 
2979 #ifdef ASSERT
2980     // Check header not unlocked (0b01).
2981     Label not_unlocked;
2982     andi_(t, mark, markWord::unlocked_value);
2983     beq(CCR0, not_unlocked);
2984     stop("lightweight_unlock already unlocked");
2985     bind(not_unlocked);
2986 #endif
2987 
2988     // Try to unlock. Transition lock bits 0b00 => 0b01
2989     atomically_flip_locked_state(/* is_unlock */ true, obj, mark, push_and_slow, MacroAssembler::MemBarRel);
2990     b(unlocked);
2991 
2992     bind(push_and_slow);
2993     // Restore lock-stack and handle the unlock in runtime.
2994     DEBUG_ONLY(stdx(obj, R16_thread, top);)
2995     addi(top, top, oopSize);
2996     stw(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
2997     b(slow_path);
2998   }
2999 
3000   { // Handle inflated monitor.
3001     bind(inflated_load_monitor);
3002     ld(mark, oopDesc::mark_offset_in_bytes(), obj);
3003 #ifdef ASSERT
3004     andi_(t, mark, markWord::monitor_value);
3005     bne(CCR0, inflated);
3006     stop("Fast Unlock not monitor");
3007 #endif
3008 
3009     bind(inflated);
3010 
3011 #ifdef ASSERT
3012     Label check_done;
3013     subi(top, top, oopSize);
3014     cmplwi(CCR0, top, in_bytes(JavaThread::lock_stack_base_offset()));
3015     blt(CCR0, check_done);
3016     ldx(t, R16_thread, top);
3017     cmpd(CCR0, obj, t);
3018     bne(CCR0, inflated);
3019     stop("Fast Unlock lock on stack");
3020     bind(check_done);
3021 #endif
3022 
3023     // mark contains the tagged ObjectMonitor*.
3024     const Register monitor = mark;
3025     const uintptr_t monitor_tag = markWord::monitor_value;
3026 
3027     if (!UseObjectMonitorTable) {
3028       // Untag the monitor.
3029       subi(monitor, mark, monitor_tag);
3030     } else {
3031       ld(monitor, BasicLock::object_monitor_cache_offset_in_bytes(), box);
3032       // null check with Flags == NE, no valid pointer below alignof(ObjectMonitor*)
3033       cmpldi(CCR0, monitor, checked_cast<uint8_t>(alignof(ObjectMonitor*)));
3034       blt(CCR0, slow_path);
3035     }
3036 
3037     const Register recursions = tmp2;
3038     Label not_recursive;
3039 
3040     // Check if recursive.
3041     ld(recursions, in_bytes(ObjectMonitor::recursions_offset()), monitor);
3042     addic_(recursions, recursions, -1);
3043     blt(CCR0, not_recursive);
3044 
3045     // Recursive unlock.
3046     std(recursions, in_bytes(ObjectMonitor::recursions_offset()), monitor);
3047     crorc(CCR0, Assembler::equal, CCR0, Assembler::equal);
3048     b(unlocked);
3049 
3050     bind(not_recursive);
3051 
3052     Label set_eq_unlocked;
3053     const Register t2 = tmp2;
3054 
3055     // Set owner to null.
3056     // Release to satisfy the JMM
3057     release();
3058     li(t, 0);
3059     std(t, in_bytes(ObjectMonitor::owner_offset()), monitor);
3060     // We need a full fence after clearing owner to avoid stranding.
3061     // StoreLoad achieves this.
3062     membar(StoreLoad);
3063 
3064     // Check if the entry lists are empty.
3065     ld(t, in_bytes(ObjectMonitor::EntryList_offset()), monitor);
3066     ld(t2, in_bytes(ObjectMonitor::cxq_offset()), monitor);
3067     orr(t, t, t2);
3068     cmpdi(CCR0, t, 0);
3069     beq(CCR0, unlocked); // If so we are done.
3070 
3071     // Check if there is a successor.
3072     ld(t, in_bytes(ObjectMonitor::succ_offset()), monitor);
3073     cmpdi(CCR0, t, 0);
3074     bne(CCR0, set_eq_unlocked); // If so we are done.
3075 
3076     // Save the monitor pointer in the current thread, so we can try
3077     // to reacquire the lock in SharedRuntime::monitor_exit_helper().
3078     std(monitor, in_bytes(JavaThread::unlocked_inflated_monitor_offset()), R16_thread);
3079 
3080     crxor(CCR0, Assembler::equal, CCR0, Assembler::equal); // Set flag = NE => slow path
3081     b(slow_path);
3082 
3083     bind(set_eq_unlocked);
3084     crorc(CCR0, Assembler::equal, CCR0, Assembler::equal); // Set flag = EQ => fast path
3085   }
3086 
3087   bind(unlocked);
3088   dec_held_monitor_count(t);
3089 
3090 #ifdef ASSERT
3091   // Check that unlocked label is reached with flag == EQ.
3092   Label flag_correct;
3093   beq(CCR0, flag_correct);
3094   stop("Fast Lock Flag != EQ");
3095 #endif
3096   bind(slow_path);
3097 #ifdef ASSERT
3098   // Check that slow_path label is reached with flag == NE.
3099   bne(CCR0, flag_correct);
3100   stop("Fast Lock Flag != NE");
3101   bind(flag_correct);
3102 #endif
3103   // C2 uses the value of flag (NE vs EQ) to determine the continuation.
3104 }
3105 
3106 void MacroAssembler::safepoint_poll(Label& slow_path, Register temp, bool at_return, bool in_nmethod) {
3107   ld(temp, in_bytes(JavaThread::polling_word_offset()), R16_thread);
3108 
3109   if (at_return) {
3110     if (in_nmethod) {
3111       if (UseSIGTRAP) {
3112         // Use Signal Handler.
3113         relocate(relocInfo::poll_return_type);
3114         td(traptoGreaterThanUnsigned, R1_SP, temp);
3115       } else {
3116         cmpld(CCR0, R1_SP, temp);
3117         // Stub may be out of range for short conditional branch.
3118         bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_path);
3119       }
3120     } else { // Not in nmethod.
3121       // Frame still on stack, need to get fp.
3122       Register fp = R0;
3123       ld(fp, _abi0(callers_sp), R1_SP);
3124       cmpld(CCR0, fp, temp);
3125       bgt(CCR0, slow_path);
3126     }
3127   } else { // Normal safepoint poll. Not at return.
3128     assert(!in_nmethod, "should use load_from_polling_page");
3129     andi_(temp, temp, SafepointMechanism::poll_bit());
3130     bne(CCR0, slow_path);
3131   }
3132 }
3133 
3134 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2,
3135                                      MacroAssembler::PreservationLevel preservation_level) {
3136   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3137   bs->resolve_jobject(this, value, tmp1, tmp2, preservation_level);
3138 }
3139 
3140 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2,
3141                                      MacroAssembler::PreservationLevel preservation_level) {
3142   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3143   bs->resolve_global_jobject(this, value, tmp1, tmp2, preservation_level);
3144 }
3145 
3146 // Values for last_Java_pc, and last_Java_sp must comply to the rules
3147 // in frame_ppc.hpp.
3148 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {
3149   // Always set last_Java_pc and flags first because once last_Java_sp
3150   // is visible has_last_Java_frame is true and users will look at the
3151   // rest of the fields. (Note: flags should always be zero before we
3152   // get here so doesn't need to be set.)
3153 
3154   // Verify that last_Java_pc was zeroed on return to Java
3155   asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread,
3156                           "last_Java_pc not zeroed before leaving Java");
3157 
3158   // When returning from calling out from Java mode the frame anchor's
3159   // last_Java_pc will always be set to null. It is set here so that
3160   // if we are doing a call to native (not VM) that we capture the
3161   // known pc and don't have to rely on the native call having a
3162   // standard frame linkage where we can find the pc.
3163   if (last_Java_pc != noreg)
3164     std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
3165 
3166   // Set last_Java_sp last.
3167   std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
3168 }
3169 
3170 void MacroAssembler::reset_last_Java_frame(void) {
3171   asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
3172                              R16_thread, "SP was not set, still zero");
3173 
3174   BLOCK_COMMENT("reset_last_Java_frame {");
3175   li(R0, 0);
3176 
3177   // _last_Java_sp = 0
3178   std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
3179 
3180   // _last_Java_pc = 0
3181   std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
3182   BLOCK_COMMENT("} reset_last_Java_frame");
3183 }
3184 
3185 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) {
3186   assert_different_registers(sp, tmp1);
3187 
3188   // sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via
3189   // TOP_IJAVA_FRAME_ABI.
3190   // FIXME: assert that we really have a TOP_IJAVA_FRAME here!
3191   address entry = pc();
3192   load_const_optimized(tmp1, entry);
3193 
3194   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1);
3195 }
3196 
3197 void MacroAssembler::get_vm_result(Register oop_result) {
3198   // Read:
3199   //   R16_thread
3200   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
3201   //
3202   // Updated:
3203   //   oop_result
3204   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
3205 
3206   ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3207   li(R0, 0);
3208   std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3209 
3210   verify_oop(oop_result, FILE_AND_LINE);
3211 }
3212 
3213 void MacroAssembler::get_vm_result_2(Register metadata_result) {
3214   // Read:
3215   //   R16_thread
3216   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
3217   //
3218   // Updated:
3219   //   metadata_result
3220   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
3221 
3222   ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
3223   li(R0, 0);
3224   std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
3225 }
3226 
3227 Register MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3228   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided.
3229   if (CompressedKlassPointers::base() != 0) {
3230     // Use dst as temp if it is free.
3231     sub_const_optimized(dst, current, CompressedKlassPointers::base(), R0);
3232     current = dst;
3233   }
3234   if (CompressedKlassPointers::shift() != 0) {
3235     srdi(dst, current, CompressedKlassPointers::shift());
3236     current = dst;
3237   }
3238   return current;
3239 }
3240 
3241 void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) {
3242   if (UseCompressedClassPointers) {
3243     Register compressedKlass = encode_klass_not_null(ck, klass);
3244     stw(compressedKlass, oopDesc::klass_offset_in_bytes(), dst_oop);
3245   } else {
3246     std(klass, oopDesc::klass_offset_in_bytes(), dst_oop);
3247   }
3248 }
3249 
3250 void MacroAssembler::store_klass_gap(Register dst_oop, Register val) {
3251   if (UseCompressedClassPointers) {
3252     if (val == noreg) {
3253       val = R0;
3254       li(val, 0);
3255     }
3256     stw(val, oopDesc::klass_gap_offset_in_bytes(), dst_oop); // klass gap if compressed
3257   }
3258 }
3259 
3260 int MacroAssembler::instr_size_for_decode_klass_not_null() {
3261   static int computed_size = -1;
3262 
3263   // Not yet computed?
3264   if (computed_size == -1) {
3265 
3266     if (!UseCompressedClassPointers) {
3267       computed_size = 0;
3268     } else {
3269       // Determine by scratch emit.
3270       ResourceMark rm;
3271       int code_size = 8 * BytesPerInstWord;
3272       CodeBuffer cb("decode_klass_not_null scratch buffer", code_size, 0);
3273       MacroAssembler* a = new MacroAssembler(&cb);
3274       a->decode_klass_not_null(R11_scratch1);
3275       computed_size = a->offset();
3276     }
3277   }
3278 
3279   return computed_size;
3280 }
3281 
3282 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3283   assert(dst != R0, "Dst reg may not be R0, as R0 is used here.");
3284   if (src == noreg) src = dst;
3285   Register shifted_src = src;
3286   if (CompressedKlassPointers::shift() != 0 ||
3287       (CompressedKlassPointers::base() == 0 && src != dst)) {  // Move required.
3288     shifted_src = dst;
3289     sldi(shifted_src, src, CompressedKlassPointers::shift());
3290   }
3291   if (CompressedKlassPointers::base() != 0) {
3292     add_const_optimized(dst, shifted_src, CompressedKlassPointers::base(), R0);
3293   }
3294 }
3295 
3296 void MacroAssembler::load_klass(Register dst, Register src) {
3297   if (UseCompressedClassPointers) {
3298     lwz(dst, oopDesc::klass_offset_in_bytes(), src);
3299     // Attention: no null check here!
3300     decode_klass_not_null(dst, dst);
3301   } else {
3302     ld(dst, oopDesc::klass_offset_in_bytes(), src);
3303   }
3304 }
3305 
3306 void MacroAssembler::load_klass_check_null(Register dst, Register src, Label* is_null) {
3307   null_check(src, oopDesc::klass_offset_in_bytes(), is_null);
3308   load_klass(dst, src);
3309 }
3310 
3311 // ((OopHandle)result).resolve();
3312 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2,
3313                                         MacroAssembler::PreservationLevel preservation_level) {
3314   access_load_at(T_OBJECT, IN_NATIVE, result, noreg, result, tmp1, tmp2, preservation_level);
3315 }
3316 
3317 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2,
3318                                          MacroAssembler::PreservationLevel preservation_level) {
3319   Label resolved;
3320 
3321   // A null weak handle resolves to null.
3322   cmpdi(CCR0, result, 0);
3323   beq(CCR0, resolved);
3324 
3325   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, result, noreg, result, tmp1, tmp2,
3326                  preservation_level);
3327   bind(resolved);
3328 }
3329 
3330 void MacroAssembler::load_method_holder(Register holder, Register method) {
3331   ld(holder, in_bytes(Method::const_offset()), method);
3332   ld(holder, in_bytes(ConstMethod::constants_offset()), holder);
3333   ld(holder, ConstantPool::pool_holder_offset(), holder);
3334 }
3335 
3336 // Clear Array
3337 // For very short arrays. tmp == R0 is allowed.
3338 void MacroAssembler::clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp, int offset) {
3339   if (cnt_dwords > 0) { li(tmp, 0); }
3340   for (int i = 0; i < cnt_dwords; ++i) { std(tmp, offset + i * 8, base_ptr); }
3341 }
3342 
3343 // Version for constant short array length. Kills base_ptr. tmp == R0 is allowed.
3344 void MacroAssembler::clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp) {
3345   if (cnt_dwords < 8) {
3346     clear_memory_unrolled(base_ptr, cnt_dwords, tmp);
3347     return;
3348   }
3349 
3350   Label loop;
3351   const long loopcnt   = cnt_dwords >> 1,
3352              remainder = cnt_dwords & 1;
3353 
3354   li(tmp, loopcnt);
3355   mtctr(tmp);
3356   li(tmp, 0);
3357   bind(loop);
3358     std(tmp, 0, base_ptr);
3359     std(tmp, 8, base_ptr);
3360     addi(base_ptr, base_ptr, 16);
3361     bdnz(loop);
3362   if (remainder) { std(tmp, 0, base_ptr); }
3363 }
3364 
3365 // Kills both input registers. tmp == R0 is allowed.
3366 void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp, long const_cnt) {
3367   // Procedure for large arrays (uses data cache block zero instruction).
3368     Label startloop, fast, fastloop, small_rest, restloop, done;
3369     const int cl_size         = VM_Version::L1_data_cache_line_size(),
3370               cl_dwords       = cl_size >> 3,
3371               cl_dw_addr_bits = exact_log2(cl_dwords),
3372               dcbz_min        = 1,  // Min count of dcbz executions, needs to be >0.
3373               min_cnt         = ((dcbz_min + 1) << cl_dw_addr_bits) - 1;
3374 
3375   if (const_cnt >= 0) {
3376     // Constant case.
3377     if (const_cnt < min_cnt) {
3378       clear_memory_constlen(base_ptr, const_cnt, tmp);
3379       return;
3380     }
3381     load_const_optimized(cnt_dwords, const_cnt, tmp);
3382   } else {
3383     // cnt_dwords already loaded in register. Need to check size.
3384     cmpdi(CCR1, cnt_dwords, min_cnt); // Big enough? (ensure >= dcbz_min lines included).
3385     blt(CCR1, small_rest);
3386   }
3387     rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits); // Extract dword offset within first cache line.
3388     beq(CCR0, fast);                                  // Already 128byte aligned.
3389 
3390     subfic(tmp, tmp, cl_dwords);
3391     mtctr(tmp);                        // Set ctr to hit 128byte boundary (0<ctr<cl_dwords).
3392     subf(cnt_dwords, tmp, cnt_dwords); // rest.
3393     li(tmp, 0);
3394 
3395   bind(startloop);                     // Clear at the beginning to reach 128byte boundary.
3396     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
3397     addi(base_ptr, base_ptr, 8);
3398     bdnz(startloop);
3399 
3400   bind(fast);                                  // Clear 128byte blocks.
3401     srdi(tmp, cnt_dwords, cl_dw_addr_bits);    // Loop count for 128byte loop (>0).
3402     andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords.
3403     mtctr(tmp);                                // Load counter.
3404 
3405   bind(fastloop);
3406     dcbz(base_ptr);                    // Clear 128byte aligned block.
3407     addi(base_ptr, base_ptr, cl_size);
3408     bdnz(fastloop);
3409 
3410   bind(small_rest);
3411     cmpdi(CCR0, cnt_dwords, 0);        // size 0?
3412     beq(CCR0, done);                   // rest == 0
3413     li(tmp, 0);
3414     mtctr(cnt_dwords);                 // Load counter.
3415 
3416   bind(restloop);                      // Clear rest.
3417     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
3418     addi(base_ptr, base_ptr, 8);
3419     bdnz(restloop);
3420 
3421   bind(done);
3422 }
3423 
3424 /////////////////////////////////////////// String intrinsics ////////////////////////////////////////////
3425 
3426 // Helpers for Intrinsic Emitters
3427 //
3428 // Revert the byte order of a 32bit value in a register
3429 //   src: 0x44556677
3430 //   dst: 0x77665544
3431 // Three steps to obtain the result:
3432 //  1) Rotate src (as doubleword) left 5 bytes. That puts the leftmost byte of the src word
3433 //     into the rightmost byte position. Afterwards, everything left of the rightmost byte is cleared.
3434 //     This value initializes dst.
3435 //  2) Rotate src (as word) left 3 bytes. That puts the rightmost byte of the src word into the leftmost
3436 //     byte position. Furthermore, byte 5 is rotated into byte 6 position where it is supposed to go.
3437 //     This value is mask inserted into dst with a [0..23] mask of 1s.
3438 //  3) Rotate src (as word) left 1 byte. That puts byte 6 into byte 5 position.
3439 //     This value is mask inserted into dst with a [8..15] mask of 1s.
3440 void MacroAssembler::load_reverse_32(Register dst, Register src) {
3441   assert_different_registers(dst, src);
3442 
3443   rldicl(dst, src, (4+1)*8, 56);       // Rotate byte 4 into position 7 (rightmost), clear all to the left.
3444   rlwimi(dst, src,     3*8,  0, 23);   // Insert byte 5 into position 6, 7 into 4, leave pos 7 alone.
3445   rlwimi(dst, src,     1*8,  8, 15);   // Insert byte 6 into position 5, leave the rest alone.
3446 }
3447 
3448 // Calculate the column addresses of the crc32 lookup table into distinct registers.
3449 // This loop-invariant calculation is moved out of the loop body, reducing the loop
3450 // body size from 20 to 16 instructions.
3451 // Returns the offset that was used to calculate the address of column tc3.
3452 // Due to register shortage, setting tc3 may overwrite table. With the return offset
3453 // at hand, the original table address can be easily reconstructed.
3454 int MacroAssembler::crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3) {
3455   assert(!VM_Version::has_vpmsumb(), "Vector version should be used instead!");
3456 
3457   // Point to 4 byte folding tables (byte-reversed version for Big Endian)
3458   // Layout: See StubRoutines::ppc::generate_crc_constants.
3459 #ifdef VM_LITTLE_ENDIAN
3460   const int ix0 = 3 * CRC32_TABLE_SIZE;
3461   const int ix1 = 2 * CRC32_TABLE_SIZE;
3462   const int ix2 = 1 * CRC32_TABLE_SIZE;
3463   const int ix3 = 0 * CRC32_TABLE_SIZE;
3464 #else
3465   const int ix0 = 1 * CRC32_TABLE_SIZE;
3466   const int ix1 = 2 * CRC32_TABLE_SIZE;
3467   const int ix2 = 3 * CRC32_TABLE_SIZE;
3468   const int ix3 = 4 * CRC32_TABLE_SIZE;
3469 #endif
3470   assert_different_registers(table, tc0, tc1, tc2);
3471   assert(table == tc3, "must be!");
3472 
3473   addi(tc0, table, ix0);
3474   addi(tc1, table, ix1);
3475   addi(tc2, table, ix2);
3476   if (ix3 != 0) addi(tc3, table, ix3);
3477 
3478   return ix3;
3479 }
3480 
3481 /**
3482  * uint32_t crc;
3483  * table[crc & 0xFF] ^ (crc >> 8);
3484  */
3485 void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
3486   assert_different_registers(crc, table, tmp);
3487   assert_different_registers(val, table);
3488 
3489   if (crc == val) {                   // Must rotate first to use the unmodified value.
3490     rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
3491                                       // As we use a word (4-byte) instruction, we have to adapt the mask bit positions.
3492     srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
3493   } else {
3494     srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
3495     rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
3496   }
3497   lwzx(tmp, table, tmp);
3498   xorr(crc, crc, tmp);
3499 }
3500 
3501 /**
3502  * Emits code to update CRC-32 with a byte value according to constants in table.
3503  *
3504  * @param [in,out]crc   Register containing the crc.
3505  * @param [in]val       Register containing the byte to fold into the CRC.
3506  * @param [in]table     Register containing the table of crc constants.
3507  *
3508  * uint32_t crc;
3509  * val = crc_table[(val ^ crc) & 0xFF];
3510  * crc = val ^ (crc >> 8);
3511  */
3512 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
3513   BLOCK_COMMENT("update_byte_crc32:");
3514   xorr(val, val, crc);
3515   fold_byte_crc32(crc, val, table, val);
3516 }
3517 
3518 /**
3519  * @param crc   register containing existing CRC (32-bit)
3520  * @param buf   register pointing to input byte buffer (byte*)
3521  * @param len   register containing number of bytes
3522  * @param table register pointing to CRC table
3523  */
3524 void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
3525                                            Register data, bool loopAlignment) {
3526   assert_different_registers(crc, buf, len, table, data);
3527 
3528   Label L_mainLoop, L_done;
3529   const int mainLoop_stepping  = 1;
3530   const int mainLoop_alignment = loopAlignment ? 32 : 4; // (InputForNewCode > 4 ? InputForNewCode : 32) : 4;
3531 
3532   // Process all bytes in a single-byte loop.
3533   clrldi_(len, len, 32);                         // Enforce 32 bit. Anything to do?
3534   beq(CCR0, L_done);
3535 
3536   mtctr(len);
3537   align(mainLoop_alignment);
3538   BIND(L_mainLoop);
3539     lbz(data, 0, buf);                           // Byte from buffer, zero-extended.
3540     addi(buf, buf, mainLoop_stepping);           // Advance buffer position.
3541     update_byte_crc32(crc, data, table);
3542     bdnz(L_mainLoop);                            // Iterate.
3543 
3544   bind(L_done);
3545 }
3546 
3547 /**
3548  * Emits code to update CRC-32 with a 4-byte value according to constants in table
3549  * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c
3550  */
3551 // A note on the lookup table address(es):
3552 // The implementation uses 4 table columns (byte-reversed versions for Big Endian).
3553 // To save the effort of adding the column offset to the table address each time
3554 // a table element is looked up, it is possible to pass the pre-calculated
3555 // column addresses.
3556 // Uses R9..R12 as work register. Must be saved/restored by caller, if necessary.
3557 void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
3558                                         Register t0,  Register t1,  Register t2,  Register t3,
3559                                         Register tc0, Register tc1, Register tc2, Register tc3) {
3560   assert_different_registers(crc, t3);
3561 
3562   // XOR crc with next four bytes of buffer.
3563   lwz(t3, bufDisp, buf);
3564   if (bufInc != 0) {
3565     addi(buf, buf, bufInc);
3566   }
3567   xorr(t3, t3, crc);
3568 
3569   // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
3570   rlwinm(t0, t3,  2,         24-2, 31-2);  // ((t1 >>  0) & 0xff) << 2
3571   rlwinm(t1, t3,  32+(2- 8), 24-2, 31-2);  // ((t1 >>  8) & 0xff) << 2
3572   rlwinm(t2, t3,  32+(2-16), 24-2, 31-2);  // ((t1 >> 16) & 0xff) << 2
3573   rlwinm(t3, t3,  32+(2-24), 24-2, 31-2);  // ((t1 >> 24) & 0xff) << 2
3574 
3575   // Use the pre-calculated column addresses.
3576   // Load pre-calculated table values.
3577   lwzx(t0, tc0, t0);
3578   lwzx(t1, tc1, t1);
3579   lwzx(t2, tc2, t2);
3580   lwzx(t3, tc3, t3);
3581 
3582   // Calculate new crc from table values.
3583   xorr(t0,  t0, t1);
3584   xorr(t2,  t2, t3);
3585   xorr(crc, t0, t2);  // Now crc contains the final checksum value.
3586 }
3587 
3588 /**
3589  * @param crc   register containing existing CRC (32-bit)
3590  * @param buf   register pointing to input byte buffer (byte*)
3591  * @param len   register containing number of bytes
3592  * @param table register pointing to CRC table
3593  *
3594  * uses R9..R12 as work register. Must be saved/restored by caller!
3595  */
3596 void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
3597                                         Register t0,  Register t1,  Register t2,  Register t3,
3598                                         Register tc0, Register tc1, Register tc2, Register tc3,
3599                                         bool invertCRC) {
3600   assert_different_registers(crc, buf, len, table);
3601 
3602   Label L_mainLoop, L_tail;
3603   Register  tmp          = t0;
3604   Register  data         = t0;
3605   Register  tmp2         = t1;
3606   const int mainLoop_stepping  = 4;
3607   const int tailLoop_stepping  = 1;
3608   const int log_stepping       = exact_log2(mainLoop_stepping);
3609   const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
3610   const int complexThreshold   = 2*mainLoop_stepping;
3611 
3612   // Don't test for len <= 0 here. This pathological case should not occur anyway.
3613   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles
3614   // for all well-behaved cases. The situation itself is detected and handled correctly
3615   // within update_byteLoop_crc32.
3616   assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
3617 
3618   BLOCK_COMMENT("kernel_crc32_1word {");
3619 
3620   if (invertCRC) {
3621     nand(crc, crc, crc);                      // 1s complement of crc
3622   }
3623 
3624   // Check for short (<mainLoop_stepping) buffer.
3625   cmpdi(CCR0, len, complexThreshold);
3626   blt(CCR0, L_tail);
3627 
3628   // Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
3629   // We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
3630   {
3631     // Align buf addr to mainLoop_stepping boundary.
3632     neg(tmp2, buf);                              // Calculate # preLoop iterations for alignment.
3633     rldicl(tmp2, tmp2, 0, 64-log_stepping);      // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
3634 
3635     if (complexThreshold > mainLoop_stepping) {
3636       sub(len, len, tmp2);                       // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
3637     } else {
3638       sub(tmp, len, tmp2);                       // Remaining bytes for main loop.
3639       cmpdi(CCR0, tmp, mainLoop_stepping);
3640       blt(CCR0, L_tail);                         // For less than one mainloop_stepping left, do only tail processing
3641       mr(len, tmp);                              // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
3642     }
3643     update_byteLoop_crc32(crc, buf, tmp2, table, data, false);
3644   }
3645 
3646   srdi(tmp2, len, log_stepping);                 // #iterations for mainLoop
3647   andi(len, len, mainLoop_stepping-1);           // remaining bytes for tailLoop
3648   mtctr(tmp2);
3649 
3650 #ifdef VM_LITTLE_ENDIAN
3651   Register crc_rv = crc;
3652 #else
3653   Register crc_rv = tmp;                         // Load_reverse needs separate registers to work on.
3654                                                  // Occupies tmp, but frees up crc.
3655   load_reverse_32(crc_rv, crc);                  // Revert byte order because we are dealing with big-endian data.
3656   tmp = crc;
3657 #endif
3658 
3659   int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
3660 
3661   align(mainLoop_alignment);                     // Octoword-aligned loop address. Shows 2% improvement.
3662   BIND(L_mainLoop);
3663     update_1word_crc32(crc_rv, buf, table, 0, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
3664     bdnz(L_mainLoop);
3665 
3666 #ifndef VM_LITTLE_ENDIAN
3667   load_reverse_32(crc, crc_rv);                  // Revert byte order because we are dealing with big-endian data.
3668   tmp = crc_rv;                                  // Tmp uses it's original register again.
3669 #endif
3670 
3671   // Restore original table address for tailLoop.
3672   if (reconstructTableOffset != 0) {
3673     addi(table, table, -reconstructTableOffset);
3674   }
3675 
3676   // Process last few (<complexThreshold) bytes of buffer.
3677   BIND(L_tail);
3678   update_byteLoop_crc32(crc, buf, len, table, data, false);
3679 
3680   if (invertCRC) {
3681     nand(crc, crc, crc);                      // 1s complement of crc
3682   }
3683   BLOCK_COMMENT("} kernel_crc32_1word");
3684 }
3685 
3686 /**
3687  * @param crc             register containing existing CRC (32-bit)
3688  * @param buf             register pointing to input byte buffer (byte*)
3689  * @param len             register containing number of bytes
3690  * @param constants       register pointing to precomputed constants
3691  * @param t0-t6           temp registers
3692  */
3693 void MacroAssembler::kernel_crc32_vpmsum(Register crc, Register buf, Register len, Register constants,
3694                                          Register t0, Register t1, Register t2, Register t3,
3695                                          Register t4, Register t5, Register t6, bool invertCRC) {
3696   assert_different_registers(crc, buf, len, constants);
3697 
3698   Label L_tail;
3699 
3700   BLOCK_COMMENT("kernel_crc32_vpmsum {");
3701 
3702   if (invertCRC) {
3703     nand(crc, crc, crc);                      // 1s complement of crc
3704   }
3705 
3706   // Enforce 32 bit.
3707   clrldi(len, len, 32);
3708 
3709   // Align if we have enough bytes for the fast version.
3710   const int alignment = 16,
3711             threshold = 32;
3712   Register prealign = t0;
3713 
3714   neg(prealign, buf);
3715   addi(t1, len, -threshold);
3716   andi(prealign, prealign, alignment - 1);
3717   cmpw(CCR0, t1, prealign);
3718   blt(CCR0, L_tail); // len - prealign < threshold?
3719 
3720   subf(len, prealign, len);
3721   update_byteLoop_crc32(crc, buf, prealign, constants, t2, false);
3722 
3723   // Calculate from first aligned address as far as possible.
3724   addi(constants, constants, CRC32_TABLE_SIZE); // Point to vector constants.
3725   kernel_crc32_vpmsum_aligned(crc, buf, len, constants, t0, t1, t2, t3, t4, t5, t6);
3726   addi(constants, constants, -CRC32_TABLE_SIZE); // Point to table again.
3727 
3728   // Remaining bytes.
3729   BIND(L_tail);
3730   update_byteLoop_crc32(crc, buf, len, constants, t2, false);
3731 
3732   if (invertCRC) {
3733     nand(crc, crc, crc);                      // 1s complement of crc
3734   }
3735 
3736   BLOCK_COMMENT("} kernel_crc32_vpmsum");
3737 }
3738 
3739 /**
3740  * @param crc             register containing existing CRC (32-bit)
3741  * @param buf             register pointing to input byte buffer (byte*)
3742  * @param len             register containing number of bytes (will get updated to remaining bytes)
3743  * @param constants       register pointing to CRC table for 128-bit aligned memory
3744  * @param t0-t6           temp registers
3745  */
3746 void MacroAssembler::kernel_crc32_vpmsum_aligned(Register crc, Register buf, Register len, Register constants,
3747     Register t0, Register t1, Register t2, Register t3, Register t4, Register t5, Register t6) {
3748 
3749   // Save non-volatile vector registers (frameless).
3750   Register offset = t1;
3751   int offsetInt = 0;
3752   offsetInt -= 16; li(offset, offsetInt); stvx(VR20, offset, R1_SP);
3753   offsetInt -= 16; li(offset, offsetInt); stvx(VR21, offset, R1_SP);
3754   offsetInt -= 16; li(offset, offsetInt); stvx(VR22, offset, R1_SP);
3755   offsetInt -= 16; li(offset, offsetInt); stvx(VR23, offset, R1_SP);
3756   offsetInt -= 16; li(offset, offsetInt); stvx(VR24, offset, R1_SP);
3757   offsetInt -= 16; li(offset, offsetInt); stvx(VR25, offset, R1_SP);
3758 #ifndef VM_LITTLE_ENDIAN
3759   offsetInt -= 16; li(offset, offsetInt); stvx(VR26, offset, R1_SP);
3760 #endif
3761   offsetInt -= 8; std(R14, offsetInt, R1_SP);
3762   offsetInt -= 8; std(R15, offsetInt, R1_SP);
3763 
3764   // Implementation uses an inner loop which uses between 256 and 16 * unroll_factor
3765   // bytes per iteration. The basic scheme is:
3766   // lvx: load vector (Big Endian needs reversal)
3767   // vpmsumw: carry-less 32 bit multiplications with constant representing a large CRC shift
3768   // vxor: xor partial results together to get unroll_factor2 vectors
3769 
3770   // Outer loop performs the CRC shifts needed to combine the unroll_factor2 vectors.
3771 
3772   // Using 16 * unroll_factor / unroll_factor_2 bytes for constants.
3773   const int unroll_factor = CRC32_UNROLL_FACTOR,
3774             unroll_factor2 = CRC32_UNROLL_FACTOR2;
3775 
3776   const int outer_consts_size = (unroll_factor2 - 1) * 16,
3777             inner_consts_size = (unroll_factor / unroll_factor2) * 16;
3778 
3779   // Support registers.
3780   Register offs[] = { noreg, t0, t1, t2, t3, t4, t5, t6 };
3781   Register num_bytes = R14,
3782            loop_count = R15,
3783            cur_const = crc; // will live in VCRC
3784   // Constant array for outer loop: unroll_factor2 - 1 registers,
3785   // Constant array for inner loop: unroll_factor / unroll_factor2 registers.
3786   VectorRegister consts0[] = { VR16, VR17, VR18, VR19, VR20, VR21, VR22 },
3787                  consts1[] = { VR23, VR24 };
3788   // Data register arrays: 2 arrays with unroll_factor2 registers.
3789   VectorRegister data0[] = { VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7 },
3790                  data1[] = { VR8, VR9, VR10, VR11, VR12, VR13, VR14, VR15 };
3791 
3792   VectorRegister VCRC = data0[0];
3793   VectorRegister Vc = VR25;
3794   VectorRegister swap_bytes = VR26; // Only for Big Endian.
3795 
3796   // We have at least 1 iteration (ensured by caller).
3797   Label L_outer_loop, L_inner_loop, L_last;
3798 
3799   // If supported set DSCR pre-fetch to deepest.
3800   if (VM_Version::has_mfdscr()) {
3801     load_const_optimized(t0, VM_Version::_dscr_val | 7);
3802     mtdscr(t0);
3803   }
3804 
3805   mtvrwz(VCRC, crc); // crc lives in VCRC, now
3806 
3807   for (int i = 1; i < unroll_factor2; ++i) {
3808     li(offs[i], 16 * i);
3809   }
3810 
3811   // Load consts for outer loop
3812   lvx(consts0[0], constants);
3813   for (int i = 1; i < unroll_factor2 - 1; ++i) {
3814     lvx(consts0[i], offs[i], constants);
3815   }
3816 
3817   load_const_optimized(num_bytes, 16 * unroll_factor);
3818 
3819   // Reuse data registers outside of the loop.
3820   VectorRegister Vtmp = data1[0];
3821   VectorRegister Vtmp2 = data1[1];
3822   VectorRegister zeroes = data1[2];
3823 
3824   vspltisb(Vtmp, 0);
3825   vsldoi(VCRC, Vtmp, VCRC, 8); // 96 bit zeroes, 32 bit CRC.
3826 
3827   // Load vector for vpermxor (to xor both 64 bit parts together)
3828   lvsl(Vtmp, buf);   // 000102030405060708090a0b0c0d0e0f
3829   vspltisb(Vc, 4);
3830   vsl(Vc, Vtmp, Vc); // 00102030405060708090a0b0c0d0e0f0
3831   xxspltd(Vc->to_vsr(), Vc->to_vsr(), 0);
3832   vor(Vc, Vtmp, Vc); // 001122334455667708192a3b4c5d6e7f
3833 
3834 #ifdef VM_LITTLE_ENDIAN
3835 #define BE_swap_bytes(x)
3836 #else
3837   vspltisb(Vtmp2, 0xf);
3838   vxor(swap_bytes, Vtmp, Vtmp2);
3839 #define BE_swap_bytes(x) vperm(x, x, x, swap_bytes)
3840 #endif
3841 
3842   cmpd(CCR0, len, num_bytes);
3843   blt(CCR0, L_last);
3844 
3845   addi(cur_const, constants, outer_consts_size); // Point to consts for inner loop
3846   load_const_optimized(loop_count, unroll_factor / (2 * unroll_factor2) - 1); // One double-iteration peeled off.
3847 
3848   // ********** Main loop start **********
3849   align(32);
3850   bind(L_outer_loop);
3851 
3852   // Begin of unrolled first iteration (no xor).
3853   lvx(data1[0], buf);
3854   for (int i = 1; i < unroll_factor2 / 2; ++i) {
3855     lvx(data1[i], offs[i], buf);
3856   }
3857   vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.
3858   lvx(consts1[0], cur_const);
3859   mtctr(loop_count);
3860   for (int i = 0; i < unroll_factor2 / 2; ++i) {
3861     BE_swap_bytes(data1[i]);
3862     if (i == 0) { vxor(data1[0], data1[0], VCRC); } // xor in previous CRC.
3863     lvx(data1[i + unroll_factor2 / 2], offs[i + unroll_factor2 / 2], buf);
3864     vpmsumw(data0[i], data1[i], consts1[0]);
3865   }
3866   addi(buf, buf, 16 * unroll_factor2);
3867   subf(len, num_bytes, len);
3868   lvx(consts1[1], offs[1], cur_const);
3869   addi(cur_const, cur_const, 32);
3870   // Begin of unrolled second iteration (head).
3871   for (int i = 0; i < unroll_factor2 / 2; ++i) {
3872     BE_swap_bytes(data1[i + unroll_factor2 / 2]);
3873     if (i == 0) { lvx(data1[0], buf); } else { lvx(data1[i], offs[i], buf); }
3874     vpmsumw(data0[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2], consts1[0]);
3875   }
3876   for (int i = 0; i < unroll_factor2 / 2; ++i) {
3877     BE_swap_bytes(data1[i]);
3878     lvx(data1[i + unroll_factor2 / 2], offs[i + unroll_factor2 / 2], buf);
3879     vpmsumw(data1[i], data1[i], consts1[1]);
3880   }
3881   addi(buf, buf, 16 * unroll_factor2);
3882 
3883   // Generate most performance relevant code. Loads + half of the vpmsumw have been generated.
3884   // Double-iteration allows using the 2 constant registers alternatingly.
3885   align(32);
3886   bind(L_inner_loop);
3887   for (int j = 1; j < 3; ++j) { // j < unroll_factor / unroll_factor2 - 1 for complete unrolling.
3888     if (j & 1) {
3889       lvx(consts1[0], cur_const);
3890     } else {
3891       lvx(consts1[1], offs[1], cur_const);
3892       addi(cur_const, cur_const, 32);
3893     }
3894     for (int i = 0; i < unroll_factor2; ++i) {
3895       int idx = i + unroll_factor2 / 2, inc = 0; // For modulo-scheduled input.
3896       if (idx >= unroll_factor2) { idx -= unroll_factor2; inc = 1; }
3897       BE_swap_bytes(data1[idx]);
3898       vxor(data0[i], data0[i], data1[i]);
3899       if (i == 0) lvx(data1[0], buf); else lvx(data1[i], offs[i], buf);
3900       vpmsumw(data1[idx], data1[idx], consts1[(j + inc) & 1]);
3901     }
3902     addi(buf, buf, 16 * unroll_factor2);
3903   }
3904   bdnz(L_inner_loop);
3905 
3906   addi(cur_const, constants, outer_consts_size); // Reset
3907 
3908   // Tail of last iteration (no loads).
3909   for (int i = 0; i < unroll_factor2 / 2; ++i) {
3910     BE_swap_bytes(data1[i + unroll_factor2 / 2]);
3911     vxor(data0[i], data0[i], data1[i]);
3912     vpmsumw(data1[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2], consts1[1]);
3913   }
3914   for (int i = 0; i < unroll_factor2 / 2; ++i) {
3915     vpmsumw(data0[i], data0[i], consts0[unroll_factor2 - 2 - i]); // First half of fixup shifts.
3916     vxor(data0[i + unroll_factor2 / 2], data0[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2]);
3917   }
3918 
3919   // Last data register is ok, other ones need fixup shift.
3920   for (int i = unroll_factor2 / 2; i < unroll_factor2 - 1; ++i) {
3921     vpmsumw(data0[i], data0[i], consts0[unroll_factor2 - 2 - i]);
3922   }
3923 
3924   // Combine to 128 bit result vector VCRC = data0[0].
3925   for (int i = 1; i < unroll_factor2; i<<=1) {
3926     for (int j = 0; j <= unroll_factor2 - 2*i; j+=2*i) {
3927       vxor(data0[j], data0[j], data0[j+i]);
3928     }
3929   }
3930   cmpd(CCR0, len, num_bytes);
3931   bge(CCR0, L_outer_loop);
3932 
3933   // Last chance with lower num_bytes.
3934   bind(L_last);
3935   srdi(loop_count, len, exact_log2(16 * 2 * unroll_factor2)); // Use double-iterations.
3936   // Point behind last const for inner loop.
3937   add_const_optimized(cur_const, constants, outer_consts_size + inner_consts_size);
3938   sldi(R0, loop_count, exact_log2(16 * 2)); // Bytes of constants to be used.
3939   clrrdi(num_bytes, len, exact_log2(16 * 2 * unroll_factor2));
3940   subf(cur_const, R0, cur_const); // Point to constant to be used first.
3941 
3942   addic_(loop_count, loop_count, -1); // One double-iteration peeled off.
3943   bgt(CCR0, L_outer_loop);
3944   // ********** Main loop end **********
3945 
3946   // Restore DSCR pre-fetch value.
3947   if (VM_Version::has_mfdscr()) {
3948     load_const_optimized(t0, VM_Version::_dscr_val);
3949     mtdscr(t0);
3950   }
3951 
3952   // ********** Simple loop for remaining 16 byte blocks **********
3953   {
3954     Label L_loop, L_done;
3955 
3956     srdi_(t0, len, 4); // 16 bytes per iteration
3957     clrldi(len, len, 64-4);
3958     beq(CCR0, L_done);
3959 
3960     // Point to const (same as last const for inner loop).
3961     add_const_optimized(cur_const, constants, outer_consts_size + inner_consts_size - 16);
3962     mtctr(t0);
3963     lvx(Vtmp2, cur_const);
3964 
3965     align(32);
3966     bind(L_loop);
3967 
3968     lvx(Vtmp, buf);
3969     addi(buf, buf, 16);
3970     vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.
3971     BE_swap_bytes(Vtmp);
3972     vxor(VCRC, VCRC, Vtmp);
3973     vpmsumw(VCRC, VCRC, Vtmp2);
3974     bdnz(L_loop);
3975 
3976     bind(L_done);
3977   }
3978   // ********** Simple loop end **********
3979 #undef BE_swap_bytes
3980 
3981   // Point to Barrett constants
3982   add_const_optimized(cur_const, constants, outer_consts_size + inner_consts_size);
3983 
3984   vspltisb(zeroes, 0);
3985 
3986   // Combine to 64 bit result.
3987   vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.
3988 
3989   // Reduce to 32 bit CRC: Remainder by multiply-high.
3990   lvx(Vtmp, cur_const);
3991   vsldoi(Vtmp2, zeroes, VCRC, 12);  // Extract high 32 bit.
3992   vpmsumd(Vtmp2, Vtmp2, Vtmp);      // Multiply by inverse long poly.
3993   vsldoi(Vtmp2, zeroes, Vtmp2, 12); // Extract high 32 bit.
3994   vsldoi(Vtmp, zeroes, Vtmp, 8);
3995   vpmsumd(Vtmp2, Vtmp2, Vtmp);      // Multiply quotient by long poly.
3996   vxor(VCRC, VCRC, Vtmp2);          // Remainder fits into 32 bit.
3997 
3998   // Move result. len is already updated.
3999   vsldoi(VCRC, VCRC, zeroes, 8);
4000   mfvrd(crc, VCRC);
4001 
4002   // Restore non-volatile Vector registers (frameless).
4003   offsetInt = 0;
4004   offsetInt -= 16; li(offset, offsetInt); lvx(VR20, offset, R1_SP);
4005   offsetInt -= 16; li(offset, offsetInt); lvx(VR21, offset, R1_SP);
4006   offsetInt -= 16; li(offset, offsetInt); lvx(VR22, offset, R1_SP);
4007   offsetInt -= 16; li(offset, offsetInt); lvx(VR23, offset, R1_SP);
4008   offsetInt -= 16; li(offset, offsetInt); lvx(VR24, offset, R1_SP);
4009   offsetInt -= 16; li(offset, offsetInt); lvx(VR25, offset, R1_SP);
4010 #ifndef VM_LITTLE_ENDIAN
4011   offsetInt -= 16; li(offset, offsetInt); lvx(VR26, offset, R1_SP);
4012 #endif
4013   offsetInt -= 8;  ld(R14, offsetInt, R1_SP);
4014   offsetInt -= 8;  ld(R15, offsetInt, R1_SP);
4015 }
4016 
4017 void MacroAssembler::crc32(Register crc, Register buf, Register len, Register t0, Register t1, Register t2,
4018                            Register t3, Register t4, Register t5, Register t6, Register t7, bool is_crc32c) {
4019   load_const_optimized(t0, is_crc32c ? StubRoutines::crc32c_table_addr()
4020                                      : StubRoutines::crc_table_addr()   , R0);
4021 
4022   if (VM_Version::has_vpmsumb()) {
4023     kernel_crc32_vpmsum(crc, buf, len, t0, t1, t2, t3, t4, t5, t6, t7, !is_crc32c);
4024   } else {
4025     kernel_crc32_1word(crc, buf, len, t0, t1, t2, t3, t4, t5, t6, t7, t0, !is_crc32c);
4026   }
4027 }
4028 
4029 void MacroAssembler::kernel_crc32_singleByteReg(Register crc, Register val, Register table, bool invertCRC) {
4030   assert_different_registers(crc, val, table);
4031 
4032   BLOCK_COMMENT("kernel_crc32_singleByteReg:");
4033   if (invertCRC) {
4034     nand(crc, crc, crc);                // 1s complement of crc
4035   }
4036 
4037   update_byte_crc32(crc, val, table);
4038 
4039   if (invertCRC) {
4040     nand(crc, crc, crc);                // 1s complement of crc
4041   }
4042 }
4043 
4044 // dest_lo += src1 + src2
4045 // dest_hi += carry1 + carry2
4046 void MacroAssembler::add2_with_carry(Register dest_hi,
4047                                      Register dest_lo,
4048                                      Register src1, Register src2) {
4049   li(R0, 0);
4050   addc(dest_lo, dest_lo, src1);
4051   adde(dest_hi, dest_hi, R0);
4052   addc(dest_lo, dest_lo, src2);
4053   adde(dest_hi, dest_hi, R0);
4054 }
4055 
4056 // Multiply 64 bit by 64 bit first loop.
4057 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
4058                                            Register x_xstart,
4059                                            Register y, Register y_idx,
4060                                            Register z,
4061                                            Register carry,
4062                                            Register product_high, Register product,
4063                                            Register idx, Register kdx,
4064                                            Register tmp) {
4065   //  jlong carry, x[], y[], z[];
4066   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
4067   //    huge_128 product = y[idx] * x[xstart] + carry;
4068   //    z[kdx] = (jlong)product;
4069   //    carry  = (jlong)(product >>> 64);
4070   //  }
4071   //  z[xstart] = carry;
4072 
4073   Label L_first_loop, L_first_loop_exit;
4074   Label L_one_x, L_one_y, L_multiply;
4075 
4076   addic_(xstart, xstart, -1);
4077   blt(CCR0, L_one_x);   // Special case: length of x is 1.
4078 
4079   // Load next two integers of x.
4080   sldi(tmp, xstart, LogBytesPerInt);
4081   ldx(x_xstart, x, tmp);
4082 #ifdef VM_LITTLE_ENDIAN
4083   rldicl(x_xstart, x_xstart, 32, 0);
4084 #endif
4085 
4086   align(32, 16);
4087   bind(L_first_loop);
4088 
4089   cmpdi(CCR0, idx, 1);
4090   blt(CCR0, L_first_loop_exit);
4091   addi(idx, idx, -2);
4092   beq(CCR0, L_one_y);
4093 
4094   // Load next two integers of y.
4095   sldi(tmp, idx, LogBytesPerInt);
4096   ldx(y_idx, y, tmp);
4097 #ifdef VM_LITTLE_ENDIAN
4098   rldicl(y_idx, y_idx, 32, 0);
4099 #endif
4100 
4101 
4102   bind(L_multiply);
4103   multiply64(product_high, product, x_xstart, y_idx);
4104 
4105   li(tmp, 0);
4106   addc(product, product, carry);         // Add carry to result.
4107   adde(product_high, product_high, tmp); // Add carry of the last addition.
4108   addi(kdx, kdx, -2);
4109 
4110   // Store result.
4111 #ifdef VM_LITTLE_ENDIAN
4112   rldicl(product, product, 32, 0);
4113 #endif
4114   sldi(tmp, kdx, LogBytesPerInt);
4115   stdx(product, z, tmp);
4116   mr_if_needed(carry, product_high);
4117   b(L_first_loop);
4118 
4119 
4120   bind(L_one_y); // Load one 32 bit portion of y as (0,value).
4121 
4122   lwz(y_idx, 0, y);
4123   b(L_multiply);
4124 
4125 
4126   bind(L_one_x); // Load one 32 bit portion of x as (0,value).
4127 
4128   lwz(x_xstart, 0, x);
4129   b(L_first_loop);
4130 
4131   bind(L_first_loop_exit);
4132 }
4133 
4134 // Multiply 64 bit by 64 bit and add 128 bit.
4135 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
4136                                             Register z, Register yz_idx,
4137                                             Register idx, Register carry,
4138                                             Register product_high, Register product,
4139                                             Register tmp, int offset) {
4140 
4141   //  huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
4142   //  z[kdx] = (jlong)product;
4143 
4144   sldi(tmp, idx, LogBytesPerInt);
4145   if (offset) {
4146     addi(tmp, tmp, offset);
4147   }
4148   ldx(yz_idx, y, tmp);
4149 #ifdef VM_LITTLE_ENDIAN
4150   rldicl(yz_idx, yz_idx, 32, 0);
4151 #endif
4152 
4153   multiply64(product_high, product, x_xstart, yz_idx);
4154   ldx(yz_idx, z, tmp);
4155 #ifdef VM_LITTLE_ENDIAN
4156   rldicl(yz_idx, yz_idx, 32, 0);
4157 #endif
4158 
4159   add2_with_carry(product_high, product, carry, yz_idx);
4160 
4161   sldi(tmp, idx, LogBytesPerInt);
4162   if (offset) {
4163     addi(tmp, tmp, offset);
4164   }
4165 #ifdef VM_LITTLE_ENDIAN
4166   rldicl(product, product, 32, 0);
4167 #endif
4168   stdx(product, z, tmp);
4169 }
4170 
4171 // Multiply 128 bit by 128 bit. Unrolled inner loop.
4172 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
4173                                              Register y, Register z,
4174                                              Register yz_idx, Register idx, Register carry,
4175                                              Register product_high, Register product,
4176                                              Register carry2, Register tmp) {
4177 
4178   //  jlong carry, x[], y[], z[];
4179   //  int kdx = ystart+1;
4180   //  for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
4181   //    huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
4182   //    z[kdx+idx+1] = (jlong)product;
4183   //    jlong carry2 = (jlong)(product >>> 64);
4184   //    product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
4185   //    z[kdx+idx] = (jlong)product;
4186   //    carry = (jlong)(product >>> 64);
4187   //  }
4188   //  idx += 2;
4189   //  if (idx > 0) {
4190   //    product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
4191   //    z[kdx+idx] = (jlong)product;
4192   //    carry = (jlong)(product >>> 64);
4193   //  }
4194 
4195   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
4196   const Register jdx = R0;
4197 
4198   // Scale the index.
4199   srdi_(jdx, idx, 2);
4200   beq(CCR0, L_third_loop_exit);
4201   mtctr(jdx);
4202 
4203   align(32, 16);
4204   bind(L_third_loop);
4205 
4206   addi(idx, idx, -4);
4207 
4208   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 8);
4209   mr_if_needed(carry2, product_high);
4210 
4211   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product_high, product, tmp, 0);
4212   mr_if_needed(carry, product_high);
4213   bdnz(L_third_loop);
4214 
4215   bind(L_third_loop_exit);  // Handle any left-over operand parts.
4216 
4217   andi_(idx, idx, 0x3);
4218   beq(CCR0, L_post_third_loop_done);
4219 
4220   Label L_check_1;
4221 
4222   addic_(idx, idx, -2);
4223   blt(CCR0, L_check_1);
4224 
4225   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 0);
4226   mr_if_needed(carry, product_high);
4227 
4228   bind(L_check_1);
4229 
4230   addi(idx, idx, 0x2);
4231   andi_(idx, idx, 0x1);
4232   addic_(idx, idx, -1);
4233   blt(CCR0, L_post_third_loop_done);
4234 
4235   sldi(tmp, idx, LogBytesPerInt);
4236   lwzx(yz_idx, y, tmp);
4237   multiply64(product_high, product, x_xstart, yz_idx);
4238   lwzx(yz_idx, z, tmp);
4239 
4240   add2_with_carry(product_high, product, yz_idx, carry);
4241 
4242   sldi(tmp, idx, LogBytesPerInt);
4243   stwx(product, z, tmp);
4244   srdi(product, product, 32);
4245 
4246   sldi(product_high, product_high, 32);
4247   orr(product, product, product_high);
4248   mr_if_needed(carry, product);
4249 
4250   bind(L_post_third_loop_done);
4251 }   // multiply_128_x_128_loop
4252 
4253 void MacroAssembler::muladd(Register out, Register in,
4254                             Register offset, Register len, Register k,
4255                             Register tmp1, Register tmp2, Register carry) {
4256 
4257   // Labels
4258   Label LOOP, SKIP;
4259 
4260   // Make sure length is positive.
4261   cmpdi  (CCR0,    len,     0);
4262 
4263   // Prepare variables
4264   subi   (offset,  offset,  4);
4265   li     (carry,   0);
4266   ble    (CCR0,    SKIP);
4267 
4268   mtctr  (len);
4269   subi   (len,     len,     1    );
4270   sldi   (len,     len,     2    );
4271 
4272   // Main loop
4273   bind(LOOP);
4274   lwzx   (tmp1,    len,     in   );
4275   lwzx   (tmp2,    offset,  out  );
4276   mulld  (tmp1,    tmp1,    k    );
4277   add    (tmp2,    carry,   tmp2 );
4278   add    (tmp2,    tmp1,    tmp2 );
4279   stwx   (tmp2,    offset,  out  );
4280   srdi   (carry,   tmp2,    32   );
4281   subi   (offset,  offset,  4    );
4282   subi   (len,     len,     4    );
4283   bdnz   (LOOP);
4284   bind(SKIP);
4285 }
4286 
4287 void MacroAssembler::multiply_to_len(Register x, Register xlen,
4288                                      Register y, Register ylen,
4289                                      Register z,
4290                                      Register tmp1, Register tmp2,
4291                                      Register tmp3, Register tmp4,
4292                                      Register tmp5, Register tmp6,
4293                                      Register tmp7, Register tmp8,
4294                                      Register tmp9, Register tmp10,
4295                                      Register tmp11, Register tmp12,
4296                                      Register tmp13) {
4297 
4298   ShortBranchVerifier sbv(this);
4299 
4300   assert_different_registers(x, xlen, y, ylen, z,
4301                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
4302   assert_different_registers(x, xlen, y, ylen, z,
4303                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp7);
4304   assert_different_registers(x, xlen, y, ylen, z,
4305                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp8);
4306 
4307   const Register idx = tmp1;
4308   const Register kdx = tmp2;
4309   const Register xstart = tmp3;
4310 
4311   const Register y_idx = tmp4;
4312   const Register carry = tmp5;
4313   const Register product = tmp6;
4314   const Register product_high = tmp7;
4315   const Register x_xstart = tmp8;
4316   const Register tmp = tmp9;
4317 
4318   // First Loop.
4319   //
4320   //  final static long LONG_MASK = 0xffffffffL;
4321   //  int xstart = xlen - 1;
4322   //  int ystart = ylen - 1;
4323   //  long carry = 0;
4324   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
4325   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
4326   //    z[kdx] = (int)product;
4327   //    carry = product >>> 32;
4328   //  }
4329   //  z[xstart] = (int)carry;
4330 
4331   mr_if_needed(idx, ylen);        // idx = ylen
4332   add(kdx, xlen, ylen);           // kdx = xlen + ylen
4333   li(carry, 0);                   // carry = 0
4334 
4335   Label L_done;
4336 
4337   addic_(xstart, xlen, -1);
4338   blt(CCR0, L_done);
4339 
4340   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z,
4341                         carry, product_high, product, idx, kdx, tmp);
4342 
4343   Label L_second_loop;
4344 
4345   cmpdi(CCR0, kdx, 0);
4346   beq(CCR0, L_second_loop);
4347 
4348   Label L_carry;
4349 
4350   addic_(kdx, kdx, -1);
4351   beq(CCR0, L_carry);
4352 
4353   // Store lower 32 bits of carry.
4354   sldi(tmp, kdx, LogBytesPerInt);
4355   stwx(carry, z, tmp);
4356   srdi(carry, carry, 32);
4357   addi(kdx, kdx, -1);
4358 
4359 
4360   bind(L_carry);
4361 
4362   // Store upper 32 bits of carry.
4363   sldi(tmp, kdx, LogBytesPerInt);
4364   stwx(carry, z, tmp);
4365 
4366   // Second and third (nested) loops.
4367   //
4368   //  for (int i = xstart-1; i >= 0; i--) { // Second loop
4369   //    carry = 0;
4370   //    for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
4371   //      long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
4372   //                     (z[k] & LONG_MASK) + carry;
4373   //      z[k] = (int)product;
4374   //      carry = product >>> 32;
4375   //    }
4376   //    z[i] = (int)carry;
4377   //  }
4378   //
4379   //  i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
4380 
4381   bind(L_second_loop);
4382 
4383   li(carry, 0);                   // carry = 0;
4384 
4385   addic_(xstart, xstart, -1);     // i = xstart-1;
4386   blt(CCR0, L_done);
4387 
4388   Register zsave = tmp10;
4389 
4390   mr(zsave, z);
4391 
4392 
4393   Label L_last_x;
4394 
4395   sldi(tmp, xstart, LogBytesPerInt);
4396   add(z, z, tmp);                 // z = z + k - j
4397   addi(z, z, 4);
4398   addic_(xstart, xstart, -1);     // i = xstart-1;
4399   blt(CCR0, L_last_x);
4400 
4401   sldi(tmp, xstart, LogBytesPerInt);
4402   ldx(x_xstart, x, tmp);
4403 #ifdef VM_LITTLE_ENDIAN
4404   rldicl(x_xstart, x_xstart, 32, 0);
4405 #endif
4406 
4407 
4408   Label L_third_loop_prologue;
4409 
4410   bind(L_third_loop_prologue);
4411 
4412   Register xsave = tmp11;
4413   Register xlensave = tmp12;
4414   Register ylensave = tmp13;
4415 
4416   mr(xsave, x);
4417   mr(xlensave, xstart);
4418   mr(ylensave, ylen);
4419 
4420 
4421   multiply_128_x_128_loop(x_xstart, y, z, y_idx, ylen,
4422                           carry, product_high, product, x, tmp);
4423 
4424   mr(z, zsave);
4425   mr(x, xsave);
4426   mr(xlen, xlensave);   // This is the decrement of the loop counter!
4427   mr(ylen, ylensave);
4428 
4429   addi(tmp3, xlen, 1);
4430   sldi(tmp, tmp3, LogBytesPerInt);
4431   stwx(carry, z, tmp);
4432   addic_(tmp3, tmp3, -1);
4433   blt(CCR0, L_done);
4434 
4435   srdi(carry, carry, 32);
4436   sldi(tmp, tmp3, LogBytesPerInt);
4437   stwx(carry, z, tmp);
4438   b(L_second_loop);
4439 
4440   // Next infrequent code is moved outside loops.
4441   bind(L_last_x);
4442 
4443   lwz(x_xstart, 0, x);
4444   b(L_third_loop_prologue);
4445 
4446   bind(L_done);
4447 }   // multiply_to_len
4448 
4449 void MacroAssembler::asm_assert(bool check_equal, const char *msg) {
4450 #ifdef ASSERT
4451   Label ok;
4452   if (check_equal) {
4453     beq(CCR0, ok);
4454   } else {
4455     bne(CCR0, ok);
4456   }
4457   stop(msg);
4458   bind(ok);
4459 #endif
4460 }
4461 
4462 void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset,
4463                                           Register mem_base, const char* msg) {
4464 #ifdef ASSERT
4465   switch (size) {
4466     case 4:
4467       lwz(R0, mem_offset, mem_base);
4468       cmpwi(CCR0, R0, 0);
4469       break;
4470     case 8:
4471       ld(R0, mem_offset, mem_base);
4472       cmpdi(CCR0, R0, 0);
4473       break;
4474     default:
4475       ShouldNotReachHere();
4476   }
4477   asm_assert(check_equal, msg);
4478 #endif // ASSERT
4479 }
4480 
4481 void MacroAssembler::verify_coop(Register coop, const char* msg) {
4482   if (!VerifyOops) { return; }
4483   if (UseCompressedOops) { decode_heap_oop(coop); }
4484   verify_oop(coop, msg);
4485   if (UseCompressedOops) { encode_heap_oop(coop, coop); }
4486 }
4487 
4488 // READ: oop. KILL: R0. Volatile floats perhaps.
4489 void MacroAssembler::verify_oop(Register oop, const char* msg) {
4490   if (!VerifyOops) {
4491     return;
4492   }
4493 
4494   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
4495   const Register tmp = R11; // Will be preserved.
4496   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
4497 
4498   BLOCK_COMMENT("verify_oop {");
4499 
4500   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
4501 
4502   mr_if_needed(R4_ARG2, oop);
4503   save_LR_CR(tmp); // save in old frame
4504   push_frame_reg_args(nbytes_save, tmp);
4505   // load FunctionDescriptor** / entry_address *
4506   load_const_optimized(tmp, fd, R0);
4507   // load FunctionDescriptor* / entry_address
4508   ld(tmp, 0, tmp);
4509   load_const_optimized(R3_ARG1, (address)msg, R0);
4510   // Call destination for its side effect.
4511   call_c(tmp);
4512 
4513   pop_frame();
4514   restore_LR_CR(tmp);
4515   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
4516 
4517   BLOCK_COMMENT("} verify_oop");
4518 }
4519 
4520 void MacroAssembler::verify_oop_addr(RegisterOrConstant offs, Register base, const char* msg) {
4521   if (!VerifyOops) {
4522     return;
4523   }
4524 
4525   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
4526   const Register tmp = R11; // Will be preserved.
4527   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
4528   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
4529 
4530   ld(R4_ARG2, offs, base);
4531   save_LR_CR(tmp); // save in old frame
4532   push_frame_reg_args(nbytes_save, tmp);
4533   // load FunctionDescriptor** / entry_address *
4534   load_const_optimized(tmp, fd, R0);
4535   // load FunctionDescriptor* / entry_address
4536   ld(tmp, 0, tmp);
4537   load_const_optimized(R3_ARG1, (address)msg, R0);
4538   // Call destination for its side effect.
4539   call_c(tmp);
4540 
4541   pop_frame();
4542   restore_LR_CR(tmp);
4543   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
4544 }
4545 
4546 // Call a C-function that prints output.
4547 void MacroAssembler::stop(int type, const char* msg) {
4548   bool msg_present = (msg != nullptr);
4549 
4550 #ifndef PRODUCT
4551   block_comment(err_msg("stop(type %d): %s {", type, msg_present ? msg : "null"));
4552 #else
4553   block_comment("stop {");
4554 #endif
4555 
4556   if (msg_present) {
4557     type |= stop_msg_present;
4558   }
4559   tdi_unchecked(traptoUnconditional, 0/*reg 0*/, type);
4560   if (msg_present) {
4561     emit_int64((uintptr_t)msg);
4562   }
4563 
4564   block_comment("} stop;");
4565 }
4566 
4567 #ifndef PRODUCT
4568 // Write pattern 0x0101010101010101 in memory region [low-before, high+after].
4569 // Val, addr are temp registers.
4570 // If low == addr, addr is killed.
4571 // High is preserved.
4572 void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) {
4573   if (!ZapMemory) return;
4574 
4575   assert_different_registers(low, val);
4576 
4577   BLOCK_COMMENT("zap memory region {");
4578   load_const_optimized(val, 0x0101010101010101);
4579   int size = before + after;
4580   if (low == high && size < 5 && size > 0) {
4581     int offset = -before*BytesPerWord;
4582     for (int i = 0; i < size; ++i) {
4583       std(val, offset, low);
4584       offset += (1*BytesPerWord);
4585     }
4586   } else {
4587     addi(addr, low, -before*BytesPerWord);
4588     assert_different_registers(high, val);
4589     if (after) addi(high, high, after * BytesPerWord);
4590     Label loop;
4591     bind(loop);
4592     std(val, 0, addr);
4593     addi(addr, addr, 8);
4594     cmpd(CCR6, addr, high);
4595     ble(CCR6, loop);
4596     if (after) addi(high, high, -after * BytesPerWord);  // Correct back to old value.
4597   }
4598   BLOCK_COMMENT("} zap memory region");
4599 }
4600 
4601 #endif // !PRODUCT
4602 
4603 void SkipIfEqualZero::skip_to_label_if_equal_zero(MacroAssembler* masm, Register temp,
4604                                                   const bool* flag_addr, Label& label) {
4605   int simm16_offset = masm->load_const_optimized(temp, (address)flag_addr, R0, true);
4606   assert(sizeof(bool) == 1, "PowerPC ABI");
4607   masm->lbz(temp, simm16_offset, temp);
4608   masm->cmpwi(CCR0, temp, 0);
4609   masm->beq(CCR0, label);
4610 }
4611 
4612 SkipIfEqualZero::SkipIfEqualZero(MacroAssembler* masm, Register temp, const bool* flag_addr) : _masm(masm), _label() {
4613   skip_to_label_if_equal_zero(masm, temp, flag_addr, _label);
4614 }
4615 
4616 SkipIfEqualZero::~SkipIfEqualZero() {
4617   _masm->bind(_label);
4618 }
4619 
4620 void MacroAssembler::cache_wb(Address line) {
4621   assert(line.index() == noreg, "index should be noreg");
4622   assert(line.disp() == 0, "displacement should be 0");
4623   assert(VM_Version::supports_data_cache_line_flush(), "CPU or OS does not support flush to persistent memory");
4624   // Data Cache Store, not really a flush, so it works like a sync of cache
4625   // line and persistent mem, i.e. copying the cache line to persistent whilst
4626   // not invalidating the cache line.
4627   dcbst(line.base());
4628 }
4629 
4630 void MacroAssembler::cache_wbsync(bool is_presync) {
4631   assert(VM_Version::supports_data_cache_line_flush(), "CPU or OS does not support sync related to persistent memory");
4632   // We only need a post sync barrier. Post means _after_ a cache line flush or
4633   // store instruction, pre means a barrier emitted before such a instructions.
4634   if (!is_presync) {
4635     fence();
4636   }
4637 }
4638 
4639 void MacroAssembler::push_cont_fastpath() {
4640   Label done;
4641   ld_ptr(R0, JavaThread::cont_fastpath_offset(), R16_thread);
4642   cmpld(CCR0, R1_SP, R0);
4643   ble(CCR0, done);
4644   st_ptr(R1_SP, JavaThread::cont_fastpath_offset(), R16_thread);
4645   bind(done);
4646 }
4647 
4648 void MacroAssembler::pop_cont_fastpath() {
4649   Label done;
4650   ld_ptr(R0, JavaThread::cont_fastpath_offset(), R16_thread);
4651   cmpld(CCR0, R1_SP, R0);
4652   ble(CCR0, done);
4653   li(R0, 0);
4654   st_ptr(R0, JavaThread::cont_fastpath_offset(), R16_thread);
4655   bind(done);
4656 }
4657 
4658 // Note: Must preserve CCR0 EQ (invariant).
4659 void MacroAssembler::inc_held_monitor_count(Register tmp) {
4660   ld(tmp, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
4661 #ifdef ASSERT
4662   Label ok;
4663   cmpdi(CCR0, tmp, 0);
4664   bge_predict_taken(CCR0, ok);
4665   stop("held monitor count is negativ at increment");
4666   bind(ok);
4667   crorc(CCR0, Assembler::equal, CCR0, Assembler::equal); // Restore CCR0 EQ
4668 #endif
4669   addi(tmp, tmp, 1);
4670   std(tmp, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
4671 }
4672 
4673 // Note: Must preserve CCR0 EQ (invariant).
4674 void MacroAssembler::dec_held_monitor_count(Register tmp) {
4675   ld(tmp, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
4676 #ifdef ASSERT
4677   Label ok;
4678   cmpdi(CCR0, tmp, 0);
4679   bgt_predict_taken(CCR0, ok);
4680   stop("held monitor count is <= 0 at decrement");
4681   bind(ok);
4682   crorc(CCR0, Assembler::equal, CCR0, Assembler::equal); // Restore CCR0 EQ
4683 #endif
4684   addi(tmp, tmp, -1);
4685   std(tmp, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
4686 }
4687 
4688 // Function to flip between unlocked and locked state (fast locking).
4689 // Branches to failed if the state is not as expected with CCR0 NE.
4690 // Falls through upon success with CCR0 EQ.
4691 // This requires fewer instructions and registers and is easier to use than the
4692 // cmpxchg based implementation.
4693 void MacroAssembler::atomically_flip_locked_state(bool is_unlock, Register obj, Register tmp, Label& failed, int semantics) {
4694   assert_different_registers(obj, tmp, R0);
4695   Label retry;
4696 
4697   if (semantics & MemBarRel) {
4698     release();
4699   }
4700 
4701   bind(retry);
4702   STATIC_ASSERT(markWord::locked_value == 0); // Or need to change this!
4703   if (!is_unlock) {
4704     ldarx(tmp, obj, MacroAssembler::cmpxchgx_hint_acquire_lock());
4705     xori(tmp, tmp, markWord::unlocked_value); // flip unlocked bit
4706     andi_(R0, tmp, markWord::lock_mask_in_place);
4707     bne(CCR0, failed); // failed if new header doesn't contain locked_value (which is 0)
4708   } else {
4709     ldarx(tmp, obj, MacroAssembler::cmpxchgx_hint_release_lock());
4710     andi_(R0, tmp, markWord::lock_mask_in_place);
4711     bne(CCR0, failed); // failed if old header doesn't contain locked_value (which is 0)
4712     ori(tmp, tmp, markWord::unlocked_value); // set unlocked bit
4713   }
4714   stdcx_(tmp, obj);
4715   bne(CCR0, retry);
4716 
4717   if (semantics & MemBarFenceAfter) {
4718     fence();
4719   } else if (semantics & MemBarAcq) {
4720     isync();
4721   }
4722 }
4723 
4724 // Implements lightweight-locking.
4725 //
4726 //  - obj: the object to be locked
4727 //  - t1, t2: temporary register
4728 void MacroAssembler::lightweight_lock(Register box, Register obj, Register t1, Register t2, Label& slow) {
4729   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
4730   assert_different_registers(box, obj, t1, t2);
4731 
4732   Label push;
4733   const Register top = t1;
4734   const Register mark = t2;
4735   const Register t = R0;
4736 
4737   if (UseObjectMonitorTable) {
4738     // Clear cache in case fast locking succeeds.
4739     li(t, 0);
4740     std(t, in_bytes(BasicObjectLock::lock_offset()) + BasicLock::object_monitor_cache_offset_in_bytes(), box);
4741   }
4742 
4743   // Check if the lock-stack is full.
4744   lwz(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
4745   cmplwi(CCR0, top, LockStack::end_offset());
4746   bge(CCR0, slow);
4747 
4748   // The underflow check is elided. The recursive check will always fail
4749   // when the lock stack is empty because of the _bad_oop_sentinel field.
4750 
4751   // Check for recursion.
4752   subi(t, top, oopSize);
4753   ldx(t, R16_thread, t);
4754   cmpd(CCR0, obj, t);
4755   beq(CCR0, push);
4756 
4757   // Check header for monitor (0b10) or locked (0b00).
4758   ld(mark, oopDesc::mark_offset_in_bytes(), obj);
4759   xori(t, mark, markWord::unlocked_value);
4760   andi_(t, t, markWord::lock_mask_in_place);
4761   bne(CCR0, slow);
4762 
4763   // Try to lock. Transition lock bits 0b01 => 0b00
4764   atomically_flip_locked_state(/* is_unlock */ false, obj, mark, slow, MacroAssembler::MemBarAcq);
4765 
4766   bind(push);
4767   // After successful lock, push object on lock-stack
4768   stdx(obj, R16_thread, top);
4769   addi(top, top, oopSize);
4770   stw(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
4771 }
4772 
4773 // Implements lightweight-unlocking.
4774 //
4775 // - obj: the object to be unlocked
4776 //  - t1: temporary register
4777 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Label& slow) {
4778   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
4779   assert_different_registers(obj, t1);
4780 
4781 #ifdef ASSERT
4782   {
4783     // The following checks rely on the fact that LockStack is only ever modified by
4784     // its owning thread, even if the lock got inflated concurrently; removal of LockStack
4785     // entries after inflation will happen delayed in that case.
4786 
4787     // Check for lock-stack underflow.
4788     Label stack_ok;
4789     lwz(t1, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
4790     cmplwi(CCR0, t1, LockStack::start_offset());
4791     bge(CCR0, stack_ok);
4792     stop("Lock-stack underflow");
4793     bind(stack_ok);
4794   }
4795 #endif
4796 
4797   Label unlocked, push_and_slow;
4798   const Register top = t1;
4799   const Register mark = R0;
4800   Register t = R0;
4801 
4802   // Check if obj is top of lock-stack.
4803   lwz(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
4804   subi(top, top, oopSize);
4805   ldx(t, R16_thread, top);
4806   cmpd(CCR0, obj, t);
4807   bne(CCR0, slow);
4808 
4809   // Pop lock-stack.
4810   DEBUG_ONLY(li(t, 0);)
4811   DEBUG_ONLY(stdx(t, R16_thread, top);)
4812   stw(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
4813 
4814   // The underflow check is elided. The recursive check will always fail
4815   // when the lock stack is empty because of the _bad_oop_sentinel field.
4816 
4817   // Check if recursive.
4818   subi(t, top, oopSize);
4819   ldx(t, R16_thread, t);
4820   cmpd(CCR0, obj, t);
4821   beq(CCR0, unlocked);
4822 
4823   // Use top as tmp
4824   t = top;
4825 
4826   // Not recursive. Check header for monitor (0b10).
4827   ld(mark, oopDesc::mark_offset_in_bytes(), obj);
4828   andi_(t, mark, markWord::monitor_value);
4829   bne(CCR0, push_and_slow);
4830 
4831 #ifdef ASSERT
4832   // Check header not unlocked (0b01).
4833   Label not_unlocked;
4834   andi_(t, mark, markWord::unlocked_value);
4835   beq(CCR0, not_unlocked);
4836   stop("lightweight_unlock already unlocked");
4837   bind(not_unlocked);
4838 #endif
4839 
4840   // Try to unlock. Transition lock bits 0b00 => 0b01
4841   atomically_flip_locked_state(/* is_unlock */ true, obj, t, push_and_slow, MacroAssembler::MemBarRel);
4842   b(unlocked);
4843 
4844   bind(push_and_slow);
4845 
4846   // Restore lock-stack and handle the unlock in runtime.
4847   lwz(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
4848   DEBUG_ONLY(stdx(obj, R16_thread, top);)
4849   addi(top, top, oopSize);
4850   stw(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
4851   b(slow);
4852 
4853   bind(unlocked);
4854 }