1 /*
  2  * Copyright (c) 2002, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * Copyright (c) 2012, 2024 SAP SE. All rights reserved.
  4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  5  *
  6  * This code is free software; you can redistribute it and/or modify it
  7  * under the terms of the GNU General Public License version 2 only, as
  8  * published by the Free Software Foundation.
  9  *
 10  * This code is distributed in the hope that it will be useful, but WITHOUT
 11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 13  * version 2 for more details (a copy is included in the LICENSE file that
 14  * accompanied this code).
 15  *
 16  * You should have received a copy of the GNU General Public License version
 17  * 2 along with this work; if not, write to the Free Software Foundation,
 18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 19  *
 20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 21  * or visit www.oracle.com if you need additional information or have any
 22  * questions.
 23  *
 24  */
 25 
 26 #ifndef CPU_PPC_MACROASSEMBLER_PPC_HPP
 27 #define CPU_PPC_MACROASSEMBLER_PPC_HPP
 28 
 29 #include "asm/assembler.hpp"
 30 #include "oops/accessDecorators.hpp"
 31 #include "utilities/macros.hpp"
 32 
 33 // MacroAssembler extends Assembler by a few frequently used macros.
 34 
 35 class ciTypeArray;
 36 class OopMap;
 37 
 38 class MacroAssembler: public Assembler {
 39  public:
 40   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 41 
 42   // Indicates whether and, if so, which registers must be preserved when calling runtime code.
 43   enum PreservationLevel {
 44     PRESERVATION_NONE,
 45     PRESERVATION_FRAME_LR,
 46     PRESERVATION_FRAME_LR_GP_REGS,
 47     PRESERVATION_FRAME_LR_GP_FP_REGS
 48   };
 49 
 50   //
 51   // Optimized instruction emitters
 52   //
 53 
 54   inline static int largeoffset_si16_si16_hi(int si31) { return (si31 + (1<<15)) >> 16; }
 55   inline static int largeoffset_si16_si16_lo(int si31) { return si31 - (((si31 + (1<<15)) >> 16) << 16); }
 56 
 57   // load d = *[a+si31]
 58   // Emits several instructions if the offset is not encodable in one instruction.
 59   void ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop);
 60   void ld_largeoffset          (Register d, int si31, Register a, int emit_filler_nop);
 61   inline static bool is_ld_largeoffset(address a);
 62   inline static int get_ld_largeoffset_offset(address a);
 63 
 64   inline void round_to(Register r, int modulus);
 65 
 66   // Load/store with type given by parameter.
 67   void load_sized_value( Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed);
 68   void store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes);
 69 
 70   // Move register if destination register and target register are different
 71   inline void mr_if_needed(Register rd, Register rs);
 72   inline void fmr_if_needed(FloatRegister rd, FloatRegister rs);
 73   // This is dedicated for emitting scheduled mach nodes. For better
 74   // readability of the ad file I put it here.
 75   // Endgroups are not needed if
 76   //  - the scheduler is off
 77   //  - the scheduler found that there is a natural group end, in that
 78   //    case it reduced the size of the instruction used in the test
 79   //    yielding 'needed'.
 80   inline void endgroup_if_needed(bool needed);
 81 
 82   // Memory barriers.
 83   inline void membar(int bits);
 84   inline void release();
 85   inline void acquire();
 86   inline void fence();
 87 
 88   // nop padding
 89   void align(int modulus, int max = 252, int rem = 0);
 90 
 91   // Align prefix opcode to make sure it's not on the last word of a
 92   // 64-byte block.
 93   //
 94   // Note: do not call align_prefix() in a .ad file (e.g. ppc.ad).  Instead
 95   // add ins_alignment(2) to the instruct definition and implement the
 96   // compute_padding() method of the instruct node to use
 97   // compute_prefix_padding().  See loadConI32Node::compute_padding() in
 98   // ppc.ad for an example.
 99   void align_prefix();
100 
101   //
102   // Constants, loading constants, TOC support
103   //
104 
105   // Address of the global TOC.
106   inline static address global_toc();
107   // Offset of given address to the global TOC.
108   inline static int offset_to_global_toc(const address addr);
109 
110   // Address of TOC of the current method.
111   inline address method_toc();
112   // Offset of given address to TOC of the current method.
113   inline int offset_to_method_toc(const address addr);
114 
115   // Global TOC.
116   void calculate_address_from_global_toc(Register dst, address addr,
117                                          bool hi16 = true, bool lo16 = true,
118                                          bool add_relocation = true, bool emit_dummy_addr = false);
119   inline void calculate_address_from_global_toc_hi16only(Register dst, address addr) {
120     calculate_address_from_global_toc(dst, addr, true, false);
121   };
122   inline void calculate_address_from_global_toc_lo16only(Register dst, address addr) {
123     calculate_address_from_global_toc(dst, addr, false, true);
124   };
125 
126   inline static bool is_calculate_address_from_global_toc_at(address a, address bound);
127   // Returns address of first instruction in sequence.
128   static address patch_calculate_address_from_global_toc_at(address a, address bound, address addr);
129   static address get_address_of_calculate_address_from_global_toc_at(address a, address addr);
130 
131 #ifdef _LP64
132   // Patch narrow oop constant.
133   inline static bool is_set_narrow_oop(address a, address bound);
134   // Returns address of first instruction in sequence.
135   static address patch_set_narrow_oop(address a, address bound, narrowOop data);
136   static narrowOop get_narrow_oop(address a, address bound);
137 #endif
138 
139   inline static bool is_load_const_at(address a);
140 
141   // Emits an oop const to the constant pool, loads the constant, and
142   // sets a relocation info with address current_pc.
143   // Returns true if successful.
144   bool load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc, bool fixed_size = false);
145 
146   static bool is_load_const_from_method_toc_at(address a);
147   static int get_offset_of_load_const_from_method_toc_at(address a);
148 
149   // Get the 64 bit constant from a `load_const' sequence.
150   static long get_const(address load_const);
151 
152   // Patch the 64 bit constant of a `load_const' sequence. This is a
153   // low level procedure. It neither flushes the instruction cache nor
154   // is it atomic.
155   static void patch_const(address load_const, long x);
156 
157   // Metadata in code that we have to keep track of.
158   AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
159   AddressLiteral constant_metadata_address(Metadata* obj); // find_index
160   // Oops used directly in compiled code are stored in the constant pool,
161   // and loaded from there.
162   // Allocate new entry for oop in constant pool. Generate relocation.
163   AddressLiteral allocate_oop_address(jobject obj);
164   // Find oop obj in constant pool. Return relocation with it's index.
165   AddressLiteral constant_oop_address(jobject obj);
166 
167   // Find oop in constant pool and emit instructions to load it.
168   // Uses constant_oop_address.
169   inline void set_oop_constant(jobject obj, Register d);
170   // Same as load_address.
171   inline void set_oop         (AddressLiteral obj_addr, Register d);
172 
173   //
174   // branch, jump
175   //
176   // set dst to -1, 0, +1 as follows: if CCR0bi is "greater than", dst is set to 1,
177   // if CCR0bi is "equal", dst is set to 0, otherwise it's set to -1.
178   void inline set_cmp3(Register dst);
179   // set dst to (treat_unordered_like_less ? -1 : +1)
180   void inline set_cmpu3(Register dst, bool treat_unordered_like_less);
181   // Branch-free implementation to convert !=0 to 1.
182   void inline normalize_bool(Register dst, Register temp = R0, bool is_64bit = false);
183 
184   inline void pd_patch_instruction(address branch, address target, const char* file, int line);
185   NOT_PRODUCT(static void pd_print_patched_instruction(address branch);)
186 
187   // Conditional far branch for destinations encodable in 24+2 bits.
188   // Same interface as bc, e.g. no inverse boint-field.
189   enum {
190     bc_far_optimize_not         = 0,
191     bc_far_optimize_on_relocate = 1
192   };
193   // optimize: flag for telling the conditional far branch to optimize
194   //           itself when relocated.
195   void bc_far(int boint, int biint, Label& dest, int optimize);
196   void bc_far_optimized(int boint, int biint, Label& dest); // 1 or 2 instructions
197   // Relocation of conditional far branches.
198   static bool    is_bc_far_at(address instruction_addr);
199   static address get_dest_of_bc_far_at(address instruction_addr);
200   static void    set_dest_of_bc_far_at(address instruction_addr, address dest);
201  private:
202   static bool inline is_bc_far_variant1_at(address instruction_addr);
203   static bool inline is_bc_far_variant2_at(address instruction_addr);
204   static bool inline is_bc_far_variant3_at(address instruction_addr);
205  public:
206 
207   // Convenience bc_far versions.
208   inline void blt_far(ConditionRegister crx, Label& L, int optimize);
209   inline void bgt_far(ConditionRegister crx, Label& L, int optimize);
210   inline void beq_far(ConditionRegister crx, Label& L, int optimize);
211   inline void bso_far(ConditionRegister crx, Label& L, int optimize);
212   inline void bge_far(ConditionRegister crx, Label& L, int optimize);
213   inline void ble_far(ConditionRegister crx, Label& L, int optimize);
214   inline void bne_far(ConditionRegister crx, Label& L, int optimize);
215   inline void bns_far(ConditionRegister crx, Label& L, int optimize);
216 
217   // Emit, identify and patch a NOT mt-safe patchable 64 bit absolute call/jump.
218  private:
219   enum {
220     bxx64_patchable_instruction_count = (2/*load_codecache_const*/ + 3/*5load_const*/ + 1/*mtctr*/ + 1/*bctrl*/),
221     bxx64_patchable_size              = bxx64_patchable_instruction_count * BytesPerInstWord,
222     bxx64_patchable_ret_addr_offset   = bxx64_patchable_size
223   };
224   void bxx64_patchable(address target, relocInfo::relocType rt, bool link);
225   static bool is_bxx64_patchable_at(            address instruction_addr, bool link);
226   // Does the instruction use a pc-relative encoding of the destination?
227   static bool is_bxx64_patchable_pcrelative_at( address instruction_addr, bool link);
228   static bool is_bxx64_patchable_variant1_at(   address instruction_addr, bool link);
229   // Load destination relative to global toc.
230   static bool is_bxx64_patchable_variant1b_at(  address instruction_addr, bool link);
231   static bool is_bxx64_patchable_variant2_at(   address instruction_addr, bool link);
232   static void set_dest_of_bxx64_patchable_at(   address instruction_addr, address target, bool link);
233   static address get_dest_of_bxx64_patchable_at(address instruction_addr, bool link);
234 
235  public:
236   // call
237   enum {
238     bl64_patchable_instruction_count = bxx64_patchable_instruction_count,
239     bl64_patchable_size              = bxx64_patchable_size,
240     bl64_patchable_ret_addr_offset   = bxx64_patchable_ret_addr_offset
241   };
242   inline void bl64_patchable(address target, relocInfo::relocType rt) {
243     bxx64_patchable(target, rt, /*link=*/true);
244   }
245   inline static bool is_bl64_patchable_at(address instruction_addr) {
246     return is_bxx64_patchable_at(instruction_addr, /*link=*/true);
247   }
248   inline static bool is_bl64_patchable_pcrelative_at(address instruction_addr) {
249     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/true);
250   }
251   inline static void set_dest_of_bl64_patchable_at(address instruction_addr, address target) {
252     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/true);
253   }
254   inline static address get_dest_of_bl64_patchable_at(address instruction_addr) {
255     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/true);
256   }
257   // jump
258   enum {
259     b64_patchable_instruction_count = bxx64_patchable_instruction_count,
260     b64_patchable_size              = bxx64_patchable_size,
261   };
262   inline void b64_patchable(address target, relocInfo::relocType rt) {
263     bxx64_patchable(target, rt, /*link=*/false);
264   }
265   inline static bool is_b64_patchable_at(address instruction_addr) {
266     return is_bxx64_patchable_at(instruction_addr, /*link=*/false);
267   }
268   inline static bool is_b64_patchable_pcrelative_at(address instruction_addr) {
269     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/false);
270   }
271   inline static void set_dest_of_b64_patchable_at(address instruction_addr, address target) {
272     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/false);
273   }
274   inline static address get_dest_of_b64_patchable_at(address instruction_addr) {
275     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/false);
276   }
277 
278   //
279   // Support for frame handling
280   //
281 
282   // some ABI-related functions
283 
284   // Clobbers all volatile, (non-floating-point) general-purpose registers for debugging purposes.
285   // This is especially useful for making calls to the JRT in places in which this hasn't been done before;
286   // e.g. with the introduction of LRBs (load reference barriers) for concurrent garbage collection.
287   void clobber_volatile_gprs(Register excluded_register = noreg);
288   void clobber_carg_stack_slots(Register tmp);
289 
290   void save_nonvolatile_gprs(   Register dst_base, int offset);
291   void restore_nonvolatile_gprs(Register src_base, int offset);
292 
293   enum {
294     num_volatile_gp_regs = 11,
295     num_volatile_fp_regs = 14,
296     num_volatile_regs = num_volatile_gp_regs + num_volatile_fp_regs
297   };
298 
299   void save_volatile_gprs(   Register dst_base, int offset,
300                              bool include_fp_regs = true, bool include_R3_RET_reg = true);
301   void restore_volatile_gprs(Register src_base, int offset,
302                              bool include_fp_regs = true, bool include_R3_RET_reg = true);
303   void save_LR(Register tmp);
304   void restore_LR(Register tmp);
305   void save_LR_CR(Register tmp);     // tmp contains LR on return.
306   void restore_LR_CR(Register tmp);
307 
308   // Get current PC using bl-next-instruction trick.
309   address get_PC_trash_LR(Register result);
310 
311   // Resize current frame either relatively wrt to current SP or absolute.
312   void resize_frame(Register offset, Register tmp);
313   void resize_frame(int      offset, Register tmp);
314   void resize_frame_absolute(Register addr, Register tmp1, Register tmp2);
315 
316   // Push a frame of size bytes.
317   void push_frame(Register bytes, Register tmp);
318 
319   // Push a frame of size `bytes'. No abi space provided.
320   void push_frame(unsigned int bytes, Register tmp);
321 
322   // Push a frame of size `bytes' plus native_abi_reg_args on top.
323   void push_frame_reg_args(unsigned int bytes, Register tmp);
324 
325   // Setup up a new C frame with a spill area for non-volatile GPRs and additional
326   // space for local variables
327   void push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp);
328 
329   // pop current C frame
330   void pop_frame();
331 
332   //
333   // Calls
334   //
335 
336  private:
337   address _last_calls_return_pc;
338 
339 #if defined(ABI_ELFv2)
340   // Generic version of a call to C function.
341   // Updates and returns _last_calls_return_pc.
342   address branch_to(Register function_entry, bool and_link);
343 #else
344   // Generic version of a call to C function via a function descriptor
345   // with variable support for C calling conventions (TOC, ENV, etc.).
346   // updates and returns _last_calls_return_pc.
347   address branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
348                     bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee);
349 #endif
350 
351  public:
352 
353   // Get the pc where the last call will return to. returns _last_calls_return_pc.
354   inline address last_calls_return_pc();
355 
356 #if defined(ABI_ELFv2)
357   // Call a C function via a function descriptor and use full C
358   // calling conventions. Updates and returns _last_calls_return_pc.
359   address call_c(Register function_entry);
360   // For tail calls: only branch, don't link, so callee returns to caller of this function.
361   address call_c_and_return_to_caller(Register function_entry);
362   address call_c(address function_entry, relocInfo::relocType rt = relocInfo::none);
363 #else
364   // Call a C function via a function descriptor and use full C
365   // calling conventions. Updates and returns _last_calls_return_pc.
366   address call_c(Register function_descriptor);
367   // For tail calls: only branch, don't link, so callee returns to caller of this function.
368   address call_c_and_return_to_caller(Register function_descriptor);
369   address call_c(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt);
370   address call_c(address function_entry, relocInfo::relocType rt = relocInfo::none) {
371     return call_c((const FunctionDescriptor*)function_entry, rt);
372   }
373   address call_c_using_toc(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt,
374                            Register toc);
375 #endif
376 
377   static int ic_check_size();
378   int ic_check(int end_alignment);
379 
380  protected:
381 
382   // It is imperative that all calls into the VM are handled via the
383   // call_VM macros. They make sure that the stack linkage is setup
384   // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points
385   // while call_VM_leaf's correspond to LEAF entry points.
386   //
387   // This is the base routine called by the different versions of
388   // call_VM. The interpreter may customize this version by overriding
389   // it for its purposes (e.g., to save/restore additional registers
390   // when doing a VM call).
391   //
392   // If no last_java_sp is specified (noreg) then SP will be used instead.
393   virtual void call_VM_base(
394      // where an oop-result ends up if any; use noreg otherwise
395     Register        oop_result,
396     // to set up last_Java_frame in stubs; use noreg otherwise
397     Register        last_java_sp,
398     // the entry point
399     address         entry_point,
400     // flag which indicates if exception should be checked
401     bool            check_exception = true
402   );
403 
404   // Support for VM calls. This is the base routine called by the
405   // different versions of call_VM_leaf. The interpreter may customize
406   // this version by overriding it for its purposes (e.g., to
407   // save/restore additional registers when doing a VM call).
408   void call_VM_leaf_base(address entry_point);
409 
410  public:
411   // Call into the VM.
412   // Passes the thread pointer (in R3_ARG1) as a prepended argument.
413   // Makes sure oop return values are visible to the GC.
414   void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
415   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
416   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
417   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg3, bool check_exceptions = true);
418   void call_VM_leaf(address entry_point);
419   void call_VM_leaf(address entry_point, Register arg_1);
420   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
421   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
422 
423   // Call a stub function via a function descriptor, but don't save
424   // TOC before call, don't setup TOC and ENV for call, and don't
425   // restore TOC after call. Updates and returns _last_calls_return_pc.
426   inline address call_stub(Register function_entry);
427   inline void call_stub_and_return_to(Register function_entry, Register return_pc);
428 
429   void post_call_nop();
430   static bool is_post_call_nop(int instr_bits) {
431     const uint32_t nineth_bit = opp_u_field(1, 9, 9);
432     const uint32_t opcode_mask = 0b111110 << OPCODE_SHIFT;
433     const uint32_t pcn_mask = opcode_mask | nineth_bit;
434     return (instr_bits & pcn_mask) == (Assembler::CMPLI_OPCODE | nineth_bit);
435   }
436 
437   //
438   // Java utilities
439   //
440 
441   // Read from the polling page, its address is already in a register.
442   inline void load_from_polling_page(Register polling_page_address, int offset = 0);
443   // Check whether instruction is a read access to the polling page
444   // which was emitted by load_from_polling_page(..).
445   static bool is_load_from_polling_page(int instruction, void* ucontext/*may be nullptr*/,
446                                         address* polling_address_ptr = nullptr);
447 
448   // Support for null-checks
449   //
450   // Generates code that causes a null OS exception if the content of reg is null.
451   // If the accessed location is M[reg + offset] and the offset is known, provide the
452   // offset. No explicit code generation is needed if the offset is within a certain
453   // range (0 <= offset <= page_size).
454 
455   // Stack overflow checking
456   void bang_stack_with_offset(int offset);
457 
458   // If instruction is a stack bang of the form ld, stdu, or
459   // stdux, return the banged address. Otherwise, return 0.
460   static address get_stack_bang_address(int instruction, void* ucontext);
461 
462   // Check for reserved stack access in method being exited. If the reserved
463   // stack area was accessed, protect it again and throw StackOverflowError.
464   void reserved_stack_check(Register return_pc);
465 
466   // Atomics
467   // CmpxchgX sets condition register to cmpX(current, compare).
468   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
469   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
470   static inline bool cmpxchgx_hint_acquire_lock()  { return true; }
471   // The stxcx will probably not be succeeded by a releasing store.
472   static inline bool cmpxchgx_hint_release_lock()  { return false; }
473   static inline bool cmpxchgx_hint_atomic_update() { return false; }
474 
475   // Cmpxchg semantics
476   enum {
477     MemBarNone = 0,
478     MemBarRel  = 1,
479     MemBarAcq  = 2,
480     MemBarFenceAfter = 4 // use powers of 2
481   };
482  private:
483   // Helper functions for word/sub-word atomics.
484   void atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value,
485                                      Register addr_base, Register tmp1, Register tmp2, Register tmp3,
486                                      bool cmpxchgx_hint, bool is_add, int size);
487   void cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value,
488                          RegisterOrConstant compare_value, Register exchange_value,
489                          Register addr_base, Register tmp1, Register tmp2,
490                          Label &retry, Label &failed, bool cmpxchgx_hint, int size);
491   void cmpxchg_generic(ConditionRegister flag, Register dest_current_value,
492                        RegisterOrConstant compare_value, Register exchange_value,
493                        Register addr_base, Register tmp1, Register tmp2,
494                        int semantics, bool cmpxchgx_hint, Register int_flag_success,
495                        Label* failed_ext, bool contention_hint, bool weak, int size);
496  public:
497   // Temps and addr_base are killed if processor does not support Power 8 instructions.
498   // Result will be sign extended.
499   void getandsetb(Register dest_current_value, Register exchange_value, Register addr_base,
500                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
501     atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 1);
502   }
503   // Temps and addr_base are killed if processor does not support Power 8 instructions.
504   // Result will be sign extended.
505   void getandseth(Register dest_current_value, Register exchange_value, Register addr_base,
506                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
507     atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 2);
508   }
509   void getandsetw(Register dest_current_value, Register exchange_value, Register addr_base,
510                   bool cmpxchgx_hint) {
511     atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, noreg, noreg, noreg, cmpxchgx_hint, false, 4);
512   }
513   void getandsetd(Register dest_current_value, Register exchange_value, Register addr_base,
514                   bool cmpxchgx_hint);
515   // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed).
516   // Result will be sign extended.
517   void getandaddb(Register dest_current_value, Register inc_value, Register addr_base,
518                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
519     atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 1);
520   }
521   // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed).
522   // Result will be sign extended.
523   void getandaddh(Register dest_current_value, Register inc_value, Register addr_base,
524                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
525     atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 2);
526   }
527   void getandaddw(Register dest_current_value, Register inc_value, Register addr_base,
528                   Register tmp1, bool cmpxchgx_hint) {
529     atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, noreg, noreg, cmpxchgx_hint, true, 4);
530   }
531   void getandaddd(Register dest_current_value, Register exchange_value, Register addr_base,
532                   Register tmp, bool cmpxchgx_hint);
533   // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions.
534   // compare_value must be at least 32 bit sign extended. Result will be sign extended.
535   void cmpxchgb(ConditionRegister flag, Register dest_current_value,
536                 RegisterOrConstant compare_value, Register exchange_value,
537                 Register addr_base, Register tmp1, Register tmp2,
538                 int semantics, bool cmpxchgx_hint = false, Register int_flag_success = noreg,
539                 Label* failed = nullptr, bool contention_hint = false, bool weak = false) {
540     cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
541                     semantics, cmpxchgx_hint, int_flag_success, failed, contention_hint, weak, 1);
542   }
543   // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions.
544   // compare_value must be at least 32 bit sign extended. Result will be sign extended.
545   void cmpxchgh(ConditionRegister flag, Register dest_current_value,
546                 RegisterOrConstant compare_value, Register exchange_value,
547                 Register addr_base, Register tmp1, Register tmp2,
548                 int semantics, bool cmpxchgx_hint = false, Register int_flag_success = noreg,
549                 Label* failed = nullptr, bool contention_hint = false, bool weak = false) {
550     cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
551                     semantics, cmpxchgx_hint, int_flag_success, failed, contention_hint, weak, 2);
552   }
553   void cmpxchgw(ConditionRegister flag, Register dest_current_value,
554                 RegisterOrConstant compare_value, Register exchange_value,
555                 Register addr_base,
556                 int semantics, bool cmpxchgx_hint = false, Register int_flag_success = noreg,
557                 Label* failed = nullptr, bool contention_hint = false, bool weak = false) {
558     cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, noreg, noreg,
559                     semantics, cmpxchgx_hint, int_flag_success, failed, contention_hint, weak, 4);
560   }
561   void cmpxchgd(ConditionRegister flag, Register dest_current_value,
562                 RegisterOrConstant compare_value, Register exchange_value,
563                 Register addr_base,
564                 int semantics, bool cmpxchgx_hint = false, Register int_flag_success = noreg,
565                 Label* failed = nullptr, bool contention_hint = false, bool weak = false);
566 
567   // interface method calling
568   void lookup_interface_method(Register recv_klass,
569                                Register intf_klass,
570                                RegisterOrConstant itable_index,
571                                Register method_result,
572                                Register temp_reg, Register temp2_reg,
573                                Label& no_such_interface,
574                                bool return_method = true);
575 
576   // virtual method calling
577   void lookup_virtual_method(Register recv_klass,
578                              RegisterOrConstant vtable_index,
579                              Register method_result);
580 
581   // Test sub_klass against super_klass, with fast and slow paths.
582 
583   // The fast path produces a tri-state answer: yes / no / maybe-slow.
584   // One of the three labels can be null, meaning take the fall-through.
585   // If super_check_offset is -1, the value is loaded up from super_klass.
586   // No registers are killed, except temp_reg and temp2_reg.
587   // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
588   void check_klass_subtype_fast_path(Register sub_klass,
589                                      Register super_klass,
590                                      Register temp1_reg,
591                                      Register temp2_reg,
592                                      Label* L_success,
593                                      Label* L_failure,
594                                      Label* L_slow_path = nullptr, // default fall through
595                                      RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
596 
597   // The rest of the type check; must be wired to a corresponding fast path.
598   // It does not repeat the fast path logic, so don't use it standalone.
599   // The temp_reg can be noreg, if no temps are available.
600   // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
601   // Updates the sub's secondary super cache as necessary.
602   void check_klass_subtype_slow_path(Register sub_klass,
603                                      Register super_klass,
604                                      Register temp1_reg,
605                                      Register temp2_reg,
606                                      Label* L_success = nullptr,
607                                      Register result_reg = noreg);
608 
609   // Simplified, combined version, good for typical uses.
610   // Falls through on failure.
611   void check_klass_subtype(Register sub_klass,
612                            Register super_klass,
613                            Register temp1_reg,
614                            Register temp2_reg,
615                            Label& L_success);
616 
617   void repne_scan(Register addr, Register value, Register count, Register scratch);
618 
619   // As above, but with a constant super_klass.
620   // The result is in Register result, not the condition codes.
621   void lookup_secondary_supers_table(Register r_sub_klass,
622                                      Register r_super_klass,
623                                      Register temp1,
624                                      Register temp2,
625                                      Register temp3,
626                                      Register temp4,
627                                      Register result,
628                                      u1 super_klass_slot);
629 
630   void verify_secondary_supers_table(Register r_sub_klass,
631                                      Register r_super_klass,
632                                      Register result,
633                                      Register temp1,
634                                      Register temp2,
635                                      Register temp3);
636 
637   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
638                                                Register r_array_base,
639                                                Register r_array_index,
640                                                Register r_bitmap,
641                                                Register result,
642                                                Register temp1);
643 
644   void clinit_barrier(Register klass,
645                       Register thread,
646                       Label* L_fast_path = nullptr,
647                       Label* L_slow_path = nullptr);
648 
649   // Method handle support (JSR 292).
650   RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset = 0);
651 
652   void push_cont_fastpath();
653   void pop_cont_fastpath();
654   void inc_held_monitor_count(Register tmp);
655   void dec_held_monitor_count(Register tmp);
656   void atomically_flip_locked_state(bool is_unlock, Register obj, Register tmp, Label& failed, int semantics);
657   void lightweight_lock(Register box, Register obj, Register t1, Register t2, Label& slow);
658   void lightweight_unlock(Register obj, Register t1, Label& slow);
659 
660   // allocation (for C1)
661   void tlab_allocate(
662     Register obj,                      // result: pointer to object after successful allocation
663     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
664     int      con_size_in_bytes,        // object size in bytes if   known at compile time
665     Register t1,                       // temp register
666     Label&   slow_case                 // continuation point if fast allocation fails
667   );
668 
669   enum { trampoline_stub_size = 6 * 4 };
670   address emit_trampoline_stub(int destination_toc_offset, int insts_call_instruction_offset, Register Rtoc = noreg);
671 
672   void compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
673                                  Register tmp1, Register tmp2, Register tmp3);
674 
675   void compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
676                                    Register tmp1, Register tmp2, Register tmp3);
677 
678   void compiler_fast_lock_lightweight_object(ConditionRegister flag, Register oop, Register box,
679                                              Register tmp1, Register tmp2, Register tmp3);
680 
681   void compiler_fast_unlock_lightweight_object(ConditionRegister flag, Register oop, Register box,
682                                                Register tmp1, Register tmp2, Register tmp3);
683 
684   // Check if safepoint requested and if so branch
685   void safepoint_poll(Label& slow_path, Register temp, bool at_return, bool in_nmethod);
686 
687   void resolve_jobject(Register value, Register tmp1, Register tmp2,
688                        MacroAssembler::PreservationLevel preservation_level);
689   void resolve_global_jobject(Register value, Register tmp1, Register tmp2,
690                               MacroAssembler::PreservationLevel preservation_level);
691 
692   // Support for managing the JavaThread pointer (i.e.; the reference to
693   // thread-local information).
694 
695   // Support for last Java frame (but use call_VM instead where possible):
696   // access R16_thread->last_Java_sp.
697   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
698   void reset_last_Java_frame(void);
699   void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1);
700 
701   // Read vm result from thread: oop_result = R16_thread->result;
702   void get_vm_result  (Register oop_result);
703   void get_vm_result_2(Register metadata_result);
704 
705   static bool needs_explicit_null_check(intptr_t offset);
706   static bool uses_implicit_null_check(void* address);
707 
708   // Trap-instruction-based checks.
709   // Range checks can be distinguished from zero checks as they check 32 bit,
710   // zero checks all 64 bits (tw, td).
711   inline void trap_null_check(Register a, trap_to_bits cmp = traptoEqual);
712   static bool is_trap_null_check(int x) {
713     return is_tdi(x, traptoEqual,               -1/*any reg*/, 0) ||
714            is_tdi(x, traptoGreaterThanUnsigned, -1/*any reg*/, 0);
715   }
716 
717   inline void trap_ic_miss_check(Register a, Register b);
718   static bool is_trap_ic_miss_check(int x) {
719     return is_td(x, traptoGreaterThanUnsigned | traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/);
720   }
721 
722   // Implicit or explicit null check, jumps to static address exception_entry.
723   inline void null_check_throw(Register a, int offset, Register temp_reg, address exception_entry);
724   inline void null_check(Register a, int offset, Label *Lis_null); // implicit only if Lis_null not provided
725 
726   // Access heap oop, handle encoding and GC barriers.
727   // Some GC barriers call C so use needs_frame = true if an extra frame is needed at the current call site.
728   inline void access_store_at(BasicType type, DecoratorSet decorators,
729                               Register base, RegisterOrConstant ind_or_offs, Register val,
730                               Register tmp1, Register tmp2, Register tmp3,
731                               MacroAssembler::PreservationLevel preservation_level);
732   inline void access_load_at(BasicType type, DecoratorSet decorators,
733                              Register base, RegisterOrConstant ind_or_offs, Register dst,
734                              Register tmp1, Register tmp2,
735                              MacroAssembler::PreservationLevel preservation_level, Label *L_handle_null = nullptr);
736 
737  public:
738   // Specify tmp1 for better code in certain compressed oops cases. Specify Label to bail out on null oop.
739   // tmp1, tmp2 and needs_frame are used with decorators ON_PHANTOM_OOP_REF or ON_WEAK_OOP_REF.
740   inline void load_heap_oop(Register d, RegisterOrConstant offs, Register s1,
741                             Register tmp1, Register tmp2,
742                             MacroAssembler::PreservationLevel preservation_level,
743                             DecoratorSet decorators = 0, Label *L_handle_null = nullptr);
744 
745   inline void store_heap_oop(Register d, RegisterOrConstant offs, Register s1,
746                              Register tmp1, Register tmp2, Register tmp3,
747                              MacroAssembler::PreservationLevel preservation_level, DecoratorSet decorators = 0);
748 
749   // Encode/decode heap oop. Oop may not be null, else en/decoding goes wrong.
750   // src == d allowed.
751   inline Register encode_heap_oop_not_null(Register d, Register src = noreg);
752   inline Register decode_heap_oop_not_null(Register d, Register src = noreg);
753 
754   // Null allowed.
755   inline Register encode_heap_oop(Register d, Register src); // Prefer null check in GC barrier!
756   inline void decode_heap_oop(Register d);
757 
758   // Load/Store klass oop from klass field. Compress.
759   void load_klass(Register dst, Register src);
760   void load_klass_check_null(Register dst, Register src, Label* is_null = nullptr);
761   void store_klass(Register dst_oop, Register klass, Register tmp = R0);
762   void store_klass_gap(Register dst_oop, Register val = noreg); // Will store 0 if val not specified.
763 
764   void resolve_oop_handle(Register result, Register tmp1, Register tmp2,
765                           MacroAssembler::PreservationLevel preservation_level);
766   void resolve_weak_handle(Register result, Register tmp1, Register tmp2,
767                            MacroAssembler::PreservationLevel preservation_level);
768   void load_method_holder(Register holder, Register method);
769 
770   static int instr_size_for_decode_klass_not_null();
771   void decode_klass_not_null(Register dst, Register src = noreg);
772   Register encode_klass_not_null(Register dst, Register src = noreg);
773 
774   // SIGTRAP-based range checks for arrays.
775   inline void trap_range_check_l(Register a, Register b);
776   inline void trap_range_check_l(Register a, int si16);
777   static bool is_trap_range_check_l(int x) {
778     return (is_tw (x, traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
779             is_twi(x, traptoLessThanUnsigned, -1/*any reg*/)                  );
780   }
781   inline void trap_range_check_le(Register a, int si16);
782   static bool is_trap_range_check_le(int x) {
783     return is_twi(x, traptoEqual | traptoLessThanUnsigned, -1/*any reg*/);
784   }
785   inline void trap_range_check_g(Register a, int si16);
786   static bool is_trap_range_check_g(int x) {
787     return is_twi(x, traptoGreaterThanUnsigned, -1/*any reg*/);
788   }
789   inline void trap_range_check_ge(Register a, Register b);
790   inline void trap_range_check_ge(Register a, int si16);
791   static bool is_trap_range_check_ge(int x) {
792     return (is_tw (x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
793             is_twi(x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/)                  );
794   }
795   static bool is_trap_range_check(int x) {
796     return is_trap_range_check_l(x) || is_trap_range_check_le(x) ||
797            is_trap_range_check_g(x) || is_trap_range_check_ge(x);
798   }
799 
800   void clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp = R0, int offset = 0);
801   void clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp = R0);
802   void clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp = R0, long const_cnt = -1);
803 
804   // Emitters for BigInteger.multiplyToLen intrinsic.
805   inline void multiply64(Register dest_hi, Register dest_lo,
806                          Register x, Register y);
807   void add2_with_carry(Register dest_hi, Register dest_lo,
808                        Register src1, Register src2);
809   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
810                              Register y, Register y_idx, Register z,
811                              Register carry, Register product_high, Register product,
812                              Register idx, Register kdx, Register tmp);
813   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
814                               Register yz_idx, Register idx, Register carry,
815                               Register product_high, Register product, Register tmp,
816                               int offset);
817   void multiply_128_x_128_loop(Register x_xstart,
818                                Register y, Register z,
819                                Register yz_idx, Register idx, Register carry,
820                                Register product_high, Register product,
821                                Register carry2, Register tmp);
822   void muladd(Register out, Register in, Register offset, Register len, Register k,
823               Register tmp1, Register tmp2, Register carry);
824   void multiply_to_len(Register x, Register xlen,
825                        Register y, Register ylen,
826                        Register z,
827                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
828                        Register tmp6, Register tmp7, Register tmp8, Register tmp9, Register tmp10,
829                        Register tmp11, Register tmp12, Register tmp13);
830 
831   // Emitters for CRC32 calculation.
832   // A note on invertCRC:
833   //   Unfortunately, internal representation of crc differs between CRC32 and CRC32C.
834   //   CRC32 holds it's current crc value in the externally visible representation.
835   //   CRC32C holds it's current crc value in internal format, ready for updating.
836   //   Thus, the crc value must be bit-flipped before updating it in the CRC32 case.
837   //   In the CRC32C case, it must be bit-flipped when it is given to the outside world (getValue()).
838   //   The bool invertCRC parameter indicates whether bit-flipping is required before updates.
839   void load_reverse_32(Register dst, Register src);
840   int  crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3);
841   void fold_byte_crc32(Register crc, Register val, Register table, Register tmp);
842   void update_byte_crc32(Register crc, Register val, Register table);
843   void update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
844                              Register data, bool loopAlignment);
845   void update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
846                           Register t0,  Register t1,  Register t2,  Register t3,
847                           Register tc0, Register tc1, Register tc2, Register tc3);
848   void kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
849                           Register t0,  Register t1,  Register t2,  Register t3,
850                           Register tc0, Register tc1, Register tc2, Register tc3,
851                           bool invertCRC);
852   void kernel_crc32_vpmsum(Register crc, Register buf, Register len, Register constants,
853                            Register t0, Register t1, Register t2, Register t3, Register t4,
854                            Register t5, Register t6, bool invertCRC);
855   void kernel_crc32_vpmsum_aligned(Register crc, Register buf, Register len, Register constants,
856                                    Register t0, Register t1, Register t2, Register t3, Register t4,
857                                    Register t5, Register t6);
858   // Version which internally decides what to use.
859   void crc32(Register crc, Register buf, Register len, Register t0, Register t1, Register t2,
860              Register t3, Register t4, Register t5, Register t6, Register t7, bool is_crc32c);
861 
862   void kernel_crc32_singleByteReg(Register crc, Register val, Register table,
863                                   bool invertCRC);
864 
865   // SHA-2 auxiliary functions and public interfaces
866  private:
867   void sha256_deque(const VectorRegister src,
868       const VectorRegister dst1, const VectorRegister dst2, const VectorRegister dst3);
869   void sha256_load_h_vec(const VectorRegister a, const VectorRegister e, const Register hptr);
870   void sha256_round(const VectorRegister* hs, const int total_hs, int& h_cnt, const VectorRegister kpw);
871   void sha256_load_w_plus_k_vec(const Register buf_in, const VectorRegister* ws,
872       const int total_ws, const Register k, const VectorRegister* kpws,
873       const int total_kpws);
874   void sha256_calc_4w(const VectorRegister w0, const VectorRegister w1,
875       const VectorRegister w2, const VectorRegister w3, const VectorRegister kpw0,
876       const VectorRegister kpw1, const VectorRegister kpw2, const VectorRegister kpw3,
877       const Register j, const Register k);
878   void sha256_update_sha_state(const VectorRegister a, const VectorRegister b,
879       const VectorRegister c, const VectorRegister d, const VectorRegister e,
880       const VectorRegister f, const VectorRegister g, const VectorRegister h,
881       const Register hptr);
882 
883   void sha512_load_w_vec(const Register buf_in, const VectorRegister* ws, const int total_ws);
884   void sha512_update_sha_state(const Register state, const VectorRegister* hs, const int total_hs);
885   void sha512_round(const VectorRegister* hs, const int total_hs, int& h_cnt, const VectorRegister kpw);
886   void sha512_load_h_vec(const Register state, const VectorRegister* hs, const int total_hs);
887   void sha512_calc_2w(const VectorRegister w0, const VectorRegister w1,
888       const VectorRegister w2, const VectorRegister w3,
889       const VectorRegister w4, const VectorRegister w5,
890       const VectorRegister w6, const VectorRegister w7,
891       const VectorRegister kpw0, const VectorRegister kpw1, const Register j,
892       const VectorRegister vRb, const Register k);
893 
894  public:
895   void sha256(bool multi_block);
896   void sha512(bool multi_block);
897 
898   void cache_wb(Address line);
899   void cache_wbsync(bool is_presync);
900 
901   //
902   // Debugging
903   //
904 
905   // assert on cr0
906   void asm_assert(bool check_equal, const char* msg);
907   void asm_assert_eq(const char* msg) { asm_assert(true, msg); }
908   void asm_assert_ne(const char* msg) { asm_assert(false, msg); }
909 
910  private:
911   void asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base,
912                             const char* msg);
913 
914  public:
915 
916   void asm_assert_mem8_is_zero(int mem_offset, Register mem_base, const char* msg) {
917     asm_assert_mems_zero(true,  8, mem_offset, mem_base, msg);
918   }
919   void asm_assert_mem8_isnot_zero(int mem_offset, Register mem_base, const char* msg) {
920     asm_assert_mems_zero(false, 8, mem_offset, mem_base, msg);
921   }
922 
923   // Calls verify_oop. If UseCompressedOops is on, decodes the oop.
924   // Preserves reg.
925   void verify_coop(Register reg, const char*);
926   // Emit code to verify that reg contains a valid oop if +VerifyOops is set.
927   void verify_oop(Register reg, const char* s = "broken oop");
928   void verify_oop_addr(RegisterOrConstant offs, Register base, const char* s = "contains broken oop");
929 
930   // TODO: verify method and klass metadata (compare against vptr?)
931   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
932   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {}
933 
934   // Convenience method returning function entry. For the ELFv1 case
935   // creates function descriptor at the current address and returns
936   // the pointer to it. For the ELFv2 case returns the current address.
937   inline address function_entry();
938 
939 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
940 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
941 
942  private:
943   void stop(int type, const char* msg);
944 
945  public:
946   enum {
947     stop_stop               = 0,
948     stop_untested           = 1,
949     stop_unimplemented      = 2,
950     stop_shouldnotreachhere = 3,
951     stop_msg_present        = -0x8000
952   };
953 
954   // Prints msg, dumps registers and stops execution.
955   void stop                 (const char* msg = nullptr) { stop(stop_stop,               msg); }
956   void untested             (const char* msg = nullptr) { stop(stop_untested,           msg); }
957   void unimplemented        (const char* msg = nullptr) { stop(stop_unimplemented,      msg); }
958   void should_not_reach_here(const char* msg = nullptr) { stop(stop_shouldnotreachhere, msg); }
959 
960   void zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) PRODUCT_RETURN;
961 };
962 
963 // class SkipIfEqualZero:
964 //
965 // Instantiating this class will result in assembly code being output that will
966 // jump around any code emitted between the creation of the instance and it's
967 // automatic destruction at the end of a scope block, depending on the value of
968 // the flag passed to the constructor, which will be checked at run-time.
969 class SkipIfEqualZero : public StackObj {
970  private:
971   MacroAssembler* _masm;
972   Label _label;
973 
974  public:
975    // 'Temp' is a temp register that this object can use (and trash).
976    explicit SkipIfEqualZero(MacroAssembler*, Register temp, const bool* flag_addr);
977    static void skip_to_label_if_equal_zero(MacroAssembler*, Register temp,
978                                            const bool* flag_addr, Label& label);
979    ~SkipIfEqualZero();
980 };
981 
982 #endif // CPU_PPC_MACROASSEMBLER_PPC_HPP