1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2025 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "code/debugInfoRec.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/vtableStubs.hpp"
  30 #include "frame_ppc.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "gc/shared/gcLocker.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/interp_masm.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/klass.inline.hpp"
  37 #include "prims/methodHandles.hpp"
  38 #include "runtime/continuation.hpp"
  39 #include "runtime/continuationEntry.inline.hpp"
  40 #include "runtime/jniHandles.hpp"
  41 #include "runtime/os.inline.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/signature.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/timerTrace.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "utilities/align.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "vmreg_ppc.inline.hpp"
  51 #ifdef COMPILER1
  52 #include "c1/c1_Runtime1.hpp"
  53 #endif
  54 #ifdef COMPILER2
  55 #include "opto/ad.hpp"
  56 #include "opto/runtime.hpp"
  57 #endif
  58 
  59 #include <alloca.h>
  60 
  61 #define __ masm->
  62 
  63 #ifdef PRODUCT
  64 #define BLOCK_COMMENT(str) // nothing
  65 #else
  66 #define BLOCK_COMMENT(str) __ block_comment(str)
  67 #endif
  68 
  69 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  70 
  71 
  72 class RegisterSaver {
  73  // Used for saving volatile registers.
  74  public:
  75 
  76   // Support different return pc locations.
  77   enum ReturnPCLocation {
  78     return_pc_is_lr,
  79     return_pc_is_pre_saved,
  80     return_pc_is_thread_saved_exception_pc
  81   };
  82 
  83   static OopMap* push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
  84                          int* out_frame_size_in_bytes,
  85                          bool generate_oop_map,
  86                          int return_pc_adjustment,
  87                          ReturnPCLocation return_pc_location,
  88                          bool save_vectors = false);
  89   static void    restore_live_registers_and_pop_frame(MacroAssembler* masm,
  90                          int frame_size_in_bytes,
  91                          bool restore_ctr,
  92                          bool save_vectors = false);
  93 
  94   static void push_frame_and_save_argument_registers(MacroAssembler* masm,
  95                          Register r_temp,
  96                          int frame_size,
  97                          int total_args,
  98                          const VMRegPair *regs, const VMRegPair *regs2 = nullptr);
  99   static void restore_argument_registers_and_pop_frame(MacroAssembler*masm,
 100                          int frame_size,
 101                          int total_args,
 102                          const VMRegPair *regs, const VMRegPair *regs2 = nullptr);
 103 
 104   // During deoptimization only the result registers need to be restored
 105   // all the other values have already been extracted.
 106   static void restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes);
 107 
 108   // Constants and data structures:
 109 
 110   typedef enum {
 111     int_reg,
 112     float_reg,
 113     special_reg,
 114     vec_reg
 115   } RegisterType;
 116 
 117   typedef enum {
 118     reg_size          = 8,
 119     half_reg_size     = reg_size / 2,
 120     vec_reg_size      = 16
 121   } RegisterConstants;
 122 
 123   typedef struct {
 124     RegisterType        reg_type;
 125     int                 reg_num;
 126     VMReg               vmreg;
 127   } LiveRegType;
 128 };
 129 
 130 
 131 #define RegisterSaver_LiveIntReg(regname) \
 132   { RegisterSaver::int_reg,     regname->encoding(), regname->as_VMReg() }
 133 
 134 #define RegisterSaver_LiveFloatReg(regname) \
 135   { RegisterSaver::float_reg,   regname->encoding(), regname->as_VMReg() }
 136 
 137 #define RegisterSaver_LiveSpecialReg(regname) \
 138   { RegisterSaver::special_reg, regname->encoding(), regname->as_VMReg() }
 139 
 140 #define RegisterSaver_LiveVecReg(regname) \
 141   { RegisterSaver::vec_reg,      regname->encoding(), regname->as_VMReg() }
 142 
 143 static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = {
 144   // Live registers which get spilled to the stack. Register
 145   // positions in this array correspond directly to the stack layout.
 146 
 147   //
 148   // live special registers:
 149   //
 150   RegisterSaver_LiveSpecialReg(SR_CTR),
 151   //
 152   // live float registers:
 153   //
 154   RegisterSaver_LiveFloatReg( F0  ),
 155   RegisterSaver_LiveFloatReg( F1  ),
 156   RegisterSaver_LiveFloatReg( F2  ),
 157   RegisterSaver_LiveFloatReg( F3  ),
 158   RegisterSaver_LiveFloatReg( F4  ),
 159   RegisterSaver_LiveFloatReg( F5  ),
 160   RegisterSaver_LiveFloatReg( F6  ),
 161   RegisterSaver_LiveFloatReg( F7  ),
 162   RegisterSaver_LiveFloatReg( F8  ),
 163   RegisterSaver_LiveFloatReg( F9  ),
 164   RegisterSaver_LiveFloatReg( F10 ),
 165   RegisterSaver_LiveFloatReg( F11 ),
 166   RegisterSaver_LiveFloatReg( F12 ),
 167   RegisterSaver_LiveFloatReg( F13 ),
 168   RegisterSaver_LiveFloatReg( F14 ),
 169   RegisterSaver_LiveFloatReg( F15 ),
 170   RegisterSaver_LiveFloatReg( F16 ),
 171   RegisterSaver_LiveFloatReg( F17 ),
 172   RegisterSaver_LiveFloatReg( F18 ),
 173   RegisterSaver_LiveFloatReg( F19 ),
 174   RegisterSaver_LiveFloatReg( F20 ),
 175   RegisterSaver_LiveFloatReg( F21 ),
 176   RegisterSaver_LiveFloatReg( F22 ),
 177   RegisterSaver_LiveFloatReg( F23 ),
 178   RegisterSaver_LiveFloatReg( F24 ),
 179   RegisterSaver_LiveFloatReg( F25 ),
 180   RegisterSaver_LiveFloatReg( F26 ),
 181   RegisterSaver_LiveFloatReg( F27 ),
 182   RegisterSaver_LiveFloatReg( F28 ),
 183   RegisterSaver_LiveFloatReg( F29 ),
 184   RegisterSaver_LiveFloatReg( F30 ),
 185   RegisterSaver_LiveFloatReg( F31 ),
 186   //
 187   // live integer registers:
 188   //
 189   RegisterSaver_LiveIntReg(   R0  ),
 190   //RegisterSaver_LiveIntReg( R1  ), // stack pointer
 191   RegisterSaver_LiveIntReg(   R2  ),
 192   RegisterSaver_LiveIntReg(   R3  ),
 193   RegisterSaver_LiveIntReg(   R4  ),
 194   RegisterSaver_LiveIntReg(   R5  ),
 195   RegisterSaver_LiveIntReg(   R6  ),
 196   RegisterSaver_LiveIntReg(   R7  ),
 197   RegisterSaver_LiveIntReg(   R8  ),
 198   RegisterSaver_LiveIntReg(   R9  ),
 199   RegisterSaver_LiveIntReg(   R10 ),
 200   RegisterSaver_LiveIntReg(   R11 ),
 201   RegisterSaver_LiveIntReg(   R12 ),
 202   //RegisterSaver_LiveIntReg( R13 ), // system thread id
 203   RegisterSaver_LiveIntReg(   R14 ),
 204   RegisterSaver_LiveIntReg(   R15 ),
 205   RegisterSaver_LiveIntReg(   R16 ),
 206   RegisterSaver_LiveIntReg(   R17 ),
 207   RegisterSaver_LiveIntReg(   R18 ),
 208   RegisterSaver_LiveIntReg(   R19 ),
 209   RegisterSaver_LiveIntReg(   R20 ),
 210   RegisterSaver_LiveIntReg(   R21 ),
 211   RegisterSaver_LiveIntReg(   R22 ),
 212   RegisterSaver_LiveIntReg(   R23 ),
 213   RegisterSaver_LiveIntReg(   R24 ),
 214   RegisterSaver_LiveIntReg(   R25 ),
 215   RegisterSaver_LiveIntReg(   R26 ),
 216   RegisterSaver_LiveIntReg(   R27 ),
 217   RegisterSaver_LiveIntReg(   R28 ),
 218   RegisterSaver_LiveIntReg(   R29 ),
 219   RegisterSaver_LiveIntReg(   R30 ),
 220   RegisterSaver_LiveIntReg(   R31 )  // must be the last register (see save/restore functions below)
 221 };
 222 
 223 static const RegisterSaver::LiveRegType RegisterSaver_LiveVecRegs[] = {
 224   //
 225   // live vector registers (optional, only these ones are used by C2):
 226   //
 227   RegisterSaver_LiveVecReg( VR0 ),
 228   RegisterSaver_LiveVecReg( VR1 ),
 229   RegisterSaver_LiveVecReg( VR2 ),
 230   RegisterSaver_LiveVecReg( VR3 ),
 231   RegisterSaver_LiveVecReg( VR4 ),
 232   RegisterSaver_LiveVecReg( VR5 ),
 233   RegisterSaver_LiveVecReg( VR6 ),
 234   RegisterSaver_LiveVecReg( VR7 ),
 235   RegisterSaver_LiveVecReg( VR8 ),
 236   RegisterSaver_LiveVecReg( VR9 ),
 237   RegisterSaver_LiveVecReg( VR10 ),
 238   RegisterSaver_LiveVecReg( VR11 ),
 239   RegisterSaver_LiveVecReg( VR12 ),
 240   RegisterSaver_LiveVecReg( VR13 ),
 241   RegisterSaver_LiveVecReg( VR14 ),
 242   RegisterSaver_LiveVecReg( VR15 ),
 243   RegisterSaver_LiveVecReg( VR16 ),
 244   RegisterSaver_LiveVecReg( VR17 ),
 245   RegisterSaver_LiveVecReg( VR18 ),
 246   RegisterSaver_LiveVecReg( VR19 ),
 247   RegisterSaver_LiveVecReg( VR20 ),
 248   RegisterSaver_LiveVecReg( VR21 ),
 249   RegisterSaver_LiveVecReg( VR22 ),
 250   RegisterSaver_LiveVecReg( VR23 ),
 251   RegisterSaver_LiveVecReg( VR24 ),
 252   RegisterSaver_LiveVecReg( VR25 ),
 253   RegisterSaver_LiveVecReg( VR26 ),
 254   RegisterSaver_LiveVecReg( VR27 ),
 255   RegisterSaver_LiveVecReg( VR28 ),
 256   RegisterSaver_LiveVecReg( VR29 ),
 257   RegisterSaver_LiveVecReg( VR30 ),
 258   RegisterSaver_LiveVecReg( VR31 )
 259 };
 260 
 261 
 262 OopMap* RegisterSaver::push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
 263                          int* out_frame_size_in_bytes,
 264                          bool generate_oop_map,
 265                          int return_pc_adjustment,
 266                          ReturnPCLocation return_pc_location,
 267                          bool save_vectors) {
 268   // Push an abi_reg_args-frame and store all registers which may be live.
 269   // If requested, create an OopMap: Record volatile registers as
 270   // callee-save values in an OopMap so their save locations will be
 271   // propagated to the RegisterMap of the caller frame during
 272   // StackFrameStream construction (needed for deoptimization; see
 273   // compiledVFrame::create_stack_value).
 274   // If return_pc_adjustment != 0 adjust the return pc by return_pc_adjustment.
 275   // Updated return pc is returned in R31 (if not return_pc_is_pre_saved).
 276 
 277   // calculate frame size
 278   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
 279                                    sizeof(RegisterSaver::LiveRegType);
 280   const int vecregstosave_num    = save_vectors ? (sizeof(RegisterSaver_LiveVecRegs) /
 281                                                    sizeof(RegisterSaver::LiveRegType))
 282                                                 : 0;
 283   const int register_save_size   = regstosave_num * reg_size + vecregstosave_num * vec_reg_size;
 284   const int frame_size_in_bytes  = align_up(register_save_size, frame::alignment_in_bytes)
 285                                    + frame::native_abi_reg_args_size;
 286 
 287   *out_frame_size_in_bytes       = frame_size_in_bytes;
 288   const int frame_size_in_slots  = frame_size_in_bytes / sizeof(jint);
 289   const int register_save_offset = frame_size_in_bytes - register_save_size;
 290 
 291   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
 292   OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : nullptr;
 293 
 294   BLOCK_COMMENT("push_frame_reg_args_and_save_live_registers {");
 295 
 296   // push a new frame
 297   __ push_frame(frame_size_in_bytes, noreg);
 298 
 299   // Save some registers in the last (non-vector) slots of the new frame so we
 300   // can use them as scratch regs or to determine the return pc.
 301   __ std(R31, frame_size_in_bytes -   reg_size - vecregstosave_num * vec_reg_size, R1_SP);
 302   __ std(R30, frame_size_in_bytes - 2*reg_size - vecregstosave_num * vec_reg_size, R1_SP);
 303 
 304   // save the flags
 305   // Do the save_LR by hand and adjust the return pc if requested.
 306   switch (return_pc_location) {
 307     case return_pc_is_lr: __ mflr(R31); break;
 308     case return_pc_is_pre_saved: assert(return_pc_adjustment == 0, "unsupported"); break;
 309     case return_pc_is_thread_saved_exception_pc: __ ld(R31, thread_(saved_exception_pc)); break;
 310     default: ShouldNotReachHere();
 311   }
 312   if (return_pc_location != return_pc_is_pre_saved) {
 313     if (return_pc_adjustment != 0) {
 314       __ addi(R31, R31, return_pc_adjustment);
 315     }
 316     __ std(R31, frame_size_in_bytes + _abi0(lr), R1_SP);
 317   }
 318 
 319   // save all registers (ints and floats)
 320   int offset = register_save_offset;
 321 
 322   for (int i = 0; i < regstosave_num; i++) {
 323     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
 324     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
 325 
 326     switch (reg_type) {
 327       case RegisterSaver::int_reg: {
 328         if (reg_num < 30) { // We spilled R30-31 right at the beginning.
 329           __ std(as_Register(reg_num), offset, R1_SP);
 330         }
 331         break;
 332       }
 333       case RegisterSaver::float_reg: {
 334         __ stfd(as_FloatRegister(reg_num), offset, R1_SP);
 335         break;
 336       }
 337       case RegisterSaver::special_reg: {
 338         if (reg_num == SR_CTR.encoding()) {
 339           __ mfctr(R30);
 340           __ std(R30, offset, R1_SP);
 341         } else {
 342           Unimplemented();
 343         }
 344         break;
 345       }
 346       default:
 347         ShouldNotReachHere();
 348     }
 349 
 350     if (generate_oop_map) {
 351       map->set_callee_saved(VMRegImpl::stack2reg(offset >> 2),
 352                             RegisterSaver_LiveRegs[i].vmreg);
 353     }
 354     offset += reg_size;
 355   }
 356 
 357   // Note that generate_oop_map in the following loop is only used for the
 358   // polling_page_vectors_safepoint_handler_blob.
 359   // The order in which the vector contents are stored depends on Endianess and
 360   // the utilized instructions (PowerArchitecturePPC64).
 361   assert(is_aligned(offset, StackAlignmentInBytes), "should be");
 362   if (PowerArchitecturePPC64 >= 10) {
 363     assert(is_even(vecregstosave_num), "expectation");
 364     for (int i = 0; i < vecregstosave_num; i += 2) {
 365       int reg_num = RegisterSaver_LiveVecRegs[i].reg_num;
 366       assert(RegisterSaver_LiveVecRegs[i + 1].reg_num == reg_num + 1, "or use other instructions!");
 367 
 368       __ stxvp(as_VectorRegister(reg_num).to_vsr(), offset, R1_SP);
 369       // Note: The contents were read in the same order (see loadV16_Power9 node in ppc.ad).
 370       if (generate_oop_map) {
 371         map->set_callee_saved(VMRegImpl::stack2reg(offset >> 2),
 372                               RegisterSaver_LiveVecRegs[i LITTLE_ENDIAN_ONLY(+1) ].vmreg);
 373         map->set_callee_saved(VMRegImpl::stack2reg((offset + vec_reg_size) >> 2),
 374                               RegisterSaver_LiveVecRegs[i BIG_ENDIAN_ONLY(+1) ].vmreg);
 375       }
 376       offset += (2 * vec_reg_size);
 377     }
 378   } else {
 379     for (int i = 0; i < vecregstosave_num; i++) {
 380       int reg_num = RegisterSaver_LiveVecRegs[i].reg_num;
 381 
 382       if (PowerArchitecturePPC64 >= 9) {
 383         __ stxv(as_VectorRegister(reg_num)->to_vsr(), offset, R1_SP);
 384       } else {
 385         __ li(R31, offset);
 386         __ stxvd2x(as_VectorRegister(reg_num)->to_vsr(), R31, R1_SP);
 387       }
 388       // Note: The contents were read in the same order (see loadV16_Power8 / loadV16_Power9 node in ppc.ad).
 389       if (generate_oop_map) {
 390         VMReg vsr = RegisterSaver_LiveVecRegs[i].vmreg;
 391         map->set_callee_saved(VMRegImpl::stack2reg(offset >> 2), vsr);
 392       }
 393       offset += vec_reg_size;
 394     }
 395   }
 396 
 397   assert(offset == frame_size_in_bytes, "consistency check");
 398 
 399   BLOCK_COMMENT("} push_frame_reg_args_and_save_live_registers");
 400 
 401   // And we're done.
 402   return map;
 403 }
 404 
 405 
 406 // Pop the current frame and restore all the registers that we
 407 // saved.
 408 void RegisterSaver::restore_live_registers_and_pop_frame(MacroAssembler* masm,
 409                                                          int frame_size_in_bytes,
 410                                                          bool restore_ctr,
 411                                                          bool save_vectors) {
 412   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
 413                                    sizeof(RegisterSaver::LiveRegType);
 414   const int vecregstosave_num    = save_vectors ? (sizeof(RegisterSaver_LiveVecRegs) /
 415                                                    sizeof(RegisterSaver::LiveRegType))
 416                                                 : 0;
 417   const int register_save_size   = regstosave_num * reg_size + vecregstosave_num * vec_reg_size;
 418 
 419   const int register_save_offset = frame_size_in_bytes - register_save_size;
 420 
 421   BLOCK_COMMENT("restore_live_registers_and_pop_frame {");
 422 
 423   // restore all registers (ints and floats)
 424   int offset = register_save_offset;
 425 
 426   for (int i = 0; i < regstosave_num; i++) {
 427     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
 428     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
 429 
 430     switch (reg_type) {
 431       case RegisterSaver::int_reg: {
 432         if (reg_num != 31) // R31 restored at the end, it's the tmp reg!
 433           __ ld(as_Register(reg_num), offset, R1_SP);
 434         break;
 435       }
 436       case RegisterSaver::float_reg: {
 437         __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
 438         break;
 439       }
 440       case RegisterSaver::special_reg: {
 441         if (reg_num == SR_CTR.encoding()) {
 442           if (restore_ctr) { // Nothing to do here if ctr already contains the next address.
 443             __ ld(R31, offset, R1_SP);
 444             __ mtctr(R31);
 445           }
 446         } else {
 447           Unimplemented();
 448         }
 449         break;
 450       }
 451       default:
 452         ShouldNotReachHere();
 453     }
 454     offset += reg_size;
 455   }
 456 
 457   assert(is_aligned(offset, StackAlignmentInBytes), "should be");
 458   if (PowerArchitecturePPC64 >= 10) {
 459     for (int i = 0; i < vecregstosave_num; i += 2) {
 460       int reg_num  = RegisterSaver_LiveVecRegs[i].reg_num;
 461       assert(RegisterSaver_LiveVecRegs[i + 1].reg_num == reg_num + 1, "or use other instructions!");
 462 
 463       __ lxvp(as_VectorRegister(reg_num).to_vsr(), offset, R1_SP);
 464 
 465       offset += (2 * vec_reg_size);
 466     }
 467   } else {
 468     for (int i = 0; i < vecregstosave_num; i++) {
 469       int reg_num  = RegisterSaver_LiveVecRegs[i].reg_num;
 470 
 471       if (PowerArchitecturePPC64 >= 9) {
 472         __ lxv(as_VectorRegister(reg_num).to_vsr(), offset, R1_SP);
 473       } else {
 474         __ li(R31, offset);
 475         __ lxvd2x(as_VectorRegister(reg_num).to_vsr(), R31, R1_SP);
 476       }
 477 
 478       offset += vec_reg_size;
 479     }
 480   }
 481 
 482   assert(offset == frame_size_in_bytes, "consistency check");
 483 
 484   // restore link and the flags
 485   __ ld(R31, frame_size_in_bytes + _abi0(lr), R1_SP);
 486   __ mtlr(R31);
 487 
 488   // restore scratch register's value
 489   __ ld(R31, frame_size_in_bytes - reg_size - vecregstosave_num * vec_reg_size, R1_SP);
 490 
 491   // pop the frame
 492   __ addi(R1_SP, R1_SP, frame_size_in_bytes);
 493 
 494   BLOCK_COMMENT("} restore_live_registers_and_pop_frame");
 495 }
 496 
 497 void RegisterSaver::push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp,
 498                                                            int frame_size,int total_args, const VMRegPair *regs,
 499                                                            const VMRegPair *regs2) {
 500   __ push_frame(frame_size, r_temp);
 501   int st_off = frame_size - wordSize;
 502   for (int i = 0; i < total_args; i++) {
 503     VMReg r_1 = regs[i].first();
 504     VMReg r_2 = regs[i].second();
 505     if (!r_1->is_valid()) {
 506       assert(!r_2->is_valid(), "");
 507       continue;
 508     }
 509     if (r_1->is_Register()) {
 510       Register r = r_1->as_Register();
 511       __ std(r, st_off, R1_SP);
 512       st_off -= wordSize;
 513     } else if (r_1->is_FloatRegister()) {
 514       FloatRegister f = r_1->as_FloatRegister();
 515       __ stfd(f, st_off, R1_SP);
 516       st_off -= wordSize;
 517     }
 518   }
 519   if (regs2 != nullptr) {
 520     for (int i = 0; i < total_args; i++) {
 521       VMReg r_1 = regs2[i].first();
 522       VMReg r_2 = regs2[i].second();
 523       if (!r_1->is_valid()) {
 524         assert(!r_2->is_valid(), "");
 525         continue;
 526       }
 527       if (r_1->is_Register()) {
 528         Register r = r_1->as_Register();
 529         __ std(r, st_off, R1_SP);
 530         st_off -= wordSize;
 531       } else if (r_1->is_FloatRegister()) {
 532         FloatRegister f = r_1->as_FloatRegister();
 533         __ stfd(f, st_off, R1_SP);
 534         st_off -= wordSize;
 535       }
 536     }
 537   }
 538 }
 539 
 540 void RegisterSaver::restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size,
 541                                                              int total_args, const VMRegPair *regs,
 542                                                              const VMRegPair *regs2) {
 543   int st_off = frame_size - wordSize;
 544   for (int i = 0; i < total_args; i++) {
 545     VMReg r_1 = regs[i].first();
 546     VMReg r_2 = regs[i].second();
 547     if (r_1->is_Register()) {
 548       Register r = r_1->as_Register();
 549       __ ld(r, st_off, R1_SP);
 550       st_off -= wordSize;
 551     } else if (r_1->is_FloatRegister()) {
 552       FloatRegister f = r_1->as_FloatRegister();
 553       __ lfd(f, st_off, R1_SP);
 554       st_off -= wordSize;
 555     }
 556   }
 557   if (regs2 != nullptr)
 558     for (int i = 0; i < total_args; i++) {
 559       VMReg r_1 = regs2[i].first();
 560       VMReg r_2 = regs2[i].second();
 561       if (r_1->is_Register()) {
 562         Register r = r_1->as_Register();
 563         __ ld(r, st_off, R1_SP);
 564         st_off -= wordSize;
 565       } else if (r_1->is_FloatRegister()) {
 566         FloatRegister f = r_1->as_FloatRegister();
 567         __ lfd(f, st_off, R1_SP);
 568         st_off -= wordSize;
 569       }
 570     }
 571   __ pop_frame();
 572 }
 573 
 574 // Restore the registers that might be holding a result.
 575 void RegisterSaver::restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes) {
 576   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
 577                                    sizeof(RegisterSaver::LiveRegType);
 578   const int register_save_size   = regstosave_num * reg_size; // VS registers not relevant here.
 579   const int register_save_offset = frame_size_in_bytes - register_save_size;
 580 
 581   // restore all result registers (ints and floats)
 582   int offset = register_save_offset;
 583   for (int i = 0; i < regstosave_num; i++) {
 584     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
 585     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
 586     switch (reg_type) {
 587       case RegisterSaver::int_reg: {
 588         if (as_Register(reg_num)==R3_RET) // int result_reg
 589           __ ld(as_Register(reg_num), offset, R1_SP);
 590         break;
 591       }
 592       case RegisterSaver::float_reg: {
 593         if (as_FloatRegister(reg_num)==F1_RET) // float result_reg
 594           __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
 595         break;
 596       }
 597       case RegisterSaver::special_reg: {
 598         // Special registers don't hold a result.
 599         break;
 600       }
 601       default:
 602         ShouldNotReachHere();
 603     }
 604     offset += reg_size;
 605   }
 606 
 607   assert(offset == frame_size_in_bytes, "consistency check");
 608 }
 609 
 610 // Is vector's size (in bytes) bigger than a size saved by default?
 611 bool SharedRuntime::is_wide_vector(int size) {
 612   // Note, MaxVectorSize == 8/16 on PPC64.
 613   assert(size <= (SuperwordUseVSX ? 16 : 8), "%d bytes vectors are not supported", size);
 614   return size > 8;
 615 }
 616 
 617 static int reg2slot(VMReg r) {
 618   return r->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 619 }
 620 
 621 static int reg2offset(VMReg r) {
 622   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 623 }
 624 
 625 // ---------------------------------------------------------------------------
 626 // Read the array of BasicTypes from a signature, and compute where the
 627 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
 628 // quantities. Values less than VMRegImpl::stack0 are registers, those above
 629 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
 630 // as framesizes are fixed.
 631 // VMRegImpl::stack0 refers to the first slot 0(sp).
 632 // and VMRegImpl::stack0+1 refers to the memory word 4-bytes higher. Register
 633 // up to Register::number_of_registers) are the 64-bit
 634 // integer registers.
 635 
 636 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 637 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
 638 // units regardless of build. Of course for i486 there is no 64 bit build
 639 
 640 // The Java calling convention is a "shifted" version of the C ABI.
 641 // By skipping the first C ABI register we can call non-static jni methods
 642 // with small numbers of arguments without having to shuffle the arguments
 643 // at all. Since we control the java ABI we ought to at least get some
 644 // advantage out of it.
 645 
 646 const VMReg java_iarg_reg[8] = {
 647   R3->as_VMReg(),
 648   R4->as_VMReg(),
 649   R5->as_VMReg(),
 650   R6->as_VMReg(),
 651   R7->as_VMReg(),
 652   R8->as_VMReg(),
 653   R9->as_VMReg(),
 654   R10->as_VMReg()
 655 };
 656 
 657 const VMReg java_farg_reg[13] = {
 658   F1->as_VMReg(),
 659   F2->as_VMReg(),
 660   F3->as_VMReg(),
 661   F4->as_VMReg(),
 662   F5->as_VMReg(),
 663   F6->as_VMReg(),
 664   F7->as_VMReg(),
 665   F8->as_VMReg(),
 666   F9->as_VMReg(),
 667   F10->as_VMReg(),
 668   F11->as_VMReg(),
 669   F12->as_VMReg(),
 670   F13->as_VMReg()
 671 };
 672 
 673 const int num_java_iarg_registers = sizeof(java_iarg_reg) / sizeof(java_iarg_reg[0]);
 674 const int num_java_farg_registers = sizeof(java_farg_reg) / sizeof(java_farg_reg[0]);
 675 
 676 STATIC_ASSERT(num_java_iarg_registers == Argument::n_int_register_parameters_j);
 677 STATIC_ASSERT(num_java_farg_registers == Argument::n_float_register_parameters_j);
 678 
 679 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 680                                            VMRegPair *regs,
 681                                            int total_args_passed) {
 682   // C2c calling conventions for compiled-compiled calls.
 683   // Put 8 ints/longs into registers _AND_ 13 float/doubles into
 684   // registers _AND_ put the rest on the stack.
 685 
 686   const int inc_stk_for_intfloat   = 1; // 1 slots for ints and floats
 687   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
 688 
 689   int i;
 690   VMReg reg;
 691   int stk = 0;
 692   int ireg = 0;
 693   int freg = 0;
 694 
 695   // We put the first 8 arguments into registers and the rest on the
 696   // stack, float arguments are already in their argument registers
 697   // due to c2c calling conventions (see calling_convention).
 698   for (int i = 0; i < total_args_passed; ++i) {
 699     switch(sig_bt[i]) {
 700     case T_BOOLEAN:
 701     case T_CHAR:
 702     case T_BYTE:
 703     case T_SHORT:
 704     case T_INT:
 705       if (ireg < num_java_iarg_registers) {
 706         // Put int/ptr in register
 707         reg = java_iarg_reg[ireg];
 708         ++ireg;
 709       } else {
 710         // Put int/ptr on stack.
 711         reg = VMRegImpl::stack2reg(stk);
 712         stk += inc_stk_for_intfloat;
 713       }
 714       regs[i].set1(reg);
 715       break;
 716     case T_LONG:
 717       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
 718       if (ireg < num_java_iarg_registers) {
 719         // Put long in register.
 720         reg = java_iarg_reg[ireg];
 721         ++ireg;
 722       } else {
 723         // Put long on stack. They must be aligned to 2 slots.
 724         if (stk & 0x1) ++stk;
 725         reg = VMRegImpl::stack2reg(stk);
 726         stk += inc_stk_for_longdouble;
 727       }
 728       regs[i].set2(reg);
 729       break;
 730     case T_OBJECT:
 731     case T_ARRAY:
 732     case T_ADDRESS:
 733       if (ireg < num_java_iarg_registers) {
 734         // Put ptr in register.
 735         reg = java_iarg_reg[ireg];
 736         ++ireg;
 737       } else {
 738         // Put ptr on stack. Objects must be aligned to 2 slots too,
 739         // because "64-bit pointers record oop-ishness on 2 aligned
 740         // adjacent registers." (see OopFlow::build_oop_map).
 741         if (stk & 0x1) ++stk;
 742         reg = VMRegImpl::stack2reg(stk);
 743         stk += inc_stk_for_longdouble;
 744       }
 745       regs[i].set2(reg);
 746       break;
 747     case T_FLOAT:
 748       if (freg < num_java_farg_registers) {
 749         // Put float in register.
 750         reg = java_farg_reg[freg];
 751         ++freg;
 752       } else {
 753         // Put float on stack.
 754         reg = VMRegImpl::stack2reg(stk);
 755         stk += inc_stk_for_intfloat;
 756       }
 757       regs[i].set1(reg);
 758       break;
 759     case T_DOUBLE:
 760       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
 761       if (freg < num_java_farg_registers) {
 762         // Put double in register.
 763         reg = java_farg_reg[freg];
 764         ++freg;
 765       } else {
 766         // Put double on stack. They must be aligned to 2 slots.
 767         if (stk & 0x1) ++stk;
 768         reg = VMRegImpl::stack2reg(stk);
 769         stk += inc_stk_for_longdouble;
 770       }
 771       regs[i].set2(reg);
 772       break;
 773     case T_VOID:
 774       // Do not count halves.
 775       regs[i].set_bad();
 776       break;
 777     default:
 778       ShouldNotReachHere();
 779     }
 780   }
 781   return stk;
 782 }
 783 
 784 #if defined(COMPILER1) || defined(COMPILER2)
 785 // Calling convention for calling C code.
 786 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 787                                         VMRegPair *regs,
 788                                         int total_args_passed) {
 789   // Calling conventions for C runtime calls and calls to JNI native methods.
 790   //
 791   // PPC64 convention: Hoist the first 8 int/ptr/long's in the first 8
 792   // int regs, leaving int regs undefined if the arg is flt/dbl. Hoist
 793   // the first 13 flt/dbl's in the first 13 fp regs but additionally
 794   // copy flt/dbl to the stack if they are beyond the 8th argument.
 795 
 796   const VMReg iarg_reg[8] = {
 797     R3->as_VMReg(),
 798     R4->as_VMReg(),
 799     R5->as_VMReg(),
 800     R6->as_VMReg(),
 801     R7->as_VMReg(),
 802     R8->as_VMReg(),
 803     R9->as_VMReg(),
 804     R10->as_VMReg()
 805   };
 806 
 807   const VMReg farg_reg[13] = {
 808     F1->as_VMReg(),
 809     F2->as_VMReg(),
 810     F3->as_VMReg(),
 811     F4->as_VMReg(),
 812     F5->as_VMReg(),
 813     F6->as_VMReg(),
 814     F7->as_VMReg(),
 815     F8->as_VMReg(),
 816     F9->as_VMReg(),
 817     F10->as_VMReg(),
 818     F11->as_VMReg(),
 819     F12->as_VMReg(),
 820     F13->as_VMReg()
 821   };
 822 
 823   // Check calling conventions consistency.
 824   assert(sizeof(iarg_reg) / sizeof(iarg_reg[0]) == Argument::n_int_register_parameters_c &&
 825          sizeof(farg_reg) / sizeof(farg_reg[0]) == Argument::n_float_register_parameters_c,
 826          "consistency");
 827 
 828   const int additional_frame_header_slots = ((frame::native_abi_minframe_size - frame::jit_out_preserve_size)
 829                                             / VMRegImpl::stack_slot_size);
 830   const int float_offset_in_slots = Argument::float_on_stack_offset_in_bytes_c / VMRegImpl::stack_slot_size;
 831 
 832   VMReg reg;
 833   int arg = 0;
 834   int freg = 0;
 835   bool stack_used = false;
 836 
 837   for (int i = 0; i < total_args_passed; ++i, ++arg) {
 838     // Each argument corresponds to a slot in the Parameter Save Area (if not omitted)
 839     int stk = (arg * 2) + additional_frame_header_slots;
 840 
 841     switch(sig_bt[i]) {
 842     //
 843     // If arguments 0-7 are integers, they are passed in integer registers.
 844     // Argument i is placed in iarg_reg[i].
 845     //
 846     case T_BOOLEAN:
 847     case T_CHAR:
 848     case T_BYTE:
 849     case T_SHORT:
 850     case T_INT:
 851       // We must cast ints to longs and use full 64 bit stack slots
 852       // here.  Thus fall through, handle as long.
 853     case T_LONG:
 854     case T_OBJECT:
 855     case T_ARRAY:
 856     case T_ADDRESS:
 857     case T_METADATA:
 858       // Oops are already boxed if required (JNI).
 859       if (arg < Argument::n_int_register_parameters_c) {
 860         reg = iarg_reg[arg];
 861       } else {
 862         reg = VMRegImpl::stack2reg(stk);
 863         stack_used = true;
 864       }
 865       regs[i].set2(reg);
 866       break;
 867 
 868     //
 869     // Floats are treated differently from int regs:  The first 13 float arguments
 870     // are passed in registers (not the float args among the first 13 args).
 871     // Thus argument i is NOT passed in farg_reg[i] if it is float.  It is passed
 872     // in farg_reg[j] if argument i is the j-th float argument of this call.
 873     //
 874     case T_FLOAT:
 875       if (freg < Argument::n_float_register_parameters_c) {
 876         // Put float in register ...
 877         reg = farg_reg[freg];
 878         ++freg;
 879       } else {
 880         // Put float on stack.
 881         reg = VMRegImpl::stack2reg(stk + float_offset_in_slots);
 882         stack_used = true;
 883       }
 884       regs[i].set1(reg);
 885       break;
 886     case T_DOUBLE:
 887       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
 888       if (freg < Argument::n_float_register_parameters_c) {
 889         // Put double in register ...
 890         reg = farg_reg[freg];
 891         ++freg;
 892       } else {
 893         // Put double on stack.
 894         reg = VMRegImpl::stack2reg(stk);
 895         stack_used = true;
 896       }
 897       regs[i].set2(reg);
 898       break;
 899 
 900     case T_VOID:
 901       // Do not count halves.
 902       regs[i].set_bad();
 903       --arg;
 904       break;
 905     default:
 906       ShouldNotReachHere();
 907     }
 908   }
 909 
 910   // Return size of the stack frame excluding the jit_out_preserve part in single-word slots.
 911 #if defined(ABI_ELFv2)
 912   assert(additional_frame_header_slots == 0, "ABIv2 shouldn't use extra slots");
 913   // ABIv2 allows omitting the Parameter Save Area if the callee's prototype
 914   // indicates that all parameters can be passed in registers.
 915   return stack_used ? (arg * 2) : 0;
 916 #else
 917   // The Parameter Save Area needs to be at least 8 double-word slots for ABIv1.
 918   // We have to add extra slots because ABIv1 uses a larger header.
 919   return MAX2(arg, 8) * 2 + additional_frame_header_slots;
 920 #endif
 921 }
 922 #endif // COMPILER2
 923 
 924 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
 925                                              uint num_bits,
 926                                              uint total_args_passed) {
 927   Unimplemented();
 928   return 0;
 929 }
 930 
 931 static address gen_c2i_adapter(MacroAssembler *masm,
 932                             int total_args_passed,
 933                             int comp_args_on_stack,
 934                             const BasicType *sig_bt,
 935                             const VMRegPair *regs,
 936                             Label& call_interpreter,
 937                             const Register& ientry) {
 938 
 939   address c2i_entrypoint;
 940 
 941   const Register sender_SP = R21_sender_SP; // == R21_tmp1
 942   const Register code      = R22_tmp2;
 943   //const Register ientry  = R23_tmp3;
 944   const Register value_regs[] = { R24_tmp4, R25_tmp5, R26_tmp6 };
 945   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
 946   int value_regs_index = 0;
 947 
 948   const Register return_pc = R27_tmp7;
 949   const Register tmp       = R28_tmp8;
 950 
 951   assert_different_registers(sender_SP, code, ientry, return_pc, tmp);
 952 
 953   // Adapter needs TOP_IJAVA_FRAME_ABI.
 954   const int adapter_size = frame::top_ijava_frame_abi_size +
 955                            align_up(total_args_passed * wordSize, frame::alignment_in_bytes);
 956 
 957   // regular (verified) c2i entry point
 958   c2i_entrypoint = __ pc();
 959 
 960   // Does compiled code exists? If yes, patch the caller's callsite.
 961   __ ld(code, method_(code));
 962   __ cmpdi(CR0, code, 0);
 963   __ ld(ientry, method_(interpreter_entry)); // preloaded
 964   __ beq(CR0, call_interpreter);
 965 
 966 
 967   // Patch caller's callsite, method_(code) was not null which means that
 968   // compiled code exists.
 969   __ mflr(return_pc);
 970   __ std(return_pc, _abi0(lr), R1_SP);
 971   RegisterSaver::push_frame_and_save_argument_registers(masm, tmp, adapter_size, total_args_passed, regs);
 972 
 973   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), R19_method, return_pc);
 974 
 975   RegisterSaver::restore_argument_registers_and_pop_frame(masm, adapter_size, total_args_passed, regs);
 976   __ ld(return_pc, _abi0(lr), R1_SP);
 977   __ ld(ientry, method_(interpreter_entry)); // preloaded
 978   __ mtlr(return_pc);
 979 
 980 
 981   // Call the interpreter.
 982   __ BIND(call_interpreter);
 983   __ mtctr(ientry);
 984 
 985   // Get a copy of the current SP for loading caller's arguments.
 986   __ mr(sender_SP, R1_SP);
 987 
 988   // Add space for the adapter.
 989   __ resize_frame(-adapter_size, R12_scratch2);
 990 
 991   int st_off = adapter_size - wordSize;
 992 
 993   // Write the args into the outgoing interpreter space.
 994   for (int i = 0; i < total_args_passed; i++) {
 995     VMReg r_1 = regs[i].first();
 996     VMReg r_2 = regs[i].second();
 997     if (!r_1->is_valid()) {
 998       assert(!r_2->is_valid(), "");
 999       continue;
1000     }
1001     if (r_1->is_stack()) {
1002       Register tmp_reg = value_regs[value_regs_index];
1003       value_regs_index = (value_regs_index + 1) % num_value_regs;
1004       // The calling convention produces OptoRegs that ignore the out
1005       // preserve area (JIT's ABI). We must account for it here.
1006       int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
1007       if (!r_2->is_valid()) {
1008         __ lwz(tmp_reg, ld_off, sender_SP);
1009       } else {
1010         __ ld(tmp_reg, ld_off, sender_SP);
1011       }
1012       // Pretend stack targets were loaded into tmp_reg.
1013       r_1 = tmp_reg->as_VMReg();
1014     }
1015 
1016     if (r_1->is_Register()) {
1017       Register r = r_1->as_Register();
1018       if (!r_2->is_valid()) {
1019         __ stw(r, st_off, R1_SP);
1020         st_off-=wordSize;
1021       } else {
1022         // Longs are given 2 64-bit slots in the interpreter, but the
1023         // data is passed in only 1 slot.
1024         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
1025           DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
1026           st_off-=wordSize;
1027         }
1028         __ std(r, st_off, R1_SP);
1029         st_off-=wordSize;
1030       }
1031     } else {
1032       assert(r_1->is_FloatRegister(), "");
1033       FloatRegister f = r_1->as_FloatRegister();
1034       if (!r_2->is_valid()) {
1035         __ stfs(f, st_off, R1_SP);
1036         st_off-=wordSize;
1037       } else {
1038         // In 64bit, doubles are given 2 64-bit slots in the interpreter, but the
1039         // data is passed in only 1 slot.
1040         // One of these should get known junk...
1041         DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
1042         st_off-=wordSize;
1043         __ stfd(f, st_off, R1_SP);
1044         st_off-=wordSize;
1045       }
1046     }
1047   }
1048 
1049   // Jump to the interpreter just as if interpreter was doing it.
1050 
1051   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
1052 
1053   // load TOS
1054   __ addi(R15_esp, R1_SP, st_off);
1055 
1056   // Frame_manager expects initial_caller_sp (= SP without resize by c2i) in R21_tmp1.
1057   assert(sender_SP == R21_sender_SP, "passing initial caller's SP in wrong register");
1058   __ bctr();
1059 
1060   return c2i_entrypoint;
1061 }
1062 
1063 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
1064                                     int total_args_passed,
1065                                     int comp_args_on_stack,
1066                                     const BasicType *sig_bt,
1067                                     const VMRegPair *regs) {
1068 
1069   // Load method's entry-point from method.
1070   __ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method);
1071   __ mtctr(R12_scratch2);
1072 
1073   // We will only enter here from an interpreted frame and never from after
1074   // passing thru a c2i. Azul allowed this but we do not. If we lose the
1075   // race and use a c2i we will remain interpreted for the race loser(s).
1076   // This removes all sorts of headaches on the x86 side and also eliminates
1077   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
1078 
1079   // Note: r13 contains the senderSP on entry. We must preserve it since
1080   // we may do a i2c -> c2i transition if we lose a race where compiled
1081   // code goes non-entrant while we get args ready.
1082   // In addition we use r13 to locate all the interpreter args as
1083   // we must align the stack to 16 bytes on an i2c entry else we
1084   // lose alignment we expect in all compiled code and register
1085   // save code can segv when fxsave instructions find improperly
1086   // aligned stack pointer.
1087 
1088   const Register ld_ptr = R15_esp;
1089   const Register value_regs[] = { R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6 };
1090   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
1091   int value_regs_index = 0;
1092 
1093   int ld_offset = total_args_passed*wordSize;
1094 
1095   // Cut-out for having no stack args. Since up to 2 int/oop args are passed
1096   // in registers, we will occasionally have no stack args.
1097   int comp_words_on_stack = 0;
1098   if (comp_args_on_stack) {
1099     // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
1100     // registers are below. By subtracting stack0, we either get a negative
1101     // number (all values in registers) or the maximum stack slot accessed.
1102 
1103     // Convert 4-byte c2 stack slots to words.
1104     comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
1105     // Round up to miminum stack alignment, in wordSize.
1106     comp_words_on_stack = align_up(comp_words_on_stack, 2);
1107     __ resize_frame(-comp_words_on_stack * wordSize, R11_scratch1);
1108   }
1109 
1110   // Now generate the shuffle code.  Pick up all register args and move the
1111   // rest through register value=Z_R12.
1112   BLOCK_COMMENT("Shuffle arguments");
1113   for (int i = 0; i < total_args_passed; i++) {
1114     if (sig_bt[i] == T_VOID) {
1115       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
1116       continue;
1117     }
1118 
1119     // Pick up 0, 1 or 2 words from ld_ptr.
1120     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
1121             "scrambled load targets?");
1122     VMReg r_1 = regs[i].first();
1123     VMReg r_2 = regs[i].second();
1124     if (!r_1->is_valid()) {
1125       assert(!r_2->is_valid(), "");
1126       continue;
1127     }
1128     if (r_1->is_FloatRegister()) {
1129       if (!r_2->is_valid()) {
1130         __ lfs(r_1->as_FloatRegister(), ld_offset, ld_ptr);
1131         ld_offset-=wordSize;
1132       } else {
1133         // Skip the unused interpreter slot.
1134         __ lfd(r_1->as_FloatRegister(), ld_offset-wordSize, ld_ptr);
1135         ld_offset-=2*wordSize;
1136       }
1137     } else {
1138       Register r;
1139       if (r_1->is_stack()) {
1140         // Must do a memory to memory move thru "value".
1141         r = value_regs[value_regs_index];
1142         value_regs_index = (value_regs_index + 1) % num_value_regs;
1143       } else {
1144         r = r_1->as_Register();
1145       }
1146       if (!r_2->is_valid()) {
1147         // Not sure we need to do this but it shouldn't hurt.
1148         if (is_reference_type(sig_bt[i]) || sig_bt[i] == T_ADDRESS) {
1149           __ ld(r, ld_offset, ld_ptr);
1150           ld_offset-=wordSize;
1151         } else {
1152           __ lwz(r, ld_offset, ld_ptr);
1153           ld_offset-=wordSize;
1154         }
1155       } else {
1156         // In 64bit, longs are given 2 64-bit slots in the interpreter, but the
1157         // data is passed in only 1 slot.
1158         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
1159           ld_offset-=wordSize;
1160         }
1161         __ ld(r, ld_offset, ld_ptr);
1162         ld_offset-=wordSize;
1163       }
1164 
1165       if (r_1->is_stack()) {
1166         // Now store value where the compiler expects it
1167         int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots())*VMRegImpl::stack_slot_size;
1168 
1169         if (sig_bt[i] == T_INT   || sig_bt[i] == T_FLOAT ||sig_bt[i] == T_BOOLEAN ||
1170             sig_bt[i] == T_SHORT || sig_bt[i] == T_CHAR  || sig_bt[i] == T_BYTE) {
1171           __ stw(r, st_off, R1_SP);
1172         } else {
1173           __ std(r, st_off, R1_SP);
1174         }
1175       }
1176     }
1177   }
1178 
1179   __ push_cont_fastpath(); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about
1180 
1181   BLOCK_COMMENT("Store method");
1182   // Store method into thread->callee_target.
1183   // We might end up in handle_wrong_method if the callee is
1184   // deoptimized as we race thru here. If that happens we don't want
1185   // to take a safepoint because the caller frame will look
1186   // interpreted and arguments are now "compiled" so it is much better
1187   // to make this transition invisible to the stack walking
1188   // code. Unfortunately if we try and find the callee by normal means
1189   // a safepoint is possible. So we stash the desired callee in the
1190   // thread and the vm will find there should this case occur.
1191   __ std(R19_method, thread_(callee_target));
1192 
1193   // Jump to the compiled code just as if compiled code was doing it.
1194   __ bctr();
1195 }
1196 
1197 void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1198                                             int total_args_passed,
1199                                             int comp_args_on_stack,
1200                                             const BasicType *sig_bt,
1201                                             const VMRegPair *regs,
1202                                             address entry_address[AdapterBlob::ENTRY_COUNT]) {
1203   // entry: i2c
1204 
1205   __ align(CodeEntryAlignment);
1206   entry_address[AdapterBlob::I2C] = __ pc();
1207   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
1208 
1209 
1210   // entry: c2i unverified
1211 
1212   __ align(CodeEntryAlignment);
1213   BLOCK_COMMENT("c2i unverified entry");
1214   entry_address[AdapterBlob::C2I_Unverified] = __ pc();
1215 
1216   // inline_cache contains a CompiledICData
1217   const Register ic             = R19_inline_cache_reg;
1218   const Register ic_klass       = R11_scratch1;
1219   const Register receiver_klass = R12_scratch2;
1220   const Register code           = R21_tmp1;
1221   const Register ientry         = R23_tmp3;
1222 
1223   assert_different_registers(ic, ic_klass, receiver_klass, R3_ARG1, code, ientry);
1224   assert(R11_scratch1 == R11, "need prologue scratch register");
1225 
1226   Label call_interpreter;
1227 
1228   __ ic_check(4 /* end_alignment */);
1229   __ ld(R19_method, CompiledICData::speculated_method_offset(), ic);
1230   // Argument is valid and klass is as expected, continue.
1231 
1232   __ ld(code, method_(code));
1233   __ cmpdi(CR0, code, 0);
1234   __ ld(ientry, method_(interpreter_entry)); // preloaded
1235   __ beq_predict_taken(CR0, call_interpreter);
1236 
1237   // Branch to ic_miss_stub.
1238   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type);
1239 
1240   // entry: c2i
1241 
1242   entry_address[AdapterBlob::C2I] = __ pc();
1243 
1244   // Class initialization barrier for static methods
1245   entry_address[AdapterBlob::C2I_No_Clinit_Check] = nullptr;
1246   if (VM_Version::supports_fast_class_init_checks()) {
1247     Label L_skip_barrier;
1248 
1249     { // Bypass the barrier for non-static methods
1250       __ lhz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1251       __ andi_(R0, R0, JVM_ACC_STATIC);
1252       __ beq(CR0, L_skip_barrier); // non-static
1253     }
1254 
1255     Register klass = R11_scratch1;
1256     __ load_method_holder(klass, R19_method);
1257     __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/);
1258 
1259     __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0);
1260     __ mtctr(klass);
1261     __ bctr();
1262 
1263     __ bind(L_skip_barrier);
1264     entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();
1265   }
1266 
1267   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1268   bs->c2i_entry_barrier(masm, /* tmp register*/ ic_klass, /* tmp register*/ receiver_klass, /* tmp register*/ code);
1269 
1270   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, call_interpreter, ientry);
1271   return;
1272 }
1273 
1274 // An oop arg. Must pass a handle not the oop itself.
1275 static void object_move(MacroAssembler* masm,
1276                         int frame_size_in_slots,
1277                         OopMap* oop_map, int oop_handle_offset,
1278                         bool is_receiver, int* receiver_offset,
1279                         VMRegPair src, VMRegPair dst,
1280                         Register r_caller_sp, Register r_temp_1, Register r_temp_2) {
1281   assert(!is_receiver || (is_receiver && (*receiver_offset == -1)),
1282          "receiver has already been moved");
1283 
1284   // We must pass a handle. First figure out the location we use as a handle.
1285 
1286   if (src.first()->is_stack()) {
1287     // stack to stack or reg
1288 
1289     const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
1290     Label skip;
1291     const int oop_slot_in_callers_frame = reg2slot(src.first());
1292 
1293     guarantee(!is_receiver, "expecting receiver in register");
1294     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot_in_callers_frame + frame_size_in_slots));
1295 
1296     __ addi(r_handle, r_caller_sp, reg2offset(src.first()));
1297     __ ld(  r_temp_2, reg2offset(src.first()), r_caller_sp);
1298     __ cmpdi(CR0, r_temp_2, 0);
1299     __ bne(CR0, skip);
1300     // Use a null handle if oop is null.
1301     __ li(r_handle, 0);
1302     __ bind(skip);
1303 
1304     if (dst.first()->is_stack()) {
1305       // stack to stack
1306       __ std(r_handle, reg2offset(dst.first()), R1_SP);
1307     } else {
1308       // stack to reg
1309       // Nothing to do, r_handle is already the dst register.
1310     }
1311   } else {
1312     // reg to stack or reg
1313     const Register r_oop      = src.first()->as_Register();
1314     const Register r_handle   = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
1315     const int oop_slot        = (r_oop->encoding()-R3_ARG1->encoding()) * VMRegImpl::slots_per_word
1316                                 + oop_handle_offset; // in slots
1317     const int oop_offset = oop_slot * VMRegImpl::stack_slot_size;
1318     Label skip;
1319 
1320     if (is_receiver) {
1321       *receiver_offset = oop_offset;
1322     }
1323     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot));
1324 
1325     __ std( r_oop,    oop_offset, R1_SP);
1326     __ addi(r_handle, R1_SP, oop_offset);
1327 
1328     __ cmpdi(CR0, r_oop, 0);
1329     __ bne(CR0, skip);
1330     // Use a null handle if oop is null.
1331     __ li(r_handle, 0);
1332     __ bind(skip);
1333 
1334     if (dst.first()->is_stack()) {
1335       // reg to stack
1336       __ std(r_handle, reg2offset(dst.first()), R1_SP);
1337     } else {
1338       // reg to reg
1339       // Nothing to do, r_handle is already the dst register.
1340     }
1341   }
1342 }
1343 
1344 static void int_move(MacroAssembler*masm,
1345                      VMRegPair src, VMRegPair dst,
1346                      Register r_caller_sp, Register r_temp) {
1347   assert(src.first()->is_valid(), "incoming must be int");
1348   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
1349 
1350   if (src.first()->is_stack()) {
1351     if (dst.first()->is_stack()) {
1352       // stack to stack
1353       __ lwa(r_temp, reg2offset(src.first()), r_caller_sp);
1354       __ std(r_temp, reg2offset(dst.first()), R1_SP);
1355     } else {
1356       // stack to reg
1357       __ lwa(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
1358     }
1359   } else if (dst.first()->is_stack()) {
1360     // reg to stack
1361     __ extsw(r_temp, src.first()->as_Register());
1362     __ std(r_temp, reg2offset(dst.first()), R1_SP);
1363   } else {
1364     // reg to reg
1365     __ extsw(dst.first()->as_Register(), src.first()->as_Register());
1366   }
1367 }
1368 
1369 static void long_move(MacroAssembler*masm,
1370                       VMRegPair src, VMRegPair dst,
1371                       Register r_caller_sp, Register r_temp) {
1372   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long");
1373   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
1374 
1375   if (src.first()->is_stack()) {
1376     if (dst.first()->is_stack()) {
1377       // stack to stack
1378       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
1379       __ std(r_temp, reg2offset(dst.first()), R1_SP);
1380     } else {
1381       // stack to reg
1382       __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
1383     }
1384   } else if (dst.first()->is_stack()) {
1385     // reg to stack
1386     __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
1387   } else {
1388     // reg to reg
1389     if (dst.first()->as_Register() != src.first()->as_Register())
1390       __ mr(dst.first()->as_Register(), src.first()->as_Register());
1391   }
1392 }
1393 
1394 static void float_move(MacroAssembler*masm,
1395                        VMRegPair src, VMRegPair dst,
1396                        Register r_caller_sp, Register r_temp) {
1397   assert(src.first()->is_valid() && !src.second()->is_valid(), "incoming must be float");
1398   assert(dst.first()->is_valid() && !dst.second()->is_valid(), "outgoing must be float");
1399 
1400   if (src.first()->is_stack()) {
1401     if (dst.first()->is_stack()) {
1402       // stack to stack
1403       __ lwz(r_temp, reg2offset(src.first()), r_caller_sp);
1404       __ stw(r_temp, reg2offset(dst.first()), R1_SP);
1405     } else {
1406       // stack to reg
1407       __ lfs(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
1408     }
1409   } else if (dst.first()->is_stack()) {
1410     // reg to stack
1411     __ stfs(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
1412   } else {
1413     // reg to reg
1414     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
1415       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
1416   }
1417 }
1418 
1419 static void double_move(MacroAssembler*masm,
1420                         VMRegPair src, VMRegPair dst,
1421                         Register r_caller_sp, Register r_temp) {
1422   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be double");
1423   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be double");
1424 
1425   if (src.first()->is_stack()) {
1426     if (dst.first()->is_stack()) {
1427       // stack to stack
1428       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
1429       __ std(r_temp, reg2offset(dst.first()), R1_SP);
1430     } else {
1431       // stack to reg
1432       __ lfd(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
1433     }
1434   } else if (dst.first()->is_stack()) {
1435     // reg to stack
1436     __ stfd(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
1437   } else {
1438     // reg to reg
1439     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
1440       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
1441   }
1442 }
1443 
1444 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1445   switch (ret_type) {
1446     case T_BOOLEAN:
1447     case T_CHAR:
1448     case T_BYTE:
1449     case T_SHORT:
1450     case T_INT:
1451       __ stw (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1452       break;
1453     case T_ARRAY:
1454     case T_OBJECT:
1455     case T_LONG:
1456       __ std (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1457       break;
1458     case T_FLOAT:
1459       __ stfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1460       break;
1461     case T_DOUBLE:
1462       __ stfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1463       break;
1464     case T_VOID:
1465       break;
1466     default:
1467       ShouldNotReachHere();
1468       break;
1469   }
1470 }
1471 
1472 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1473   switch (ret_type) {
1474     case T_BOOLEAN:
1475     case T_CHAR:
1476     case T_BYTE:
1477     case T_SHORT:
1478     case T_INT:
1479       __ lwz(R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1480       break;
1481     case T_ARRAY:
1482     case T_OBJECT:
1483     case T_LONG:
1484       __ ld (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1485       break;
1486     case T_FLOAT:
1487       __ lfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1488       break;
1489     case T_DOUBLE:
1490       __ lfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1491       break;
1492     case T_VOID:
1493       break;
1494     default:
1495       ShouldNotReachHere();
1496       break;
1497   }
1498 }
1499 
1500 static void verify_oop_args(MacroAssembler* masm,
1501                             const methodHandle& method,
1502                             const BasicType* sig_bt,
1503                             const VMRegPair* regs) {
1504   Register temp_reg = R19_method;  // not part of any compiled calling seq
1505   if (VerifyOops) {
1506     for (int i = 0; i < method->size_of_parameters(); i++) {
1507       if (is_reference_type(sig_bt[i])) {
1508         VMReg r = regs[i].first();
1509         assert(r->is_valid(), "bad oop arg");
1510         if (r->is_stack()) {
1511           __ ld(temp_reg, reg2offset(r), R1_SP);
1512           __ verify_oop(temp_reg, FILE_AND_LINE);
1513         } else {
1514           __ verify_oop(r->as_Register(), FILE_AND_LINE);
1515         }
1516       }
1517     }
1518   }
1519 }
1520 
1521 static void gen_special_dispatch(MacroAssembler* masm,
1522                                  const methodHandle& method,
1523                                  const BasicType* sig_bt,
1524                                  const VMRegPair* regs) {
1525   verify_oop_args(masm, method, sig_bt, regs);
1526   vmIntrinsics::ID iid = method->intrinsic_id();
1527 
1528   // Now write the args into the outgoing interpreter space
1529   bool     has_receiver   = false;
1530   Register receiver_reg   = noreg;
1531   int      member_arg_pos = -1;
1532   Register member_reg     = noreg;
1533   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1534   if (ref_kind != 0) {
1535     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1536     member_reg = R19_method;  // known to be free at this point
1537     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1538   } else if (iid == vmIntrinsics::_invokeBasic) {
1539     has_receiver = true;
1540   } else if (iid == vmIntrinsics::_linkToNative) {
1541     member_arg_pos = method->size_of_parameters() - 1;  // trailing NativeEntryPoint argument
1542     member_reg = R19_method;  // known to be free at this point
1543   } else {
1544     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1545   }
1546 
1547   if (member_reg != noreg) {
1548     // Load the member_arg into register, if necessary.
1549     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1550     VMReg r = regs[member_arg_pos].first();
1551     if (r->is_stack()) {
1552       __ ld(member_reg, reg2offset(r), R1_SP);
1553     } else {
1554       // no data motion is needed
1555       member_reg = r->as_Register();
1556     }
1557   }
1558 
1559   if (has_receiver) {
1560     // Make sure the receiver is loaded into a register.
1561     assert(method->size_of_parameters() > 0, "oob");
1562     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1563     VMReg r = regs[0].first();
1564     assert(r->is_valid(), "bad receiver arg");
1565     if (r->is_stack()) {
1566       // Porting note:  This assumes that compiled calling conventions always
1567       // pass the receiver oop in a register.  If this is not true on some
1568       // platform, pick a temp and load the receiver from stack.
1569       fatal("receiver always in a register");
1570       receiver_reg = R11_scratch1;  // TODO (hs24): is R11_scratch1 really free at this point?
1571       __ ld(receiver_reg, reg2offset(r), R1_SP);
1572     } else {
1573       // no data motion is needed
1574       receiver_reg = r->as_Register();
1575     }
1576   }
1577 
1578   // Figure out which address we are really jumping to:
1579   MethodHandles::generate_method_handle_dispatch(masm, iid,
1580                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1581 }
1582 
1583 //---------------------------- continuation_enter_setup ---------------------------
1584 //
1585 // Frame setup.
1586 //
1587 // Arguments:
1588 //   None.
1589 //
1590 // Results:
1591 //   R1_SP: pointer to blank ContinuationEntry in the pushed frame.
1592 //
1593 // Kills:
1594 //   R0, R20
1595 //
1596 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& framesize_words) {
1597   assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, "");
1598   assert(in_bytes(ContinuationEntry::cont_offset())  % VMRegImpl::stack_slot_size == 0, "");
1599   assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, "");
1600 
1601   const int frame_size_in_bytes = (int)ContinuationEntry::size();
1602   assert(is_aligned(frame_size_in_bytes, frame::alignment_in_bytes), "alignment error");
1603 
1604   framesize_words = frame_size_in_bytes / wordSize;
1605 
1606   DEBUG_ONLY(__ block_comment("setup {"));
1607   // Save return pc and push entry frame
1608   const Register return_pc = R20;
1609   __ mflr(return_pc);
1610   __ std(return_pc, _abi0(lr), R1_SP);     // SP->lr = return_pc
1611   __ push_frame(frame_size_in_bytes , R0); // SP -= frame_size_in_bytes
1612 
1613   OopMap* map = new OopMap((int)frame_size_in_bytes / VMRegImpl::stack_slot_size, 0 /* arg_slots*/);
1614 
1615   __ ld_ptr(R0, JavaThread::cont_entry_offset(), R16_thread);
1616   __ st_ptr(R1_SP, JavaThread::cont_entry_offset(), R16_thread);
1617   __ st_ptr(R0, ContinuationEntry::parent_offset(), R1_SP);
1618   DEBUG_ONLY(__ block_comment("} setup"));
1619 
1620   return map;
1621 }
1622 
1623 //---------------------------- fill_continuation_entry ---------------------------
1624 //
1625 // Initialize the new ContinuationEntry.
1626 //
1627 // Arguments:
1628 //   R1_SP: pointer to blank Continuation entry
1629 //   reg_cont_obj: pointer to the continuation
1630 //   reg_flags: flags
1631 //
1632 // Results:
1633 //   R1_SP: pointer to filled out ContinuationEntry
1634 //
1635 // Kills:
1636 //   R8_ARG6, R9_ARG7, R10_ARG8
1637 //
1638 static void fill_continuation_entry(MacroAssembler* masm, Register reg_cont_obj, Register reg_flags) {
1639   assert_different_registers(reg_cont_obj, reg_flags);
1640   Register zero = R8_ARG6;
1641   Register tmp2 = R9_ARG7;
1642   Register tmp3 = R10_ARG8;
1643 
1644   DEBUG_ONLY(__ block_comment("fill {"));
1645 #ifdef ASSERT
1646   __ load_const_optimized(tmp2, ContinuationEntry::cookie_value());
1647   __ stw(tmp2, in_bytes(ContinuationEntry::cookie_offset()), R1_SP);
1648 #endif //ASSERT
1649 
1650   __ li(zero, 0);
1651   __ st_ptr(reg_cont_obj, ContinuationEntry::cont_offset(), R1_SP);
1652   __ stw(reg_flags, in_bytes(ContinuationEntry::flags_offset()), R1_SP);
1653   __ st_ptr(zero, ContinuationEntry::chunk_offset(), R1_SP);
1654   __ stw(zero, in_bytes(ContinuationEntry::argsize_offset()), R1_SP);
1655   __ stw(zero, in_bytes(ContinuationEntry::pin_count_offset()), R1_SP);
1656 
1657   __ ld_ptr(tmp2, JavaThread::cont_fastpath_offset(), R16_thread);
1658   __ ld(tmp3, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
1659   __ st_ptr(tmp2, ContinuationEntry::parent_cont_fastpath_offset(), R1_SP);
1660   __ std(tmp3, in_bytes(ContinuationEntry::parent_held_monitor_count_offset()), R1_SP);
1661 
1662   __ st_ptr(zero, JavaThread::cont_fastpath_offset(), R16_thread);
1663   __ std(zero, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
1664   DEBUG_ONLY(__ block_comment("} fill"));
1665 }
1666 
1667 //---------------------------- continuation_enter_cleanup ---------------------------
1668 //
1669 // Copy corresponding attributes from the top ContinuationEntry to the JavaThread
1670 // before deleting it.
1671 //
1672 // Arguments:
1673 //   R1_SP: pointer to the ContinuationEntry
1674 //
1675 // Results:
1676 //   None.
1677 //
1678 // Kills:
1679 //   R8_ARG6, R9_ARG7, R10_ARG8, R15_esp
1680 //
1681 static void continuation_enter_cleanup(MacroAssembler* masm) {
1682   Register tmp1 = R8_ARG6;
1683   Register tmp2 = R9_ARG7;
1684   Register tmp3 = R10_ARG8;
1685 
1686 #ifdef ASSERT
1687   __ block_comment("clean {");
1688   __ ld_ptr(tmp1, JavaThread::cont_entry_offset(), R16_thread);
1689   __ cmpd(CR0, R1_SP, tmp1);
1690   __ asm_assert_eq(FILE_AND_LINE ": incorrect R1_SP");
1691 #endif
1692 
1693   __ ld_ptr(tmp1, ContinuationEntry::parent_cont_fastpath_offset(), R1_SP);
1694   __ st_ptr(tmp1, JavaThread::cont_fastpath_offset(), R16_thread);
1695 
1696   if (CheckJNICalls) {
1697     // Check if this is a virtual thread continuation
1698     Label L_skip_vthread_code;
1699     __ lwz(R0, in_bytes(ContinuationEntry::flags_offset()), R1_SP);
1700     __ cmpwi(CR0, R0, 0);
1701     __ beq(CR0, L_skip_vthread_code);
1702 
1703     // If the held monitor count is > 0 and this vthread is terminating then
1704     // it failed to release a JNI monitor. So we issue the same log message
1705     // that JavaThread::exit does.
1706     __ ld(R0, in_bytes(JavaThread::jni_monitor_count_offset()), R16_thread);
1707     __ cmpdi(CR0, R0, 0);
1708     __ beq(CR0, L_skip_vthread_code);
1709 
1710     // Save return value potentially containing the exception oop
1711     Register ex_oop = R15_esp;   // nonvolatile register
1712     __ mr(ex_oop, R3_RET);
1713     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held));
1714     // Restore potental return value
1715     __ mr(R3_RET, ex_oop);
1716 
1717     // For vthreads we have to explicitly zero the JNI monitor count of the carrier
1718     // on termination. The held count is implicitly zeroed below when we restore from
1719     // the parent held count (which has to be zero).
1720     __ li(tmp1, 0);
1721     __ std(tmp1, in_bytes(JavaThread::jni_monitor_count_offset()), R16_thread);
1722 
1723     __ bind(L_skip_vthread_code);
1724   }
1725 #ifdef ASSERT
1726   else {
1727     // Check if this is a virtual thread continuation
1728     Label L_skip_vthread_code;
1729     __ lwz(R0, in_bytes(ContinuationEntry::flags_offset()), R1_SP);
1730     __ cmpwi(CR0, R0, 0);
1731     __ beq(CR0, L_skip_vthread_code);
1732 
1733     // See comment just above. If not checking JNI calls the JNI count is only
1734     // needed for assertion checking.
1735     __ li(tmp1, 0);
1736     __ std(tmp1, in_bytes(JavaThread::jni_monitor_count_offset()), R16_thread);
1737 
1738     __ bind(L_skip_vthread_code);
1739   }
1740 #endif
1741 
1742   __ ld(tmp2, in_bytes(ContinuationEntry::parent_held_monitor_count_offset()), R1_SP);
1743   __ ld_ptr(tmp3, ContinuationEntry::parent_offset(), R1_SP);
1744   __ std(tmp2, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
1745   __ st_ptr(tmp3, JavaThread::cont_entry_offset(), R16_thread);
1746   DEBUG_ONLY(__ block_comment("} clean"));
1747 }
1748 
1749 static void check_continuation_enter_argument(VMReg actual_vmreg,
1750                                               Register expected_reg,
1751                                               const char* name) {
1752   assert(!actual_vmreg->is_stack(), "%s cannot be on stack", name);
1753   assert(actual_vmreg->as_Register() == expected_reg,
1754          "%s is in unexpected register: %s instead of %s",
1755          name, actual_vmreg->as_Register()->name(), expected_reg->name());
1756 }
1757 
1758 static void gen_continuation_enter(MacroAssembler* masm,
1759                                    const VMRegPair* regs,
1760                                    int& exception_offset,
1761                                    OopMapSet* oop_maps,
1762                                    int& frame_complete,
1763                                    int& framesize_words,
1764                                    int& interpreted_entry_offset,
1765                                    int& compiled_entry_offset) {
1766 
1767   // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread)
1768   int pos_cont_obj   = 0;
1769   int pos_is_cont    = 1;
1770   int pos_is_virtual = 2;
1771 
1772   // The platform-specific calling convention may present the arguments in various registers.
1773   // To simplify the rest of the code, we expect the arguments to reside at these known
1774   // registers, and we additionally check the placement here in case calling convention ever
1775   // changes.
1776   Register reg_cont_obj   = R3_ARG1;
1777   Register reg_is_cont    = R4_ARG2;
1778   Register reg_is_virtual = R5_ARG3;
1779 
1780   check_continuation_enter_argument(regs[pos_cont_obj].first(),   reg_cont_obj,   "Continuation object");
1781   check_continuation_enter_argument(regs[pos_is_cont].first(),    reg_is_cont,    "isContinue");
1782   check_continuation_enter_argument(regs[pos_is_virtual].first(), reg_is_virtual, "isVirtualThread");
1783 
1784   address resolve_static_call = SharedRuntime::get_resolve_static_call_stub();
1785 
1786   address start = __ pc();
1787 
1788   Label L_thaw, L_exit;
1789 
1790   // i2i entry used at interp_only_mode only
1791   interpreted_entry_offset = __ pc() - start;
1792   {
1793 #ifdef ASSERT
1794     Label is_interp_only;
1795     __ lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
1796     __ cmpwi(CR0, R0, 0);
1797     __ bne(CR0, is_interp_only);
1798     __ stop("enterSpecial interpreter entry called when not in interp_only_mode");
1799     __ bind(is_interp_only);
1800 #endif
1801 
1802     // Read interpreter arguments into registers (this is an ad-hoc i2c adapter)
1803     __ ld(reg_cont_obj,    Interpreter::stackElementSize*3, R15_esp);
1804     __ lwz(reg_is_cont,    Interpreter::stackElementSize*2, R15_esp);
1805     __ lwz(reg_is_virtual, Interpreter::stackElementSize*1, R15_esp);
1806 
1807     __ push_cont_fastpath();
1808 
1809     OopMap* map = continuation_enter_setup(masm, framesize_words);
1810 
1811     // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe,
1812     // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway.
1813 
1814     fill_continuation_entry(masm, reg_cont_obj, reg_is_virtual);
1815 
1816     // If isContinue, call to thaw. Otherwise, call Continuation.enter(Continuation c, boolean isContinue)
1817     __ cmpwi(CR0, reg_is_cont, 0);
1818     __ bne(CR0, L_thaw);
1819 
1820     // --- call Continuation.enter(Continuation c, boolean isContinue)
1821 
1822     // Emit compiled static call. The call will be always resolved to the c2i
1823     // entry of Continuation.enter(Continuation c, boolean isContinue).
1824     // There are special cases in SharedRuntime::resolve_static_call_C() and
1825     // SharedRuntime::resolve_sub_helper_internal() to achieve this
1826     // See also corresponding call below.
1827     address c2i_call_pc = __ pc();
1828     int start_offset = __ offset();
1829     // Put the entry point as a constant into the constant pool.
1830     const address entry_point_toc_addr   = __ address_constant(resolve_static_call, RelocationHolder::none);
1831     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
1832     guarantee(entry_point_toc_addr != nullptr, "const section overflow");
1833 
1834     // Emit the trampoline stub which will be related to the branch-and-link below.
1835     address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset);
1836     guarantee(stub != nullptr, "no space for trampoline stub");
1837 
1838     __ relocate(relocInfo::static_call_type);
1839     // Note: At this point we do not have the address of the trampoline
1840     // stub, and the entry point might be too far away for bl, so __ pc()
1841     // serves as dummy and the bl will be patched later.
1842     __ bl(__ pc());
1843     oop_maps->add_gc_map(__ pc() - start, map);
1844     __ post_call_nop();
1845 
1846     __ b(L_exit);
1847 
1848     // static stub for the call above
1849     stub = CompiledDirectCall::emit_to_interp_stub(masm, c2i_call_pc);
1850     guarantee(stub != nullptr, "no space for static stub");
1851   }
1852 
1853   // compiled entry
1854   __ align(CodeEntryAlignment);
1855   compiled_entry_offset = __ pc() - start;
1856 
1857   OopMap* map = continuation_enter_setup(masm, framesize_words);
1858 
1859   // Frame is now completed as far as size and linkage.
1860   frame_complete =__ pc() - start;
1861 
1862   fill_continuation_entry(masm, reg_cont_obj, reg_is_virtual);
1863 
1864   // If isContinue, call to thaw. Otherwise, call Continuation.enter(Continuation c, boolean isContinue)
1865   __ cmpwi(CR0, reg_is_cont, 0);
1866   __ bne(CR0, L_thaw);
1867 
1868   // --- call Continuation.enter(Continuation c, boolean isContinue)
1869 
1870   // Emit compiled static call
1871   // The call needs to be resolved. There's a special case for this in
1872   // SharedRuntime::find_callee_info_helper() which calls
1873   // LinkResolver::resolve_continuation_enter() which resolves the call to
1874   // Continuation.enter(Continuation c, boolean isContinue).
1875   address call_pc = __ pc();
1876   int start_offset = __ offset();
1877   // Put the entry point as a constant into the constant pool.
1878   const address entry_point_toc_addr   = __ address_constant(resolve_static_call, RelocationHolder::none);
1879   const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
1880   guarantee(entry_point_toc_addr != nullptr, "const section overflow");
1881 
1882   // Emit the trampoline stub which will be related to the branch-and-link below.
1883   address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset);
1884   guarantee(stub != nullptr, "no space for trampoline stub");
1885 
1886   __ relocate(relocInfo::static_call_type);
1887   // Note: At this point we do not have the address of the trampoline
1888   // stub, and the entry point might be too far away for bl, so __ pc()
1889   // serves as dummy and the bl will be patched later.
1890   __ bl(__ pc());
1891   oop_maps->add_gc_map(__ pc() - start, map);
1892   __ post_call_nop();
1893 
1894   __ b(L_exit);
1895 
1896   // --- Thawing path
1897 
1898   __ bind(L_thaw);
1899   ContinuationEntry::_thaw_call_pc_offset = __ pc() - start;
1900   __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(StubRoutines::cont_thaw()));
1901   __ mtctr(R0);
1902   __ bctrl();
1903   oop_maps->add_gc_map(__ pc() - start, map->deep_copy());
1904   ContinuationEntry::_return_pc_offset = __ pc() - start;
1905   __ post_call_nop();
1906 
1907   // --- Normal exit (resolve/thawing)
1908 
1909   __ bind(L_exit);
1910   ContinuationEntry::_cleanup_offset = __ pc() - start;
1911   continuation_enter_cleanup(masm);
1912 
1913   // Pop frame and return
1914   DEBUG_ONLY(__ ld_ptr(R0, 0, R1_SP));
1915   __ addi(R1_SP, R1_SP, framesize_words*wordSize);
1916   DEBUG_ONLY(__ cmpd(CR0, R0, R1_SP));
1917   __ asm_assert_eq(FILE_AND_LINE ": inconsistent frame size");
1918   __ ld(R0, _abi0(lr), R1_SP); // Return pc
1919   __ mtlr(R0);
1920   __ blr();
1921 
1922   // --- Exception handling path
1923 
1924   exception_offset = __ pc() - start;
1925 
1926   continuation_enter_cleanup(masm);
1927   Register ex_pc  = R17_tos;   // nonvolatile register
1928   Register ex_oop = R15_esp;   // nonvolatile register
1929   __ ld(ex_pc, _abi0(callers_sp), R1_SP); // Load caller's return pc
1930   __ ld(ex_pc, _abi0(lr), ex_pc);
1931   __ mr(ex_oop, R3_RET);                  // save return value containing the exception oop
1932   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, ex_pc);
1933   __ mtlr(R3_RET);                        // the exception handler
1934   __ ld(R1_SP, _abi0(callers_sp), R1_SP); // remove enterSpecial frame
1935 
1936   // Continue at exception handler
1937   // See OptoRuntime::generate_exception_blob for register arguments
1938   __ mr(R3_ARG1, ex_oop); // pass exception oop
1939   __ mr(R4_ARG2, ex_pc);  // pass exception pc
1940   __ blr();
1941 
1942   // static stub for the call above
1943   stub = CompiledDirectCall::emit_to_interp_stub(masm, call_pc);
1944   guarantee(stub != nullptr, "no space for static stub");
1945 }
1946 
1947 static void gen_continuation_yield(MacroAssembler* masm,
1948                                    const VMRegPair* regs,
1949                                    OopMapSet* oop_maps,
1950                                    int& frame_complete,
1951                                    int& framesize_words,
1952                                    int& compiled_entry_offset) {
1953   Register tmp = R10_ARG8;
1954 
1955   const int framesize_bytes = (int)align_up((int)frame::native_abi_reg_args_size, frame::alignment_in_bytes);
1956   framesize_words = framesize_bytes / wordSize;
1957 
1958   address start = __ pc();
1959   compiled_entry_offset = __ pc() - start;
1960 
1961   // Save return pc and push entry frame
1962   __ mflr(tmp);
1963   __ std(tmp, _abi0(lr), R1_SP);       // SP->lr = return_pc
1964   __ push_frame(framesize_bytes , R0); // SP -= frame_size_in_bytes
1965 
1966   DEBUG_ONLY(__ block_comment("Frame Complete"));
1967   frame_complete = __ pc() - start;
1968   address last_java_pc = __ pc();
1969 
1970   // This nop must be exactly at the PC we push into the frame info.
1971   // We use this nop for fast CodeBlob lookup, associate the OopMap
1972   // with it right away.
1973   __ post_call_nop();
1974   OopMap* map = new OopMap(framesize_bytes / VMRegImpl::stack_slot_size, 1);
1975   oop_maps->add_gc_map(last_java_pc - start, map);
1976 
1977   __ calculate_address_from_global_toc(tmp, last_java_pc); // will be relocated
1978   __ set_last_Java_frame(R1_SP, tmp);
1979   __ call_VM_leaf(Continuation::freeze_entry(), R16_thread, R1_SP);
1980   __ reset_last_Java_frame();
1981 
1982   Label L_pinned;
1983 
1984   __ cmpwi(CR0, R3_RET, 0);
1985   __ bne(CR0, L_pinned);
1986 
1987   // yield succeeded
1988 
1989   // Pop frames of continuation including this stub's frame
1990   __ ld_ptr(R1_SP, JavaThread::cont_entry_offset(), R16_thread);
1991   // The frame pushed by gen_continuation_enter is on top now again
1992   continuation_enter_cleanup(masm);
1993 
1994   // Pop frame and return
1995   Label L_return;
1996   __ bind(L_return);
1997   __ pop_frame();
1998   __ ld(R0, _abi0(lr), R1_SP); // Return pc
1999   __ mtlr(R0);
2000   __ blr();
2001 
2002   // yield failed - continuation is pinned
2003 
2004   __ bind(L_pinned);
2005 
2006   // handle pending exception thrown by freeze
2007   __ ld(tmp, in_bytes(JavaThread::pending_exception_offset()), R16_thread);
2008   __ cmpdi(CR0, tmp, 0);
2009   __ beq(CR0, L_return); // return if no exception is pending
2010   __ pop_frame();
2011   __ ld(R0, _abi0(lr), R1_SP); // Return pc
2012   __ mtlr(R0);
2013   __ load_const_optimized(tmp, StubRoutines::forward_exception_entry(), R0);
2014   __ mtctr(tmp);
2015   __ bctr();
2016 }
2017 
2018 void SharedRuntime::continuation_enter_cleanup(MacroAssembler* masm) {
2019   ::continuation_enter_cleanup(masm);
2020 }
2021 
2022 // ---------------------------------------------------------------------------
2023 // Generate a native wrapper for a given method. The method takes arguments
2024 // in the Java compiled code convention, marshals them to the native
2025 // convention (handlizes oops, etc), transitions to native, makes the call,
2026 // returns to java state (possibly blocking), unhandlizes any result and
2027 // returns.
2028 //
2029 // Critical native functions are a shorthand for the use of
2030 // GetPrimtiveArrayCritical and disallow the use of any other JNI
2031 // functions.  The wrapper is expected to unpack the arguments before
2032 // passing them to the callee. Critical native functions leave the state _in_Java,
2033 // since they cannot stop for GC.
2034 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
2035 // block and the check for pending exceptions it's impossible for them
2036 // to be thrown.
2037 //
2038 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
2039                                                 const methodHandle& method,
2040                                                 int compile_id,
2041                                                 BasicType *in_sig_bt,
2042                                                 VMRegPair *in_regs,
2043                                                 BasicType ret_type) {
2044   if (method->is_continuation_native_intrinsic()) {
2045     int exception_offset = -1;
2046     OopMapSet* oop_maps = new OopMapSet();
2047     int frame_complete = -1;
2048     int stack_slots = -1;
2049     int interpreted_entry_offset = -1;
2050     int vep_offset = -1;
2051     if (method->is_continuation_enter_intrinsic()) {
2052       gen_continuation_enter(masm,
2053                              in_regs,
2054                              exception_offset,
2055                              oop_maps,
2056                              frame_complete,
2057                              stack_slots,
2058                              interpreted_entry_offset,
2059                              vep_offset);
2060     } else if (method->is_continuation_yield_intrinsic()) {
2061       gen_continuation_yield(masm,
2062                              in_regs,
2063                              oop_maps,
2064                              frame_complete,
2065                              stack_slots,
2066                              vep_offset);
2067     } else {
2068       guarantee(false, "Unknown Continuation native intrinsic");
2069     }
2070 
2071 #ifdef ASSERT
2072     if (method->is_continuation_enter_intrinsic()) {
2073       assert(interpreted_entry_offset != -1, "Must be set");
2074       assert(exception_offset != -1,         "Must be set");
2075     } else {
2076       assert(interpreted_entry_offset == -1, "Must be unset");
2077       assert(exception_offset == -1,         "Must be unset");
2078     }
2079     assert(frame_complete != -1,    "Must be set");
2080     assert(stack_slots != -1,       "Must be set");
2081     assert(vep_offset != -1,        "Must be set");
2082 #endif
2083 
2084     __ flush();
2085     nmethod* nm = nmethod::new_native_nmethod(method,
2086                                               compile_id,
2087                                               masm->code(),
2088                                               vep_offset,
2089                                               frame_complete,
2090                                               stack_slots,
2091                                               in_ByteSize(-1),
2092                                               in_ByteSize(-1),
2093                                               oop_maps,
2094                                               exception_offset);
2095     if (nm == nullptr) return nm;
2096     if (method->is_continuation_enter_intrinsic()) {
2097       ContinuationEntry::set_enter_code(nm, interpreted_entry_offset);
2098     } else if (method->is_continuation_yield_intrinsic()) {
2099       _cont_doYield_stub = nm;
2100     }
2101     return nm;
2102   }
2103 
2104   if (method->is_method_handle_intrinsic()) {
2105     vmIntrinsics::ID iid = method->intrinsic_id();
2106     intptr_t start = (intptr_t)__ pc();
2107     int vep_offset = ((intptr_t)__ pc()) - start;
2108     gen_special_dispatch(masm,
2109                          method,
2110                          in_sig_bt,
2111                          in_regs);
2112     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
2113     __ flush();
2114     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
2115     return nmethod::new_native_nmethod(method,
2116                                        compile_id,
2117                                        masm->code(),
2118                                        vep_offset,
2119                                        frame_complete,
2120                                        stack_slots / VMRegImpl::slots_per_word,
2121                                        in_ByteSize(-1),
2122                                        in_ByteSize(-1),
2123                                        (OopMapSet*)nullptr);
2124   }
2125 
2126   address native_func = method->native_function();
2127   assert(native_func != nullptr, "must have function");
2128 
2129   // First, create signature for outgoing C call
2130   // --------------------------------------------------------------------------
2131 
2132   int total_in_args = method->size_of_parameters();
2133   // We have received a description of where all the java args are located
2134   // on entry to the wrapper. We need to convert these args to where
2135   // the jni function will expect them. To figure out where they go
2136   // we convert the java signature to a C signature by inserting
2137   // the hidden arguments as arg[0] and possibly arg[1] (static method)
2138 
2139   // Calculate the total number of C arguments and create arrays for the
2140   // signature and the outgoing registers.
2141   // On ppc64, we have two arrays for the outgoing registers, because
2142   // some floating-point arguments must be passed in registers _and_
2143   // in stack locations.
2144   bool method_is_static = method->is_static();
2145   int  total_c_args     = total_in_args + (method_is_static ? 2 : 1);
2146 
2147   BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
2148   VMRegPair *out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
2149 
2150   // Create the signature for the C call:
2151   //   1) add the JNIEnv*
2152   //   2) add the class if the method is static
2153   //   3) copy the rest of the incoming signature (shifted by the number of
2154   //      hidden arguments).
2155 
2156   int argc = 0;
2157   out_sig_bt[argc++] = T_ADDRESS;
2158   if (method->is_static()) {
2159     out_sig_bt[argc++] = T_OBJECT;
2160   }
2161 
2162   for (int i = 0; i < total_in_args ; i++ ) {
2163     out_sig_bt[argc++] = in_sig_bt[i];
2164   }
2165 
2166 
2167   // Compute the wrapper's frame size.
2168   // --------------------------------------------------------------------------
2169 
2170   // Now figure out where the args must be stored and how much stack space
2171   // they require.
2172   //
2173   // Compute framesize for the wrapper. We need to handlize all oops in
2174   // incoming registers.
2175   //
2176   // Calculate the total number of stack slots we will need:
2177   //   1) abi requirements
2178   //   2) outgoing arguments
2179   //   3) space for inbound oop handle area
2180   //   4) space for handlizing a klass if static method
2181   //   5) space for a lock if synchronized method
2182   //   6) workspace for saving return values, int <-> float reg moves, etc.
2183   //   7) alignment
2184   //
2185   // Layout of the native wrapper frame:
2186   // (stack grows upwards, memory grows downwards)
2187   //
2188   // NW     [ABI_REG_ARGS]             <-- 1) R1_SP
2189   //        [outgoing arguments]       <-- 2) R1_SP + out_arg_slot_offset
2190   //        [oopHandle area]           <-- 3) R1_SP + oop_handle_offset
2191   //        klass                      <-- 4) R1_SP + klass_offset
2192   //        lock                       <-- 5) R1_SP + lock_offset
2193   //        [workspace]                <-- 6) R1_SP + workspace_offset
2194   //        [alignment] (optional)     <-- 7)
2195   // caller [JIT_TOP_ABI_48]           <-- r_callers_sp
2196   //
2197   // - *_slot_offset Indicates offset from SP in number of stack slots.
2198   // - *_offset      Indicates offset from SP in bytes.
2199 
2200   int stack_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args) + // 1+2)
2201                     SharedRuntime::out_preserve_stack_slots(); // See c_calling_convention.
2202 
2203   // Now the space for the inbound oop handle area.
2204   int total_save_slots = num_java_iarg_registers * VMRegImpl::slots_per_word;
2205 
2206   int oop_handle_slot_offset = stack_slots;
2207   stack_slots += total_save_slots;                                                // 3)
2208 
2209   int klass_slot_offset = 0;
2210   int klass_offset      = -1;
2211   if (method_is_static) {                                                         // 4)
2212     klass_slot_offset  = stack_slots;
2213     klass_offset       = klass_slot_offset * VMRegImpl::stack_slot_size;
2214     stack_slots       += VMRegImpl::slots_per_word;
2215   }
2216 
2217   int lock_slot_offset = 0;
2218   int lock_offset      = -1;
2219   if (method->is_synchronized()) {                                                // 5)
2220     lock_slot_offset   = stack_slots;
2221     lock_offset        = lock_slot_offset * VMRegImpl::stack_slot_size;
2222     stack_slots       += VMRegImpl::slots_per_word;
2223   }
2224 
2225   int workspace_slot_offset = stack_slots;                                        // 6)
2226   stack_slots         += 2;
2227 
2228   // Now compute actual number of stack words we need.
2229   // Rounding to make stack properly aligned.
2230   stack_slots = align_up(stack_slots,                                             // 7)
2231                          frame::alignment_in_bytes / VMRegImpl::stack_slot_size);
2232   int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size;
2233 
2234 
2235   // Now we can start generating code.
2236   // --------------------------------------------------------------------------
2237 
2238   intptr_t start_pc = (intptr_t)__ pc();
2239   intptr_t vep_start_pc;
2240   intptr_t frame_done_pc;
2241 
2242   Label    handle_pending_exception;
2243   Label    last_java_pc;
2244 
2245   Register r_callers_sp = R21;
2246   Register r_temp_1     = R22;
2247   Register r_temp_2     = R23;
2248   Register r_temp_3     = R24;
2249   Register r_temp_4     = R25;
2250   Register r_temp_5     = R26;
2251   Register r_temp_6     = R27;
2252   Register r_last_java_pc = R28;
2253 
2254   Register r_carg1_jnienv        = noreg;
2255   Register r_carg2_classorobject = noreg;
2256   r_carg1_jnienv        = out_regs[0].first()->as_Register();
2257   r_carg2_classorobject = out_regs[1].first()->as_Register();
2258 
2259 
2260   // Generate the Unverified Entry Point (UEP).
2261   // --------------------------------------------------------------------------
2262   assert(start_pc == (intptr_t)__ pc(), "uep must be at start");
2263 
2264   // Check ic: object class == cached class?
2265   if (!method_is_static) {
2266     __ ic_check(4 /* end_alignment */);
2267   }
2268 
2269   // Generate the Verified Entry Point (VEP).
2270   // --------------------------------------------------------------------------
2271   vep_start_pc = (intptr_t)__ pc();
2272 
2273   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
2274     Label L_skip_barrier;
2275     Register klass = r_temp_1;
2276     // Notify OOP recorder (don't need the relocation)
2277     AddressLiteral md = __ constant_metadata_address(method->method_holder());
2278     __ load_const_optimized(klass, md.value(), R0);
2279     __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/);
2280 
2281     __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0);
2282     __ mtctr(klass);
2283     __ bctr();
2284 
2285     __ bind(L_skip_barrier);
2286   }
2287 
2288   __ save_LR(r_temp_1);
2289   __ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame.
2290   __ mr(r_callers_sp, R1_SP);                            // Remember frame pointer.
2291   __ push_frame(frame_size_in_bytes, r_temp_1);          // Push the c2n adapter's frame.
2292 
2293   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2294   bs->nmethod_entry_barrier(masm, r_temp_1);
2295 
2296   frame_done_pc = (intptr_t)__ pc();
2297 
2298   // Native nmethod wrappers never take possession of the oop arguments.
2299   // So the caller will gc the arguments.
2300   // The only thing we need an oopMap for is if the call is static.
2301   //
2302   // An OopMap for lock (and class if static), and one for the VM call itself.
2303   OopMapSet *oop_maps = new OopMapSet();
2304   OopMap    *oop_map  = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2305 
2306   // Move arguments from register/stack to register/stack.
2307   // --------------------------------------------------------------------------
2308   //
2309   // We immediately shuffle the arguments so that for any vm call we have
2310   // to make from here on out (sync slow path, jvmti, etc.) we will have
2311   // captured the oops from our caller and have a valid oopMap for them.
2312   //
2313   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2314   // (derived from JavaThread* which is in R16_thread) and, if static,
2315   // the class mirror instead of a receiver. This pretty much guarantees that
2316   // register layout will not match. We ignore these extra arguments during
2317   // the shuffle. The shuffle is described by the two calling convention
2318   // vectors we have in our possession. We simply walk the java vector to
2319   // get the source locations and the c vector to get the destinations.
2320 
2321   // Record sp-based slot for receiver on stack for non-static methods.
2322   int receiver_offset = -1;
2323 
2324   // We move the arguments backward because the floating point registers
2325   // destination will always be to a register with a greater or equal
2326   // register number or the stack.
2327   //   in  is the index of the incoming Java arguments
2328   //   out is the index of the outgoing C arguments
2329 
2330 #ifdef ASSERT
2331   bool reg_destroyed[Register::number_of_registers];
2332   bool freg_destroyed[FloatRegister::number_of_registers];
2333   for (int r = 0 ; r < Register::number_of_registers ; r++) {
2334     reg_destroyed[r] = false;
2335   }
2336   for (int f = 0 ; f < FloatRegister::number_of_registers ; f++) {
2337     freg_destroyed[f] = false;
2338   }
2339 #endif // ASSERT
2340 
2341   for (int in = total_in_args - 1, out = total_c_args - 1; in >= 0 ; in--, out--) {
2342 
2343 #ifdef ASSERT
2344     if (in_regs[in].first()->is_Register()) {
2345       assert(!reg_destroyed[in_regs[in].first()->as_Register()->encoding()], "ack!");
2346     } else if (in_regs[in].first()->is_FloatRegister()) {
2347       assert(!freg_destroyed[in_regs[in].first()->as_FloatRegister()->encoding()], "ack!");
2348     }
2349     if (out_regs[out].first()->is_Register()) {
2350       reg_destroyed[out_regs[out].first()->as_Register()->encoding()] = true;
2351     } else if (out_regs[out].first()->is_FloatRegister()) {
2352       freg_destroyed[out_regs[out].first()->as_FloatRegister()->encoding()] = true;
2353     }
2354 #endif // ASSERT
2355 
2356     switch (in_sig_bt[in]) {
2357       case T_BOOLEAN:
2358       case T_CHAR:
2359       case T_BYTE:
2360       case T_SHORT:
2361       case T_INT:
2362         // Move int and do sign extension.
2363         int_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2364         break;
2365       case T_LONG:
2366         long_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2367         break;
2368       case T_ARRAY:
2369       case T_OBJECT:
2370         object_move(masm, stack_slots,
2371                     oop_map, oop_handle_slot_offset,
2372                     ((in == 0) && (!method_is_static)), &receiver_offset,
2373                     in_regs[in], out_regs[out],
2374                     r_callers_sp, r_temp_1, r_temp_2);
2375         break;
2376       case T_VOID:
2377         break;
2378       case T_FLOAT:
2379         float_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2380         break;
2381       case T_DOUBLE:
2382         double_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2383         break;
2384       case T_ADDRESS:
2385         fatal("found type (T_ADDRESS) in java args");
2386         break;
2387       default:
2388         ShouldNotReachHere();
2389         break;
2390     }
2391   }
2392 
2393   // Pre-load a static method's oop into ARG2.
2394   // Used both by locking code and the normal JNI call code.
2395   if (method_is_static) {
2396     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()),
2397                         r_carg2_classorobject);
2398 
2399     // Now handlize the static class mirror in carg2. It's known not-null.
2400     __ std(r_carg2_classorobject, klass_offset, R1_SP);
2401     oop_map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2402     __ addi(r_carg2_classorobject, R1_SP, klass_offset);
2403   }
2404 
2405   // Get JNIEnv* which is first argument to native.
2406   __ addi(r_carg1_jnienv, R16_thread, in_bytes(JavaThread::jni_environment_offset()));
2407 
2408   // NOTE:
2409   //
2410   // We have all of the arguments setup at this point.
2411   // We MUST NOT touch any outgoing regs from this point on.
2412   // So if we must call out we must push a new frame.
2413 
2414   // The last java pc will also be used as resume pc if this is the wrapper for wait0.
2415   // For this purpose the precise location matters but not for oopmap lookup.
2416   __ calculate_address_from_global_toc(r_last_java_pc, last_java_pc, true, true, true, true);
2417 
2418   // Make sure that thread is non-volatile; it crosses a bunch of VM calls below.
2419   assert(R16_thread->is_nonvolatile(), "thread must be in non-volatile register");
2420 
2421 # if 0
2422   // DTrace method entry
2423 # endif
2424 
2425   // Lock a synchronized method.
2426   // --------------------------------------------------------------------------
2427 
2428   if (method->is_synchronized()) {
2429     Register          r_oop  = r_temp_4;
2430     const Register    r_box  = r_temp_5;
2431     Label             done, locked;
2432 
2433     // Load the oop for the object or class. r_carg2_classorobject contains
2434     // either the handlized oop from the incoming arguments or the handlized
2435     // class mirror (if the method is static).
2436     __ ld(r_oop, 0, r_carg2_classorobject);
2437 
2438     // Get the lock box slot's address.
2439     __ addi(r_box, R1_SP, lock_offset);
2440 
2441     // Try fastpath for locking.
2442     // fast_lock kills r_temp_1, r_temp_2, r_temp_3.
2443     Register r_temp_3_or_noreg = UseObjectMonitorTable ? r_temp_3 : noreg;
2444     __ compiler_fast_lock_lightweight_object(CR0, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3_or_noreg);
2445     __ beq(CR0, locked);
2446 
2447     // None of the above fast optimizations worked so we have to get into the
2448     // slow case of monitor enter. Inline a special case of call_VM that
2449     // disallows any pending_exception.
2450 
2451     // Save argument registers and leave room for C-compatible ABI_REG_ARGS.
2452     int frame_size = frame::native_abi_reg_args_size + align_up(total_c_args * wordSize, frame::alignment_in_bytes);
2453     __ mr(R11_scratch1, R1_SP);
2454     RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs);
2455 
2456     // Do the call.
2457     __ set_last_Java_frame(R11_scratch1, r_last_java_pc);
2458     assert(r_last_java_pc->is_nonvolatile(), "r_last_java_pc needs to be preserved accross complete_monitor_locking_C call");
2459     // The following call will not be preempted.
2460     // push_cont_fastpath forces freeze slow path in case we try to preempt where we will pin the
2461     // vthread to the carrier (see FreezeBase::recurse_freeze_native_frame()).
2462     __ push_cont_fastpath();
2463     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), r_oop, r_box, R16_thread);
2464     __ pop_cont_fastpath();
2465     __ reset_last_Java_frame();
2466 
2467     RegisterSaver::restore_argument_registers_and_pop_frame(masm, frame_size, total_c_args, out_regs);
2468 
2469     __ asm_assert_mem8_is_zero(thread_(pending_exception),
2470        "no pending exception allowed on exit from SharedRuntime::complete_monitor_locking_C");
2471 
2472     __ bind(locked);
2473   }
2474 
2475   __ set_last_Java_frame(R1_SP, r_last_java_pc);
2476 
2477   // Publish thread state
2478   // --------------------------------------------------------------------------
2479 
2480   // Transition from _thread_in_Java to _thread_in_native.
2481   __ li(R0, _thread_in_native);
2482   __ release();
2483   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
2484   __ stw(R0, thread_(thread_state));
2485 
2486 
2487   // The JNI call
2488   // --------------------------------------------------------------------------
2489   __ call_c(native_func, relocInfo::runtime_call_type);
2490 
2491 
2492   // Now, we are back from the native code.
2493 
2494 
2495   // Unpack the native result.
2496   // --------------------------------------------------------------------------
2497 
2498   // For int-types, we do any needed sign-extension required.
2499   // Care must be taken that the return values (R3_RET and F1_RET)
2500   // will survive any VM calls for blocking or unlocking.
2501   // An OOP result (handle) is done specially in the slow-path code.
2502 
2503   switch (ret_type) {
2504     case T_VOID:    break;        // Nothing to do!
2505     case T_FLOAT:   break;        // Got it where we want it (unless slow-path).
2506     case T_DOUBLE:  break;        // Got it where we want it (unless slow-path).
2507     case T_LONG:    break;        // Got it where we want it (unless slow-path).
2508     case T_OBJECT:  break;        // Really a handle.
2509                                   // Cannot de-handlize until after reclaiming jvm_lock.
2510     case T_ARRAY:   break;
2511 
2512     case T_BOOLEAN: {             // 0 -> false(0); !0 -> true(1)
2513       __ normalize_bool(R3_RET);
2514       break;
2515       }
2516     case T_BYTE: {                // sign extension
2517       __ extsb(R3_RET, R3_RET);
2518       break;
2519       }
2520     case T_CHAR: {                // unsigned result
2521       __ andi(R3_RET, R3_RET, 0xffff);
2522       break;
2523       }
2524     case T_SHORT: {               // sign extension
2525       __ extsh(R3_RET, R3_RET);
2526       break;
2527       }
2528     case T_INT:                   // nothing to do
2529       break;
2530     default:
2531       ShouldNotReachHere();
2532       break;
2533   }
2534 
2535   // Publish thread state
2536   // --------------------------------------------------------------------------
2537 
2538   // Switch thread to "native transition" state before reading the
2539   // synchronization state. This additional state is necessary because reading
2540   // and testing the synchronization state is not atomic w.r.t. GC, as this
2541   // scenario demonstrates:
2542   //   - Java thread A, in _thread_in_native state, loads _not_synchronized
2543   //     and is preempted.
2544   //   - VM thread changes sync state to synchronizing and suspends threads
2545   //     for GC.
2546   //   - Thread A is resumed to finish this native method, but doesn't block
2547   //     here since it didn't see any synchronization in progress, and escapes.
2548 
2549   // Transition from _thread_in_native to _thread_in_native_trans.
2550   __ li(R0, _thread_in_native_trans);
2551   __ release();
2552   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
2553   __ stw(R0, thread_(thread_state));
2554 
2555 
2556   // Must we block?
2557   // --------------------------------------------------------------------------
2558 
2559   // Block, if necessary, before resuming in _thread_in_Java state.
2560   // In order for GC to work, don't clear the last_Java_sp until after blocking.
2561   {
2562     Label no_block, sync;
2563 
2564     // Force this write out before the read below.
2565     if (!UseSystemMemoryBarrier) {
2566       __ fence();
2567     }
2568 
2569     Register sync_state_addr = r_temp_4;
2570     Register sync_state      = r_temp_5;
2571     Register suspend_flags   = r_temp_6;
2572 
2573     // No synchronization in progress nor yet synchronized
2574     // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
2575     __ safepoint_poll(sync, sync_state, true /* at_return */, false /* in_nmethod */);
2576 
2577     // Not suspended.
2578     // TODO: PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
2579     __ lwz(suspend_flags, thread_(suspend_flags));
2580     __ cmpwi(CR1, suspend_flags, 0);
2581     __ beq(CR1, no_block);
2582 
2583     // Block. Save any potential method result value before the operation and
2584     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2585     // lets us share the oopMap we used when we went native rather than create
2586     // a distinct one for this pc.
2587     __ bind(sync);
2588     __ isync();
2589 
2590     address entry_point =
2591       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans);
2592     save_native_result(masm, ret_type, workspace_slot_offset);
2593     __ call_VM_leaf(entry_point, R16_thread);
2594     restore_native_result(masm, ret_type, workspace_slot_offset);
2595 
2596     __ bind(no_block);
2597 
2598     // Publish thread state.
2599     // --------------------------------------------------------------------------
2600 
2601     // Thread state is thread_in_native_trans. Any safepoint blocking has
2602     // already happened so we can now change state to _thread_in_Java.
2603 
2604     // Transition from _thread_in_native_trans to _thread_in_Java.
2605     __ li(R0, _thread_in_Java);
2606     __ lwsync(); // Acquire safepoint and suspend state, release thread state.
2607     // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
2608     __ stw(R0, thread_(thread_state));
2609 
2610     // Check preemption for Object.wait()
2611     if (method->is_object_wait0()) {
2612       Label not_preempted;
2613       __ ld(R0, in_bytes(JavaThread::preempt_alternate_return_offset()), R16_thread);
2614       __ cmpdi(CR0, R0, 0);
2615       __ beq(CR0, not_preempted);
2616       __ mtlr(R0);
2617       __ li(R0, 0);
2618       __ std(R0, in_bytes(JavaThread::preempt_alternate_return_offset()), R16_thread);
2619       __ blr();
2620       __ bind(not_preempted);
2621     }
2622     __ bind(last_java_pc);
2623     // We use the same pc/oopMap repeatedly when we call out above.
2624     intptr_t oopmap_pc = (intptr_t) __ pc();
2625     oop_maps->add_gc_map(oopmap_pc - start_pc, oop_map);
2626   }
2627 
2628   // Reguard any pages if necessary.
2629   // --------------------------------------------------------------------------
2630 
2631   Label no_reguard;
2632   __ lwz(r_temp_1, thread_(stack_guard_state));
2633   __ cmpwi(CR0, r_temp_1, StackOverflow::stack_guard_yellow_reserved_disabled);
2634   __ bne(CR0, no_reguard);
2635 
2636   save_native_result(masm, ret_type, workspace_slot_offset);
2637   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2638   restore_native_result(masm, ret_type, workspace_slot_offset);
2639 
2640   __ bind(no_reguard);
2641 
2642 
2643   // Unlock
2644   // --------------------------------------------------------------------------
2645 
2646   if (method->is_synchronized()) {
2647     const Register r_oop       = r_temp_4;
2648     const Register r_box       = r_temp_5;
2649     const Register r_exception = r_temp_6;
2650     Label done;
2651 
2652     // Get oop and address of lock object box.
2653     if (method_is_static) {
2654       assert(klass_offset != -1, "");
2655       __ ld(r_oop, klass_offset, R1_SP);
2656     } else {
2657       assert(receiver_offset != -1, "");
2658       __ ld(r_oop, receiver_offset, R1_SP);
2659     }
2660     __ addi(r_box, R1_SP, lock_offset);
2661 
2662     // Try fastpath for unlocking.
2663     __ compiler_fast_unlock_lightweight_object(CR0, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
2664     __ beq(CR0, done);
2665 
2666     // Save and restore any potential method result value around the unlocking operation.
2667     save_native_result(masm, ret_type, workspace_slot_offset);
2668 
2669     // Must save pending exception around the slow-path VM call. Since it's a
2670     // leaf call, the pending exception (if any) can be kept in a register.
2671     __ ld(r_exception, thread_(pending_exception));
2672     assert(r_exception->is_nonvolatile(), "exception register must be non-volatile");
2673     __ li(R0, 0);
2674     __ std(R0, thread_(pending_exception));
2675 
2676     // Slow case of monitor enter.
2677     // Inline a special case of call_VM that disallows any pending_exception.
2678     // Arguments are (oop obj, BasicLock* lock, JavaThread* thread).
2679     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), r_oop, r_box, R16_thread);
2680 
2681     __ asm_assert_mem8_is_zero(thread_(pending_exception),
2682        "no pending exception allowed on exit from SharedRuntime::complete_monitor_unlocking_C");
2683 
2684     restore_native_result(masm, ret_type, workspace_slot_offset);
2685 
2686     // Check_forward_pending_exception jump to forward_exception if any pending
2687     // exception is set. The forward_exception routine expects to see the
2688     // exception in pending_exception and not in a register. Kind of clumsy,
2689     // since all folks who branch to forward_exception must have tested
2690     // pending_exception first and hence have it in a register already.
2691     __ std(r_exception, thread_(pending_exception));
2692 
2693     __ bind(done);
2694   }
2695 
2696 # if 0
2697   // DTrace method exit
2698 # endif
2699 
2700   // Clear "last Java frame" SP and PC.
2701   // --------------------------------------------------------------------------
2702 
2703   // Last java frame won't be set if we're resuming after preemption
2704   bool maybe_preempted = method->is_object_wait0();
2705   __ reset_last_Java_frame(!maybe_preempted /* check_last_java_sp */);
2706 
2707   // Unbox oop result, e.g. JNIHandles::resolve value.
2708   // --------------------------------------------------------------------------
2709 
2710   if (is_reference_type(ret_type)) {
2711     __ resolve_jobject(R3_RET, r_temp_1, r_temp_2, MacroAssembler::PRESERVATION_NONE);
2712   }
2713 
2714   if (CheckJNICalls) {
2715     // clear_pending_jni_exception_check
2716     __ load_const_optimized(R0, 0L);
2717     __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
2718   }
2719 
2720   // Reset handle block.
2721   // --------------------------------------------------------------------------
2722   __ ld(r_temp_1, thread_(active_handles));
2723   // TODO: PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
2724   __ li(r_temp_2, 0);
2725   __ stw(r_temp_2, in_bytes(JNIHandleBlock::top_offset()), r_temp_1);
2726 
2727   // Prepare for return
2728   // --------------------------------------------------------------------------
2729   __ pop_frame();
2730   __ restore_LR(R11);
2731 
2732 #if INCLUDE_JFR
2733   // We need to do a poll test after unwind in case the sampler
2734   // managed to sample the native frame after returning to Java.
2735   Label L_stub;
2736   int safepoint_offset = __ offset();
2737   if (!UseSIGTRAP) {
2738     __ relocate(relocInfo::poll_return_type);
2739   }
2740   __ safepoint_poll(L_stub, r_temp_2, true /* at_return */, true /* in_nmethod: frame already popped */);
2741 #endif // INCLUDE_JFR
2742 
2743   // Check for pending exceptions.
2744   // --------------------------------------------------------------------------
2745   __ ld(r_temp_2, thread_(pending_exception));
2746   __ cmpdi(CR0, r_temp_2, 0);
2747   __ bne(CR0, handle_pending_exception);
2748 
2749   // Return.
2750   __ blr();
2751 
2752   // Handler for return safepoint (out-of-line).
2753 #if INCLUDE_JFR
2754   if (!UseSIGTRAP) {
2755     __ bind(L_stub);
2756     __ jump_to_polling_page_return_handler_blob(safepoint_offset);
2757   }
2758 #endif // INCLUDE_JFR
2759 
2760   // Handler for pending exceptions (out-of-line).
2761   // --------------------------------------------------------------------------
2762   // Since this is a native call, we know the proper exception handler
2763   // is the empty function. We just pop this frame and then jump to
2764   // forward_exception_entry.
2765   __ bind(handle_pending_exception);
2766   __ b64_patchable((address)StubRoutines::forward_exception_entry(),
2767                        relocInfo::runtime_call_type);
2768 
2769   // Done.
2770   // --------------------------------------------------------------------------
2771 
2772   __ flush();
2773 
2774   nmethod *nm = nmethod::new_native_nmethod(method,
2775                                             compile_id,
2776                                             masm->code(),
2777                                             vep_start_pc-start_pc,
2778                                             frame_done_pc-start_pc,
2779                                             stack_slots / VMRegImpl::slots_per_word,
2780                                             (method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2781                                             in_ByteSize(lock_offset),
2782                                             oop_maps);
2783 
2784   return nm;
2785 }
2786 
2787 // This function returns the adjust size (in number of words) to a c2i adapter
2788 // activation for use during deoptimization.
2789 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2790   return align_up((callee_locals - callee_parameters) * Interpreter::stackElementWords, frame::frame_alignment_in_words);
2791 }
2792 
2793 uint SharedRuntime::in_preserve_stack_slots() {
2794   return frame::jit_in_preserve_size / VMRegImpl::stack_slot_size;
2795 }
2796 
2797 uint SharedRuntime::out_preserve_stack_slots() {
2798 #if defined(COMPILER1) || defined(COMPILER2)
2799   return frame::jit_out_preserve_size / VMRegImpl::stack_slot_size;
2800 #else
2801   return 0;
2802 #endif
2803 }
2804 
2805 VMReg SharedRuntime::thread_register() {
2806   // On PPC virtual threads don't save the JavaThread* in their context (e.g. C1 stub frames).
2807   ShouldNotCallThis();
2808   return nullptr;
2809 }
2810 
2811 #if defined(COMPILER1) || defined(COMPILER2)
2812 // Frame generation for deopt and uncommon trap blobs.
2813 static void push_skeleton_frame(MacroAssembler* masm, bool deopt,
2814                                 /* Read */
2815                                 Register unroll_block_reg,
2816                                 /* Update */
2817                                 Register frame_sizes_reg,
2818                                 Register number_of_frames_reg,
2819                                 Register pcs_reg,
2820                                 /* Invalidate */
2821                                 Register frame_size_reg,
2822                                 Register pc_reg) {
2823 
2824   __ ld(pc_reg, 0, pcs_reg);
2825   __ ld(frame_size_reg, 0, frame_sizes_reg);
2826   __ std(pc_reg, _abi0(lr), R1_SP);
2827   __ push_frame(frame_size_reg, R0/*tmp*/);
2828   __ std(R1_SP, _ijava_state_neg(sender_sp), R1_SP);
2829   __ addi(number_of_frames_reg, number_of_frames_reg, -1);
2830   __ addi(frame_sizes_reg, frame_sizes_reg, wordSize);
2831   __ addi(pcs_reg, pcs_reg, wordSize);
2832 }
2833 
2834 // Loop through the UnrollBlock info and create new frames.
2835 static void push_skeleton_frames(MacroAssembler* masm, bool deopt,
2836                                  /* read */
2837                                  Register unroll_block_reg,
2838                                  /* invalidate */
2839                                  Register frame_sizes_reg,
2840                                  Register number_of_frames_reg,
2841                                  Register pcs_reg,
2842                                  Register frame_size_reg,
2843                                  Register pc_reg) {
2844   Label loop;
2845 
2846  // _number_of_frames is of type int (deoptimization.hpp)
2847   __ lwa(number_of_frames_reg,
2848              in_bytes(Deoptimization::UnrollBlock::number_of_frames_offset()),
2849              unroll_block_reg);
2850   __ ld(pcs_reg,
2851             in_bytes(Deoptimization::UnrollBlock::frame_pcs_offset()),
2852             unroll_block_reg);
2853   __ ld(frame_sizes_reg,
2854             in_bytes(Deoptimization::UnrollBlock::frame_sizes_offset()),
2855             unroll_block_reg);
2856 
2857   // stack: (caller_of_deoptee, ...).
2858 
2859   // At this point we either have an interpreter frame or a compiled
2860   // frame on top of stack. If it is a compiled frame we push a new c2i
2861   // adapter here
2862 
2863   // Memorize top-frame stack-pointer.
2864   __ mr(frame_size_reg/*old_sp*/, R1_SP);
2865 
2866   // Resize interpreter top frame OR C2I adapter.
2867 
2868   // At this moment, the top frame (which is the caller of the deoptee) is
2869   // an interpreter frame or a newly pushed C2I adapter or an entry frame.
2870   // The top frame has a TOP_IJAVA_FRAME_ABI and the frame contains the
2871   // outgoing arguments.
2872   //
2873   // In order to push the interpreter frame for the deoptee, we need to
2874   // resize the top frame such that we are able to place the deoptee's
2875   // locals in the frame.
2876   // Additionally, we have to turn the top frame's TOP_IJAVA_FRAME_ABI
2877   // into a valid PARENT_IJAVA_FRAME_ABI.
2878 
2879   __ lwa(R11_scratch1,
2880              in_bytes(Deoptimization::UnrollBlock::caller_adjustment_offset()),
2881              unroll_block_reg);
2882   __ neg(R11_scratch1, R11_scratch1);
2883 
2884   // R11_scratch1 contains size of locals for frame resizing.
2885   // R12_scratch2 contains top frame's lr.
2886 
2887   // Resize frame by complete frame size prevents TOC from being
2888   // overwritten by locals. A more stack space saving way would be
2889   // to copy the TOC to its location in the new abi.
2890   __ addi(R11_scratch1, R11_scratch1, - frame::parent_ijava_frame_abi_size);
2891 
2892   // now, resize the frame
2893   __ resize_frame(R11_scratch1, pc_reg/*tmp*/);
2894 
2895   // In the case where we have resized a c2i frame above, the optional
2896   // alignment below the locals has size 32 (why?).
2897   __ std(R12_scratch2, _abi0(lr), R1_SP);
2898 
2899   // Initialize initial_caller_sp.
2900  __ std(frame_size_reg, _ijava_state_neg(sender_sp), R1_SP);
2901 
2902 #ifdef ASSERT
2903   // Make sure that there is at least one entry in the array.
2904   __ cmpdi(CR0, number_of_frames_reg, 0);
2905   __ asm_assert_ne("array_size must be > 0");
2906 #endif
2907 
2908   // Now push the new interpreter frames.
2909   //
2910   __ bind(loop);
2911   // Allocate a new frame, fill in the pc.
2912   push_skeleton_frame(masm, deopt,
2913                       unroll_block_reg,
2914                       frame_sizes_reg,
2915                       number_of_frames_reg,
2916                       pcs_reg,
2917                       frame_size_reg,
2918                       pc_reg);
2919   __ cmpdi(CR0, number_of_frames_reg, 0);
2920   __ bne(CR0, loop);
2921 
2922   // Get the return address pointing into the template interpreter.
2923   __ ld(R0, 0, pcs_reg);
2924   // Store it in the top interpreter frame.
2925   __ std(R0, _abi0(lr), R1_SP);
2926   // Initialize frame_manager_lr of interpreter top frame.
2927 }
2928 #endif
2929 
2930 void SharedRuntime::generate_deopt_blob() {
2931   // Allocate space for the code
2932   ResourceMark rm;
2933   // Setup code generation tools
2934   const char* name = SharedRuntime::stub_name(StubId::shared_deopt_id);
2935   CodeBuffer buffer(name, 2048, 1024);
2936   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
2937   Label exec_mode_initialized;
2938   int frame_size_in_words;
2939   OopMap* map = nullptr;
2940   OopMapSet *oop_maps = new OopMapSet();
2941 
2942   // size of ABI112 plus spill slots for R3_RET and F1_RET.
2943   const int frame_size_in_bytes = frame::native_abi_reg_args_spill_size;
2944   const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
2945   int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info.
2946 
2947   const Register exec_mode_reg = R21_tmp1;
2948 
2949   const address start = __ pc();
2950 
2951 #if defined(COMPILER1) || defined(COMPILER2)
2952   // --------------------------------------------------------------------------
2953   // Prolog for non exception case!
2954 
2955   // We have been called from the deopt handler of the deoptee.
2956   //
2957   // deoptee:
2958   //                      ...
2959   //                      call X
2960   //                      ...
2961   //  deopt_handler:      call_deopt_stub
2962   //  cur. return pc  --> ...
2963   //
2964   // So currently SR_LR points behind the call in the deopt handler.
2965   // We adjust it such that it points to the start of the deopt handler.
2966   // The return_pc has been stored in the frame of the deoptee and
2967   // will replace the address of the deopt_handler in the call
2968   // to Deoptimization::fetch_unroll_info below.
2969   // We can't grab a free register here, because all registers may
2970   // contain live values, so let the RegisterSaver do the adjustment
2971   // of the return pc.
2972   const int return_pc_adjustment_no_exception = -MacroAssembler::bl64_patchable_size;
2973 
2974   // Push the "unpack frame"
2975   // Save everything in sight.
2976   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
2977                                                                    &first_frame_size_in_bytes,
2978                                                                    /*generate_oop_map=*/ true,
2979                                                                    return_pc_adjustment_no_exception,
2980                                                                    RegisterSaver::return_pc_is_lr);
2981   assert(map != nullptr, "OopMap must have been created");
2982 
2983   __ li(exec_mode_reg, Deoptimization::Unpack_deopt);
2984   // Save exec mode for unpack_frames.
2985   __ b(exec_mode_initialized);
2986 
2987   // --------------------------------------------------------------------------
2988   // Prolog for exception case
2989 
2990   // An exception is pending.
2991   // We have been called with a return (interpreter) or a jump (exception blob).
2992   //
2993   // - R3_ARG1: exception oop
2994   // - R4_ARG2: exception pc
2995 
2996   int exception_offset = __ pc() - start;
2997 
2998   BLOCK_COMMENT("Prolog for exception case");
2999 
3000   // Store exception oop and pc in thread (location known to GC).
3001   // This is needed since the call to "fetch_unroll_info()" may safepoint.
3002   __ std(R3_ARG1, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
3003   __ std(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
3004   __ std(R4_ARG2, _abi0(lr), R1_SP);
3005 
3006   // Vanilla deoptimization with an exception pending in exception_oop.
3007   int exception_in_tls_offset = __ pc() - start;
3008 
3009   // Push the "unpack frame".
3010   // Save everything in sight.
3011   RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
3012                                                              &first_frame_size_in_bytes,
3013                                                              /*generate_oop_map=*/ false,
3014                                                              /*return_pc_adjustment_exception=*/ 0,
3015                                                              RegisterSaver::return_pc_is_pre_saved);
3016 
3017   // Deopt during an exception. Save exec mode for unpack_frames.
3018   __ li(exec_mode_reg, Deoptimization::Unpack_exception);
3019 
3020   // fall through
3021 
3022   int reexecute_offset = 0;
3023 #ifdef COMPILER1
3024   __ b(exec_mode_initialized);
3025 
3026   // Reexecute entry, similar to c2 uncommon trap
3027   reexecute_offset = __ pc() - start;
3028 
3029   RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
3030                                                              &first_frame_size_in_bytes,
3031                                                              /*generate_oop_map=*/ false,
3032                                                              /*return_pc_adjustment_reexecute=*/ 0,
3033                                                              RegisterSaver::return_pc_is_pre_saved);
3034   __ li(exec_mode_reg, Deoptimization::Unpack_reexecute);
3035 #endif
3036 
3037   // --------------------------------------------------------------------------
3038   __ BIND(exec_mode_initialized);
3039 
3040   const Register unroll_block_reg = R22_tmp2;
3041 
3042   // We need to set `last_Java_frame' because `fetch_unroll_info' will
3043   // call `last_Java_frame()'. The value of the pc in the frame is not
3044   // particularly important. It just needs to identify this blob.
3045   __ set_last_Java_frame(R1_SP, noreg);
3046 
3047   // With EscapeAnalysis turned on, this call may safepoint!
3048   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), R16_thread, exec_mode_reg);
3049   address calls_return_pc = __ last_calls_return_pc();
3050   // Set an oopmap for the call site that describes all our saved registers.
3051   oop_maps->add_gc_map(calls_return_pc - start, map);
3052 
3053   __ reset_last_Java_frame();
3054   // Save the return value.
3055   __ mr(unroll_block_reg, R3_RET);
3056 
3057   // Restore only the result registers that have been saved
3058   // by save_volatile_registers(...).
3059   RegisterSaver::restore_result_registers(masm, first_frame_size_in_bytes);
3060 
3061   // reload the exec mode from the UnrollBlock (it might have changed)
3062   __ lwz(exec_mode_reg, in_bytes(Deoptimization::UnrollBlock::unpack_kind_offset()), unroll_block_reg);
3063   // In excp_deopt_mode, restore and clear exception oop which we
3064   // stored in the thread during exception entry above. The exception
3065   // oop will be the return value of this stub.
3066   Label skip_restore_excp;
3067   __ cmpdi(CR0, exec_mode_reg, Deoptimization::Unpack_exception);
3068   __ bne(CR0, skip_restore_excp);
3069   __ ld(R3_RET, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
3070   __ ld(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
3071   __ li(R0, 0);
3072   __ std(R0, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
3073   __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
3074   __ BIND(skip_restore_excp);
3075 
3076   __ pop_frame();
3077 
3078   // stack: (deoptee, optional i2c, caller of deoptee, ...).
3079 
3080   // pop the deoptee's frame
3081   __ pop_frame();
3082 
3083   // stack: (caller_of_deoptee, ...).
3084 
3085   // Freezing continuation frames requires that the caller is trimmed to unextended sp if compiled.
3086   // If not compiled the loaded value is equal to the current SP (see frame::initial_deoptimization_info())
3087   // and the frame is effectively not resized.
3088   Register caller_sp = R23_tmp3;
3089   __ ld_ptr(caller_sp, Deoptimization::UnrollBlock::initial_info_offset(), unroll_block_reg);
3090   __ resize_frame_absolute(caller_sp, R24_tmp4, R25_tmp5);
3091 
3092   // Loop through the `UnrollBlock' info and create interpreter frames.
3093   push_skeleton_frames(masm, true/*deopt*/,
3094                        unroll_block_reg,
3095                        R23_tmp3,
3096                        R24_tmp4,
3097                        R25_tmp5,
3098                        R26_tmp6,
3099                        R27_tmp7);
3100 
3101   // stack: (skeletal interpreter frame, ..., optional skeletal
3102   // interpreter frame, optional c2i, caller of deoptee, ...).
3103 
3104   // push an `unpack_frame' taking care of float / int return values.
3105   __ push_frame(frame_size_in_bytes, R0/*tmp*/);
3106 
3107   // stack: (unpack frame, skeletal interpreter frame, ..., optional
3108   // skeletal interpreter frame, optional c2i, caller of deoptee,
3109   // ...).
3110 
3111   // Spill live volatile registers since we'll do a call.
3112   __ std( R3_RET, _native_abi_reg_args_spill(spill_ret),  R1_SP);
3113   __ stfd(F1_RET, _native_abi_reg_args_spill(spill_fret), R1_SP);
3114 
3115   // Let the unpacker layout information in the skeletal frames just
3116   // allocated.
3117   __ calculate_address_from_global_toc(R3_RET, calls_return_pc, true, true, true, true);
3118   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R3_RET);
3119   // This is a call to a LEAF method, so no oop map is required.
3120   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
3121                   R16_thread/*thread*/, exec_mode_reg/*exec_mode*/);
3122   __ reset_last_Java_frame();
3123 
3124   // Restore the volatiles saved above.
3125   __ ld( R3_RET, _native_abi_reg_args_spill(spill_ret),  R1_SP);
3126   __ lfd(F1_RET, _native_abi_reg_args_spill(spill_fret), R1_SP);
3127 
3128   // Pop the unpack frame.
3129   __ pop_frame();
3130   __ restore_LR(R0);
3131 
3132   // stack: (top interpreter frame, ..., optional interpreter frame,
3133   // optional c2i, caller of deoptee, ...).
3134 
3135   // Initialize R14_state.
3136   __ restore_interpreter_state(R11_scratch1);
3137   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
3138 
3139   // Return to the interpreter entry point.
3140   __ blr();
3141   __ flush();
3142 #else // COMPILER2
3143   __ unimplemented("deopt blob needed only with compiler");
3144   int exception_offset = __ pc() - start;
3145 #endif // COMPILER2
3146 
3147   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset,
3148                                            reexecute_offset, first_frame_size_in_bytes / wordSize);
3149   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3150 }
3151 
3152 #ifdef COMPILER2
3153 UncommonTrapBlob* OptoRuntime::generate_uncommon_trap_blob() {
3154   // Allocate space for the code.
3155   ResourceMark rm;
3156   // Setup code generation tools.
3157   const char* name = OptoRuntime::stub_name(StubId::c2_uncommon_trap_id);
3158   CodeBuffer buffer(name, 2048, 1024);
3159   if (buffer.blob() == nullptr) {
3160     return nullptr;
3161   }
3162   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
3163   address start = __ pc();
3164 
3165   Register unroll_block_reg = R21_tmp1;
3166   Register klass_index_reg  = R22_tmp2;
3167   Register unc_trap_reg     = R23_tmp3;
3168   Register r_return_pc      = R27_tmp7;
3169 
3170   OopMapSet* oop_maps = new OopMapSet();
3171   int frame_size_in_bytes = frame::native_abi_reg_args_size;
3172   OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
3173 
3174   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
3175 
3176   // Push a dummy `unpack_frame' and call
3177   // `Deoptimization::uncommon_trap' to pack the compiled frame into a
3178   // vframe array and return the `UnrollBlock' information.
3179 
3180   // Save LR to compiled frame.
3181   __ save_LR(R11_scratch1);
3182 
3183   // Push an "uncommon_trap" frame.
3184   __ push_frame_reg_args(0, R11_scratch1);
3185 
3186   // stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...).
3187 
3188   // Set the `unpack_frame' as last_Java_frame.
3189   // `Deoptimization::uncommon_trap' expects it and considers its
3190   // sender frame as the deoptee frame.
3191   // Remember the offset of the instruction whose address will be
3192   // moved to R11_scratch1.
3193   address gc_map_pc = __ pc();
3194   __ calculate_address_from_global_toc(r_return_pc, gc_map_pc, true, true, true, true);
3195   __ set_last_Java_frame(/*sp*/R1_SP, r_return_pc);
3196 
3197   __ mr(klass_index_reg, R3);
3198   __ li(R5_ARG3, Deoptimization::Unpack_uncommon_trap);
3199   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap),
3200                   R16_thread, klass_index_reg, R5_ARG3);
3201 
3202   // Set an oopmap for the call site.
3203   oop_maps->add_gc_map(gc_map_pc - start, map);
3204 
3205   __ reset_last_Java_frame();
3206 
3207   // Pop the `unpack frame'.
3208   __ pop_frame();
3209 
3210   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
3211 
3212   // Save the return value.
3213   __ mr(unroll_block_reg, R3_RET);
3214 
3215   // Pop the uncommon_trap frame.
3216   __ pop_frame();
3217 
3218   // stack: (caller_of_deoptee, ...).
3219 
3220 #ifdef ASSERT
3221   __ lwz(R22_tmp2, in_bytes(Deoptimization::UnrollBlock::unpack_kind_offset()), unroll_block_reg);
3222   __ cmpdi(CR0, R22_tmp2, (unsigned)Deoptimization::Unpack_uncommon_trap);
3223   __ asm_assert_eq("OptoRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap");
3224 #endif
3225 
3226   // Freezing continuation frames requires that the caller is trimmed to unextended sp if compiled.
3227   // If not compiled the loaded value is equal to the current SP (see frame::initial_deoptimization_info())
3228   // and the frame is effectively not resized.
3229   Register caller_sp = R23_tmp3;
3230   __ ld_ptr(caller_sp, Deoptimization::UnrollBlock::initial_info_offset(), unroll_block_reg);
3231   __ resize_frame_absolute(caller_sp, R24_tmp4, R25_tmp5);
3232 
3233   // Allocate new interpreter frame(s) and possibly a c2i adapter
3234   // frame.
3235   push_skeleton_frames(masm, false/*deopt*/,
3236                        unroll_block_reg,
3237                        R22_tmp2,
3238                        R23_tmp3,
3239                        R24_tmp4,
3240                        R25_tmp5,
3241                        R26_tmp6);
3242 
3243   // stack: (skeletal interpreter frame, ..., optional skeletal
3244   // interpreter frame, optional c2i, caller of deoptee, ...).
3245 
3246   // Push a dummy `unpack_frame' taking care of float return values.
3247   // Call `Deoptimization::unpack_frames' to layout information in the
3248   // interpreter frames just created.
3249 
3250   // Push a simple "unpack frame" here.
3251   __ push_frame_reg_args(0, R11_scratch1);
3252 
3253   // stack: (unpack frame, skeletal interpreter frame, ..., optional
3254   // skeletal interpreter frame, optional c2i, caller of deoptee,
3255   // ...).
3256 
3257   // Set the "unpack_frame" as last_Java_frame.
3258   __ set_last_Java_frame(/*sp*/R1_SP, r_return_pc);
3259 
3260   // Indicate it is the uncommon trap case.
3261   __ li(unc_trap_reg, Deoptimization::Unpack_uncommon_trap);
3262   // Let the unpacker layout information in the skeletal frames just
3263   // allocated.
3264   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
3265                   R16_thread, unc_trap_reg);
3266 
3267   __ reset_last_Java_frame();
3268   // Pop the `unpack frame'.
3269   __ pop_frame();
3270   // Restore LR from top interpreter frame.
3271   __ restore_LR(R11_scratch1);
3272 
3273   // stack: (top interpreter frame, ..., optional interpreter frame,
3274   // optional c2i, caller of deoptee, ...).
3275 
3276   __ restore_interpreter_state(R11_scratch1);
3277   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
3278 
3279   // Return to the interpreter entry point.
3280   __ blr();
3281 
3282   masm->flush();
3283 
3284   return UncommonTrapBlob::create(&buffer, oop_maps, frame_size_in_bytes/wordSize);
3285 }
3286 #endif // COMPILER2
3287 
3288 // Generate a special Compile2Runtime blob that saves all registers, and setup oopmap.
3289 SafepointBlob* SharedRuntime::generate_handler_blob(StubId id, address call_ptr) {
3290   assert(StubRoutines::forward_exception_entry() != nullptr,
3291          "must be generated before");
3292   assert(is_polling_page_id(id), "expected a polling page stub id");
3293 
3294   ResourceMark rm;
3295   OopMapSet *oop_maps = new OopMapSet();
3296   OopMap* map;
3297 
3298   // Allocate space for the code. Setup code generation tools.
3299   const char* name = SharedRuntime::stub_name(id);
3300   CodeBuffer buffer(name, 2048, 1024);
3301   MacroAssembler* masm = new MacroAssembler(&buffer);
3302 
3303   address start = __ pc();
3304   int frame_size_in_bytes = 0;
3305 
3306   RegisterSaver::ReturnPCLocation return_pc_location;
3307   bool cause_return = (id == StubId::shared_polling_page_return_handler_id);
3308   if (cause_return) {
3309     // Nothing to do here. The frame has already been popped in MachEpilogNode.
3310     // Register LR already contains the return pc.
3311     return_pc_location = RegisterSaver::return_pc_is_pre_saved;
3312   } else {
3313     // Use thread()->saved_exception_pc() as return pc.
3314     return_pc_location = RegisterSaver::return_pc_is_thread_saved_exception_pc;
3315   }
3316 
3317   bool save_vectors = (id == StubId::shared_polling_page_vectors_safepoint_handler_id);
3318 
3319   // Save registers, fpu state, and flags. Set R31 = return pc.
3320   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
3321                                                                    &frame_size_in_bytes,
3322                                                                    /*generate_oop_map=*/ true,
3323                                                                    /*return_pc_adjustment=*/0,
3324                                                                    return_pc_location, save_vectors);
3325 
3326   // The following is basically a call_VM. However, we need the precise
3327   // address of the call in order to generate an oopmap. Hence, we do all the
3328   // work ourselves.
3329   __ set_last_Java_frame(/*sp=*/R1_SP, /*pc=*/noreg);
3330 
3331   // The return address must always be correct so that the frame constructor
3332   // never sees an invalid pc.
3333 
3334   // Do the call
3335   __ call_VM_leaf(call_ptr, R16_thread);
3336   address calls_return_pc = __ last_calls_return_pc();
3337 
3338   // Set an oopmap for the call site. This oopmap will map all
3339   // oop-registers and debug-info registers as callee-saved. This
3340   // will allow deoptimization at this safepoint to find all possible
3341   // debug-info recordings, as well as let GC find all oops.
3342   oop_maps->add_gc_map(calls_return_pc - start, map);
3343 
3344   Label noException;
3345 
3346   // Clear the last Java frame.
3347   __ reset_last_Java_frame();
3348 
3349   BLOCK_COMMENT("  Check pending exception.");
3350   const Register pending_exception = R0;
3351   __ ld(pending_exception, thread_(pending_exception));
3352   __ cmpdi(CR0, pending_exception, 0);
3353   __ beq(CR0, noException);
3354 
3355   // Exception pending
3356   RegisterSaver::restore_live_registers_and_pop_frame(masm,
3357                                                       frame_size_in_bytes,
3358                                                       /*restore_ctr=*/true, save_vectors);
3359 
3360   BLOCK_COMMENT("  Jump to forward_exception_entry.");
3361   // Jump to forward_exception_entry, with the issuing PC in LR
3362   // so it looks like the original nmethod called forward_exception_entry.
3363   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
3364 
3365   // No exception case.
3366   __ BIND(noException);
3367 
3368   if (!cause_return) {
3369     Label no_adjust;
3370     // If our stashed return pc was modified by the runtime we avoid touching it
3371     __ ld(R0, frame_size_in_bytes + _abi0(lr), R1_SP);
3372     __ cmpd(CR0, R0, R31);
3373     __ bne(CR0, no_adjust);
3374 
3375     // Adjust return pc forward to step over the safepoint poll instruction
3376     __ addi(R31, R31, 4);
3377     __ std(R31, frame_size_in_bytes + _abi0(lr), R1_SP);
3378 
3379     __ bind(no_adjust);
3380   }
3381 
3382   // Normal exit, restore registers and exit.
3383   RegisterSaver::restore_live_registers_and_pop_frame(masm,
3384                                                       frame_size_in_bytes,
3385                                                       /*restore_ctr=*/true, save_vectors);
3386 
3387   __ blr();
3388 
3389   // Make sure all code is generated
3390   masm->flush();
3391 
3392   // Fill-out other meta info
3393   // CodeBlob frame size is in words.
3394   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_bytes / wordSize);
3395 }
3396 
3397 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss)
3398 //
3399 // Generate a stub that calls into the vm to find out the proper destination
3400 // of a java call. All the argument registers are live at this point
3401 // but since this is generic code we don't know what they are and the caller
3402 // must do any gc of the args.
3403 //
3404 RuntimeStub* SharedRuntime::generate_resolve_blob(StubId id, address destination) {
3405   assert(is_resolve_id(id), "expected a resolve stub id");
3406 
3407   // allocate space for the code
3408   ResourceMark rm;
3409 
3410   const char* name = SharedRuntime::stub_name(id);
3411   CodeBuffer buffer(name, 1000, 512);
3412   MacroAssembler* masm = new MacroAssembler(&buffer);
3413 
3414   int frame_size_in_bytes;
3415 
3416   OopMapSet *oop_maps = new OopMapSet();
3417   OopMap* map = nullptr;
3418 
3419   address start = __ pc();
3420 
3421   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
3422                                                                    &frame_size_in_bytes,
3423                                                                    /*generate_oop_map*/ true,
3424                                                                    /*return_pc_adjustment*/ 0,
3425                                                                    RegisterSaver::return_pc_is_lr);
3426 
3427   // Use noreg as last_Java_pc, the return pc will be reconstructed
3428   // from the physical frame.
3429   __ set_last_Java_frame(/*sp*/R1_SP, noreg);
3430 
3431   int frame_complete = __ offset();
3432 
3433   // Pass R19_method as 2nd (optional) argument, used by
3434   // counter_overflow_stub.
3435   __ call_VM_leaf(destination, R16_thread, R19_method);
3436   address calls_return_pc = __ last_calls_return_pc();
3437   // Set an oopmap for the call site.
3438   // We need this not only for callee-saved registers, but also for volatile
3439   // registers that the compiler might be keeping live across a safepoint.
3440   // Create the oopmap for the call's return pc.
3441   oop_maps->add_gc_map(calls_return_pc - start, map);
3442 
3443   // R3_RET contains the address we are going to jump to assuming no exception got installed.
3444 
3445   // clear last_Java_sp
3446   __ reset_last_Java_frame();
3447 
3448   // Check for pending exceptions.
3449   BLOCK_COMMENT("Check for pending exceptions.");
3450   Label pending;
3451   __ ld(R11_scratch1, thread_(pending_exception));
3452   __ cmpdi(CR0, R11_scratch1, 0);
3453   __ bne(CR0, pending);
3454 
3455   __ mtctr(R3_RET); // Ctr will not be touched by restore_live_registers_and_pop_frame.
3456 
3457   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ false);
3458 
3459   // Get the returned method.
3460   __ get_vm_result_metadata(R19_method);
3461 
3462   __ bctr();
3463 
3464 
3465   // Pending exception after the safepoint.
3466   __ BIND(pending);
3467 
3468   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ true);
3469 
3470   // exception pending => remove activation and forward to exception handler
3471 
3472   __ li(R11_scratch1, 0);
3473   __ ld(R3_ARG1, thread_(pending_exception));
3474   __ std(R11_scratch1, in_bytes(JavaThread::vm_result_oop_offset()), R16_thread);
3475   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
3476 
3477   // -------------
3478   // Make sure all code is generated.
3479   masm->flush();
3480 
3481   // return the blob
3482   // frame_size_words or bytes??
3483   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_bytes/wordSize,
3484                                        oop_maps, true);
3485 }
3486 
3487 // Continuation point for throwing of implicit exceptions that are
3488 // not handled in the current activation. Fabricates an exception
3489 // oop and initiates normal exception dispatching in this
3490 // frame. Only callee-saved registers are preserved (through the
3491 // normal register window / RegisterMap handling).  If the compiler
3492 // needs all registers to be preserved between the fault point and
3493 // the exception handler then it must assume responsibility for that
3494 // in AbstractCompiler::continuation_for_implicit_null_exception or
3495 // continuation_for_implicit_division_by_zero_exception. All other
3496 // implicit exceptions (e.g., NullPointerException or
3497 // AbstractMethodError on entry) are either at call sites or
3498 // otherwise assume that stack unwinding will be initiated, so
3499 // caller saved registers were assumed volatile in the compiler.
3500 //
3501 // Note that we generate only this stub into a RuntimeStub, because
3502 // it needs to be properly traversed and ignored during GC, so we
3503 // change the meaning of the "__" macro within this method.
3504 //
3505 // Note: the routine set_pc_not_at_call_for_caller in
3506 // SharedRuntime.cpp requires that this code be generated into a
3507 // RuntimeStub.
3508 RuntimeStub* SharedRuntime::generate_throw_exception(StubId id, address runtime_entry) {
3509   assert(is_throw_id(id), "expected a throw stub id");
3510 
3511   const char* name = SharedRuntime::stub_name(id);
3512 
3513   ResourceMark rm;
3514   const char* timer_msg = "SharedRuntime generate_throw_exception";
3515   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
3516 
3517   CodeBuffer code(name, 1024 DEBUG_ONLY(+ 512), 0);
3518   MacroAssembler* masm = new MacroAssembler(&code);
3519 
3520   OopMapSet* oop_maps  = new OopMapSet();
3521   int frame_size_in_bytes = frame::native_abi_reg_args_size;
3522   OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
3523 
3524   address start = __ pc();
3525 
3526   __ save_LR(R11_scratch1);
3527 
3528   // Push a frame.
3529   __ push_frame_reg_args(0, R11_scratch1);
3530 
3531   address frame_complete_pc = __ pc();
3532 
3533   // Note that we always have a runtime stub frame on the top of
3534   // stack by this point. Remember the offset of the instruction
3535   // whose address will be moved to R11_scratch1.
3536   address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
3537 
3538   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
3539 
3540   __ mr(R3_ARG1, R16_thread);
3541   __ call_c(runtime_entry);
3542 
3543   // Set an oopmap for the call site.
3544   oop_maps->add_gc_map((int)(gc_map_pc - start), map);
3545 
3546   __ reset_last_Java_frame();
3547 
3548 #ifdef ASSERT
3549   // Make sure that this code is only executed if there is a pending
3550   // exception.
3551   {
3552     Label L;
3553     __ ld(R0,
3554           in_bytes(Thread::pending_exception_offset()),
3555           R16_thread);
3556     __ cmpdi(CR0, R0, 0);
3557     __ bne(CR0, L);
3558     __ stop("SharedRuntime::throw_exception: no pending exception");
3559     __ bind(L);
3560   }
3561 #endif
3562 
3563   // Pop frame.
3564   __ pop_frame();
3565 
3566   __ restore_LR(R11_scratch1);
3567 
3568   __ load_const(R11_scratch1, StubRoutines::forward_exception_entry());
3569   __ mtctr(R11_scratch1);
3570   __ bctr();
3571 
3572   // Create runtime stub with OopMap.
3573   RuntimeStub* stub =
3574     RuntimeStub::new_runtime_stub(name, &code,
3575                                   /*frame_complete=*/ (int)(frame_complete_pc - start),
3576                                   frame_size_in_bytes/wordSize,
3577                                   oop_maps,
3578                                   false);
3579   return stub;
3580 }
3581 
3582 //------------------------------Montgomery multiplication------------------------
3583 //
3584 
3585 // Subtract 0:b from carry:a. Return carry.
3586 static unsigned long
3587 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3588   long i = 0;
3589   unsigned long tmp, tmp2;
3590   __asm__ __volatile__ (
3591     "subfc  %[tmp], %[tmp], %[tmp]   \n" // pre-set CA
3592     "mtctr  %[len]                   \n"
3593     "0:                              \n"
3594     "ldx    %[tmp], %[i], %[a]       \n"
3595     "ldx    %[tmp2], %[i], %[b]      \n"
3596     "subfe  %[tmp], %[tmp2], %[tmp]  \n" // subtract extended
3597     "stdx   %[tmp], %[i], %[a]       \n"
3598     "addi   %[i], %[i], 8            \n"
3599     "bdnz   0b                       \n"
3600     "addme  %[tmp], %[carry]         \n" // carry + CA - 1
3601     : [i]"+b"(i), [tmp]"=&r"(tmp), [tmp2]"=&r"(tmp2)
3602     : [a]"r"(a), [b]"r"(b), [carry]"r"(carry), [len]"r"(len)
3603     : "ctr", "xer", "memory"
3604   );
3605   return tmp;
3606 }
3607 
3608 // Multiply (unsigned) Long A by Long B, accumulating the double-
3609 // length result into the accumulator formed of T0, T1, and T2.
3610 inline void MACC(unsigned long A, unsigned long B, unsigned long &T0, unsigned long &T1, unsigned long &T2) {
3611   unsigned long hi, lo;
3612   __asm__ __volatile__ (
3613     "mulld  %[lo], %[A], %[B]    \n"
3614     "mulhdu %[hi], %[A], %[B]    \n"
3615     "addc   %[T0], %[T0], %[lo]  \n"
3616     "adde   %[T1], %[T1], %[hi]  \n"
3617     "addze  %[T2], %[T2]         \n"
3618     : [hi]"=&r"(hi), [lo]"=&r"(lo), [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2)
3619     : [A]"r"(A), [B]"r"(B)
3620     : "xer"
3621   );
3622 }
3623 
3624 // As above, but add twice the double-length result into the
3625 // accumulator.
3626 inline void MACC2(unsigned long A, unsigned long B, unsigned long &T0, unsigned long &T1, unsigned long &T2) {
3627   unsigned long hi, lo;
3628   __asm__ __volatile__ (
3629     "mulld  %[lo], %[A], %[B]    \n"
3630     "mulhdu %[hi], %[A], %[B]    \n"
3631     "addc   %[T0], %[T0], %[lo]  \n"
3632     "adde   %[T1], %[T1], %[hi]  \n"
3633     "addze  %[T2], %[T2]         \n"
3634     "addc   %[T0], %[T0], %[lo]  \n"
3635     "adde   %[T1], %[T1], %[hi]  \n"
3636     "addze  %[T2], %[T2]         \n"
3637     : [hi]"=&r"(hi), [lo]"=&r"(lo), [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2)
3638     : [A]"r"(A), [B]"r"(B)
3639     : "xer"
3640   );
3641 }
3642 
3643 // Fast Montgomery multiplication. The derivation of the algorithm is
3644 // in "A Cryptographic Library for the Motorola DSP56000,
3645 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237".
3646 static void
3647 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
3648                     unsigned long m[], unsigned long inv, int len) {
3649   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3650   int i;
3651 
3652   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3653 
3654   for (i = 0; i < len; i++) {
3655     int j;
3656     for (j = 0; j < i; j++) {
3657       MACC(a[j], b[i-j], t0, t1, t2);
3658       MACC(m[j], n[i-j], t0, t1, t2);
3659     }
3660     MACC(a[i], b[0], t0, t1, t2);
3661     m[i] = t0 * inv;
3662     MACC(m[i], n[0], t0, t1, t2);
3663 
3664     assert(t0 == 0, "broken Montgomery multiply");
3665 
3666     t0 = t1; t1 = t2; t2 = 0;
3667   }
3668 
3669   for (i = len; i < 2*len; i++) {
3670     int j;
3671     for (j = i-len+1; j < len; j++) {
3672       MACC(a[j], b[i-j], t0, t1, t2);
3673       MACC(m[j], n[i-j], t0, t1, t2);
3674     }
3675     m[i-len] = t0;
3676     t0 = t1; t1 = t2; t2 = 0;
3677   }
3678 
3679   while (t0) {
3680     t0 = sub(m, n, t0, len);
3681   }
3682 }
3683 
3684 // Fast Montgomery squaring. This uses asymptotically 25% fewer
3685 // multiplies so it should be up to 25% faster than Montgomery
3686 // multiplication. However, its loop control is more complex and it
3687 // may actually run slower on some machines.
3688 static void
3689 montgomery_square(unsigned long a[], unsigned long n[],
3690                   unsigned long m[], unsigned long inv, int len) {
3691   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3692   int i;
3693 
3694   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3695 
3696   for (i = 0; i < len; i++) {
3697     int j;
3698     int end = (i+1)/2;
3699     for (j = 0; j < end; j++) {
3700       MACC2(a[j], a[i-j], t0, t1, t2);
3701       MACC(m[j], n[i-j], t0, t1, t2);
3702     }
3703     if ((i & 1) == 0) {
3704       MACC(a[j], a[j], t0, t1, t2);
3705     }
3706     for (; j < i; j++) {
3707       MACC(m[j], n[i-j], t0, t1, t2);
3708     }
3709     m[i] = t0 * inv;
3710     MACC(m[i], n[0], t0, t1, t2);
3711 
3712     assert(t0 == 0, "broken Montgomery square");
3713 
3714     t0 = t1; t1 = t2; t2 = 0;
3715   }
3716 
3717   for (i = len; i < 2*len; i++) {
3718     int start = i-len+1;
3719     int end = start + (len - start)/2;
3720     int j;
3721     for (j = start; j < end; j++) {
3722       MACC2(a[j], a[i-j], t0, t1, t2);
3723       MACC(m[j], n[i-j], t0, t1, t2);
3724     }
3725     if ((i & 1) == 0) {
3726       MACC(a[j], a[j], t0, t1, t2);
3727     }
3728     for (; j < len; j++) {
3729       MACC(m[j], n[i-j], t0, t1, t2);
3730     }
3731     m[i-len] = t0;
3732     t0 = t1; t1 = t2; t2 = 0;
3733   }
3734 
3735   while (t0) {
3736     t0 = sub(m, n, t0, len);
3737   }
3738 }
3739 
3740 // The threshold at which squaring is advantageous was determined
3741 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3742 // Doesn't seem to be relevant for Power8 so we use the same value.
3743 #define MONTGOMERY_SQUARING_THRESHOLD 64
3744 
3745 // Copy len longwords from s to d, word-swapping as we go. The
3746 // destination array is reversed.
3747 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
3748   d += len;
3749   while(len-- > 0) {
3750     d--;
3751     unsigned long s_val = *s;
3752     // Swap words in a longword on little endian machines.
3753 #ifdef VM_LITTLE_ENDIAN
3754      s_val = (s_val << 32) | (s_val >> 32);
3755 #endif
3756     *d = s_val;
3757     s++;
3758   }
3759 }
3760 
3761 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3762                                         jint len, jlong inv,
3763                                         jint *m_ints) {
3764   len = len & 0x7fffFFFF; // C2 does not respect int to long conversion for stub calls.
3765   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3766   int longwords = len/2;
3767 
3768   // Make very sure we don't use so much space that the stack might
3769   // overflow. 512 jints corresponds to an 16384-bit integer and
3770   // will use here a total of 8k bytes of stack space.
3771   int divisor = sizeof(unsigned long) * 4;
3772   guarantee(longwords <= 8192 / divisor, "must be");
3773   int total_allocation = longwords * sizeof (unsigned long) * 4;
3774   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3775 
3776   // Local scratch arrays
3777   unsigned long
3778     *a = scratch + 0 * longwords,
3779     *b = scratch + 1 * longwords,
3780     *n = scratch + 2 * longwords,
3781     *m = scratch + 3 * longwords;
3782 
3783   reverse_words((unsigned long *)a_ints, a, longwords);
3784   reverse_words((unsigned long *)b_ints, b, longwords);
3785   reverse_words((unsigned long *)n_ints, n, longwords);
3786 
3787   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
3788 
3789   reverse_words(m, (unsigned long *)m_ints, longwords);
3790 }
3791 
3792 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3793                                       jint len, jlong inv,
3794                                       jint *m_ints) {
3795   len = len & 0x7fffFFFF; // C2 does not respect int to long conversion for stub calls.
3796   assert(len % 2 == 0, "array length in montgomery_square must be even");
3797   int longwords = len/2;
3798 
3799   // Make very sure we don't use so much space that the stack might
3800   // overflow. 512 jints corresponds to an 16384-bit integer and
3801   // will use here a total of 6k bytes of stack space.
3802   int divisor = sizeof(unsigned long) * 3;
3803   guarantee(longwords <= (8192 / divisor), "must be");
3804   int total_allocation = longwords * sizeof (unsigned long) * 3;
3805   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3806 
3807   // Local scratch arrays
3808   unsigned long
3809     *a = scratch + 0 * longwords,
3810     *n = scratch + 1 * longwords,
3811     *m = scratch + 2 * longwords;
3812 
3813   reverse_words((unsigned long *)a_ints, a, longwords);
3814   reverse_words((unsigned long *)n_ints, n, longwords);
3815 
3816   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3817     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
3818   } else {
3819     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
3820   }
3821 
3822   reverse_words(m, (unsigned long *)m_ints, longwords);
3823 }
3824 
3825 #if INCLUDE_JFR
3826 
3827 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
3828 // It returns a jobject handle to the event writer.
3829 // The handle is dereferenced and the return value is the event writer oop.
3830 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() {
3831   const char* name = SharedRuntime::stub_name(StubId::shared_jfr_write_checkpoint_id);
3832   CodeBuffer code(name, 512, 64);
3833   MacroAssembler* masm = new MacroAssembler(&code);
3834 
3835   Register tmp1 = R10_ARG8;
3836   Register tmp2 = R9_ARG7;
3837 
3838   int framesize = frame::native_abi_reg_args_size / VMRegImpl::stack_slot_size;
3839   address start = __ pc();
3840   __ mflr(tmp1);
3841   __ std(tmp1, _abi0(lr), R1_SP);  // save return pc
3842   __ push_frame_reg_args(0, tmp1);
3843   int frame_complete = __ pc() - start;
3844   __ set_last_Java_frame(R1_SP, noreg);
3845   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), R16_thread);
3846   address calls_return_pc = __ last_calls_return_pc();
3847   __ reset_last_Java_frame();
3848   // The handle is dereferenced through a load barrier.
3849   __ resolve_global_jobject(R3_RET, tmp1, tmp2, MacroAssembler::PRESERVATION_NONE);
3850   __ pop_frame();
3851   __ ld(tmp1, _abi0(lr), R1_SP);
3852   __ mtlr(tmp1);
3853   __ blr();
3854 
3855   OopMapSet* oop_maps = new OopMapSet();
3856   OopMap* map = new OopMap(framesize, 0);
3857   oop_maps->add_gc_map(calls_return_pc - start, map);
3858 
3859   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
3860     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
3861                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3862                                   oop_maps, false);
3863   return stub;
3864 }
3865 
3866 // For c2: call to return a leased buffer.
3867 RuntimeStub* SharedRuntime::generate_jfr_return_lease() {
3868   const char* name = SharedRuntime::stub_name(StubId::shared_jfr_return_lease_id);
3869   CodeBuffer code(name, 512, 64);
3870   MacroAssembler* masm = new MacroAssembler(&code);
3871 
3872   Register tmp1 = R10_ARG8;
3873   Register tmp2 = R9_ARG7;
3874 
3875   int framesize = frame::native_abi_reg_args_size / VMRegImpl::stack_slot_size;
3876   address start = __ pc();
3877   __ mflr(tmp1);
3878   __ std(tmp1, _abi0(lr), R1_SP);  // save return pc
3879   __ push_frame_reg_args(0, tmp1);
3880   int frame_complete = __ pc() - start;
3881   __ set_last_Java_frame(R1_SP, noreg);
3882   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), R16_thread);
3883   address calls_return_pc = __ last_calls_return_pc();
3884   __ reset_last_Java_frame();
3885   __ pop_frame();
3886   __ ld(tmp1, _abi0(lr), R1_SP);
3887   __ mtlr(tmp1);
3888   __ blr();
3889 
3890   OopMapSet* oop_maps = new OopMapSet();
3891   OopMap* map = new OopMap(framesize, 0);
3892   oop_maps->add_gc_map(calls_return_pc - start, map);
3893 
3894   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
3895     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
3896                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3897                                   oop_maps, false);
3898   return stub;
3899 }
3900 
3901 #endif // INCLUDE_JFR