1 /*
   2  * Copyright (c) 2014, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2015, 2023 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "interpreter/bytecodeHistogram.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "interpreter/interp_masm.hpp"
  35 #include "interpreter/templateInterpreterGenerator.hpp"
  36 #include "interpreter/templateTable.hpp"
  37 #include "oops/arrayOop.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/methodCounters.hpp"
  40 #include "oops/methodData.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/resolvedIndyEntry.hpp"
  43 #include "oops/resolvedMethodEntry.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/jvmtiThreadState.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/frame.inline.hpp"
  49 #include "runtime/jniHandles.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/synchronizer.hpp"
  53 #include "runtime/timer.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "runtime/vm_version.hpp"
  56 #include "utilities/debug.hpp"
  57 #include "utilities/macros.hpp"
  58 
  59 #undef __
  60 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  61 
  62 // Size of interpreter code.  Increase if too small.  Interpreter will
  63 // fail with a guarantee ("not enough space for interpreter generation");
  64 // if too small.
  65 // Run with +PrintInterpreter to get the VM to print out the size.
  66 // Max size with JVMTI
  67 int TemplateInterpreter::InterpreterCodeSize = 256*K;
  68 
  69 #ifdef PRODUCT
  70 #define BLOCK_COMMENT(str) /* nothing */
  71 #else
  72 #define BLOCK_COMMENT(str) __ block_comment(str)
  73 #endif
  74 
  75 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  76 
  77 //-----------------------------------------------------------------------------
  78 
  79 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  80   // Slow_signature handler that respects the PPC C calling conventions.
  81   //
  82   // We get called by the native entry code with our output register
  83   // area == 8. First we call InterpreterRuntime::get_result_handler
  84   // to copy the pointer to the signature string temporarily to the
  85   // first C-argument and to return the result_handler in
  86   // R3_RET. Since native_entry will copy the jni-pointer to the
  87   // first C-argument slot later on, it is OK to occupy this slot
  88   // temporarily. Then we copy the argument list on the java
  89   // expression stack into native varargs format on the native stack
  90   // and load arguments into argument registers. Integer arguments in
  91   // the varargs vector will be sign-extended to 8 bytes.
  92   //
  93   // On entry:
  94   //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
  95   //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
  96   //     this method
  97   //   R19_method
  98   //
  99   // On exit (just before return instruction):
 100   //   R3_RET            - contains the address of the result_handler.
 101   //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
 102   //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
 103   //                       ARGi contains this argument. Otherwise, ARGi is not updated.
 104   //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
 105 
 106   const int LogSizeOfTwoInstructions = 3;
 107 
 108   // FIXME: use Argument:: GL: Argument names different numbers!
 109   const int max_fp_register_arguments  = 13;
 110   const int max_int_register_arguments = 6;  // first 2 are reserved
 111 
 112   const Register arg_java       = R21_tmp1;
 113   const Register arg_c          = R22_tmp2;
 114   const Register signature      = R23_tmp3;  // is string
 115   const Register sig_byte       = R24_tmp4;
 116   const Register fpcnt          = R25_tmp5;
 117   const Register argcnt         = R26_tmp6;
 118   const Register intSlot        = R27_tmp7;
 119   const Register target_sp      = R28_tmp8;
 120   const FloatRegister floatSlot = F0;
 121 
 122   address entry = __ function_entry();
 123 
 124   __ save_LR_CR(R0);
 125   __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 126   // We use target_sp for storing arguments in the C frame.
 127   __ mr(target_sp, R1_SP);
 128   __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
 129 
 130   __ mr(arg_java, R3_ARG1);
 131 
 132   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
 133 
 134   // Signature is in R3_RET. Signature is callee saved.
 135   __ mr(signature, R3_RET);
 136 
 137   // Get the result handler.
 138   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
 139 
 140   {
 141     Label L;
 142     // test if static
 143     // _access_flags._flags must be at offset 0.
 144     // TODO PPC port: requires change in shared code.
 145     //assert(in_bytes(AccessFlags::flags_offset()) == 0,
 146     //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
 147     // _access_flags must be a 32 bit value.
 148     assert(sizeof(AccessFlags) == 4, "wrong size");
 149     __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
 150     // testbit with condition register.
 151     __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
 152     __ btrue(CCR0, L);
 153     // For non-static functions, pass "this" in R4_ARG2 and copy it
 154     // to 2nd C-arg slot.
 155     // We need to box the Java object here, so we use arg_java
 156     // (address of current Java stack slot) as argument and don't
 157     // dereference it as in case of ints, floats, etc.
 158     __ mr(R4_ARG2, arg_java);
 159     __ addi(arg_java, arg_java, -BytesPerWord);
 160     __ std(R4_ARG2, _abi0(carg_2), target_sp);
 161     __ bind(L);
 162   }
 163 
 164   // Will be incremented directly after loop_start. argcnt=0
 165   // corresponds to 3rd C argument.
 166   __ li(argcnt, -1);
 167   // arg_c points to 3rd C argument
 168   __ addi(arg_c, target_sp, _abi0(carg_3));
 169   // no floating-point args parsed so far
 170   __ li(fpcnt, 0);
 171 
 172   Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
 173   Label loop_start, loop_end;
 174   Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
 175 
 176   // signature points to '(' at entry
 177 #ifdef ASSERT
 178   __ lbz(sig_byte, 0, signature);
 179   __ cmplwi(CCR0, sig_byte, '(');
 180   __ bne(CCR0, do_dontreachhere);
 181 #endif
 182 
 183   __ bind(loop_start);
 184 
 185   __ addi(argcnt, argcnt, 1);
 186   __ lbzu(sig_byte, 1, signature);
 187 
 188   __ cmplwi(CCR0, sig_byte, ')'); // end of signature
 189   __ beq(CCR0, loop_end);
 190 
 191   __ cmplwi(CCR0, sig_byte, 'B'); // byte
 192   __ beq(CCR0, do_int);
 193 
 194   __ cmplwi(CCR0, sig_byte, 'C'); // char
 195   __ beq(CCR0, do_int);
 196 
 197   __ cmplwi(CCR0, sig_byte, 'D'); // double
 198   __ beq(CCR0, do_double);
 199 
 200   __ cmplwi(CCR0, sig_byte, 'F'); // float
 201   __ beq(CCR0, do_float);
 202 
 203   __ cmplwi(CCR0, sig_byte, 'I'); // int
 204   __ beq(CCR0, do_int);
 205 
 206   __ cmplwi(CCR0, sig_byte, 'J'); // long
 207   __ beq(CCR0, do_long);
 208 
 209   __ cmplwi(CCR0, sig_byte, 'S'); // short
 210   __ beq(CCR0, do_int);
 211 
 212   __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
 213   __ beq(CCR0, do_int);
 214 
 215   __ cmplwi(CCR0, sig_byte, 'L'); // object
 216   __ beq(CCR0, do_object);
 217 
 218   __ cmplwi(CCR0, sig_byte, '['); // array
 219   __ beq(CCR0, do_array);
 220 
 221   //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
 222   //  __ beq(CCR0, do_void);
 223 
 224   __ bind(do_dontreachhere);
 225 
 226   __ unimplemented("ShouldNotReachHere in slow_signature_handler");
 227 
 228   __ bind(do_array);
 229 
 230   {
 231     Label start_skip, end_skip;
 232 
 233     __ bind(start_skip);
 234     __ lbzu(sig_byte, 1, signature);
 235     __ cmplwi(CCR0, sig_byte, '[');
 236     __ beq(CCR0, start_skip); // skip further brackets
 237     __ cmplwi(CCR0, sig_byte, '9');
 238     __ bgt(CCR0, end_skip);   // no optional size
 239     __ cmplwi(CCR0, sig_byte, '0');
 240     __ bge(CCR0, start_skip); // skip optional size
 241     __ bind(end_skip);
 242 
 243     __ cmplwi(CCR0, sig_byte, 'L');
 244     __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
 245     __ b(do_boxed);          // otherwise, go directly to do_boxed
 246   }
 247 
 248   __ bind(do_object);
 249   {
 250     Label L;
 251     __ bind(L);
 252     __ lbzu(sig_byte, 1, signature);
 253     __ cmplwi(CCR0, sig_byte, ';');
 254     __ bne(CCR0, L);
 255    }
 256   // Need to box the Java object here, so we use arg_java (address of
 257   // current Java stack slot) as argument and don't dereference it as
 258   // in case of ints, floats, etc.
 259   Label do_null;
 260   __ bind(do_boxed);
 261   __ ld(R0,0, arg_java);
 262   __ cmpdi(CCR0, R0, 0);
 263   __ li(intSlot,0);
 264   __ beq(CCR0, do_null);
 265   __ mr(intSlot, arg_java);
 266   __ bind(do_null);
 267   __ std(intSlot, 0, arg_c);
 268   __ addi(arg_java, arg_java, -BytesPerWord);
 269   __ addi(arg_c, arg_c, BytesPerWord);
 270   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 271   __ blt(CCR0, move_intSlot_to_ARG);
 272   __ b(loop_start);
 273 
 274   __ bind(do_int);
 275   __ lwa(intSlot, 0, arg_java);
 276   __ std(intSlot, 0, arg_c);
 277   __ addi(arg_java, arg_java, -BytesPerWord);
 278   __ addi(arg_c, arg_c, BytesPerWord);
 279   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 280   __ blt(CCR0, move_intSlot_to_ARG);
 281   __ b(loop_start);
 282 
 283   __ bind(do_long);
 284   __ ld(intSlot, -BytesPerWord, arg_java);
 285   __ std(intSlot, 0, arg_c);
 286   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 287   __ addi(arg_c, arg_c, BytesPerWord);
 288   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 289   __ blt(CCR0, move_intSlot_to_ARG);
 290   __ b(loop_start);
 291 
 292   __ bind(do_float);
 293   __ lfs(floatSlot, 0, arg_java);
 294   __ stfs(floatSlot, Argument::float_on_stack_offset_in_bytes_c, arg_c);
 295   __ addi(arg_java, arg_java, -BytesPerWord);
 296   __ addi(arg_c, arg_c, BytesPerWord);
 297   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 298   __ blt(CCR0, move_floatSlot_to_FARG);
 299   __ b(loop_start);
 300 
 301   __ bind(do_double);
 302   __ lfd(floatSlot, - BytesPerWord, arg_java);
 303   __ stfd(floatSlot, 0, arg_c);
 304   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 305   __ addi(arg_c, arg_c, BytesPerWord);
 306   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 307   __ blt(CCR0, move_floatSlot_to_FARG);
 308   __ b(loop_start);
 309 
 310   __ bind(loop_end);
 311 
 312   __ pop_frame();
 313   __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 314   __ restore_LR_CR(R0);
 315 
 316   __ blr();
 317 
 318   Label move_int_arg, move_float_arg;
 319   __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 320   __ mr(R5_ARG3, intSlot);  __ b(loop_start);
 321   __ mr(R6_ARG4, intSlot);  __ b(loop_start);
 322   __ mr(R7_ARG5, intSlot);  __ b(loop_start);
 323   __ mr(R8_ARG6, intSlot);  __ b(loop_start);
 324   __ mr(R9_ARG7, intSlot);  __ b(loop_start);
 325   __ mr(R10_ARG8, intSlot); __ b(loop_start);
 326 
 327   __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 328   __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
 329   __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
 330   __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
 331   __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
 332   __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
 333   __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
 334   __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
 335   __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
 336   __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
 337   __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
 338   __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
 339   __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
 340   __ fmr(F13_ARG13, floatSlot); __ b(loop_start);
 341 
 342   __ bind(move_intSlot_to_ARG);
 343   __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
 344   __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
 345   __ add(R11_scratch1, R0, R11_scratch1);
 346   __ mtctr(R11_scratch1/*branch_target*/);
 347   __ bctr();
 348   __ bind(move_floatSlot_to_FARG);
 349   __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
 350   __ addi(fpcnt, fpcnt, 1);
 351   __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
 352   __ add(R11_scratch1, R0, R11_scratch1);
 353   __ mtctr(R11_scratch1/*branch_target*/);
 354   __ bctr();
 355 
 356   return entry;
 357 }
 358 
 359 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 360   //
 361   // Registers alive
 362   //   R3_RET
 363   //   LR
 364   //
 365   // Registers updated
 366   //   R3_RET
 367   //
 368 
 369   Label done;
 370   address entry = __ pc();
 371 
 372   switch (type) {
 373   case T_BOOLEAN:
 374     // convert !=0 to 1
 375     __ neg(R0, R3_RET);
 376     __ orr(R0, R3_RET, R0);
 377     __ srwi(R3_RET, R0, 31);
 378     break;
 379   case T_BYTE:
 380      // sign extend 8 bits
 381      __ extsb(R3_RET, R3_RET);
 382      break;
 383   case T_CHAR:
 384      // zero extend 16 bits
 385      __ clrldi(R3_RET, R3_RET, 48);
 386      break;
 387   case T_SHORT:
 388      // sign extend 16 bits
 389      __ extsh(R3_RET, R3_RET);
 390      break;
 391   case T_INT:
 392      // sign extend 32 bits
 393      __ extsw(R3_RET, R3_RET);
 394      break;
 395   case T_LONG:
 396      break;
 397   case T_OBJECT:
 398     // JNIHandles::resolve result.
 399     __ resolve_jobject(R3_RET, R11_scratch1, R31, MacroAssembler::PRESERVATION_FRAME_LR); // kills R31
 400     break;
 401   case T_FLOAT:
 402      break;
 403   case T_DOUBLE:
 404      break;
 405   case T_VOID:
 406      break;
 407   default: ShouldNotReachHere();
 408   }
 409 
 410   BIND(done);
 411   __ blr();
 412 
 413   return entry;
 414 }
 415 
 416 // Abstract method entry.
 417 //
 418 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 419   address entry = __ pc();
 420 
 421   //
 422   // Registers alive
 423   //   R16_thread     - JavaThread*
 424   //   R19_method     - callee's method (method to be invoked)
 425   //   R1_SP          - SP prepared such that caller's outgoing args are near top
 426   //   LR             - return address to caller
 427   //
 428   // Stack layout at this point:
 429   //
 430   //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
 431   //           alignment (optional)
 432   //           [outgoing Java arguments]
 433   //           ...
 434   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
 435   //            ...
 436   //
 437 
 438   // Can't use call_VM here because we have not set up a new
 439   // interpreter state. Make the call to the vm and make it look like
 440   // our caller set up the JavaFrameAnchor.
 441   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
 442 
 443   // Push a new C frame and save LR.
 444   __ save_LR_CR(R0);
 445   __ push_frame_reg_args(0, R11_scratch1);
 446 
 447   // This is not a leaf but we have a JavaFrameAnchor now and we will
 448   // check (create) exceptions afterward so this is ok.
 449   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
 450                   R16_thread, R19_method);
 451 
 452   // Pop the C frame and restore LR.
 453   __ pop_frame();
 454   __ restore_LR_CR(R0);
 455 
 456   // Reset JavaFrameAnchor from call_VM_leaf above.
 457   __ reset_last_Java_frame();
 458 
 459   // We don't know our caller, so jump to the general forward exception stub,
 460   // which will also pop our full frame off. Satisfy the interface of
 461   // SharedRuntime::generate_forward_exception()
 462   __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
 463   __ mtctr(R11_scratch1);
 464   __ bctr();
 465 
 466   return entry;
 467 }
 468 
 469 // Interpreter intrinsic for WeakReference.get().
 470 // 1. Don't push a full blown frame and go on dispatching, but fetch the value
 471 //    into R8 and return quickly
 472 // 2. If G1 is active we *must* execute this intrinsic for corrrectness:
 473 //    It contains a GC barrier which puts the reference into the satb buffer
 474 //    to indicate that someone holds a strong reference to the object the
 475 //    weak ref points to!
 476 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 477   // Code: _aload_0, _getfield, _areturn
 478   // parameter size = 1
 479   //
 480   // The code that gets generated by this routine is split into 2 parts:
 481   //    1. the "intrinsified" code for G1 (or any SATB based GC),
 482   //    2. the slow path - which is an expansion of the regular method entry.
 483   //
 484   // Notes:
 485   // * In the G1 code we do not check whether we need to block for
 486   //   a safepoint. If G1 is enabled then we must execute the specialized
 487   //   code for Reference.get (except when the Reference object is null)
 488   //   so that we can log the value in the referent field with an SATB
 489   //   update buffer.
 490   //   If the code for the getfield template is modified so that the
 491   //   G1 pre-barrier code is executed when the current method is
 492   //   Reference.get() then going through the normal method entry
 493   //   will be fine.
 494   // * The G1 code can, however, check the receiver object (the instance
 495   //   of java.lang.Reference) and jump to the slow path if null. If the
 496   //   Reference object is null then we obviously cannot fetch the referent
 497   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 498   //   regular method entry code to generate the NPE.
 499   //
 500 
 501   address entry = __ pc();
 502 
 503   const int referent_offset = java_lang_ref_Reference::referent_offset();
 504 
 505   Label slow_path;
 506 
 507   // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
 508 
 509   // In the G1 code we don't check if we need to reach a safepoint. We
 510   // continue and the thread will safepoint at the next bytecode dispatch.
 511 
 512   // If the receiver is null then it is OK to jump to the slow path.
 513   __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
 514 
 515   // Check if receiver == nullptr and go the slow path.
 516   __ cmpdi(CCR0, R3_RET, 0);
 517   __ beq(CCR0, slow_path);
 518 
 519   __ load_heap_oop(R3_RET, referent_offset, R3_RET,
 520                    /* non-volatile temp */ R31, R11_scratch1,
 521                    MacroAssembler::PRESERVATION_FRAME_LR,
 522                    ON_WEAK_OOP_REF);
 523 
 524   // Generate the G1 pre-barrier code to log the value of
 525   // the referent field in an SATB buffer. Note with
 526   // these parameters the pre-barrier does not generate
 527   // the load of the previous value.
 528 
 529   // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
 530   __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
 531 
 532   __ blr();
 533 
 534   __ bind(slow_path);
 535   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
 536   return entry;
 537 }
 538 
 539 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 540   address entry = __ pc();
 541 
 542   // Expression stack must be empty before entering the VM if an
 543   // exception happened.
 544   __ empty_expression_stack();
 545   // Throw exception.
 546   __ call_VM(noreg,
 547              CAST_FROM_FN_PTR(address,
 548                               InterpreterRuntime::throw_StackOverflowError));
 549   return entry;
 550 }
 551 
 552 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
 553   address entry = __ pc();
 554   __ empty_expression_stack();
 555   // R4_ARG2 already contains the array.
 556   // Index is in R17_tos.
 557   __ mr(R5_ARG3, R17_tos);
 558   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R4_ARG2, R5_ARG3);
 559   return entry;
 560 }
 561 
 562 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 563   address entry = __ pc();
 564   // Expression stack must be empty before entering the VM if an
 565   // exception happened.
 566   __ empty_expression_stack();
 567 
 568   // Load exception object.
 569   // Thread will be loaded to R3_ARG1.
 570   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
 571 #ifdef ASSERT
 572   // Above call must not return here since exception pending.
 573   __ should_not_reach_here();
 574 #endif
 575   return entry;
 576 }
 577 
 578 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 579   address entry = __ pc();
 580   //__ untested("generate_exception_handler_common");
 581   Register Rexception = R17_tos;
 582 
 583   // Expression stack must be empty before entering the VM if an exception happened.
 584   __ empty_expression_stack();
 585 
 586   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
 587   if (pass_oop) {
 588     __ mr(R5_ARG3, Rexception);
 589     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception));
 590   } else {
 591     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
 592     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception));
 593   }
 594 
 595   // Throw exception.
 596   __ mr(R3_ARG1, Rexception);
 597   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
 598   __ mtctr(R11_scratch1);
 599   __ bctr();
 600 
 601   return entry;
 602 }
 603 
 604 // This entry is returned to when a call returns to the interpreter.
 605 // When we arrive here, we expect that the callee stack frame is already popped.
 606 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 607   address entry = __ pc();
 608 
 609   // Move the value out of the return register back to the TOS cache of current frame.
 610   switch (state) {
 611     case ltos:
 612     case btos:
 613     case ztos:
 614     case ctos:
 615     case stos:
 616     case atos:
 617     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
 618     case ftos:
 619     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 620     case vtos: break;                           // Nothing to do, this was a void return.
 621     default  : ShouldNotReachHere();
 622   }
 623 
 624   __ restore_interpreter_state(R11_scratch1, false /*bcp_and_mdx_only*/, true /*restore_top_frame_sp*/);
 625 
 626   // Compiled code destroys templateTableBase, reload.
 627   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
 628 
 629   if (state == atos) {
 630     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
 631   }
 632 
 633   const Register cache = R11_scratch1;
 634   const Register size  = R12_scratch2;
 635   if (index_size == sizeof(u4)) {
 636     __ load_resolved_indy_entry(cache, size /* tmp */);
 637     __ lhz(size, in_bytes(ResolvedIndyEntry::num_parameters_offset()), cache);
 638   } else {
 639     assert(index_size == sizeof(u2), "Can only be u2");
 640     __ load_method_entry(cache, size /* tmp */);
 641     __ lhz(size, in_bytes(ResolvedMethodEntry::num_parameters_offset()), cache);
 642   }
 643   __ sldi(size, size, Interpreter::logStackElementSize);
 644   __ add(R15_esp, R15_esp, size);
 645 
 646  __ check_and_handle_popframe(R11_scratch1);
 647  __ check_and_handle_earlyret(R11_scratch1);
 648 
 649   __ dispatch_next(state, step);
 650   return entry;
 651 }
 652 
 653 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) {
 654   address entry = __ pc();
 655   // If state != vtos, we're returning from a native method, which put it's result
 656   // into the result register. So move the value out of the return register back
 657   // to the TOS cache of current frame.
 658 
 659   switch (state) {
 660     case ltos:
 661     case btos:
 662     case ztos:
 663     case ctos:
 664     case stos:
 665     case atos:
 666     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
 667     case ftos:
 668     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 669     case vtos: break;                           // Nothing to do, this was a void return.
 670     default  : ShouldNotReachHere();
 671   }
 672 
 673   // Load LcpoolCache @@@ should be already set!
 674   __ get_constant_pool_cache(R27_constPoolCache);
 675 
 676   // Handle a pending exception, fall through if none.
 677   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
 678 
 679   // Start executing bytecodes.
 680   if (continuation == nullptr) {
 681     __ dispatch_next(state, step);
 682   } else {
 683     __ jump_to_entry(continuation, R11_scratch1);
 684   }
 685 
 686   return entry;
 687 }
 688 
 689 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 690   address entry = __ pc();
 691 
 692   __ push(state);
 693   __ push_cont_fastpath();
 694   __ call_VM(noreg, runtime_entry);
 695   __ pop_cont_fastpath();
 696   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 697 
 698   return entry;
 699 }
 700 
 701 address TemplateInterpreterGenerator::generate_cont_preempt_rerun_interpreter_adapter() {
 702   return nullptr;
 703 }
 704 
 705 
 706 // Helpers for commoning out cases in the various type of method entries.
 707 
 708 // Increment invocation count & check for overflow.
 709 //
 710 // Note: checking for negative value instead of overflow
 711 //       so we have a 'sticky' overflow test.
 712 //
 713 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) {
 714   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
 715   Register Rscratch1   = R11_scratch1;
 716   Register Rscratch2   = R12_scratch2;
 717   Register R3_counters = R3_ARG1;
 718   Label done;
 719 
 720   const int increment = InvocationCounter::count_increment;
 721   Label no_mdo;
 722   if (ProfileInterpreter) {
 723     const Register Rmdo = R3_counters;
 724     __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
 725     __ cmpdi(CCR0, Rmdo, 0);
 726     __ beq(CCR0, no_mdo);
 727 
 728     // Increment invocation counter in the MDO.
 729     const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 730     __ lwz(Rscratch2, mdo_ic_offs, Rmdo);
 731     __ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo);
 732     __ addi(Rscratch2, Rscratch2, increment);
 733     __ stw(Rscratch2, mdo_ic_offs, Rmdo);
 734     __ and_(Rscratch1, Rscratch2, Rscratch1);
 735     __ bne(CCR0, done);
 736     __ b(*overflow);
 737   }
 738 
 739   // Increment counter in MethodCounters*.
 740   const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 741   __ bind(no_mdo);
 742   __ get_method_counters(R19_method, R3_counters, done);
 743   __ lwz(Rscratch2, mo_ic_offs, R3_counters);
 744   __ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters);
 745   __ addi(Rscratch2, Rscratch2, increment);
 746   __ stw(Rscratch2, mo_ic_offs, R3_counters);
 747   __ and_(Rscratch1, Rscratch2, Rscratch1);
 748   __ beq(CCR0, *overflow);
 749 
 750   __ bind(done);
 751 }
 752 
 753 // Generate code to initiate compilation on invocation counter overflow.
 754 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
 755   // Generate code to initiate compilation on the counter overflow.
 756 
 757   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
 758   // which indicates if the counter overflow occurs at a backwards branch (null bcp)
 759   // We pass zero in.
 760   // The call returns the address of the verified entry point for the method or null
 761   // if the compilation did not complete (either went background or bailed out).
 762   //
 763   // Unlike the C++ interpreter above: Check exceptions!
 764   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
 765   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
 766 
 767   __ li(R4_ARG2, 0);
 768   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
 769 
 770   // Returns verified_entry_point or null.
 771   // We ignore it in any case.
 772   __ b(continue_entry);
 773 }
 774 
 775 // See if we've got enough room on the stack for locals plus overhead below
 776 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 777 // without going through the signal handler, i.e., reserved and yellow zones
 778 // will not be made usable. The shadow zone must suffice to handle the
 779 // overflow.
 780 //
 781 // Kills Rmem_frame_size, Rscratch1.
 782 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
 783   Label done;
 784   assert_different_registers(Rmem_frame_size, Rscratch1);
 785 
 786   BLOCK_COMMENT("stack_overflow_check_with_compare {");
 787   __ sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
 788   __ ld(Rscratch1, thread_(stack_overflow_limit));
 789   __ cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
 790   __ bgt(CCR0/*is_stack_overflow*/, done);
 791 
 792   // The stack overflows. Load target address of the runtime stub and call it.
 793   assert(StubRoutines::throw_StackOverflowError_entry() != nullptr, "generated in wrong order");
 794   __ load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
 795   __ mtctr(Rscratch1);
 796   // Restore caller_sp (c2i adapter may exist, but no shrinking of interpreted caller frame).
 797 #ifdef ASSERT
 798   Label frame_not_shrunk;
 799   __ cmpld(CCR0, R1_SP, R21_sender_SP);
 800   __ ble(CCR0, frame_not_shrunk);
 801   __ stop("frame shrunk");
 802   __ bind(frame_not_shrunk);
 803   __ ld(Rscratch1, 0, R1_SP);
 804   __ ld(R0, 0, R21_sender_SP);
 805   __ cmpd(CCR0, R0, Rscratch1);
 806   __ asm_assert_eq("backlink");
 807 #endif // ASSERT
 808   __ mr(R1_SP, R21_sender_SP);
 809   __ bctr();
 810 
 811   __ align(32, 12);
 812   __ bind(done);
 813   BLOCK_COMMENT("} stack_overflow_check_with_compare");
 814 }
 815 
 816 // Lock the current method, interpreter register window must be set up!
 817 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
 818   const Register Robj_to_lock = Rscratch2;
 819 
 820   {
 821     if (!flags_preloaded) {
 822       __ lwz(Rflags, method_(access_flags));
 823     }
 824 
 825 #ifdef ASSERT
 826     // Check if methods needs synchronization.
 827     {
 828       Label Lok;
 829       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
 830       __ btrue(CCR0,Lok);
 831       __ stop("method doesn't need synchronization");
 832       __ bind(Lok);
 833     }
 834 #endif // ASSERT
 835   }
 836 
 837   // Get synchronization object to Rscratch2.
 838   {
 839     Label Lstatic;
 840     Label Ldone;
 841 
 842     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
 843     __ btrue(CCR0, Lstatic);
 844 
 845     // Non-static case: load receiver obj from stack and we're done.
 846     __ ld(Robj_to_lock, R18_locals);
 847     __ b(Ldone);
 848 
 849     __ bind(Lstatic); // Static case: Lock the java mirror
 850     // Load mirror from interpreter frame.
 851     __ ld(Robj_to_lock, _abi0(callers_sp), R1_SP);
 852     __ ld(Robj_to_lock, _ijava_state_neg(mirror), Robj_to_lock);
 853 
 854     __ bind(Ldone);
 855     __ verify_oop(Robj_to_lock);
 856   }
 857 
 858   // Got the oop to lock => execute!
 859   __ add_monitor_to_stack(true, Rscratch1, R0);
 860 
 861   __ std(Robj_to_lock, in_bytes(BasicObjectLock::obj_offset()), R26_monitor);
 862   __ lock_object(R26_monitor, Robj_to_lock);
 863 }
 864 
 865 // Generate a fixed interpreter frame for pure interpreter
 866 // and I2N native transition frames.
 867 //
 868 // Before (stack grows downwards):
 869 //
 870 //         |  ...         |
 871 //         |------------- |
 872 //         |  java arg0   |
 873 //         |  ...         |
 874 //         |  java argn   |
 875 //         |              |   <-   R15_esp
 876 //         |              |
 877 //         |--------------|
 878 //         | abi_112      |
 879 //         |              |   <-   R1_SP
 880 //         |==============|
 881 //
 882 //
 883 // After:
 884 //
 885 //         |  ...         |
 886 //         |  java arg0   |<-   R18_locals
 887 //         |  ...         |
 888 //         |  java argn   |
 889 //         |--------------|
 890 //         |              |
 891 //         |  java locals |
 892 //         |              |
 893 //         |--------------|
 894 //         |  abi_48      |
 895 //         |==============|
 896 //         |              |
 897 //         |   istate     |
 898 //         |              |
 899 //         |--------------|
 900 //         |   monitor    |<-   R26_monitor
 901 //         |--------------|
 902 //         |              |<-   R15_esp
 903 //         | expression   |
 904 //         | stack        |
 905 //         |              |
 906 //         |--------------|
 907 //         |              |
 908 //         | abi_112      |<-   R1_SP
 909 //         |==============|
 910 //
 911 // The top most frame needs an abi space of 112 bytes. This space is needed,
 912 // since we call to c. The c function may spill their arguments to the caller
 913 // frame. When we call to java, we don't need these spill slots. In order to save
 914 // space on the stack, we resize the caller. However, java locals reside in
 915 // the caller frame and the frame has to be increased. The frame_size for the
 916 // current frame was calculated based on max_stack as size for the expression
 917 // stack. At the call, just a part of the expression stack might be used.
 918 // We don't want to waste this space and cut the frame back accordingly.
 919 // The resulting amount for resizing is calculated as follows:
 920 // resize =   (number_of_locals - number_of_arguments) * slot_size
 921 //          + (R1_SP - R15_esp) + 48
 922 //
 923 // The size for the callee frame is calculated:
 924 // framesize = 112 + max_stack + monitor + state_size
 925 //
 926 // maxstack:   Max number of slots on the expression stack, loaded from the method.
 927 // monitor:    We statically reserve room for one monitor object.
 928 // state_size: We save the current state of the interpreter to this area.
 929 //
 930 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
 931   Register Rparent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
 932            Rtop_frame_size      = R7_ARG5,
 933            Rconst_method        = R8_ARG6,
 934            Rconst_pool          = R9_ARG7,
 935            Rmirror              = R10_ARG8;
 936 
 937   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, Rparent_frame_resize, Rtop_frame_size,
 938                              Rconst_method, Rconst_pool);
 939 
 940   __ ld(Rconst_method, method_(const));
 941   __ lhz(Rsize_of_parameters /* number of params */,
 942          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
 943   if (native_call) {
 944     // If we're calling a native method, we reserve space for the worst-case signature
 945     // handler varargs vector, which is max(Argument::n_int_register_parameters_c, parameter_count+2).
 946     // We add two slots to the parameter_count, one for the jni
 947     // environment and one for a possible native mirror.
 948     Label skip_native_calculate_max_stack;
 949     __ addi(Rtop_frame_size, Rsize_of_parameters, 2);
 950     __ cmpwi(CCR0, Rtop_frame_size, Argument::n_int_register_parameters_c);
 951     __ bge(CCR0, skip_native_calculate_max_stack);
 952     __ li(Rtop_frame_size, Argument::n_int_register_parameters_c);
 953     __ bind(skip_native_calculate_max_stack);
 954     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
 955     __ sldi(Rtop_frame_size, Rtop_frame_size, Interpreter::logStackElementSize);
 956     __ sub(Rparent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
 957     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
 958   } else {
 959     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
 960     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
 961     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
 962     __ lhz(Rtop_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
 963     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
 964     __ sub(Rparent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
 965     __ sldi(Rtop_frame_size, Rtop_frame_size, Interpreter::logStackElementSize);
 966     __ add(Rparent_frame_resize, Rparent_frame_resize, R11_scratch1);
 967   }
 968 
 969   // Compute top frame size.
 970   __ addi(Rtop_frame_size, Rtop_frame_size, frame::top_ijava_frame_abi_size + frame::ijava_state_size);
 971 
 972   // Cut back area between esp and max_stack.
 973   __ addi(Rparent_frame_resize, Rparent_frame_resize, frame::parent_ijava_frame_abi_size - Interpreter::stackElementSize);
 974 
 975   __ round_to(Rtop_frame_size, frame::alignment_in_bytes);
 976   __ round_to(Rparent_frame_resize, frame::alignment_in_bytes);
 977   // Rparent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
 978   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
 979 
 980   if (!native_call) {
 981     // Stack overflow check.
 982     // Native calls don't need the stack size check since they have no
 983     // expression stack and the arguments are already on the stack and
 984     // we only add a handful of words to the stack.
 985     __ add(R11_scratch1, Rparent_frame_resize, Rtop_frame_size);
 986     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
 987   }
 988 
 989   // Set up interpreter state registers.
 990 
 991   __ add(R18_locals, R15_esp, Rsize_of_parameters);
 992   __ ld(Rconst_pool, in_bytes(ConstMethod::constants_offset()), Rconst_method);
 993   __ ld(R27_constPoolCache, ConstantPool::cache_offset(), Rconst_pool);
 994 
 995   // Set method data pointer.
 996   if (ProfileInterpreter) {
 997     Label zero_continue;
 998     __ ld(R28_mdx, method_(method_data));
 999     __ cmpdi(CCR0, R28_mdx, 0);
1000     __ beq(CCR0, zero_continue);
1001     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1002     __ bind(zero_continue);
1003   }
1004 
1005   if (native_call) {
1006     __ li(R14_bcp, 0); // Must initialize.
1007   } else {
1008     __ addi(R14_bcp, Rconst_method, in_bytes(ConstMethod::codes_offset()));
1009   }
1010 
1011   // Resize parent frame.
1012   __ mflr(R12_scratch2);
1013   __ neg(Rparent_frame_resize, Rparent_frame_resize);
1014   __ resize_frame(Rparent_frame_resize, R11_scratch1);
1015   __ std(R12_scratch2, _abi0(lr), R1_SP);
1016 
1017   // Get mirror and store it in the frame as GC root for this Method*.
1018   __ ld(Rmirror, ConstantPool::pool_holder_offset(), Rconst_pool);
1019   __ ld(Rmirror, in_bytes(Klass::java_mirror_offset()), Rmirror);
1020   __ resolve_oop_handle(Rmirror, R11_scratch1, R12_scratch2, MacroAssembler::PRESERVATION_FRAME_LR_GP_REGS);
1021 
1022   __ addi(R26_monitor, R1_SP, -frame::ijava_state_size);
1023   __ addi(R15_esp, R26_monitor, -Interpreter::stackElementSize);
1024 
1025   // Store values.
1026   __ std(R19_method, _ijava_state_neg(method), R1_SP);
1027   __ std(Rmirror, _ijava_state_neg(mirror), R1_SP);
1028   __ sub(R12_scratch2, R18_locals, R1_SP);
1029   __ srdi(R12_scratch2, R12_scratch2, Interpreter::logStackElementSize);
1030   // Store relativized R18_locals, see frame::interpreter_frame_locals().
1031   __ std(R12_scratch2, _ijava_state_neg(locals), R1_SP);
1032   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
1033 
1034   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
1035   // be found in the frame after save_interpreter_state is done. This is always true
1036   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
1037   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
1038   // (Enhanced Stack Trace).
1039   // The signal handler does not save the interpreter state into the frame.
1040 
1041   // We have to initialize some of these frame slots for native calls (accessed by GC).
1042   // Also initialize them for non-native calls for better tool support (even though
1043   // you may not get the most recent version as described above).
1044   __ li(R0, 0);
1045   __ li(R12_scratch2, -(frame::ijava_state_size / wordSize));
1046   __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
1047   __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
1048   if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
1049   __ sub(R12_scratch2, R15_esp, R1_SP);
1050   __ sradi(R12_scratch2, R12_scratch2, Interpreter::logStackElementSize);
1051   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
1052   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP); // only used for native_call
1053 
1054   // Store sender's SP and this frame's top SP.
1055   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
1056   __ neg(R12_scratch2, Rtop_frame_size);
1057   __ sradi(R12_scratch2, R12_scratch2, Interpreter::logStackElementSize);
1058   // Store relativized top_frame_sp
1059   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
1060 
1061   // Push top frame.
1062   __ push_frame(Rtop_frame_size, R11_scratch1);
1063 }
1064 
1065 // End of helpers
1066 
1067 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1068 
1069   // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1070   bool use_instruction = false;
1071   address runtime_entry = nullptr;
1072   int num_args = 1;
1073   bool double_precision = true;
1074 
1075   // PPC64 specific:
1076   switch (kind) {
1077     case Interpreter::java_lang_math_sqrt: use_instruction = VM_Version::has_fsqrt(); break;
1078     case Interpreter::java_lang_math_abs:  use_instruction = true; break;
1079     case Interpreter::java_lang_math_fmaF:
1080     case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1081     default: break; // Fall back to runtime call.
1082   }
1083 
1084   switch (kind) {
1085     case Interpreter::java_lang_math_sin  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);   break;
1086     case Interpreter::java_lang_math_cos  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);   break;
1087     case Interpreter::java_lang_math_tan  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);   break;
1088     case Interpreter::java_lang_math_abs  : /* run interpreted */ break;
1089     case Interpreter::java_lang_math_sqrt : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);  break;
1090     case Interpreter::java_lang_math_log  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);   break;
1091     case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1092     case Interpreter::java_lang_math_pow  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1093     case Interpreter::java_lang_math_exp  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);   break;
1094     case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1095     case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1096     default: ShouldNotReachHere();
1097   }
1098 
1099   // Use normal entry if neither instruction nor runtime call is used.
1100   if (!use_instruction && runtime_entry == nullptr) return nullptr;
1101 
1102   address entry = __ pc();
1103 
1104   // Load arguments
1105   assert(num_args <= 13, "passed in registers");
1106   if (double_precision) {
1107     int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1108     for (int i = 0; i < num_args; ++i) {
1109       __ lfd(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1110       offset -= 2 * Interpreter::stackElementSize;
1111     }
1112   } else {
1113     int offset = num_args * Interpreter::stackElementSize;
1114     for (int i = 0; i < num_args; ++i) {
1115       __ lfs(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1116       offset -= Interpreter::stackElementSize;
1117     }
1118   }
1119 
1120   if (use_instruction) {
1121     switch (kind) {
1122       case Interpreter::java_lang_math_sqrt: __ fsqrt(F1_RET, F1);          break;
1123       case Interpreter::java_lang_math_abs:  __ fabs(F1_RET, F1);           break;
1124       case Interpreter::java_lang_math_fmaF: __ fmadds(F1_RET, F1, F2, F3); break;
1125       case Interpreter::java_lang_math_fmaD: __ fmadd(F1_RET, F1, F2, F3);  break;
1126       default: ShouldNotReachHere();
1127     }
1128   } else {
1129     // Comment: Can use tail call if the unextended frame is always C ABI compliant:
1130     //__ load_const_optimized(R12_scratch2, runtime_entry, R0);
1131     //__ call_c_and_return_to_caller(R12_scratch2);
1132 
1133     // Push a new C frame and save LR.
1134     __ save_LR_CR(R0);
1135     __ push_frame_reg_args(0, R11_scratch1);
1136 
1137     __ call_VM_leaf(runtime_entry);
1138 
1139     // Pop the C frame and restore LR.
1140     __ pop_frame();
1141     __ restore_LR_CR(R0);
1142   }
1143 
1144   // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1145   __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1146   __ blr();
1147 
1148   __ flush();
1149 
1150   return entry;
1151 }
1152 
1153 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1154   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1155   // Note that we do the banging after the frame is setup, since the exception
1156   // handling code expects to find a valid interpreter frame on the stack.
1157   // Doing the banging earlier fails if the caller frame is not an interpreter
1158   // frame.
1159   // (Also, the exception throwing code expects to unlock any synchronized
1160   // method receiever, so do the banging after locking the receiver.)
1161 
1162   // Bang each page in the shadow zone. We can't assume it's been done for
1163   // an interpreter frame with greater than a page of locals, so each page
1164   // needs to be checked.  Only true for non-native.
1165   const size_t page_size = os::vm_page_size();
1166   const int n_shadow_pages = StackOverflow::stack_shadow_zone_size() / page_size;
1167   const int start_page = native_call ? n_shadow_pages : 1;
1168   BLOCK_COMMENT("bang_stack_shadow_pages:");
1169   for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1170     __ bang_stack_with_offset(pages*page_size);
1171   }
1172 }
1173 
1174 // Interpreter stub for calling a native method. (asm interpreter)
1175 // This sets up a somewhat different looking stack for calling the
1176 // native method than the typical interpreter frame setup.
1177 //
1178 // On entry:
1179 //   R19_method    - method
1180 //   R16_thread    - JavaThread*
1181 //   R15_esp       - intptr_t* sender tos
1182 //
1183 //   abstract stack (grows up)
1184 //     [  IJava (caller of JNI callee)  ]  <-- ASP
1185 //        ...
1186 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1187 
1188   address entry = __ pc();
1189 
1190   const bool inc_counter = UseCompiler || CountCompiledCalls;
1191 
1192   // -----------------------------------------------------------------------------
1193   // Allocate a new frame that represents the native callee (i2n frame).
1194   // This is not a full-blown interpreter frame, but in particular, the
1195   // following registers are valid after this:
1196   // - R19_method
1197   // - R18_local (points to start of arguments to native function)
1198   //
1199   //   abstract stack (grows up)
1200   //     [  IJava (caller of JNI callee)  ]  <-- ASP
1201   //        ...
1202 
1203   const Register signature_handler_fd = R11_scratch1;
1204   const Register pending_exception    = R0;
1205   const Register result_handler_addr  = R31;
1206   const Register native_method_fd     = R11_scratch1;
1207   const Register access_flags         = R22_tmp2;
1208   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
1209   const Register sync_state           = R12_scratch2;
1210   const Register sync_state_addr      = sync_state;   // Address is dead after use.
1211   const Register suspend_flags        = R11_scratch1;
1212 
1213   //=============================================================================
1214   // Allocate new frame and initialize interpreter state.
1215 
1216   Label exception_return;
1217   Label exception_return_sync_check;
1218   Label stack_overflow_return;
1219 
1220   // Generate new interpreter state and jump to stack_overflow_return in case of
1221   // a stack overflow.
1222   //generate_compute_interpreter_state(stack_overflow_return);
1223 
1224   Register size_of_parameters = R22_tmp2;
1225 
1226   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
1227 
1228   //=============================================================================
1229   // Increment invocation counter. On overflow, entry to JNI method
1230   // will be compiled.
1231   Label invocation_counter_overflow, continue_after_compile;
1232   if (inc_counter) {
1233     if (synchronized) {
1234       // Since at this point in the method invocation the exception handler
1235       // would try to exit the monitor of synchronized methods which hasn't
1236       // been entered yet, we set the thread local variable
1237       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1238       // runtime, exception handling i.e. unlock_if_synchronized_method will
1239       // check this thread local flag.
1240       // This flag has two effects, one is to force an unwind in the topmost
1241       // interpreter frame and not perform an unlock while doing so.
1242       __ li(R0, 1);
1243       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1244     }
1245     generate_counter_incr(&invocation_counter_overflow);
1246 
1247     BIND(continue_after_compile);
1248   }
1249 
1250   bang_stack_shadow_pages(true);
1251 
1252   if (inc_counter) {
1253     // Reset the _do_not_unlock_if_synchronized flag.
1254     if (synchronized) {
1255       __ li(R0, 0);
1256       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1257     }
1258   }
1259 
1260   // access_flags = method->access_flags();
1261   // Load access flags.
1262   assert(access_flags->is_nonvolatile(),
1263          "access_flags must be in a non-volatile register");
1264   // Type check.
1265   assert(4 == sizeof(AccessFlags), "unexpected field size");
1266   __ lwz(access_flags, method_(access_flags));
1267 
1268   // We don't want to reload R19_method and access_flags after calls
1269   // to some helper functions.
1270   assert(R19_method->is_nonvolatile(),
1271          "R19_method must be a non-volatile register");
1272 
1273   // Check for synchronized methods. Must happen AFTER invocation counter
1274   // check, so method is not locked if counter overflows.
1275 
1276   if (synchronized) {
1277     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
1278 
1279     // Update monitor in state.
1280     __ ld(R11_scratch1, 0, R1_SP);
1281     __ sub(R12_scratch2, R26_monitor, R11_scratch1);
1282     __ sradi(R12_scratch2, R12_scratch2, Interpreter::logStackElementSize);
1283     __ std(R12_scratch2, _ijava_state_neg(monitors), R11_scratch1);
1284   }
1285 
1286   // jvmti/jvmpi support
1287   __ notify_method_entry();
1288 
1289   //=============================================================================
1290   // Get and call the signature handler.
1291 
1292   __ ld(signature_handler_fd, method_(signature_handler));
1293   Label call_signature_handler;
1294 
1295   __ cmpdi(CCR0, signature_handler_fd, 0);
1296   __ bne(CCR0, call_signature_handler);
1297 
1298   // Method has never been called. Either generate a specialized
1299   // handler or point to the slow one.
1300   //
1301   // Pass parameter 'false' to avoid exception check in call_VM.
1302   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
1303 
1304   // Check for an exception while looking up the target method. If we
1305   // incurred one, bail.
1306   __ ld(pending_exception, thread_(pending_exception));
1307   __ cmpdi(CCR0, pending_exception, 0);
1308   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
1309 
1310   // Reload signature handler, it may have been created/assigned in the meanwhile.
1311   __ ld(signature_handler_fd, method_(signature_handler));
1312   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
1313 
1314   BIND(call_signature_handler);
1315 
1316   // Before we call the signature handler we push a new frame to
1317   // protect the interpreter frame volatile registers when we return
1318   // from jni but before we can get back to Java.
1319 
1320   // First set the frame anchor while the SP/FP registers are
1321   // convenient and the slow signature handler can use this same frame
1322   // anchor.
1323 
1324   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1325   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
1326 
1327   // Now the interpreter frame (and its call chain) have been
1328   // invalidated and flushed. We are now protected against eager
1329   // being enabled in native code. Even if it goes eager the
1330   // registers will be reloaded as clean and we will invalidate after
1331   // the call so no spurious flush should be possible.
1332 
1333   // Call signature handler and pass locals address.
1334   //
1335   // Our signature handlers copy required arguments to the C stack
1336   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
1337   __ mr(R3_ARG1, R18_locals);
1338 #if !defined(ABI_ELFv2)
1339   __ ld(signature_handler_fd, 0, signature_handler_fd);
1340 #endif
1341 
1342   __ call_stub(signature_handler_fd);
1343 
1344   // Remove the register parameter varargs slots we allocated in
1345   // compute_interpreter_state. SP+16 ends up pointing to the ABI
1346   // outgoing argument area.
1347   //
1348   // Not needed on PPC64.
1349   //__ add(SP, SP, Argument::n_int_register_parameters_c*BytesPerWord);
1350 
1351   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
1352   // Save across call to native method.
1353   __ mr(result_handler_addr, R3_RET);
1354 
1355   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
1356 
1357   // Set up fixed parameters and call the native method.
1358   // If the method is static, get mirror into R4_ARG2.
1359   {
1360     Label method_is_not_static;
1361     // Access_flags is non-volatile and still, no need to restore it.
1362 
1363     // Restore access flags.
1364     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
1365     __ bfalse(CCR0, method_is_not_static);
1366 
1367     __ ld(R11_scratch1, _abi0(callers_sp), R1_SP);
1368     // Load mirror from interpreter frame.
1369     __ ld(R12_scratch2, _ijava_state_neg(mirror), R11_scratch1);
1370     // R4_ARG2 = &state->_oop_temp;
1371     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
1372     __ std(R12_scratch2/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
1373     BIND(method_is_not_static);
1374   }
1375 
1376   // At this point, arguments have been copied off the stack into
1377   // their JNI positions. Oops are boxed in-place on the stack, with
1378   // handles copied to arguments. The result handler address is in a
1379   // register.
1380 
1381   // Pass JNIEnv address as first parameter.
1382   __ addir(R3_ARG1, thread_(jni_environment));
1383 
1384   // Load the native_method entry before we change the thread state.
1385   __ ld(native_method_fd, method_(native_function));
1386 
1387   //=============================================================================
1388   // Transition from _thread_in_Java to _thread_in_native. As soon as
1389   // we make this change the safepoint code needs to be certain that
1390   // the last Java frame we established is good. The pc in that frame
1391   // just needs to be near here not an actual return address.
1392 
1393   // We use release_store_fence to update values like the thread state, where
1394   // we don't want the current thread to continue until all our prior memory
1395   // accesses (including the new thread state) are visible to other threads.
1396   __ li(R0, _thread_in_native);
1397   __ release();
1398 
1399   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
1400   __ stw(R0, thread_(thread_state));
1401 
1402   //=============================================================================
1403   // Call the native method. Argument registers must not have been
1404   // overwritten since "__ call_stub(signature_handler);" (except for
1405   // ARG1 and ARG2 for static methods).
1406   __ call_c(native_method_fd);
1407 
1408   __ li(R0, 0);
1409   __ ld(R11_scratch1, 0, R1_SP);
1410   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1411   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1412   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
1413 
1414   // Note: C++ interpreter needs the following here:
1415   // The frame_manager_lr field, which we use for setting the last
1416   // java frame, gets overwritten by the signature handler. Restore
1417   // it now.
1418   //__ get_PC_trash_LR(R11_scratch1);
1419   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
1420 
1421   // Because of GC R19_method may no longer be valid.
1422 
1423   // Block, if necessary, before resuming in _thread_in_Java state.
1424   // In order for GC to work, don't clear the last_Java_sp until after
1425   // blocking.
1426 
1427   //=============================================================================
1428   // Switch thread to "native transition" state before reading the
1429   // synchronization state. This additional state is necessary
1430   // because reading and testing the synchronization state is not
1431   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1432   // in _thread_in_native state, loads _not_synchronized and is
1433   // preempted. VM thread changes sync state to synchronizing and
1434   // suspends threads for GC. Thread A is resumed to finish this
1435   // native method, but doesn't block here since it didn't see any
1436   // synchronization in progress, and escapes.
1437 
1438   // We use release_store_fence to update values like the thread state, where
1439   // we don't want the current thread to continue until all our prior memory
1440   // accesses (including the new thread state) are visible to other threads.
1441   __ li(R0/*thread_state*/, _thread_in_native_trans);
1442   __ release();
1443   __ stw(R0/*thread_state*/, thread_(thread_state));
1444   if (!UseSystemMemoryBarrier) {
1445     __ fence();
1446   }
1447 
1448   // Now before we return to java we must look for a current safepoint
1449   // (a new safepoint can not start since we entered native_trans).
1450   // We must check here because a current safepoint could be modifying
1451   // the callers registers right this moment.
1452 
1453   // Acquire isn't strictly necessary here because of the fence, but
1454   // sync_state is declared to be volatile, so we do it anyway
1455   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
1456 
1457   Label do_safepoint, sync_check_done;
1458   // No synchronization in progress nor yet synchronized.
1459   __ safepoint_poll(do_safepoint, sync_state, true /* at_return */, false /* in_nmethod */);
1460 
1461   // Not suspended.
1462   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
1463   __ lwz(suspend_flags, thread_(suspend_flags));
1464   __ cmpwi(CCR1, suspend_flags, 0);
1465   __ beq(CCR1, sync_check_done);
1466 
1467   __ bind(do_safepoint);
1468   __ isync();
1469   // Block. We do the call directly and leave the current
1470   // last_Java_frame setup undisturbed. We must save any possible
1471   // native result across the call. No oop is present.
1472 
1473   __ mr(R3_ARG1, R16_thread);
1474 #if defined(ABI_ELFv2)
1475   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1476             relocInfo::none);
1477 #else
1478   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
1479             relocInfo::none);
1480 #endif
1481 
1482   __ bind(sync_check_done);
1483 
1484   //=============================================================================
1485   // <<<<<< Back in Interpreter Frame >>>>>
1486 
1487   // We are in thread_in_native_trans here and back in the normal
1488   // interpreter frame. We don't have to do anything special about
1489   // safepoints and we can switch to Java mode anytime we are ready.
1490 
1491   // Note: frame::interpreter_frame_result has a dependency on how the
1492   // method result is saved across the call to post_method_exit. For
1493   // native methods it assumes that the non-FPU/non-void result is
1494   // saved in _native_lresult and a FPU result in _native_fresult. If
1495   // this changes then the interpreter_frame_result implementation
1496   // will need to be updated too.
1497 
1498   // On PPC64, we have stored the result directly after the native call.
1499 
1500   //=============================================================================
1501   // Back in Java
1502 
1503   // We use release_store_fence to update values like the thread state, where
1504   // we don't want the current thread to continue until all our prior memory
1505   // accesses (including the new thread state) are visible to other threads.
1506   __ li(R0/*thread_state*/, _thread_in_Java);
1507   __ lwsync(); // Acquire safepoint and suspend state, release thread state.
1508   __ stw(R0/*thread_state*/, thread_(thread_state));
1509 
1510   if (CheckJNICalls) {
1511     // clear_pending_jni_exception_check
1512     __ load_const_optimized(R0, 0L);
1513     __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
1514   }
1515 
1516   __ reset_last_Java_frame();
1517 
1518   // Jvmdi/jvmpi support. Whether we've got an exception pending or
1519   // not, and whether unlocking throws an exception or not, we notify
1520   // on native method exit. If we do have an exception, we'll end up
1521   // in the caller's context to handle it, so if we don't do the
1522   // notify here, we'll drop it on the floor.
1523   __ notify_method_exit(true/*native method*/,
1524                         ilgl /*illegal state (not used for native methods)*/,
1525                         InterpreterMacroAssembler::NotifyJVMTI,
1526                         false /*check_exceptions*/);
1527 
1528   //=============================================================================
1529   // Handle exceptions
1530 
1531   if (synchronized) {
1532     __ unlock_object(R26_monitor); // Can also unlock methods.
1533   }
1534 
1535   // Reset active handles after returning from native.
1536   // thread->active_handles()->clear();
1537   __ ld(active_handles, thread_(active_handles));
1538   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
1539   __ li(R0, 0);
1540   __ stw(R0, in_bytes(JNIHandleBlock::top_offset()), active_handles);
1541 
1542   Label exception_return_sync_check_already_unlocked;
1543   __ ld(R0/*pending_exception*/, thread_(pending_exception));
1544   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
1545   __ bne(CCR0, exception_return_sync_check_already_unlocked);
1546 
1547   //-----------------------------------------------------------------------------
1548   // No exception pending.
1549 
1550   // Move native method result back into proper registers and return.
1551   // Invoke result handler (may unbox/promote).
1552   __ ld(R11_scratch1, 0, R1_SP);
1553   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1554   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1555   __ call_stub(result_handler_addr);
1556 
1557   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1558 
1559   // Must use the return pc which was loaded from the caller's frame
1560   // as the VM uses return-pc-patching for deoptimization.
1561   __ mtlr(R0);
1562   __ blr();
1563 
1564   //-----------------------------------------------------------------------------
1565   // An exception is pending. We call into the runtime only if the
1566   // caller was not interpreted. If it was interpreted the
1567   // interpreter will do the correct thing. If it isn't interpreted
1568   // (call stub/compiled code) we will change our return and continue.
1569 
1570   BIND(exception_return_sync_check);
1571 
1572   if (synchronized) {
1573     __ unlock_object(R26_monitor); // Can also unlock methods.
1574   }
1575   BIND(exception_return_sync_check_already_unlocked);
1576 
1577   const Register return_pc = R31;
1578 
1579   __ ld(return_pc, 0, R1_SP);
1580   __ ld(return_pc, _abi0(lr), return_pc);
1581 
1582   // Get the address of the exception handler.
1583   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1584                   R16_thread,
1585                   return_pc /* return pc */);
1586   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1587 
1588   // Load the PC of the exception handler into LR.
1589   __ mtlr(R3_RET);
1590 
1591   // Load exception into R3_ARG1 and clear pending exception in thread.
1592   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1593   __ li(R4_ARG2, 0);
1594   __ std(R4_ARG2, thread_(pending_exception));
1595 
1596   // Load the original return pc into R4_ARG2.
1597   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
1598 
1599   // Return to exception handler.
1600   __ blr();
1601 
1602   //=============================================================================
1603   // Counter overflow.
1604 
1605   if (inc_counter) {
1606     // Handle invocation counter overflow.
1607     __ bind(invocation_counter_overflow);
1608 
1609     generate_counter_overflow(continue_after_compile);
1610   }
1611 
1612   return entry;
1613 }
1614 
1615 // Generic interpreted method entry to (asm) interpreter.
1616 //
1617 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1618   bool inc_counter = UseCompiler || CountCompiledCalls;
1619   address entry = __ pc();
1620   // Generate the code to allocate the interpreter stack frame.
1621   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
1622            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
1623 
1624   // Does also a stack check to assure this frame fits on the stack.
1625   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
1626 
1627   // --------------------------------------------------------------------------
1628   // Zero out non-parameter locals.
1629   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
1630   // worth to ask the flag, just do it.
1631   Register Rslot_addr = R6_ARG4,
1632            Rnum       = R7_ARG5;
1633   Label Lno_locals, Lzero_loop;
1634 
1635   // Set up the zeroing loop.
1636   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
1637   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
1638   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
1639   __ beq(CCR0, Lno_locals);
1640   __ li(R0, 0);
1641   __ mtctr(Rnum);
1642 
1643   // The zero locals loop.
1644   __ bind(Lzero_loop);
1645   __ std(R0, 0, Rslot_addr);
1646   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
1647   __ bdnz(Lzero_loop);
1648 
1649   __ bind(Lno_locals);
1650 
1651   // --------------------------------------------------------------------------
1652   // Counter increment and overflow check.
1653   Label invocation_counter_overflow;
1654   Label continue_after_compile;
1655   if (inc_counter || ProfileInterpreter) {
1656 
1657     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
1658     if (synchronized) {
1659       // Since at this point in the method invocation the exception handler
1660       // would try to exit the monitor of synchronized methods which hasn't
1661       // been entered yet, we set the thread local variable
1662       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1663       // runtime, exception handling i.e. unlock_if_synchronized_method will
1664       // check this thread local flag.
1665       // This flag has two effects, one is to force an unwind in the topmost
1666       // interpreter frame and not perform an unlock while doing so.
1667       __ li(R0, 1);
1668       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1669     }
1670 
1671     // Argument and return type profiling.
1672     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
1673 
1674     // Increment invocation counter and check for overflow.
1675     if (inc_counter) {
1676       generate_counter_incr(&invocation_counter_overflow);
1677     }
1678 
1679     __ bind(continue_after_compile);
1680   }
1681 
1682   bang_stack_shadow_pages(false);
1683 
1684   if (inc_counter || ProfileInterpreter) {
1685     // Reset the _do_not_unlock_if_synchronized flag.
1686     if (synchronized) {
1687       __ li(R0, 0);
1688       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1689     }
1690   }
1691 
1692   // --------------------------------------------------------------------------
1693   // Locking of synchronized methods. Must happen AFTER invocation_counter
1694   // check and stack overflow check, so method is not locked if overflows.
1695   if (synchronized) {
1696     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
1697   }
1698 #ifdef ASSERT
1699   else {
1700     Label Lok;
1701     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1702     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
1703     __ asm_assert_eq("method needs synchronization");
1704     __ bind(Lok);
1705   }
1706 #endif // ASSERT
1707 
1708   // --------------------------------------------------------------------------
1709   // JVMTI support
1710   __ notify_method_entry();
1711 
1712   // --------------------------------------------------------------------------
1713   // Start executing instructions.
1714   __ dispatch_next(vtos);
1715 
1716   // --------------------------------------------------------------------------
1717   if (inc_counter) {
1718     // Handle invocation counter overflow.
1719     __ bind(invocation_counter_overflow);
1720     generate_counter_overflow(continue_after_compile);
1721   }
1722   return entry;
1723 }
1724 
1725 // CRC32 Intrinsics.
1726 //
1727 // Contract on scratch and work registers.
1728 // =======================================
1729 //
1730 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
1731 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
1732 // You can't rely on these registers across calls.
1733 //
1734 // The generators for CRC32_update and for CRC32_updateBytes use the
1735 // scratch/work register set internally, passing the work registers
1736 // as arguments to the MacroAssembler emitters as required.
1737 //
1738 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
1739 // Their contents is not constant but may change according to the requirements
1740 // of the emitted code.
1741 //
1742 // All other registers from the scratch/work register set are used "internally"
1743 // and contain garbage (i.e. unpredictable values) once blr() is reached.
1744 // Basically, only R3_RET contains a defined value which is the function result.
1745 //
1746 /**
1747  * Method entry for static native methods:
1748  *   int java.util.zip.CRC32.update(int crc, int b)
1749  */
1750 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1751   assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1752   address start = __ pc();  // Remember stub start address (is rtn value).
1753   Label slow_path;
1754 
1755   // Safepoint check
1756   const Register sync_state = R11_scratch1;
1757   __ safepoint_poll(slow_path, sync_state, false /* at_return */, false /* in_nmethod */);
1758 
1759   // We don't generate local frame and don't align stack because
1760   // we not even call stub code (we generate the code inline)
1761   // and there is no safepoint on this path.
1762 
1763   // Load java parameters.
1764   // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
1765   const Register argP    = R15_esp;
1766   const Register crc     = R3_ARG1;  // crc value
1767   const Register data    = R4_ARG2;
1768   const Register table   = R5_ARG3;  // address of crc32 table
1769 
1770   BLOCK_COMMENT("CRC32_update {");
1771 
1772   // Arguments are reversed on java expression stack
1773 #ifdef VM_LITTLE_ENDIAN
1774   int data_offs = 0+1*wordSize;      // (stack) address of byte value. Emitter expects address, not value.
1775                                      // Being passed as an int, the single byte is at offset +0.
1776 #else
1777   int data_offs = 3+1*wordSize;      // (stack) address of byte value. Emitter expects address, not value.
1778                                      // Being passed from java as an int, the single byte is at offset +3.
1779 #endif
1780   __ lwz(crc, 2*wordSize, argP);     // Current crc state, zero extend to 64 bit to have a clean register.
1781   __ lbz(data, data_offs, argP);     // Byte from buffer, zero-extended.
1782   __ load_const_optimized(table, StubRoutines::crc_table_addr(), R0);
1783   __ kernel_crc32_singleByteReg(crc, data, table, true);
1784 
1785   // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1786   __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1787   __ blr();
1788 
1789   // Generate a vanilla native entry as the slow path.
1790   BLOCK_COMMENT("} CRC32_update");
1791   BIND(slow_path);
1792   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1793   return start;
1794 }
1795 
1796 /**
1797  * Method entry for static native methods:
1798  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1799  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1800  */
1801 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1802   assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1803   address start = __ pc();  // Remember stub start address (is rtn value).
1804   Label slow_path;
1805 
1806   // Safepoint check
1807   const Register sync_state = R11_scratch1;
1808   __ safepoint_poll(slow_path, sync_state, false /* at_return */, false /* in_nmethod */);
1809 
1810   // We don't generate local frame and don't align stack because
1811   // we not even call stub code (we generate the code inline)
1812   // and there is no safepoint on this path.
1813 
1814   // Load parameters.
1815   // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1816   const Register argP    = R15_esp;
1817   const Register crc     = R3_ARG1;  // crc value
1818   const Register data    = R4_ARG2;  // address of java byte array
1819   const Register dataLen = R5_ARG3;  // source data len
1820   const Register tmp     = R11_scratch1;
1821 
1822   // Arguments are reversed on java expression stack.
1823   // Calculate address of start element.
1824   if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1825     BLOCK_COMMENT("CRC32_updateByteBuffer {");
1826     // crc     @ (SP + 5W) (32bit)
1827     // buf     @ (SP + 3W) (64bit ptr to long array)
1828     // off     @ (SP + 2W) (32bit)
1829     // dataLen @ (SP + 1W) (32bit)
1830     // data = buf + off
1831     __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1832     __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1833     __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1834     __ lwz( crc,     5*wordSize, argP);  // current crc state
1835     __ add( data, data, tmp);            // Add byte buffer offset.
1836   } else {                                                         // Used for "updateBytes update".
1837     BLOCK_COMMENT("CRC32_updateBytes {");
1838     // crc     @ (SP + 4W) (32bit)
1839     // buf     @ (SP + 3W) (64bit ptr to byte array)
1840     // off     @ (SP + 2W) (32bit)
1841     // dataLen @ (SP + 1W) (32bit)
1842     // data = buf + off + base_offset
1843     __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1844     __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1845     __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1846     __ add( data, data, tmp);            // add byte buffer offset
1847     __ lwz( crc,     4*wordSize, argP);  // current crc state
1848     __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1849   }
1850 
1851   __ crc32(crc, data, dataLen, R2, R6, R7, R8, R9, R10, R11, R12, false);
1852 
1853   // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1854   __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1855   __ blr();
1856 
1857   // Generate a vanilla native entry as the slow path.
1858   BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
1859   BIND(slow_path);
1860   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1861   return start;
1862 }
1863 
1864 
1865 /**
1866  * Method entry for intrinsic-candidate (non-native) methods:
1867  *   int java.util.zip.CRC32C.updateBytes(           int crc, byte[] b,  int off, int end)
1868  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end)
1869  * Unlike CRC32, CRC32C does not have any methods marked as native
1870  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1871  **/
1872 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1873   assert(UseCRC32CIntrinsics, "this intrinsic is not supported");
1874   address start = __ pc();  // Remember stub start address (is rtn value).
1875 
1876   // We don't generate local frame and don't align stack because
1877   // we not even call stub code (we generate the code inline)
1878   // and there is no safepoint on this path.
1879 
1880   // Load parameters.
1881   // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1882   const Register argP    = R15_esp;
1883   const Register crc     = R3_ARG1;  // crc value
1884   const Register data    = R4_ARG2;  // address of java byte array
1885   const Register dataLen = R5_ARG3;  // source data len
1886   const Register tmp     = R11_scratch1;
1887 
1888   // Arguments are reversed on java expression stack.
1889   // Calculate address of start element.
1890   if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateDirectByteBuffer".
1891     BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
1892     // crc     @ (SP + 5W) (32bit)
1893     // buf     @ (SP + 3W) (64bit ptr to long array)
1894     // off     @ (SP + 2W) (32bit)
1895     // dataLen @ (SP + 1W) (32bit)
1896     // data = buf + off
1897     __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1898     __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1899     __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1900     __ lwz( crc,     5*wordSize, argP);  // current crc state
1901     __ add( data, data, tmp);            // Add byte buffer offset.
1902     __ sub( dataLen, dataLen, tmp);      // (end_index - offset)
1903   } else {                                                         // Used for "updateBytes update".
1904     BLOCK_COMMENT("CRC32C_updateBytes {");
1905     // crc     @ (SP + 4W) (32bit)
1906     // buf     @ (SP + 3W) (64bit ptr to byte array)
1907     // off     @ (SP + 2W) (32bit)
1908     // dataLen @ (SP + 1W) (32bit)
1909     // data = buf + off + base_offset
1910     __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1911     __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1912     __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1913     __ add( data, data, tmp);            // add byte buffer offset
1914     __ sub( dataLen, dataLen, tmp);      // (end_index - offset)
1915     __ lwz( crc,     4*wordSize, argP);  // current crc state
1916     __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1917   }
1918 
1919   __ crc32(crc, data, dataLen, R2, R6, R7, R8, R9, R10, R11, R12, true);
1920 
1921   // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1922   __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1923   __ blr();
1924 
1925   BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
1926   return start;
1927 }
1928 
1929 // Not supported
1930 address TemplateInterpreterGenerator::generate_currentThread() { return nullptr; }
1931 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; }
1932 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; }
1933 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; }
1934 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; }
1935 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; }
1936 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; }
1937 
1938 // =============================================================================
1939 // Exceptions
1940 
1941 void TemplateInterpreterGenerator::generate_throw_exception() {
1942   Register Rexception    = R17_tos,
1943            Rcontinuation = R3_RET;
1944 
1945   // --------------------------------------------------------------------------
1946   // Entry point if an method returns with a pending exception (rethrow).
1947   Interpreter::_rethrow_exception_entry = __ pc();
1948   {
1949     __ restore_interpreter_state(R11_scratch1, false /*bcp_and_mdx_only*/, true /*restore_top_frame_sp*/);
1950 
1951     // Compiled code destroys templateTableBase, reload.
1952     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
1953   }
1954 
1955   // Entry point if a interpreted method throws an exception (throw).
1956   Interpreter::_throw_exception_entry = __ pc();
1957   {
1958     __ mr(Rexception, R3_RET);
1959 
1960     __ verify_oop(Rexception);
1961 
1962     // Expression stack must be empty before entering the VM in case of an exception.
1963     __ empty_expression_stack();
1964     // Find exception handler address and preserve exception oop.
1965     // Call C routine to find handler and jump to it.
1966     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
1967     __ mtctr(Rcontinuation);
1968     // Push exception for exception handler bytecodes.
1969     __ push_ptr(Rexception);
1970 
1971     // Jump to exception handler (may be remove activation entry!).
1972     __ bctr();
1973   }
1974 
1975   // If the exception is not handled in the current frame the frame is
1976   // removed and the exception is rethrown (i.e. exception
1977   // continuation is _rethrow_exception).
1978   //
1979   // Note: At this point the bci is still the bxi for the instruction
1980   // which caused the exception and the expression stack is
1981   // empty. Thus, for any VM calls at this point, GC will find a legal
1982   // oop map (with empty expression stack).
1983 
1984   // In current activation
1985   // tos: exception
1986   // bcp: exception bcp
1987 
1988   // --------------------------------------------------------------------------
1989   // JVMTI PopFrame support
1990 
1991   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1992   {
1993     // Set the popframe_processing bit in popframe_condition indicating that we are
1994     // currently handling popframe, so that call_VMs that may happen later do not
1995     // trigger new popframe handling cycles.
1996     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1997     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
1998     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1999 
2000     // Empty the expression stack, as in normal exception handling.
2001     __ empty_expression_stack();
2002     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
2003 
2004     // Check to see whether we are returning to a deoptimized frame.
2005     // (The PopFrame call ensures that the caller of the popped frame is
2006     // either interpreted or compiled and deoptimizes it if compiled.)
2007     // Note that we don't compare the return PC against the
2008     // deoptimization blob's unpack entry because of the presence of
2009     // adapter frames in C2.
2010     Label Lcaller_not_deoptimized;
2011     Register return_pc = R3_ARG1;
2012     __ ld(return_pc, 0, R1_SP);
2013     __ ld(return_pc, _abi0(lr), return_pc);
2014     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
2015     __ cmpdi(CCR0, R3_RET, 0);
2016     __ bne(CCR0, Lcaller_not_deoptimized);
2017 
2018     // The deoptimized case.
2019     // In this case, we can't call dispatch_next() after the frame is
2020     // popped, but instead must save the incoming arguments and restore
2021     // them after deoptimization has occurred.
2022     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
2023     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
2024     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
2025     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
2026     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
2027     // Save these arguments.
2028     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
2029 
2030     // Inform deoptimization that it is responsible for restoring these arguments.
2031     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
2032     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2033 
2034     // Return from the current method into the deoptimization blob. Will eventually
2035     // end up in the deopt interpreter entry, deoptimization prepared everything that
2036     // we will reexecute the call that called us.
2037     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
2038     __ mtlr(return_pc);
2039     __ pop_cont_fastpath();
2040     __ blr();
2041 
2042     // The non-deoptimized case.
2043     __ bind(Lcaller_not_deoptimized);
2044 
2045     // Clear the popframe condition flag.
2046     __ li(R0, 0);
2047     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2048 
2049     // Get out of the current method and re-execute the call that called us.
2050     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2051     __ pop_cont_fastpath();
2052     __ restore_interpreter_state(R11_scratch1, false /*bcp_and_mdx_only*/, true /*restore_top_frame_sp*/);
2053     if (ProfileInterpreter) {
2054       __ set_method_data_pointer_for_bcp();
2055       __ ld(R11_scratch1, 0, R1_SP);
2056       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
2057     }
2058 #if INCLUDE_JVMTI
2059     Label L_done;
2060 
2061     __ lbz(R11_scratch1, 0, R14_bcp);
2062     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
2063     __ bne(CCR0, L_done);
2064 
2065     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
2066     // Detect such a case in the InterpreterRuntime function and return the member name argument, or null.
2067     __ ld(R4_ARG2, 0, R18_locals);
2068     __ call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp);
2069 
2070     __ cmpdi(CCR0, R4_ARG2, 0);
2071     __ beq(CCR0, L_done);
2072     __ std(R4_ARG2, wordSize, R15_esp);
2073     __ bind(L_done);
2074 #endif // INCLUDE_JVMTI
2075     __ dispatch_next(vtos);
2076   }
2077   // end of JVMTI PopFrame support
2078 
2079   // --------------------------------------------------------------------------
2080   // Remove activation exception entry.
2081   // This is jumped to if an interpreted method can't handle an exception itself
2082   // (we come from the throw/rethrow exception entry above). We're going to call
2083   // into the VM to find the exception handler in the caller, pop the current
2084   // frame and return the handler we calculated.
2085   Interpreter::_remove_activation_entry = __ pc();
2086   {
2087     __ pop_ptr(Rexception);
2088     __ verify_oop(Rexception);
2089     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2090 
2091     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
2092     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
2093 
2094     __ get_vm_result(Rexception);
2095 
2096     // We are done with this activation frame; find out where to go next.
2097     // The continuation point will be an exception handler, which expects
2098     // the following registers set up:
2099     //
2100     // RET:  exception oop
2101     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
2102 
2103     Register return_pc = R31; // Needs to survive the runtime call.
2104     __ ld(return_pc, 0, R1_SP);
2105     __ ld(return_pc, _abi0(lr), return_pc);
2106     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
2107 
2108     // Remove the current activation.
2109     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2110     __ pop_cont_fastpath();
2111 
2112     __ mr(R4_ARG2, return_pc);
2113     __ mtlr(R3_RET);
2114     __ mr(R3_RET, Rexception);
2115     __ blr();
2116   }
2117 }
2118 
2119 // JVMTI ForceEarlyReturn support.
2120 // Returns "in the middle" of a method with a "fake" return value.
2121 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2122 
2123   Register Rscratch1 = R11_scratch1,
2124            Rscratch2 = R12_scratch2;
2125 
2126   address entry = __ pc();
2127   __ empty_expression_stack();
2128 
2129   __ load_earlyret_value(state, Rscratch1);
2130 
2131   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
2132   // Clear the earlyret state.
2133   __ li(R0, 0);
2134   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
2135 
2136   __ remove_activation(state, false, false);
2137   // Copied from TemplateTable::_return.
2138   // Restoration of lr done by remove_activation.
2139   switch (state) {
2140     // Narrow result if state is itos but result type is smaller.
2141     case btos:
2142     case ztos:
2143     case ctos:
2144     case stos:
2145     case itos: __ narrow(R17_tos); /* fall through */
2146     case ltos:
2147     case atos: __ mr(R3_RET, R17_tos); break;
2148     case ftos:
2149     case dtos: __ fmr(F1_RET, F15_ftos); break;
2150     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2151                // to get visible before the reference to the object gets stored anywhere.
2152                __ membar(Assembler::StoreStore); break;
2153     default  : ShouldNotReachHere();
2154   }
2155   __ blr();
2156 
2157   return entry;
2158 } // end of ForceEarlyReturn support
2159 
2160 //-----------------------------------------------------------------------------
2161 // Helper for vtos entry point generation
2162 
2163 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2164                                                          address& bep,
2165                                                          address& cep,
2166                                                          address& sep,
2167                                                          address& aep,
2168                                                          address& iep,
2169                                                          address& lep,
2170                                                          address& fep,
2171                                                          address& dep,
2172                                                          address& vep) {
2173   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2174   Label L;
2175 
2176   aep = __ pc();  __ push_ptr();  __ b(L);
2177   fep = __ pc();  __ push_f();    __ b(L);
2178   dep = __ pc();  __ push_d();    __ b(L);
2179   lep = __ pc();  __ push_l();    __ b(L);
2180   __ align(32, 12, 24); // align L
2181   bep = cep = sep =
2182   iep = __ pc();  __ push_i();
2183   vep = __ pc();
2184   __ bind(L);
2185   generate_and_dispatch(t);
2186 }
2187 
2188 //-----------------------------------------------------------------------------
2189 
2190 // Non-product code
2191 #ifndef PRODUCT
2192 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2193   //__ flush_bundle();
2194   address entry = __ pc();
2195 
2196   const char *bname = nullptr;
2197   uint tsize = 0;
2198   switch(state) {
2199   case ftos:
2200     bname = "trace_code_ftos {";
2201     tsize = 2;
2202     break;
2203   case btos:
2204     bname = "trace_code_btos {";
2205     tsize = 2;
2206     break;
2207   case ztos:
2208     bname = "trace_code_ztos {";
2209     tsize = 2;
2210     break;
2211   case ctos:
2212     bname = "trace_code_ctos {";
2213     tsize = 2;
2214     break;
2215   case stos:
2216     bname = "trace_code_stos {";
2217     tsize = 2;
2218     break;
2219   case itos:
2220     bname = "trace_code_itos {";
2221     tsize = 2;
2222     break;
2223   case ltos:
2224     bname = "trace_code_ltos {";
2225     tsize = 3;
2226     break;
2227   case atos:
2228     bname = "trace_code_atos {";
2229     tsize = 2;
2230     break;
2231   case vtos:
2232     // Note: In case of vtos, the topmost of stack value could be a int or doubl
2233     // In case of a double (2 slots) we won't see the 2nd stack value.
2234     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
2235     bname = "trace_code_vtos {";
2236     tsize = 2;
2237 
2238     break;
2239   case dtos:
2240     bname = "trace_code_dtos {";
2241     tsize = 3;
2242     break;
2243   default:
2244     ShouldNotReachHere();
2245   }
2246   BLOCK_COMMENT(bname);
2247 
2248   // Support short-cut for TraceBytecodesAt.
2249   // Don't call into the VM if we don't want to trace to speed up things.
2250   Label Lskip_vm_call;
2251   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2252     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
2253     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2254     __ ld(R11_scratch1, offs1, R11_scratch1);
2255     __ lwa(R12_scratch2, offs2, R12_scratch2);
2256     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2257     __ blt(CCR0, Lskip_vm_call);
2258   }
2259 
2260   __ push(state);
2261   // Load 2 topmost expression stack values.
2262   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
2263   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
2264   __ mflr(R31);
2265   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
2266   __ mtlr(R31);
2267   __ pop(state);
2268 
2269   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2270     __ bind(Lskip_vm_call);
2271   }
2272   __ blr();
2273   BLOCK_COMMENT("} trace_code");
2274   return entry;
2275 }
2276 
2277 void TemplateInterpreterGenerator::count_bytecode() {
2278   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
2279   __ lwz(R12_scratch2, offs, R11_scratch1);
2280   __ addi(R12_scratch2, R12_scratch2, 1);
2281   __ stw(R12_scratch2, offs, R11_scratch1);
2282 }
2283 
2284 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2285   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
2286   __ lwz(R12_scratch2, offs, R11_scratch1);
2287   __ addi(R12_scratch2, R12_scratch2, 1);
2288   __ stw(R12_scratch2, offs, R11_scratch1);
2289 }
2290 
2291 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2292   const Register addr = R11_scratch1,
2293                  tmp  = R12_scratch2;
2294   // Get index, shift out old bytecode, bring in new bytecode, and store it.
2295   // _index = (_index >> log2_number_of_codes) |
2296   //          (bytecode << log2_number_of_codes);
2297   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
2298   __ lwz(tmp, offs1, addr);
2299   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
2300   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2301   __ stw(tmp, offs1, addr);
2302 
2303   // Bump bucket contents.
2304   // _counters[_index] ++;
2305   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
2306   __ sldi(tmp, tmp, LogBytesPerInt);
2307   __ add(addr, tmp, addr);
2308   __ lwz(tmp, offs2, addr);
2309   __ addi(tmp, tmp, 1);
2310   __ stw(tmp, offs2, addr);
2311 }
2312 
2313 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2314   // Call a little run-time stub to avoid blow-up for each bytecode.
2315   // The run-time runtime saves the right registers, depending on
2316   // the tosca in-state for the given template.
2317 
2318   assert(Interpreter::trace_code(t->tos_in()) != nullptr,
2319          "entry must have been generated");
2320 
2321   // Note: we destroy LR here.
2322   __ bl(Interpreter::trace_code(t->tos_in()));
2323 }
2324 
2325 void TemplateInterpreterGenerator::stop_interpreter_at() {
2326   Label L;
2327   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
2328   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2329   __ ld(R11_scratch1, offs1, R11_scratch1);
2330   __ lwa(R12_scratch2, offs2, R12_scratch2);
2331   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2332   __ bne(CCR0, L);
2333   __ illtrap();
2334   __ bind(L);
2335 }
2336 
2337 #endif // !PRODUCT