1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "c1/c1_LIR.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "classfile/systemDictionary.hpp" 32 #include "gc/shared/barrierSetAssembler.hpp" 33 #include "gc/shared/collectedHeap.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "runtime/basicLock.hpp" 38 #include "runtime/os.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/stubRoutines.hpp" 41 42 void C1_MacroAssembler::float_cmp(bool is_float, int unordered_result, 43 FloatRegister freg0, FloatRegister freg1, 44 Register result) { 45 if (is_float) { 46 float_compare(result, freg0, freg1, unordered_result); 47 } else { 48 double_compare(result, freg0, freg1, unordered_result); 49 } 50 } 51 52 int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register temp, Label& slow_case) { 53 const int aligned_mask = BytesPerWord - 1; 54 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 55 assert_different_registers(hdr, obj, disp_hdr, temp, t0, t1); 56 int null_check_offset = -1; 57 58 verify_oop(obj); 59 60 // save object being locked into the BasicObjectLock 61 sd(obj, Address(disp_hdr, BasicObjectLock::obj_offset())); 62 63 null_check_offset = offset(); 64 65 if (DiagnoseSyncOnValueBasedClasses != 0) { 66 load_klass(hdr, obj); 67 lbu(hdr, Address(hdr, Klass::misc_flags_offset())); 68 test_bit(temp, hdr, exact_log2(KlassFlags::_misc_is_value_based_class)); 69 bnez(temp, slow_case, true /* is_far */); 70 } 71 72 if (LockingMode == LM_LIGHTWEIGHT) { 73 lightweight_lock(disp_hdr, obj, hdr, temp, t1, slow_case); 74 } else if (LockingMode == LM_LEGACY) { 75 Label done; 76 // Load object header 77 ld(hdr, Address(obj, hdr_offset)); 78 // and mark it as unlocked 79 ori(hdr, hdr, markWord::unlocked_value); 80 // save unlocked object header into the displaced header location on the stack 81 sd(hdr, Address(disp_hdr, 0)); 82 // test if object header is still the same (i.e. unlocked), and if so, store the 83 // displaced header address in the object header - if it is not the same, get the 84 // object header instead 85 la(temp, Address(obj, hdr_offset)); 86 // if the object header was the same, we're done 87 cmpxchgptr(hdr, disp_hdr, temp, t1, done, /*fallthough*/nullptr); 88 // if the object header was not the same, it is now in the hdr register 89 // => test if it is a stack pointer into the same stack (recursive locking), i.e.: 90 // 91 // 1) (hdr & aligned_mask) == 0 92 // 2) sp <= hdr 93 // 3) hdr <= sp + page_size 94 // 95 // these 3 tests can be done by evaluating the following expression: 96 // 97 // (hdr -sp) & (aligned_mask - page_size) 98 // 99 // assuming both the stack pointer and page_size have their least 100 // significant 2 bits cleared and page_size is a power of 2 101 sub(hdr, hdr, sp); 102 mv(temp, aligned_mask - (int)os::vm_page_size()); 103 andr(hdr, hdr, temp); 104 // for recursive locking, the result is zero => save it in the displaced header 105 // location (null in the displaced hdr location indicates recursive locking) 106 sd(hdr, Address(disp_hdr, 0)); 107 // otherwise we don't care about the result and handle locking via runtime call 108 bnez(hdr, slow_case, /* is_far */ true); 109 110 // done 111 bind(done); 112 inc_held_monitor_count(); 113 } 114 115 return null_check_offset; 116 } 117 118 void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Register temp, Label& slow_case) { 119 const int aligned_mask = BytesPerWord - 1; 120 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 121 assert_different_registers(hdr, obj, disp_hdr, temp, t0, t1); 122 Label done; 123 124 if (LockingMode != LM_LIGHTWEIGHT) { 125 // load displaced header 126 ld(hdr, Address(disp_hdr, 0)); 127 // if the loaded hdr is null we had recursive locking 128 // if we had recursive locking, we are done 129 beqz(hdr, done); 130 } 131 132 // load object 133 ld(obj, Address(disp_hdr, BasicObjectLock::obj_offset())); 134 verify_oop(obj); 135 136 if (LockingMode == LM_LIGHTWEIGHT) { 137 lightweight_unlock(obj, hdr, temp, t1, slow_case); 138 } else if (LockingMode == LM_LEGACY) { 139 // test if object header is pointing to the displaced header, and if so, restore 140 // the displaced header in the object - if the object header is not pointing to 141 // the displaced header, get the object header instead 142 // if the object header was not pointing to the displaced header, 143 // we do unlocking via runtime call 144 if (hdr_offset) { 145 la(temp, Address(obj, hdr_offset)); 146 cmpxchgptr(disp_hdr, hdr, temp, t1, done, &slow_case); 147 } else { 148 cmpxchgptr(disp_hdr, hdr, obj, t1, done, &slow_case); 149 } 150 151 // done 152 bind(done); 153 dec_held_monitor_count(); 154 } 155 } 156 157 // Defines obj, preserves var_size_in_bytes 158 void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register tmp1, Register tmp2, Label& slow_case) { 159 if (UseTLAB) { 160 tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, tmp1, tmp2, slow_case, /* is_far */ true); 161 } else { 162 j(slow_case); 163 } 164 } 165 166 void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register tmp1, Register tmp2) { 167 assert_different_registers(obj, klass, len, tmp1, tmp2); 168 // This assumes that all prototype bits fitr in an int32_t 169 mv(tmp1, (int32_t)(intptr_t)markWord::prototype().value()); 170 sd(tmp1, Address(obj, oopDesc::mark_offset_in_bytes())); 171 172 if (UseCompressedClassPointers) { // Take care not to kill klass 173 encode_klass_not_null(tmp1, klass, tmp2); 174 sw(tmp1, Address(obj, oopDesc::klass_offset_in_bytes())); 175 } else { 176 sd(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 177 } 178 179 if (len->is_valid()) { 180 sw(len, Address(obj, arrayOopDesc::length_offset_in_bytes())); 181 int base_offset = arrayOopDesc::length_offset_in_bytes() + BytesPerInt; 182 if (!is_aligned(base_offset, BytesPerWord)) { 183 assert(is_aligned(base_offset, BytesPerInt), "must be 4-byte aligned"); 184 // Clear gap/first 4 bytes following the length field. 185 sw(zr, Address(obj, base_offset)); 186 } 187 } else if (UseCompressedClassPointers) { 188 store_klass_gap(obj, zr); 189 } 190 } 191 192 // preserves obj, destroys len_in_bytes 193 void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register tmp) { 194 assert(hdr_size_in_bytes >= 0, "header size must be positive or 0"); 195 Label done; 196 197 // len_in_bytes is positive and ptr sized 198 sub(len_in_bytes, len_in_bytes, hdr_size_in_bytes); 199 beqz(len_in_bytes, done); 200 201 // Preserve obj 202 if (hdr_size_in_bytes) { 203 add(obj, obj, hdr_size_in_bytes); 204 } 205 zero_memory(obj, len_in_bytes, tmp); 206 if (hdr_size_in_bytes) { 207 sub(obj, obj, hdr_size_in_bytes); 208 } 209 210 bind(done); 211 } 212 213 void C1_MacroAssembler::allocate_object(Register obj, Register tmp1, Register tmp2, int header_size, int object_size, Register klass, Label& slow_case) { 214 assert_different_registers(obj, tmp1, tmp2); 215 assert(header_size >= 0 && object_size >= header_size, "illegal sizes"); 216 217 try_allocate(obj, noreg, object_size * BytesPerWord, tmp1, tmp2, slow_case); 218 219 initialize_object(obj, klass, noreg, object_size * HeapWordSize, tmp1, tmp2, UseTLAB); 220 } 221 222 void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register tmp1, Register tmp2, bool is_tlab_allocated) { 223 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, 224 "con_size_in_bytes is not multiple of alignment"); 225 const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; 226 227 initialize_header(obj, klass, noreg, tmp1, tmp2); 228 229 if (!(UseTLAB && ZeroTLAB && is_tlab_allocated)) { 230 // clear rest of allocated space 231 const Register index = tmp2; 232 // 16: multiplier for threshold 233 const int threshold = 16 * BytesPerWord; // approximate break even point for code size (see comments below) 234 if (var_size_in_bytes != noreg) { 235 mv(index, var_size_in_bytes); 236 initialize_body(obj, index, hdr_size_in_bytes, tmp1); 237 } else if (con_size_in_bytes <= threshold) { 238 // use explicit null stores 239 int i = hdr_size_in_bytes; 240 if (i < con_size_in_bytes && (con_size_in_bytes % (2 * BytesPerWord))) { // 2: multiplier for BytesPerWord 241 sd(zr, Address(obj, i)); 242 i += BytesPerWord; 243 } 244 for (; i < con_size_in_bytes; i += BytesPerWord) { 245 sd(zr, Address(obj, i)); 246 } 247 } else if (con_size_in_bytes > hdr_size_in_bytes) { 248 block_comment("zero memory"); 249 // use loop to null out the fields 250 int words = (con_size_in_bytes - hdr_size_in_bytes) / BytesPerWord; 251 mv(index, words / 8); // 8: byte size 252 253 const int unroll = 8; // Number of sd(zr) instructions we'll unroll 254 int remainder = words % unroll; 255 la(t0, Address(obj, hdr_size_in_bytes + remainder * BytesPerWord)); 256 257 Label entry_point, loop; 258 j(entry_point); 259 260 bind(loop); 261 sub(index, index, 1); 262 for (int i = -unroll; i < 0; i++) { 263 if (-i == remainder) { 264 bind(entry_point); 265 } 266 sd(zr, Address(t0, i * wordSize)); 267 } 268 if (remainder == 0) { 269 bind(entry_point); 270 } 271 add(t0, t0, unroll * wordSize); 272 bnez(index, loop); 273 } 274 } 275 276 membar(MacroAssembler::StoreStore); 277 278 if (CURRENT_ENV->dtrace_alloc_probes()) { 279 assert(obj == x10, "must be"); 280 far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::dtrace_object_alloc_id))); 281 } 282 283 verify_oop(obj); 284 } 285 286 void C1_MacroAssembler::allocate_array(Register obj, Register len, Register tmp1, Register tmp2, int base_offset_in_bytes, int f, Register klass, Label& slow_case, bool zero_array) { 287 assert_different_registers(obj, len, tmp1, tmp2, klass); 288 289 // determine alignment mask 290 assert(!(BytesPerWord & 1), "must be multiple of 2 for masking code to work"); 291 292 // check for negative or excessive length 293 mv(t0, (int32_t)max_array_allocation_length); 294 bgeu(len, t0, slow_case, /* is_far */ true); 295 296 const Register arr_size = tmp2; // okay to be the same 297 // align object end 298 mv(arr_size, (int32_t)base_offset_in_bytes + MinObjAlignmentInBytesMask); 299 shadd(arr_size, len, arr_size, t0, f); 300 andi(arr_size, arr_size, ~(uint)MinObjAlignmentInBytesMask); 301 302 try_allocate(obj, arr_size, 0, tmp1, tmp2, slow_case); 303 304 initialize_header(obj, klass, len, tmp1, tmp2); 305 306 // Align-up to word boundary, because we clear the 4 bytes potentially 307 // following the length field in initialize_header(). 308 int base_offset = align_up(base_offset_in_bytes, BytesPerWord); 309 310 // clear rest of allocated space 311 const Register len_zero = len; 312 if (zero_array) { 313 initialize_body(obj, arr_size, base_offset, len_zero); 314 } 315 316 membar(MacroAssembler::StoreStore); 317 318 if (CURRENT_ENV->dtrace_alloc_probes()) { 319 assert(obj == x10, "must be"); 320 far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::dtrace_object_alloc_id))); 321 } 322 323 verify_oop(obj); 324 } 325 326 void C1_MacroAssembler::build_frame(int framesize, int bang_size_in_bytes) { 327 assert(bang_size_in_bytes >= framesize, "stack bang size incorrect"); 328 // Make sure there is enough stack space for this method's activation. 329 // Note that we do this before creating a frame. 330 generate_stack_overflow_check(bang_size_in_bytes); 331 MacroAssembler::build_frame(framesize); 332 333 // Insert nmethod entry barrier into frame. 334 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 335 bs->nmethod_entry_barrier(this, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 336 } 337 338 void C1_MacroAssembler::remove_frame(int framesize) { 339 MacroAssembler::remove_frame(framesize); 340 } 341 342 343 void C1_MacroAssembler::verified_entry(bool breakAtEntry) { 344 // If we have to make this method not-entrant we'll overwrite its 345 // first instruction with a jump. For this action to be legal we 346 // must ensure that this first instruction is a J, JAL or NOP. 347 // Make it a NOP. 348 IncompressibleRegion ir(this); // keep the nop as 4 bytes for patching. 349 assert_alignment(pc()); 350 nop(); // 4 bytes 351 } 352 353 void C1_MacroAssembler::load_parameter(int offset_in_words, Register reg) { 354 // fp + -2: link 355 // + -1: return address 356 // + 0: argument with offset 0 357 // + 1: argument with offset 1 358 // + 2: ... 359 ld(reg, Address(fp, offset_in_words * BytesPerWord)); 360 } 361 362 #ifndef PRODUCT 363 364 void C1_MacroAssembler::verify_stack_oop(int stack_offset) { 365 if (!VerifyOops) { 366 return; 367 } 368 verify_oop_addr(Address(sp, stack_offset)); 369 } 370 371 void C1_MacroAssembler::verify_not_null_oop(Register r) { 372 if (!VerifyOops) return; 373 Label not_null; 374 bnez(r, not_null); 375 stop("non-null oop required"); 376 bind(not_null); 377 verify_oop(r); 378 } 379 380 void C1_MacroAssembler::invalidate_registers(bool inv_x10, bool inv_x9, bool inv_x12, bool inv_x13, bool inv_x14, bool inv_x15) { 381 #ifdef ASSERT 382 static int nn; 383 if (inv_x10) { mv(x10, 0xDEAD); } 384 if (inv_x9) { mv(x9, 0xDEAD); } 385 if (inv_x12) { mv(x12, nn++); } 386 if (inv_x13) { mv(x13, 0xDEAD); } 387 if (inv_x14) { mv(x14, 0xDEAD); } 388 if (inv_x15) { mv(x15, 0xDEAD); } 389 #endif // ASSERT 390 } 391 #endif // ifndef PRODUCT 392 393 typedef void (C1_MacroAssembler::*c1_cond_branch_insn)(Register op1, Register op2, Label& label, bool is_far); 394 typedef void (C1_MacroAssembler::*c1_float_cond_branch_insn)(FloatRegister op1, FloatRegister op2, 395 Label& label, bool is_far, bool is_unordered); 396 397 static c1_cond_branch_insn c1_cond_branch[] = 398 { 399 /* SHORT branches */ 400 (c1_cond_branch_insn)&MacroAssembler::beq, 401 (c1_cond_branch_insn)&MacroAssembler::bne, 402 (c1_cond_branch_insn)&MacroAssembler::blt, 403 (c1_cond_branch_insn)&MacroAssembler::ble, 404 (c1_cond_branch_insn)&MacroAssembler::bge, 405 (c1_cond_branch_insn)&MacroAssembler::bgt, 406 (c1_cond_branch_insn)&MacroAssembler::bleu, // lir_cond_belowEqual 407 (c1_cond_branch_insn)&MacroAssembler::bgeu // lir_cond_aboveEqual 408 }; 409 410 static c1_float_cond_branch_insn c1_float_cond_branch[] = 411 { 412 /* FLOAT branches */ 413 (c1_float_cond_branch_insn)&MacroAssembler::float_beq, 414 (c1_float_cond_branch_insn)&MacroAssembler::float_bne, 415 (c1_float_cond_branch_insn)&MacroAssembler::float_blt, 416 (c1_float_cond_branch_insn)&MacroAssembler::float_ble, 417 (c1_float_cond_branch_insn)&MacroAssembler::float_bge, 418 (c1_float_cond_branch_insn)&MacroAssembler::float_bgt, 419 nullptr, // lir_cond_belowEqual 420 nullptr, // lir_cond_aboveEqual 421 422 /* DOUBLE branches */ 423 (c1_float_cond_branch_insn)&MacroAssembler::double_beq, 424 (c1_float_cond_branch_insn)&MacroAssembler::double_bne, 425 (c1_float_cond_branch_insn)&MacroAssembler::double_blt, 426 (c1_float_cond_branch_insn)&MacroAssembler::double_ble, 427 (c1_float_cond_branch_insn)&MacroAssembler::double_bge, 428 (c1_float_cond_branch_insn)&MacroAssembler::double_bgt, 429 nullptr, // lir_cond_belowEqual 430 nullptr // lir_cond_aboveEqual 431 }; 432 433 void C1_MacroAssembler::c1_cmp_branch(int cmpFlag, Register op1, Register op2, Label& label, 434 BasicType type, bool is_far) { 435 if (type == T_OBJECT || type == T_ARRAY) { 436 assert(cmpFlag == lir_cond_equal || cmpFlag == lir_cond_notEqual, "Should be equal or notEqual"); 437 if (cmpFlag == lir_cond_equal) { 438 beq(op1, op2, label, is_far); 439 } else { 440 bne(op1, op2, label, is_far); 441 } 442 } else { 443 assert(cmpFlag >= 0 && cmpFlag < (int)(sizeof(c1_cond_branch) / sizeof(c1_cond_branch[0])), 444 "invalid c1 conditional branch index"); 445 (this->*c1_cond_branch[cmpFlag])(op1, op2, label, is_far); 446 } 447 } 448 449 void C1_MacroAssembler::c1_float_cmp_branch(int cmpFlag, FloatRegister op1, FloatRegister op2, Label& label, 450 bool is_far, bool is_unordered) { 451 assert(cmpFlag >= 0 && 452 cmpFlag < (int)(sizeof(c1_float_cond_branch) / sizeof(c1_float_cond_branch[0])), 453 "invalid c1 float conditional branch index"); 454 (this->*c1_float_cond_branch[cmpFlag])(op1, op2, label, is_far, is_unordered); 455 }