1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4 * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved.
5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 *
7 * This code is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 only, as
9 * published by the Free Software Foundation.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 *
25 */
26
27 #include "asm/macroAssembler.inline.hpp"
28 #include "gc/shared/barrierSet.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "interp_masm_riscv.hpp"
31 #include "interpreter/interpreter.hpp"
32 #include "interpreter/interpreterRuntime.hpp"
33 #include "logging/log.hpp"
34 #include "oops/arrayOop.hpp"
35 #include "oops/markWord.hpp"
36 #include "oops/method.hpp"
37 #include "oops/methodData.hpp"
38 #include "oops/resolvedFieldEntry.hpp"
39 #include "oops/resolvedIndyEntry.hpp"
40 #include "oops/resolvedMethodEntry.hpp"
41 #include "prims/jvmtiExport.hpp"
42 #include "prims/jvmtiThreadState.hpp"
43 #include "runtime/basicLock.hpp"
44 #include "runtime/frame.inline.hpp"
45 #include "runtime/javaThread.hpp"
46 #include "runtime/safepointMechanism.hpp"
47 #include "runtime/sharedRuntime.hpp"
48 #include "utilities/powerOfTwo.hpp"
49
50 void InterpreterMacroAssembler::narrow(Register result) {
51 // Get method->_constMethod->_result_type
52 ld(t0, Address(fp, frame::interpreter_frame_method_offset * wordSize));
53 ld(t0, Address(t0, Method::const_offset()));
54 lbu(t0, Address(t0, ConstMethod::result_type_offset()));
55
56 Label done, notBool, notByte, notChar;
57
58 // common case first
59 mv(t1, T_INT);
60 beq(t0, t1, done);
61
62 // mask integer result to narrower return type.
63 mv(t1, T_BOOLEAN);
64 bne(t0, t1, notBool);
65
66 andi(result, result, 0x1);
67 j(done);
68
69 bind(notBool);
70 mv(t1, T_BYTE);
71 bne(t0, t1, notByte);
72 sext(result, result, 8);
73 j(done);
74
75 bind(notByte);
76 mv(t1, T_CHAR);
77 bne(t0, t1, notChar);
78 zext(result, result, 16);
79 j(done);
80
81 bind(notChar);
82 sext(result, result, 16);
83
84 bind(done);
85 sext(result, result, 32);
86 }
87
88 void InterpreterMacroAssembler::jump_to_entry(address entry) {
89 assert(entry != nullptr, "Entry must have been generated by now");
90 j(entry);
91 }
92
93 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
94 if (JvmtiExport::can_pop_frame()) {
95 Label L;
96 // Initiate popframe handling only if it is not already being
97 // processed. If the flag has the popframe_processing bit set,
98 // it means that this code is called *during* popframe handling - we
99 // don't want to reenter.
100 // This method is only called just after the call into the vm in
101 // call_VM_base, so the arg registers are available.
102 lwu(t1, Address(xthread, JavaThread::popframe_condition_offset()));
103 test_bit(t0, t1, exact_log2(JavaThread::popframe_pending_bit));
104 beqz(t0, L);
105 test_bit(t0, t1, exact_log2(JavaThread::popframe_processing_bit));
106 bnez(t0, L);
107 // Call Interpreter::remove_activation_preserving_args_entry() to get the
108 // address of the same-named entrypoint in the generated interpreter code.
109 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
110 jr(x10);
111 bind(L);
112 }
113 }
114
115
116 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
117 ld(x12, Address(xthread, JavaThread::jvmti_thread_state_offset()));
118 const Address tos_addr(x12, JvmtiThreadState::earlyret_tos_offset());
119 const Address oop_addr(x12, JvmtiThreadState::earlyret_oop_offset());
120 const Address val_addr(x12, JvmtiThreadState::earlyret_value_offset());
121 switch (state) {
122 case atos:
123 ld(x10, oop_addr);
124 sd(zr, oop_addr);
125 verify_oop(x10);
126 break;
127 case ltos:
128 ld(x10, val_addr);
129 break;
130 case btos: // fall through
131 case ztos: // fall through
132 case ctos: // fall through
133 case stos: // fall through
134 case itos:
135 lwu(x10, val_addr);
136 break;
137 case ftos:
138 flw(f10, val_addr);
139 break;
140 case dtos:
141 fld(f10, val_addr);
142 break;
143 case vtos:
144 /* nothing to do */
145 break;
146 default:
147 ShouldNotReachHere();
148 }
149 // Clean up tos value in the thread object
150 mv(t0, (int)ilgl);
151 sw(t0, tos_addr);
152 sw(zr, val_addr);
153 }
154
155
156 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
157 if (JvmtiExport::can_force_early_return()) {
158 Label L;
159 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset()));
160 beqz(t0, L); // if thread->jvmti_thread_state() is null then exit
161
162 // Initiate earlyret handling only if it is not already being processed.
163 // If the flag has the earlyret_processing bit set, it means that this code
164 // is called *during* earlyret handling - we don't want to reenter.
165 lwu(t0, Address(t0, JvmtiThreadState::earlyret_state_offset()));
166 mv(t1, JvmtiThreadState::earlyret_pending);
167 bne(t0, t1, L);
168
169 // Call Interpreter::remove_activation_early_entry() to get the address of the
170 // same-named entrypoint in the generated interpreter code.
171 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset()));
172 lwu(t0, Address(t0, JvmtiThreadState::earlyret_tos_offset()));
173 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), t0);
174 jr(x10);
175 bind(L);
176 }
177 }
178
179 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
180 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
181 lbu(t1, Address(xbcp, bcp_offset));
182 lbu(reg, Address(xbcp, bcp_offset + 1));
183 slli(t1, t1, 8);
184 add(reg, reg, t1);
185 }
186
187 void InterpreterMacroAssembler::get_dispatch() {
188 la(xdispatch, ExternalAddress((address)Interpreter::dispatch_table()));
189 }
190
191 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
192 Register tmp,
193 int bcp_offset,
194 size_t index_size) {
195 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
196 if (index_size == sizeof(u2)) {
197 load_short_misaligned(index, Address(xbcp, bcp_offset), tmp, false);
198 } else if (index_size == sizeof(u4)) {
199 load_int_misaligned(index, Address(xbcp, bcp_offset), tmp, false);
200 } else if (index_size == sizeof(u1)) {
201 load_unsigned_byte(index, Address(xbcp, bcp_offset));
202 } else {
203 ShouldNotReachHere();
204 }
205 }
206
207 // Load object from cpool->resolved_references(index)
208 void InterpreterMacroAssembler::load_resolved_reference_at_index(
209 Register result, Register index, Register tmp) {
210 assert_different_registers(result, index);
211
212 get_constant_pool(result);
213 // Load pointer for resolved_references[] objArray
214 ld(result, Address(result, ConstantPool::cache_offset()));
215 ld(result, Address(result, ConstantPoolCache::resolved_references_offset()));
216 resolve_oop_handle(result, tmp, t1);
217 // Add in the index
218 addi(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
219 shadd(result, index, result, index, LogBytesPerHeapOop);
220 load_heap_oop(result, Address(result, 0), tmp, t1);
221 }
222
223 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
224 Register cpool, Register index, Register klass, Register temp) {
225 shadd(temp, index, cpool, temp, LogBytesPerWord);
226 lhu(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
227 ld(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
228 shadd(klass, temp, klass, temp, LogBytesPerWord);
229 ld(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
230 }
231
232 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
233 // subtype of super_klass.
234 //
235 // Args:
236 // x10: superklass
237 // Rsub_klass: subklass
238 //
239 // Kills:
240 // x12, x15
241 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
242 Label& ok_is_subtype) {
243 assert(Rsub_klass != x10, "x10 holds superklass");
244 assert(Rsub_klass != x12, "x12 holds 2ndary super array length");
245 assert(Rsub_klass != x15, "x15 holds 2ndary super array scan ptr");
246
247 // Profile the not-null value's klass.
248 profile_typecheck(x12, Rsub_klass, x15); // blows x12, reloads x15
249
250 // Do the check.
251 check_klass_subtype(Rsub_klass, x10, x12, ok_is_subtype); // blows x12
252 }
253
254 // Java Expression Stack
255
256 void InterpreterMacroAssembler::pop_ptr(Register r) {
257 ld(r, Address(esp, 0));
258 addi(esp, esp, wordSize);
259 }
260
261 void InterpreterMacroAssembler::pop_i(Register r) {
262 lw(r, Address(esp, 0)); // lw do signed extended
263 addi(esp, esp, wordSize);
264 }
265
266 void InterpreterMacroAssembler::pop_l(Register r) {
267 ld(r, Address(esp, 0));
268 addi(esp, esp, 2 * Interpreter::stackElementSize);
269 }
270
271 void InterpreterMacroAssembler::push_ptr(Register r) {
272 subi(esp, esp, wordSize);
273 sd(r, Address(esp, 0));
274 }
275
276 void InterpreterMacroAssembler::push_i(Register r) {
277 subi(esp, esp, wordSize);
278 sext(r, r, 32);
279 sd(r, Address(esp, 0));
280 }
281
282 void InterpreterMacroAssembler::push_l(Register r) {
283 subi(esp, esp, 2 * wordSize);
284 sd(zr, Address(esp, wordSize));
285 sd(r, Address(esp));
286 }
287
288 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
289 flw(r, Address(esp, 0));
290 addi(esp, esp, wordSize);
291 }
292
293 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
294 fld(r, Address(esp, 0));
295 addi(esp, esp, 2 * Interpreter::stackElementSize);
296 }
297
298 void InterpreterMacroAssembler::push_f(FloatRegister r) {
299 subi(esp, esp, wordSize);
300 fsw(r, Address(esp, 0));
301 }
302
303 void InterpreterMacroAssembler::push_d(FloatRegister r) {
304 subi(esp, esp, 2 * wordSize);
305 fsd(r, Address(esp, 0));
306 }
307
308 void InterpreterMacroAssembler::pop(TosState state) {
309 switch (state) {
310 case atos:
311 pop_ptr();
312 verify_oop(x10);
313 break;
314 case btos: // fall through
315 case ztos: // fall through
316 case ctos: // fall through
317 case stos: // fall through
318 case itos:
319 pop_i();
320 break;
321 case ltos:
322 pop_l();
323 break;
324 case ftos:
325 pop_f();
326 break;
327 case dtos:
328 pop_d();
329 break;
330 case vtos:
331 /* nothing to do */
332 break;
333 default:
334 ShouldNotReachHere();
335 }
336 }
337
338 void InterpreterMacroAssembler::push(TosState state) {
339 switch (state) {
340 case atos:
341 verify_oop(x10);
342 push_ptr();
343 break;
344 case btos: // fall through
345 case ztos: // fall through
346 case ctos: // fall through
347 case stos: // fall through
348 case itos:
349 push_i();
350 break;
351 case ltos:
352 push_l();
353 break;
354 case ftos:
355 push_f();
356 break;
357 case dtos:
358 push_d();
359 break;
360 case vtos:
361 /* nothing to do */
362 break;
363 default:
364 ShouldNotReachHere();
365 }
366 }
367
368 // Helpers for swap and dup
369 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
370 ld(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
371 }
372
373 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
374 sd(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
375 }
376
377 void InterpreterMacroAssembler::load_float(Address src) {
378 flw(f10, src);
379 }
380
381 void InterpreterMacroAssembler::load_double(Address src) {
382 fld(f10, src);
383 }
384
385 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
386 // set sender sp
387 mv(x19_sender_sp, sp);
388 // record last_sp
389 sub(t0, esp, fp);
390 srai(t0, t0, Interpreter::logStackElementSize);
391 sd(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
392 }
393
394 // Jump to from_interpreted entry of a call unless single stepping is possible
395 // in this thread in which case we must call the i2i entry
396 void InterpreterMacroAssembler::jump_from_interpreted(Register method) {
397 prepare_to_jump_from_interpreted();
398 if (JvmtiExport::can_post_interpreter_events()) {
399 Label run_compiled_code;
400 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
401 // compiled code in threads for which the event is enabled. Check here for
402 // interp_only_mode if these events CAN be enabled.
403 lwu(t0, Address(xthread, JavaThread::interp_only_mode_offset()));
404 beqz(t0, run_compiled_code);
405 ld(t1, Address(method, Method::interpreter_entry_offset()));
406 jr(t1);
407 bind(run_compiled_code);
408 }
409
410 ld(t1, Address(method, Method::from_interpreted_offset()));
411 jr(t1);
412 }
413
414 // The following two routines provide a hook so that an implementation
415 // can schedule the dispatch in two parts. amd64 does not do this.
416 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
417 }
418
419 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
420 dispatch_next(state, step);
421 }
422
423 void InterpreterMacroAssembler::dispatch_base(TosState state,
424 address* table,
425 bool verifyoop,
426 bool generate_poll,
427 Register Rs) {
428 // Pay attention to the argument Rs, which is acquiesce in t0.
429 if (VerifyActivationFrameSize) {
430 Label L;
431 sub(t1, fp, esp);
432 int min_frame_size =
433 (frame::link_offset - frame::interpreter_frame_initial_sp_offset + frame::metadata_words) * wordSize;
434 sub(t1, t1, min_frame_size);
435 bgez(t1, L);
436 stop("broken stack frame");
437 bind(L);
438 }
439 if (verifyoop && state == atos) {
440 verify_oop(x10);
441 }
442
443 Label safepoint;
444 address* const safepoint_table = Interpreter::safept_table(state);
445 bool needs_thread_local_poll = generate_poll && table != safepoint_table;
446
447 if (needs_thread_local_poll) {
448 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
449 ld(t1, Address(xthread, JavaThread::polling_word_offset()));
450 test_bit(t1, t1, exact_log2(SafepointMechanism::poll_bit()));
451 bnez(t1, safepoint);
452 }
453 if (table == Interpreter::dispatch_table(state)) {
454 mv(t1, Interpreter::distance_from_dispatch_table(state));
455 add(t1, Rs, t1);
456 shadd(t1, t1, xdispatch, t1, 3);
457 } else {
458 mv(t1, (address)table);
459 shadd(t1, Rs, t1, Rs, 3);
460 }
461 ld(t1, Address(t1));
462 jr(t1);
463
464 if (needs_thread_local_poll) {
465 bind(safepoint);
466 la(t1, ExternalAddress((address)safepoint_table));
467 shadd(t1, Rs, t1, Rs, 3);
468 ld(t1, Address(t1));
469 jr(t1);
470 }
471 }
472
473 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll, Register Rs) {
474 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll, Rs);
475 }
476
477 void InterpreterMacroAssembler::dispatch_only_normal(TosState state, Register Rs) {
478 dispatch_base(state, Interpreter::normal_table(state), true, false, Rs);
479 }
480
481 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state, Register Rs) {
482 dispatch_base(state, Interpreter::normal_table(state), false, false, Rs);
483 }
484
485 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
486 // load next bytecode
487 load_unsigned_byte(t0, Address(xbcp, step));
488 add(xbcp, xbcp, step);
489 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
490 }
491
492 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
493 // load current bytecode
494 lbu(t0, Address(xbcp, 0));
495 dispatch_base(state, table);
496 }
497
498 // remove activation
499 //
500 // Unlock the receiver if this is a synchronized method.
501 // Unlock any Java monitors from synchronized blocks.
502 // Apply stack watermark barrier.
503 // Notify JVMTI.
504 // Remove the activation from the stack.
505 //
506 // If there are locked Java monitors
507 // If throw_monitor_exception
508 // throws IllegalMonitorStateException
509 // Else if install_monitor_exception
510 // installs IllegalMonitorStateException
511 // Else
512 // no error processing
513 void InterpreterMacroAssembler::remove_activation(TosState state,
514 bool throw_monitor_exception,
515 bool install_monitor_exception,
516 bool notify_jvmdi) {
517 // Note: Registers x13 may be in use for the
518 // result check if synchronized method
519 Label unlocked, unlock, no_unlock;
520
521 // get the value of _do_not_unlock_if_synchronized into x13
522 const Address do_not_unlock_if_synchronized(xthread,
523 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
524 lbu(x13, do_not_unlock_if_synchronized);
525 sb(zr, do_not_unlock_if_synchronized); // reset the flag
526
527 // get method access flags
528 ld(x11, Address(fp, frame::interpreter_frame_method_offset * wordSize));
529 load_unsigned_short(x12, Address(x11, Method::access_flags_offset()));
530 test_bit(t0, x12, exact_log2(JVM_ACC_SYNCHRONIZED));
531 beqz(t0, unlocked);
532
533 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
534 // is set.
535 bnez(x13, no_unlock);
536
537 // unlock monitor
538 push(state); // save result
539
540 // BasicObjectLock will be first in list, since this is a
541 // synchronized method. However, need to check that the object has
542 // not been unlocked by an explicit monitorexit bytecode.
543 const Address monitor(fp, frame::interpreter_frame_initial_sp_offset *
544 wordSize - (int) sizeof(BasicObjectLock));
545 // We use c_rarg1 so that if we go slow path it will be the correct
546 // register for unlock_object to pass to VM directly
547 la(c_rarg1, monitor); // address of first monitor
548
549 ld(x10, Address(c_rarg1, BasicObjectLock::obj_offset()));
550 bnez(x10, unlock);
551
552 pop(state);
553 if (throw_monitor_exception) {
554 // Entry already unlocked, need to throw exception
555 call_VM(noreg, CAST_FROM_FN_PTR(address,
556 InterpreterRuntime::throw_illegal_monitor_state_exception));
557 should_not_reach_here();
558 } else {
559 // Monitor already unlocked during a stack unroll. If requested,
560 // install an illegal_monitor_state_exception. Continue with
561 // stack unrolling.
562 if (install_monitor_exception) {
563 call_VM(noreg, CAST_FROM_FN_PTR(address,
564 InterpreterRuntime::new_illegal_monitor_state_exception));
565 }
566 j(unlocked);
567 }
568
569 bind(unlock);
570 unlock_object(c_rarg1);
571 pop(state);
572
573 // Check that for block-structured locking (i.e., that all locked
574 // objects has been unlocked)
575 bind(unlocked);
576
577 // x10: Might contain return value
578
579 // Check that all monitors are unlocked
580 {
581 Label loop, exception, entry, restart;
582 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
583 const Address monitor_block_top(
584 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
585 const Address monitor_block_bot(
586 fp, frame::interpreter_frame_initial_sp_offset * wordSize);
587
588 bind(restart);
589 // We use c_rarg1 so that if we go slow path it will be the correct
590 // register for unlock_object to pass to VM directly
591 ld(c_rarg1, monitor_block_top); // derelativize pointer
592 shadd(c_rarg1, c_rarg1, fp, c_rarg1, LogBytesPerWord);
593 // c_rarg1 points to current entry, starting with top-most entry
594
595 la(x9, monitor_block_bot); // points to word before bottom of
596 // monitor block
597
598 j(entry);
599
600 // Entry already locked, need to throw exception
601 bind(exception);
602
603 if (throw_monitor_exception) {
604 // Throw exception
605 MacroAssembler::call_VM(noreg,
606 CAST_FROM_FN_PTR(address, InterpreterRuntime::
607 throw_illegal_monitor_state_exception));
608
609 should_not_reach_here();
610 } else {
611 // Stack unrolling. Unlock object and install illegal_monitor_exception.
612 // Unlock does not block, so don't have to worry about the frame.
613 // We don't have to preserve c_rarg1 since we are going to throw an exception.
614
615 push(state);
616 unlock_object(c_rarg1);
617 pop(state);
618
619 if (install_monitor_exception) {
620 call_VM(noreg, CAST_FROM_FN_PTR(address,
621 InterpreterRuntime::
622 new_illegal_monitor_state_exception));
623 }
624
625 j(restart);
626 }
627
628 bind(loop);
629 // check if current entry is used
630 add(t0, c_rarg1, in_bytes(BasicObjectLock::obj_offset()));
631 ld(t0, Address(t0, 0));
632 bnez(t0, exception);
633
634 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
635 bind(entry);
636 bne(c_rarg1, x9, loop); // check if bottom reached if not at bottom then check this entry
637 }
638
639 bind(no_unlock);
640
641 JFR_ONLY(enter_jfr_critical_section();)
642
643 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
644 // that would normally not be safe to use. Such bad returns into unsafe territory of
645 // the stack, will call InterpreterRuntime::at_unwind.
646 Label slow_path;
647 Label fast_path;
648 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
649 j(fast_path);
650
651 bind(slow_path);
652 push(state);
653 set_last_Java_frame(esp, fp, pc(), t0);
654 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), xthread);
655 reset_last_Java_frame(true);
656 pop(state);
657 bind(fast_path);
658
659 // JVMTI support. Make sure the safepoint poll test is issued prior.
660 if (notify_jvmdi) {
661 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
662 } else {
663 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
664 }
665
666 // remove activation
667 // get sender esp
668 ld(t1,
669 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize));
670 if (StackReservedPages > 0) {
671 // testing if reserved zone needs to be re-enabled
672 Label no_reserved_zone_enabling;
673
674 // check if already enabled - if so no re-enabling needed
675 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
676 lw(t0, Address(xthread, JavaThread::stack_guard_state_offset()));
677 subw(t0, t0, StackOverflow::stack_guard_enabled);
678 beqz(t0, no_reserved_zone_enabling);
679
680 // look for an overflow into the stack reserved zone, i.e.
681 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
682 ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset()));
683 ble(t1, t0, no_reserved_zone_enabling);
684
685 JFR_ONLY(leave_jfr_critical_section();)
686
687 call_VM_leaf(
688 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), xthread);
689 call_VM(noreg, CAST_FROM_FN_PTR(address,
690 InterpreterRuntime::throw_delayed_StackOverflowError));
691 should_not_reach_here();
692
693 bind(no_reserved_zone_enabling);
694 }
695
696 // remove frame anchor
697 leave();
698
699 JFR_ONLY(leave_jfr_critical_section();)
700
701 // restore sender esp
702 mv(esp, t1);
703
704 // If we're returning to interpreted code we will shortly be
705 // adjusting SP to allow some space for ESP. If we're returning to
706 // compiled code the saved sender SP was saved in sender_sp, so this
707 // restores it.
708 andi(sp, esp, -16);
709 }
710
711 #if INCLUDE_JFR
712 void InterpreterMacroAssembler::enter_jfr_critical_section() {
713 const Address sampling_critical_section(xthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
714 mv(t0, true);
715 sb(t0, sampling_critical_section);
716 }
717
718 void InterpreterMacroAssembler::leave_jfr_critical_section() {
719 const Address sampling_critical_section(xthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
720 sb(zr, sampling_critical_section);
721 }
722 #endif // INCLUDE_JFR
723
724 // Lock object
725 //
726 // Args:
727 // c_rarg1: BasicObjectLock to be used for locking
728 //
729 // Kills:
730 // x10
731 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, .. (param regs)
732 // t0, t1 (temp regs)
733 void InterpreterMacroAssembler::lock_object(Register lock_reg)
734 {
735 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
736
737 const Register tmp = c_rarg2;
738 const Register obj_reg = c_rarg3; // Will contain the oop
739 const Register tmp2 = c_rarg4;
740 const Register tmp3 = c_rarg5;
741
742 // Load object pointer into obj_reg (c_rarg3)
743 ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
744
745 Label done, slow_case;
746 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case);
747 j(done);
748
749 bind(slow_case);
750 // Call the runtime routine for slow case
751 call_VM_preemptable(noreg,
752 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
753 lock_reg);
754
755 bind(done);
756 }
757
758
759 // Unlocks an object. Used in monitorexit bytecode and
760 // remove_activation. Throws an IllegalMonitorException if object is
761 // not locked by current thread.
762 //
763 // Args:
764 // c_rarg1: BasicObjectLock for lock
765 //
766 // Kills:
767 // x10
768 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, ... (param regs)
769 // t0, t1 (temp regs)
770 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
771 {
772 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
773
774 const Register swap_reg = x10;
775 const Register header_reg = c_rarg2; // Will contain the old oopMark
776 const Register obj_reg = c_rarg3; // Will contain the oop
777 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock
778
779 save_bcp(); // Save in case of exception
780
781 // Load oop into obj_reg (c_rarg3)
782 ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
783
784 // Free entry
785 sd(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
786
787 Label done, slow_case;
788 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
789 j(done);
790
791 bind(slow_case);
792 // Call the runtime routine for slow case.
793 sd(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
794 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
795
796 bind(done);
797 restore_bcp();
798 }
799
800
801 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
802 Label& zero_continue) {
803 assert(ProfileInterpreter, "must be profiling interpreter");
804 ld(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
805 beqz(mdp, zero_continue);
806 }
807
808 // Set the method data pointer for the current bcp.
809 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
810 assert(ProfileInterpreter, "must be profiling interpreter");
811 Label set_mdp;
812 push_reg(RegSet::of(x10, x11), sp); // save x10, x11
813
814 // Test MDO to avoid the call if it is null.
815 ld(x10, Address(xmethod, in_bytes(Method::method_data_offset())));
816 beqz(x10, set_mdp);
817 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), xmethod, xbcp);
818 // x10: mdi
819 // mdo is guaranteed to be non-zero here, we checked for it before the call.
820 ld(x11, Address(xmethod, in_bytes(Method::method_data_offset())));
821 la(x11, Address(x11, in_bytes(MethodData::data_offset())));
822 add(x10, x11, x10);
823 sd(x10, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
824 bind(set_mdp);
825 pop_reg(RegSet::of(x10, x11), sp);
826 }
827
828 void InterpreterMacroAssembler::verify_method_data_pointer() {
829 assert(ProfileInterpreter, "must be profiling interpreter");
830 #ifdef ASSERT
831 Label verify_continue;
832 subi(sp, sp, 4 * wordSize);
833 sd(x10, Address(sp, 0));
834 sd(x11, Address(sp, wordSize));
835 sd(x12, Address(sp, 2 * wordSize));
836 sd(x13, Address(sp, 3 * wordSize));
837 test_method_data_pointer(x13, verify_continue); // If mdp is zero, continue
838 get_method(x11);
839
840 // If the mdp is valid, it will point to a DataLayout header which is
841 // consistent with the bcp. The converse is highly probable also.
842 lh(x12, Address(x13, in_bytes(DataLayout::bci_offset())));
843 ld(t0, Address(x11, Method::const_offset()));
844 add(x12, x12, t0);
845 la(x12, Address(x12, ConstMethod::codes_offset()));
846 beq(x12, xbcp, verify_continue);
847 // x10: method
848 // xbcp: bcp // xbcp == 22
849 // x13: mdp
850 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
851 x11, xbcp, x13);
852 bind(verify_continue);
853 ld(x10, Address(sp, 0));
854 ld(x11, Address(sp, wordSize));
855 ld(x12, Address(sp, 2 * wordSize));
856 ld(x13, Address(sp, 3 * wordSize));
857 addi(sp, sp, 4 * wordSize);
858 #endif // ASSERT
859 }
860
861
862 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
863 int constant,
864 Register value) {
865 assert(ProfileInterpreter, "must be profiling interpreter");
866 Address data(mdp_in, constant);
867 sd(value, data);
868 }
869
870
871 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
872 int constant) {
873 increment_mdp_data_at(mdp_in, noreg, constant);
874 }
875
876 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
877 Register index,
878 int constant) {
879 assert(ProfileInterpreter, "must be profiling interpreter");
880
881 assert_different_registers(t1, t0, mdp_in, index);
882
883 Address addr1(mdp_in, constant);
884 Address addr2(t1, 0);
885 Address &addr = addr1;
886 if (index != noreg) {
887 la(t1, addr1);
888 add(t1, t1, index);
889 addr = addr2;
890 }
891
892 ld(t0, addr);
893 addi(t0, t0, DataLayout::counter_increment);
894 sd(t0, addr);
895 }
896
897 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
898 int flag_byte_constant) {
899 assert(ProfileInterpreter, "must be profiling interpreter");
900 int flags_offset = in_bytes(DataLayout::flags_offset());
901 // Set the flag
902 lbu(t1, Address(mdp_in, flags_offset));
903 ori(t1, t1, flag_byte_constant);
904 sb(t1, Address(mdp_in, flags_offset));
905 }
906
907
908 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
909 int offset,
910 Register value,
911 Register test_value_out,
912 Label& not_equal_continue) {
913 assert(ProfileInterpreter, "must be profiling interpreter");
914 if (test_value_out == noreg) {
915 ld(t1, Address(mdp_in, offset));
916 bne(value, t1, not_equal_continue);
917 } else {
918 // Put the test value into a register, so caller can use it:
919 ld(test_value_out, Address(mdp_in, offset));
920 bne(value, test_value_out, not_equal_continue);
921 }
922 }
923
924
925 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
926 int offset_of_disp) {
927 assert(ProfileInterpreter, "must be profiling interpreter");
928 ld(t1, Address(mdp_in, offset_of_disp));
929 add(mdp_in, mdp_in, t1);
930 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
931 }
932
933 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
934 Register reg,
935 int offset_of_disp) {
936 assert(ProfileInterpreter, "must be profiling interpreter");
937 add(t1, mdp_in, reg);
938 ld(t1, Address(t1, offset_of_disp));
939 add(mdp_in, mdp_in, t1);
940 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
941 }
942
943
944 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
945 int constant) {
946 assert(ProfileInterpreter, "must be profiling interpreter");
947 add(mdp_in, mdp_in, (unsigned)constant);
948 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
949 }
950
951
952 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
953 assert(ProfileInterpreter, "must be profiling interpreter");
954
955 // save/restore across call_VM
956 subi(sp, sp, 2 * wordSize);
957 sd(zr, Address(sp, 0));
958 sd(return_bci, Address(sp, wordSize));
959 call_VM(noreg,
960 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
961 return_bci);
962 ld(zr, Address(sp, 0));
963 ld(return_bci, Address(sp, wordSize));
964 addi(sp, sp, 2 * wordSize);
965 }
966
967 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
968 if (ProfileInterpreter) {
969 Label profile_continue;
970
971 // If no method data exists, go to profile_continue.
972 test_method_data_pointer(mdp, profile_continue);
973
974 // We are taking a branch. Increment the taken count.
975 increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
976
977 // The method data pointer needs to be updated to reflect the new target.
978 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
979 bind(profile_continue);
980 }
981 }
982
983 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
984 if (ProfileInterpreter) {
985 Label profile_continue;
986
987 // If no method data exists, go to profile_continue.
988 test_method_data_pointer(mdp, profile_continue);
989
990 // We are not taking a branch. Increment the not taken count.
991 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
992
993 // The method data pointer needs to be updated to correspond to
994 // the next bytecode
995 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
996 bind(profile_continue);
997 }
998 }
999
1000 void InterpreterMacroAssembler::profile_call(Register mdp) {
1001 if (ProfileInterpreter) {
1002 Label profile_continue;
1003
1004 // If no method data exists, go to profile_continue.
1005 test_method_data_pointer(mdp, profile_continue);
1006
1007 // We are making a call. Increment the count.
1008 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1009
1010 // The method data pointer needs to be updated to reflect the new target.
1011 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1012 bind(profile_continue);
1013 }
1014 }
1015
1016 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1017 if (ProfileInterpreter) {
1018 Label profile_continue;
1019
1020 // If no method data exists, go to profile_continue.
1021 test_method_data_pointer(mdp, profile_continue);
1022
1023 // We are making a call. Increment the count.
1024 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1025
1026 // The method data pointer needs to be updated to reflect the new target.
1027 update_mdp_by_constant(mdp,
1028 in_bytes(VirtualCallData::
1029 virtual_call_data_size()));
1030 bind(profile_continue);
1031 }
1032 }
1033
1034
1035 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1036 Register mdp,
1037 Register reg2,
1038 bool receiver_can_be_null) {
1039 if (ProfileInterpreter) {
1040 Label profile_continue;
1041
1042 // If no method data exists, go to profile_continue.
1043 test_method_data_pointer(mdp, profile_continue);
1044
1045 Label skip_receiver_profile;
1046 if (receiver_can_be_null) {
1047 Label not_null;
1048 // We are making a call. Increment the count for null receiver.
1049 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1050 j(skip_receiver_profile);
1051 bind(not_null);
1052 }
1053
1054 // Record the receiver type.
1055 record_klass_in_profile(receiver, mdp, reg2);
1056 bind(skip_receiver_profile);
1057
1058 // The method data pointer needs to be updated to reflect the new target.
1059
1060 update_mdp_by_constant(mdp,
1061 in_bytes(VirtualCallData::
1062 virtual_call_data_size()));
1063 bind(profile_continue);
1064 }
1065 }
1066
1067 // This routine creates a state machine for updating the multi-row
1068 // type profile at a virtual call site (or other type-sensitive bytecode).
1069 // The machine visits each row (of receiver/count) until the receiver type
1070 // is found, or until it runs out of rows. At the same time, it remembers
1071 // the location of the first empty row. (An empty row records null for its
1072 // receiver, and can be allocated for a newly-observed receiver type.)
1073 // Because there are two degrees of freedom in the state, a simple linear
1074 // search will not work; it must be a decision tree. Hence this helper
1075 // function is recursive, to generate the required tree structured code.
1076 // It's the interpreter, so we are trading off code space for speed.
1077 // See below for example code.
1078 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1079 Register receiver, Register mdp,
1080 Register reg2, Label& done) {
1081 if (TypeProfileWidth == 0) {
1082 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1083 } else {
1084 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1085 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1086 }
1087 }
1088
1089 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1090 Register reg2, int start_row, Label& done, int total_rows,
1091 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1092 int last_row = total_rows - 1;
1093 assert(start_row <= last_row, "must be work left to do");
1094 // Test this row for both the item and for null.
1095 // Take any of three different outcomes:
1096 // 1. found item => increment count and goto done
1097 // 2. found null => keep looking for case 1, maybe allocate this cell
1098 // 3. found something else => keep looking for cases 1 and 2
1099 // Case 3 is handled by a recursive call.
1100 for (int row = start_row; row <= last_row; row++) {
1101 Label next_test;
1102 bool test_for_null_also = (row == start_row);
1103
1104 // See if the item is item[n].
1105 int item_offset = in_bytes(item_offset_fn(row));
1106 test_mdp_data_at(mdp, item_offset, item,
1107 (test_for_null_also ? reg2 : noreg),
1108 next_test);
1109 // (Reg2 now contains the item from the CallData.)
1110
1111 // The item is item[n]. Increment count[n].
1112 int count_offset = in_bytes(item_count_offset_fn(row));
1113 increment_mdp_data_at(mdp, count_offset);
1114 j(done);
1115 bind(next_test);
1116
1117 if (test_for_null_also) {
1118 Label found_null;
1119 // Failed the equality check on item[n]... Test for null.
1120 if (start_row == last_row) {
1121 // The only thing left to do is handle the null case.
1122 beqz(reg2, found_null);
1123 // Item did not match any saved item and there is no empty row for it.
1124 // Increment total counter to indicate polymorphic case.
1125 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1126 j(done);
1127 bind(found_null);
1128 break;
1129 }
1130 // Since null is rare, make it be the branch-taken case.
1131 beqz(reg2, found_null);
1132
1133 // Put all the "Case 3" tests here.
1134 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1135 item_offset_fn, item_count_offset_fn);
1136
1137 // Found a null. Keep searching for a matching item,
1138 // but remember that this is an empty (unused) slot.
1139 bind(found_null);
1140 }
1141 }
1142
1143 // In the fall-through case, we found no matching item, but we
1144 // observed the item[start_row] is null.
1145 // Fill in the item field and increment the count.
1146 int item_offset = in_bytes(item_offset_fn(start_row));
1147 set_mdp_data_at(mdp, item_offset, item);
1148 int count_offset = in_bytes(item_count_offset_fn(start_row));
1149 mv(reg2, DataLayout::counter_increment);
1150 set_mdp_data_at(mdp, count_offset, reg2);
1151 if (start_row > 0) {
1152 j(done);
1153 }
1154 }
1155
1156 // Example state machine code for three profile rows:
1157 // # main copy of decision tree, rooted at row[1]
1158 // if (row[0].rec == rec) then [
1159 // row[0].incr()
1160 // goto done
1161 // ]
1162 // if (row[0].rec != nullptr) then [
1163 // # inner copy of decision tree, rooted at row[1]
1164 // if (row[1].rec == rec) then [
1165 // row[1].incr()
1166 // goto done
1167 // ]
1168 // if (row[1].rec != nullptr) then [
1169 // # degenerate decision tree, rooted at row[2]
1170 // if (row[2].rec == rec) then [
1171 // row[2].incr()
1172 // goto done
1173 // ]
1174 // if (row[2].rec != nullptr) then [
1175 // count.incr()
1176 // goto done
1177 // ] # overflow
1178 // row[2].init(rec)
1179 // goto done
1180 // ] else [
1181 // # remember row[1] is empty
1182 // if (row[2].rec == rec) then [
1183 // row[2].incr()
1184 // goto done
1185 // ]
1186 // row[1].init(rec)
1187 // goto done
1188 // ]
1189 // else [
1190 // # remember row[0] is empty
1191 // if (row[1].rec == rec) then [
1192 // row[1].incr()
1193 // goto done
1194 // ]
1195 // if (row[2].rec == rec) then [
1196 // row[2].incr()
1197 // goto done
1198 // ]
1199 // row[0].init(rec)
1200 // goto done
1201 // ]
1202 // done:
1203
1204 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1205 Register mdp, Register reg2) {
1206 assert(ProfileInterpreter, "must be profiling");
1207 Label done;
1208
1209 record_klass_in_profile_helper(receiver, mdp, reg2, done);
1210
1211 bind(done);
1212 }
1213
1214 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1215 if (ProfileInterpreter) {
1216 Label profile_continue;
1217
1218 // If no method data exists, go to profile_continue.
1219 test_method_data_pointer(mdp, profile_continue);
1220
1221 // Update the total ret count.
1222 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1223
1224 for (uint row = 0; row < RetData::row_limit(); row++) {
1225 Label next_test;
1226
1227 // See if return_bci is equal to bci[n]:
1228 test_mdp_data_at(mdp,
1229 in_bytes(RetData::bci_offset(row)),
1230 return_bci, noreg,
1231 next_test);
1232
1233 // return_bci is equal to bci[n]. Increment the count.
1234 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1235
1236 // The method data pointer needs to be updated to reflect the new target.
1237 update_mdp_by_offset(mdp,
1238 in_bytes(RetData::bci_displacement_offset(row)));
1239 j(profile_continue);
1240 bind(next_test);
1241 }
1242
1243 update_mdp_for_ret(return_bci);
1244
1245 bind(profile_continue);
1246 }
1247 }
1248
1249 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1250 if (ProfileInterpreter) {
1251 Label profile_continue;
1252
1253 // If no method data exists, go to profile_continue.
1254 test_method_data_pointer(mdp, profile_continue);
1255
1256 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1257
1258 // The method data pointer needs to be updated.
1259 int mdp_delta = in_bytes(BitData::bit_data_size());
1260 if (TypeProfileCasts) {
1261 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1262 }
1263 update_mdp_by_constant(mdp, mdp_delta);
1264
1265 bind(profile_continue);
1266 }
1267 }
1268
1269 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1270 if (ProfileInterpreter) {
1271 Label profile_continue;
1272
1273 // If no method data exists, go to profile_continue.
1274 test_method_data_pointer(mdp, profile_continue);
1275
1276 // The method data pointer needs to be updated.
1277 int mdp_delta = in_bytes(BitData::bit_data_size());
1278 if (TypeProfileCasts) {
1279 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1280
1281 // Record the object type.
1282 record_klass_in_profile(klass, mdp, reg2);
1283 }
1284 update_mdp_by_constant(mdp, mdp_delta);
1285
1286 bind(profile_continue);
1287 }
1288 }
1289
1290 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1291 if (ProfileInterpreter) {
1292 Label profile_continue;
1293
1294 // If no method data exists, go to profile_continue.
1295 test_method_data_pointer(mdp, profile_continue);
1296
1297 // Update the default case count
1298 increment_mdp_data_at(mdp,
1299 in_bytes(MultiBranchData::default_count_offset()));
1300
1301 // The method data pointer needs to be updated.
1302 update_mdp_by_offset(mdp,
1303 in_bytes(MultiBranchData::
1304 default_displacement_offset()));
1305
1306 bind(profile_continue);
1307 }
1308 }
1309
1310 void InterpreterMacroAssembler::profile_switch_case(Register index,
1311 Register mdp,
1312 Register reg2) {
1313 if (ProfileInterpreter) {
1314 Label profile_continue;
1315
1316 // If no method data exists, go to profile_continue.
1317 test_method_data_pointer(mdp, profile_continue);
1318
1319 // Build the base (index * per_case_size_in_bytes()) +
1320 // case_array_offset_in_bytes()
1321 mv(reg2, in_bytes(MultiBranchData::per_case_size()));
1322 mv(t0, in_bytes(MultiBranchData::case_array_offset()));
1323 Assembler::mul(index, index, reg2);
1324 Assembler::add(index, index, t0);
1325
1326 // Update the case count
1327 increment_mdp_data_at(mdp,
1328 index,
1329 in_bytes(MultiBranchData::relative_count_offset()));
1330
1331 // The method data pointer need to be updated.
1332 update_mdp_by_offset(mdp,
1333 index,
1334 in_bytes(MultiBranchData::
1335 relative_displacement_offset()));
1336
1337 bind(profile_continue);
1338 }
1339 }
1340
1341 void InterpreterMacroAssembler::notify_method_entry() {
1342 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1343 // track stack depth. If it is possible to enter interp_only_mode we add
1344 // the code to check if the event should be sent.
1345 if (JvmtiExport::can_post_interpreter_events()) {
1346 Label L;
1347 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset()));
1348 beqz(x13, L);
1349 call_VM(noreg, CAST_FROM_FN_PTR(address,
1350 InterpreterRuntime::post_method_entry));
1351 bind(L);
1352 }
1353
1354 if (DTraceMethodProbes) {
1355 get_method(c_rarg1);
1356 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1357 xthread, c_rarg1);
1358 }
1359
1360 // RedefineClasses() tracing support for obsolete method entry
1361 if (log_is_enabled(Trace, redefine, class, obsolete)) {
1362 get_method(c_rarg1);
1363 call_VM_leaf(
1364 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1365 xthread, c_rarg1);
1366 }
1367 }
1368
1369
1370 void InterpreterMacroAssembler::notify_method_exit(
1371 TosState state, NotifyMethodExitMode mode) {
1372 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1373 // track stack depth. If it is possible to enter interp_only_mode we add
1374 // the code to check if the event should be sent.
1375 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1376 Label L;
1377 // Note: frame::interpreter_frame_result has a dependency on how the
1378 // method result is saved across the call to post_method_exit. If this
1379 // is changed then the interpreter_frame_result implementation will
1380 // need to be updated too.
1381
1382 // template interpreter will leave the result on the top of the stack.
1383 push(state);
1384 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset()));
1385 beqz(x13, L);
1386 call_VM(noreg,
1387 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1388 bind(L);
1389 pop(state);
1390 }
1391
1392 if (DTraceMethodProbes) {
1393 push(state);
1394 get_method(c_rarg1);
1395 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1396 xthread, c_rarg1);
1397 pop(state);
1398 }
1399 }
1400
1401
1402 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1403 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1404 int increment, Address mask,
1405 Register tmp1, Register tmp2,
1406 bool preloaded, Label* where) {
1407 Label done;
1408 if (!preloaded) {
1409 lwu(tmp1, counter_addr);
1410 }
1411 add(tmp1, tmp1, increment);
1412 sw(tmp1, counter_addr);
1413 lwu(tmp2, mask);
1414 andr(tmp1, tmp1, tmp2);
1415 bnez(tmp1, done);
1416 j(*where); // offset is too large so we have to use j instead of beqz here
1417 bind(done);
1418 }
1419
1420 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1421 int number_of_arguments) {
1422 // interpreter specific
1423 //
1424 // Note: No need to save/restore xbcp & xlocals pointer since these
1425 // are callee saved registers and no blocking/ GC can happen
1426 // in leaf calls.
1427 #ifdef ASSERT
1428 {
1429 Label L;
1430 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
1431 beqz(t0, L);
1432 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1433 " last_sp isn't null");
1434 bind(L);
1435 }
1436 #endif /* ASSERT */
1437 // super call
1438 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1439 }
1440
1441 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1442 Register java_thread,
1443 Register last_java_sp,
1444 address entry_point,
1445 int number_of_arguments,
1446 bool check_exceptions) {
1447 // interpreter specific
1448 //
1449 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1450 // really make a difference for these runtime calls, since they are
1451 // slow anyway. Btw., bcp must be saved/restored since it may change
1452 // due to GC.
1453 save_bcp();
1454 #ifdef ASSERT
1455 {
1456 Label L;
1457 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
1458 beqz(t0, L);
1459 stop("InterpreterMacroAssembler::call_VM_base:"
1460 " last_sp isn't null");
1461 bind(L);
1462 }
1463 #endif /* ASSERT */
1464 // super call
1465 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1466 entry_point, number_of_arguments,
1467 check_exceptions);
1468 // interpreter specific
1469 restore_bcp();
1470 restore_locals();
1471 }
1472
1473 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1474 address entry_point,
1475 Register arg_1) {
1476 assert(arg_1 == c_rarg1, "");
1477 Label resume_pc, not_preempted;
1478
1479 #ifdef ASSERT
1480 {
1481 Label L;
1482 ld(t0, Address(xthread, JavaThread::preempt_alternate_return_offset()));
1483 beqz(t0, L);
1484 stop("Should not have alternate return address set");
1485 bind(L);
1486 }
1487 #endif /* ASSERT */
1488
1489 // Force freeze slow path.
1490 push_cont_fastpath();
1491
1492 // Make VM call. In case of preemption set last_pc to the one we want to resume to.
1493 la(t0, resume_pc);
1494 sd(t0, Address(xthread, JavaThread::last_Java_pc_offset()));
1495 call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/);
1496
1497 pop_cont_fastpath();
1498
1499 // Check if preempted.
1500 ld(t1, Address(xthread, JavaThread::preempt_alternate_return_offset()));
1501 beqz(t1, not_preempted);
1502 sd(zr, Address(xthread, JavaThread::preempt_alternate_return_offset()));
1503 jr(t1);
1504
1505 // In case of preemption, this is where we will resume once we finally acquire the monitor.
1506 bind(resume_pc);
1507 restore_after_resume(false /* is_native */);
1508
1509 bind(not_preempted);
1510 }
1511
1512 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
1513 la(t1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
1514 jalr(t1);
1515 if (is_native) {
1516 // On resume we need to set up stack as expected
1517 push(dtos);
1518 push(ltos);
1519 }
1520 }
1521
1522 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) {
1523 assert_different_registers(obj, tmp, t0, mdo_addr.base());
1524 Label update, next, none;
1525
1526 verify_oop(obj);
1527
1528 bnez(obj, update);
1529 orptr(mdo_addr, TypeEntries::null_seen, t0, tmp);
1530 j(next);
1531
1532 bind(update);
1533 load_klass(obj, obj);
1534
1535 ld(tmp, mdo_addr);
1536 xorr(obj, obj, tmp);
1537 andi(t0, obj, TypeEntries::type_klass_mask);
1538 beqz(t0, next); // klass seen before, nothing to
1539 // do. The unknown bit may have been
1540 // set already but no need to check.
1541
1542 test_bit(t0, obj, exact_log2(TypeEntries::type_unknown));
1543 bnez(t0, next);
1544 // already unknown. Nothing to do anymore.
1545
1546 beqz(tmp, none);
1547 mv(t0, (u1)TypeEntries::null_seen);
1548 beq(tmp, t0, none);
1549 // There is a chance that the checks above
1550 // fail if another thread has just set the
1551 // profiling to this obj's klass
1552 xorr(obj, obj, tmp); // get back original value before XOR
1553 ld(tmp, mdo_addr);
1554 xorr(obj, obj, tmp);
1555 andi(t0, obj, TypeEntries::type_klass_mask);
1556 beqz(t0, next);
1557
1558 // different than before. Cannot keep accurate profile.
1559 orptr(mdo_addr, TypeEntries::type_unknown, t0, tmp);
1560 j(next);
1561
1562 bind(none);
1563 // first time here. Set profile type.
1564 sd(obj, mdo_addr);
1565 #ifdef ASSERT
1566 andi(obj, obj, TypeEntries::type_mask);
1567 verify_klass_ptr(obj);
1568 #endif
1569
1570 bind(next);
1571 }
1572
1573 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1574 if (!ProfileInterpreter) {
1575 return;
1576 }
1577
1578 if (MethodData::profile_arguments() || MethodData::profile_return()) {
1579 Label profile_continue;
1580
1581 test_method_data_pointer(mdp, profile_continue);
1582
1583 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1584
1585 lbu(t0, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1586 if (is_virtual) {
1587 mv(tmp, (u1)DataLayout::virtual_call_type_data_tag);
1588 bne(t0, tmp, profile_continue);
1589 } else {
1590 mv(tmp, (u1)DataLayout::call_type_data_tag);
1591 bne(t0, tmp, profile_continue);
1592 }
1593
1594 // calculate slot step
1595 static int stack_slot_offset0 = in_bytes(TypeEntriesAtCall::stack_slot_offset(0));
1596 static int slot_step = in_bytes(TypeEntriesAtCall::stack_slot_offset(1)) - stack_slot_offset0;
1597
1598 // calculate type step
1599 static int argument_type_offset0 = in_bytes(TypeEntriesAtCall::argument_type_offset(0));
1600 static int type_step = in_bytes(TypeEntriesAtCall::argument_type_offset(1)) - argument_type_offset0;
1601
1602 if (MethodData::profile_arguments()) {
1603 Label done, loop, loopEnd, profileArgument, profileReturnType;
1604 RegSet pushed_registers;
1605 pushed_registers += x15;
1606 pushed_registers += x16;
1607 pushed_registers += x17;
1608 Register mdo_addr = x15;
1609 Register index = x16;
1610 Register off_to_args = x17;
1611 push_reg(pushed_registers, sp);
1612
1613 mv(off_to_args, in_bytes(TypeEntriesAtCall::args_data_offset()));
1614 mv(t0, TypeProfileArgsLimit);
1615 beqz(t0, loopEnd);
1616
1617 mv(index, zr); // index < TypeProfileArgsLimit
1618 bind(loop);
1619 bgtz(index, profileReturnType);
1620 mv(t0, (int)MethodData::profile_return());
1621 beqz(t0, profileArgument); // (index > 0 || MethodData::profile_return()) == false
1622 bind(profileReturnType);
1623 // If return value type is profiled we may have no argument to profile
1624 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1625 mv(t1, - TypeStackSlotEntries::per_arg_count());
1626 mul(t1, index, t1);
1627 add(tmp, tmp, t1);
1628 mv(t1, TypeStackSlotEntries::per_arg_count());
1629 add(t0, mdp, off_to_args);
1630 blt(tmp, t1, done);
1631
1632 bind(profileArgument);
1633
1634 ld(tmp, Address(callee, Method::const_offset()));
1635 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1636 // stack offset o (zero based) from the start of the argument
1637 // list, for n arguments translates into offset n - o - 1 from
1638 // the end of the argument list
1639 mv(t0, stack_slot_offset0);
1640 mv(t1, slot_step);
1641 mul(t1, index, t1);
1642 add(t0, t0, t1);
1643 add(t0, mdp, t0);
1644 ld(t0, Address(t0));
1645 sub(tmp, tmp, t0);
1646 subi(tmp, tmp, 1);
1647 Address arg_addr = argument_address(tmp);
1648 ld(tmp, arg_addr);
1649
1650 mv(t0, argument_type_offset0);
1651 mv(t1, type_step);
1652 mul(t1, index, t1);
1653 add(t0, t0, t1);
1654 add(mdo_addr, mdp, t0);
1655 Address mdo_arg_addr(mdo_addr, 0);
1656 profile_obj_type(tmp, mdo_arg_addr, t1);
1657
1658 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1659 addi(off_to_args, off_to_args, to_add);
1660
1661 // increment index by 1
1662 addi(index, index, 1);
1663 mv(t1, TypeProfileArgsLimit);
1664 blt(index, t1, loop);
1665 bind(loopEnd);
1666
1667 if (MethodData::profile_return()) {
1668 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1669 sub(tmp, tmp, TypeProfileArgsLimit * TypeStackSlotEntries::per_arg_count());
1670 }
1671
1672 add(t0, mdp, off_to_args);
1673 bind(done);
1674 mv(mdp, t0);
1675
1676 // unspill the clobbered registers
1677 pop_reg(pushed_registers, sp);
1678
1679 if (MethodData::profile_return()) {
1680 // We're right after the type profile for the last
1681 // argument. tmp is the number of cells left in the
1682 // CallTypeData/VirtualCallTypeData to reach its end. Non null
1683 // if there's a return to profile.
1684 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1685 shadd(mdp, tmp, mdp, tmp, exact_log2(DataLayout::cell_size));
1686 }
1687 sd(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
1688 } else {
1689 assert(MethodData::profile_return(), "either profile call args or call ret");
1690 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1691 }
1692
1693 // mdp points right after the end of the
1694 // CallTypeData/VirtualCallTypeData, right after the cells for the
1695 // return value type if there's one
1696
1697 bind(profile_continue);
1698 }
1699 }
1700
1701 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1702 assert_different_registers(mdp, ret, tmp, xbcp, t0, t1);
1703 if (ProfileInterpreter && MethodData::profile_return()) {
1704 Label profile_continue, done;
1705
1706 test_method_data_pointer(mdp, profile_continue);
1707
1708 if (MethodData::profile_return_jsr292_only()) {
1709 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1710
1711 // If we don't profile all invoke bytecodes we must make sure
1712 // it's a bytecode we indeed profile. We can't go back to the
1713 // beginning of the ProfileData we intend to update to check its
1714 // type because we're right after it and we don't known its
1715 // length
1716 Label do_profile;
1717 lbu(t0, Address(xbcp, 0));
1718 mv(tmp, (u1)Bytecodes::_invokedynamic);
1719 beq(t0, tmp, do_profile);
1720 mv(tmp, (u1)Bytecodes::_invokehandle);
1721 beq(t0, tmp, do_profile);
1722 get_method(tmp);
1723 lhu(t0, Address(tmp, Method::intrinsic_id_offset()));
1724 mv(t1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1725 bne(t0, t1, profile_continue);
1726 bind(do_profile);
1727 }
1728
1729 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1730 mv(tmp, ret);
1731 profile_obj_type(tmp, mdo_ret_addr, t1);
1732
1733 bind(profile_continue);
1734 }
1735 }
1736
1737 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2, Register tmp3) {
1738 assert_different_registers(t0, t1, mdp, tmp1, tmp2, tmp3);
1739 if (ProfileInterpreter && MethodData::profile_parameters()) {
1740 Label profile_continue, done;
1741
1742 test_method_data_pointer(mdp, profile_continue);
1743
1744 // Load the offset of the area within the MDO used for
1745 // parameters. If it's negative we're not profiling any parameters
1746 lwu(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1747 srli(tmp2, tmp1, 31);
1748 bnez(tmp2, profile_continue); // i.e. sign bit set
1749
1750 // Compute a pointer to the area for parameters from the offset
1751 // and move the pointer to the slot for the last
1752 // parameters. Collect profiling from last parameter down.
1753 // mdo start + parameters offset + array length - 1
1754 add(mdp, mdp, tmp1);
1755 ld(tmp1, Address(mdp, ArrayData::array_len_offset()));
1756 subi(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1757
1758 Label loop;
1759 bind(loop);
1760
1761 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1762 int type_base = in_bytes(ParametersTypeData::type_offset(0));
1763 int per_arg_scale = exact_log2(DataLayout::cell_size);
1764 add(t0, mdp, off_base);
1765 add(t1, mdp, type_base);
1766
1767 shadd(tmp2, tmp1, t0, tmp2, per_arg_scale);
1768 // load offset on the stack from the slot for this parameter
1769 ld(tmp2, Address(tmp2, 0));
1770 neg(tmp2, tmp2);
1771
1772 // read the parameter from the local area
1773 shadd(tmp2, tmp2, xlocals, tmp2, Interpreter::logStackElementSize);
1774 ld(tmp2, Address(tmp2, 0));
1775
1776 // profile the parameter
1777 shadd(t1, tmp1, t1, t0, per_arg_scale);
1778 Address arg_type(t1, 0);
1779 profile_obj_type(tmp2, arg_type, tmp3);
1780
1781 // go to next parameter
1782 subi(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1783 bgez(tmp1, loop);
1784
1785 bind(profile_continue);
1786 }
1787 }
1788
1789 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1790 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1791 // register "cache" is trashed in next ld, so lets use it as a temporary register
1792 get_cache_index_at_bcp(index, cache, 1, sizeof(u4));
1793 // Get address of invokedynamic array
1794 ld(cache, Address(xcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1795 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1796 slli(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1797 addi(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1798 add(cache, cache, index);
1799 }
1800
1801 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1802 // Get index out of bytecode pointer
1803 get_cache_index_at_bcp(index, cache, bcp_offset, sizeof(u2));
1804 // Take shortcut if the size is a power of 2
1805 if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1806 slli(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1807 } else {
1808 mv(cache, sizeof(ResolvedFieldEntry));
1809 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1810 }
1811 // Get address of field entries array
1812 ld(cache, Address(xcpool, ConstantPoolCache::field_entries_offset()));
1813 addi(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1814 add(cache, cache, index);
1815 // Prevents stale data from being read after the bytecode is patched to the fast bytecode
1816 membar(MacroAssembler::LoadLoad);
1817 }
1818
1819 void InterpreterMacroAssembler::get_method_counters(Register method,
1820 Register mcs, Label& skip) {
1821 Label has_counters;
1822 ld(mcs, Address(method, Method::method_counters_offset()));
1823 bnez(mcs, has_counters);
1824 call_VM(noreg, CAST_FROM_FN_PTR(address,
1825 InterpreterRuntime::build_method_counters), method);
1826 ld(mcs, Address(method, Method::method_counters_offset()));
1827 beqz(mcs, skip); // No MethodCounters allocated, OutOfMemory
1828 bind(has_counters);
1829 }
1830
1831 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1832 // Get index out of bytecode pointer
1833 get_cache_index_at_bcp(index, cache, bcp_offset, sizeof(u2));
1834 mv(cache, sizeof(ResolvedMethodEntry));
1835 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1836
1837 // Get address of field entries array
1838 ld(cache, Address(xcpool, ConstantPoolCache::method_entries_offset()));
1839 addi(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1840 add(cache, cache, index);
1841 }
1842
1843 #ifdef ASSERT
1844 void InterpreterMacroAssembler::verify_field_offset(Register reg) {
1845 // Verify the field offset is not in the header, implicitly checks for 0
1846 Label L;
1847 mv(t0, oopDesc::base_offset_in_bytes());
1848 bge(reg, t0, L);
1849 stop("bad field offset");
1850 bind(L);
1851 }
1852
1853 void InterpreterMacroAssembler::verify_access_flags(Register access_flags, uint32_t flag,
1854 const char* msg, bool stop_by_hit) {
1855 Label L;
1856 test_bit(t0, access_flags, exact_log2(flag));
1857 if (stop_by_hit) {
1858 beqz(t0, L);
1859 } else {
1860 bnez(t0, L);
1861 }
1862 stop(msg);
1863 bind(L);
1864 }
1865
1866 void InterpreterMacroAssembler::verify_frame_setup() {
1867 Label L;
1868 const Address monitor_block_top(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1869 ld(t0, monitor_block_top);
1870 shadd(t0, t0, fp, t0, LogBytesPerWord);
1871 beq(esp, t0, L);
1872 stop("broken stack frame setup in interpreter");
1873 bind(L);
1874 }
1875 #endif