1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4 * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved.
5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 *
7 * This code is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 only, as
9 * published by the Free Software Foundation.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 *
25 */
26
27 #include "asm/macroAssembler.inline.hpp"
28 #include "gc/shared/barrierSet.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "interp_masm_riscv.hpp"
31 #include "interpreter/interpreter.hpp"
32 #include "interpreter/interpreterRuntime.hpp"
33 #include "logging/log.hpp"
34 #include "oops/arrayOop.hpp"
35 #include "oops/markWord.hpp"
36 #include "oops/method.hpp"
37 #include "oops/methodData.hpp"
38 #include "oops/resolvedFieldEntry.hpp"
39 #include "oops/resolvedIndyEntry.hpp"
40 #include "oops/resolvedMethodEntry.hpp"
41 #include "prims/jvmtiExport.hpp"
42 #include "prims/jvmtiThreadState.hpp"
43 #include "runtime/basicLock.hpp"
44 #include "runtime/frame.inline.hpp"
45 #include "runtime/javaThread.hpp"
46 #include "runtime/safepointMechanism.hpp"
47 #include "runtime/sharedRuntime.hpp"
48 #include "utilities/powerOfTwo.hpp"
49
50 void InterpreterMacroAssembler::narrow(Register result) {
51 // Get method->_constMethod->_result_type
52 ld(t0, Address(fp, frame::interpreter_frame_method_offset * wordSize));
53 ld(t0, Address(t0, Method::const_offset()));
54 lbu(t0, Address(t0, ConstMethod::result_type_offset()));
55
56 Label done, notBool, notByte, notChar;
57
58 // common case first
59 mv(t1, T_INT);
60 beq(t0, t1, done);
61
62 // mask integer result to narrower return type.
63 mv(t1, T_BOOLEAN);
64 bne(t0, t1, notBool);
65
66 andi(result, result, 0x1);
67 j(done);
68
69 bind(notBool);
70 mv(t1, T_BYTE);
71 bne(t0, t1, notByte);
72 sext(result, result, 8);
73 j(done);
74
75 bind(notByte);
76 mv(t1, T_CHAR);
77 bne(t0, t1, notChar);
78 zext(result, result, 16);
79 j(done);
80
81 bind(notChar);
82 sext(result, result, 16);
83
84 bind(done);
85 sext(result, result, 32);
86 }
87
88 void InterpreterMacroAssembler::jump_to_entry(address entry) {
89 assert(entry != nullptr, "Entry must have been generated by now");
90 j(entry);
91 }
92
93 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
94 if (JvmtiExport::can_pop_frame()) {
95 Label L;
96 // Initiate popframe handling only if it is not already being
97 // processed. If the flag has the popframe_processing bit set,
98 // it means that this code is called *during* popframe handling - we
99 // don't want to reenter.
100 // This method is only called just after the call into the vm in
101 // call_VM_base, so the arg registers are available.
102 lwu(t1, Address(xthread, JavaThread::popframe_condition_offset()));
103 test_bit(t0, t1, exact_log2(JavaThread::popframe_pending_bit));
104 beqz(t0, L);
105 test_bit(t0, t1, exact_log2(JavaThread::popframe_processing_bit));
106 bnez(t0, L);
107 // Call Interpreter::remove_activation_preserving_args_entry() to get the
108 // address of the same-named entrypoint in the generated interpreter code.
109 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
110 jr(x10);
111 bind(L);
112 }
113 }
114
115
116 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
117 ld(x12, Address(xthread, JavaThread::jvmti_thread_state_offset()));
118 const Address tos_addr(x12, JvmtiThreadState::earlyret_tos_offset());
119 const Address oop_addr(x12, JvmtiThreadState::earlyret_oop_offset());
120 const Address val_addr(x12, JvmtiThreadState::earlyret_value_offset());
121 switch (state) {
122 case atos:
123 ld(x10, oop_addr);
124 sd(zr, oop_addr);
125 verify_oop(x10);
126 break;
127 case ltos:
128 ld(x10, val_addr);
129 break;
130 case btos: // fall through
131 case ztos: // fall through
132 case ctos: // fall through
133 case stos: // fall through
134 case itos:
135 lwu(x10, val_addr);
136 break;
137 case ftos:
138 flw(f10, val_addr);
139 break;
140 case dtos:
141 fld(f10, val_addr);
142 break;
143 case vtos:
144 /* nothing to do */
145 break;
146 default:
147 ShouldNotReachHere();
148 }
149 // Clean up tos value in the thread object
150 mv(t0, (int)ilgl);
151 sw(t0, tos_addr);
152 sw(zr, val_addr);
153 }
154
155
156 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
157 if (JvmtiExport::can_force_early_return()) {
158 Label L;
159 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset()));
160 beqz(t0, L); // if thread->jvmti_thread_state() is null then exit
161
162 // Initiate earlyret handling only if it is not already being processed.
163 // If the flag has the earlyret_processing bit set, it means that this code
164 // is called *during* earlyret handling - we don't want to reenter.
165 lwu(t0, Address(t0, JvmtiThreadState::earlyret_state_offset()));
166 mv(t1, JvmtiThreadState::earlyret_pending);
167 bne(t0, t1, L);
168
169 // Call Interpreter::remove_activation_early_entry() to get the address of the
170 // same-named entrypoint in the generated interpreter code.
171 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset()));
172 lwu(t0, Address(t0, JvmtiThreadState::earlyret_tos_offset()));
173 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), t0);
174 jr(x10);
175 bind(L);
176 }
177 }
178
179 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
180 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
181 lbu(t1, Address(xbcp, bcp_offset));
182 lbu(reg, Address(xbcp, bcp_offset + 1));
183 slli(t1, t1, 8);
184 add(reg, reg, t1);
185 }
186
187 void InterpreterMacroAssembler::get_dispatch() {
188 la(xdispatch, ExternalAddress((address)Interpreter::dispatch_table()));
189 }
190
191 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
192 Register tmp,
193 int bcp_offset,
194 size_t index_size) {
195 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
196 if (index_size == sizeof(u2)) {
197 load_short_misaligned(index, Address(xbcp, bcp_offset), tmp, false);
198 } else if (index_size == sizeof(u4)) {
199 load_int_misaligned(index, Address(xbcp, bcp_offset), tmp, false);
200 } else if (index_size == sizeof(u1)) {
201 load_unsigned_byte(index, Address(xbcp, bcp_offset));
202 } else {
203 ShouldNotReachHere();
204 }
205 }
206
207 // Load object from cpool->resolved_references(index)
208 void InterpreterMacroAssembler::load_resolved_reference_at_index(
209 Register result, Register index, Register tmp) {
210 assert_different_registers(result, index);
211
212 get_constant_pool(result);
213 // Load pointer for resolved_references[] objArray
214 ld(result, Address(result, ConstantPool::cache_offset()));
215 ld(result, Address(result, ConstantPoolCache::resolved_references_offset()));
216 resolve_oop_handle(result, tmp, t1);
217 // Add in the index
218 addi(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
219 shadd(result, index, result, index, LogBytesPerHeapOop);
220 load_heap_oop(result, Address(result, 0), tmp, t1);
221 }
222
223 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
224 Register cpool, Register index, Register klass, Register temp) {
225 shadd(temp, index, cpool, temp, LogBytesPerWord);
226 lhu(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
227 ld(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
228 shadd(klass, temp, klass, temp, LogBytesPerWord);
229 ld(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
230 }
231
232 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
233 // subtype of super_klass.
234 //
235 // Args:
236 // x10: superklass
237 // Rsub_klass: subklass
238 //
239 // Kills:
240 // x12, x15
241 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
242 Label& ok_is_subtype) {
243 assert(Rsub_klass != x10, "x10 holds superklass");
244 assert(Rsub_klass != x12, "x12 holds 2ndary super array length");
245 assert(Rsub_klass != x15, "x15 holds 2ndary super array scan ptr");
246
247 // Profile the not-null value's klass.
248 profile_typecheck(x12, Rsub_klass, x15); // blows x12, reloads x15
249
250 // Do the check.
251 check_klass_subtype(Rsub_klass, x10, x12, ok_is_subtype); // blows x12
252 }
253
254 // Java Expression Stack
255
256 void InterpreterMacroAssembler::pop_ptr(Register r) {
257 ld(r, Address(esp, 0));
258 addi(esp, esp, wordSize);
259 }
260
261 void InterpreterMacroAssembler::pop_i(Register r) {
262 lw(r, Address(esp, 0)); // lw do signed extended
263 addi(esp, esp, wordSize);
264 }
265
266 void InterpreterMacroAssembler::pop_l(Register r) {
267 ld(r, Address(esp, 0));
268 addi(esp, esp, 2 * Interpreter::stackElementSize);
269 }
270
271 void InterpreterMacroAssembler::push_ptr(Register r) {
272 subi(esp, esp, wordSize);
273 sd(r, Address(esp, 0));
274 }
275
276 void InterpreterMacroAssembler::push_i(Register r) {
277 subi(esp, esp, wordSize);
278 sext(r, r, 32);
279 sd(r, Address(esp, 0));
280 }
281
282 void InterpreterMacroAssembler::push_l(Register r) {
283 subi(esp, esp, 2 * wordSize);
284 sd(zr, Address(esp, wordSize));
285 sd(r, Address(esp));
286 }
287
288 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
289 flw(r, Address(esp, 0));
290 addi(esp, esp, wordSize);
291 }
292
293 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
294 fld(r, Address(esp, 0));
295 addi(esp, esp, 2 * Interpreter::stackElementSize);
296 }
297
298 void InterpreterMacroAssembler::push_f(FloatRegister r) {
299 subi(esp, esp, wordSize);
300 fsw(r, Address(esp, 0));
301 }
302
303 void InterpreterMacroAssembler::push_d(FloatRegister r) {
304 subi(esp, esp, 2 * wordSize);
305 fsd(r, Address(esp, 0));
306 }
307
308 void InterpreterMacroAssembler::pop(TosState state) {
309 switch (state) {
310 case atos:
311 pop_ptr();
312 verify_oop(x10);
313 break;
314 case btos: // fall through
315 case ztos: // fall through
316 case ctos: // fall through
317 case stos: // fall through
318 case itos:
319 pop_i();
320 break;
321 case ltos:
322 pop_l();
323 break;
324 case ftos:
325 pop_f();
326 break;
327 case dtos:
328 pop_d();
329 break;
330 case vtos:
331 /* nothing to do */
332 break;
333 default:
334 ShouldNotReachHere();
335 }
336 }
337
338 void InterpreterMacroAssembler::push(TosState state) {
339 switch (state) {
340 case atos:
341 verify_oop(x10);
342 push_ptr();
343 break;
344 case btos: // fall through
345 case ztos: // fall through
346 case ctos: // fall through
347 case stos: // fall through
348 case itos:
349 push_i();
350 break;
351 case ltos:
352 push_l();
353 break;
354 case ftos:
355 push_f();
356 break;
357 case dtos:
358 push_d();
359 break;
360 case vtos:
361 /* nothing to do */
362 break;
363 default:
364 ShouldNotReachHere();
365 }
366 }
367
368 // Helpers for swap and dup
369 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
370 ld(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
371 }
372
373 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
374 sd(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
375 }
376
377 void InterpreterMacroAssembler::load_float(Address src) {
378 flw(f10, src);
379 }
380
381 void InterpreterMacroAssembler::load_double(Address src) {
382 fld(f10, src);
383 }
384
385 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
386 // set sender sp
387 mv(x19_sender_sp, sp);
388 // record last_sp
389 sub(t0, esp, fp);
390 srai(t0, t0, Interpreter::logStackElementSize);
391 sd(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
392 }
393
394 // Jump to from_interpreted entry of a call unless single stepping is possible
395 // in this thread in which case we must call the i2i entry
396 void InterpreterMacroAssembler::jump_from_interpreted(Register method) {
397 prepare_to_jump_from_interpreted();
398 if (JvmtiExport::can_post_interpreter_events()) {
399 Label run_compiled_code;
400 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
401 // compiled code in threads for which the event is enabled. Check here for
402 // interp_only_mode if these events CAN be enabled.
403 lwu(t0, Address(xthread, JavaThread::interp_only_mode_offset()));
404 beqz(t0, run_compiled_code);
405 ld(t1, Address(method, Method::interpreter_entry_offset()));
406 jr(t1);
407 bind(run_compiled_code);
408 }
409
410 ld(t1, Address(method, Method::from_interpreted_offset()));
411 jr(t1);
412 }
413
414 // The following two routines provide a hook so that an implementation
415 // can schedule the dispatch in two parts. amd64 does not do this.
416 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
417 }
418
419 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
420 dispatch_next(state, step);
421 }
422
423 void InterpreterMacroAssembler::dispatch_base(TosState state,
424 address* table,
425 bool verifyoop,
426 bool generate_poll,
427 Register Rs) {
428 // Pay attention to the argument Rs, which is acquiesce in t0.
429 if (VerifyActivationFrameSize) {
430 Label L;
431 sub(t1, fp, esp);
432 int min_frame_size =
433 (frame::link_offset - frame::interpreter_frame_initial_sp_offset + frame::metadata_words) * wordSize;
434 sub(t1, t1, min_frame_size);
435 bgez(t1, L);
436 stop("broken stack frame");
437 bind(L);
438 }
439 if (verifyoop && state == atos) {
440 verify_oop(x10);
441 }
442
443 Label safepoint;
444 address* const safepoint_table = Interpreter::safept_table(state);
445 bool needs_thread_local_poll = generate_poll && table != safepoint_table;
446
447 if (needs_thread_local_poll) {
448 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
449 ld(t1, Address(xthread, JavaThread::polling_word_offset()));
450 test_bit(t1, t1, exact_log2(SafepointMechanism::poll_bit()));
451 bnez(t1, safepoint);
452 }
453 if (table == Interpreter::dispatch_table(state)) {
454 mv(t1, Interpreter::distance_from_dispatch_table(state));
455 add(t1, Rs, t1);
456 shadd(t1, t1, xdispatch, t1, 3);
457 } else {
458 mv(t1, (address)table);
459 shadd(t1, Rs, t1, Rs, 3);
460 }
461 ld(t1, Address(t1));
462 jr(t1);
463
464 if (needs_thread_local_poll) {
465 bind(safepoint);
466 la(t1, ExternalAddress((address)safepoint_table));
467 shadd(t1, Rs, t1, Rs, 3);
468 ld(t1, Address(t1));
469 jr(t1);
470 }
471 }
472
473 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll, Register Rs) {
474 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll, Rs);
475 }
476
477 void InterpreterMacroAssembler::dispatch_only_normal(TosState state, Register Rs) {
478 dispatch_base(state, Interpreter::normal_table(state), true, false, Rs);
479 }
480
481 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state, Register Rs) {
482 dispatch_base(state, Interpreter::normal_table(state), false, false, Rs);
483 }
484
485 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
486 // load next bytecode
487 load_unsigned_byte(t0, Address(xbcp, step));
488 add(xbcp, xbcp, step);
489 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
490 }
491
492 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
493 // load current bytecode
494 lbu(t0, Address(xbcp, 0));
495 dispatch_base(state, table);
496 }
497
498 // remove activation
499 //
500 // Unlock the receiver if this is a synchronized method.
501 // Unlock any Java monitors from synchronized blocks.
502 // Apply stack watermark barrier.
503 // Notify JVMTI.
504 // Remove the activation from the stack.
505 //
506 // If there are locked Java monitors
507 // If throw_monitor_exception
508 // throws IllegalMonitorStateException
509 // Else if install_monitor_exception
510 // installs IllegalMonitorStateException
511 // Else
512 // no error processing
513 void InterpreterMacroAssembler::remove_activation(TosState state,
514 bool throw_monitor_exception,
515 bool install_monitor_exception,
516 bool notify_jvmdi) {
517 // Note: Registers x13 may be in use for the
518 // result check if synchronized method
519 Label unlocked, unlock, no_unlock;
520
521 #ifdef ASSERT
522 Label not_preempted;
523 ld(t0, Address(xthread, JavaThread::preempt_alternate_return_offset()));
524 beqz(t0, not_preempted);
525 stop("remove_activation: should not have alternate return address set");
526 bind(not_preempted);
527 #endif /* ASSERT */
528
529 // get the value of _do_not_unlock_if_synchronized into x13
530 const Address do_not_unlock_if_synchronized(xthread,
531 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
532 lbu(x13, do_not_unlock_if_synchronized);
533 sb(zr, do_not_unlock_if_synchronized); // reset the flag
534
535 // get method access flags
536 ld(x11, Address(fp, frame::interpreter_frame_method_offset * wordSize));
537 load_unsigned_short(x12, Address(x11, Method::access_flags_offset()));
538 test_bit(t0, x12, exact_log2(JVM_ACC_SYNCHRONIZED));
539 beqz(t0, unlocked);
540
541 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
542 // is set.
543 bnez(x13, no_unlock);
544
545 // unlock monitor
546 push(state); // save result
547
548 // BasicObjectLock will be first in list, since this is a
549 // synchronized method. However, need to check that the object has
550 // not been unlocked by an explicit monitorexit bytecode.
551 const Address monitor(fp, frame::interpreter_frame_initial_sp_offset *
552 wordSize - (int) sizeof(BasicObjectLock));
553 // We use c_rarg1 so that if we go slow path it will be the correct
554 // register for unlock_object to pass to VM directly
555 la(c_rarg1, monitor); // address of first monitor
556
557 ld(x10, Address(c_rarg1, BasicObjectLock::obj_offset()));
558 bnez(x10, unlock);
559
560 pop(state);
561 if (throw_monitor_exception) {
562 // Entry already unlocked, need to throw exception
563 call_VM(noreg, CAST_FROM_FN_PTR(address,
564 InterpreterRuntime::throw_illegal_monitor_state_exception));
565 should_not_reach_here();
566 } else {
567 // Monitor already unlocked during a stack unroll. If requested,
568 // install an illegal_monitor_state_exception. Continue with
569 // stack unrolling.
570 if (install_monitor_exception) {
571 call_VM(noreg, CAST_FROM_FN_PTR(address,
572 InterpreterRuntime::new_illegal_monitor_state_exception));
573 }
574 j(unlocked);
575 }
576
577 bind(unlock);
578 unlock_object(c_rarg1);
579 pop(state);
580
581 // Check that for block-structured locking (i.e., that all locked
582 // objects has been unlocked)
583 bind(unlocked);
584
585 // x10: Might contain return value
586
587 // Check that all monitors are unlocked
588 {
589 Label loop, exception, entry, restart;
590 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
591 const Address monitor_block_top(
592 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
593 const Address monitor_block_bot(
594 fp, frame::interpreter_frame_initial_sp_offset * wordSize);
595
596 bind(restart);
597 // We use c_rarg1 so that if we go slow path it will be the correct
598 // register for unlock_object to pass to VM directly
599 ld(c_rarg1, monitor_block_top); // derelativize pointer
600 shadd(c_rarg1, c_rarg1, fp, c_rarg1, LogBytesPerWord);
601 // c_rarg1 points to current entry, starting with top-most entry
602
603 la(x9, monitor_block_bot); // points to word before bottom of
604 // monitor block
605
606 j(entry);
607
608 // Entry already locked, need to throw exception
609 bind(exception);
610
611 if (throw_monitor_exception) {
612 // Throw exception
613 MacroAssembler::call_VM(noreg,
614 CAST_FROM_FN_PTR(address, InterpreterRuntime::
615 throw_illegal_monitor_state_exception));
616
617 should_not_reach_here();
618 } else {
619 // Stack unrolling. Unlock object and install illegal_monitor_exception.
620 // Unlock does not block, so don't have to worry about the frame.
621 // We don't have to preserve c_rarg1 since we are going to throw an exception.
622
623 push(state);
624 unlock_object(c_rarg1);
625 pop(state);
626
627 if (install_monitor_exception) {
628 call_VM(noreg, CAST_FROM_FN_PTR(address,
629 InterpreterRuntime::
630 new_illegal_monitor_state_exception));
631 }
632
633 j(restart);
634 }
635
636 bind(loop);
637 // check if current entry is used
638 add(t0, c_rarg1, in_bytes(BasicObjectLock::obj_offset()));
639 ld(t0, Address(t0, 0));
640 bnez(t0, exception);
641
642 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
643 bind(entry);
644 bne(c_rarg1, x9, loop); // check if bottom reached if not at bottom then check this entry
645 }
646
647 bind(no_unlock);
648
649 JFR_ONLY(enter_jfr_critical_section();)
650
651 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
652 // that would normally not be safe to use. Such bad returns into unsafe territory of
653 // the stack, will call InterpreterRuntime::at_unwind.
654 Label slow_path;
655 Label fast_path;
656 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
657 j(fast_path);
658
659 bind(slow_path);
660 push(state);
661 set_last_Java_frame(esp, fp, pc(), t0);
662 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), xthread);
663 reset_last_Java_frame(true);
664 pop(state);
665 bind(fast_path);
666
667 // JVMTI support. Make sure the safepoint poll test is issued prior.
668 if (notify_jvmdi) {
669 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
670 } else {
671 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
672 }
673
674 // remove activation
675 // get sender esp
676 ld(t1,
677 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize));
678 if (StackReservedPages > 0) {
679 // testing if reserved zone needs to be re-enabled
680 Label no_reserved_zone_enabling;
681
682 // check if already enabled - if so no re-enabling needed
683 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
684 lw(t0, Address(xthread, JavaThread::stack_guard_state_offset()));
685 subw(t0, t0, StackOverflow::stack_guard_enabled);
686 beqz(t0, no_reserved_zone_enabling);
687
688 // look for an overflow into the stack reserved zone, i.e.
689 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
690 ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset()));
691 ble(t1, t0, no_reserved_zone_enabling);
692
693 JFR_ONLY(leave_jfr_critical_section();)
694
695 call_VM_leaf(
696 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), xthread);
697 call_VM(noreg, CAST_FROM_FN_PTR(address,
698 InterpreterRuntime::throw_delayed_StackOverflowError));
699 should_not_reach_here();
700
701 bind(no_reserved_zone_enabling);
702 }
703
704 // remove frame anchor
705 leave();
706
707 JFR_ONLY(leave_jfr_critical_section();)
708
709 // restore sender esp
710 mv(esp, t1);
711
712 // If we're returning to interpreted code we will shortly be
713 // adjusting SP to allow some space for ESP. If we're returning to
714 // compiled code the saved sender SP was saved in sender_sp, so this
715 // restores it.
716 andi(sp, esp, -16);
717 }
718
719 #if INCLUDE_JFR
720 void InterpreterMacroAssembler::enter_jfr_critical_section() {
721 const Address sampling_critical_section(xthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
722 mv(t0, true);
723 sb(t0, sampling_critical_section);
724 }
725
726 void InterpreterMacroAssembler::leave_jfr_critical_section() {
727 const Address sampling_critical_section(xthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
728 sb(zr, sampling_critical_section);
729 }
730 #endif // INCLUDE_JFR
731
732 // Lock object
733 //
734 // Args:
735 // c_rarg1: BasicObjectLock to be used for locking
736 //
737 // Kills:
738 // x10
739 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, .. (param regs)
740 // t0, t1 (temp regs)
741 void InterpreterMacroAssembler::lock_object(Register lock_reg)
742 {
743 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
744
745 const Register tmp = c_rarg2;
746 const Register obj_reg = c_rarg3; // Will contain the oop
747 const Register tmp2 = c_rarg4;
748 const Register tmp3 = c_rarg5;
749
750 // Load object pointer into obj_reg (c_rarg3)
751 ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
752
753 Label done, slow_case;
754 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case);
755 j(done);
756
757 bind(slow_case);
758 // Call the runtime routine for slow case
759 call_VM_preemptable(noreg,
760 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
761 lock_reg);
762
763 bind(done);
764 }
765
766
767 // Unlocks an object. Used in monitorexit bytecode and
768 // remove_activation. Throws an IllegalMonitorException if object is
769 // not locked by current thread.
770 //
771 // Args:
772 // c_rarg1: BasicObjectLock for lock
773 //
774 // Kills:
775 // x10
776 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, ... (param regs)
777 // t0, t1 (temp regs)
778 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
779 {
780 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
781
782 const Register swap_reg = x10;
783 const Register header_reg = c_rarg2; // Will contain the old oopMark
784 const Register obj_reg = c_rarg3; // Will contain the oop
785 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock
786
787 save_bcp(); // Save in case of exception
788
789 // Load oop into obj_reg (c_rarg3)
790 ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
791
792 // Free entry
793 sd(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
794
795 Label done, slow_case;
796 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
797 j(done);
798
799 bind(slow_case);
800 // Call the runtime routine for slow case.
801 sd(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
802 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
803
804 bind(done);
805 restore_bcp();
806 }
807
808
809 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
810 Label& zero_continue) {
811 assert(ProfileInterpreter, "must be profiling interpreter");
812 ld(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
813 beqz(mdp, zero_continue);
814 }
815
816 // Set the method data pointer for the current bcp.
817 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
818 assert(ProfileInterpreter, "must be profiling interpreter");
819 Label set_mdp;
820 push_reg(RegSet::of(x10, x11), sp); // save x10, x11
821
822 // Test MDO to avoid the call if it is null.
823 ld(x10, Address(xmethod, in_bytes(Method::method_data_offset())));
824 beqz(x10, set_mdp);
825 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), xmethod, xbcp);
826 // x10: mdi
827 // mdo is guaranteed to be non-zero here, we checked for it before the call.
828 ld(x11, Address(xmethod, in_bytes(Method::method_data_offset())));
829 la(x11, Address(x11, in_bytes(MethodData::data_offset())));
830 add(x10, x11, x10);
831 sd(x10, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
832 bind(set_mdp);
833 pop_reg(RegSet::of(x10, x11), sp);
834 }
835
836 void InterpreterMacroAssembler::verify_method_data_pointer() {
837 assert(ProfileInterpreter, "must be profiling interpreter");
838 #ifdef ASSERT
839 Label verify_continue;
840 subi(sp, sp, 4 * wordSize);
841 sd(x10, Address(sp, 0));
842 sd(x11, Address(sp, wordSize));
843 sd(x12, Address(sp, 2 * wordSize));
844 sd(x13, Address(sp, 3 * wordSize));
845 test_method_data_pointer(x13, verify_continue); // If mdp is zero, continue
846 get_method(x11);
847
848 // If the mdp is valid, it will point to a DataLayout header which is
849 // consistent with the bcp. The converse is highly probable also.
850 lh(x12, Address(x13, in_bytes(DataLayout::bci_offset())));
851 ld(t0, Address(x11, Method::const_offset()));
852 add(x12, x12, t0);
853 la(x12, Address(x12, ConstMethod::codes_offset()));
854 beq(x12, xbcp, verify_continue);
855 // x10: method
856 // xbcp: bcp // xbcp == 22
857 // x13: mdp
858 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
859 x11, xbcp, x13);
860 bind(verify_continue);
861 ld(x10, Address(sp, 0));
862 ld(x11, Address(sp, wordSize));
863 ld(x12, Address(sp, 2 * wordSize));
864 ld(x13, Address(sp, 3 * wordSize));
865 addi(sp, sp, 4 * wordSize);
866 #endif // ASSERT
867 }
868
869
870 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
871 int constant,
872 Register value) {
873 assert(ProfileInterpreter, "must be profiling interpreter");
874 Address data(mdp_in, constant);
875 sd(value, data);
876 }
877
878
879 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
880 int constant) {
881 increment_mdp_data_at(mdp_in, noreg, constant);
882 }
883
884 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
885 Register index,
886 int constant) {
887 assert(ProfileInterpreter, "must be profiling interpreter");
888
889 assert_different_registers(t1, t0, mdp_in, index);
890
891 Address addr1(mdp_in, constant);
892 Address addr2(t1, 0);
893 Address &addr = addr1;
894 if (index != noreg) {
895 la(t1, addr1);
896 add(t1, t1, index);
897 addr = addr2;
898 }
899
900 ld(t0, addr);
901 addi(t0, t0, DataLayout::counter_increment);
902 sd(t0, addr);
903 }
904
905 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
906 int flag_byte_constant) {
907 assert(ProfileInterpreter, "must be profiling interpreter");
908 int flags_offset = in_bytes(DataLayout::flags_offset());
909 // Set the flag
910 lbu(t1, Address(mdp_in, flags_offset));
911 ori(t1, t1, flag_byte_constant);
912 sb(t1, Address(mdp_in, flags_offset));
913 }
914
915
916 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
917 int offset,
918 Register value,
919 Register test_value_out,
920 Label& not_equal_continue) {
921 assert(ProfileInterpreter, "must be profiling interpreter");
922 if (test_value_out == noreg) {
923 ld(t1, Address(mdp_in, offset));
924 bne(value, t1, not_equal_continue);
925 } else {
926 // Put the test value into a register, so caller can use it:
927 ld(test_value_out, Address(mdp_in, offset));
928 bne(value, test_value_out, not_equal_continue);
929 }
930 }
931
932
933 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
934 int offset_of_disp) {
935 assert(ProfileInterpreter, "must be profiling interpreter");
936 ld(t1, Address(mdp_in, offset_of_disp));
937 add(mdp_in, mdp_in, t1);
938 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
939 }
940
941 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
942 Register reg,
943 int offset_of_disp) {
944 assert(ProfileInterpreter, "must be profiling interpreter");
945 add(t1, mdp_in, reg);
946 ld(t1, Address(t1, offset_of_disp));
947 add(mdp_in, mdp_in, t1);
948 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
949 }
950
951
952 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
953 int constant) {
954 assert(ProfileInterpreter, "must be profiling interpreter");
955 add(mdp_in, mdp_in, (unsigned)constant);
956 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
957 }
958
959
960 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
961 assert(ProfileInterpreter, "must be profiling interpreter");
962
963 // save/restore across call_VM
964 subi(sp, sp, 2 * wordSize);
965 sd(zr, Address(sp, 0));
966 sd(return_bci, Address(sp, wordSize));
967 call_VM(noreg,
968 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
969 return_bci);
970 ld(zr, Address(sp, 0));
971 ld(return_bci, Address(sp, wordSize));
972 addi(sp, sp, 2 * wordSize);
973 }
974
975 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
976 if (ProfileInterpreter) {
977 Label profile_continue;
978
979 // If no method data exists, go to profile_continue.
980 test_method_data_pointer(mdp, profile_continue);
981
982 // We are taking a branch. Increment the taken count.
983 increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
984
985 // The method data pointer needs to be updated to reflect the new target.
986 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
987 bind(profile_continue);
988 }
989 }
990
991 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
992 if (ProfileInterpreter) {
993 Label profile_continue;
994
995 // If no method data exists, go to profile_continue.
996 test_method_data_pointer(mdp, profile_continue);
997
998 // We are not taking a branch. Increment the not taken count.
999 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1000
1001 // The method data pointer needs to be updated to correspond to
1002 // the next bytecode
1003 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1004 bind(profile_continue);
1005 }
1006 }
1007
1008 void InterpreterMacroAssembler::profile_call(Register mdp) {
1009 if (ProfileInterpreter) {
1010 Label profile_continue;
1011
1012 // If no method data exists, go to profile_continue.
1013 test_method_data_pointer(mdp, profile_continue);
1014
1015 // We are making a call. Increment the count.
1016 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1017
1018 // The method data pointer needs to be updated to reflect the new target.
1019 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1020 bind(profile_continue);
1021 }
1022 }
1023
1024 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1025 if (ProfileInterpreter) {
1026 Label profile_continue;
1027
1028 // If no method data exists, go to profile_continue.
1029 test_method_data_pointer(mdp, profile_continue);
1030
1031 // We are making a call. Increment the count.
1032 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1033
1034 // The method data pointer needs to be updated to reflect the new target.
1035 update_mdp_by_constant(mdp,
1036 in_bytes(VirtualCallData::
1037 virtual_call_data_size()));
1038 bind(profile_continue);
1039 }
1040 }
1041
1042
1043 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1044 Register mdp,
1045 Register reg2,
1046 bool receiver_can_be_null) {
1047 if (ProfileInterpreter) {
1048 Label profile_continue;
1049
1050 // If no method data exists, go to profile_continue.
1051 test_method_data_pointer(mdp, profile_continue);
1052
1053 Label skip_receiver_profile;
1054 if (receiver_can_be_null) {
1055 Label not_null;
1056 // We are making a call. Increment the count for null receiver.
1057 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1058 j(skip_receiver_profile);
1059 bind(not_null);
1060 }
1061
1062 // Record the receiver type.
1063 record_klass_in_profile(receiver, mdp, reg2);
1064 bind(skip_receiver_profile);
1065
1066 // The method data pointer needs to be updated to reflect the new target.
1067
1068 update_mdp_by_constant(mdp,
1069 in_bytes(VirtualCallData::
1070 virtual_call_data_size()));
1071 bind(profile_continue);
1072 }
1073 }
1074
1075 // This routine creates a state machine for updating the multi-row
1076 // type profile at a virtual call site (or other type-sensitive bytecode).
1077 // The machine visits each row (of receiver/count) until the receiver type
1078 // is found, or until it runs out of rows. At the same time, it remembers
1079 // the location of the first empty row. (An empty row records null for its
1080 // receiver, and can be allocated for a newly-observed receiver type.)
1081 // Because there are two degrees of freedom in the state, a simple linear
1082 // search will not work; it must be a decision tree. Hence this helper
1083 // function is recursive, to generate the required tree structured code.
1084 // It's the interpreter, so we are trading off code space for speed.
1085 // See below for example code.
1086 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1087 Register receiver, Register mdp,
1088 Register reg2, Label& done) {
1089 if (TypeProfileWidth == 0) {
1090 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1091 } else {
1092 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1093 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1094 }
1095 }
1096
1097 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1098 Register reg2, int start_row, Label& done, int total_rows,
1099 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1100 int last_row = total_rows - 1;
1101 assert(start_row <= last_row, "must be work left to do");
1102 // Test this row for both the item and for null.
1103 // Take any of three different outcomes:
1104 // 1. found item => increment count and goto done
1105 // 2. found null => keep looking for case 1, maybe allocate this cell
1106 // 3. found something else => keep looking for cases 1 and 2
1107 // Case 3 is handled by a recursive call.
1108 for (int row = start_row; row <= last_row; row++) {
1109 Label next_test;
1110 bool test_for_null_also = (row == start_row);
1111
1112 // See if the item is item[n].
1113 int item_offset = in_bytes(item_offset_fn(row));
1114 test_mdp_data_at(mdp, item_offset, item,
1115 (test_for_null_also ? reg2 : noreg),
1116 next_test);
1117 // (Reg2 now contains the item from the CallData.)
1118
1119 // The item is item[n]. Increment count[n].
1120 int count_offset = in_bytes(item_count_offset_fn(row));
1121 increment_mdp_data_at(mdp, count_offset);
1122 j(done);
1123 bind(next_test);
1124
1125 if (test_for_null_also) {
1126 Label found_null;
1127 // Failed the equality check on item[n]... Test for null.
1128 if (start_row == last_row) {
1129 // The only thing left to do is handle the null case.
1130 beqz(reg2, found_null);
1131 // Item did not match any saved item and there is no empty row for it.
1132 // Increment total counter to indicate polymorphic case.
1133 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1134 j(done);
1135 bind(found_null);
1136 break;
1137 }
1138 // Since null is rare, make it be the branch-taken case.
1139 beqz(reg2, found_null);
1140
1141 // Put all the "Case 3" tests here.
1142 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1143 item_offset_fn, item_count_offset_fn);
1144
1145 // Found a null. Keep searching for a matching item,
1146 // but remember that this is an empty (unused) slot.
1147 bind(found_null);
1148 }
1149 }
1150
1151 // In the fall-through case, we found no matching item, but we
1152 // observed the item[start_row] is null.
1153 // Fill in the item field and increment the count.
1154 int item_offset = in_bytes(item_offset_fn(start_row));
1155 set_mdp_data_at(mdp, item_offset, item);
1156 int count_offset = in_bytes(item_count_offset_fn(start_row));
1157 mv(reg2, DataLayout::counter_increment);
1158 set_mdp_data_at(mdp, count_offset, reg2);
1159 if (start_row > 0) {
1160 j(done);
1161 }
1162 }
1163
1164 // Example state machine code for three profile rows:
1165 // # main copy of decision tree, rooted at row[1]
1166 // if (row[0].rec == rec) then [
1167 // row[0].incr()
1168 // goto done
1169 // ]
1170 // if (row[0].rec != nullptr) then [
1171 // # inner copy of decision tree, rooted at row[1]
1172 // if (row[1].rec == rec) then [
1173 // row[1].incr()
1174 // goto done
1175 // ]
1176 // if (row[1].rec != nullptr) then [
1177 // # degenerate decision tree, rooted at row[2]
1178 // if (row[2].rec == rec) then [
1179 // row[2].incr()
1180 // goto done
1181 // ]
1182 // if (row[2].rec != nullptr) then [
1183 // count.incr()
1184 // goto done
1185 // ] # overflow
1186 // row[2].init(rec)
1187 // goto done
1188 // ] else [
1189 // # remember row[1] is empty
1190 // if (row[2].rec == rec) then [
1191 // row[2].incr()
1192 // goto done
1193 // ]
1194 // row[1].init(rec)
1195 // goto done
1196 // ]
1197 // else [
1198 // # remember row[0] is empty
1199 // if (row[1].rec == rec) then [
1200 // row[1].incr()
1201 // goto done
1202 // ]
1203 // if (row[2].rec == rec) then [
1204 // row[2].incr()
1205 // goto done
1206 // ]
1207 // row[0].init(rec)
1208 // goto done
1209 // ]
1210 // done:
1211
1212 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1213 Register mdp, Register reg2) {
1214 assert(ProfileInterpreter, "must be profiling");
1215 Label done;
1216
1217 record_klass_in_profile_helper(receiver, mdp, reg2, done);
1218
1219 bind(done);
1220 }
1221
1222 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1223 if (ProfileInterpreter) {
1224 Label profile_continue;
1225
1226 // If no method data exists, go to profile_continue.
1227 test_method_data_pointer(mdp, profile_continue);
1228
1229 // Update the total ret count.
1230 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1231
1232 for (uint row = 0; row < RetData::row_limit(); row++) {
1233 Label next_test;
1234
1235 // See if return_bci is equal to bci[n]:
1236 test_mdp_data_at(mdp,
1237 in_bytes(RetData::bci_offset(row)),
1238 return_bci, noreg,
1239 next_test);
1240
1241 // return_bci is equal to bci[n]. Increment the count.
1242 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1243
1244 // The method data pointer needs to be updated to reflect the new target.
1245 update_mdp_by_offset(mdp,
1246 in_bytes(RetData::bci_displacement_offset(row)));
1247 j(profile_continue);
1248 bind(next_test);
1249 }
1250
1251 update_mdp_for_ret(return_bci);
1252
1253 bind(profile_continue);
1254 }
1255 }
1256
1257 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1258 if (ProfileInterpreter) {
1259 Label profile_continue;
1260
1261 // If no method data exists, go to profile_continue.
1262 test_method_data_pointer(mdp, profile_continue);
1263
1264 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1265
1266 // The method data pointer needs to be updated.
1267 int mdp_delta = in_bytes(BitData::bit_data_size());
1268 if (TypeProfileCasts) {
1269 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1270 }
1271 update_mdp_by_constant(mdp, mdp_delta);
1272
1273 bind(profile_continue);
1274 }
1275 }
1276
1277 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1278 if (ProfileInterpreter) {
1279 Label profile_continue;
1280
1281 // If no method data exists, go to profile_continue.
1282 test_method_data_pointer(mdp, profile_continue);
1283
1284 // The method data pointer needs to be updated.
1285 int mdp_delta = in_bytes(BitData::bit_data_size());
1286 if (TypeProfileCasts) {
1287 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1288
1289 // Record the object type.
1290 record_klass_in_profile(klass, mdp, reg2);
1291 }
1292 update_mdp_by_constant(mdp, mdp_delta);
1293
1294 bind(profile_continue);
1295 }
1296 }
1297
1298 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1299 if (ProfileInterpreter) {
1300 Label profile_continue;
1301
1302 // If no method data exists, go to profile_continue.
1303 test_method_data_pointer(mdp, profile_continue);
1304
1305 // Update the default case count
1306 increment_mdp_data_at(mdp,
1307 in_bytes(MultiBranchData::default_count_offset()));
1308
1309 // The method data pointer needs to be updated.
1310 update_mdp_by_offset(mdp,
1311 in_bytes(MultiBranchData::
1312 default_displacement_offset()));
1313
1314 bind(profile_continue);
1315 }
1316 }
1317
1318 void InterpreterMacroAssembler::profile_switch_case(Register index,
1319 Register mdp,
1320 Register reg2) {
1321 if (ProfileInterpreter) {
1322 Label profile_continue;
1323
1324 // If no method data exists, go to profile_continue.
1325 test_method_data_pointer(mdp, profile_continue);
1326
1327 // Build the base (index * per_case_size_in_bytes()) +
1328 // case_array_offset_in_bytes()
1329 mv(reg2, in_bytes(MultiBranchData::per_case_size()));
1330 mv(t0, in_bytes(MultiBranchData::case_array_offset()));
1331 Assembler::mul(index, index, reg2);
1332 Assembler::add(index, index, t0);
1333
1334 // Update the case count
1335 increment_mdp_data_at(mdp,
1336 index,
1337 in_bytes(MultiBranchData::relative_count_offset()));
1338
1339 // The method data pointer need to be updated.
1340 update_mdp_by_offset(mdp,
1341 index,
1342 in_bytes(MultiBranchData::
1343 relative_displacement_offset()));
1344
1345 bind(profile_continue);
1346 }
1347 }
1348
1349 void InterpreterMacroAssembler::notify_method_entry() {
1350 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1351 // track stack depth. If it is possible to enter interp_only_mode we add
1352 // the code to check if the event should be sent.
1353 if (JvmtiExport::can_post_interpreter_events()) {
1354 Label L;
1355 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset()));
1356 beqz(x13, L);
1357 call_VM(noreg, CAST_FROM_FN_PTR(address,
1358 InterpreterRuntime::post_method_entry));
1359 bind(L);
1360 }
1361
1362 if (DTraceMethodProbes) {
1363 get_method(c_rarg1);
1364 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1365 xthread, c_rarg1);
1366 }
1367
1368 // RedefineClasses() tracing support for obsolete method entry
1369 if (log_is_enabled(Trace, redefine, class, obsolete)) {
1370 get_method(c_rarg1);
1371 call_VM_leaf(
1372 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1373 xthread, c_rarg1);
1374 }
1375 }
1376
1377
1378 void InterpreterMacroAssembler::notify_method_exit(
1379 TosState state, NotifyMethodExitMode mode) {
1380 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1381 // track stack depth. If it is possible to enter interp_only_mode we add
1382 // the code to check if the event should be sent.
1383 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1384 Label L;
1385 // Note: frame::interpreter_frame_result has a dependency on how the
1386 // method result is saved across the call to post_method_exit. If this
1387 // is changed then the interpreter_frame_result implementation will
1388 // need to be updated too.
1389
1390 // template interpreter will leave the result on the top of the stack.
1391 push(state);
1392 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset()));
1393 beqz(x13, L);
1394 call_VM(noreg,
1395 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1396 bind(L);
1397 pop(state);
1398 }
1399
1400 if (DTraceMethodProbes) {
1401 push(state);
1402 get_method(c_rarg1);
1403 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1404 xthread, c_rarg1);
1405 pop(state);
1406 }
1407 }
1408
1409
1410 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1411 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1412 int increment, Address mask,
1413 Register tmp1, Register tmp2,
1414 bool preloaded, Label* where) {
1415 Label done;
1416 if (!preloaded) {
1417 lwu(tmp1, counter_addr);
1418 }
1419 add(tmp1, tmp1, increment);
1420 sw(tmp1, counter_addr);
1421 lwu(tmp2, mask);
1422 andr(tmp1, tmp1, tmp2);
1423 bnez(tmp1, done);
1424 j(*where); // offset is too large so we have to use j instead of beqz here
1425 bind(done);
1426 }
1427
1428 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1429 int number_of_arguments) {
1430 // interpreter specific
1431 //
1432 // Note: No need to save/restore xbcp & xlocals pointer since these
1433 // are callee saved registers and no blocking/ GC can happen
1434 // in leaf calls.
1435 #ifdef ASSERT
1436 {
1437 Label L;
1438 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
1439 beqz(t0, L);
1440 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1441 " last_sp isn't null");
1442 bind(L);
1443 }
1444 #endif /* ASSERT */
1445 // super call
1446 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1447 }
1448
1449 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1450 Register java_thread,
1451 Register last_java_sp,
1452 Label* return_pc,
1453 address entry_point,
1454 int number_of_arguments,
1455 bool check_exceptions) {
1456 // interpreter specific
1457 //
1458 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1459 // really make a difference for these runtime calls, since they are
1460 // slow anyway. Btw., bcp must be saved/restored since it may change
1461 // due to GC.
1462 save_bcp();
1463 #ifdef ASSERT
1464 {
1465 Label L;
1466 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
1467 beqz(t0, L);
1468 stop("InterpreterMacroAssembler::call_VM_base:"
1469 " last_sp isn't null");
1470 bind(L);
1471 }
1472 #endif /* ASSERT */
1473 // super call
1474 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1475 return_pc, entry_point,
1476 number_of_arguments, check_exceptions);
1477 // interpreter specific
1478 restore_bcp();
1479 restore_locals();
1480 }
1481
1482 void InterpreterMacroAssembler::call_VM_preemptable_helper(Register oop_result,
1483 address entry_point,
1484 int number_of_arguments,
1485 bool check_exceptions) {
1486 assert(InterpreterRuntime::is_preemptable_call(entry_point),
1487 "VM call not preemptable, should use call_VM()");
1488 Label resume_pc, not_preempted;
1489
1490 #ifdef ASSERT
1491 {
1492 Label L1, L2;
1493 ld(t0, Address(xthread, JavaThread::preempt_alternate_return_offset()));
1494 beqz(t0, L1);
1495 stop("call_VM_preemptable_helper: Should not have alternate return address set");
1496 bind(L1);
1497 // We check this counter in patch_return_pc_with_preempt_stub() during freeze.
1498 incrementw(Address(xthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1499 lw(t0, Address(xthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1500 bgtz(t0, L2);
1501 stop("call_VM_preemptable_helper: should be > 0");
1502 bind(L2);
1503 }
1504 #endif /* ASSERT */
1505
1506 // Force freeze slow path.
1507 push_cont_fastpath();
1508
1509 // Make VM call. In case of preemption set last_pc to the one we want to resume to.
1510 // Note: call_VM_base will use resume_pc label to set last_Java_pc.
1511 call_VM_base(noreg, noreg, noreg, &resume_pc, entry_point, number_of_arguments, false /*check_exceptions*/);
1512
1513 pop_cont_fastpath();
1514
1515 #ifdef ASSERT
1516 {
1517 Label L;
1518 decrementw(Address(xthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1519 lw(t0, Address(xthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1520 bgez(t0, L);
1521 stop("call_VM_preemptable_helper: should be >= 0");
1522 bind(L);
1523 }
1524 #endif /* ASSERT */
1525
1526 // Check if preempted.
1527 ld(t1, Address(xthread, JavaThread::preempt_alternate_return_offset()));
1528 beqz(t1, not_preempted);
1529 sd(zr, Address(xthread, JavaThread::preempt_alternate_return_offset()));
1530 jr(t1);
1531
1532 // In case of preemption, this is where we will resume once we finally acquire the monitor.
1533 bind(resume_pc);
1534 restore_after_resume(false /* is_native */);
1535
1536 bind(not_preempted);
1537 if (check_exceptions) {
1538 // check for pending exceptions
1539 ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1540 Label ok;
1541 beqz(t0, ok);
1542 la(t1, RuntimeAddress(StubRoutines::forward_exception_entry()));
1543 jr(t1);
1544 bind(ok);
1545 }
1546
1547 // get oop result if there is one and reset the value in the thread
1548 if (oop_result->is_valid()) {
1549 get_vm_result_oop(oop_result, xthread);
1550 }
1551 }
1552
1553 static void pass_arg1(MacroAssembler* masm, Register arg) {
1554 if (c_rarg1 != arg) {
1555 masm->mv(c_rarg1, arg);
1556 }
1557 }
1558
1559 static void pass_arg2(MacroAssembler* masm, Register arg) {
1560 if (c_rarg2 != arg) {
1561 masm->mv(c_rarg2, arg);
1562 }
1563 }
1564
1565 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1566 address entry_point,
1567 Register arg_1,
1568 bool check_exceptions) {
1569 pass_arg1(this, arg_1);
1570 call_VM_preemptable_helper(oop_result, entry_point, 1, check_exceptions);
1571 }
1572
1573 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1574 address entry_point,
1575 Register arg_1,
1576 Register arg_2,
1577 bool check_exceptions) {
1578 LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
1579 pass_arg2(this, arg_2);
1580 pass_arg1(this, arg_1);
1581 call_VM_preemptable_helper(oop_result, entry_point, 2, check_exceptions);
1582 }
1583
1584 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
1585 la(t1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
1586 jalr(t1);
1587 if (is_native) {
1588 // On resume we need to set up stack as expected
1589 push(dtos);
1590 push(ltos);
1591 }
1592 }
1593
1594 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) {
1595 assert_different_registers(obj, tmp, t0, mdo_addr.base());
1596 Label update, next, none;
1597
1598 verify_oop(obj);
1599
1600 bnez(obj, update);
1601 orptr(mdo_addr, TypeEntries::null_seen, t0, tmp);
1602 j(next);
1603
1604 bind(update);
1605 load_klass(obj, obj);
1606
1607 ld(tmp, mdo_addr);
1608 xorr(obj, obj, tmp);
1609 andi(t0, obj, TypeEntries::type_klass_mask);
1610 beqz(t0, next); // klass seen before, nothing to
1611 // do. The unknown bit may have been
1612 // set already but no need to check.
1613
1614 test_bit(t0, obj, exact_log2(TypeEntries::type_unknown));
1615 bnez(t0, next);
1616 // already unknown. Nothing to do anymore.
1617
1618 beqz(tmp, none);
1619 mv(t0, (u1)TypeEntries::null_seen);
1620 beq(tmp, t0, none);
1621 // There is a chance that the checks above
1622 // fail if another thread has just set the
1623 // profiling to this obj's klass
1624 xorr(obj, obj, tmp); // get back original value before XOR
1625 ld(tmp, mdo_addr);
1626 xorr(obj, obj, tmp);
1627 andi(t0, obj, TypeEntries::type_klass_mask);
1628 beqz(t0, next);
1629
1630 // different than before. Cannot keep accurate profile.
1631 orptr(mdo_addr, TypeEntries::type_unknown, t0, tmp);
1632 j(next);
1633
1634 bind(none);
1635 // first time here. Set profile type.
1636 sd(obj, mdo_addr);
1637 #ifdef ASSERT
1638 andi(obj, obj, TypeEntries::type_mask);
1639 verify_klass_ptr(obj);
1640 #endif
1641
1642 bind(next);
1643 }
1644
1645 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1646 if (!ProfileInterpreter) {
1647 return;
1648 }
1649
1650 if (MethodData::profile_arguments() || MethodData::profile_return()) {
1651 Label profile_continue;
1652
1653 test_method_data_pointer(mdp, profile_continue);
1654
1655 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1656
1657 lbu(t0, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1658 if (is_virtual) {
1659 mv(tmp, (u1)DataLayout::virtual_call_type_data_tag);
1660 bne(t0, tmp, profile_continue);
1661 } else {
1662 mv(tmp, (u1)DataLayout::call_type_data_tag);
1663 bne(t0, tmp, profile_continue);
1664 }
1665
1666 // calculate slot step
1667 static int stack_slot_offset0 = in_bytes(TypeEntriesAtCall::stack_slot_offset(0));
1668 static int slot_step = in_bytes(TypeEntriesAtCall::stack_slot_offset(1)) - stack_slot_offset0;
1669
1670 // calculate type step
1671 static int argument_type_offset0 = in_bytes(TypeEntriesAtCall::argument_type_offset(0));
1672 static int type_step = in_bytes(TypeEntriesAtCall::argument_type_offset(1)) - argument_type_offset0;
1673
1674 if (MethodData::profile_arguments()) {
1675 Label done, loop, loopEnd, profileArgument, profileReturnType;
1676 RegSet pushed_registers;
1677 pushed_registers += x15;
1678 pushed_registers += x16;
1679 pushed_registers += x17;
1680 Register mdo_addr = x15;
1681 Register index = x16;
1682 Register off_to_args = x17;
1683 push_reg(pushed_registers, sp);
1684
1685 mv(off_to_args, in_bytes(TypeEntriesAtCall::args_data_offset()));
1686 mv(t0, TypeProfileArgsLimit);
1687 beqz(t0, loopEnd);
1688
1689 mv(index, zr); // index < TypeProfileArgsLimit
1690 bind(loop);
1691 bgtz(index, profileReturnType);
1692 mv(t0, (int)MethodData::profile_return());
1693 beqz(t0, profileArgument); // (index > 0 || MethodData::profile_return()) == false
1694 bind(profileReturnType);
1695 // If return value type is profiled we may have no argument to profile
1696 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1697 mv(t1, - TypeStackSlotEntries::per_arg_count());
1698 mul(t1, index, t1);
1699 add(tmp, tmp, t1);
1700 mv(t1, TypeStackSlotEntries::per_arg_count());
1701 add(t0, mdp, off_to_args);
1702 blt(tmp, t1, done);
1703
1704 bind(profileArgument);
1705
1706 ld(tmp, Address(callee, Method::const_offset()));
1707 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1708 // stack offset o (zero based) from the start of the argument
1709 // list, for n arguments translates into offset n - o - 1 from
1710 // the end of the argument list
1711 mv(t0, stack_slot_offset0);
1712 mv(t1, slot_step);
1713 mul(t1, index, t1);
1714 add(t0, t0, t1);
1715 add(t0, mdp, t0);
1716 ld(t0, Address(t0));
1717 sub(tmp, tmp, t0);
1718 subi(tmp, tmp, 1);
1719 Address arg_addr = argument_address(tmp);
1720 ld(tmp, arg_addr);
1721
1722 mv(t0, argument_type_offset0);
1723 mv(t1, type_step);
1724 mul(t1, index, t1);
1725 add(t0, t0, t1);
1726 add(mdo_addr, mdp, t0);
1727 Address mdo_arg_addr(mdo_addr, 0);
1728 profile_obj_type(tmp, mdo_arg_addr, t1);
1729
1730 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1731 addi(off_to_args, off_to_args, to_add);
1732
1733 // increment index by 1
1734 addi(index, index, 1);
1735 mv(t1, TypeProfileArgsLimit);
1736 blt(index, t1, loop);
1737 bind(loopEnd);
1738
1739 if (MethodData::profile_return()) {
1740 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1741 sub(tmp, tmp, TypeProfileArgsLimit * TypeStackSlotEntries::per_arg_count());
1742 }
1743
1744 add(t0, mdp, off_to_args);
1745 bind(done);
1746 mv(mdp, t0);
1747
1748 // unspill the clobbered registers
1749 pop_reg(pushed_registers, sp);
1750
1751 if (MethodData::profile_return()) {
1752 // We're right after the type profile for the last
1753 // argument. tmp is the number of cells left in the
1754 // CallTypeData/VirtualCallTypeData to reach its end. Non null
1755 // if there's a return to profile.
1756 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1757 shadd(mdp, tmp, mdp, tmp, exact_log2(DataLayout::cell_size));
1758 }
1759 sd(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
1760 } else {
1761 assert(MethodData::profile_return(), "either profile call args or call ret");
1762 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1763 }
1764
1765 // mdp points right after the end of the
1766 // CallTypeData/VirtualCallTypeData, right after the cells for the
1767 // return value type if there's one
1768
1769 bind(profile_continue);
1770 }
1771 }
1772
1773 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1774 assert_different_registers(mdp, ret, tmp, xbcp, t0, t1);
1775 if (ProfileInterpreter && MethodData::profile_return()) {
1776 Label profile_continue, done;
1777
1778 test_method_data_pointer(mdp, profile_continue);
1779
1780 if (MethodData::profile_return_jsr292_only()) {
1781 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1782
1783 // If we don't profile all invoke bytecodes we must make sure
1784 // it's a bytecode we indeed profile. We can't go back to the
1785 // beginning of the ProfileData we intend to update to check its
1786 // type because we're right after it and we don't known its
1787 // length
1788 Label do_profile;
1789 lbu(t0, Address(xbcp, 0));
1790 mv(tmp, (u1)Bytecodes::_invokedynamic);
1791 beq(t0, tmp, do_profile);
1792 mv(tmp, (u1)Bytecodes::_invokehandle);
1793 beq(t0, tmp, do_profile);
1794 get_method(tmp);
1795 lhu(t0, Address(tmp, Method::intrinsic_id_offset()));
1796 mv(t1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1797 bne(t0, t1, profile_continue);
1798 bind(do_profile);
1799 }
1800
1801 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1802 mv(tmp, ret);
1803 profile_obj_type(tmp, mdo_ret_addr, t1);
1804
1805 bind(profile_continue);
1806 }
1807 }
1808
1809 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2, Register tmp3) {
1810 assert_different_registers(t0, t1, mdp, tmp1, tmp2, tmp3);
1811 if (ProfileInterpreter && MethodData::profile_parameters()) {
1812 Label profile_continue, done;
1813
1814 test_method_data_pointer(mdp, profile_continue);
1815
1816 // Load the offset of the area within the MDO used for
1817 // parameters. If it's negative we're not profiling any parameters
1818 lwu(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1819 srli(tmp2, tmp1, 31);
1820 bnez(tmp2, profile_continue); // i.e. sign bit set
1821
1822 // Compute a pointer to the area for parameters from the offset
1823 // and move the pointer to the slot for the last
1824 // parameters. Collect profiling from last parameter down.
1825 // mdo start + parameters offset + array length - 1
1826 add(mdp, mdp, tmp1);
1827 ld(tmp1, Address(mdp, ArrayData::array_len_offset()));
1828 subi(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1829
1830 Label loop;
1831 bind(loop);
1832
1833 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1834 int type_base = in_bytes(ParametersTypeData::type_offset(0));
1835 int per_arg_scale = exact_log2(DataLayout::cell_size);
1836 add(t0, mdp, off_base);
1837 add(t1, mdp, type_base);
1838
1839 shadd(tmp2, tmp1, t0, tmp2, per_arg_scale);
1840 // load offset on the stack from the slot for this parameter
1841 ld(tmp2, Address(tmp2, 0));
1842 neg(tmp2, tmp2);
1843
1844 // read the parameter from the local area
1845 shadd(tmp2, tmp2, xlocals, tmp2, Interpreter::logStackElementSize);
1846 ld(tmp2, Address(tmp2, 0));
1847
1848 // profile the parameter
1849 shadd(t1, tmp1, t1, t0, per_arg_scale);
1850 Address arg_type(t1, 0);
1851 profile_obj_type(tmp2, arg_type, tmp3);
1852
1853 // go to next parameter
1854 subi(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1855 bgez(tmp1, loop);
1856
1857 bind(profile_continue);
1858 }
1859 }
1860
1861 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1862 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1863 // register "cache" is trashed in next ld, so lets use it as a temporary register
1864 get_cache_index_at_bcp(index, cache, 1, sizeof(u4));
1865 // Get address of invokedynamic array
1866 ld(cache, Address(xcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1867 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1868 slli(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1869 addi(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1870 add(cache, cache, index);
1871 }
1872
1873 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1874 // Get index out of bytecode pointer
1875 get_cache_index_at_bcp(index, cache, bcp_offset, sizeof(u2));
1876 // Take shortcut if the size is a power of 2
1877 if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1878 slli(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1879 } else {
1880 mv(cache, sizeof(ResolvedFieldEntry));
1881 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1882 }
1883 // Get address of field entries array
1884 ld(cache, Address(xcpool, ConstantPoolCache::field_entries_offset()));
1885 addi(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1886 add(cache, cache, index);
1887 // Prevents stale data from being read after the bytecode is patched to the fast bytecode
1888 membar(MacroAssembler::LoadLoad);
1889 }
1890
1891 void InterpreterMacroAssembler::get_method_counters(Register method,
1892 Register mcs, Label& skip) {
1893 Label has_counters;
1894 ld(mcs, Address(method, Method::method_counters_offset()));
1895 bnez(mcs, has_counters);
1896 call_VM(noreg, CAST_FROM_FN_PTR(address,
1897 InterpreterRuntime::build_method_counters), method);
1898 ld(mcs, Address(method, Method::method_counters_offset()));
1899 beqz(mcs, skip); // No MethodCounters allocated, OutOfMemory
1900 bind(has_counters);
1901 }
1902
1903 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1904 // Get index out of bytecode pointer
1905 get_cache_index_at_bcp(index, cache, bcp_offset, sizeof(u2));
1906 mv(cache, sizeof(ResolvedMethodEntry));
1907 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1908
1909 // Get address of field entries array
1910 ld(cache, Address(xcpool, ConstantPoolCache::method_entries_offset()));
1911 addi(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1912 add(cache, cache, index);
1913 }
1914
1915 #ifdef ASSERT
1916 void InterpreterMacroAssembler::verify_field_offset(Register reg) {
1917 // Verify the field offset is not in the header, implicitly checks for 0
1918 Label L;
1919 mv(t0, oopDesc::base_offset_in_bytes());
1920 bge(reg, t0, L);
1921 stop("bad field offset");
1922 bind(L);
1923 }
1924
1925 void InterpreterMacroAssembler::verify_access_flags(Register access_flags, uint32_t flag,
1926 const char* msg, bool stop_by_hit) {
1927 Label L;
1928 test_bit(t0, access_flags, exact_log2(flag));
1929 if (stop_by_hit) {
1930 beqz(t0, L);
1931 } else {
1932 bnez(t0, L);
1933 }
1934 stop(msg);
1935 bind(L);
1936 }
1937
1938 void InterpreterMacroAssembler::verify_frame_setup() {
1939 Label L;
1940 const Address monitor_block_top(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1941 ld(t0, monitor_block_top);
1942 shadd(t0, t0, fp, t0, LogBytesPerWord);
1943 beq(esp, t0, L);
1944 stop("broken stack frame setup in interpreter");
1945 bind(L);
1946 }
1947 #endif