1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_riscv.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/resolvedFieldEntry.hpp" 40 #include "oops/resolvedIndyEntry.hpp" 41 #include "oops/resolvedMethodEntry.hpp" 42 #include "prims/jvmtiExport.hpp" 43 #include "prims/jvmtiThreadState.hpp" 44 #include "runtime/basicLock.hpp" 45 #include "runtime/frame.inline.hpp" 46 #include "runtime/javaThread.hpp" 47 #include "runtime/safepointMechanism.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 void InterpreterMacroAssembler::narrow(Register result) { 52 // Get method->_constMethod->_result_type 53 ld(t0, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 54 ld(t0, Address(t0, Method::const_offset())); 55 lbu(t0, Address(t0, ConstMethod::result_type_offset())); 56 57 Label done, notBool, notByte, notChar; 58 59 // common case first 60 mv(t1, T_INT); 61 beq(t0, t1, done); 62 63 // mask integer result to narrower return type. 64 mv(t1, T_BOOLEAN); 65 bne(t0, t1, notBool); 66 67 andi(result, result, 0x1); 68 j(done); 69 70 bind(notBool); 71 mv(t1, T_BYTE); 72 bne(t0, t1, notByte); 73 sign_extend(result, result, 8); 74 j(done); 75 76 bind(notByte); 77 mv(t1, T_CHAR); 78 bne(t0, t1, notChar); 79 zero_extend(result, result, 16); 80 j(done); 81 82 bind(notChar); 83 sign_extend(result, result, 16); 84 85 bind(done); 86 sign_extend(result, result, 32); 87 } 88 89 void InterpreterMacroAssembler::jump_to_entry(address entry) { 90 assert(entry != nullptr, "Entry must have been generated by now"); 91 j(entry); 92 } 93 94 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 95 if (JvmtiExport::can_pop_frame()) { 96 Label L; 97 // Initiate popframe handling only if it is not already being 98 // processed. If the flag has the popframe_processing bit set, 99 // it means that this code is called *during* popframe handling - we 100 // don't want to reenter. 101 // This method is only called just after the call into the vm in 102 // call_VM_base, so the arg registers are available. 103 lwu(t1, Address(xthread, JavaThread::popframe_condition_offset())); 104 test_bit(t0, t1, exact_log2(JavaThread::popframe_pending_bit)); 105 beqz(t0, L); 106 test_bit(t0, t1, exact_log2(JavaThread::popframe_processing_bit)); 107 bnez(t0, L); 108 // Call Interpreter::remove_activation_preserving_args_entry() to get the 109 // address of the same-named entrypoint in the generated interpreter code. 110 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 111 jr(x10); 112 bind(L); 113 } 114 } 115 116 117 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 118 ld(x12, Address(xthread, JavaThread::jvmti_thread_state_offset())); 119 const Address tos_addr(x12, JvmtiThreadState::earlyret_tos_offset()); 120 const Address oop_addr(x12, JvmtiThreadState::earlyret_oop_offset()); 121 const Address val_addr(x12, JvmtiThreadState::earlyret_value_offset()); 122 switch (state) { 123 case atos: 124 ld(x10, oop_addr); 125 sd(zr, oop_addr); 126 verify_oop(x10); 127 break; 128 case ltos: 129 ld(x10, val_addr); 130 break; 131 case btos: // fall through 132 case ztos: // fall through 133 case ctos: // fall through 134 case stos: // fall through 135 case itos: 136 lwu(x10, val_addr); 137 break; 138 case ftos: 139 flw(f10, val_addr); 140 break; 141 case dtos: 142 fld(f10, val_addr); 143 break; 144 case vtos: 145 /* nothing to do */ 146 break; 147 default: 148 ShouldNotReachHere(); 149 } 150 // Clean up tos value in the thread object 151 mv(t0, (int)ilgl); 152 sw(t0, tos_addr); 153 sw(zr, val_addr); 154 } 155 156 157 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 158 if (JvmtiExport::can_force_early_return()) { 159 Label L; 160 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 161 beqz(t0, L); // if thread->jvmti_thread_state() is null then exit 162 163 // Initiate earlyret handling only if it is not already being processed. 164 // If the flag has the earlyret_processing bit set, it means that this code 165 // is called *during* earlyret handling - we don't want to reenter. 166 lwu(t0, Address(t0, JvmtiThreadState::earlyret_state_offset())); 167 mv(t1, JvmtiThreadState::earlyret_pending); 168 bne(t0, t1, L); 169 170 // Call Interpreter::remove_activation_early_entry() to get the address of the 171 // same-named entrypoint in the generated interpreter code. 172 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 173 lwu(t0, Address(t0, JvmtiThreadState::earlyret_tos_offset())); 174 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), t0); 175 jr(x10); 176 bind(L); 177 } 178 } 179 180 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 181 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 182 if (AvoidUnalignedAccesses && (bcp_offset % 2)) { 183 lbu(t1, Address(xbcp, bcp_offset)); 184 lbu(reg, Address(xbcp, bcp_offset + 1)); 185 slli(t1, t1, 8); 186 add(reg, reg, t1); 187 } else { 188 lhu(reg, Address(xbcp, bcp_offset)); 189 revb_h_h_u(reg, reg); 190 } 191 } 192 193 void InterpreterMacroAssembler::get_dispatch() { 194 ExternalAddress target((address)Interpreter::dispatch_table()); 195 relocate(target.rspec(), [&] { 196 int32_t offset; 197 la(xdispatch, target.target(), offset); 198 addi(xdispatch, xdispatch, offset); 199 }); 200 } 201 202 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 203 Register tmp, 204 int bcp_offset, 205 size_t index_size) { 206 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 207 if (index_size == sizeof(u2)) { 208 if (AvoidUnalignedAccesses) { 209 assert_different_registers(index, tmp); 210 load_unsigned_byte(index, Address(xbcp, bcp_offset)); 211 load_unsigned_byte(tmp, Address(xbcp, bcp_offset + 1)); 212 slli(tmp, tmp, 8); 213 add(index, index, tmp); 214 } else { 215 load_unsigned_short(index, Address(xbcp, bcp_offset)); 216 } 217 } else if (index_size == sizeof(u4)) { 218 load_int_misaligned(index, Address(xbcp, bcp_offset), tmp, false); 219 } else if (index_size == sizeof(u1)) { 220 load_unsigned_byte(index, Address(xbcp, bcp_offset)); 221 } else { 222 ShouldNotReachHere(); 223 } 224 } 225 226 // Load object from cpool->resolved_references(index) 227 void InterpreterMacroAssembler::load_resolved_reference_at_index( 228 Register result, Register index, Register tmp) { 229 assert_different_registers(result, index); 230 231 get_constant_pool(result); 232 // Load pointer for resolved_references[] objArray 233 ld(result, Address(result, ConstantPool::cache_offset())); 234 ld(result, Address(result, ConstantPoolCache::resolved_references_offset())); 235 resolve_oop_handle(result, tmp, t1); 236 // Add in the index 237 addi(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 238 shadd(result, index, result, index, LogBytesPerHeapOop); 239 load_heap_oop(result, Address(result, 0), tmp, t1); 240 } 241 242 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 243 Register cpool, Register index, Register klass, Register temp) { 244 shadd(temp, index, cpool, temp, LogBytesPerWord); 245 lhu(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 246 ld(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 247 shadd(klass, temp, klass, temp, LogBytesPerWord); 248 ld(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 249 } 250 251 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 252 // subtype of super_klass. 253 // 254 // Args: 255 // x10: superklass 256 // Rsub_klass: subklass 257 // 258 // Kills: 259 // x12, x15 260 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 261 Label& ok_is_subtype) { 262 assert(Rsub_klass != x10, "x10 holds superklass"); 263 assert(Rsub_klass != x12, "x12 holds 2ndary super array length"); 264 assert(Rsub_klass != x15, "x15 holds 2ndary super array scan ptr"); 265 266 // Profile the not-null value's klass. 267 profile_typecheck(x12, Rsub_klass, x15); // blows x12, reloads x15 268 269 // Do the check. 270 check_klass_subtype(Rsub_klass, x10, x12, ok_is_subtype); // blows x12 271 } 272 273 // Java Expression Stack 274 275 void InterpreterMacroAssembler::pop_ptr(Register r) { 276 ld(r, Address(esp, 0)); 277 addi(esp, esp, wordSize); 278 } 279 280 void InterpreterMacroAssembler::pop_i(Register r) { 281 lw(r, Address(esp, 0)); // lw do signed extended 282 addi(esp, esp, wordSize); 283 } 284 285 void InterpreterMacroAssembler::pop_l(Register r) { 286 ld(r, Address(esp, 0)); 287 addi(esp, esp, 2 * Interpreter::stackElementSize); 288 } 289 290 void InterpreterMacroAssembler::push_ptr(Register r) { 291 addi(esp, esp, -wordSize); 292 sd(r, Address(esp, 0)); 293 } 294 295 void InterpreterMacroAssembler::push_i(Register r) { 296 addi(esp, esp, -wordSize); 297 sign_extend(r, r, 32); 298 sd(r, Address(esp, 0)); 299 } 300 301 void InterpreterMacroAssembler::push_l(Register r) { 302 addi(esp, esp, -2 * wordSize); 303 sd(zr, Address(esp, wordSize)); 304 sd(r, Address(esp)); 305 } 306 307 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 308 flw(r, Address(esp, 0)); 309 addi(esp, esp, wordSize); 310 } 311 312 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 313 fld(r, Address(esp, 0)); 314 addi(esp, esp, 2 * Interpreter::stackElementSize); 315 } 316 317 void InterpreterMacroAssembler::push_f(FloatRegister r) { 318 addi(esp, esp, -wordSize); 319 fsw(r, Address(esp, 0)); 320 } 321 322 void InterpreterMacroAssembler::push_d(FloatRegister r) { 323 addi(esp, esp, -2 * wordSize); 324 fsd(r, Address(esp, 0)); 325 } 326 327 void InterpreterMacroAssembler::pop(TosState state) { 328 switch (state) { 329 case atos: 330 pop_ptr(); 331 verify_oop(x10); 332 break; 333 case btos: // fall through 334 case ztos: // fall through 335 case ctos: // fall through 336 case stos: // fall through 337 case itos: 338 pop_i(); 339 break; 340 case ltos: 341 pop_l(); 342 break; 343 case ftos: 344 pop_f(); 345 break; 346 case dtos: 347 pop_d(); 348 break; 349 case vtos: 350 /* nothing to do */ 351 break; 352 default: 353 ShouldNotReachHere(); 354 } 355 } 356 357 void InterpreterMacroAssembler::push(TosState state) { 358 switch (state) { 359 case atos: 360 verify_oop(x10); 361 push_ptr(); 362 break; 363 case btos: // fall through 364 case ztos: // fall through 365 case ctos: // fall through 366 case stos: // fall through 367 case itos: 368 push_i(); 369 break; 370 case ltos: 371 push_l(); 372 break; 373 case ftos: 374 push_f(); 375 break; 376 case dtos: 377 push_d(); 378 break; 379 case vtos: 380 /* nothing to do */ 381 break; 382 default: 383 ShouldNotReachHere(); 384 } 385 } 386 387 // Helpers for swap and dup 388 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 389 ld(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 390 } 391 392 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 393 sd(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 394 } 395 396 void InterpreterMacroAssembler::load_float(Address src) { 397 flw(f10, src); 398 } 399 400 void InterpreterMacroAssembler::load_double(Address src) { 401 fld(f10, src); 402 } 403 404 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 405 // set sender sp 406 mv(x19_sender_sp, sp); 407 // record last_sp 408 sub(t0, esp, fp); 409 srai(t0, t0, Interpreter::logStackElementSize); 410 sd(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 411 } 412 413 // Jump to from_interpreted entry of a call unless single stepping is possible 414 // in this thread in which case we must call the i2i entry 415 void InterpreterMacroAssembler::jump_from_interpreted(Register method) { 416 prepare_to_jump_from_interpreted(); 417 if (JvmtiExport::can_post_interpreter_events()) { 418 Label run_compiled_code; 419 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 420 // compiled code in threads for which the event is enabled. Check here for 421 // interp_only_mode if these events CAN be enabled. 422 lwu(t0, Address(xthread, JavaThread::interp_only_mode_offset())); 423 beqz(t0, run_compiled_code); 424 ld(t0, Address(method, Method::interpreter_entry_offset())); 425 jr(t0); 426 bind(run_compiled_code); 427 } 428 429 ld(t0, Address(method, Method::from_interpreted_offset())); 430 jr(t0); 431 } 432 433 // The following two routines provide a hook so that an implementation 434 // can schedule the dispatch in two parts. amd64 does not do this. 435 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 436 } 437 438 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 439 dispatch_next(state, step); 440 } 441 442 void InterpreterMacroAssembler::dispatch_base(TosState state, 443 address* table, 444 bool verifyoop, 445 bool generate_poll, 446 Register Rs) { 447 // Pay attention to the argument Rs, which is acquiesce in t0. 448 if (VerifyActivationFrameSize) { 449 Unimplemented(); 450 } 451 if (verifyoop && state == atos) { 452 verify_oop(x10); 453 } 454 455 Label safepoint; 456 address* const safepoint_table = Interpreter::safept_table(state); 457 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 458 459 if (needs_thread_local_poll) { 460 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 461 ld(t1, Address(xthread, JavaThread::polling_word_offset())); 462 test_bit(t1, t1, exact_log2(SafepointMechanism::poll_bit())); 463 bnez(t1, safepoint); 464 } 465 if (table == Interpreter::dispatch_table(state)) { 466 mv(t1, Interpreter::distance_from_dispatch_table(state)); 467 add(t1, Rs, t1); 468 shadd(t1, t1, xdispatch, t1, 3); 469 } else { 470 mv(t1, (address)table); 471 shadd(t1, Rs, t1, Rs, 3); 472 } 473 ld(t1, Address(t1)); 474 jr(t1); 475 476 if (needs_thread_local_poll) { 477 bind(safepoint); 478 la(t1, ExternalAddress((address)safepoint_table)); 479 shadd(t1, Rs, t1, Rs, 3); 480 ld(t1, Address(t1)); 481 jr(t1); 482 } 483 } 484 485 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll, Register Rs) { 486 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll, Rs); 487 } 488 489 void InterpreterMacroAssembler::dispatch_only_normal(TosState state, Register Rs) { 490 dispatch_base(state, Interpreter::normal_table(state), true, false, Rs); 491 } 492 493 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state, Register Rs) { 494 dispatch_base(state, Interpreter::normal_table(state), false, false, Rs); 495 } 496 497 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 498 // load next bytecode 499 load_unsigned_byte(t0, Address(xbcp, step)); 500 add(xbcp, xbcp, step); 501 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 502 } 503 504 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 505 // load current bytecode 506 lbu(t0, Address(xbcp, 0)); 507 dispatch_base(state, table); 508 } 509 510 // remove activation 511 // 512 // Apply stack watermark barrier. 513 // Unlock the receiver if this is a synchronized method. 514 // Unlock any Java monitors from synchronized blocks. 515 // Remove the activation from the stack. 516 // 517 // If there are locked Java monitors 518 // If throw_monitor_exception 519 // throws IllegalMonitorStateException 520 // Else if install_monitor_exception 521 // installs IllegalMonitorStateException 522 // Else 523 // no error processing 524 void InterpreterMacroAssembler::remove_activation( 525 TosState state, 526 bool throw_monitor_exception, 527 bool install_monitor_exception, 528 bool notify_jvmdi) { 529 // Note: Registers x13 may be in use for the 530 // result check if synchronized method 531 Label unlocked, unlock, no_unlock; 532 533 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 534 // that would normally not be safe to use. Such bad returns into unsafe territory of 535 // the stack, will call InterpreterRuntime::at_unwind. 536 Label slow_path; 537 Label fast_path; 538 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 539 j(fast_path); 540 541 bind(slow_path); 542 push(state); 543 set_last_Java_frame(esp, fp, (address)pc(), t0); 544 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), xthread); 545 reset_last_Java_frame(true); 546 pop(state); 547 548 bind(fast_path); 549 550 // get the value of _do_not_unlock_if_synchronized into x13 551 const Address do_not_unlock_if_synchronized(xthread, 552 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 553 lbu(x13, do_not_unlock_if_synchronized); 554 sb(zr, do_not_unlock_if_synchronized); // reset the flag 555 556 // get method access flags 557 ld(x11, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 558 ld(x12, Address(x11, Method::access_flags_offset())); 559 test_bit(t0, x12, exact_log2(JVM_ACC_SYNCHRONIZED)); 560 beqz(t0, unlocked); 561 562 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 563 // is set. 564 bnez(x13, no_unlock); 565 566 // unlock monitor 567 push(state); // save result 568 569 // BasicObjectLock will be first in list, since this is a 570 // synchronized method. However, need to check that the object has 571 // not been unlocked by an explicit monitorexit bytecode. 572 const Address monitor(fp, frame::interpreter_frame_initial_sp_offset * 573 wordSize - (int) sizeof(BasicObjectLock)); 574 // We use c_rarg1 so that if we go slow path it will be the correct 575 // register for unlock_object to pass to VM directly 576 la(c_rarg1, monitor); // address of first monitor 577 578 ld(x10, Address(c_rarg1, BasicObjectLock::obj_offset())); 579 bnez(x10, unlock); 580 581 pop(state); 582 if (throw_monitor_exception) { 583 // Entry already unlocked, need to throw exception 584 call_VM(noreg, CAST_FROM_FN_PTR(address, 585 InterpreterRuntime::throw_illegal_monitor_state_exception)); 586 should_not_reach_here(); 587 } else { 588 // Monitor already unlocked during a stack unroll. If requested, 589 // install an illegal_monitor_state_exception. Continue with 590 // stack unrolling. 591 if (install_monitor_exception) { 592 call_VM(noreg, CAST_FROM_FN_PTR(address, 593 InterpreterRuntime::new_illegal_monitor_state_exception)); 594 } 595 j(unlocked); 596 } 597 598 bind(unlock); 599 unlock_object(c_rarg1); 600 pop(state); 601 602 // Check that for block-structured locking (i.e., that all locked 603 // objects has been unlocked) 604 bind(unlocked); 605 606 // x10: Might contain return value 607 608 // Check that all monitors are unlocked 609 { 610 Label loop, exception, entry, restart; 611 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 612 const Address monitor_block_top( 613 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 614 const Address monitor_block_bot( 615 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 616 617 bind(restart); 618 // We use c_rarg1 so that if we go slow path it will be the correct 619 // register for unlock_object to pass to VM directly 620 ld(c_rarg1, monitor_block_top); // derelativize pointer 621 shadd(c_rarg1, c_rarg1, fp, c_rarg1, LogBytesPerWord); 622 // c_rarg1 points to current entry, starting with top-most entry 623 624 la(x9, monitor_block_bot); // points to word before bottom of 625 // monitor block 626 627 j(entry); 628 629 // Entry already locked, need to throw exception 630 bind(exception); 631 632 if (throw_monitor_exception) { 633 // Throw exception 634 MacroAssembler::call_VM(noreg, 635 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 636 throw_illegal_monitor_state_exception)); 637 638 should_not_reach_here(); 639 } else { 640 // Stack unrolling. Unlock object and install illegal_monitor_exception. 641 // Unlock does not block, so don't have to worry about the frame. 642 // We don't have to preserve c_rarg1 since we are going to throw an exception. 643 644 push(state); 645 unlock_object(c_rarg1); 646 pop(state); 647 648 if (install_monitor_exception) { 649 call_VM(noreg, CAST_FROM_FN_PTR(address, 650 InterpreterRuntime:: 651 new_illegal_monitor_state_exception)); 652 } 653 654 j(restart); 655 } 656 657 bind(loop); 658 // check if current entry is used 659 add(t0, c_rarg1, in_bytes(BasicObjectLock::obj_offset())); 660 ld(t0, Address(t0, 0)); 661 bnez(t0, exception); 662 663 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 664 bind(entry); 665 bne(c_rarg1, x9, loop); // check if bottom reached if not at bottom then check this entry 666 } 667 668 bind(no_unlock); 669 670 // jvmti support 671 if (notify_jvmdi) { 672 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 673 674 } else { 675 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 676 } 677 678 // remove activation 679 // get sender esp 680 ld(t1, 681 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); 682 if (StackReservedPages > 0) { 683 // testing if reserved zone needs to be re-enabled 684 Label no_reserved_zone_enabling; 685 686 // check if already enabled - if so no re-enabling needed 687 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 688 lw(t0, Address(xthread, JavaThread::stack_guard_state_offset())); 689 subw(t0, t0, StackOverflow::stack_guard_enabled); 690 beqz(t0, no_reserved_zone_enabling); 691 692 ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset())); 693 ble(t1, t0, no_reserved_zone_enabling); 694 695 call_VM_leaf( 696 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), xthread); 697 call_VM(noreg, CAST_FROM_FN_PTR(address, 698 InterpreterRuntime::throw_delayed_StackOverflowError)); 699 should_not_reach_here(); 700 701 bind(no_reserved_zone_enabling); 702 } 703 704 // restore sender esp 705 mv(esp, t1); 706 707 // remove frame anchor 708 leave(); 709 // If we're returning to interpreted code we will shortly be 710 // adjusting SP to allow some space for ESP. If we're returning to 711 // compiled code the saved sender SP was saved in sender_sp, so this 712 // restores it. 713 andi(sp, esp, -16); 714 } 715 716 // Lock object 717 // 718 // Args: 719 // c_rarg1: BasicObjectLock to be used for locking 720 // 721 // Kills: 722 // x10 723 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, .. (param regs) 724 // t0, t1 (temp regs) 725 void InterpreterMacroAssembler::lock_object(Register lock_reg) 726 { 727 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 728 if (LockingMode == LM_MONITOR) { 729 call_VM_preemptable(noreg, 730 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 731 lock_reg); 732 } else { 733 Label count, done; 734 735 const Register swap_reg = x10; 736 const Register tmp = c_rarg2; 737 const Register obj_reg = c_rarg3; // Will contain the oop 738 const Register tmp2 = c_rarg4; 739 const Register tmp3 = c_rarg5; 740 741 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 742 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 743 const int mark_offset = lock_offset + 744 BasicLock::displaced_header_offset_in_bytes(); 745 746 Label slow_case; 747 748 // Load object pointer into obj_reg c_rarg3 749 ld(obj_reg, Address(lock_reg, obj_offset)); 750 751 if (DiagnoseSyncOnValueBasedClasses != 0) { 752 load_klass(tmp, obj_reg); 753 lbu(tmp, Address(tmp, Klass::misc_flags_offset())); 754 test_bit(tmp, tmp, exact_log2(KlassFlags::_misc_is_value_based_class)); 755 bnez(tmp, slow_case); 756 } 757 758 if (LockingMode == LM_LIGHTWEIGHT) { 759 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 760 j(done); 761 } else if (LockingMode == LM_LEGACY) { 762 // Load (object->mark() | 1) into swap_reg 763 ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 764 ori(swap_reg, t0, 1); 765 766 // Save (object->mark() | 1) into BasicLock's displaced header 767 sd(swap_reg, Address(lock_reg, mark_offset)); 768 769 assert(lock_offset == 0, 770 "displached header must be first word in BasicObjectLock"); 771 772 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, tmp, count, /*fallthrough*/nullptr); 773 774 // Test if the oopMark is an obvious stack pointer, i.e., 775 // 1) (mark & 7) == 0, and 776 // 2) sp <= mark < mark + os::pagesize() 777 // 778 // These 3 tests can be done by evaluating the following 779 // expression: ((mark - sp) & (7 - os::vm_page_size())), 780 // assuming both stack pointer and pagesize have their 781 // least significant 3 bits clear. 782 // NOTE: the oopMark is in swap_reg x10 as the result of cmpxchg 783 sub(swap_reg, swap_reg, sp); 784 mv(t0, (int64_t)(7 - (int)os::vm_page_size())); 785 andr(swap_reg, swap_reg, t0); 786 787 // Save the test result, for recursive case, the result is zero 788 sd(swap_reg, Address(lock_reg, mark_offset)); 789 bnez(swap_reg, slow_case); 790 791 bind(count); 792 inc_held_monitor_count(); 793 j(done); 794 } 795 796 bind(slow_case); 797 798 // Call the runtime routine for slow case 799 call_VM_preemptable(noreg, 800 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 801 lock_reg); 802 803 bind(done); 804 } 805 } 806 807 808 // Unlocks an object. Used in monitorexit bytecode and 809 // remove_activation. Throws an IllegalMonitorException if object is 810 // not locked by current thread. 811 // 812 // Args: 813 // c_rarg1: BasicObjectLock for lock 814 // 815 // Kills: 816 // x10 817 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, ... (param regs) 818 // t0, t1 (temp regs) 819 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 820 { 821 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 822 823 if (LockingMode == LM_MONITOR) { 824 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 825 } else { 826 Label count, done; 827 828 const Register swap_reg = x10; 829 const Register header_reg = c_rarg2; // Will contain the old oopMark 830 const Register obj_reg = c_rarg3; // Will contain the oop 831 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 832 833 save_bcp(); // Save in case of exception 834 835 if (LockingMode != LM_LIGHTWEIGHT) { 836 // Convert from BasicObjectLock structure to object and BasicLock 837 // structure Store the BasicLock address into x10 838 la(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 839 } 840 841 // Load oop into obj_reg(c_rarg3) 842 ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 843 844 // Free entry 845 sd(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 846 847 Label slow_case; 848 if (LockingMode == LM_LIGHTWEIGHT) { 849 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 850 j(done); 851 } else if (LockingMode == LM_LEGACY) { 852 // Load the old header from BasicLock structure 853 ld(header_reg, Address(swap_reg, 854 BasicLock::displaced_header_offset_in_bytes())); 855 856 // Test for recursion 857 beqz(header_reg, count); 858 859 // Atomic swap back the old header 860 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, tmp_reg, count, &slow_case); 861 862 bind(count); 863 dec_held_monitor_count(); 864 j(done); 865 } 866 867 bind(slow_case); 868 // Call the runtime routine for slow case. 869 sd(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 870 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 871 872 bind(done); 873 restore_bcp(); 874 } 875 } 876 877 878 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 879 Label& zero_continue) { 880 assert(ProfileInterpreter, "must be profiling interpreter"); 881 ld(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 882 beqz(mdp, zero_continue); 883 } 884 885 // Set the method data pointer for the current bcp. 886 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 887 assert(ProfileInterpreter, "must be profiling interpreter"); 888 Label set_mdp; 889 push_reg(RegSet::of(x10, x11), sp); // save x10, x11 890 891 // Test MDO to avoid the call if it is null. 892 ld(x10, Address(xmethod, in_bytes(Method::method_data_offset()))); 893 beqz(x10, set_mdp); 894 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), xmethod, xbcp); 895 // x10: mdi 896 // mdo is guaranteed to be non-zero here, we checked for it before the call. 897 ld(x11, Address(xmethod, in_bytes(Method::method_data_offset()))); 898 la(x11, Address(x11, in_bytes(MethodData::data_offset()))); 899 add(x10, x11, x10); 900 sd(x10, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 901 bind(set_mdp); 902 pop_reg(RegSet::of(x10, x11), sp); 903 } 904 905 void InterpreterMacroAssembler::verify_method_data_pointer() { 906 assert(ProfileInterpreter, "must be profiling interpreter"); 907 #ifdef ASSERT 908 Label verify_continue; 909 add(sp, sp, -4 * wordSize); 910 sd(x10, Address(sp, 0)); 911 sd(x11, Address(sp, wordSize)); 912 sd(x12, Address(sp, 2 * wordSize)); 913 sd(x13, Address(sp, 3 * wordSize)); 914 test_method_data_pointer(x13, verify_continue); // If mdp is zero, continue 915 get_method(x11); 916 917 // If the mdp is valid, it will point to a DataLayout header which is 918 // consistent with the bcp. The converse is highly probable also. 919 lh(x12, Address(x13, in_bytes(DataLayout::bci_offset()))); 920 ld(t0, Address(x11, Method::const_offset())); 921 add(x12, x12, t0); 922 la(x12, Address(x12, ConstMethod::codes_offset())); 923 beq(x12, xbcp, verify_continue); 924 // x10: method 925 // xbcp: bcp // xbcp == 22 926 // x13: mdp 927 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 928 x11, xbcp, x13); 929 bind(verify_continue); 930 ld(x10, Address(sp, 0)); 931 ld(x11, Address(sp, wordSize)); 932 ld(x12, Address(sp, 2 * wordSize)); 933 ld(x13, Address(sp, 3 * wordSize)); 934 add(sp, sp, 4 * wordSize); 935 #endif // ASSERT 936 } 937 938 939 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 940 int constant, 941 Register value) { 942 assert(ProfileInterpreter, "must be profiling interpreter"); 943 Address data(mdp_in, constant); 944 sd(value, data); 945 } 946 947 948 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 949 int constant, 950 bool decrement) { 951 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 952 } 953 954 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 955 Register reg, 956 int constant, 957 bool decrement) { 958 assert(ProfileInterpreter, "must be profiling interpreter"); 959 // %%% this does 64bit counters at best it is wasting space 960 // at worst it is a rare bug when counters overflow 961 962 assert_different_registers(t1, t0, mdp_in, reg); 963 964 Address addr1(mdp_in, constant); 965 Address addr2(t1, 0); 966 Address &addr = addr1; 967 if (reg != noreg) { 968 la(t1, addr1); 969 add(t1, t1, reg); 970 addr = addr2; 971 } 972 973 if (decrement) { 974 ld(t0, addr); 975 addi(t0, t0, -DataLayout::counter_increment); 976 Label L; 977 bltz(t0, L); // skip store if counter underflow 978 sd(t0, addr); 979 bind(L); 980 } else { 981 assert(DataLayout::counter_increment == 1, 982 "flow-free idiom only works with 1"); 983 ld(t0, addr); 984 addi(t0, t0, DataLayout::counter_increment); 985 Label L; 986 blez(t0, L); // skip store if counter overflow 987 sd(t0, addr); 988 bind(L); 989 } 990 } 991 992 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 993 int flag_byte_constant) { 994 assert(ProfileInterpreter, "must be profiling interpreter"); 995 int flags_offset = in_bytes(DataLayout::flags_offset()); 996 // Set the flag 997 lbu(t1, Address(mdp_in, flags_offset)); 998 ori(t1, t1, flag_byte_constant); 999 sb(t1, Address(mdp_in, flags_offset)); 1000 } 1001 1002 1003 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1004 int offset, 1005 Register value, 1006 Register test_value_out, 1007 Label& not_equal_continue) { 1008 assert(ProfileInterpreter, "must be profiling interpreter"); 1009 if (test_value_out == noreg) { 1010 ld(t1, Address(mdp_in, offset)); 1011 bne(value, t1, not_equal_continue); 1012 } else { 1013 // Put the test value into a register, so caller can use it: 1014 ld(test_value_out, Address(mdp_in, offset)); 1015 bne(value, test_value_out, not_equal_continue); 1016 } 1017 } 1018 1019 1020 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1021 int offset_of_disp) { 1022 assert(ProfileInterpreter, "must be profiling interpreter"); 1023 ld(t1, Address(mdp_in, offset_of_disp)); 1024 add(mdp_in, mdp_in, t1); 1025 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1026 } 1027 1028 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1029 Register reg, 1030 int offset_of_disp) { 1031 assert(ProfileInterpreter, "must be profiling interpreter"); 1032 add(t1, mdp_in, reg); 1033 ld(t1, Address(t1, offset_of_disp)); 1034 add(mdp_in, mdp_in, t1); 1035 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1036 } 1037 1038 1039 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1040 int constant) { 1041 assert(ProfileInterpreter, "must be profiling interpreter"); 1042 addi(mdp_in, mdp_in, (unsigned)constant); 1043 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1044 } 1045 1046 1047 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1048 assert(ProfileInterpreter, "must be profiling interpreter"); 1049 1050 // save/restore across call_VM 1051 addi(sp, sp, -2 * wordSize); 1052 sd(zr, Address(sp, 0)); 1053 sd(return_bci, Address(sp, wordSize)); 1054 call_VM(noreg, 1055 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1056 return_bci); 1057 ld(zr, Address(sp, 0)); 1058 ld(return_bci, Address(sp, wordSize)); 1059 addi(sp, sp, 2 * wordSize); 1060 } 1061 1062 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1063 Register bumped_count) { 1064 if (ProfileInterpreter) { 1065 Label profile_continue; 1066 1067 // If no method data exists, go to profile_continue. 1068 // Otherwise, assign to mdp 1069 test_method_data_pointer(mdp, profile_continue); 1070 1071 // We are taking a branch. Increment the taken count. 1072 Address data(mdp, in_bytes(JumpData::taken_offset())); 1073 ld(bumped_count, data); 1074 assert(DataLayout::counter_increment == 1, 1075 "flow-free idiom only works with 1"); 1076 addi(bumped_count, bumped_count, DataLayout::counter_increment); 1077 Label L; 1078 // eg: bumped_count=0x7fff ffff ffff ffff + 1 < 0. so we use <= 0; 1079 blez(bumped_count, L); // skip store if counter overflow, 1080 sd(bumped_count, data); 1081 bind(L); 1082 // The method data pointer needs to be updated to reflect the new target. 1083 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1084 bind(profile_continue); 1085 } 1086 } 1087 1088 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1089 if (ProfileInterpreter) { 1090 Label profile_continue; 1091 1092 // If no method data exists, go to profile_continue. 1093 test_method_data_pointer(mdp, profile_continue); 1094 1095 // We are taking a branch. Increment the not taken count. 1096 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1097 1098 // The method data pointer needs to be updated to correspond to 1099 // the next bytecode 1100 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1101 bind(profile_continue); 1102 } 1103 } 1104 1105 void InterpreterMacroAssembler::profile_call(Register mdp) { 1106 if (ProfileInterpreter) { 1107 Label profile_continue; 1108 1109 // If no method data exists, go to profile_continue. 1110 test_method_data_pointer(mdp, profile_continue); 1111 1112 // We are making a call. Increment the count. 1113 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1114 1115 // The method data pointer needs to be updated to reflect the new target. 1116 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1117 bind(profile_continue); 1118 } 1119 } 1120 1121 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1122 if (ProfileInterpreter) { 1123 Label profile_continue; 1124 1125 // If no method data exists, go to profile_continue. 1126 test_method_data_pointer(mdp, profile_continue); 1127 1128 // We are making a call. Increment the count. 1129 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1130 1131 // The method data pointer needs to be updated to reflect the new target. 1132 update_mdp_by_constant(mdp, 1133 in_bytes(VirtualCallData:: 1134 virtual_call_data_size())); 1135 bind(profile_continue); 1136 } 1137 } 1138 1139 1140 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1141 Register mdp, 1142 Register reg2, 1143 bool receiver_can_be_null) { 1144 if (ProfileInterpreter) { 1145 Label profile_continue; 1146 1147 // If no method data exists, go to profile_continue. 1148 test_method_data_pointer(mdp, profile_continue); 1149 1150 Label skip_receiver_profile; 1151 if (receiver_can_be_null) { 1152 Label not_null; 1153 // We are making a call. Increment the count for null receiver. 1154 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1155 j(skip_receiver_profile); 1156 bind(not_null); 1157 } 1158 1159 // Record the receiver type. 1160 record_klass_in_profile(receiver, mdp, reg2); 1161 bind(skip_receiver_profile); 1162 1163 // The method data pointer needs to be updated to reflect the new target. 1164 1165 update_mdp_by_constant(mdp, 1166 in_bytes(VirtualCallData:: 1167 virtual_call_data_size())); 1168 bind(profile_continue); 1169 } 1170 } 1171 1172 // This routine creates a state machine for updating the multi-row 1173 // type profile at a virtual call site (or other type-sensitive bytecode). 1174 // The machine visits each row (of receiver/count) until the receiver type 1175 // is found, or until it runs out of rows. At the same time, it remembers 1176 // the location of the first empty row. (An empty row records null for its 1177 // receiver, and can be allocated for a newly-observed receiver type.) 1178 // Because there are two degrees of freedom in the state, a simple linear 1179 // search will not work; it must be a decision tree. Hence this helper 1180 // function is recursive, to generate the required tree structured code. 1181 // It's the interpreter, so we are trading off code space for speed. 1182 // See below for example code. 1183 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1184 Register receiver, Register mdp, 1185 Register reg2, Label& done) { 1186 if (TypeProfileWidth == 0) { 1187 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1188 } else { 1189 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1190 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1191 } 1192 } 1193 1194 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1195 Register reg2, int start_row, Label& done, int total_rows, 1196 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1197 int last_row = total_rows - 1; 1198 assert(start_row <= last_row, "must be work left to do"); 1199 // Test this row for both the item and for null. 1200 // Take any of three different outcomes: 1201 // 1. found item => increment count and goto done 1202 // 2. found null => keep looking for case 1, maybe allocate this cell 1203 // 3. found something else => keep looking for cases 1 and 2 1204 // Case 3 is handled by a recursive call. 1205 for (int row = start_row; row <= last_row; row++) { 1206 Label next_test; 1207 bool test_for_null_also = (row == start_row); 1208 1209 // See if the item is item[n]. 1210 int item_offset = in_bytes(item_offset_fn(row)); 1211 test_mdp_data_at(mdp, item_offset, item, 1212 (test_for_null_also ? reg2 : noreg), 1213 next_test); 1214 // (Reg2 now contains the item from the CallData.) 1215 1216 // The item is item[n]. Increment count[n]. 1217 int count_offset = in_bytes(item_count_offset_fn(row)); 1218 increment_mdp_data_at(mdp, count_offset); 1219 j(done); 1220 bind(next_test); 1221 1222 if (test_for_null_also) { 1223 Label found_null; 1224 // Failed the equality check on item[n]... Test for null. 1225 if (start_row == last_row) { 1226 // The only thing left to do is handle the null case. 1227 beqz(reg2, found_null); 1228 // Item did not match any saved item and there is no empty row for it. 1229 // Increment total counter to indicate polymorphic case. 1230 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1231 j(done); 1232 bind(found_null); 1233 break; 1234 } 1235 // Since null is rare, make it be the branch-taken case. 1236 beqz(reg2, found_null); 1237 1238 // Put all the "Case 3" tests here. 1239 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1240 item_offset_fn, item_count_offset_fn); 1241 1242 // Found a null. Keep searching for a matching item, 1243 // but remember that this is an empty (unused) slot. 1244 bind(found_null); 1245 } 1246 } 1247 1248 // In the fall-through case, we found no matching item, but we 1249 // observed the item[start_row] is null. 1250 // Fill in the item field and increment the count. 1251 int item_offset = in_bytes(item_offset_fn(start_row)); 1252 set_mdp_data_at(mdp, item_offset, item); 1253 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1254 mv(reg2, DataLayout::counter_increment); 1255 set_mdp_data_at(mdp, count_offset, reg2); 1256 if (start_row > 0) { 1257 j(done); 1258 } 1259 } 1260 1261 // Example state machine code for three profile rows: 1262 // # main copy of decision tree, rooted at row[1] 1263 // if (row[0].rec == rec) then [ 1264 // row[0].incr() 1265 // goto done 1266 // ] 1267 // if (row[0].rec != nullptr) then [ 1268 // # inner copy of decision tree, rooted at row[1] 1269 // if (row[1].rec == rec) then [ 1270 // row[1].incr() 1271 // goto done 1272 // ] 1273 // if (row[1].rec != nullptr) then [ 1274 // # degenerate decision tree, rooted at row[2] 1275 // if (row[2].rec == rec) then [ 1276 // row[2].incr() 1277 // goto done 1278 // ] 1279 // if (row[2].rec != nullptr) then [ 1280 // count.incr() 1281 // goto done 1282 // ] # overflow 1283 // row[2].init(rec) 1284 // goto done 1285 // ] else [ 1286 // # remember row[1] is empty 1287 // if (row[2].rec == rec) then [ 1288 // row[2].incr() 1289 // goto done 1290 // ] 1291 // row[1].init(rec) 1292 // goto done 1293 // ] 1294 // else [ 1295 // # remember row[0] is empty 1296 // if (row[1].rec == rec) then [ 1297 // row[1].incr() 1298 // goto done 1299 // ] 1300 // if (row[2].rec == rec) then [ 1301 // row[2].incr() 1302 // goto done 1303 // ] 1304 // row[0].init(rec) 1305 // goto done 1306 // ] 1307 // done: 1308 1309 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1310 Register mdp, Register reg2) { 1311 assert(ProfileInterpreter, "must be profiling"); 1312 Label done; 1313 1314 record_klass_in_profile_helper(receiver, mdp, reg2, done); 1315 1316 bind(done); 1317 } 1318 1319 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { 1320 if (ProfileInterpreter) { 1321 Label profile_continue; 1322 1323 // If no method data exists, go to profile_continue. 1324 test_method_data_pointer(mdp, profile_continue); 1325 1326 // Update the total ret count. 1327 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1328 1329 for (uint row = 0; row < RetData::row_limit(); row++) { 1330 Label next_test; 1331 1332 // See if return_bci is equal to bci[n]: 1333 test_mdp_data_at(mdp, 1334 in_bytes(RetData::bci_offset(row)), 1335 return_bci, noreg, 1336 next_test); 1337 1338 // return_bci is equal to bci[n]. Increment the count. 1339 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1340 1341 // The method data pointer needs to be updated to reflect the new target. 1342 update_mdp_by_offset(mdp, 1343 in_bytes(RetData::bci_displacement_offset(row))); 1344 j(profile_continue); 1345 bind(next_test); 1346 } 1347 1348 update_mdp_for_ret(return_bci); 1349 1350 bind(profile_continue); 1351 } 1352 } 1353 1354 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1355 if (ProfileInterpreter) { 1356 Label profile_continue; 1357 1358 // If no method data exists, go to profile_continue. 1359 test_method_data_pointer(mdp, profile_continue); 1360 1361 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1362 1363 // The method data pointer needs to be updated. 1364 int mdp_delta = in_bytes(BitData::bit_data_size()); 1365 if (TypeProfileCasts) { 1366 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1367 } 1368 update_mdp_by_constant(mdp, mdp_delta); 1369 1370 bind(profile_continue); 1371 } 1372 } 1373 1374 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1375 if (ProfileInterpreter) { 1376 Label profile_continue; 1377 1378 // If no method data exists, go to profile_continue. 1379 test_method_data_pointer(mdp, profile_continue); 1380 1381 // The method data pointer needs to be updated. 1382 int mdp_delta = in_bytes(BitData::bit_data_size()); 1383 if (TypeProfileCasts) { 1384 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1385 1386 // Record the object type. 1387 record_klass_in_profile(klass, mdp, reg2); 1388 } 1389 update_mdp_by_constant(mdp, mdp_delta); 1390 1391 bind(profile_continue); 1392 } 1393 } 1394 1395 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1396 if (ProfileInterpreter) { 1397 Label profile_continue; 1398 1399 // If no method data exists, go to profile_continue. 1400 test_method_data_pointer(mdp, profile_continue); 1401 1402 // Update the default case count 1403 increment_mdp_data_at(mdp, 1404 in_bytes(MultiBranchData::default_count_offset())); 1405 1406 // The method data pointer needs to be updated. 1407 update_mdp_by_offset(mdp, 1408 in_bytes(MultiBranchData:: 1409 default_displacement_offset())); 1410 1411 bind(profile_continue); 1412 } 1413 } 1414 1415 void InterpreterMacroAssembler::profile_switch_case(Register index, 1416 Register mdp, 1417 Register reg2) { 1418 if (ProfileInterpreter) { 1419 Label profile_continue; 1420 1421 // If no method data exists, go to profile_continue. 1422 test_method_data_pointer(mdp, profile_continue); 1423 1424 // Build the base (index * per_case_size_in_bytes()) + 1425 // case_array_offset_in_bytes() 1426 mv(reg2, in_bytes(MultiBranchData::per_case_size())); 1427 mv(t0, in_bytes(MultiBranchData::case_array_offset())); 1428 Assembler::mul(index, index, reg2); 1429 Assembler::add(index, index, t0); 1430 1431 // Update the case count 1432 increment_mdp_data_at(mdp, 1433 index, 1434 in_bytes(MultiBranchData::relative_count_offset())); 1435 1436 // The method data pointer need to be updated. 1437 update_mdp_by_offset(mdp, 1438 index, 1439 in_bytes(MultiBranchData:: 1440 relative_displacement_offset())); 1441 1442 bind(profile_continue); 1443 } 1444 } 1445 1446 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1447 1448 void InterpreterMacroAssembler::notify_method_entry() { 1449 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1450 // track stack depth. If it is possible to enter interp_only_mode we add 1451 // the code to check if the event should be sent. 1452 if (JvmtiExport::can_post_interpreter_events()) { 1453 Label L; 1454 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1455 beqz(x13, L); 1456 call_VM(noreg, CAST_FROM_FN_PTR(address, 1457 InterpreterRuntime::post_method_entry)); 1458 bind(L); 1459 } 1460 1461 if (DTraceMethodProbes) { 1462 get_method(c_rarg1); 1463 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1464 xthread, c_rarg1); 1465 } 1466 1467 // RedefineClasses() tracing support for obsolete method entry 1468 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1469 get_method(c_rarg1); 1470 call_VM_leaf( 1471 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1472 xthread, c_rarg1); 1473 } 1474 } 1475 1476 1477 void InterpreterMacroAssembler::notify_method_exit( 1478 TosState state, NotifyMethodExitMode mode) { 1479 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1480 // track stack depth. If it is possible to enter interp_only_mode we add 1481 // the code to check if the event should be sent. 1482 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1483 Label L; 1484 // Note: frame::interpreter_frame_result has a dependency on how the 1485 // method result is saved across the call to post_method_exit. If this 1486 // is changed then the interpreter_frame_result implementation will 1487 // need to be updated too. 1488 1489 // template interpreter will leave the result on the top of the stack. 1490 push(state); 1491 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1492 beqz(x13, L); 1493 call_VM(noreg, 1494 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1495 bind(L); 1496 pop(state); 1497 } 1498 1499 if (DTraceMethodProbes) { 1500 push(state); 1501 get_method(c_rarg1); 1502 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1503 xthread, c_rarg1); 1504 pop(state); 1505 } 1506 } 1507 1508 1509 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1510 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1511 int increment, Address mask, 1512 Register tmp1, Register tmp2, 1513 bool preloaded, Label* where) { 1514 Label done; 1515 if (!preloaded) { 1516 lwu(tmp1, counter_addr); 1517 } 1518 add(tmp1, tmp1, increment); 1519 sw(tmp1, counter_addr); 1520 lwu(tmp2, mask); 1521 andr(tmp1, tmp1, tmp2); 1522 bnez(tmp1, done); 1523 j(*where); // offset is too large so we have to use j instead of beqz here 1524 bind(done); 1525 } 1526 1527 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1528 int number_of_arguments) { 1529 // interpreter specific 1530 // 1531 // Note: No need to save/restore rbcp & rlocals pointer since these 1532 // are callee saved registers and no blocking/ GC can happen 1533 // in leaf calls. 1534 #ifdef ASSERT 1535 { 1536 Label L; 1537 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1538 beqz(t0, L); 1539 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1540 " last_sp isn't null"); 1541 bind(L); 1542 } 1543 #endif /* ASSERT */ 1544 // super call 1545 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1546 } 1547 1548 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1549 Register java_thread, 1550 Register last_java_sp, 1551 address entry_point, 1552 int number_of_arguments, 1553 bool check_exceptions) { 1554 // interpreter specific 1555 // 1556 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1557 // really make a difference for these runtime calls, since they are 1558 // slow anyway. Btw., bcp must be saved/restored since it may change 1559 // due to GC. 1560 save_bcp(); 1561 #ifdef ASSERT 1562 { 1563 Label L; 1564 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1565 beqz(t0, L); 1566 stop("InterpreterMacroAssembler::call_VM_base:" 1567 " last_sp isn't null"); 1568 bind(L); 1569 } 1570 #endif /* ASSERT */ 1571 // super call 1572 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1573 entry_point, number_of_arguments, 1574 check_exceptions); 1575 // interpreter specific 1576 restore_bcp(); 1577 restore_locals(); 1578 } 1579 1580 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 1581 address entry_point, 1582 Register arg_1) { 1583 assert(arg_1 == c_rarg1, ""); 1584 Label resume_pc, not_preempted; 1585 1586 push_cont_fastpath(); 1587 1588 // Make VM call. In case of preemption set last_pc to 1589 // the one we want to resume to. 1590 la(t0, resume_pc); 1591 sd(t0, Address(xthread, JavaThread::last_Java_pc_offset())); 1592 call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/); 1593 1594 pop_cont_fastpath(); 1595 1596 // Check if preempted 1597 ld(t0, Address(xthread, JavaThread::preempt_alternate_return_offset())); 1598 beqz(t0, not_preempted); 1599 sd(zr, Address(xthread, JavaThread::preempt_alternate_return_offset())); 1600 jr(t0); 1601 1602 bind(resume_pc); 1603 restore_after_resume(false /* is_native */); 1604 1605 bind(not_preempted); 1606 } 1607 1608 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 1609 la(t0, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 1610 jalr(t0); 1611 if (is_native) { 1612 // On resume we need to set up stack as expected 1613 push(dtos); 1614 push(ltos); 1615 } 1616 } 1617 1618 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) { 1619 assert_different_registers(obj, tmp, t0, mdo_addr.base()); 1620 Label update, next, none; 1621 1622 verify_oop(obj); 1623 1624 bnez(obj, update); 1625 orptr(mdo_addr, TypeEntries::null_seen, t0, tmp); 1626 j(next); 1627 1628 bind(update); 1629 load_klass(obj, obj); 1630 1631 ld(tmp, mdo_addr); 1632 xorr(obj, obj, tmp); 1633 andi(t0, obj, TypeEntries::type_klass_mask); 1634 beqz(t0, next); // klass seen before, nothing to 1635 // do. The unknown bit may have been 1636 // set already but no need to check. 1637 1638 test_bit(t0, obj, exact_log2(TypeEntries::type_unknown)); 1639 bnez(t0, next); 1640 // already unknown. Nothing to do anymore. 1641 1642 beqz(tmp, none); 1643 mv(t0, (u1)TypeEntries::null_seen); 1644 beq(tmp, t0, none); 1645 // There is a chance that the checks above 1646 // fail if another thread has just set the 1647 // profiling to this obj's klass 1648 xorr(obj, obj, tmp); // get back original value before XOR 1649 ld(tmp, mdo_addr); 1650 xorr(obj, obj, tmp); 1651 andi(t0, obj, TypeEntries::type_klass_mask); 1652 beqz(t0, next); 1653 1654 // different than before. Cannot keep accurate profile. 1655 orptr(mdo_addr, TypeEntries::type_unknown, t0, tmp); 1656 j(next); 1657 1658 bind(none); 1659 // first time here. Set profile type. 1660 sd(obj, mdo_addr); 1661 #ifdef ASSERT 1662 andi(obj, obj, TypeEntries::type_mask); 1663 verify_klass_ptr(obj); 1664 #endif 1665 1666 bind(next); 1667 } 1668 1669 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1670 if (!ProfileInterpreter) { 1671 return; 1672 } 1673 1674 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1675 Label profile_continue; 1676 1677 test_method_data_pointer(mdp, profile_continue); 1678 1679 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1680 1681 lbu(t0, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1682 if (is_virtual) { 1683 mv(tmp, (u1)DataLayout::virtual_call_type_data_tag); 1684 bne(t0, tmp, profile_continue); 1685 } else { 1686 mv(tmp, (u1)DataLayout::call_type_data_tag); 1687 bne(t0, tmp, profile_continue); 1688 } 1689 1690 // calculate slot step 1691 static int stack_slot_offset0 = in_bytes(TypeEntriesAtCall::stack_slot_offset(0)); 1692 static int slot_step = in_bytes(TypeEntriesAtCall::stack_slot_offset(1)) - stack_slot_offset0; 1693 1694 // calculate type step 1695 static int argument_type_offset0 = in_bytes(TypeEntriesAtCall::argument_type_offset(0)); 1696 static int type_step = in_bytes(TypeEntriesAtCall::argument_type_offset(1)) - argument_type_offset0; 1697 1698 if (MethodData::profile_arguments()) { 1699 Label done, loop, loopEnd, profileArgument, profileReturnType; 1700 RegSet pushed_registers; 1701 pushed_registers += x15; 1702 pushed_registers += x16; 1703 pushed_registers += x17; 1704 Register mdo_addr = x15; 1705 Register index = x16; 1706 Register off_to_args = x17; 1707 push_reg(pushed_registers, sp); 1708 1709 mv(off_to_args, in_bytes(TypeEntriesAtCall::args_data_offset())); 1710 mv(t0, TypeProfileArgsLimit); 1711 beqz(t0, loopEnd); 1712 1713 mv(index, zr); // index < TypeProfileArgsLimit 1714 bind(loop); 1715 bgtz(index, profileReturnType); 1716 mv(t0, (int)MethodData::profile_return()); 1717 beqz(t0, profileArgument); // (index > 0 || MethodData::profile_return()) == false 1718 bind(profileReturnType); 1719 // If return value type is profiled we may have no argument to profile 1720 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1721 mv(t1, - TypeStackSlotEntries::per_arg_count()); 1722 mul(t1, index, t1); 1723 add(tmp, tmp, t1); 1724 mv(t1, TypeStackSlotEntries::per_arg_count()); 1725 add(t0, mdp, off_to_args); 1726 blt(tmp, t1, done); 1727 1728 bind(profileArgument); 1729 1730 ld(tmp, Address(callee, Method::const_offset())); 1731 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1732 // stack offset o (zero based) from the start of the argument 1733 // list, for n arguments translates into offset n - o - 1 from 1734 // the end of the argument list 1735 mv(t0, stack_slot_offset0); 1736 mv(t1, slot_step); 1737 mul(t1, index, t1); 1738 add(t0, t0, t1); 1739 add(t0, mdp, t0); 1740 ld(t0, Address(t0)); 1741 sub(tmp, tmp, t0); 1742 addi(tmp, tmp, -1); 1743 Address arg_addr = argument_address(tmp); 1744 ld(tmp, arg_addr); 1745 1746 mv(t0, argument_type_offset0); 1747 mv(t1, type_step); 1748 mul(t1, index, t1); 1749 add(t0, t0, t1); 1750 add(mdo_addr, mdp, t0); 1751 Address mdo_arg_addr(mdo_addr, 0); 1752 profile_obj_type(tmp, mdo_arg_addr, t1); 1753 1754 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1755 addi(off_to_args, off_to_args, to_add); 1756 1757 // increment index by 1 1758 addi(index, index, 1); 1759 mv(t1, TypeProfileArgsLimit); 1760 blt(index, t1, loop); 1761 bind(loopEnd); 1762 1763 if (MethodData::profile_return()) { 1764 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1765 addi(tmp, tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1766 } 1767 1768 add(t0, mdp, off_to_args); 1769 bind(done); 1770 mv(mdp, t0); 1771 1772 // unspill the clobbered registers 1773 pop_reg(pushed_registers, sp); 1774 1775 if (MethodData::profile_return()) { 1776 // We're right after the type profile for the last 1777 // argument. tmp is the number of cells left in the 1778 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1779 // if there's a return to profile. 1780 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1781 shadd(mdp, tmp, mdp, tmp, exact_log2(DataLayout::cell_size)); 1782 } 1783 sd(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1784 } else { 1785 assert(MethodData::profile_return(), "either profile call args or call ret"); 1786 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1787 } 1788 1789 // mdp points right after the end of the 1790 // CallTypeData/VirtualCallTypeData, right after the cells for the 1791 // return value type if there's one 1792 1793 bind(profile_continue); 1794 } 1795 } 1796 1797 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1798 assert_different_registers(mdp, ret, tmp, xbcp, t0, t1); 1799 if (ProfileInterpreter && MethodData::profile_return()) { 1800 Label profile_continue, done; 1801 1802 test_method_data_pointer(mdp, profile_continue); 1803 1804 if (MethodData::profile_return_jsr292_only()) { 1805 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1806 1807 // If we don't profile all invoke bytecodes we must make sure 1808 // it's a bytecode we indeed profile. We can't go back to the 1809 // beginning of the ProfileData we intend to update to check its 1810 // type because we're right after it and we don't known its 1811 // length 1812 Label do_profile; 1813 lbu(t0, Address(xbcp, 0)); 1814 mv(tmp, (u1)Bytecodes::_invokedynamic); 1815 beq(t0, tmp, do_profile); 1816 mv(tmp, (u1)Bytecodes::_invokehandle); 1817 beq(t0, tmp, do_profile); 1818 get_method(tmp); 1819 lhu(t0, Address(tmp, Method::intrinsic_id_offset())); 1820 mv(t1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1821 bne(t0, t1, profile_continue); 1822 bind(do_profile); 1823 } 1824 1825 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1826 mv(tmp, ret); 1827 profile_obj_type(tmp, mdo_ret_addr, t1); 1828 1829 bind(profile_continue); 1830 } 1831 } 1832 1833 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2, Register tmp3) { 1834 assert_different_registers(t0, t1, mdp, tmp1, tmp2, tmp3); 1835 if (ProfileInterpreter && MethodData::profile_parameters()) { 1836 Label profile_continue, done; 1837 1838 test_method_data_pointer(mdp, profile_continue); 1839 1840 // Load the offset of the area within the MDO used for 1841 // parameters. If it's negative we're not profiling any parameters 1842 lwu(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1843 srli(tmp2, tmp1, 31); 1844 bnez(tmp2, profile_continue); // i.e. sign bit set 1845 1846 // Compute a pointer to the area for parameters from the offset 1847 // and move the pointer to the slot for the last 1848 // parameters. Collect profiling from last parameter down. 1849 // mdo start + parameters offset + array length - 1 1850 add(mdp, mdp, tmp1); 1851 ld(tmp1, Address(mdp, ArrayData::array_len_offset())); 1852 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1853 1854 Label loop; 1855 bind(loop); 1856 1857 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1858 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1859 int per_arg_scale = exact_log2(DataLayout::cell_size); 1860 add(t0, mdp, off_base); 1861 add(t1, mdp, type_base); 1862 1863 shadd(tmp2, tmp1, t0, tmp2, per_arg_scale); 1864 // load offset on the stack from the slot for this parameter 1865 ld(tmp2, Address(tmp2, 0)); 1866 neg(tmp2, tmp2); 1867 1868 // read the parameter from the local area 1869 shadd(tmp2, tmp2, xlocals, tmp2, Interpreter::logStackElementSize); 1870 ld(tmp2, Address(tmp2, 0)); 1871 1872 // profile the parameter 1873 shadd(t1, tmp1, t1, t0, per_arg_scale); 1874 Address arg_type(t1, 0); 1875 profile_obj_type(tmp2, arg_type, tmp3); 1876 1877 // go to next parameter 1878 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1879 bgez(tmp1, loop); 1880 1881 bind(profile_continue); 1882 } 1883 } 1884 1885 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1886 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1887 // register "cache" is trashed in next ld, so lets use it as a temporary register 1888 get_cache_index_at_bcp(index, cache, 1, sizeof(u4)); 1889 // Get address of invokedynamic array 1890 ld(cache, Address(xcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1891 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1892 slli(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1893 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1894 add(cache, cache, index); 1895 } 1896 1897 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1898 // Get index out of bytecode pointer 1899 get_cache_index_at_bcp(index, cache, bcp_offset, sizeof(u2)); 1900 // Take shortcut if the size is a power of 2 1901 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1902 slli(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1903 } else { 1904 mv(cache, sizeof(ResolvedFieldEntry)); 1905 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1906 } 1907 // Get address of field entries array 1908 ld(cache, Address(xcpool, ConstantPoolCache::field_entries_offset())); 1909 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1910 add(cache, cache, index); 1911 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 1912 membar(MacroAssembler::LoadLoad); 1913 } 1914 1915 void InterpreterMacroAssembler::get_method_counters(Register method, 1916 Register mcs, Label& skip) { 1917 Label has_counters; 1918 ld(mcs, Address(method, Method::method_counters_offset())); 1919 bnez(mcs, has_counters); 1920 call_VM(noreg, CAST_FROM_FN_PTR(address, 1921 InterpreterRuntime::build_method_counters), method); 1922 ld(mcs, Address(method, Method::method_counters_offset())); 1923 beqz(mcs, skip); // No MethodCounters allocated, OutOfMemory 1924 bind(has_counters); 1925 } 1926 1927 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1928 // Get index out of bytecode pointer 1929 get_cache_index_at_bcp(index, cache, bcp_offset, sizeof(u2)); 1930 mv(cache, sizeof(ResolvedMethodEntry)); 1931 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1932 1933 // Get address of field entries array 1934 ld(cache, Address(xcpool, ConstantPoolCache::method_entries_offset())); 1935 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 1936 add(cache, cache, index); 1937 } 1938 1939 #ifdef ASSERT 1940 void InterpreterMacroAssembler::verify_access_flags(Register access_flags, uint32_t flag, 1941 const char* msg, bool stop_by_hit) { 1942 Label L; 1943 test_bit(t0, access_flags, exact_log2(flag)); 1944 if (stop_by_hit) { 1945 beqz(t0, L); 1946 } else { 1947 bnez(t0, L); 1948 } 1949 stop(msg); 1950 bind(L); 1951 } 1952 1953 void InterpreterMacroAssembler::verify_frame_setup() { 1954 Label L; 1955 const Address monitor_block_top(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 1956 ld(t0, monitor_block_top); 1957 shadd(t0, t0, fp, t0, LogBytesPerWord); 1958 beq(esp, t0, L); 1959 stop("broken stack frame setup in interpreter"); 1960 bind(L); 1961 } 1962 #endif