1 /*
   2  * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "precompiled.hpp"
  28 #include "asm/macroAssembler.hpp"
  29 #include "asm/macroAssembler.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "gc/shared/barrierSetAssembler.hpp"
  35 #include "interpreter/interp_masm.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "nativeInst_riscv.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "oops/method.inline.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "runtime/continuation.hpp"
  44 #include "runtime/continuationEntry.inline.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/jniHandles.hpp"
  47 #include "runtime/safepointMechanism.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/signature.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/timerTrace.hpp"
  52 #include "runtime/vframeArray.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/formatBuffer.hpp"
  55 #include "vmreg_riscv.inline.hpp"
  56 #ifdef COMPILER1
  57 #include "c1/c1_Runtime1.hpp"
  58 #endif
  59 #ifdef COMPILER2
  60 #include "adfiles/ad_riscv.hpp"
  61 #include "opto/runtime.hpp"
  62 #endif
  63 #if INCLUDE_JVMCI
  64 #include "jvmci/jvmciJavaClasses.hpp"
  65 #endif
  66 
  67 #define __ masm->
  68 
  69 #ifdef PRODUCT
  70 #define BLOCK_COMMENT(str) /* nothing */
  71 #else
  72 #define BLOCK_COMMENT(str) __ block_comment(str)
  73 #endif
  74 
  75 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  76 
  77 class RegisterSaver {
  78   const bool _save_vectors;
  79  public:
  80   RegisterSaver(bool save_vectors) : _save_vectors(UseRVV && save_vectors) {}
  81   ~RegisterSaver() {}
  82   OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
  83   void restore_live_registers(MacroAssembler* masm);
  84 
  85   // Offsets into the register save area
  86   // Used by deoptimization when it is managing result register
  87   // values on its own
  88   // gregs:28, float_register:32; except: x1(ra) & x2(sp) & gp(x3) & tp(x4)
  89   // |---v0---|<---SP
  90   // |---v1---|save vectors only in generate_handler_blob
  91   // |-- .. --|
  92   // |---v31--|-----
  93   // |---f0---|
  94   // |---f1---|
  95   // |   ..   |
  96   // |---f31--|
  97   // |---reserved slot for stack alignment---|
  98   // |---x5---|
  99   // |   x6   |
 100   // |---.. --|
 101   // |---x31--|
 102   // |---fp---|
 103   // |---ra---|
 104   int v0_offset_in_bytes(void) { return 0; }
 105   int f0_offset_in_bytes(void) {
 106     int f0_offset = 0;
 107 #ifdef COMPILER2
 108     if (_save_vectors) {
 109       f0_offset += Matcher::scalable_vector_reg_size(T_INT) * VectorRegister::number_of_registers *
 110                    BytesPerInt;
 111     }
 112 #endif
 113     return f0_offset;
 114   }
 115   int reserved_slot_offset_in_bytes(void) {
 116     return f0_offset_in_bytes() +
 117            FloatRegister::max_slots_per_register *
 118            FloatRegister::number_of_registers *
 119            BytesPerInt;
 120   }
 121 
 122   int reg_offset_in_bytes(Register r) {
 123     assert (r->encoding() > 4, "ra, sp, gp and tp not saved");
 124     return reserved_slot_offset_in_bytes() + (r->encoding() - 4 /* x1, x2, x3, x4 */) * wordSize;
 125   }
 126 
 127   int freg_offset_in_bytes(FloatRegister f) {
 128     return f0_offset_in_bytes() + f->encoding() * wordSize;
 129   }
 130 
 131   int ra_offset_in_bytes(void) {
 132     return reserved_slot_offset_in_bytes() +
 133            (Register::number_of_registers - 3) *
 134            Register::max_slots_per_register *
 135            BytesPerInt;
 136   }
 137 };
 138 
 139 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 140   int vector_size_in_bytes = 0;
 141   int vector_size_in_slots = 0;
 142 #ifdef COMPILER2
 143   if (_save_vectors) {
 144     vector_size_in_bytes += Matcher::scalable_vector_reg_size(T_BYTE);
 145     vector_size_in_slots += Matcher::scalable_vector_reg_size(T_INT);
 146   }
 147 #endif
 148 
 149   int frame_size_in_bytes = align_up(additional_frame_words * wordSize + ra_offset_in_bytes() + wordSize, 16);
 150   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 151   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 152   // The caller will allocate additional_frame_words
 153   int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt;
 154   // CodeBlob frame size is in words.
 155   int frame_size_in_words = frame_size_in_bytes / wordSize;
 156   *total_frame_words = frame_size_in_words;
 157 
 158   // Save Integer, Float and Vector registers.
 159   __ enter();
 160   __ push_CPU_state(_save_vectors, vector_size_in_bytes);
 161 
 162   // Set an oopmap for the call site.  This oopmap will map all
 163   // oop-registers and debug-info registers as callee-saved.  This
 164   // will allow deoptimization at this safepoint to find all possible
 165   // debug-info recordings, as well as let GC find all oops.
 166 
 167   OopMapSet *oop_maps = new OopMapSet();
 168   OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
 169   assert_cond(oop_maps != nullptr && oop_map != nullptr);
 170 
 171   int sp_offset_in_slots = 0;
 172   int step_in_slots = 0;
 173   if (_save_vectors) {
 174     step_in_slots = vector_size_in_slots;
 175     for (int i = 0; i < VectorRegister::number_of_registers; i++, sp_offset_in_slots += step_in_slots) {
 176       VectorRegister r = as_VectorRegister(i);
 177       oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg());
 178     }
 179   }
 180 
 181   step_in_slots = FloatRegister::max_slots_per_register;
 182   for (int i = 0; i < FloatRegister::number_of_registers; i++, sp_offset_in_slots += step_in_slots) {
 183     FloatRegister r = as_FloatRegister(i);
 184     oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg());
 185   }
 186 
 187   step_in_slots = Register::max_slots_per_register;
 188   // skip the slot reserved for alignment, see MacroAssembler::push_reg;
 189   // also skip x5 ~ x6 on the stack because they are caller-saved registers.
 190   sp_offset_in_slots += Register::max_slots_per_register * 3;
 191   // besides, we ignore x0 ~ x4 because push_CPU_state won't push them on the stack.
 192   for (int i = 7; i < Register::number_of_registers; i++, sp_offset_in_slots += step_in_slots) {
 193     Register r = as_Register(i);
 194     if (r != xthread) {
 195       oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots + additional_frame_slots), r->as_VMReg());
 196     }
 197   }
 198 
 199   return oop_map;
 200 }
 201 
 202 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 203 #ifdef COMPILER2
 204   __ pop_CPU_state(_save_vectors, Matcher::scalable_vector_reg_size(T_BYTE));
 205 #else
 206 #if !INCLUDE_JVMCI
 207   assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
 208 #endif
 209   __ pop_CPU_state(_save_vectors);
 210 #endif
 211   __ leave();
 212 }
 213 
 214 // Is vector's size (in bytes) bigger than a size saved by default?
 215 // riscv does not ovlerlay the floating-point registers on vector registers like aarch64.
 216 bool SharedRuntime::is_wide_vector(int size) {
 217   return UseRVV;
 218 }
 219 
 220 // ---------------------------------------------------------------------------
 221 // Read the array of BasicTypes from a signature, and compute where the
 222 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 223 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 224 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 225 // as framesizes are fixed.
 226 // VMRegImpl::stack0 refers to the first slot 0(sp).
 227 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 228 // Register up to Register::number_of_registers) are the 64-bit
 229 // integer registers.
 230 
 231 // Note: the INPUTS in sig_bt are in units of Java argument words,
 232 // which are 64-bit.  The OUTPUTS are in 32-bit units.
 233 
 234 // The Java calling convention is a "shifted" version of the C ABI.
 235 // By skipping the first C ABI register we can call non-static jni
 236 // methods with small numbers of arguments without having to shuffle
 237 // the arguments at all. Since we control the java ABI we ought to at
 238 // least get some advantage out of it.
 239 
 240 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 241                                            VMRegPair *regs,
 242                                            int total_args_passed) {
 243   // Create the mapping between argument positions and
 244   // registers.
 245   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 246     j_rarg0, j_rarg1, j_rarg2, j_rarg3,
 247     j_rarg4, j_rarg5, j_rarg6, j_rarg7
 248   };
 249   static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 250     j_farg0, j_farg1, j_farg2, j_farg3,
 251     j_farg4, j_farg5, j_farg6, j_farg7
 252   };
 253 
 254   uint int_args = 0;
 255   uint fp_args = 0;
 256   uint stk_args = 0;
 257 
 258   for (int i = 0; i < total_args_passed; i++) {
 259     switch (sig_bt[i]) {
 260       case T_BOOLEAN: // fall through
 261       case T_CHAR:    // fall through
 262       case T_BYTE:    // fall through
 263       case T_SHORT:   // fall through
 264       case T_INT:
 265         if (int_args < Argument::n_int_register_parameters_j) {
 266           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 267         } else {
 268           stk_args = align_up(stk_args, 2);
 269           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 270           stk_args += 1;
 271         }
 272         break;
 273       case T_VOID:
 274         // halves of T_LONG or T_DOUBLE
 275         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 276         regs[i].set_bad();
 277         break;
 278       case T_LONG:      // fall through
 279         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 280       case T_OBJECT:    // fall through
 281       case T_ARRAY:     // fall through
 282       case T_ADDRESS:
 283         if (int_args < Argument::n_int_register_parameters_j) {
 284           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 285         } else {
 286           stk_args = align_up(stk_args, 2);
 287           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 288           stk_args += 2;
 289         }
 290         break;
 291       case T_FLOAT:
 292         if (fp_args < Argument::n_float_register_parameters_j) {
 293           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 294         } else {
 295           stk_args = align_up(stk_args, 2);
 296           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 297           stk_args += 1;
 298         }
 299         break;
 300       case T_DOUBLE:
 301         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 302         if (fp_args < Argument::n_float_register_parameters_j) {
 303           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 304         } else {
 305           stk_args = align_up(stk_args, 2);
 306           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 307           stk_args += 2;
 308         }
 309         break;
 310       default:
 311         ShouldNotReachHere();
 312     }
 313   }
 314 
 315   return stk_args;
 316 }
 317 
 318 // Patch the callers callsite with entry to compiled code if it exists.
 319 static void patch_callers_callsite(MacroAssembler *masm) {
 320   Label L;
 321   __ ld(t0, Address(xmethod, in_bytes(Method::code_offset())));
 322   __ beqz(t0, L);
 323 
 324   __ enter();
 325   __ push_CPU_state();
 326 
 327   // VM needs caller's callsite
 328   // VM needs target method
 329   // This needs to be a long call since we will relocate this adapter to
 330   // the codeBuffer and it may not reach
 331 
 332 #ifndef PRODUCT
 333   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
 334 #endif
 335 
 336   __ mv(c_rarg0, xmethod);
 337   __ mv(c_rarg1, ra);
 338   __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
 339 
 340   __ pop_CPU_state();
 341   // restore sp
 342   __ leave();
 343   __ bind(L);
 344 }
 345 
 346 static void gen_c2i_adapter(MacroAssembler *masm,
 347                             int total_args_passed,
 348                             int comp_args_on_stack,
 349                             const BasicType *sig_bt,
 350                             const VMRegPair *regs,
 351                             Label& skip_fixup) {
 352   // Before we get into the guts of the C2I adapter, see if we should be here
 353   // at all.  We've come from compiled code and are attempting to jump to the
 354   // interpreter, which means the caller made a static call to get here
 355   // (vcalls always get a compiled target if there is one).  Check for a
 356   // compiled target.  If there is one, we need to patch the caller's call.
 357   patch_callers_callsite(masm);
 358 
 359   __ bind(skip_fixup);
 360 
 361   int words_pushed = 0;
 362 
 363   // Since all args are passed on the stack, total_args_passed *
 364   // Interpreter::stackElementSize is the space we need.
 365 
 366   int extraspace = total_args_passed * Interpreter::stackElementSize;
 367 
 368   __ mv(x19_sender_sp, sp);
 369 
 370   // stack is aligned, keep it that way
 371   extraspace = align_up(extraspace, 2 * wordSize);
 372 
 373   if (extraspace) {
 374     __ sub(sp, sp, extraspace);
 375   }
 376 
 377   // Now write the args into the outgoing interpreter space
 378   for (int i = 0; i < total_args_passed; i++) {
 379     if (sig_bt[i] == T_VOID) {
 380       assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half");
 381       continue;
 382     }
 383 
 384     // offset to start parameters
 385     int st_off   = (total_args_passed - i - 1) * Interpreter::stackElementSize;
 386     int next_off = st_off - Interpreter::stackElementSize;
 387 
 388     // Say 4 args:
 389     // i   st_off
 390     // 0   32 T_LONG
 391     // 1   24 T_VOID
 392     // 2   16 T_OBJECT
 393     // 3    8 T_BOOL
 394     // -    0 return address
 395     //
 396     // However to make thing extra confusing. Because we can fit a Java long/double in
 397     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 398     // leaves one slot empty and only stores to a single slot. In this case the
 399     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 400 
 401     VMReg r_1 = regs[i].first();
 402     VMReg r_2 = regs[i].second();
 403     if (!r_1->is_valid()) {
 404       assert(!r_2->is_valid(), "");
 405       continue;
 406     }
 407     if (r_1->is_stack()) {
 408       // memory to memory use t0
 409       int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size
 410                     + extraspace
 411                     + words_pushed * wordSize);
 412       if (!r_2->is_valid()) {
 413         __ lwu(t0, Address(sp, ld_off));
 414         __ sd(t0, Address(sp, st_off), /*temp register*/esp);
 415       } else {
 416         __ ld(t0, Address(sp, ld_off), /*temp register*/esp);
 417 
 418         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 419         // T_DOUBLE and T_LONG use two slots in the interpreter
 420         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 421           // ld_off == LSW, ld_off+wordSize == MSW
 422           // st_off == MSW, next_off == LSW
 423           __ sd(t0, Address(sp, next_off), /*temp register*/esp);
 424 #ifdef ASSERT
 425           // Overwrite the unused slot with known junk
 426           __ mv(t0, 0xdeadffffdeadaaaaul);
 427           __ sd(t0, Address(sp, st_off), /*temp register*/esp);
 428 #endif /* ASSERT */
 429         } else {
 430           __ sd(t0, Address(sp, st_off), /*temp register*/esp);
 431         }
 432       }
 433     } else if (r_1->is_Register()) {
 434       Register r = r_1->as_Register();
 435       if (!r_2->is_valid()) {
 436         // must be only an int (or less ) so move only 32bits to slot
 437         __ sd(r, Address(sp, st_off));
 438       } else {
 439         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 440         // T_DOUBLE and T_LONG use two slots in the interpreter
 441         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 442           // long/double in gpr
 443 #ifdef ASSERT
 444           // Overwrite the unused slot with known junk
 445           __ mv(t0, 0xdeadffffdeadaaabul);
 446           __ sd(t0, Address(sp, st_off), /*temp register*/esp);
 447 #endif /* ASSERT */
 448           __ sd(r, Address(sp, next_off));
 449         } else {
 450           __ sd(r, Address(sp, st_off));
 451         }
 452       }
 453     } else {
 454       assert(r_1->is_FloatRegister(), "");
 455       if (!r_2->is_valid()) {
 456         // only a float use just part of the slot
 457         __ fsw(r_1->as_FloatRegister(), Address(sp, st_off));
 458       } else {
 459 #ifdef ASSERT
 460         // Overwrite the unused slot with known junk
 461         __ mv(t0, 0xdeadffffdeadaaacul);
 462         __ sd(t0, Address(sp, st_off), /*temp register*/esp);
 463 #endif /* ASSERT */
 464         __ fsd(r_1->as_FloatRegister(), Address(sp, next_off));
 465       }
 466     }
 467   }
 468 
 469   __ mv(esp, sp); // Interp expects args on caller's expression stack
 470 
 471   __ ld(t1, Address(xmethod, in_bytes(Method::interpreter_entry_offset())));
 472   __ jr(t1);
 473 }
 474 
 475 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 476                                     int total_args_passed,
 477                                     int comp_args_on_stack,
 478                                     const BasicType *sig_bt,
 479                                     const VMRegPair *regs) {
 480   // Note: x19_sender_sp contains the senderSP on entry. We must
 481   // preserve it since we may do a i2c -> c2i transition if we lose a
 482   // race where compiled code goes non-entrant while we get args
 483   // ready.
 484 
 485   // Cut-out for having no stack args.
 486   int comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord;
 487   if (comp_args_on_stack != 0) {
 488     __ sub(t0, sp, comp_words_on_stack * wordSize);
 489     __ andi(sp, t0, -16);
 490   }
 491 
 492   // Will jump to the compiled code just as if compiled code was doing it.
 493   // Pre-load the register-jump target early, to schedule it better.
 494   __ ld(t1, Address(xmethod, in_bytes(Method::from_compiled_offset())));
 495 
 496 #if INCLUDE_JVMCI
 497   if (EnableJVMCI) {
 498     // check if this call should be routed towards a specific entry point
 499     __ ld(t0, Address(xthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 500     Label no_alternative_target;
 501     __ beqz(t0, no_alternative_target);
 502     __ mv(t1, t0);
 503     __ sd(zr, Address(xthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 504     __ bind(no_alternative_target);
 505   }
 506 #endif // INCLUDE_JVMCI
 507 
 508   // Now generate the shuffle code.
 509   for (int i = 0; i < total_args_passed; i++) {
 510     if (sig_bt[i] == T_VOID) {
 511       assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half");
 512       continue;
 513     }
 514 
 515     // Pick up 0, 1 or 2 words from SP+offset.
 516 
 517     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 518            "scrambled load targets?");
 519     // Load in argument order going down.
 520     int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize;
 521     // Point to interpreter value (vs. tag)
 522     int next_off = ld_off - Interpreter::stackElementSize;
 523 
 524     VMReg r_1 = regs[i].first();
 525     VMReg r_2 = regs[i].second();
 526     if (!r_1->is_valid()) {
 527       assert(!r_2->is_valid(), "");
 528       continue;
 529     }
 530     if (r_1->is_stack()) {
 531       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 532       int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size;
 533       if (!r_2->is_valid()) {
 534         __ lw(t0, Address(esp, ld_off));
 535         __ sd(t0, Address(sp, st_off), /*temp register*/t2);
 536       } else {
 537         //
 538         // We are using two optoregs. This can be either T_OBJECT,
 539         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
 540         // two slots but only uses one for thr T_LONG or T_DOUBLE case
 541         // So we must adjust where to pick up the data to match the
 542         // interpreter.
 543         //
 544         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 545         // are accessed as negative so LSW is at LOW address
 546 
 547         // ld_off is MSW so get LSW
 548         const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
 549                            next_off : ld_off;
 550         __ ld(t0, Address(esp, offset));
 551         // st_off is LSW (i.e. reg.first())
 552         __ sd(t0, Address(sp, st_off), /*temp register*/t2);
 553       }
 554     } else if (r_1->is_Register()) {  // Register argument
 555       Register r = r_1->as_Register();
 556       if (r_2->is_valid()) {
 557         //
 558         // We are using two VMRegs. This can be either T_OBJECT,
 559         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
 560         // two slots but only uses one for thr T_LONG or T_DOUBLE case
 561         // So we must adjust where to pick up the data to match the
 562         // interpreter.
 563 
 564         const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
 565                            next_off : ld_off;
 566 
 567         // this can be a misaligned move
 568         __ ld(r, Address(esp, offset));
 569       } else {
 570         // sign extend and use a full word?
 571         __ lw(r, Address(esp, ld_off));
 572       }
 573     } else {
 574       if (!r_2->is_valid()) {
 575         __ flw(r_1->as_FloatRegister(), Address(esp, ld_off));
 576       } else {
 577         __ fld(r_1->as_FloatRegister(), Address(esp, next_off));
 578       }
 579     }
 580   }
 581 
 582   __ push_cont_fastpath(xthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about
 583 
 584   // 6243940 We might end up in handle_wrong_method if
 585   // the callee is deoptimized as we race thru here. If that
 586   // happens we don't want to take a safepoint because the
 587   // caller frame will look interpreted and arguments are now
 588   // "compiled" so it is much better to make this transition
 589   // invisible to the stack walking code. Unfortunately if
 590   // we try and find the callee by normal means a safepoint
 591   // is possible. So we stash the desired callee in the thread
 592   // and the vm will find there should this case occur.
 593 
 594   __ sd(xmethod, Address(xthread, JavaThread::callee_target_offset()));
 595 
 596   __ jr(t1);
 597 }
 598 
 599 // ---------------------------------------------------------------
 600 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 601                                                             int total_args_passed,
 602                                                             int comp_args_on_stack,
 603                                                             const BasicType *sig_bt,
 604                                                             const VMRegPair *regs,
 605                                                             AdapterFingerPrint* fingerprint) {
 606   address i2c_entry = __ pc();
 607   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 608 
 609   address c2i_unverified_entry = __ pc();
 610   Label skip_fixup;
 611 
 612   const Register receiver = j_rarg0;
 613   const Register data = t0;
 614 
 615   // -------------------------------------------------------------------------
 616   // Generate a C2I adapter.  On entry we know xmethod holds the Method* during calls
 617   // to the interpreter.  The args start out packed in the compiled layout.  They
 618   // need to be unpacked into the interpreter layout.  This will almost always
 619   // require some stack space.  We grow the current (compiled) stack, then repack
 620   // the args.  We  finally end in a jump to the generic interpreter entry point.
 621   // On exit from the interpreter, the interpreter will restore our SP (lest the
 622   // compiled code, which relies solely on SP and not FP, get sick).
 623 
 624   {
 625     __ block_comment("c2i_unverified_entry {");
 626 
 627     __ ic_check();
 628     __ ld(xmethod, Address(data, CompiledICData::speculated_method_offset()));
 629 
 630     __ ld(t0, Address(xmethod, in_bytes(Method::code_offset())));
 631     __ beqz(t0, skip_fixup);
 632     __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 633     __ block_comment("} c2i_unverified_entry");
 634   }
 635 
 636   address c2i_entry = __ pc();
 637 
 638   // Class initialization barrier for static methods
 639   address c2i_no_clinit_check_entry = nullptr;
 640   if (VM_Version::supports_fast_class_init_checks()) {
 641     Label L_skip_barrier;
 642 
 643     { // Bypass the barrier for non-static methods
 644       __ lwu(t0, Address(xmethod, Method::access_flags_offset()));
 645       __ test_bit(t1, t0, exact_log2(JVM_ACC_STATIC));
 646       __ beqz(t1, L_skip_barrier); // non-static
 647     }
 648 
 649     __ load_method_holder(t1, xmethod);
 650     __ clinit_barrier(t1, t0, &L_skip_barrier);
 651     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 652 
 653     __ bind(L_skip_barrier);
 654     c2i_no_clinit_check_entry = __ pc();
 655   }
 656 
 657   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 658   bs->c2i_entry_barrier(masm);
 659 
 660   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 661 
 662   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
 663 }
 664 
 665 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
 666                                              uint num_bits,
 667                                              uint total_args_passed) {
 668   assert(total_args_passed <= Argument::n_vector_register_parameters_c, "unsupported");
 669   assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported");
 670 
 671   // check more info at https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc
 672   static const VectorRegister VEC_ArgReg[Argument::n_vector_register_parameters_c] = {
 673     v8, v9, v10, v11, v12, v13, v14, v15,
 674     v16, v17, v18, v19, v20, v21, v22, v23
 675   };
 676 
 677   const int next_reg_val = 3;
 678   for (uint i = 0; i < total_args_passed; i++) {
 679     VMReg vmreg = VEC_ArgReg[i]->as_VMReg();
 680     regs[i].set_pair(vmreg->next(next_reg_val), vmreg);
 681   }
 682   return 0;
 683 }
 684 
 685 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 686                                          VMRegPair *regs,
 687                                          int total_args_passed) {
 688 
 689   // We return the amount of VMRegImpl stack slots we need to reserve for all
 690   // the arguments NOT counting out_preserve_stack_slots.
 691 
 692   static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 693     c_rarg0, c_rarg1, c_rarg2, c_rarg3,
 694     c_rarg4, c_rarg5,  c_rarg6,  c_rarg7
 695   };
 696   static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 697     c_farg0, c_farg1, c_farg2, c_farg3,
 698     c_farg4, c_farg5, c_farg6, c_farg7
 699   };
 700 
 701   uint int_args = 0;
 702   uint fp_args = 0;
 703   uint stk_args = 0; // inc by 2 each time
 704 
 705   for (int i = 0; i < total_args_passed; i++) {
 706     switch (sig_bt[i]) {
 707       case T_BOOLEAN:  // fall through
 708       case T_CHAR:     // fall through
 709       case T_BYTE:     // fall through
 710       case T_SHORT:    // fall through
 711       case T_INT:
 712         if (int_args < Argument::n_int_register_parameters_c) {
 713           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 714         } else {
 715           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 716           stk_args += 2;
 717         }
 718         break;
 719       case T_LONG:      // fall through
 720         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 721       case T_OBJECT:    // fall through
 722       case T_ARRAY:     // fall through
 723       case T_ADDRESS:   // fall through
 724       case T_METADATA:
 725         if (int_args < Argument::n_int_register_parameters_c) {
 726           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 727         } else {
 728           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 729           stk_args += 2;
 730         }
 731         break;
 732       case T_FLOAT:
 733         if (fp_args < Argument::n_float_register_parameters_c) {
 734           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 735         } else if (int_args < Argument::n_int_register_parameters_c) {
 736           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 737         } else {
 738           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 739           stk_args += 2;
 740         }
 741         break;
 742       case T_DOUBLE:
 743         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 744         if (fp_args < Argument::n_float_register_parameters_c) {
 745           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 746         } else if (int_args < Argument::n_int_register_parameters_c) {
 747           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 748         } else {
 749           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 750           stk_args += 2;
 751         }
 752         break;
 753       case T_VOID: // Halves of longs and doubles
 754         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 755         regs[i].set_bad();
 756         break;
 757       default:
 758         ShouldNotReachHere();
 759     }
 760   }
 761 
 762   return stk_args;
 763 }
 764 
 765 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
 766   // We always ignore the frame_slots arg and just use the space just below frame pointer
 767   // which by this time is free to use
 768   switch (ret_type) {
 769     case T_FLOAT:
 770       __ fsw(f10, Address(fp, -3 * wordSize));
 771       break;
 772     case T_DOUBLE:
 773       __ fsd(f10, Address(fp, -3 * wordSize));
 774       break;
 775     case T_VOID:  break;
 776     default: {
 777       __ sd(x10, Address(fp, -3 * wordSize));
 778     }
 779   }
 780 }
 781 
 782 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
 783   // We always ignore the frame_slots arg and just use the space just below frame pointer
 784   // which by this time is free to use
 785   switch (ret_type) {
 786     case T_FLOAT:
 787       __ flw(f10, Address(fp, -3 * wordSize));
 788       break;
 789     case T_DOUBLE:
 790       __ fld(f10, Address(fp, -3 * wordSize));
 791       break;
 792     case T_VOID:  break;
 793     default: {
 794       __ ld(x10, Address(fp, -3 * wordSize));
 795     }
 796   }
 797 }
 798 
 799 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
 800   RegSet x;
 801   for ( int i = first_arg ; i < arg_count ; i++ ) {
 802     if (args[i].first()->is_Register()) {
 803       x = x + args[i].first()->as_Register();
 804     } else if (args[i].first()->is_FloatRegister()) {
 805       __ addi(sp, sp, -2 * wordSize);
 806       __ fsd(args[i].first()->as_FloatRegister(), Address(sp, 0));
 807     }
 808   }
 809   __ push_reg(x, sp);
 810 }
 811 
 812 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
 813   RegSet x;
 814   for ( int i = first_arg ; i < arg_count ; i++ ) {
 815     if (args[i].first()->is_Register()) {
 816       x = x + args[i].first()->as_Register();
 817     } else {
 818       ;
 819     }
 820   }
 821   __ pop_reg(x, sp);
 822   for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
 823     if (args[i].first()->is_Register()) {
 824       ;
 825     } else if (args[i].first()->is_FloatRegister()) {
 826       __ fld(args[i].first()->as_FloatRegister(), Address(sp, 0));
 827       __ add(sp, sp, 2 * wordSize);
 828     }
 829   }
 830 }
 831 
 832 static void verify_oop_args(MacroAssembler* masm,
 833                             const methodHandle& method,
 834                             const BasicType* sig_bt,
 835                             const VMRegPair* regs) {
 836   const Register temp_reg = x9;  // not part of any compiled calling seq
 837   if (VerifyOops) {
 838     for (int i = 0; i < method->size_of_parameters(); i++) {
 839       if (sig_bt[i] == T_OBJECT ||
 840           sig_bt[i] == T_ARRAY) {
 841         VMReg r = regs[i].first();
 842         assert(r->is_valid(), "bad oop arg");
 843         if (r->is_stack()) {
 844           __ ld(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
 845           __ verify_oop(temp_reg);
 846         } else {
 847           __ verify_oop(r->as_Register());
 848         }
 849       }
 850     }
 851   }
 852 }
 853 
 854 // on exit, sp points to the ContinuationEntry
 855 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) {
 856   assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, "");
 857   assert(in_bytes(ContinuationEntry::cont_offset())  % VMRegImpl::stack_slot_size == 0, "");
 858   assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, "");
 859 
 860   stack_slots += (int)ContinuationEntry::size() / wordSize;
 861   __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata
 862 
 863   OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize) / VMRegImpl::stack_slot_size, 0 /* arg_slots*/);
 864 
 865   __ ld(t0, Address(xthread, JavaThread::cont_entry_offset()));
 866   __ sd(t0, Address(sp, ContinuationEntry::parent_offset()));
 867   __ sd(sp, Address(xthread, JavaThread::cont_entry_offset()));
 868 
 869   return map;
 870 }
 871 
 872 // on entry c_rarg1 points to the continuation
 873 //          sp points to ContinuationEntry
 874 //          c_rarg3 -- isVirtualThread
 875 static void fill_continuation_entry(MacroAssembler* masm) {
 876 #ifdef ASSERT
 877   __ mv(t0, ContinuationEntry::cookie_value());
 878   __ sw(t0, Address(sp, ContinuationEntry::cookie_offset()));
 879 #endif
 880 
 881   __ sd(c_rarg1, Address(sp, ContinuationEntry::cont_offset()));
 882   __ sw(c_rarg3, Address(sp, ContinuationEntry::flags_offset()));
 883   __ sd(zr,      Address(sp, ContinuationEntry::chunk_offset()));
 884   __ sw(zr,      Address(sp, ContinuationEntry::argsize_offset()));
 885   __ sw(zr,      Address(sp, ContinuationEntry::pin_count_offset()));
 886 
 887   __ ld(t0, Address(xthread, JavaThread::cont_fastpath_offset()));
 888   __ sd(t0, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
 889   __ ld(t0, Address(xthread, JavaThread::held_monitor_count_offset()));
 890   __ sd(t0, Address(sp, ContinuationEntry::parent_held_monitor_count_offset()));
 891 
 892   __ sd(zr, Address(xthread, JavaThread::cont_fastpath_offset()));
 893   __ sd(zr, Address(xthread, JavaThread::held_monitor_count_offset()));
 894 }
 895 
 896 // on entry, sp points to the ContinuationEntry
 897 // on exit, fp points to the spilled fp + 2 * wordSize in the entry frame
 898 static void continuation_enter_cleanup(MacroAssembler* masm) {
 899 #ifndef PRODUCT
 900   Label OK;
 901   __ ld(t0, Address(xthread, JavaThread::cont_entry_offset()));
 902   __ beq(sp, t0, OK);
 903   __ stop("incorrect sp");
 904   __ bind(OK);
 905 #endif
 906 
 907   __ ld(t0, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
 908   __ sd(t0, Address(xthread, JavaThread::cont_fastpath_offset()));
 909 
 910   if (CheckJNICalls) {
 911     // Check if this is a virtual thread continuation
 912     Label L_skip_vthread_code;
 913     __ lwu(t0, Address(sp, ContinuationEntry::flags_offset()));
 914     __ beqz(t0, L_skip_vthread_code);
 915 
 916     // If the held monitor count is > 0 and this vthread is terminating then
 917     // it failed to release a JNI monitor. So we issue the same log message
 918     // that JavaThread::exit does.
 919     __ ld(t0, Address(xthread, JavaThread::jni_monitor_count_offset()));
 920     __ beqz(t0, L_skip_vthread_code);
 921 
 922     // Save return value potentially containing the exception oop in callee-saved x9
 923     __ mv(x9, x10);
 924     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held));
 925     // Restore potential return value
 926     __ mv(x10, x9);
 927 
 928     // For vthreads we have to explicitly zero the JNI monitor count of the carrier
 929     // on termination. The held count is implicitly zeroed below when we restore from
 930     // the parent held count (which has to be zero).
 931     __ sd(zr, Address(xthread, JavaThread::jni_monitor_count_offset()));
 932 
 933     __ bind(L_skip_vthread_code);
 934   }
 935 #ifdef ASSERT
 936   else {
 937     // Check if this is a virtual thread continuation
 938     Label L_skip_vthread_code;
 939     __ lwu(t0, Address(sp, ContinuationEntry::flags_offset()));
 940     __ beqz(t0, L_skip_vthread_code);
 941 
 942     // See comment just above. If not checking JNI calls the JNI count is only
 943     // needed for assertion checking.
 944     __ sd(zr, Address(xthread, JavaThread::jni_monitor_count_offset()));
 945 
 946     __ bind(L_skip_vthread_code);
 947   }
 948 #endif
 949 
 950   __ ld(t0, Address(sp, ContinuationEntry::parent_held_monitor_count_offset()));
 951   __ sd(t0, Address(xthread, JavaThread::held_monitor_count_offset()));
 952 
 953   __ ld(t0, Address(sp, ContinuationEntry::parent_offset()));
 954   __ sd(t0, Address(xthread, JavaThread::cont_entry_offset()));
 955   __ add(fp, sp, (int)ContinuationEntry::size() + 2 * wordSize /* 2 extra words to match up with leave() */);
 956 }
 957 
 958 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread)
 959 // On entry: c_rarg1 -- the continuation object
 960 //           c_rarg2 -- isContinue
 961 //           c_rarg3 -- isVirtualThread
 962 static void gen_continuation_enter(MacroAssembler* masm,
 963                                    const methodHandle& method,
 964                                    const BasicType* sig_bt,
 965                                    const VMRegPair* regs,
 966                                    int& exception_offset,
 967                                    OopMapSet*oop_maps,
 968                                    int& frame_complete,
 969                                    int& stack_slots,
 970                                    int& interpreted_entry_offset,
 971                                    int& compiled_entry_offset) {
 972   // verify_oop_args(masm, method, sig_bt, regs);
 973   Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type);
 974 
 975   address start = __ pc();
 976 
 977   Label call_thaw, exit;
 978 
 979   // i2i entry used at interp_only_mode only
 980   interpreted_entry_offset = __ pc() - start;
 981   {
 982 #ifdef ASSERT
 983     Label is_interp_only;
 984     __ lw(t0, Address(xthread, JavaThread::interp_only_mode_offset()));
 985     __ bnez(t0, is_interp_only);
 986     __ stop("enterSpecial interpreter entry called when not in interp_only_mode");
 987     __ bind(is_interp_only);
 988 #endif
 989 
 990     // Read interpreter arguments into registers (this is an ad-hoc i2c adapter)
 991     __ ld(c_rarg1, Address(esp, Interpreter::stackElementSize * 2));
 992     __ ld(c_rarg2, Address(esp, Interpreter::stackElementSize * 1));
 993     __ ld(c_rarg3, Address(esp, Interpreter::stackElementSize * 0));
 994     __ push_cont_fastpath(xthread);
 995 
 996     __ enter();
 997     stack_slots = 2; // will be adjusted in setup
 998     OopMap* map = continuation_enter_setup(masm, stack_slots);
 999     // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe,
1000     // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway.
1001 
1002     fill_continuation_entry(masm);
1003 
1004     __ bnez(c_rarg2, call_thaw);
1005 
1006     // Make sure the call is patchable
1007     __ align(NativeInstruction::instruction_size);
1008 
1009     const address tr_call = __ reloc_call(resolve);
1010     if (tr_call == nullptr) {
1011       fatal("CodeCache is full at gen_continuation_enter");
1012     }
1013 
1014     oop_maps->add_gc_map(__ pc() - start, map);
1015     __ post_call_nop();
1016 
1017     __ j(exit);
1018 
1019     address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call);
1020     if (stub == nullptr) {
1021       fatal("CodeCache is full at gen_continuation_enter");
1022     }
1023   }
1024 
1025   // compiled entry
1026   __ align(CodeEntryAlignment);
1027   compiled_entry_offset = __ pc() - start;
1028 
1029   __ enter();
1030   stack_slots = 2; // will be adjusted in setup
1031   OopMap* map = continuation_enter_setup(masm, stack_slots);
1032   frame_complete = __ pc() - start;
1033 
1034   fill_continuation_entry(masm);
1035 
1036   __ bnez(c_rarg2, call_thaw);
1037 
1038   // Make sure the call is patchable
1039   __ align(NativeInstruction::instruction_size);
1040 
1041   const address tr_call = __ reloc_call(resolve);
1042   if (tr_call == nullptr) {
1043     fatal("CodeCache is full at gen_continuation_enter");
1044   }
1045 
1046   oop_maps->add_gc_map(__ pc() - start, map);
1047   __ post_call_nop();
1048 
1049   __ j(exit);
1050 
1051   __ bind(call_thaw);
1052 
1053   __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw()));
1054   oop_maps->add_gc_map(__ pc() - start, map->deep_copy());
1055   ContinuationEntry::_return_pc_offset = __ pc() - start;
1056   __ post_call_nop();
1057 
1058   __ bind(exit);
1059   continuation_enter_cleanup(masm);
1060   __ leave();
1061   __ ret();
1062 
1063   // exception handling
1064   exception_offset = __ pc() - start;
1065   {
1066     __ mv(x9, x10); // save return value contaning the exception oop in callee-saved x9
1067 
1068     continuation_enter_cleanup(masm);
1069 
1070     __ ld(c_rarg1, Address(fp, -1 * wordSize)); // return address
1071     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), xthread, c_rarg1);
1072 
1073     // see OptoRuntime::generate_exception_blob: x10 -- exception oop, x13 -- exception pc
1074 
1075     __ mv(x11, x10); // the exception handler
1076     __ mv(x10, x9); // restore return value contaning the exception oop
1077     __ verify_oop(x10);
1078 
1079     __ leave();
1080     __ mv(x13, ra);
1081     __ jr(x11); // the exception handler
1082   }
1083 
1084   address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call);
1085   if (stub == nullptr) {
1086     fatal("CodeCache is full at gen_continuation_enter");
1087   }
1088 }
1089 
1090 static void gen_continuation_yield(MacroAssembler* masm,
1091                                    const methodHandle& method,
1092                                    const BasicType* sig_bt,
1093                                    const VMRegPair* regs,
1094                                    OopMapSet* oop_maps,
1095                                    int& frame_complete,
1096                                    int& stack_slots,
1097                                    int& compiled_entry_offset) {
1098   enum layout {
1099     fp_off,
1100     fp_off2,
1101     return_off,
1102     return_off2,
1103     framesize // inclusive of return address
1104   };
1105   // assert(is_even(framesize/2), "sp not 16-byte aligned");
1106 
1107   stack_slots = framesize / VMRegImpl::slots_per_word;
1108   assert(stack_slots == 2, "recheck layout");
1109 
1110   address start = __ pc();
1111 
1112   compiled_entry_offset = __ pc() - start;
1113   __ enter();
1114 
1115   __ mv(c_rarg1, sp);
1116 
1117   frame_complete = __ pc() - start;
1118   address the_pc = __ pc();
1119 
1120   __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup
1121 
1122   __ mv(c_rarg0, xthread);
1123   __ set_last_Java_frame(sp, fp, the_pc, t0);
1124   __ call_VM_leaf(Continuation::freeze_entry(), 2);
1125   __ reset_last_Java_frame(true);
1126 
1127   Label pinned;
1128 
1129   __ bnez(x10, pinned);
1130 
1131   // We've succeeded, set sp to the ContinuationEntry
1132   __ ld(sp, Address(xthread, JavaThread::cont_entry_offset()));
1133   continuation_enter_cleanup(masm);
1134 
1135   __ bind(pinned); // pinned -- return to caller
1136 
1137   // handle pending exception thrown by freeze
1138   __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1139   Label ok;
1140   __ beqz(t0, ok);
1141   __ leave();
1142   __ j(RuntimeAddress(StubRoutines::forward_exception_entry()));
1143   __ bind(ok);
1144 
1145   __ leave();
1146   __ ret();
1147 
1148   OopMap* map = new OopMap(framesize, 1);
1149   oop_maps->add_gc_map(the_pc - start, map);
1150 }
1151 
1152 static void gen_special_dispatch(MacroAssembler* masm,
1153                                  const methodHandle& method,
1154                                  const BasicType* sig_bt,
1155                                  const VMRegPair* regs) {
1156   verify_oop_args(masm, method, sig_bt, regs);
1157   vmIntrinsics::ID iid = method->intrinsic_id();
1158 
1159   // Now write the args into the outgoing interpreter space
1160   bool     has_receiver   = false;
1161   Register receiver_reg   = noreg;
1162   int      member_arg_pos = -1;
1163   Register member_reg     = noreg;
1164   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1165   if (ref_kind != 0) {
1166     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1167     member_reg = x9;  // known to be free at this point
1168     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1169   } else if (iid == vmIntrinsics::_invokeBasic) {
1170     has_receiver = true;
1171   } else if (iid == vmIntrinsics::_linkToNative) {
1172     member_arg_pos = method->size_of_parameters() - 1;  // trailing NativeEntryPoint argument
1173     member_reg = x9;  // known to be free at this point
1174   } else {
1175     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1176   }
1177 
1178   if (member_reg != noreg) {
1179     // Load the member_arg into register, if necessary.
1180     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1181     VMReg r = regs[member_arg_pos].first();
1182     if (r->is_stack()) {
1183       __ ld(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1184     } else {
1185       // no data motion is needed
1186       member_reg = r->as_Register();
1187     }
1188   }
1189 
1190   if (has_receiver) {
1191     // Make sure the receiver is loaded into a register.
1192     assert(method->size_of_parameters() > 0, "oob");
1193     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1194     VMReg r = regs[0].first();
1195     assert(r->is_valid(), "bad receiver arg");
1196     if (r->is_stack()) {
1197       // Porting note:  This assumes that compiled calling conventions always
1198       // pass the receiver oop in a register.  If this is not true on some
1199       // platform, pick a temp and load the receiver from stack.
1200       fatal("receiver always in a register");
1201       receiver_reg = x12;  // known to be free at this point
1202       __ ld(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1203     } else {
1204       // no data motion is needed
1205       receiver_reg = r->as_Register();
1206     }
1207   }
1208 
1209   // Figure out which address we are really jumping to:
1210   MethodHandles::generate_method_handle_dispatch(masm, iid,
1211                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1212 }
1213 
1214 // ---------------------------------------------------------------------------
1215 // Generate a native wrapper for a given method.  The method takes arguments
1216 // in the Java compiled code convention, marshals them to the native
1217 // convention (handlizes oops, etc), transitions to native, makes the call,
1218 // returns to java state (possibly blocking), unhandlizes any result and
1219 // returns.
1220 //
1221 // Critical native functions are a shorthand for the use of
1222 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1223 // functions.  The wrapper is expected to unpack the arguments before
1224 // passing them to the callee and perform checks before and after the
1225 // native call to ensure that they GCLocker
1226 // lock_critical/unlock_critical semantics are followed.  Some other
1227 // parts of JNI setup are skipped like the tear down of the JNI handle
1228 // block and the check for pending exceptions it's impossible for them
1229 // to be thrown.
1230 //
1231 // They are roughly structured like this:
1232 //    if (GCLocker::needs_gc()) SharedRuntime::block_for_jni_critical()
1233 //    tranistion to thread_in_native
1234 //    unpack array arguments and call native entry point
1235 //    check for safepoint in progress
1236 //    check if any thread suspend flags are set
1237 //      call into JVM and possible unlock the JNI critical
1238 //      if a GC was suppressed while in the critical native.
1239 //    transition back to thread_in_Java
1240 //    return to caller
1241 //
1242 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1243                                                 const methodHandle& method,
1244                                                 int compile_id,
1245                                                 BasicType* in_sig_bt,
1246                                                 VMRegPair* in_regs,
1247                                                 BasicType ret_type) {
1248   if (method->is_continuation_native_intrinsic()) {
1249     int exception_offset = -1;
1250     OopMapSet* oop_maps = new OopMapSet();
1251     int frame_complete = -1;
1252     int stack_slots = -1;
1253     int interpreted_entry_offset = -1;
1254     int vep_offset = -1;
1255     if (method->is_continuation_enter_intrinsic()) {
1256       gen_continuation_enter(masm,
1257                              method,
1258                              in_sig_bt,
1259                              in_regs,
1260                              exception_offset,
1261                              oop_maps,
1262                              frame_complete,
1263                              stack_slots,
1264                              interpreted_entry_offset,
1265                              vep_offset);
1266     } else if (method->is_continuation_yield_intrinsic()) {
1267       gen_continuation_yield(masm,
1268                              method,
1269                              in_sig_bt,
1270                              in_regs,
1271                              oop_maps,
1272                              frame_complete,
1273                              stack_slots,
1274                              vep_offset);
1275     } else {
1276       guarantee(false, "Unknown Continuation native intrinsic");
1277     }
1278 
1279 #ifdef ASSERT
1280     if (method->is_continuation_enter_intrinsic()) {
1281       assert(interpreted_entry_offset != -1, "Must be set");
1282       assert(exception_offset != -1,         "Must be set");
1283     } else {
1284       assert(interpreted_entry_offset == -1, "Must be unset");
1285       assert(exception_offset == -1,         "Must be unset");
1286     }
1287     assert(frame_complete != -1,    "Must be set");
1288     assert(stack_slots != -1,       "Must be set");
1289     assert(vep_offset != -1,        "Must be set");
1290 #endif
1291 
1292     __ flush();
1293     nmethod* nm = nmethod::new_native_nmethod(method,
1294                                               compile_id,
1295                                               masm->code(),
1296                                               vep_offset,
1297                                               frame_complete,
1298                                               stack_slots,
1299                                               in_ByteSize(-1),
1300                                               in_ByteSize(-1),
1301                                               oop_maps,
1302                                               exception_offset);
1303     if (nm == nullptr) return nm;
1304     if (method->is_continuation_enter_intrinsic()) {
1305       ContinuationEntry::set_enter_code(nm, interpreted_entry_offset);
1306     } else if (method->is_continuation_yield_intrinsic()) {
1307       _cont_doYield_stub = nm;
1308     } else {
1309       guarantee(false, "Unknown Continuation native intrinsic");
1310     }
1311     return nm;
1312   }
1313 
1314   if (method->is_method_handle_intrinsic()) {
1315     vmIntrinsics::ID iid = method->intrinsic_id();
1316     intptr_t start = (intptr_t)__ pc();
1317     int vep_offset = ((intptr_t)__ pc()) - start;
1318 
1319     // First instruction must be a nop as it may need to be patched on deoptimisation
1320     {
1321       Assembler::IncompressibleRegion ir(masm);  // keep the nop as 4 bytes for patching.
1322       MacroAssembler::assert_alignment(__ pc());
1323       __ nop();  // 4 bytes
1324     }
1325     gen_special_dispatch(masm,
1326                          method,
1327                          in_sig_bt,
1328                          in_regs);
1329     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1330     __ flush();
1331     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1332     return nmethod::new_native_nmethod(method,
1333                                        compile_id,
1334                                        masm->code(),
1335                                        vep_offset,
1336                                        frame_complete,
1337                                        stack_slots / VMRegImpl::slots_per_word,
1338                                        in_ByteSize(-1),
1339                                        in_ByteSize(-1),
1340                                        (OopMapSet*)nullptr);
1341   }
1342   address native_func = method->native_function();
1343   assert(native_func != nullptr, "must have function");
1344 
1345   // An OopMap for lock (and class if static)
1346   OopMapSet *oop_maps = new OopMapSet();
1347   assert_cond(oop_maps != nullptr);
1348   intptr_t start = (intptr_t)__ pc();
1349 
1350   // We have received a description of where all the java arg are located
1351   // on entry to the wrapper. We need to convert these args to where
1352   // the jni function will expect them. To figure out where they go
1353   // we convert the java signature to a C signature by inserting
1354   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1355 
1356   const int total_in_args = method->size_of_parameters();
1357   int total_c_args = total_in_args + (method->is_static() ? 2 : 1);
1358 
1359   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1360   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1361   BasicType* in_elem_bt = nullptr;
1362 
1363   int argc = 0;
1364   out_sig_bt[argc++] = T_ADDRESS;
1365   if (method->is_static()) {
1366     out_sig_bt[argc++] = T_OBJECT;
1367   }
1368 
1369   for (int i = 0; i < total_in_args ; i++) {
1370     out_sig_bt[argc++] = in_sig_bt[i];
1371   }
1372 
1373   // Now figure out where the args must be stored and how much stack space
1374   // they require.
1375   int out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1376 
1377   // Compute framesize for the wrapper.  We need to handlize all oops in
1378   // incoming registers
1379 
1380   // Calculate the total number of stack slots we will need.
1381 
1382   // First count the abi requirement plus all of the outgoing args
1383   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1384 
1385   // Now the space for the inbound oop handle area
1386   int total_save_slots = 8 * VMRegImpl::slots_per_word;  // 8 arguments passed in registers
1387 
1388   int oop_handle_offset = stack_slots;
1389   stack_slots += total_save_slots;
1390 
1391   // Now any space we need for handlizing a klass if static method
1392 
1393   int klass_slot_offset = 0;
1394   int klass_offset = -1;
1395   int lock_slot_offset = 0;
1396   bool is_static = false;
1397 
1398   if (method->is_static()) {
1399     klass_slot_offset = stack_slots;
1400     stack_slots += VMRegImpl::slots_per_word;
1401     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1402     is_static = true;
1403   }
1404 
1405   // Plus a lock if needed
1406 
1407   if (method->is_synchronized()) {
1408     lock_slot_offset = stack_slots;
1409     stack_slots += VMRegImpl::slots_per_word;
1410   }
1411 
1412   // Now a place (+2) to save return values or temp during shuffling
1413   // + 4 for return address (which we own) and saved fp
1414   stack_slots += 6;
1415 
1416   // Ok The space we have allocated will look like:
1417   //
1418   //
1419   // FP-> |                     |
1420   //      | 2 slots (ra)        |
1421   //      | 2 slots (fp)        |
1422   //      |---------------------|
1423   //      | 2 slots for moves   |
1424   //      |---------------------|
1425   //      | lock box (if sync)  |
1426   //      |---------------------| <- lock_slot_offset
1427   //      | klass (if static)   |
1428   //      |---------------------| <- klass_slot_offset
1429   //      | oopHandle area      |
1430   //      |---------------------| <- oop_handle_offset (8 java arg registers)
1431   //      | outbound memory     |
1432   //      | based arguments     |
1433   //      |                     |
1434   //      |---------------------|
1435   //      |                     |
1436   // SP-> | out_preserved_slots |
1437   //
1438   //
1439 
1440 
1441   // Now compute actual number of stack words we need rounding to make
1442   // stack properly aligned.
1443   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1444 
1445   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1446 
1447   // First thing make an ic check to see if we should even be here
1448 
1449   // We are free to use all registers as temps without saving them and
1450   // restoring them except fp. fp is the only callee save register
1451   // as far as the interpreter and the compiler(s) are concerned.
1452 
1453   const Register receiver = j_rarg0;
1454 
1455   __ verify_oop(receiver);
1456   assert_different_registers(receiver, t0, t1);
1457 
1458   __ ic_check();
1459 
1460   int vep_offset = ((intptr_t)__ pc()) - start;
1461 
1462   // If we have to make this method not-entrant we'll overwrite its
1463   // first instruction with a jump.
1464   {
1465     Assembler::IncompressibleRegion ir(masm);  // keep the nop as 4 bytes for patching.
1466     MacroAssembler::assert_alignment(__ pc());
1467     __ nop();  // 4 bytes
1468   }
1469 
1470   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
1471     Label L_skip_barrier;
1472     __ mov_metadata(t1, method->method_holder()); // InstanceKlass*
1473     __ clinit_barrier(t1, t0, &L_skip_barrier);
1474     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
1475 
1476     __ bind(L_skip_barrier);
1477   }
1478 
1479   // Generate stack overflow check
1480   __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size()));
1481 
1482   // Generate a new frame for the wrapper.
1483   __ enter();
1484   // -2 because return address is already present and so is saved fp
1485   __ sub(sp, sp, stack_size - 2 * wordSize);
1486 
1487   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1488   assert_cond(bs != nullptr);
1489   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */);
1490 
1491   // Frame is now completed as far as size and linkage.
1492   int frame_complete = ((intptr_t)__ pc()) - start;
1493 
1494   // We use x18 as the oop handle for the receiver/klass
1495   // It is callee save so it survives the call to native
1496 
1497   const Register oop_handle_reg = x18;
1498 
1499   //
1500   // We immediately shuffle the arguments so that any vm call we have to
1501   // make from here on out (sync slow path, jvmti, etc.) we will have
1502   // captured the oops from our caller and have a valid oopMap for
1503   // them.
1504 
1505   // -----------------
1506   // The Grand Shuffle
1507 
1508   // The Java calling convention is either equal (linux) or denser (win64) than the
1509   // c calling convention. However the because of the jni_env argument the c calling
1510   // convention always has at least one more (and two for static) arguments than Java.
1511   // Therefore if we move the args from java -> c backwards then we will never have
1512   // a register->register conflict and we don't have to build a dependency graph
1513   // and figure out how to break any cycles.
1514   //
1515 
1516   // Record esp-based slot for receiver on stack for non-static methods
1517   int receiver_offset = -1;
1518 
1519   // This is a trick. We double the stack slots so we can claim
1520   // the oops in the caller's frame. Since we are sure to have
1521   // more args than the caller doubling is enough to make
1522   // sure we can capture all the incoming oop args from the
1523   // caller.
1524   //
1525   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1526   assert_cond(map != nullptr);
1527 
1528   int float_args = 0;
1529   int int_args = 0;
1530 
1531 #ifdef ASSERT
1532   bool reg_destroyed[Register::number_of_registers];
1533   bool freg_destroyed[FloatRegister::number_of_registers];
1534   for ( int r = 0 ; r < Register::number_of_registers ; r++ ) {
1535     reg_destroyed[r] = false;
1536   }
1537   for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) {
1538     freg_destroyed[f] = false;
1539   }
1540 
1541 #endif /* ASSERT */
1542 
1543   // For JNI natives the incoming and outgoing registers are offset upwards.
1544   GrowableArray<int> arg_order(2 * total_in_args);
1545   VMRegPair tmp_vmreg;
1546   tmp_vmreg.set2(x9->as_VMReg());
1547 
1548   for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1549     arg_order.push(i);
1550     arg_order.push(c_arg);
1551   }
1552 
1553   int temploc = -1;
1554   for (int ai = 0; ai < arg_order.length(); ai += 2) {
1555     int i = arg_order.at(ai);
1556     int c_arg = arg_order.at(ai + 1);
1557     __ block_comment(err_msg("mv %d -> %d", i, c_arg));
1558     assert(c_arg != -1 && i != -1, "wrong order");
1559 #ifdef ASSERT
1560     if (in_regs[i].first()->is_Register()) {
1561       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1562     } else if (in_regs[i].first()->is_FloatRegister()) {
1563       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!");
1564     }
1565     if (out_regs[c_arg].first()->is_Register()) {
1566       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1567     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1568       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1569     }
1570 #endif /* ASSERT */
1571     switch (in_sig_bt[i]) {
1572       case T_ARRAY:
1573       case T_OBJECT:
1574         __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1575                        ((i == 0) && (!is_static)),
1576                        &receiver_offset);
1577         int_args++;
1578         break;
1579       case T_VOID:
1580         break;
1581 
1582       case T_FLOAT:
1583         __ float_move(in_regs[i], out_regs[c_arg]);
1584         float_args++;
1585         break;
1586 
1587       case T_DOUBLE:
1588         assert( i + 1 < total_in_args &&
1589                 in_sig_bt[i + 1] == T_VOID &&
1590                 out_sig_bt[c_arg + 1] == T_VOID, "bad arg list");
1591         __ double_move(in_regs[i], out_regs[c_arg]);
1592         float_args++;
1593         break;
1594 
1595       case T_LONG :
1596         __ long_move(in_regs[i], out_regs[c_arg]);
1597         int_args++;
1598         break;
1599 
1600       case T_ADDRESS:
1601         assert(false, "found T_ADDRESS in java args");
1602         break;
1603 
1604       default:
1605         __ move32_64(in_regs[i], out_regs[c_arg]);
1606         int_args++;
1607     }
1608   }
1609 
1610   // point c_arg at the first arg that is already loaded in case we
1611   // need to spill before we call out
1612   int c_arg = total_c_args - total_in_args;
1613 
1614   // Pre-load a static method's oop into c_rarg1.
1615   if (method->is_static()) {
1616 
1617     //  load oop into a register
1618     __ movoop(c_rarg1,
1619               JNIHandles::make_local(method->method_holder()->java_mirror()));
1620 
1621     // Now handlize the static class mirror it's known not-null.
1622     __ sd(c_rarg1, Address(sp, klass_offset));
1623     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1624 
1625     // Now get the handle
1626     __ la(c_rarg1, Address(sp, klass_offset));
1627     // and protect the arg if we must spill
1628     c_arg--;
1629   }
1630 
1631   // Change state to native (we save the return address in the thread, since it might not
1632   // be pushed on the stack when we do a stack traversal).
1633   // We use the same pc/oopMap repeatedly when we call out
1634 
1635   Label native_return;
1636   __ set_last_Java_frame(sp, noreg, native_return, t0);
1637 
1638   Label dtrace_method_entry, dtrace_method_entry_done;
1639   if (DTraceMethodProbes) {
1640     __ j(dtrace_method_entry);
1641     __ bind(dtrace_method_entry_done);
1642   }
1643 
1644   // RedefineClasses() tracing support for obsolete method entry
1645   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1646     // protect the args we've loaded
1647     save_args(masm, total_c_args, c_arg, out_regs);
1648     __ mov_metadata(c_rarg1, method());
1649     __ call_VM_leaf(
1650       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1651       xthread, c_rarg1);
1652     restore_args(masm, total_c_args, c_arg, out_regs);
1653   }
1654 
1655   // Lock a synchronized method
1656 
1657   // Register definitions used by locking and unlocking
1658 
1659   const Register swap_reg = x10;
1660   const Register obj_reg  = x9;  // Will contain the oop
1661   const Register lock_reg = x30;  // Address of compiler lock object (BasicLock)
1662   const Register old_hdr  = x30;  // value of old header at unlock time
1663   const Register lock_tmp = x31;  // Temporary used by lightweight_lock/unlock
1664   const Register tmp      = ra;
1665 
1666   Label slow_path_lock;
1667   Label lock_done;
1668 
1669   if (method->is_synchronized()) {
1670     Label count;
1671 
1672     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1673 
1674     // Get the handle (the 2nd argument)
1675     __ mv(oop_handle_reg, c_rarg1);
1676 
1677     // Get address of the box
1678 
1679     __ la(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1680 
1681     // Load the oop from the handle
1682     __ ld(obj_reg, Address(oop_handle_reg, 0));
1683 
1684     if (LockingMode == LM_MONITOR) {
1685       __ j(slow_path_lock);
1686     } else if (LockingMode == LM_LEGACY) {
1687       // Load (object->mark() | 1) into swap_reg % x10
1688       __ ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1689       __ ori(swap_reg, t0, 1);
1690 
1691       // Save (object->mark() | 1) into BasicLock's displaced header
1692       __ sd(swap_reg, Address(lock_reg, mark_word_offset));
1693 
1694       // src -> dest if dest == x10 else x10 <- dest
1695       __ cmpxchg_obj_header(x10, lock_reg, obj_reg, lock_tmp, count, /*fallthrough*/nullptr);
1696 
1697       // Test if the oopMark is an obvious stack pointer, i.e.,
1698       //  1) (mark & 3) == 0, and
1699       //  2) sp <= mark < mark + os::pagesize()
1700       // These 3 tests can be done by evaluating the following
1701       // expression: ((mark - sp) & (3 - os::vm_page_size())),
1702       // assuming both stack pointer and pagesize have their
1703       // least significant 2 bits clear.
1704       // NOTE: the oopMark is in swap_reg % 10 as the result of cmpxchg
1705 
1706       __ sub(swap_reg, swap_reg, sp);
1707       __ andi(swap_reg, swap_reg, 3 - (int)os::vm_page_size());
1708 
1709       // Save the test result, for recursive case, the result is zero
1710       __ sd(swap_reg, Address(lock_reg, mark_word_offset));
1711       __ bnez(swap_reg, slow_path_lock);
1712     } else {
1713       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1714       __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock);
1715     }
1716 
1717     __ bind(count);
1718     __ increment(Address(xthread, JavaThread::held_monitor_count_offset()));
1719 
1720     // Slow path will re-enter here
1721     __ bind(lock_done);
1722   }
1723 
1724 
1725   // Finally just about ready to make the JNI call
1726 
1727   // get JNIEnv* which is first argument to native
1728   __ la(c_rarg0, Address(xthread, in_bytes(JavaThread::jni_environment_offset())));
1729 
1730   // Now set thread in native
1731   __ la(t1, Address(xthread, JavaThread::thread_state_offset()));
1732   __ mv(t0, _thread_in_native);
1733   __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
1734   __ sw(t0, Address(t1));
1735 
1736   // Clobbers t1
1737   __ rt_call(native_func);
1738 
1739   __ bind(native_return);
1740 
1741   intptr_t return_pc = (intptr_t) __ pc();
1742   oop_maps->add_gc_map(return_pc - start, map);
1743 
1744   // Verify or restore cpu control state after JNI call
1745   __ restore_cpu_control_state_after_jni(t0);
1746 
1747   // Unpack native results.
1748   if (ret_type != T_OBJECT && ret_type != T_ARRAY) {
1749     __ cast_primitive_type(ret_type, x10);
1750   }
1751 
1752   Label safepoint_in_progress, safepoint_in_progress_done;
1753   Label after_transition;
1754 
1755   // Switch thread to "native transition" state before reading the synchronization state.
1756   // This additional state is necessary because reading and testing the synchronization
1757   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1758   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1759   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1760   //     Thread A is resumed to finish this native method, but doesn't block here since it
1761   //     didn't see any synchronization is progress, and escapes.
1762   __ mv(t0, _thread_in_native_trans);
1763 
1764   __ sw(t0, Address(xthread, JavaThread::thread_state_offset()));
1765 
1766   // Force this write out before the read below
1767   if (!UseSystemMemoryBarrier) {
1768     __ membar(MacroAssembler::AnyAny);
1769   }
1770 
1771   // check for safepoint operation in progress and/or pending suspend requests
1772   {
1773     // We need an acquire here to ensure that any subsequent load of the
1774     // global SafepointSynchronize::_state flag is ordered after this load
1775     // of the thread-local polling word. We don't want this poll to
1776     // return false (i.e. not safepointing) and a later poll of the global
1777     // SafepointSynchronize::_state spuriously to return true.
1778     // This is to avoid a race when we're in a native->Java transition
1779     // racing the code which wakes up from a safepoint.
1780 
1781     __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */);
1782     __ lwu(t0, Address(xthread, JavaThread::suspend_flags_offset()));
1783     __ bnez(t0, safepoint_in_progress);
1784     __ bind(safepoint_in_progress_done);
1785   }
1786 
1787   // change thread state
1788   __ la(t1, Address(xthread, JavaThread::thread_state_offset()));
1789   __ mv(t0, _thread_in_Java);
1790   __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
1791   __ sw(t0, Address(t1));
1792   __ bind(after_transition);
1793 
1794   Label reguard;
1795   Label reguard_done;
1796   __ lbu(t0, Address(xthread, JavaThread::stack_guard_state_offset()));
1797   __ mv(t1, StackOverflow::stack_guard_yellow_reserved_disabled);
1798   __ beq(t0, t1, reguard);
1799   __ bind(reguard_done);
1800 
1801   // native result if any is live
1802 
1803   // Unlock
1804   Label unlock_done;
1805   Label slow_path_unlock;
1806   if (method->is_synchronized()) {
1807 
1808     // Get locked oop from the handle we passed to jni
1809     __ ld(obj_reg, Address(oop_handle_reg, 0));
1810 
1811     Label done, not_recursive;
1812 
1813     if (LockingMode == LM_LEGACY) {
1814       // Simple recursive lock?
1815       __ ld(t0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1816       __ bnez(t0, not_recursive);
1817       __ decrement(Address(xthread, JavaThread::held_monitor_count_offset()));
1818       __ j(done);
1819     }
1820 
1821     __ bind(not_recursive);
1822 
1823     // Must save x10 if if it is live now because cmpxchg must use it
1824     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1825       save_native_result(masm, ret_type, stack_slots);
1826     }
1827 
1828     if (LockingMode == LM_MONITOR) {
1829       __ j(slow_path_unlock);
1830     } else if (LockingMode == LM_LEGACY) {
1831       // get address of the stack lock
1832       __ la(x10, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1833       //  get old displaced header
1834       __ ld(old_hdr, Address(x10, 0));
1835 
1836       // Atomic swap old header if oop still contains the stack lock
1837       Label count;
1838       __ cmpxchg_obj_header(x10, old_hdr, obj_reg, lock_tmp, count, &slow_path_unlock);
1839       __ bind(count);
1840       __ decrement(Address(xthread, JavaThread::held_monitor_count_offset()));
1841     } else {
1842       assert(LockingMode == LM_LIGHTWEIGHT, "");
1843       __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock);
1844       __ decrement(Address(xthread, JavaThread::held_monitor_count_offset()));
1845     }
1846 
1847     // slow path re-enters here
1848     __ bind(unlock_done);
1849     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1850       restore_native_result(masm, ret_type, stack_slots);
1851     }
1852 
1853     __ bind(done);
1854   }
1855 
1856   Label dtrace_method_exit, dtrace_method_exit_done;
1857   if (DTraceMethodProbes) {
1858     __ j(dtrace_method_exit);
1859     __ bind(dtrace_method_exit_done);
1860   }
1861 
1862   __ reset_last_Java_frame(false);
1863 
1864   // Unbox oop result, e.g. JNIHandles::resolve result.
1865   if (is_reference_type(ret_type)) {
1866     __ resolve_jobject(x10, x11, x12);
1867   }
1868 
1869   if (CheckJNICalls) {
1870     // clear_pending_jni_exception_check
1871     __ sd(zr, Address(xthread, JavaThread::pending_jni_exception_check_fn_offset()));
1872   }
1873 
1874   // reset handle block
1875   __ ld(x12, Address(xthread, JavaThread::active_handles_offset()));
1876   __ sd(zr, Address(x12, JNIHandleBlock::top_offset()));
1877 
1878   __ leave();
1879 
1880   // Any exception pending?
1881   Label exception_pending;
1882   __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1883   __ bnez(t0, exception_pending);
1884 
1885   // We're done
1886   __ ret();
1887 
1888   // Unexpected paths are out of line and go here
1889 
1890   // forward the exception
1891   __ bind(exception_pending);
1892 
1893   // and forward the exception
1894   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1895 
1896   // Slow path locking & unlocking
1897   if (method->is_synchronized()) {
1898 
1899     __ block_comment("Slow path lock {");
1900     __ bind(slow_path_lock);
1901 
1902     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1903     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1904 
1905     // protect the args we've loaded
1906     save_args(masm, total_c_args, c_arg, out_regs);
1907 
1908     __ mv(c_rarg0, obj_reg);
1909     __ mv(c_rarg1, lock_reg);
1910     __ mv(c_rarg2, xthread);
1911 
1912     // Not a leaf but we have last_Java_frame setup as we want
1913     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
1914     restore_args(masm, total_c_args, c_arg, out_regs);
1915 
1916 #ifdef ASSERT
1917     { Label L;
1918       __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1919       __ beqz(t0, L);
1920       __ stop("no pending exception allowed on exit from monitorenter");
1921       __ bind(L);
1922     }
1923 #endif
1924     __ j(lock_done);
1925 
1926     __ block_comment("} Slow path lock");
1927 
1928     __ block_comment("Slow path unlock {");
1929     __ bind(slow_path_unlock);
1930 
1931     if (ret_type == T_FLOAT || ret_type == T_DOUBLE) {
1932       save_native_result(masm, ret_type, stack_slots);
1933     }
1934 
1935     __ mv(c_rarg2, xthread);
1936     __ la(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1937     __ mv(c_rarg0, obj_reg);
1938 
1939     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1940     // NOTE that obj_reg == x9 currently
1941     __ ld(x9, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1942     __ sd(zr, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1943 
1944     __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
1945 
1946 #ifdef ASSERT
1947     {
1948       Label L;
1949       __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1950       __ beqz(t0, L);
1951       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1952       __ bind(L);
1953     }
1954 #endif /* ASSERT */
1955 
1956     __ sd(x9, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1957 
1958     if (ret_type == T_FLOAT || ret_type == T_DOUBLE) {
1959       restore_native_result(masm, ret_type, stack_slots);
1960     }
1961     __ j(unlock_done);
1962 
1963     __ block_comment("} Slow path unlock");
1964 
1965   } // synchronized
1966 
1967   // SLOW PATH Reguard the stack if needed
1968 
1969   __ bind(reguard);
1970   save_native_result(masm, ret_type, stack_slots);
1971   __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
1972   restore_native_result(masm, ret_type, stack_slots);
1973   // and continue
1974   __ j(reguard_done);
1975 
1976   // SLOW PATH safepoint
1977   {
1978     __ block_comment("safepoint {");
1979     __ bind(safepoint_in_progress);
1980 
1981     // Don't use call_VM as it will see a possible pending exception and forward it
1982     // and never return here preventing us from clearing _last_native_pc down below.
1983     //
1984     save_native_result(masm, ret_type, stack_slots);
1985     __ mv(c_rarg0, xthread);
1986 #ifndef PRODUCT
1987     assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
1988 #endif
1989     __ rt_call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1990 
1991     // Restore any method result value
1992     restore_native_result(masm, ret_type, stack_slots);
1993 
1994     __ j(safepoint_in_progress_done);
1995     __ block_comment("} safepoint");
1996   }
1997 
1998   // SLOW PATH dtrace support
1999   if (DTraceMethodProbes) {
2000     {
2001       __ block_comment("dtrace entry {");
2002       __ bind(dtrace_method_entry);
2003 
2004       // We have all of the arguments setup at this point. We must not touch any register
2005       // argument registers at this point (what if we save/restore them there are no oop?
2006 
2007       save_args(masm, total_c_args, c_arg, out_regs);
2008       __ mov_metadata(c_rarg1, method());
2009       __ call_VM_leaf(
2010         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2011         xthread, c_rarg1);
2012       restore_args(masm, total_c_args, c_arg, out_regs);
2013       __ j(dtrace_method_entry_done);
2014       __ block_comment("} dtrace entry");
2015     }
2016 
2017     {
2018       __ block_comment("dtrace exit {");
2019       __ bind(dtrace_method_exit);
2020       save_native_result(masm, ret_type, stack_slots);
2021       __ mov_metadata(c_rarg1, method());
2022       __ call_VM_leaf(
2023            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2024            xthread, c_rarg1);
2025       restore_native_result(masm, ret_type, stack_slots);
2026       __ j(dtrace_method_exit_done);
2027       __ block_comment("} dtrace exit");
2028     }
2029   }
2030 
2031   __ flush();
2032 
2033   nmethod *nm = nmethod::new_native_nmethod(method,
2034                                             compile_id,
2035                                             masm->code(),
2036                                             vep_offset,
2037                                             frame_complete,
2038                                             stack_slots / VMRegImpl::slots_per_word,
2039                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2040                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2041                                             oop_maps);
2042   assert(nm != nullptr, "create native nmethod fail!");
2043   return nm;
2044 }
2045 
2046 // this function returns the adjust size (in number of words) to a c2i adapter
2047 // activation for use during deoptimization
2048 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2049   assert(callee_locals >= callee_parameters,
2050          "test and remove; got more parms than locals");
2051   if (callee_locals < callee_parameters) {
2052     return 0;                   // No adjustment for negative locals
2053   }
2054   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2055   // diff is counted in stack words
2056   return align_up(diff, 2);
2057 }
2058 
2059 //------------------------------generate_deopt_blob----------------------------
2060 void SharedRuntime::generate_deopt_blob() {
2061   // Allocate space for the code
2062   ResourceMark rm;
2063   // Setup code generation tools
2064   int pad = 0;
2065 #if INCLUDE_JVMCI
2066   if (EnableJVMCI) {
2067     pad += 512; // Increase the buffer size when compiling for JVMCI
2068   }
2069 #endif
2070   const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id);
2071   CodeBuffer buffer(name, 2048 + pad, 1024);
2072   MacroAssembler* masm = new MacroAssembler(&buffer);
2073   int frame_size_in_words = -1;
2074   OopMap* map = nullptr;
2075   OopMapSet *oop_maps = new OopMapSet();
2076   assert_cond(masm != nullptr && oop_maps != nullptr);
2077   RegisterSaver reg_saver(COMPILER2_OR_JVMCI != 0);
2078 
2079   // -------------
2080   // This code enters when returning to a de-optimized nmethod.  A return
2081   // address has been pushed on the stack, and return values are in
2082   // registers.
2083   // If we are doing a normal deopt then we were called from the patched
2084   // nmethod from the point we returned to the nmethod. So the return
2085   // address on the stack is wrong by NativeCall::instruction_size
2086   // We will adjust the value so it looks like we have the original return
2087   // address on the stack (like when we eagerly deoptimized).
2088   // In the case of an exception pending when deoptimizing, we enter
2089   // with a return address on the stack that points after the call we patched
2090   // into the exception handler. We have the following register state from,
2091   // e.g., the forward exception stub (see stubGenerator_riscv.cpp).
2092   //    x10: exception oop
2093   //    x9: exception handler
2094   //    x13: throwing pc
2095   // So in this case we simply jam x13 into the useless return address and
2096   // the stack looks just like we want.
2097   //
2098   // At this point we need to de-opt.  We save the argument return
2099   // registers.  We call the first C routine, fetch_unroll_info().  This
2100   // routine captures the return values and returns a structure which
2101   // describes the current frame size and the sizes of all replacement frames.
2102   // The current frame is compiled code and may contain many inlined
2103   // functions, each with their own JVM state.  We pop the current frame, then
2104   // push all the new frames.  Then we call the C routine unpack_frames() to
2105   // populate these frames.  Finally unpack_frames() returns us the new target
2106   // address.  Notice that callee-save registers are BLOWN here; they have
2107   // already been captured in the vframeArray at the time the return PC was
2108   // patched.
2109   address start = __ pc();
2110   Label cont;
2111 
2112   // Prolog for non exception case!
2113 
2114   // Save everything in sight.
2115   map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
2116 
2117   // Normal deoptimization.  Save exec mode for unpack_frames.
2118   __ mv(xcpool, Deoptimization::Unpack_deopt); // callee-saved
2119   __ j(cont);
2120 
2121   int reexecute_offset = __ pc() - start;
2122 #if INCLUDE_JVMCI && !defined(COMPILER1)
2123   if (UseJVMCICompiler) {
2124     // JVMCI does not use this kind of deoptimization
2125     __ should_not_reach_here();
2126   }
2127 #endif
2128 
2129   // Reexecute case
2130   // return address is the pc describes what bci to do re-execute at
2131 
2132   // No need to update map as each call to save_live_registers will produce identical oopmap
2133   (void) reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
2134 
2135   __ mv(xcpool, Deoptimization::Unpack_reexecute); // callee-saved
2136   __ j(cont);
2137 
2138 #if INCLUDE_JVMCI
2139   Label after_fetch_unroll_info_call;
2140   int implicit_exception_uncommon_trap_offset = 0;
2141   int uncommon_trap_offset = 0;
2142 
2143   if (EnableJVMCI) {
2144     implicit_exception_uncommon_trap_offset = __ pc() - start;
2145 
2146     __ ld(ra, Address(xthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2147     __ sd(zr, Address(xthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2148 
2149     uncommon_trap_offset = __ pc() - start;
2150 
2151     // Save everything in sight.
2152     reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
2153     // fetch_unroll_info needs to call last_java_frame()
2154     Label retaddr;
2155     __ set_last_Java_frame(sp, noreg, retaddr, t0);
2156 
2157     __ lw(c_rarg1, Address(xthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2158     __ mv(t0, -1);
2159     __ sw(t0, Address(xthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2160 
2161     __ mv(xcpool, Deoptimization::Unpack_reexecute);
2162     __ mv(c_rarg0, xthread);
2163     __ orrw(c_rarg2, zr, xcpool); // exec mode
2164     __ rt_call(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap));
2165     __ bind(retaddr);
2166     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2167 
2168     __ reset_last_Java_frame(false);
2169 
2170     __ j(after_fetch_unroll_info_call);
2171   } // EnableJVMCI
2172 #endif // INCLUDE_JVMCI
2173 
2174   int exception_offset = __ pc() - start;
2175 
2176   // Prolog for exception case
2177 
2178   // all registers are dead at this entry point, except for x10, and
2179   // x13 which contain the exception oop and exception pc
2180   // respectively.  Set them in TLS and fall thru to the
2181   // unpack_with_exception_in_tls entry point.
2182 
2183   __ sd(x13, Address(xthread, JavaThread::exception_pc_offset()));
2184   __ sd(x10, Address(xthread, JavaThread::exception_oop_offset()));
2185 
2186   int exception_in_tls_offset = __ pc() - start;
2187 
2188   // new implementation because exception oop is now passed in JavaThread
2189 
2190   // Prolog for exception case
2191   // All registers must be preserved because they might be used by LinearScan
2192   // Exceptiop oop and throwing PC are passed in JavaThread
2193   // tos: stack at point of call to method that threw the exception (i.e. only
2194   // args are on the stack, no return address)
2195 
2196   // The return address pushed by save_live_registers will be patched
2197   // later with the throwing pc. The correct value is not available
2198   // now because loading it from memory would destroy registers.
2199 
2200   // NB: The SP at this point must be the SP of the method that is
2201   // being deoptimized.  Deoptimization assumes that the frame created
2202   // here by save_live_registers is immediately below the method's SP.
2203   // This is a somewhat fragile mechanism.
2204 
2205   // Save everything in sight.
2206   map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
2207 
2208   // Now it is safe to overwrite any register
2209 
2210   // Deopt during an exception.  Save exec mode for unpack_frames.
2211   __ mv(xcpool, Deoptimization::Unpack_exception); // callee-saved
2212 
2213   // load throwing pc from JavaThread and patch it as the return address
2214   // of the current frame. Then clear the field in JavaThread
2215 
2216   __ ld(x13, Address(xthread, JavaThread::exception_pc_offset()));
2217   __ sd(x13, Address(fp, frame::return_addr_offset * wordSize));
2218   __ sd(zr, Address(xthread, JavaThread::exception_pc_offset()));
2219 
2220 #ifdef ASSERT
2221   // verify that there is really an exception oop in JavaThread
2222   __ ld(x10, Address(xthread, JavaThread::exception_oop_offset()));
2223   __ verify_oop(x10);
2224 
2225   // verify that there is no pending exception
2226   Label no_pending_exception;
2227   __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
2228   __ beqz(t0, no_pending_exception);
2229   __ stop("must not have pending exception here");
2230   __ bind(no_pending_exception);
2231 #endif
2232 
2233   __ bind(cont);
2234 
2235   // Call C code.  Need thread and this frame, but NOT official VM entry
2236   // crud.  We cannot block on this call, no GC can happen.
2237   //
2238   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2239 
2240   // fetch_unroll_info needs to call last_java_frame().
2241 
2242   Label retaddr;
2243   __ set_last_Java_frame(sp, noreg, retaddr, t0);
2244 #ifdef ASSERT
2245   {
2246     Label L;
2247     __ ld(t0, Address(xthread,
2248                               JavaThread::last_Java_fp_offset()));
2249     __ beqz(t0, L);
2250     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2251     __ bind(L);
2252   }
2253 #endif // ASSERT
2254   __ mv(c_rarg0, xthread);
2255   __ mv(c_rarg1, xcpool);
2256   __ rt_call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info));
2257   __ bind(retaddr);
2258 
2259   // Need to have an oopmap that tells fetch_unroll_info where to
2260   // find any register it might need.
2261   oop_maps->add_gc_map(__ pc() - start, map);
2262 
2263   __ reset_last_Java_frame(false);
2264 
2265 #if INCLUDE_JVMCI
2266   if (EnableJVMCI) {
2267     __ bind(after_fetch_unroll_info_call);
2268   }
2269 #endif
2270 
2271   // Load UnrollBlock* into x15
2272   __ mv(x15, x10);
2273 
2274   __ lwu(xcpool, Address(x15, Deoptimization::UnrollBlock::unpack_kind_offset()));
2275   Label noException;
2276   __ mv(t0, Deoptimization::Unpack_exception);
2277   __ bne(xcpool, t0, noException); // Was exception pending?
2278   __ ld(x10, Address(xthread, JavaThread::exception_oop_offset()));
2279   __ ld(x13, Address(xthread, JavaThread::exception_pc_offset()));
2280   __ sd(zr, Address(xthread, JavaThread::exception_oop_offset()));
2281   __ sd(zr, Address(xthread, JavaThread::exception_pc_offset()));
2282 
2283   __ verify_oop(x10);
2284 
2285   // Overwrite the result registers with the exception results.
2286   __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10)));
2287 
2288   __ bind(noException);
2289 
2290   // Only register save data is on the stack.
2291   // Now restore the result registers.  Everything else is either dead
2292   // or captured in the vframeArray.
2293 
2294   // Restore fp result register
2295   __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10)));
2296   // Restore integer result register
2297   __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10)));
2298 
2299   // Pop all of the register save area off the stack
2300   __ add(sp, sp, frame_size_in_words * wordSize);
2301 
2302   // All of the register save area has been popped of the stack. Only the
2303   // return address remains.
2304 
2305   // Pop all the frames we must move/replace.
2306   //
2307   // Frame picture (youngest to oldest)
2308   // 1: self-frame (no frame link)
2309   // 2: deopting frame  (no frame link)
2310   // 3: caller of deopting frame (could be compiled/interpreted).
2311   //
2312   // Note: by leaving the return address of self-frame on the stack
2313   // and using the size of frame 2 to adjust the stack
2314   // when we are done the return to frame 3 will still be on the stack.
2315 
2316   // Pop deoptimized frame
2317   __ lwu(x12, Address(x15, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2318   __ sub(x12, x12, 2 * wordSize);
2319   __ add(sp, sp, x12);
2320   __ ld(fp, Address(sp, 0));
2321   __ ld(ra, Address(sp, wordSize));
2322   __ addi(sp, sp, 2 * wordSize);
2323   // RA should now be the return address to the caller (3)
2324 
2325 #ifdef ASSERT
2326   // Compilers generate code that bang the stack by as much as the
2327   // interpreter would need. So this stack banging should never
2328   // trigger a fault. Verify that it does not on non product builds.
2329   __ lwu(x9, Address(x15, Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2330   __ bang_stack_size(x9, x12);
2331 #endif
2332   // Load address of array of frame pcs into x12
2333   __ ld(x12, Address(x15, Deoptimization::UnrollBlock::frame_pcs_offset()));
2334 
2335   // Load address of array of frame sizes into x14
2336   __ ld(x14, Address(x15, Deoptimization::UnrollBlock::frame_sizes_offset()));
2337 
2338   // Load counter into x13
2339   __ lwu(x13, Address(x15, Deoptimization::UnrollBlock::number_of_frames_offset()));
2340 
2341   // Now adjust the caller's stack to make up for the extra locals
2342   // but record the original sp so that we can save it in the skeletal interpreter
2343   // frame and the stack walking of interpreter_sender will get the unextended sp
2344   // value and not the "real" sp value.
2345 
2346   const Register sender_sp = x16;
2347 
2348   __ mv(sender_sp, sp);
2349   __ lwu(x9, Address(x15,
2350                      Deoptimization::UnrollBlock::
2351                      caller_adjustment_offset()));
2352   __ sub(sp, sp, x9);
2353 
2354   // Push interpreter frames in a loop
2355   __ mv(t0, 0xDEADDEAD);               // Make a recognizable pattern
2356   __ mv(t1, t0);
2357   Label loop;
2358   __ bind(loop);
2359   __ ld(x9, Address(x14, 0));          // Load frame size
2360   __ addi(x14, x14, wordSize);
2361   __ sub(x9, x9, 2 * wordSize);        // We'll push pc and fp by hand
2362   __ ld(ra, Address(x12, 0));          // Load pc
2363   __ addi(x12, x12, wordSize);
2364   __ enter();                          // Save old & set new fp
2365   __ sub(sp, sp, x9);                  // Prolog
2366   // This value is corrected by layout_activation_impl
2367   __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
2368   __ sd(sender_sp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2369   __ mv(sender_sp, sp);                // Pass sender_sp to next frame
2370   __ addi(x13, x13, -1);               // Decrement counter
2371   __ bnez(x13, loop);
2372 
2373     // Re-push self-frame
2374   __ ld(ra, Address(x12));
2375   __ enter();
2376 
2377   // Allocate a full sized register save area.  We subtract 2 because
2378   // enter() just pushed 2 words
2379   __ sub(sp, sp, (frame_size_in_words - 2) * wordSize);
2380 
2381   // Restore frame locals after moving the frame
2382   __ fsd(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10)));
2383   __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10)));
2384 
2385   // Call C code.  Need thread but NOT official VM entry
2386   // crud.  We cannot block on this call, no GC can happen.  Call should
2387   // restore return values to their stack-slots with the new SP.
2388   //
2389   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2390 
2391   // Use fp because the frames look interpreted now
2392   // Don't need the precise return PC here, just precise enough to point into this code blob.
2393   address the_pc = __ pc();
2394   __ set_last_Java_frame(sp, fp, the_pc, t0);
2395 
2396   __ mv(c_rarg0, xthread);
2397   __ mv(c_rarg1, xcpool); // second arg: exec_mode
2398   __ rt_call(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames));
2399 
2400   // Set an oopmap for the call site
2401   // Use the same PC we used for the last java frame
2402   oop_maps->add_gc_map(the_pc - start,
2403                        new OopMap(frame_size_in_words, 0));
2404 
2405   // Clear fp AND pc
2406   __ reset_last_Java_frame(true);
2407 
2408   // Collect return values
2409   __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10)));
2410   __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10)));
2411 
2412   // Pop self-frame.
2413   __ leave();                           // Epilog
2414 
2415   // Jump to interpreter
2416   __ ret();
2417 
2418   // Make sure all code is generated
2419   masm->flush();
2420 
2421   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2422   assert(_deopt_blob != nullptr, "create deoptimization blob fail!");
2423   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2424 #if INCLUDE_JVMCI
2425   if (EnableJVMCI) {
2426     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
2427     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
2428   }
2429 #endif
2430 }
2431 
2432 // Number of stack slots between incoming argument block and the start of
2433 // a new frame. The PROLOG must add this many slots to the stack. The
2434 // EPILOG must remove this many slots.
2435 // RISCV needs two words for RA (return address) and FP (frame pointer).
2436 uint SharedRuntime::in_preserve_stack_slots() {
2437   return 2 * VMRegImpl::slots_per_word;
2438 }
2439 
2440 uint SharedRuntime::out_preserve_stack_slots() {
2441   return 0;
2442 }
2443 
2444 //------------------------------generate_handler_blob------
2445 //
2446 // Generate a special Compile2Runtime blob that saves all registers,
2447 // and setup oopmap.
2448 //
2449 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) {
2450   assert(is_polling_page_id(id), "expected a polling page stub id");
2451 
2452   ResourceMark rm;
2453   OopMapSet *oop_maps = new OopMapSet();
2454   assert_cond(oop_maps != nullptr);
2455   OopMap* map = nullptr;
2456 
2457   // Allocate space for the code.  Setup code generation tools.
2458   const char* name = SharedRuntime::stub_name(id);
2459   CodeBuffer buffer(name, 2048, 1024);
2460   MacroAssembler* masm = new MacroAssembler(&buffer);
2461   assert_cond(masm != nullptr);
2462 
2463   address start   = __ pc();
2464   address call_pc = nullptr;
2465   int frame_size_in_words = -1;
2466   bool cause_return = (id == SharedStubId::polling_page_return_handler_id);
2467   RegisterSaver reg_saver(id == SharedStubId::polling_page_vectors_safepoint_handler_id /* save_vectors */);
2468 
2469   // Save Integer and Float registers.
2470   map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
2471 
2472   // The following is basically a call_VM.  However, we need the precise
2473   // address of the call in order to generate an oopmap. Hence, we do all the
2474   // work ourselves.
2475 
2476   Label retaddr;
2477   __ set_last_Java_frame(sp, noreg, retaddr, t0);
2478 
2479   // The return address must always be correct so that frame constructor never
2480   // sees an invalid pc.
2481 
2482   if (!cause_return) {
2483     // overwrite the return address pushed by save_live_registers
2484     // Additionally, x18 is a callee-saved register so we can look at
2485     // it later to determine if someone changed the return address for
2486     // us!
2487     __ ld(x18, Address(xthread, JavaThread::saved_exception_pc_offset()));
2488     __ sd(x18, Address(fp, frame::return_addr_offset * wordSize));
2489   }
2490 
2491   // Do the call
2492   __ mv(c_rarg0, xthread);
2493   __ rt_call(call_ptr);
2494   __ bind(retaddr);
2495 
2496   // Set an oopmap for the call site.  This oopmap will map all
2497   // oop-registers and debug-info registers as callee-saved.  This
2498   // will allow deoptimization at this safepoint to find all possible
2499   // debug-info recordings, as well as let GC find all oops.
2500 
2501   oop_maps->add_gc_map( __ pc() - start, map);
2502 
2503   Label noException;
2504 
2505   __ reset_last_Java_frame(false);
2506 
2507   __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2508 
2509   __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
2510   __ beqz(t0, noException);
2511 
2512   // Exception pending
2513 
2514   reg_saver.restore_live_registers(masm);
2515 
2516   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2517 
2518   // No exception case
2519   __ bind(noException);
2520 
2521   Label no_adjust, bail;
2522   if (!cause_return) {
2523     // If our stashed return pc was modified by the runtime we avoid touching it
2524     __ ld(t0, Address(fp, frame::return_addr_offset * wordSize));
2525     __ bne(x18, t0, no_adjust);
2526 
2527 #ifdef ASSERT
2528     // Verify the correct encoding of the poll we're about to skip.
2529     // See NativeInstruction::is_lwu_to_zr()
2530     __ lwu(t0, Address(x18));
2531     __ andi(t1, t0, 0b0000011);
2532     __ mv(t2, 0b0000011);
2533     __ bne(t1, t2, bail); // 0-6:0b0000011
2534     __ srli(t1, t0, 7);
2535     __ andi(t1, t1, 0b00000);
2536     __ bnez(t1, bail);    // 7-11:0b00000
2537     __ srli(t1, t0, 12);
2538     __ andi(t1, t1, 0b110);
2539     __ mv(t2, 0b110);
2540     __ bne(t1, t2, bail); // 12-14:0b110
2541 #endif
2542     // Adjust return pc forward to step over the safepoint poll instruction
2543     __ add(x18, x18, NativeInstruction::instruction_size);
2544     __ sd(x18, Address(fp, frame::return_addr_offset * wordSize));
2545   }
2546 
2547   __ bind(no_adjust);
2548   // Normal exit, restore registers and exit.
2549 
2550   reg_saver.restore_live_registers(masm);
2551   __ ret();
2552 
2553 #ifdef ASSERT
2554   __ bind(bail);
2555   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2556 #endif
2557 
2558   // Make sure all code is generated
2559   masm->flush();
2560 
2561   // Fill-out other meta info
2562   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2563 }
2564 
2565 //
2566 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2567 //
2568 // Generate a stub that calls into vm to find out the proper destination
2569 // of a java call. All the argument registers are live at this point
2570 // but since this is generic code we don't know what they are and the caller
2571 // must do any gc of the args.
2572 //
2573 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) {
2574   assert(StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2575   assert(is_resolve_id(id), "expected a resolve stub id");
2576 
2577   // allocate space for the code
2578   ResourceMark rm;
2579 
2580   const char* name = SharedRuntime::stub_name(id);
2581   CodeBuffer buffer(name, 1000, 512);
2582   MacroAssembler* masm = new MacroAssembler(&buffer);
2583   assert_cond(masm != nullptr);
2584 
2585   int frame_size_in_words = -1;
2586   RegisterSaver reg_saver(false /* save_vectors */);
2587 
2588   OopMapSet *oop_maps = new OopMapSet();
2589   assert_cond(oop_maps != nullptr);
2590   OopMap* map = nullptr;
2591 
2592   int start = __ offset();
2593 
2594   map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
2595 
2596   int frame_complete = __ offset();
2597 
2598   {
2599     Label retaddr;
2600     __ set_last_Java_frame(sp, noreg, retaddr, t0);
2601 
2602     __ mv(c_rarg0, xthread);
2603     __ rt_call(destination);
2604     __ bind(retaddr);
2605   }
2606 
2607   // Set an oopmap for the call site.
2608   // We need this not only for callee-saved registers, but also for volatile
2609   // registers that the compiler might be keeping live across a safepoint.
2610 
2611   oop_maps->add_gc_map( __ offset() - start, map);
2612 
2613   // x10 contains the address we are going to jump to assuming no exception got installed
2614 
2615   // clear last_Java_sp
2616   __ reset_last_Java_frame(false);
2617   // check for pending exceptions
2618   Label pending;
2619   __ ld(t1, Address(xthread, Thread::pending_exception_offset()));
2620   __ bnez(t1, pending);
2621 
2622   // get the returned Method*
2623   __ get_vm_result_2(xmethod, xthread);
2624   __ sd(xmethod, Address(sp, reg_saver.reg_offset_in_bytes(xmethod)));
2625 
2626   // x10 is where we want to jump, overwrite t1 which is saved and temporary
2627   __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(t1)));
2628   reg_saver.restore_live_registers(masm);
2629 
2630   // We are back to the original state on entry and ready to go.
2631   __ jr(t1);
2632 
2633   // Pending exception after the safepoint
2634 
2635   __ bind(pending);
2636 
2637   reg_saver.restore_live_registers(masm);
2638 
2639   // exception pending => remove activation and forward to exception handler
2640 
2641   __ sd(zr, Address(xthread, JavaThread::vm_result_offset()));
2642 
2643   __ ld(x10, Address(xthread, Thread::pending_exception_offset()));
2644   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2645 
2646   // -------------
2647   // make sure all code is generated
2648   masm->flush();
2649 
2650   // return the  blob
2651   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
2652 }
2653 
2654 // Continuation point for throwing of implicit exceptions that are
2655 // not handled in the current activation. Fabricates an exception
2656 // oop and initiates normal exception dispatching in this
2657 // frame. Since we need to preserve callee-saved values (currently
2658 // only for C2, but done for C1 as well) we need a callee-saved oop
2659 // map and therefore have to make these stubs into RuntimeStubs
2660 // rather than BufferBlobs.  If the compiler needs all registers to
2661 // be preserved between the fault point and the exception handler
2662 // then it must assume responsibility for that in
2663 // AbstractCompiler::continuation_for_implicit_null_exception or
2664 // continuation_for_implicit_division_by_zero_exception. All other
2665 // implicit exceptions (e.g., NullPointerException or
2666 // AbstractMethodError on entry) are either at call sites or
2667 // otherwise assume that stack unwinding will be initiated, so
2668 // caller saved registers were assumed volatile in the compiler.
2669 
2670 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) {
2671   assert(is_throw_id(id), "expected a throw stub id");
2672 
2673   const char* name = SharedRuntime::stub_name(id);
2674 
2675   // Information about frame layout at time of blocking runtime call.
2676   // Note that we only have to preserve callee-saved registers since
2677   // the compilers are responsible for supplying a continuation point
2678   // if they expect all registers to be preserved.
2679   // n.b. riscv asserts that frame::arg_reg_save_area_bytes == 0
2680   assert_cond(runtime_entry != nullptr);
2681   enum layout {
2682     fp_off = 0,
2683     fp_off2,
2684     return_off,
2685     return_off2,
2686     framesize // inclusive of return address
2687   };
2688 
2689   const int insts_size = 1024;
2690   const int locs_size  = 64;
2691 
2692   ResourceMark rm;
2693   const char* timer_msg = "SharedRuntime generate_throw_exception";
2694   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
2695 
2696   CodeBuffer code(name, insts_size, locs_size);
2697   OopMapSet* oop_maps  = new OopMapSet();
2698   MacroAssembler* masm = new MacroAssembler(&code);
2699   assert_cond(oop_maps != nullptr && masm != nullptr);
2700 
2701   address start = __ pc();
2702 
2703   // This is an inlined and slightly modified version of call_VM
2704   // which has the ability to fetch the return PC out of
2705   // thread-local storage and also sets up last_Java_sp slightly
2706   // differently than the real call_VM
2707 
2708   __ enter(); // Save FP and RA before call
2709 
2710   assert(is_even(framesize / 2), "sp not 16-byte aligned");
2711 
2712   // ra and fp are already in place
2713   __ addi(sp, fp, 0 - ((unsigned)framesize << LogBytesPerInt)); // prolog
2714 
2715   int frame_complete = __ pc() - start;
2716 
2717   // Set up last_Java_sp and last_Java_fp
2718   address the_pc = __ pc();
2719   __ set_last_Java_frame(sp, fp, the_pc, t0);
2720 
2721   // Call runtime
2722   __ mv(c_rarg0, xthread);
2723   BLOCK_COMMENT("call runtime_entry");
2724   __ rt_call(runtime_entry);
2725 
2726   // Generate oop map
2727   OopMap* map = new OopMap(framesize, 0);
2728   assert_cond(map != nullptr);
2729 
2730   oop_maps->add_gc_map(the_pc - start, map);
2731 
2732   __ reset_last_Java_frame(true);
2733 
2734   __ leave();
2735 
2736   // check for pending exceptions
2737 #ifdef ASSERT
2738   Label L;
2739   __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
2740   __ bnez(t0, L);
2741   __ should_not_reach_here();
2742   __ bind(L);
2743 #endif // ASSERT
2744   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2745 
2746   // codeBlob framesize is in words (not VMRegImpl::slot_size)
2747   RuntimeStub* stub =
2748     RuntimeStub::new_runtime_stub(name,
2749                                   &code,
2750                                   frame_complete,
2751                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2752                                   oop_maps, false);
2753   assert(stub != nullptr, "create runtime stub fail!");
2754   return stub;
2755 }
2756 
2757 #if INCLUDE_JFR
2758 
2759 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) {
2760   __ set_last_Java_frame(sp, fp, the_pc, t0);
2761   __ mv(c_rarg0, thread);
2762 }
2763 
2764 static void jfr_epilogue(MacroAssembler* masm) {
2765   __ reset_last_Java_frame(true);
2766 }
2767 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
2768 // It returns a jobject handle to the event writer.
2769 // The handle is dereferenced and the return value is the event writer oop.
2770 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() {
2771   enum layout {
2772     fp_off,
2773     fp_off2,
2774     return_off,
2775     return_off2,
2776     framesize // inclusive of return address
2777   };
2778 
2779   int insts_size = 1024;
2780   int locs_size = 64;
2781   const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id);
2782   CodeBuffer code(name, insts_size, locs_size);
2783   OopMapSet* oop_maps = new OopMapSet();
2784   MacroAssembler* masm = new MacroAssembler(&code);
2785 
2786   address start = __ pc();
2787   __ enter();
2788   int frame_complete = __ pc() - start;
2789   address the_pc = __ pc();
2790   jfr_prologue(the_pc, masm, xthread);
2791   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1);
2792 
2793   jfr_epilogue(masm);
2794   __ resolve_global_jobject(x10, t0, t1);
2795   __ leave();
2796   __ ret();
2797 
2798   OopMap* map = new OopMap(framesize, 1);
2799   oop_maps->add_gc_map(the_pc - start, map);
2800 
2801   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2802     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2803                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2804                                   oop_maps, false);
2805   return stub;
2806 }
2807 
2808 // For c2: call to return a leased buffer.
2809 RuntimeStub* SharedRuntime::generate_jfr_return_lease() {
2810   enum layout {
2811     fp_off,
2812     fp_off2,
2813     return_off,
2814     return_off2,
2815     framesize // inclusive of return address
2816   };
2817 
2818   int insts_size = 1024;
2819   int locs_size = 64;
2820   const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id);
2821   CodeBuffer code(name, insts_size, locs_size);
2822   OopMapSet* oop_maps = new OopMapSet();
2823   MacroAssembler* masm = new MacroAssembler(&code);
2824 
2825   address start = __ pc();
2826   __ enter();
2827   int frame_complete = __ pc() - start;
2828   address the_pc = __ pc();
2829   jfr_prologue(the_pc, masm, xthread);
2830   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1);
2831 
2832   jfr_epilogue(masm);
2833   __ leave();
2834   __ ret();
2835 
2836   OopMap* map = new OopMap(framesize, 1);
2837   oop_maps->add_gc_map(the_pc - start, map);
2838 
2839   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2840     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2841                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2842                                   oop_maps, false);
2843   return stub;
2844 }
2845 
2846 #endif // INCLUDE_JFR