1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "asm/macroAssembler.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/shared/barrierSetAssembler.hpp"
  34 #include "interpreter/interp_masm.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "logging/log.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "nativeInst_riscv.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "oops/method.inline.hpp"
  41 #include "prims/methodHandles.hpp"
  42 #include "runtime/continuation.hpp"
  43 #include "runtime/continuationEntry.inline.hpp"
  44 #include "runtime/globals.hpp"
  45 #include "runtime/jniHandles.hpp"
  46 #include "runtime/safepointMechanism.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/signature.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/timerTrace.hpp"
  51 #include "runtime/vframeArray.hpp"
  52 #include "utilities/align.hpp"
  53 #include "utilities/formatBuffer.hpp"
  54 #include "vmreg_riscv.inline.hpp"
  55 #ifdef COMPILER1
  56 #include "c1/c1_Runtime1.hpp"
  57 #endif
  58 #ifdef COMPILER2
  59 #include "adfiles/ad_riscv.hpp"
  60 #include "opto/runtime.hpp"
  61 #endif
  62 #if INCLUDE_JVMCI
  63 #include "jvmci/jvmciJavaClasses.hpp"
  64 #endif
  65 
  66 #define __ masm->
  67 
  68 #ifdef PRODUCT
  69 #define BLOCK_COMMENT(str) /* nothing */
  70 #else
  71 #define BLOCK_COMMENT(str) __ block_comment(str)
  72 #endif
  73 
  74 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  75 
  76 class RegisterSaver {
  77   const bool _save_vectors;
  78  public:
  79   RegisterSaver(bool save_vectors) : _save_vectors(UseRVV && save_vectors) {}
  80   ~RegisterSaver() {}
  81   OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
  82   void restore_live_registers(MacroAssembler* masm);
  83 
  84   // Offsets into the register save area
  85   // Used by deoptimization when it is managing result register
  86   // values on its own
  87   // gregs:28, float_register:32; except: x1(ra) & x2(sp) & gp(x3) & tp(x4)
  88   // |---v0---|<---SP
  89   // |---v1---|save vectors only in generate_handler_blob
  90   // |-- .. --|
  91   // |---v31--|-----
  92   // |---f0---|
  93   // |---f1---|
  94   // |   ..   |
  95   // |---f31--|
  96   // |---reserved slot for stack alignment---|
  97   // |---x5---|
  98   // |   x6   |
  99   // |---.. --|
 100   // |---x31--|
 101   // |---fp---|
 102   // |---ra---|
 103   int v0_offset_in_bytes(void) { return 0; }
 104   int f0_offset_in_bytes(void) {
 105     int f0_offset = 0;
 106 #ifdef COMPILER2
 107     if (_save_vectors) {
 108       f0_offset += Matcher::scalable_vector_reg_size(T_INT) * VectorRegister::number_of_registers *
 109                    BytesPerInt;
 110     }
 111 #endif
 112     return f0_offset;
 113   }
 114   int reserved_slot_offset_in_bytes(void) {
 115     return f0_offset_in_bytes() +
 116            FloatRegister::max_slots_per_register *
 117            FloatRegister::number_of_registers *
 118            BytesPerInt;
 119   }
 120 
 121   int reg_offset_in_bytes(Register r) {
 122     assert (r->encoding() > 4, "ra, sp, gp and tp not saved");
 123     return reserved_slot_offset_in_bytes() + (r->encoding() - 4 /* x1, x2, x3, x4 */) * wordSize;
 124   }
 125 
 126   int freg_offset_in_bytes(FloatRegister f) {
 127     return f0_offset_in_bytes() + f->encoding() * wordSize;
 128   }
 129 
 130   int ra_offset_in_bytes(void) {
 131     return reserved_slot_offset_in_bytes() +
 132            (Register::number_of_registers - 3) *
 133            Register::max_slots_per_register *
 134            BytesPerInt;
 135   }
 136 };
 137 
 138 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 139   int vector_size_in_bytes = 0;
 140   int vector_size_in_slots = 0;
 141 #ifdef COMPILER2
 142   if (_save_vectors) {
 143     vector_size_in_bytes += Matcher::scalable_vector_reg_size(T_BYTE);
 144     vector_size_in_slots += Matcher::scalable_vector_reg_size(T_INT);
 145   }
 146 #endif
 147 
 148   int frame_size_in_bytes = align_up(additional_frame_words * wordSize + ra_offset_in_bytes() + wordSize, 16);
 149   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 150   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 151   // The caller will allocate additional_frame_words
 152   int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt;
 153   // CodeBlob frame size is in words.
 154   int frame_size_in_words = frame_size_in_bytes / wordSize;
 155   *total_frame_words = frame_size_in_words;
 156 
 157   // Save Integer, Float and Vector registers.
 158   __ enter();
 159   __ push_CPU_state(_save_vectors, vector_size_in_bytes);
 160 
 161   // Set an oopmap for the call site.  This oopmap will map all
 162   // oop-registers and debug-info registers as callee-saved.  This
 163   // will allow deoptimization at this safepoint to find all possible
 164   // debug-info recordings, as well as let GC find all oops.
 165 
 166   OopMapSet *oop_maps = new OopMapSet();
 167   OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
 168   assert_cond(oop_maps != nullptr && oop_map != nullptr);
 169 
 170   int sp_offset_in_slots = 0;
 171   int step_in_slots = 0;
 172   if (_save_vectors) {
 173     step_in_slots = vector_size_in_slots;
 174     for (int i = 0; i < VectorRegister::number_of_registers; i++, sp_offset_in_slots += step_in_slots) {
 175       VectorRegister r = as_VectorRegister(i);
 176       oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg());
 177     }
 178   }
 179 
 180   step_in_slots = FloatRegister::max_slots_per_register;
 181   for (int i = 0; i < FloatRegister::number_of_registers; i++, sp_offset_in_slots += step_in_slots) {
 182     FloatRegister r = as_FloatRegister(i);
 183     oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg());
 184   }
 185 
 186   step_in_slots = Register::max_slots_per_register;
 187   // skip the slot reserved for alignment, see MacroAssembler::push_reg;
 188   // also skip x5 ~ x6 on the stack because they are caller-saved registers.
 189   sp_offset_in_slots += Register::max_slots_per_register * 3;
 190   // besides, we ignore x0 ~ x4 because push_CPU_state won't push them on the stack.
 191   for (int i = 7; i < Register::number_of_registers; i++, sp_offset_in_slots += step_in_slots) {
 192     Register r = as_Register(i);
 193     if (r != xthread) {
 194       oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots + additional_frame_slots), r->as_VMReg());
 195     }
 196   }
 197 
 198   return oop_map;
 199 }
 200 
 201 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 202 #ifdef COMPILER2
 203   __ pop_CPU_state(_save_vectors, Matcher::scalable_vector_reg_size(T_BYTE));
 204 #else
 205 #if !INCLUDE_JVMCI
 206   assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
 207 #endif
 208   __ pop_CPU_state(_save_vectors);
 209 #endif
 210   __ leave();
 211 }
 212 
 213 // Is vector's size (in bytes) bigger than a size saved by default?
 214 // riscv does not ovlerlay the floating-point registers on vector registers like aarch64.
 215 bool SharedRuntime::is_wide_vector(int size) {
 216   return UseRVV;
 217 }
 218 
 219 // ---------------------------------------------------------------------------
 220 // Read the array of BasicTypes from a signature, and compute where the
 221 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 222 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 223 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 224 // as framesizes are fixed.
 225 // VMRegImpl::stack0 refers to the first slot 0(sp).
 226 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 227 // Register up to Register::number_of_registers) are the 64-bit
 228 // integer registers.
 229 
 230 // Note: the INPUTS in sig_bt are in units of Java argument words,
 231 // which are 64-bit.  The OUTPUTS are in 32-bit units.
 232 
 233 // The Java calling convention is a "shifted" version of the C ABI.
 234 // By skipping the first C ABI register we can call non-static jni
 235 // methods with small numbers of arguments without having to shuffle
 236 // the arguments at all. Since we control the java ABI we ought to at
 237 // least get some advantage out of it.
 238 
 239 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 240                                            VMRegPair *regs,
 241                                            int total_args_passed) {
 242   // Create the mapping between argument positions and
 243   // registers.
 244   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 245     j_rarg0, j_rarg1, j_rarg2, j_rarg3,
 246     j_rarg4, j_rarg5, j_rarg6, j_rarg7
 247   };
 248   static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 249     j_farg0, j_farg1, j_farg2, j_farg3,
 250     j_farg4, j_farg5, j_farg6, j_farg7
 251   };
 252 
 253   uint int_args = 0;
 254   uint fp_args = 0;
 255   uint stk_args = 0;
 256 
 257   for (int i = 0; i < total_args_passed; i++) {
 258     switch (sig_bt[i]) {
 259       case T_BOOLEAN: // fall through
 260       case T_CHAR:    // fall through
 261       case T_BYTE:    // fall through
 262       case T_SHORT:   // fall through
 263       case T_INT:
 264         if (int_args < Argument::n_int_register_parameters_j) {
 265           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 266         } else {
 267           stk_args = align_up(stk_args, 2);
 268           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 269           stk_args += 1;
 270         }
 271         break;
 272       case T_VOID:
 273         // halves of T_LONG or T_DOUBLE
 274         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 275         regs[i].set_bad();
 276         break;
 277       case T_LONG:      // fall through
 278         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 279       case T_OBJECT:    // fall through
 280       case T_ARRAY:     // fall through
 281       case T_ADDRESS:
 282         if (int_args < Argument::n_int_register_parameters_j) {
 283           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 284         } else {
 285           stk_args = align_up(stk_args, 2);
 286           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 287           stk_args += 2;
 288         }
 289         break;
 290       case T_FLOAT:
 291         if (fp_args < Argument::n_float_register_parameters_j) {
 292           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 293         } else {
 294           stk_args = align_up(stk_args, 2);
 295           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 296           stk_args += 1;
 297         }
 298         break;
 299       case T_DOUBLE:
 300         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 301         if (fp_args < Argument::n_float_register_parameters_j) {
 302           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 303         } else {
 304           stk_args = align_up(stk_args, 2);
 305           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 306           stk_args += 2;
 307         }
 308         break;
 309       default:
 310         ShouldNotReachHere();
 311     }
 312   }
 313 
 314   return stk_args;
 315 }
 316 
 317 // Patch the callers callsite with entry to compiled code if it exists.
 318 static void patch_callers_callsite(MacroAssembler *masm) {
 319   Label L;
 320   __ ld(t0, Address(xmethod, in_bytes(Method::code_offset())));
 321   __ beqz(t0, L);
 322 
 323   __ enter();
 324   __ push_CPU_state();
 325 
 326   // VM needs caller's callsite
 327   // VM needs target method
 328   // This needs to be a long call since we will relocate this adapter to
 329   // the codeBuffer and it may not reach
 330 
 331 #ifndef PRODUCT
 332   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
 333 #endif
 334 
 335   __ mv(c_rarg0, xmethod);
 336   __ mv(c_rarg1, ra);
 337   __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
 338 
 339   __ pop_CPU_state();
 340   // restore sp
 341   __ leave();
 342   __ bind(L);
 343 }
 344 
 345 static void gen_c2i_adapter(MacroAssembler *masm,
 346                             int total_args_passed,
 347                             int comp_args_on_stack,
 348                             const BasicType *sig_bt,
 349                             const VMRegPair *regs,
 350                             Label& skip_fixup) {
 351   // Before we get into the guts of the C2I adapter, see if we should be here
 352   // at all.  We've come from compiled code and are attempting to jump to the
 353   // interpreter, which means the caller made a static call to get here
 354   // (vcalls always get a compiled target if there is one).  Check for a
 355   // compiled target.  If there is one, we need to patch the caller's call.
 356   patch_callers_callsite(masm);
 357 
 358   __ bind(skip_fixup);
 359 
 360   int words_pushed = 0;
 361 
 362   // Since all args are passed on the stack, total_args_passed *
 363   // Interpreter::stackElementSize is the space we need.
 364 
 365   int extraspace = total_args_passed * Interpreter::stackElementSize;
 366 
 367   __ mv(x19_sender_sp, sp);
 368 
 369   // stack is aligned, keep it that way
 370   extraspace = align_up(extraspace, 2 * wordSize);
 371 
 372   if (extraspace) {
 373     __ sub(sp, sp, extraspace);
 374   }
 375 
 376   // Now write the args into the outgoing interpreter space
 377   for (int i = 0; i < total_args_passed; i++) {
 378     if (sig_bt[i] == T_VOID) {
 379       assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half");
 380       continue;
 381     }
 382 
 383     // offset to start parameters
 384     int st_off   = (total_args_passed - i - 1) * Interpreter::stackElementSize;
 385     int next_off = st_off - Interpreter::stackElementSize;
 386 
 387     // Say 4 args:
 388     // i   st_off
 389     // 0   32 T_LONG
 390     // 1   24 T_VOID
 391     // 2   16 T_OBJECT
 392     // 3    8 T_BOOL
 393     // -    0 return address
 394     //
 395     // However to make thing extra confusing. Because we can fit a Java long/double in
 396     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 397     // leaves one slot empty and only stores to a single slot. In this case the
 398     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 399 
 400     VMReg r_1 = regs[i].first();
 401     VMReg r_2 = regs[i].second();
 402     if (!r_1->is_valid()) {
 403       assert(!r_2->is_valid(), "");
 404       continue;
 405     }
 406     if (r_1->is_stack()) {
 407       // memory to memory use t0
 408       int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size
 409                     + extraspace
 410                     + words_pushed * wordSize);
 411       if (!r_2->is_valid()) {
 412         __ lwu(t0, Address(sp, ld_off));
 413         __ sd(t0, Address(sp, st_off), /*temp register*/esp);
 414       } else {
 415         __ ld(t0, Address(sp, ld_off), /*temp register*/esp);
 416 
 417         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 418         // T_DOUBLE and T_LONG use two slots in the interpreter
 419         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 420           // ld_off == LSW, ld_off+wordSize == MSW
 421           // st_off == MSW, next_off == LSW
 422           __ sd(t0, Address(sp, next_off), /*temp register*/esp);
 423 #ifdef ASSERT
 424           // Overwrite the unused slot with known junk
 425           __ mv(t0, 0xdeadffffdeadaaaaul);
 426           __ sd(t0, Address(sp, st_off), /*temp register*/esp);
 427 #endif /* ASSERT */
 428         } else {
 429           __ sd(t0, Address(sp, st_off), /*temp register*/esp);
 430         }
 431       }
 432     } else if (r_1->is_Register()) {
 433       Register r = r_1->as_Register();
 434       if (!r_2->is_valid()) {
 435         // must be only an int (or less ) so move only 32bits to slot
 436         __ sd(r, Address(sp, st_off));
 437       } else {
 438         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 439         // T_DOUBLE and T_LONG use two slots in the interpreter
 440         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 441           // long/double in gpr
 442 #ifdef ASSERT
 443           // Overwrite the unused slot with known junk
 444           __ mv(t0, 0xdeadffffdeadaaabul);
 445           __ sd(t0, Address(sp, st_off), /*temp register*/esp);
 446 #endif /* ASSERT */
 447           __ sd(r, Address(sp, next_off));
 448         } else {
 449           __ sd(r, Address(sp, st_off));
 450         }
 451       }
 452     } else {
 453       assert(r_1->is_FloatRegister(), "");
 454       if (!r_2->is_valid()) {
 455         // only a float use just part of the slot
 456         __ fsw(r_1->as_FloatRegister(), Address(sp, st_off));
 457       } else {
 458 #ifdef ASSERT
 459         // Overwrite the unused slot with known junk
 460         __ mv(t0, 0xdeadffffdeadaaacul);
 461         __ sd(t0, Address(sp, st_off), /*temp register*/esp);
 462 #endif /* ASSERT */
 463         __ fsd(r_1->as_FloatRegister(), Address(sp, next_off));
 464       }
 465     }
 466   }
 467 
 468   __ mv(esp, sp); // Interp expects args on caller's expression stack
 469 
 470   __ ld(t1, Address(xmethod, in_bytes(Method::interpreter_entry_offset())));
 471   __ jr(t1);
 472 }
 473 
 474 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 475                                     int total_args_passed,
 476                                     int comp_args_on_stack,
 477                                     const BasicType *sig_bt,
 478                                     const VMRegPair *regs) {
 479   // Note: x19_sender_sp contains the senderSP on entry. We must
 480   // preserve it since we may do a i2c -> c2i transition if we lose a
 481   // race where compiled code goes non-entrant while we get args
 482   // ready.
 483 
 484   // Cut-out for having no stack args.
 485   int comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord;
 486   if (comp_args_on_stack != 0) {
 487     __ sub(t0, sp, comp_words_on_stack * wordSize);
 488     __ andi(sp, t0, -16);
 489   }
 490 
 491   // Will jump to the compiled code just as if compiled code was doing it.
 492   // Pre-load the register-jump target early, to schedule it better.
 493   __ ld(t1, Address(xmethod, in_bytes(Method::from_compiled_offset())));
 494 
 495 #if INCLUDE_JVMCI
 496   if (EnableJVMCI) {
 497     // check if this call should be routed towards a specific entry point
 498     __ ld(t0, Address(xthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 499     Label no_alternative_target;
 500     __ beqz(t0, no_alternative_target);
 501     __ mv(t1, t0);
 502     __ sd(zr, Address(xthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 503     __ bind(no_alternative_target);
 504   }
 505 #endif // INCLUDE_JVMCI
 506 
 507   // Now generate the shuffle code.
 508   for (int i = 0; i < total_args_passed; i++) {
 509     if (sig_bt[i] == T_VOID) {
 510       assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half");
 511       continue;
 512     }
 513 
 514     // Pick up 0, 1 or 2 words from SP+offset.
 515 
 516     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 517            "scrambled load targets?");
 518     // Load in argument order going down.
 519     int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize;
 520     // Point to interpreter value (vs. tag)
 521     int next_off = ld_off - Interpreter::stackElementSize;
 522 
 523     VMReg r_1 = regs[i].first();
 524     VMReg r_2 = regs[i].second();
 525     if (!r_1->is_valid()) {
 526       assert(!r_2->is_valid(), "");
 527       continue;
 528     }
 529     if (r_1->is_stack()) {
 530       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 531       int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size;
 532       if (!r_2->is_valid()) {
 533         __ lw(t0, Address(esp, ld_off));
 534         __ sd(t0, Address(sp, st_off), /*temp register*/t2);
 535       } else {
 536         //
 537         // We are using two optoregs. This can be either T_OBJECT,
 538         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
 539         // two slots but only uses one for thr T_LONG or T_DOUBLE case
 540         // So we must adjust where to pick up the data to match the
 541         // interpreter.
 542         //
 543         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 544         // are accessed as negative so LSW is at LOW address
 545 
 546         // ld_off is MSW so get LSW
 547         const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
 548                            next_off : ld_off;
 549         __ ld(t0, Address(esp, offset));
 550         // st_off is LSW (i.e. reg.first())
 551         __ sd(t0, Address(sp, st_off), /*temp register*/t2);
 552       }
 553     } else if (r_1->is_Register()) {  // Register argument
 554       Register r = r_1->as_Register();
 555       if (r_2->is_valid()) {
 556         //
 557         // We are using two VMRegs. This can be either T_OBJECT,
 558         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
 559         // two slots but only uses one for thr T_LONG or T_DOUBLE case
 560         // So we must adjust where to pick up the data to match the
 561         // interpreter.
 562 
 563         const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
 564                            next_off : ld_off;
 565 
 566         // this can be a misaligned move
 567         __ ld(r, Address(esp, offset));
 568       } else {
 569         // sign extend and use a full word?
 570         __ lw(r, Address(esp, ld_off));
 571       }
 572     } else {
 573       if (!r_2->is_valid()) {
 574         __ flw(r_1->as_FloatRegister(), Address(esp, ld_off));
 575       } else {
 576         __ fld(r_1->as_FloatRegister(), Address(esp, next_off));
 577       }
 578     }
 579   }
 580 
 581   __ push_cont_fastpath(xthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about
 582 
 583   // 6243940 We might end up in handle_wrong_method if
 584   // the callee is deoptimized as we race thru here. If that
 585   // happens we don't want to take a safepoint because the
 586   // caller frame will look interpreted and arguments are now
 587   // "compiled" so it is much better to make this transition
 588   // invisible to the stack walking code. Unfortunately if
 589   // we try and find the callee by normal means a safepoint
 590   // is possible. So we stash the desired callee in the thread
 591   // and the vm will find there should this case occur.
 592 
 593   __ sd(xmethod, Address(xthread, JavaThread::callee_target_offset()));
 594 
 595   __ jr(t1);
 596 }
 597 
 598 // ---------------------------------------------------------------
 599 
 600 void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 601                                             int total_args_passed,
 602                                             int comp_args_on_stack,
 603                                             const BasicType *sig_bt,
 604                                             const VMRegPair *regs,
 605                                             address entry_address[AdapterBlob::ENTRY_COUNT]) {
 606   entry_address[AdapterBlob::I2C] = __ pc();
 607   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 608 
 609   entry_address[AdapterBlob::C2I_Unverified] = __ pc();
 610   Label skip_fixup;
 611 
 612   const Register receiver = j_rarg0;
 613   const Register data = t0;
 614 
 615   // -------------------------------------------------------------------------
 616   // Generate a C2I adapter.  On entry we know xmethod holds the Method* during calls
 617   // to the interpreter.  The args start out packed in the compiled layout.  They
 618   // need to be unpacked into the interpreter layout.  This will almost always
 619   // require some stack space.  We grow the current (compiled) stack, then repack
 620   // the args.  We  finally end in a jump to the generic interpreter entry point.
 621   // On exit from the interpreter, the interpreter will restore our SP (lest the
 622   // compiled code, which relies solely on SP and not FP, get sick).
 623 
 624   {
 625     __ block_comment("c2i_unverified_entry {");
 626 
 627     __ ic_check();
 628     __ ld(xmethod, Address(data, CompiledICData::speculated_method_offset()));
 629 
 630     __ ld(t0, Address(xmethod, in_bytes(Method::code_offset())));
 631     __ beqz(t0, skip_fixup);
 632     __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 633     __ block_comment("} c2i_unverified_entry");
 634   }
 635 
 636   entry_address[AdapterBlob::C2I] = __ pc();
 637 
 638   // Class initialization barrier for static methods
 639   entry_address[AdapterBlob::C2I_No_Clinit_Check] = nullptr;
 640   if (VM_Version::supports_fast_class_init_checks()) {
 641     Label L_skip_barrier;
 642 
 643     { // Bypass the barrier for non-static methods
 644       __ load_unsigned_short(t0, Address(xmethod, Method::access_flags_offset()));
 645       __ test_bit(t1, t0, exact_log2(JVM_ACC_STATIC));
 646       __ beqz(t1, L_skip_barrier); // non-static
 647     }
 648 
 649     __ load_method_holder(t1, xmethod);
 650     __ clinit_barrier(t1, t0, &L_skip_barrier);
 651     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 652 
 653     __ bind(L_skip_barrier);
 654     entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();
 655   }
 656 
 657   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 658   bs->c2i_entry_barrier(masm);
 659 
 660   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 661   return;
 662 }
 663 
 664 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
 665                                              uint num_bits,
 666                                              uint total_args_passed) {
 667   assert(total_args_passed <= Argument::n_vector_register_parameters_c, "unsupported");
 668   assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported");
 669 
 670   // check more info at https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc
 671   static const VectorRegister VEC_ArgReg[Argument::n_vector_register_parameters_c] = {
 672     v8, v9, v10, v11, v12, v13, v14, v15,
 673     v16, v17, v18, v19, v20, v21, v22, v23
 674   };
 675 
 676   const int next_reg_val = 3;
 677   for (uint i = 0; i < total_args_passed; i++) {
 678     VMReg vmreg = VEC_ArgReg[i]->as_VMReg();
 679     regs[i].set_pair(vmreg->next(next_reg_val), vmreg);
 680   }
 681   return 0;
 682 }
 683 
 684 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 685                                          VMRegPair *regs,
 686                                          int total_args_passed) {
 687 
 688   // We return the amount of VMRegImpl stack slots we need to reserve for all
 689   // the arguments NOT counting out_preserve_stack_slots.
 690 
 691   static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 692     c_rarg0, c_rarg1, c_rarg2, c_rarg3,
 693     c_rarg4, c_rarg5,  c_rarg6,  c_rarg7
 694   };
 695   static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 696     c_farg0, c_farg1, c_farg2, c_farg3,
 697     c_farg4, c_farg5, c_farg6, c_farg7
 698   };
 699 
 700   uint int_args = 0;
 701   uint fp_args = 0;
 702   uint stk_args = 0; // inc by 2 each time
 703 
 704   for (int i = 0; i < total_args_passed; i++) {
 705     switch (sig_bt[i]) {
 706       case T_BOOLEAN:  // fall through
 707       case T_CHAR:     // fall through
 708       case T_BYTE:     // fall through
 709       case T_SHORT:    // fall through
 710       case T_INT:
 711         if (int_args < Argument::n_int_register_parameters_c) {
 712           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 713         } else {
 714           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 715           stk_args += 2;
 716         }
 717         break;
 718       case T_LONG:      // fall through
 719         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 720       case T_OBJECT:    // fall through
 721       case T_ARRAY:     // fall through
 722       case T_ADDRESS:   // fall through
 723       case T_METADATA:
 724         if (int_args < Argument::n_int_register_parameters_c) {
 725           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 726         } else {
 727           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 728           stk_args += 2;
 729         }
 730         break;
 731       case T_FLOAT:
 732         if (fp_args < Argument::n_float_register_parameters_c) {
 733           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 734         } else if (int_args < Argument::n_int_register_parameters_c) {
 735           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 736         } else {
 737           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 738           stk_args += 2;
 739         }
 740         break;
 741       case T_DOUBLE:
 742         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 743         if (fp_args < Argument::n_float_register_parameters_c) {
 744           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 745         } else if (int_args < Argument::n_int_register_parameters_c) {
 746           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 747         } else {
 748           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 749           stk_args += 2;
 750         }
 751         break;
 752       case T_VOID: // Halves of longs and doubles
 753         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 754         regs[i].set_bad();
 755         break;
 756       default:
 757         ShouldNotReachHere();
 758     }
 759   }
 760 
 761   return stk_args;
 762 }
 763 
 764 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
 765   // We always ignore the frame_slots arg and just use the space just below frame pointer
 766   // which by this time is free to use
 767   switch (ret_type) {
 768     case T_FLOAT:
 769       __ fsw(f10, Address(fp, -3 * wordSize));
 770       break;
 771     case T_DOUBLE:
 772       __ fsd(f10, Address(fp, -3 * wordSize));
 773       break;
 774     case T_VOID:  break;
 775     default: {
 776       __ sd(x10, Address(fp, -3 * wordSize));
 777     }
 778   }
 779 }
 780 
 781 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
 782   // We always ignore the frame_slots arg and just use the space just below frame pointer
 783   // which by this time is free to use
 784   switch (ret_type) {
 785     case T_FLOAT:
 786       __ flw(f10, Address(fp, -3 * wordSize));
 787       break;
 788     case T_DOUBLE:
 789       __ fld(f10, Address(fp, -3 * wordSize));
 790       break;
 791     case T_VOID:  break;
 792     default: {
 793       __ ld(x10, Address(fp, -3 * wordSize));
 794     }
 795   }
 796 }
 797 
 798 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
 799   RegSet x;
 800   for ( int i = first_arg ; i < arg_count ; i++ ) {
 801     if (args[i].first()->is_Register()) {
 802       x = x + args[i].first()->as_Register();
 803     } else if (args[i].first()->is_FloatRegister()) {
 804       __ subi(sp, sp, 2 * wordSize);
 805       __ fsd(args[i].first()->as_FloatRegister(), Address(sp, 0));
 806     }
 807   }
 808   __ push_reg(x, sp);
 809 }
 810 
 811 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
 812   RegSet x;
 813   for ( int i = first_arg ; i < arg_count ; i++ ) {
 814     if (args[i].first()->is_Register()) {
 815       x = x + args[i].first()->as_Register();
 816     } else {
 817       ;
 818     }
 819   }
 820   __ pop_reg(x, sp);
 821   for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
 822     if (args[i].first()->is_Register()) {
 823       ;
 824     } else if (args[i].first()->is_FloatRegister()) {
 825       __ fld(args[i].first()->as_FloatRegister(), Address(sp, 0));
 826       __ addi(sp, sp, 2 * wordSize);
 827     }
 828   }
 829 }
 830 
 831 static void verify_oop_args(MacroAssembler* masm,
 832                             const methodHandle& method,
 833                             const BasicType* sig_bt,
 834                             const VMRegPair* regs) {
 835   const Register temp_reg = x9;  // not part of any compiled calling seq
 836   if (VerifyOops) {
 837     for (int i = 0; i < method->size_of_parameters(); i++) {
 838       if (sig_bt[i] == T_OBJECT ||
 839           sig_bt[i] == T_ARRAY) {
 840         VMReg r = regs[i].first();
 841         assert(r->is_valid(), "bad oop arg");
 842         if (r->is_stack()) {
 843           __ ld(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
 844           __ verify_oop(temp_reg);
 845         } else {
 846           __ verify_oop(r->as_Register());
 847         }
 848       }
 849     }
 850   }
 851 }
 852 
 853 // on exit, sp points to the ContinuationEntry
 854 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) {
 855   assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, "");
 856   assert(in_bytes(ContinuationEntry::cont_offset())  % VMRegImpl::stack_slot_size == 0, "");
 857   assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, "");
 858 
 859   stack_slots += (int)ContinuationEntry::size() / wordSize;
 860   __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata
 861 
 862   OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize) / VMRegImpl::stack_slot_size, 0 /* arg_slots*/);
 863 
 864   __ ld(t0, Address(xthread, JavaThread::cont_entry_offset()));
 865   __ sd(t0, Address(sp, ContinuationEntry::parent_offset()));
 866   __ sd(sp, Address(xthread, JavaThread::cont_entry_offset()));
 867 
 868   return map;
 869 }
 870 
 871 // on entry c_rarg1 points to the continuation
 872 //          sp points to ContinuationEntry
 873 //          c_rarg3 -- isVirtualThread
 874 static void fill_continuation_entry(MacroAssembler* masm) {
 875 #ifdef ASSERT
 876   __ mv(t0, ContinuationEntry::cookie_value());
 877   __ sw(t0, Address(sp, ContinuationEntry::cookie_offset()));
 878 #endif
 879 
 880   __ sd(c_rarg1, Address(sp, ContinuationEntry::cont_offset()));
 881   __ sw(c_rarg3, Address(sp, ContinuationEntry::flags_offset()));
 882   __ sd(zr,      Address(sp, ContinuationEntry::chunk_offset()));
 883   __ sw(zr,      Address(sp, ContinuationEntry::argsize_offset()));
 884   __ sw(zr,      Address(sp, ContinuationEntry::pin_count_offset()));
 885 
 886   __ ld(t0, Address(xthread, JavaThread::cont_fastpath_offset()));
 887   __ sd(t0, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
 888   __ ld(t0, Address(xthread, JavaThread::held_monitor_count_offset()));
 889   __ sd(t0, Address(sp, ContinuationEntry::parent_held_monitor_count_offset()));
 890 
 891   __ sd(zr, Address(xthread, JavaThread::cont_fastpath_offset()));
 892   __ sd(zr, Address(xthread, JavaThread::held_monitor_count_offset()));
 893 }
 894 
 895 // on entry, sp points to the ContinuationEntry
 896 // on exit, fp points to the spilled fp + 2 * wordSize in the entry frame
 897 static void continuation_enter_cleanup(MacroAssembler* masm) {
 898 #ifndef PRODUCT
 899   Label OK;
 900   __ ld(t0, Address(xthread, JavaThread::cont_entry_offset()));
 901   __ beq(sp, t0, OK);
 902   __ stop("incorrect sp");
 903   __ bind(OK);
 904 #endif
 905 
 906   __ ld(t0, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
 907   __ sd(t0, Address(xthread, JavaThread::cont_fastpath_offset()));
 908 
 909   if (CheckJNICalls) {
 910     // Check if this is a virtual thread continuation
 911     Label L_skip_vthread_code;
 912     __ lwu(t0, Address(sp, ContinuationEntry::flags_offset()));
 913     __ beqz(t0, L_skip_vthread_code);
 914 
 915     // If the held monitor count is > 0 and this vthread is terminating then
 916     // it failed to release a JNI monitor. So we issue the same log message
 917     // that JavaThread::exit does.
 918     __ ld(t0, Address(xthread, JavaThread::jni_monitor_count_offset()));
 919     __ beqz(t0, L_skip_vthread_code);
 920 
 921     // Save return value potentially containing the exception oop in callee-saved x9
 922     __ mv(x9, x10);
 923     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held));
 924     // Restore potential return value
 925     __ mv(x10, x9);
 926 
 927     // For vthreads we have to explicitly zero the JNI monitor count of the carrier
 928     // on termination. The held count is implicitly zeroed below when we restore from
 929     // the parent held count (which has to be zero).
 930     __ sd(zr, Address(xthread, JavaThread::jni_monitor_count_offset()));
 931 
 932     __ bind(L_skip_vthread_code);
 933   }
 934 #ifdef ASSERT
 935   else {
 936     // Check if this is a virtual thread continuation
 937     Label L_skip_vthread_code;
 938     __ lwu(t0, Address(sp, ContinuationEntry::flags_offset()));
 939     __ beqz(t0, L_skip_vthread_code);
 940 
 941     // See comment just above. If not checking JNI calls the JNI count is only
 942     // needed for assertion checking.
 943     __ sd(zr, Address(xthread, JavaThread::jni_monitor_count_offset()));
 944 
 945     __ bind(L_skip_vthread_code);
 946   }
 947 #endif
 948 
 949   __ ld(t0, Address(sp, ContinuationEntry::parent_held_monitor_count_offset()));
 950   __ sd(t0, Address(xthread, JavaThread::held_monitor_count_offset()));
 951 
 952   __ ld(t0, Address(sp, ContinuationEntry::parent_offset()));
 953   __ sd(t0, Address(xthread, JavaThread::cont_entry_offset()));
 954   __ add(fp, sp, (int)ContinuationEntry::size() + 2 * wordSize /* 2 extra words to match up with leave() */);
 955 }
 956 
 957 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread)
 958 // On entry: c_rarg1 -- the continuation object
 959 //           c_rarg2 -- isContinue
 960 //           c_rarg3 -- isVirtualThread
 961 static void gen_continuation_enter(MacroAssembler* masm,
 962                                    const methodHandle& method,
 963                                    const BasicType* sig_bt,
 964                                    const VMRegPair* regs,
 965                                    int& exception_offset,
 966                                    OopMapSet*oop_maps,
 967                                    int& frame_complete,
 968                                    int& stack_slots,
 969                                    int& interpreted_entry_offset,
 970                                    int& compiled_entry_offset) {
 971   // verify_oop_args(masm, method, sig_bt, regs);
 972   Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type);
 973 
 974   address start = __ pc();
 975 
 976   Label call_thaw, exit;
 977 
 978   // i2i entry used at interp_only_mode only
 979   interpreted_entry_offset = __ pc() - start;
 980   {
 981 #ifdef ASSERT
 982     Label is_interp_only;
 983     __ lw(t0, Address(xthread, JavaThread::interp_only_mode_offset()));
 984     __ bnez(t0, is_interp_only);
 985     __ stop("enterSpecial interpreter entry called when not in interp_only_mode");
 986     __ bind(is_interp_only);
 987 #endif
 988 
 989     // Read interpreter arguments into registers (this is an ad-hoc i2c adapter)
 990     __ ld(c_rarg1, Address(esp, Interpreter::stackElementSize * 2));
 991     __ ld(c_rarg2, Address(esp, Interpreter::stackElementSize * 1));
 992     __ ld(c_rarg3, Address(esp, Interpreter::stackElementSize * 0));
 993     __ push_cont_fastpath(xthread);
 994 
 995     __ enter();
 996     stack_slots = 2; // will be adjusted in setup
 997     OopMap* map = continuation_enter_setup(masm, stack_slots);
 998     // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe,
 999     // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway.
1000 
1001     fill_continuation_entry(masm);
1002 
1003     __ bnez(c_rarg2, call_thaw);
1004 
1005     address call_pc;
1006     {
1007       Assembler::IncompressibleScope scope(masm);
1008       // Make sure the call is patchable
1009       __ align(NativeInstruction::instruction_size);
1010 
1011       call_pc = __ reloc_call(resolve);
1012       if (call_pc == nullptr) {
1013         fatal("CodeCache is full at gen_continuation_enter");
1014       }
1015 
1016       oop_maps->add_gc_map(__ pc() - start, map);
1017       __ post_call_nop();
1018     }
1019     __ j(exit);
1020 
1021     address stub = CompiledDirectCall::emit_to_interp_stub(masm, call_pc);
1022     if (stub == nullptr) {
1023       fatal("CodeCache is full at gen_continuation_enter");
1024     }
1025   }
1026 
1027   // compiled entry
1028   __ align(CodeEntryAlignment);
1029   compiled_entry_offset = __ pc() - start;
1030 
1031   __ enter();
1032   stack_slots = 2; // will be adjusted in setup
1033   OopMap* map = continuation_enter_setup(masm, stack_slots);
1034   frame_complete = __ pc() - start;
1035 
1036   fill_continuation_entry(masm);
1037 
1038   __ bnez(c_rarg2, call_thaw);
1039 
1040   address call_pc;
1041   {
1042     Assembler::IncompressibleScope scope(masm);
1043     // Make sure the call is patchable
1044     __ align(NativeInstruction::instruction_size);
1045 
1046     call_pc = __ reloc_call(resolve);
1047     if (call_pc == nullptr) {
1048       fatal("CodeCache is full at gen_continuation_enter");
1049     }
1050 
1051     oop_maps->add_gc_map(__ pc() - start, map);
1052     __ post_call_nop();
1053   }
1054 
1055   __ j(exit);
1056 
1057   __ bind(call_thaw);
1058 
1059   // Post call nops must be natural aligned due to cmodx rules.
1060   {
1061     Assembler::IncompressibleScope scope(masm);
1062     __ align(NativeInstruction::instruction_size);
1063 
1064     ContinuationEntry::_thaw_call_pc_offset = __ pc() - start;
1065     __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw()));
1066     oop_maps->add_gc_map(__ pc() - start, map->deep_copy());
1067     ContinuationEntry::_return_pc_offset = __ pc() - start;
1068     __ post_call_nop();
1069   }
1070 
1071   __ bind(exit);
1072   ContinuationEntry::_cleanup_offset = __ pc() - start;
1073   continuation_enter_cleanup(masm);
1074   __ leave();
1075   __ ret();
1076 
1077   // exception handling
1078   exception_offset = __ pc() - start;
1079   {
1080     __ mv(x9, x10); // save return value contaning the exception oop in callee-saved x9
1081 
1082     continuation_enter_cleanup(masm);
1083 
1084     __ ld(c_rarg1, Address(fp, -1 * wordSize)); // return address
1085     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), xthread, c_rarg1);
1086 
1087     // see OptoRuntime::generate_exception_blob: x10 -- exception oop, x13 -- exception pc
1088 
1089     __ mv(x11, x10); // the exception handler
1090     __ mv(x10, x9); // restore return value contaning the exception oop
1091     __ verify_oop(x10);
1092 
1093     __ leave();
1094     __ mv(x13, ra);
1095     __ jr(x11); // the exception handler
1096   }
1097 
1098   address stub = CompiledDirectCall::emit_to_interp_stub(masm, call_pc);
1099   if (stub == nullptr) {
1100     fatal("CodeCache is full at gen_continuation_enter");
1101   }
1102 }
1103 
1104 static void gen_continuation_yield(MacroAssembler* masm,
1105                                    const methodHandle& method,
1106                                    const BasicType* sig_bt,
1107                                    const VMRegPair* regs,
1108                                    OopMapSet* oop_maps,
1109                                    int& frame_complete,
1110                                    int& stack_slots,
1111                                    int& compiled_entry_offset) {
1112   enum layout {
1113     fp_off,
1114     fp_off2,
1115     return_off,
1116     return_off2,
1117     framesize // inclusive of return address
1118   };
1119   // assert(is_even(framesize/2), "sp not 16-byte aligned");
1120 
1121   stack_slots = framesize / VMRegImpl::slots_per_word;
1122   assert(stack_slots == 2, "recheck layout");
1123 
1124   address start = __ pc();
1125 
1126   compiled_entry_offset = __ pc() - start;
1127   __ enter();
1128 
1129   __ mv(c_rarg1, sp);
1130 
1131   // Post call nops must be natural aligned due to cmodx rules.
1132   __ align(NativeInstruction::instruction_size);
1133 
1134   frame_complete = __ pc() - start;
1135   address the_pc = __ pc();
1136 
1137   {
1138     Assembler::IncompressibleScope scope(masm);
1139     __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup
1140   }
1141 
1142   __ mv(c_rarg0, xthread);
1143   __ set_last_Java_frame(sp, fp, the_pc, t0);
1144   __ call_VM_leaf(Continuation::freeze_entry(), 2);
1145   __ reset_last_Java_frame(true);
1146 
1147   Label pinned;
1148 
1149   __ bnez(x10, pinned);
1150 
1151   // We've succeeded, set sp to the ContinuationEntry
1152   __ ld(sp, Address(xthread, JavaThread::cont_entry_offset()));
1153   continuation_enter_cleanup(masm);
1154 
1155   __ bind(pinned); // pinned -- return to caller
1156 
1157   // handle pending exception thrown by freeze
1158   __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1159   Label ok;
1160   __ beqz(t0, ok);
1161   __ leave();
1162   __ j(RuntimeAddress(StubRoutines::forward_exception_entry()));
1163   __ bind(ok);
1164 
1165   __ leave();
1166   __ ret();
1167 
1168   OopMap* map = new OopMap(framesize, 1);
1169   oop_maps->add_gc_map(the_pc - start, map);
1170 }
1171 
1172 void SharedRuntime::continuation_enter_cleanup(MacroAssembler* masm) {
1173   ::continuation_enter_cleanup(masm);
1174 }
1175 
1176 static void gen_special_dispatch(MacroAssembler* masm,
1177                                  const methodHandle& method,
1178                                  const BasicType* sig_bt,
1179                                  const VMRegPair* regs) {
1180   verify_oop_args(masm, method, sig_bt, regs);
1181   vmIntrinsics::ID iid = method->intrinsic_id();
1182 
1183   // Now write the args into the outgoing interpreter space
1184   bool     has_receiver   = false;
1185   Register receiver_reg   = noreg;
1186   int      member_arg_pos = -1;
1187   Register member_reg     = noreg;
1188   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1189   if (ref_kind != 0) {
1190     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1191     member_reg = x9;  // known to be free at this point
1192     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1193   } else if (iid == vmIntrinsics::_invokeBasic) {
1194     has_receiver = true;
1195   } else if (iid == vmIntrinsics::_linkToNative) {
1196     member_arg_pos = method->size_of_parameters() - 1;  // trailing NativeEntryPoint argument
1197     member_reg = x9;  // known to be free at this point
1198   } else {
1199     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1200   }
1201 
1202   if (member_reg != noreg) {
1203     // Load the member_arg into register, if necessary.
1204     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1205     VMReg r = regs[member_arg_pos].first();
1206     if (r->is_stack()) {
1207       __ ld(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1208     } else {
1209       // no data motion is needed
1210       member_reg = r->as_Register();
1211     }
1212   }
1213 
1214   if (has_receiver) {
1215     // Make sure the receiver is loaded into a register.
1216     assert(method->size_of_parameters() > 0, "oob");
1217     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1218     VMReg r = regs[0].first();
1219     assert(r->is_valid(), "bad receiver arg");
1220     if (r->is_stack()) {
1221       // Porting note:  This assumes that compiled calling conventions always
1222       // pass the receiver oop in a register.  If this is not true on some
1223       // platform, pick a temp and load the receiver from stack.
1224       fatal("receiver always in a register");
1225       receiver_reg = x12;  // known to be free at this point
1226       __ ld(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1227     } else {
1228       // no data motion is needed
1229       receiver_reg = r->as_Register();
1230     }
1231   }
1232 
1233   // Figure out which address we are really jumping to:
1234   MethodHandles::generate_method_handle_dispatch(masm, iid,
1235                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1236 }
1237 
1238 // ---------------------------------------------------------------------------
1239 // Generate a native wrapper for a given method.  The method takes arguments
1240 // in the Java compiled code convention, marshals them to the native
1241 // convention (handlizes oops, etc), transitions to native, makes the call,
1242 // returns to java state (possibly blocking), unhandlizes any result and
1243 // returns.
1244 //
1245 // Critical native functions are a shorthand for the use of
1246 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1247 // functions.  The wrapper is expected to unpack the arguments before
1248 // passing them to the callee and perform checks before and after the
1249 // native call to ensure that they GCLocker
1250 // lock_critical/unlock_critical semantics are followed.  Some other
1251 // parts of JNI setup are skipped like the tear down of the JNI handle
1252 // block and the check for pending exceptions it's impossible for them
1253 // to be thrown.
1254 //
1255 // They are roughly structured like this:
1256 //    if (GCLocker::needs_gc()) SharedRuntime::block_for_jni_critical()
1257 //    tranistion to thread_in_native
1258 //    unpack array arguments and call native entry point
1259 //    check for safepoint in progress
1260 //    check if any thread suspend flags are set
1261 //      call into JVM and possible unlock the JNI critical
1262 //      if a GC was suppressed while in the critical native.
1263 //    transition back to thread_in_Java
1264 //    return to caller
1265 //
1266 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1267                                                 const methodHandle& method,
1268                                                 int compile_id,
1269                                                 BasicType* in_sig_bt,
1270                                                 VMRegPair* in_regs,
1271                                                 BasicType ret_type) {
1272   if (method->is_continuation_native_intrinsic()) {
1273     int exception_offset = -1;
1274     OopMapSet* oop_maps = new OopMapSet();
1275     int frame_complete = -1;
1276     int stack_slots = -1;
1277     int interpreted_entry_offset = -1;
1278     int vep_offset = -1;
1279     if (method->is_continuation_enter_intrinsic()) {
1280       gen_continuation_enter(masm,
1281                              method,
1282                              in_sig_bt,
1283                              in_regs,
1284                              exception_offset,
1285                              oop_maps,
1286                              frame_complete,
1287                              stack_slots,
1288                              interpreted_entry_offset,
1289                              vep_offset);
1290     } else if (method->is_continuation_yield_intrinsic()) {
1291       gen_continuation_yield(masm,
1292                              method,
1293                              in_sig_bt,
1294                              in_regs,
1295                              oop_maps,
1296                              frame_complete,
1297                              stack_slots,
1298                              vep_offset);
1299     } else {
1300       guarantee(false, "Unknown Continuation native intrinsic");
1301     }
1302 
1303 #ifdef ASSERT
1304     if (method->is_continuation_enter_intrinsic()) {
1305       assert(interpreted_entry_offset != -1, "Must be set");
1306       assert(exception_offset != -1,         "Must be set");
1307     } else {
1308       assert(interpreted_entry_offset == -1, "Must be unset");
1309       assert(exception_offset == -1,         "Must be unset");
1310     }
1311     assert(frame_complete != -1,    "Must be set");
1312     assert(stack_slots != -1,       "Must be set");
1313     assert(vep_offset != -1,        "Must be set");
1314 #endif
1315 
1316     __ flush();
1317     nmethod* nm = nmethod::new_native_nmethod(method,
1318                                               compile_id,
1319                                               masm->code(),
1320                                               vep_offset,
1321                                               frame_complete,
1322                                               stack_slots,
1323                                               in_ByteSize(-1),
1324                                               in_ByteSize(-1),
1325                                               oop_maps,
1326                                               exception_offset);
1327     if (nm == nullptr) return nm;
1328     if (method->is_continuation_enter_intrinsic()) {
1329       ContinuationEntry::set_enter_code(nm, interpreted_entry_offset);
1330     } else if (method->is_continuation_yield_intrinsic()) {
1331       ContinuationEntry::set_yield_code(nm);
1332     } else {
1333       guarantee(false, "Unknown Continuation native intrinsic");
1334     }
1335     return nm;
1336   }
1337 
1338   if (method->is_method_handle_intrinsic()) {
1339     vmIntrinsics::ID iid = method->intrinsic_id();
1340     intptr_t start = (intptr_t)__ pc();
1341     int vep_offset = ((intptr_t)__ pc()) - start;
1342 
1343     // First instruction must be a nop as it may need to be patched on deoptimisation
1344     {
1345       Assembler::IncompressibleScope scope(masm); // keep the nop as 4 bytes for patching.
1346       MacroAssembler::assert_alignment(__ pc());
1347       __ nop();  // 4 bytes
1348     }
1349     gen_special_dispatch(masm,
1350                          method,
1351                          in_sig_bt,
1352                          in_regs);
1353     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1354     __ flush();
1355     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1356     return nmethod::new_native_nmethod(method,
1357                                        compile_id,
1358                                        masm->code(),
1359                                        vep_offset,
1360                                        frame_complete,
1361                                        stack_slots / VMRegImpl::slots_per_word,
1362                                        in_ByteSize(-1),
1363                                        in_ByteSize(-1),
1364                                        (OopMapSet*)nullptr);
1365   }
1366   address native_func = method->native_function();
1367   assert(native_func != nullptr, "must have function");
1368 
1369   // An OopMap for lock (and class if static)
1370   OopMapSet *oop_maps = new OopMapSet();
1371   assert_cond(oop_maps != nullptr);
1372   intptr_t start = (intptr_t)__ pc();
1373 
1374   // We have received a description of where all the java arg are located
1375   // on entry to the wrapper. We need to convert these args to where
1376   // the jni function will expect them. To figure out where they go
1377   // we convert the java signature to a C signature by inserting
1378   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1379 
1380   const int total_in_args = method->size_of_parameters();
1381   int total_c_args = total_in_args + (method->is_static() ? 2 : 1);
1382 
1383   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1384   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1385 
1386   int argc = 0;
1387   out_sig_bt[argc++] = T_ADDRESS;
1388   if (method->is_static()) {
1389     out_sig_bt[argc++] = T_OBJECT;
1390   }
1391 
1392   for (int i = 0; i < total_in_args ; i++) {
1393     out_sig_bt[argc++] = in_sig_bt[i];
1394   }
1395 
1396   // Now figure out where the args must be stored and how much stack space
1397   // they require.
1398   int out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1399 
1400   // Compute framesize for the wrapper.  We need to handlize all oops in
1401   // incoming registers
1402 
1403   // Calculate the total number of stack slots we will need.
1404 
1405   // First count the abi requirement plus all of the outgoing args
1406   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1407 
1408   // Now the space for the inbound oop handle area
1409   int total_save_slots = 8 * VMRegImpl::slots_per_word;  // 8 arguments passed in registers
1410 
1411   int oop_handle_offset = stack_slots;
1412   stack_slots += total_save_slots;
1413 
1414   // Now any space we need for handlizing a klass if static method
1415 
1416   int klass_slot_offset = 0;
1417   int klass_offset = -1;
1418   int lock_slot_offset = 0;
1419   bool is_static = false;
1420 
1421   if (method->is_static()) {
1422     klass_slot_offset = stack_slots;
1423     stack_slots += VMRegImpl::slots_per_word;
1424     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1425     is_static = true;
1426   }
1427 
1428   // Plus a lock if needed
1429 
1430   if (method->is_synchronized()) {
1431     lock_slot_offset = stack_slots;
1432     stack_slots += VMRegImpl::slots_per_word;
1433   }
1434 
1435   // Now a place (+2) to save return values or temp during shuffling
1436   // + 4 for return address (which we own) and saved fp
1437   stack_slots += 6;
1438 
1439   // Ok The space we have allocated will look like:
1440   //
1441   //
1442   // FP-> |                     |
1443   //      | 2 slots (ra)        |
1444   //      | 2 slots (fp)        |
1445   //      |---------------------|
1446   //      | 2 slots for moves   |
1447   //      |---------------------|
1448   //      | lock box (if sync)  |
1449   //      |---------------------| <- lock_slot_offset
1450   //      | klass (if static)   |
1451   //      |---------------------| <- klass_slot_offset
1452   //      | oopHandle area      |
1453   //      |---------------------| <- oop_handle_offset (8 java arg registers)
1454   //      | outbound memory     |
1455   //      | based arguments     |
1456   //      |                     |
1457   //      |---------------------|
1458   //      |                     |
1459   // SP-> | out_preserved_slots |
1460   //
1461   //
1462 
1463 
1464   // Now compute actual number of stack words we need rounding to make
1465   // stack properly aligned.
1466   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1467 
1468   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1469 
1470   // First thing make an ic check to see if we should even be here
1471 
1472   // We are free to use all registers as temps without saving them and
1473   // restoring them except fp. fp is the only callee save register
1474   // as far as the interpreter and the compiler(s) are concerned.
1475 
1476   const Register receiver = j_rarg0;
1477 
1478   __ verify_oop(receiver);
1479   assert_different_registers(receiver, t0, t1);
1480 
1481   __ ic_check();
1482 
1483   int vep_offset = ((intptr_t)__ pc()) - start;
1484 
1485   // If we have to make this method not-entrant we'll overwrite its
1486   // first instruction with a jump.
1487   {
1488     Assembler::IncompressibleScope scope(masm); // keep the nop as 4 bytes for patching.
1489     MacroAssembler::assert_alignment(__ pc());
1490     __ nop();  // 4 bytes
1491   }
1492 
1493   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
1494     Label L_skip_barrier;
1495     __ mov_metadata(t1, method->method_holder()); // InstanceKlass*
1496     __ clinit_barrier(t1, t0, &L_skip_barrier);
1497     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
1498 
1499     __ bind(L_skip_barrier);
1500   }
1501 
1502   // Generate stack overflow check
1503   __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size()));
1504 
1505   // Generate a new frame for the wrapper.
1506   __ enter();
1507   // -2 because return address is already present and so is saved fp
1508   __ sub(sp, sp, stack_size - 2 * wordSize);
1509 
1510   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1511   assert_cond(bs != nullptr);
1512   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */);
1513 
1514   // Frame is now completed as far as size and linkage.
1515   int frame_complete = ((intptr_t)__ pc()) - start;
1516 
1517   // We use x18 as the oop handle for the receiver/klass
1518   // It is callee save so it survives the call to native
1519 
1520   const Register oop_handle_reg = x18;
1521 
1522   //
1523   // We immediately shuffle the arguments so that any vm call we have to
1524   // make from here on out (sync slow path, jvmti, etc.) we will have
1525   // captured the oops from our caller and have a valid oopMap for
1526   // them.
1527 
1528   // -----------------
1529   // The Grand Shuffle
1530 
1531   // The Java calling convention is either equal (linux) or denser (win64) than the
1532   // c calling convention. However the because of the jni_env argument the c calling
1533   // convention always has at least one more (and two for static) arguments than Java.
1534   // Therefore if we move the args from java -> c backwards then we will never have
1535   // a register->register conflict and we don't have to build a dependency graph
1536   // and figure out how to break any cycles.
1537   //
1538 
1539   // Record esp-based slot for receiver on stack for non-static methods
1540   int receiver_offset = -1;
1541 
1542   // This is a trick. We double the stack slots so we can claim
1543   // the oops in the caller's frame. Since we are sure to have
1544   // more args than the caller doubling is enough to make
1545   // sure we can capture all the incoming oop args from the
1546   // caller.
1547   //
1548   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1549   assert_cond(map != nullptr);
1550 
1551   int float_args = 0;
1552   int int_args = 0;
1553 
1554 #ifdef ASSERT
1555   bool reg_destroyed[Register::number_of_registers];
1556   bool freg_destroyed[FloatRegister::number_of_registers];
1557   for ( int r = 0 ; r < Register::number_of_registers ; r++ ) {
1558     reg_destroyed[r] = false;
1559   }
1560   for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) {
1561     freg_destroyed[f] = false;
1562   }
1563 
1564 #endif /* ASSERT */
1565 
1566   // For JNI natives the incoming and outgoing registers are offset upwards.
1567   GrowableArray<int> arg_order(2 * total_in_args);
1568 
1569   for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1570     arg_order.push(i);
1571     arg_order.push(c_arg);
1572   }
1573 
1574   for (int ai = 0; ai < arg_order.length(); ai += 2) {
1575     int i = arg_order.at(ai);
1576     int c_arg = arg_order.at(ai + 1);
1577     __ block_comment(err_msg("mv %d -> %d", i, c_arg));
1578     assert(c_arg != -1 && i != -1, "wrong order");
1579 #ifdef ASSERT
1580     if (in_regs[i].first()->is_Register()) {
1581       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1582     } else if (in_regs[i].first()->is_FloatRegister()) {
1583       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!");
1584     }
1585     if (out_regs[c_arg].first()->is_Register()) {
1586       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1587     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1588       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1589     }
1590 #endif /* ASSERT */
1591     switch (in_sig_bt[i]) {
1592       case T_ARRAY:
1593       case T_OBJECT:
1594         __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1595                        ((i == 0) && (!is_static)),
1596                        &receiver_offset);
1597         int_args++;
1598         break;
1599       case T_VOID:
1600         break;
1601 
1602       case T_FLOAT:
1603         __ float_move(in_regs[i], out_regs[c_arg]);
1604         float_args++;
1605         break;
1606 
1607       case T_DOUBLE:
1608         assert( i + 1 < total_in_args &&
1609                 in_sig_bt[i + 1] == T_VOID &&
1610                 out_sig_bt[c_arg + 1] == T_VOID, "bad arg list");
1611         __ double_move(in_regs[i], out_regs[c_arg]);
1612         float_args++;
1613         break;
1614 
1615       case T_LONG :
1616         __ long_move(in_regs[i], out_regs[c_arg]);
1617         int_args++;
1618         break;
1619 
1620       case T_ADDRESS:
1621         assert(false, "found T_ADDRESS in java args");
1622         break;
1623 
1624       default:
1625         __ move32_64(in_regs[i], out_regs[c_arg]);
1626         int_args++;
1627     }
1628   }
1629 
1630   // point c_arg at the first arg that is already loaded in case we
1631   // need to spill before we call out
1632   int c_arg = total_c_args - total_in_args;
1633 
1634   // Pre-load a static method's oop into c_rarg1.
1635   if (method->is_static()) {
1636 
1637     //  load oop into a register
1638     __ movoop(c_rarg1,
1639               JNIHandles::make_local(method->method_holder()->java_mirror()));
1640 
1641     // Now handlize the static class mirror it's known not-null.
1642     __ sd(c_rarg1, Address(sp, klass_offset));
1643     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1644 
1645     // Now get the handle
1646     __ la(c_rarg1, Address(sp, klass_offset));
1647     // and protect the arg if we must spill
1648     c_arg--;
1649   }
1650 
1651   // Change state to native (we save the return address in the thread, since it might not
1652   // be pushed on the stack when we do a stack traversal). It is enough that the pc()
1653   // points into the right code segment. It does not have to be the correct return pc.
1654   // We use the same pc/oopMap repeatedly when we call out.
1655 
1656   Label native_return;
1657   if (method->is_object_wait0()) {
1658     // For convenience we use the pc we want to resume to in case of preemption on Object.wait.
1659     __ set_last_Java_frame(sp, noreg, native_return, t0);
1660   } else {
1661     intptr_t the_pc = (intptr_t) __ pc();
1662     oop_maps->add_gc_map(the_pc - start, map);
1663 
1664     __ set_last_Java_frame(sp, noreg, __ pc(), t0);
1665   }
1666 
1667   Label dtrace_method_entry, dtrace_method_entry_done;
1668   if (DTraceMethodProbes) {
1669     __ j(dtrace_method_entry);
1670     __ bind(dtrace_method_entry_done);
1671   }
1672 
1673   // RedefineClasses() tracing support for obsolete method entry
1674   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1675     // protect the args we've loaded
1676     save_args(masm, total_c_args, c_arg, out_regs);
1677     __ mov_metadata(c_rarg1, method());
1678     __ call_VM_leaf(
1679       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1680       xthread, c_rarg1);
1681     restore_args(masm, total_c_args, c_arg, out_regs);
1682   }
1683 
1684   // Lock a synchronized method
1685 
1686   // Register definitions used by locking and unlocking
1687 
1688   const Register swap_reg = x10;
1689   const Register obj_reg  = x9;  // Will contain the oop
1690   const Register lock_reg = x30;  // Address of compiler lock object (BasicLock)
1691   const Register old_hdr  = x30;  // value of old header at unlock time
1692   const Register lock_tmp = x31;  // Temporary used by lightweight_lock/unlock
1693   const Register tmp      = ra;
1694 
1695   Label slow_path_lock;
1696   Label lock_done;
1697 
1698   if (method->is_synchronized()) {
1699     // Get the handle (the 2nd argument)
1700     __ mv(oop_handle_reg, c_rarg1);
1701 
1702     // Get address of the box
1703 
1704     __ la(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1705 
1706     // Load the oop from the handle
1707     __ ld(obj_reg, Address(oop_handle_reg, 0));
1708 
1709     __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock);
1710 
1711     // Slow path will re-enter here
1712     __ bind(lock_done);
1713   }
1714 
1715 
1716   // Finally just about ready to make the JNI call
1717 
1718   // get JNIEnv* which is first argument to native
1719   __ la(c_rarg0, Address(xthread, in_bytes(JavaThread::jni_environment_offset())));
1720 
1721   // Now set thread in native
1722   __ la(t1, Address(xthread, JavaThread::thread_state_offset()));
1723   __ mv(t0, _thread_in_native);
1724   __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
1725   __ sw(t0, Address(t1));
1726 
1727   // Clobbers t1
1728   __ rt_call(native_func);
1729 
1730   // Verify or restore cpu control state after JNI call
1731   __ restore_cpu_control_state_after_jni(t0);
1732 
1733   // Unpack native results.
1734   if (ret_type != T_OBJECT && ret_type != T_ARRAY) {
1735     __ cast_primitive_type(ret_type, x10);
1736   }
1737 
1738   Label safepoint_in_progress, safepoint_in_progress_done;
1739 
1740   // Switch thread to "native transition" state before reading the synchronization state.
1741   // This additional state is necessary because reading and testing the synchronization
1742   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1743   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1744   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1745   //     Thread A is resumed to finish this native method, but doesn't block here since it
1746   //     didn't see any synchronization is progress, and escapes.
1747   __ mv(t0, _thread_in_native_trans);
1748 
1749   __ sw(t0, Address(xthread, JavaThread::thread_state_offset()));
1750 
1751   // Force this write out before the read below
1752   if (!UseSystemMemoryBarrier) {
1753     __ membar(MacroAssembler::AnyAny);
1754   }
1755 
1756   // check for safepoint operation in progress and/or pending suspend requests
1757   {
1758     __ safepoint_poll(safepoint_in_progress, true /* at_return */, false /* in_nmethod */);
1759     __ lwu(t0, Address(xthread, JavaThread::suspend_flags_offset()));
1760     __ bnez(t0, safepoint_in_progress);
1761     __ bind(safepoint_in_progress_done);
1762   }
1763 
1764   // change thread state
1765   __ la(t1, Address(xthread, JavaThread::thread_state_offset()));
1766   __ mv(t0, _thread_in_Java);
1767   __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
1768   __ sw(t0, Address(t1));
1769 
1770   if (method->is_object_wait0()) {
1771     // Check preemption for Object.wait()
1772     __ ld(t1, Address(xthread, JavaThread::preempt_alternate_return_offset()));
1773     __ beqz(t1, native_return);
1774     __ sd(zr, Address(xthread, JavaThread::preempt_alternate_return_offset()));
1775     __ jr(t1);
1776     __ bind(native_return);
1777 
1778     intptr_t the_pc = (intptr_t) __ pc();
1779     oop_maps->add_gc_map(the_pc - start, map);
1780   }
1781 
1782   Label reguard;
1783   Label reguard_done;
1784   __ lbu(t0, Address(xthread, JavaThread::stack_guard_state_offset()));
1785   __ mv(t1, StackOverflow::stack_guard_yellow_reserved_disabled);
1786   __ beq(t0, t1, reguard);
1787   __ bind(reguard_done);
1788 
1789   // native result if any is live
1790 
1791   // Unlock
1792   Label unlock_done;
1793   Label slow_path_unlock;
1794   if (method->is_synchronized()) {
1795 
1796     // Get locked oop from the handle we passed to jni
1797     __ ld(obj_reg, Address(oop_handle_reg, 0));
1798 
1799     // Must save x10 if if it is live now because cmpxchg must use it
1800     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1801       save_native_result(masm, ret_type, stack_slots);
1802     }
1803 
1804     __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock);
1805 
1806     // slow path re-enters here
1807     __ bind(unlock_done);
1808     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1809       restore_native_result(masm, ret_type, stack_slots);
1810     }
1811   }
1812 
1813   Label dtrace_method_exit, dtrace_method_exit_done;
1814   if (DTraceMethodProbes) {
1815     __ j(dtrace_method_exit);
1816     __ bind(dtrace_method_exit_done);
1817   }
1818 
1819   __ reset_last_Java_frame(false);
1820 
1821   // Unbox oop result, e.g. JNIHandles::resolve result.
1822   if (is_reference_type(ret_type)) {
1823     __ resolve_jobject(x10, x11, x12);
1824   }
1825 
1826   if (CheckJNICalls) {
1827     // clear_pending_jni_exception_check
1828     __ sd(zr, Address(xthread, JavaThread::pending_jni_exception_check_fn_offset()));
1829   }
1830 
1831   // reset handle block
1832   __ ld(x12, Address(xthread, JavaThread::active_handles_offset()));
1833   __ sd(zr, Address(x12, JNIHandleBlock::top_offset()));
1834 
1835   __ leave();
1836 
1837   #if INCLUDE_JFR
1838   // We need to do a poll test after unwind in case the sampler
1839   // managed to sample the native frame after returning to Java.
1840   Label L_return;
1841   __ ld(t0, Address(xthread, JavaThread::polling_word_offset()));
1842   address poll_test_pc = __ pc();
1843   __ relocate(relocInfo::poll_return_type);
1844   __ test_bit(t0, t0, log2i_exact(SafepointMechanism::poll_bit()));
1845   __ beqz(t0, L_return);
1846   assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
1847          "polling page return stub not created yet");
1848   address stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
1849   __ la(t0, InternalAddress(poll_test_pc));
1850   __ sd(t0, Address(xthread, JavaThread::saved_exception_pc_offset()));
1851   __ far_jump(RuntimeAddress(stub));
1852   __ bind(L_return);
1853 #endif // INCLUDE_JFR
1854 
1855   // Any exception pending?
1856   Label exception_pending;
1857   __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1858   __ bnez(t0, exception_pending);
1859 
1860   // We're done
1861   __ ret();
1862 
1863   // Unexpected paths are out of line and go here
1864 
1865   // forward the exception
1866   __ bind(exception_pending);
1867 
1868   // and forward the exception
1869   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1870 
1871   // Slow path locking & unlocking
1872   if (method->is_synchronized()) {
1873 
1874     __ block_comment("Slow path lock {");
1875     __ bind(slow_path_lock);
1876 
1877     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1878     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1879 
1880     // protect the args we've loaded
1881     save_args(masm, total_c_args, c_arg, out_regs);
1882 
1883     __ mv(c_rarg0, obj_reg);
1884     __ mv(c_rarg1, lock_reg);
1885     __ mv(c_rarg2, xthread);
1886 
1887     // Not a leaf but we have last_Java_frame setup as we want.
1888     // We don't want to unmount in case of contention since that would complicate preserving
1889     // the arguments that had already been marshalled into the native convention. So we force
1890     // the freeze slow path to find this native wrapper frame (see recurse_freeze_native_frame())
1891     // and pin the vthread. Otherwise the fast path won't find it since we don't walk the stack.
1892     __ push_cont_fastpath();
1893     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
1894     __ pop_cont_fastpath();
1895     restore_args(masm, total_c_args, c_arg, out_regs);
1896 
1897 #ifdef ASSERT
1898     { Label L;
1899       __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1900       __ beqz(t0, L);
1901       __ stop("no pending exception allowed on exit from monitorenter");
1902       __ bind(L);
1903     }
1904 #endif
1905     __ j(lock_done);
1906 
1907     __ block_comment("} Slow path lock");
1908 
1909     __ block_comment("Slow path unlock {");
1910     __ bind(slow_path_unlock);
1911 
1912     if (ret_type == T_FLOAT || ret_type == T_DOUBLE) {
1913       save_native_result(masm, ret_type, stack_slots);
1914     }
1915 
1916     __ mv(c_rarg2, xthread);
1917     __ la(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1918     __ mv(c_rarg0, obj_reg);
1919 
1920     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1921     // NOTE that obj_reg == x9 currently
1922     __ ld(x9, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1923     __ sd(zr, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1924 
1925     __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
1926 
1927 #ifdef ASSERT
1928     {
1929       Label L;
1930       __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1931       __ beqz(t0, L);
1932       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1933       __ bind(L);
1934     }
1935 #endif /* ASSERT */
1936 
1937     __ sd(x9, Address(xthread, in_bytes(Thread::pending_exception_offset())));
1938 
1939     if (ret_type == T_FLOAT || ret_type == T_DOUBLE) {
1940       restore_native_result(masm, ret_type, stack_slots);
1941     }
1942     __ j(unlock_done);
1943 
1944     __ block_comment("} Slow path unlock");
1945 
1946   } // synchronized
1947 
1948   // SLOW PATH Reguard the stack if needed
1949 
1950   __ bind(reguard);
1951   save_native_result(masm, ret_type, stack_slots);
1952   __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
1953   restore_native_result(masm, ret_type, stack_slots);
1954   // and continue
1955   __ j(reguard_done);
1956 
1957   // SLOW PATH safepoint
1958   {
1959     __ block_comment("safepoint {");
1960     __ bind(safepoint_in_progress);
1961 
1962     // Don't use call_VM as it will see a possible pending exception and forward it
1963     // and never return here preventing us from clearing _last_native_pc down below.
1964     //
1965     save_native_result(masm, ret_type, stack_slots);
1966     __ mv(c_rarg0, xthread);
1967 #ifndef PRODUCT
1968     assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
1969 #endif
1970     __ rt_call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1971 
1972     // Restore any method result value
1973     restore_native_result(masm, ret_type, stack_slots);
1974 
1975     __ j(safepoint_in_progress_done);
1976     __ block_comment("} safepoint");
1977   }
1978 
1979   // SLOW PATH dtrace support
1980   if (DTraceMethodProbes) {
1981     {
1982       __ block_comment("dtrace entry {");
1983       __ bind(dtrace_method_entry);
1984 
1985       // We have all of the arguments setup at this point. We must not touch any register
1986       // argument registers at this point (what if we save/restore them there are no oop?
1987 
1988       save_args(masm, total_c_args, c_arg, out_regs);
1989       __ mov_metadata(c_rarg1, method());
1990       __ call_VM_leaf(
1991         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1992         xthread, c_rarg1);
1993       restore_args(masm, total_c_args, c_arg, out_regs);
1994       __ j(dtrace_method_entry_done);
1995       __ block_comment("} dtrace entry");
1996     }
1997 
1998     {
1999       __ block_comment("dtrace exit {");
2000       __ bind(dtrace_method_exit);
2001       save_native_result(masm, ret_type, stack_slots);
2002       __ mov_metadata(c_rarg1, method());
2003       __ call_VM_leaf(
2004            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2005            xthread, c_rarg1);
2006       restore_native_result(masm, ret_type, stack_slots);
2007       __ j(dtrace_method_exit_done);
2008       __ block_comment("} dtrace exit");
2009     }
2010   }
2011 
2012   __ flush();
2013 
2014   nmethod *nm = nmethod::new_native_nmethod(method,
2015                                             compile_id,
2016                                             masm->code(),
2017                                             vep_offset,
2018                                             frame_complete,
2019                                             stack_slots / VMRegImpl::slots_per_word,
2020                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2021                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2022                                             oop_maps);
2023   assert(nm != nullptr, "create native nmethod fail!");
2024   return nm;
2025 }
2026 
2027 // this function returns the adjust size (in number of words) to a c2i adapter
2028 // activation for use during deoptimization
2029 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2030   assert(callee_locals >= callee_parameters,
2031          "test and remove; got more parms than locals");
2032   if (callee_locals < callee_parameters) {
2033     return 0;                   // No adjustment for negative locals
2034   }
2035   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2036   // diff is counted in stack words
2037   return align_up(diff, 2);
2038 }
2039 
2040 //------------------------------generate_deopt_blob----------------------------
2041 void SharedRuntime::generate_deopt_blob() {
2042   // Allocate space for the code
2043   ResourceMark rm;
2044   // Setup code generation tools
2045   int pad = 0;
2046 #if INCLUDE_JVMCI
2047   if (EnableJVMCI) {
2048     pad += 512; // Increase the buffer size when compiling for JVMCI
2049   }
2050 #endif
2051   const char* name = SharedRuntime::stub_name(StubId::shared_deopt_id);
2052   CodeBuffer buffer(name, 2048 + pad, 1024);
2053   MacroAssembler* masm = new MacroAssembler(&buffer);
2054   int frame_size_in_words = -1;
2055   OopMap* map = nullptr;
2056   OopMapSet *oop_maps = new OopMapSet();
2057   assert_cond(masm != nullptr && oop_maps != nullptr);
2058   RegisterSaver reg_saver(COMPILER2_OR_JVMCI != 0);
2059 
2060   // -------------
2061   // This code enters when returning to a de-optimized nmethod.  A return
2062   // address has been pushed on the stack, and return values are in
2063   // registers.
2064   // If we are doing a normal deopt then we were called from the patched
2065   // nmethod from the point we returned to the nmethod. So the return
2066   // address on the stack is wrong by NativeCall::instruction_size
2067   // We will adjust the value so it looks like we have the original return
2068   // address on the stack (like when we eagerly deoptimized).
2069   // In the case of an exception pending when deoptimizing, we enter
2070   // with a return address on the stack that points after the call we patched
2071   // into the exception handler. We have the following register state from,
2072   // e.g., the forward exception stub (see stubGenerator_riscv.cpp).
2073   //    x10: exception oop
2074   //    x9: exception handler
2075   //    x13: throwing pc
2076   // So in this case we simply jam x13 into the useless return address and
2077   // the stack looks just like we want.
2078   //
2079   // At this point we need to de-opt.  We save the argument return
2080   // registers.  We call the first C routine, fetch_unroll_info().  This
2081   // routine captures the return values and returns a structure which
2082   // describes the current frame size and the sizes of all replacement frames.
2083   // The current frame is compiled code and may contain many inlined
2084   // functions, each with their own JVM state.  We pop the current frame, then
2085   // push all the new frames.  Then we call the C routine unpack_frames() to
2086   // populate these frames.  Finally unpack_frames() returns us the new target
2087   // address.  Notice that callee-save registers are BLOWN here; they have
2088   // already been captured in the vframeArray at the time the return PC was
2089   // patched.
2090   address start = __ pc();
2091   Label cont;
2092 
2093   // Prolog for non exception case!
2094 
2095   // Save everything in sight.
2096   map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
2097 
2098   // Normal deoptimization.  Save exec mode for unpack_frames.
2099   __ mv(xcpool, Deoptimization::Unpack_deopt); // callee-saved
2100   __ j(cont);
2101 
2102   int reexecute_offset = __ pc() - start;
2103 #if INCLUDE_JVMCI && !defined(COMPILER1)
2104   if (UseJVMCICompiler) {
2105     // JVMCI does not use this kind of deoptimization
2106     __ should_not_reach_here();
2107   }
2108 #endif
2109 
2110   // Reexecute case
2111   // return address is the pc describes what bci to do re-execute at
2112 
2113   // No need to update map as each call to save_live_registers will produce identical oopmap
2114   (void) reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
2115 
2116   __ mv(xcpool, Deoptimization::Unpack_reexecute); // callee-saved
2117   __ j(cont);
2118 
2119 #if INCLUDE_JVMCI
2120   Label after_fetch_unroll_info_call;
2121   int implicit_exception_uncommon_trap_offset = 0;
2122   int uncommon_trap_offset = 0;
2123 
2124   if (EnableJVMCI) {
2125     implicit_exception_uncommon_trap_offset = __ pc() - start;
2126 
2127     __ ld(ra, Address(xthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2128     __ sd(zr, Address(xthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2129 
2130     uncommon_trap_offset = __ pc() - start;
2131 
2132     // Save everything in sight.
2133     reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
2134     // fetch_unroll_info needs to call last_java_frame()
2135     Label retaddr;
2136     __ set_last_Java_frame(sp, noreg, retaddr, t0);
2137 
2138     __ lw(c_rarg1, Address(xthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2139     __ mv(t0, -1);
2140     __ sw(t0, Address(xthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2141 
2142     __ mv(xcpool, Deoptimization::Unpack_reexecute);
2143     __ mv(c_rarg0, xthread);
2144     __ orrw(c_rarg2, zr, xcpool); // exec mode
2145     __ rt_call(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap));
2146     __ bind(retaddr);
2147     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2148 
2149     __ reset_last_Java_frame(false);
2150 
2151     __ j(after_fetch_unroll_info_call);
2152   } // EnableJVMCI
2153 #endif // INCLUDE_JVMCI
2154 
2155   int exception_offset = __ pc() - start;
2156 
2157   // Prolog for exception case
2158 
2159   // all registers are dead at this entry point, except for x10, and
2160   // x13 which contain the exception oop and exception pc
2161   // respectively.  Set them in TLS and fall thru to the
2162   // unpack_with_exception_in_tls entry point.
2163 
2164   __ sd(x13, Address(xthread, JavaThread::exception_pc_offset()));
2165   __ sd(x10, Address(xthread, JavaThread::exception_oop_offset()));
2166 
2167   int exception_in_tls_offset = __ pc() - start;
2168 
2169   // new implementation because exception oop is now passed in JavaThread
2170 
2171   // Prolog for exception case
2172   // All registers must be preserved because they might be used by LinearScan
2173   // Exceptiop oop and throwing PC are passed in JavaThread
2174   // tos: stack at point of call to method that threw the exception (i.e. only
2175   // args are on the stack, no return address)
2176 
2177   // The return address pushed by save_live_registers will be patched
2178   // later with the throwing pc. The correct value is not available
2179   // now because loading it from memory would destroy registers.
2180 
2181   // NB: The SP at this point must be the SP of the method that is
2182   // being deoptimized.  Deoptimization assumes that the frame created
2183   // here by save_live_registers is immediately below the method's SP.
2184   // This is a somewhat fragile mechanism.
2185 
2186   // Save everything in sight.
2187   map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
2188 
2189   // Now it is safe to overwrite any register
2190 
2191   // Deopt during an exception.  Save exec mode for unpack_frames.
2192   __ mv(xcpool, Deoptimization::Unpack_exception); // callee-saved
2193 
2194   // load throwing pc from JavaThread and patch it as the return address
2195   // of the current frame. Then clear the field in JavaThread
2196 
2197   __ ld(x13, Address(xthread, JavaThread::exception_pc_offset()));
2198   __ sd(x13, Address(fp, frame::return_addr_offset * wordSize));
2199   __ sd(zr, Address(xthread, JavaThread::exception_pc_offset()));
2200 
2201 #ifdef ASSERT
2202   // verify that there is really an exception oop in JavaThread
2203   __ ld(x10, Address(xthread, JavaThread::exception_oop_offset()));
2204   __ verify_oop(x10);
2205 
2206   // verify that there is no pending exception
2207   Label no_pending_exception;
2208   __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
2209   __ beqz(t0, no_pending_exception);
2210   __ stop("must not have pending exception here");
2211   __ bind(no_pending_exception);
2212 #endif
2213 
2214   __ bind(cont);
2215 
2216   // Call C code.  Need thread and this frame, but NOT official VM entry
2217   // crud.  We cannot block on this call, no GC can happen.
2218   //
2219   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2220 
2221   // fetch_unroll_info needs to call last_java_frame().
2222 
2223   Label retaddr;
2224   __ set_last_Java_frame(sp, noreg, retaddr, t0);
2225 #ifdef ASSERT
2226   {
2227     Label L;
2228     __ ld(t0, Address(xthread,
2229                               JavaThread::last_Java_fp_offset()));
2230     __ beqz(t0, L);
2231     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2232     __ bind(L);
2233   }
2234 #endif // ASSERT
2235   __ mv(c_rarg0, xthread);
2236   __ mv(c_rarg1, xcpool);
2237   __ rt_call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info));
2238   __ bind(retaddr);
2239 
2240   // Need to have an oopmap that tells fetch_unroll_info where to
2241   // find any register it might need.
2242   oop_maps->add_gc_map(__ pc() - start, map);
2243 
2244   __ reset_last_Java_frame(false);
2245 
2246 #if INCLUDE_JVMCI
2247   if (EnableJVMCI) {
2248     __ bind(after_fetch_unroll_info_call);
2249   }
2250 #endif
2251 
2252   // Load UnrollBlock* into x15
2253   __ mv(x15, x10);
2254 
2255   __ lwu(xcpool, Address(x15, Deoptimization::UnrollBlock::unpack_kind_offset()));
2256   Label noException;
2257   __ mv(t0, Deoptimization::Unpack_exception);
2258   __ bne(xcpool, t0, noException); // Was exception pending?
2259   __ ld(x10, Address(xthread, JavaThread::exception_oop_offset()));
2260   __ ld(x13, Address(xthread, JavaThread::exception_pc_offset()));
2261   __ sd(zr, Address(xthread, JavaThread::exception_oop_offset()));
2262   __ sd(zr, Address(xthread, JavaThread::exception_pc_offset()));
2263 
2264   __ verify_oop(x10);
2265 
2266   // Overwrite the result registers with the exception results.
2267   __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10)));
2268 
2269   __ bind(noException);
2270 
2271   // Only register save data is on the stack.
2272   // Now restore the result registers.  Everything else is either dead
2273   // or captured in the vframeArray.
2274 
2275   // Restore fp result register
2276   __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10)));
2277   // Restore integer result register
2278   __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10)));
2279 
2280   // Pop all of the register save area off the stack
2281   __ add(sp, sp, frame_size_in_words * wordSize);
2282 
2283   // All of the register save area has been popped of the stack. Only the
2284   // return address remains.
2285 
2286   // Pop all the frames we must move/replace.
2287   //
2288   // Frame picture (youngest to oldest)
2289   // 1: self-frame (no frame link)
2290   // 2: deopting frame  (no frame link)
2291   // 3: caller of deopting frame (could be compiled/interpreted).
2292   //
2293   // Note: by leaving the return address of self-frame on the stack
2294   // and using the size of frame 2 to adjust the stack
2295   // when we are done the return to frame 3 will still be on the stack.
2296 
2297   // Pop deoptimized frame
2298   __ lwu(x12, Address(x15, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2299   __ subi(x12, x12, 2 * wordSize);
2300   __ add(sp, sp, x12);
2301   __ ld(fp, Address(sp, 0));
2302   __ ld(ra, Address(sp, wordSize));
2303   __ addi(sp, sp, 2 * wordSize);
2304   // RA should now be the return address to the caller (3)
2305 
2306 #ifdef ASSERT
2307   // Compilers generate code that bang the stack by as much as the
2308   // interpreter would need. So this stack banging should never
2309   // trigger a fault. Verify that it does not on non product builds.
2310   __ lwu(x9, Address(x15, Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2311   __ bang_stack_size(x9, x12);
2312 #endif
2313   // Load address of array of frame pcs into x12
2314   __ ld(x12, Address(x15, Deoptimization::UnrollBlock::frame_pcs_offset()));
2315 
2316   // Load address of array of frame sizes into x14
2317   __ ld(x14, Address(x15, Deoptimization::UnrollBlock::frame_sizes_offset()));
2318 
2319   // Load counter into x13
2320   __ lwu(x13, Address(x15, Deoptimization::UnrollBlock::number_of_frames_offset()));
2321 
2322   // Now adjust the caller's stack to make up for the extra locals
2323   // but record the original sp so that we can save it in the skeletal interpreter
2324   // frame and the stack walking of interpreter_sender will get the unextended sp
2325   // value and not the "real" sp value.
2326 
2327   const Register sender_sp = x16;
2328 
2329   __ mv(sender_sp, sp);
2330   __ lwu(x9, Address(x15,
2331                      Deoptimization::UnrollBlock::
2332                      caller_adjustment_offset()));
2333   __ sub(sp, sp, x9);
2334 
2335   // Push interpreter frames in a loop
2336   __ mv(t0, 0xDEADDEAD);               // Make a recognizable pattern
2337   __ mv(t1, t0);
2338   Label loop;
2339   __ bind(loop);
2340   __ ld(x9, Address(x14, 0));          // Load frame size
2341   __ addi(x14, x14, wordSize);
2342   __ subi(x9, x9, 2 * wordSize);       // We'll push pc and fp by hand
2343   __ ld(ra, Address(x12, 0));          // Load pc
2344   __ addi(x12, x12, wordSize);
2345   __ enter();                          // Save old & set new fp
2346   __ sub(sp, sp, x9);                  // Prolog
2347   // This value is corrected by layout_activation_impl
2348   __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
2349   __ sd(sender_sp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2350   __ mv(sender_sp, sp);                // Pass sender_sp to next frame
2351   __ subi(x13, x13, 1);                // Decrement counter
2352   __ bnez(x13, loop);
2353 
2354     // Re-push self-frame
2355   __ ld(ra, Address(x12));
2356   __ enter();
2357 
2358   // Allocate a full sized register save area.  We subtract 2 because
2359   // enter() just pushed 2 words
2360   __ sub(sp, sp, (frame_size_in_words - 2) * wordSize);
2361 
2362   // Restore frame locals after moving the frame
2363   __ fsd(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10)));
2364   __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10)));
2365 
2366   // Call C code.  Need thread but NOT official VM entry
2367   // crud.  We cannot block on this call, no GC can happen.  Call should
2368   // restore return values to their stack-slots with the new SP.
2369   //
2370   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2371 
2372   // Use fp because the frames look interpreted now
2373   // Don't need the precise return PC here, just precise enough to point into this code blob.
2374   address the_pc = __ pc();
2375   __ set_last_Java_frame(sp, fp, the_pc, t0);
2376 
2377   __ mv(c_rarg0, xthread);
2378   __ mv(c_rarg1, xcpool); // second arg: exec_mode
2379   __ rt_call(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames));
2380 
2381   // Set an oopmap for the call site
2382   // Use the same PC we used for the last java frame
2383   oop_maps->add_gc_map(the_pc - start,
2384                        new OopMap(frame_size_in_words, 0));
2385 
2386   // Clear fp AND pc
2387   __ reset_last_Java_frame(true);
2388 
2389   // Collect return values
2390   __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10)));
2391   __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10)));
2392 
2393   // Pop self-frame.
2394   __ leave();                           // Epilog
2395 
2396   // Jump to interpreter
2397   __ ret();
2398 
2399   // Make sure all code is generated
2400   masm->flush();
2401 
2402   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2403   assert(_deopt_blob != nullptr, "create deoptimization blob fail!");
2404   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2405 #if INCLUDE_JVMCI
2406   if (EnableJVMCI) {
2407     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
2408     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
2409   }
2410 #endif
2411 }
2412 
2413 // Number of stack slots between incoming argument block and the start of
2414 // a new frame. The PROLOG must add this many slots to the stack. The
2415 // EPILOG must remove this many slots.
2416 // RISCV needs two words for RA (return address) and FP (frame pointer).
2417 uint SharedRuntime::in_preserve_stack_slots() {
2418   return 2 * VMRegImpl::slots_per_word;
2419 }
2420 
2421 uint SharedRuntime::out_preserve_stack_slots() {
2422   return 0;
2423 }
2424 
2425 VMReg SharedRuntime::thread_register() {
2426   return xthread->as_VMReg();
2427 }
2428 
2429 //------------------------------generate_handler_blob------
2430 //
2431 // Generate a special Compile2Runtime blob that saves all registers,
2432 // and setup oopmap.
2433 //
2434 SafepointBlob* SharedRuntime::generate_handler_blob(StubId id, address call_ptr) {
2435   assert(is_polling_page_id(id), "expected a polling page stub id");
2436 
2437   ResourceMark rm;
2438   OopMapSet *oop_maps = new OopMapSet();
2439   assert_cond(oop_maps != nullptr);
2440   OopMap* map = nullptr;
2441 
2442   // Allocate space for the code.  Setup code generation tools.
2443   const char* name = SharedRuntime::stub_name(id);
2444   CodeBuffer buffer(name, 2048, 1024);
2445   MacroAssembler* masm = new MacroAssembler(&buffer);
2446   assert_cond(masm != nullptr);
2447 
2448   address start   = __ pc();
2449   address call_pc = nullptr;
2450   int frame_size_in_words = -1;
2451   bool cause_return = (id == StubId::shared_polling_page_return_handler_id);
2452   RegisterSaver reg_saver(id == StubId::shared_polling_page_vectors_safepoint_handler_id /* save_vectors */);
2453 
2454   // Save Integer and Float registers.
2455   map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
2456 
2457   // The following is basically a call_VM.  However, we need the precise
2458   // address of the call in order to generate an oopmap. Hence, we do all the
2459   // work ourselves.
2460 
2461   Label retaddr;
2462   __ set_last_Java_frame(sp, noreg, retaddr, t0);
2463 
2464   // The return address must always be correct so that frame constructor never
2465   // sees an invalid pc.
2466 
2467   if (!cause_return) {
2468     // overwrite the return address pushed by save_live_registers
2469     // Additionally, x18 is a callee-saved register so we can look at
2470     // it later to determine if someone changed the return address for
2471     // us!
2472     __ ld(x18, Address(xthread, JavaThread::saved_exception_pc_offset()));
2473     __ sd(x18, Address(fp, frame::return_addr_offset * wordSize));
2474   }
2475 
2476   // Do the call
2477   __ mv(c_rarg0, xthread);
2478   __ rt_call(call_ptr);
2479   __ bind(retaddr);
2480 
2481   // Set an oopmap for the call site.  This oopmap will map all
2482   // oop-registers and debug-info registers as callee-saved.  This
2483   // will allow deoptimization at this safepoint to find all possible
2484   // debug-info recordings, as well as let GC find all oops.
2485 
2486   oop_maps->add_gc_map( __ pc() - start, map);
2487 
2488   Label noException;
2489 
2490   __ reset_last_Java_frame(false);
2491 
2492   __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2493 
2494   __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
2495   __ beqz(t0, noException);
2496 
2497   // Exception pending
2498 
2499   reg_saver.restore_live_registers(masm);
2500 
2501   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2502 
2503   // No exception case
2504   __ bind(noException);
2505 
2506   Label no_adjust, bail;
2507   if (!cause_return) {
2508     // If our stashed return pc was modified by the runtime we avoid touching it
2509     __ ld(t0, Address(fp, frame::return_addr_offset * wordSize));
2510     __ bne(x18, t0, no_adjust);
2511 
2512 #ifdef ASSERT
2513     // Verify the correct encoding of the poll we're about to skip.
2514     // See NativeInstruction::is_lwu_to_zr()
2515     __ lwu(t0, Address(x18));
2516     __ andi(t1, t0, 0b1111111);
2517     __ mv(t2, 0b0000011);
2518     __ bne(t1, t2, bail); // 0-6:0b0000011
2519     __ srli(t1, t0, 7);
2520     __ andi(t1, t1, 0b11111);
2521     __ bnez(t1, bail);    // 7-11:0b00000
2522     __ srli(t1, t0, 12);
2523     __ andi(t1, t1, 0b111);
2524     __ mv(t2, 0b110);
2525     __ bne(t1, t2, bail); // 12-14:0b110
2526 #endif
2527 
2528     // Adjust return pc forward to step over the safepoint poll instruction
2529     __ addi(x18, x18, NativeInstruction::instruction_size);
2530     __ sd(x18, Address(fp, frame::return_addr_offset * wordSize));
2531   }
2532 
2533   __ bind(no_adjust);
2534   // Normal exit, restore registers and exit.
2535 
2536   reg_saver.restore_live_registers(masm);
2537   __ ret();
2538 
2539 #ifdef ASSERT
2540   __ bind(bail);
2541   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2542 #endif
2543 
2544   // Make sure all code is generated
2545   masm->flush();
2546 
2547   // Fill-out other meta info
2548   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2549 }
2550 
2551 //
2552 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2553 //
2554 // Generate a stub that calls into vm to find out the proper destination
2555 // of a java call. All the argument registers are live at this point
2556 // but since this is generic code we don't know what they are and the caller
2557 // must do any gc of the args.
2558 //
2559 RuntimeStub* SharedRuntime::generate_resolve_blob(StubId id, address destination) {
2560   assert(StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2561   assert(is_resolve_id(id), "expected a resolve stub id");
2562 
2563   // allocate space for the code
2564   ResourceMark rm;
2565 
2566   const char* name = SharedRuntime::stub_name(id);
2567   CodeBuffer buffer(name, 1000, 512);
2568   MacroAssembler* masm = new MacroAssembler(&buffer);
2569   assert_cond(masm != nullptr);
2570 
2571   int frame_size_in_words = -1;
2572   RegisterSaver reg_saver(false /* save_vectors */);
2573 
2574   OopMapSet *oop_maps = new OopMapSet();
2575   assert_cond(oop_maps != nullptr);
2576   OopMap* map = nullptr;
2577 
2578   int start = __ offset();
2579 
2580   map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
2581 
2582   int frame_complete = __ offset();
2583 
2584   {
2585     Label retaddr;
2586     __ set_last_Java_frame(sp, noreg, retaddr, t0);
2587 
2588     __ mv(c_rarg0, xthread);
2589     __ rt_call(destination);
2590     __ bind(retaddr);
2591   }
2592 
2593   // Set an oopmap for the call site.
2594   // We need this not only for callee-saved registers, but also for volatile
2595   // registers that the compiler might be keeping live across a safepoint.
2596 
2597   oop_maps->add_gc_map( __ offset() - start, map);
2598 
2599   // x10 contains the address we are going to jump to assuming no exception got installed
2600 
2601   // clear last_Java_sp
2602   __ reset_last_Java_frame(false);
2603   // check for pending exceptions
2604   Label pending;
2605   __ ld(t1, Address(xthread, Thread::pending_exception_offset()));
2606   __ bnez(t1, pending);
2607 
2608   // get the returned Method*
2609   __ get_vm_result_metadata(xmethod, xthread);
2610   __ sd(xmethod, Address(sp, reg_saver.reg_offset_in_bytes(xmethod)));
2611 
2612   // x10 is where we want to jump, overwrite t1 which is saved and temporary
2613   __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(t1)));
2614   reg_saver.restore_live_registers(masm);
2615 
2616   // We are back to the original state on entry and ready to go.
2617   __ jr(t1);
2618 
2619   // Pending exception after the safepoint
2620 
2621   __ bind(pending);
2622 
2623   reg_saver.restore_live_registers(masm);
2624 
2625   // exception pending => remove activation and forward to exception handler
2626 
2627   __ sd(zr, Address(xthread, JavaThread::vm_result_oop_offset()));
2628 
2629   __ ld(x10, Address(xthread, Thread::pending_exception_offset()));
2630   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2631 
2632   // -------------
2633   // make sure all code is generated
2634   masm->flush();
2635 
2636   // return the  blob
2637   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
2638 }
2639 
2640 // Continuation point for throwing of implicit exceptions that are
2641 // not handled in the current activation. Fabricates an exception
2642 // oop and initiates normal exception dispatching in this
2643 // frame. Since we need to preserve callee-saved values (currently
2644 // only for C2, but done for C1 as well) we need a callee-saved oop
2645 // map and therefore have to make these stubs into RuntimeStubs
2646 // rather than BufferBlobs.  If the compiler needs all registers to
2647 // be preserved between the fault point and the exception handler
2648 // then it must assume responsibility for that in
2649 // AbstractCompiler::continuation_for_implicit_null_exception or
2650 // continuation_for_implicit_division_by_zero_exception. All other
2651 // implicit exceptions (e.g., NullPointerException or
2652 // AbstractMethodError on entry) are either at call sites or
2653 // otherwise assume that stack unwinding will be initiated, so
2654 // caller saved registers were assumed volatile in the compiler.
2655 
2656 RuntimeStub* SharedRuntime::generate_throw_exception(StubId id, address runtime_entry) {
2657   assert(is_throw_id(id), "expected a throw stub id");
2658 
2659   const char* name = SharedRuntime::stub_name(id);
2660 
2661   // Information about frame layout at time of blocking runtime call.
2662   // Note that we only have to preserve callee-saved registers since
2663   // the compilers are responsible for supplying a continuation point
2664   // if they expect all registers to be preserved.
2665   // n.b. riscv asserts that frame::arg_reg_save_area_bytes == 0
2666   assert_cond(runtime_entry != nullptr);
2667   enum layout {
2668     fp_off = 0,
2669     fp_off2,
2670     return_off,
2671     return_off2,
2672     framesize // inclusive of return address
2673   };
2674 
2675   const int insts_size = 1024;
2676   const int locs_size  = 64;
2677 
2678   ResourceMark rm;
2679   const char* timer_msg = "SharedRuntime generate_throw_exception";
2680   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
2681 
2682   CodeBuffer code(name, insts_size, locs_size);
2683   OopMapSet* oop_maps  = new OopMapSet();
2684   MacroAssembler* masm = new MacroAssembler(&code);
2685   assert_cond(oop_maps != nullptr && masm != nullptr);
2686 
2687   address start = __ pc();
2688 
2689   // This is an inlined and slightly modified version of call_VM
2690   // which has the ability to fetch the return PC out of
2691   // thread-local storage and also sets up last_Java_sp slightly
2692   // differently than the real call_VM
2693 
2694   __ enter(); // Save FP and RA before call
2695 
2696   assert(is_even(framesize / 2), "sp not 16-byte aligned");
2697 
2698   // ra and fp are already in place
2699   __ subi(sp, fp, (unsigned)framesize << LogBytesPerInt); // prolog
2700 
2701   int frame_complete = __ pc() - start;
2702 
2703   // Set up last_Java_sp and last_Java_fp
2704   address the_pc = __ pc();
2705   __ set_last_Java_frame(sp, fp, the_pc, t0);
2706 
2707   // Call runtime
2708   __ mv(c_rarg0, xthread);
2709   BLOCK_COMMENT("call runtime_entry");
2710   __ rt_call(runtime_entry);
2711 
2712   // Generate oop map
2713   OopMap* map = new OopMap(framesize, 0);
2714   assert_cond(map != nullptr);
2715 
2716   oop_maps->add_gc_map(the_pc - start, map);
2717 
2718   __ reset_last_Java_frame(true);
2719 
2720   __ leave();
2721 
2722   // check for pending exceptions
2723 #ifdef ASSERT
2724   Label L;
2725   __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
2726   __ bnez(t0, L);
2727   __ should_not_reach_here();
2728   __ bind(L);
2729 #endif // ASSERT
2730   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2731 
2732   // codeBlob framesize is in words (not VMRegImpl::slot_size)
2733   RuntimeStub* stub =
2734     RuntimeStub::new_runtime_stub(name,
2735                                   &code,
2736                                   frame_complete,
2737                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2738                                   oop_maps, false);
2739   assert(stub != nullptr, "create runtime stub fail!");
2740   return stub;
2741 }
2742 
2743 #if INCLUDE_JFR
2744 
2745 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) {
2746   __ set_last_Java_frame(sp, fp, the_pc, t0);
2747   __ mv(c_rarg0, thread);
2748 }
2749 
2750 static void jfr_epilogue(MacroAssembler* masm) {
2751   __ reset_last_Java_frame(true);
2752 }
2753 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
2754 // It returns a jobject handle to the event writer.
2755 // The handle is dereferenced and the return value is the event writer oop.
2756 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() {
2757   enum layout {
2758     fp_off,
2759     fp_off2,
2760     return_off,
2761     return_off2,
2762     framesize // inclusive of return address
2763   };
2764 
2765   int insts_size = 1024;
2766   int locs_size = 64;
2767   const char* name = SharedRuntime::stub_name(StubId::shared_jfr_write_checkpoint_id);
2768   CodeBuffer code(name, insts_size, locs_size);
2769   OopMapSet* oop_maps = new OopMapSet();
2770   MacroAssembler* masm = new MacroAssembler(&code);
2771 
2772   address start = __ pc();
2773   __ enter();
2774   int frame_complete = __ pc() - start;
2775   address the_pc = __ pc();
2776   jfr_prologue(the_pc, masm, xthread);
2777   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1);
2778 
2779   jfr_epilogue(masm);
2780   __ resolve_global_jobject(x10, t0, t1);
2781   __ leave();
2782   __ ret();
2783 
2784   OopMap* map = new OopMap(framesize, 1);
2785   oop_maps->add_gc_map(the_pc - start, map);
2786 
2787   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2788     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2789                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2790                                   oop_maps, false);
2791   return stub;
2792 }
2793 
2794 // For c2: call to return a leased buffer.
2795 RuntimeStub* SharedRuntime::generate_jfr_return_lease() {
2796   enum layout {
2797     fp_off,
2798     fp_off2,
2799     return_off,
2800     return_off2,
2801     framesize // inclusive of return address
2802   };
2803 
2804   int insts_size = 1024;
2805   int locs_size = 64;
2806   const char* name = SharedRuntime::stub_name(StubId::shared_jfr_return_lease_id);
2807   CodeBuffer code(name, insts_size, locs_size);
2808   OopMapSet* oop_maps = new OopMapSet();
2809   MacroAssembler* masm = new MacroAssembler(&code);
2810 
2811   address start = __ pc();
2812   __ enter();
2813   int frame_complete = __ pc() - start;
2814   address the_pc = __ pc();
2815   jfr_prologue(the_pc, masm, xthread);
2816   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1);
2817 
2818   jfr_epilogue(masm);
2819   __ leave();
2820   __ ret();
2821 
2822   OopMap* map = new OopMap(framesize, 1);
2823   oop_maps->add_gc_map(the_pc - start, map);
2824 
2825   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2826     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2827                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2828                                   oop_maps, false);
2829   return stub;
2830 }
2831 
2832 #endif // INCLUDE_JFR