1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "interpreter/interp_masm.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "interpreter/interpreterRuntime.hpp" 35 #include "interpreter/templateTable.hpp" 36 #include "memory/universe.hpp" 37 #include "oops/method.inline.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/resolvedFieldEntry.hpp" 42 #include "oops/resolvedIndyEntry.hpp" 43 #include "oops/resolvedMethodEntry.hpp" 44 #include "prims/jvmtiExport.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/synchronizer.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 #define __ _masm-> 53 54 // Address computation: local variables 55 56 static inline Address iaddress(int n) { 57 return Address(xlocals, Interpreter::local_offset_in_bytes(n)); 58 } 59 60 static inline Address laddress(int n) { 61 return iaddress(n + 1); 62 } 63 64 static inline Address faddress(int n) { 65 return iaddress(n); 66 } 67 68 static inline Address daddress(int n) { 69 return laddress(n); 70 } 71 72 static inline Address aaddress(int n) { 73 return iaddress(n); 74 } 75 76 static inline Address iaddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 77 _masm->shadd(temp, r, xlocals, temp, 3); 78 return Address(temp, 0); 79 } 80 81 static inline Address laddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 82 _masm->shadd(temp, r, xlocals, temp, 3); 83 return Address(temp, Interpreter::local_offset_in_bytes(1));; 84 } 85 86 static inline Address faddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 87 return iaddress(r, temp, _masm); 88 } 89 90 static inline Address daddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 91 return laddress(r, temp, _masm); 92 } 93 94 static inline Address aaddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 95 return iaddress(r, temp, _masm); 96 } 97 98 static inline Address at_rsp() { 99 return Address(esp, 0); 100 } 101 102 // At top of Java expression stack which may be different than esp(). It 103 // isn't for category 1 objects. 104 static inline Address at_tos () { 105 return Address(esp, Interpreter::expr_offset_in_bytes(0)); 106 } 107 108 static inline Address at_tos_p1() { 109 return Address(esp, Interpreter::expr_offset_in_bytes(1)); 110 } 111 112 static inline Address at_tos_p2() { 113 return Address(esp, Interpreter::expr_offset_in_bytes(2)); 114 } 115 116 static inline Address at_tos_p3() { 117 return Address(esp, Interpreter::expr_offset_in_bytes(3)); 118 } 119 120 static inline Address at_tos_p4() { 121 return Address(esp, Interpreter::expr_offset_in_bytes(4)); 122 } 123 124 static inline Address at_tos_p5() { 125 return Address(esp, Interpreter::expr_offset_in_bytes(5)); 126 } 127 128 // Miscellaneous helper routines 129 // Store an oop (or null) at the Address described by obj. 130 // If val == noreg this means store a null 131 static void do_oop_store(InterpreterMacroAssembler* _masm, 132 Address dst, 133 Register val, 134 DecoratorSet decorators) { 135 assert(val == noreg || val == x10, "parameter is just for looks"); 136 __ store_heap_oop(dst, val, x28, x29, x13, decorators); 137 } 138 139 static void do_oop_load(InterpreterMacroAssembler* _masm, 140 Address src, 141 Register dst, 142 DecoratorSet decorators) { 143 __ load_heap_oop(dst, src, x28, x29, decorators); 144 } 145 146 Address TemplateTable::at_bcp(int offset) { 147 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 148 return Address(xbcp, offset); 149 } 150 151 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 152 Register temp_reg, bool load_bc_into_bc_reg /*=true*/, 153 int byte_no) { 154 if (!RewriteBytecodes) { return; } 155 Label L_patch_done; 156 157 switch (bc) { 158 case Bytecodes::_fast_aputfield: // fall through 159 case Bytecodes::_fast_bputfield: // fall through 160 case Bytecodes::_fast_zputfield: // fall through 161 case Bytecodes::_fast_cputfield: // fall through 162 case Bytecodes::_fast_dputfield: // fall through 163 case Bytecodes::_fast_fputfield: // fall through 164 case Bytecodes::_fast_iputfield: // fall through 165 case Bytecodes::_fast_lputfield: // fall through 166 case Bytecodes::_fast_sputfield: { 167 // We skip bytecode quickening for putfield instructions when 168 // the put_code written to the constant pool cache is zero. 169 // This is required so that every execution of this instruction 170 // calls out to InterpreterRuntime::resolve_get_put to do 171 // additional, required work. 172 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 173 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 174 __ load_field_entry(temp_reg, bc_reg); 175 if (byte_no == f1_byte) { 176 __ la(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 177 } else { 178 __ la(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 179 } 180 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 181 __ lbu(temp_reg, Address(temp_reg, 0)); 182 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 183 __ mv(bc_reg, bc); 184 __ beqz(temp_reg, L_patch_done); 185 break; 186 } 187 default: 188 assert(byte_no == -1, "sanity"); 189 // the pair bytecodes have already done the load. 190 if (load_bc_into_bc_reg) { 191 __ mv(bc_reg, bc); 192 } 193 } 194 195 if (JvmtiExport::can_post_breakpoint()) { 196 Label L_fast_patch; 197 // if a breakpoint is present we can't rewrite the stream directly 198 __ load_unsigned_byte(temp_reg, at_bcp(0)); 199 __ addi(temp_reg, temp_reg, -Bytecodes::_breakpoint); // temp_reg is temporary register. 200 __ bnez(temp_reg, L_fast_patch); 201 // Let breakpoint table handling rewrite to quicker bytecode 202 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), xmethod, xbcp, bc_reg); 203 __ j(L_patch_done); 204 __ bind(L_fast_patch); 205 } 206 207 #ifdef ASSERT 208 Label L_okay; 209 __ load_unsigned_byte(temp_reg, at_bcp(0)); 210 __ beq(temp_reg, bc_reg, L_okay); 211 __ addi(temp_reg, temp_reg, -(int) Bytecodes::java_code(bc)); 212 __ beqz(temp_reg, L_okay); 213 __ stop("patching the wrong bytecode"); 214 __ bind(L_okay); 215 #endif 216 217 // patch bytecode 218 __ sb(bc_reg, at_bcp(0)); 219 __ bind(L_patch_done); 220 } 221 222 // Individual instructions 223 224 void TemplateTable::nop() { 225 transition(vtos, vtos); 226 // nothing to do 227 } 228 229 void TemplateTable::shouldnotreachhere() { 230 transition(vtos, vtos); 231 __ stop("should not reach here bytecode"); 232 } 233 234 void TemplateTable::aconst_null() { 235 transition(vtos, atos); 236 __ mv(x10, zr); 237 } 238 239 void TemplateTable::iconst(int value) { 240 transition(vtos, itos); 241 __ mv(x10, value); 242 } 243 244 void TemplateTable::lconst(int value) { 245 transition(vtos, ltos); 246 __ mv(x10, value); 247 } 248 249 void TemplateTable::fconst(int value) { 250 transition(vtos, ftos); 251 static float fBuf[2] = {1.0, 2.0}; 252 __ mv(t0, (intptr_t)fBuf); 253 switch (value) { 254 case 0: 255 __ fmv_w_x(f10, zr); 256 break; 257 case 1: 258 __ flw(f10, Address(t0, 0)); 259 break; 260 case 2: 261 __ flw(f10, Address(t0, sizeof(float))); 262 break; 263 default: 264 ShouldNotReachHere(); 265 } 266 } 267 268 void TemplateTable::dconst(int value) { 269 transition(vtos, dtos); 270 static double dBuf[2] = {1.0, 2.0}; 271 __ mv(t0, (intptr_t)dBuf); 272 switch (value) { 273 case 0: 274 __ fmv_d_x(f10, zr); 275 break; 276 case 1: 277 __ fld(f10, Address(t0, 0)); 278 break; 279 case 2: 280 __ fld(f10, Address(t0, sizeof(double))); 281 break; 282 default: 283 ShouldNotReachHere(); 284 } 285 } 286 287 void TemplateTable::bipush() { 288 transition(vtos, itos); 289 __ load_signed_byte(x10, at_bcp(1)); 290 } 291 292 void TemplateTable::sipush() { 293 transition(vtos, itos); 294 if (AvoidUnalignedAccesses) { 295 __ load_signed_byte(x10, at_bcp(1)); 296 __ load_unsigned_byte(t1, at_bcp(2)); 297 __ slli(x10, x10, 8); 298 __ add(x10, x10, t1); 299 } else { 300 __ load_unsigned_short(x10, at_bcp(1)); 301 __ revb_h_h(x10, x10); // reverse bytes in half-word and sign-extend 302 } 303 } 304 305 void TemplateTable::ldc(LdcType type) { 306 transition(vtos, vtos); 307 Label call_ldc, notFloat, notClass, notInt, Done; 308 309 if (is_ldc_wide(type)) { 310 __ get_unsigned_2_byte_index_at_bcp(x11, 1); 311 } else { 312 __ load_unsigned_byte(x11, at_bcp(1)); 313 } 314 __ get_cpool_and_tags(x12, x10); 315 316 const int base_offset = ConstantPool::header_size() * wordSize; 317 const int tags_offset = Array<u1>::base_offset_in_bytes(); 318 319 // get type 320 __ addi(x13, x11, tags_offset); 321 __ add(x13, x10, x13); 322 __ lbu(x13, Address(x13, 0)); 323 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 324 325 // unresolved class - get the resolved class 326 __ mv(t1, (u1)JVM_CONSTANT_UnresolvedClass); 327 __ beq(x13, t1, call_ldc); 328 329 // unresolved class in error state - call into runtime to throw the error 330 // from the first resolution attempt 331 __ mv(t1, (u1)JVM_CONSTANT_UnresolvedClassInError); 332 __ beq(x13, t1, call_ldc); 333 334 // resolved class - need to call vm to get java mirror of the class 335 __ mv(t1, (u1)JVM_CONSTANT_Class); 336 __ bne(x13, t1, notClass); 337 338 __ bind(call_ldc); 339 __ mv(c_rarg1, is_ldc_wide(type) ? 1 : 0); 340 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 341 __ push_ptr(x10); 342 __ verify_oop(x10); 343 __ j(Done); 344 345 __ bind(notClass); 346 __ mv(t1, (u1)JVM_CONSTANT_Float); 347 __ bne(x13, t1, notFloat); 348 349 // ftos 350 __ shadd(x11, x11, x12, x11, 3); 351 __ flw(f10, Address(x11, base_offset)); 352 __ push_f(f10); 353 __ j(Done); 354 355 __ bind(notFloat); 356 357 __ mv(t1, (u1)JVM_CONSTANT_Integer); 358 __ bne(x13, t1, notInt); 359 360 // itos 361 __ shadd(x11, x11, x12, x11, 3); 362 __ lw(x10, Address(x11, base_offset)); 363 __ push_i(x10); 364 __ j(Done); 365 366 __ bind(notInt); 367 condy_helper(Done); 368 369 __ bind(Done); 370 } 371 372 // Fast path for caching oop constants. 373 void TemplateTable::fast_aldc(LdcType type) { 374 transition(vtos, atos); 375 376 const Register result = x10; 377 const Register tmp = x11; 378 const Register rarg = x12; 379 380 const int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 381 382 Label resolved; 383 384 // We are resolved if the resolved reference cache entry contains a 385 // non-null object (String, MethodType, etc.) 386 assert_different_registers(result, tmp); 387 // register result is trashed by next load, let's use it as temporary register 388 __ get_cache_index_at_bcp(tmp, result, 1, index_size); 389 __ load_resolved_reference_at_index(result, tmp); 390 __ bnez(result, resolved); 391 392 const address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 393 394 // first time invocation - must resolve first 395 __ mv(rarg, (int)bytecode()); 396 __ call_VM(result, entry, rarg); 397 398 __ bind(resolved); 399 400 { // Check for the null sentinel. 401 // If we just called the VM, it already did the mapping for us, 402 // but it's harmless to retry. 403 Label notNull; 404 405 // Stash null_sentinel address to get its value later 406 int32_t offset = 0; 407 __ mv(rarg, Universe::the_null_sentinel_addr(), offset); 408 __ ld(tmp, Address(rarg, offset)); 409 __ resolve_oop_handle(tmp, x15, t1); 410 __ bne(result, tmp, notNull); 411 __ mv(result, zr); // null object reference 412 __ bind(notNull); 413 } 414 415 if (VerifyOops) { 416 // Safe to call with 0 result 417 __ verify_oop(result); 418 } 419 } 420 421 void TemplateTable::ldc2_w() { 422 transition(vtos, vtos); 423 Label notDouble, notLong, Done; 424 __ get_unsigned_2_byte_index_at_bcp(x10, 1); 425 426 __ get_cpool_and_tags(x11, x12); 427 const int base_offset = ConstantPool::header_size() * wordSize; 428 const int tags_offset = Array<u1>::base_offset_in_bytes(); 429 430 // get type 431 __ add(x12, x12, x10); 432 __ load_unsigned_byte(x12, Address(x12, tags_offset)); 433 __ mv(t1, JVM_CONSTANT_Double); 434 __ bne(x12, t1, notDouble); 435 436 // dtos 437 __ shadd(x12, x10, x11, x12, 3); 438 __ fld(f10, Address(x12, base_offset)); 439 __ push_d(f10); 440 __ j(Done); 441 442 __ bind(notDouble); 443 __ mv(t1, (int)JVM_CONSTANT_Long); 444 __ bne(x12, t1, notLong); 445 446 // ltos 447 __ shadd(x10, x10, x11, x10, 3); 448 __ ld(x10, Address(x10, base_offset)); 449 __ push_l(x10); 450 __ j(Done); 451 452 __ bind(notLong); 453 condy_helper(Done); 454 __ bind(Done); 455 } 456 457 void TemplateTable::condy_helper(Label& Done) { 458 const Register obj = x10; 459 const Register rarg = x11; 460 const Register flags = x12; 461 const Register off = x13; 462 463 const address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 464 465 __ mv(rarg, (int) bytecode()); 466 __ call_VM(obj, entry, rarg); 467 468 __ get_vm_result_2(flags, xthread); 469 470 // VMr = obj = base address to find primitive value to push 471 // VMr2 = flags = (tos, off) using format of CPCE::_flags 472 __ mv(off, flags); 473 __ mv(t0, ConstantPoolCache::field_index_mask); 474 __ andrw(off, off, t0); 475 476 __ add(off, obj, off); 477 const Address field(off, 0); // base + R---->base + offset 478 479 __ slli(flags, flags, XLEN - (ConstantPoolCache::tos_state_shift + ConstantPoolCache::tos_state_bits)); 480 __ srli(flags, flags, XLEN - ConstantPoolCache::tos_state_bits); // (1 << 5) - 4 --> 28~31==> flags:0~3 481 482 switch (bytecode()) { 483 case Bytecodes::_ldc: // fall through 484 case Bytecodes::_ldc_w: { 485 // tos in (itos, ftos, stos, btos, ctos, ztos) 486 Label notInt, notFloat, notShort, notByte, notChar, notBool; 487 __ mv(t1, itos); 488 __ bne(flags, t1, notInt); 489 // itos 490 __ lw(x10, field); 491 __ push(itos); 492 __ j(Done); 493 494 __ bind(notInt); 495 __ mv(t1, ftos); 496 __ bne(flags, t1, notFloat); 497 // ftos 498 __ load_float(field); 499 __ push(ftos); 500 __ j(Done); 501 502 __ bind(notFloat); 503 __ mv(t1, stos); 504 __ bne(flags, t1, notShort); 505 // stos 506 __ load_signed_short(x10, field); 507 __ push(stos); 508 __ j(Done); 509 510 __ bind(notShort); 511 __ mv(t1, btos); 512 __ bne(flags, t1, notByte); 513 // btos 514 __ load_signed_byte(x10, field); 515 __ push(btos); 516 __ j(Done); 517 518 __ bind(notByte); 519 __ mv(t1, ctos); 520 __ bne(flags, t1, notChar); 521 // ctos 522 __ load_unsigned_short(x10, field); 523 __ push(ctos); 524 __ j(Done); 525 526 __ bind(notChar); 527 __ mv(t1, ztos); 528 __ bne(flags, t1, notBool); 529 // ztos 530 __ load_signed_byte(x10, field); 531 __ push(ztos); 532 __ j(Done); 533 534 __ bind(notBool); 535 break; 536 } 537 538 case Bytecodes::_ldc2_w: { 539 Label notLong, notDouble; 540 __ mv(t1, ltos); 541 __ bne(flags, t1, notLong); 542 // ltos 543 __ ld(x10, field); 544 __ push(ltos); 545 __ j(Done); 546 547 __ bind(notLong); 548 __ mv(t1, dtos); 549 __ bne(flags, t1, notDouble); 550 // dtos 551 __ load_double(field); 552 __ push(dtos); 553 __ j(Done); 554 555 __ bind(notDouble); 556 break; 557 } 558 559 default: 560 ShouldNotReachHere(); 561 } 562 563 __ stop("bad ldc/condy"); 564 } 565 566 void TemplateTable::locals_index(Register reg, int offset) { 567 __ lbu(reg, at_bcp(offset)); 568 __ neg(reg, reg); 569 } 570 571 void TemplateTable::iload() { 572 iload_internal(); 573 } 574 575 void TemplateTable::nofast_iload() { 576 iload_internal(may_not_rewrite); 577 } 578 579 void TemplateTable::iload_internal(RewriteControl rc) { 580 transition(vtos, itos); 581 if (RewriteFrequentPairs && rc == may_rewrite) { 582 Label rewrite, done; 583 const Register bc = x14; 584 585 // get next bytecode 586 __ load_unsigned_byte(x11, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 587 588 // if _iload, wait to rewrite to iload2. We only want to rewrite the 589 // last two iloads in a pair. Comparing against fast_iload means that 590 // the next bytecode is neither an iload or a caload, and therefore 591 // an iload pair. 592 __ mv(t1, Bytecodes::_iload); 593 __ beq(x11, t1, done); 594 595 // if _fast_iload rewrite to _fast_iload2 596 __ mv(t1, Bytecodes::_fast_iload); 597 __ mv(bc, Bytecodes::_fast_iload2); 598 __ beq(x11, t1, rewrite); 599 600 // if _caload rewrite to _fast_icaload 601 __ mv(t1, Bytecodes::_caload); 602 __ mv(bc, Bytecodes::_fast_icaload); 603 __ beq(x11, t1, rewrite); 604 605 // else rewrite to _fast_iload 606 __ mv(bc, Bytecodes::_fast_iload); 607 608 // rewrite 609 // bc: new bytecode 610 __ bind(rewrite); 611 patch_bytecode(Bytecodes::_iload, bc, x11, false); 612 __ bind(done); 613 614 } 615 616 // do iload, get the local value into tos 617 locals_index(x11); 618 __ lw(x10, iaddress(x11, x10, _masm)); 619 } 620 621 void TemplateTable::fast_iload2() { 622 transition(vtos, itos); 623 locals_index(x11); 624 __ lw(x10, iaddress(x11, x10, _masm)); 625 __ push(itos); 626 locals_index(x11, 3); 627 __ lw(x10, iaddress(x11, x10, _masm)); 628 } 629 630 void TemplateTable::fast_iload() { 631 transition(vtos, itos); 632 locals_index(x11); 633 __ lw(x10, iaddress(x11, x10, _masm)); 634 } 635 636 void TemplateTable::lload() { 637 transition(vtos, ltos); 638 __ lbu(x11, at_bcp(1)); 639 __ slli(x11, x11, LogBytesPerWord); 640 __ sub(x11, xlocals, x11); 641 __ ld(x10, Address(x11, Interpreter::local_offset_in_bytes(1))); 642 } 643 644 void TemplateTable::fload() { 645 transition(vtos, ftos); 646 locals_index(x11); 647 __ flw(f10, faddress(x11, t0, _masm)); 648 } 649 650 void TemplateTable::dload() { 651 transition(vtos, dtos); 652 __ lbu(x11, at_bcp(1)); 653 __ slli(x11, x11, LogBytesPerWord); 654 __ sub(x11, xlocals, x11); 655 __ fld(f10, Address(x11, Interpreter::local_offset_in_bytes(1))); 656 } 657 658 void TemplateTable::aload() { 659 transition(vtos, atos); 660 locals_index(x11); 661 __ ld(x10, iaddress(x11, x10, _masm)); 662 } 663 664 void TemplateTable::locals_index_wide(Register reg) { 665 __ lhu(reg, at_bcp(2)); 666 __ revb_h_h_u(reg, reg); // reverse bytes in half-word and zero-extend 667 __ neg(reg, reg); 668 } 669 670 void TemplateTable::wide_iload() { 671 transition(vtos, itos); 672 locals_index_wide(x11); 673 __ lw(x10, iaddress(x11, t0, _masm)); 674 } 675 676 void TemplateTable::wide_lload() { 677 transition(vtos, ltos); 678 __ lhu(x11, at_bcp(2)); 679 __ revb_h_h_u(x11, x11); // reverse bytes in half-word and zero-extend 680 __ slli(x11, x11, LogBytesPerWord); 681 __ sub(x11, xlocals, x11); 682 __ ld(x10, Address(x11, Interpreter::local_offset_in_bytes(1))); 683 } 684 685 void TemplateTable::wide_fload() { 686 transition(vtos, ftos); 687 locals_index_wide(x11); 688 __ flw(f10, faddress(x11, t0, _masm)); 689 } 690 691 void TemplateTable::wide_dload() { 692 transition(vtos, dtos); 693 __ lhu(x11, at_bcp(2)); 694 __ revb_h_h_u(x11, x11); // reverse bytes in half-word and zero-extend 695 __ slli(x11, x11, LogBytesPerWord); 696 __ sub(x11, xlocals, x11); 697 __ fld(f10, Address(x11, Interpreter::local_offset_in_bytes(1))); 698 } 699 700 void TemplateTable::wide_aload() { 701 transition(vtos, atos); 702 locals_index_wide(x11); 703 __ ld(x10, aaddress(x11, t0, _masm)); 704 } 705 706 void TemplateTable::index_check(Register array, Register index) { 707 // destroys x11, t0 708 // sign extend index for use by indexed load 709 // check index 710 const Register length = t0; 711 __ lwu(length, Address(array, arrayOopDesc::length_offset_in_bytes())); 712 if (index != x11) { 713 assert(x11 != array, "different registers"); 714 __ mv(x11, index); 715 } 716 Label ok; 717 __ sign_extend(index, index, 32); 718 __ bltu(index, length, ok); 719 __ mv(x13, array); 720 __ mv(t0, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 721 __ jr(t0); 722 __ bind(ok); 723 } 724 725 void TemplateTable::iaload() { 726 transition(itos, itos); 727 __ mv(x11, x10); 728 __ pop_ptr(x10); 729 // x10: array 730 // x11: index 731 index_check(x10, x11); // leaves index in x11 732 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 733 __ shadd(x10, x11, x10, t0, 2); 734 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 735 __ sign_extend(x10, x10, 32); 736 } 737 738 void TemplateTable::laload() { 739 transition(itos, ltos); 740 __ mv(x11, x10); 741 __ pop_ptr(x10); 742 // x10: array 743 // x11: index 744 index_check(x10, x11); // leaves index in x11 745 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 746 __ shadd(x10, x11, x10, t0, 3); 747 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 748 } 749 750 void TemplateTable::faload() { 751 transition(itos, ftos); 752 __ mv(x11, x10); 753 __ pop_ptr(x10); 754 // x10: array 755 // x11: index 756 index_check(x10, x11); // leaves index in x11 757 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 758 __ shadd(x10, x11, x10, t0, 2); 759 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 760 } 761 762 void TemplateTable::daload() { 763 transition(itos, dtos); 764 __ mv(x11, x10); 765 __ pop_ptr(x10); 766 // x10: array 767 // x11: index 768 index_check(x10, x11); // leaves index in x11 769 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 770 __ shadd(x10, x11, x10, t0, 3); 771 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 772 } 773 774 void TemplateTable::aaload() { 775 transition(itos, atos); 776 __ mv(x11, x10); 777 __ pop_ptr(x10); 778 // x10: array 779 // x11: index 780 index_check(x10, x11); // leaves index in x11 781 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 782 __ shadd(x10, x11, x10, t0, LogBytesPerHeapOop); 783 do_oop_load(_masm, Address(x10), x10, IS_ARRAY); 784 } 785 786 void TemplateTable::baload() { 787 transition(itos, itos); 788 __ mv(x11, x10); 789 __ pop_ptr(x10); 790 // x10: array 791 // x11: index 792 index_check(x10, x11); // leaves index in x11 793 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 794 __ shadd(x10, x11, x10, t0, 0); 795 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 796 } 797 798 void TemplateTable::caload() { 799 transition(itos, itos); 800 __ mv(x11, x10); 801 __ pop_ptr(x10); 802 // x10: array 803 // x11: index 804 index_check(x10, x11); // leaves index in x11 805 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 806 __ shadd(x10, x11, x10, t0, 1); 807 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 808 } 809 810 // iload followed by caload frequent pair 811 void TemplateTable::fast_icaload() { 812 transition(vtos, itos); 813 // load index out of locals 814 locals_index(x12); 815 __ lw(x11, iaddress(x12, x11, _masm)); 816 __ pop_ptr(x10); 817 818 // x10: array 819 // x11: index 820 index_check(x10, x11); // leaves index in x11, kills t0 821 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); // addi, max imm is 2^11 822 __ shadd(x10, x11, x10, t0, 1); 823 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 824 } 825 826 void TemplateTable::saload() { 827 transition(itos, itos); 828 __ mv(x11, x10); 829 __ pop_ptr(x10); 830 // x10: array 831 // x11: index 832 index_check(x10, x11); // leaves index in x11, kills t0 833 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1); 834 __ shadd(x10, x11, x10, t0, 1); 835 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 836 } 837 838 void TemplateTable::iload(int n) { 839 transition(vtos, itos); 840 __ lw(x10, iaddress(n)); 841 } 842 843 void TemplateTable::lload(int n) { 844 transition(vtos, ltos); 845 __ ld(x10, laddress(n)); 846 } 847 848 void TemplateTable::fload(int n) { 849 transition(vtos, ftos); 850 __ flw(f10, faddress(n)); 851 } 852 853 void TemplateTable::dload(int n) { 854 transition(vtos, dtos); 855 __ fld(f10, daddress(n)); 856 } 857 858 void TemplateTable::aload(int n) { 859 transition(vtos, atos); 860 __ ld(x10, iaddress(n)); 861 } 862 863 void TemplateTable::aload_0() { 864 aload_0_internal(); 865 } 866 867 void TemplateTable::nofast_aload_0() { 868 aload_0_internal(may_not_rewrite); 869 } 870 871 void TemplateTable::aload_0_internal(RewriteControl rc) { 872 // According to bytecode histograms, the pairs: 873 // 874 // _aload_0, _fast_igetfield 875 // _aload_0, _fast_agetfield 876 // _aload_0, _fast_fgetfield 877 // 878 // occur frequently. If RewriteFrequentPairs is set, the (slow) 879 // _aload_0 bytecode checks if the next bytecode is either 880 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 881 // rewrites the current bytecode into a pair bytecode; otherwise it 882 // rewrites the current bytecode into _fast_aload_0 that doesn't do 883 // the pair check anymore. 884 // 885 // Note: If the next bytecode is _getfield, the rewrite must be 886 // delayed, otherwise we may miss an opportunity for a pair. 887 // 888 // Also rewrite frequent pairs 889 // aload_0, aload_1 890 // aload_0, iload_1 891 // These bytecodes with a small amount of code are most profitable 892 // to rewrite 893 if (RewriteFrequentPairs && rc == may_rewrite) { 894 Label rewrite, done; 895 const Register bc = x14; 896 897 // get next bytecode 898 __ load_unsigned_byte(x11, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 899 900 // if _getfield then wait with rewrite 901 __ mv(t1, Bytecodes::Bytecodes::_getfield); 902 __ beq(x11, t1, done); 903 904 // if _igetfield then rewrite to _fast_iaccess_0 905 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 906 __ mv(t1, Bytecodes::_fast_igetfield); 907 __ mv(bc, Bytecodes::_fast_iaccess_0); 908 __ beq(x11, t1, rewrite); 909 910 // if _agetfield then rewrite to _fast_aaccess_0 911 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 912 __ mv(t1, Bytecodes::_fast_agetfield); 913 __ mv(bc, Bytecodes::_fast_aaccess_0); 914 __ beq(x11, t1, rewrite); 915 916 // if _fgetfield then rewrite to _fast_faccess_0 917 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 918 __ mv(t1, Bytecodes::_fast_fgetfield); 919 __ mv(bc, Bytecodes::_fast_faccess_0); 920 __ beq(x11, t1, rewrite); 921 922 // else rewrite to _fast_aload0 923 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 924 __ mv(bc, Bytecodes::Bytecodes::_fast_aload_0); 925 926 // rewrite 927 // bc: new bytecode 928 __ bind(rewrite); 929 patch_bytecode(Bytecodes::_aload_0, bc, x11, false); 930 931 __ bind(done); 932 } 933 934 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 935 aload(0); 936 } 937 938 void TemplateTable::istore() { 939 transition(itos, vtos); 940 locals_index(x11); 941 __ sw(x10, iaddress(x11, t0, _masm)); 942 } 943 944 void TemplateTable::lstore() { 945 transition(ltos, vtos); 946 locals_index(x11); 947 __ sd(x10, laddress(x11, t0, _masm)); 948 } 949 950 void TemplateTable::fstore() { 951 transition(ftos, vtos); 952 locals_index(x11); 953 __ fsw(f10, iaddress(x11, t0, _masm)); 954 } 955 956 void TemplateTable::dstore() { 957 transition(dtos, vtos); 958 locals_index(x11); 959 __ fsd(f10, daddress(x11, t0, _masm)); 960 } 961 962 void TemplateTable::astore() { 963 transition(vtos, vtos); 964 __ pop_ptr(x10); 965 locals_index(x11); 966 __ sd(x10, aaddress(x11, t0, _masm)); 967 } 968 969 void TemplateTable::wide_istore() { 970 transition(vtos, vtos); 971 __ pop_i(); 972 locals_index_wide(x11); 973 __ sw(x10, iaddress(x11, t0, _masm)); 974 } 975 976 void TemplateTable::wide_lstore() { 977 transition(vtos, vtos); 978 __ pop_l(); 979 locals_index_wide(x11); 980 __ sd(x10, laddress(x11, t0, _masm)); 981 } 982 983 void TemplateTable::wide_fstore() { 984 transition(vtos, vtos); 985 __ pop_f(); 986 locals_index_wide(x11); 987 __ fsw(f10, faddress(x11, t0, _masm)); 988 } 989 990 void TemplateTable::wide_dstore() { 991 transition(vtos, vtos); 992 __ pop_d(); 993 locals_index_wide(x11); 994 __ fsd(f10, daddress(x11, t0, _masm)); 995 } 996 997 void TemplateTable::wide_astore() { 998 transition(vtos, vtos); 999 __ pop_ptr(x10); 1000 locals_index_wide(x11); 1001 __ sd(x10, aaddress(x11, t0, _masm)); 1002 } 1003 1004 void TemplateTable::iastore() { 1005 transition(itos, vtos); 1006 __ pop_i(x11); 1007 __ pop_ptr(x13); 1008 // x10: value 1009 // x11: index 1010 // x13: array 1011 index_check(x13, x11); // prefer index in x11 1012 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 1013 __ shadd(t0, x11, x13, t0, 2); 1014 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg, noreg); 1015 } 1016 1017 void TemplateTable::lastore() { 1018 transition(ltos, vtos); 1019 __ pop_i(x11); 1020 __ pop_ptr(x13); 1021 // x10: value 1022 // x11: index 1023 // x13: array 1024 index_check(x13, x11); // prefer index in x11 1025 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 1026 __ shadd(t0, x11, x13, t0, 3); 1027 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg, noreg); 1028 } 1029 1030 void TemplateTable::fastore() { 1031 transition(ftos, vtos); 1032 __ pop_i(x11); 1033 __ pop_ptr(x13); 1034 // f10: value 1035 // x11: index 1036 // x13: array 1037 index_check(x13, x11); // prefer index in x11 1038 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 1039 __ shadd(t0, x11, x13, t0, 2); 1040 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(t0, 0), noreg /* ftos */, noreg, noreg, noreg); 1041 } 1042 1043 void TemplateTable::dastore() { 1044 transition(dtos, vtos); 1045 __ pop_i(x11); 1046 __ pop_ptr(x13); 1047 // f10: value 1048 // x11: index 1049 // x13: array 1050 index_check(x13, x11); // prefer index in x11 1051 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 1052 __ shadd(t0, x11, x13, t0, 3); 1053 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(t0, 0), noreg /* dtos */, noreg, noreg, noreg); 1054 } 1055 1056 void TemplateTable::aastore() { 1057 Label is_null, ok_is_subtype, done; 1058 transition(vtos, vtos); 1059 // stack: ..., array, index, value 1060 __ ld(x10, at_tos()); // value 1061 __ ld(x12, at_tos_p1()); // index 1062 __ ld(x13, at_tos_p2()); // array 1063 1064 index_check(x13, x12); // kills x11 1065 __ add(x14, x12, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 1066 __ shadd(x14, x14, x13, x14, LogBytesPerHeapOop); 1067 1068 Address element_address(x14, 0); 1069 1070 // do array store check - check for null value first 1071 __ beqz(x10, is_null); 1072 1073 // Move subklass into x11 1074 __ load_klass(x11, x10); 1075 // Move superklass into x10 1076 __ load_klass(x10, x13); 1077 __ ld(x10, Address(x10, 1078 ObjArrayKlass::element_klass_offset())); 1079 // Compress array + index * oopSize + 12 into a single register. Frees x12. 1080 1081 // Generate subtype check. Blows x12, x15 1082 // Superklass in x10. Subklass in x11. 1083 __ gen_subtype_check(x11, ok_is_subtype); 1084 1085 // Come here on failure 1086 // object is at TOS 1087 __ j(Interpreter::_throw_ArrayStoreException_entry); 1088 1089 // Come here on success 1090 __ bind(ok_is_subtype); 1091 1092 // Get the value we will store 1093 __ ld(x10, at_tos()); 1094 // Now store using the appropriate barrier 1095 do_oop_store(_masm, element_address, x10, IS_ARRAY); 1096 __ j(done); 1097 1098 // Have a null in x10, x13=array, x12=index. Store null at ary[idx] 1099 __ bind(is_null); 1100 __ profile_null_seen(x12); 1101 1102 // Store a null 1103 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1104 1105 // Pop stack arguments 1106 __ bind(done); 1107 __ add(esp, esp, 3 * Interpreter::stackElementSize); 1108 } 1109 1110 void TemplateTable::bastore() { 1111 transition(itos, vtos); 1112 __ pop_i(x11); 1113 __ pop_ptr(x13); 1114 // x10: value 1115 // x11: index 1116 // x13: array 1117 index_check(x13, x11); // prefer index in x11 1118 1119 // Need to check whether array is boolean or byte 1120 // since both types share the bastore bytecode. 1121 __ load_klass(x12, x13); 1122 __ lwu(x12, Address(x12, Klass::layout_helper_offset())); 1123 Label L_skip; 1124 __ test_bit(t0, x12, exact_log2(Klass::layout_helper_boolean_diffbit())); 1125 __ beqz(t0, L_skip); 1126 __ andi(x10, x10, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1127 __ bind(L_skip); 1128 1129 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 1130 1131 __ add(x11, x13, x11); 1132 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(x11, 0), x10, noreg, noreg, noreg); 1133 } 1134 1135 void TemplateTable::castore() { 1136 transition(itos, vtos); 1137 __ pop_i(x11); 1138 __ pop_ptr(x13); 1139 // x10: value 1140 // x11: index 1141 // x13: array 1142 index_check(x13, x11); // prefer index in x11 1143 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 1144 __ shadd(t0, x11, x13, t0, 1); 1145 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg, noreg); 1146 } 1147 1148 void TemplateTable::sastore() { 1149 castore(); 1150 } 1151 1152 void TemplateTable::istore(int n) { 1153 transition(itos, vtos); 1154 __ sd(x10, iaddress(n)); 1155 } 1156 1157 void TemplateTable::lstore(int n) { 1158 transition(ltos, vtos); 1159 __ sd(x10, laddress(n)); 1160 } 1161 1162 void TemplateTable::fstore(int n) { 1163 transition(ftos, vtos); 1164 __ fsw(f10, faddress(n)); 1165 } 1166 1167 void TemplateTable::dstore(int n) { 1168 transition(dtos, vtos); 1169 __ fsd(f10, daddress(n)); 1170 } 1171 1172 void TemplateTable::astore(int n) { 1173 transition(vtos, vtos); 1174 __ pop_ptr(x10); 1175 __ sd(x10, iaddress(n)); 1176 } 1177 1178 void TemplateTable::pop() { 1179 transition(vtos, vtos); 1180 __ addi(esp, esp, Interpreter::stackElementSize); 1181 } 1182 1183 void TemplateTable::pop2() { 1184 transition(vtos, vtos); 1185 __ addi(esp, esp, 2 * Interpreter::stackElementSize); 1186 } 1187 1188 void TemplateTable::dup() { 1189 transition(vtos, vtos); 1190 __ ld(x10, Address(esp, 0)); 1191 __ push_reg(x10); 1192 // stack: ..., a, a 1193 } 1194 1195 void TemplateTable::dup_x1() { 1196 transition(vtos, vtos); 1197 // stack: ..., a, b 1198 __ ld(x10, at_tos()); // load b 1199 __ ld(x12, at_tos_p1()); // load a 1200 __ sd(x10, at_tos_p1()); // store b 1201 __ sd(x12, at_tos()); // store a 1202 __ push_reg(x10); // push b 1203 // stack: ..., b, a, b 1204 } 1205 1206 void TemplateTable::dup_x2() { 1207 transition(vtos, vtos); 1208 // stack: ..., a, b, c 1209 __ ld(x10, at_tos()); // load c 1210 __ ld(x12, at_tos_p2()); // load a 1211 __ sd(x10, at_tos_p2()); // store c in a 1212 __ push_reg(x10); // push c 1213 // stack: ..., c, b, c, c 1214 __ ld(x10, at_tos_p2()); // load b 1215 __ sd(x12, at_tos_p2()); // store a in b 1216 // stack: ..., c, a, c, c 1217 __ sd(x10, at_tos_p1()); // store b in c 1218 // stack: ..., c, a, b, c 1219 } 1220 1221 void TemplateTable::dup2() { 1222 transition(vtos, vtos); 1223 // stack: ..., a, b 1224 __ ld(x10, at_tos_p1()); // load a 1225 __ push_reg(x10); // push a 1226 __ ld(x10, at_tos_p1()); // load b 1227 __ push_reg(x10); // push b 1228 // stack: ..., a, b, a, b 1229 } 1230 1231 void TemplateTable::dup2_x1() { 1232 transition(vtos, vtos); 1233 // stack: ..., a, b, c 1234 __ ld(x12, at_tos()); // load c 1235 __ ld(x10, at_tos_p1()); // load b 1236 __ push_reg(x10); // push b 1237 __ push_reg(x12); // push c 1238 // stack: ..., a, b, c, b, c 1239 __ sd(x12, at_tos_p3()); // store c in b 1240 // stack: ..., a, c, c, b, c 1241 __ ld(x12, at_tos_p4()); // load a 1242 __ sd(x12, at_tos_p2()); // store a in 2nd c 1243 // stack: ..., a, c, a, b, c 1244 __ sd(x10, at_tos_p4()); // store b in a 1245 // stack: ..., b, c, a, b, c 1246 } 1247 1248 void TemplateTable::dup2_x2() { 1249 transition(vtos, vtos); 1250 // stack: ..., a, b, c, d 1251 __ ld(x12, at_tos()); // load d 1252 __ ld(x10, at_tos_p1()); // load c 1253 __ push_reg(x10); // push c 1254 __ push_reg(x12); // push d 1255 // stack: ..., a, b, c, d, c, d 1256 __ ld(x10, at_tos_p4()); // load b 1257 __ sd(x10, at_tos_p2()); // store b in d 1258 __ sd(x12, at_tos_p4()); // store d in b 1259 // stack: ..., a, d, c, b, c, d 1260 __ ld(x12, at_tos_p5()); // load a 1261 __ ld(x10, at_tos_p3()); // load c 1262 __ sd(x12, at_tos_p3()); // store a in c 1263 __ sd(x10, at_tos_p5()); // store c in a 1264 // stack: ..., c, d, a, b, c, d 1265 } 1266 1267 void TemplateTable::swap() { 1268 transition(vtos, vtos); 1269 // stack: ..., a, b 1270 __ ld(x12, at_tos_p1()); // load a 1271 __ ld(x10, at_tos()); // load b 1272 __ sd(x12, at_tos()); // store a in b 1273 __ sd(x10, at_tos_p1()); // store b in a 1274 // stack: ..., b, a 1275 } 1276 1277 void TemplateTable::iop2(Operation op) { 1278 transition(itos, itos); 1279 // x10 <== x11 op x10 1280 __ pop_i(x11); 1281 switch (op) { 1282 case add : __ addw(x10, x11, x10); break; 1283 case sub : __ subw(x10, x11, x10); break; 1284 case mul : __ mulw(x10, x11, x10); break; 1285 case _and : __ andrw(x10, x11, x10); break; 1286 case _or : __ orrw(x10, x11, x10); break; 1287 case _xor : __ xorrw(x10, x11, x10); break; 1288 case shl : __ sllw(x10, x11, x10); break; 1289 case shr : __ sraw(x10, x11, x10); break; 1290 case ushr : __ srlw(x10, x11, x10); break; 1291 default : ShouldNotReachHere(); 1292 } 1293 } 1294 1295 void TemplateTable::lop2(Operation op) { 1296 transition(ltos, ltos); 1297 // x10 <== x11 op x10 1298 __ pop_l(x11); 1299 switch (op) { 1300 case add : __ add(x10, x11, x10); break; 1301 case sub : __ sub(x10, x11, x10); break; 1302 case mul : __ mul(x10, x11, x10); break; 1303 case _and : __ andr(x10, x11, x10); break; 1304 case _or : __ orr(x10, x11, x10); break; 1305 case _xor : __ xorr(x10, x11, x10); break; 1306 default : ShouldNotReachHere(); 1307 } 1308 } 1309 1310 void TemplateTable::idiv() { 1311 transition(itos, itos); 1312 // explicitly check for div0 1313 Label no_div0; 1314 __ bnez(x10, no_div0); 1315 __ mv(t0, Interpreter::_throw_ArithmeticException_entry); 1316 __ jr(t0); 1317 __ bind(no_div0); 1318 __ pop_i(x11); 1319 // x10 <== x11 idiv x10 1320 __ corrected_idivl(x10, x11, x10, /* want_remainder */ false, /* is_signed */ true); 1321 } 1322 1323 void TemplateTable::irem() { 1324 transition(itos, itos); 1325 // explicitly check for div0 1326 Label no_div0; 1327 __ bnez(x10, no_div0); 1328 __ mv(t0, Interpreter::_throw_ArithmeticException_entry); 1329 __ jr(t0); 1330 __ bind(no_div0); 1331 __ pop_i(x11); 1332 // x10 <== x11 irem x10 1333 __ corrected_idivl(x10, x11, x10, /* want_remainder */ true, /* is_signed */ true); 1334 } 1335 1336 void TemplateTable::lmul() { 1337 transition(ltos, ltos); 1338 __ pop_l(x11); 1339 __ mul(x10, x10, x11); 1340 } 1341 1342 void TemplateTable::ldiv() { 1343 transition(ltos, ltos); 1344 // explicitly check for div0 1345 Label no_div0; 1346 __ bnez(x10, no_div0); 1347 __ mv(t0, Interpreter::_throw_ArithmeticException_entry); 1348 __ jr(t0); 1349 __ bind(no_div0); 1350 __ pop_l(x11); 1351 // x10 <== x11 ldiv x10 1352 __ corrected_idivq(x10, x11, x10, /* want_remainder */ false, /* is_signed */ true); 1353 } 1354 1355 void TemplateTable::lrem() { 1356 transition(ltos, ltos); 1357 // explicitly check for div0 1358 Label no_div0; 1359 __ bnez(x10, no_div0); 1360 __ mv(t0, Interpreter::_throw_ArithmeticException_entry); 1361 __ jr(t0); 1362 __ bind(no_div0); 1363 __ pop_l(x11); 1364 // x10 <== x11 lrem x10 1365 __ corrected_idivq(x10, x11, x10, /* want_remainder */ true, /* is_signed */ true); 1366 } 1367 1368 void TemplateTable::lshl() { 1369 transition(itos, ltos); 1370 // shift count is in x10 1371 __ pop_l(x11); 1372 __ sll(x10, x11, x10); 1373 } 1374 1375 void TemplateTable::lshr() { 1376 transition(itos, ltos); 1377 // shift count is in x10 1378 __ pop_l(x11); 1379 __ sra(x10, x11, x10); 1380 } 1381 1382 void TemplateTable::lushr() { 1383 transition(itos, ltos); 1384 // shift count is in x10 1385 __ pop_l(x11); 1386 __ srl(x10, x11, x10); 1387 } 1388 1389 void TemplateTable::fop2(Operation op) { 1390 transition(ftos, ftos); 1391 switch (op) { 1392 case add: 1393 __ pop_f(f11); 1394 __ fadd_s(f10, f11, f10); 1395 break; 1396 case sub: 1397 __ pop_f(f11); 1398 __ fsub_s(f10, f11, f10); 1399 break; 1400 case mul: 1401 __ pop_f(f11); 1402 __ fmul_s(f10, f11, f10); 1403 break; 1404 case div: 1405 __ pop_f(f11); 1406 __ fdiv_s(f10, f11, f10); 1407 break; 1408 case rem: 1409 __ fmv_s(f11, f10); 1410 __ pop_f(f10); 1411 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1412 break; 1413 default: 1414 ShouldNotReachHere(); 1415 } 1416 } 1417 1418 void TemplateTable::dop2(Operation op) { 1419 transition(dtos, dtos); 1420 switch (op) { 1421 case add: 1422 __ pop_d(f11); 1423 __ fadd_d(f10, f11, f10); 1424 break; 1425 case sub: 1426 __ pop_d(f11); 1427 __ fsub_d(f10, f11, f10); 1428 break; 1429 case mul: 1430 __ pop_d(f11); 1431 __ fmul_d(f10, f11, f10); 1432 break; 1433 case div: 1434 __ pop_d(f11); 1435 __ fdiv_d(f10, f11, f10); 1436 break; 1437 case rem: 1438 __ fmv_d(f11, f10); 1439 __ pop_d(f10); 1440 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1441 break; 1442 default: 1443 ShouldNotReachHere(); 1444 } 1445 } 1446 1447 void TemplateTable::ineg() { 1448 transition(itos, itos); 1449 __ negw(x10, x10); 1450 } 1451 1452 void TemplateTable::lneg() { 1453 transition(ltos, ltos); 1454 __ neg(x10, x10); 1455 } 1456 1457 void TemplateTable::fneg() { 1458 transition(ftos, ftos); 1459 __ fneg_s(f10, f10); 1460 } 1461 1462 void TemplateTable::dneg() { 1463 transition(dtos, dtos); 1464 __ fneg_d(f10, f10); 1465 } 1466 1467 void TemplateTable::iinc() { 1468 transition(vtos, vtos); 1469 __ load_signed_byte(x11, at_bcp(2)); // get constant 1470 locals_index(x12); 1471 __ ld(x10, iaddress(x12, x10, _masm)); 1472 __ addw(x10, x10, x11); 1473 __ sd(x10, iaddress(x12, t0, _masm)); 1474 } 1475 1476 void TemplateTable::wide_iinc() { 1477 transition(vtos, vtos); 1478 __ lwu(x11, at_bcp(2)); // get constant and index 1479 __ revb_h_w_u(x11, x11); // reverse bytes in half-word (32bit) and zero-extend 1480 __ zero_extend(x12, x11, 16); 1481 __ neg(x12, x12); 1482 __ slli(x11, x11, 32); 1483 __ srai(x11, x11, 48); 1484 __ ld(x10, iaddress(x12, t0, _masm)); 1485 __ addw(x10, x10, x11); 1486 __ sd(x10, iaddress(x12, t0, _masm)); 1487 } 1488 1489 void TemplateTable::convert() { 1490 // Checking 1491 #ifdef ASSERT 1492 { 1493 TosState tos_in = ilgl; 1494 TosState tos_out = ilgl; 1495 switch (bytecode()) { 1496 case Bytecodes::_i2l: // fall through 1497 case Bytecodes::_i2f: // fall through 1498 case Bytecodes::_i2d: // fall through 1499 case Bytecodes::_i2b: // fall through 1500 case Bytecodes::_i2c: // fall through 1501 case Bytecodes::_i2s: tos_in = itos; break; 1502 case Bytecodes::_l2i: // fall through 1503 case Bytecodes::_l2f: // fall through 1504 case Bytecodes::_l2d: tos_in = ltos; break; 1505 case Bytecodes::_f2i: // fall through 1506 case Bytecodes::_f2l: // fall through 1507 case Bytecodes::_f2d: tos_in = ftos; break; 1508 case Bytecodes::_d2i: // fall through 1509 case Bytecodes::_d2l: // fall through 1510 case Bytecodes::_d2f: tos_in = dtos; break; 1511 default : ShouldNotReachHere(); 1512 } 1513 switch (bytecode()) { 1514 case Bytecodes::_l2i: // fall through 1515 case Bytecodes::_f2i: // fall through 1516 case Bytecodes::_d2i: // fall through 1517 case Bytecodes::_i2b: // fall through 1518 case Bytecodes::_i2c: // fall through 1519 case Bytecodes::_i2s: tos_out = itos; break; 1520 case Bytecodes::_i2l: // fall through 1521 case Bytecodes::_f2l: // fall through 1522 case Bytecodes::_d2l: tos_out = ltos; break; 1523 case Bytecodes::_i2f: // fall through 1524 case Bytecodes::_l2f: // fall through 1525 case Bytecodes::_d2f: tos_out = ftos; break; 1526 case Bytecodes::_i2d: // fall through 1527 case Bytecodes::_l2d: // fall through 1528 case Bytecodes::_f2d: tos_out = dtos; break; 1529 default : ShouldNotReachHere(); 1530 } 1531 transition(tos_in, tos_out); 1532 } 1533 #endif // ASSERT 1534 1535 // Conversion 1536 switch (bytecode()) { 1537 case Bytecodes::_i2l: 1538 __ sign_extend(x10, x10, 32); 1539 break; 1540 case Bytecodes::_i2f: 1541 __ fcvt_s_w(f10, x10); 1542 break; 1543 case Bytecodes::_i2d: 1544 __ fcvt_d_w(f10, x10); 1545 break; 1546 case Bytecodes::_i2b: 1547 __ sign_extend(x10, x10, 8); 1548 break; 1549 case Bytecodes::_i2c: 1550 __ zero_extend(x10, x10, 16); 1551 break; 1552 case Bytecodes::_i2s: 1553 __ sign_extend(x10, x10, 16); 1554 break; 1555 case Bytecodes::_l2i: 1556 __ sign_extend(x10, x10, 32); 1557 break; 1558 case Bytecodes::_l2f: 1559 __ fcvt_s_l(f10, x10); 1560 break; 1561 case Bytecodes::_l2d: 1562 __ fcvt_d_l(f10, x10); 1563 break; 1564 case Bytecodes::_f2i: 1565 __ fcvt_w_s_safe(x10, f10); 1566 break; 1567 case Bytecodes::_f2l: 1568 __ fcvt_l_s_safe(x10, f10); 1569 break; 1570 case Bytecodes::_f2d: 1571 __ fcvt_d_s(f10, f10); 1572 break; 1573 case Bytecodes::_d2i: 1574 __ fcvt_w_d_safe(x10, f10); 1575 break; 1576 case Bytecodes::_d2l: 1577 __ fcvt_l_d_safe(x10, f10); 1578 break; 1579 case Bytecodes::_d2f: 1580 __ fcvt_s_d(f10, f10); 1581 break; 1582 default: 1583 ShouldNotReachHere(); 1584 } 1585 } 1586 1587 void TemplateTable::lcmp() { 1588 transition(ltos, itos); 1589 __ pop_l(x11); 1590 __ cmp_l2i(t0, x11, x10); 1591 __ mv(x10, t0); 1592 } 1593 1594 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1595 // For instruction feq, flt and fle, the result is 0 if either operand is NaN 1596 if (is_float) { 1597 __ pop_f(f11); 1598 // if unordered_result < 0: 1599 // we want -1 for unordered or less than, 0 for equal and 1 for 1600 // greater than. 1601 // else: 1602 // we want -1 for less than, 0 for equal and 1 for unordered or 1603 // greater than. 1604 // f11 primary, f10 secondary 1605 __ float_compare(x10, f11, f10, unordered_result); 1606 } else { 1607 __ pop_d(f11); 1608 // if unordered_result < 0: 1609 // we want -1 for unordered or less than, 0 for equal and 1 for 1610 // greater than. 1611 // else: 1612 // we want -1 for less than, 0 for equal and 1 for unordered or 1613 // greater than. 1614 // f11 primary, f10 secondary 1615 __ double_compare(x10, f11, f10, unordered_result); 1616 } 1617 } 1618 1619 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1620 __ profile_taken_branch(x10, x11); 1621 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1622 InvocationCounter::counter_offset(); 1623 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1624 InvocationCounter::counter_offset(); 1625 1626 // load branch displacement 1627 if (!is_wide) { 1628 if (AvoidUnalignedAccesses) { 1629 __ lb(x12, at_bcp(1)); 1630 __ lbu(t1, at_bcp(2)); 1631 __ slli(x12, x12, 8); 1632 __ add(x12, x12, t1); 1633 } else { 1634 __ lhu(x12, at_bcp(1)); 1635 __ revb_h_h(x12, x12); // reverse bytes in half-word and sign-extend 1636 } 1637 } else { 1638 __ lwu(x12, at_bcp(1)); 1639 __ revb_w_w(x12, x12); // reverse bytes in word and sign-extend 1640 } 1641 1642 // Handle all the JSR stuff here, then exit. 1643 // It's much shorter and cleaner than intermingling with the non-JSR 1644 // normal-branch stuff occurring below. 1645 1646 if (is_jsr) { 1647 // compute return address as bci 1648 __ ld(t1, Address(xmethod, Method::const_offset())); 1649 __ add(t1, t1, 1650 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); 1651 __ sub(x11, xbcp, t1); 1652 __ push_i(x11); 1653 // Adjust the bcp by the 16-bit displacement in x12 1654 __ add(xbcp, xbcp, x12); 1655 __ load_unsigned_byte(t0, Address(xbcp, 0)); 1656 // load the next target bytecode into t0, it is the argument of dispatch_only 1657 __ dispatch_only(vtos, /*generate_poll*/true); 1658 return; 1659 } 1660 1661 // Normal (non-jsr) branch handling 1662 1663 // Adjust the bcp by the displacement in x12 1664 __ add(xbcp, xbcp, x12); 1665 1666 assert(UseLoopCounter || !UseOnStackReplacement, 1667 "on-stack-replacement requires loop counters"); 1668 Label backedge_counter_overflow; 1669 Label dispatch; 1670 if (UseLoopCounter) { 1671 // increment backedge counter for backward branches 1672 // x10: MDO 1673 // x11: MDO bumped taken-count 1674 // x12: target offset 1675 __ bgtz(x12, dispatch); // count only if backward branch 1676 1677 // check if MethodCounters exists 1678 Label has_counters; 1679 __ ld(t0, Address(xmethod, Method::method_counters_offset())); 1680 __ bnez(t0, has_counters); 1681 __ push_reg(x10); 1682 __ push_reg(x11); 1683 __ push_reg(x12); 1684 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 1685 InterpreterRuntime::build_method_counters), xmethod); 1686 __ pop_reg(x12); 1687 __ pop_reg(x11); 1688 __ pop_reg(x10); 1689 __ ld(t0, Address(xmethod, Method::method_counters_offset())); 1690 __ beqz(t0, dispatch); // No MethodCounters allocated, OutOfMemory 1691 __ bind(has_counters); 1692 1693 Label no_mdo; 1694 int increment = InvocationCounter::count_increment; 1695 if (ProfileInterpreter) { 1696 // Are we profiling? 1697 __ ld(x11, Address(xmethod, in_bytes(Method::method_data_offset()))); 1698 __ beqz(x11, no_mdo); 1699 // Increment the MDO backedge counter 1700 const Address mdo_backedge_counter(x11, in_bytes(MethodData::backedge_counter_offset()) + 1701 in_bytes(InvocationCounter::counter_offset())); 1702 const Address mask(x11, in_bytes(MethodData::backedge_mask_offset())); 1703 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1704 x10, t0, false, 1705 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1706 __ j(dispatch); 1707 } 1708 __ bind(no_mdo); 1709 // Increment backedge counter in MethodCounters* 1710 __ ld(t0, Address(xmethod, Method::method_counters_offset())); 1711 const Address mask(t0, in_bytes(MethodCounters::backedge_mask_offset())); 1712 __ increment_mask_and_jump(Address(t0, be_offset), increment, mask, 1713 x10, t1, false, 1714 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1715 __ bind(dispatch); 1716 } 1717 1718 // Pre-load the next target bytecode into t0 1719 __ load_unsigned_byte(t0, Address(xbcp, 0)); 1720 1721 // continue with the bytecode @ target 1722 // t0: target bytecode 1723 // xbcp: target bcp 1724 __ dispatch_only(vtos, /*generate_poll*/true); 1725 1726 if (UseLoopCounter && UseOnStackReplacement) { 1727 // invocation counter overflow 1728 __ bind(backedge_counter_overflow); 1729 __ neg(x12, x12); 1730 __ add(x12, x12, xbcp); // branch xbcp 1731 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1732 __ call_VM(noreg, 1733 CAST_FROM_FN_PTR(address, 1734 InterpreterRuntime::frequency_counter_overflow), 1735 x12); 1736 __ load_unsigned_byte(x11, Address(xbcp, 0)); // restore target bytecode 1737 1738 // x10: osr nmethod (osr ok) or null (osr not possible) 1739 // w11: target bytecode 1740 // x12: temporary 1741 __ beqz(x10, dispatch); // test result -- no osr if null 1742 // nmethod may have been invalidated (VM may block upon call_VM return) 1743 __ lbu(x12, Address(x10, nmethod::state_offset())); 1744 if (nmethod::in_use != 0) { 1745 __ sub(x12, x12, nmethod::in_use); 1746 } 1747 __ bnez(x12, dispatch); 1748 1749 // We have the address of an on stack replacement routine in x10 1750 // We need to prepare to execute the OSR method. First we must 1751 // migrate the locals and monitors off of the stack. 1752 1753 __ mv(x9, x10); // save the nmethod 1754 1755 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1756 1757 // x10 is OSR buffer, move it to expected parameter location 1758 __ mv(j_rarg0, x10); 1759 1760 // remove activation 1761 // get sender esp 1762 __ ld(esp, 1763 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1764 // remove frame anchor 1765 __ leave(); 1766 // Ensure compiled code always sees stack at proper alignment 1767 __ andi(sp, esp, -16); 1768 1769 // and begin the OSR nmethod 1770 __ ld(t0, Address(x9, nmethod::osr_entry_point_offset())); 1771 __ jr(t0); 1772 } 1773 } 1774 1775 void TemplateTable::if_0cmp(Condition cc) { 1776 transition(itos, vtos); 1777 // assume branch is more often taken than not (loops use backward branches) 1778 Label not_taken; 1779 1780 __ sign_extend(x10, x10, 32); 1781 switch (cc) { 1782 case equal: 1783 __ bnez(x10, not_taken); 1784 break; 1785 case not_equal: 1786 __ beqz(x10, not_taken); 1787 break; 1788 case less: 1789 __ bgez(x10, not_taken); 1790 break; 1791 case less_equal: 1792 __ bgtz(x10, not_taken); 1793 break; 1794 case greater: 1795 __ blez(x10, not_taken); 1796 break; 1797 case greater_equal: 1798 __ bltz(x10, not_taken); 1799 break; 1800 default: 1801 break; 1802 } 1803 1804 branch(false, false); 1805 __ bind(not_taken); 1806 __ profile_not_taken_branch(x10); 1807 } 1808 1809 void TemplateTable::if_icmp(Condition cc) { 1810 transition(itos, vtos); 1811 // assume branch is more often taken than not (loops use backward branches) 1812 Label not_taken; 1813 __ pop_i(x11); 1814 __ sign_extend(x10, x10, 32); 1815 switch (cc) { 1816 case equal: 1817 __ bne(x11, x10, not_taken); 1818 break; 1819 case not_equal: 1820 __ beq(x11, x10, not_taken); 1821 break; 1822 case less: 1823 __ bge(x11, x10, not_taken); 1824 break; 1825 case less_equal: 1826 __ bgt(x11, x10, not_taken); 1827 break; 1828 case greater: 1829 __ ble(x11, x10, not_taken); 1830 break; 1831 case greater_equal: 1832 __ blt(x11, x10, not_taken); 1833 break; 1834 default: 1835 break; 1836 } 1837 1838 branch(false, false); 1839 __ bind(not_taken); 1840 __ profile_not_taken_branch(x10); 1841 } 1842 1843 void TemplateTable::if_nullcmp(Condition cc) { 1844 transition(atos, vtos); 1845 // assume branch is more often taken than not (loops use backward branches) 1846 Label not_taken; 1847 if (cc == equal) { 1848 __ bnez(x10, not_taken); 1849 } else { 1850 __ beqz(x10, not_taken); 1851 } 1852 branch(false, false); 1853 __ bind(not_taken); 1854 __ profile_not_taken_branch(x10); 1855 } 1856 1857 void TemplateTable::if_acmp(Condition cc) { 1858 transition(atos, vtos); 1859 // assume branch is more often taken than not (loops use backward branches) 1860 Label not_taken; 1861 __ pop_ptr(x11); 1862 1863 if (cc == equal) { 1864 __ bne(x11, x10, not_taken); 1865 } else if (cc == not_equal) { 1866 __ beq(x11, x10, not_taken); 1867 } 1868 branch(false, false); 1869 __ bind(not_taken); 1870 __ profile_not_taken_branch(x10); 1871 } 1872 1873 void TemplateTable::ret() { 1874 transition(vtos, vtos); 1875 locals_index(x11); 1876 __ ld(x11, aaddress(x11, t1, _masm)); // get return bci, compute return bcp 1877 __ profile_ret(x11, x12); 1878 __ ld(xbcp, Address(xmethod, Method::const_offset())); 1879 __ add(xbcp, xbcp, x11); 1880 __ addi(xbcp, xbcp, in_bytes(ConstMethod::codes_offset())); 1881 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1882 } 1883 1884 void TemplateTable::wide_ret() { 1885 transition(vtos, vtos); 1886 locals_index_wide(x11); 1887 __ ld(x11, aaddress(x11, t0, _masm)); // get return bci, compute return bcp 1888 __ profile_ret(x11, x12); 1889 __ ld(xbcp, Address(xmethod, Method::const_offset())); 1890 __ add(xbcp, xbcp, x11); 1891 __ add(xbcp, xbcp, in_bytes(ConstMethod::codes_offset())); 1892 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1893 } 1894 1895 void TemplateTable::tableswitch() { 1896 Label default_case, continue_execution; 1897 transition(itos, vtos); 1898 // align xbcp 1899 __ la(x11, at_bcp(BytesPerInt)); 1900 __ andi(x11, x11, -BytesPerInt); 1901 // load lo & hi 1902 __ lwu(x12, Address(x11, BytesPerInt)); 1903 __ lwu(x13, Address(x11, 2 * BytesPerInt)); 1904 __ revb_w_w(x12, x12); // reverse bytes in word (32bit) and sign-extend 1905 __ revb_w_w(x13, x13); // reverse bytes in word (32bit) and sign-extend 1906 // check against lo & hi 1907 __ blt(x10, x12, default_case); 1908 __ bgt(x10, x13, default_case); 1909 // lookup dispatch offset 1910 __ subw(x10, x10, x12); 1911 __ shadd(x13, x10, x11, t0, 2); 1912 __ lwu(x13, Address(x13, 3 * BytesPerInt)); 1913 __ profile_switch_case(x10, x11, x12); 1914 // continue execution 1915 __ bind(continue_execution); 1916 __ revb_w_w(x13, x13); // reverse bytes in word (32bit) and sign-extend 1917 __ add(xbcp, xbcp, x13); 1918 __ load_unsigned_byte(t0, Address(xbcp)); 1919 __ dispatch_only(vtos, /*generate_poll*/true); 1920 // handle default 1921 __ bind(default_case); 1922 __ profile_switch_default(x10); 1923 __ lwu(x13, Address(x11, 0)); 1924 __ j(continue_execution); 1925 } 1926 1927 void TemplateTable::lookupswitch() { 1928 transition(itos, itos); 1929 __ stop("lookupswitch bytecode should have been rewritten"); 1930 } 1931 1932 void TemplateTable::fast_linearswitch() { 1933 transition(itos, vtos); 1934 Label loop_entry, loop, found, continue_execution; 1935 // bswap x10 so we can avoid bswapping the table entries 1936 __ revb_w_w(x10, x10); // reverse bytes in word (32bit) and sign-extend 1937 // align xbcp 1938 __ la(x9, at_bcp(BytesPerInt)); // btw: should be able to get rid of 1939 // this instruction (change offsets 1940 // below) 1941 __ andi(x9, x9, -BytesPerInt); 1942 // set counter 1943 __ lwu(x11, Address(x9, BytesPerInt)); 1944 __ revb_w(x11, x11); 1945 __ j(loop_entry); 1946 // table search 1947 __ bind(loop); 1948 __ shadd(t0, x11, x9, t0, 3); 1949 __ lw(t0, Address(t0, 2 * BytesPerInt)); 1950 __ beq(x10, t0, found); 1951 __ bind(loop_entry); 1952 __ addi(x11, x11, -1); 1953 __ bgez(x11, loop); 1954 // default case 1955 __ profile_switch_default(x10); 1956 __ lwu(x13, Address(x9, 0)); 1957 __ j(continue_execution); 1958 // entry found -> get offset 1959 __ bind(found); 1960 __ shadd(t0, x11, x9, t0, 3); 1961 __ lwu(x13, Address(t0, 3 * BytesPerInt)); 1962 __ profile_switch_case(x11, x10, x9); 1963 // continue execution 1964 __ bind(continue_execution); 1965 __ revb_w_w(x13, x13); // reverse bytes in word (32bit) and sign-extend 1966 __ add(xbcp, xbcp, x13); 1967 __ lbu(t0, Address(xbcp, 0)); 1968 __ dispatch_only(vtos, /*generate_poll*/true); 1969 } 1970 1971 void TemplateTable::fast_binaryswitch() { 1972 transition(itos, vtos); 1973 // Implementation using the following core algorithm: 1974 // 1975 // int binary_search(int key, LookupswitchPair* array, int n) 1976 // binary_search start: 1977 // #Binary search according to "Methodik des Programmierens" by 1978 // # Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 1979 // int i = 0; 1980 // int j = n; 1981 // while (i + 1 < j) do 1982 // # invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 1983 // # with Q: for all i: 0 <= i < n: key < a[i] 1984 // # where a stands for the array and assuming that the (inexisting) 1985 // # element a[n] is infinitely big. 1986 // int h = (i + j) >> 1 1987 // # i < h < j 1988 // if (key < array[h].fast_match()) 1989 // then [j = h] 1990 // else [i = h] 1991 // end 1992 // # R: a[i] <= key < a[i+1] or Q 1993 // # (i.e., if key is within array, i is the correct index) 1994 // return i 1995 // binary_search end 1996 1997 1998 // Register allocation 1999 const Register key = x10; // already set (tosca) 2000 const Register array = x11; 2001 const Register i = x12; 2002 const Register j = x13; 2003 const Register h = x14; 2004 const Register temp = x15; 2005 2006 // Find array start 2007 __ la(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2008 // get rid of this 2009 // instruction (change 2010 // offsets below) 2011 __ andi(array, array, -BytesPerInt); 2012 2013 // Initialize i & j 2014 __ mv(i, zr); // i = 0 2015 __ lwu(j, Address(array, -BytesPerInt)); // j = length(array) 2016 2017 // Convert j into native byteordering 2018 __ revb_w(j, j); 2019 2020 // And start 2021 Label entry; 2022 __ j(entry); 2023 2024 // binary search loop 2025 { 2026 Label loop; 2027 __ bind(loop); 2028 __ addw(h, i, j); // h = i + j 2029 __ srliw(h, h, 1); // h = (i + j) >> 1 2030 // if [key < array[h].fast_match()] 2031 // then [j = h] 2032 // else [i = h] 2033 // Convert array[h].match to native byte-ordering before compare 2034 __ shadd(temp, h, array, temp, 3); 2035 __ lwu(temp, Address(temp, 0)); 2036 __ revb_w_w(temp, temp); // reverse bytes in word (32bit) and sign-extend 2037 2038 Label L_done, L_greater; 2039 __ bge(key, temp, L_greater); 2040 // if [key < array[h].fast_match()] then j = h 2041 __ mv(j, h); 2042 __ j(L_done); 2043 __ bind(L_greater); 2044 // if [key >= array[h].fast_match()] then i = h 2045 __ mv(i, h); 2046 __ bind(L_done); 2047 2048 // while [i + 1 < j] 2049 __ bind(entry); 2050 __ addiw(h, i, 1); // i + 1 2051 __ blt(h, j, loop); // i + 1 < j 2052 } 2053 2054 // end of binary search, result index is i (must check again!) 2055 Label default_case; 2056 // Convert array[i].match to native byte-ordering before compare 2057 __ shadd(temp, i, array, temp, 3); 2058 __ lwu(temp, Address(temp, 0)); 2059 __ revb_w_w(temp, temp); // reverse bytes in word (32bit) and sign-extend 2060 __ bne(key, temp, default_case); 2061 2062 // entry found -> j = offset 2063 __ shadd(temp, i, array, temp, 3); 2064 __ lwu(j, Address(temp, BytesPerInt)); 2065 __ profile_switch_case(i, key, array); 2066 __ revb_w_w(j, j); // reverse bytes in word (32bit) and sign-extend 2067 2068 __ add(temp, xbcp, j); 2069 __ load_unsigned_byte(t0, Address(temp, 0)); 2070 2071 __ add(xbcp, xbcp, j); 2072 __ la(xbcp, Address(xbcp, 0)); 2073 __ dispatch_only(vtos, /*generate_poll*/true); 2074 2075 // default case -> j = default offset 2076 __ bind(default_case); 2077 __ profile_switch_default(i); 2078 __ lwu(j, Address(array, -2 * BytesPerInt)); 2079 __ revb_w_w(j, j); // reverse bytes in word (32bit) and sign-extend 2080 2081 __ add(temp, xbcp, j); 2082 __ load_unsigned_byte(t0, Address(temp, 0)); 2083 2084 __ add(xbcp, xbcp, j); 2085 __ la(xbcp, Address(xbcp, 0)); 2086 __ dispatch_only(vtos, /*generate_poll*/true); 2087 } 2088 2089 void TemplateTable::_return(TosState state) { 2090 transition(state, state); 2091 assert(_desc->calls_vm(), 2092 "inconsistent calls_vm information"); // call in remove_activation 2093 2094 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2095 assert(state == vtos, "only valid state"); 2096 2097 __ ld(c_rarg1, aaddress(0)); 2098 __ load_klass(x13, c_rarg1); 2099 __ lbu(x13, Address(x13, Klass::misc_flags_offset())); 2100 Label skip_register_finalizer; 2101 __ test_bit(t0, x13, exact_log2(KlassFlags::_misc_has_finalizer)); 2102 __ beqz(t0, skip_register_finalizer); 2103 2104 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2105 2106 __ bind(skip_register_finalizer); 2107 } 2108 2109 // Issue a StoreStore barrier after all stores but before return 2110 // from any constructor for any class with a final field. We don't 2111 // know if this is a finalizer, so we always do so. 2112 if (_desc->bytecode() == Bytecodes::_return) { 2113 __ membar(MacroAssembler::StoreStore); 2114 } 2115 2116 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2117 Label no_safepoint; 2118 __ ld(t0, Address(xthread, JavaThread::polling_word_offset())); 2119 __ test_bit(t0, t0, exact_log2(SafepointMechanism::poll_bit())); 2120 __ beqz(t0, no_safepoint); 2121 __ push(state); 2122 __ push_cont_fastpath(xthread); 2123 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)); 2124 __ pop_cont_fastpath(xthread); 2125 __ pop(state); 2126 __ bind(no_safepoint); 2127 } 2128 2129 // Narrow result if state is itos but result type is smaller. 2130 // Need to narrow in the return bytecode rather than in generate_return_entry 2131 // since compiled code callers expect the result to already be narrowed. 2132 if (state == itos) { 2133 __ narrow(x10); 2134 } 2135 2136 __ remove_activation(state); 2137 __ ret(); 2138 } 2139 2140 2141 // ---------------------------------------------------------------------------- 2142 // Volatile variables demand their effects be made known to all CPU's 2143 // in order. Store buffers on most chips allow reads & writes to 2144 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2145 // without some kind of memory barrier (i.e., it's not sufficient that 2146 // the interpreter does not reorder volatile references, the hardware 2147 // also must not reorder them). 2148 // 2149 // According to the new Java Memory Model (JMM): 2150 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2151 // writes act as acquire & release, so: 2152 // (2) A read cannot let unrelated NON-volatile memory refs that 2153 // happen after the read float up to before the read. It's OK for 2154 // non-volatile memory refs that happen before the volatile read to 2155 // float down below it. 2156 // (3) Similar a volatile write cannot let unrelated NON-volatile 2157 // memory refs that happen BEFORE the write float down to after the 2158 // write. It's OK for non-volatile memory refs that happen after the 2159 // volatile write to float up before it. 2160 // 2161 // We only put in barriers around volatile refs (they are expensive), 2162 // not _between_ memory refs (that would require us to track the 2163 // flavor of the previous memory refs). Requirements (2) and (3) 2164 // require some barriers before volatile stores and after volatile 2165 // loads. These nearly cover requirement (1) but miss the 2166 // volatile-store-volatile-load case. This final case is placed after 2167 // volatile-stores although it could just as well go before 2168 // volatile-loads. 2169 2170 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2171 Register Rcache, 2172 Register index) { 2173 const Register temp = x9; 2174 assert_different_registers(Rcache, index, temp); 2175 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2176 2177 Label resolved, clinit_barrier_slow; 2178 2179 Bytecodes::Code code = bytecode(); 2180 __ load_method_entry(Rcache, index); 2181 switch(byte_no) { 2182 case f1_byte: 2183 __ add(temp, Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset())); 2184 break; 2185 case f2_byte: 2186 __ add(temp, Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset())); 2187 break; 2188 } 2189 // Load-acquire the bytecode to match store-release in InterpreterRuntime 2190 __ lbu(temp, Address(temp, 0)); 2191 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2192 2193 __ mv(t0, (int) code); 2194 __ beq(temp, t0, resolved); // have we resolved this bytecode? 2195 2196 // resolve first time through 2197 // Class initialization barrier slow path lands here as well. 2198 __ bind(clinit_barrier_slow); 2199 2200 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2201 __ mv(temp, (int) code); 2202 __ call_VM(noreg, entry, temp); 2203 2204 // Update registers with resolved info 2205 __ load_method_entry(Rcache, index); 2206 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset 2207 // so all clients ofthis method must be modified accordingly 2208 __ bind(resolved); 2209 2210 // Class initialization barrier for static methods 2211 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2212 __ ld(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset()))); 2213 __ load_method_holder(temp, temp); 2214 __ clinit_barrier(temp, t0, nullptr, &clinit_barrier_slow); 2215 } 2216 } 2217 2218 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2219 Register Rcache, 2220 Register index) { 2221 const Register temp = x9; 2222 assert_different_registers(Rcache, index, temp); 2223 2224 Label resolved; 2225 2226 Bytecodes::Code code = bytecode(); 2227 switch (code) { 2228 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2229 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2230 default: break; 2231 } 2232 2233 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2234 __ load_field_entry(Rcache, index); 2235 if (byte_no == f1_byte) { 2236 __ la(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2237 } else { 2238 __ la(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2239 } 2240 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 2241 __ lbu(temp, Address(temp, 0)); 2242 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2243 __ mv(t0, (int) code); // have we resolved this bytecode? 2244 __ beq(temp, t0, resolved); 2245 2246 // resolve first time through 2247 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2248 __ mv(temp, (int) code); 2249 __ call_VM(noreg, entry, temp); 2250 2251 // Update registers with resolved info 2252 __ load_field_entry(Rcache, index); 2253 __ bind(resolved); 2254 } 2255 2256 void TemplateTable::load_resolved_field_entry(Register obj, 2257 Register cache, 2258 Register tos_state, 2259 Register offset, 2260 Register flags, 2261 bool is_static = false) { 2262 assert_different_registers(cache, tos_state, flags, offset); 2263 2264 // Field offset 2265 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2266 2267 // Flags 2268 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2269 2270 // TOS state 2271 if (tos_state != noreg) { 2272 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2273 } 2274 2275 // Klass overwrite register 2276 if (is_static) { 2277 __ ld(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2278 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2279 __ ld(obj, Address(obj, mirror_offset)); 2280 __ resolve_oop_handle(obj, x15, t1); 2281 } 2282 } 2283 2284 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2285 Register method, 2286 Register flags) { 2287 2288 // setup registers 2289 const Register index = flags; 2290 assert_different_registers(method, cache, flags); 2291 2292 // determine constant pool cache field offsets 2293 resolve_cache_and_index_for_method(f1_byte, cache, index); 2294 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2295 __ ld(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2296 } 2297 2298 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2299 Register method, 2300 Register ref_index, 2301 Register flags) { 2302 // setup registers 2303 const Register index = ref_index; 2304 assert_different_registers(method, flags); 2305 assert_different_registers(method, cache, index); 2306 2307 // determine constant pool cache field offsets 2308 resolve_cache_and_index_for_method(f1_byte, cache, index); 2309 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2310 2311 // maybe push appendix to arguments (just before return address) 2312 Label L_no_push; 2313 __ test_bit(t0, flags, ResolvedMethodEntry::has_appendix_shift); 2314 __ beqz(t0, L_no_push); 2315 // invokehandle uses an index into the resolved references array 2316 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2317 // Push the appendix as a trailing parameter. 2318 // This must be done before we get the receiver, 2319 // since the parameter_size includes it. 2320 Register appendix = method; 2321 __ load_resolved_reference_at_index(appendix, ref_index); 2322 __ push_reg(appendix); // push appendix (MethodType, CallSite, etc.) 2323 __ bind(L_no_push); 2324 2325 __ ld(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2326 } 2327 2328 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2329 Register klass, 2330 Register method_or_table_index, 2331 Register flags) { 2332 // setup registers 2333 const Register index = method_or_table_index; 2334 assert_different_registers(method_or_table_index, cache, flags); 2335 2336 // determine constant pool cache field offsets 2337 resolve_cache_and_index_for_method(f1_byte, cache, index); 2338 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2339 2340 // Invokeinterface can behave in different ways: 2341 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2342 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2343 // vtable index is placed in the register. 2344 // Otherwise, the registers will be populated with the klass and method. 2345 2346 Label NotVirtual; Label NotVFinal; Label Done; 2347 __ test_bit(t0, flags, ResolvedMethodEntry::is_forced_virtual_shift); 2348 __ beqz(t0, NotVirtual); 2349 __ test_bit(t0, flags, ResolvedMethodEntry::is_vfinal_shift); 2350 __ beqz(t0, NotVFinal); 2351 __ ld(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2352 __ j(Done); 2353 2354 __ bind(NotVFinal); 2355 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2356 __ j(Done); 2357 2358 __ bind(NotVirtual); 2359 __ ld(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2360 __ ld(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2361 __ bind(Done); 2362 } 2363 2364 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2365 Register method_or_table_index, 2366 Register flags) { 2367 // setup registers 2368 const Register index = flags; 2369 assert_different_registers(method_or_table_index, cache, flags); 2370 2371 // determine constant pool cache field offsets 2372 resolve_cache_and_index_for_method(f2_byte, cache, index); 2373 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2374 2375 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2376 Label NotVFinal; Label Done; 2377 __ test_bit(t0, flags, ResolvedMethodEntry::is_vfinal_shift); 2378 __ beqz(t0, NotVFinal); 2379 __ ld(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2380 __ j(Done); 2381 2382 __ bind(NotVFinal); 2383 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2384 __ bind(Done); 2385 } 2386 2387 // The xmethod register is input and overwritten to be the adapter method for the 2388 // indy call. Return address (ra) is set to the return address for the adapter and 2389 // an appendix may be pushed to the stack. Registers x10-x13 are clobbered. 2390 void TemplateTable::load_invokedynamic_entry(Register method) { 2391 // setup registers 2392 const Register appendix = x10; 2393 const Register cache = x12; 2394 const Register index = x13; 2395 assert_different_registers(method, appendix, cache, index, xcpool); 2396 2397 __ save_bcp(); 2398 2399 Label resolved; 2400 2401 __ load_resolved_indy_entry(cache, index); 2402 __ ld(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2403 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2404 2405 // Compare the method to zero 2406 __ bnez(method, resolved); 2407 2408 Bytecodes::Code code = bytecode(); 2409 2410 // Call to the interpreter runtime to resolve invokedynamic 2411 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2412 __ mv(method, code); // this is essentially Bytecodes::_invokedynamic 2413 __ call_VM(noreg, entry, method); 2414 // Update registers with resolved info 2415 __ load_resolved_indy_entry(cache, index); 2416 __ ld(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2417 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2418 2419 #ifdef ASSERT 2420 __ bnez(method, resolved); 2421 __ stop("Should be resolved by now"); 2422 #endif // ASSERT 2423 __ bind(resolved); 2424 2425 Label L_no_push; 2426 // Check if there is an appendix 2427 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2428 __ test_bit(t0, index, ResolvedIndyEntry::has_appendix_shift); 2429 __ beqz(t0, L_no_push); 2430 2431 // Get appendix 2432 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2433 // Push the appendix as a trailing parameter 2434 // since the parameter_size includes it. 2435 __ push_reg(method); 2436 __ mv(method, index); 2437 __ load_resolved_reference_at_index(appendix, method); 2438 __ verify_oop(appendix); 2439 __ pop_reg(method); 2440 __ push_reg(appendix); // push appendix (MethodType, CallSite, etc.) 2441 __ bind(L_no_push); 2442 2443 // compute return type 2444 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2445 // load return address 2446 // Return address is loaded into ra and not pushed to the stack like x86 2447 { 2448 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2449 __ mv(t0, table_addr); 2450 __ shadd(t0, index, t0, index, 3); 2451 __ ld(ra, Address(t0, 0)); 2452 } 2453 } 2454 2455 // The registers cache and index expected to be set before call. 2456 // Correct values of the cache and index registers are preserved. 2457 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2458 bool is_static, bool has_tos) { 2459 // do the JVMTI work here to avoid disturbing the register state below 2460 // We use c_rarg registers here because we want to use the register used in 2461 // the call to the VM 2462 if (JvmtiExport::can_post_field_access()) { 2463 // Check to see if a field access watch has been set before we 2464 // take the time to call into the VM. 2465 Label L1; 2466 assert_different_registers(cache, index, x10); 2467 ExternalAddress target((address) JvmtiExport::get_field_access_count_addr()); 2468 __ relocate(target.rspec(), [&] { 2469 int32_t offset; 2470 __ la(t0, target.target(), offset); 2471 __ lwu(x10, Address(t0, offset)); 2472 }); 2473 2474 __ beqz(x10, L1); 2475 2476 __ load_field_entry(c_rarg2, index); 2477 2478 if (is_static) { 2479 __ mv(c_rarg1, zr); // null object reference 2480 } else { 2481 __ ld(c_rarg1, at_tos()); // get object pointer without popping it 2482 __ verify_oop(c_rarg1); 2483 } 2484 // c_rarg1: object pointer or null 2485 // c_rarg2: cache entry pointer 2486 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2487 InterpreterRuntime::post_field_access), 2488 c_rarg1, c_rarg2); 2489 __ load_field_entry(cache, index); 2490 __ bind(L1); 2491 } 2492 } 2493 2494 void TemplateTable::pop_and_check_object(Register r) { 2495 __ pop_ptr(r); 2496 __ null_check(r); // for field access must check obj. 2497 __ verify_oop(r); 2498 } 2499 2500 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2501 const Register cache = x14; 2502 const Register obj = x14; 2503 const Register index = x13; 2504 const Register tos_state = x13; 2505 const Register off = x9; 2506 const Register flags = x16; 2507 const Register bc = x14; // uses same reg as obj, so don't mix them 2508 2509 resolve_cache_and_index_for_field(byte_no, cache, index); 2510 jvmti_post_field_access(cache, index, is_static, false); 2511 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2512 2513 if (!is_static) { 2514 // obj is on the stack 2515 pop_and_check_object(obj); 2516 } 2517 2518 __ add(off, obj, off); 2519 const Address field(off); 2520 2521 Label Done, notByte, notBool, notInt, notShort, notChar, 2522 notLong, notFloat, notObj, notDouble; 2523 2524 assert(btos == 0, "change code, btos != 0"); 2525 __ bnez(tos_state, notByte); 2526 2527 // Don't rewrite getstatic, only getfield 2528 if (is_static) { 2529 rc = may_not_rewrite; 2530 } 2531 2532 // btos 2533 __ access_load_at(T_BYTE, IN_HEAP, x10, field, noreg, noreg); 2534 __ push(btos); 2535 // Rewrite bytecode to be faster 2536 if (rc == may_rewrite) { 2537 patch_bytecode(Bytecodes::_fast_bgetfield, bc, x11); 2538 } 2539 __ j(Done); 2540 2541 __ bind(notByte); 2542 __ sub(t0, tos_state, (u1)ztos); 2543 __ bnez(t0, notBool); 2544 2545 // ztos (same code as btos) 2546 __ access_load_at(T_BOOLEAN, IN_HEAP, x10, field, noreg, noreg); 2547 __ push(ztos); 2548 // Rewrite bytecode to be faster 2549 if (rc == may_rewrite) { 2550 // uses btos rewriting, no truncating to t/f bit is needed for getfield 2551 patch_bytecode(Bytecodes::_fast_bgetfield, bc, x11); 2552 } 2553 __ j(Done); 2554 2555 __ bind(notBool); 2556 __ sub(t0, tos_state, (u1)atos); 2557 __ bnez(t0, notObj); 2558 // atos 2559 do_oop_load(_masm, field, x10, IN_HEAP); 2560 __ push(atos); 2561 if (rc == may_rewrite) { 2562 patch_bytecode(Bytecodes::_fast_agetfield, bc, x11); 2563 } 2564 __ j(Done); 2565 2566 __ bind(notObj); 2567 __ sub(t0, tos_state, (u1)itos); 2568 __ bnez(t0, notInt); 2569 // itos 2570 __ access_load_at(T_INT, IN_HEAP, x10, field, noreg, noreg); 2571 __ sign_extend(x10, x10, 32); 2572 __ push(itos); 2573 // Rewrite bytecode to be faster 2574 if (rc == may_rewrite) { 2575 patch_bytecode(Bytecodes::_fast_igetfield, bc, x11); 2576 } 2577 __ j(Done); 2578 2579 __ bind(notInt); 2580 __ sub(t0, tos_state, (u1)ctos); 2581 __ bnez(t0, notChar); 2582 // ctos 2583 __ access_load_at(T_CHAR, IN_HEAP, x10, field, noreg, noreg); 2584 __ push(ctos); 2585 // Rewrite bytecode to be faster 2586 if (rc == may_rewrite) { 2587 patch_bytecode(Bytecodes::_fast_cgetfield, bc, x11); 2588 } 2589 __ j(Done); 2590 2591 __ bind(notChar); 2592 __ sub(t0, tos_state, (u1)stos); 2593 __ bnez(t0, notShort); 2594 // stos 2595 __ access_load_at(T_SHORT, IN_HEAP, x10, field, noreg, noreg); 2596 __ push(stos); 2597 // Rewrite bytecode to be faster 2598 if (rc == may_rewrite) { 2599 patch_bytecode(Bytecodes::_fast_sgetfield, bc, x11); 2600 } 2601 __ j(Done); 2602 2603 __ bind(notShort); 2604 __ sub(t0, tos_state, (u1)ltos); 2605 __ bnez(t0, notLong); 2606 // ltos 2607 __ access_load_at(T_LONG, IN_HEAP, x10, field, noreg, noreg); 2608 __ push(ltos); 2609 // Rewrite bytecode to be faster 2610 if (rc == may_rewrite) { 2611 patch_bytecode(Bytecodes::_fast_lgetfield, bc, x11); 2612 } 2613 __ j(Done); 2614 2615 __ bind(notLong); 2616 __ sub(t0, tos_state, (u1)ftos); 2617 __ bnez(t0, notFloat); 2618 // ftos 2619 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2620 __ push(ftos); 2621 // Rewrite bytecode to be faster 2622 if (rc == may_rewrite) { 2623 patch_bytecode(Bytecodes::_fast_fgetfield, bc, x11); 2624 } 2625 __ j(Done); 2626 2627 __ bind(notFloat); 2628 #ifdef ASSERT 2629 __ sub(t0, tos_state, (u1)dtos); 2630 __ bnez(t0, notDouble); 2631 #endif 2632 // dtos 2633 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2634 __ push(dtos); 2635 // Rewrite bytecode to be faster 2636 if (rc == may_rewrite) { 2637 patch_bytecode(Bytecodes::_fast_dgetfield, bc, x11); 2638 } 2639 #ifdef ASSERT 2640 __ j(Done); 2641 2642 __ bind(notDouble); 2643 __ stop("Bad state"); 2644 #endif 2645 2646 __ bind(Done); 2647 2648 Label notVolatile; 2649 __ test_bit(t0, flags, ResolvedFieldEntry::is_volatile_shift); 2650 __ beqz(t0, notVolatile); 2651 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2652 __ bind(notVolatile); 2653 } 2654 2655 void TemplateTable::getfield(int byte_no) { 2656 getfield_or_static(byte_no, false); 2657 } 2658 2659 void TemplateTable::nofast_getfield(int byte_no) { 2660 getfield_or_static(byte_no, false, may_not_rewrite); 2661 } 2662 2663 void TemplateTable::getstatic(int byte_no) 2664 { 2665 getfield_or_static(byte_no, true); 2666 } 2667 2668 // The registers cache and index expected to be set before call. 2669 // The function may destroy various registers, just not the cache and index registers. 2670 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2671 transition(vtos, vtos); 2672 2673 if (JvmtiExport::can_post_field_modification()) { 2674 // Check to see if a field modification watch has been set before 2675 // we take the time to call into the VM. 2676 Label L1; 2677 assert_different_registers(cache, index, x10); 2678 ExternalAddress target((address)JvmtiExport::get_field_modification_count_addr()); 2679 __ relocate(target.rspec(), [&] { 2680 int32_t offset; 2681 __ la(t0, target.target(), offset); 2682 __ lwu(x10, Address(t0, offset)); 2683 }); 2684 __ beqz(x10, L1); 2685 2686 __ mv(c_rarg2, cache); 2687 2688 if (is_static) { 2689 // Life is simple. Null out the object pointer. 2690 __ mv(c_rarg1, zr); 2691 } else { 2692 // Life is harder. The stack holds the value on top, followed by 2693 // the object. We don't know the size of the value, though; it 2694 // could be one or two words depending on its type. As a result, 2695 // we must find the type to determine where the object is. 2696 __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset()))); 2697 Label nope2, done, ok; 2698 __ ld(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2699 __ sub(t0, c_rarg3, ltos); 2700 __ beqz(t0, ok); 2701 __ sub(t0, c_rarg3, dtos); 2702 __ bnez(t0, nope2); 2703 __ bind(ok); 2704 __ ld(c_rarg1, at_tos_p2()); // ltos (two word jvalue); 2705 __ bind(nope2); 2706 } 2707 // object (tos) 2708 __ mv(c_rarg3, esp); 2709 // c_rarg1: object pointer set up above (null if static) 2710 // c_rarg2: cache entry pointer 2711 // c_rarg3: jvalue object on the stack 2712 __ call_VM(noreg, 2713 CAST_FROM_FN_PTR(address, 2714 InterpreterRuntime::post_field_modification), 2715 c_rarg1, c_rarg2, c_rarg3); 2716 __ load_field_entry(cache, index); 2717 __ bind(L1); 2718 } 2719 } 2720 2721 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2722 transition(vtos, vtos); 2723 2724 const Register cache = x12; 2725 const Register index = x13; 2726 const Register tos_state = x13; 2727 const Register obj = x12; 2728 const Register off = x9; 2729 const Register flags = x10; 2730 const Register bc = x14; 2731 2732 resolve_cache_and_index_for_field(byte_no, cache, index); 2733 jvmti_post_field_mod(cache, index, is_static); 2734 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2735 2736 Label Done; 2737 __ mv(x15, flags); 2738 2739 { 2740 Label notVolatile; 2741 __ test_bit(t0, x15, ResolvedFieldEntry::is_volatile_shift); 2742 __ beqz(t0, notVolatile); 2743 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2744 __ bind(notVolatile); 2745 } 2746 2747 Label notByte, notBool, notInt, notShort, notChar, 2748 notLong, notFloat, notObj, notDouble; 2749 2750 assert(btos == 0, "change code, btos != 0"); 2751 __ bnez(tos_state, notByte); 2752 2753 // Don't rewrite putstatic, only putfield 2754 if (is_static) { 2755 rc = may_not_rewrite; 2756 } 2757 2758 // btos 2759 { 2760 __ pop(btos); 2761 // field address 2762 if (!is_static) { 2763 pop_and_check_object(obj); 2764 } 2765 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2766 const Address field(off, 0); // off register as temparator register. 2767 __ access_store_at(T_BYTE, IN_HEAP, field, x10, noreg, noreg, noreg); 2768 if (rc == may_rewrite) { 2769 patch_bytecode(Bytecodes::_fast_bputfield, bc, x11, true, byte_no); 2770 } 2771 __ j(Done); 2772 } 2773 2774 __ bind(notByte); 2775 __ sub(t0, tos_state, (u1)ztos); 2776 __ bnez(t0, notBool); 2777 2778 // ztos 2779 { 2780 __ pop(ztos); 2781 // field address 2782 if (!is_static) { 2783 pop_and_check_object(obj); 2784 } 2785 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2786 const Address field(off, 0); 2787 __ access_store_at(T_BOOLEAN, IN_HEAP, field, x10, noreg, noreg, noreg); 2788 if (rc == may_rewrite) { 2789 patch_bytecode(Bytecodes::_fast_zputfield, bc, x11, true, byte_no); 2790 } 2791 __ j(Done); 2792 } 2793 2794 __ bind(notBool); 2795 __ sub(t0, tos_state, (u1)atos); 2796 __ bnez(t0, notObj); 2797 2798 // atos 2799 { 2800 __ pop(atos); 2801 // field address 2802 if (!is_static) { 2803 pop_and_check_object(obj); 2804 } 2805 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2806 const Address field(off, 0); 2807 // Store into the field 2808 do_oop_store(_masm, field, x10, IN_HEAP); 2809 if (rc == may_rewrite) { 2810 patch_bytecode(Bytecodes::_fast_aputfield, bc, x11, true, byte_no); 2811 } 2812 __ j(Done); 2813 } 2814 2815 __ bind(notObj); 2816 __ sub(t0, tos_state, (u1)itos); 2817 __ bnez(t0, notInt); 2818 2819 // itos 2820 { 2821 __ pop(itos); 2822 // field address 2823 if (!is_static) { 2824 pop_and_check_object(obj); 2825 } 2826 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2827 const Address field(off, 0); 2828 __ access_store_at(T_INT, IN_HEAP, field, x10, noreg, noreg, noreg); 2829 if (rc == may_rewrite) { 2830 patch_bytecode(Bytecodes::_fast_iputfield, bc, x11, true, byte_no); 2831 } 2832 __ j(Done); 2833 } 2834 2835 __ bind(notInt); 2836 __ sub(t0, tos_state, (u1)ctos); 2837 __ bnez(t0, notChar); 2838 2839 // ctos 2840 { 2841 __ pop(ctos); 2842 // field address 2843 if (!is_static) { 2844 pop_and_check_object(obj); 2845 } 2846 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2847 const Address field(off, 0); 2848 __ access_store_at(T_CHAR, IN_HEAP, field, x10, noreg, noreg, noreg); 2849 if (rc == may_rewrite) { 2850 patch_bytecode(Bytecodes::_fast_cputfield, bc, x11, true, byte_no); 2851 } 2852 __ j(Done); 2853 } 2854 2855 __ bind(notChar); 2856 __ sub(t0, tos_state, (u1)stos); 2857 __ bnez(t0, notShort); 2858 2859 // stos 2860 { 2861 __ pop(stos); 2862 // field address 2863 if (!is_static) { 2864 pop_and_check_object(obj); 2865 } 2866 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2867 const Address field(off, 0); 2868 __ access_store_at(T_SHORT, IN_HEAP, field, x10, noreg, noreg, noreg); 2869 if (rc == may_rewrite) { 2870 patch_bytecode(Bytecodes::_fast_sputfield, bc, x11, true, byte_no); 2871 } 2872 __ j(Done); 2873 } 2874 2875 __ bind(notShort); 2876 __ sub(t0, tos_state, (u1)ltos); 2877 __ bnez(t0, notLong); 2878 2879 // ltos 2880 { 2881 __ pop(ltos); 2882 // field address 2883 if (!is_static) { 2884 pop_and_check_object(obj); 2885 } 2886 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2887 const Address field(off, 0); 2888 __ access_store_at(T_LONG, IN_HEAP, field, x10, noreg, noreg, noreg); 2889 if (rc == may_rewrite) { 2890 patch_bytecode(Bytecodes::_fast_lputfield, bc, x11, true, byte_no); 2891 } 2892 __ j(Done); 2893 } 2894 2895 __ bind(notLong); 2896 __ sub(t0, tos_state, (u1)ftos); 2897 __ bnez(t0, notFloat); 2898 2899 // ftos 2900 { 2901 __ pop(ftos); 2902 // field address 2903 if (!is_static) { 2904 pop_and_check_object(obj); 2905 } 2906 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2907 const Address field(off, 0); 2908 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 2909 if (rc == may_rewrite) { 2910 patch_bytecode(Bytecodes::_fast_fputfield, bc, x11, true, byte_no); 2911 } 2912 __ j(Done); 2913 } 2914 2915 __ bind(notFloat); 2916 #ifdef ASSERT 2917 __ sub(t0, tos_state, (u1)dtos); 2918 __ bnez(t0, notDouble); 2919 #endif 2920 2921 // dtos 2922 { 2923 __ pop(dtos); 2924 // field address 2925 if (!is_static) { 2926 pop_and_check_object(obj); 2927 } 2928 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2929 const Address field(off, 0); 2930 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 2931 if (rc == may_rewrite) { 2932 patch_bytecode(Bytecodes::_fast_dputfield, bc, x11, true, byte_no); 2933 } 2934 } 2935 2936 #ifdef ASSERT 2937 __ j(Done); 2938 2939 __ bind(notDouble); 2940 __ stop("Bad state"); 2941 #endif 2942 2943 __ bind(Done); 2944 2945 { 2946 Label notVolatile; 2947 __ test_bit(t0, x15, ResolvedFieldEntry::is_volatile_shift); 2948 __ beqz(t0, notVolatile); 2949 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 2950 __ bind(notVolatile); 2951 } 2952 } 2953 2954 void TemplateTable::putfield(int byte_no) { 2955 putfield_or_static(byte_no, false); 2956 } 2957 2958 void TemplateTable::nofast_putfield(int byte_no) { 2959 putfield_or_static(byte_no, false, may_not_rewrite); 2960 } 2961 2962 void TemplateTable::putstatic(int byte_no) { 2963 putfield_or_static(byte_no, true); 2964 } 2965 2966 void TemplateTable::jvmti_post_fast_field_mod() { 2967 if (JvmtiExport::can_post_field_modification()) { 2968 // Check to see if a field modification watch has been set before 2969 // we take the time to call into the VM. 2970 Label L2; 2971 ExternalAddress target((address)JvmtiExport::get_field_modification_count_addr()); 2972 __ relocate(target.rspec(), [&] { 2973 int32_t offset; 2974 __ la(t0, target.target(), offset); 2975 __ lwu(c_rarg3, Address(t0, offset)); 2976 }); 2977 __ beqz(c_rarg3, L2); 2978 __ pop_ptr(x9); // copy the object pointer from tos 2979 __ verify_oop(x9); 2980 __ push_ptr(x9); // put the object pointer back on tos 2981 // Save tos values before call_VM() clobbers them. Since we have 2982 // to do it for every data type, we use the saved values as the 2983 // jvalue object. 2984 switch (bytecode()) { // load values into the jvalue object 2985 case Bytecodes::_fast_aputfield: __ push_ptr(x10); break; 2986 case Bytecodes::_fast_bputfield: // fall through 2987 case Bytecodes::_fast_zputfield: // fall through 2988 case Bytecodes::_fast_sputfield: // fall through 2989 case Bytecodes::_fast_cputfield: // fall through 2990 case Bytecodes::_fast_iputfield: __ push_i(x10); break; 2991 case Bytecodes::_fast_dputfield: __ push_d(); break; 2992 case Bytecodes::_fast_fputfield: __ push_f(); break; 2993 case Bytecodes::_fast_lputfield: __ push_l(x10); break; 2994 2995 default: 2996 ShouldNotReachHere(); 2997 } 2998 __ mv(c_rarg3, esp); // points to jvalue on the stack 2999 // access constant pool cache entry 3000 __ load_field_entry(c_rarg2, x10); 3001 __ verify_oop(x9); 3002 // x9: object pointer copied above 3003 // c_rarg2: cache entry pointer 3004 // c_rarg3: jvalue object on the stack 3005 __ call_VM(noreg, 3006 CAST_FROM_FN_PTR(address, 3007 InterpreterRuntime::post_field_modification), 3008 x9, c_rarg2, c_rarg3); 3009 3010 switch (bytecode()) { // restore tos values 3011 case Bytecodes::_fast_aputfield: __ pop_ptr(x10); break; 3012 case Bytecodes::_fast_bputfield: // fall through 3013 case Bytecodes::_fast_zputfield: // fall through 3014 case Bytecodes::_fast_sputfield: // fall through 3015 case Bytecodes::_fast_cputfield: // fall through 3016 case Bytecodes::_fast_iputfield: __ pop_i(x10); break; 3017 case Bytecodes::_fast_dputfield: __ pop_d(); break; 3018 case Bytecodes::_fast_fputfield: __ pop_f(); break; 3019 case Bytecodes::_fast_lputfield: __ pop_l(x10); break; 3020 default: break; 3021 } 3022 __ bind(L2); 3023 } 3024 } 3025 3026 void TemplateTable::fast_storefield(TosState state) { 3027 transition(state, vtos); 3028 3029 ByteSize base = ConstantPoolCache::base_offset(); 3030 3031 jvmti_post_fast_field_mod(); 3032 3033 // access constant pool cache 3034 __ load_field_entry(x12, x11); 3035 3036 // X11: field offset, X12: field holder, X13: flags 3037 load_resolved_field_entry(x12, x12, noreg, x11, x13); 3038 3039 { 3040 Label notVolatile; 3041 __ test_bit(t0, x13, ResolvedFieldEntry::is_volatile_shift); 3042 __ beqz(t0, notVolatile); 3043 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 3044 __ bind(notVolatile); 3045 } 3046 3047 // Get object from stack 3048 pop_and_check_object(x12); 3049 3050 // field address 3051 __ add(x11, x12, x11); 3052 const Address field(x11, 0); 3053 3054 // access field 3055 switch (bytecode()) { 3056 case Bytecodes::_fast_aputfield: 3057 do_oop_store(_masm, field, x10, IN_HEAP); 3058 break; 3059 case Bytecodes::_fast_lputfield: 3060 __ access_store_at(T_LONG, IN_HEAP, field, x10, noreg, noreg, noreg); 3061 break; 3062 case Bytecodes::_fast_iputfield: 3063 __ access_store_at(T_INT, IN_HEAP, field, x10, noreg, noreg, noreg); 3064 break; 3065 case Bytecodes::_fast_zputfield: 3066 __ access_store_at(T_BOOLEAN, IN_HEAP, field, x10, noreg, noreg, noreg); 3067 break; 3068 case Bytecodes::_fast_bputfield: 3069 __ access_store_at(T_BYTE, IN_HEAP, field, x10, noreg, noreg, noreg); 3070 break; 3071 case Bytecodes::_fast_sputfield: 3072 __ access_store_at(T_SHORT, IN_HEAP, field, x10, noreg, noreg, noreg); 3073 break; 3074 case Bytecodes::_fast_cputfield: 3075 __ access_store_at(T_CHAR, IN_HEAP, field, x10, noreg, noreg, noreg); 3076 break; 3077 case Bytecodes::_fast_fputfield: 3078 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3079 break; 3080 case Bytecodes::_fast_dputfield: 3081 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 3082 break; 3083 default: 3084 ShouldNotReachHere(); 3085 } 3086 3087 { 3088 Label notVolatile; 3089 __ test_bit(t0, x13, ResolvedFieldEntry::is_volatile_shift); 3090 __ beqz(t0, notVolatile); 3091 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3092 __ bind(notVolatile); 3093 } 3094 } 3095 3096 void TemplateTable::fast_accessfield(TosState state) { 3097 transition(atos, state); 3098 // Do the JVMTI work here to avoid disturbing the register state below 3099 if (JvmtiExport::can_post_field_access()) { 3100 // Check to see if a field access watch has been set before we 3101 // take the time to call into the VM. 3102 Label L1; 3103 ExternalAddress target((address)JvmtiExport::get_field_access_count_addr()); 3104 __ relocate(target.rspec(), [&] { 3105 int32_t offset; 3106 __ la(t0, target.target(), offset); 3107 __ lwu(x12, Address(t0, offset)); 3108 }); 3109 __ beqz(x12, L1); 3110 // access constant pool cache entry 3111 __ load_field_entry(c_rarg2, t1); 3112 __ verify_oop(x10); 3113 __ push_ptr(x10); // save object pointer before call_VM() clobbers it 3114 __ mv(c_rarg1, x10); 3115 // c_rarg1: object pointer copied above 3116 // c_rarg2: cache entry pointer 3117 __ call_VM(noreg, 3118 CAST_FROM_FN_PTR(address, 3119 InterpreterRuntime::post_field_access), 3120 c_rarg1, c_rarg2); 3121 __ pop_ptr(x10); // restore object pointer 3122 __ bind(L1); 3123 } 3124 3125 // access constant pool cache 3126 __ load_field_entry(x12, x11); 3127 3128 __ load_sized_value(x11, Address(x12, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3129 __ load_unsigned_byte(x13, Address(x12, in_bytes(ResolvedFieldEntry::flags_offset()))); 3130 3131 // x10: object 3132 __ verify_oop(x10); 3133 __ null_check(x10); 3134 __ add(x11, x10, x11); 3135 const Address field(x11, 0); 3136 3137 // access field 3138 switch (bytecode()) { 3139 case Bytecodes::_fast_agetfield: 3140 do_oop_load(_masm, field, x10, IN_HEAP); 3141 __ verify_oop(x10); 3142 break; 3143 case Bytecodes::_fast_lgetfield: 3144 __ access_load_at(T_LONG, IN_HEAP, x10, field, noreg, noreg); 3145 break; 3146 case Bytecodes::_fast_igetfield: 3147 __ access_load_at(T_INT, IN_HEAP, x10, field, noreg, noreg); 3148 __ sign_extend(x10, x10, 32); 3149 break; 3150 case Bytecodes::_fast_bgetfield: 3151 __ access_load_at(T_BYTE, IN_HEAP, x10, field, noreg, noreg); 3152 break; 3153 case Bytecodes::_fast_sgetfield: 3154 __ access_load_at(T_SHORT, IN_HEAP, x10, field, noreg, noreg); 3155 break; 3156 case Bytecodes::_fast_cgetfield: 3157 __ access_load_at(T_CHAR, IN_HEAP, x10, field, noreg, noreg); 3158 break; 3159 case Bytecodes::_fast_fgetfield: 3160 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3161 break; 3162 case Bytecodes::_fast_dgetfield: 3163 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3164 break; 3165 default: 3166 ShouldNotReachHere(); 3167 } 3168 { 3169 Label notVolatile; 3170 __ test_bit(t0, x13, ResolvedFieldEntry::is_volatile_shift); 3171 __ beqz(t0, notVolatile); 3172 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3173 __ bind(notVolatile); 3174 } 3175 } 3176 3177 void TemplateTable::fast_xaccess(TosState state) { 3178 transition(vtos, state); 3179 3180 // get receiver 3181 __ ld(x10, aaddress(0)); 3182 // access constant pool cache 3183 __ load_field_entry(x12, x13, 2); 3184 __ load_sized_value(x11, Address(x12, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3185 3186 // make sure exception is reported in correct bcp range (getfield is 3187 // next instruction) 3188 __ addi(xbcp, xbcp, 1); 3189 __ null_check(x10); 3190 switch (state) { 3191 case itos: 3192 __ add(x10, x10, x11); 3193 __ access_load_at(T_INT, IN_HEAP, x10, Address(x10, 0), noreg, noreg); 3194 __ sign_extend(x10, x10, 32); 3195 break; 3196 case atos: 3197 __ add(x10, x10, x11); 3198 do_oop_load(_masm, Address(x10, 0), x10, IN_HEAP); 3199 __ verify_oop(x10); 3200 break; 3201 case ftos: 3202 __ add(x10, x10, x11); 3203 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(x10), noreg, noreg); 3204 break; 3205 default: 3206 ShouldNotReachHere(); 3207 } 3208 3209 { 3210 Label notVolatile; 3211 __ load_unsigned_byte(x13, Address(x12, in_bytes(ResolvedFieldEntry::flags_offset()))); 3212 __ test_bit(t0, x13, ResolvedFieldEntry::is_volatile_shift); 3213 __ beqz(t0, notVolatile); 3214 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3215 __ bind(notVolatile); 3216 } 3217 3218 __ sub(xbcp, xbcp, 1); 3219 } 3220 3221 //----------------------------------------------------------------------------- 3222 // Calls 3223 3224 void TemplateTable::prepare_invoke(Register cache, Register recv) { 3225 3226 Bytecodes::Code code = bytecode(); 3227 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3228 3229 // save 'interpreter return address' 3230 __ save_bcp(); 3231 3232 // Load TOS state for later 3233 __ load_unsigned_byte(t1, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3234 3235 // load receiver if needed (note: no return address pushed yet) 3236 if (load_receiver) { 3237 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3238 __ shadd(t0, recv, esp, t0, 3); 3239 __ ld(recv, Address(t0, -Interpreter::expr_offset_in_bytes(1))); 3240 __ verify_oop(recv); 3241 } 3242 3243 // load return address 3244 { 3245 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3246 __ mv(t0, table_addr); 3247 __ shadd(t0, t1, t0, t1, 3); 3248 __ ld(ra, Address(t0, 0)); 3249 } 3250 } 3251 3252 void TemplateTable::invokevirtual_helper(Register index, 3253 Register recv, 3254 Register flags) { 3255 // Uses temporary registers x10, x13 3256 assert_different_registers(index, recv, x10, x13); 3257 // Test for an invoke of a final method 3258 Label notFinal; 3259 __ test_bit(t0, flags, ResolvedMethodEntry::is_vfinal_shift); 3260 __ beqz(t0, notFinal); 3261 3262 const Register method = index; // method must be xmethod 3263 assert(method == xmethod, "Method must be xmethod for interpreter calling convention"); 3264 3265 // do the call - the index is actually the method to call 3266 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3267 3268 // It's final, need a null check here! 3269 __ null_check(recv); 3270 3271 // profile this call 3272 __ profile_final_call(x10); 3273 __ profile_arguments_type(x10, method, x14, true); 3274 3275 __ jump_from_interpreted(method); 3276 3277 __ bind(notFinal); 3278 3279 // get receiver klass 3280 __ load_klass(x10, recv); 3281 3282 // profile this call 3283 __ profile_virtual_call(x10, xlocals, x13); 3284 3285 // get target Method & entry point 3286 __ lookup_virtual_method(x10, index, method); 3287 __ profile_arguments_type(x13, method, x14, true); 3288 __ jump_from_interpreted(method); 3289 } 3290 3291 void TemplateTable::invokevirtual(int byte_no) { 3292 transition(vtos, vtos); 3293 assert(byte_no == f2_byte, "use this argument"); 3294 3295 load_resolved_method_entry_virtual(x12, // ResolvedMethodEntry* 3296 xmethod, // Method* or itable index 3297 x13); // flags 3298 prepare_invoke(x12, x12); // recv 3299 3300 // xmethod: index (actually a Method*) 3301 // x12: receiver 3302 // x13: flags 3303 3304 invokevirtual_helper(xmethod, x12, x13); 3305 } 3306 3307 void TemplateTable::invokespecial(int byte_no) { 3308 transition(vtos, vtos); 3309 assert(byte_no == f1_byte, "use this argument"); 3310 3311 load_resolved_method_entry_special_or_static(x12, // ResolvedMethodEntry* 3312 xmethod, // Method* 3313 x13); // flags 3314 prepare_invoke(x12, x12); // get receiver also for null check 3315 3316 __ verify_oop(x12); 3317 __ null_check(x12); 3318 // do the call 3319 __ profile_call(x10); 3320 __ profile_arguments_type(x10, xmethod, xbcp, false); 3321 __ jump_from_interpreted(xmethod); 3322 } 3323 3324 void TemplateTable::invokestatic(int byte_no) { 3325 transition(vtos, vtos); 3326 assert(byte_no == f1_byte, "use this argument"); 3327 3328 load_resolved_method_entry_special_or_static(x12, // ResolvedMethodEntry* 3329 xmethod, // Method* 3330 x13); // flags 3331 prepare_invoke(x12, x12); // get receiver also for null check 3332 3333 // do the call 3334 __ profile_call(x10); 3335 __ profile_arguments_type(x10, xmethod, x14, false); 3336 __ jump_from_interpreted(xmethod); 3337 } 3338 3339 void TemplateTable::fast_invokevfinal(int byte_no) { 3340 __ call_Unimplemented(); 3341 } 3342 3343 void TemplateTable::invokeinterface(int byte_no) { 3344 transition(vtos, vtos); 3345 assert(byte_no == f1_byte, "use this argument"); 3346 3347 load_resolved_method_entry_interface(x12, // ResolvedMethodEntry* 3348 x10, // Klass* 3349 xmethod, // Method* or itable/vtable index 3350 x13); // flags 3351 prepare_invoke(x12, x12); // receiver 3352 3353 // x10: interface klass (from f1) 3354 // xmethod: method (from f2) 3355 // x12: receiver 3356 // x13: flags 3357 3358 // First check for Object case, then private interface method, 3359 // then regular interface method. 3360 3361 // Special case of invokeinterface called for virtual method of 3362 // java.lang.Object. See cpCache.cpp for details 3363 Label notObjectMethod; 3364 __ test_bit(t0, x13, ResolvedMethodEntry::is_forced_virtual_shift); 3365 __ beqz(t0, notObjectMethod); 3366 3367 invokevirtual_helper(xmethod, x12, x13); 3368 __ bind(notObjectMethod); 3369 3370 Label no_such_interface; 3371 3372 // Check for private method invocation - indicated by vfinal 3373 Label notVFinal; 3374 __ test_bit(t0, x13, ResolvedMethodEntry::is_vfinal_shift); 3375 __ beqz(t0, notVFinal); 3376 3377 // Check receiver klass into x13 3378 __ load_klass(x13, x12); 3379 3380 Label subtype; 3381 __ check_klass_subtype(x13, x10, x14, subtype); 3382 // If we get here the typecheck failed 3383 __ j(no_such_interface); 3384 __ bind(subtype); 3385 3386 __ profile_final_call(x10); 3387 __ profile_arguments_type(x10, xmethod, x14, true); 3388 __ jump_from_interpreted(xmethod); 3389 3390 __ bind(notVFinal); 3391 3392 // Get receiver klass into x13 3393 __ restore_locals(); 3394 __ load_klass(x13, x12); 3395 3396 Label no_such_method; 3397 3398 // Preserve method for the throw_AbstractMethodErrorVerbose. 3399 __ mv(x28, xmethod); 3400 // Receiver subtype check against REFC. 3401 // Superklass in x10. Subklass in x13. Blows t1, x30 3402 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3403 x13, x10, noreg, 3404 // outputs: scan temp. reg, scan temp. reg 3405 t1, x30, 3406 no_such_interface, 3407 /*return_method=*/false); 3408 3409 // profile this call 3410 __ profile_virtual_call(x13, x30, x9); 3411 3412 // Get declaring interface class from method, and itable index 3413 __ load_method_holder(x10, xmethod); 3414 __ lwu(xmethod, Address(xmethod, Method::itable_index_offset())); 3415 __ subw(xmethod, xmethod, Method::itable_index_max); 3416 __ negw(xmethod, xmethod); 3417 3418 // Preserve recvKlass for throw_AbstractMethodErrorVerbose 3419 __ mv(xlocals, x13); 3420 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3421 xlocals, x10, xmethod, 3422 // outputs: method, scan temp. reg 3423 xmethod, x30, 3424 no_such_interface); 3425 3426 // xmethod: Method to call 3427 // x12: receiver 3428 // Check for abstract method error 3429 // Note: This should be done more efficiently via a throw_abstract_method_error 3430 // interpreter entry point and a conditional jump to it in case of a null 3431 // method. 3432 __ beqz(xmethod, no_such_method); 3433 3434 __ profile_arguments_type(x13, xmethod, x30, true); 3435 3436 // do the call 3437 // x12: receiver 3438 // xmethod: Method 3439 __ jump_from_interpreted(xmethod); 3440 __ should_not_reach_here(); 3441 3442 // exception handling code follows ... 3443 // note: must restore interpreter registers to canonical 3444 // state for exception handling to work correctly! 3445 3446 __ bind(no_such_method); 3447 // throw exception 3448 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3449 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3450 // Pass arguments for generating a verbose error message. 3451 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), x13, x28); 3452 // the call_VM checks for exception, so we should never return here. 3453 __ should_not_reach_here(); 3454 3455 __ bind(no_such_interface); 3456 // throw exceptiong 3457 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3458 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3459 // Pass arguments for generating a verbose error message. 3460 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3461 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), x13, x10); 3462 // the call_VM checks for exception, so we should never return here. 3463 __ should_not_reach_here(); 3464 return; 3465 } 3466 3467 void TemplateTable::invokehandle(int byte_no) { 3468 transition(vtos, vtos); 3469 assert(byte_no == f1_byte, "use this argument"); 3470 3471 load_resolved_method_entry_handle(x12, // ResolvedMethodEntry* 3472 xmethod, // Method* 3473 x10, // Resolved reference 3474 x13); // flags 3475 prepare_invoke(x12, x12); 3476 3477 __ verify_method_ptr(x12); 3478 __ verify_oop(x12); 3479 __ null_check(x12); 3480 3481 // FIXME: profile the LambdaForm also 3482 3483 // x30 is safe to use here as a temp reg because it is about to 3484 // be clobbered by jump_from_interpreted(). 3485 __ profile_final_call(x30); 3486 __ profile_arguments_type(x30, xmethod, x14, true); 3487 3488 __ jump_from_interpreted(xmethod); 3489 } 3490 3491 void TemplateTable::invokedynamic(int byte_no) { 3492 transition(vtos, vtos); 3493 assert(byte_no == f1_byte, "use this argument"); 3494 3495 load_invokedynamic_entry(xmethod); 3496 3497 // x10: CallSite object (from cpool->resolved_references[]) 3498 // xmethod: MH.linkToCallSite method 3499 3500 // Note: x10_callsite is already pushed 3501 3502 // %%% should make a type profile for any invokedynamic that takes a ref argument 3503 // profile this call 3504 __ profile_call(xbcp); 3505 __ profile_arguments_type(x13, xmethod, x30, false); 3506 3507 __ verify_oop(x10); 3508 3509 __ jump_from_interpreted(xmethod); 3510 } 3511 3512 //----------------------------------------------------------------------------- 3513 // Allocation 3514 3515 void TemplateTable::_new() { 3516 transition(vtos, atos); 3517 3518 __ get_unsigned_2_byte_index_at_bcp(x13, 1); 3519 Label slow_case; 3520 Label done; 3521 Label initialize_header; 3522 3523 __ get_cpool_and_tags(x14, x10); 3524 // Make sure the class we're about to instantiate has been resolved. 3525 // This is done before loading InstanceKlass to be consistent with the order 3526 // how Constant Pool is update (see ConstantPool::klass_at_put) 3527 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3528 __ add(t0, x10, x13); 3529 __ la(t0, Address(t0, tags_offset)); 3530 __ lbu(t0, t0); 3531 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3532 __ sub(t1, t0, (u1)JVM_CONSTANT_Class); 3533 __ bnez(t1, slow_case); 3534 3535 // get InstanceKlass 3536 __ load_resolved_klass_at_offset(x14, x13, x14, t0); 3537 3538 // make sure klass is initialized 3539 assert(VM_Version::supports_fast_class_init_checks(), 3540 "Optimization requires support for fast class initialization checks"); 3541 __ clinit_barrier(x14, t0, nullptr /*L_fast_path*/, &slow_case); 3542 3543 // get instance_size in InstanceKlass (scaled to a count of bytes) 3544 __ lwu(x13, Address(x14, Klass::layout_helper_offset())); 3545 // test to see if is malformed in some way 3546 __ test_bit(t0, x13, exact_log2(Klass::_lh_instance_slow_path_bit)); 3547 __ bnez(t0, slow_case); 3548 3549 // Allocate the instance: 3550 // If TLAB is enabled: 3551 // Try to allocate in the TLAB. 3552 // If fails, go to the slow path. 3553 // Initialize the allocation. 3554 // Exit. 3555 // Go to slow path. 3556 3557 if (UseTLAB) { 3558 __ tlab_allocate(x10, x13, 0, noreg, x11, slow_case); 3559 3560 if (ZeroTLAB) { 3561 // the fields have been already cleared 3562 __ j(initialize_header); 3563 } 3564 3565 // The object is initialized before the header. If the object size is 3566 // zero, go directly to the header initialization. 3567 __ sub(x13, x13, sizeof(oopDesc)); 3568 __ beqz(x13, initialize_header); 3569 3570 // Initialize object fields 3571 { 3572 __ add(x12, x10, sizeof(oopDesc)); 3573 Label loop; 3574 __ bind(loop); 3575 __ sd(zr, Address(x12)); 3576 __ add(x12, x12, BytesPerLong); 3577 __ sub(x13, x13, BytesPerLong); 3578 __ bnez(x13, loop); 3579 } 3580 3581 // initialize object hader only. 3582 __ bind(initialize_header); 3583 __ mv(t0, (intptr_t)markWord::prototype().value()); 3584 __ sd(t0, Address(x10, oopDesc::mark_offset_in_bytes())); 3585 __ store_klass_gap(x10, zr); // zero klass gap for compressed oops 3586 __ store_klass(x10, x14); // store klass last 3587 3588 if (DTraceAllocProbes) { 3589 // Trigger dtrace event for fastpath 3590 __ push(atos); // save the return value 3591 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), x10); 3592 __ pop(atos); // restore the return value 3593 } 3594 __ j(done); 3595 } 3596 3597 // slow case 3598 __ bind(slow_case); 3599 __ get_constant_pool(c_rarg1); 3600 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3601 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3602 __ verify_oop(x10); 3603 3604 // continue 3605 __ bind(done); 3606 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3607 __ membar(MacroAssembler::StoreStore); 3608 } 3609 3610 void TemplateTable::newarray() { 3611 transition(itos, atos); 3612 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3613 __ mv(c_rarg2, x10); 3614 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3615 c_rarg1, c_rarg2); 3616 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3617 __ membar(MacroAssembler::StoreStore); 3618 } 3619 3620 void TemplateTable::anewarray() { 3621 transition(itos, atos); 3622 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3623 __ get_constant_pool(c_rarg1); 3624 __ mv(c_rarg3, x10); 3625 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3626 c_rarg1, c_rarg2, c_rarg3); 3627 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3628 __ membar(MacroAssembler::StoreStore); 3629 } 3630 3631 void TemplateTable::arraylength() { 3632 transition(atos, itos); 3633 __ lwu(x10, Address(x10, arrayOopDesc::length_offset_in_bytes())); 3634 } 3635 3636 void TemplateTable::checkcast() { 3637 transition(atos, atos); 3638 Label done, is_null, ok_is_subtype, quicked, resolved; 3639 __ beqz(x10, is_null); 3640 3641 // Get cpool & tags index 3642 __ get_cpool_and_tags(x12, x13); // x12=cpool, x13=tags array 3643 __ get_unsigned_2_byte_index_at_bcp(x9, 1); // x9=index 3644 // See if bytecode has already been quicked 3645 __ add(t0, x13, Array<u1>::base_offset_in_bytes()); 3646 __ add(x11, t0, x9); 3647 __ lbu(x11, x11); 3648 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3649 __ sub(t0, x11, (u1)JVM_CONSTANT_Class); 3650 __ beqz(t0, quicked); 3651 3652 __ push(atos); // save receiver for result, and for GC 3653 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3654 // vm_result_2 has metadata result 3655 __ get_vm_result_2(x10, xthread); 3656 __ pop_reg(x13); // restore receiver 3657 __ j(resolved); 3658 3659 // Get superklass in x10 and subklass in x13 3660 __ bind(quicked); 3661 __ mv(x13, x10); // Save object in x13; x10 needed for subtype check 3662 __ load_resolved_klass_at_offset(x12, x9, x10, t0); // x10 = klass 3663 3664 __ bind(resolved); 3665 __ load_klass(x9, x13); 3666 3667 // Generate subtype check. Blows x12, x15. Object in x13. 3668 // Superklass in x10. Subklass in x9. 3669 __ gen_subtype_check(x9, ok_is_subtype); 3670 3671 // Come here on failure 3672 __ push_reg(x13); 3673 // object is at TOS 3674 __ j(Interpreter::_throw_ClassCastException_entry); 3675 3676 // Come here on success 3677 __ bind(ok_is_subtype); 3678 __ mv(x10, x13); // Restore object in x13 3679 3680 // Collect counts on whether this test sees nulls a lot or not. 3681 if (ProfileInterpreter) { 3682 __ j(done); 3683 __ bind(is_null); 3684 __ profile_null_seen(x12); 3685 } else { 3686 __ bind(is_null); // same as 'done' 3687 } 3688 __ bind(done); 3689 } 3690 3691 void TemplateTable::instanceof() { 3692 transition(atos, itos); 3693 Label done, is_null, ok_is_subtype, quicked, resolved; 3694 __ beqz(x10, is_null); 3695 3696 // Get cpool & tags index 3697 __ get_cpool_and_tags(x12, x13); // x12=cpool, x13=tags array 3698 __ get_unsigned_2_byte_index_at_bcp(x9, 1); // x9=index 3699 // See if bytecode has already been quicked 3700 __ add(t0, x13, Array<u1>::base_offset_in_bytes()); 3701 __ add(x11, t0, x9); 3702 __ lbu(x11, x11); 3703 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3704 __ sub(t0, x11, (u1)JVM_CONSTANT_Class); 3705 __ beqz(t0, quicked); 3706 3707 __ push(atos); // save receiver for result, and for GC 3708 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3709 // vm_result_2 has metadata result 3710 __ get_vm_result_2(x10, xthread); 3711 __ pop_reg(x13); // restore receiver 3712 __ verify_oop(x13); 3713 __ load_klass(x13, x13); 3714 __ j(resolved); 3715 3716 // Get superklass in x10 and subklass in x13 3717 __ bind(quicked); 3718 __ load_klass(x13, x10); 3719 __ load_resolved_klass_at_offset(x12, x9, x10, t0); 3720 3721 __ bind(resolved); 3722 3723 // Generate subtype check. Blows x12, x15 3724 // Superklass in x10. Subklass in x13. 3725 __ gen_subtype_check(x13, ok_is_subtype); 3726 3727 // Come here on failure 3728 __ mv(x10, zr); 3729 __ j(done); 3730 // Come here on success 3731 __ bind(ok_is_subtype); 3732 __ mv(x10, 1); 3733 3734 // Collect counts on whether this test sees nulls a lot or not. 3735 if (ProfileInterpreter) { 3736 __ j(done); 3737 __ bind(is_null); 3738 __ profile_null_seen(x12); 3739 } else { 3740 __ bind(is_null); // same as 'done' 3741 } 3742 __ bind(done); 3743 // x10 = 0: obj is null or obj is not an instanceof the specified klass 3744 // x10 = 1: obj isn't null and obj is an instanceof the specified klass 3745 } 3746 3747 //----------------------------------------------------------------------------- 3748 // Breakpoints 3749 3750 void TemplateTable::_breakpoint() { 3751 // Note: We get here even if we are single stepping.. 3752 // jbug inists on setting breakpoints at every bytecode 3753 // even if we are in single step mode. 3754 3755 transition(vtos, vtos); 3756 3757 // get the unpatched byte code 3758 __ get_method(c_rarg1); 3759 __ call_VM(noreg, 3760 CAST_FROM_FN_PTR(address, 3761 InterpreterRuntime::get_original_bytecode_at), 3762 c_rarg1, xbcp); 3763 __ mv(x9, x10); 3764 3765 // post the breakpoint event 3766 __ call_VM(noreg, 3767 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3768 xmethod, xbcp); 3769 3770 // complete the execution of original bytecode 3771 __ mv(t0, x9); 3772 __ dispatch_only_normal(vtos); 3773 } 3774 3775 //----------------------------------------------------------------------------- 3776 // Exceptions 3777 3778 void TemplateTable::athrow() { 3779 transition(atos, vtos); 3780 __ null_check(x10); 3781 __ j(Interpreter::throw_exception_entry()); 3782 } 3783 3784 //----------------------------------------------------------------------------- 3785 // Synchronization 3786 // 3787 // Note: monitorenter & exit are symmetric routines; which is reflected 3788 // in the assembly code structure as well 3789 // 3790 // Stack layout: 3791 // 3792 // [expressions ] <--- esp = expression stack top 3793 // .. 3794 // [expressions ] 3795 // [monitor entry] <--- monitor block top = expression stack bot 3796 // .. 3797 // [monitor entry] 3798 // [frame data ] <--- monitor block bot 3799 // ... 3800 // [saved fp ] <--- fp 3801 3802 void TemplateTable::monitorenter() { 3803 transition(atos, vtos); 3804 3805 // check for null object 3806 __ null_check(x10); 3807 3808 const Address monitor_block_top( 3809 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3810 const Address monitor_block_bot( 3811 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 3812 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3813 3814 Label allocated; 3815 3816 // initialize entry pointer 3817 __ mv(c_rarg1, zr); // points to free slot or null 3818 3819 // find a free slot in the monitor block (result in c_rarg1) 3820 { 3821 Label entry, loop, exit, notUsed; 3822 __ ld(c_rarg3, monitor_block_top); // derelativize pointer 3823 __ shadd(c_rarg3, c_rarg3, fp, c_rarg3, LogBytesPerWord); 3824 // Now c_rarg3 points to current entry, starting with top-most entry 3825 3826 __ la(c_rarg2, monitor_block_bot); // points to word before bottom 3827 3828 __ j(entry); 3829 3830 __ bind(loop); 3831 // check if current entry is used 3832 // if not used then remember entry in c_rarg1 3833 __ ld(t0, Address(c_rarg3, BasicObjectLock::obj_offset())); 3834 __ bnez(t0, notUsed); 3835 __ mv(c_rarg1, c_rarg3); 3836 __ bind(notUsed); 3837 // check if current entry is for same object 3838 // if same object then stop searching 3839 __ beq(x10, t0, exit); 3840 // otherwise advance to next entry 3841 __ add(c_rarg3, c_rarg3, entry_size); 3842 __ bind(entry); 3843 // check if bottom reached 3844 // if not at bottom then check this entry 3845 __ bne(c_rarg3, c_rarg2, loop); 3846 __ bind(exit); 3847 } 3848 3849 __ bnez(c_rarg1, allocated); // check if a slot has been found and 3850 // if found, continue with that on 3851 3852 // allocate one if there's no free slot 3853 { 3854 Label entry, loop; 3855 // 1. compute new pointers // esp: old expression stack top 3856 3857 __ check_extended_sp(); 3858 __ sub(sp, sp, entry_size); // make room for the monitor 3859 __ sub(t0, sp, fp); 3860 __ srai(t0, t0, Interpreter::logStackElementSize); 3861 __ sd(t0, Address(fp, frame::interpreter_frame_extended_sp_offset * wordSize)); 3862 3863 __ ld(c_rarg1, monitor_block_bot); // derelativize pointer 3864 __ shadd(c_rarg1, c_rarg1, fp, c_rarg1, LogBytesPerWord); 3865 // Now c_rarg1 points to the old expression stack bottom 3866 3867 __ sub(esp, esp, entry_size); // move expression stack top 3868 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom 3869 __ mv(c_rarg3, esp); // set start value for copy loop 3870 __ sub(t0, c_rarg1, fp); // relativize pointer 3871 __ srai(t0, t0, Interpreter::logStackElementSize); 3872 __ sd(t0, monitor_block_bot); // set new monitor block bottom 3873 3874 __ j(entry); 3875 // 2. move expression stack contents 3876 __ bind(loop); 3877 __ ld(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3878 // word from old location 3879 __ sd(c_rarg2, Address(c_rarg3, 0)); // and store it at new location 3880 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word 3881 __ bind(entry); 3882 __ bne(c_rarg3, c_rarg1, loop); // check if bottom reached.if not at bottom 3883 // then copy next word 3884 } 3885 3886 // call run-time routine 3887 // c_rarg1: points to monitor entry 3888 __ bind(allocated); 3889 3890 // Increment bcp to point to the next bytecode, so exception 3891 // handling for async. exceptions work correctly. 3892 // The object has already been popped from the stack, so the 3893 // expression stack looks correct. 3894 __ addi(xbcp, xbcp, 1); 3895 3896 // store object 3897 __ sd(x10, Address(c_rarg1, BasicObjectLock::obj_offset())); 3898 __ lock_object(c_rarg1); 3899 3900 // check to make sure this monitor doesn't cause stack overflow after locking 3901 __ save_bcp(); // in case of exception 3902 __ generate_stack_overflow_check(0); 3903 3904 // The bcp has already been incremented. Just need to dispatch to 3905 // next instruction. 3906 __ dispatch_next(vtos); 3907 } 3908 3909 void TemplateTable::monitorexit() { 3910 transition(atos, vtos); 3911 3912 // check for null object 3913 __ null_check(x10); 3914 3915 const Address monitor_block_top( 3916 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3917 const Address monitor_block_bot( 3918 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 3919 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3920 3921 Label found; 3922 3923 // find matching slot 3924 { 3925 Label entry, loop; 3926 __ ld(c_rarg1, monitor_block_top); // derelativize pointer 3927 __ shadd(c_rarg1, c_rarg1, fp, c_rarg1, LogBytesPerWord); 3928 // Now c_rarg1 points to current entry, starting with top-most entry 3929 3930 __ la(c_rarg2, monitor_block_bot); // points to word before bottom 3931 // of monitor block 3932 __ j(entry); 3933 3934 __ bind(loop); 3935 // check if current entry is for same object 3936 __ ld(t0, Address(c_rarg1, BasicObjectLock::obj_offset())); 3937 // if same object then stop searching 3938 __ beq(x10, t0, found); 3939 // otherwise advance to next entry 3940 __ add(c_rarg1, c_rarg1, entry_size); 3941 __ bind(entry); 3942 // check if bottom reached 3943 // if not at bottom then check this entry 3944 __ bne(c_rarg1, c_rarg2, loop); 3945 } 3946 3947 // error handling. Unlocking was not block-structured 3948 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3949 InterpreterRuntime::throw_illegal_monitor_state_exception)); 3950 __ should_not_reach_here(); 3951 3952 // call run-time routine 3953 __ bind(found); 3954 __ push_ptr(x10); // make sure object is on stack (contract with oopMaps) 3955 __ unlock_object(c_rarg1); 3956 __ pop_ptr(x10); // discard object 3957 } 3958 3959 // Wide instructions 3960 void TemplateTable::wide() { 3961 __ load_unsigned_byte(x9, at_bcp(1)); 3962 __ mv(t0, (address)Interpreter::_wentry_point); 3963 __ shadd(t0, x9, t0, t1, 3); 3964 __ ld(t0, Address(t0)); 3965 __ jr(t0); 3966 } 3967 3968 // Multi arrays 3969 void TemplateTable::multianewarray() { 3970 transition(vtos, atos); 3971 __ load_unsigned_byte(x10, at_bcp(3)); // get number of dimensions 3972 // last dim is on top of stack; we want address of first one: 3973 // first_addr = last_addr + (ndims - 1) * wordSize 3974 __ shadd(c_rarg1, x10, esp, c_rarg1, 3); 3975 __ sub(c_rarg1, c_rarg1, wordSize); 3976 call_VM(x10, 3977 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 3978 c_rarg1); 3979 __ load_unsigned_byte(x11, at_bcp(3)); 3980 __ shadd(esp, x11, esp, t0, 3); 3981 }