1 /*
   2  * Copyright (c) 2016, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2024 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/codeBuffer.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "compiler/disassembler.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/barrierSetAssembler.hpp"
  33 #include "gc/shared/collectedHeap.inline.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "gc/shared/cardTableBarrierSet.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "memory/universe.hpp"
  38 #include "oops/accessDecorators.hpp"
  39 #include "oops/compressedKlass.inline.hpp"
  40 #include "oops/compressedOops.inline.hpp"
  41 #include "oops/klass.inline.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "registerSaver_s390.hpp"
  44 #include "runtime/icache.hpp"
  45 #include "runtime/interfaceSupport.inline.hpp"
  46 #include "runtime/objectMonitor.hpp"
  47 #include "runtime/os.hpp"
  48 #include "runtime/safepoint.hpp"
  49 #include "runtime/safepointMechanism.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "utilities/events.hpp"
  53 #include "utilities/macros.hpp"
  54 #include "utilities/powerOfTwo.hpp"
  55 
  56 #include <ucontext.h>
  57 
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
  60 
  61 // Move 32-bit register if destination and source are different.
  62 void MacroAssembler::lr_if_needed(Register rd, Register rs) {
  63   if (rs != rd) { z_lr(rd, rs); }
  64 }
  65 
  66 // Move register if destination and source are different.
  67 void MacroAssembler::lgr_if_needed(Register rd, Register rs) {
  68   if (rs != rd) { z_lgr(rd, rs); }
  69 }
  70 
  71 // Zero-extend 32-bit register into 64-bit register if destination and source are different.
  72 void MacroAssembler::llgfr_if_needed(Register rd, Register rs) {
  73   if (rs != rd) { z_llgfr(rd, rs); }
  74 }
  75 
  76 // Move float register if destination and source are different.
  77 void MacroAssembler::ldr_if_needed(FloatRegister rd, FloatRegister rs) {
  78   if (rs != rd) { z_ldr(rd, rs); }
  79 }
  80 
  81 // Move integer register if destination and source are different.
  82 // It is assumed that shorter-than-int types are already
  83 // appropriately sign-extended.
  84 void MacroAssembler::move_reg_if_needed(Register dst, BasicType dst_type, Register src,
  85                                         BasicType src_type) {
  86   assert((dst_type != T_FLOAT) && (dst_type != T_DOUBLE), "use move_freg for float types");
  87   assert((src_type != T_FLOAT) && (src_type != T_DOUBLE), "use move_freg for float types");
  88 
  89   if (dst_type == src_type) {
  90     lgr_if_needed(dst, src); // Just move all 64 bits.
  91     return;
  92   }
  93 
  94   switch (dst_type) {
  95     // Do not support these types for now.
  96     //  case T_BOOLEAN:
  97     case T_BYTE:  // signed byte
  98       switch (src_type) {
  99         case T_INT:
 100           z_lgbr(dst, src);
 101           break;
 102         default:
 103           ShouldNotReachHere();
 104       }
 105       return;
 106 
 107     case T_CHAR:
 108     case T_SHORT:
 109       switch (src_type) {
 110         case T_INT:
 111           if (dst_type == T_CHAR) {
 112             z_llghr(dst, src);
 113           } else {
 114             z_lghr(dst, src);
 115           }
 116           break;
 117         default:
 118           ShouldNotReachHere();
 119       }
 120       return;
 121 
 122     case T_INT:
 123       switch (src_type) {
 124         case T_BOOLEAN:
 125         case T_BYTE:
 126         case T_CHAR:
 127         case T_SHORT:
 128         case T_INT:
 129         case T_LONG:
 130         case T_OBJECT:
 131         case T_ARRAY:
 132         case T_VOID:
 133         case T_ADDRESS:
 134           lr_if_needed(dst, src);
 135           // llgfr_if_needed(dst, src);  // zero-extend (in case we need to find a bug).
 136           return;
 137 
 138         default:
 139           assert(false, "non-integer src type");
 140           return;
 141       }
 142     case T_LONG:
 143       switch (src_type) {
 144         case T_BOOLEAN:
 145         case T_BYTE:
 146         case T_CHAR:
 147         case T_SHORT:
 148         case T_INT:
 149           z_lgfr(dst, src); // sign extension
 150           return;
 151 
 152         case T_LONG:
 153         case T_OBJECT:
 154         case T_ARRAY:
 155         case T_VOID:
 156         case T_ADDRESS:
 157           lgr_if_needed(dst, src);
 158           return;
 159 
 160         default:
 161           assert(false, "non-integer src type");
 162           return;
 163       }
 164       return;
 165     case T_OBJECT:
 166     case T_ARRAY:
 167     case T_VOID:
 168     case T_ADDRESS:
 169       switch (src_type) {
 170         // These types don't make sense to be converted to pointers:
 171         //      case T_BOOLEAN:
 172         //      case T_BYTE:
 173         //      case T_CHAR:
 174         //      case T_SHORT:
 175 
 176         case T_INT:
 177           z_llgfr(dst, src); // zero extension
 178           return;
 179 
 180         case T_LONG:
 181         case T_OBJECT:
 182         case T_ARRAY:
 183         case T_VOID:
 184         case T_ADDRESS:
 185           lgr_if_needed(dst, src);
 186           return;
 187 
 188         default:
 189           assert(false, "non-integer src type");
 190           return;
 191       }
 192       return;
 193     default:
 194       assert(false, "non-integer dst type");
 195       return;
 196   }
 197 }
 198 
 199 // Move float register if destination and source are different.
 200 void MacroAssembler::move_freg_if_needed(FloatRegister dst, BasicType dst_type,
 201                                          FloatRegister src, BasicType src_type) {
 202   assert((dst_type == T_FLOAT) || (dst_type == T_DOUBLE), "use move_reg for int types");
 203   assert((src_type == T_FLOAT) || (src_type == T_DOUBLE), "use move_reg for int types");
 204   if (dst_type == src_type) {
 205     ldr_if_needed(dst, src); // Just move all 64 bits.
 206   } else {
 207     switch (dst_type) {
 208       case T_FLOAT:
 209         assert(src_type == T_DOUBLE, "invalid float type combination");
 210         z_ledbr(dst, src);
 211         return;
 212       case T_DOUBLE:
 213         assert(src_type == T_FLOAT, "invalid float type combination");
 214         z_ldebr(dst, src);
 215         return;
 216       default:
 217         assert(false, "non-float dst type");
 218         return;
 219     }
 220   }
 221 }
 222 
 223 // Optimized emitter for reg to mem operations.
 224 // Uses modern instructions if running on modern hardware, classic instructions
 225 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 226 // Data register (reg) cannot be used as work register.
 227 //
 228 // Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
 229 // CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
 230 void MacroAssembler::freg2mem_opt(FloatRegister reg,
 231                                   int64_t       disp,
 232                                   Register      index,
 233                                   Register      base,
 234                                   void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
 235                                   void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
 236                                   Register      scratch) {
 237   index = (index == noreg) ? Z_R0 : index;
 238   if (Displacement::is_shortDisp(disp)) {
 239     (this->*classic)(reg, disp, index, base);
 240   } else {
 241     if (Displacement::is_validDisp(disp)) {
 242       (this->*modern)(reg, disp, index, base);
 243     } else {
 244       if (scratch != Z_R0 && scratch != Z_R1) {
 245         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 246       } else {
 247         if (scratch != Z_R0) {   // scratch == Z_R1
 248           if ((scratch == index) || (index == base)) {
 249             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 250           } else {
 251             add2reg(scratch, disp, base);
 252             (this->*classic)(reg, 0, index, scratch);
 253             if (base == scratch) {
 254               add2reg(base, -disp);  // Restore base.
 255             }
 256           }
 257         } else {   // scratch == Z_R0
 258           z_lgr(scratch, base);
 259           add2reg(base, disp);
 260           (this->*classic)(reg, 0, index, base);
 261           z_lgr(base, scratch);      // Restore base.
 262         }
 263       }
 264     }
 265   }
 266 }
 267 
 268 void MacroAssembler::freg2mem_opt(FloatRegister reg, const Address &a, bool is_double) {
 269   if (is_double) {
 270     freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stdy), CLASSIC_FFUN(z_std));
 271   } else {
 272     freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stey), CLASSIC_FFUN(z_ste));
 273   }
 274 }
 275 
 276 // Optimized emitter for mem to reg operations.
 277 // Uses modern instructions if running on modern hardware, classic instructions
 278 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 279 // data register (reg) cannot be used as work register.
 280 //
 281 // Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
 282 // CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
 283 void MacroAssembler::mem2freg_opt(FloatRegister reg,
 284                                   int64_t       disp,
 285                                   Register      index,
 286                                   Register      base,
 287                                   void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
 288                                   void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
 289                                   Register      scratch) {
 290   index = (index == noreg) ? Z_R0 : index;
 291   if (Displacement::is_shortDisp(disp)) {
 292     (this->*classic)(reg, disp, index, base);
 293   } else {
 294     if (Displacement::is_validDisp(disp)) {
 295       (this->*modern)(reg, disp, index, base);
 296     } else {
 297       if (scratch != Z_R0 && scratch != Z_R1) {
 298         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 299       } else {
 300         if (scratch != Z_R0) {   // scratch == Z_R1
 301           if ((scratch == index) || (index == base)) {
 302             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 303           } else {
 304             add2reg(scratch, disp, base);
 305             (this->*classic)(reg, 0, index, scratch);
 306             if (base == scratch) {
 307               add2reg(base, -disp);  // Restore base.
 308             }
 309           }
 310         } else {   // scratch == Z_R0
 311           z_lgr(scratch, base);
 312           add2reg(base, disp);
 313           (this->*classic)(reg, 0, index, base);
 314           z_lgr(base, scratch);      // Restore base.
 315         }
 316       }
 317     }
 318   }
 319 }
 320 
 321 void MacroAssembler::mem2freg_opt(FloatRegister reg, const Address &a, bool is_double) {
 322   if (is_double) {
 323     mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ldy), CLASSIC_FFUN(z_ld));
 324   } else {
 325     mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ley), CLASSIC_FFUN(z_le));
 326   }
 327 }
 328 
 329 // Optimized emitter for reg to mem operations.
 330 // Uses modern instructions if running on modern hardware, classic instructions
 331 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 332 // Data register (reg) cannot be used as work register.
 333 //
 334 // Don't rely on register locking, instead pass a scratch register
 335 // (Z_R0 by default)
 336 // CAUTION! passing registers >= Z_R2 may produce bad results on old CPUs!
 337 void MacroAssembler::reg2mem_opt(Register reg,
 338                                  int64_t  disp,
 339                                  Register index,
 340                                  Register base,
 341                                  void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
 342                                  void (MacroAssembler::*classic)(Register, int64_t, Register, Register),
 343                                  Register scratch) {
 344   index = (index == noreg) ? Z_R0 : index;
 345   if (Displacement::is_shortDisp(disp)) {
 346     (this->*classic)(reg, disp, index, base);
 347   } else {
 348     if (Displacement::is_validDisp(disp)) {
 349       (this->*modern)(reg, disp, index, base);
 350     } else {
 351       if (scratch != Z_R0 && scratch != Z_R1) {
 352         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 353       } else {
 354         if (scratch != Z_R0) {   // scratch == Z_R1
 355           if ((scratch == index) || (index == base)) {
 356             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 357           } else {
 358             add2reg(scratch, disp, base);
 359             (this->*classic)(reg, 0, index, scratch);
 360             if (base == scratch) {
 361               add2reg(base, -disp);  // Restore base.
 362             }
 363           }
 364         } else {   // scratch == Z_R0
 365           if ((scratch == reg) || (scratch == base) || (reg == base)) {
 366             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 367           } else {
 368             z_lgr(scratch, base);
 369             add2reg(base, disp);
 370             (this->*classic)(reg, 0, index, base);
 371             z_lgr(base, scratch);    // Restore base.
 372           }
 373         }
 374       }
 375     }
 376   }
 377 }
 378 
 379 int MacroAssembler::reg2mem_opt(Register reg, const Address &a, bool is_double) {
 380   int store_offset = offset();
 381   if (is_double) {
 382     reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_stg), CLASSIC_IFUN(z_stg));
 383   } else {
 384     reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_sty), CLASSIC_IFUN(z_st));
 385   }
 386   return store_offset;
 387 }
 388 
 389 // Optimized emitter for mem to reg operations.
 390 // Uses modern instructions if running on modern hardware, classic instructions
 391 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 392 // Data register (reg) will be used as work register where possible.
 393 void MacroAssembler::mem2reg_opt(Register reg,
 394                                  int64_t  disp,
 395                                  Register index,
 396                                  Register base,
 397                                  void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
 398                                  void (MacroAssembler::*classic)(Register, int64_t, Register, Register)) {
 399   index = (index == noreg) ? Z_R0 : index;
 400   if (Displacement::is_shortDisp(disp)) {
 401     (this->*classic)(reg, disp, index, base);
 402   } else {
 403     if (Displacement::is_validDisp(disp)) {
 404       (this->*modern)(reg, disp, index, base);
 405     } else {
 406       if ((reg == index) && (reg == base)) {
 407         z_sllg(reg, reg, 1);
 408         add2reg(reg, disp);
 409         (this->*classic)(reg, 0, noreg, reg);
 410       } else if ((reg == index) && (reg != Z_R0)) {
 411         add2reg(reg, disp);
 412         (this->*classic)(reg, 0, reg, base);
 413       } else if (reg == base) {
 414         add2reg(reg, disp);
 415         (this->*classic)(reg, 0, index, reg);
 416       } else if (reg != Z_R0) {
 417         add2reg(reg, disp, base);
 418         (this->*classic)(reg, 0, index, reg);
 419       } else { // reg == Z_R0 && reg != base here
 420         add2reg(base, disp);
 421         (this->*classic)(reg, 0, index, base);
 422         add2reg(base, -disp);
 423       }
 424     }
 425   }
 426 }
 427 
 428 void MacroAssembler::mem2reg_opt(Register reg, const Address &a, bool is_double) {
 429   if (is_double) {
 430     z_lg(reg, a);
 431   } else {
 432     mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_ly), CLASSIC_IFUN(z_l));
 433   }
 434 }
 435 
 436 void MacroAssembler::mem2reg_signed_opt(Register reg, const Address &a) {
 437   mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_lgf), CLASSIC_IFUN(z_lgf));
 438 }
 439 
 440 void MacroAssembler::and_imm(Register r, long mask,
 441                              Register tmp /* = Z_R0 */,
 442                              bool wide    /* = false */) {
 443   assert(wide || Immediate::is_simm32(mask), "mask value too large");
 444 
 445   if (!wide) {
 446     z_nilf(r, mask);
 447     return;
 448   }
 449 
 450   assert(r != tmp, " need a different temporary register !");
 451   load_const_optimized(tmp, mask);
 452   z_ngr(r, tmp);
 453 }
 454 
 455 // Calculate the 1's complement.
 456 // Note: The condition code is neither preserved nor correctly set by this code!!!
 457 // Note: (wide == false) does not protect the high order half of the target register
 458 //       from alteration. It only serves as optimization hint for 32-bit results.
 459 void MacroAssembler::not_(Register r1, Register r2, bool wide) {
 460 
 461   if ((r2 == noreg) || (r2 == r1)) { // Calc 1's complement in place.
 462     z_xilf(r1, -1);
 463     if (wide) {
 464       z_xihf(r1, -1);
 465     }
 466   } else { // Distinct src and dst registers.
 467     load_const_optimized(r1, -1);
 468     z_xgr(r1, r2);
 469   }
 470 }
 471 
 472 unsigned long MacroAssembler::create_mask(int lBitPos, int rBitPos) {
 473   assert(lBitPos >=  0,      "zero is  leftmost bit position");
 474   assert(rBitPos <= 63,      "63   is rightmost bit position");
 475   assert(lBitPos <= rBitPos, "inverted selection interval");
 476   return (lBitPos == 0 ? (unsigned long)(-1L) : ((1UL<<(63-lBitPos+1))-1)) & (~((1UL<<(63-rBitPos))-1));
 477 }
 478 
 479 // Helper function for the "Rotate_then_<logicalOP>" emitters.
 480 // Rotate src, then mask register contents such that only bits in range survive.
 481 // For oneBits == false, all bits not in range are set to 0. Useful for deleting all bits outside range.
 482 // For oneBits == true,  all bits not in range are set to 1. Useful for preserving all bits outside range.
 483 // The caller must ensure that the selected range only contains bits with defined value.
 484 void MacroAssembler::rotate_then_mask(Register dst, Register src, int lBitPos, int rBitPos,
 485                                       int nRotate, bool src32bit, bool dst32bit, bool oneBits) {
 486   assert(!(dst32bit && lBitPos < 32), "selection interval out of range for int destination");
 487   bool sll4rll = (nRotate >= 0) && (nRotate <= (63-rBitPos)); // Substitute SLL(G) for RLL(G).
 488   bool srl4rll = (nRotate <  0) && (-nRotate <= lBitPos);     // Substitute SRL(G) for RLL(G).
 489   //  Pre-determine which parts of dst will be zero after shift/rotate.
 490   bool llZero  =  sll4rll && (nRotate >= 16);
 491   bool lhZero  = (sll4rll && (nRotate >= 32)) || (srl4rll && (nRotate <= -48));
 492   bool lfZero  = llZero && lhZero;
 493   bool hlZero  = (sll4rll && (nRotate >= 48)) || (srl4rll && (nRotate <= -32));
 494   bool hhZero  =                                 (srl4rll && (nRotate <= -16));
 495   bool hfZero  = hlZero && hhZero;
 496 
 497   // rotate then mask src operand.
 498   // if oneBits == true,  all bits outside selected range are 1s.
 499   // if oneBits == false, all bits outside selected range are 0s.
 500   if (src32bit) {   // There might be garbage in the upper 32 bits which will get masked away.
 501     if (dst32bit) {
 502       z_rll(dst, src, nRotate);   // Copy and rotate, upper half of reg remains undisturbed.
 503     } else {
 504       if      (sll4rll) { z_sllg(dst, src,  nRotate); }
 505       else if (srl4rll) { z_srlg(dst, src, -nRotate); }
 506       else              { z_rllg(dst, src,  nRotate); }
 507     }
 508   } else {
 509     if      (sll4rll) { z_sllg(dst, src,  nRotate); }
 510     else if (srl4rll) { z_srlg(dst, src, -nRotate); }
 511     else              { z_rllg(dst, src,  nRotate); }
 512   }
 513 
 514   unsigned long  range_mask    = create_mask(lBitPos, rBitPos);
 515   unsigned int   range_mask_h  = (unsigned int)(range_mask >> 32);
 516   unsigned int   range_mask_l  = (unsigned int)range_mask;
 517   unsigned short range_mask_hh = (unsigned short)(range_mask >> 48);
 518   unsigned short range_mask_hl = (unsigned short)(range_mask >> 32);
 519   unsigned short range_mask_lh = (unsigned short)(range_mask >> 16);
 520   unsigned short range_mask_ll = (unsigned short)range_mask;
 521   // Works for z9 and newer H/W.
 522   if (oneBits) {
 523     if ((~range_mask_l) != 0)                { z_oilf(dst, ~range_mask_l); } // All bits outside range become 1s.
 524     if (((~range_mask_h) != 0) && !dst32bit) { z_oihf(dst, ~range_mask_h); }
 525   } else {
 526     // All bits outside range become 0s
 527     if (((~range_mask_l) != 0) &&              !lfZero) {
 528       z_nilf(dst, range_mask_l);
 529     }
 530     if (((~range_mask_h) != 0) && !dst32bit && !hfZero) {
 531       z_nihf(dst, range_mask_h);
 532     }
 533   }
 534 }
 535 
 536 // Rotate src, then insert selected range from rotated src into dst.
 537 // Clear dst before, if requested.
 538 void MacroAssembler::rotate_then_insert(Register dst, Register src, int lBitPos, int rBitPos,
 539                                         int nRotate, bool clear_dst) {
 540   // This version does not depend on src being zero-extended int2long.
 541   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 542   z_risbg(dst, src, lBitPos, rBitPos, nRotate, clear_dst); // Rotate, then insert selected, clear the rest.
 543 }
 544 
 545 // Rotate src, then and selected range from rotated src into dst.
 546 // Set condition code only if so requested. Otherwise it is unpredictable.
 547 // See performance note in macroAssembler_s390.hpp for important information.
 548 void MacroAssembler::rotate_then_and(Register dst, Register src, int lBitPos, int rBitPos,
 549                                      int nRotate, bool test_only) {
 550   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 551   // This version does not depend on src being zero-extended int2long.
 552   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 553   z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 554 }
 555 
 556 // Rotate src, then or selected range from rotated src into dst.
 557 // Set condition code only if so requested. Otherwise it is unpredictable.
 558 // See performance note in macroAssembler_s390.hpp for important information.
 559 void MacroAssembler::rotate_then_or(Register dst, Register src,  int  lBitPos,  int  rBitPos,
 560                                     int nRotate, bool test_only) {
 561   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 562   // This version does not depend on src being zero-extended int2long.
 563   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 564   z_rosbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 565 }
 566 
 567 // Rotate src, then xor selected range from rotated src into dst.
 568 // Set condition code only if so requested. Otherwise it is unpredictable.
 569 // See performance note in macroAssembler_s390.hpp for important information.
 570 void MacroAssembler::rotate_then_xor(Register dst, Register src,  int  lBitPos,  int  rBitPos,
 571                                      int nRotate, bool test_only) {
 572   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 573     // This version does not depend on src being zero-extended int2long.
 574   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 575   z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 576 }
 577 
 578 void MacroAssembler::add64(Register r1, RegisterOrConstant inc) {
 579   if (inc.is_register()) {
 580     z_agr(r1, inc.as_register());
 581   } else { // constant
 582     intptr_t imm = inc.as_constant();
 583     add2reg(r1, imm);
 584   }
 585 }
 586 // Helper function to multiply the 64bit contents of a register by a 16bit constant.
 587 // The optimization tries to avoid the mghi instruction, since it uses the FPU for
 588 // calculation and is thus rather slow.
 589 //
 590 // There is no handling for special cases, e.g. cval==0 or cval==1.
 591 //
 592 // Returns len of generated code block.
 593 unsigned int MacroAssembler::mul_reg64_const16(Register rval, Register work, int cval) {
 594   int block_start = offset();
 595 
 596   bool sign_flip = cval < 0;
 597   cval = sign_flip ? -cval : cval;
 598 
 599   BLOCK_COMMENT("Reg64*Con16 {");
 600 
 601   int bit1 = cval & -cval;
 602   if (bit1 == cval) {
 603     z_sllg(rval, rval, exact_log2(bit1));
 604     if (sign_flip) { z_lcgr(rval, rval); }
 605   } else {
 606     int bit2 = (cval-bit1) & -(cval-bit1);
 607     if ((bit1+bit2) == cval) {
 608       z_sllg(work, rval, exact_log2(bit1));
 609       z_sllg(rval, rval, exact_log2(bit2));
 610       z_agr(rval, work);
 611       if (sign_flip) { z_lcgr(rval, rval); }
 612     } else {
 613       if (sign_flip) { z_mghi(rval, -cval); }
 614       else           { z_mghi(rval,  cval); }
 615     }
 616   }
 617   BLOCK_COMMENT("} Reg64*Con16");
 618 
 619   int block_end = offset();
 620   return block_end - block_start;
 621 }
 622 
 623 // Generic operation r1 := r2 + imm.
 624 //
 625 // Should produce the best code for each supported CPU version.
 626 // r2 == noreg yields r1 := r1 + imm
 627 // imm == 0 emits either no instruction or r1 := r2 !
 628 // NOTES: 1) Don't use this function where fixed sized
 629 //           instruction sequences are required!!!
 630 //        2) Don't use this function if condition code
 631 //           setting is required!
 632 //        3) Despite being declared as int64_t, the parameter imm
 633 //           must be a simm_32 value (= signed 32-bit integer).
 634 void MacroAssembler::add2reg(Register r1, int64_t imm, Register r2) {
 635   assert(Immediate::is_simm32(imm), "probably an implicit conversion went wrong");
 636 
 637   if (r2 == noreg) { r2 = r1; }
 638 
 639   // Handle special case imm == 0.
 640   if (imm == 0) {
 641     lgr_if_needed(r1, r2);
 642     // Nothing else to do.
 643     return;
 644   }
 645 
 646   if (!PreferLAoverADD || (r2 == Z_R0)) {
 647     bool distinctOpnds = VM_Version::has_DistinctOpnds();
 648 
 649     // Can we encode imm in 16 bits signed?
 650     if (Immediate::is_simm16(imm)) {
 651       if (r1 == r2) {
 652         z_aghi(r1, imm);
 653         return;
 654       }
 655       if (distinctOpnds) {
 656         z_aghik(r1, r2, imm);
 657         return;
 658       }
 659       z_lgr(r1, r2);
 660       z_aghi(r1, imm);
 661       return;
 662     }
 663   } else {
 664     // Can we encode imm in 12 bits unsigned?
 665     if (Displacement::is_shortDisp(imm)) {
 666       z_la(r1, imm, r2);
 667       return;
 668     }
 669     // Can we encode imm in 20 bits signed?
 670     if (Displacement::is_validDisp(imm)) {
 671       // Always use LAY instruction, so we don't need the tmp register.
 672       z_lay(r1, imm, r2);
 673       return;
 674     }
 675 
 676   }
 677 
 678   // Can handle it (all possible values) with long immediates.
 679   lgr_if_needed(r1, r2);
 680   z_agfi(r1, imm);
 681 }
 682 
 683 // Generic operation r := b + x + d
 684 //
 685 // Addition of several operands with address generation semantics - sort of:
 686 //  - no restriction on the registers. Any register will do for any operand.
 687 //  - x == noreg: operand will be disregarded.
 688 //  - b == noreg: will use (contents of) result reg as operand (r := r + d).
 689 //  - x == Z_R0:  just disregard
 690 //  - b == Z_R0:  use as operand. This is not address generation semantics!!!
 691 //
 692 // The same restrictions as on add2reg() are valid!!!
 693 void MacroAssembler::add2reg_with_index(Register r, int64_t d, Register x, Register b) {
 694   assert(Immediate::is_simm32(d), "probably an implicit conversion went wrong");
 695 
 696   if (x == noreg) { x = Z_R0; }
 697   if (b == noreg) { b = r; }
 698 
 699   // Handle special case x == R0.
 700   if (x == Z_R0) {
 701     // Can simply add the immediate value to the base register.
 702     add2reg(r, d, b);
 703     return;
 704   }
 705 
 706   if (!PreferLAoverADD || (b == Z_R0)) {
 707     bool distinctOpnds = VM_Version::has_DistinctOpnds();
 708     // Handle special case d == 0.
 709     if (d == 0) {
 710       if (b == x)        { z_sllg(r, b, 1); return; }
 711       if (r == x)        { z_agr(r, b);     return; }
 712       if (r == b)        { z_agr(r, x);     return; }
 713       if (distinctOpnds) { z_agrk(r, x, b); return; }
 714       z_lgr(r, b);
 715       z_agr(r, x);
 716     } else {
 717       if (x == b)             { z_sllg(r, x, 1); }
 718       else if (r == x)        { z_agr(r, b); }
 719       else if (r == b)        { z_agr(r, x); }
 720       else if (distinctOpnds) { z_agrk(r, x, b); }
 721       else {
 722         z_lgr(r, b);
 723         z_agr(r, x);
 724       }
 725       add2reg(r, d);
 726     }
 727   } else {
 728     // Can we encode imm in 12 bits unsigned?
 729     if (Displacement::is_shortDisp(d)) {
 730       z_la(r, d, x, b);
 731       return;
 732     }
 733     // Can we encode imm in 20 bits signed?
 734     if (Displacement::is_validDisp(d)) {
 735       z_lay(r, d, x, b);
 736       return;
 737     }
 738     z_la(r, 0, x, b);
 739     add2reg(r, d);
 740   }
 741 }
 742 
 743 // Generic emitter (32bit) for direct memory increment.
 744 // For optimal code, do not specify Z_R0 as temp register.
 745 void MacroAssembler::add2mem_32(const Address &a, int64_t imm, Register tmp) {
 746   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
 747     z_asi(a, imm);
 748   } else {
 749     z_lgf(tmp, a);
 750     add2reg(tmp, imm);
 751     z_st(tmp, a);
 752   }
 753 }
 754 
 755 void MacroAssembler::add2mem_64(const Address &a, int64_t imm, Register tmp) {
 756   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
 757     z_agsi(a, imm);
 758   } else {
 759     z_lg(tmp, a);
 760     add2reg(tmp, imm);
 761     z_stg(tmp, a);
 762   }
 763 }
 764 
 765 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
 766   switch (size_in_bytes) {
 767     case  8: z_lg(dst, src); break;
 768     case  4: is_signed ? z_lgf(dst, src) : z_llgf(dst, src); break;
 769     case  2: is_signed ? z_lgh(dst, src) : z_llgh(dst, src); break;
 770     case  1: is_signed ? z_lgb(dst, src) : z_llgc(dst, src); break;
 771     default: ShouldNotReachHere();
 772   }
 773 }
 774 
 775 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
 776   switch (size_in_bytes) {
 777     case  8: z_stg(src, dst); break;
 778     case  4: z_st(src, dst); break;
 779     case  2: z_sth(src, dst); break;
 780     case  1: z_stc(src, dst); break;
 781     default: ShouldNotReachHere();
 782   }
 783 }
 784 
 785 // Split a si20 offset (20bit, signed) into an ui12 offset (12bit, unsigned) and
 786 // a high-order summand in register tmp.
 787 //
 788 // return value: <  0: No split required, si20 actually has property uimm12.
 789 //               >= 0: Split performed. Use return value as uimm12 displacement and
 790 //                     tmp as index register.
 791 int MacroAssembler::split_largeoffset(int64_t si20_offset, Register tmp, bool fixed_codelen, bool accumulate) {
 792   assert(Immediate::is_simm20(si20_offset), "sanity");
 793   int lg_off = (int)si20_offset &  0x0fff; // Punch out low-order 12 bits, always positive.
 794   int ll_off = (int)si20_offset & ~0x0fff; // Force low-order 12 bits to zero.
 795   assert((Displacement::is_shortDisp(si20_offset) && (ll_off == 0)) ||
 796          !Displacement::is_shortDisp(si20_offset), "unexpected offset values");
 797   assert((lg_off+ll_off) == si20_offset, "offset splitup error");
 798 
 799   Register work = accumulate? Z_R0 : tmp;
 800 
 801   if (fixed_codelen) {          // Len of code = 10 = 4 + 6.
 802     z_lghi(work, ll_off>>12);   // Implicit sign extension.
 803     z_slag(work, work, 12);
 804   } else {                      // Len of code = 0..10.
 805     if (ll_off == 0) { return -1; }
 806     // ll_off has 8 significant bits (at most) plus sign.
 807     if ((ll_off & 0x0000f000) == 0) {    // Non-zero bits only in upper halfbyte.
 808       z_llilh(work, ll_off >> 16);
 809       if (ll_off < 0) {                  // Sign-extension required.
 810         z_lgfr(work, work);
 811       }
 812     } else {
 813       if ((ll_off & 0x000f0000) == 0) {  // Non-zero bits only in lower halfbyte.
 814         z_llill(work, ll_off);
 815       } else {                           // Non-zero bits in both halfbytes.
 816         z_lghi(work, ll_off>>12);        // Implicit sign extension.
 817         z_slag(work, work, 12);
 818       }
 819     }
 820   }
 821   if (accumulate) { z_algr(tmp, work); } // len of code += 4
 822   return lg_off;
 823 }
 824 
 825 void MacroAssembler::load_float_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
 826   if (Displacement::is_validDisp(si20)) {
 827     z_ley(t, si20, a);
 828   } else {
 829     // Fixed_codelen = true is a simple way to ensure that the size of load_float_largeoffset
 830     // does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
 831     // pool loads).
 832     bool accumulate    = true;
 833     bool fixed_codelen = true;
 834     Register work;
 835 
 836     if (fixed_codelen) {
 837       z_lgr(tmp, a);  // Lgr_if_needed not applicable due to fixed_codelen.
 838     } else {
 839       accumulate = (a == tmp);
 840     }
 841     work = tmp;
 842 
 843     int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
 844     if (disp12 < 0) {
 845       z_le(t, si20, work);
 846     } else {
 847       if (accumulate) {
 848         z_le(t, disp12, work);
 849       } else {
 850         z_le(t, disp12, work, a);
 851       }
 852     }
 853   }
 854 }
 855 
 856 void MacroAssembler::load_double_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
 857   if (Displacement::is_validDisp(si20)) {
 858     z_ldy(t, si20, a);
 859   } else {
 860     // Fixed_codelen = true is a simple way to ensure that the size of load_double_largeoffset
 861     // does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
 862     // pool loads).
 863     bool accumulate    = true;
 864     bool fixed_codelen = true;
 865     Register work;
 866 
 867     if (fixed_codelen) {
 868       z_lgr(tmp, a);  // Lgr_if_needed not applicable due to fixed_codelen.
 869     } else {
 870       accumulate = (a == tmp);
 871     }
 872     work = tmp;
 873 
 874     int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
 875     if (disp12 < 0) {
 876       z_ld(t, si20, work);
 877     } else {
 878       if (accumulate) {
 879         z_ld(t, disp12, work);
 880       } else {
 881         z_ld(t, disp12, work, a);
 882       }
 883     }
 884   }
 885 }
 886 
 887 // PCrelative TOC access.
 888 // Returns distance (in bytes) from current position to start of consts section.
 889 // Returns 0 (zero) if no consts section exists or if it has size zero.
 890 long MacroAssembler::toc_distance() {
 891   CodeSection* cs = code()->consts();
 892   return (long)((cs != nullptr) ? cs->start()-pc() : 0);
 893 }
 894 
 895 // Implementation on x86/sparc assumes that constant and instruction section are
 896 // adjacent, but this doesn't hold. Two special situations may occur, that we must
 897 // be able to handle:
 898 //   1. const section may be located apart from the inst section.
 899 //   2. const section may be empty
 900 // In both cases, we use the const section's start address to compute the "TOC",
 901 // this seems to occur only temporarily; in the final step we always seem to end up
 902 // with the pc-relatice variant.
 903 //
 904 // PC-relative offset could be +/-2**32 -> use long for disp
 905 // Furthermore: makes no sense to have special code for
 906 // adjacent const and inst sections.
 907 void MacroAssembler::load_toc(Register Rtoc) {
 908   // Simply use distance from start of const section (should be patched in the end).
 909   long disp = toc_distance();
 910 
 911   RelocationHolder rspec = internal_word_Relocation::spec(pc() + disp);
 912   relocate(rspec);
 913   z_larl(Rtoc, RelAddr::pcrel_off32(disp));  // Offset is in halfwords.
 914 }
 915 
 916 // PCrelative TOC access.
 917 // Load from anywhere pcrelative (with relocation of load instr)
 918 void MacroAssembler::load_long_pcrelative(Register Rdst, address dataLocation) {
 919   address          pc             = this->pc();
 920   ptrdiff_t        total_distance = dataLocation - pc;
 921   RelocationHolder rspec          = internal_word_Relocation::spec(dataLocation);
 922 
 923   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 924   assert(total_distance != 0, "sanity");
 925 
 926   // Some extra safety net.
 927   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 928     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
 929   }
 930 
 931   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 932   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 933 }
 934 
 935 
 936 // PCrelative TOC access.
 937 // Load from anywhere pcrelative (with relocation of load instr)
 938 // loaded addr has to be relocated when added to constant pool.
 939 void MacroAssembler::load_addr_pcrelative(Register Rdst, address addrLocation) {
 940   address          pc             = this->pc();
 941   ptrdiff_t        total_distance = addrLocation - pc;
 942   RelocationHolder rspec          = internal_word_Relocation::spec(addrLocation);
 943 
 944   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 945 
 946   // Some extra safety net.
 947   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 948     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
 949   }
 950 
 951   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 952   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 953 }
 954 
 955 // Generic operation: load a value from memory and test.
 956 // CondCode indicates the sign (<0, ==0, >0) of the loaded value.
 957 void MacroAssembler::load_and_test_byte(Register dst, const Address &a) {
 958   z_lb(dst, a);
 959   z_ltr(dst, dst);
 960 }
 961 
 962 void MacroAssembler::load_and_test_short(Register dst, const Address &a) {
 963   int64_t disp = a.disp20();
 964   if (Displacement::is_shortDisp(disp)) {
 965     z_lh(dst, a);
 966   } else if (Displacement::is_longDisp(disp)) {
 967     z_lhy(dst, a);
 968   } else {
 969     guarantee(false, "displacement out of range");
 970   }
 971   z_ltr(dst, dst);
 972 }
 973 
 974 void MacroAssembler::load_and_test_int(Register dst, const Address &a) {
 975   z_lt(dst, a);
 976 }
 977 
 978 void MacroAssembler::load_and_test_int2long(Register dst, const Address &a) {
 979   z_ltgf(dst, a);
 980 }
 981 
 982 void MacroAssembler::load_and_test_long(Register dst, const Address &a) {
 983   z_ltg(dst, a);
 984 }
 985 
 986 // Test a bit in memory.
 987 void MacroAssembler::testbit(const Address &a, unsigned int bit) {
 988   assert(a.index() == noreg, "no index reg allowed in testbit");
 989   if (bit <= 7) {
 990     z_tm(a.disp() + 3, a.base(), 1 << bit);
 991   } else if (bit <= 15) {
 992     z_tm(a.disp() + 2, a.base(), 1 << (bit - 8));
 993   } else if (bit <= 23) {
 994     z_tm(a.disp() + 1, a.base(), 1 << (bit - 16));
 995   } else if (bit <= 31) {
 996     z_tm(a.disp() + 0, a.base(), 1 << (bit - 24));
 997   } else {
 998     ShouldNotReachHere();
 999   }
1000 }
1001 
1002 // Test a bit in a register. Result is reflected in CC.
1003 void MacroAssembler::testbit(Register r, unsigned int bitPos) {
1004   if (bitPos < 16) {
1005     z_tmll(r, 1U<<bitPos);
1006   } else if (bitPos < 32) {
1007     z_tmlh(r, 1U<<(bitPos-16));
1008   } else if (bitPos < 48) {
1009     z_tmhl(r, 1U<<(bitPos-32));
1010   } else if (bitPos < 64) {
1011     z_tmhh(r, 1U<<(bitPos-48));
1012   } else {
1013     ShouldNotReachHere();
1014   }
1015 }
1016 
1017 void MacroAssembler::prefetch_read(Address a) {
1018   z_pfd(1, a.disp20(), a.indexOrR0(), a.base());
1019 }
1020 void MacroAssembler::prefetch_update(Address a) {
1021   z_pfd(2, a.disp20(), a.indexOrR0(), a.base());
1022 }
1023 
1024 // Clear a register, i.e. load const zero into reg.
1025 // Return len (in bytes) of generated instruction(s).
1026 // whole_reg: Clear 64 bits if true, 32 bits otherwise.
1027 // set_cc:    Use instruction that sets the condition code, if true.
1028 int MacroAssembler::clear_reg(Register r, bool whole_reg, bool set_cc) {
1029   unsigned int start_off = offset();
1030   if (whole_reg) {
1031     set_cc ? z_xgr(r, r) : z_laz(r, 0, Z_R0);
1032   } else {  // Only 32bit register.
1033     set_cc ? z_xr(r, r) : z_lhi(r, 0);
1034   }
1035   return offset() - start_off;
1036 }
1037 
1038 #ifdef ASSERT
1039 int MacroAssembler::preset_reg(Register r, unsigned long pattern, int pattern_len) {
1040   switch (pattern_len) {
1041     case 1:
1042       pattern = (pattern & 0x000000ff)  | ((pattern & 0x000000ff)<<8);
1043     case 2:
1044       pattern = (pattern & 0x0000ffff)  | ((pattern & 0x0000ffff)<<16);
1045     case 4:
1046       pattern = (pattern & 0xffffffffL) | ((pattern & 0xffffffffL)<<32);
1047     case 8:
1048       return load_const_optimized_rtn_len(r, pattern, true);
1049       break;
1050     default:
1051       guarantee(false, "preset_reg: bad len");
1052   }
1053   return 0;
1054 }
1055 #endif
1056 
1057 // addr: Address descriptor of memory to clear. Index register will not be used!
1058 // size: Number of bytes to clear.
1059 // condition code will not be preserved.
1060 //    !!! DO NOT USE THEM FOR ATOMIC MEMORY CLEARING !!!
1061 //    !!! Use store_const() instead                  !!!
1062 void MacroAssembler::clear_mem(const Address& addr, unsigned int size) {
1063   guarantee((addr.disp() + size) <= 4096, "MacroAssembler::clear_mem: size too large");
1064 
1065   switch (size) {
1066     case 0:
1067       return;
1068     case 1:
1069       z_mvi(addr, 0);
1070       return;
1071     case 2:
1072       z_mvhhi(addr, 0);
1073       return;
1074     case 4:
1075       z_mvhi(addr, 0);
1076       return;
1077     case 8:
1078       z_mvghi(addr, 0);
1079       return;
1080     default: ; // Fallthru to xc.
1081   }
1082 
1083   // Caution: the emitter with Address operands does implicitly decrement the length
1084   if (size <= 256) {
1085     z_xc(addr, size, addr);
1086   } else {
1087     unsigned int offset = addr.disp();
1088     unsigned int incr   = 256;
1089     for (unsigned int i = 0; i <= size-incr; i += incr) {
1090       z_xc(offset, incr - 1, addr.base(), offset, addr.base());
1091       offset += incr;
1092     }
1093     unsigned int rest = size - (offset - addr.disp());
1094     if (size > 0) {
1095       z_xc(offset, rest-1, addr.base(), offset, addr.base());
1096     }
1097   }
1098 }
1099 
1100 void MacroAssembler::align(int modulus) {
1101   align(modulus, offset());
1102 }
1103 
1104 void MacroAssembler::align(int modulus, int target) {
1105   assert(((modulus % 2 == 0) && (target % 2 == 0)), "needs to be even");
1106   int delta = target - offset();
1107   while ((offset() + delta) % modulus != 0) z_nop();
1108 }
1109 
1110 // Special version for non-relocateable code if required alignment
1111 // is larger than CodeEntryAlignment.
1112 void MacroAssembler::align_address(int modulus) {
1113   while ((uintptr_t)pc() % modulus != 0) z_nop();
1114 }
1115 
1116 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1117                                          Register temp_reg,
1118                                          int64_t extra_slot_offset) {
1119   // On Z, we can have index and disp in an Address. So don't call argument_offset,
1120   // which issues an unnecessary add instruction.
1121   int stackElementSize = Interpreter::stackElementSize;
1122   int64_t offset = extra_slot_offset * stackElementSize;
1123   const Register argbase = Z_esp;
1124   if (arg_slot.is_constant()) {
1125     offset += arg_slot.as_constant() * stackElementSize;
1126     return Address(argbase, offset);
1127   }
1128   // else
1129   assert(temp_reg != noreg, "must specify");
1130   assert(temp_reg != Z_ARG1, "base and index are conflicting");
1131   z_sllg(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize)); // tempreg = arg_slot << 3
1132   return Address(argbase, temp_reg, offset);
1133 }
1134 
1135 
1136 //===================================================================
1137 //===   START   C O N S T A N T S   I N   C O D E   S T R E A M   ===
1138 //===================================================================
1139 //===            P A T CH A B L E   C O N S T A N T S             ===
1140 //===================================================================
1141 
1142 
1143 //---------------------------------------------------
1144 //  Load (patchable) constant into register
1145 //---------------------------------------------------
1146 
1147 
1148 // Load absolute address (and try to optimize).
1149 //   Note: This method is usable only for position-fixed code,
1150 //         referring to a position-fixed target location.
1151 //         If not so, relocations and patching must be used.
1152 void MacroAssembler::load_absolute_address(Register d, address addr) {
1153   assert(addr != nullptr, "should not happen");
1154   BLOCK_COMMENT("load_absolute_address:");
1155   if (addr == nullptr) {
1156     z_larl(d, pc()); // Dummy emit for size calc.
1157     return;
1158   }
1159 
1160   if (RelAddr::is_in_range_of_RelAddr32(addr, pc())) {
1161     z_larl(d, addr);
1162     return;
1163   }
1164 
1165   load_const_optimized(d, (long)addr);
1166 }
1167 
1168 // Load a 64bit constant.
1169 // Patchable code sequence, but not atomically patchable.
1170 // Make sure to keep code size constant -> no value-dependent optimizations.
1171 // Do not kill condition code.
1172 void MacroAssembler::load_const(Register t, long x) {
1173   // Note: Right shift is only cleanly defined for unsigned types
1174   //       or for signed types with nonnegative values.
1175   Assembler::z_iihf(t, (long)((unsigned long)x >> 32));
1176   Assembler::z_iilf(t, (long)((unsigned long)x & 0xffffffffUL));
1177 }
1178 
1179 // Load a 32bit constant into a 64bit register, sign-extend or zero-extend.
1180 // Patchable code sequence, but not atomically patchable.
1181 // Make sure to keep code size constant -> no value-dependent optimizations.
1182 // Do not kill condition code.
1183 void MacroAssembler::load_const_32to64(Register t, int64_t x, bool sign_extend) {
1184   if (sign_extend) { Assembler::z_lgfi(t, x); }
1185   else             { Assembler::z_llilf(t, x); }
1186 }
1187 
1188 // Load narrow oop constant, no decompression.
1189 void MacroAssembler::load_narrow_oop(Register t, narrowOop a) {
1190   assert(UseCompressedOops, "must be on to call this method");
1191   load_const_32to64(t, CompressedOops::narrow_oop_value(a), false /*sign_extend*/);
1192 }
1193 
1194 // Load narrow klass constant, compression required.
1195 void MacroAssembler::load_narrow_klass(Register t, Klass* k) {
1196   assert(UseCompressedClassPointers, "must be on to call this method");
1197   narrowKlass encoded_k = CompressedKlassPointers::encode(k);
1198   load_const_32to64(t, encoded_k, false /*sign_extend*/);
1199 }
1200 
1201 //------------------------------------------------------
1202 //  Compare (patchable) constant with register.
1203 //------------------------------------------------------
1204 
1205 // Compare narrow oop in reg with narrow oop constant, no decompression.
1206 void MacroAssembler::compare_immediate_narrow_oop(Register oop1, narrowOop oop2) {
1207   assert(UseCompressedOops, "must be on to call this method");
1208 
1209   Assembler::z_clfi(oop1, CompressedOops::narrow_oop_value(oop2));
1210 }
1211 
1212 // Compare narrow oop in reg with narrow oop constant, no decompression.
1213 void MacroAssembler::compare_immediate_narrow_klass(Register klass1, Klass* klass2) {
1214   assert(UseCompressedClassPointers, "must be on to call this method");
1215   narrowKlass encoded_k = CompressedKlassPointers::encode(klass2);
1216 
1217   Assembler::z_clfi(klass1, encoded_k);
1218 }
1219 
1220 //----------------------------------------------------------
1221 //  Check which kind of load_constant we have here.
1222 //----------------------------------------------------------
1223 
1224 // Detection of CPU version dependent load_const sequence.
1225 // The detection is valid only for code sequences generated by load_const,
1226 // not load_const_optimized.
1227 bool MacroAssembler::is_load_const(address a) {
1228   unsigned long inst1, inst2;
1229   unsigned int  len1,  len2;
1230 
1231   len1 = get_instruction(a, &inst1);
1232   len2 = get_instruction(a + len1, &inst2);
1233 
1234   return is_z_iihf(inst1) && is_z_iilf(inst2);
1235 }
1236 
1237 // Detection of CPU version dependent load_const_32to64 sequence.
1238 // Mostly used for narrow oops and narrow Klass pointers.
1239 // The detection is valid only for code sequences generated by load_const_32to64.
1240 bool MacroAssembler::is_load_const_32to64(address pos) {
1241   unsigned long inst1, inst2;
1242   unsigned int len1;
1243 
1244   len1 = get_instruction(pos, &inst1);
1245   return is_z_llilf(inst1);
1246 }
1247 
1248 // Detection of compare_immediate_narrow sequence.
1249 // The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
1250 bool MacroAssembler::is_compare_immediate32(address pos) {
1251   return is_equal(pos, CLFI_ZOPC, RIL_MASK);
1252 }
1253 
1254 // Detection of compare_immediate_narrow sequence.
1255 // The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
1256 bool MacroAssembler::is_compare_immediate_narrow_oop(address pos) {
1257   return is_compare_immediate32(pos);
1258   }
1259 
1260 // Detection of compare_immediate_narrow sequence.
1261 // The detection is valid only for code sequences generated by compare_immediate_narrow_klass.
1262 bool MacroAssembler::is_compare_immediate_narrow_klass(address pos) {
1263   return is_compare_immediate32(pos);
1264 }
1265 
1266 //-----------------------------------
1267 //  patch the load_constant
1268 //-----------------------------------
1269 
1270 // CPU-version dependent patching of load_const.
1271 void MacroAssembler::patch_const(address a, long x) {
1272   assert(is_load_const(a), "not a load of a constant");
1273   // Note: Right shift is only cleanly defined for unsigned types
1274   //       or for signed types with nonnegative values.
1275   set_imm32((address)a, (long)((unsigned long)x >> 32));
1276   set_imm32((address)(a + 6), (long)((unsigned long)x & 0xffffffffUL));
1277 }
1278 
1279 // Patching the value of CPU version dependent load_const_32to64 sequence.
1280 // The passed ptr MUST be in compressed format!
1281 int MacroAssembler::patch_load_const_32to64(address pos, int64_t np) {
1282   assert(is_load_const_32to64(pos), "not a load of a narrow ptr (oop or klass)");
1283 
1284   set_imm32(pos, np);
1285   return 6;
1286 }
1287 
1288 // Patching the value of CPU version dependent compare_immediate_narrow sequence.
1289 // The passed ptr MUST be in compressed format!
1290 int MacroAssembler::patch_compare_immediate_32(address pos, int64_t np) {
1291   assert(is_compare_immediate32(pos), "not a compressed ptr compare");
1292 
1293   set_imm32(pos, np);
1294   return 6;
1295 }
1296 
1297 // Patching the immediate value of CPU version dependent load_narrow_oop sequence.
1298 // The passed ptr must NOT be in compressed format!
1299 int MacroAssembler::patch_load_narrow_oop(address pos, oop o) {
1300   assert(UseCompressedOops, "Can only patch compressed oops");
1301   return patch_load_const_32to64(pos, CompressedOops::narrow_oop_value(o));
1302 }
1303 
1304 // Patching the immediate value of CPU version dependent load_narrow_klass sequence.
1305 // The passed ptr must NOT be in compressed format!
1306 int MacroAssembler::patch_load_narrow_klass(address pos, Klass* k) {
1307   assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
1308 
1309   narrowKlass nk = CompressedKlassPointers::encode(k);
1310   return patch_load_const_32to64(pos, nk);
1311 }
1312 
1313 // Patching the immediate value of CPU version dependent compare_immediate_narrow_oop sequence.
1314 // The passed ptr must NOT be in compressed format!
1315 int MacroAssembler::patch_compare_immediate_narrow_oop(address pos, oop o) {
1316   assert(UseCompressedOops, "Can only patch compressed oops");
1317   return patch_compare_immediate_32(pos, CompressedOops::narrow_oop_value(o));
1318 }
1319 
1320 // Patching the immediate value of CPU version dependent compare_immediate_narrow_klass sequence.
1321 // The passed ptr must NOT be in compressed format!
1322 int MacroAssembler::patch_compare_immediate_narrow_klass(address pos, Klass* k) {
1323   assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
1324 
1325   narrowKlass nk = CompressedKlassPointers::encode(k);
1326   return patch_compare_immediate_32(pos, nk);
1327 }
1328 
1329 //------------------------------------------------------------------------
1330 //  Extract the constant from a load_constant instruction stream.
1331 //------------------------------------------------------------------------
1332 
1333 // Get constant from a load_const sequence.
1334 long MacroAssembler::get_const(address a) {
1335   assert(is_load_const(a), "not a load of a constant");
1336   unsigned long x;
1337   x =  (((unsigned long) (get_imm32(a,0) & 0xffffffff)) << 32);
1338   x |= (((unsigned long) (get_imm32(a,1) & 0xffffffff)));
1339   return (long) x;
1340 }
1341 
1342 //--------------------------------------
1343 //  Store a constant in memory.
1344 //--------------------------------------
1345 
1346 // General emitter to move a constant to memory.
1347 // The store is atomic.
1348 //  o Address must be given in RS format (no index register)
1349 //  o Displacement should be 12bit unsigned for efficiency. 20bit signed also supported.
1350 //  o Constant can be 1, 2, 4, or 8 bytes, signed or unsigned.
1351 //  o Memory slot can be 1, 2, 4, or 8 bytes, signed or unsigned.
1352 //  o Memory slot must be at least as wide as constant, will assert otherwise.
1353 //  o Signed constants will sign-extend, unsigned constants will zero-extend to slot width.
1354 int MacroAssembler::store_const(const Address &dest, long imm,
1355                                 unsigned int lm, unsigned int lc,
1356                                 Register scratch) {
1357   int64_t  disp = dest.disp();
1358   Register base = dest.base();
1359   assert(!dest.has_index(), "not supported");
1360   assert((lm==1)||(lm==2)||(lm==4)||(lm==8), "memory   length not supported");
1361   assert((lc==1)||(lc==2)||(lc==4)||(lc==8), "constant length not supported");
1362   assert(lm>=lc, "memory slot too small");
1363   assert(lc==8 || Immediate::is_simm(imm, lc*8), "const out of range");
1364   assert(Displacement::is_validDisp(disp), "displacement out of range");
1365 
1366   bool is_shortDisp = Displacement::is_shortDisp(disp);
1367   int store_offset = -1;
1368 
1369   // For target len == 1 it's easy.
1370   if (lm == 1) {
1371     store_offset = offset();
1372     if (is_shortDisp) {
1373       z_mvi(disp, base, imm);
1374       return store_offset;
1375     } else {
1376       z_mviy(disp, base, imm);
1377       return store_offset;
1378     }
1379   }
1380 
1381   // All the "good stuff" takes an unsigned displacement.
1382   if (is_shortDisp) {
1383     // NOTE: Cannot use clear_mem for imm==0, because it is not atomic.
1384 
1385     store_offset = offset();
1386     switch (lm) {
1387       case 2:  // Lc == 1 handled correctly here, even for unsigned. Instruction does no widening.
1388         z_mvhhi(disp, base, imm);
1389         return store_offset;
1390       case 4:
1391         if (Immediate::is_simm16(imm)) {
1392           z_mvhi(disp, base, imm);
1393           return store_offset;
1394         }
1395         break;
1396       case 8:
1397         if (Immediate::is_simm16(imm)) {
1398           z_mvghi(disp, base, imm);
1399           return store_offset;
1400         }
1401         break;
1402       default:
1403         ShouldNotReachHere();
1404         break;
1405     }
1406   }
1407 
1408   //  Can't optimize, so load value and store it.
1409   guarantee(scratch != noreg, " need a scratch register here !");
1410   if (imm != 0) {
1411     load_const_optimized(scratch, imm);  // Preserves CC anyway.
1412   } else {
1413     // Leave CC alone!!
1414     (void) clear_reg(scratch, true, false); // Indicate unused result.
1415   }
1416 
1417   store_offset = offset();
1418   if (is_shortDisp) {
1419     switch (lm) {
1420       case 2:
1421         z_sth(scratch, disp, Z_R0, base);
1422         return store_offset;
1423       case 4:
1424         z_st(scratch, disp, Z_R0, base);
1425         return store_offset;
1426       case 8:
1427         z_stg(scratch, disp, Z_R0, base);
1428         return store_offset;
1429       default:
1430         ShouldNotReachHere();
1431         break;
1432     }
1433   } else {
1434     switch (lm) {
1435       case 2:
1436         z_sthy(scratch, disp, Z_R0, base);
1437         return store_offset;
1438       case 4:
1439         z_sty(scratch, disp, Z_R0, base);
1440         return store_offset;
1441       case 8:
1442         z_stg(scratch, disp, Z_R0, base);
1443         return store_offset;
1444       default:
1445         ShouldNotReachHere();
1446         break;
1447     }
1448   }
1449   return -1; // should not reach here
1450 }
1451 
1452 //===================================================================
1453 //===       N O T   P A T CH A B L E   C O N S T A N T S          ===
1454 //===================================================================
1455 
1456 // Load constant x into register t with a fast instruction sequence
1457 // depending on the bits in x. Preserves CC under all circumstances.
1458 int MacroAssembler::load_const_optimized_rtn_len(Register t, long x, bool emit) {
1459   if (x == 0) {
1460     int len;
1461     if (emit) {
1462       len = clear_reg(t, true, false);
1463     } else {
1464       len = 4;
1465     }
1466     return len;
1467   }
1468 
1469   if (Immediate::is_simm16(x)) {
1470     if (emit) { z_lghi(t, x); }
1471     return 4;
1472   }
1473 
1474   // 64 bit value: | part1 | part2 | part3 | part4 |
1475   // At least one part is not zero!
1476   // Note: Right shift is only cleanly defined for unsigned types
1477   //       or for signed types with nonnegative values.
1478   int part1 = (int)((unsigned long)x >> 48) & 0x0000ffff;
1479   int part2 = (int)((unsigned long)x >> 32) & 0x0000ffff;
1480   int part3 = (int)((unsigned long)x >> 16) & 0x0000ffff;
1481   int part4 = (int)x & 0x0000ffff;
1482   int part12 = (int)((unsigned long)x >> 32);
1483   int part34 = (int)x;
1484 
1485   // Lower word only (unsigned).
1486   if (part12 == 0) {
1487     if (part3 == 0) {
1488       if (emit) z_llill(t, part4);
1489       return 4;
1490     }
1491     if (part4 == 0) {
1492       if (emit) z_llilh(t, part3);
1493       return 4;
1494     }
1495     if (emit) z_llilf(t, part34);
1496     return 6;
1497   }
1498 
1499   // Upper word only.
1500   if (part34 == 0) {
1501     if (part1 == 0) {
1502       if (emit) z_llihl(t, part2);
1503       return 4;
1504     }
1505     if (part2 == 0) {
1506       if (emit) z_llihh(t, part1);
1507       return 4;
1508     }
1509     if (emit) z_llihf(t, part12);
1510     return 6;
1511   }
1512 
1513   // Lower word only (signed).
1514   if ((part1 == 0x0000ffff) && (part2 == 0x0000ffff) && ((part3 & 0x00008000) != 0)) {
1515     if (emit) z_lgfi(t, part34);
1516     return 6;
1517   }
1518 
1519   int len = 0;
1520 
1521   if ((part1 == 0) || (part2 == 0)) {
1522     if (part1 == 0) {
1523       if (emit) z_llihl(t, part2);
1524       len += 4;
1525     } else {
1526       if (emit) z_llihh(t, part1);
1527       len += 4;
1528     }
1529   } else {
1530     if (emit) z_llihf(t, part12);
1531     len += 6;
1532   }
1533 
1534   if ((part3 == 0) || (part4 == 0)) {
1535     if (part3 == 0) {
1536       if (emit) z_iill(t, part4);
1537       len += 4;
1538     } else {
1539       if (emit) z_iilh(t, part3);
1540       len += 4;
1541     }
1542   } else {
1543     if (emit) z_iilf(t, part34);
1544     len += 6;
1545   }
1546   return len;
1547 }
1548 
1549 //=====================================================================
1550 //===     H I G H E R   L E V E L   B R A N C H   E M I T T E R S   ===
1551 //=====================================================================
1552 
1553 // Note: In the worst case, one of the scratch registers is destroyed!!!
1554 void MacroAssembler::compare32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1555   // Right operand is constant.
1556   if (x2.is_constant()) {
1557     jlong value = x2.as_constant();
1558     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/true);
1559     return;
1560   }
1561 
1562   // Right operand is in register.
1563   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/true);
1564 }
1565 
1566 // Note: In the worst case, one of the scratch registers is destroyed!!!
1567 void MacroAssembler::compareU32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1568   // Right operand is constant.
1569   if (x2.is_constant()) {
1570     jlong value = x2.as_constant();
1571     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/false);
1572     return;
1573   }
1574 
1575   // Right operand is in register.
1576   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/false);
1577 }
1578 
1579 // Note: In the worst case, one of the scratch registers is destroyed!!!
1580 void MacroAssembler::compare64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1581   // Right operand is constant.
1582   if (x2.is_constant()) {
1583     jlong value = x2.as_constant();
1584     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/true);
1585     return;
1586   }
1587 
1588   // Right operand is in register.
1589   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/true);
1590 }
1591 
1592 void MacroAssembler::compareU64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1593   // Right operand is constant.
1594   if (x2.is_constant()) {
1595     jlong value = x2.as_constant();
1596     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/false);
1597     return;
1598   }
1599 
1600   // Right operand is in register.
1601   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/false);
1602 }
1603 
1604 // Generate an optimal branch to the branch target.
1605 // Optimal means that a relative branch (brc or brcl) is used if the
1606 // branch distance is short enough. Loading the target address into a
1607 // register and branching via reg is used as fallback only.
1608 //
1609 // Used registers:
1610 //   Z_R1 - work reg. Holds branch target address.
1611 //          Used in fallback case only.
1612 //
1613 // This version of branch_optimized is good for cases where the target address is known
1614 // and constant, i.e. is never changed (no relocation, no patching).
1615 void MacroAssembler::branch_optimized(Assembler::branch_condition cond, address branch_addr) {
1616   address branch_origin = pc();
1617 
1618   if (RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
1619     z_brc(cond, branch_addr);
1620   } else if (RelAddr::is_in_range_of_RelAddr32(branch_addr, branch_origin)) {
1621     z_brcl(cond, branch_addr);
1622   } else {
1623     load_const_optimized(Z_R1, branch_addr);  // CC must not get killed by load_const_optimized.
1624     z_bcr(cond, Z_R1);
1625   }
1626 }
1627 
1628 // This version of branch_optimized is good for cases where the target address
1629 // is potentially not yet known at the time the code is emitted.
1630 //
1631 // One very common case is a branch to an unbound label which is handled here.
1632 // The caller might know (or hope) that the branch distance is short enough
1633 // to be encoded in a 16bit relative address. In this case he will pass a
1634 // NearLabel branch_target.
1635 // Care must be taken with unbound labels. Each call to target(label) creates
1636 // an entry in the patch queue for that label to patch all references of the label
1637 // once it gets bound. Those recorded patch locations must be patchable. Otherwise,
1638 // an assertion fires at patch time.
1639 void MacroAssembler::branch_optimized(Assembler::branch_condition cond, Label& branch_target) {
1640   if (branch_target.is_bound()) {
1641     address branch_addr = target(branch_target);
1642     branch_optimized(cond, branch_addr);
1643   } else if (branch_target.is_near()) {
1644     z_brc(cond, branch_target);  // Caller assures that the target will be in range for z_brc.
1645   } else {
1646     z_brcl(cond, branch_target); // Let's hope target is in range. Otherwise, we will abort at patch time.
1647   }
1648 }
1649 
1650 // Generate an optimal compare and branch to the branch target.
1651 // Optimal means that a relative branch (clgrj, brc or brcl) is used if the
1652 // branch distance is short enough. Loading the target address into a
1653 // register and branching via reg is used as fallback only.
1654 //
1655 // Input:
1656 //   r1 - left compare operand
1657 //   r2 - right compare operand
1658 void MacroAssembler::compare_and_branch_optimized(Register r1,
1659                                                   Register r2,
1660                                                   Assembler::branch_condition cond,
1661                                                   address  branch_addr,
1662                                                   bool     len64,
1663                                                   bool     has_sign) {
1664   unsigned int casenum = (len64?2:0)+(has_sign?0:1);
1665 
1666   address branch_origin = pc();
1667   if (VM_Version::has_CompareBranch() && RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
1668     switch (casenum) {
1669       case 0: z_crj( r1, r2, cond, branch_addr); break;
1670       case 1: z_clrj (r1, r2, cond, branch_addr); break;
1671       case 2: z_cgrj(r1, r2, cond, branch_addr); break;
1672       case 3: z_clgrj(r1, r2, cond, branch_addr); break;
1673       default: ShouldNotReachHere(); break;
1674     }
1675   } else {
1676     switch (casenum) {
1677       case 0: z_cr( r1, r2); break;
1678       case 1: z_clr(r1, r2); break;
1679       case 2: z_cgr(r1, r2); break;
1680       case 3: z_clgr(r1, r2); break;
1681       default: ShouldNotReachHere(); break;
1682     }
1683     branch_optimized(cond, branch_addr);
1684   }
1685 }
1686 
1687 // Generate an optimal compare and branch to the branch target.
1688 // Optimal means that a relative branch (clgij, brc or brcl) is used if the
1689 // branch distance is short enough. Loading the target address into a
1690 // register and branching via reg is used as fallback only.
1691 //
1692 // Input:
1693 //   r1 - left compare operand (in register)
1694 //   x2 - right compare operand (immediate)
1695 void MacroAssembler::compare_and_branch_optimized(Register r1,
1696                                                   jlong    x2,
1697                                                   Assembler::branch_condition cond,
1698                                                   Label&   branch_target,
1699                                                   bool     len64,
1700                                                   bool     has_sign) {
1701   address      branch_origin = pc();
1702   bool         x2_imm8       = (has_sign && Immediate::is_simm8(x2)) || (!has_sign && Immediate::is_uimm8(x2));
1703   bool         is_RelAddr16  = branch_target.is_near() ||
1704                                (branch_target.is_bound() &&
1705                                 RelAddr::is_in_range_of_RelAddr16(target(branch_target), branch_origin));
1706   unsigned int casenum       = (len64?2:0)+(has_sign?0:1);
1707 
1708   if (VM_Version::has_CompareBranch() && is_RelAddr16 && x2_imm8) {
1709     switch (casenum) {
1710       case 0: z_cij( r1, x2, cond, branch_target); break;
1711       case 1: z_clij(r1, x2, cond, branch_target); break;
1712       case 2: z_cgij(r1, x2, cond, branch_target); break;
1713       case 3: z_clgij(r1, x2, cond, branch_target); break;
1714       default: ShouldNotReachHere(); break;
1715     }
1716     return;
1717   }
1718 
1719   if (x2 == 0) {
1720     switch (casenum) {
1721       case 0: z_ltr(r1, r1); break;
1722       case 1: z_ltr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
1723       case 2: z_ltgr(r1, r1); break;
1724       case 3: z_ltgr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
1725       default: ShouldNotReachHere(); break;
1726     }
1727   } else {
1728     if ((has_sign && Immediate::is_simm16(x2)) || (!has_sign && Immediate::is_uimm(x2, 15))) {
1729       switch (casenum) {
1730         case 0: z_chi(r1, x2); break;
1731         case 1: z_chi(r1, x2); break; // positive immediate < 2**15
1732         case 2: z_cghi(r1, x2); break;
1733         case 3: z_cghi(r1, x2); break; // positive immediate < 2**15
1734         default: break;
1735       }
1736     } else if ( (has_sign && Immediate::is_simm32(x2)) || (!has_sign && Immediate::is_uimm32(x2)) ) {
1737       switch (casenum) {
1738         case 0: z_cfi( r1, x2); break;
1739         case 1: z_clfi(r1, x2); break;
1740         case 2: z_cgfi(r1, x2); break;
1741         case 3: z_clgfi(r1, x2); break;
1742         default: ShouldNotReachHere(); break;
1743       }
1744     } else {
1745       // No instruction with immediate operand possible, so load into register.
1746       Register scratch = (r1 != Z_R0) ? Z_R0 : Z_R1;
1747       load_const_optimized(scratch, x2);
1748       switch (casenum) {
1749         case 0: z_cr( r1, scratch); break;
1750         case 1: z_clr(r1, scratch); break;
1751         case 2: z_cgr(r1, scratch); break;
1752         case 3: z_clgr(r1, scratch); break;
1753         default: ShouldNotReachHere(); break;
1754       }
1755     }
1756   }
1757   branch_optimized(cond, branch_target);
1758 }
1759 
1760 // Generate an optimal compare and branch to the branch target.
1761 // Optimal means that a relative branch (clgrj, brc or brcl) is used if the
1762 // branch distance is short enough. Loading the target address into a
1763 // register and branching via reg is used as fallback only.
1764 //
1765 // Input:
1766 //   r1 - left compare operand
1767 //   r2 - right compare operand
1768 void MacroAssembler::compare_and_branch_optimized(Register r1,
1769                                                   Register r2,
1770                                                   Assembler::branch_condition cond,
1771                                                   Label&   branch_target,
1772                                                   bool     len64,
1773                                                   bool     has_sign) {
1774   unsigned int casenum = (len64 ? 2 : 0) + (has_sign ? 0 : 1);
1775 
1776   if (branch_target.is_bound()) {
1777     address branch_addr = target(branch_target);
1778     compare_and_branch_optimized(r1, r2, cond, branch_addr, len64, has_sign);
1779   } else {
1780     if (VM_Version::has_CompareBranch() && branch_target.is_near()) {
1781       switch (casenum) {
1782         case 0: z_crj(  r1, r2, cond, branch_target); break;
1783         case 1: z_clrj( r1, r2, cond, branch_target); break;
1784         case 2: z_cgrj( r1, r2, cond, branch_target); break;
1785         case 3: z_clgrj(r1, r2, cond, branch_target); break;
1786         default: ShouldNotReachHere(); break;
1787       }
1788     } else {
1789       switch (casenum) {
1790         case 0: z_cr( r1, r2); break;
1791         case 1: z_clr(r1, r2); break;
1792         case 2: z_cgr(r1, r2); break;
1793         case 3: z_clgr(r1, r2); break;
1794         default: ShouldNotReachHere(); break;
1795       }
1796       branch_optimized(cond, branch_target);
1797     }
1798   }
1799 }
1800 
1801 //===========================================================================
1802 //===   END     H I G H E R   L E V E L   B R A N C H   E M I T T E R S   ===
1803 //===========================================================================
1804 
1805 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
1806   assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
1807   int index = oop_recorder()->allocate_metadata_index(obj);
1808   RelocationHolder rspec = metadata_Relocation::spec(index);
1809   return AddressLiteral((address)obj, rspec);
1810 }
1811 
1812 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1813   assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
1814   int index = oop_recorder()->find_index(obj);
1815   RelocationHolder rspec = metadata_Relocation::spec(index);
1816   return AddressLiteral((address)obj, rspec);
1817 }
1818 
1819 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
1820   assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
1821   int oop_index = oop_recorder()->allocate_oop_index(obj);
1822   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
1823 }
1824 
1825 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1826   assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
1827   int oop_index = oop_recorder()->find_index(obj);
1828   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
1829 }
1830 
1831 // NOTE: destroys r
1832 void MacroAssembler::c2bool(Register r, Register t) {
1833   z_lcr(t, r);   // t = -r
1834   z_or(r, t);    // r = -r OR r
1835   z_srl(r, 31);  // Yields 0 if r was 0, 1 otherwise.
1836 }
1837 
1838 // Patch instruction `inst' at offset `inst_pos' to refer to `dest_pos'
1839 // and return the resulting instruction.
1840 // Dest_pos and inst_pos are 32 bit only. These parms can only designate
1841 // relative positions.
1842 // Use correct argument types. Do not pre-calculate distance.
1843 unsigned long MacroAssembler::patched_branch(address dest_pos, unsigned long inst, address inst_pos) {
1844   int c = 0;
1845   unsigned long patched_inst = 0;
1846   if (is_call_pcrelative_short(inst) ||
1847       is_branch_pcrelative_short(inst) ||
1848       is_branchoncount_pcrelative_short(inst) ||
1849       is_branchonindex32_pcrelative_short(inst)) {
1850     c = 1;
1851     int m = fmask(15, 0);    // simm16(-1, 16, 32);
1852     int v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 32);
1853     patched_inst = (inst & ~m) | v;
1854   } else if (is_compareandbranch_pcrelative_short(inst)) {
1855     c = 2;
1856     long m = fmask(31, 16);  // simm16(-1, 16, 48);
1857     long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
1858     patched_inst = (inst & ~m) | v;
1859   } else if (is_branchonindex64_pcrelative_short(inst)) {
1860     c = 3;
1861     long m = fmask(31, 16);  // simm16(-1, 16, 48);
1862     long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
1863     patched_inst = (inst & ~m) | v;
1864   } else if (is_call_pcrelative_long(inst) || is_branch_pcrelative_long(inst)) {
1865     c = 4;
1866     long m = fmask(31, 0);  // simm32(-1, 16, 48);
1867     long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
1868     patched_inst = (inst & ~m) | v;
1869   } else if (is_pcrelative_long(inst)) { // These are the non-branch pc-relative instructions.
1870     c = 5;
1871     long m = fmask(31, 0);  // simm32(-1, 16, 48);
1872     long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
1873     patched_inst = (inst & ~m) | v;
1874   } else {
1875     print_dbg_msg(tty, inst, "not a relative branch", 0);
1876     dump_code_range(tty, inst_pos, 32, "not a pcrelative branch");
1877     ShouldNotReachHere();
1878   }
1879 
1880   long new_off = get_pcrel_offset(patched_inst);
1881   if (new_off != (dest_pos-inst_pos)) {
1882     tty->print_cr("case %d: dest_pos = %p, inst_pos = %p, disp = %ld(%12.12lx)", c, dest_pos, inst_pos, new_off, new_off);
1883     print_dbg_msg(tty, inst,         "<- original instruction: branch patching error", 0);
1884     print_dbg_msg(tty, patched_inst, "<- patched  instruction: branch patching error", 0);
1885 #ifdef LUCY_DBG
1886     VM_Version::z_SIGSEGV();
1887 #endif
1888     ShouldNotReachHere();
1889   }
1890   return patched_inst;
1891 }
1892 
1893 // Only called when binding labels (share/vm/asm/assembler.cpp)
1894 // Pass arguments as intended. Do not pre-calculate distance.
1895 void MacroAssembler::pd_patch_instruction(address branch, address target, const char* file, int line) {
1896   unsigned long stub_inst;
1897   int           inst_len = get_instruction(branch, &stub_inst);
1898 
1899   set_instruction(branch, patched_branch(target, stub_inst, branch), inst_len);
1900 }
1901 
1902 
1903 // Extract relative address (aka offset).
1904 // inv_simm16 works for 4-byte instructions only.
1905 // compare and branch instructions are 6-byte and have a 16bit offset "in the middle".
1906 long MacroAssembler::get_pcrel_offset(unsigned long inst) {
1907 
1908   if (MacroAssembler::is_pcrelative_short(inst)) {
1909     if (((inst&0xFFFFffff00000000UL) == 0) && ((inst&0x00000000FFFF0000UL) != 0)) {
1910       return RelAddr::inv_pcrel_off16(inv_simm16(inst));
1911     } else {
1912       return RelAddr::inv_pcrel_off16(inv_simm16_48(inst));
1913     }
1914   }
1915 
1916   if (MacroAssembler::is_pcrelative_long(inst)) {
1917     return RelAddr::inv_pcrel_off32(inv_simm32(inst));
1918   }
1919 
1920   print_dbg_msg(tty, inst, "not a pcrelative instruction", 6);
1921 #ifdef LUCY_DBG
1922   VM_Version::z_SIGSEGV();
1923 #else
1924   ShouldNotReachHere();
1925 #endif
1926   return -1;
1927 }
1928 
1929 long MacroAssembler::get_pcrel_offset(address pc) {
1930   unsigned long inst;
1931   unsigned int  len = get_instruction(pc, &inst);
1932 
1933 #ifdef ASSERT
1934   long offset;
1935   if (MacroAssembler::is_pcrelative_short(inst) || MacroAssembler::is_pcrelative_long(inst)) {
1936     offset = get_pcrel_offset(inst);
1937   } else {
1938     offset = -1;
1939   }
1940 
1941   if (offset == -1) {
1942     dump_code_range(tty, pc, 32, "not a pcrelative instruction");
1943 #ifdef LUCY_DBG
1944     VM_Version::z_SIGSEGV();
1945 #else
1946     ShouldNotReachHere();
1947 #endif
1948   }
1949   return offset;
1950 #else
1951   return get_pcrel_offset(inst);
1952 #endif // ASSERT
1953 }
1954 
1955 // Get target address from pc-relative instructions.
1956 address MacroAssembler::get_target_addr_pcrel(address pc) {
1957   assert(is_pcrelative_long(pc), "not a pcrelative instruction");
1958   return pc + get_pcrel_offset(pc);
1959 }
1960 
1961 // Patch pc relative load address.
1962 void MacroAssembler::patch_target_addr_pcrel(address pc, address con) {
1963   unsigned long inst;
1964   // Offset is +/- 2**32 -> use long.
1965   ptrdiff_t distance = con - pc;
1966 
1967   get_instruction(pc, &inst);
1968 
1969   if (is_pcrelative_short(inst)) {
1970     *(short *)(pc+2) = RelAddr::pcrel_off16(con, pc);  // Instructions are at least 2-byte aligned, no test required.
1971 
1972     // Some extra safety net.
1973     if (!RelAddr::is_in_range_of_RelAddr16(distance)) {
1974       print_dbg_msg(tty, inst, "distance out of range (16bit)", 4);
1975       dump_code_range(tty, pc, 32, "distance out of range (16bit)");
1976       guarantee(RelAddr::is_in_range_of_RelAddr16(distance), "too far away (more than +/- 2**16");
1977     }
1978     return;
1979   }
1980 
1981   if (is_pcrelative_long(inst)) {
1982     *(int *)(pc+2)   = RelAddr::pcrel_off32(con, pc);
1983 
1984     // Some Extra safety net.
1985     if (!RelAddr::is_in_range_of_RelAddr32(distance)) {
1986       print_dbg_msg(tty, inst, "distance out of range (32bit)", 6);
1987       dump_code_range(tty, pc, 32, "distance out of range (32bit)");
1988       guarantee(RelAddr::is_in_range_of_RelAddr32(distance), "too far away (more than +/- 2**32");
1989     }
1990     return;
1991   }
1992 
1993   guarantee(false, "not a pcrelative instruction to patch!");
1994 }
1995 
1996 // "Current PC" here means the address just behind the basr instruction.
1997 address MacroAssembler::get_PC(Register result) {
1998   z_basr(result, Z_R0); // Don't branch, just save next instruction address in result.
1999   return pc();
2000 }
2001 
2002 // Get current PC + offset.
2003 // Offset given in bytes, must be even!
2004 // "Current PC" here means the address of the larl instruction plus the given offset.
2005 address MacroAssembler::get_PC(Register result, int64_t offset) {
2006   address here = pc();
2007   z_larl(result, offset/2); // Save target instruction address in result.
2008   return here + offset;
2009 }
2010 
2011 void MacroAssembler::instr_size(Register size, Register pc) {
2012   // Extract 2 most significant bits of current instruction.
2013   z_llgc(size, Address(pc));
2014   z_srl(size, 6);
2015   // Compute (x+3)&6 which translates 0->2, 1->4, 2->4, 3->6.
2016   z_ahi(size, 3);
2017   z_nill(size, 6);
2018 }
2019 
2020 // Resize_frame with SP(new) = SP(old) - [offset].
2021 void MacroAssembler::resize_frame_sub(Register offset, Register fp, bool load_fp)
2022 {
2023   assert_different_registers(offset, fp, Z_SP);
2024   if (load_fp) { z_lg(fp, _z_abi(callers_sp), Z_SP); }
2025 
2026   z_sgr(Z_SP, offset);
2027   z_stg(fp, _z_abi(callers_sp), Z_SP);
2028 }
2029 
2030 // Resize_frame with SP(new) = [newSP] + offset.
2031 //   This emitter is useful if we already have calculated a pointer
2032 //   into the to-be-allocated stack space, e.g. with special alignment properties,
2033 //   but need some additional space, e.g. for spilling.
2034 //   newSP    is the pre-calculated pointer. It must not be modified.
2035 //   fp       holds, or is filled with, the frame pointer.
2036 //   offset   is the additional increment which is added to addr to form the new SP.
2037 //            Note: specify a negative value to reserve more space!
2038 //   load_fp == true  only indicates that fp is not pre-filled with the frame pointer.
2039 //                    It does not guarantee that fp contains the frame pointer at the end.
2040 void MacroAssembler::resize_frame_abs_with_offset(Register newSP, Register fp, int offset, bool load_fp) {
2041   assert_different_registers(newSP, fp, Z_SP);
2042 
2043   if (load_fp) {
2044     z_lg(fp, _z_abi(callers_sp), Z_SP);
2045   }
2046 
2047   add2reg(Z_SP, offset, newSP);
2048   z_stg(fp, _z_abi(callers_sp), Z_SP);
2049 }
2050 
2051 // Resize_frame with SP(new) = [newSP].
2052 //   load_fp == true  only indicates that fp is not pre-filled with the frame pointer.
2053 //                    It does not guarantee that fp contains the frame pointer at the end.
2054 void MacroAssembler::resize_frame_absolute(Register newSP, Register fp, bool load_fp) {
2055   assert_different_registers(newSP, fp, Z_SP);
2056 
2057   if (load_fp) {
2058     z_lg(fp, _z_abi(callers_sp), Z_SP); // need to use load/store.
2059   }
2060 
2061   z_lgr(Z_SP, newSP);
2062   if (newSP != Z_R0) { // make sure we generate correct code, no matter what register newSP uses.
2063     z_stg(fp, _z_abi(callers_sp), newSP);
2064   } else {
2065     z_stg(fp, _z_abi(callers_sp), Z_SP);
2066   }
2067 }
2068 
2069 // Resize_frame with SP(new) = SP(old) + offset.
2070 void MacroAssembler::resize_frame(RegisterOrConstant offset, Register fp, bool load_fp) {
2071   assert_different_registers(fp, Z_SP);
2072 
2073   if (load_fp) {
2074     z_lg(fp, _z_abi(callers_sp), Z_SP);
2075   }
2076   add64(Z_SP, offset);
2077   z_stg(fp, _z_abi(callers_sp), Z_SP);
2078 }
2079 
2080 void MacroAssembler::push_frame(Register bytes, Register old_sp, bool copy_sp, bool bytes_with_inverted_sign) {
2081 #ifdef ASSERT
2082   assert_different_registers(bytes, old_sp, Z_SP);
2083   if (!copy_sp) {
2084     z_cgr(old_sp, Z_SP);
2085     asm_assert(bcondEqual, "[old_sp]!=[Z_SP]", 0x211);
2086   }
2087 #endif
2088   if (copy_sp) { z_lgr(old_sp, Z_SP); }
2089   if (bytes_with_inverted_sign) {
2090     z_agr(Z_SP, bytes);
2091   } else {
2092     z_sgr(Z_SP, bytes); // Z_sgfr sufficient, but probably not faster.
2093   }
2094   z_stg(old_sp, _z_abi(callers_sp), Z_SP);
2095 }
2096 
2097 unsigned int MacroAssembler::push_frame(unsigned int bytes, Register scratch) {
2098   long offset = Assembler::align(bytes, frame::alignment_in_bytes);
2099   assert(offset > 0, "should push a frame with positive size, size = %ld.", offset);
2100   assert(Displacement::is_validDisp(-offset), "frame size out of range, size = %ld", offset);
2101 
2102   // We must not write outside the current stack bounds (given by Z_SP).
2103   // Thus, we have to first update Z_SP and then store the previous SP as stack linkage.
2104   // We rely on Z_R0 by default to be available as scratch.
2105   z_lgr(scratch, Z_SP);
2106   add2reg(Z_SP, -offset);
2107   z_stg(scratch, _z_abi(callers_sp), Z_SP);
2108 #ifdef ASSERT
2109   // Just make sure nobody uses the value in the default scratch register.
2110   // When another register is used, the caller might rely on it containing the frame pointer.
2111   if (scratch == Z_R0) {
2112     z_iihf(scratch, 0xbaadbabe);
2113     z_iilf(scratch, 0xdeadbeef);
2114   }
2115 #endif
2116   return offset;
2117 }
2118 
2119 // Push a frame of size `bytes' plus abi160 on top.
2120 unsigned int MacroAssembler::push_frame_abi160(unsigned int bytes) {
2121   BLOCK_COMMENT("push_frame_abi160 {");
2122   unsigned int res = push_frame(bytes + frame::z_abi_160_size);
2123   BLOCK_COMMENT("} push_frame_abi160");
2124   return res;
2125 }
2126 
2127 // Pop current C frame.
2128 void MacroAssembler::pop_frame() {
2129   BLOCK_COMMENT("pop_frame:");
2130   Assembler::z_lg(Z_SP, _z_abi(callers_sp), Z_SP);
2131 }
2132 
2133 // Pop current C frame and restore return PC register (Z_R14).
2134 void MacroAssembler::pop_frame_restore_retPC(int frame_size_in_bytes) {
2135   BLOCK_COMMENT("pop_frame_restore_retPC:");
2136   int retPC_offset = _z_common_abi(return_pc) + frame_size_in_bytes;
2137   // If possible, pop frame by add instead of load (a penny saved is a penny got :-).
2138   if (Displacement::is_validDisp(retPC_offset)) {
2139     z_lg(Z_R14, retPC_offset, Z_SP);
2140     add2reg(Z_SP, frame_size_in_bytes);
2141   } else {
2142     add2reg(Z_SP, frame_size_in_bytes);
2143     restore_return_pc();
2144   }
2145 }
2146 
2147 void MacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
2148   if (allow_relocation) {
2149     call_c(entry_point);
2150   } else {
2151     call_c_static(entry_point);
2152   }
2153 }
2154 
2155 void MacroAssembler::call_VM_leaf_base(address entry_point) {
2156   bool allow_relocation = true;
2157   call_VM_leaf_base(entry_point, allow_relocation);
2158 }
2159 
2160 int MacroAssembler::ic_check_size() {
2161   return 30 + (ImplicitNullChecks ? 0 : 6);
2162 }
2163 
2164 int MacroAssembler::ic_check(int end_alignment) {
2165   Register R2_receiver = Z_ARG1;
2166   Register R0_scratch  = Z_R0_scratch;
2167   Register R1_scratch  = Z_R1_scratch;
2168   Register R9_data     = Z_inline_cache;
2169   Label success, failure;
2170 
2171   // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
2172   // before the inline cache check, so we don't have to execute any nop instructions when dispatching
2173   // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
2174   // before the inline cache check here, and not after
2175   align(end_alignment, offset() + ic_check_size());
2176 
2177   int uep_offset = offset();
2178   if (!ImplicitNullChecks) {
2179     z_cgij(R2_receiver, 0, Assembler::bcondEqual, failure);
2180   }
2181 
2182   if (UseCompressedClassPointers) {
2183     z_llgf(R1_scratch, Address(R2_receiver, oopDesc::klass_offset_in_bytes()));
2184   } else {
2185     z_lg(R1_scratch, Address(R2_receiver, oopDesc::klass_offset_in_bytes()));
2186   }
2187   z_cg(R1_scratch, Address(R9_data, in_bytes(CompiledICData::speculated_klass_offset())));
2188   z_bre(success);
2189 
2190   bind(failure);
2191   load_const(R1_scratch, AddressLiteral(SharedRuntime::get_ic_miss_stub()));
2192   z_br(R1_scratch);
2193   bind(success);
2194 
2195   assert((offset() % end_alignment) == 0, "Misaligned verified entry point, offset() = %d, end_alignment = %d", offset(), end_alignment);
2196   return uep_offset;
2197 }
2198 
2199 void MacroAssembler::call_VM_base(Register oop_result,
2200                                   Register last_java_sp,
2201                                   address  entry_point,
2202                                   bool     allow_relocation,
2203                                   bool     check_exceptions) { // Defaults to true.
2204   // Allow_relocation indicates, if true, that the generated code shall
2205   // be fit for code relocation or referenced data relocation. In other
2206   // words: all addresses must be considered variable. PC-relative addressing
2207   // is not possible then.
2208   // On the other hand, if (allow_relocation == false), addresses and offsets
2209   // may be considered stable, enabling us to take advantage of some PC-relative
2210   // addressing tweaks. These might improve performance and reduce code size.
2211 
2212   // Determine last_java_sp register.
2213   if (!last_java_sp->is_valid()) {
2214     last_java_sp = Z_SP;  // Load Z_SP as SP.
2215   }
2216 
2217   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, Z_R1, allow_relocation);
2218 
2219   // ARG1 must hold thread address.
2220   z_lgr(Z_ARG1, Z_thread);
2221 
2222   address return_pc = nullptr;
2223   if (allow_relocation) {
2224     return_pc = call_c(entry_point);
2225   } else {
2226     return_pc = call_c_static(entry_point);
2227   }
2228 
2229   reset_last_Java_frame(allow_relocation);
2230 
2231   // C++ interp handles this in the interpreter.
2232   check_and_handle_popframe(Z_thread);
2233   check_and_handle_earlyret(Z_thread);
2234 
2235   // Check for pending exceptions.
2236   if (check_exceptions) {
2237     // Check for pending exceptions (java_thread is set upon return).
2238     load_and_test_long(Z_R0_scratch, Address(Z_thread, Thread::pending_exception_offset()));
2239 
2240     // This used to conditionally jump to forward_exception however it is
2241     // possible if we relocate that the branch will not reach. So we must jump
2242     // around so we can always reach.
2243 
2244     Label ok;
2245     z_bre(ok); // Bcondequal is the same as bcondZero.
2246     call_stub(StubRoutines::forward_exception_entry());
2247     bind(ok);
2248   }
2249 
2250   // Get oop result if there is one and reset the value in the thread.
2251   if (oop_result->is_valid()) {
2252     get_vm_result(oop_result);
2253   }
2254 
2255   _last_calls_return_pc = return_pc;  // Wipe out other (error handling) calls.
2256 }
2257 
2258 void MacroAssembler::call_VM_base(Register oop_result,
2259                                   Register last_java_sp,
2260                                   address  entry_point,
2261                                   bool     check_exceptions) { // Defaults to true.
2262   bool allow_relocation = true;
2263   call_VM_base(oop_result, last_java_sp, entry_point, allow_relocation, check_exceptions);
2264 }
2265 
2266 // VM calls without explicit last_java_sp.
2267 
2268 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
2269   // Call takes possible detour via InterpreterMacroAssembler.
2270   call_VM_base(oop_result, noreg, entry_point, true, check_exceptions);
2271 }
2272 
2273 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
2274   // Z_ARG1 is reserved for the thread.
2275   lgr_if_needed(Z_ARG2, arg_1);
2276   call_VM(oop_result, entry_point, check_exceptions);
2277 }
2278 
2279 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
2280   // Z_ARG1 is reserved for the thread.
2281   assert_different_registers(arg_2, Z_ARG2);
2282   lgr_if_needed(Z_ARG2, arg_1);
2283   lgr_if_needed(Z_ARG3, arg_2);
2284   call_VM(oop_result, entry_point, check_exceptions);
2285 }
2286 
2287 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
2288                              Register arg_3, bool check_exceptions) {
2289   // Z_ARG1 is reserved for the thread.
2290   assert_different_registers(arg_3, Z_ARG2, Z_ARG3);
2291   assert_different_registers(arg_2, Z_ARG2);
2292   lgr_if_needed(Z_ARG2, arg_1);
2293   lgr_if_needed(Z_ARG3, arg_2);
2294   lgr_if_needed(Z_ARG4, arg_3);
2295   call_VM(oop_result, entry_point, check_exceptions);
2296 }
2297 
2298 // VM static calls without explicit last_java_sp.
2299 
2300 void MacroAssembler::call_VM_static(Register oop_result, address entry_point, bool check_exceptions) {
2301   // Call takes possible detour via InterpreterMacroAssembler.
2302   call_VM_base(oop_result, noreg, entry_point, false, check_exceptions);
2303 }
2304 
2305 void MacroAssembler::call_VM_static(Register oop_result, address entry_point, Register arg_1, Register arg_2,
2306                                     Register arg_3, bool check_exceptions) {
2307   // Z_ARG1 is reserved for the thread.
2308   assert_different_registers(arg_3, Z_ARG2, Z_ARG3);
2309   assert_different_registers(arg_2, Z_ARG2);
2310   lgr_if_needed(Z_ARG2, arg_1);
2311   lgr_if_needed(Z_ARG3, arg_2);
2312   lgr_if_needed(Z_ARG4, arg_3);
2313   call_VM_static(oop_result, entry_point, check_exceptions);
2314 }
2315 
2316 // VM calls with explicit last_java_sp.
2317 
2318 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, bool check_exceptions) {
2319   // Call takes possible detour via InterpreterMacroAssembler.
2320   call_VM_base(oop_result, last_java_sp, entry_point, true, check_exceptions);
2321 }
2322 
2323 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
2324    // Z_ARG1 is reserved for the thread.
2325    lgr_if_needed(Z_ARG2, arg_1);
2326    call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2327 }
2328 
2329 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
2330                              Register arg_2, bool check_exceptions) {
2331    // Z_ARG1 is reserved for the thread.
2332    assert_different_registers(arg_2, Z_ARG2);
2333    lgr_if_needed(Z_ARG2, arg_1);
2334    lgr_if_needed(Z_ARG3, arg_2);
2335    call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2336 }
2337 
2338 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
2339                              Register arg_2, Register arg_3, bool check_exceptions) {
2340   // Z_ARG1 is reserved for the thread.
2341   assert_different_registers(arg_3, Z_ARG2, Z_ARG3);
2342   assert_different_registers(arg_2, Z_ARG2);
2343   lgr_if_needed(Z_ARG2, arg_1);
2344   lgr_if_needed(Z_ARG3, arg_2);
2345   lgr_if_needed(Z_ARG4, arg_3);
2346   call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2347 }
2348 
2349 // VM leaf calls.
2350 
2351 void MacroAssembler::call_VM_leaf(address entry_point) {
2352   // Call takes possible detour via InterpreterMacroAssembler.
2353   call_VM_leaf_base(entry_point, true);
2354 }
2355 
2356 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
2357   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2358   call_VM_leaf(entry_point);
2359 }
2360 
2361 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
2362   assert_different_registers(arg_2, Z_ARG1);
2363   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2364   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2365   call_VM_leaf(entry_point);
2366 }
2367 
2368 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
2369   assert_different_registers(arg_3, Z_ARG1, Z_ARG2);
2370   assert_different_registers(arg_2, Z_ARG1);
2371   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2372   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2373   if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
2374   call_VM_leaf(entry_point);
2375 }
2376 
2377 // Static VM leaf calls.
2378 // Really static VM leaf calls are never patched.
2379 
2380 void MacroAssembler::call_VM_leaf_static(address entry_point) {
2381   // Call takes possible detour via InterpreterMacroAssembler.
2382   call_VM_leaf_base(entry_point, false);
2383 }
2384 
2385 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1) {
2386   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2387   call_VM_leaf_static(entry_point);
2388 }
2389 
2390 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2) {
2391   assert_different_registers(arg_2, Z_ARG1);
2392   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2393   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2394   call_VM_leaf_static(entry_point);
2395 }
2396 
2397 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
2398   assert_different_registers(arg_3, Z_ARG1, Z_ARG2);
2399   assert_different_registers(arg_2, Z_ARG1);
2400   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2401   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2402   if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
2403   call_VM_leaf_static(entry_point);
2404 }
2405 
2406 // Don't use detour via call_c(reg).
2407 address MacroAssembler::call_c(address function_entry) {
2408   load_const(Z_R1, function_entry);
2409   return call(Z_R1);
2410 }
2411 
2412 // Variant for really static (non-relocatable) calls which are never patched.
2413 address MacroAssembler::call_c_static(address function_entry) {
2414   load_absolute_address(Z_R1, function_entry);
2415 #if 0 // def ASSERT
2416   // Verify that call site did not move.
2417   load_const_optimized(Z_R0, function_entry);
2418   z_cgr(Z_R1, Z_R0);
2419   z_brc(bcondEqual, 3);
2420   z_illtrap(0xba);
2421 #endif
2422   return call(Z_R1);
2423 }
2424 
2425 address MacroAssembler::call_c_opt(address function_entry) {
2426   bool success = call_far_patchable(function_entry, -2 /* emit relocation + constant */);
2427   _last_calls_return_pc = success ? pc() : nullptr;
2428   return _last_calls_return_pc;
2429 }
2430 
2431 // Identify a call_far_patchable instruction: LARL + LG + BASR
2432 //
2433 //    nop                   ; optionally, if required for alignment
2434 //    lgrl rx,A(TOC entry)  ; PC-relative access into constant pool
2435 //    basr Z_R14,rx         ; end of this instruction must be aligned to a word boundary
2436 //
2437 // Code pattern will eventually get patched into variant2 (see below for detection code).
2438 //
2439 bool MacroAssembler::is_call_far_patchable_variant0_at(address instruction_addr) {
2440   address iaddr = instruction_addr;
2441 
2442   // Check for the actual load instruction.
2443   if (!is_load_const_from_toc(iaddr)) { return false; }
2444   iaddr += load_const_from_toc_size();
2445 
2446   // Check for the call (BASR) instruction, finally.
2447   assert(iaddr-instruction_addr+call_byregister_size() == call_far_patchable_size(), "size mismatch");
2448   return is_call_byregister(iaddr);
2449 }
2450 
2451 // Identify a call_far_patchable instruction: BRASL
2452 //
2453 // Code pattern to suits atomic patching:
2454 //    nop                       ; Optionally, if required for alignment.
2455 //    nop    ...                ; Multiple filler nops to compensate for size difference (variant0 is longer).
2456 //    nop                       ; For code pattern detection: Prepend each BRASL with a nop.
2457 //    brasl  Z_R14,<reladdr>    ; End of code must be 4-byte aligned !
2458 bool MacroAssembler::is_call_far_patchable_variant2_at(address instruction_addr) {
2459   const address call_addr = (address)((intptr_t)instruction_addr + call_far_patchable_size() - call_far_pcrelative_size());
2460 
2461   // Check for correct number of leading nops.
2462   address iaddr;
2463   for (iaddr = instruction_addr; iaddr < call_addr; iaddr += nop_size()) {
2464     if (!is_z_nop(iaddr)) { return false; }
2465   }
2466   assert(iaddr == call_addr, "sanity");
2467 
2468   // --> Check for call instruction.
2469   if (is_call_far_pcrelative(call_addr)) {
2470     assert(call_addr-instruction_addr+call_far_pcrelative_size() == call_far_patchable_size(), "size mismatch");
2471     return true;
2472   }
2473 
2474   return false;
2475 }
2476 
2477 // Emit a NOT mt-safely patchable 64 bit absolute call.
2478 // If toc_offset == -2, then the destination of the call (= target) is emitted
2479 //                      to the constant pool and a runtime_call relocation is added
2480 //                      to the code buffer.
2481 // If toc_offset != -2, target must already be in the constant pool at
2482 //                      _ctableStart+toc_offset (a caller can retrieve toc_offset
2483 //                      from the runtime_call relocation).
2484 // Special handling of emitting to scratch buffer when there is no constant pool.
2485 // Slightly changed code pattern. We emit an additional nop if we would
2486 // not end emitting at a word aligned address. This is to ensure
2487 // an atomically patchable displacement in brasl instructions.
2488 //
2489 // A call_far_patchable comes in different flavors:
2490 //  - LARL(CP) / LG(CP) / BR (address in constant pool, access via CP register)
2491 //  - LGRL(CP) / BR          (address in constant pool, pc-relative access)
2492 //  - BRASL                  (relative address of call target coded in instruction)
2493 // All flavors occupy the same amount of space. Length differences are compensated
2494 // by leading nops, such that the instruction sequence always ends at the same
2495 // byte offset. This is required to keep the return offset constant.
2496 // Furthermore, the return address (the end of the instruction sequence) is forced
2497 // to be on a 4-byte boundary. This is required for atomic patching, should we ever
2498 // need to patch the call target of the BRASL flavor.
2499 // RETURN value: false, if no constant pool entry could be allocated, true otherwise.
2500 bool MacroAssembler::call_far_patchable(address target, int64_t tocOffset) {
2501   // Get current pc and ensure word alignment for end of instr sequence.
2502   const address start_pc = pc();
2503   const intptr_t       start_off = offset();
2504   assert(!call_far_patchable_requires_alignment_nop(start_pc), "call_far_patchable requires aligned address");
2505   const ptrdiff_t      dist      = (ptrdiff_t)(target - (start_pc + 2)); // Prepend each BRASL with a nop.
2506   const bool emit_target_to_pool = (tocOffset == -2) && !code_section()->scratch_emit();
2507   const bool emit_relative_call  = !emit_target_to_pool &&
2508                                    RelAddr::is_in_range_of_RelAddr32(dist) &&
2509                                    ReoptimizeCallSequences &&
2510                                    !code_section()->scratch_emit();
2511 
2512   if (emit_relative_call) {
2513     // Add padding to get the same size as below.
2514     const unsigned int padding = call_far_patchable_size() - call_far_pcrelative_size();
2515     unsigned int current_padding;
2516     for (current_padding = 0; current_padding < padding; current_padding += nop_size()) { z_nop(); }
2517     assert(current_padding == padding, "sanity");
2518 
2519     // relative call: len = 2(nop) + 6 (brasl)
2520     // CodeBlob resize cannot occur in this case because
2521     // this call is emitted into pre-existing space.
2522     z_nop(); // Prepend each BRASL with a nop.
2523     z_brasl(Z_R14, target);
2524   } else {
2525     // absolute call: Get address from TOC.
2526     // len = (load TOC){6|0} + (load from TOC){6} + (basr){2} = {14|8}
2527     if (emit_target_to_pool) {
2528       // When emitting the call for the first time, we do not need to use
2529       // the pc-relative version. It will be patched anyway, when the code
2530       // buffer is copied.
2531       // Relocation is not needed when !ReoptimizeCallSequences.
2532       relocInfo::relocType rt = ReoptimizeCallSequences ? relocInfo::runtime_call_w_cp_type : relocInfo::none;
2533       AddressLiteral dest(target, rt);
2534       // Store_oop_in_toc() adds dest to the constant table. As side effect, this kills
2535       // inst_mark(). Reset if possible.
2536       bool reset_mark = (inst_mark() == pc());
2537       tocOffset = store_oop_in_toc(dest);
2538       if (reset_mark) { set_inst_mark(); }
2539       if (tocOffset == -1) {
2540         return false; // Couldn't create constant pool entry.
2541       }
2542     }
2543     assert(offset() == start_off, "emit no code before this point!");
2544 
2545     address tocPos = pc() + tocOffset;
2546     if (emit_target_to_pool) {
2547       tocPos = code()->consts()->start() + tocOffset;
2548     }
2549     load_long_pcrelative(Z_R14, tocPos);
2550     z_basr(Z_R14, Z_R14);
2551   }
2552 
2553 #ifdef ASSERT
2554   // Assert that we can identify the emitted call.
2555   assert(is_call_far_patchable_at(addr_at(start_off)), "can't identify emitted call");
2556   assert(offset() == start_off+call_far_patchable_size(), "wrong size");
2557 
2558   if (emit_target_to_pool) {
2559     assert(get_dest_of_call_far_patchable_at(addr_at(start_off), code()->consts()->start()) == target,
2560            "wrong encoding of dest address");
2561   }
2562 #endif
2563   return true; // success
2564 }
2565 
2566 // Identify a call_far_patchable instruction.
2567 // For more detailed information see header comment of call_far_patchable.
2568 bool MacroAssembler::is_call_far_patchable_at(address instruction_addr) {
2569   return is_call_far_patchable_variant2_at(instruction_addr)  || // short version: BRASL
2570          is_call_far_patchable_variant0_at(instruction_addr);    // long version LARL + LG + BASR
2571 }
2572 
2573 // Does the call_far_patchable instruction use a pc-relative encoding
2574 // of the call destination?
2575 bool MacroAssembler::is_call_far_patchable_pcrelative_at(address instruction_addr) {
2576   // Variant 2 is pc-relative.
2577   return is_call_far_patchable_variant2_at(instruction_addr);
2578 }
2579 
2580 bool MacroAssembler::is_call_far_pcrelative(address instruction_addr) {
2581   // Prepend each BRASL with a nop.
2582   return is_z_nop(instruction_addr) && is_z_brasl(instruction_addr + nop_size());  // Match at position after one nop required.
2583 }
2584 
2585 // Set destination address of a call_far_patchable instruction.
2586 void MacroAssembler::set_dest_of_call_far_patchable_at(address instruction_addr, address dest, int64_t tocOffset) {
2587   ResourceMark rm;
2588 
2589   // Now that CP entry is verified, patch call to a pc-relative call (if circumstances permit).
2590   int code_size = MacroAssembler::call_far_patchable_size();
2591   CodeBuffer buf(instruction_addr, code_size);
2592   MacroAssembler masm(&buf);
2593   masm.call_far_patchable(dest, tocOffset);
2594   ICache::invalidate_range(instruction_addr, code_size); // Empty on z.
2595 }
2596 
2597 // Get dest address of a call_far_patchable instruction.
2598 address MacroAssembler::get_dest_of_call_far_patchable_at(address instruction_addr, address ctable) {
2599   // Dynamic TOC: absolute address in constant pool.
2600   // Check variant2 first, it is more frequent.
2601 
2602   // Relative address encoded in call instruction.
2603   if (is_call_far_patchable_variant2_at(instruction_addr)) {
2604     return MacroAssembler::get_target_addr_pcrel(instruction_addr + nop_size()); // Prepend each BRASL with a nop.
2605 
2606   // Absolute address in constant pool.
2607   } else if (is_call_far_patchable_variant0_at(instruction_addr)) {
2608     address iaddr = instruction_addr;
2609 
2610     long    tocOffset = get_load_const_from_toc_offset(iaddr);
2611     address tocLoc    = iaddr + tocOffset;
2612     return *(address *)(tocLoc);
2613   } else {
2614     fprintf(stderr, "MacroAssembler::get_dest_of_call_far_patchable_at has a problem at %p:\n", instruction_addr);
2615     fprintf(stderr, "not a call_far_patchable: %16.16lx %16.16lx, len = %d\n",
2616             *(unsigned long*)instruction_addr,
2617             *(unsigned long*)(instruction_addr+8),
2618             call_far_patchable_size());
2619     Disassembler::decode(instruction_addr, instruction_addr+call_far_patchable_size());
2620     ShouldNotReachHere();
2621     return nullptr;
2622   }
2623 }
2624 
2625 void MacroAssembler::align_call_far_patchable(address pc) {
2626   if (call_far_patchable_requires_alignment_nop(pc)) { z_nop(); }
2627 }
2628 
2629 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2630 }
2631 
2632 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2633 }
2634 
2635 // Read from the polling page.
2636 // Use TM or TMY instruction, depending on read offset.
2637 //   offset = 0: Use TM, safepoint polling.
2638 //   offset < 0: Use TMY, profiling safepoint polling.
2639 void MacroAssembler::load_from_polling_page(Register polling_page_address, int64_t offset) {
2640   if (Immediate::is_uimm12(offset)) {
2641     z_tm(offset, polling_page_address, mask_safepoint);
2642   } else {
2643     z_tmy(offset, polling_page_address, mask_profiling);
2644   }
2645 }
2646 
2647 // Check whether z_instruction is a read access to the polling page
2648 // which was emitted by load_from_polling_page(..).
2649 bool MacroAssembler::is_load_from_polling_page(address instr_loc) {
2650   unsigned long z_instruction;
2651   unsigned int  ilen = get_instruction(instr_loc, &z_instruction);
2652 
2653   if (ilen == 2) { return false; } // It's none of the allowed instructions.
2654 
2655   if (ilen == 4) {
2656     if (!is_z_tm(z_instruction)) { return false; } // It's len=4, but not a z_tm. fail.
2657 
2658     int ms = inv_mask(z_instruction,8,32);  // mask
2659     int ra = inv_reg(z_instruction,16,32);  // base register
2660     int ds = inv_uimm12(z_instruction);     // displacement
2661 
2662     if (!(ds == 0 && ra != 0 && ms == mask_safepoint)) {
2663       return false; // It's not a z_tm(0, ra, mask_safepoint). Fail.
2664     }
2665 
2666   } else { /* if (ilen == 6) */
2667 
2668     assert(!is_z_lg(z_instruction), "old form (LG) polling page access. Please fix and use TM(Y).");
2669 
2670     if (!is_z_tmy(z_instruction)) { return false; } // It's len=6, but not a z_tmy. fail.
2671 
2672     int ms = inv_mask(z_instruction,8,48);  // mask
2673     int ra = inv_reg(z_instruction,16,48);  // base register
2674     int ds = inv_simm20(z_instruction);     // displacement
2675   }
2676 
2677   return true;
2678 }
2679 
2680 // Extract poll address from instruction and ucontext.
2681 address MacroAssembler::get_poll_address(address instr_loc, void* ucontext) {
2682   assert(ucontext != nullptr, "must have ucontext");
2683   ucontext_t* uc = (ucontext_t*) ucontext;
2684   unsigned long z_instruction;
2685   unsigned int ilen = get_instruction(instr_loc, &z_instruction);
2686 
2687   if (ilen == 4 && is_z_tm(z_instruction)) {
2688     int ra = inv_reg(z_instruction, 16, 32);  // base register
2689     int ds = inv_uimm12(z_instruction);       // displacement
2690     address addr = (address)uc->uc_mcontext.gregs[ra];
2691     return addr + ds;
2692   } else if (ilen == 6 && is_z_tmy(z_instruction)) {
2693     int ra = inv_reg(z_instruction, 16, 48);  // base register
2694     int ds = inv_simm20(z_instruction);       // displacement
2695     address addr = (address)uc->uc_mcontext.gregs[ra];
2696     return addr + ds;
2697   }
2698 
2699   ShouldNotReachHere();
2700   return nullptr;
2701 }
2702 
2703 // Extract poll register from instruction.
2704 uint MacroAssembler::get_poll_register(address instr_loc) {
2705   unsigned long z_instruction;
2706   unsigned int ilen = get_instruction(instr_loc, &z_instruction);
2707 
2708   if (ilen == 4 && is_z_tm(z_instruction)) {
2709     return (uint)inv_reg(z_instruction, 16, 32);  // base register
2710   } else if (ilen == 6 && is_z_tmy(z_instruction)) {
2711     return (uint)inv_reg(z_instruction, 16, 48);  // base register
2712   }
2713 
2714   ShouldNotReachHere();
2715   return 0;
2716 }
2717 
2718 void MacroAssembler::safepoint_poll(Label& slow_path, Register temp_reg) {
2719   const Address poll_byte_addr(Z_thread, in_bytes(JavaThread::polling_word_offset()) + 7 /* Big Endian */);
2720   // Armed page has poll_bit set.
2721   z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
2722   z_brnaz(slow_path);
2723 }
2724 
2725 // Don't rely on register locking, always use Z_R1 as scratch register instead.
2726 void MacroAssembler::bang_stack_with_offset(int offset) {
2727   // Stack grows down, caller passes positive offset.
2728   assert(offset > 0, "must bang with positive offset");
2729   if (Displacement::is_validDisp(-offset)) {
2730     z_tmy(-offset, Z_SP, mask_stackbang);
2731   } else {
2732     add2reg(Z_R1, -offset, Z_SP);    // Do not destroy Z_SP!!!
2733     z_tm(0, Z_R1, mask_stackbang);  // Just banging.
2734   }
2735 }
2736 
2737 void MacroAssembler::reserved_stack_check(Register return_pc) {
2738   // Test if reserved zone needs to be enabled.
2739   Label no_reserved_zone_enabling;
2740   assert(return_pc == Z_R14, "Return pc must be in R14 before z_br() to StackOverflow stub.");
2741   BLOCK_COMMENT("reserved_stack_check {");
2742 
2743   z_clg(Z_SP, Address(Z_thread, JavaThread::reserved_stack_activation_offset()));
2744   z_brl(no_reserved_zone_enabling);
2745 
2746   // Enable reserved zone again, throw stack overflow exception.
2747   save_return_pc();
2748   push_frame_abi160(0);
2749   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
2750   pop_frame();
2751   restore_return_pc();
2752 
2753   load_const_optimized(Z_R1, StubRoutines::throw_delayed_StackOverflowError_entry());
2754   // Don't use call() or z_basr(), they will invalidate Z_R14 which contains the return pc.
2755   z_br(Z_R1);
2756 
2757   should_not_reach_here();
2758 
2759   bind(no_reserved_zone_enabling);
2760   BLOCK_COMMENT("} reserved_stack_check");
2761 }
2762 
2763 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
2764 void MacroAssembler::tlab_allocate(Register obj,
2765                                    Register var_size_in_bytes,
2766                                    int con_size_in_bytes,
2767                                    Register t1,
2768                                    Label& slow_case) {
2769   assert_different_registers(obj, var_size_in_bytes, t1);
2770   Register end = t1;
2771   Register thread = Z_thread;
2772 
2773   z_lg(obj, Address(thread, JavaThread::tlab_top_offset()));
2774   if (var_size_in_bytes == noreg) {
2775     z_lay(end, Address(obj, con_size_in_bytes));
2776   } else {
2777     z_lay(end, Address(obj, var_size_in_bytes));
2778   }
2779   z_cg(end, Address(thread, JavaThread::tlab_end_offset()));
2780   branch_optimized(bcondHigh, slow_case);
2781 
2782   // Update the tlab top pointer.
2783   z_stg(end, Address(thread, JavaThread::tlab_top_offset()));
2784 
2785   // Recover var_size_in_bytes if necessary.
2786   if (var_size_in_bytes == end) {
2787     z_sgr(var_size_in_bytes, obj);
2788   }
2789 }
2790 
2791 // Emitter for interface method lookup.
2792 //   input: recv_klass, intf_klass, itable_index
2793 //   output: method_result
2794 //   kills: itable_index, temp1_reg, Z_R0, Z_R1
2795 // TODO: Temp2_reg is unused. we may use this emitter also in the itable stubs.
2796 // If the register is still not needed then, remove it.
2797 void MacroAssembler::lookup_interface_method(Register           recv_klass,
2798                                              Register           intf_klass,
2799                                              RegisterOrConstant itable_index,
2800                                              Register           method_result,
2801                                              Register           temp1_reg,
2802                                              Label&             no_such_interface,
2803                                              bool               return_method) {
2804 
2805   const Register vtable_len = temp1_reg;    // Used to compute itable_entry_addr.
2806   const Register itable_entry_addr = Z_R1_scratch;
2807   const Register itable_interface = Z_R0_scratch;
2808 
2809   BLOCK_COMMENT("lookup_interface_method {");
2810 
2811   // Load start of itable entries into itable_entry_addr.
2812   z_llgf(vtable_len, Address(recv_klass, Klass::vtable_length_offset()));
2813   z_sllg(vtable_len, vtable_len, exact_log2(vtableEntry::size_in_bytes()));
2814 
2815   // Loop over all itable entries until desired interfaceOop(Rinterface) found.
2816   add2reg_with_index(itable_entry_addr,
2817                      in_bytes(Klass::vtable_start_offset() + itableOffsetEntry::interface_offset()),
2818                      recv_klass, vtable_len);
2819 
2820   const int itable_offset_search_inc = itableOffsetEntry::size() * wordSize;
2821   Label     search;
2822 
2823   bind(search);
2824 
2825   // Handle IncompatibleClassChangeError.
2826   // If the entry is null then we've reached the end of the table
2827   // without finding the expected interface, so throw an exception.
2828   load_and_test_long(itable_interface, Address(itable_entry_addr));
2829   z_bre(no_such_interface);
2830 
2831   add2reg(itable_entry_addr, itable_offset_search_inc);
2832   z_cgr(itable_interface, intf_klass);
2833   z_brne(search);
2834 
2835   // Entry found and itable_entry_addr points to it, get offset of vtable for interface.
2836   if (return_method) {
2837     const int vtable_offset_offset = in_bytes(itableOffsetEntry::offset_offset() -
2838                                               itableOffsetEntry::interface_offset()) -
2839                                      itable_offset_search_inc;
2840 
2841     // Compute itableMethodEntry and get method and entry point
2842     // we use addressing with index and displacement, since the formula
2843     // for computing the entry's offset has a fixed and a dynamic part,
2844     // the latter depending on the matched interface entry and on the case,
2845     // that the itable index has been passed as a register, not a constant value.
2846     int method_offset = in_bytes(itableMethodEntry::method_offset());
2847                              // Fixed part (displacement), common operand.
2848     Register itable_offset = method_result;  // Dynamic part (index register).
2849 
2850     if (itable_index.is_register()) {
2851        // Compute the method's offset in that register, for the formula, see the
2852        // else-clause below.
2853        z_sllg(itable_offset, itable_index.as_register(), exact_log2(itableMethodEntry::size() * wordSize));
2854        z_agf(itable_offset, vtable_offset_offset, itable_entry_addr);
2855     } else {
2856       // Displacement increases.
2857       method_offset += itableMethodEntry::size() * wordSize * itable_index.as_constant();
2858 
2859       // Load index from itable.
2860       z_llgf(itable_offset, vtable_offset_offset, itable_entry_addr);
2861     }
2862 
2863     // Finally load the method's oop.
2864     z_lg(method_result, method_offset, itable_offset, recv_klass);
2865   }
2866   BLOCK_COMMENT("} lookup_interface_method");
2867 }
2868 
2869 // Lookup for virtual method invocation.
2870 void MacroAssembler::lookup_virtual_method(Register           recv_klass,
2871                                            RegisterOrConstant vtable_index,
2872                                            Register           method_result) {
2873   assert_different_registers(recv_klass, vtable_index.register_or_noreg());
2874   assert(vtableEntry::size() * wordSize == wordSize,
2875          "else adjust the scaling in the code below");
2876 
2877   BLOCK_COMMENT("lookup_virtual_method {");
2878 
2879   const int base = in_bytes(Klass::vtable_start_offset());
2880 
2881   if (vtable_index.is_constant()) {
2882     // Load with base + disp.
2883     Address vtable_entry_addr(recv_klass,
2884                               vtable_index.as_constant() * wordSize +
2885                               base +
2886                               in_bytes(vtableEntry::method_offset()));
2887 
2888     z_lg(method_result, vtable_entry_addr);
2889   } else {
2890     // Shift index properly and load with base + index + disp.
2891     Register vindex = vtable_index.as_register();
2892     Address  vtable_entry_addr(recv_klass, vindex,
2893                                base + in_bytes(vtableEntry::method_offset()));
2894 
2895     z_sllg(vindex, vindex, exact_log2(wordSize));
2896     z_lg(method_result, vtable_entry_addr);
2897   }
2898   BLOCK_COMMENT("} lookup_virtual_method");
2899 }
2900 
2901 // Factor out code to call ic_miss_handler.
2902 // Generate code to call the inline cache miss handler.
2903 //
2904 // In most cases, this code will be generated out-of-line.
2905 // The method parameters are intended to provide some variability.
2906 //   ICM          - Label which has to be bound to the start of useful code (past any traps).
2907 //   trapMarker   - Marking byte for the generated illtrap instructions (if any).
2908 //                  Any value except 0x00 is supported.
2909 //                  = 0x00 - do not generate illtrap instructions.
2910 //                         use nops to fill unused space.
2911 //   requiredSize - required size of the generated code. If the actually
2912 //                  generated code is smaller, use padding instructions to fill up.
2913 //                  = 0 - no size requirement, no padding.
2914 //   scratch      - scratch register to hold branch target address.
2915 //
2916 //  The method returns the code offset of the bound label.
2917 unsigned int MacroAssembler::call_ic_miss_handler(Label& ICM, int trapMarker, int requiredSize, Register scratch) {
2918   intptr_t startOffset = offset();
2919 
2920   // Prevent entry at content_begin().
2921   if (trapMarker != 0) {
2922     z_illtrap(trapMarker);
2923   }
2924 
2925   // Load address of inline cache miss code into scratch register
2926   // and branch to cache miss handler.
2927   BLOCK_COMMENT("IC miss handler {");
2928   BIND(ICM);
2929   unsigned int   labelOffset = offset();
2930   AddressLiteral icmiss(SharedRuntime::get_ic_miss_stub());
2931 
2932   load_const_optimized(scratch, icmiss);
2933   z_br(scratch);
2934 
2935   // Fill unused space.
2936   if (requiredSize > 0) {
2937     while ((offset() - startOffset) < requiredSize) {
2938       if (trapMarker == 0) {
2939         z_nop();
2940       } else {
2941         z_illtrap(trapMarker);
2942       }
2943     }
2944   }
2945   BLOCK_COMMENT("} IC miss handler");
2946   return labelOffset;
2947 }
2948 
2949 void MacroAssembler::nmethod_UEP(Label& ic_miss) {
2950   Register ic_reg       = Z_inline_cache;
2951   int      klass_offset = oopDesc::klass_offset_in_bytes();
2952   if (!ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(klass_offset)) {
2953     if (VM_Version::has_CompareBranch()) {
2954       z_cgij(Z_ARG1, 0, Assembler::bcondEqual, ic_miss);
2955     } else {
2956       z_ltgr(Z_ARG1, Z_ARG1);
2957       z_bre(ic_miss);
2958     }
2959   }
2960   // Compare cached class against klass from receiver.
2961   compare_klass_ptr(ic_reg, klass_offset, Z_ARG1, false);
2962   z_brne(ic_miss);
2963 }
2964 
2965 void MacroAssembler::check_klass_subtype_fast_path(Register   sub_klass,
2966                                                    Register   super_klass,
2967                                                    Register   temp1_reg,
2968                                                    Label*     L_success,
2969                                                    Label*     L_failure,
2970                                                    Label*     L_slow_path,
2971                                                    RegisterOrConstant super_check_offset) {
2972 
2973   const int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
2974   const int sco_offset = in_bytes(Klass::super_check_offset_offset());
2975 
2976   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
2977   bool need_slow_path = (must_load_sco ||
2978                          super_check_offset.constant_or_zero() == sc_offset);
2979 
2980   // Input registers must not overlap.
2981   assert_different_registers(sub_klass, super_klass, temp1_reg);
2982   if (super_check_offset.is_register()) {
2983     assert_different_registers(sub_klass, super_klass,
2984                                super_check_offset.as_register());
2985   } else if (must_load_sco) {
2986     assert(temp1_reg != noreg, "supply either a temp or a register offset");
2987   }
2988 
2989   const Register Rsuper_check_offset = temp1_reg;
2990 
2991   NearLabel L_fallthrough;
2992   int label_nulls = 0;
2993   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
2994   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
2995   if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
2996   assert(label_nulls <= 1 ||
2997          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2998          "at most one null in the batch, usually");
2999 
3000   BLOCK_COMMENT("check_klass_subtype_fast_path {");
3001   // If the pointers are equal, we are done (e.g., String[] elements).
3002   // This self-check enables sharing of secondary supertype arrays among
3003   // non-primary types such as array-of-interface. Otherwise, each such
3004   // type would need its own customized SSA.
3005   // We move this check to the front of the fast path because many
3006   // type checks are in fact trivially successful in this manner,
3007   // so we get a nicely predicted branch right at the start of the check.
3008   compare64_and_branch(sub_klass, super_klass, bcondEqual, *L_success);
3009 
3010   // Check the supertype display, which is uint.
3011   if (must_load_sco) {
3012     z_llgf(Rsuper_check_offset, sco_offset, super_klass);
3013     super_check_offset = RegisterOrConstant(Rsuper_check_offset);
3014   }
3015   Address super_check_addr(sub_klass, super_check_offset, 0);
3016   z_cg(super_klass, super_check_addr); // compare w/ displayed supertype
3017 
3018   // This check has worked decisively for primary supers.
3019   // Secondary supers are sought in the super_cache ('super_cache_addr').
3020   // (Secondary supers are interfaces and very deeply nested subtypes.)
3021   // This works in the same check above because of a tricky aliasing
3022   // between the super_cache and the primary super display elements.
3023   // (The 'super_check_addr' can address either, as the case requires.)
3024   // Note that the cache is updated below if it does not help us find
3025   // what we need immediately.
3026   // So if it was a primary super, we can just fail immediately.
3027   // Otherwise, it's the slow path for us (no success at this point).
3028 
3029   // Hacked jmp, which may only be used just before L_fallthrough.
3030 #define final_jmp(label)                                                \
3031   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
3032   else                            { branch_optimized(Assembler::bcondAlways, label); } /*omit semicolon*/
3033 
3034   if (super_check_offset.is_register()) {
3035     branch_optimized(Assembler::bcondEqual, *L_success);
3036     z_cfi(super_check_offset.as_register(), sc_offset);
3037     if (L_failure == &L_fallthrough) {
3038       branch_optimized(Assembler::bcondEqual, *L_slow_path);
3039     } else {
3040       branch_optimized(Assembler::bcondNotEqual, *L_failure);
3041       final_jmp(*L_slow_path);
3042     }
3043   } else if (super_check_offset.as_constant() == sc_offset) {
3044     // Need a slow path; fast failure is impossible.
3045     if (L_slow_path == &L_fallthrough) {
3046       branch_optimized(Assembler::bcondEqual, *L_success);
3047     } else {
3048       branch_optimized(Assembler::bcondNotEqual, *L_slow_path);
3049       final_jmp(*L_success);
3050     }
3051   } else {
3052     // No slow path; it's a fast decision.
3053     if (L_failure == &L_fallthrough) {
3054       branch_optimized(Assembler::bcondEqual, *L_success);
3055     } else {
3056       branch_optimized(Assembler::bcondNotEqual, *L_failure);
3057       final_jmp(*L_success);
3058     }
3059   }
3060 
3061   bind(L_fallthrough);
3062 #undef local_brc
3063 #undef final_jmp
3064   BLOCK_COMMENT("} check_klass_subtype_fast_path");
3065   // fallthru (to slow path)
3066 }
3067 
3068 void MacroAssembler::check_klass_subtype_slow_path(Register Rsubklass,
3069                                                    Register Rsuperklass,
3070                                                    Register Rarray_ptr,  // tmp
3071                                                    Register Rlength,     // tmp
3072                                                    Label* L_success,
3073                                                    Label* L_failure) {
3074   // Input registers must not overlap.
3075   // Also check for R1 which is explicitly used here.
3076   assert_different_registers(Z_R1, Rsubklass, Rsuperklass, Rarray_ptr, Rlength);
3077   NearLabel L_fallthrough;
3078   int label_nulls = 0;
3079   if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
3080   if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
3081   assert(label_nulls <= 1, "at most one null in the batch");
3082 
3083   const int ss_offset = in_bytes(Klass::secondary_supers_offset());
3084   const int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3085 
3086   const int length_offset = Array<Klass*>::length_offset_in_bytes();
3087   const int base_offset   = Array<Klass*>::base_offset_in_bytes();
3088 
3089   // Hacked jmp, which may only be used just before L_fallthrough.
3090 #define final_jmp(label)                                                \
3091   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
3092   else                            branch_optimized(Assembler::bcondAlways, label) /*omit semicolon*/
3093 
3094   NearLabel loop_iterate, loop_count, match;
3095 
3096   BLOCK_COMMENT("check_klass_subtype_slow_path {");
3097   z_lg(Rarray_ptr, ss_offset, Rsubklass);
3098 
3099   load_and_test_int(Rlength, Address(Rarray_ptr, length_offset));
3100   branch_optimized(Assembler::bcondZero, *L_failure);
3101 
3102   // Oops in table are NO MORE compressed.
3103   z_cg(Rsuperklass, base_offset, Rarray_ptr); // Check array element for match.
3104   z_bre(match);                               // Shortcut for array length = 1.
3105 
3106   // No match yet, so we must walk the array's elements.
3107   z_lngfr(Rlength, Rlength);
3108   z_sllg(Rlength, Rlength, LogBytesPerWord); // -#bytes of cache array
3109   z_llill(Z_R1, BytesPerWord);               // Set increment/end index.
3110   add2reg(Rlength, 2 * BytesPerWord);        // start index  = -(n-2)*BytesPerWord
3111   z_slgr(Rarray_ptr, Rlength);               // start addr: +=  (n-2)*BytesPerWord
3112   z_bru(loop_count);
3113 
3114   BIND(loop_iterate);
3115   z_cg(Rsuperklass, base_offset, Rlength, Rarray_ptr); // Check array element for match.
3116   z_bre(match);
3117   BIND(loop_count);
3118   z_brxlg(Rlength, Z_R1, loop_iterate);
3119 
3120   // Rsuperklass not found among secondary super classes -> failure.
3121   branch_optimized(Assembler::bcondAlways, *L_failure);
3122 
3123   // Got a hit. Return success (zero result). Set cache.
3124   // Cache load doesn't happen here. For speed it is directly emitted by the compiler.
3125 
3126   BIND(match);
3127 
3128   z_stg(Rsuperklass, sc_offset, Rsubklass); // Save result to cache.
3129 
3130   final_jmp(*L_success);
3131 
3132   // Exit to the surrounding code.
3133   BIND(L_fallthrough);
3134 #undef local_brc
3135 #undef final_jmp
3136   BLOCK_COMMENT("} check_klass_subtype_slow_path");
3137 }
3138 
3139 // Emitter for combining fast and slow path.
3140 void MacroAssembler::check_klass_subtype(Register sub_klass,
3141                                          Register super_klass,
3142                                          Register temp1_reg,
3143                                          Register temp2_reg,
3144                                          Label&   L_success) {
3145   NearLabel failure;
3146   BLOCK_COMMENT(err_msg("check_klass_subtype(%s subclass of %s) {", sub_klass->name(), super_klass->name()));
3147   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg,
3148                                 &L_success, &failure, nullptr);
3149   check_klass_subtype_slow_path(sub_klass, super_klass,
3150                                 temp1_reg, temp2_reg, &L_success, nullptr);
3151   BIND(failure);
3152   BLOCK_COMMENT("} check_klass_subtype");
3153 }
3154 
3155 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
3156   assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
3157 
3158   Label L_fallthrough;
3159   if (L_fast_path == nullptr) {
3160     L_fast_path = &L_fallthrough;
3161   } else if (L_slow_path == nullptr) {
3162     L_slow_path = &L_fallthrough;
3163   }
3164 
3165   // Fast path check: class is fully initialized
3166   z_cli(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
3167   z_bre(*L_fast_path);
3168 
3169   // Fast path check: current thread is initializer thread
3170   z_cg(thread, Address(klass, InstanceKlass::init_thread_offset()));
3171   if (L_slow_path == &L_fallthrough) {
3172     z_bre(*L_fast_path);
3173   } else if (L_fast_path == &L_fallthrough) {
3174     z_brne(*L_slow_path);
3175   } else {
3176     Unimplemented();
3177   }
3178 
3179   bind(L_fallthrough);
3180 }
3181 
3182 // Increment a counter at counter_address when the eq condition code is
3183 // set. Kills registers tmp1_reg and tmp2_reg and preserves the condition code.
3184 void MacroAssembler::increment_counter_eq(address counter_address, Register tmp1_reg, Register tmp2_reg) {
3185   Label l;
3186   z_brne(l);
3187   load_const(tmp1_reg, counter_address);
3188   add2mem_32(Address(tmp1_reg), 1, tmp2_reg);
3189   z_cr(tmp1_reg, tmp1_reg); // Set cc to eq.
3190   bind(l);
3191 }
3192 
3193 void MacroAssembler::compiler_fast_lock_object(Register oop, Register box, Register temp1, Register temp2) {
3194   Register displacedHeader = temp1;
3195   Register currentHeader = temp1;
3196   Register temp = temp2;
3197   NearLabel done, object_has_monitor;
3198 
3199   const int hdr_offset = oopDesc::mark_offset_in_bytes();
3200 
3201   assert_different_registers(temp1, temp2, oop, box);
3202 
3203   BLOCK_COMMENT("compiler_fast_lock_object {");
3204 
3205   // Load markWord from oop into mark.
3206   z_lg(displacedHeader, hdr_offset, oop);
3207 
3208   if (DiagnoseSyncOnValueBasedClasses != 0) {
3209     load_klass(temp, oop);
3210     testbit(Address(temp, Klass::access_flags_offset()), exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS));
3211     z_btrue(done);
3212   }
3213 
3214   // Handle existing monitor.
3215   // The object has an existing monitor iff (mark & monitor_value) != 0.
3216   guarantee(Immediate::is_uimm16(markWord::monitor_value), "must be half-word");
3217   z_tmll(displacedHeader, markWord::monitor_value);
3218   z_brnaz(object_has_monitor);
3219 
3220   if (LockingMode == LM_MONITOR) {
3221     // Set NE to indicate 'failure' -> take slow-path
3222     // From loading the markWord, we know that oop != nullptr
3223     z_ltgr(oop, oop);
3224     z_bru(done);
3225   } else if (LockingMode == LM_LEGACY) {
3226     // Set mark to markWord | markWord::unlocked_value.
3227     z_oill(displacedHeader, markWord::unlocked_value);
3228 
3229     // Load Compare Value application register.
3230 
3231     // Initialize the box (must happen before we update the object mark).
3232     z_stg(displacedHeader, BasicLock::displaced_header_offset_in_bytes(), box);
3233 
3234     // Compare object markWord with mark and if equal, exchange box with object markWork.
3235     // If the compare-and-swap succeeds, then we found an unlocked object and have now locked it.
3236     z_csg(displacedHeader, box, hdr_offset, oop);
3237     assert(currentHeader == displacedHeader, "must be same register"); // Identified two registers from z/Architecture.
3238     z_bre(done);
3239 
3240     // We did not see an unlocked object
3241     // currentHeader contains what is currently stored in the oop's markWord.
3242     // We might have a recursive case. Verify by checking if the owner is self.
3243     // To do so, compare the value in the markWord (currentHeader) with the stack pointer.
3244     z_sgr(currentHeader, Z_SP);
3245     load_const_optimized(temp, (~(os::vm_page_size() - 1) | markWord::lock_mask_in_place));
3246 
3247     z_ngr(currentHeader, temp);
3248 
3249     // result zero: owner is self -> recursive lock. Indicate that by storing 0 in the box.
3250     // result not-zero: attempt failed. We don't hold the lock -> go for slow case.
3251 
3252     z_stg(currentHeader/*==0 or not 0*/, BasicLock::displaced_header_offset_in_bytes(), box);
3253 
3254     z_bru(done);
3255   } else {
3256     assert(LockingMode == LM_LIGHTWEIGHT, "must be");
3257     lightweight_lock(oop, displacedHeader, temp, done);
3258     z_bru(done);
3259   }
3260 
3261   bind(object_has_monitor);
3262 
3263   Register zero = temp;
3264   Register monitor_tagged = displacedHeader; // Tagged with markWord::monitor_value.
3265   // The object's monitor m is unlocked iff m->owner is null,
3266   // otherwise m->owner may contain a thread or a stack address.
3267 
3268   // Try to CAS m->owner from null to current thread.
3269   // If m->owner is null, then csg succeeds and sets m->owner=THREAD and CR=EQ.
3270   // Otherwise, register zero is filled with the current owner.
3271   z_lghi(zero, 0);
3272   z_csg(zero, Z_thread, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), monitor_tagged);
3273   if (LockingMode != LM_LIGHTWEIGHT) {
3274     // Store a non-null value into the box.
3275     z_stg(box, BasicLock::displaced_header_offset_in_bytes(), box);
3276   }
3277 
3278   z_bre(done); // acquired the lock for the first time.
3279 
3280   BLOCK_COMMENT("fast_path_recursive_lock {");
3281   // Check if we are already the owner (recursive lock)
3282   z_cgr(Z_thread, zero); // owner is stored in zero by "z_csg" above
3283   z_brne(done); // not a recursive lock
3284 
3285   // Current thread already owns the lock. Just increment recursion count.
3286   z_agsi(Address(monitor_tagged, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)), 1ll);
3287   z_cgr(zero, zero); // set the CC to EQUAL
3288   BLOCK_COMMENT("} fast_path_recursive_lock");
3289   bind(done);
3290 
3291   BLOCK_COMMENT("} compiler_fast_lock_object");
3292   // If locking was successful, CR should indicate 'EQ'.
3293   // The compiler or the native wrapper generates a branch to the runtime call
3294   // _complete_monitor_locking_Java.
3295 }
3296 
3297 void MacroAssembler::compiler_fast_unlock_object(Register oop, Register box, Register temp1, Register temp2) {
3298   Register displacedHeader = temp1;
3299   Register currentHeader = temp2;
3300   Register temp = temp1;
3301 
3302   const int hdr_offset = oopDesc::mark_offset_in_bytes();
3303 
3304   assert_different_registers(temp1, temp2, oop, box);
3305 
3306   Label done, object_has_monitor, not_recursive;
3307 
3308   BLOCK_COMMENT("compiler_fast_unlock_object {");
3309 
3310   if (LockingMode == LM_LEGACY) {
3311     // Find the lock address and load the displaced header from the stack.
3312     // if the displaced header is zero, we have a recursive unlock.
3313     load_and_test_long(displacedHeader, Address(box, BasicLock::displaced_header_offset_in_bytes()));
3314     z_bre(done);
3315   }
3316 
3317   // Handle existing monitor.
3318   // The object has an existing monitor iff (mark & monitor_value) != 0.
3319   z_lg(currentHeader, hdr_offset, oop);
3320   guarantee(Immediate::is_uimm16(markWord::monitor_value), "must be half-word");
3321 
3322   z_tmll(currentHeader, markWord::monitor_value);
3323   z_brnaz(object_has_monitor);
3324 
3325   if (LockingMode == LM_MONITOR) {
3326     // Set NE to indicate 'failure' -> take slow-path
3327     z_ltgr(oop, oop);
3328     z_bru(done);
3329   } else if (LockingMode == LM_LEGACY) {
3330     // Check if it is still a lightweight lock, this is true if we see
3331     // the stack address of the basicLock in the markWord of the object
3332     // copy box to currentHeader such that csg does not kill it.
3333     z_lgr(currentHeader, box);
3334     z_csg(currentHeader, displacedHeader, hdr_offset, oop);
3335     z_bru(done); // csg sets CR as desired.
3336   } else {
3337     assert(LockingMode == LM_LIGHTWEIGHT, "must be");
3338 
3339     lightweight_unlock(oop, currentHeader, displacedHeader, done);
3340     z_bru(done);
3341   }
3342 
3343   // In case of LM_LIGHTWEIGHT, we may reach here with (temp & ObjectMonitor::ANONYMOUS_OWNER) != 0.
3344   // This is handled like owner thread mismatches: We take the slow path.
3345 
3346   // Handle existing monitor.
3347   bind(object_has_monitor);
3348 
3349   z_cg(Z_thread, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3350   z_brne(done);
3351 
3352   BLOCK_COMMENT("fast_path_recursive_unlock {");
3353   load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
3354   z_bre(not_recursive); // if 0 then jump, it's not recursive locking
3355 
3356   // Recursive inflated unlock
3357   z_agsi(Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)), -1ll);
3358   z_cgr(currentHeader, currentHeader); // set the CC to EQUAL
3359   BLOCK_COMMENT("} fast_path_recursive_unlock");
3360   z_bru(done);
3361 
3362   bind(not_recursive);
3363 
3364   load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
3365   z_brne(done);
3366   load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
3367   z_brne(done);
3368   z_release();
3369   z_stg(temp/*=0*/, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), currentHeader);
3370 
3371   bind(done);
3372 
3373   BLOCK_COMMENT("} compiler_fast_unlock_object");
3374   // flag == EQ indicates success
3375   // flag == NE indicates failure
3376 }
3377 
3378 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
3379   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3380   bs->resolve_jobject(this, value, tmp1, tmp2);
3381 }
3382 
3383 // Last_Java_sp must comply to the rules in frame_s390.hpp.
3384 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc, bool allow_relocation) {
3385   BLOCK_COMMENT("set_last_Java_frame {");
3386 
3387   // Always set last_Java_pc and flags first because once last_Java_sp
3388   // is visible has_last_Java_frame is true and users will look at the
3389   // rest of the fields. (Note: flags should always be zero before we
3390   // get here so doesn't need to be set.)
3391 
3392   // Verify that last_Java_pc was zeroed on return to Java.
3393   if (allow_relocation) {
3394     asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()),
3395                             Z_thread,
3396                             "last_Java_pc not zeroed before leaving Java",
3397                             0x200);
3398   } else {
3399     asm_assert_mem8_is_zero_static(in_bytes(JavaThread::last_Java_pc_offset()),
3400                                    Z_thread,
3401                                    "last_Java_pc not zeroed before leaving Java",
3402                                    0x200);
3403   }
3404 
3405   // When returning from calling out from Java mode the frame anchor's
3406   // last_Java_pc will always be set to null. It is set here so that
3407   // if we are doing a call to native (not VM) that we capture the
3408   // known pc and don't have to rely on the native call having a
3409   // standard frame linkage where we can find the pc.
3410   if (last_Java_pc!=noreg) {
3411     z_stg(last_Java_pc, Address(Z_thread, JavaThread::last_Java_pc_offset()));
3412   }
3413 
3414   // This membar release is not required on z/Architecture, since the sequence of stores
3415   // in maintained. Nevertheless, we leave it in to document the required ordering.
3416   // The implementation of z_release() should be empty.
3417   // z_release();
3418 
3419   z_stg(last_Java_sp, Address(Z_thread, JavaThread::last_Java_sp_offset()));
3420   BLOCK_COMMENT("} set_last_Java_frame");
3421 }
3422 
3423 void MacroAssembler::reset_last_Java_frame(bool allow_relocation) {
3424   BLOCK_COMMENT("reset_last_Java_frame {");
3425 
3426   if (allow_relocation) {
3427     asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
3428                                Z_thread,
3429                                "SP was not set, still zero",
3430                                0x202);
3431   } else {
3432     asm_assert_mem8_isnot_zero_static(in_bytes(JavaThread::last_Java_sp_offset()),
3433                                       Z_thread,
3434                                       "SP was not set, still zero",
3435                                       0x202);
3436   }
3437 
3438   // _last_Java_sp = 0
3439   // Clearing storage must be atomic here, so don't use clear_mem()!
3440   store_const(Address(Z_thread, JavaThread::last_Java_sp_offset()), 0);
3441 
3442   // _last_Java_pc = 0
3443   store_const(Address(Z_thread, JavaThread::last_Java_pc_offset()), 0);
3444 
3445   BLOCK_COMMENT("} reset_last_Java_frame");
3446   return;
3447 }
3448 
3449 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1, bool allow_relocation) {
3450   assert_different_registers(sp, tmp1);
3451 
3452   // We cannot trust that code generated by the C++ compiler saves R14
3453   // to z_abi_160.return_pc, because sometimes it spills R14 using stmg at
3454   // z_abi_160.gpr14 (e.g. InterpreterRuntime::_new()).
3455   // Therefore we load the PC into tmp1 and let set_last_Java_frame() save
3456   // it into the frame anchor.
3457   get_PC(tmp1);
3458   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1, allow_relocation);
3459 }
3460 
3461 void MacroAssembler::set_thread_state(JavaThreadState new_state) {
3462   z_release();
3463 
3464   assert(Immediate::is_uimm16(_thread_max_state), "enum value out of range for instruction");
3465   assert(sizeof(JavaThreadState) == sizeof(int), "enum value must have base type int");
3466   store_const(Address(Z_thread, JavaThread::thread_state_offset()), new_state, Z_R0, false);
3467 }
3468 
3469 void MacroAssembler::get_vm_result(Register oop_result) {
3470   z_lg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
3471   clear_mem(Address(Z_thread, JavaThread::vm_result_offset()), sizeof(void*));
3472 
3473   verify_oop(oop_result, FILE_AND_LINE);
3474 }
3475 
3476 void MacroAssembler::get_vm_result_2(Register result) {
3477   z_lg(result, Address(Z_thread, JavaThread::vm_result_2_offset()));
3478   clear_mem(Address(Z_thread, JavaThread::vm_result_2_offset()), sizeof(void*));
3479 }
3480 
3481 // We require that C code which does not return a value in vm_result will
3482 // leave it undisturbed.
3483 void MacroAssembler::set_vm_result(Register oop_result) {
3484   z_stg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
3485 }
3486 
3487 // Explicit null checks (used for method handle code).
3488 void MacroAssembler::null_check(Register reg, Register tmp, int64_t offset) {
3489   if (!ImplicitNullChecks) {
3490     NearLabel ok;
3491 
3492     compare64_and_branch(reg, (intptr_t) 0, Assembler::bcondNotEqual, ok);
3493 
3494     // We just put the address into reg if it was 0 (tmp==Z_R0 is allowed so we can't use it for the address).
3495     address exception_entry = Interpreter::throw_NullPointerException_entry();
3496     load_absolute_address(reg, exception_entry);
3497     z_br(reg);
3498 
3499     bind(ok);
3500   } else {
3501     if (needs_explicit_null_check((intptr_t)offset)) {
3502       // Provoke OS null exception if reg is null by
3503       // accessing M[reg] w/o changing any registers.
3504       z_lg(tmp, 0, reg);
3505     }
3506     // else
3507       // Nothing to do, (later) access of M[reg + offset]
3508       // will provoke OS null exception if reg is null.
3509   }
3510 }
3511 
3512 //-------------------------------------
3513 //  Compressed Klass Pointers
3514 //-------------------------------------
3515 
3516 // Klass oop manipulations if compressed.
3517 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3518   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided. (dst == src) also possible.
3519   address  base    = CompressedKlassPointers::base();
3520   int      shift   = CompressedKlassPointers::shift();
3521   bool     need_zero_extend = base != 0;
3522   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3523 
3524   BLOCK_COMMENT("cKlass encoder {");
3525 
3526 #ifdef ASSERT
3527   Label ok;
3528   z_tmll(current, KlassAlignmentInBytes-1); // Check alignment.
3529   z_brc(Assembler::bcondAllZero, ok);
3530   // The plain disassembler does not recognize illtrap. It instead displays
3531   // a 32-bit value. Issuing two illtraps assures the disassembler finds
3532   // the proper beginning of the next instruction.
3533   z_illtrap(0xee);
3534   z_illtrap(0xee);
3535   bind(ok);
3536 #endif
3537 
3538   // Scale down the incoming klass pointer first.
3539   // We then can be sure we calculate an offset that fits into 32 bit.
3540   // More generally speaking: all subsequent calculations are purely 32-bit.
3541   if (shift != 0) {
3542     assert (LogKlassAlignmentInBytes == shift, "decode alg wrong");
3543     z_srlg(dst, current, shift);
3544     current = dst;
3545   }
3546 
3547   if (base != nullptr) {
3548     // Use scaled-down base address parts to match scaled-down klass pointer.
3549     unsigned int base_h = ((unsigned long)base)>>(32+shift);
3550     unsigned int base_l = (unsigned int)(((unsigned long)base)>>shift);
3551 
3552     // General considerations:
3553     //  - when calculating (current_h - base_h), all digits must cancel (become 0).
3554     //    Otherwise, we would end up with a compressed klass pointer which doesn't
3555     //    fit into 32-bit.
3556     //  - Only bit#33 of the difference could potentially be non-zero. For that
3557     //    to happen, (current_l < base_l) must hold. In this case, the subtraction
3558     //    will create a borrow out of bit#32, nicely killing bit#33.
3559     //  - With the above, we only need to consider current_l and base_l to
3560     //    calculate the result.
3561     //  - Both values are treated as unsigned. The unsigned subtraction is
3562     //    replaced by adding (unsigned) the 2's complement of the subtrahend.
3563 
3564     if (base_l == 0) {
3565       //  - By theory, the calculation to be performed here (current_h - base_h) MUST
3566       //    cancel all high-word bits. Otherwise, we would end up with an offset
3567       //    (i.e. compressed klass pointer) that does not fit into 32 bit.
3568       //  - current_l remains unchanged.
3569       //  - Therefore, we can replace all calculation with just a
3570       //    zero-extending load 32 to 64 bit.
3571       //  - Even that can be replaced with a conditional load if dst != current.
3572       //    (this is a local view. The shift step may have requested zero-extension).
3573     } else {
3574       if ((base_h == 0) && is_uimm(base_l, 31)) {
3575         // If we happen to find that (base_h == 0), and that base_l is within the range
3576         // which can be represented by a signed int, then we can use 64bit signed add with
3577         // (-base_l) as 32bit signed immediate operand. The add will take care of the
3578         // upper 32 bits of the result, saving us the need of an extra zero extension.
3579         // For base_l to be in the required range, it must not have the most significant
3580         // bit (aka sign bit) set.
3581         lgr_if_needed(dst, current); // no zero/sign extension in this case!
3582         z_agfi(dst, -(int)base_l);   // base_l must be passed as signed.
3583         need_zero_extend = false;
3584         current = dst;
3585       } else {
3586         // To begin with, we may need to copy and/or zero-extend the register operand.
3587         // We have to calculate (current_l - base_l). Because there is no unsigend
3588         // subtract instruction with immediate operand, we add the 2's complement of base_l.
3589         if (need_zero_extend) {
3590           z_llgfr(dst, current);
3591           need_zero_extend = false;
3592         } else {
3593           llgfr_if_needed(dst, current);
3594         }
3595         current = dst;
3596         z_alfi(dst, -base_l);
3597       }
3598     }
3599   }
3600 
3601   if (need_zero_extend) {
3602     // We must zero-extend the calculated result. It may have some leftover bits in
3603     // the hi-word because we only did optimized calculations.
3604     z_llgfr(dst, current);
3605   } else {
3606     llgfr_if_needed(dst, current); // zero-extension while copying comes at no extra cost.
3607   }
3608 
3609   BLOCK_COMMENT("} cKlass encoder");
3610 }
3611 
3612 // This function calculates the size of the code generated by
3613 //   decode_klass_not_null(register dst, Register src)
3614 // when Universe::heap() isn't null. Hence, if the instructions
3615 // it generates change, then this method needs to be updated.
3616 int MacroAssembler::instr_size_for_decode_klass_not_null() {
3617   address  base    = CompressedKlassPointers::base();
3618   int shift_size   = CompressedKlassPointers::shift() == 0 ? 0 : 6; /* sllg */
3619   int addbase_size = 0;
3620   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3621 
3622   if (base != nullptr) {
3623     unsigned int base_h = ((unsigned long)base)>>32;
3624     unsigned int base_l = (unsigned int)((unsigned long)base);
3625     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3626       addbase_size += 6; /* aih */
3627     } else if ((base_h == 0) && (base_l != 0)) {
3628       addbase_size += 6; /* algfi */
3629     } else {
3630       addbase_size += load_const_size();
3631       addbase_size += 4; /* algr */
3632     }
3633   }
3634 #ifdef ASSERT
3635   addbase_size += 10;
3636   addbase_size += 2; // Extra sigill.
3637 #endif
3638   return addbase_size + shift_size;
3639 }
3640 
3641 // !!! If the instructions that get generated here change
3642 //     then function instr_size_for_decode_klass_not_null()
3643 //     needs to get updated.
3644 // This variant of decode_klass_not_null() must generate predictable code!
3645 // The code must only depend on globally known parameters.
3646 void MacroAssembler::decode_klass_not_null(Register dst) {
3647   address  base    = CompressedKlassPointers::base();
3648   int      shift   = CompressedKlassPointers::shift();
3649   int      beg_off = offset();
3650   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3651 
3652   BLOCK_COMMENT("cKlass decoder (const size) {");
3653 
3654   if (shift != 0) { // Shift required?
3655     z_sllg(dst, dst, shift);
3656   }
3657   if (base != nullptr) {
3658     unsigned int base_h = ((unsigned long)base)>>32;
3659     unsigned int base_l = (unsigned int)((unsigned long)base);
3660     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3661       z_aih(dst, base_h);     // Base has no set bits in lower half.
3662     } else if ((base_h == 0) && (base_l != 0)) {
3663       z_algfi(dst, base_l);   // Base has no set bits in upper half.
3664     } else {
3665       load_const(Z_R0, base); // Base has set bits everywhere.
3666       z_algr(dst, Z_R0);
3667     }
3668   }
3669 
3670 #ifdef ASSERT
3671   Label ok;
3672   z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
3673   z_brc(Assembler::bcondAllZero, ok);
3674   // The plain disassembler does not recognize illtrap. It instead displays
3675   // a 32-bit value. Issuing two illtraps assures the disassembler finds
3676   // the proper beginning of the next instruction.
3677   z_illtrap(0xd1);
3678   z_illtrap(0xd1);
3679   bind(ok);
3680 #endif
3681   assert(offset() == beg_off + instr_size_for_decode_klass_not_null(), "Code gen mismatch.");
3682 
3683   BLOCK_COMMENT("} cKlass decoder (const size)");
3684 }
3685 
3686 // This variant of decode_klass_not_null() is for cases where
3687 //  1) the size of the generated instructions may vary
3688 //  2) the result is (potentially) stored in a register different from the source.
3689 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3690   address base  = CompressedKlassPointers::base();
3691   int     shift = CompressedKlassPointers::shift();
3692   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3693 
3694   BLOCK_COMMENT("cKlass decoder {");
3695 
3696   if (src == noreg) src = dst;
3697 
3698   if (shift != 0) { // Shift or at least move required?
3699     z_sllg(dst, src, shift);
3700   } else {
3701     lgr_if_needed(dst, src);
3702   }
3703 
3704   if (base != nullptr) {
3705     unsigned int base_h = ((unsigned long)base)>>32;
3706     unsigned int base_l = (unsigned int)((unsigned long)base);
3707     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3708       z_aih(dst, base_h);     // Base has not set bits in lower half.
3709     } else if ((base_h == 0) && (base_l != 0)) {
3710       z_algfi(dst, base_l);   // Base has no set bits in upper half.
3711     } else {
3712       load_const_optimized(Z_R0, base); // Base has set bits everywhere.
3713       z_algr(dst, Z_R0);
3714     }
3715   }
3716 
3717 #ifdef ASSERT
3718   Label ok;
3719   z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
3720   z_brc(Assembler::bcondAllZero, ok);
3721   // The plain disassembler does not recognize illtrap. It instead displays
3722   // a 32-bit value. Issuing two illtraps assures the disassembler finds
3723   // the proper beginning of the next instruction.
3724   z_illtrap(0xd2);
3725   z_illtrap(0xd2);
3726   bind(ok);
3727 #endif
3728   BLOCK_COMMENT("} cKlass decoder");
3729 }
3730 
3731 void MacroAssembler::load_klass(Register klass, Address mem) {
3732   if (UseCompressedClassPointers) {
3733     z_llgf(klass, mem);
3734     // Attention: no null check here!
3735     decode_klass_not_null(klass);
3736   } else {
3737     z_lg(klass, mem);
3738   }
3739 }
3740 
3741 void MacroAssembler::load_klass(Register klass, Register src_oop) {
3742   if (UseCompressedClassPointers) {
3743     z_llgf(klass, oopDesc::klass_offset_in_bytes(), src_oop);
3744     // Attention: no null check here!
3745     decode_klass_not_null(klass);
3746   } else {
3747     z_lg(klass, oopDesc::klass_offset_in_bytes(), src_oop);
3748   }
3749 }
3750 
3751 void MacroAssembler::store_klass(Register klass, Register dst_oop, Register ck) {
3752   if (UseCompressedClassPointers) {
3753     assert_different_registers(dst_oop, klass, Z_R0);
3754     if (ck == noreg) ck = klass;
3755     encode_klass_not_null(ck, klass);
3756     z_st(ck, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
3757   } else {
3758     z_stg(klass, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
3759   }
3760 }
3761 
3762 void MacroAssembler::store_klass_gap(Register s, Register d) {
3763   if (UseCompressedClassPointers) {
3764     assert(s != d, "not enough registers");
3765     // Support s = noreg.
3766     if (s != noreg) {
3767       z_st(s, Address(d, oopDesc::klass_gap_offset_in_bytes()));
3768     } else {
3769       z_mvhi(Address(d, oopDesc::klass_gap_offset_in_bytes()), 0);
3770     }
3771   }
3772 }
3773 
3774 // Compare klass ptr in memory against klass ptr in register.
3775 //
3776 // Rop1            - klass in register, always uncompressed.
3777 // disp            - Offset of klass in memory, compressed/uncompressed, depending on runtime flag.
3778 // Rbase           - Base address of cKlass in memory.
3779 // maybenull       - True if Rop1 possibly is a null.
3780 void MacroAssembler::compare_klass_ptr(Register Rop1, int64_t disp, Register Rbase, bool maybenull) {
3781 
3782   BLOCK_COMMENT("compare klass ptr {");
3783 
3784   if (UseCompressedClassPointers) {
3785     const int shift = CompressedKlassPointers::shift();
3786     address   base  = CompressedKlassPointers::base();
3787 
3788     assert((shift == 0) || (shift == LogKlassAlignmentInBytes), "cKlass encoder detected bad shift");
3789     assert_different_registers(Rop1, Z_R0);
3790     assert_different_registers(Rop1, Rbase, Z_R1);
3791 
3792     // First encode register oop and then compare with cOop in memory.
3793     // This sequence saves an unnecessary cOop load and decode.
3794     if (base == nullptr) {
3795       if (shift == 0) {
3796         z_cl(Rop1, disp, Rbase);     // Unscaled
3797       } else {
3798         z_srlg(Z_R0, Rop1, shift);   // ZeroBased
3799         z_cl(Z_R0, disp, Rbase);
3800       }
3801     } else {                         // HeapBased
3802 #ifdef ASSERT
3803       bool     used_R0 = true;
3804       bool     used_R1 = true;
3805 #endif
3806       Register current = Rop1;
3807       Label    done;
3808 
3809       if (maybenull) {       // null pointer must be preserved!
3810         z_ltgr(Z_R0, current);
3811         z_bre(done);
3812         current = Z_R0;
3813       }
3814 
3815       unsigned int base_h = ((unsigned long)base)>>32;
3816       unsigned int base_l = (unsigned int)((unsigned long)base);
3817       if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3818         lgr_if_needed(Z_R0, current);
3819         z_aih(Z_R0, -((int)base_h));     // Base has no set bits in lower half.
3820       } else if ((base_h == 0) && (base_l != 0)) {
3821         lgr_if_needed(Z_R0, current);
3822         z_agfi(Z_R0, -(int)base_l);
3823       } else {
3824         int pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
3825         add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1); // Subtract base by adding complement.
3826       }
3827 
3828       if (shift != 0) {
3829         z_srlg(Z_R0, Z_R0, shift);
3830       }
3831       bind(done);
3832       z_cl(Z_R0, disp, Rbase);
3833 #ifdef ASSERT
3834       if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
3835       if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
3836 #endif
3837     }
3838   } else {
3839     z_clg(Rop1, disp, Z_R0, Rbase);
3840   }
3841   BLOCK_COMMENT("} compare klass ptr");
3842 }
3843 
3844 //---------------------------
3845 //  Compressed oops
3846 //---------------------------
3847 
3848 void MacroAssembler::encode_heap_oop(Register oop) {
3849   oop_encoder(oop, oop, true /*maybe null*/);
3850 }
3851 
3852 void MacroAssembler::encode_heap_oop_not_null(Register oop) {
3853   oop_encoder(oop, oop, false /*not null*/);
3854 }
3855 
3856 // Called with something derived from the oop base. e.g. oop_base>>3.
3857 int MacroAssembler::get_oop_base_pow2_offset(uint64_t oop_base) {
3858   unsigned int oop_base_ll = ((unsigned int)(oop_base >>  0)) & 0xffff;
3859   unsigned int oop_base_lh = ((unsigned int)(oop_base >> 16)) & 0xffff;
3860   unsigned int oop_base_hl = ((unsigned int)(oop_base >> 32)) & 0xffff;
3861   unsigned int oop_base_hh = ((unsigned int)(oop_base >> 48)) & 0xffff;
3862   unsigned int n_notzero_parts = (oop_base_ll == 0 ? 0:1)
3863                                + (oop_base_lh == 0 ? 0:1)
3864                                + (oop_base_hl == 0 ? 0:1)
3865                                + (oop_base_hh == 0 ? 0:1);
3866 
3867   assert(oop_base != 0, "This is for HeapBased cOops only");
3868 
3869   if (n_notzero_parts != 1) { //  Check if oop_base is just a few pages shy of a power of 2.
3870     uint64_t pow2_offset = 0x10000 - oop_base_ll;
3871     if (pow2_offset < 0x8000) {  // This might not be necessary.
3872       uint64_t oop_base2 = oop_base + pow2_offset;
3873 
3874       oop_base_ll = ((unsigned int)(oop_base2 >>  0)) & 0xffff;
3875       oop_base_lh = ((unsigned int)(oop_base2 >> 16)) & 0xffff;
3876       oop_base_hl = ((unsigned int)(oop_base2 >> 32)) & 0xffff;
3877       oop_base_hh = ((unsigned int)(oop_base2 >> 48)) & 0xffff;
3878       n_notzero_parts = (oop_base_ll == 0 ? 0:1) +
3879                         (oop_base_lh == 0 ? 0:1) +
3880                         (oop_base_hl == 0 ? 0:1) +
3881                         (oop_base_hh == 0 ? 0:1);
3882       if (n_notzero_parts == 1) {
3883         assert(-(int64_t)pow2_offset != (int64_t)-1, "We use -1 to signal uninitialized base register");
3884         return -pow2_offset;
3885       }
3886     }
3887   }
3888   return 0;
3889 }
3890 
3891 // If base address is offset from a straight power of two by just a few pages,
3892 // return this offset to the caller for a possible later composite add.
3893 // TODO/FIX: will only work correctly for 4k pages.
3894 int MacroAssembler::get_oop_base(Register Rbase, uint64_t oop_base) {
3895   int pow2_offset = get_oop_base_pow2_offset(oop_base);
3896 
3897   load_const_optimized(Rbase, oop_base - pow2_offset); // Best job possible.
3898 
3899   return pow2_offset;
3900 }
3901 
3902 int MacroAssembler::get_oop_base_complement(Register Rbase, uint64_t oop_base) {
3903   int offset = get_oop_base(Rbase, oop_base);
3904   z_lcgr(Rbase, Rbase);
3905   return -offset;
3906 }
3907 
3908 // Compare compressed oop in memory against oop in register.
3909 // Rop1            - Oop in register.
3910 // disp            - Offset of cOop in memory.
3911 // Rbase           - Base address of cOop in memory.
3912 // maybenull       - True if Rop1 possibly is a null.
3913 // maybenulltarget - Branch target for Rop1 == nullptr, if flow control shall NOT continue with compare instruction.
3914 void MacroAssembler::compare_heap_oop(Register Rop1, Address mem, bool maybenull) {
3915   Register Rbase  = mem.baseOrR0();
3916   Register Rindex = mem.indexOrR0();
3917   int64_t  disp   = mem.disp();
3918 
3919   const int shift = CompressedOops::shift();
3920   address   base  = CompressedOops::base();
3921 
3922   assert(UseCompressedOops, "must be on to call this method");
3923   assert(Universe::heap() != nullptr, "java heap must be initialized to call this method");
3924   assert((shift == 0) || (shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
3925   assert_different_registers(Rop1, Z_R0);
3926   assert_different_registers(Rop1, Rbase, Z_R1);
3927   assert_different_registers(Rop1, Rindex, Z_R1);
3928 
3929   BLOCK_COMMENT("compare heap oop {");
3930 
3931   // First encode register oop and then compare with cOop in memory.
3932   // This sequence saves an unnecessary cOop load and decode.
3933   if (base == nullptr) {
3934     if (shift == 0) {
3935       z_cl(Rop1, disp, Rindex, Rbase);  // Unscaled
3936     } else {
3937       z_srlg(Z_R0, Rop1, shift);        // ZeroBased
3938       z_cl(Z_R0, disp, Rindex, Rbase);
3939     }
3940   } else {                              // HeapBased
3941 #ifdef ASSERT
3942     bool  used_R0 = true;
3943     bool  used_R1 = true;
3944 #endif
3945     Label done;
3946     int   pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
3947 
3948     if (maybenull) {       // null pointer must be preserved!
3949       z_ltgr(Z_R0, Rop1);
3950       z_bre(done);
3951     }
3952 
3953     add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1);
3954     z_srlg(Z_R0, Z_R0, shift);
3955 
3956     bind(done);
3957     z_cl(Z_R0, disp, Rindex, Rbase);
3958 #ifdef ASSERT
3959     if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
3960     if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
3961 #endif
3962   }
3963   BLOCK_COMMENT("} compare heap oop");
3964 }
3965 
3966 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
3967                                      const Address& addr, Register val,
3968                                      Register tmp1, Register tmp2, Register tmp3) {
3969   assert((decorators & ~(AS_RAW | IN_HEAP | IN_NATIVE | IS_ARRAY | IS_NOT_NULL |
3970                          ON_UNKNOWN_OOP_REF)) == 0, "unsupported decorator");
3971   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3972   decorators = AccessInternal::decorator_fixup(decorators, type);
3973   bool as_raw = (decorators & AS_RAW) != 0;
3974   if (as_raw) {
3975     bs->BarrierSetAssembler::store_at(this, decorators, type,
3976                                       addr, val,
3977                                       tmp1, tmp2, tmp3);
3978   } else {
3979     bs->store_at(this, decorators, type,
3980                  addr, val,
3981                  tmp1, tmp2, tmp3);
3982   }
3983 }
3984 
3985 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
3986                                     const Address& addr, Register dst,
3987                                     Register tmp1, Register tmp2, Label *is_null) {
3988   assert((decorators & ~(AS_RAW | IN_HEAP | IN_NATIVE | IS_ARRAY | IS_NOT_NULL |
3989                          ON_PHANTOM_OOP_REF | ON_WEAK_OOP_REF)) == 0, "unsupported decorator");
3990   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3991   decorators = AccessInternal::decorator_fixup(decorators, type);
3992   bool as_raw = (decorators & AS_RAW) != 0;
3993   if (as_raw) {
3994     bs->BarrierSetAssembler::load_at(this, decorators, type,
3995                                      addr, dst,
3996                                      tmp1, tmp2, is_null);
3997   } else {
3998     bs->load_at(this, decorators, type,
3999                 addr, dst,
4000                 tmp1, tmp2, is_null);
4001   }
4002 }
4003 
4004 void MacroAssembler::load_heap_oop(Register dest, const Address &a,
4005                                    Register tmp1, Register tmp2,
4006                                    DecoratorSet decorators, Label *is_null) {
4007   access_load_at(T_OBJECT, IN_HEAP | decorators, a, dest, tmp1, tmp2, is_null);
4008 }
4009 
4010 void MacroAssembler::store_heap_oop(Register Roop, const Address &a,
4011                                     Register tmp1, Register tmp2, Register tmp3,
4012                                     DecoratorSet decorators) {
4013   access_store_at(T_OBJECT, IN_HEAP | decorators, a, Roop, tmp1, tmp2, tmp3);
4014 }
4015 
4016 //-------------------------------------------------
4017 // Encode compressed oop. Generally usable encoder.
4018 //-------------------------------------------------
4019 // Rsrc - contains regular oop on entry. It remains unchanged.
4020 // Rdst - contains compressed oop on exit.
4021 // Rdst and Rsrc may indicate same register, in which case Rsrc does not remain unchanged.
4022 //
4023 // Rdst must not indicate scratch register Z_R1 (Z_R1_scratch) for functionality.
4024 // Rdst should not indicate scratch register Z_R0 (Z_R0_scratch) for performance.
4025 //
4026 // only32bitValid is set, if later code only uses the lower 32 bits. In this
4027 // case we must not fix the upper 32 bits.
4028 void MacroAssembler::oop_encoder(Register Rdst, Register Rsrc, bool maybenull,
4029                                  Register Rbase, int pow2_offset, bool only32bitValid) {
4030 
4031   const address oop_base  = CompressedOops::base();
4032   const int     oop_shift = CompressedOops::shift();
4033   const bool    disjoint  = CompressedOops::base_disjoint();
4034 
4035   assert(UseCompressedOops, "must be on to call this method");
4036   assert(Universe::heap() != nullptr, "java heap must be initialized to call this encoder");
4037   assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
4038 
4039   if (disjoint || (oop_base == nullptr)) {
4040     BLOCK_COMMENT("cOop encoder zeroBase {");
4041     if (oop_shift == 0) {
4042       if (oop_base != nullptr && !only32bitValid) {
4043         z_llgfr(Rdst, Rsrc); // Clear upper bits in case the register will be decoded again.
4044       } else {
4045         lgr_if_needed(Rdst, Rsrc);
4046       }
4047     } else {
4048       z_srlg(Rdst, Rsrc, oop_shift);
4049       if (oop_base != nullptr && !only32bitValid) {
4050         z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4051       }
4052     }
4053     BLOCK_COMMENT("} cOop encoder zeroBase");
4054     return;
4055   }
4056 
4057   bool used_R0 = false;
4058   bool used_R1 = false;
4059 
4060   BLOCK_COMMENT("cOop encoder general {");
4061   assert_different_registers(Rdst, Z_R1);
4062   assert_different_registers(Rsrc, Rbase);
4063   if (maybenull) {
4064     Label done;
4065     // We reorder shifting and subtracting, so that we can compare
4066     // and shift in parallel:
4067     //
4068     // cycle 0:  potential LoadN, base = <const>
4069     // cycle 1:  base = !base     dst = src >> 3,    cmp cr = (src != 0)
4070     // cycle 2:  if (cr) br,      dst = dst + base + offset
4071 
4072     // Get oop_base components.
4073     if (pow2_offset == -1) {
4074       if (Rdst == Rbase) {
4075         if (Rdst == Z_R1 || Rsrc == Z_R1) {
4076           Rbase = Z_R0;
4077           used_R0 = true;
4078         } else {
4079           Rdst = Z_R1;
4080           used_R1 = true;
4081         }
4082       }
4083       if (Rbase == Z_R1) {
4084         used_R1 = true;
4085       }
4086       pow2_offset = get_oop_base_complement(Rbase, ((uint64_t)(intptr_t)oop_base) >> oop_shift);
4087     }
4088     assert_different_registers(Rdst, Rbase);
4089 
4090     // Check for null oop (must be left alone) and shift.
4091     if (oop_shift != 0) {  // Shift out alignment bits
4092       if (((intptr_t)oop_base&0xc000000000000000L) == 0L) { // We are sure: no single address will have the leftmost bit set.
4093         z_srag(Rdst, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4094       } else {
4095         z_srlg(Rdst, Rsrc, oop_shift);
4096         z_ltgr(Rsrc, Rsrc);  // This is the recommended way of testing for zero.
4097         // This probably is faster, as it does not write a register. No!
4098         // z_cghi(Rsrc, 0);
4099       }
4100     } else {
4101       z_ltgr(Rdst, Rsrc);   // Move null to result register.
4102     }
4103     z_bre(done);
4104 
4105     // Subtract oop_base components.
4106     if ((Rdst == Z_R0) || (Rbase == Z_R0)) {
4107       z_algr(Rdst, Rbase);
4108       if (pow2_offset != 0) { add2reg(Rdst, pow2_offset); }
4109     } else {
4110       add2reg_with_index(Rdst, pow2_offset, Rbase, Rdst);
4111     }
4112     if (!only32bitValid) {
4113       z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4114     }
4115     bind(done);
4116 
4117   } else {  // not null
4118     // Get oop_base components.
4119     if (pow2_offset == -1) {
4120       pow2_offset = get_oop_base_complement(Rbase, (uint64_t)(intptr_t)oop_base);
4121     }
4122 
4123     // Subtract oop_base components and shift.
4124     if (Rdst == Z_R0 || Rsrc == Z_R0 || Rbase == Z_R0) {
4125       // Don't use lay instruction.
4126       if (Rdst == Rsrc) {
4127         z_algr(Rdst, Rbase);
4128       } else {
4129         lgr_if_needed(Rdst, Rbase);
4130         z_algr(Rdst, Rsrc);
4131       }
4132       if (pow2_offset != 0) add2reg(Rdst, pow2_offset);
4133     } else {
4134       add2reg_with_index(Rdst, pow2_offset, Rbase, Rsrc);
4135     }
4136     if (oop_shift != 0) {   // Shift out alignment bits.
4137       z_srlg(Rdst, Rdst, oop_shift);
4138     }
4139     if (!only32bitValid) {
4140       z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4141     }
4142   }
4143 #ifdef ASSERT
4144   if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb01bUL, 2); }
4145   if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb02bUL, 2); }
4146 #endif
4147   BLOCK_COMMENT("} cOop encoder general");
4148 }
4149 
4150 //-------------------------------------------------
4151 // decode compressed oop. Generally usable decoder.
4152 //-------------------------------------------------
4153 // Rsrc - contains compressed oop on entry.
4154 // Rdst - contains regular oop on exit.
4155 // Rdst and Rsrc may indicate same register.
4156 // Rdst must not be the same register as Rbase, if Rbase was preloaded (before call).
4157 // Rdst can be the same register as Rbase. Then, either Z_R0 or Z_R1 must be available as scratch.
4158 // Rbase - register to use for the base
4159 // pow2_offset - offset of base to nice value. If -1, base must be loaded.
4160 // For performance, it is good to
4161 //  - avoid Z_R0 for any of the argument registers.
4162 //  - keep Rdst and Rsrc distinct from Rbase. Rdst == Rsrc is ok for performance.
4163 //  - avoid Z_R1 for Rdst if Rdst == Rbase.
4164 void MacroAssembler::oop_decoder(Register Rdst, Register Rsrc, bool maybenull, Register Rbase, int pow2_offset) {
4165 
4166   const address oop_base  = CompressedOops::base();
4167   const int     oop_shift = CompressedOops::shift();
4168   const bool    disjoint  = CompressedOops::base_disjoint();
4169 
4170   assert(UseCompressedOops, "must be on to call this method");
4171   assert(Universe::heap() != nullptr, "java heap must be initialized to call this decoder");
4172   assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes),
4173          "cOop encoder detected bad shift");
4174 
4175   // cOops are always loaded zero-extended from memory. No explicit zero-extension necessary.
4176 
4177   if (oop_base != nullptr) {
4178     unsigned int oop_base_hl = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xffff;
4179     unsigned int oop_base_hh = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 48)) & 0xffff;
4180     unsigned int oop_base_hf = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xFFFFffff;
4181     if (disjoint && (oop_base_hl == 0 || oop_base_hh == 0)) {
4182       BLOCK_COMMENT("cOop decoder disjointBase {");
4183       // We do not need to load the base. Instead, we can install the upper bits
4184       // with an OR instead of an ADD.
4185       Label done;
4186 
4187       // Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
4188       if (maybenull) {  // null pointer must be preserved!
4189         z_slag(Rdst, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4190         z_bre(done);
4191       } else {
4192         z_sllg(Rdst, Rsrc, oop_shift);  // Logical shift leaves condition code alone.
4193       }
4194       if ((oop_base_hl != 0) && (oop_base_hh != 0)) {
4195         z_oihf(Rdst, oop_base_hf);
4196       } else if (oop_base_hl != 0) {
4197         z_oihl(Rdst, oop_base_hl);
4198       } else {
4199         assert(oop_base_hh != 0, "not heapbased mode");
4200         z_oihh(Rdst, oop_base_hh);
4201       }
4202       bind(done);
4203       BLOCK_COMMENT("} cOop decoder disjointBase");
4204     } else {
4205       BLOCK_COMMENT("cOop decoder general {");
4206       // There are three decode steps:
4207       //   scale oop offset (shift left)
4208       //   get base (in reg) and pow2_offset (constant)
4209       //   add base, pow2_offset, and oop offset
4210       // The following register overlap situations may exist:
4211       // Rdst == Rsrc,  Rbase any other
4212       //   not a problem. Scaling in-place leaves Rbase undisturbed.
4213       //   Loading Rbase does not impact the scaled offset.
4214       // Rdst == Rbase, Rsrc  any other
4215       //   scaling would destroy a possibly preloaded Rbase. Loading Rbase
4216       //   would destroy the scaled offset.
4217       //   Remedy: use Rdst_tmp if Rbase has been preloaded.
4218       //           use Rbase_tmp if base has to be loaded.
4219       // Rsrc == Rbase, Rdst  any other
4220       //   Only possible without preloaded Rbase.
4221       //   Loading Rbase does not destroy compressed oop because it was scaled into Rdst before.
4222       // Rsrc == Rbase, Rdst == Rbase
4223       //   Only possible without preloaded Rbase.
4224       //   Loading Rbase would destroy compressed oop. Scaling in-place is ok.
4225       //   Remedy: use Rbase_tmp.
4226       //
4227       Label    done;
4228       Register Rdst_tmp       = Rdst;
4229       Register Rbase_tmp      = Rbase;
4230       bool     used_R0        = false;
4231       bool     used_R1        = false;
4232       bool     base_preloaded = pow2_offset >= 0;
4233       guarantee(!(base_preloaded && (Rsrc == Rbase)), "Register clash, check caller");
4234       assert(oop_shift != 0, "room for optimization");
4235 
4236       // Check if we need to use scratch registers.
4237       if (Rdst == Rbase) {
4238         assert(!(((Rdst == Z_R0) && (Rsrc == Z_R1)) || ((Rdst == Z_R1) && (Rsrc == Z_R0))), "need a scratch reg");
4239         if (Rdst != Rsrc) {
4240           if (base_preloaded) { Rdst_tmp  = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
4241           else                { Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
4242         } else {
4243           Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1;
4244         }
4245       }
4246       if (base_preloaded) lgr_if_needed(Rbase_tmp, Rbase);
4247 
4248       // Scale oop and check for null.
4249       // Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
4250       if (maybenull) {  // null pointer must be preserved!
4251         z_slag(Rdst_tmp, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4252         z_bre(done);
4253       } else {
4254         z_sllg(Rdst_tmp, Rsrc, oop_shift);  // Logical shift leaves condition code alone.
4255       }
4256 
4257       // Get oop_base components.
4258       if (!base_preloaded) {
4259         pow2_offset = get_oop_base(Rbase_tmp, (uint64_t)(intptr_t)oop_base);
4260       }
4261 
4262       // Add up all components.
4263       if ((Rbase_tmp == Z_R0) || (Rdst_tmp == Z_R0)) {
4264         z_algr(Rdst_tmp, Rbase_tmp);
4265         if (pow2_offset != 0) { add2reg(Rdst_tmp, pow2_offset); }
4266       } else {
4267         add2reg_with_index(Rdst_tmp, pow2_offset, Rbase_tmp, Rdst_tmp);
4268       }
4269 
4270       bind(done);
4271       lgr_if_needed(Rdst, Rdst_tmp);
4272 #ifdef ASSERT
4273       if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb03bUL, 2); }
4274       if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb04bUL, 2); }
4275 #endif
4276       BLOCK_COMMENT("} cOop decoder general");
4277     }
4278   } else {
4279     BLOCK_COMMENT("cOop decoder zeroBase {");
4280     if (oop_shift == 0) {
4281       lgr_if_needed(Rdst, Rsrc);
4282     } else {
4283       z_sllg(Rdst, Rsrc, oop_shift);
4284     }
4285     BLOCK_COMMENT("} cOop decoder zeroBase");
4286   }
4287 }
4288 
4289 // ((OopHandle)result).resolve();
4290 void MacroAssembler::resolve_oop_handle(Register result) {
4291   // OopHandle::resolve is an indirection.
4292   z_lg(result, 0, result);
4293 }
4294 
4295 void MacroAssembler::load_mirror_from_const_method(Register mirror, Register const_method) {
4296   mem2reg_opt(mirror, Address(const_method, ConstMethod::constants_offset()));
4297   mem2reg_opt(mirror, Address(mirror, ConstantPool::pool_holder_offset()));
4298   mem2reg_opt(mirror, Address(mirror, Klass::java_mirror_offset()));
4299   resolve_oop_handle(mirror);
4300 }
4301 
4302 void MacroAssembler::load_method_holder(Register holder, Register method) {
4303   mem2reg_opt(holder, Address(method, Method::const_offset()));
4304   mem2reg_opt(holder, Address(holder, ConstMethod::constants_offset()));
4305   mem2reg_opt(holder, Address(holder, ConstantPool::pool_holder_offset()));
4306 }
4307 
4308 //---------------------------------------------------------------
4309 //---  Operations on arrays.
4310 //---------------------------------------------------------------
4311 
4312 // Compiler ensures base is doubleword aligned and cnt is #doublewords.
4313 // Emitter does not KILL cnt and base arguments, since they need to be copied to
4314 // work registers anyway.
4315 // Actually, only r0, r1, and r5 are killed.
4316 unsigned int MacroAssembler::Clear_Array(Register cnt_arg, Register base_pointer_arg, Register odd_tmp_reg) {
4317 
4318   int      block_start = offset();
4319   Register dst_len  = Z_R1;    // Holds dst len  for MVCLE.
4320   Register dst_addr = Z_R0;    // Holds dst addr for MVCLE.
4321 
4322   Label doXC, doMVCLE, done;
4323 
4324   BLOCK_COMMENT("Clear_Array {");
4325 
4326   // Check for zero len and convert to long.
4327   z_ltgfr(odd_tmp_reg, cnt_arg);
4328   z_bre(done);                    // Nothing to do if len == 0.
4329 
4330   // Prefetch data to be cleared.
4331   if (VM_Version::has_Prefetch()) {
4332     z_pfd(0x02,   0, Z_R0, base_pointer_arg);
4333     z_pfd(0x02, 256, Z_R0, base_pointer_arg);
4334   }
4335 
4336   z_sllg(dst_len, odd_tmp_reg, 3); // #bytes to clear.
4337   z_cghi(odd_tmp_reg, 32);         // Check for len <= 256 bytes (<=32 DW).
4338   z_brnh(doXC);                    // If so, use executed XC to clear.
4339 
4340   // MVCLE: initialize long arrays (general case).
4341   bind(doMVCLE);
4342   z_lgr(dst_addr, base_pointer_arg);
4343   // Pass 0 as source length to MVCLE: destination will be filled with padding byte 0.
4344   // The even register of the register pair is not killed.
4345   clear_reg(odd_tmp_reg, true, false);
4346   MacroAssembler::move_long_ext(dst_addr, as_Register(odd_tmp_reg->encoding()-1), 0);
4347   z_bru(done);
4348 
4349   // XC: initialize short arrays.
4350   Label XC_template; // Instr template, never exec directly!
4351     bind(XC_template);
4352     z_xc(0,0,base_pointer_arg,0,base_pointer_arg);
4353 
4354   bind(doXC);
4355     add2reg(dst_len, -1);               // Get #bytes-1 for EXECUTE.
4356     if (VM_Version::has_ExecuteExtensions()) {
4357       z_exrl(dst_len, XC_template);     // Execute XC with var. len.
4358     } else {
4359       z_larl(odd_tmp_reg, XC_template);
4360       z_ex(dst_len,0,Z_R0,odd_tmp_reg); // Execute XC with var. len.
4361     }
4362     // z_bru(done);      // fallthru
4363 
4364   bind(done);
4365 
4366   BLOCK_COMMENT("} Clear_Array");
4367 
4368   int block_end = offset();
4369   return block_end - block_start;
4370 }
4371 
4372 // Compiler ensures base is doubleword aligned and cnt is count of doublewords.
4373 // Emitter does not KILL any arguments nor work registers.
4374 // Emitter generates up to 16 XC instructions, depending on the array length.
4375 unsigned int MacroAssembler::Clear_Array_Const(long cnt, Register base) {
4376   int  block_start    = offset();
4377   int  off;
4378   int  lineSize_Bytes = AllocatePrefetchStepSize;
4379   int  lineSize_DW    = AllocatePrefetchStepSize>>LogBytesPerWord;
4380   bool doPrefetch     = VM_Version::has_Prefetch();
4381   int  XC_maxlen      = 256;
4382   int  numXCInstr     = cnt > 0 ? (cnt*BytesPerWord-1)/XC_maxlen+1 : 0;
4383 
4384   BLOCK_COMMENT("Clear_Array_Const {");
4385   assert(cnt*BytesPerWord <= 4096, "ClearArrayConst can handle 4k only");
4386 
4387   // Do less prefetching for very short arrays.
4388   if (numXCInstr > 0) {
4389     // Prefetch only some cache lines, then begin clearing.
4390     if (doPrefetch) {
4391       if (cnt*BytesPerWord <= lineSize_Bytes/4) {  // If less than 1/4 of a cache line to clear,
4392         z_pfd(0x02, 0, Z_R0, base);                // prefetch just the first cache line.
4393       } else {
4394         assert(XC_maxlen == lineSize_Bytes, "ClearArrayConst needs 256B cache lines");
4395         for (off = 0; (off < AllocatePrefetchLines) && (off <= numXCInstr); off ++) {
4396           z_pfd(0x02, off*lineSize_Bytes, Z_R0, base);
4397         }
4398       }
4399     }
4400 
4401     for (off=0; off<(numXCInstr-1); off++) {
4402       z_xc(off*XC_maxlen, XC_maxlen-1, base, off*XC_maxlen, base);
4403 
4404       // Prefetch some cache lines in advance.
4405       if (doPrefetch && (off <= numXCInstr-AllocatePrefetchLines)) {
4406         z_pfd(0x02, (off+AllocatePrefetchLines)*lineSize_Bytes, Z_R0, base);
4407       }
4408     }
4409     if (off*XC_maxlen < cnt*BytesPerWord) {
4410       z_xc(off*XC_maxlen, (cnt*BytesPerWord-off*XC_maxlen)-1, base, off*XC_maxlen, base);
4411     }
4412   }
4413   BLOCK_COMMENT("} Clear_Array_Const");
4414 
4415   int block_end = offset();
4416   return block_end - block_start;
4417 }
4418 
4419 // Compiler ensures base is doubleword aligned and cnt is #doublewords.
4420 // Emitter does not KILL cnt and base arguments, since they need to be copied to
4421 // work registers anyway.
4422 // Actually, only r0, r1, (which are work registers) and odd_tmp_reg are killed.
4423 //
4424 // For very large arrays, exploit MVCLE H/W support.
4425 // MVCLE instruction automatically exploits H/W-optimized page mover.
4426 // - Bytes up to next page boundary are cleared with a series of XC to self.
4427 // - All full pages are cleared with the page mover H/W assist.
4428 // - Remaining bytes are again cleared by a series of XC to self.
4429 //
4430 unsigned int MacroAssembler::Clear_Array_Const_Big(long cnt, Register base_pointer_arg, Register odd_tmp_reg) {
4431 
4432   int      block_start = offset();
4433   Register dst_len  = Z_R1;      // Holds dst len  for MVCLE.
4434   Register dst_addr = Z_R0;      // Holds dst addr for MVCLE.
4435 
4436   BLOCK_COMMENT("Clear_Array_Const_Big {");
4437 
4438   // Get len to clear.
4439   load_const_optimized(dst_len, (long)cnt*8L);  // in Bytes = #DW*8
4440 
4441   // Prepare other args to MVCLE.
4442   z_lgr(dst_addr, base_pointer_arg);
4443   // Pass 0 as source length to MVCLE: destination will be filled with padding byte 0.
4444   // The even register of the register pair is not killed.
4445   (void) clear_reg(odd_tmp_reg, true, false);  // Src len of MVCLE is zero.
4446   MacroAssembler::move_long_ext(dst_addr, as_Register(odd_tmp_reg->encoding() - 1), 0);
4447   BLOCK_COMMENT("} Clear_Array_Const_Big");
4448 
4449   int block_end = offset();
4450   return block_end - block_start;
4451 }
4452 
4453 // Allocator.
4454 unsigned int MacroAssembler::CopyRawMemory_AlignedDisjoint(Register src_reg, Register dst_reg,
4455                                                            Register cnt_reg,
4456                                                            Register tmp1_reg, Register tmp2_reg) {
4457   // Tmp1 is oddReg.
4458   // Tmp2 is evenReg.
4459 
4460   int block_start = offset();
4461   Label doMVC, doMVCLE, done, MVC_template;
4462 
4463   BLOCK_COMMENT("CopyRawMemory_AlignedDisjoint {");
4464 
4465   // Check for zero len and convert to long.
4466   z_ltgfr(cnt_reg, cnt_reg);      // Remember casted value for doSTG case.
4467   z_bre(done);                    // Nothing to do if len == 0.
4468 
4469   z_sllg(Z_R1, cnt_reg, 3);       // Dst len in bytes. calc early to have the result ready.
4470 
4471   z_cghi(cnt_reg, 32);            // Check for len <= 256 bytes (<=32 DW).
4472   z_brnh(doMVC);                  // If so, use executed MVC to clear.
4473 
4474   bind(doMVCLE);                  // A lot of data (more than 256 bytes).
4475   // Prep dest reg pair.
4476   z_lgr(Z_R0, dst_reg);           // dst addr
4477   // Dst len already in Z_R1.
4478   // Prep src reg pair.
4479   z_lgr(tmp2_reg, src_reg);       // src addr
4480   z_lgr(tmp1_reg, Z_R1);          // Src len same as dst len.
4481 
4482   // Do the copy.
4483   move_long_ext(Z_R0, tmp2_reg, 0xb0); // Bypass cache.
4484   z_bru(done);                         // All done.
4485 
4486   bind(MVC_template);             // Just some data (not more than 256 bytes).
4487   z_mvc(0, 0, dst_reg, 0, src_reg);
4488 
4489   bind(doMVC);
4490 
4491   if (VM_Version::has_ExecuteExtensions()) {
4492     add2reg(Z_R1, -1);
4493   } else {
4494     add2reg(tmp1_reg, -1, Z_R1);
4495     z_larl(Z_R1, MVC_template);
4496   }
4497 
4498   if (VM_Version::has_Prefetch()) {
4499     z_pfd(1,  0,Z_R0,src_reg);
4500     z_pfd(2,  0,Z_R0,dst_reg);
4501     //    z_pfd(1,256,Z_R0,src_reg);    // Assume very short copy.
4502     //    z_pfd(2,256,Z_R0,dst_reg);
4503   }
4504 
4505   if (VM_Version::has_ExecuteExtensions()) {
4506     z_exrl(Z_R1, MVC_template);
4507   } else {
4508     z_ex(tmp1_reg, 0, Z_R0, Z_R1);
4509   }
4510 
4511   bind(done);
4512 
4513   BLOCK_COMMENT("} CopyRawMemory_AlignedDisjoint");
4514 
4515   int block_end = offset();
4516   return block_end - block_start;
4517 }
4518 
4519 //-------------------------------------------------
4520 //   Constants (scalar and oop) in constant pool
4521 //-------------------------------------------------
4522 
4523 // Add a non-relocated constant to the CP.
4524 int MacroAssembler::store_const_in_toc(AddressLiteral& val) {
4525   long    value  = val.value();
4526   address tocPos = long_constant(value);
4527 
4528   if (tocPos != nullptr) {
4529     int tocOffset = (int)(tocPos - code()->consts()->start());
4530     return tocOffset;
4531   }
4532   // Address_constant returned null, so no constant entry has been created.
4533   // In that case, we return a "fatal" offset, just in case that subsequently
4534   // generated access code is executed.
4535   return -1;
4536 }
4537 
4538 // Returns the TOC offset where the address is stored.
4539 // Add a relocated constant to the CP.
4540 int MacroAssembler::store_oop_in_toc(AddressLiteral& oop) {
4541   // Use RelocationHolder::none for the constant pool entry.
4542   // Otherwise we will end up with a failing NativeCall::verify(x),
4543   // where x is the address of the constant pool entry.
4544   address tocPos = address_constant((address)oop.value(), RelocationHolder::none);
4545 
4546   if (tocPos != nullptr) {
4547     int              tocOffset = (int)(tocPos - code()->consts()->start());
4548     RelocationHolder rsp = oop.rspec();
4549     Relocation      *rel = rsp.reloc();
4550 
4551     // Store toc_offset in relocation, used by call_far_patchable.
4552     if ((relocInfo::relocType)rel->type() == relocInfo::runtime_call_w_cp_type) {
4553       ((runtime_call_w_cp_Relocation *)(rel))->set_constant_pool_offset(tocOffset);
4554     }
4555     // Relocate at the load's pc.
4556     relocate(rsp);
4557 
4558     return tocOffset;
4559   }
4560   // Address_constant returned null, so no constant entry has been created
4561   // in that case, we return a "fatal" offset, just in case that subsequently
4562   // generated access code is executed.
4563   return -1;
4564 }
4565 
4566 bool MacroAssembler::load_const_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
4567   int     tocOffset = store_const_in_toc(a);
4568   if (tocOffset == -1) return false;
4569   address tocPos    = tocOffset + code()->consts()->start();
4570   assert((address)code()->consts()->start() != nullptr, "Please add CP address");
4571   relocate(a.rspec());
4572   load_long_pcrelative(dst, tocPos);
4573   return true;
4574 }
4575 
4576 bool MacroAssembler::load_oop_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
4577   int     tocOffset = store_oop_in_toc(a);
4578   if (tocOffset == -1) return false;
4579   address tocPos    = tocOffset + code()->consts()->start();
4580   assert((address)code()->consts()->start() != nullptr, "Please add CP address");
4581 
4582   load_addr_pcrelative(dst, tocPos);
4583   return true;
4584 }
4585 
4586 // If the instruction sequence at the given pc is a load_const_from_toc
4587 // sequence, return the value currently stored at the referenced position
4588 // in the TOC.
4589 intptr_t MacroAssembler::get_const_from_toc(address pc) {
4590 
4591   assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
4592 
4593   long    offset  = get_load_const_from_toc_offset(pc);
4594   address dataLoc = nullptr;
4595   if (is_load_const_from_toc_pcrelative(pc)) {
4596     dataLoc = pc + offset;
4597   } else {
4598     CodeBlob* cb = CodeCache::find_blob(pc);
4599     assert(cb && cb->is_nmethod(), "sanity");
4600     nmethod* nm = (nmethod*)cb;
4601     dataLoc = nm->ctable_begin() + offset;
4602   }
4603   return *(intptr_t *)dataLoc;
4604 }
4605 
4606 // If the instruction sequence at the given pc is a load_const_from_toc
4607 // sequence, copy the passed-in new_data value into the referenced
4608 // position in the TOC.
4609 void MacroAssembler::set_const_in_toc(address pc, unsigned long new_data, CodeBlob *cb) {
4610   assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
4611 
4612   long    offset = MacroAssembler::get_load_const_from_toc_offset(pc);
4613   address dataLoc = nullptr;
4614   if (is_load_const_from_toc_pcrelative(pc)) {
4615     dataLoc = pc+offset;
4616   } else {
4617     nmethod* nm = CodeCache::find_nmethod(pc);
4618     assert((cb == nullptr) || (nm == (nmethod*)cb), "instruction address should be in CodeBlob");
4619     dataLoc = nm->ctable_begin() + offset;
4620   }
4621   if (*(unsigned long *)dataLoc != new_data) { // Prevent cache invalidation: update only if necessary.
4622     *(unsigned long *)dataLoc = new_data;
4623   }
4624 }
4625 
4626 // Dynamic TOC. Getter must only be called if "a" is a load_const_from_toc
4627 // site. Verify by calling is_load_const_from_toc() before!!
4628 // Offset is +/- 2**32 -> use long.
4629 long MacroAssembler::get_load_const_from_toc_offset(address a) {
4630   assert(is_load_const_from_toc_pcrelative(a), "expected pc relative load");
4631   //  expected code sequence:
4632   //    z_lgrl(t, simm32);    len = 6
4633   unsigned long inst;
4634   unsigned int  len = get_instruction(a, &inst);
4635   return get_pcrel_offset(inst);
4636 }
4637 
4638 //**********************************************************************************
4639 //  inspection of generated instruction sequences for a particular pattern
4640 //**********************************************************************************
4641 
4642 bool MacroAssembler::is_load_const_from_toc_pcrelative(address a) {
4643 #ifdef ASSERT
4644   unsigned long inst;
4645   unsigned int  len = get_instruction(a+2, &inst);
4646   if ((len == 6) && is_load_pcrelative_long(a) && is_call_pcrelative_long(inst)) {
4647     const int range = 128;
4648     Assembler::dump_code_range(tty, a, range, "instr(a) == z_lgrl && instr(a+2) == z_brasl");
4649     VM_Version::z_SIGSEGV();
4650   }
4651 #endif
4652   // expected code sequence:
4653   //   z_lgrl(t, relAddr32);    len = 6
4654   //TODO: verify accessed data is in CP, if possible.
4655   return is_load_pcrelative_long(a);  // TODO: might be too general. Currently, only lgrl is used.
4656 }
4657 
4658 bool MacroAssembler::is_load_const_from_toc_call(address a) {
4659   return is_load_const_from_toc(a) && is_call_byregister(a + load_const_from_toc_size());
4660 }
4661 
4662 bool MacroAssembler::is_load_const_call(address a) {
4663   return is_load_const(a) && is_call_byregister(a + load_const_size());
4664 }
4665 
4666 //-------------------------------------------------
4667 //   Emitters for some really CICS instructions
4668 //-------------------------------------------------
4669 
4670 void MacroAssembler::move_long_ext(Register dst, Register src, unsigned int pad) {
4671   assert(dst->encoding()%2==0, "must be an even/odd register pair");
4672   assert(src->encoding()%2==0, "must be an even/odd register pair");
4673   assert(pad<256, "must be a padding BYTE");
4674 
4675   Label retry;
4676   bind(retry);
4677   Assembler::z_mvcle(dst, src, pad);
4678   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4679 }
4680 
4681 void MacroAssembler::compare_long_ext(Register left, Register right, unsigned int pad) {
4682   assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
4683   assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
4684   assert(pad<256, "must be a padding BYTE");
4685 
4686   Label retry;
4687   bind(retry);
4688   Assembler::z_clcle(left, right, pad, Z_R0);
4689   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4690 }
4691 
4692 void MacroAssembler::compare_long_uni(Register left, Register right, unsigned int pad) {
4693   assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
4694   assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
4695   assert(pad<=0xfff, "must be a padding HALFWORD");
4696   assert(VM_Version::has_ETF2(), "instruction must be available");
4697 
4698   Label retry;
4699   bind(retry);
4700   Assembler::z_clclu(left, right, pad, Z_R0);
4701   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4702 }
4703 
4704 void MacroAssembler::search_string(Register end, Register start) {
4705   assert(end->encoding() != 0, "end address must not be in R0");
4706   assert(start->encoding() != 0, "start address must not be in R0");
4707 
4708   Label retry;
4709   bind(retry);
4710   Assembler::z_srst(end, start);
4711   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4712 }
4713 
4714 void MacroAssembler::search_string_uni(Register end, Register start) {
4715   assert(end->encoding() != 0, "end address must not be in R0");
4716   assert(start->encoding() != 0, "start address must not be in R0");
4717   assert(VM_Version::has_ETF3(), "instruction must be available");
4718 
4719   Label retry;
4720   bind(retry);
4721   Assembler::z_srstu(end, start);
4722   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4723 }
4724 
4725 void MacroAssembler::kmac(Register srcBuff) {
4726   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
4727   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
4728 
4729   Label retry;
4730   bind(retry);
4731   Assembler::z_kmac(Z_R0, srcBuff);
4732   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4733 }
4734 
4735 void MacroAssembler::kimd(Register srcBuff) {
4736   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
4737   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
4738 
4739   Label retry;
4740   bind(retry);
4741   Assembler::z_kimd(Z_R0, srcBuff);
4742   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4743 }
4744 
4745 void MacroAssembler::klmd(Register srcBuff) {
4746   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
4747   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
4748 
4749   Label retry;
4750   bind(retry);
4751   Assembler::z_klmd(Z_R0, srcBuff);
4752   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4753 }
4754 
4755 void MacroAssembler::km(Register dstBuff, Register srcBuff) {
4756   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
4757   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
4758   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
4759   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
4760   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
4761 
4762   Label retry;
4763   bind(retry);
4764   Assembler::z_km(dstBuff, srcBuff);
4765   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4766 }
4767 
4768 void MacroAssembler::kmc(Register dstBuff, Register srcBuff) {
4769   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
4770   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
4771   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
4772   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
4773   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
4774 
4775   Label retry;
4776   bind(retry);
4777   Assembler::z_kmc(dstBuff, srcBuff);
4778   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4779 }
4780 
4781 void MacroAssembler::kmctr(Register dstBuff, Register ctrBuff, Register srcBuff) {
4782   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
4783   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
4784   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
4785   assert(dstBuff->encoding()     != 0, "dst buffer address can't be in Z_R0");
4786   assert(ctrBuff->encoding()     != 0, "ctr buffer address can't be in Z_R0");
4787   assert(ctrBuff->encoding() % 2 == 0, "ctr buffer addr must be an even register");
4788   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
4789   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
4790 
4791   Label retry;
4792   bind(retry);
4793   Assembler::z_kmctr(dstBuff, ctrBuff, srcBuff);
4794   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4795 }
4796 
4797 void MacroAssembler::cksm(Register crcBuff, Register srcBuff) {
4798   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
4799 
4800   Label retry;
4801   bind(retry);
4802   Assembler::z_cksm(crcBuff, srcBuff);
4803   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4804 }
4805 
4806 void MacroAssembler::translate_oo(Register r1, Register r2, uint m3) {
4807   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
4808   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
4809 
4810   Label retry;
4811   bind(retry);
4812   Assembler::z_troo(r1, r2, m3);
4813   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4814 }
4815 
4816 void MacroAssembler::translate_ot(Register r1, Register r2, uint m3) {
4817   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
4818   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
4819 
4820   Label retry;
4821   bind(retry);
4822   Assembler::z_trot(r1, r2, m3);
4823   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4824 }
4825 
4826 void MacroAssembler::translate_to(Register r1, Register r2, uint m3) {
4827   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
4828   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
4829 
4830   Label retry;
4831   bind(retry);
4832   Assembler::z_trto(r1, r2, m3);
4833   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4834 }
4835 
4836 void MacroAssembler::translate_tt(Register r1, Register r2, uint m3) {
4837   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
4838   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
4839 
4840   Label retry;
4841   bind(retry);
4842   Assembler::z_trtt(r1, r2, m3);
4843   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4844 }
4845 
4846 //---------------------------------------
4847 // Helpers for Intrinsic Emitters
4848 //---------------------------------------
4849 
4850 /**
4851  * uint32_t crc;
4852  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
4853  */
4854 void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
4855   assert_different_registers(crc, table, tmp);
4856   assert_different_registers(val, table);
4857   if (crc == val) {      // Must rotate first to use the unmodified value.
4858     rotate_then_insert(tmp, val, 56-2, 63-2, 2, true);  // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
4859     z_srl(crc, 8);       // Unsigned shift, clear leftmost 8 bits.
4860   } else {
4861     z_srl(crc, 8);       // Unsigned shift, clear leftmost 8 bits.
4862     rotate_then_insert(tmp, val, 56-2, 63-2, 2, true);  // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
4863   }
4864   z_x(crc, Address(table, tmp, 0));
4865 }
4866 
4867 /**
4868  * uint32_t crc;
4869  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
4870  */
4871 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
4872   fold_byte_crc32(crc, crc, table, tmp);
4873 }
4874 
4875 /**
4876  * Emits code to update CRC-32 with a byte value according to constants in table.
4877  *
4878  * @param [in,out]crc Register containing the crc.
4879  * @param [in]val     Register containing the byte to fold into the CRC.
4880  * @param [in]table   Register containing the table of crc constants.
4881  *
4882  * uint32_t crc;
4883  * val = crc_table[(val ^ crc) & 0xFF];
4884  * crc = val ^ (crc >> 8);
4885  */
4886 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
4887   z_xr(val, crc);
4888   fold_byte_crc32(crc, val, table, val);
4889 }
4890 
4891 
4892 /**
4893  * @param crc   register containing existing CRC (32-bit)
4894  * @param buf   register pointing to input byte buffer (byte*)
4895  * @param len   register containing number of bytes
4896  * @param table register pointing to CRC table
4897  */
4898 void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table, Register data) {
4899   assert_different_registers(crc, buf, len, table, data);
4900 
4901   Label L_mainLoop, L_done;
4902   const int mainLoop_stepping = 1;
4903 
4904   // Process all bytes in a single-byte loop.
4905   z_ltr(len, len);
4906   z_brnh(L_done);
4907 
4908   bind(L_mainLoop);
4909     z_llgc(data, Address(buf, (intptr_t)0));// Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
4910     add2reg(buf, mainLoop_stepping);        // Advance buffer position.
4911     update_byte_crc32(crc, data, table);
4912     z_brct(len, L_mainLoop);                // Iterate.
4913 
4914   bind(L_done);
4915 }
4916 
4917 /**
4918  * Emits code to update CRC-32 with a 4-byte value according to constants in table.
4919  * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c.
4920  *
4921  */
4922 void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
4923                                         Register t0,  Register t1,  Register t2,    Register t3) {
4924   // This is what we implement (the DOBIG4 part):
4925   //
4926   // #define DOBIG4 c ^= *++buf4; \
4927   //         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
4928   //             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
4929   // #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
4930   // Pre-calculate (constant) column offsets, use columns 4..7 for big-endian.
4931   const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
4932   const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
4933   const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
4934   const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
4935 
4936   // XOR crc with next four bytes of buffer.
4937   lgr_if_needed(t0, crc);
4938   z_x(t0, Address(buf, bufDisp));
4939   if (bufInc != 0) {
4940     add2reg(buf, bufInc);
4941   }
4942 
4943   // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
4944   rotate_then_insert(t3, t0, 56-2, 63-2, 2,    true);  // ((c >>  0) & 0xff) << 2
4945   rotate_then_insert(t2, t0, 56-2, 63-2, 2-8,  true);  // ((c >>  8) & 0xff) << 2
4946   rotate_then_insert(t1, t0, 56-2, 63-2, 2-16, true);  // ((c >> 16) & 0xff) << 2
4947   rotate_then_insert(t0, t0, 56-2, 63-2, 2-24, true);  // ((c >> 24) & 0xff) << 2
4948 
4949   // XOR indexed table values to calculate updated crc.
4950   z_ly(t2, Address(table, t2, (intptr_t)ix1));
4951   z_ly(t0, Address(table, t0, (intptr_t)ix3));
4952   z_xy(t2, Address(table, t3, (intptr_t)ix0));
4953   z_xy(t0, Address(table, t1, (intptr_t)ix2));
4954   z_xr(t0, t2);           // Now t0 contains the updated CRC value.
4955   lgr_if_needed(crc, t0);
4956 }
4957 
4958 /**
4959  * @param crc   register containing existing CRC (32-bit)
4960  * @param buf   register pointing to input byte buffer (byte*)
4961  * @param len   register containing number of bytes
4962  * @param table register pointing to CRC table
4963  *
4964  * uses Z_R10..Z_R13 as work register. Must be saved/restored by caller!
4965  */
4966 void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
4967                                         Register t0,  Register t1,  Register t2,  Register t3,
4968                                         bool invertCRC) {
4969   assert_different_registers(crc, buf, len, table);
4970 
4971   Label L_mainLoop, L_tail;
4972   Register  data = t0;
4973   Register  ctr  = Z_R0;
4974   const int mainLoop_stepping = 4;
4975   const int log_stepping      = exact_log2(mainLoop_stepping);
4976 
4977   // Don't test for len <= 0 here. This pathological case should not occur anyway.
4978   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
4979   // The situation itself is detected and handled correctly by the conditional branches
4980   // following aghi(len, -stepping) and aghi(len, +stepping).
4981 
4982   if (invertCRC) {
4983     not_(crc, noreg, false);           // 1s complement of crc
4984   }
4985 
4986   // Check for short (<4 bytes) buffer.
4987   z_srag(ctr, len, log_stepping);
4988   z_brnh(L_tail);
4989 
4990   z_lrvr(crc, crc);          // Revert byte order because we are dealing with big-endian data.
4991   rotate_then_insert(len, len, 64-log_stepping, 63, 0, true); // #bytes for tailLoop
4992 
4993   BIND(L_mainLoop);
4994     update_1word_crc32(crc, buf, table, 0, mainLoop_stepping, crc, t1, t2, t3);
4995     z_brct(ctr, L_mainLoop); // Iterate.
4996 
4997   z_lrvr(crc, crc);          // Revert byte order back to original.
4998 
4999   // Process last few (<8) bytes of buffer.
5000   BIND(L_tail);
5001   update_byteLoop_crc32(crc, buf, len, table, data);
5002 
5003   if (invertCRC) {
5004     not_(crc, noreg, false);           // 1s complement of crc
5005   }
5006 }
5007 
5008 /**
5009  * @param crc   register containing existing CRC (32-bit)
5010  * @param buf   register pointing to input byte buffer (byte*)
5011  * @param len   register containing number of bytes
5012  * @param table register pointing to CRC table
5013  */
5014 void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
5015                                         Register t0,  Register t1,  Register t2,  Register t3,
5016                                         bool invertCRC) {
5017   assert_different_registers(crc, buf, len, table);
5018   Register data = t0;
5019 
5020   if (invertCRC) {
5021     not_(crc, noreg, false);           // 1s complement of crc
5022   }
5023 
5024   update_byteLoop_crc32(crc, buf, len, table, data);
5025 
5026   if (invertCRC) {
5027     not_(crc, noreg, false);           // 1s complement of crc
5028   }
5029 }
5030 
5031 void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp,
5032                                              bool invertCRC) {
5033   assert_different_registers(crc, buf, len, table, tmp);
5034 
5035   if (invertCRC) {
5036     not_(crc, noreg, false);           // 1s complement of crc
5037   }
5038 
5039   z_llgc(tmp, Address(buf, (intptr_t)0));  // Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
5040   update_byte_crc32(crc, tmp, table);
5041 
5042   if (invertCRC) {
5043     not_(crc, noreg, false);           // 1s complement of crc
5044   }
5045 }
5046 
5047 void MacroAssembler::kernel_crc32_singleByteReg(Register crc, Register val, Register table,
5048                                                 bool invertCRC) {
5049   assert_different_registers(crc, val, table);
5050 
5051   if (invertCRC) {
5052     not_(crc, noreg, false);           // 1s complement of crc
5053   }
5054 
5055   update_byte_crc32(crc, val, table);
5056 
5057   if (invertCRC) {
5058     not_(crc, noreg, false);           // 1s complement of crc
5059   }
5060 }
5061 
5062 //
5063 // Code for BigInteger::multiplyToLen() intrinsic.
5064 //
5065 
5066 // dest_lo += src1 + src2
5067 // dest_hi += carry1 + carry2
5068 // Z_R7 is destroyed !
5069 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo,
5070                                      Register src1, Register src2) {
5071   clear_reg(Z_R7);
5072   z_algr(dest_lo, src1);
5073   z_alcgr(dest_hi, Z_R7);
5074   z_algr(dest_lo, src2);
5075   z_alcgr(dest_hi, Z_R7);
5076 }
5077 
5078 // Multiply 64 bit by 64 bit first loop.
5079 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
5080                                            Register x_xstart,
5081                                            Register y, Register y_idx,
5082                                            Register z,
5083                                            Register carry,
5084                                            Register product,
5085                                            Register idx, Register kdx) {
5086   // jlong carry, x[], y[], z[];
5087   // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
5088   //   huge_128 product = y[idx] * x[xstart] + carry;
5089   //   z[kdx] = (jlong)product;
5090   //   carry  = (jlong)(product >>> 64);
5091   // }
5092   // z[xstart] = carry;
5093 
5094   Label L_first_loop, L_first_loop_exit;
5095   Label L_one_x, L_one_y, L_multiply;
5096 
5097   z_aghi(xstart, -1);
5098   z_brl(L_one_x);   // Special case: length of x is 1.
5099 
5100   // Load next two integers of x.
5101   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
5102   mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
5103 
5104 
5105   bind(L_first_loop);
5106 
5107   z_aghi(idx, -1);
5108   z_brl(L_first_loop_exit);
5109   z_aghi(idx, -1);
5110   z_brl(L_one_y);
5111 
5112   // Load next two integers of y.
5113   z_sllg(Z_R1_scratch, idx, LogBytesPerInt);
5114   mem2reg_opt(y_idx, Address(y, Z_R1_scratch, 0));
5115 
5116 
5117   bind(L_multiply);
5118 
5119   Register multiplicand = product->successor();
5120   Register product_low = multiplicand;
5121 
5122   lgr_if_needed(multiplicand, x_xstart);
5123   z_mlgr(product, y_idx);     // multiplicand * y_idx -> product::multiplicand
5124   clear_reg(Z_R7);
5125   z_algr(product_low, carry); // Add carry to result.
5126   z_alcgr(product, Z_R7);     // Add carry of the last addition.
5127   add2reg(kdx, -2);
5128 
5129   // Store result.
5130   z_sllg(Z_R7, kdx, LogBytesPerInt);
5131   reg2mem_opt(product_low, Address(z, Z_R7, 0));
5132   lgr_if_needed(carry, product);
5133   z_bru(L_first_loop);
5134 
5135 
5136   bind(L_one_y); // Load one 32 bit portion of y as (0,value).
5137 
5138   clear_reg(y_idx);
5139   mem2reg_opt(y_idx, Address(y, (intptr_t) 0), false);
5140   z_bru(L_multiply);
5141 
5142 
5143   bind(L_one_x); // Load one 32 bit portion of x as (0,value).
5144 
5145   clear_reg(x_xstart);
5146   mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
5147   z_bru(L_first_loop);
5148 
5149   bind(L_first_loop_exit);
5150 }
5151 
5152 // Multiply 64 bit by 64 bit and add 128 bit.
5153 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
5154                                             Register z,
5155                                             Register yz_idx, Register idx,
5156                                             Register carry, Register product,
5157                                             int offset) {
5158   // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
5159   // z[kdx] = (jlong)product;
5160 
5161   Register multiplicand = product->successor();
5162   Register product_low = multiplicand;
5163 
5164   z_sllg(Z_R7, idx, LogBytesPerInt);
5165   mem2reg_opt(yz_idx, Address(y, Z_R7, offset));
5166 
5167   lgr_if_needed(multiplicand, x_xstart);
5168   z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
5169   mem2reg_opt(yz_idx, Address(z, Z_R7, offset));
5170 
5171   add2_with_carry(product, product_low, carry, yz_idx);
5172 
5173   z_sllg(Z_R7, idx, LogBytesPerInt);
5174   reg2mem_opt(product_low, Address(z, Z_R7, offset));
5175 
5176 }
5177 
5178 // Multiply 128 bit by 128 bit. Unrolled inner loop.
5179 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
5180                                              Register y, Register z,
5181                                              Register yz_idx, Register idx,
5182                                              Register jdx,
5183                                              Register carry, Register product,
5184                                              Register carry2) {
5185   // jlong carry, x[], y[], z[];
5186   // int kdx = ystart+1;
5187   // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
5188   //   huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
5189   //   z[kdx+idx+1] = (jlong)product;
5190   //   jlong carry2 = (jlong)(product >>> 64);
5191   //   product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
5192   //   z[kdx+idx] = (jlong)product;
5193   //   carry = (jlong)(product >>> 64);
5194   // }
5195   // idx += 2;
5196   // if (idx > 0) {
5197   //   product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
5198   //   z[kdx+idx] = (jlong)product;
5199   //   carry = (jlong)(product >>> 64);
5200   // }
5201 
5202   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
5203 
5204   // scale the index
5205   lgr_if_needed(jdx, idx);
5206   and_imm(jdx, 0xfffffffffffffffcL);
5207   rshift(jdx, 2);
5208 
5209 
5210   bind(L_third_loop);
5211 
5212   z_aghi(jdx, -1);
5213   z_brl(L_third_loop_exit);
5214   add2reg(idx, -4);
5215 
5216   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
5217   lgr_if_needed(carry2, product);
5218 
5219   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
5220   lgr_if_needed(carry, product);
5221   z_bru(L_third_loop);
5222 
5223 
5224   bind(L_third_loop_exit);  // Handle any left-over operand parts.
5225 
5226   and_imm(idx, 0x3);
5227   z_brz(L_post_third_loop_done);
5228 
5229   Label L_check_1;
5230 
5231   z_aghi(idx, -2);
5232   z_brl(L_check_1);
5233 
5234   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
5235   lgr_if_needed(carry, product);
5236 
5237 
5238   bind(L_check_1);
5239 
5240   add2reg(idx, 0x2);
5241   and_imm(idx, 0x1);
5242   z_aghi(idx, -1);
5243   z_brl(L_post_third_loop_done);
5244 
5245   Register   multiplicand = product->successor();
5246   Register   product_low = multiplicand;
5247 
5248   z_sllg(Z_R7, idx, LogBytesPerInt);
5249   clear_reg(yz_idx);
5250   mem2reg_opt(yz_idx, Address(y, Z_R7, 0), false);
5251   lgr_if_needed(multiplicand, x_xstart);
5252   z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
5253   clear_reg(yz_idx);
5254   mem2reg_opt(yz_idx, Address(z, Z_R7, 0), false);
5255 
5256   add2_with_carry(product, product_low, yz_idx, carry);
5257 
5258   z_sllg(Z_R7, idx, LogBytesPerInt);
5259   reg2mem_opt(product_low, Address(z, Z_R7, 0), false);
5260   rshift(product_low, 32);
5261 
5262   lshift(product, 32);
5263   z_ogr(product_low, product);
5264   lgr_if_needed(carry, product_low);
5265 
5266   bind(L_post_third_loop_done);
5267 }
5268 
5269 void MacroAssembler::multiply_to_len(Register x, Register xlen,
5270                                      Register y, Register ylen,
5271                                      Register z,
5272                                      Register tmp1, Register tmp2,
5273                                      Register tmp3, Register tmp4,
5274                                      Register tmp5) {
5275   ShortBranchVerifier sbv(this);
5276 
5277   assert_different_registers(x, xlen, y, ylen, z,
5278                              tmp1, tmp2, tmp3, tmp4, tmp5, Z_R1_scratch, Z_R7);
5279   assert_different_registers(x, xlen, y, ylen, z,
5280                              tmp1, tmp2, tmp3, tmp4, tmp5, Z_R8);
5281 
5282   z_stmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
5283 
5284   // In openJdk, we store the argument as 32-bit value to slot.
5285   Address zlen(Z_SP, _z_abi(remaining_cargs));  // Int in long on big endian.
5286 
5287   const Register idx = tmp1;
5288   const Register kdx = tmp2;
5289   const Register xstart = tmp3;
5290 
5291   const Register y_idx = tmp4;
5292   const Register carry = tmp5;
5293   const Register product  = Z_R0_scratch;
5294   const Register x_xstart = Z_R8;
5295 
5296   // First Loop.
5297   //
5298   //   final static long LONG_MASK = 0xffffffffL;
5299   //   int xstart = xlen - 1;
5300   //   int ystart = ylen - 1;
5301   //   long carry = 0;
5302   //   for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
5303   //     long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
5304   //     z[kdx] = (int)product;
5305   //     carry = product >>> 32;
5306   //   }
5307   //   z[xstart] = (int)carry;
5308   //
5309 
5310   lgr_if_needed(idx, ylen);  // idx = ylen
5311   z_llgf(kdx, zlen);         // C2 does not respect int to long conversion for stub calls, thus load zero-extended.
5312   clear_reg(carry);          // carry = 0
5313 
5314   Label L_done;
5315 
5316   lgr_if_needed(xstart, xlen);
5317   z_aghi(xstart, -1);
5318   z_brl(L_done);
5319 
5320   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
5321 
5322   NearLabel L_second_loop;
5323   compare64_and_branch(kdx, RegisterOrConstant((intptr_t) 0), bcondEqual, L_second_loop);
5324 
5325   NearLabel L_carry;
5326   z_aghi(kdx, -1);
5327   z_brz(L_carry);
5328 
5329   // Store lower 32 bits of carry.
5330   z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
5331   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
5332   rshift(carry, 32);
5333   z_aghi(kdx, -1);
5334 
5335 
5336   bind(L_carry);
5337 
5338   // Store upper 32 bits of carry.
5339   z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
5340   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
5341 
5342   // Second and third (nested) loops.
5343   //
5344   // for (int i = xstart-1; i >= 0; i--) { // Second loop
5345   //   carry = 0;
5346   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
5347   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
5348   //                    (z[k] & LONG_MASK) + carry;
5349   //     z[k] = (int)product;
5350   //     carry = product >>> 32;
5351   //   }
5352   //   z[i] = (int)carry;
5353   // }
5354   //
5355   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
5356 
5357   const Register jdx = tmp1;
5358 
5359   bind(L_second_loop);
5360 
5361   clear_reg(carry);           // carry = 0;
5362   lgr_if_needed(jdx, ylen);   // j = ystart+1
5363 
5364   z_aghi(xstart, -1);         // i = xstart-1;
5365   z_brl(L_done);
5366 
5367   // Use free slots in the current stackframe instead of push/pop.
5368   Address zsave(Z_SP, _z_abi(carg_1));
5369   reg2mem_opt(z, zsave);
5370 
5371 
5372   Label L_last_x;
5373 
5374   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
5375   load_address(z, Address(z, Z_R1_scratch, 4)); // z = z + k - j
5376   z_aghi(xstart, -1);                           // i = xstart-1;
5377   z_brl(L_last_x);
5378 
5379   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
5380   mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
5381 
5382 
5383   Label L_third_loop_prologue;
5384 
5385   bind(L_third_loop_prologue);
5386 
5387   Address xsave(Z_SP, _z_abi(carg_2));
5388   Address xlensave(Z_SP, _z_abi(carg_3));
5389   Address ylensave(Z_SP, _z_abi(carg_4));
5390 
5391   reg2mem_opt(x, xsave);
5392   reg2mem_opt(xstart, xlensave);
5393   reg2mem_opt(ylen, ylensave);
5394 
5395 
5396   multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
5397 
5398   mem2reg_opt(z, zsave);
5399   mem2reg_opt(x, xsave);
5400   mem2reg_opt(xlen, xlensave);   // This is the decrement of the loop counter!
5401   mem2reg_opt(ylen, ylensave);
5402 
5403   add2reg(tmp3, 1, xlen);
5404   z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
5405   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
5406   z_aghi(tmp3, -1);
5407   z_brl(L_done);
5408 
5409   rshift(carry, 32);
5410   z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
5411   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
5412   z_bru(L_second_loop);
5413 
5414   // Next infrequent code is moved outside loops.
5415   bind(L_last_x);
5416 
5417   clear_reg(x_xstart);
5418   mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
5419   z_bru(L_third_loop_prologue);
5420 
5421   bind(L_done);
5422 
5423   z_lmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
5424 }
5425 
5426 void MacroAssembler::asm_assert(branch_condition cond, const char* msg, int id, bool is_static) {
5427 #ifdef ASSERT
5428   Label ok;
5429   z_brc(cond, ok);
5430   is_static ? stop_static(msg, id) : stop(msg, id);
5431   bind(ok);
5432 #endif // ASSERT
5433 }
5434 
5435 // Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false).
5436 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
5437 #ifdef ASSERT
5438   asm_assert(check_equal ? bcondEqual : bcondNotEqual, msg, id);
5439 #endif // ASSERT
5440 }
5441 
5442 void MacroAssembler::asm_assert_mems_zero(bool check_equal, bool allow_relocation, int size, int64_t mem_offset,
5443                                           Register mem_base, const char* msg, int id) {
5444 #ifdef ASSERT
5445   switch (size) {
5446     case 4:
5447       load_and_test_int(Z_R0, Address(mem_base, mem_offset));
5448       break;
5449     case 8:
5450       load_and_test_long(Z_R0,  Address(mem_base, mem_offset));
5451       break;
5452     default:
5453       ShouldNotReachHere();
5454   }
5455   // if relocation is not allowed then stop_static() will be called otherwise call stop()
5456   asm_assert(check_equal ? bcondEqual : bcondNotEqual, msg, id, !allow_relocation);
5457 #endif // ASSERT
5458 }
5459 
5460 // Check the condition
5461 //   expected_size == FP - SP
5462 // after transformation:
5463 //   expected_size - FP + SP == 0
5464 // Destroys Register expected_size if no tmp register is passed.
5465 void MacroAssembler::asm_assert_frame_size(Register expected_size, Register tmp, const char* msg, int id) {
5466 #ifdef ASSERT
5467   lgr_if_needed(tmp, expected_size);
5468   z_algr(tmp, Z_SP);
5469   z_slg(tmp, 0, Z_R0, Z_SP);
5470   asm_assert(bcondEqual, msg, id);
5471 #endif // ASSERT
5472 }
5473 
5474 // Save and restore functions: Exclude Z_R0.
5475 void MacroAssembler::save_volatile_regs(Register dst, int offset, bool include_fp, bool include_flags) {
5476   z_stmg(Z_R1, Z_R5, offset, dst); offset += 5 * BytesPerWord;
5477   if (include_fp) {
5478     z_std(Z_F0, Address(dst, offset)); offset += BytesPerWord;
5479     z_std(Z_F1, Address(dst, offset)); offset += BytesPerWord;
5480     z_std(Z_F2, Address(dst, offset)); offset += BytesPerWord;
5481     z_std(Z_F3, Address(dst, offset)); offset += BytesPerWord;
5482     z_std(Z_F4, Address(dst, offset)); offset += BytesPerWord;
5483     z_std(Z_F5, Address(dst, offset)); offset += BytesPerWord;
5484     z_std(Z_F6, Address(dst, offset)); offset += BytesPerWord;
5485     z_std(Z_F7, Address(dst, offset)); offset += BytesPerWord;
5486   }
5487   if (include_flags) {
5488     Label done;
5489     z_mvi(Address(dst, offset), 2); // encoding: equal
5490     z_bre(done);
5491     z_mvi(Address(dst, offset), 4); // encoding: higher
5492     z_brh(done);
5493     z_mvi(Address(dst, offset), 1); // encoding: lower
5494     bind(done);
5495   }
5496 }
5497 void MacroAssembler::restore_volatile_regs(Register src, int offset, bool include_fp, bool include_flags) {
5498   z_lmg(Z_R1, Z_R5, offset, src); offset += 5 * BytesPerWord;
5499   if (include_fp) {
5500     z_ld(Z_F0, Address(src, offset)); offset += BytesPerWord;
5501     z_ld(Z_F1, Address(src, offset)); offset += BytesPerWord;
5502     z_ld(Z_F2, Address(src, offset)); offset += BytesPerWord;
5503     z_ld(Z_F3, Address(src, offset)); offset += BytesPerWord;
5504     z_ld(Z_F4, Address(src, offset)); offset += BytesPerWord;
5505     z_ld(Z_F5, Address(src, offset)); offset += BytesPerWord;
5506     z_ld(Z_F6, Address(src, offset)); offset += BytesPerWord;
5507     z_ld(Z_F7, Address(src, offset)); offset += BytesPerWord;
5508   }
5509   if (include_flags) {
5510     z_cli(Address(src, offset), 2); // see encoding above
5511   }
5512 }
5513 
5514 // Plausibility check for oops.
5515 void MacroAssembler::verify_oop(Register oop, const char* msg) {
5516   if (!VerifyOops) return;
5517 
5518   BLOCK_COMMENT("verify_oop {");
5519   unsigned int nbytes_save = (5 + 8 + 1) * BytesPerWord;
5520   address entry_addr = StubRoutines::verify_oop_subroutine_entry_address();
5521 
5522   save_return_pc();
5523 
5524   // Push frame, but preserve flags
5525   z_lgr(Z_R0, Z_SP);
5526   z_lay(Z_SP, -((int64_t)nbytes_save + frame::z_abi_160_size), Z_SP);
5527   z_stg(Z_R0, _z_abi(callers_sp), Z_SP);
5528 
5529   save_volatile_regs(Z_SP, frame::z_abi_160_size, true, true);
5530 
5531   lgr_if_needed(Z_ARG2, oop);
5532   load_const_optimized(Z_ARG1, (address)msg);
5533   load_const_optimized(Z_R1, entry_addr);
5534   z_lg(Z_R1, 0, Z_R1);
5535   call_c(Z_R1);
5536 
5537   restore_volatile_regs(Z_SP, frame::z_abi_160_size, true, true);
5538   pop_frame();
5539   restore_return_pc();
5540 
5541   BLOCK_COMMENT("} verify_oop ");
5542 }
5543 
5544 void MacroAssembler::verify_oop_addr(Address addr, const char* msg) {
5545   if (!VerifyOops) return;
5546 
5547   BLOCK_COMMENT("verify_oop {");
5548   unsigned int nbytes_save = (5 + 8) * BytesPerWord;
5549   address entry_addr = StubRoutines::verify_oop_subroutine_entry_address();
5550 
5551   save_return_pc();
5552   unsigned int frame_size = push_frame_abi160(nbytes_save); // kills Z_R0
5553   save_volatile_regs(Z_SP, frame::z_abi_160_size, true, false);
5554 
5555   z_lg(Z_ARG2, addr.plus_disp(frame_size));
5556   load_const_optimized(Z_ARG1, (address)msg);
5557   load_const_optimized(Z_R1, entry_addr);
5558   z_lg(Z_R1, 0, Z_R1);
5559   call_c(Z_R1);
5560 
5561   restore_volatile_regs(Z_SP, frame::z_abi_160_size, true, false);
5562   pop_frame();
5563   restore_return_pc();
5564 
5565   BLOCK_COMMENT("} verify_oop ");
5566 }
5567 
5568 const char* MacroAssembler::stop_types[] = {
5569   "stop",
5570   "untested",
5571   "unimplemented",
5572   "shouldnotreachhere"
5573 };
5574 
5575 static void stop_on_request(const char* tp, const char* msg) {
5576   tty->print("Z assembly code requires stop: (%s) %s\n", tp, msg);
5577   guarantee(false, "Z assembly code requires stop: %s", msg);
5578 }
5579 
5580 void MacroAssembler::stop(int type, const char* msg, int id) {
5581   BLOCK_COMMENT(err_msg("stop: %s {", msg));
5582 
5583   // Setup arguments.
5584   load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
5585   load_const(Z_ARG2, (void*) msg);
5586   get_PC(Z_R14);     // Following code pushes a frame without entering a new function. Use current pc as return address.
5587   save_return_pc();  // Saves return pc Z_R14.
5588   push_frame_abi160(0);
5589   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
5590   // The plain disassembler does not recognize illtrap. It instead displays
5591   // a 32-bit value. Issuing two illtraps assures the disassembler finds
5592   // the proper beginning of the next instruction.
5593   z_illtrap(id); // Illegal instruction.
5594   z_illtrap(id); // Illegal instruction.
5595 
5596   BLOCK_COMMENT(" } stop");
5597 }
5598 
5599 // Special version of stop() for code size reduction.
5600 // Reuses the previously generated call sequence, if any.
5601 // Generates the call sequence on its own, if necessary.
5602 // Note: This code will work only in non-relocatable code!
5603 //       The relative address of the data elements (arg1, arg2) must not change.
5604 //       The reentry point must not move relative to it's users. This prerequisite
5605 //       should be given for "hand-written" code, if all chain calls are in the same code blob.
5606 //       Generated code must not undergo any transformation, e.g. ShortenBranches, to be safe.
5607 address MacroAssembler::stop_chain(address reentry, int type, const char* msg, int id, bool allow_relocation) {
5608   BLOCK_COMMENT(err_msg("stop_chain(%s,%s): %s {", reentry==nullptr?"init":"cont", allow_relocation?"reloc ":"static", msg));
5609 
5610   // Setup arguments.
5611   if (allow_relocation) {
5612     // Relocatable version (for comparison purposes). Remove after some time.
5613     load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
5614     load_const(Z_ARG2, (void*) msg);
5615   } else {
5616     load_absolute_address(Z_ARG1, (address)stop_types[type%stop_end]);
5617     load_absolute_address(Z_ARG2, (address)msg);
5618   }
5619   if ((reentry != nullptr) && RelAddr::is_in_range_of_RelAddr16(reentry, pc())) {
5620     BLOCK_COMMENT("branch to reentry point:");
5621     z_brc(bcondAlways, reentry);
5622   } else {
5623     BLOCK_COMMENT("reentry point:");
5624     reentry = pc();      // Re-entry point for subsequent stop calls.
5625     save_return_pc();    // Saves return pc Z_R14.
5626     push_frame_abi160(0);
5627     if (allow_relocation) {
5628       reentry = nullptr;    // Prevent reentry if code relocation is allowed.
5629       call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
5630     } else {
5631       call_VM_leaf_static(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
5632     }
5633     z_illtrap(id); // Illegal instruction as emergency stop, should the above call return.
5634   }
5635   BLOCK_COMMENT(" } stop_chain");
5636 
5637   return reentry;
5638 }
5639 
5640 // Special version of stop() for code size reduction.
5641 // Assumes constant relative addresses for data and runtime call.
5642 void MacroAssembler::stop_static(int type, const char* msg, int id) {
5643   stop_chain(nullptr, type, msg, id, false);
5644 }
5645 
5646 void MacroAssembler::stop_subroutine() {
5647   unimplemented("stop_subroutine", 710);
5648 }
5649 
5650 // Prints msg to stdout from within generated code..
5651 void MacroAssembler::warn(const char* msg) {
5652   RegisterSaver::save_live_registers(this, RegisterSaver::all_registers, Z_R14);
5653   load_absolute_address(Z_R1, (address) warning);
5654   load_absolute_address(Z_ARG1, (address) msg);
5655   (void) call(Z_R1);
5656   RegisterSaver::restore_live_registers(this, RegisterSaver::all_registers);
5657 }
5658 
5659 #ifndef PRODUCT
5660 
5661 // Write pattern 0x0101010101010101 in region [low-before, high+after].
5662 void MacroAssembler::zap_from_to(Register low, Register high, Register val, Register addr, int before, int after) {
5663   if (!ZapEmptyStackFields) return;
5664   BLOCK_COMMENT("zap memory region {");
5665   load_const_optimized(val, 0x0101010101010101);
5666   int size = before + after;
5667   if (low == high && size < 5 && size > 0) {
5668     int offset = -before*BytesPerWord;
5669     for (int i = 0; i < size; ++i) {
5670       z_stg(val, Address(low, offset));
5671       offset +=(1*BytesPerWord);
5672     }
5673   } else {
5674     add2reg(addr, -before*BytesPerWord, low);
5675     if (after) {
5676 #ifdef ASSERT
5677       jlong check = after * BytesPerWord;
5678       assert(Immediate::is_simm32(check) && Immediate::is_simm32(-check), "value not encodable !");
5679 #endif
5680       add2reg(high, after * BytesPerWord);
5681     }
5682     NearLabel loop;
5683     bind(loop);
5684     z_stg(val, Address(addr));
5685     add2reg(addr, 8);
5686     compare64_and_branch(addr, high, bcondNotHigh, loop);
5687     if (after) {
5688       add2reg(high, -after * BytesPerWord);
5689     }
5690   }
5691   BLOCK_COMMENT("} zap memory region");
5692 }
5693 #endif // !PRODUCT
5694 
5695 SkipIfEqual::SkipIfEqual(MacroAssembler* masm, const bool* flag_addr, bool value, Register _rscratch) {
5696   _masm = masm;
5697   _masm->load_absolute_address(_rscratch, (address)flag_addr);
5698   _masm->load_and_test_int(_rscratch, Address(_rscratch));
5699   if (value) {
5700     _masm->z_brne(_label); // Skip if true, i.e. != 0.
5701   } else {
5702     _masm->z_bre(_label);  // Skip if false, i.e. == 0.
5703   }
5704 }
5705 
5706 SkipIfEqual::~SkipIfEqual() {
5707   _masm->bind(_label);
5708 }
5709 
5710 // Implements lightweight-locking.
5711 // Branches to slow upon failure to lock the object.
5712 // Falls through upon success.
5713 //
5714 //  - obj: the object to be locked, contents preserved.
5715 //  - hdr: the header, already loaded from obj, contents destroyed.
5716 //  Note: make sure Z_R1 is not manipulated here when C2 compiler is in play
5717 void MacroAssembler::lightweight_lock(Register obj, Register hdr, Register temp, Label& slow_case) {
5718 
5719   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
5720   assert_different_registers(obj, hdr, temp);
5721 
5722   // First we need to check if the lock-stack has room for pushing the object reference.
5723   z_lgf(temp, Address(Z_thread, JavaThread::lock_stack_top_offset()));
5724 
5725   compareU32_and_branch(temp, (unsigned)LockStack::end_offset()-1, bcondHigh, slow_case);
5726 
5727   // attempting a lightweight_lock
5728   // Load (object->mark() | 1) into hdr
5729   z_oill(hdr, markWord::unlocked_value);
5730 
5731   z_lgr(temp, hdr);
5732 
5733   // Clear lock-bits from hdr (locked state)
5734   z_xilf(temp, markWord::unlocked_value);
5735 
5736   z_csg(hdr, temp, oopDesc::mark_offset_in_bytes(), obj);
5737   branch_optimized(Assembler::bcondNotEqual, slow_case);
5738 
5739   // After successful lock, push object on lock-stack
5740   z_lgf(temp, Address(Z_thread, JavaThread::lock_stack_top_offset()));
5741   z_stg(obj, Address(Z_thread, temp));
5742   z_ahi(temp, oopSize);
5743   z_st(temp, Address(Z_thread, JavaThread::lock_stack_top_offset()));
5744 
5745   // as locking was successful, set CC to EQ
5746   z_cr(temp, temp);
5747 }
5748 
5749 // Implements lightweight-unlocking.
5750 // Branches to slow upon failure.
5751 // Falls through upon success.
5752 //
5753 // - obj: the object to be unlocked
5754 // - hdr: the (pre-loaded) header of the object, will be destroyed
5755 // - Z_R1_scratch: will be killed in case of Interpreter & C1 Compiler
5756 void MacroAssembler::lightweight_unlock(Register obj, Register hdr, Register tmp, Label& slow) {
5757 
5758   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
5759   assert_different_registers(obj, hdr, tmp);
5760 
5761 #ifdef ASSERT
5762   {
5763     // Check that hdr is lightweight-locked.
5764     Label hdr_ok;
5765     z_lgr(tmp, hdr);
5766     z_nill(tmp, markWord::lock_mask_in_place);
5767     z_bre(hdr_ok);
5768     stop("Header is not lightweight-locked");
5769     bind(hdr_ok);
5770   }
5771   {
5772     // The following checks rely on the fact that LockStack is only ever modified by
5773     // its owning thread, even if the lock got inflated concurrently; removal of LockStack
5774     // entries after inflation will happen delayed in that case.
5775 
5776     // Check for lock-stack underflow.
5777     Label stack_ok;
5778     z_lgf(tmp, Address(Z_thread, JavaThread::lock_stack_top_offset()));
5779     compareU32_and_branch(tmp, (unsigned)LockStack::start_offset(), Assembler::bcondHigh, stack_ok);
5780     stop("Lock-stack underflow");
5781     bind(stack_ok);
5782   }
5783   {
5784     // Check if the top of the lock-stack matches the unlocked object.
5785     Label tos_ok;
5786     z_aghi(tmp, -oopSize);
5787     z_lg(tmp, Address(Z_thread, tmp));
5788     compare64_and_branch(tmp, obj, Assembler::bcondEqual, tos_ok);
5789     stop("Top of lock-stack does not match the unlocked object");
5790     bind(tos_ok);
5791   }
5792 #endif // ASSERT
5793 
5794   z_lgr(tmp, hdr);
5795   z_oill(tmp, markWord::unlocked_value);
5796   z_csg(hdr, tmp, oopDesc::mark_offset_in_bytes(), obj);
5797   branch_optimized(Assembler::bcondNotEqual, slow);
5798 
5799   // After successful unlock, pop object from lock-stack
5800 #ifdef ASSERT
5801   z_lgf(tmp, Address(Z_thread, JavaThread::lock_stack_top_offset()));
5802   z_aghi(tmp, -oopSize);
5803   z_agr(tmp, Z_thread);
5804   z_xc(0, oopSize-1, tmp, 0, tmp);  // wipe out lock-stack entry
5805 #endif
5806   z_alsi(in_bytes(JavaThread::lock_stack_top_offset()), Z_thread, -oopSize);  // pop object
5807   z_cr(tmp, tmp); // set CC to EQ
5808 }