1 /*
   2  * Copyright (c) 2016, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2023 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "interpreter/abstractInterpreter.hpp"
  32 #include "interpreter/bytecodeHistogram.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/interpreterRuntime.hpp"
  35 #include "interpreter/interp_masm.hpp"
  36 #include "interpreter/templateInterpreterGenerator.hpp"
  37 #include "interpreter/templateTable.hpp"
  38 #include "oops/arrayOop.hpp"
  39 #include "oops/methodCounters.hpp"
  40 #include "oops/methodData.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/resolvedIndyEntry.hpp"
  43 #include "oops/resolvedMethodEntry.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/jvmtiThreadState.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/frame.inline.hpp"
  49 #include "runtime/jniHandles.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/synchronizer.hpp"
  53 #include "runtime/timer.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/debug.hpp"
  56 #include "utilities/macros.hpp"
  57 
  58 // Size of interpreter code.  Increase if too small.  Interpreter will
  59 // fail with a guarantee ("not enough space for interpreter generation");
  60 // if too small.
  61 // Run with +PrintInterpreter to get the VM to print out the size.
  62 // Max size with JVMTI
  63 int TemplateInterpreter::InterpreterCodeSize = 320*K;
  64 
  65 #undef  __
  66 #ifdef PRODUCT
  67   #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  68 #else
  69   #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  70 //  #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
  71 #endif
  72 
  73 #define BLOCK_COMMENT(str) __ block_comment(str)
  74 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  75 
  76 #define oop_tmp_offset     _z_ijava_state_neg(oop_tmp)
  77 
  78 //-----------------------------------------------------------------------------
  79 
  80 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  81   //
  82   // New slow_signature handler that respects the z/Architecture
  83   // C calling conventions.
  84   //
  85   // We get called by the native entry code with our output register
  86   // area == 8. First we call InterpreterRuntime::get_result_handler
  87   // to copy the pointer to the signature string temporarily to the
  88   // first C-argument and to return the result_handler in
  89   // Z_RET. Since native_entry will copy the jni-pointer to the
  90   // first C-argument slot later on, it's OK to occupy this slot
  91   // temporarily. Then we copy the argument list on the java
  92   // expression stack into native varargs format on the native stack
  93   // and load arguments into argument registers. Integer arguments in
  94   // the varargs vector will be sign-extended to 8 bytes.
  95   //
  96   // On entry:
  97   //   Z_ARG1  - intptr_t*       Address of java argument list in memory.
  98   //   Z_state - zeroInterpreter* Address of interpreter state for
  99   //                              this method
 100   //   Z_method
 101   //
 102   // On exit (just before return instruction):
 103   //   Z_RET contains the address of the result_handler.
 104   //   Z_ARG2 is not updated for static methods and contains "this" otherwise.
 105   //   Z_ARG3-Z_ARG5 contain the first 3 arguments of types other than float and double.
 106   //   Z_FARG1-Z_FARG4 contain the first 4 arguments of type float or double.
 107 
 108   const int LogSizeOfCase = 3;
 109 
 110   const int max_fp_register_arguments   = Argument::n_float_register_parameters;
 111   const int max_int_register_arguments  = Argument::n_register_parameters - 2;  // First 2 are reserved.
 112 
 113   const Register arg_java       = Z_tmp_2;
 114   const Register arg_c          = Z_tmp_3;
 115   const Register signature      = Z_R1_scratch; // Is a string.
 116   const Register fpcnt          = Z_R0_scratch;
 117   const Register argcnt         = Z_tmp_4;
 118   const Register intSlot        = Z_tmp_1;
 119   const Register sig_end        = Z_tmp_1; // Assumed end of signature (only used in do_object).
 120   const Register target_sp      = Z_tmp_1;
 121   const FloatRegister floatSlot = Z_F1;
 122 
 123   const int d_signature         = _z_abi(gpr6); // Only spill space, register contents not affected.
 124   const int d_fpcnt             = _z_abi(gpr7); // Only spill space, register contents not affected.
 125 
 126   unsigned int entry_offset = __ offset();
 127 
 128   BLOCK_COMMENT("slow_signature_handler {");
 129 
 130   // We use target_sp for storing arguments in the C frame.
 131   __ save_return_pc();
 132   __ push_frame_abi160(4*BytesPerWord);                 // Reserve space to save the tmp_[1..4] registers.
 133   __ z_stmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // Save registers only after frame is pushed.
 134 
 135   __ z_lgr(arg_java, Z_ARG1);
 136 
 137   Register   method = Z_ARG2; // Directly load into correct argument register.
 138 
 139   __ get_method(method);
 140   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), Z_thread, method);
 141 
 142   // Move signature to callee saved register.
 143   // Don't directly write to stack. Frame is used by VM call.
 144   __ z_lgr(Z_tmp_1, Z_RET);
 145 
 146   // Reload method. Register may have been altered by VM call.
 147   __ get_method(method);
 148 
 149   // Get address of result handler.
 150   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), Z_thread, method);
 151 
 152   // Save signature address to stack.
 153   __ z_stg(Z_tmp_1, d_signature, Z_SP);
 154 
 155   // Don't overwrite return value (Z_RET, Z_ARG1) in rest of the method !
 156 
 157   {
 158     Label   isStatic;
 159 
 160     // Test if static.
 161     // We can test the bit directly.
 162     // Path is Z_method->_access_flags._flags.
 163     // We only support flag bits in the least significant byte (assert !).
 164     // Therefore add 3 to address that byte within "_flags".
 165     // Reload method. VM call above may have destroyed register contents
 166     __ get_method(method);
 167     __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
 168     method = noreg;  // end of life
 169     __ z_btrue(isStatic);
 170 
 171     // For non-static functions, pass "this" in Z_ARG2 and copy it to 2nd C-arg slot.
 172     // Need to box the Java object here, so we use arg_java
 173     // (address of current Java stack slot) as argument and
 174     // don't dereference it as in case of ints, floats, etc..
 175     __ z_lgr(Z_ARG2, arg_java);
 176     __ add2reg(arg_java, -BytesPerWord);
 177     __ bind(isStatic);
 178   }
 179 
 180   // argcnt == 0 corresponds to 3rd C argument.
 181   //   arg #1 (result handler) and
 182   //   arg #2 (this, for non-statics), unused else
 183   // are reserved and pre-filled above.
 184   // arg_java points to the corresponding Java argument here. It
 185   // has been decremented by one argument (this) in case of non-static.
 186   __ clear_reg(argcnt, true, false);  // Don't set CC.
 187   __ z_lg(target_sp, 0, Z_SP);
 188   __ add2reg(arg_c, _z_abi(remaining_cargs), target_sp);
 189   // No floating-point args parsed so far.
 190   __ clear_mem(Address(Z_SP, d_fpcnt), 8);
 191 
 192   NearLabel   move_intSlot_to_ARG, move_floatSlot_to_FARG;
 193   NearLabel   loop_start, loop_start_restore, loop_end;
 194   NearLabel   do_int, do_long, do_float, do_double;
 195   NearLabel   do_dontreachhere, do_object, do_array, do_boxed;
 196 
 197 #ifdef ASSERT
 198   // Signature needs to point to '(' (== 0x28) at entry.
 199   __ z_lg(signature, d_signature, Z_SP);
 200   __ z_cli(0, signature, (int) '(');
 201   __ z_brne(do_dontreachhere);
 202 #endif
 203 
 204   __ bind(loop_start_restore);
 205   __ z_lg(signature, d_signature, Z_SP);  // Restore signature ptr, destroyed by move_XX_to_ARG.
 206 
 207   BIND(loop_start);
 208   // Advance to next argument type token from the signature.
 209   __ add2reg(signature, 1);
 210 
 211   // Use CLI, works well on all CPU versions.
 212     __ z_cli(0, signature, (int) ')');
 213     __ z_bre(loop_end);                // end of signature
 214     __ z_cli(0, signature, (int) 'L');
 215     __ z_bre(do_object);               // object     #9
 216     __ z_cli(0, signature, (int) 'F');
 217     __ z_bre(do_float);                // float      #7
 218     __ z_cli(0, signature, (int) 'J');
 219     __ z_bre(do_long);                 // long       #6
 220     __ z_cli(0, signature, (int) 'B');
 221     __ z_bre(do_int);                  // byte       #1
 222     __ z_cli(0, signature, (int) 'Z');
 223     __ z_bre(do_int);                  // boolean    #2
 224     __ z_cli(0, signature, (int) 'C');
 225     __ z_bre(do_int);                  // char       #3
 226     __ z_cli(0, signature, (int) 'S');
 227     __ z_bre(do_int);                  // short      #4
 228     __ z_cli(0, signature, (int) 'I');
 229     __ z_bre(do_int);                  // int        #5
 230     __ z_cli(0, signature, (int) 'D');
 231     __ z_bre(do_double);               // double     #8
 232     __ z_cli(0, signature, (int) '[');
 233     __ z_bre(do_array);                // array      #10
 234 
 235   __ bind(do_dontreachhere);
 236 
 237   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
 238 
 239   // Array argument
 240   BIND(do_array);
 241 
 242   {
 243     Label   start_skip, end_skip;
 244 
 245     __ bind(start_skip);
 246 
 247     // Advance to next type tag from signature.
 248     __ add2reg(signature, 1);
 249 
 250     // Use CLI, works well on all CPU versions.
 251     __ z_cli(0, signature, (int) '[');
 252     __ z_bre(start_skip);               // Skip further brackets.
 253 
 254     __ z_cli(0, signature, (int) '9');
 255     __ z_brh(end_skip);                 // no optional size
 256 
 257     __ z_cli(0, signature, (int) '0');
 258     __ z_brnl(start_skip);              // Skip optional size.
 259 
 260     __ bind(end_skip);
 261 
 262     __ z_cli(0, signature, (int) 'L');
 263     __ z_brne(do_boxed);                // If not array of objects: go directly to do_boxed.
 264   }
 265 
 266   //  OOP argument
 267   BIND(do_object);
 268   // Pass by an object's type name.
 269   {
 270     Label   L;
 271 
 272     __ add2reg(sig_end, 4095, signature);     // Assume object type name is shorter than 4k.
 273     __ load_const_optimized(Z_R0, (int) ';'); // Type name terminator (must be in Z_R0!).
 274     __ MacroAssembler::search_string(sig_end, signature);
 275     __ z_brl(L);
 276     __ z_illtrap();  // No semicolon found: internal error or object name too long.
 277     __ bind(L);
 278     __ z_lgr(signature, sig_end);
 279     // fallthru to do_boxed
 280   }
 281 
 282   // Need to box the Java object here, so we use arg_java
 283   // (address of current Java stack slot) as argument and
 284   // don't dereference it as in case of ints, floats, etc..
 285 
 286   // UNBOX argument
 287   // Load reference and check for null.
 288   Label  do_int_Entry4Boxed;
 289   __ bind(do_boxed);
 290   {
 291     __ load_and_test_long(intSlot, Address(arg_java));
 292     __ z_bre(do_int_Entry4Boxed);
 293     __ z_lgr(intSlot, arg_java);
 294     __ z_bru(do_int_Entry4Boxed);
 295   }
 296 
 297   // INT argument
 298 
 299   // (also for byte, boolean, char, short)
 300   // Use lgf for load (sign-extend) and stg for store.
 301   BIND(do_int);
 302   __ z_lgf(intSlot, 0, arg_java);
 303 
 304   __ bind(do_int_Entry4Boxed);
 305   __ add2reg(arg_java, -BytesPerWord);
 306   // If argument fits into argument register, go and handle it, otherwise continue.
 307   __ compare32_and_branch(argcnt, max_int_register_arguments,
 308                           Assembler::bcondLow, move_intSlot_to_ARG);
 309   __ z_stg(intSlot, 0, arg_c);
 310   __ add2reg(arg_c, BytesPerWord);
 311   __ z_bru(loop_start);
 312 
 313   // LONG argument
 314 
 315   BIND(do_long);
 316   __ add2reg(arg_java, -2*BytesPerWord);  // Decrement first to have positive displacement for lg.
 317   __ z_lg(intSlot, BytesPerWord, arg_java);
 318   // If argument fits into argument register, go and handle it, otherwise continue.
 319   __ compare32_and_branch(argcnt, max_int_register_arguments,
 320                           Assembler::bcondLow, move_intSlot_to_ARG);
 321   __ z_stg(intSlot, 0, arg_c);
 322   __ add2reg(arg_c, BytesPerWord);
 323   __ z_bru(loop_start);
 324 
 325   // FLOAT argumen
 326 
 327   BIND(do_float);
 328   __ z_le(floatSlot, 0, arg_java);
 329   __ add2reg(arg_java, -BytesPerWord);
 330   assert(max_fp_register_arguments <= 255, "always true");  // safety net
 331   __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
 332   __ z_brl(move_floatSlot_to_FARG);
 333   __ z_ste(floatSlot, 4, arg_c);
 334   __ add2reg(arg_c, BytesPerWord);
 335   __ z_bru(loop_start);
 336 
 337   // DOUBLE argument
 338 
 339   BIND(do_double);
 340   __ add2reg(arg_java, -2*BytesPerWord);  // Decrement first to have positive displacement for lg.
 341   __ z_ld(floatSlot, BytesPerWord, arg_java);
 342   assert(max_fp_register_arguments <= 255, "always true");  // safety net
 343   __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
 344   __ z_brl(move_floatSlot_to_FARG);
 345   __ z_std(floatSlot, 0, arg_c);
 346   __ add2reg(arg_c, BytesPerWord);
 347   __ z_bru(loop_start);
 348 
 349   // Method exit, all arguments processed.
 350   __ bind(loop_end);
 351   __ z_lmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // restore registers before frame is popped.
 352   __ pop_frame();
 353   __ restore_return_pc();
 354   __ z_br(Z_R14);
 355 
 356   // Copy int arguments.
 357 
 358   Label  iarg_caselist;   // Distance between each case has to be a power of 2
 359                           // (= 1 << LogSizeOfCase).
 360   __ align(16);
 361   BIND(iarg_caselist);
 362   __ z_lgr(Z_ARG3, intSlot);    // 4 bytes
 363   __ z_bru(loop_start_restore); // 4 bytes
 364 
 365   __ z_lgr(Z_ARG4, intSlot);
 366   __ z_bru(loop_start_restore);
 367 
 368   __ z_lgr(Z_ARG5, intSlot);
 369   __ z_bru(loop_start_restore);
 370 
 371   __ align(16);
 372   __ bind(move_intSlot_to_ARG);
 373   __ z_stg(signature, d_signature, Z_SP);       // Spill since signature == Z_R1_scratch.
 374   __ z_larl(Z_R1_scratch, iarg_caselist);
 375   __ z_sllg(Z_R0_scratch, argcnt, LogSizeOfCase);
 376   __ add2reg(argcnt, 1);
 377   __ z_agr(Z_R1_scratch, Z_R0_scratch);
 378   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
 379 
 380   // Copy float arguments.
 381 
 382   Label  farg_caselist;   // Distance between each case has to be a power of 2
 383                           // (= 1 << logSizeOfCase, padded with nop.
 384   __ align(16);
 385   BIND(farg_caselist);
 386   __ z_ldr(Z_FARG1, floatSlot); // 2 bytes
 387   __ z_bru(loop_start_restore); // 4 bytes
 388   __ z_nop();                   // 2 bytes
 389 
 390   __ z_ldr(Z_FARG2, floatSlot);
 391   __ z_bru(loop_start_restore);
 392   __ z_nop();
 393 
 394   __ z_ldr(Z_FARG3, floatSlot);
 395   __ z_bru(loop_start_restore);
 396   __ z_nop();
 397 
 398   __ z_ldr(Z_FARG4, floatSlot);
 399   __ z_bru(loop_start_restore);
 400   __ z_nop();
 401 
 402   __ align(16);
 403   __ bind(move_floatSlot_to_FARG);
 404   __ z_stg(signature, d_signature, Z_SP);        // Spill since signature == Z_R1_scratch.
 405   __ z_lg(Z_R0_scratch, d_fpcnt, Z_SP);          // Need old value for indexing.
 406   __ add2mem_64(Address(Z_SP, d_fpcnt), 1, Z_R1_scratch); // Increment index.
 407   __ z_larl(Z_R1_scratch, farg_caselist);
 408   __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogSizeOfCase);
 409   __ z_agr(Z_R1_scratch, Z_R0_scratch);
 410   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
 411 
 412   BLOCK_COMMENT("} slow_signature_handler");
 413 
 414   return __ addr_at(entry_offset);
 415 }
 416 
 417 address TemplateInterpreterGenerator::generate_result_handler_for (BasicType type) {
 418   address entry = __ pc();
 419 
 420   assert(Z_tos == Z_RET, "Result handler: must move result!");
 421   assert(Z_ftos == Z_FRET, "Result handler: must move float result!");
 422 
 423   switch (type) {
 424     case T_BOOLEAN:
 425       __ c2bool(Z_tos);
 426       break;
 427     case T_CHAR:
 428       __ and_imm(Z_tos, 0xffff);
 429       break;
 430     case T_BYTE:
 431       __ z_lbr(Z_tos, Z_tos);
 432       break;
 433     case T_SHORT:
 434       __ z_lhr(Z_tos, Z_tos);
 435       break;
 436     case T_INT:
 437     case T_LONG:
 438     case T_VOID:
 439     case T_FLOAT:
 440     case T_DOUBLE:
 441       break;
 442     case T_OBJECT:
 443       // Retrieve result from frame...
 444       __ mem2reg_opt(Z_tos, Address(Z_fp, oop_tmp_offset));
 445       // and verify it.
 446       __ verify_oop(Z_tos);
 447       break;
 448     default:
 449       ShouldNotReachHere();
 450   }
 451   __ z_br(Z_R14);      // Return from result handler.
 452   return entry;
 453 }
 454 
 455 // Abstract method entry.
 456 // Attempt to execute abstract method. Throw exception.
 457 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 458   unsigned int entry_offset = __ offset();
 459 
 460   // Caller could be the call_stub or a compiled method (x86 version is wrong!).
 461 
 462   BLOCK_COMMENT("abstract_entry {");
 463 
 464   // Implement call of InterpreterRuntime::throw_AbstractMethodError.
 465   __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1);
 466   __ save_return_pc();       // Save Z_R14.
 467   __ push_frame_abi160(0);   // Without new frame the RT call could overwrite the saved Z_R14.
 468 
 469   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
 470                   Z_thread, Z_method);
 471 
 472   __ pop_frame();
 473   __ restore_return_pc();    // Restore Z_R14.
 474   __ reset_last_Java_frame();
 475 
 476   // Restore caller sp for c2i case.
 477   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
 478 
 479   // branch to SharedRuntime::generate_forward_exception() which handles all possible callers,
 480   // i.e. call stub, compiled method, interpreted method.
 481   __ load_absolute_address(Z_tmp_1, StubRoutines::forward_exception_entry());
 482   __ z_br(Z_tmp_1);
 483 
 484   BLOCK_COMMENT("} abstract_entry");
 485 
 486   return __ addr_at(entry_offset);
 487 }
 488 
 489 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 490   // Inputs:
 491   //  Z_ARG1 - receiver
 492   //
 493   // What we do:
 494   //  - Load the referent field address.
 495   //  - Load the value in the referent field.
 496   //  - Pass that value to the pre-barrier.
 497   //
 498   // In the case of G1 this will record the value of the
 499   // referent in an SATB buffer if marking is active.
 500   // This will cause concurrent marking to mark the referent
 501   // field as live.
 502 
 503   Register  scratch1 = Z_tmp_2;
 504   Register  scratch2 = Z_tmp_3;
 505   Register  pre_val  = Z_RET;   // return value
 506   // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
 507   Register  Rargp    = Z_esp;
 508 
 509   Label     slow_path;
 510   address   entry = __ pc();
 511 
 512   const int referent_offset = java_lang_ref_Reference::referent_offset();
 513 
 514   BLOCK_COMMENT("Reference_get {");
 515 
 516   //  If the receiver is null then it is OK to jump to the slow path.
 517   __ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver.
 518   __ z_bre(slow_path);
 519 
 520   //  Load the value of the referent field.
 521   __ load_heap_oop(pre_val, Address(pre_val, referent_offset), scratch1, scratch2, ON_WEAK_OOP_REF);
 522 
 523   // Restore caller sp for c2i case.
 524   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
 525   __ z_br(Z_R14);
 526 
 527   // Branch to previously generated regular method entry.
 528   __ bind(slow_path);
 529 
 530   address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals);
 531   __ jump_to_entry(meth_entry, Z_R1);
 532 
 533   BLOCK_COMMENT("} Reference_get");
 534 
 535   return entry;
 536 }
 537 
 538 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 539   address entry = __ pc();
 540 
 541   DEBUG_ONLY(__ verify_esp(Z_esp, Z_ARG5));
 542 
 543   // Restore bcp under the assumption that the current frame is still
 544   // interpreted.
 545   __ restore_bcp();
 546 
 547   // Expression stack must be empty before entering the VM if an
 548   // exception happened.
 549   __ empty_expression_stack();
 550   // Throw exception.
 551   __ call_VM(noreg,
 552              CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 553   return entry;
 554 }
 555 
 556 //
 557 // Args:
 558 //   Z_ARG2: oop of array
 559 //   Z_ARG3: aberrant index
 560 //
 561 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
 562   address entry = __ pc();
 563   address excp = CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException);
 564 
 565   // Expression stack must be empty before entering the VM if an
 566   // exception happened.
 567   __ empty_expression_stack();
 568 
 569   // Setup parameters.
 570   // Pass register with array to create more detailed exceptions.
 571   __ call_VM(noreg, excp, Z_ARG2, Z_ARG3);
 572   return entry;
 573 }
 574 
 575 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 576   address entry = __ pc();
 577 
 578   // Object is at TOS.
 579   __ pop_ptr(Z_ARG2);
 580 
 581   // Expression stack must be empty before entering the VM if an
 582   // exception happened.
 583   __ empty_expression_stack();
 584 
 585   __ call_VM(Z_ARG1,
 586              CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException),
 587              Z_ARG2);
 588 
 589   DEBUG_ONLY(__ should_not_reach_here();)
 590 
 591   return entry;
 592 }
 593 
 594 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 595   assert(!pass_oop || message == nullptr, "either oop or message but not both");
 596   address entry = __ pc();
 597 
 598   BLOCK_COMMENT("exception_handler_common {");
 599 
 600   // Expression stack must be empty before entering the VM if an
 601   // exception happened.
 602   __ empty_expression_stack();
 603   if (name != nullptr) {
 604     __ load_absolute_address(Z_ARG2, (address)name);
 605   } else {
 606     __ clear_reg(Z_ARG2, true, false);
 607   }
 608 
 609   if (pass_oop) {
 610     __ call_VM(Z_tos,
 611                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception),
 612                Z_ARG2, Z_tos /*object (see TT::aastore())*/);
 613   } else {
 614     if (message != nullptr) {
 615       __ load_absolute_address(Z_ARG3, (address)message);
 616     } else {
 617       __ clear_reg(Z_ARG3, true, false);
 618     }
 619     __ call_VM(Z_tos,
 620                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 621                Z_ARG2, Z_ARG3);
 622   }
 623   // Throw exception.
 624   __ load_absolute_address(Z_R1_scratch, Interpreter::throw_exception_entry());
 625   __ z_br(Z_R1_scratch);
 626 
 627   BLOCK_COMMENT("} exception_handler_common");
 628 
 629   return entry;
 630 }
 631 
 632 address TemplateInterpreterGenerator::generate_return_entry_for (TosState state, int step, size_t index_size) {
 633   address entry = __ pc();
 634 
 635   BLOCK_COMMENT("return_entry {");
 636 
 637   // Pop i2c extension or revert top-2-parent-resize done by interpreted callees.
 638   Register sp_before_i2c_extension = Z_bcp;
 639   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
 640   __ z_lg(sp_before_i2c_extension, Address(Z_fp, _z_ijava_state_neg(top_frame_sp)));
 641   __ resize_frame_absolute(sp_before_i2c_extension, Z_locals/*tmp*/, true/*load_fp*/);
 642 
 643   // TODO(ZASM): necessary??
 644   //  // and null it as marker that esp is now tos until next java call
 645   //  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 646 
 647   __ restore_bcp();
 648   __ restore_locals();
 649   __ restore_esp();
 650 
 651   if (state == atos) {
 652     __ profile_return_type(Z_tmp_1, Z_tos, Z_tmp_2);
 653   }
 654 
 655   Register cache  = Z_tmp_1;
 656   Register size   = Z_tmp_2;
 657   Register index  = Z_tmp_2;
 658   if (index_size == sizeof(u4)) {
 659     __ load_resolved_indy_entry(cache, index);
 660     __ z_llgh(size, in_bytes(ResolvedIndyEntry::num_parameters_offset()), cache);
 661   } else {
 662     assert(index_size == sizeof(u2), "Can only be u2");
 663     __ load_method_entry(cache, index);
 664     __ load_sized_value(size, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())), sizeof(u2), false /*is_signed*/);
 665   }
 666   __ z_sllg(size, size, Interpreter::logStackElementSize); // Each argument size in bytes.
 667   __ z_agr(Z_esp, size);                                   // Pop arguments.
 668 
 669   __ check_and_handle_popframe(Z_thread);
 670   __ check_and_handle_earlyret(Z_thread);
 671 
 672   __ dispatch_next(state, step);
 673 
 674   BLOCK_COMMENT("} return_entry");
 675 
 676   return entry;
 677 }
 678 
 679 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 680                                                                int step,
 681                                                                address continuation) {
 682   address entry = __ pc();
 683 
 684   BLOCK_COMMENT("deopt_entry {");
 685 
 686   // TODO(ZASM): necessary? null last_sp until next java call
 687   // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 688   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
 689   __ restore_bcp();
 690   __ restore_locals();
 691   __ restore_esp();
 692 
 693   // Handle exceptions.
 694   {
 695     Label L;
 696     __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
 697     __ z_bre(L);
 698     __ call_VM(noreg,
 699                CAST_FROM_FN_PTR(address,
 700                                 InterpreterRuntime::throw_pending_exception));
 701     __ should_not_reach_here();
 702     __ bind(L);
 703   }
 704   if (continuation == nullptr) {
 705     __ dispatch_next(state, step);
 706   } else {
 707     __ jump_to_entry(continuation, Z_R1_scratch);
 708   }
 709 
 710   BLOCK_COMMENT("} deopt_entry");
 711 
 712   return entry;
 713 }
 714 
 715 address TemplateInterpreterGenerator::generate_safept_entry_for (TosState state,
 716                                                                 address runtime_entry) {
 717   address entry = __ pc();
 718   __ push(state);
 719   __ call_VM(noreg, runtime_entry);
 720   __ dispatch_via(vtos, Interpreter::_normal_table.table_for (vtos));
 721   return entry;
 722 }
 723 
 724 //
 725 // Helpers for commoning out cases in the various type of method entries.
 726 //
 727 
 728 // Increment invocation count & check for overflow.
 729 //
 730 // Note: checking for negative value instead of overflow
 731 // so we have a 'sticky' overflow test.
 732 //
 733 // Z_ARG2: method (see generate_fixed_frame())
 734 //
 735 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) {
 736   Label done;
 737   Register method = Z_ARG2; // Generate_fixed_frame() copies Z_method into Z_ARG2.
 738   Register m_counters = Z_ARG4;
 739 
 740   BLOCK_COMMENT("counter_incr {");
 741 
 742   // Note: In tiered we increment either counters in method or in MDO depending
 743   // if we are profiling or not.
 744   int increment = InvocationCounter::count_increment;
 745   if (ProfileInterpreter) {
 746     NearLabel no_mdo;
 747     Register mdo = m_counters;
 748     // Are we profiling?
 749     __ load_and_test_long(mdo, method2_(method, method_data));
 750     __ branch_optimized(Assembler::bcondZero, no_mdo);
 751     // Increment counter in the MDO.
 752     const Address mdo_invocation_counter(mdo, MethodData::invocation_counter_offset() +
 753                                          InvocationCounter::counter_offset());
 754     const Address mask(mdo, MethodData::invoke_mask_offset());
 755     __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 756                                Z_R1_scratch, false, Assembler::bcondZero,
 757                                overflow);
 758     __ z_bru(done);
 759     __ bind(no_mdo);
 760   }
 761 
 762   // Increment counter in MethodCounters.
 763   const Address invocation_counter(m_counters,
 764                                    MethodCounters::invocation_counter_offset() +
 765                                    InvocationCounter::counter_offset());
 766   // Get address of MethodCounters object.
 767   __ get_method_counters(method, m_counters, done);
 768   const Address mask(m_counters, MethodCounters::invoke_mask_offset());
 769   __ increment_mask_and_jump(invocation_counter,
 770                              increment, mask,
 771                              Z_R1_scratch, false, Assembler::bcondZero,
 772                              overflow);
 773 
 774   __ bind(done);
 775 
 776   BLOCK_COMMENT("} counter_incr");
 777 }
 778 
 779 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 780   // InterpreterRuntime::frequency_counter_overflow takes two
 781   // arguments, the first (thread) is passed by call_VM, the second
 782   // indicates if the counter overflow occurs at a backwards branch
 783   // (null bcp). We pass zero for it. The call returns the address
 784   // of the verified entry point for the method or null if the
 785   // compilation did not complete (either went background or bailed
 786   // out).
 787   __ clear_reg(Z_ARG2);
 788   __ call_VM(noreg,
 789              CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
 790              Z_ARG2);
 791   __ z_bru(do_continue);
 792 }
 793 
 794 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register frame_size, Register tmp1) {
 795   Register tmp2 = Z_R1_scratch;
 796   const int page_size = (int)os::vm_page_size();
 797   NearLabel after_frame_check;
 798 
 799   BLOCK_COMMENT("stack_overflow_check {");
 800 
 801   assert_different_registers(frame_size, tmp1);
 802 
 803   // Stack banging is sufficient overflow check if frame_size < page_size.
 804   if (Immediate::is_uimm(page_size, 15)) {
 805     __ z_chi(frame_size, page_size);
 806     __ z_brl(after_frame_check);
 807   } else {
 808     __ load_const_optimized(tmp1, page_size);
 809     __ compareU32_and_branch(frame_size, tmp1, Assembler::bcondLow, after_frame_check);
 810   }
 811 
 812   // Get the stack base, and in debug, verify it is non-zero.
 813   __ z_lg(tmp1, thread_(stack_base));
 814 #ifdef ASSERT
 815   address reentry = nullptr;
 816   NearLabel base_not_zero;
 817   __ compareU64_and_branch(tmp1, (intptr_t)0L, Assembler::bcondNotEqual, base_not_zero);
 818   reentry = __ stop_chain_static(reentry, "stack base is zero in generate_stack_overflow_check");
 819   __ bind(base_not_zero);
 820 #endif
 821 
 822   // Get the stack size, and in debug, verify it is non-zero.
 823   assert(sizeof(size_t) == sizeof(intptr_t), "wrong load size");
 824   __ z_lg(tmp2, thread_(stack_size));
 825 #ifdef ASSERT
 826   NearLabel size_not_zero;
 827   __ compareU64_and_branch(tmp2, (intptr_t)0L, Assembler::bcondNotEqual, size_not_zero);
 828   reentry = __ stop_chain_static(reentry, "stack size is zero in generate_stack_overflow_check");
 829   __ bind(size_not_zero);
 830 #endif
 831 
 832   // Compute the beginning of the protected zone minus the requested frame size.
 833   __ z_sgr(tmp1, tmp2);
 834   __ add2reg(tmp1, StackOverflow::stack_guard_zone_size());
 835 
 836   // Add in the size of the frame (which is the same as subtracting it from the
 837   // SP, which would take another register.
 838   __ z_agr(tmp1, frame_size);
 839 
 840   // The frame is greater than one page in size, so check against
 841   // the bottom of the stack.
 842   __ compareU64_and_branch(Z_SP, tmp1, Assembler::bcondHigh, after_frame_check);
 843 
 844   // The stack will overflow, throw an exception.
 845 
 846   // Restore SP to sender's sp. This is necessary if the sender's frame is an
 847   // extended compiled frame (see gen_c2i_adapter()) and safer anyway in case of
 848   // JSR292 adaptations.
 849   __ resize_frame_absolute(Z_R10, tmp1, true/*load_fp*/);
 850 
 851   // Note also that the restored frame is not necessarily interpreted.
 852   // Use the shared runtime version of the StackOverflowError.
 853   assert(StubRoutines::throw_StackOverflowError_entry() != nullptr, "stub not yet generated");
 854   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 855   __ load_absolute_address(tmp1, StubRoutines::throw_StackOverflowError_entry());
 856   __ z_br(tmp1);
 857 
 858   // If you get to here, then there is enough stack space.
 859   __ bind(after_frame_check);
 860 
 861   BLOCK_COMMENT("} stack_overflow_check");
 862 }
 863 
 864 // Allocate monitor and lock method (asm interpreter).
 865 //
 866 // Args:
 867 //   Z_locals: locals
 868 
 869 void TemplateInterpreterGenerator::lock_method(void) {
 870 
 871   BLOCK_COMMENT("lock_method {");
 872 
 873   // Synchronize method.
 874   const Register method = Z_tmp_2;
 875   __ get_method(method);
 876 
 877 #ifdef ASSERT
 878   address reentry = nullptr;
 879   {
 880     Label L;
 881     __ testbit(method2_(method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
 882     __ z_btrue(L);
 883     reentry = __ stop_chain_static(reentry, "method doesn't need synchronization");
 884     __ bind(L);
 885   }
 886 #endif // ASSERT
 887 
 888   // Get synchronization object.
 889   const Register object = Z_tmp_2;
 890 
 891   {
 892     Label     done;
 893     Label     static_method;
 894 
 895     __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
 896     __ z_btrue(static_method);
 897 
 898     // non-static method: Load receiver obj from stack.
 899     __ mem2reg_opt(object, Address(Z_locals, Interpreter::local_offset_in_bytes(0)));
 900     __ z_bru(done);
 901 
 902     __ bind(static_method);
 903 
 904     // Lock the java mirror.
 905     // Load mirror from interpreter frame.
 906     __ z_lg(object, _z_ijava_state_neg(mirror), Z_fp);
 907 
 908 #ifdef ASSERT
 909     {
 910       NearLabel L;
 911       __ compare64_and_branch(object, (intptr_t) 0, Assembler::bcondNotEqual, L);
 912       reentry = __ stop_chain_static(reentry, "synchronization object is null");
 913       __ bind(L);
 914     }
 915 #endif // ASSERT
 916 
 917     __ bind(done);
 918   }
 919 
 920   __ add_monitor_to_stack(true, Z_ARG3, Z_ARG4, Z_ARG5); // Allocate monitor elem.
 921   // Store object and lock it.
 922   __ get_monitors(Z_tmp_1);
 923   __ reg2mem_opt(object, Address(Z_tmp_1, BasicObjectLock::obj_offset()));
 924   __ lock_object(Z_tmp_1, object);
 925 
 926   BLOCK_COMMENT("} lock_method");
 927 }
 928 
 929 // Generate a fixed interpreter frame. This is identical setup for
 930 // interpreted methods and for native methods hence the shared code.
 931 //
 932 // Registers alive
 933 //   Z_thread   - JavaThread*
 934 //   Z_SP       - old stack pointer
 935 //   Z_method   - callee's method
 936 //   Z_esp      - parameter list (slot 'above' last param)
 937 //   Z_R14      - return pc, to be stored in caller's frame
 938 //   Z_R10      - sender sp, note: Z_tmp_1 is Z_R10!
 939 //
 940 // Registers updated
 941 //   Z_SP       - new stack pointer
 942 //   Z_esp      - callee's operand stack pointer
 943 //                points to the slot above the value on top
 944 //   Z_locals   - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
 945 //   Z_bcp      - the bytecode pointer
 946 //   Z_fp       - the frame pointer, thereby killing Z_method
 947 //   Z_ARG2     - copy of Z_method
 948 //
 949 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 950 
 951   //  stack layout
 952   //
 953   //   F1 [TOP_IJAVA_FRAME_ABI]              <-- Z_SP, Z_R10 (see note below)
 954   //      [F1's operand stack (unused)]
 955   //      [F1's outgoing Java arguments]     <-- Z_esp
 956   //      [F1's operand stack (non args)]
 957   //      [monitors]      (optional)
 958   //      [IJAVA_STATE]
 959   //
 960   //   F2 [PARENT_IJAVA_FRAME_ABI]
 961   //      ...
 962   //
 963   //  0x000
 964   //
 965   // Note: Z_R10, the sender sp, will be below Z_SP if F1 was extended by a c2i adapter.
 966 
 967   //=============================================================================
 968   // Allocate space for locals other than the parameters, the
 969   // interpreter state, monitors, and the expression stack.
 970 
 971   const Register local_count  = Z_ARG5;
 972   const Register fp           = Z_tmp_2;
 973   const Register const_method = Z_ARG1;
 974 
 975   BLOCK_COMMENT("generate_fixed_frame {");
 976   {
 977   // local registers
 978   const Register top_frame_size  = Z_ARG2;
 979   const Register sp_after_resize = Z_ARG3;
 980   const Register max_stack       = Z_ARG4;
 981 
 982   __ z_lg(const_method, Address(Z_method, Method::const_offset()));
 983   __ z_llgh(max_stack, Address(const_method, ConstMethod::size_of_parameters_offset()));
 984   __ z_sllg(Z_locals /*parameter_count bytes*/, max_stack /*parameter_count*/, LogBytesPerWord);
 985 
 986   if (native_call) {
 987     // If we're calling a native method, we replace max_stack (which is
 988     // zero) with space for the worst-case signature handler varargs
 989     // vector, which is:
 990     //   max_stack = max(Argument::n_register_parameters, parameter_count+2);
 991     //
 992     // We add two slots to the parameter_count, one for the jni
 993     // environment and one for a possible native mirror. We allocate
 994     // space for at least the number of ABI registers, even though
 995     // InterpreterRuntime::slow_signature_handler won't write more than
 996     // parameter_count+2 words when it creates the varargs vector at the
 997     // top of the stack. The generated slow signature handler will just
 998     // load trash into registers beyond the necessary number. We're
 999     // still going to cut the stack back by the ABI register parameter
1000     // count so as to get SP+16 pointing at the ABI outgoing parameter
1001     // area, so we need to allocate at least that much even though we're
1002     // going to throw it away.
1003     //
1004     __ add2reg(max_stack, 2);
1005 
1006     NearLabel passing_args_on_stack;
1007 
1008     // max_stack in bytes
1009     __ z_sllg(max_stack, max_stack, LogBytesPerWord);
1010 
1011     int argument_registers_in_bytes = Argument::n_register_parameters << LogBytesPerWord;
1012     __ compare64_and_branch(max_stack, argument_registers_in_bytes, Assembler::bcondNotLow, passing_args_on_stack);
1013 
1014     __ load_const_optimized(max_stack, argument_registers_in_bytes);
1015 
1016     __ bind(passing_args_on_stack);
1017   } else {
1018     // !native_call
1019     // local_count = method->constMethod->max_locals();
1020     __ z_llgh(local_count, Address(const_method, ConstMethod::size_of_locals_offset()));
1021 
1022     // Calculate number of non-parameter locals (in slots):
1023     __ z_sgr(local_count, max_stack);
1024 
1025     // max_stack = method->max_stack();
1026     __ z_llgh(max_stack, Address(const_method, ConstMethod::max_stack_offset()));
1027     // max_stack in bytes
1028     __ z_sllg(max_stack, max_stack, LogBytesPerWord);
1029   }
1030 
1031   // Resize (i.e. normally shrink) the top frame F1 ...
1032   //   F1      [TOP_IJAVA_FRAME_ABI]          <-- Z_SP, Z_R10
1033   //           F1's operand stack (free)
1034   //           ...
1035   //           F1's operand stack (free)      <-- Z_esp
1036   //           F1's outgoing Java arg m
1037   //           ...
1038   //           F1's outgoing Java arg 0
1039   //           ...
1040   //
1041   //  ... into a parent frame (Z_R10 holds F1's SP before any modification, see also above)
1042   //
1043   //           +......................+
1044   //           :                      :        <-- Z_R10, saved below as F0's z_ijava_state.sender_sp
1045   //           :                      :
1046   //   F1      [PARENT_IJAVA_FRAME_ABI]        <-- Z_SP       \
1047   //           F0's non arg local                             | = delta
1048   //           ...                                            |
1049   //           F0's non arg local              <-- Z_esp      /
1050   //           F1's outgoing Java arg m
1051   //           ...
1052   //           F1's outgoing Java arg 0
1053   //           ...
1054   //
1055   // then push the new top frame F0.
1056   //
1057   //   F0      [TOP_IJAVA_FRAME_ABI]    = frame::z_top_ijava_frame_abi_size \
1058   //           [operand stack]          = max_stack                          | = top_frame_size
1059   //           [IJAVA_STATE]            = frame::z_ijava_state_size         /
1060 
1061   // sp_after_resize = Z_esp - delta
1062   //
1063   // delta = PARENT_IJAVA_FRAME_ABI + (locals_count - params_count)
1064 
1065   __ add2reg(sp_after_resize, (Interpreter::stackElementSize) - (frame::z_parent_ijava_frame_abi_size), Z_esp);
1066   if (!native_call) {
1067     __ z_sllg(Z_R0_scratch, local_count, LogBytesPerWord); // Params have already been subtracted from local_count.
1068     __ z_slgr(sp_after_resize, Z_R0_scratch);
1069   }
1070 
1071   // top_frame_size = TOP_IJAVA_FRAME_ABI + max_stack + size of interpreter state
1072   __ add2reg(top_frame_size,
1073              frame::z_top_ijava_frame_abi_size +
1074              frame::z_ijava_state_size,
1075              max_stack);
1076 
1077   if (!native_call) {
1078     // Stack overflow check.
1079     // Native calls don't need the stack size check since they have no
1080     // expression stack and the arguments are already on the stack and
1081     // we only add a handful of words to the stack.
1082     Register frame_size = max_stack; // Reuse the register for max_stack.
1083     __ z_lgr(frame_size, Z_SP);
1084     __ z_sgr(frame_size, sp_after_resize);
1085     __ z_agr(frame_size, top_frame_size);
1086     generate_stack_overflow_check(frame_size, fp/*tmp1*/);
1087   }
1088 
1089   // asm_assert* is a nop in product builds
1090   NOT_PRODUCT(__ z_cg(Z_R14, _z_common_abi(return_pc), Z_SP));
1091   NOT_PRODUCT(__ asm_assert(Assembler::bcondEqual, "killed Z_R14", 0));
1092   __ resize_frame_absolute(sp_after_resize, fp, true);
1093   __ save_return_pc(Z_R14);
1094 
1095   // ... and push the new frame F0.
1096   __ push_frame(top_frame_size, fp, true /*copy_sp*/, false);
1097   }
1098 
1099   //=============================================================================
1100   // Initialize the new frame F0: initialize interpreter state.
1101 
1102   {
1103   // locals
1104   const Register local_addr = Z_ARG4;
1105 
1106   BLOCK_COMMENT("generate_fixed_frame: initialize interpreter state {");
1107 
1108 #ifdef ASSERT
1109   // Set the magic number (using local_addr as tmp register).
1110   __ load_const_optimized(local_addr, frame::z_istate_magic_number);
1111   __ z_stg(local_addr, _z_ijava_state_neg(magic), fp);
1112 #endif
1113 
1114   // Save sender SP from F1 (i.e. before it was potentially modified by an
1115   // adapter) into F0's interpreter state. We use it as well to revert
1116   // resizing the frame above.
1117   __ z_stg(Z_R10, _z_ijava_state_neg(sender_sp), fp);
1118 
1119   // Load cp cache and save it at the end of this block.
1120   __ z_lg(Z_R1_scratch, Address(const_method, ConstMethod::constants_offset()));
1121   __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstantPool::cache_offset()));
1122 
1123   // z_ijava_state->method = method;
1124   __ z_stg(Z_method, _z_ijava_state_neg(method), fp);
1125 
1126   // Point locals at the first argument. Method's locals are the
1127   // parameters on top of caller's expression stack.
1128   // Tos points past last Java argument.
1129 
1130   __ z_agr(Z_locals, Z_esp);
1131   // z_ijava_state->locals - i*BytesPerWord points to i-th Java local (i starts at 0)
1132   // z_ijava_state->locals = Z_esp + parameter_count bytes
1133   __ z_stg(Z_locals, _z_ijava_state_neg(locals), fp);
1134 
1135   // z_ijava_state->oop_temp = nullptr;
1136   __ store_const(Address(fp, oop_tmp_offset), 0);
1137 
1138   // Initialize z_ijava_state->mdx.
1139   Register Rmdp = Z_bcp;
1140   // native_call: assert that mdo is null
1141   const bool check_for_mdo = !native_call DEBUG_ONLY(|| native_call);
1142   if (ProfileInterpreter && check_for_mdo) {
1143     Label get_continue;
1144 
1145     __ load_and_test_long(Rmdp, method_(method_data));
1146     __ z_brz(get_continue);
1147     DEBUG_ONLY(if (native_call) __ stop("native methods don't have a mdo"));
1148     __ add2reg(Rmdp, in_bytes(MethodData::data_offset()));
1149     __ bind(get_continue);
1150   }
1151   __ z_stg(Rmdp, _z_ijava_state_neg(mdx), fp);
1152 
1153   // Initialize z_ijava_state->bcp and Z_bcp.
1154   if (native_call) {
1155     __ clear_reg(Z_bcp); // Must initialize. Will get written into frame where GC reads it.
1156   } else {
1157     __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset()), const_method);
1158   }
1159   __ z_stg(Z_bcp, _z_ijava_state_neg(bcp), fp);
1160 
1161   // no monitors and empty operand stack
1162   // => z_ijava_state->monitors points to the top slot in IJAVA_STATE.
1163   // => Z_ijava_state->esp points one slot above into the operand stack.
1164   // z_ijava_state->monitors = fp - frame::z_ijava_state_size - Interpreter::stackElementSize;
1165   // z_ijava_state->esp = Z_esp = z_ijava_state->monitors;
1166   __ add2reg(Z_esp, -frame::z_ijava_state_size, fp);
1167   __ z_stg(Z_esp, _z_ijava_state_neg(monitors), fp);
1168   __ add2reg(Z_esp, -Interpreter::stackElementSize);
1169   __ z_stg(Z_esp, _z_ijava_state_neg(esp), fp);
1170 
1171   // z_ijava_state->cpoolCache = Z_R1_scratch (see load above);
1172   __ z_stg(Z_R1_scratch, _z_ijava_state_neg(cpoolCache), fp);
1173 
1174   // Get mirror and store it in the frame as GC root for this Method*.
1175   __ load_mirror_from_const_method(Z_R1_scratch, const_method);
1176   __ z_stg(Z_R1_scratch, _z_ijava_state_neg(mirror), fp);
1177 
1178   BLOCK_COMMENT("} generate_fixed_frame: initialize interpreter state");
1179 
1180   //=============================================================================
1181   if (!native_call) {
1182     // Local_count is already num_locals_slots - num_param_slots.
1183     // Start of locals: local_addr = Z_locals - locals size + 1 slot
1184     __ z_llgh(Z_R0_scratch, Address(const_method, ConstMethod::size_of_locals_offset()));
1185     __ add2reg(local_addr, BytesPerWord, Z_locals);
1186     __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogBytesPerWord);
1187     __ z_sgr(local_addr, Z_R0_scratch);
1188 
1189     __ Clear_Array(local_count, local_addr, Z_ARG2);
1190   }
1191 
1192   }
1193   // Finally set the frame pointer, destroying Z_method.
1194   assert(Z_fp == Z_method, "maybe set Z_fp earlier if other register than Z_method");
1195   // Oprofile analysis suggests to keep a copy in a register to be used by
1196   // generate_counter_incr().
1197   __ z_lgr(Z_ARG2, Z_method);
1198   __ z_lgr(Z_fp, fp);
1199 
1200   BLOCK_COMMENT("} generate_fixed_frame");
1201 }
1202 
1203 // Various method entries
1204 
1205 // Math function, frame manager must set up an interpreter state, etc.
1206 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1207 
1208   // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1209   bool use_instruction = false;
1210   address runtime_entry = nullptr;
1211   int num_args = 1;
1212   bool double_precision = true;
1213 
1214   // s390 specific:
1215   switch (kind) {
1216     case Interpreter::java_lang_math_sqrt:
1217     case Interpreter::java_lang_math_abs:  use_instruction = true; break;
1218     case Interpreter::java_lang_math_fmaF:
1219     case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1220     default: break; // Fall back to runtime call.
1221   }
1222 
1223   switch (kind) {
1224     case Interpreter::java_lang_math_sin  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);   break;
1225     case Interpreter::java_lang_math_cos  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);   break;
1226     case Interpreter::java_lang_math_tan  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);   break;
1227     case Interpreter::java_lang_math_abs  : /* run interpreted */ break;
1228     case Interpreter::java_lang_math_sqrt : /* runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); not available */ break;
1229     case Interpreter::java_lang_math_log  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);   break;
1230     case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1231     case Interpreter::java_lang_math_pow  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1232     case Interpreter::java_lang_math_exp  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);   break;
1233     case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1234     case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1235     default: ShouldNotReachHere();
1236   }
1237 
1238   // Use normal entry if neither instruction nor runtime call is used.
1239   if (!use_instruction && runtime_entry == nullptr) return nullptr;
1240 
1241   address entry = __ pc();
1242 
1243   if (use_instruction) {
1244     switch (kind) {
1245       case Interpreter::java_lang_math_sqrt:
1246         // Can use memory operand directly.
1247         __ z_sqdb(Z_FRET, Interpreter::stackElementSize, Z_esp);
1248         break;
1249       case Interpreter::java_lang_math_abs:
1250         // Load operand from stack.
1251         __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize));
1252         __ z_lpdbr(Z_FRET);
1253         break;
1254       case Interpreter::java_lang_math_fmaF:
1255         __ mem2freg_opt(Z_FRET,  Address(Z_esp,     Interpreter::stackElementSize)); // result reg = arg3
1256         __ mem2freg_opt(Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); // arg1
1257         __ z_maeb(Z_FRET, Z_FARG2, Address(Z_esp, 2 * Interpreter::stackElementSize));
1258         break;
1259       case Interpreter::java_lang_math_fmaD:
1260         __ mem2freg_opt(Z_FRET,  Address(Z_esp,     Interpreter::stackElementSize)); // result reg = arg3
1261         __ mem2freg_opt(Z_FARG2, Address(Z_esp, 5 * Interpreter::stackElementSize)); // arg1
1262         __ z_madb(Z_FRET, Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize));
1263         break;
1264       default: ShouldNotReachHere();
1265     }
1266   } else {
1267     // Load arguments
1268     assert(num_args <= 4, "passed in registers");
1269     if (double_precision) {
1270       int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1271       for (int i = 0; i < num_args; ++i) {
1272         __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset));
1273         offset -= 2 * Interpreter::stackElementSize;
1274       }
1275     } else {
1276       int offset = num_args * Interpreter::stackElementSize;
1277       for (int i = 0; i < num_args; ++i) {
1278         __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset));
1279         offset -= Interpreter::stackElementSize;
1280       }
1281     }
1282     // Call runtime
1283     __ save_return_pc();       // Save Z_R14.
1284     __ push_frame_abi160(0);   // Without new frame the RT call could overwrite the saved Z_R14.
1285 
1286     __ call_VM_leaf(runtime_entry);
1287 
1288     __ pop_frame();
1289     __ restore_return_pc();    // Restore Z_R14.
1290   }
1291 
1292   // Pop c2i arguments (if any) off when we return.
1293   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1294 
1295   __ z_br(Z_R14);
1296 
1297   return entry;
1298 }
1299 
1300 // Interpreter stub for calling a native method. (asm interpreter).
1301 // This sets up a somewhat different looking stack for calling the
1302 // native method than the typical interpreter frame setup.
1303 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1304   // Determine code generation flags.
1305   bool inc_counter = UseCompiler || CountCompiledCalls;
1306 
1307   // Interpreter entry for ordinary Java methods.
1308   //
1309   // Registers alive
1310   //   Z_SP          - stack pointer
1311   //   Z_thread      - JavaThread*
1312   //   Z_method      - callee's method (method to be invoked)
1313   //   Z_esp         - operand (or expression) stack pointer of caller. one slot above last arg.
1314   //   Z_R10         - sender sp (before modifications, e.g. by c2i adapter
1315   //                   and as well by generate_fixed_frame below)
1316   //   Z_R14         - return address to caller (call_stub or c2i_adapter)
1317   //
1318   // Registers updated
1319   //   Z_SP          - stack pointer
1320   //   Z_fp          - callee's framepointer
1321   //   Z_esp         - callee's operand stack pointer
1322   //                   points to the slot above the value on top
1323   //   Z_locals      - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
1324   //   Z_tos         - integer result, if any
1325   //   z_ftos        - floating point result, if any
1326   //
1327   // Stack layout at this point:
1328   //
1329   //   F1      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
1330   //                                                          frame was extended by c2i adapter)
1331   //           [outgoing Java arguments]     <-- Z_esp
1332   //           ...
1333   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
1334   //           ...
1335   //
1336 
1337   address entry_point = __ pc();
1338 
1339   // Make sure registers are different!
1340   assert_different_registers(Z_thread, Z_method, Z_esp);
1341 
1342   BLOCK_COMMENT("native_entry {");
1343 
1344   // Make sure method is native and not abstract.
1345 #ifdef ASSERT
1346   address reentry = nullptr;
1347   { Label L;
1348     __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT);
1349     __ z_btrue(L);
1350     reentry = __ stop_chain_static(reentry, "tried to execute non-native method as native");
1351     __ bind(L);
1352   }
1353   { Label L;
1354     __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
1355     __ z_bfalse(L);
1356     reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
1357     __ bind(L);
1358   }
1359 #endif // ASSERT
1360 
1361   // Save the return PC into the callers frame for assertion in generate_fixed_frame.
1362   NOT_PRODUCT(__ save_return_pc(Z_R14));
1363 
1364   // Generate the code to allocate the interpreter stack frame.
1365   generate_fixed_frame(true);
1366 
1367   const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
1368   // Since at this point in the method invocation the exception handler
1369   // would try to exit the monitor of synchronized methods which hasn't
1370   // been entered yet, we set the thread local variable
1371   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1372   // runtime, exception handling i.e. unlock_if_synchronized_method will
1373   // check this thread local flag.
1374   __ z_mvi(do_not_unlock_if_synchronized, true);
1375 
1376   // Increment invocation count and check for overflow.
1377   NearLabel invocation_counter_overflow;
1378   if (inc_counter) {
1379     generate_counter_incr(&invocation_counter_overflow);
1380   }
1381 
1382   Label continue_after_compile;
1383   __ bind(continue_after_compile);
1384 
1385   bang_stack_shadow_pages(true);
1386 
1387   // Reset the _do_not_unlock_if_synchronized flag.
1388   __ z_mvi(do_not_unlock_if_synchronized, false);
1389 
1390   // Check for synchronized methods.
1391   // This mst happen AFTER invocation_counter check and stack overflow check,
1392   // so method is not locked if overflows.
1393   if (synchronized) {
1394     lock_method();
1395   } else {
1396     // No synchronization necessary.
1397 #ifdef ASSERT
1398     { Label L;
1399       __ get_method(Z_R1_scratch);
1400       __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
1401       __ z_bfalse(L);
1402       reentry = __ stop_chain_static(reentry, "method needs synchronization");
1403       __ bind(L);
1404     }
1405 #endif // ASSERT
1406   }
1407 
1408   // start execution
1409 
1410   // jvmti support
1411   __ notify_method_entry();
1412 
1413   //=============================================================================
1414   // Get and call the signature handler.
1415   const Register Rmethod                 = Z_tmp_2;
1416   const Register signature_handler_entry = Z_tmp_1;
1417   const Register Rresult_handler         = Z_tmp_3;
1418   Label call_signature_handler;
1419 
1420   assert_different_registers(Z_fp, Rmethod, signature_handler_entry, Rresult_handler);
1421   assert(Rresult_handler->is_nonvolatile(), "Rresult_handler must be in a non-volatile register");
1422 
1423   // Reload method.
1424   __ get_method(Rmethod);
1425 
1426   // Check for signature handler.
1427   __ load_and_test_long(signature_handler_entry, method2_(Rmethod, signature_handler));
1428   __ z_brne(call_signature_handler);
1429 
1430   // Method has never been called. Either generate a specialized
1431   // handler or point to the slow one.
1432   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call),
1433              Rmethod);
1434 
1435   // Reload method.
1436   __ get_method(Rmethod);
1437 
1438   // Reload signature handler, it must have been created/assigned in the meantime.
1439   __ z_lg(signature_handler_entry, method2_(Rmethod, signature_handler));
1440 
1441   __ bind(call_signature_handler);
1442 
1443   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1444   __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1/*tmp*/);
1445 
1446   // Call signature handler and pass locals address in Z_ARG1.
1447   __ z_lgr(Z_ARG1, Z_locals);
1448   __ call_stub(signature_handler_entry);
1449   // Save result handler returned by signature handler.
1450   __ z_lgr(Rresult_handler, Z_RET);
1451 
1452   // Reload method (the slow signature handler may block for GC).
1453   __ get_method(Rmethod);
1454 
1455   // Pass mirror handle if static call.
1456   {
1457     Label method_is_not_static;
1458     __ testbit(method2_(Rmethod, access_flags), JVM_ACC_STATIC_BIT);
1459     __ z_bfalse(method_is_not_static);
1460     // Load mirror from interpreter frame.
1461     __ z_lg(Z_R1, _z_ijava_state_neg(mirror), Z_fp);
1462     // z_ijava_state.oop_temp = pool_holder->klass_part()->java_mirror();
1463     __ z_stg(Z_R1, oop_tmp_offset, Z_fp);
1464     // Pass handle to mirror as 2nd argument to JNI method.
1465     __ add2reg(Z_ARG2, oop_tmp_offset, Z_fp);
1466     __ bind(method_is_not_static);
1467   }
1468 
1469   // Pass JNIEnv address as first parameter.
1470   __ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread);
1471 
1472   // Note: last java frame has been set above already. The pc from there
1473   // is precise enough.
1474 
1475   // Get native function entry point before we change the thread state.
1476   __ z_lg(Z_R1/*native_method_entry*/, method2_(Rmethod, native_function));
1477 
1478   //=============================================================================
1479   // Transition from _thread_in_Java to _thread_in_native. As soon as
1480   // we make this change the safepoint code needs to be certain that
1481   // the last Java frame we established is good. The pc in that frame
1482   // just need to be near here not an actual return address.
1483 #ifdef ASSERT
1484   {
1485     NearLabel L;
1486     __ mem2reg_opt(Z_R14, Address(Z_thread, JavaThread::thread_state_offset()), false /*32 bits*/);
1487     __ compareU32_and_branch(Z_R14, _thread_in_Java, Assembler::bcondEqual, L);
1488     reentry = __ stop_chain_static(reentry, "Wrong thread state in native stub");
1489     __ bind(L);
1490   }
1491 #endif
1492 
1493   // Memory ordering: Z does not reorder store/load with subsequent load. That's strong enough.
1494   __ set_thread_state(_thread_in_native);
1495 
1496   //=============================================================================
1497   // Call the native method. Argument registers must not have been
1498   // overwritten since "__ call_stub(signature_handler);" (except for
1499   // ARG1 and ARG2 for static methods).
1500 
1501   __ call_c(Z_R1/*native_method_entry*/);
1502 
1503   // NOTE: frame::interpreter_frame_result() depends on these stores.
1504   __ z_stg(Z_RET, _z_ijava_state_neg(lresult), Z_fp);
1505   __ freg2mem_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
1506   const Register Rlresult = signature_handler_entry;
1507   assert(Rlresult->is_nonvolatile(), "Rlresult must be in a non-volatile register");
1508   __ z_lgr(Rlresult, Z_RET);
1509 
1510   // Z_method may no longer be valid, because of GC.
1511 
1512   // Block, if necessary, before resuming in _thread_in_Java state.
1513   // In order for GC to work, don't clear the last_Java_sp until after
1514   // blocking.
1515 
1516   //=============================================================================
1517   // Switch thread to "native transition" state before reading the
1518   // synchronization state. This additional state is necessary
1519   // because reading and testing the synchronization state is not
1520   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1521   // in _thread_in_native state, loads _not_synchronized and is
1522   // preempted. VM thread changes sync state to synchronizing and
1523   // suspends threads for GC. Thread A is resumed to finish this
1524   // native method, but doesn't block here since it didn't see any
1525   // synchronization is progress, and escapes.
1526 
1527   __ set_thread_state(_thread_in_native_trans);
1528   if (!UseSystemMemoryBarrier) {
1529     __ z_fence();
1530   }
1531 
1532   // Now before we return to java we must look for a current safepoint
1533   // (a new safepoint can not start since we entered native_trans).
1534   // We must check here because a current safepoint could be modifying
1535   // the callers registers right this moment.
1536 
1537   // Check for safepoint operation in progress and/or pending suspend requests.
1538   {
1539     Label Continue, do_safepoint;
1540     __ safepoint_poll(do_safepoint, Z_R1);
1541     // Check for suspend.
1542     __ load_and_test_int(Z_R0/*suspend_flags*/, thread_(suspend_flags));
1543     __ z_bre(Continue); // 0 -> no flag set -> not suspended
1544     __ bind(do_safepoint);
1545     __ z_lgr(Z_ARG1, Z_thread);
1546     __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1547     __ bind(Continue);
1548   }
1549 
1550   //=============================================================================
1551   // Back in Interpreter Frame.
1552 
1553   // We are in thread_in_native_trans here and back in the normal
1554   // interpreter frame. We don't have to do anything special about
1555   // safepoints and we can switch to Java mode anytime we are ready.
1556 
1557   // Note: frame::interpreter_frame_result has a dependency on how the
1558   // method result is saved across the call to post_method_exit. For
1559   // native methods it assumes that the non-FPU/non-void result is
1560   // saved in z_ijava_state.lresult and a FPU result in z_ijava_state.fresult. If
1561   // this changes then the interpreter_frame_result implementation
1562   // will need to be updated too.
1563 
1564   //=============================================================================
1565   // Back in Java.
1566 
1567   // Memory ordering: Z does not reorder store/load with subsequent
1568   // load. That's strong enough.
1569   __ set_thread_state(_thread_in_Java);
1570 
1571   __ reset_last_Java_frame();
1572 
1573   // We reset the JNI handle block only after unboxing the result; see below.
1574 
1575   // The method register is junk from after the thread_in_native transition
1576   // until here. Also can't call_VM until the bcp has been
1577   // restored. Need bcp for throwing exception below so get it now.
1578   __ get_method(Rmethod);
1579 
1580   // Restore Z_bcp to have legal interpreter frame,
1581   // i.e., bci == 0 <=> Z_bcp == code_base().
1582   __ z_lg(Z_bcp, Address(Rmethod, Method::const_offset())); // get constMethod
1583   __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); // get codebase
1584 
1585   if (CheckJNICalls) {
1586     // clear_pending_jni_exception_check
1587     __ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop));
1588   }
1589 
1590   // Check if the native method returns an oop, and if so, move it
1591   // from the jni handle to z_ijava_state.oop_temp. This is
1592   // necessary, because we reset the jni handle block below.
1593   // NOTE: frame::interpreter_frame_result() depends on this, too.
1594   { NearLabel no_oop_result;
1595   __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT));
1596   __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_result);
1597   __ resolve_jobject(Rlresult, /* tmp1 */ Rmethod, /* tmp2 */ Z_R1);
1598   __ z_stg(Rlresult, oop_tmp_offset, Z_fp);
1599   __ bind(no_oop_result);
1600   }
1601 
1602   // Reset handle block.
1603   __ z_lg(Z_R1/*active_handles*/, thread_(active_handles));
1604   __ clear_mem(Address(Z_R1, JNIHandleBlock::top_offset()), 4);
1605 
1606   // Handle exceptions (exception handling will handle unlocking!).
1607   {
1608     Label L;
1609     __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
1610     __ z_bre(L);
1611     __ MacroAssembler::call_VM(noreg,
1612                                CAST_FROM_FN_PTR(address,
1613                                InterpreterRuntime::throw_pending_exception));
1614     __ should_not_reach_here();
1615     __ bind(L);
1616   }
1617 
1618   if (synchronized) {
1619     Register Rfirst_monitor = Z_ARG2;
1620     __ add2reg(Rfirst_monitor, -(frame::z_ijava_state_size + (int)sizeof(BasicObjectLock)), Z_fp);
1621 #ifdef ASSERT
1622     NearLabel ok;
1623     __ z_lg(Z_R1, _z_ijava_state_neg(monitors), Z_fp);
1624     __ compareU64_and_branch(Rfirst_monitor, Z_R1, Assembler::bcondEqual, ok);
1625     reentry = __ stop_chain_static(reentry, "native_entry:unlock: inconsistent z_ijava_state.monitors");
1626     __ bind(ok);
1627 #endif
1628     __ unlock_object(Rfirst_monitor);
1629   }
1630 
1631   // JVMTI support. Result has already been saved above to the frame.
1632   __ notify_method_exit(true/*native_method*/, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1633 
1634   // Move native method result back into proper registers and return.
1635   __ mem2freg_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
1636   __ mem2reg_opt(Z_RET, Address(Z_fp, _z_ijava_state_neg(lresult)));
1637   __ call_stub(Rresult_handler);
1638 
1639   // Pop the native method's interpreter frame.
1640   __ pop_interpreter_frame(Z_R14 /*return_pc*/, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/);
1641 
1642   // Return to caller.
1643   __ z_br(Z_R14);
1644 
1645   if (inc_counter) {
1646     // Handle overflow of counter and compile method.
1647     __ bind(invocation_counter_overflow);
1648     generate_counter_overflow(continue_after_compile);
1649   }
1650 
1651   BLOCK_COMMENT("} native_entry");
1652 
1653   return entry_point;
1654 }
1655 
1656 //
1657 // Generic interpreted method entry to template interpreter.
1658 //
1659 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1660   address entry_point = __ pc();
1661 
1662   bool inc_counter = UseCompiler || CountCompiledCalls;
1663 
1664   // Interpreter entry for ordinary Java methods.
1665   //
1666   // Registers alive
1667   //   Z_SP       - stack pointer
1668   //   Z_thread   - JavaThread*
1669   //   Z_method   - callee's method (method to be invoked)
1670   //   Z_esp      - operand (or expression) stack pointer of caller. one slot above last arg.
1671   //   Z_R10      - sender sp (before modifications, e.g. by c2i adapter
1672   //                           and as well by generate_fixed_frame below)
1673   //   Z_R14      - return address to caller (call_stub or c2i_adapter)
1674   //
1675   // Registers updated
1676   //   Z_SP       - stack pointer
1677   //   Z_fp       - callee's framepointer
1678   //   Z_esp      - callee's operand stack pointer
1679   //                points to the slot above the value on top
1680   //   Z_locals   - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
1681   //   Z_tos      - integer result, if any
1682   //   z_ftos     - floating point result, if any
1683   //
1684   //
1685   // stack layout at this point:
1686   //
1687   //   F1      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
1688   //                                                          frame was extended by c2i adapter)
1689   //           [outgoing Java arguments]     <-- Z_esp
1690   //           ...
1691   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
1692   //           ...
1693   //
1694   // stack layout before dispatching the first bytecode:
1695   //
1696   //   F0      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP
1697   //           [operand stack]               <-- Z_esp
1698   //           monitor (optional, can grow)
1699   //           [IJAVA_STATE]
1700   //   F1      [PARENT_IJAVA_FRAME_ABI]      <-- Z_fp (== *Z_SP)
1701   //           [F0's locals]                 <-- Z_locals
1702   //           [F1's operand stack]
1703   //           [F1's monitors] (optional)
1704   //           [IJAVA_STATE]
1705 
1706   // Make sure registers are different!
1707   assert_different_registers(Z_thread, Z_method, Z_esp);
1708 
1709   BLOCK_COMMENT("normal_entry {");
1710 
1711   // Make sure method is not native and not abstract.
1712   // Rethink these assertions - they can be simplified and shared.
1713 #ifdef ASSERT
1714   address reentry = nullptr;
1715   { Label L;
1716     __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT);
1717     __ z_bfalse(L);
1718     reentry = __ stop_chain_static(reentry, "tried to execute native method as non-native");
1719     __ bind(L);
1720   }
1721   { Label L;
1722     __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
1723     __ z_bfalse(L);
1724     reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
1725     __ bind(L);
1726   }
1727 #endif // ASSERT
1728 
1729   // Save the return PC into the callers frame for assertion in generate_fixed_frame.
1730   NOT_PRODUCT(__ save_return_pc(Z_R14));
1731 
1732   // Generate the code to allocate the interpreter stack frame.
1733   generate_fixed_frame(false);
1734 
1735   const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
1736   // Since at this point in the method invocation the exception handler
1737   // would try to exit the monitor of synchronized methods which hasn't
1738   // been entered yet, we set the thread local variable
1739   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1740   // runtime, exception handling i.e. unlock_if_synchronized_method will
1741   // check this thread local flag.
1742   __ z_mvi(do_not_unlock_if_synchronized, true);
1743 
1744   __ profile_parameters_type(Z_tmp_2, Z_ARG3, Z_ARG4);
1745 
1746   // Increment invocation counter and check for overflow.
1747   //
1748   // Note: checking for negative value instead of overflow so we have a 'sticky'
1749   // overflow test (may be of importance as soon as we have true MT/MP).
1750   NearLabel invocation_counter_overflow;
1751   NearLabel Lcontinue;
1752   if (inc_counter) {
1753     generate_counter_incr(&invocation_counter_overflow);
1754   }
1755   __ bind(Lcontinue);
1756 
1757   bang_stack_shadow_pages(false);
1758 
1759   // Reset the _do_not_unlock_if_synchronized flag.
1760   __ z_mvi(do_not_unlock_if_synchronized, false);
1761 
1762   // Check for synchronized methods.
1763   // Must happen AFTER invocation_counter check and stack overflow check,
1764   // so method is not locked if overflows.
1765   if (synchronized) {
1766     // Allocate monitor and lock method.
1767     lock_method();
1768   } else {
1769 #ifdef ASSERT
1770     { Label L;
1771       __ get_method(Z_R1_scratch);
1772       __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
1773       __ z_bfalse(L);
1774       reentry = __ stop_chain_static(reentry, "method needs synchronization");
1775       __ bind(L);
1776     }
1777 #endif // ASSERT
1778   }
1779 
1780   // start execution
1781 
1782 #ifdef ASSERT
1783   __ verify_esp(Z_esp, Z_R1_scratch);
1784 #endif
1785 
1786   // jvmti support
1787   __ notify_method_entry();
1788 
1789   // Start executing instructions.
1790   __ dispatch_next(vtos);
1791   // Dispatch_next does not return.
1792   DEBUG_ONLY(__ should_not_reach_here());
1793 
1794   // Invocation counter overflow.
1795   if (inc_counter) {
1796     // Handle invocation counter overflow.
1797     __ bind(invocation_counter_overflow);
1798     generate_counter_overflow(Lcontinue);
1799   }
1800 
1801   BLOCK_COMMENT("} normal_entry");
1802 
1803   return entry_point;
1804 }
1805 
1806 
1807 /**
1808  * Method entry for static native methods:
1809  *   int java.util.zip.CRC32.update(int crc, int b)
1810  */
1811 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1812   assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1813   uint64_t entry_off = __ offset();
1814   Label    slow_path;
1815 
1816   // If we need a safepoint check, generate full interpreter entry.
1817   __ safepoint_poll(slow_path, Z_R1);
1818 
1819   BLOCK_COMMENT("CRC32_update {");
1820 
1821   // We don't generate local frame and don't align stack because
1822   // we not even call stub code (we generate the code inline)
1823   // and there is no safepoint on this path.
1824 
1825   // Load java parameters.
1826   // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1827   const Register argP    = Z_esp;
1828   const Register crc     = Z_ARG1;  // crc value
1829   const Register data    = Z_ARG2;  // address of java byte value (kernel_crc32 needs address)
1830   const Register dataLen = Z_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1831   const Register table   = Z_ARG4;  // address of crc32 table
1832 
1833   // Arguments are reversed on java expression stack.
1834   __ z_la(data, 3+1*wordSize, argP);  // byte value (stack address).
1835                                         // Being passed as an int, the single byte is at offset +3.
1836   __ z_llgf(crc, 2 * wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register.
1837 
1838   StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
1839   __ kernel_crc32_singleByte(crc, data, dataLen, table, Z_R1, true);
1840 
1841   // Restore caller sp for c2i case.
1842   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1843 
1844   __ z_br(Z_R14);
1845 
1846   BLOCK_COMMENT("} CRC32_update");
1847 
1848   // Use a previously generated vanilla native entry as the slow path.
1849   BIND(slow_path);
1850   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
1851   return __ addr_at(entry_off);
1852 }
1853 
1854 
1855 /**
1856  * Method entry for static native methods:
1857  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1858  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1859  */
1860 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1861   assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1862   uint64_t entry_off = __ offset();
1863   Label    slow_path;
1864 
1865   // If we need a safepoint check, generate full interpreter entry.
1866   __ safepoint_poll(slow_path, Z_R1);
1867 
1868   // We don't generate local frame and don't align stack because
1869   // we call stub code and there is no safepoint on this path.
1870 
1871   // Load parameters.
1872   // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1873   const Register argP    = Z_esp;
1874   const Register crc     = Z_ARG1;  // crc value
1875   const Register data    = Z_ARG2;  // address of java byte array
1876   const Register dataLen = Z_ARG3;  // source data len
1877   const Register table   = Z_ARG4;  // address of crc32 table
1878   const Register t0      = Z_R10;   // work reg for kernel* emitters
1879   const Register t1      = Z_R11;   // work reg for kernel* emitters
1880   const Register t2      = Z_R12;   // work reg for kernel* emitters
1881   const Register t3      = Z_R13;   // work reg for kernel* emitters
1882 
1883   // Arguments are reversed on java expression stack.
1884   // Calculate address of start element.
1885   if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1886     // crc     @ (SP + 5W) (32bit)
1887     // buf     @ (SP + 3W) (64bit ptr to long array)
1888     // off     @ (SP + 2W) (32bit)
1889     // dataLen @ (SP + 1W) (32bit)
1890     // data = buf + off
1891     BLOCK_COMMENT("CRC32_updateByteBuffer {");
1892     __ z_llgf(crc,    5*wordSize, argP);  // current crc state
1893     __ z_lg(data,     3*wordSize, argP);  // start of byte buffer
1894     __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1895     __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process
1896   } else {                                                         // Used for "updateBytes update".
1897     // crc     @ (SP + 4W) (32bit)
1898     // buf     @ (SP + 3W) (64bit ptr to byte array)
1899     // off     @ (SP + 2W) (32bit)
1900     // dataLen @ (SP + 1W) (32bit)
1901     // data = buf + off + base_offset
1902     BLOCK_COMMENT("CRC32_updateBytes {");
1903     __ z_llgf(crc,    4*wordSize, argP);  // current crc state
1904     __ z_lg(data,     3*wordSize, argP);  // start of byte buffer
1905     __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1906     __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process
1907     __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1908   }
1909 
1910   StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
1911 
1912   __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
1913   __ z_stmg(t0, t3, 1*8, Z_SP);        // Spill regs 10..13 to make them available as work registers.
1914   __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, true);
1915   __ z_lmg(t0, t3, 1*8, Z_SP);         // Spill regs 10..13 back from stack.
1916 
1917   // Restore caller sp for c2i case.
1918   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1919 
1920   __ z_br(Z_R14);
1921 
1922   BLOCK_COMMENT("} CRC32_update{Bytes|ByteBuffer}");
1923 
1924   // Use a previously generated vanilla native entry as the slow path.
1925   BIND(slow_path);
1926   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
1927   return __ addr_at(entry_off);
1928 }
1929 
1930 
1931 /**
1932  * Method entry for intrinsic-candidate (non-native) methods:
1933  *   int java.util.zip.CRC32C.updateBytes(           int crc, byte[] b,  int off, int end)
1934  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end)
1935  * Unlike CRC32, CRC32C does not have any methods marked as native
1936  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1937  */
1938 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1939   assert(UseCRC32CIntrinsics, "this intrinsic is not supported");
1940   uint64_t entry_off = __ offset();
1941 
1942   // We don't generate local frame and don't align stack because
1943   // we call stub code and there is no safepoint on this path.
1944 
1945   // Load parameters.
1946   // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1947   const Register argP    = Z_esp;
1948   const Register crc     = Z_ARG1;  // crc value
1949   const Register data    = Z_ARG2;  // address of java byte array
1950   const Register dataLen = Z_ARG3;  // source data len
1951   const Register table   = Z_ARG4;  // address of crc32 table
1952   const Register t0      = Z_R10;   // work reg for kernel* emitters
1953   const Register t1      = Z_R11;   // work reg for kernel* emitters
1954   const Register t2      = Z_R12;   // work reg for kernel* emitters
1955   const Register t3      = Z_R13;   // work reg for kernel* emitters
1956 
1957   // Arguments are reversed on java expression stack.
1958   // Calculate address of start element.
1959   if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateByteBuffer direct".
1960     // crc     @ (SP + 5W) (32bit)
1961     // buf     @ (SP + 3W) (64bit ptr to long array)
1962     // off     @ (SP + 2W) (32bit)
1963     // dataLen @ (SP + 1W) (32bit)
1964     // data = buf + off
1965     BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
1966     __ z_llgf(crc,    5*wordSize, argP);  // current crc state
1967     __ z_lg(data,     3*wordSize, argP);  // start of byte buffer
1968     __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1969     __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process, calculated as
1970     __ z_sgf(dataLen, Address(argP, 2*wordSize));  // (end_index - offset)
1971   } else {                                                                // Used for "updateBytes update".
1972     // crc     @ (SP + 4W) (32bit)
1973     // buf     @ (SP + 3W) (64bit ptr to byte array)
1974     // off     @ (SP + 2W) (32bit)
1975     // dataLen @ (SP + 1W) (32bit)
1976     // data = buf + off + base_offset
1977     BLOCK_COMMENT("CRC32C_updateBytes {");
1978     __ z_llgf(crc,    4*wordSize, argP);  // current crc state
1979     __ z_lg(data,     3*wordSize, argP);  // start of byte buffer
1980     __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1981     __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process, calculated as
1982     __ z_sgf(dataLen, Address(argP, 2*wordSize));  // (end_index - offset)
1983     __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1984   }
1985 
1986   StubRoutines::zarch::generate_load_crc32c_table_addr(_masm, table);
1987 
1988   __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
1989   __ z_stmg(t0, t3, 1*8, Z_SP);        // Spill regs 10..13 to make them available as work registers.
1990   __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, false);
1991   __ z_lmg(t0, t3, 1*8, Z_SP);         // Spill regs 10..13 back from stack.
1992 
1993   // Restore caller sp for c2i case.
1994   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1995 
1996   __ z_br(Z_R14);
1997 
1998   BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
1999   return __ addr_at(entry_off);
2000 }
2001 
2002 // Not supported
2003 address TemplateInterpreterGenerator::generate_currentThread() { return nullptr; }
2004 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; }
2005 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; }
2006 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; }
2007 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; }
2008 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; }
2009 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; }
2010 
2011 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
2012   // Quick & dirty stack overflow checking: bang the stack & handle trap.
2013   // Note that we do the banging after the frame is setup, since the exception
2014   // handling code expects to find a valid interpreter frame on the stack.
2015   // Doing the banging earlier fails if the caller frame is not an interpreter
2016   // frame.
2017   // (Also, the exception throwing code expects to unlock any synchronized
2018   // method receiver, so do the banging after locking the receiver.)
2019 
2020   // Bang each page in the shadow zone. We can't assume it's been done for
2021   // an interpreter frame with greater than a page of locals, so each page
2022   // needs to be checked. Only true for non-native. For native, we only bang the last page.
2023   const size_t page_size      = os::vm_page_size();
2024   const int n_shadow_pages = (int)(StackOverflow::stack_shadow_zone_size()/page_size);
2025   const int start_page_num = native_call ? n_shadow_pages : 1;
2026   for (int pages = start_page_num; pages <= n_shadow_pages; pages++) {
2027     __ bang_stack_with_offset(pages*page_size);
2028   }
2029 }
2030 
2031 //-----------------------------------------------------------------------------
2032 // Exceptions
2033 
2034 void TemplateInterpreterGenerator::generate_throw_exception() {
2035 
2036   BLOCK_COMMENT("throw_exception {");
2037 
2038   // Entry point in previous activation (i.e., if the caller was interpreted).
2039   Interpreter::_rethrow_exception_entry = __ pc();
2040   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Frame accessors use Z_fp.
2041   // Z_ARG1 (==Z_tos): exception
2042   // Z_ARG2          : Return address/pc that threw exception.
2043   __ restore_bcp();    // R13 points to call/send.
2044   __ restore_locals();
2045 
2046   // Fallthrough, no need to restore Z_esp.
2047 
2048   // Entry point for exceptions thrown within interpreter code.
2049   Interpreter::_throw_exception_entry = __ pc();
2050   // Expression stack is undefined here.
2051   // Z_ARG1 (==Z_tos): exception
2052   // Z_bcp: exception bcp
2053   __ verify_oop(Z_ARG1);
2054   __ z_lgr(Z_ARG2, Z_ARG1);
2055 
2056   // Expression stack must be empty before entering the VM in case of
2057   // an exception.
2058   __ empty_expression_stack();
2059   // Find exception handler address and preserve exception oop.
2060   const Register Rpreserved_exc_oop = Z_tmp_1;
2061   __ call_VM(Rpreserved_exc_oop,
2062              CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception),
2063              Z_ARG2);
2064   // Z_RET: exception handler entry point
2065   // Z_bcp: bcp for exception handler
2066   __ push_ptr(Rpreserved_exc_oop); // Push exception which is now the only value on the stack.
2067   __ z_br(Z_RET); // Jump to exception handler (may be _remove_activation_entry!).
2068 
2069   // If the exception is not handled in the current frame the frame is
2070   // removed and the exception is rethrown (i.e. exception
2071   // continuation is _rethrow_exception).
2072   //
2073   // Note: At this point the bci is still the bci for the instruction
2074   // which caused the exception and the expression stack is
2075   // empty. Thus, for any VM calls at this point, GC will find a legal
2076   // oop map (with empty expression stack).
2077 
2078   //
2079   // JVMTI PopFrame support
2080   //
2081 
2082   Interpreter::_remove_activation_preserving_args_entry = __ pc();
2083   __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
2084   __ empty_expression_stack();
2085   // Set the popframe_processing bit in pending_popframe_condition
2086   // indicating that we are currently handling popframe, so that
2087   // call_VMs that may happen later do not trigger new popframe
2088   // handling cycles.
2089   __ load_sized_value(Z_tmp_1, Address(Z_thread, JavaThread::popframe_condition_offset()), 4, false /*signed*/);
2090   __ z_oill(Z_tmp_1, JavaThread::popframe_processing_bit);
2091   __ z_sty(Z_tmp_1, thread_(popframe_condition));
2092 
2093   {
2094     // Check to see whether we are returning to a deoptimized frame.
2095     // (The PopFrame call ensures that the caller of the popped frame is
2096     // either interpreted or compiled and deoptimizes it if compiled.)
2097     // In this case, we can't call dispatch_next() after the frame is
2098     // popped, but instead must save the incoming arguments and restore
2099     // them after deoptimization has occurred.
2100     //
2101     // Note that we don't compare the return PC against the
2102     // deoptimization blob's unpack entry because of the presence of
2103     // adapter frames in C2.
2104     NearLabel caller_not_deoptimized;
2105     __ z_lg(Z_ARG1, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2106     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), Z_ARG1);
2107     __ compareU64_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, caller_not_deoptimized);
2108 
2109     // Compute size of arguments for saving when returning to
2110     // deoptimized caller.
2111     __ get_method(Z_ARG2);
2112     __ z_lg(Z_ARG2, Address(Z_ARG2, Method::const_offset()));
2113     __ z_llgh(Z_ARG2, Address(Z_ARG2, ConstMethod::size_of_parameters_offset()));
2114     __ z_sllg(Z_ARG2, Z_ARG2, Interpreter::logStackElementSize); // slots 2 bytes
2115     __ restore_locals();
2116     // Compute address of args to be saved.
2117     __ z_lgr(Z_ARG3, Z_locals);
2118     __ z_slgr(Z_ARG3, Z_ARG2);
2119     __ add2reg(Z_ARG3, wordSize);
2120     // Save these arguments.
2121     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args),
2122                     Z_thread, Z_ARG2, Z_ARG3);
2123 
2124     __ remove_activation(vtos, Z_R14,
2125                          /* throw_monitor_exception */ false,
2126                          /* install_monitor_exception */ false,
2127                          /* notify_jvmdi */ false);
2128 
2129     // Inform deoptimization that it is responsible for restoring
2130     // these arguments.
2131     __ store_const(thread_(popframe_condition),
2132                    JavaThread::popframe_force_deopt_reexecution_bit,
2133                    Z_tmp_1, false);
2134 
2135     // Continue in deoptimization handler.
2136     __ z_br(Z_R14);
2137 
2138     __ bind(caller_not_deoptimized);
2139   }
2140 
2141   // Clear the popframe condition flag.
2142   __ clear_mem(thread_(popframe_condition), sizeof(int));
2143 
2144   __ remove_activation(vtos,
2145                        noreg,  // Retaddr is not used.
2146                        false,  // throw_monitor_exception
2147                        false,  // install_monitor_exception
2148                        false); // notify_jvmdi
2149   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
2150   __ restore_bcp();
2151   __ restore_locals();
2152   __ restore_esp();
2153   // The method data pointer was incremented already during
2154   // call profiling. We have to restore the mdp for the current bcp.
2155   if (ProfileInterpreter) {
2156     __ set_method_data_pointer_for_bcp();
2157   }
2158 #if INCLUDE_JVMTI
2159   {
2160     Label L_done;
2161 
2162     __ z_cli(0, Z_bcp, Bytecodes::_invokestatic);
2163     __ z_brc(Assembler::bcondNotEqual, L_done);
2164 
2165     // The member name argument must be restored if _invokestatic is
2166     // re-executed after a PopFrame call.  Detect such a case in the
2167     // InterpreterRuntime function and return the member name
2168     // argument, or null.
2169     __ z_lg(Z_ARG2, Address(Z_locals));
2170     __ get_method(Z_ARG3);
2171     __ call_VM(Z_tmp_1,
2172                CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null),
2173                Z_ARG2, Z_ARG3, Z_bcp);
2174 
2175     __ z_ltgr(Z_tmp_1, Z_tmp_1);
2176     __ z_brc(Assembler::bcondEqual, L_done);
2177 
2178     __ z_stg(Z_tmp_1, Address(Z_esp, wordSize));
2179     __ bind(L_done);
2180   }
2181 #endif // INCLUDE_JVMTI
2182   __ dispatch_next(vtos);
2183   // End of PopFrame support.
2184   Interpreter::_remove_activation_entry = __ pc();
2185 
2186   // In between activations - previous activation type unknown yet
2187   // compute continuation point - the continuation point expects the
2188   // following registers set up:
2189   //
2190   // Z_ARG1 (==Z_tos): exception
2191   // Z_ARG2          : return address/pc that threw exception
2192 
2193   Register return_pc = Z_tmp_1;
2194   Register handler   = Z_tmp_2;
2195    assert(return_pc->is_nonvolatile(), "use non-volatile reg. to preserve exception pc");
2196    assert(handler->is_nonvolatile(),   "use non-volatile reg. to handler pc");
2197   __ asm_assert_ijava_state_magic(return_pc/*tmp*/); // The top frame should be an interpreter frame.
2198   __ z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2199 
2200   // Moved removing the activation after VM call, because the new top
2201   // frame does not necessarily have the z_abi_160 required for a VM
2202   // call (e.g. if it is compiled).
2203 
2204   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
2205                                          SharedRuntime::exception_handler_for_return_address),
2206                         Z_thread, return_pc);
2207   __ z_lgr(handler, Z_RET); // Save exception handler.
2208 
2209   // Preserve exception over this code sequence.
2210   __ pop_ptr(Z_ARG1);
2211   __ set_vm_result(Z_ARG1);
2212   // Remove the activation (without doing throws on illegalMonitorExceptions).
2213   __ remove_activation(vtos, noreg/*ret.pc already loaded*/, false/*throw exc*/, true/*install exc*/, false/*notify jvmti*/);
2214   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
2215 
2216   __ get_vm_result(Z_ARG1);     // Restore exception.
2217   __ verify_oop(Z_ARG1);
2218   __ z_lgr(Z_ARG2, return_pc);  // Restore return address.
2219 
2220 #ifdef ASSERT
2221   // The return_pc in the new top frame is dead... at least that's my
2222   // current understanding. To assert this I overwrite it.
2223   // Note: for compiled frames the handler is the deopt blob
2224   // which writes Z_ARG2 into the return_pc slot.
2225   __ load_const_optimized(return_pc, 0xb00b1);
2226   __ z_stg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_SP);
2227 #endif
2228 
2229   // Z_ARG1 (==Z_tos): exception
2230   // Z_ARG2          : return address/pc that threw exception
2231 
2232   // Note that an "issuing PC" is actually the next PC after the call.
2233   __ z_br(handler);         // Jump to exception handler of caller.
2234 
2235   BLOCK_COMMENT("} throw_exception");
2236 }
2237 
2238 //
2239 // JVMTI ForceEarlyReturn support
2240 //
2241 address TemplateInterpreterGenerator::generate_earlyret_entry_for (TosState state) {
2242   address entry = __ pc();
2243 
2244   BLOCK_COMMENT("earlyret_entry {");
2245 
2246   __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
2247   __ restore_bcp();
2248   __ restore_locals();
2249   __ restore_esp();
2250   __ empty_expression_stack();
2251   __ load_earlyret_value(state);
2252 
2253   Register RjvmtiState = Z_tmp_1;
2254   __ z_lg(RjvmtiState, thread_(jvmti_thread_state));
2255   __ store_const(Address(RjvmtiState, JvmtiThreadState::earlyret_state_offset()),
2256                  JvmtiThreadState::earlyret_inactive, 4, 4, Z_R0_scratch);
2257 
2258   if (state == itos) {
2259     // Narrow result if state is itos but result type is smaller.
2260     // Need to narrow in the return bytecode rather than in generate_return_entry
2261     // since compiled code callers expect the result to already be narrowed.
2262     __ narrow(Z_tos, Z_tmp_1); /* fall through */
2263   }
2264   __ remove_activation(state,
2265                        Z_tmp_1, // retaddr
2266                        false,   // throw_monitor_exception
2267                        false,   // install_monitor_exception
2268                        true);   // notify_jvmdi
2269   __ z_br(Z_tmp_1);
2270 
2271   BLOCK_COMMENT("} earlyret_entry");
2272 
2273   return entry;
2274 }
2275 
2276 //-----------------------------------------------------------------------------
2277 // Helper for vtos entry point generation.
2278 
2279 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2280                                                          address& bep,
2281                                                          address& cep,
2282                                                          address& sep,
2283                                                          address& aep,
2284                                                          address& iep,
2285                                                          address& lep,
2286                                                          address& fep,
2287                                                          address& dep,
2288                                                          address& vep) {
2289   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2290   Label L;
2291   aep = __ pc(); __ push_ptr(); __ z_bru(L);
2292   fep = __ pc(); __ push_f();   __ z_bru(L);
2293   dep = __ pc(); __ push_d();   __ z_bru(L);
2294   lep = __ pc(); __ push_l();   __ z_bru(L);
2295   bep = cep = sep =
2296   iep = __ pc(); __ push_i();
2297   vep = __ pc();
2298   __ bind(L);
2299   generate_and_dispatch(t);
2300 }
2301 
2302 //-----------------------------------------------------------------------------
2303 
2304 #ifndef PRODUCT
2305 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2306   address entry = __ pc();
2307   NearLabel counter_below_trace_threshold;
2308 
2309   if (TraceBytecodesAt > 0) {
2310     // Skip runtime call, if the trace threshold is not yet reached.
2311     __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
2312     __ load_absolute_address(Z_tmp_2, (address)&TraceBytecodesAt);
2313     __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/);
2314     __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
2315     __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, counter_below_trace_threshold);
2316   }
2317 
2318   int offset2 = state == ltos || state == dtos ? 2 : 1;
2319 
2320   __ push(state);
2321   // Preserved return pointer is in Z_R14.
2322   // InterpreterRuntime::trace_bytecode() preserved and returns the value passed as second argument.
2323   __ z_lgr(Z_ARG2, Z_R14);
2324   __ z_lg(Z_ARG3, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)));
2325   if (WizardMode) {
2326     __ z_lgr(Z_ARG4, Z_esp); // Trace Z_esp in WizardMode.
2327   } else {
2328     __ z_lg(Z_ARG4, Address(Z_esp, Interpreter::expr_offset_in_bytes(offset2)));
2329   }
2330   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), Z_ARG2, Z_ARG3, Z_ARG4);
2331   __ z_lgr(Z_R14, Z_RET); // Estore return address (see above).
2332   __ pop(state);
2333 
2334   __ bind(counter_below_trace_threshold);
2335   __ z_br(Z_R14); // return
2336 
2337   return entry;
2338 }
2339 
2340 // Make feasible for old CPUs.
2341 void TemplateInterpreterGenerator::count_bytecode() {
2342   __ load_absolute_address(Z_R1_scratch, (address) &BytecodeCounter::_counter_value);
2343   __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2344 }
2345 
2346 void TemplateInterpreterGenerator::histogram_bytecode(Template * t) {
2347   __ load_absolute_address(Z_R1_scratch, (address)&BytecodeHistogram::_counters[ t->bytecode() ]);
2348   __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
2349 }
2350 
2351 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template * t) {
2352   Address  index_addr(Z_tmp_1, (intptr_t) 0);
2353   Register index = Z_tmp_2;
2354 
2355   // Load previous index.
2356   __ load_absolute_address(Z_tmp_1, (address) &BytecodePairHistogram::_index);
2357   __ mem2reg_opt(index, index_addr, false);
2358 
2359   // Mask with current bytecode and store as new previous index.
2360   __ z_srl(index, BytecodePairHistogram::log2_number_of_codes);
2361   __ load_const_optimized(Z_R0_scratch,
2362                           (int)t->bytecode() << BytecodePairHistogram::log2_number_of_codes);
2363   __ z_or(index, Z_R0_scratch);
2364   __ reg2mem_opt(index, index_addr, false);
2365 
2366   // Load counter array's address.
2367   __ z_lgfr(index, index);   // Sign extend for addressing.
2368   __ z_sllg(index, index, LogBytesPerInt);  // index2bytes
2369   __ load_absolute_address(Z_R1_scratch,
2370                            (address) &BytecodePairHistogram::_counters);
2371   // Add index and increment counter.
2372   __ z_agr(Z_R1_scratch, index);
2373   __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
2374 }
2375 
2376 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2377   // Call a little run-time stub to avoid blow-up for each bytecode.
2378   // The run-time runtime saves the right registers, depending on
2379   // the tosca in-state for the given template.
2380   address entry = Interpreter::trace_code(t->tos_in());
2381   guarantee(entry != nullptr, "entry must have been generated");
2382   __ call_stub(entry);
2383 }
2384 
2385 void TemplateInterpreterGenerator::stop_interpreter_at() {
2386   NearLabel L;
2387 
2388   __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
2389   __ load_absolute_address(Z_tmp_2, (address)&StopInterpreterAt);
2390   __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/);
2391   __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
2392   __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, L);
2393   assert(Z_tmp_1->is_nonvolatile(), "must be nonvolatile to preserve Z_tos");
2394   assert(Z_F8->is_nonvolatile(), "must be nonvolatile to preserve Z_ftos");
2395   __ z_lgr(Z_tmp_1, Z_tos);      // Save tos.
2396   __ z_lgr(Z_tmp_2, Z_bytecode); // Save Z_bytecode.
2397   __ z_ldr(Z_F8, Z_ftos);        // Save ftos.
2398   // Use -XX:StopInterpreterAt=<num> to set the limit
2399   // and break at breakpoint().
2400   __ call_VM(noreg, CAST_FROM_FN_PTR(address, breakpoint), false);
2401   __ z_lgr(Z_tos, Z_tmp_1);      // Restore tos.
2402   __ z_lgr(Z_bytecode, Z_tmp_2); // Save Z_bytecode.
2403   __ z_ldr(Z_ftos, Z_F8);        // Restore ftos.
2404   __ bind(L);
2405 }
2406 
2407 #endif // !PRODUCT