1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "ci/ciUtilities.hpp" 32 #include "compiler/compilerDefinitions.inline.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/cardTable.hpp" 35 #include "gc/shared/cardTableBarrierSet.hpp" 36 #include "gc/shared/collectedHeap.hpp" 37 #include "gc/shared/tlab_globals.hpp" 38 #include "interpreter/interpreter.hpp" 39 #include "memory/universe.hpp" 40 #include "nativeInst_x86.hpp" 41 #include "oops/oop.inline.hpp" 42 #include "prims/jvmtiExport.hpp" 43 #include "register_x86.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/signature.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "runtime/vframeArray.hpp" 48 #include "utilities/macros.hpp" 49 #include "vmreg_x86.inline.hpp" 50 51 // Implementation of StubAssembler 52 53 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) { 54 // setup registers 55 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions) 56 assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different"); 57 assert(oop_result1 != thread && metadata_result != thread, "registers must be different"); 58 assert(args_size >= 0, "illegal args_size"); 59 bool align_stack = false; 60 #ifdef _LP64 61 // At a method handle call, the stack may not be properly aligned 62 // when returning with an exception. 63 align_stack = (stub_id() == (int)C1StubId::handle_exception_from_callee_id); 64 #endif 65 66 #ifdef _LP64 67 mov(c_rarg0, thread); 68 set_num_rt_args(0); // Nothing on stack 69 #else 70 set_num_rt_args(1 + args_size); 71 72 // push java thread (becomes first argument of C function) 73 get_thread(thread); 74 push(thread); 75 #endif // _LP64 76 77 int call_offset = -1; 78 if (!align_stack) { 79 set_last_Java_frame(thread, noreg, rbp, nullptr, rscratch1); 80 } else { 81 address the_pc = pc(); 82 call_offset = offset(); 83 set_last_Java_frame(thread, noreg, rbp, the_pc, rscratch1); 84 andptr(rsp, -(StackAlignmentInBytes)); // Align stack 85 } 86 87 // do the call 88 call(RuntimeAddress(entry)); 89 if (!align_stack) { 90 call_offset = offset(); 91 } 92 // verify callee-saved register 93 #ifdef ASSERT 94 guarantee(thread != rax, "change this code"); 95 push(rax); 96 { Label L; 97 get_thread(rax); 98 cmpptr(thread, rax); 99 jcc(Assembler::equal, L); 100 int3(); 101 stop("StubAssembler::call_RT: rdi not callee saved?"); 102 bind(L); 103 } 104 pop(rax); 105 #endif 106 reset_last_Java_frame(thread, true); 107 108 // discard thread and arguments 109 NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord)); 110 111 // check for pending exceptions 112 { Label L; 113 cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 114 jcc(Assembler::equal, L); 115 // exception pending => remove activation and forward to exception handler 116 movptr(rax, Address(thread, Thread::pending_exception_offset())); 117 // make sure that the vm_results are cleared 118 if (oop_result1->is_valid()) { 119 movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); 120 } 121 if (metadata_result->is_valid()) { 122 movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD); 123 } 124 if (frame_size() == no_frame_size) { 125 leave(); 126 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 127 } else if (_stub_id == (int)C1StubId::forward_exception_id) { 128 should_not_reach_here(); 129 } else { 130 jump(RuntimeAddress(Runtime1::entry_for(C1StubId::forward_exception_id))); 131 } 132 bind(L); 133 } 134 // get oop results if there are any and reset the values in the thread 135 if (oop_result1->is_valid()) { 136 get_vm_result(oop_result1, thread); 137 } 138 if (metadata_result->is_valid()) { 139 get_vm_result_2(metadata_result, thread); 140 } 141 142 assert(call_offset >= 0, "Should be set"); 143 return call_offset; 144 } 145 146 147 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) { 148 #ifdef _LP64 149 mov(c_rarg1, arg1); 150 #else 151 push(arg1); 152 #endif // _LP64 153 return call_RT(oop_result1, metadata_result, entry, 1); 154 } 155 156 157 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) { 158 #ifdef _LP64 159 if (c_rarg1 == arg2) { 160 if (c_rarg2 == arg1) { 161 xchgq(arg1, arg2); 162 } else { 163 mov(c_rarg2, arg2); 164 mov(c_rarg1, arg1); 165 } 166 } else { 167 mov(c_rarg1, arg1); 168 mov(c_rarg2, arg2); 169 } 170 #else 171 push(arg2); 172 push(arg1); 173 #endif // _LP64 174 return call_RT(oop_result1, metadata_result, entry, 2); 175 } 176 177 178 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) { 179 #ifdef _LP64 180 // if there is any conflict use the stack 181 if (arg1 == c_rarg2 || arg1 == c_rarg3 || 182 arg2 == c_rarg1 || arg2 == c_rarg3 || 183 arg3 == c_rarg1 || arg3 == c_rarg2) { 184 push(arg3); 185 push(arg2); 186 push(arg1); 187 pop(c_rarg1); 188 pop(c_rarg2); 189 pop(c_rarg3); 190 } else { 191 mov(c_rarg1, arg1); 192 mov(c_rarg2, arg2); 193 mov(c_rarg3, arg3); 194 } 195 #else 196 push(arg3); 197 push(arg2); 198 push(arg1); 199 #endif // _LP64 200 return call_RT(oop_result1, metadata_result, entry, 3); 201 } 202 203 204 // Implementation of StubFrame 205 206 class StubFrame: public StackObj { 207 private: 208 StubAssembler* _sasm; 209 bool _use_pop_on_epilog; 210 211 public: 212 StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments, bool use_pop_on_epilog = false); 213 void load_argument(int offset_in_words, Register reg); 214 215 ~StubFrame(); 216 }; 217 218 void StubAssembler::prologue(const char* name, bool must_gc_arguments) { 219 set_info(name, must_gc_arguments); 220 enter(); 221 } 222 223 void StubAssembler::epilogue(bool use_pop) { 224 // Avoid using a leave instruction when this frame may 225 // have been frozen, since the current value of rbp 226 // restored from the stub would be invalid. We still 227 // must restore the rbp value saved on enter though. 228 use_pop ? pop(rbp) : leave(); 229 ret(0); 230 } 231 232 #define __ _sasm-> 233 234 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments, bool use_pop_on_epilog) { 235 _sasm = sasm; 236 _use_pop_on_epilog = use_pop_on_epilog; 237 __ prologue(name, must_gc_arguments); 238 } 239 240 // load parameters that were stored with LIR_Assembler::store_parameter 241 // Note: offsets for store_parameter and load_argument must match 242 void StubFrame::load_argument(int offset_in_words, Register reg) { 243 __ load_parameter(offset_in_words, reg); 244 } 245 246 247 StubFrame::~StubFrame() { 248 __ epilogue(_use_pop_on_epilog); 249 } 250 251 #undef __ 252 253 254 // Implementation of Runtime1 255 256 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2; 257 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2; 258 259 // Stack layout for saving/restoring all the registers needed during a runtime 260 // call (this includes deoptimization) 261 // Note: note that users of this frame may well have arguments to some runtime 262 // while these values are on the stack. These positions neglect those arguments 263 // but the code in save_live_registers will take the argument count into 264 // account. 265 // 266 #ifdef _LP64 267 #define SLOT2(x) x, 268 #define SLOT_PER_WORD 2 269 #else 270 #define SLOT2(x) 271 #define SLOT_PER_WORD 1 272 #endif // _LP64 273 274 enum reg_save_layout { 275 // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that 276 // happen and will assert if the stack size we create is misaligned 277 #ifdef _LP64 278 align_dummy_0, align_dummy_1, 279 #endif // _LP64 280 #ifdef _WIN64 281 // Windows always allocates space for it's argument registers (see 282 // frame::arg_reg_save_area_bytes). 283 arg_reg_save_1, arg_reg_save_1H, // 0, 4 284 arg_reg_save_2, arg_reg_save_2H, // 8, 12 285 arg_reg_save_3, arg_reg_save_3H, // 16, 20 286 arg_reg_save_4, arg_reg_save_4H, // 24, 28 287 #endif // _WIN64 288 xmm_regs_as_doubles_off, // 32 289 float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots, // 160 290 fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots, // 224 291 // fpu_state_end_off is exclusive 292 fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD), // 352 293 marker = fpu_state_end_off, SLOT2(markerH) // 352, 356 294 extra_space_offset, // 360 295 #ifdef _LP64 296 r15_off = extra_space_offset, r15H_off, // 360, 364 297 r14_off, r14H_off, // 368, 372 298 r13_off, r13H_off, // 376, 380 299 r12_off, r12H_off, // 384, 388 300 r11_off, r11H_off, // 392, 396 301 r10_off, r10H_off, // 400, 404 302 r9_off, r9H_off, // 408, 412 303 r8_off, r8H_off, // 416, 420 304 rdi_off, rdiH_off, // 424, 428 305 #else 306 rdi_off = extra_space_offset, 307 #endif // _LP64 308 rsi_off, SLOT2(rsiH_off) // 432, 436 309 rbp_off, SLOT2(rbpH_off) // 440, 444 310 rsp_off, SLOT2(rspH_off) // 448, 452 311 rbx_off, SLOT2(rbxH_off) // 456, 460 312 rdx_off, SLOT2(rdxH_off) // 464, 468 313 rcx_off, SLOT2(rcxH_off) // 472, 476 314 rax_off, SLOT2(raxH_off) // 480, 484 315 saved_rbp_off, SLOT2(saved_rbpH_off) // 488, 492 316 return_off, SLOT2(returnH_off) // 496, 500 317 reg_save_frame_size // As noted: neglects any parameters to runtime // 504 318 }; 319 320 // Save off registers which might be killed by calls into the runtime. 321 // Tries to smart of about FP registers. In particular we separate 322 // saving and describing the FPU registers for deoptimization since we 323 // have to save the FPU registers twice if we describe them and on P4 324 // saving FPU registers which don't contain anything appears 325 // expensive. The deopt blob is the only thing which needs to 326 // describe FPU registers. In all other cases it should be sufficient 327 // to simply save their current value. 328 // 329 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args, 330 bool save_fpu_registers = true) { 331 332 // In 64bit all the args are in regs so there are no additional stack slots 333 LP64_ONLY(num_rt_args = 0); 334 LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");) 335 int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread 336 sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word); 337 338 // record saved value locations in an OopMap 339 // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread 340 OopMap* map = new OopMap(frame_size_in_slots, 0); 341 map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg()); 342 map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg()); 343 map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg()); 344 map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg()); 345 map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg()); 346 map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg()); 347 #ifdef _LP64 348 map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args), r8->as_VMReg()); 349 map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args), r9->as_VMReg()); 350 map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg()); 351 map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg()); 352 map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg()); 353 map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg()); 354 map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg()); 355 map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg()); 356 357 // This is stupid but needed. 358 map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next()); 359 map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next()); 360 map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next()); 361 map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next()); 362 map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next()); 363 map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next()); 364 365 map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args), r8->as_VMReg()->next()); 366 map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args), r9->as_VMReg()->next()); 367 map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next()); 368 map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next()); 369 map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next()); 370 map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next()); 371 map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next()); 372 map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next()); 373 #endif // _LP64 374 375 int xmm_bypass_limit = FrameMap::get_num_caller_save_xmms(); 376 377 if (save_fpu_registers) { 378 #ifndef _LP64 379 if (UseSSE < 2) { 380 int fpu_off = float_regs_as_doubles_off; 381 for (int n = 0; n < FrameMap::nof_fpu_regs; n++) { 382 VMReg fpu_name_0 = FrameMap::fpu_regname(n); 383 map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + num_rt_args), fpu_name_0); 384 // %%% This is really a waste but we'll keep things as they were for now 385 if (true) { 386 map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next()); 387 } 388 fpu_off += 2; 389 } 390 assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots"); 391 392 if (UseSSE == 1) { 393 int xmm_off = xmm_regs_as_doubles_off; 394 for (int n = 0; n < FrameMap::nof_fpu_regs; n++) { 395 VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg(); 396 map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0); 397 xmm_off += 2; 398 } 399 assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers"); 400 } 401 } 402 #endif // !LP64 403 404 if (UseSSE >= 2) { 405 int xmm_off = xmm_regs_as_doubles_off; 406 for (int n = 0; n < FrameMap::nof_xmm_regs; n++) { 407 if (n < xmm_bypass_limit) { 408 VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg(); 409 map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0); 410 // %%% This is really a waste but we'll keep things as they were for now 411 if (true) { 412 map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next()); 413 } 414 } 415 xmm_off += 2; 416 } 417 assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers"); 418 } 419 } 420 421 return map; 422 } 423 424 #define __ this-> 425 426 void C1_MacroAssembler::save_live_registers_no_oop_map(bool save_fpu_registers) { 427 __ block_comment("save_live_registers"); 428 429 // Push CPU state in multiple of 16 bytes 430 #ifdef _LP64 431 __ save_legacy_gprs(); 432 #else 433 __ pusha(); 434 #endif 435 436 // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset"); 437 // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset"); 438 439 __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size); 440 441 #ifdef ASSERT 442 __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef); 443 #endif 444 445 if (save_fpu_registers) { 446 #ifndef _LP64 447 if (UseSSE < 2) { 448 // save FPU stack 449 __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size)); 450 __ fwait(); 451 452 #ifdef ASSERT 453 Label ok; 454 __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::x86::fpu_cntrl_wrd_std()); 455 __ jccb(Assembler::equal, ok); 456 __ stop("corrupted control word detected"); 457 __ bind(ok); 458 #endif 459 460 // Reset the control word to guard against exceptions being unmasked 461 // since fstp_d can cause FPU stack underflow exceptions. Write it 462 // into the on stack copy and then reload that to make sure that the 463 // current and future values are correct. 464 __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::x86::fpu_cntrl_wrd_std()); 465 __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size)); 466 467 // Save the FPU registers in de-opt-able form 468 int offset = 0; 469 for (int n = 0; n < FrameMap::nof_fpu_regs; n++) { 470 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset)); 471 offset += 8; 472 } 473 474 if (UseSSE == 1) { 475 // save XMM registers as float because double not supported without SSE2(num MMX == num fpu) 476 int offset = 0; 477 for (int n = 0; n < FrameMap::nof_fpu_regs; n++) { 478 XMMRegister xmm_name = as_XMMRegister(n); 479 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name); 480 offset += 8; 481 } 482 } 483 } 484 #endif // !_LP64 485 486 if (UseSSE >= 2) { 487 // save XMM registers 488 // XMM registers can contain float or double values, but this is not known here, 489 // so always save them as doubles. 490 // note that float values are _not_ converted automatically, so for float values 491 // the second word contains only garbage data. 492 int xmm_bypass_limit = FrameMap::get_num_caller_save_xmms(); 493 int offset = 0; 494 for (int n = 0; n < xmm_bypass_limit; n++) { 495 XMMRegister xmm_name = as_XMMRegister(n); 496 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name); 497 offset += 8; 498 } 499 } 500 } 501 502 // FPU stack must be empty now 503 NOT_LP64( __ verify_FPU(0, "save_live_registers"); ) 504 } 505 506 #undef __ 507 #define __ sasm-> 508 509 static void restore_fpu(C1_MacroAssembler* sasm, bool restore_fpu_registers) { 510 #ifdef _LP64 511 if (restore_fpu_registers) { 512 // restore XMM registers 513 int xmm_bypass_limit = FrameMap::get_num_caller_save_xmms(); 514 int offset = 0; 515 for (int n = 0; n < xmm_bypass_limit; n++) { 516 XMMRegister xmm_name = as_XMMRegister(n); 517 __ movdbl(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset)); 518 offset += 8; 519 } 520 } 521 #else 522 if (restore_fpu_registers) { 523 if (UseSSE >= 2) { 524 // restore XMM registers 525 int xmm_bypass_limit = FrameMap::nof_xmm_regs; 526 int offset = 0; 527 for (int n = 0; n < xmm_bypass_limit; n++) { 528 XMMRegister xmm_name = as_XMMRegister(n); 529 __ movdbl(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset)); 530 offset += 8; 531 } 532 } else if (UseSSE == 1) { 533 // restore XMM registers(num MMX == num fpu) 534 int offset = 0; 535 for (int n = 0; n < FrameMap::nof_fpu_regs; n++) { 536 XMMRegister xmm_name = as_XMMRegister(n); 537 __ movflt(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset)); 538 offset += 8; 539 } 540 } 541 542 if (UseSSE < 2) { 543 __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size)); 544 } else { 545 // check that FPU stack is really empty 546 __ verify_FPU(0, "restore_live_registers"); 547 } 548 } else { 549 // check that FPU stack is really empty 550 __ verify_FPU(0, "restore_live_registers"); 551 } 552 #endif // _LP64 553 554 #ifdef ASSERT 555 { 556 Label ok; 557 __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef); 558 __ jcc(Assembler::equal, ok); 559 __ stop("bad offsets in frame"); 560 __ bind(ok); 561 } 562 #endif // ASSERT 563 564 __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size); 565 } 566 567 #undef __ 568 #define __ this-> 569 570 void C1_MacroAssembler::restore_live_registers(bool restore_fpu_registers) { 571 __ block_comment("restore_live_registers"); 572 573 restore_fpu(this, restore_fpu_registers); 574 #ifdef _LP64 575 __ restore_legacy_gprs(); 576 #else 577 __ popa(); 578 #endif 579 580 } 581 582 583 void C1_MacroAssembler::restore_live_registers_except_rax(bool restore_fpu_registers) { 584 __ block_comment("restore_live_registers_except_rax"); 585 586 restore_fpu(this, restore_fpu_registers); 587 588 #ifdef _LP64 589 __ movptr(r15, Address(rsp, 0)); 590 __ movptr(r14, Address(rsp, wordSize)); 591 __ movptr(r13, Address(rsp, 2 * wordSize)); 592 __ movptr(r12, Address(rsp, 3 * wordSize)); 593 __ movptr(r11, Address(rsp, 4 * wordSize)); 594 __ movptr(r10, Address(rsp, 5 * wordSize)); 595 __ movptr(r9, Address(rsp, 6 * wordSize)); 596 __ movptr(r8, Address(rsp, 7 * wordSize)); 597 __ movptr(rdi, Address(rsp, 8 * wordSize)); 598 __ movptr(rsi, Address(rsp, 9 * wordSize)); 599 __ movptr(rbp, Address(rsp, 10 * wordSize)); 600 // skip rsp 601 __ movptr(rbx, Address(rsp, 12 * wordSize)); 602 __ movptr(rdx, Address(rsp, 13 * wordSize)); 603 __ movptr(rcx, Address(rsp, 14 * wordSize)); 604 605 __ addptr(rsp, 16 * wordSize); 606 #else 607 608 __ pop(rdi); 609 __ pop(rsi); 610 __ pop(rbp); 611 __ pop(rbx); // skip this value 612 __ pop(rbx); 613 __ pop(rdx); 614 __ pop(rcx); 615 __ addptr(rsp, BytesPerWord); 616 #endif // _LP64 617 } 618 619 #undef __ 620 #define __ sasm-> 621 622 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args, 623 bool save_fpu_registers = true) { 624 __ save_live_registers_no_oop_map(save_fpu_registers); 625 return generate_oop_map(sasm, num_rt_args, save_fpu_registers); 626 } 627 628 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) { 629 __ restore_live_registers(restore_fpu_registers); 630 } 631 632 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) { 633 sasm->restore_live_registers_except_rax(restore_fpu_registers); 634 } 635 636 637 void Runtime1::initialize_pd() { 638 // nothing to do 639 } 640 641 uint Runtime1::runtime_blob_current_thread_offset(frame f) { 642 #ifdef _LP64 643 return r15_off / 2; 644 #else 645 Unimplemented(); 646 return 0; 647 #endif 648 } 649 650 // Target: the entry point of the method that creates and posts the exception oop. 651 // has_argument: true if the exception needs arguments (passed on the stack because 652 // registers must be preserved). 653 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) { 654 // Preserve all registers. 655 int num_rt_args = has_argument ? (2 + 1) : 1; 656 OopMap* oop_map = save_live_registers(sasm, num_rt_args); 657 658 // Now all registers are saved and can be used freely. 659 // Verify that no old value is used accidentally. 660 __ invalidate_registers(true, true, true, true, true, true); 661 662 // Registers used by this stub. 663 const Register temp_reg = rbx; 664 665 // Load arguments for exception that are passed as arguments into the stub. 666 if (has_argument) { 667 #ifdef _LP64 668 __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord)); 669 __ movptr(c_rarg2, Address(rbp, 3*BytesPerWord)); 670 #else 671 __ movptr(temp_reg, Address(rbp, 3*BytesPerWord)); 672 __ push(temp_reg); 673 __ movptr(temp_reg, Address(rbp, 2*BytesPerWord)); 674 __ push(temp_reg); 675 #endif // _LP64 676 } 677 int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1); 678 679 OopMapSet* oop_maps = new OopMapSet(); 680 oop_maps->add_gc_map(call_offset, oop_map); 681 682 __ stop("should not reach here"); 683 684 return oop_maps; 685 } 686 687 688 OopMapSet* Runtime1::generate_handle_exception(C1StubId id, StubAssembler *sasm) { 689 __ block_comment("generate_handle_exception"); 690 691 // incoming parameters 692 const Register exception_oop = rax; 693 const Register exception_pc = rdx; 694 // other registers used in this stub 695 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); 696 697 // Save registers, if required. 698 OopMapSet* oop_maps = new OopMapSet(); 699 OopMap* oop_map = nullptr; 700 switch (id) { 701 case C1StubId::forward_exception_id: 702 // We're handling an exception in the context of a compiled frame. 703 // The registers have been saved in the standard places. Perform 704 // an exception lookup in the caller and dispatch to the handler 705 // if found. Otherwise unwind and dispatch to the callers 706 // exception handler. 707 oop_map = generate_oop_map(sasm, 1 /*thread*/); 708 709 // load and clear pending exception oop into RAX 710 __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset())); 711 __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 712 713 // load issuing PC (the return address for this stub) into rdx 714 __ movptr(exception_pc, Address(rbp, 1*BytesPerWord)); 715 716 // make sure that the vm_results are cleared (may be unnecessary) 717 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); 718 __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD); 719 break; 720 case C1StubId::handle_exception_nofpu_id: 721 case C1StubId::handle_exception_id: 722 // At this point all registers MAY be live. 723 oop_map = save_live_registers(sasm, 1 /*thread*/, id != C1StubId::handle_exception_nofpu_id); 724 break; 725 case C1StubId::handle_exception_from_callee_id: { 726 // At this point all registers except exception oop (RAX) and 727 // exception pc (RDX) are dead. 728 const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord); 729 oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0); 730 sasm->set_frame_size(frame_size); 731 WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes)); 732 break; 733 } 734 default: ShouldNotReachHere(); 735 } 736 737 #if !defined(_LP64) && defined(COMPILER2) 738 if (UseSSE < 2 && !CompilerConfig::is_c1_only_no_jvmci()) { 739 // C2 can leave the fpu stack dirty 740 __ empty_FPU_stack(); 741 } 742 #endif // !_LP64 && COMPILER2 743 744 // verify that only rax, and rdx is valid at this time 745 __ invalidate_registers(false, true, true, false, true, true); 746 // verify that rax, contains a valid exception 747 __ verify_not_null_oop(exception_oop); 748 749 // load address of JavaThread object for thread-local data 750 NOT_LP64(__ get_thread(thread);) 751 752 #ifdef ASSERT 753 // check that fields in JavaThread for exception oop and issuing pc are 754 // empty before writing to them 755 Label oop_empty; 756 __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD); 757 __ jcc(Assembler::equal, oop_empty); 758 __ stop("exception oop already set"); 759 __ bind(oop_empty); 760 761 Label pc_empty; 762 __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0); 763 __ jcc(Assembler::equal, pc_empty); 764 __ stop("exception pc already set"); 765 __ bind(pc_empty); 766 #endif 767 768 // save exception oop and issuing pc into JavaThread 769 // (exception handler will load it from here) 770 __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop); 771 __ movptr(Address(thread, JavaThread::exception_pc_offset()), exception_pc); 772 773 // patch throwing pc into return address (has bci & oop map) 774 __ movptr(Address(rbp, 1*BytesPerWord), exception_pc); 775 776 // compute the exception handler. 777 // the exception oop and the throwing pc are read from the fields in JavaThread 778 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc)); 779 oop_maps->add_gc_map(call_offset, oop_map); 780 781 // rax: handler address 782 // will be the deopt blob if nmethod was deoptimized while we looked up 783 // handler regardless of whether handler existed in the nmethod. 784 785 // only rax, is valid at this time, all other registers have been destroyed by the runtime call 786 __ invalidate_registers(false, true, true, true, true, true); 787 788 // patch the return address, this stub will directly return to the exception handler 789 __ movptr(Address(rbp, 1*BytesPerWord), rax); 790 791 switch (id) { 792 case C1StubId::forward_exception_id: 793 case C1StubId::handle_exception_nofpu_id: 794 case C1StubId::handle_exception_id: 795 // Restore the registers that were saved at the beginning. 796 restore_live_registers(sasm, id != C1StubId::handle_exception_nofpu_id); 797 break; 798 case C1StubId::handle_exception_from_callee_id: 799 // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP 800 // since we do a leave anyway. 801 802 // Pop the return address. 803 __ leave(); 804 __ pop(rcx); 805 __ jmp(rcx); // jump to exception handler 806 break; 807 default: ShouldNotReachHere(); 808 } 809 810 return oop_maps; 811 } 812 813 814 void Runtime1::generate_unwind_exception(StubAssembler *sasm) { 815 // incoming parameters 816 const Register exception_oop = rax; 817 // callee-saved copy of exception_oop during runtime call 818 const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14); 819 // other registers used in this stub 820 const Register exception_pc = rdx; 821 const Register handler_addr = rbx; 822 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); 823 824 if (AbortVMOnException) { 825 __ enter(); 826 save_live_registers(sasm, 2); 827 __ call_VM_leaf(CAST_FROM_FN_PTR(address, check_abort_on_vm_exception), rax); 828 restore_live_registers(sasm); 829 __ leave(); 830 } 831 832 // verify that only rax, is valid at this time 833 __ invalidate_registers(false, true, true, true, true, true); 834 835 #ifdef ASSERT 836 // check that fields in JavaThread for exception oop and issuing pc are empty 837 NOT_LP64(__ get_thread(thread);) 838 Label oop_empty; 839 __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0); 840 __ jcc(Assembler::equal, oop_empty); 841 __ stop("exception oop must be empty"); 842 __ bind(oop_empty); 843 844 Label pc_empty; 845 __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0); 846 __ jcc(Assembler::equal, pc_empty); 847 __ stop("exception pc must be empty"); 848 __ bind(pc_empty); 849 #endif 850 851 // clear the FPU stack in case any FPU results are left behind 852 NOT_LP64( __ empty_FPU_stack(); ) 853 854 // save exception_oop in callee-saved register to preserve it during runtime calls 855 __ verify_not_null_oop(exception_oop); 856 __ movptr(exception_oop_callee_saved, exception_oop); 857 858 NOT_LP64(__ get_thread(thread);) 859 // Get return address (is on top of stack after leave). 860 __ movptr(exception_pc, Address(rsp, 0)); 861 862 // search the exception handler address of the caller (using the return address) 863 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc); 864 // rax: exception handler address of the caller 865 866 // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call. 867 __ invalidate_registers(false, true, true, true, false, true); 868 869 // move result of call into correct register 870 __ movptr(handler_addr, rax); 871 872 // Restore exception oop to RAX (required convention of exception handler). 873 __ movptr(exception_oop, exception_oop_callee_saved); 874 875 // verify that there is really a valid exception in rax 876 __ verify_not_null_oop(exception_oop); 877 878 // get throwing pc (= return address). 879 // rdx has been destroyed by the call, so it must be set again 880 // the pop is also necessary to simulate the effect of a ret(0) 881 __ pop(exception_pc); 882 883 // continue at exception handler (return address removed) 884 // note: do *not* remove arguments when unwinding the 885 // activation since the caller assumes having 886 // all arguments on the stack when entering the 887 // runtime to determine the exception handler 888 // (GC happens at call site with arguments!) 889 // rax: exception oop 890 // rdx: throwing pc 891 // rbx: exception handler 892 __ jmp(handler_addr); 893 } 894 895 896 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) { 897 // use the maximum number of runtime-arguments here because it is difficult to 898 // distinguish each RT-Call. 899 // Note: This number affects also the RT-Call in generate_handle_exception because 900 // the oop-map is shared for all calls. 901 const int num_rt_args = 2; // thread + dummy 902 903 DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); 904 assert(deopt_blob != nullptr, "deoptimization blob must have been created"); 905 906 OopMap* oop_map = save_live_registers(sasm, num_rt_args); 907 908 #ifdef _LP64 909 const Register thread = r15_thread; 910 // No need to worry about dummy 911 __ mov(c_rarg0, thread); 912 #else 913 __ push(rax); // push dummy 914 915 const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions) 916 // push java thread (becomes first argument of C function) 917 __ get_thread(thread); 918 __ push(thread); 919 #endif // _LP64 920 __ set_last_Java_frame(thread, noreg, rbp, nullptr, rscratch1); 921 // do the call 922 __ call(RuntimeAddress(target)); 923 OopMapSet* oop_maps = new OopMapSet(); 924 oop_maps->add_gc_map(__ offset(), oop_map); 925 // verify callee-saved register 926 #ifdef ASSERT 927 guarantee(thread != rax, "change this code"); 928 __ push(rax); 929 { Label L; 930 __ get_thread(rax); 931 __ cmpptr(thread, rax); 932 __ jcc(Assembler::equal, L); 933 __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?"); 934 __ bind(L); 935 } 936 __ pop(rax); 937 #endif 938 __ reset_last_Java_frame(thread, true); 939 #ifndef _LP64 940 __ pop(rcx); // discard thread arg 941 __ pop(rcx); // discard dummy 942 #endif // _LP64 943 944 // check for pending exceptions 945 { Label L; 946 __ cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 947 __ jcc(Assembler::equal, L); 948 // exception pending => remove activation and forward to exception handler 949 950 __ testptr(rax, rax); // have we deoptimized? 951 __ jump_cc(Assembler::equal, 952 RuntimeAddress(Runtime1::entry_for(C1StubId::forward_exception_id))); 953 954 // the deopt blob expects exceptions in the special fields of 955 // JavaThread, so copy and clear pending exception. 956 957 // load and clear pending exception 958 __ movptr(rax, Address(thread, Thread::pending_exception_offset())); 959 __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 960 961 // check that there is really a valid exception 962 __ verify_not_null_oop(rax); 963 964 // load throwing pc: this is the return address of the stub 965 __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size)); 966 967 #ifdef ASSERT 968 // check that fields in JavaThread for exception oop and issuing pc are empty 969 Label oop_empty; 970 __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD); 971 __ jcc(Assembler::equal, oop_empty); 972 __ stop("exception oop must be empty"); 973 __ bind(oop_empty); 974 975 Label pc_empty; 976 __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD); 977 __ jcc(Assembler::equal, pc_empty); 978 __ stop("exception pc must be empty"); 979 __ bind(pc_empty); 980 #endif 981 982 // store exception oop and throwing pc to JavaThread 983 __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax); 984 __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx); 985 986 restore_live_registers(sasm); 987 988 __ leave(); 989 __ addptr(rsp, BytesPerWord); // remove return address from stack 990 991 // Forward the exception directly to deopt blob. We can blow no 992 // registers and must leave throwing pc on the stack. A patch may 993 // have values live in registers so the entry point with the 994 // exception in tls. 995 __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls())); 996 997 __ bind(L); 998 } 999 1000 1001 // Runtime will return true if the nmethod has been deoptimized during 1002 // the patching process. In that case we must do a deopt reexecute instead. 1003 1004 Label cont; 1005 1006 __ testptr(rax, rax); // have we deoptimized? 1007 __ jcc(Assembler::equal, cont); // no 1008 1009 // Will reexecute. Proper return address is already on the stack we just restore 1010 // registers, pop all of our frame but the return address and jump to the deopt blob 1011 restore_live_registers(sasm); 1012 __ leave(); 1013 __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution())); 1014 1015 __ bind(cont); 1016 restore_live_registers(sasm); 1017 __ leave(); 1018 __ ret(0); 1019 1020 return oop_maps; 1021 } 1022 1023 1024 OopMapSet* Runtime1::generate_code_for(C1StubId id, StubAssembler* sasm) { 1025 1026 // for better readability 1027 const bool must_gc_arguments = true; 1028 const bool dont_gc_arguments = false; 1029 1030 // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu 1031 bool save_fpu_registers = true; 1032 1033 // stub code & info for the different stubs 1034 OopMapSet* oop_maps = nullptr; 1035 switch (id) { 1036 case C1StubId::forward_exception_id: 1037 { 1038 oop_maps = generate_handle_exception(id, sasm); 1039 __ leave(); 1040 __ ret(0); 1041 } 1042 break; 1043 1044 case C1StubId::new_instance_id: 1045 case C1StubId::fast_new_instance_id: 1046 case C1StubId::fast_new_instance_init_check_id: 1047 { 1048 Register klass = rdx; // Incoming 1049 Register obj = rax; // Result 1050 1051 if (id == C1StubId::new_instance_id) { 1052 __ set_info("new_instance", dont_gc_arguments); 1053 } else if (id == C1StubId::fast_new_instance_id) { 1054 __ set_info("fast new_instance", dont_gc_arguments); 1055 } else { 1056 assert(id == C1StubId::fast_new_instance_init_check_id, "bad C1StubId"); 1057 __ set_info("fast new_instance init check", dont_gc_arguments); 1058 } 1059 1060 __ enter(); 1061 OopMap* map = save_live_registers(sasm, 2); 1062 int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass); 1063 oop_maps = new OopMapSet(); 1064 oop_maps->add_gc_map(call_offset, map); 1065 restore_live_registers_except_rax(sasm); 1066 __ verify_oop(obj); 1067 __ leave(); 1068 __ ret(0); 1069 1070 // rax,: new instance 1071 } 1072 1073 break; 1074 1075 case C1StubId::counter_overflow_id: 1076 { 1077 Register bci = rax, method = rbx; 1078 __ enter(); 1079 OopMap* map = save_live_registers(sasm, 3); 1080 // Retrieve bci 1081 __ movl(bci, Address(rbp, 2*BytesPerWord)); 1082 // And a pointer to the Method* 1083 __ movptr(method, Address(rbp, 3*BytesPerWord)); 1084 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method); 1085 oop_maps = new OopMapSet(); 1086 oop_maps->add_gc_map(call_offset, map); 1087 restore_live_registers(sasm); 1088 __ leave(); 1089 __ ret(0); 1090 } 1091 break; 1092 1093 case C1StubId::new_type_array_id: 1094 case C1StubId::new_object_array_id: 1095 { 1096 Register length = rbx; // Incoming 1097 Register klass = rdx; // Incoming 1098 Register obj = rax; // Result 1099 1100 if (id == C1StubId::new_type_array_id) { 1101 __ set_info("new_type_array", dont_gc_arguments); 1102 } else { 1103 __ set_info("new_object_array", dont_gc_arguments); 1104 } 1105 1106 #ifdef ASSERT 1107 // assert object type is really an array of the proper kind 1108 { 1109 Label ok; 1110 Register t0 = obj; 1111 __ movl(t0, Address(klass, Klass::layout_helper_offset())); 1112 __ sarl(t0, Klass::_lh_array_tag_shift); 1113 int tag = ((id == C1StubId::new_type_array_id) 1114 ? Klass::_lh_array_tag_type_value 1115 : Klass::_lh_array_tag_obj_value); 1116 __ cmpl(t0, tag); 1117 __ jcc(Assembler::equal, ok); 1118 __ stop("assert(is an array klass)"); 1119 __ should_not_reach_here(); 1120 __ bind(ok); 1121 } 1122 #endif // ASSERT 1123 1124 __ enter(); 1125 OopMap* map = save_live_registers(sasm, 3); 1126 int call_offset; 1127 if (id == C1StubId::new_type_array_id) { 1128 call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length); 1129 } else { 1130 call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length); 1131 } 1132 1133 oop_maps = new OopMapSet(); 1134 oop_maps->add_gc_map(call_offset, map); 1135 restore_live_registers_except_rax(sasm); 1136 1137 __ verify_oop(obj); 1138 __ leave(); 1139 __ ret(0); 1140 1141 // rax,: new array 1142 } 1143 break; 1144 1145 case C1StubId::new_multi_array_id: 1146 { StubFrame f(sasm, "new_multi_array", dont_gc_arguments); 1147 // rax,: klass 1148 // rbx,: rank 1149 // rcx: address of 1st dimension 1150 OopMap* map = save_live_registers(sasm, 4); 1151 int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx); 1152 1153 oop_maps = new OopMapSet(); 1154 oop_maps->add_gc_map(call_offset, map); 1155 restore_live_registers_except_rax(sasm); 1156 1157 // rax,: new multi array 1158 __ verify_oop(rax); 1159 } 1160 break; 1161 1162 case C1StubId::register_finalizer_id: 1163 { 1164 __ set_info("register_finalizer", dont_gc_arguments); 1165 1166 // This is called via call_runtime so the arguments 1167 // will be place in C abi locations 1168 1169 #ifdef _LP64 1170 __ verify_oop(c_rarg0); 1171 __ mov(rax, c_rarg0); 1172 #else 1173 // The object is passed on the stack and we haven't pushed a 1174 // frame yet so it's one work away from top of stack. 1175 __ movptr(rax, Address(rsp, 1 * BytesPerWord)); 1176 __ verify_oop(rax); 1177 #endif // _LP64 1178 1179 // load the klass and check the has finalizer flag 1180 Label register_finalizer; 1181 Register t = rsi; 1182 __ load_klass(t, rax, rscratch1); 1183 __ testb(Address(t, Klass::misc_flags_offset()), KlassFlags::_misc_has_finalizer); 1184 __ jcc(Assembler::notZero, register_finalizer); 1185 __ ret(0); 1186 1187 __ bind(register_finalizer); 1188 __ enter(); 1189 OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */); 1190 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax); 1191 oop_maps = new OopMapSet(); 1192 oop_maps->add_gc_map(call_offset, oop_map); 1193 1194 // Now restore all the live registers 1195 restore_live_registers(sasm); 1196 1197 __ leave(); 1198 __ ret(0); 1199 } 1200 break; 1201 1202 case C1StubId::throw_range_check_failed_id: 1203 { StubFrame f(sasm, "range_check_failed", dont_gc_arguments); 1204 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true); 1205 } 1206 break; 1207 1208 case C1StubId::throw_index_exception_id: 1209 { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments); 1210 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true); 1211 } 1212 break; 1213 1214 case C1StubId::throw_div0_exception_id: 1215 { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments); 1216 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false); 1217 } 1218 break; 1219 1220 case C1StubId::throw_null_pointer_exception_id: 1221 { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments); 1222 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false); 1223 } 1224 break; 1225 1226 case C1StubId::handle_exception_nofpu_id: 1227 case C1StubId::handle_exception_id: 1228 { StubFrame f(sasm, "handle_exception", dont_gc_arguments); 1229 oop_maps = generate_handle_exception(id, sasm); 1230 } 1231 break; 1232 1233 case C1StubId::handle_exception_from_callee_id: 1234 { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments); 1235 oop_maps = generate_handle_exception(id, sasm); 1236 } 1237 break; 1238 1239 case C1StubId::unwind_exception_id: 1240 { __ set_info("unwind_exception", dont_gc_arguments); 1241 // note: no stubframe since we are about to leave the current 1242 // activation and we are calling a leaf VM function only. 1243 generate_unwind_exception(sasm); 1244 } 1245 break; 1246 1247 case C1StubId::throw_array_store_exception_id: 1248 { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments); 1249 // tos + 0: link 1250 // + 1: return address 1251 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true); 1252 } 1253 break; 1254 1255 case C1StubId::throw_class_cast_exception_id: 1256 { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments); 1257 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true); 1258 } 1259 break; 1260 1261 case C1StubId::throw_incompatible_class_change_error_id: 1262 { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments); 1263 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false); 1264 } 1265 break; 1266 1267 case C1StubId::slow_subtype_check_id: 1268 { 1269 // Typical calling sequence: 1270 // __ push(klass_RInfo); // object klass or other subclass 1271 // __ push(sup_k_RInfo); // array element klass or other superclass 1272 // __ call(slow_subtype_check); 1273 // Note that the subclass is pushed first, and is therefore deepest. 1274 // Previous versions of this code reversed the names 'sub' and 'super'. 1275 // This was operationally harmless but made the code unreadable. 1276 enum layout { 1277 rax_off, SLOT2(raxH_off) 1278 rcx_off, SLOT2(rcxH_off) 1279 rsi_off, SLOT2(rsiH_off) 1280 rdi_off, SLOT2(rdiH_off) 1281 // saved_rbp_off, SLOT2(saved_rbpH_off) 1282 return_off, SLOT2(returnH_off) 1283 sup_k_off, SLOT2(sup_kH_off) 1284 klass_off, SLOT2(superH_off) 1285 framesize, 1286 result_off = klass_off // deepest argument is also the return value 1287 }; 1288 1289 __ set_info("slow_subtype_check", dont_gc_arguments); 1290 __ push(rdi); 1291 __ push(rsi); 1292 __ push(rcx); 1293 __ push(rax); 1294 1295 // This is called by pushing args and not with C abi 1296 __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass 1297 __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass 1298 1299 Label miss; 1300 __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, nullptr, &miss); 1301 1302 // fallthrough on success: 1303 __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result 1304 __ pop(rax); 1305 __ pop(rcx); 1306 __ pop(rsi); 1307 __ pop(rdi); 1308 __ ret(0); 1309 1310 __ bind(miss); 1311 __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result 1312 __ pop(rax); 1313 __ pop(rcx); 1314 __ pop(rsi); 1315 __ pop(rdi); 1316 __ ret(0); 1317 } 1318 break; 1319 1320 case C1StubId::monitorenter_nofpu_id: 1321 save_fpu_registers = false; 1322 // fall through 1323 case C1StubId::monitorenter_id: 1324 { 1325 StubFrame f(sasm, "monitorenter", dont_gc_arguments, true /* use_pop_on_epilog */); 1326 OopMap* map = save_live_registers(sasm, 3, save_fpu_registers); 1327 1328 // Called with store_parameter and not C abi 1329 1330 f.load_argument(1, rax); // rax,: object 1331 f.load_argument(0, rbx); // rbx,: lock address 1332 1333 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx); 1334 1335 oop_maps = new OopMapSet(); 1336 oop_maps->add_gc_map(call_offset, map); 1337 restore_live_registers(sasm, save_fpu_registers); 1338 } 1339 break; 1340 1341 case C1StubId::monitorexit_nofpu_id: 1342 save_fpu_registers = false; 1343 // fall through 1344 case C1StubId::monitorexit_id: 1345 { 1346 StubFrame f(sasm, "monitorexit", dont_gc_arguments); 1347 OopMap* map = save_live_registers(sasm, 2, save_fpu_registers); 1348 1349 // Called with store_parameter and not C abi 1350 1351 f.load_argument(0, rax); // rax,: lock address 1352 1353 // note: really a leaf routine but must setup last java sp 1354 // => use call_RT for now (speed can be improved by 1355 // doing last java sp setup manually) 1356 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax); 1357 1358 oop_maps = new OopMapSet(); 1359 oop_maps->add_gc_map(call_offset, map); 1360 restore_live_registers(sasm, save_fpu_registers); 1361 } 1362 break; 1363 1364 case C1StubId::deoptimize_id: 1365 { 1366 StubFrame f(sasm, "deoptimize", dont_gc_arguments); 1367 const int num_rt_args = 2; // thread, trap_request 1368 OopMap* oop_map = save_live_registers(sasm, num_rt_args); 1369 f.load_argument(0, rax); 1370 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), rax); 1371 oop_maps = new OopMapSet(); 1372 oop_maps->add_gc_map(call_offset, oop_map); 1373 restore_live_registers(sasm); 1374 DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); 1375 assert(deopt_blob != nullptr, "deoptimization blob must have been created"); 1376 __ leave(); 1377 __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution())); 1378 } 1379 break; 1380 1381 case C1StubId::access_field_patching_id: 1382 { StubFrame f(sasm, "access_field_patching", dont_gc_arguments); 1383 // we should set up register map 1384 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching)); 1385 } 1386 break; 1387 1388 case C1StubId::load_klass_patching_id: 1389 { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments); 1390 // we should set up register map 1391 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching)); 1392 } 1393 break; 1394 1395 case C1StubId::load_mirror_patching_id: 1396 { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments); 1397 // we should set up register map 1398 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching)); 1399 } 1400 break; 1401 1402 case C1StubId::load_appendix_patching_id: 1403 { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments); 1404 // we should set up register map 1405 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching)); 1406 } 1407 break; 1408 1409 case C1StubId::dtrace_object_alloc_id: 1410 { // rax,: object 1411 StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments); 1412 // we can't gc here so skip the oopmap but make sure that all 1413 // the live registers get saved. 1414 save_live_registers(sasm, 1); 1415 1416 __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax)); 1417 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)))); 1418 NOT_LP64(__ pop(rax)); 1419 1420 restore_live_registers(sasm); 1421 } 1422 break; 1423 1424 case C1StubId::fpu2long_stub_id: 1425 { 1426 #ifdef _LP64 1427 Label done; 1428 __ cvttsd2siq(rax, Address(rsp, wordSize)); 1429 __ cmp64(rax, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 1430 __ jccb(Assembler::notEqual, done); 1431 __ movq(rax, Address(rsp, wordSize)); 1432 __ subptr(rsp, 8); 1433 __ movq(Address(rsp, 0), rax); 1434 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 1435 __ pop(rax); 1436 __ bind(done); 1437 __ ret(0); 1438 #else 1439 // rax, and rdx are destroyed, but should be free since the result is returned there 1440 // preserve rsi,ecx 1441 __ push(rsi); 1442 __ push(rcx); 1443 1444 // check for NaN 1445 Label return0, do_return, return_min_jlong, do_convert; 1446 1447 Address value_high_word(rsp, wordSize + 4); 1448 Address value_low_word(rsp, wordSize); 1449 Address result_high_word(rsp, 3*wordSize + 4); 1450 Address result_low_word(rsp, 3*wordSize); 1451 1452 __ subptr(rsp, 32); // more than enough on 32bit 1453 __ fst_d(value_low_word); 1454 __ movl(rax, value_high_word); 1455 __ andl(rax, 0x7ff00000); 1456 __ cmpl(rax, 0x7ff00000); 1457 __ jcc(Assembler::notEqual, do_convert); 1458 __ movl(rax, value_high_word); 1459 __ andl(rax, 0xfffff); 1460 __ orl(rax, value_low_word); 1461 __ jcc(Assembler::notZero, return0); 1462 1463 __ bind(do_convert); 1464 __ fnstcw(Address(rsp, 0)); 1465 __ movzwl(rax, Address(rsp, 0)); 1466 __ orl(rax, 0xc00); 1467 __ movw(Address(rsp, 2), rax); 1468 __ fldcw(Address(rsp, 2)); 1469 __ fwait(); 1470 __ fistp_d(result_low_word); 1471 __ fldcw(Address(rsp, 0)); 1472 __ fwait(); 1473 // This gets the entire long in rax on 64bit 1474 __ movptr(rax, result_low_word); 1475 // testing of high bits 1476 __ movl(rdx, result_high_word); 1477 __ mov(rcx, rax); 1478 // What the heck is the point of the next instruction??? 1479 __ xorl(rcx, 0x0); 1480 __ movl(rsi, 0x80000000); 1481 __ xorl(rsi, rdx); 1482 __ orl(rcx, rsi); 1483 __ jcc(Assembler::notEqual, do_return); 1484 __ fldz(); 1485 __ fcomp_d(value_low_word); 1486 __ fnstsw_ax(); 1487 __ sahf(); 1488 __ jcc(Assembler::above, return_min_jlong); 1489 // return max_jlong 1490 __ movl(rdx, 0x7fffffff); 1491 __ movl(rax, 0xffffffff); 1492 __ jmp(do_return); 1493 1494 __ bind(return_min_jlong); 1495 __ movl(rdx, 0x80000000); 1496 __ xorl(rax, rax); 1497 __ jmp(do_return); 1498 1499 __ bind(return0); 1500 __ fpop(); 1501 __ xorptr(rdx,rdx); 1502 __ xorptr(rax,rax); 1503 1504 __ bind(do_return); 1505 __ addptr(rsp, 32); 1506 __ pop(rcx); 1507 __ pop(rsi); 1508 __ ret(0); 1509 #endif // _LP64 1510 } 1511 break; 1512 1513 case C1StubId::predicate_failed_trap_id: 1514 { 1515 StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments); 1516 1517 OopMap* map = save_live_registers(sasm, 1); 1518 1519 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap)); 1520 oop_maps = new OopMapSet(); 1521 oop_maps->add_gc_map(call_offset, map); 1522 restore_live_registers(sasm); 1523 __ leave(); 1524 DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); 1525 assert(deopt_blob != nullptr, "deoptimization blob must have been created"); 1526 1527 __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution())); 1528 } 1529 break; 1530 1531 default: 1532 { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments); 1533 __ movptr(rax, (int)id); 1534 __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax); 1535 __ should_not_reach_here(); 1536 } 1537 break; 1538 } 1539 return oop_maps; 1540 } 1541 1542 #undef __ 1543 1544 const char *Runtime1::pd_name_for_address(address entry) { 1545 return "<unknown function>"; 1546 }