1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "logging/log.hpp"
  30 #include "oops/arrayOop.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/method.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/safepointMechanism.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 
  43 // Implementation of InterpreterMacroAssembler
  44 
  45 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  46   assert(entry, "Entry must have been generated by now");
  47   jump(RuntimeAddress(entry));
  48 }
  49 
  50 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
  51   Label update, next, none;
  52 
  53   verify_oop(obj);
  54 
  55   testptr(obj, obj);
  56   jccb(Assembler::notZero, update);
  57   orptr(mdo_addr, TypeEntries::null_seen);
  58   jmpb(next);
  59 
  60   bind(update);
  61   load_klass(obj, obj);
  62 
  63   xorptr(obj, mdo_addr);
  64   testptr(obj, TypeEntries::type_klass_mask);
  65   jccb(Assembler::zero, next); // klass seen before, nothing to
  66                                // do. The unknown bit may have been
  67                                // set already but no need to check.
  68 
  69   testptr(obj, TypeEntries::type_unknown);
  70   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  71 
  72   cmpptr(mdo_addr, 0);
  73   jccb(Assembler::equal, none);
  74   cmpptr(mdo_addr, TypeEntries::null_seen);
  75   jccb(Assembler::equal, none);
  76   // There is a chance that the checks above (re-reading profiling
  77   // data from memory) fail if another thread has just set the
  78   // profiling to this obj's klass
  79   xorptr(obj, mdo_addr);
  80   testptr(obj, TypeEntries::type_klass_mask);
  81   jccb(Assembler::zero, next);
  82 
  83   // different than before. Cannot keep accurate profile.
  84   orptr(mdo_addr, TypeEntries::type_unknown);
  85   jmpb(next);
  86 
  87   bind(none);
  88   // first time here. Set profile type.
  89   movptr(mdo_addr, obj);
  90 
  91   bind(next);
  92 }
  93 
  94 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
  95   if (!ProfileInterpreter) {
  96     return;
  97   }
  98 
  99   if (MethodData::profile_arguments() || MethodData::profile_return()) {
 100     Label profile_continue;
 101 
 102     test_method_data_pointer(mdp, profile_continue);
 103 
 104     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
 105 
 106     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
 107     jcc(Assembler::notEqual, profile_continue);
 108 
 109     if (MethodData::profile_arguments()) {
 110       Label done;
 111       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
 112       addptr(mdp, off_to_args);
 113 
 114       for (int i = 0; i < TypeProfileArgsLimit; i++) {
 115         if (i > 0 || MethodData::profile_return()) {
 116           // If return value type is profiled we may have no argument to profile
 117           movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 118           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
 119           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
 120           jcc(Assembler::less, done);
 121         }
 122         movptr(tmp, Address(callee, Method::const_offset()));
 123         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
 124         // stack offset o (zero based) from the start of the argument
 125         // list, for n arguments translates into offset n - o - 1 from
 126         // the end of the argument list
 127         subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
 128         subl(tmp, 1);
 129         Address arg_addr = argument_address(tmp);
 130         movptr(tmp, arg_addr);
 131 
 132         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
 133         profile_obj_type(tmp, mdo_arg_addr);
 134 
 135         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
 136         addptr(mdp, to_add);
 137         off_to_args += to_add;
 138       }
 139 
 140       if (MethodData::profile_return()) {
 141         movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 142         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
 143       }
 144 
 145       bind(done);
 146 
 147       if (MethodData::profile_return()) {
 148         // We're right after the type profile for the last
 149         // argument. tmp is the number of cells left in the
 150         // CallTypeData/VirtualCallTypeData to reach its end. Non null
 151         // if there's a return to profile.
 152         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
 153         shll(tmp, exact_log2(DataLayout::cell_size));
 154         addptr(mdp, tmp);
 155       }
 156       movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
 157     } else {
 158       assert(MethodData::profile_return(), "either profile call args or call ret");
 159       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
 160     }
 161 
 162     // mdp points right after the end of the
 163     // CallTypeData/VirtualCallTypeData, right after the cells for the
 164     // return value type if there's one
 165 
 166     bind(profile_continue);
 167   }
 168 }
 169 
 170 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
 171   assert_different_registers(mdp, ret, tmp, _bcp_register);
 172   if (ProfileInterpreter && MethodData::profile_return()) {
 173     Label profile_continue;
 174 
 175     test_method_data_pointer(mdp, profile_continue);
 176 
 177     if (MethodData::profile_return_jsr292_only()) {
 178       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
 179 
 180       // If we don't profile all invoke bytecodes we must make sure
 181       // it's a bytecode we indeed profile. We can't go back to the
 182       // begining of the ProfileData we intend to update to check its
 183       // type because we're right after it and we don't known its
 184       // length
 185       Label do_profile;
 186       cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
 187       jcc(Assembler::equal, do_profile);
 188       cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
 189       jcc(Assembler::equal, do_profile);
 190       get_method(tmp);
 191       cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm);
 192       jcc(Assembler::notEqual, profile_continue);
 193 
 194       bind(do_profile);
 195     }
 196 
 197     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
 198     mov(tmp, ret);
 199     profile_obj_type(tmp, mdo_ret_addr);
 200 
 201     bind(profile_continue);
 202   }
 203 }
 204 
 205 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
 206   if (ProfileInterpreter && MethodData::profile_parameters()) {
 207     Label profile_continue;
 208 
 209     test_method_data_pointer(mdp, profile_continue);
 210 
 211     // Load the offset of the area within the MDO used for
 212     // parameters. If it's negative we're not profiling any parameters
 213     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
 214     testl(tmp1, tmp1);
 215     jcc(Assembler::negative, profile_continue);
 216 
 217     // Compute a pointer to the area for parameters from the offset
 218     // and move the pointer to the slot for the last
 219     // parameters. Collect profiling from last parameter down.
 220     // mdo start + parameters offset + array length - 1
 221     addptr(mdp, tmp1);
 222     movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
 223     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 224 
 225     Label loop;
 226     bind(loop);
 227 
 228     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
 229     int type_base = in_bytes(ParametersTypeData::type_offset(0));
 230     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
 231     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
 232     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
 233 
 234     // load offset on the stack from the slot for this parameter
 235     movptr(tmp2, arg_off);
 236     negptr(tmp2);
 237     // read the parameter from the local area
 238     movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
 239 
 240     // profile the parameter
 241     profile_obj_type(tmp2, arg_type);
 242 
 243     // go to next parameter
 244     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 245     jcc(Assembler::positive, loop);
 246 
 247     bind(profile_continue);
 248   }
 249 }
 250 
 251 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
 252                                                   int number_of_arguments) {
 253   // interpreter specific
 254   //
 255   // Note: No need to save/restore bcp & locals registers
 256   //       since these are callee saved registers and no blocking/
 257   //       GC can happen in leaf calls.
 258   // Further Note: DO NOT save/restore bcp/locals. If a caller has
 259   // already saved them so that it can use rsi/rdi as temporaries
 260   // then a save/restore here will DESTROY the copy the caller
 261   // saved! There used to be a save_bcp() that only happened in
 262   // the ASSERT path (no restore_bcp). Which caused bizarre failures
 263   // when jvm built with ASSERTs.
 264 #ifdef ASSERT
 265   {
 266     Label L;
 267     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 268     jcc(Assembler::equal, L);
 269     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 270          " last_sp != NULL");
 271     bind(L);
 272   }
 273 #endif
 274   // super call
 275   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 276   // interpreter specific
 277   // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
 278   // but since they may not have been saved (and we don't want to
 279   // save them here (see note above) the assert is invalid.
 280 }
 281 
 282 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
 283                                              Register java_thread,
 284                                              Register last_java_sp,
 285                                              address  entry_point,
 286                                              int      number_of_arguments,
 287                                              bool     check_exceptions) {
 288   // interpreter specific
 289   //
 290   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 291   //       really make a difference for these runtime calls, since they are
 292   //       slow anyway. Btw., bcp must be saved/restored since it may change
 293   //       due to GC.
 294   NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
 295   save_bcp();
 296 #ifdef ASSERT
 297   {
 298     Label L;
 299     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 300     jcc(Assembler::equal, L);
 301     stop("InterpreterMacroAssembler::call_VM_base:"
 302          " last_sp != NULL");
 303     bind(L);
 304   }
 305 #endif /* ASSERT */
 306   // super call
 307   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
 308                                entry_point, number_of_arguments,
 309                                check_exceptions);
 310   // interpreter specific
 311   restore_bcp();
 312   restore_locals();
 313 }
 314 
 315 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 316   if (JvmtiExport::can_pop_frame()) {
 317     Label L;
 318     // Initiate popframe handling only if it is not already being
 319     // processed.  If the flag has the popframe_processing bit set, it
 320     // means that this code is called *during* popframe handling - we
 321     // don't want to reenter.
 322     // This method is only called just after the call into the vm in
 323     // call_VM_base, so the arg registers are available.
 324     Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
 325                         LP64_ONLY(c_rarg0);
 326     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 327     testl(pop_cond, JavaThread::popframe_pending_bit);
 328     jcc(Assembler::zero, L);
 329     testl(pop_cond, JavaThread::popframe_processing_bit);
 330     jcc(Assembler::notZero, L);
 331     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 332     // address of the same-named entrypoint in the generated interpreter code.
 333     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 334     jmp(rax);
 335     bind(L);
 336     NOT_LP64(get_thread(java_thread);)
 337   }
 338 }
 339 
 340 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 341   Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 342   NOT_LP64(get_thread(thread);)
 343   movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
 344   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 345   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 346   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 347 #ifdef _LP64
 348   switch (state) {
 349     case atos: movptr(rax, oop_addr);
 350                movptr(oop_addr, (int32_t)NULL_WORD);
 351                verify_oop(rax, state);              break;
 352     case ltos: movptr(rax, val_addr);                 break;
 353     case btos:                                   // fall through
 354     case ztos:                                   // fall through
 355     case ctos:                                   // fall through
 356     case stos:                                   // fall through
 357     case itos: movl(rax, val_addr);                 break;
 358     case ftos: load_float(val_addr);                break;
 359     case dtos: load_double(val_addr);               break;
 360     case vtos: /* nothing to do */                  break;
 361     default  : ShouldNotReachHere();
 362   }
 363   // Clean up tos value in the thread object
 364   movl(tos_addr,  (int) ilgl);
 365   movl(val_addr,  (int32_t) NULL_WORD);
 366 #else
 367   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 368                              + in_ByteSize(wordSize));
 369   switch (state) {
 370     case atos: movptr(rax, oop_addr);
 371                movptr(oop_addr, NULL_WORD);
 372                verify_oop(rax, state);                break;
 373     case ltos:
 374                movl(rdx, val_addr1);               // fall through
 375     case btos:                                     // fall through
 376     case ztos:                                     // fall through
 377     case ctos:                                     // fall through
 378     case stos:                                     // fall through
 379     case itos: movl(rax, val_addr);                   break;
 380     case ftos: load_float(val_addr);                  break;
 381     case dtos: load_double(val_addr);                 break;
 382     case vtos: /* nothing to do */                    break;
 383     default  : ShouldNotReachHere();
 384   }
 385 #endif // _LP64
 386   // Clean up tos value in the thread object
 387   movl(tos_addr,  (int32_t) ilgl);
 388   movptr(val_addr,  NULL_WORD);
 389   NOT_LP64(movptr(val_addr1, NULL_WORD);)
 390 }
 391 
 392 
 393 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 394   if (JvmtiExport::can_force_early_return()) {
 395     Label L;
 396     Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
 397     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
 398 
 399     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 400     testptr(tmp, tmp);
 401     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 402 
 403     // Initiate earlyret handling only if it is not already being processed.
 404     // If the flag has the earlyret_processing bit set, it means that this code
 405     // is called *during* earlyret handling - we don't want to reenter.
 406     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 407     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 408     jcc(Assembler::notEqual, L);
 409 
 410     // Call Interpreter::remove_activation_early_entry() to get the address of the
 411     // same-named entrypoint in the generated interpreter code.
 412     NOT_LP64(get_thread(java_thread);)
 413     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 414 #ifdef _LP64
 415     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 416     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
 417 #else
 418     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 419     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 420 #endif // _LP64
 421     jmp(rax);
 422     bind(L);
 423     NOT_LP64(get_thread(java_thread);)
 424   }
 425 }
 426 
 427 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 428   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 429   load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
 430   bswapl(reg);
 431   shrl(reg, 16);
 432 }
 433 
 434 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 435                                                        int bcp_offset,
 436                                                        size_t index_size) {
 437   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 438   if (index_size == sizeof(u2)) {
 439     load_unsigned_short(index, Address(_bcp_register, bcp_offset));
 440   } else if (index_size == sizeof(u4)) {
 441     movl(index, Address(_bcp_register, bcp_offset));
 442     // Check if the secondary index definition is still ~x, otherwise
 443     // we have to change the following assembler code to calculate the
 444     // plain index.
 445     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 446     notl(index);  // convert to plain index
 447   } else if (index_size == sizeof(u1)) {
 448     load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
 449   } else {
 450     ShouldNotReachHere();
 451   }
 452 }
 453 
 454 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 455                                                            Register index,
 456                                                            int bcp_offset,
 457                                                            size_t index_size) {
 458   assert_different_registers(cache, index);
 459   get_cache_index_at_bcp(index, bcp_offset, index_size);
 460   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 461   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 462   // convert from field index to ConstantPoolCacheEntry index
 463   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
 464   shll(index, 2);
 465 }
 466 
 467 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 468                                                                         Register index,
 469                                                                         Register bytecode,
 470                                                                         int byte_no,
 471                                                                         int bcp_offset,
 472                                                                         size_t index_size) {
 473   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 474   // We use a 32-bit load here since the layout of 64-bit words on
 475   // little-endian machines allow us that.
 476   movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 477   const int shift_count = (1 + byte_no) * BitsPerByte;
 478   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 479          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 480          "correct shift count");
 481   shrl(bytecode, shift_count);
 482   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 483   andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
 484 }
 485 
 486 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 487                                                                Register tmp,
 488                                                                int bcp_offset,
 489                                                                size_t index_size) {
 490   assert_different_registers(cache, tmp);
 491 
 492   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 493   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 494   // convert from field index to ConstantPoolCacheEntry index
 495   // and from word offset to byte offset
 496   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 497   shll(tmp, 2 + LogBytesPerWord);
 498   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 499   // skip past the header
 500   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
 501   addptr(cache, tmp);  // construct pointer to cache entry
 502 }
 503 
 504 // Load object from cpool->resolved_references(index)
 505 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
 506                                                                  Register index,
 507                                                                  Register tmp) {
 508   assert_different_registers(result, index);
 509 
 510   get_constant_pool(result);
 511   // load pointer for resolved_references[] objArray
 512   movptr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
 513   movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
 514   resolve_oop_handle(result, tmp);
 515   load_heap_oop(result, Address(result, index,
 516                                 UseCompressedOops ? Address::times_4 : Address::times_ptr,
 517                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
 518 }
 519 
 520 // load cpool->resolved_klass_at(index)
 521 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
 522                                                              Register cpool,
 523                                                              Register index) {
 524   assert_different_registers(cpool, index);
 525 
 526   movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
 527   Register resolved_klasses = cpool;
 528   movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes()));
 529   movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
 530 }
 531 
 532 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no,
 533                                                               Register method,
 534                                                               Register cache,
 535                                                               Register index) {
 536   assert_different_registers(cache, index);
 537 
 538   const int method_offset = in_bytes(
 539     ConstantPoolCache::base_offset() +
 540       ((byte_no == TemplateTable::f2_byte)
 541        ? ConstantPoolCacheEntry::f2_offset()
 542        : ConstantPoolCacheEntry::f1_offset()));
 543 
 544   movptr(method, Address(cache, index, Address::times_ptr, method_offset)); // get f1 Method*
 545 }
 546 
 547 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 548 // subtype of super_klass.
 549 //
 550 // Args:
 551 //      rax: superklass
 552 //      Rsub_klass: subklass
 553 //
 554 // Kills:
 555 //      rcx, rdi
 556 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 557                                                   Label& ok_is_subtype) {
 558   assert(Rsub_klass != rax, "rax holds superklass");
 559   LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
 560   LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
 561   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 562   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 563 
 564   // Profile the not-null value's klass.
 565   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 566 
 567   // Do the check.
 568   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 569 
 570   // Profile the failure of the check.
 571   profile_typecheck_failed(rcx); // blows rcx
 572 }
 573 
 574 
 575 #ifndef _LP64
 576 void InterpreterMacroAssembler::f2ieee() {
 577   if (IEEEPrecision) {
 578     fstp_s(Address(rsp, 0));
 579     fld_s(Address(rsp, 0));
 580   }
 581 }
 582 
 583 
 584 void InterpreterMacroAssembler::d2ieee() {
 585   if (IEEEPrecision) {
 586     fstp_d(Address(rsp, 0));
 587     fld_d(Address(rsp, 0));
 588   }
 589 }
 590 #endif // _LP64
 591 
 592 // Java Expression Stack
 593 
 594 void InterpreterMacroAssembler::pop_ptr(Register r) {
 595   pop(r);
 596 }
 597 
 598 void InterpreterMacroAssembler::push_ptr(Register r) {
 599   push(r);
 600 }
 601 
 602 void InterpreterMacroAssembler::push_i(Register r) {
 603   push(r);
 604 }
 605 
 606 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 607   subptr(rsp, wordSize);
 608   movflt(Address(rsp, 0), r);
 609 }
 610 
 611 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 612   movflt(r, Address(rsp, 0));
 613   addptr(rsp, wordSize);
 614 }
 615 
 616 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 617   subptr(rsp, 2 * wordSize);
 618   movdbl(Address(rsp, 0), r);
 619 }
 620 
 621 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 622   movdbl(r, Address(rsp, 0));
 623   addptr(rsp, 2 * Interpreter::stackElementSize);
 624 }
 625 
 626 #ifdef _LP64
 627 void InterpreterMacroAssembler::pop_i(Register r) {
 628   // XXX can't use pop currently, upper half non clean
 629   movl(r, Address(rsp, 0));
 630   addptr(rsp, wordSize);
 631 }
 632 
 633 void InterpreterMacroAssembler::pop_l(Register r) {
 634   movq(r, Address(rsp, 0));
 635   addptr(rsp, 2 * Interpreter::stackElementSize);
 636 }
 637 
 638 void InterpreterMacroAssembler::push_l(Register r) {
 639   subptr(rsp, 2 * wordSize);
 640   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r         );
 641   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
 642 }
 643 
 644 void InterpreterMacroAssembler::pop(TosState state) {
 645   switch (state) {
 646   case atos: pop_ptr();                 break;
 647   case btos:
 648   case ztos:
 649   case ctos:
 650   case stos:
 651   case itos: pop_i();                   break;
 652   case ltos: pop_l();                   break;
 653   case ftos: pop_f(xmm0);               break;
 654   case dtos: pop_d(xmm0);               break;
 655   case vtos: /* nothing to do */        break;
 656   default:   ShouldNotReachHere();
 657   }
 658   verify_oop(rax, state);
 659 }
 660 
 661 void InterpreterMacroAssembler::push(TosState state) {
 662   verify_oop(rax, state);
 663   switch (state) {
 664   case atos: push_ptr();                break;
 665   case btos:
 666   case ztos:
 667   case ctos:
 668   case stos:
 669   case itos: push_i();                  break;
 670   case ltos: push_l();                  break;
 671   case ftos: push_f(xmm0);              break;
 672   case dtos: push_d(xmm0);              break;
 673   case vtos: /* nothing to do */        break;
 674   default  : ShouldNotReachHere();
 675   }
 676 }
 677 #else
 678 void InterpreterMacroAssembler::pop_i(Register r) {
 679   pop(r);
 680 }
 681 
 682 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 683   pop(lo);
 684   pop(hi);
 685 }
 686 
 687 void InterpreterMacroAssembler::pop_f() {
 688   fld_s(Address(rsp, 0));
 689   addptr(rsp, 1 * wordSize);
 690 }
 691 
 692 void InterpreterMacroAssembler::pop_d() {
 693   fld_d(Address(rsp, 0));
 694   addptr(rsp, 2 * wordSize);
 695 }
 696 
 697 
 698 void InterpreterMacroAssembler::pop(TosState state) {
 699   switch (state) {
 700     case atos: pop_ptr(rax);                                 break;
 701     case btos:                                               // fall through
 702     case ztos:                                               // fall through
 703     case ctos:                                               // fall through
 704     case stos:                                               // fall through
 705     case itos: pop_i(rax);                                   break;
 706     case ltos: pop_l(rax, rdx);                              break;
 707     case ftos:
 708       if (UseSSE >= 1) {
 709         pop_f(xmm0);
 710       } else {
 711         pop_f();
 712       }
 713       break;
 714     case dtos:
 715       if (UseSSE >= 2) {
 716         pop_d(xmm0);
 717       } else {
 718         pop_d();
 719       }
 720       break;
 721     case vtos: /* nothing to do */                           break;
 722     default  : ShouldNotReachHere();
 723   }
 724   verify_oop(rax, state);
 725 }
 726 
 727 
 728 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 729   push(hi);
 730   push(lo);
 731 }
 732 
 733 void InterpreterMacroAssembler::push_f() {
 734   // Do not schedule for no AGI! Never write beyond rsp!
 735   subptr(rsp, 1 * wordSize);
 736   fstp_s(Address(rsp, 0));
 737 }
 738 
 739 void InterpreterMacroAssembler::push_d() {
 740   // Do not schedule for no AGI! Never write beyond rsp!
 741   subptr(rsp, 2 * wordSize);
 742   fstp_d(Address(rsp, 0));
 743 }
 744 
 745 
 746 void InterpreterMacroAssembler::push(TosState state) {
 747   verify_oop(rax, state);
 748   switch (state) {
 749     case atos: push_ptr(rax); break;
 750     case btos:                                               // fall through
 751     case ztos:                                               // fall through
 752     case ctos:                                               // fall through
 753     case stos:                                               // fall through
 754     case itos: push_i(rax);                                    break;
 755     case ltos: push_l(rax, rdx);                               break;
 756     case ftos:
 757       if (UseSSE >= 1) {
 758         push_f(xmm0);
 759       } else {
 760         push_f();
 761       }
 762       break;
 763     case dtos:
 764       if (UseSSE >= 2) {
 765         push_d(xmm0);
 766       } else {
 767         push_d();
 768       }
 769       break;
 770     case vtos: /* nothing to do */                             break;
 771     default  : ShouldNotReachHere();
 772   }
 773 }
 774 #endif // _LP64
 775 
 776 
 777 // Helpers for swap and dup
 778 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 779   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 780 }
 781 
 782 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 783   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 784 }
 785 
 786 
 787 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 788   // set sender sp
 789   lea(_bcp_register, Address(rsp, wordSize));
 790   // record last_sp
 791   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
 792 }
 793 
 794 
 795 // Jump to from_interpreted entry of a call unless single stepping is possible
 796 // in this thread in which case we must call the i2i entry
 797 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 798   prepare_to_jump_from_interpreted();
 799 
 800   if (JvmtiExport::can_post_interpreter_events()) {
 801     Label run_compiled_code;
 802     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 803     // compiled code in threads for which the event is enabled.  Check here for
 804     // interp_only_mode if these events CAN be enabled.
 805     // interp_only is an int, on little endian it is sufficient to test the byte only
 806     // Is a cmpl faster?
 807     LP64_ONLY(temp = r15_thread;)
 808     NOT_LP64(get_thread(temp);)
 809     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 810     jccb(Assembler::zero, run_compiled_code);
 811     jmp(Address(method, Method::interpreter_entry_offset()));
 812     bind(run_compiled_code);
 813   }
 814 
 815   jmp(Address(method, Method::from_interpreted_offset()));
 816 }
 817 
 818 // The following two routines provide a hook so that an implementation
 819 // can schedule the dispatch in two parts.  x86 does not do this.
 820 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 821   // Nothing x86 specific to be done here
 822 }
 823 
 824 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 825   dispatch_next(state, step);
 826 }
 827 
 828 void InterpreterMacroAssembler::dispatch_base(TosState state,
 829                                               address* table,
 830                                               bool verifyoop,
 831                                               bool generate_poll) {
 832   verify_FPU(1, state);
 833   if (VerifyActivationFrameSize) {
 834     Label L;
 835     mov(rcx, rbp);
 836     subptr(rcx, rsp);
 837     int32_t min_frame_size =
 838       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 839       wordSize;
 840     cmpptr(rcx, (int32_t)min_frame_size);
 841     jcc(Assembler::greaterEqual, L);
 842     stop("broken stack frame");
 843     bind(L);
 844   }
 845   if (verifyoop) {
 846     verify_oop(rax, state);
 847   }
 848 
 849   address* const safepoint_table = Interpreter::safept_table(state);
 850 #ifdef _LP64
 851   Label no_safepoint, dispatch;
 852   if (SafepointMechanism::uses_thread_local_poll() && table != safepoint_table && generate_poll) {
 853     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 854     testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
 855 
 856     jccb(Assembler::zero, no_safepoint);
 857     lea(rscratch1, ExternalAddress((address)safepoint_table));
 858     jmpb(dispatch);
 859   }
 860 
 861   bind(no_safepoint);
 862   lea(rscratch1, ExternalAddress((address)table));
 863   bind(dispatch);
 864   jmp(Address(rscratch1, rbx, Address::times_8));
 865 
 866 #else
 867   Address index(noreg, rbx, Address::times_ptr);
 868   if (SafepointMechanism::uses_thread_local_poll() && table != safepoint_table && generate_poll) {
 869     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 870     Label no_safepoint;
 871     const Register thread = rcx;
 872     get_thread(thread);
 873     testb(Address(thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
 874 
 875     jccb(Assembler::zero, no_safepoint);
 876     ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index);
 877     jump(dispatch_addr);
 878     bind(no_safepoint);
 879   }
 880 
 881   {
 882     ArrayAddress dispatch_addr(ExternalAddress((address)table), index);
 883     jump(dispatch_addr);
 884   }
 885 #endif // _LP64
 886 }
 887 
 888 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 889   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 890 }
 891 
 892 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 893   dispatch_base(state, Interpreter::normal_table(state));
 894 }
 895 
 896 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 897   dispatch_base(state, Interpreter::normal_table(state), false);
 898 }
 899 
 900 
 901 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 902   // load next bytecode (load before advancing _bcp_register to prevent AGI)
 903   load_unsigned_byte(rbx, Address(_bcp_register, step));
 904   // advance _bcp_register
 905   increment(_bcp_register, step);
 906   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 907 }
 908 
 909 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 910   // load current bytecode
 911   load_unsigned_byte(rbx, Address(_bcp_register, 0));
 912   dispatch_base(state, table);
 913 }
 914 
 915 void InterpreterMacroAssembler::narrow(Register result) {
 916 
 917   // Get method->_constMethod->_result_type
 918   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 919   movptr(rcx, Address(rcx, Method::const_offset()));
 920   load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
 921 
 922   Label done, notBool, notByte, notChar;
 923 
 924   // common case first
 925   cmpl(rcx, T_INT);
 926   jcc(Assembler::equal, done);
 927 
 928   // mask integer result to narrower return type.
 929   cmpl(rcx, T_BOOLEAN);
 930   jcc(Assembler::notEqual, notBool);
 931   andl(result, 0x1);
 932   jmp(done);
 933 
 934   bind(notBool);
 935   cmpl(rcx, T_BYTE);
 936   jcc(Assembler::notEqual, notByte);
 937   LP64_ONLY(movsbl(result, result);)
 938   NOT_LP64(shll(result, 24);)      // truncate upper 24 bits
 939   NOT_LP64(sarl(result, 24);)      // and sign-extend byte
 940   jmp(done);
 941 
 942   bind(notByte);
 943   cmpl(rcx, T_CHAR);
 944   jcc(Assembler::notEqual, notChar);
 945   LP64_ONLY(movzwl(result, result);)
 946   NOT_LP64(andl(result, 0xFFFF);)  // truncate upper 16 bits
 947   jmp(done);
 948 
 949   bind(notChar);
 950   // cmpl(rcx, T_SHORT);  // all that's left
 951   // jcc(Assembler::notEqual, done);
 952   LP64_ONLY(movswl(result, result);)
 953   NOT_LP64(shll(result, 16);)      // truncate upper 16 bits
 954   NOT_LP64(sarl(result, 16);)      // and sign-extend short
 955 
 956   // Nothing to do for T_INT
 957   bind(done);
 958 }
 959 
 960 // remove activation
 961 //
 962 // Unlock the receiver if this is a synchronized method.
 963 // Unlock any Java monitors from syncronized blocks.
 964 // Remove the activation from the stack.
 965 //
 966 // If there are locked Java monitors
 967 //    If throw_monitor_exception
 968 //       throws IllegalMonitorStateException
 969 //    Else if install_monitor_exception
 970 //       installs IllegalMonitorStateException
 971 //    Else
 972 //       no error processing
 973 void InterpreterMacroAssembler::remove_activation(
 974         TosState state,
 975         Register ret_addr,
 976         bool throw_monitor_exception,
 977         bool install_monitor_exception,
 978         bool notify_jvmdi) {
 979   // Note: Registers rdx xmm0 may be in use for the
 980   // result check if synchronized method
 981   Label unlocked, unlock, no_unlock;
 982 
 983   const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 984   const Register robj    = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
 985   const Register rmon    = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
 986                               // monitor pointers need different register
 987                               // because rdx may have the result in it
 988   NOT_LP64(get_thread(rcx);)
 989 
 990   // get the value of _do_not_unlock_if_synchronized into rdx
 991   const Address do_not_unlock_if_synchronized(rthread,
 992     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 993   movbool(rbx, do_not_unlock_if_synchronized);
 994   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 995 
 996  // get method access flags
 997   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 998   movl(rcx, Address(rcx, Method::access_flags_offset()));
 999   testl(rcx, JVM_ACC_SYNCHRONIZED);
1000   jcc(Assembler::zero, unlocked);
1001 
1002   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1003   // is set.
1004   testbool(rbx);
1005   jcc(Assembler::notZero, no_unlock);
1006 
1007   // unlock monitor
1008   push(state); // save result
1009 
1010   // BasicObjectLock will be first in list, since this is a
1011   // synchronized method. However, need to check that the object has
1012   // not been unlocked by an explicit monitorexit bytecode.
1013   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
1014                         wordSize - (int) sizeof(BasicObjectLock));
1015   // We use c_rarg1/rdx so that if we go slow path it will be the correct
1016   // register for unlock_object to pass to VM directly
1017   lea(robj, monitor); // address of first monitor
1018 
1019   movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes()));
1020   testptr(rax, rax);
1021   jcc(Assembler::notZero, unlock);
1022 
1023   pop(state);
1024   if (throw_monitor_exception) {
1025     // Entry already unlocked, need to throw exception
1026     NOT_LP64(empty_FPU_stack();)  // remove possible return value from FPU-stack, otherwise stack could overflow
1027     call_VM(noreg, CAST_FROM_FN_PTR(address,
1028                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1029     should_not_reach_here();
1030   } else {
1031     // Monitor already unlocked during a stack unroll. If requested,
1032     // install an illegal_monitor_state_exception.  Continue with
1033     // stack unrolling.
1034     if (install_monitor_exception) {
1035       NOT_LP64(empty_FPU_stack();)
1036       call_VM(noreg, CAST_FROM_FN_PTR(address,
1037                      InterpreterRuntime::new_illegal_monitor_state_exception));
1038     }
1039     jmp(unlocked);
1040   }
1041 
1042   bind(unlock);
1043   unlock_object(robj);
1044   pop(state);
1045 
1046   // Check that for block-structured locking (i.e., that all locked
1047   // objects has been unlocked)
1048   bind(unlocked);
1049 
1050   // rax, rdx: Might contain return value
1051 
1052   // Check that all monitors are unlocked
1053   {
1054     Label loop, exception, entry, restart;
1055     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1056     const Address monitor_block_top(
1057         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1058     const Address monitor_block_bot(
1059         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1060 
1061     bind(restart);
1062     // We use c_rarg1 so that if we go slow path it will be the correct
1063     // register for unlock_object to pass to VM directly
1064     movptr(rmon, monitor_block_top); // points to current entry, starting
1065                                   // with top-most entry
1066     lea(rbx, monitor_block_bot);  // points to word before bottom of
1067                                   // monitor block
1068     jmp(entry);
1069 
1070     // Entry already locked, need to throw exception
1071     bind(exception);
1072 
1073     if (throw_monitor_exception) {
1074       // Throw exception
1075       NOT_LP64(empty_FPU_stack();)
1076       MacroAssembler::call_VM(noreg,
1077                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
1078                                    throw_illegal_monitor_state_exception));
1079       should_not_reach_here();
1080     } else {
1081       // Stack unrolling. Unlock object and install illegal_monitor_exception.
1082       // Unlock does not block, so don't have to worry about the frame.
1083       // We don't have to preserve c_rarg1 since we are going to throw an exception.
1084 
1085       push(state);
1086       mov(robj, rmon);   // nop if robj and rmon are the same
1087       unlock_object(robj);
1088       pop(state);
1089 
1090       if (install_monitor_exception) {
1091         NOT_LP64(empty_FPU_stack();)
1092         call_VM(noreg, CAST_FROM_FN_PTR(address,
1093                                         InterpreterRuntime::
1094                                         new_illegal_monitor_state_exception));
1095       }
1096 
1097       jmp(restart);
1098     }
1099 
1100     bind(loop);
1101     // check if current entry is used
1102     cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
1103     jcc(Assembler::notEqual, exception);
1104 
1105     addptr(rmon, entry_size); // otherwise advance to next entry
1106     bind(entry);
1107     cmpptr(rmon, rbx); // check if bottom reached
1108     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1109   }
1110 
1111   bind(no_unlock);
1112 
1113   // jvmti support
1114   if (notify_jvmdi) {
1115     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
1116   } else {
1117     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1118   }
1119 
1120   // remove activation
1121   // get sender sp
1122   movptr(rbx,
1123          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1124   if (StackReservedPages > 0) {
1125     // testing if reserved zone needs to be re-enabled
1126     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1127     Label no_reserved_zone_enabling;
1128 
1129     NOT_LP64(get_thread(rthread);)
1130 
1131     cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_enabled);
1132     jcc(Assembler::equal, no_reserved_zone_enabling);
1133 
1134     cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1135     jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1136 
1137     call_VM_leaf(
1138       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1139     call_VM(noreg, CAST_FROM_FN_PTR(address,
1140                    InterpreterRuntime::throw_delayed_StackOverflowError));
1141     should_not_reach_here();
1142 
1143     bind(no_reserved_zone_enabling);
1144   }
1145   leave();                           // remove frame anchor
1146   pop(ret_addr);                     // get return address
1147   mov(rsp, rbx);                     // set sp to sender sp
1148 }
1149 
1150 void InterpreterMacroAssembler::get_method_counters(Register method,
1151                                                     Register mcs, Label& skip) {
1152   Label has_counters;
1153   movptr(mcs, Address(method, Method::method_counters_offset()));
1154   testptr(mcs, mcs);
1155   jcc(Assembler::notZero, has_counters);
1156   call_VM(noreg, CAST_FROM_FN_PTR(address,
1157           InterpreterRuntime::build_method_counters), method);
1158   movptr(mcs, Address(method,Method::method_counters_offset()));
1159   testptr(mcs, mcs);
1160   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1161   bind(has_counters);
1162 }
1163 
1164 
1165 // Lock object
1166 //
1167 // Args:
1168 //      rdx, c_rarg1: BasicObjectLock to be used for locking
1169 //
1170 // Kills:
1171 //      rax, rbx
1172 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1173   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1174          "The argument is only for looks. It must be c_rarg1");
1175 
1176   if (UseHeavyMonitors) {
1177     call_VM(noreg,
1178             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1179             lock_reg);
1180   } else {
1181     Label done;
1182 
1183     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1184     const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a
1185                                   // problematic case where tmp_reg = no_reg.
1186     const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1187 
1188     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1189     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1190     const int mark_offset = lock_offset +
1191                             BasicLock::displaced_header_offset_in_bytes();
1192 
1193     Label slow_case;
1194 
1195     // Load object pointer into obj_reg
1196     movptr(obj_reg, Address(lock_reg, obj_offset));
1197 
1198     if (UseBiasedLocking) {
1199       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, false, done, &slow_case);
1200     }
1201 
1202     // Load immediate 1 into swap_reg %rax
1203     movl(swap_reg, (int32_t)1);
1204 
1205     // Load (object->mark() | 1) into swap_reg %rax
1206     orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1207 
1208     // Save (object->mark() | 1) into BasicLock's displaced header
1209     movptr(Address(lock_reg, mark_offset), swap_reg);
1210 
1211     assert(lock_offset == 0,
1212            "displaced header must be first word in BasicObjectLock");
1213 
1214     lock();
1215     cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1216     if (PrintBiasedLockingStatistics) {
1217       cond_inc32(Assembler::zero,
1218                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1219     }
1220     jcc(Assembler::zero, done);
1221 
1222     const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1223 
1224     // Test if the oopMark is an obvious stack pointer, i.e.,
1225     //  1) (mark & zero_bits) == 0, and
1226     //  2) rsp <= mark < mark + os::pagesize()
1227     //
1228     // These 3 tests can be done by evaluating the following
1229     // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1230     // assuming both stack pointer and pagesize have their
1231     // least significant bits clear.
1232     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1233     subptr(swap_reg, rsp);
1234     andptr(swap_reg, zero_bits - os::vm_page_size());
1235 
1236     // Save the test result, for recursive case, the result is zero
1237     movptr(Address(lock_reg, mark_offset), swap_reg);
1238 
1239     if (PrintBiasedLockingStatistics) {
1240       cond_inc32(Assembler::zero,
1241                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1242     }
1243     jcc(Assembler::zero, done);
1244 
1245     bind(slow_case);
1246 
1247     // Call the runtime routine for slow case
1248     call_VM(noreg,
1249             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1250             lock_reg);
1251 
1252     bind(done);
1253   }
1254 }
1255 
1256 
1257 // Unlocks an object. Used in monitorexit bytecode and
1258 // remove_activation.  Throws an IllegalMonitorException if object is
1259 // not locked by current thread.
1260 //
1261 // Args:
1262 //      rdx, c_rarg1: BasicObjectLock for lock
1263 //
1264 // Kills:
1265 //      rax
1266 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1267 //      rscratch1 (scratch reg)
1268 // rax, rbx, rcx, rdx
1269 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1270   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1271          "The argument is only for looks. It must be c_rarg1");
1272 
1273   if (UseHeavyMonitors) {
1274     call_VM(noreg,
1275             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1276             lock_reg);
1277   } else {
1278     Label done;
1279 
1280     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1281     const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx);  // Will contain the old oopMark
1282     const Register obj_reg    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);  // Will contain the oop
1283 
1284     save_bcp(); // Save in case of exception
1285 
1286     // Convert from BasicObjectLock structure to object and BasicLock
1287     // structure Store the BasicLock address into %rax
1288     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
1289 
1290     // Load oop into obj_reg(%c_rarg3)
1291     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
1292 
1293     // Free entry
1294     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
1295 
1296     if (UseBiasedLocking) {
1297       biased_locking_exit(obj_reg, header_reg, done);
1298     }
1299 
1300     // Load the old header from BasicLock structure
1301     movptr(header_reg, Address(swap_reg,
1302                                BasicLock::displaced_header_offset_in_bytes()));
1303 
1304     // Test for recursion
1305     testptr(header_reg, header_reg);
1306 
1307     // zero for recursive case
1308     jcc(Assembler::zero, done);
1309 
1310     // Atomic swap back the old header
1311     lock();
1312     cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1313 
1314     // zero for simple unlock of a stack-lock case
1315     jcc(Assembler::zero, done);
1316 
1317     // Call the runtime routine for slow case.
1318     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
1319          obj_reg); // restore obj
1320     call_VM(noreg,
1321             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1322             lock_reg);
1323 
1324     bind(done);
1325 
1326     restore_bcp();
1327   }
1328 }
1329 
1330 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1331                                                          Label& zero_continue) {
1332   assert(ProfileInterpreter, "must be profiling interpreter");
1333   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1334   testptr(mdp, mdp);
1335   jcc(Assembler::zero, zero_continue);
1336 }
1337 
1338 
1339 // Set the method data pointer for the current bcp.
1340 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1341   assert(ProfileInterpreter, "must be profiling interpreter");
1342   Label set_mdp;
1343   push(rax);
1344   push(rbx);
1345 
1346   get_method(rbx);
1347   // Test MDO to avoid the call if it is NULL.
1348   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1349   testptr(rax, rax);
1350   jcc(Assembler::zero, set_mdp);
1351   // rbx: method
1352   // _bcp_register: bcp
1353   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1354   // rax: mdi
1355   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1356   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1357   addptr(rbx, in_bytes(MethodData::data_offset()));
1358   addptr(rax, rbx);
1359   bind(set_mdp);
1360   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1361   pop(rbx);
1362   pop(rax);
1363 }
1364 
1365 void InterpreterMacroAssembler::verify_method_data_pointer() {
1366   assert(ProfileInterpreter, "must be profiling interpreter");
1367 #ifdef ASSERT
1368   Label verify_continue;
1369   push(rax);
1370   push(rbx);
1371   Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1372   Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1373   push(arg3_reg);
1374   push(arg2_reg);
1375   test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1376   get_method(rbx);
1377 
1378   // If the mdp is valid, it will point to a DataLayout header which is
1379   // consistent with the bcp.  The converse is highly probable also.
1380   load_unsigned_short(arg2_reg,
1381                       Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1382   addptr(arg2_reg, Address(rbx, Method::const_offset()));
1383   lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1384   cmpptr(arg2_reg, _bcp_register);
1385   jcc(Assembler::equal, verify_continue);
1386   // rbx: method
1387   // _bcp_register: bcp
1388   // c_rarg3: mdp
1389   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1390                rbx, _bcp_register, arg3_reg);
1391   bind(verify_continue);
1392   pop(arg2_reg);
1393   pop(arg3_reg);
1394   pop(rbx);
1395   pop(rax);
1396 #endif // ASSERT
1397 }
1398 
1399 
1400 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1401                                                 int constant,
1402                                                 Register value) {
1403   assert(ProfileInterpreter, "must be profiling interpreter");
1404   Address data(mdp_in, constant);
1405   movptr(data, value);
1406 }
1407 
1408 
1409 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1410                                                       int constant,
1411                                                       bool decrement) {
1412   // Counter address
1413   Address data(mdp_in, constant);
1414 
1415   increment_mdp_data_at(data, decrement);
1416 }
1417 
1418 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1419                                                       bool decrement) {
1420   assert(ProfileInterpreter, "must be profiling interpreter");
1421   // %%% this does 64bit counters at best it is wasting space
1422   // at worst it is a rare bug when counters overflow
1423 
1424   if (decrement) {
1425     // Decrement the register.  Set condition codes.
1426     addptr(data, (int32_t) -DataLayout::counter_increment);
1427     // If the decrement causes the counter to overflow, stay negative
1428     Label L;
1429     jcc(Assembler::negative, L);
1430     addptr(data, (int32_t) DataLayout::counter_increment);
1431     bind(L);
1432   } else {
1433     assert(DataLayout::counter_increment == 1,
1434            "flow-free idiom only works with 1");
1435     // Increment the register.  Set carry flag.
1436     addptr(data, DataLayout::counter_increment);
1437     // If the increment causes the counter to overflow, pull back by 1.
1438     sbbptr(data, (int32_t)0);
1439   }
1440 }
1441 
1442 
1443 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1444                                                       Register reg,
1445                                                       int constant,
1446                                                       bool decrement) {
1447   Address data(mdp_in, reg, Address::times_1, constant);
1448 
1449   increment_mdp_data_at(data, decrement);
1450 }
1451 
1452 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1453                                                 int flag_byte_constant) {
1454   assert(ProfileInterpreter, "must be profiling interpreter");
1455   int header_offset = in_bytes(DataLayout::flags_offset());
1456   int header_bits = flag_byte_constant;
1457   // Set the flag
1458   orb(Address(mdp_in, header_offset), header_bits);
1459 }
1460 
1461 
1462 
1463 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1464                                                  int offset,
1465                                                  Register value,
1466                                                  Register test_value_out,
1467                                                  Label& not_equal_continue) {
1468   assert(ProfileInterpreter, "must be profiling interpreter");
1469   if (test_value_out == noreg) {
1470     cmpptr(value, Address(mdp_in, offset));
1471   } else {
1472     // Put the test value into a register, so caller can use it:
1473     movptr(test_value_out, Address(mdp_in, offset));
1474     cmpptr(test_value_out, value);
1475   }
1476   jcc(Assembler::notEqual, not_equal_continue);
1477 }
1478 
1479 
1480 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1481                                                      int offset_of_disp) {
1482   assert(ProfileInterpreter, "must be profiling interpreter");
1483   Address disp_address(mdp_in, offset_of_disp);
1484   addptr(mdp_in, disp_address);
1485   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1486 }
1487 
1488 
1489 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1490                                                      Register reg,
1491                                                      int offset_of_disp) {
1492   assert(ProfileInterpreter, "must be profiling interpreter");
1493   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1494   addptr(mdp_in, disp_address);
1495   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1496 }
1497 
1498 
1499 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1500                                                        int constant) {
1501   assert(ProfileInterpreter, "must be profiling interpreter");
1502   addptr(mdp_in, constant);
1503   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1504 }
1505 
1506 
1507 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1508   assert(ProfileInterpreter, "must be profiling interpreter");
1509   push(return_bci); // save/restore across call_VM
1510   call_VM(noreg,
1511           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1512           return_bci);
1513   pop(return_bci);
1514 }
1515 
1516 
1517 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1518                                                      Register bumped_count) {
1519   if (ProfileInterpreter) {
1520     Label profile_continue;
1521 
1522     // If no method data exists, go to profile_continue.
1523     // Otherwise, assign to mdp
1524     test_method_data_pointer(mdp, profile_continue);
1525 
1526     // We are taking a branch.  Increment the taken count.
1527     // We inline increment_mdp_data_at to return bumped_count in a register
1528     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1529     Address data(mdp, in_bytes(JumpData::taken_offset()));
1530     movptr(bumped_count, data);
1531     assert(DataLayout::counter_increment == 1,
1532             "flow-free idiom only works with 1");
1533     addptr(bumped_count, DataLayout::counter_increment);
1534     sbbptr(bumped_count, 0);
1535     movptr(data, bumped_count); // Store back out
1536 
1537     // The method data pointer needs to be updated to reflect the new target.
1538     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1539     bind(profile_continue);
1540   }
1541 }
1542 
1543 
1544 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1545   if (ProfileInterpreter) {
1546     Label profile_continue;
1547 
1548     // If no method data exists, go to profile_continue.
1549     test_method_data_pointer(mdp, profile_continue);
1550 
1551     // We are taking a branch.  Increment the not taken count.
1552     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1553 
1554     // The method data pointer needs to be updated to correspond to
1555     // the next bytecode
1556     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1557     bind(profile_continue);
1558   }
1559 }
1560 
1561 void InterpreterMacroAssembler::profile_call(Register mdp) {
1562   if (ProfileInterpreter) {
1563     Label profile_continue;
1564 
1565     // If no method data exists, go to profile_continue.
1566     test_method_data_pointer(mdp, profile_continue);
1567 
1568     // We are making a call.  Increment the count.
1569     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1570 
1571     // The method data pointer needs to be updated to reflect the new target.
1572     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1573     bind(profile_continue);
1574   }
1575 }
1576 
1577 
1578 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1579   if (ProfileInterpreter) {
1580     Label profile_continue;
1581 
1582     // If no method data exists, go to profile_continue.
1583     test_method_data_pointer(mdp, profile_continue);
1584 
1585     // We are making a call.  Increment the count.
1586     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1587 
1588     // The method data pointer needs to be updated to reflect the new target.
1589     update_mdp_by_constant(mdp,
1590                            in_bytes(VirtualCallData::
1591                                     virtual_call_data_size()));
1592     bind(profile_continue);
1593   }
1594 }
1595 
1596 
1597 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1598                                                      Register mdp,
1599                                                      Register reg2,
1600                                                      bool receiver_can_be_null) {
1601   if (ProfileInterpreter) {
1602     Label profile_continue;
1603 
1604     // If no method data exists, go to profile_continue.
1605     test_method_data_pointer(mdp, profile_continue);
1606 
1607     Label skip_receiver_profile;
1608     if (receiver_can_be_null) {
1609       Label not_null;
1610       testptr(receiver, receiver);
1611       jccb(Assembler::notZero, not_null);
1612       // We are making a call.  Increment the count for null receiver.
1613       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1614       jmp(skip_receiver_profile);
1615       bind(not_null);
1616     }
1617 
1618     // Record the receiver type.
1619     record_klass_in_profile(receiver, mdp, reg2, true);
1620     bind(skip_receiver_profile);
1621 
1622     // The method data pointer needs to be updated to reflect the new target.
1623 #if INCLUDE_JVMCI
1624     if (MethodProfileWidth == 0) {
1625       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1626     }
1627 #else // INCLUDE_JVMCI
1628     update_mdp_by_constant(mdp,
1629                            in_bytes(VirtualCallData::
1630                                     virtual_call_data_size()));
1631 #endif // INCLUDE_JVMCI
1632     bind(profile_continue);
1633   }
1634 }
1635 
1636 #if INCLUDE_JVMCI
1637 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1638   assert_different_registers(method, mdp, reg2);
1639   if (ProfileInterpreter && MethodProfileWidth > 0) {
1640     Label profile_continue;
1641 
1642     // If no method data exists, go to profile_continue.
1643     test_method_data_pointer(mdp, profile_continue);
1644 
1645     Label done;
1646     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1647       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1648     bind(done);
1649 
1650     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1651     bind(profile_continue);
1652   }
1653 }
1654 #endif // INCLUDE_JVMCI
1655 
1656 // This routine creates a state machine for updating the multi-row
1657 // type profile at a virtual call site (or other type-sensitive bytecode).
1658 // The machine visits each row (of receiver/count) until the receiver type
1659 // is found, or until it runs out of rows.  At the same time, it remembers
1660 // the location of the first empty row.  (An empty row records null for its
1661 // receiver, and can be allocated for a newly-observed receiver type.)
1662 // Because there are two degrees of freedom in the state, a simple linear
1663 // search will not work; it must be a decision tree.  Hence this helper
1664 // function is recursive, to generate the required tree structured code.
1665 // It's the interpreter, so we are trading off code space for speed.
1666 // See below for example code.
1667 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1668                                         Register receiver, Register mdp,
1669                                         Register reg2, int start_row,
1670                                         Label& done, bool is_virtual_call) {
1671   if (TypeProfileWidth == 0) {
1672     if (is_virtual_call) {
1673       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1674     }
1675 #if INCLUDE_JVMCI
1676     else if (EnableJVMCI) {
1677       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1678     }
1679 #endif // INCLUDE_JVMCI
1680   } else {
1681     int non_profiled_offset = -1;
1682     if (is_virtual_call) {
1683       non_profiled_offset = in_bytes(CounterData::count_offset());
1684     }
1685 #if INCLUDE_JVMCI
1686     else if (EnableJVMCI) {
1687       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1688     }
1689 #endif // INCLUDE_JVMCI
1690 
1691     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1692         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1693   }
1694 }
1695 
1696 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1697                                         Register reg2, int start_row, Label& done, int total_rows,
1698                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1699                                         int non_profiled_offset) {
1700   int last_row = total_rows - 1;
1701   assert(start_row <= last_row, "must be work left to do");
1702   // Test this row for both the item and for null.
1703   // Take any of three different outcomes:
1704   //   1. found item => increment count and goto done
1705   //   2. found null => keep looking for case 1, maybe allocate this cell
1706   //   3. found something else => keep looking for cases 1 and 2
1707   // Case 3 is handled by a recursive call.
1708   for (int row = start_row; row <= last_row; row++) {
1709     Label next_test;
1710     bool test_for_null_also = (row == start_row);
1711 
1712     // See if the item is item[n].
1713     int item_offset = in_bytes(item_offset_fn(row));
1714     test_mdp_data_at(mdp, item_offset, item,
1715                      (test_for_null_also ? reg2 : noreg),
1716                      next_test);
1717     // (Reg2 now contains the item from the CallData.)
1718 
1719     // The item is item[n].  Increment count[n].
1720     int count_offset = in_bytes(item_count_offset_fn(row));
1721     increment_mdp_data_at(mdp, count_offset);
1722     jmp(done);
1723     bind(next_test);
1724 
1725     if (test_for_null_also) {
1726       // Failed the equality check on item[n]...  Test for null.
1727       testptr(reg2, reg2);
1728       if (start_row == last_row) {
1729         // The only thing left to do is handle the null case.
1730         if (non_profiled_offset >= 0) {
1731           Label found_null;
1732           jccb(Assembler::zero, found_null);
1733           // Item did not match any saved item and there is no empty row for it.
1734           // Increment total counter to indicate polymorphic case.
1735           increment_mdp_data_at(mdp, non_profiled_offset);
1736           jmp(done);
1737           bind(found_null);
1738         } else {
1739           jcc(Assembler::notZero, done);
1740         }
1741         break;
1742       }
1743       Label found_null;
1744       // Since null is rare, make it be the branch-taken case.
1745       jcc(Assembler::zero, found_null);
1746 
1747       // Put all the "Case 3" tests here.
1748       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1749         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1750 
1751       // Found a null.  Keep searching for a matching item,
1752       // but remember that this is an empty (unused) slot.
1753       bind(found_null);
1754     }
1755   }
1756 
1757   // In the fall-through case, we found no matching item, but we
1758   // observed the item[start_row] is NULL.
1759 
1760   // Fill in the item field and increment the count.
1761   int item_offset = in_bytes(item_offset_fn(start_row));
1762   set_mdp_data_at(mdp, item_offset, item);
1763   int count_offset = in_bytes(item_count_offset_fn(start_row));
1764   movl(reg2, DataLayout::counter_increment);
1765   set_mdp_data_at(mdp, count_offset, reg2);
1766   if (start_row > 0) {
1767     jmp(done);
1768   }
1769 }
1770 
1771 // Example state machine code for three profile rows:
1772 //   // main copy of decision tree, rooted at row[1]
1773 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1774 //   if (row[0].rec != NULL) {
1775 //     // inner copy of decision tree, rooted at row[1]
1776 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1777 //     if (row[1].rec != NULL) {
1778 //       // degenerate decision tree, rooted at row[2]
1779 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1780 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1781 //       row[2].init(rec); goto done;
1782 //     } else {
1783 //       // remember row[1] is empty
1784 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1785 //       row[1].init(rec); goto done;
1786 //     }
1787 //   } else {
1788 //     // remember row[0] is empty
1789 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1790 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1791 //     row[0].init(rec); goto done;
1792 //   }
1793 //   done:
1794 
1795 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1796                                                         Register mdp, Register reg2,
1797                                                         bool is_virtual_call) {
1798   assert(ProfileInterpreter, "must be profiling");
1799   Label done;
1800 
1801   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1802 
1803   bind (done);
1804 }
1805 
1806 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1807                                             Register mdp) {
1808   if (ProfileInterpreter) {
1809     Label profile_continue;
1810     uint row;
1811 
1812     // If no method data exists, go to profile_continue.
1813     test_method_data_pointer(mdp, profile_continue);
1814 
1815     // Update the total ret count.
1816     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1817 
1818     for (row = 0; row < RetData::row_limit(); row++) {
1819       Label next_test;
1820 
1821       // See if return_bci is equal to bci[n]:
1822       test_mdp_data_at(mdp,
1823                        in_bytes(RetData::bci_offset(row)),
1824                        return_bci, noreg,
1825                        next_test);
1826 
1827       // return_bci is equal to bci[n].  Increment the count.
1828       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1829 
1830       // The method data pointer needs to be updated to reflect the new target.
1831       update_mdp_by_offset(mdp,
1832                            in_bytes(RetData::bci_displacement_offset(row)));
1833       jmp(profile_continue);
1834       bind(next_test);
1835     }
1836 
1837     update_mdp_for_ret(return_bci);
1838 
1839     bind(profile_continue);
1840   }
1841 }
1842 
1843 
1844 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1845   if (ProfileInterpreter) {
1846     Label profile_continue;
1847 
1848     // If no method data exists, go to profile_continue.
1849     test_method_data_pointer(mdp, profile_continue);
1850 
1851     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1852 
1853     // The method data pointer needs to be updated.
1854     int mdp_delta = in_bytes(BitData::bit_data_size());
1855     if (TypeProfileCasts) {
1856       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1857     }
1858     update_mdp_by_constant(mdp, mdp_delta);
1859 
1860     bind(profile_continue);
1861   }
1862 }
1863 
1864 
1865 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1866   if (ProfileInterpreter && TypeProfileCasts) {
1867     Label profile_continue;
1868 
1869     // If no method data exists, go to profile_continue.
1870     test_method_data_pointer(mdp, profile_continue);
1871 
1872     int count_offset = in_bytes(CounterData::count_offset());
1873     // Back up the address, since we have already bumped the mdp.
1874     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1875 
1876     // *Decrement* the counter.  We expect to see zero or small negatives.
1877     increment_mdp_data_at(mdp, count_offset, true);
1878 
1879     bind (profile_continue);
1880   }
1881 }
1882 
1883 
1884 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1885   if (ProfileInterpreter) {
1886     Label profile_continue;
1887 
1888     // If no method data exists, go to profile_continue.
1889     test_method_data_pointer(mdp, profile_continue);
1890 
1891     // The method data pointer needs to be updated.
1892     int mdp_delta = in_bytes(BitData::bit_data_size());
1893     if (TypeProfileCasts) {
1894       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1895 
1896       // Record the object type.
1897       record_klass_in_profile(klass, mdp, reg2, false);
1898       NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1899       NOT_LP64(restore_locals();)         // Restore EDI
1900     }
1901     update_mdp_by_constant(mdp, mdp_delta);
1902 
1903     bind(profile_continue);
1904   }
1905 }
1906 
1907 
1908 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1909   if (ProfileInterpreter) {
1910     Label profile_continue;
1911 
1912     // If no method data exists, go to profile_continue.
1913     test_method_data_pointer(mdp, profile_continue);
1914 
1915     // Update the default case count
1916     increment_mdp_data_at(mdp,
1917                           in_bytes(MultiBranchData::default_count_offset()));
1918 
1919     // The method data pointer needs to be updated.
1920     update_mdp_by_offset(mdp,
1921                          in_bytes(MultiBranchData::
1922                                   default_displacement_offset()));
1923 
1924     bind(profile_continue);
1925   }
1926 }
1927 
1928 
1929 void InterpreterMacroAssembler::profile_switch_case(Register index,
1930                                                     Register mdp,
1931                                                     Register reg2) {
1932   if (ProfileInterpreter) {
1933     Label profile_continue;
1934 
1935     // If no method data exists, go to profile_continue.
1936     test_method_data_pointer(mdp, profile_continue);
1937 
1938     // Build the base (index * per_case_size_in_bytes()) +
1939     // case_array_offset_in_bytes()
1940     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1941     imulptr(index, reg2); // XXX l ?
1942     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1943 
1944     // Update the case count
1945     increment_mdp_data_at(mdp,
1946                           index,
1947                           in_bytes(MultiBranchData::relative_count_offset()));
1948 
1949     // The method data pointer needs to be updated.
1950     update_mdp_by_offset(mdp,
1951                          index,
1952                          in_bytes(MultiBranchData::
1953                                   relative_displacement_offset()));
1954 
1955     bind(profile_continue);
1956   }
1957 }
1958 
1959 
1960 
1961 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1962   if (state == atos) {
1963     MacroAssembler::verify_oop(reg);
1964   }
1965 }
1966 
1967 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1968 #ifndef _LP64
1969   if ((state == ftos && UseSSE < 1) ||
1970       (state == dtos && UseSSE < 2)) {
1971     MacroAssembler::verify_FPU(stack_depth);
1972   }
1973 #endif
1974 }
1975 
1976 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1977 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1978                                                         int increment, Address mask,
1979                                                         Register scratch, bool preloaded,
1980                                                         Condition cond, Label* where) {
1981   if (!preloaded) {
1982     movl(scratch, counter_addr);
1983   }
1984   incrementl(scratch, increment);
1985   movl(counter_addr, scratch);
1986   andl(scratch, mask);
1987   if (where != NULL) {
1988     jcc(cond, *where);
1989   }
1990 }
1991 
1992 void InterpreterMacroAssembler::notify_method_entry() {
1993   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1994   // track stack depth.  If it is possible to enter interp_only_mode we add
1995   // the code to check if the event should be sent.
1996   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1997   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1998   if (JvmtiExport::can_post_interpreter_events()) {
1999     Label L;
2000     NOT_LP64(get_thread(rthread);)
2001     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2002     testl(rdx, rdx);
2003     jcc(Assembler::zero, L);
2004     call_VM(noreg, CAST_FROM_FN_PTR(address,
2005                                     InterpreterRuntime::post_method_entry));
2006     bind(L);
2007   }
2008 
2009   {
2010     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2011     NOT_LP64(get_thread(rthread);)
2012     get_method(rarg);
2013     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2014                  rthread, rarg);
2015   }
2016 
2017   // RedefineClasses() tracing support for obsolete method entry
2018   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2019     NOT_LP64(get_thread(rthread);)
2020     get_method(rarg);
2021     call_VM_leaf(
2022       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2023       rthread, rarg);
2024   }
2025 }
2026 
2027 
2028 void InterpreterMacroAssembler::notify_method_exit(
2029     TosState state, NotifyMethodExitMode mode) {
2030   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2031   // track stack depth.  If it is possible to enter interp_only_mode we add
2032   // the code to check if the event should be sent.
2033   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2034   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2035   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2036     Label L;
2037     // Note: frame::interpreter_frame_result has a dependency on how the
2038     // method result is saved across the call to post_method_exit. If this
2039     // is changed then the interpreter_frame_result implementation will
2040     // need to be updated too.
2041 
2042     // template interpreter will leave the result on the top of the stack.
2043     push(state);
2044     NOT_LP64(get_thread(rthread);)
2045     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2046     testl(rdx, rdx);
2047     jcc(Assembler::zero, L);
2048     call_VM(noreg,
2049             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2050     bind(L);
2051     pop(state);
2052   }
2053 
2054   {
2055     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2056     push(state);
2057     NOT_LP64(get_thread(rthread);)
2058     get_method(rarg);
2059     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2060                  rthread, rarg);
2061     pop(state);
2062   }
2063 }