1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "compiler/compiler_globals.hpp"
  26 #include "interp_masm_x86.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "logging/log.hpp"
  30 #include "oops/arrayOop.hpp"
  31 #include "oops/markWord.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/method.hpp"
  34 #include "oops/resolvedFieldEntry.hpp"
  35 #include "oops/resolvedIndyEntry.hpp"
  36 #include "oops/resolvedMethodEntry.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/basicLock.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/javaThread.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "utilities/powerOfTwo.hpp"
  45 
  46 // Implementation of InterpreterMacroAssembler
  47 
  48 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  49   assert(entry, "Entry must have been generated by now");
  50   jump(RuntimeAddress(entry));
  51 }
  52 
  53 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
  54   Label update, next, none;
  55 
  56   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
  57 
  58   interp_verify_oop(obj, atos);
  59 
  60   testptr(obj, obj);
  61   jccb(Assembler::notZero, update);
  62   testptr(mdo_addr, TypeEntries::null_seen);
  63   jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore.
  64   // atomic update to prevent overwriting Klass* with 0
  65   lock();
  66   orptr(mdo_addr, TypeEntries::null_seen);
  67   jmpb(next);
  68 
  69   bind(update);
  70   load_klass(obj, obj, rscratch1);
  71   mov(rscratch1, obj);
  72 
  73   xorptr(obj, mdo_addr);
  74   testptr(obj, TypeEntries::type_klass_mask);
  75   jccb(Assembler::zero, next); // klass seen before, nothing to
  76                                // do. The unknown bit may have been
  77                                // set already but no need to check.
  78 
  79   testptr(obj, TypeEntries::type_unknown);
  80   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  81 
  82   cmpptr(mdo_addr, 0);
  83   jccb(Assembler::equal, none);
  84   cmpptr(mdo_addr, TypeEntries::null_seen);
  85   jccb(Assembler::equal, none);
  86 
  87   // There is a chance that the checks above (re-reading profiling
  88   // data from memory) fail if another thread has just set the
  89   // profiling to this obj's klass
  90   mov(obj, rscratch1);
  91   xorptr(obj, mdo_addr);
  92   testptr(obj, TypeEntries::type_klass_mask);
  93   jccb(Assembler::zero, next);
  94 
  95   // different than before. Cannot keep accurate profile.
  96   orptr(mdo_addr, TypeEntries::type_unknown);
  97   jmpb(next);
  98 
  99   bind(none);
 100   // first time here. Set profile type.
 101   movptr(mdo_addr, obj);
 102 #ifdef ASSERT
 103   andptr(obj, TypeEntries::type_klass_mask);
 104   verify_klass_ptr(obj);
 105 #endif
 106 
 107   bind(next);
 108 }
 109 
 110 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
 111   if (!ProfileInterpreter) {
 112     return;
 113   }
 114 
 115   if (MethodData::profile_arguments() || MethodData::profile_return()) {
 116     Label profile_continue;
 117 
 118     test_method_data_pointer(mdp, profile_continue);
 119 
 120     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
 121 
 122     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
 123     jcc(Assembler::notEqual, profile_continue);
 124 
 125     if (MethodData::profile_arguments()) {
 126       Label done;
 127       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
 128       addptr(mdp, off_to_args);
 129 
 130       for (int i = 0; i < TypeProfileArgsLimit; i++) {
 131         if (i > 0 || MethodData::profile_return()) {
 132           // If return value type is profiled we may have no argument to profile
 133           movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 134           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
 135           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
 136           jcc(Assembler::less, done);
 137         }
 138         movptr(tmp, Address(callee, Method::const_offset()));
 139         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
 140         // stack offset o (zero based) from the start of the argument
 141         // list, for n arguments translates into offset n - o - 1 from
 142         // the end of the argument list
 143         subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
 144         subl(tmp, 1);
 145         Address arg_addr = argument_address(tmp);
 146         movptr(tmp, arg_addr);
 147 
 148         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
 149         profile_obj_type(tmp, mdo_arg_addr);
 150 
 151         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
 152         addptr(mdp, to_add);
 153         off_to_args += to_add;
 154       }
 155 
 156       if (MethodData::profile_return()) {
 157         movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 158         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
 159       }
 160 
 161       bind(done);
 162 
 163       if (MethodData::profile_return()) {
 164         // We're right after the type profile for the last
 165         // argument. tmp is the number of cells left in the
 166         // CallTypeData/VirtualCallTypeData to reach its end. Non null
 167         // if there's a return to profile.
 168         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
 169         shll(tmp, log2i_exact((int)DataLayout::cell_size));
 170         addptr(mdp, tmp);
 171       }
 172       movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
 173     } else {
 174       assert(MethodData::profile_return(), "either profile call args or call ret");
 175       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
 176     }
 177 
 178     // mdp points right after the end of the
 179     // CallTypeData/VirtualCallTypeData, right after the cells for the
 180     // return value type if there's one
 181 
 182     bind(profile_continue);
 183   }
 184 }
 185 
 186 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
 187   assert_different_registers(mdp, ret, tmp, _bcp_register);
 188   if (ProfileInterpreter && MethodData::profile_return()) {
 189     Label profile_continue;
 190 
 191     test_method_data_pointer(mdp, profile_continue);
 192 
 193     if (MethodData::profile_return_jsr292_only()) {
 194       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
 195 
 196       // If we don't profile all invoke bytecodes we must make sure
 197       // it's a bytecode we indeed profile. We can't go back to the
 198       // beginning of the ProfileData we intend to update to check its
 199       // type because we're right after it and we don't known its
 200       // length
 201       Label do_profile;
 202       cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
 203       jcc(Assembler::equal, do_profile);
 204       cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
 205       jcc(Assembler::equal, do_profile);
 206       get_method(tmp);
 207       cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm));
 208       jcc(Assembler::notEqual, profile_continue);
 209 
 210       bind(do_profile);
 211     }
 212 
 213     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
 214     mov(tmp, ret);
 215     profile_obj_type(tmp, mdo_ret_addr);
 216 
 217     bind(profile_continue);
 218   }
 219 }
 220 
 221 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
 222   if (ProfileInterpreter && MethodData::profile_parameters()) {
 223     Label profile_continue;
 224 
 225     test_method_data_pointer(mdp, profile_continue);
 226 
 227     // Load the offset of the area within the MDO used for
 228     // parameters. If it's negative we're not profiling any parameters
 229     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
 230     testl(tmp1, tmp1);
 231     jcc(Assembler::negative, profile_continue);
 232 
 233     // Compute a pointer to the area for parameters from the offset
 234     // and move the pointer to the slot for the last
 235     // parameters. Collect profiling from last parameter down.
 236     // mdo start + parameters offset + array length - 1
 237     addptr(mdp, tmp1);
 238     movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
 239     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 240 
 241     Label loop;
 242     bind(loop);
 243 
 244     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
 245     int type_base = in_bytes(ParametersTypeData::type_offset(0));
 246     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
 247     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
 248     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
 249 
 250     // load offset on the stack from the slot for this parameter
 251     movptr(tmp2, arg_off);
 252     negptr(tmp2);
 253     // read the parameter from the local area
 254     movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
 255 
 256     // profile the parameter
 257     profile_obj_type(tmp2, arg_type);
 258 
 259     // go to next parameter
 260     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 261     jcc(Assembler::positive, loop);
 262 
 263     bind(profile_continue);
 264   }
 265 }
 266 
 267 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
 268                                                   int number_of_arguments) {
 269   // interpreter specific
 270   //
 271   // Note: No need to save/restore bcp & locals registers
 272   //       since these are callee saved registers and no blocking/
 273   //       GC can happen in leaf calls.
 274   // Further Note: DO NOT save/restore bcp/locals. If a caller has
 275   // already saved them so that it can use rsi/rdi as temporaries
 276   // then a save/restore here will DESTROY the copy the caller
 277   // saved! There used to be a save_bcp() that only happened in
 278   // the ASSERT path (no restore_bcp). Which caused bizarre failures
 279   // when jvm built with ASSERTs.
 280 #ifdef ASSERT
 281   {
 282     Label L;
 283     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 284     jcc(Assembler::equal, L);
 285     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 286          " last_sp != null");
 287     bind(L);
 288   }
 289 #endif
 290   // super call
 291   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 292   // interpreter specific
 293   // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
 294   // but since they may not have been saved (and we don't want to
 295   // save them here (see note above) the assert is invalid.
 296 }
 297 
 298 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
 299                                              Register last_java_sp,
 300                                              address  entry_point,
 301                                              int      number_of_arguments,
 302                                              bool     check_exceptions) {
 303   // interpreter specific
 304   //
 305   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 306   //       really make a difference for these runtime calls, since they are
 307   //       slow anyway. Btw., bcp must be saved/restored since it may change
 308   //       due to GC.
 309   save_bcp();
 310 #ifdef ASSERT
 311   {
 312     Label L;
 313     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 314     jcc(Assembler::equal, L);
 315     stop("InterpreterMacroAssembler::call_VM_base:"
 316          " last_sp isn't null");
 317     bind(L);
 318   }
 319 #endif /* ASSERT */
 320   // super call
 321   MacroAssembler::call_VM_base(oop_result, last_java_sp,
 322                                entry_point, number_of_arguments,
 323                                check_exceptions);
 324   // interpreter specific
 325   restore_bcp();
 326   restore_locals();
 327 }
 328 
 329 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
 330                                                     address entry_point,
 331                                                     Register arg_1) {
 332   assert(arg_1 == c_rarg1, "");
 333   Label resume_pc, not_preempted;
 334 
 335 #ifdef ASSERT
 336   {
 337     Label L;
 338     cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
 339     jcc(Assembler::equal, L);
 340     stop("Should not have alternate return address set");
 341     bind(L);
 342   }
 343 #endif /* ASSERT */
 344 
 345   // Force freeze slow path.
 346   push_cont_fastpath();
 347 
 348   // Make VM call. In case of preemption set last_pc to the one we want to resume to.
 349   // Note: call_VM_helper requires last_Java_pc for anchor to be at the top of the stack.
 350   lea(rscratch1, resume_pc);
 351   push(rscratch1);
 352   MacroAssembler::call_VM_helper(oop_result, entry_point, 1, false /*check_exceptions*/);
 353   pop(rscratch1);
 354 
 355   pop_cont_fastpath();
 356 
 357   // Check if preempted.
 358   movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset()));
 359   cmpptr(rscratch1, NULL_WORD);
 360   jccb(Assembler::zero, not_preempted);
 361   movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
 362   jmp(rscratch1);
 363 
 364   // In case of preemption, this is where we will resume once we finally acquire the monitor.
 365   bind(resume_pc);
 366   restore_after_resume(false /* is_native */);
 367 
 368   bind(not_preempted);
 369 }
 370 
 371 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
 372   lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
 373   call(rscratch1);
 374   if (is_native) {
 375     // On resume we need to set up stack as expected.
 376     push(dtos);
 377     push(ltos);
 378   }
 379 }
 380 
 381 void InterpreterMacroAssembler::check_and_handle_popframe() {
 382   if (JvmtiExport::can_pop_frame()) {
 383     Label L;
 384     // Initiate popframe handling only if it is not already being
 385     // processed.  If the flag has the popframe_processing bit set, it
 386     // means that this code is called *during* popframe handling - we
 387     // don't want to reenter.
 388     // This method is only called just after the call into the vm in
 389     // call_VM_base, so the arg registers are available.
 390     Register pop_cond = c_rarg0;
 391     movl(pop_cond, Address(r15_thread, JavaThread::popframe_condition_offset()));
 392     testl(pop_cond, JavaThread::popframe_pending_bit);
 393     jcc(Assembler::zero, L);
 394     testl(pop_cond, JavaThread::popframe_processing_bit);
 395     jcc(Assembler::notZero, L);
 396     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 397     // address of the same-named entrypoint in the generated interpreter code.
 398     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 399     jmp(rax);
 400     bind(L);
 401   }
 402 }
 403 
 404 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 405   movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 406   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 407   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 408   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 409 
 410   switch (state) {
 411     case atos: movptr(rax, oop_addr);
 412                movptr(oop_addr, NULL_WORD);
 413                interp_verify_oop(rax, state);         break;
 414     case ltos: movptr(rax, val_addr);                 break;
 415     case btos:                                   // fall through
 416     case ztos:                                   // fall through
 417     case ctos:                                   // fall through
 418     case stos:                                   // fall through
 419     case itos: movl(rax, val_addr);                 break;
 420     case ftos: movflt(xmm0, val_addr);              break;
 421     case dtos: movdbl(xmm0, val_addr);              break;
 422     case vtos: /* nothing to do */                  break;
 423     default  : ShouldNotReachHere();
 424   }
 425 
 426   // Clean up tos value in the thread object
 427   movl(tos_addr, ilgl);
 428   movptr(val_addr, NULL_WORD);
 429 }
 430 
 431 
 432 void InterpreterMacroAssembler::check_and_handle_earlyret() {
 433   if (JvmtiExport::can_force_early_return()) {
 434     Label L;
 435     Register tmp = c_rarg0;
 436     Register rthread = r15_thread;
 437 
 438     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 439     testptr(tmp, tmp);
 440     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit;
 441 
 442     // Initiate earlyret handling only if it is not already being processed.
 443     // If the flag has the earlyret_processing bit set, it means that this code
 444     // is called *during* earlyret handling - we don't want to reenter.
 445     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 446     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 447     jcc(Assembler::notEqual, L);
 448 
 449     // Call Interpreter::remove_activation_early_entry() to get the address of the
 450     // same-named entrypoint in the generated interpreter code.
 451     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 452     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 453     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
 454     jmp(rax);
 455     bind(L);
 456   }
 457 }
 458 
 459 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 460   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 461   load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
 462   bswapl(reg);
 463   shrl(reg, 16);
 464 }
 465 
 466 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 467                                                        int bcp_offset,
 468                                                        size_t index_size) {
 469   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 470   if (index_size == sizeof(u2)) {
 471     load_unsigned_short(index, Address(_bcp_register, bcp_offset));
 472   } else if (index_size == sizeof(u4)) {
 473     movl(index, Address(_bcp_register, bcp_offset));
 474   } else if (index_size == sizeof(u1)) {
 475     load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
 476   } else {
 477     ShouldNotReachHere();
 478   }
 479 }
 480 
 481 // Load object from cpool->resolved_references(index)
 482 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
 483                                                                  Register index,
 484                                                                  Register tmp) {
 485   assert_different_registers(result, index);
 486 
 487   get_constant_pool(result);
 488   // load pointer for resolved_references[] objArray
 489   movptr(result, Address(result, ConstantPool::cache_offset()));
 490   movptr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
 491   resolve_oop_handle(result, tmp);
 492   load_heap_oop(result, Address(result, index,
 493                                 UseCompressedOops ? Address::times_4 : Address::times_ptr,
 494                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
 495 }
 496 
 497 // load cpool->resolved_klass_at(index)
 498 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
 499                                                              Register cpool,
 500                                                              Register index) {
 501   assert_different_registers(cpool, index);
 502 
 503   movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
 504   Register resolved_klasses = cpool;
 505   movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset()));
 506   movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
 507 }
 508 
 509 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 510 // subtype of super_klass.
 511 //
 512 // Args:
 513 //      rax: superklass
 514 //      Rsub_klass: subklass
 515 //
 516 // Kills:
 517 //      rcx, rdi
 518 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 519                                                   Label& ok_is_subtype) {
 520   assert(Rsub_klass != rax, "rax holds superklass");
 521   LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
 522   LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
 523   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 524   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 525 
 526   // Profile the not-null value's klass.
 527   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 528 
 529   // Do the check.
 530   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 531 }
 532 
 533 
 534 // Java Expression Stack
 535 
 536 void InterpreterMacroAssembler::pop_ptr(Register r) {
 537   pop(r);
 538 }
 539 
 540 void InterpreterMacroAssembler::push_ptr(Register r) {
 541   push(r);
 542 }
 543 
 544 void InterpreterMacroAssembler::push_i(Register r) {
 545   push(r);
 546 }
 547 
 548 void InterpreterMacroAssembler::push_i_or_ptr(Register r) {
 549   push(r);
 550 }
 551 
 552 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 553   subptr(rsp, wordSize);
 554   movflt(Address(rsp, 0), r);
 555 }
 556 
 557 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 558   movflt(r, Address(rsp, 0));
 559   addptr(rsp, wordSize);
 560 }
 561 
 562 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 563   subptr(rsp, 2 * wordSize);
 564   movdbl(Address(rsp, 0), r);
 565 }
 566 
 567 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 568   movdbl(r, Address(rsp, 0));
 569   addptr(rsp, 2 * Interpreter::stackElementSize);
 570 }
 571 
 572 void InterpreterMacroAssembler::pop_i(Register r) {
 573   // XXX can't use pop currently, upper half non clean
 574   movl(r, Address(rsp, 0));
 575   addptr(rsp, wordSize);
 576 }
 577 
 578 void InterpreterMacroAssembler::pop_l(Register r) {
 579   movq(r, Address(rsp, 0));
 580   addptr(rsp, 2 * Interpreter::stackElementSize);
 581 }
 582 
 583 void InterpreterMacroAssembler::push_l(Register r) {
 584   subptr(rsp, 2 * wordSize);
 585   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r         );
 586   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
 587 }
 588 
 589 void InterpreterMacroAssembler::pop(TosState state) {
 590   switch (state) {
 591   case atos: pop_ptr();                 break;
 592   case btos:
 593   case ztos:
 594   case ctos:
 595   case stos:
 596   case itos: pop_i();                   break;
 597   case ltos: pop_l();                   break;
 598   case ftos: pop_f(xmm0);               break;
 599   case dtos: pop_d(xmm0);               break;
 600   case vtos: /* nothing to do */        break;
 601   default:   ShouldNotReachHere();
 602   }
 603   interp_verify_oop(rax, state);
 604 }
 605 
 606 void InterpreterMacroAssembler::push(TosState state) {
 607   interp_verify_oop(rax, state);
 608   switch (state) {
 609   case atos: push_ptr();                break;
 610   case btos:
 611   case ztos:
 612   case ctos:
 613   case stos:
 614   case itos: push_i();                  break;
 615   case ltos: push_l();                  break;
 616   case ftos: push_f(xmm0);              break;
 617   case dtos: push_d(xmm0);              break;
 618   case vtos: /* nothing to do */        break;
 619   default  : ShouldNotReachHere();
 620   }
 621 }
 622 
 623 // Helpers for swap and dup
 624 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 625   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 626 }
 627 
 628 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 629   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 630 }
 631 
 632 
 633 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 634   // set sender sp
 635   lea(_bcp_register, Address(rsp, wordSize));
 636   // record last_sp
 637   mov(rcx, _bcp_register);
 638   subptr(rcx, rbp);
 639   sarptr(rcx, LogBytesPerWord);
 640   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx);
 641 }
 642 
 643 
 644 // Jump to from_interpreted entry of a call unless single stepping is possible
 645 // in this thread in which case we must call the i2i entry
 646 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 647   prepare_to_jump_from_interpreted();
 648 
 649   if (JvmtiExport::can_post_interpreter_events()) {
 650     Label run_compiled_code;
 651     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 652     // compiled code in threads for which the event is enabled.  Check here for
 653     // interp_only_mode if these events CAN be enabled.
 654     // interp_only is an int, on little endian it is sufficient to test the byte only
 655     // Is a cmpl faster?
 656     cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
 657     jccb(Assembler::zero, run_compiled_code);
 658     jmp(Address(method, Method::interpreter_entry_offset()));
 659     bind(run_compiled_code);
 660   }
 661 
 662   jmp(Address(method, Method::from_interpreted_offset()));
 663 }
 664 
 665 // The following two routines provide a hook so that an implementation
 666 // can schedule the dispatch in two parts.  x86 does not do this.
 667 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 668   // Nothing x86 specific to be done here
 669 }
 670 
 671 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 672   dispatch_next(state, step);
 673 }
 674 
 675 void InterpreterMacroAssembler::dispatch_base(TosState state,
 676                                               address* table,
 677                                               bool verifyoop,
 678                                               bool generate_poll) {
 679   if (VerifyActivationFrameSize) {
 680     Label L;
 681     mov(rcx, rbp);
 682     subptr(rcx, rsp);
 683     int32_t min_frame_size =
 684       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 685       wordSize;
 686     cmpptr(rcx, min_frame_size);
 687     jcc(Assembler::greaterEqual, L);
 688     stop("broken stack frame");
 689     bind(L);
 690   }
 691   if (verifyoop) {
 692     interp_verify_oop(rax, state);
 693   }
 694 
 695   address* const safepoint_table = Interpreter::safept_table(state);
 696   Label no_safepoint, dispatch;
 697   if (table != safepoint_table && generate_poll) {
 698     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 699     testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
 700 
 701     jccb(Assembler::zero, no_safepoint);
 702     lea(rscratch1, ExternalAddress((address)safepoint_table));
 703     jmpb(dispatch);
 704   }
 705 
 706   bind(no_safepoint);
 707   lea(rscratch1, ExternalAddress((address)table));
 708   bind(dispatch);
 709   jmp(Address(rscratch1, rbx, Address::times_8));
 710 }
 711 
 712 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 713   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 714 }
 715 
 716 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 717   dispatch_base(state, Interpreter::normal_table(state));
 718 }
 719 
 720 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 721   dispatch_base(state, Interpreter::normal_table(state), false);
 722 }
 723 
 724 
 725 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 726   // load next bytecode (load before advancing _bcp_register to prevent AGI)
 727   load_unsigned_byte(rbx, Address(_bcp_register, step));
 728   // advance _bcp_register
 729   increment(_bcp_register, step);
 730   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 731 }
 732 
 733 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 734   // load current bytecode
 735   load_unsigned_byte(rbx, Address(_bcp_register, 0));
 736   dispatch_base(state, table);
 737 }
 738 
 739 void InterpreterMacroAssembler::narrow(Register result) {
 740 
 741   // Get method->_constMethod->_result_type
 742   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 743   movptr(rcx, Address(rcx, Method::const_offset()));
 744   load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
 745 
 746   Label done, notBool, notByte, notChar;
 747 
 748   // common case first
 749   cmpl(rcx, T_INT);
 750   jcc(Assembler::equal, done);
 751 
 752   // mask integer result to narrower return type.
 753   cmpl(rcx, T_BOOLEAN);
 754   jcc(Assembler::notEqual, notBool);
 755   andl(result, 0x1);
 756   jmp(done);
 757 
 758   bind(notBool);
 759   cmpl(rcx, T_BYTE);
 760   jcc(Assembler::notEqual, notByte);
 761   movsbl(result, result);
 762   jmp(done);
 763 
 764   bind(notByte);
 765   cmpl(rcx, T_CHAR);
 766   jcc(Assembler::notEqual, notChar);
 767   movzwl(result, result);
 768   jmp(done);
 769 
 770   bind(notChar);
 771   // cmpl(rcx, T_SHORT);  // all that's left
 772   // jcc(Assembler::notEqual, done);
 773   movswl(result, result);
 774 
 775   // Nothing to do for T_INT
 776   bind(done);
 777 }
 778 
 779 // remove activation
 780 //
 781 // Unlock the receiver if this is a synchronized method.
 782 // Unlock any Java monitors from synchronized blocks.
 783 // Apply stack watermark barrier.
 784 // Notify JVMTI.
 785 // Remove the activation from the stack.
 786 //
 787 // If there are locked Java monitors
 788 //    If throw_monitor_exception
 789 //       throws IllegalMonitorStateException
 790 //    Else if install_monitor_exception
 791 //       installs IllegalMonitorStateException
 792 //    Else
 793 //       no error processing
 794 void InterpreterMacroAssembler::remove_activation(TosState state,
 795                                                   Register ret_addr,
 796                                                   bool throw_monitor_exception,
 797                                                   bool install_monitor_exception,
 798                                                   bool notify_jvmdi) {
 799   // Note: Registers rdx xmm0 may be in use for the
 800   // result check if synchronized method
 801   Label unlocked, unlock, no_unlock;
 802 
 803   const Register rthread = r15_thread;
 804   const Register robj    = c_rarg1;
 805   const Register rmon    = c_rarg1;
 806 
 807   // get the value of _do_not_unlock_if_synchronized into rdx
 808   const Address do_not_unlock_if_synchronized(rthread,
 809     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 810   movbool(rbx, do_not_unlock_if_synchronized);
 811   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 812 
 813  // get method access flags
 814   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 815   load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset()));
 816   testl(rcx, JVM_ACC_SYNCHRONIZED);
 817   jcc(Assembler::zero, unlocked);
 818 
 819   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 820   // is set.
 821   testbool(rbx);
 822   jcc(Assembler::notZero, no_unlock);
 823 
 824   // unlock monitor
 825   push(state); // save result
 826 
 827   // BasicObjectLock will be first in list, since this is a
 828   // synchronized method. However, need to check that the object has
 829   // not been unlocked by an explicit monitorexit bytecode.
 830   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 831                         wordSize - (int) sizeof(BasicObjectLock));
 832   // We use c_rarg1/rdx so that if we go slow path it will be the correct
 833   // register for unlock_object to pass to VM directly
 834   lea(robj, monitor); // address of first monitor
 835 
 836   movptr(rax, Address(robj, BasicObjectLock::obj_offset()));
 837   testptr(rax, rax);
 838   jcc(Assembler::notZero, unlock);
 839 
 840   pop(state);
 841   if (throw_monitor_exception) {
 842     // Entry already unlocked, need to throw exception
 843     call_VM(noreg, CAST_FROM_FN_PTR(address,
 844                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 845     should_not_reach_here();
 846   } else {
 847     // Monitor already unlocked during a stack unroll. If requested,
 848     // install an illegal_monitor_state_exception.  Continue with
 849     // stack unrolling.
 850     if (install_monitor_exception) {
 851       call_VM(noreg, CAST_FROM_FN_PTR(address,
 852                      InterpreterRuntime::new_illegal_monitor_state_exception));
 853     }
 854     jmp(unlocked);
 855   }
 856 
 857   bind(unlock);
 858   unlock_object(robj);
 859   pop(state);
 860 
 861   // Check that for block-structured locking (i.e., that all locked
 862   // objects has been unlocked)
 863   bind(unlocked);
 864 
 865   // rax, rdx: Might contain return value
 866 
 867   // Check that all monitors are unlocked
 868   {
 869     Label loop, exception, entry, restart;
 870     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 871     const Address monitor_block_top(
 872         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 873     const Address monitor_block_bot(
 874         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
 875 
 876     bind(restart);
 877     // We use c_rarg1 so that if we go slow path it will be the correct
 878     // register for unlock_object to pass to VM directly
 879     movptr(rmon, monitor_block_top); // derelativize pointer
 880     lea(rmon, Address(rbp, rmon, Address::times_ptr));
 881     // c_rarg1 points to current entry, starting with top-most entry
 882 
 883     lea(rbx, monitor_block_bot);  // points to word before bottom of
 884                                   // monitor block
 885     jmp(entry);
 886 
 887     // Entry already locked, need to throw exception
 888     bind(exception);
 889 
 890     if (throw_monitor_exception) {
 891       // Throw exception
 892       MacroAssembler::call_VM(noreg,
 893                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 894                                    throw_illegal_monitor_state_exception));
 895       should_not_reach_here();
 896     } else {
 897       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 898       // Unlock does not block, so don't have to worry about the frame.
 899       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 900 
 901       push(state);
 902       mov(robj, rmon);   // nop if robj and rmon are the same
 903       unlock_object(robj);
 904       pop(state);
 905 
 906       if (install_monitor_exception) {
 907         call_VM(noreg, CAST_FROM_FN_PTR(address,
 908                                         InterpreterRuntime::
 909                                         new_illegal_monitor_state_exception));
 910       }
 911 
 912       jmp(restart);
 913     }
 914 
 915     bind(loop);
 916     // check if current entry is used
 917     cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD);
 918     jcc(Assembler::notEqual, exception);
 919 
 920     addptr(rmon, entry_size); // otherwise advance to next entry
 921     bind(entry);
 922     cmpptr(rmon, rbx); // check if bottom reached
 923     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
 924   }
 925 
 926   bind(no_unlock);
 927 
 928   JFR_ONLY(enter_jfr_critical_section();)
 929 
 930   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
 931   // that would normally not be safe to use. Such bad returns into unsafe territory of
 932   // the stack, will call InterpreterRuntime::at_unwind.
 933   Label slow_path;
 934   Label fast_path;
 935   safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
 936   jmp(fast_path);
 937   bind(slow_path);
 938   push(state);
 939   set_last_Java_frame(noreg, rbp, (address)pc(), rscratch1);
 940   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), r15_thread);
 941   reset_last_Java_frame(true);
 942   pop(state);
 943   bind(fast_path);
 944 
 945   // JVMTI support. Make sure the safepoint poll test is issued prior.
 946   if (notify_jvmdi) {
 947     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 948   } else {
 949     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 950   }
 951 
 952   // remove activation
 953   // get sender sp
 954   movptr(rbx,
 955          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
 956   if (StackReservedPages > 0) {
 957     // testing if reserved zone needs to be re-enabled
 958     Register rthread = r15_thread;
 959     Label no_reserved_zone_enabling;
 960 
 961     // check if already enabled - if so no re-enabling needed
 962     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
 963     cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled);
 964     jcc(Assembler::equal, no_reserved_zone_enabling);
 965 
 966     cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 967     jcc(Assembler::lessEqual, no_reserved_zone_enabling);
 968 
 969     JFR_ONLY(leave_jfr_critical_section();)
 970 
 971     call_VM_leaf(
 972       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 973     call_VM(noreg, CAST_FROM_FN_PTR(address,
 974                    InterpreterRuntime::throw_delayed_StackOverflowError));
 975     should_not_reach_here();
 976 
 977     bind(no_reserved_zone_enabling);
 978   }
 979 
 980   leave();                           // remove frame anchor
 981 
 982   JFR_ONLY(leave_jfr_critical_section();)
 983 
 984   pop(ret_addr);                     // get return address
 985   mov(rsp, rbx);                     // set sp to sender sp
 986   pop_cont_fastpath();
 987 
 988 }
 989 
 990 #if INCLUDE_JFR
 991 void InterpreterMacroAssembler::enter_jfr_critical_section() {
 992   const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 993   movbool(sampling_critical_section, true);
 994 }
 995 
 996 void InterpreterMacroAssembler::leave_jfr_critical_section() {
 997   const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 998   movbool(sampling_critical_section, false);
 999 }
1000 #endif // INCLUDE_JFR
1001 
1002 void InterpreterMacroAssembler::get_method_counters(Register method,
1003                                                     Register mcs, Label& skip) {
1004   Label has_counters;
1005   movptr(mcs, Address(method, Method::method_counters_offset()));
1006   testptr(mcs, mcs);
1007   jcc(Assembler::notZero, has_counters);
1008   call_VM(noreg, CAST_FROM_FN_PTR(address,
1009           InterpreterRuntime::build_method_counters), method);
1010   movptr(mcs, Address(method,Method::method_counters_offset()));
1011   testptr(mcs, mcs);
1012   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1013   bind(has_counters);
1014 }
1015 
1016 
1017 // Lock object
1018 //
1019 // Args:
1020 //      rdx, c_rarg1: BasicObjectLock to be used for locking
1021 //
1022 // Kills:
1023 //      rax, rbx
1024 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1025   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
1026 
1027   Label done, slow_case;
1028 
1029   const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1030   const Register tmp_reg = rbx;
1031   const Register obj_reg = c_rarg3; // Will contain the oop
1032 
1033   // Load object pointer into obj_reg
1034   movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1035 
1036   lightweight_lock(lock_reg, obj_reg, swap_reg, tmp_reg, slow_case);
1037   jmp(done);
1038 
1039   bind(slow_case);
1040 
1041   // Call the runtime routine for slow case
1042   call_VM_preemptable(noreg,
1043           CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1044           lock_reg);
1045   bind(done);
1046 }
1047 
1048 
1049 // Unlocks an object. Used in monitorexit bytecode and
1050 // remove_activation.  Throws an IllegalMonitorException if object is
1051 // not locked by current thread.
1052 //
1053 // Args:
1054 //      rdx, c_rarg1: BasicObjectLock for lock
1055 //
1056 // Kills:
1057 //      rax
1058 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1059 //      rscratch1 (scratch reg)
1060 // rax, rbx, rcx, rdx
1061 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1062   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
1063 
1064   Label done, slow_case;
1065 
1066   const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1067   const Register header_reg = c_rarg2;  // Will contain the old oopMark
1068   const Register obj_reg    = c_rarg3;  // Will contain the oop
1069 
1070   save_bcp(); // Save in case of exception
1071 
1072   // Load oop into obj_reg(%c_rarg3)
1073   movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1074 
1075   // Free entry
1076   movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD);
1077 
1078   lightweight_unlock(obj_reg, swap_reg, header_reg, slow_case);
1079   jmp(done);
1080 
1081   bind(slow_case);
1082   // Call the runtime routine for slow case.
1083   movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj
1084   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1085 
1086   bind(done);
1087 
1088   restore_bcp();
1089 }
1090 
1091 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1092                                                          Label& zero_continue) {
1093   assert(ProfileInterpreter, "must be profiling interpreter");
1094   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1095   testptr(mdp, mdp);
1096   jcc(Assembler::zero, zero_continue);
1097 }
1098 
1099 
1100 // Set the method data pointer for the current bcp.
1101 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1102   assert(ProfileInterpreter, "must be profiling interpreter");
1103   Label set_mdp;
1104   push(rax);
1105   push(rbx);
1106 
1107   get_method(rbx);
1108   // Test MDO to avoid the call if it is null.
1109   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1110   testptr(rax, rax);
1111   jcc(Assembler::zero, set_mdp);
1112   // rbx: method
1113   // _bcp_register: bcp
1114   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1115   // rax: mdi
1116   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1117   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1118   addptr(rbx, in_bytes(MethodData::data_offset()));
1119   addptr(rax, rbx);
1120   bind(set_mdp);
1121   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1122   pop(rbx);
1123   pop(rax);
1124 }
1125 
1126 void InterpreterMacroAssembler::verify_method_data_pointer() {
1127   assert(ProfileInterpreter, "must be profiling interpreter");
1128 #ifdef ASSERT
1129   Label verify_continue;
1130   push(rax);
1131   push(rbx);
1132   Register arg3_reg = c_rarg3;
1133   Register arg2_reg = c_rarg2;
1134   push(arg3_reg);
1135   push(arg2_reg);
1136   test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1137   get_method(rbx);
1138 
1139   // If the mdp is valid, it will point to a DataLayout header which is
1140   // consistent with the bcp.  The converse is highly probable also.
1141   load_unsigned_short(arg2_reg,
1142                       Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1143   addptr(arg2_reg, Address(rbx, Method::const_offset()));
1144   lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1145   cmpptr(arg2_reg, _bcp_register);
1146   jcc(Assembler::equal, verify_continue);
1147   // rbx: method
1148   // _bcp_register: bcp
1149   // c_rarg3: mdp
1150   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1151                rbx, _bcp_register, arg3_reg);
1152   bind(verify_continue);
1153   pop(arg2_reg);
1154   pop(arg3_reg);
1155   pop(rbx);
1156   pop(rax);
1157 #endif // ASSERT
1158 }
1159 
1160 
1161 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1162                                                 int constant,
1163                                                 Register value) {
1164   assert(ProfileInterpreter, "must be profiling interpreter");
1165   Address data(mdp_in, constant);
1166   movptr(data, value);
1167 }
1168 
1169 
1170 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1171                                                       int constant) {
1172   assert(ProfileInterpreter, "must be profiling interpreter");
1173   Address data(mdp_in, constant);
1174   addptr(data, DataLayout::counter_increment);
1175 }
1176 
1177 
1178 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1179                                                       Register index,
1180                                                       int constant) {
1181   assert(ProfileInterpreter, "must be profiling interpreter");
1182   Address data(mdp_in, index, Address::times_1, constant);
1183   addptr(data, DataLayout::counter_increment);
1184 }
1185 
1186 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1187                                                 int flag_byte_constant) {
1188   assert(ProfileInterpreter, "must be profiling interpreter");
1189   int header_offset = in_bytes(DataLayout::flags_offset());
1190   int header_bits = flag_byte_constant;
1191   // Set the flag
1192   orb(Address(mdp_in, header_offset), header_bits);
1193 }
1194 
1195 
1196 
1197 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1198                                                  int offset,
1199                                                  Register value,
1200                                                  Register test_value_out,
1201                                                  Label& not_equal_continue) {
1202   assert(ProfileInterpreter, "must be profiling interpreter");
1203   if (test_value_out == noreg) {
1204     cmpptr(value, Address(mdp_in, offset));
1205   } else {
1206     // Put the test value into a register, so caller can use it:
1207     movptr(test_value_out, Address(mdp_in, offset));
1208     cmpptr(test_value_out, value);
1209   }
1210   jcc(Assembler::notEqual, not_equal_continue);
1211 }
1212 
1213 
1214 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1215                                                      int offset_of_disp) {
1216   assert(ProfileInterpreter, "must be profiling interpreter");
1217   Address disp_address(mdp_in, offset_of_disp);
1218   addptr(mdp_in, disp_address);
1219   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1220 }
1221 
1222 
1223 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1224                                                      Register reg,
1225                                                      int offset_of_disp) {
1226   assert(ProfileInterpreter, "must be profiling interpreter");
1227   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1228   addptr(mdp_in, disp_address);
1229   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1230 }
1231 
1232 
1233 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1234                                                        int constant) {
1235   assert(ProfileInterpreter, "must be profiling interpreter");
1236   addptr(mdp_in, constant);
1237   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1238 }
1239 
1240 
1241 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1242   assert(ProfileInterpreter, "must be profiling interpreter");
1243   push(return_bci); // save/restore across call_VM
1244   call_VM(noreg,
1245           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1246           return_bci);
1247   pop(return_bci);
1248 }
1249 
1250 
1251 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
1252   if (ProfileInterpreter) {
1253     Label profile_continue;
1254 
1255     // If no method data exists, go to profile_continue.
1256     test_method_data_pointer(mdp, profile_continue);
1257 
1258     // We are taking a branch.  Increment the taken count.
1259     increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1260 
1261     // The method data pointer needs to be updated to reflect the new target.
1262     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1263     bind(profile_continue);
1264   }
1265 }
1266 
1267 
1268 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1269   if (ProfileInterpreter) {
1270     Label profile_continue;
1271 
1272     // If no method data exists, go to profile_continue.
1273     test_method_data_pointer(mdp, profile_continue);
1274 
1275     // We are not taking a branch.  Increment the not taken count.
1276     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1277 
1278     // The method data pointer needs to be updated to correspond to
1279     // the next bytecode
1280     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1281     bind(profile_continue);
1282   }
1283 }
1284 
1285 void InterpreterMacroAssembler::profile_call(Register mdp) {
1286   if (ProfileInterpreter) {
1287     Label profile_continue;
1288 
1289     // If no method data exists, go to profile_continue.
1290     test_method_data_pointer(mdp, profile_continue);
1291 
1292     // We are making a call.  Increment the count.
1293     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1294 
1295     // The method data pointer needs to be updated to reflect the new target.
1296     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1297     bind(profile_continue);
1298   }
1299 }
1300 
1301 
1302 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1303   if (ProfileInterpreter) {
1304     Label profile_continue;
1305 
1306     // If no method data exists, go to profile_continue.
1307     test_method_data_pointer(mdp, profile_continue);
1308 
1309     // We are making a call.  Increment the count.
1310     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1311 
1312     // The method data pointer needs to be updated to reflect the new target.
1313     update_mdp_by_constant(mdp,
1314                            in_bytes(VirtualCallData::
1315                                     virtual_call_data_size()));
1316     bind(profile_continue);
1317   }
1318 }
1319 
1320 
1321 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1322                                                      Register mdp,
1323                                                      Register reg2,
1324                                                      bool receiver_can_be_null) {
1325   if (ProfileInterpreter) {
1326     Label profile_continue;
1327 
1328     // If no method data exists, go to profile_continue.
1329     test_method_data_pointer(mdp, profile_continue);
1330 
1331     Label skip_receiver_profile;
1332     if (receiver_can_be_null) {
1333       Label not_null;
1334       testptr(receiver, receiver);
1335       jccb(Assembler::notZero, not_null);
1336       // We are making a call.  Increment the count for null receiver.
1337       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1338       jmp(skip_receiver_profile);
1339       bind(not_null);
1340     }
1341 
1342     // Record the receiver type.
1343     record_klass_in_profile(receiver, mdp, reg2, true);
1344     bind(skip_receiver_profile);
1345 
1346     // The method data pointer needs to be updated to reflect the new target.
1347     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1348     bind(profile_continue);
1349   }
1350 }
1351 
1352 // This routine creates a state machine for updating the multi-row
1353 // type profile at a virtual call site (or other type-sensitive bytecode).
1354 // The machine visits each row (of receiver/count) until the receiver type
1355 // is found, or until it runs out of rows.  At the same time, it remembers
1356 // the location of the first empty row.  (An empty row records null for its
1357 // receiver, and can be allocated for a newly-observed receiver type.)
1358 // Because there are two degrees of freedom in the state, a simple linear
1359 // search will not work; it must be a decision tree.  Hence this helper
1360 // function is recursive, to generate the required tree structured code.
1361 // It's the interpreter, so we are trading off code space for speed.
1362 // See below for example code.
1363 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1364                                         Register receiver, Register mdp,
1365                                         Register reg2, int start_row,
1366                                         Label& done, bool is_virtual_call) {
1367   if (TypeProfileWidth == 0) {
1368     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1369   } else {
1370     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1371                                   &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1372   }
1373 }
1374 
1375 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row,
1376                                                               Label& done, int total_rows,
1377                                                               OffsetFunction item_offset_fn,
1378                                                               OffsetFunction item_count_offset_fn) {
1379   int last_row = total_rows - 1;
1380   assert(start_row <= last_row, "must be work left to do");
1381   // Test this row for both the item and for null.
1382   // Take any of three different outcomes:
1383   //   1. found item => increment count and goto done
1384   //   2. found null => keep looking for case 1, maybe allocate this cell
1385   //   3. found something else => keep looking for cases 1 and 2
1386   // Case 3 is handled by a recursive call.
1387   for (int row = start_row; row <= last_row; row++) {
1388     Label next_test;
1389     bool test_for_null_also = (row == start_row);
1390 
1391     // See if the item is item[n].
1392     int item_offset = in_bytes(item_offset_fn(row));
1393     test_mdp_data_at(mdp, item_offset, item,
1394                      (test_for_null_also ? reg2 : noreg),
1395                      next_test);
1396     // (Reg2 now contains the item from the CallData.)
1397 
1398     // The item is item[n].  Increment count[n].
1399     int count_offset = in_bytes(item_count_offset_fn(row));
1400     increment_mdp_data_at(mdp, count_offset);
1401     jmp(done);
1402     bind(next_test);
1403 
1404     if (test_for_null_also) {
1405       // Failed the equality check on item[n]...  Test for null.
1406       testptr(reg2, reg2);
1407       if (start_row == last_row) {
1408         // The only thing left to do is handle the null case.
1409         Label found_null;
1410         jccb(Assembler::zero, found_null);
1411         // Item did not match any saved item and there is no empty row for it.
1412         // Increment total counter to indicate polymorphic case.
1413         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1414         jmp(done);
1415         bind(found_null);
1416         break;
1417       }
1418       Label found_null;
1419       // Since null is rare, make it be the branch-taken case.
1420       jcc(Assembler::zero, found_null);
1421 
1422       // Put all the "Case 3" tests here.
1423       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1424                                     item_offset_fn, item_count_offset_fn);
1425 
1426       // Found a null.  Keep searching for a matching item,
1427       // but remember that this is an empty (unused) slot.
1428       bind(found_null);
1429     }
1430   }
1431 
1432   // In the fall-through case, we found no matching item, but we
1433   // observed the item[start_row] is null.
1434 
1435   // Fill in the item field and increment the count.
1436   int item_offset = in_bytes(item_offset_fn(start_row));
1437   set_mdp_data_at(mdp, item_offset, item);
1438   int count_offset = in_bytes(item_count_offset_fn(start_row));
1439   movl(reg2, DataLayout::counter_increment);
1440   set_mdp_data_at(mdp, count_offset, reg2);
1441   if (start_row > 0) {
1442     jmp(done);
1443   }
1444 }
1445 
1446 // Example state machine code for three profile rows:
1447 //   // main copy of decision tree, rooted at row[1]
1448 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1449 //   if (row[0].rec != nullptr) {
1450 //     // inner copy of decision tree, rooted at row[1]
1451 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1452 //     if (row[1].rec != nullptr) {
1453 //       // degenerate decision tree, rooted at row[2]
1454 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1455 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1456 //       row[2].init(rec); goto done;
1457 //     } else {
1458 //       // remember row[1] is empty
1459 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1460 //       row[1].init(rec); goto done;
1461 //     }
1462 //   } else {
1463 //     // remember row[0] is empty
1464 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1465 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1466 //     row[0].init(rec); goto done;
1467 //   }
1468 //   done:
1469 
1470 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1471                                                         Register mdp, Register reg2,
1472                                                         bool is_virtual_call) {
1473   assert(ProfileInterpreter, "must be profiling");
1474   Label done;
1475 
1476   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1477 
1478   bind (done);
1479 }
1480 
1481 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1482                                             Register mdp) {
1483   if (ProfileInterpreter) {
1484     Label profile_continue;
1485     uint row;
1486 
1487     // If no method data exists, go to profile_continue.
1488     test_method_data_pointer(mdp, profile_continue);
1489 
1490     // Update the total ret count.
1491     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1492 
1493     for (row = 0; row < RetData::row_limit(); row++) {
1494       Label next_test;
1495 
1496       // See if return_bci is equal to bci[n]:
1497       test_mdp_data_at(mdp,
1498                        in_bytes(RetData::bci_offset(row)),
1499                        return_bci, noreg,
1500                        next_test);
1501 
1502       // return_bci is equal to bci[n].  Increment the count.
1503       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1504 
1505       // The method data pointer needs to be updated to reflect the new target.
1506       update_mdp_by_offset(mdp,
1507                            in_bytes(RetData::bci_displacement_offset(row)));
1508       jmp(profile_continue);
1509       bind(next_test);
1510     }
1511 
1512     update_mdp_for_ret(return_bci);
1513 
1514     bind(profile_continue);
1515   }
1516 }
1517 
1518 
1519 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1520   if (ProfileInterpreter) {
1521     Label profile_continue;
1522 
1523     // If no method data exists, go to profile_continue.
1524     test_method_data_pointer(mdp, profile_continue);
1525 
1526     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1527 
1528     // The method data pointer needs to be updated.
1529     int mdp_delta = in_bytes(BitData::bit_data_size());
1530     if (TypeProfileCasts) {
1531       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1532     }
1533     update_mdp_by_constant(mdp, mdp_delta);
1534 
1535     bind(profile_continue);
1536   }
1537 }
1538 
1539 
1540 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1541   if (ProfileInterpreter) {
1542     Label profile_continue;
1543 
1544     // If no method data exists, go to profile_continue.
1545     test_method_data_pointer(mdp, profile_continue);
1546 
1547     // The method data pointer needs to be updated.
1548     int mdp_delta = in_bytes(BitData::bit_data_size());
1549     if (TypeProfileCasts) {
1550       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1551 
1552       // Record the object type.
1553       record_klass_in_profile(klass, mdp, reg2, false);
1554     }
1555     update_mdp_by_constant(mdp, mdp_delta);
1556 
1557     bind(profile_continue);
1558   }
1559 }
1560 
1561 
1562 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1563   if (ProfileInterpreter) {
1564     Label profile_continue;
1565 
1566     // If no method data exists, go to profile_continue.
1567     test_method_data_pointer(mdp, profile_continue);
1568 
1569     // Update the default case count
1570     increment_mdp_data_at(mdp,
1571                           in_bytes(MultiBranchData::default_count_offset()));
1572 
1573     // The method data pointer needs to be updated.
1574     update_mdp_by_offset(mdp,
1575                          in_bytes(MultiBranchData::
1576                                   default_displacement_offset()));
1577 
1578     bind(profile_continue);
1579   }
1580 }
1581 
1582 
1583 void InterpreterMacroAssembler::profile_switch_case(Register index,
1584                                                     Register mdp,
1585                                                     Register reg2) {
1586   if (ProfileInterpreter) {
1587     Label profile_continue;
1588 
1589     // If no method data exists, go to profile_continue.
1590     test_method_data_pointer(mdp, profile_continue);
1591 
1592     // Build the base (index * per_case_size_in_bytes()) +
1593     // case_array_offset_in_bytes()
1594     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1595     imulptr(index, reg2); // XXX l ?
1596     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1597 
1598     // Update the case count
1599     increment_mdp_data_at(mdp,
1600                           index,
1601                           in_bytes(MultiBranchData::relative_count_offset()));
1602 
1603     // The method data pointer needs to be updated.
1604     update_mdp_by_offset(mdp,
1605                          index,
1606                          in_bytes(MultiBranchData::
1607                                   relative_displacement_offset()));
1608 
1609     bind(profile_continue);
1610   }
1611 }
1612 
1613 
1614 
1615 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1616   if (state == atos) {
1617     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1618   }
1619 }
1620 
1621 
1622 // Jump if ((*counter_addr += increment) & mask) == 0
1623 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask,
1624                                                         Register scratch, Label* where) {
1625   // This update is actually not atomic and can lose a number of updates
1626   // under heavy contention, but the alternative of using the (contended)
1627   // atomic update here penalizes profiling paths too much.
1628   movl(scratch, counter_addr);
1629   incrementl(scratch, InvocationCounter::count_increment);
1630   movl(counter_addr, scratch);
1631   andl(scratch, mask);
1632   if (where != nullptr) {
1633     jcc(Assembler::zero, *where);
1634   }
1635 }
1636 
1637 void InterpreterMacroAssembler::notify_method_entry() {
1638   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1639   // track stack depth.  If it is possible to enter interp_only_mode we add
1640   // the code to check if the event should be sent.
1641   Register rthread = r15_thread;
1642   Register rarg = c_rarg1;
1643   if (JvmtiExport::can_post_interpreter_events()) {
1644     Label L;
1645     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1646     testl(rdx, rdx);
1647     jcc(Assembler::zero, L);
1648     call_VM(noreg, CAST_FROM_FN_PTR(address,
1649                                     InterpreterRuntime::post_method_entry));
1650     bind(L);
1651   }
1652 
1653   if (DTraceMethodProbes) {
1654     get_method(rarg);
1655     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1656                  rthread, rarg);
1657   }
1658 
1659   // RedefineClasses() tracing support for obsolete method entry
1660   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1661     get_method(rarg);
1662     call_VM_leaf(
1663       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1664       rthread, rarg);
1665   }
1666 }
1667 
1668 
1669 void InterpreterMacroAssembler::notify_method_exit(
1670     TosState state, NotifyMethodExitMode mode) {
1671   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1672   // track stack depth.  If it is possible to enter interp_only_mode we add
1673   // the code to check if the event should be sent.
1674   Register rthread = r15_thread;
1675   Register rarg = c_rarg1;
1676   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1677     Label L;
1678     // Note: frame::interpreter_frame_result has a dependency on how the
1679     // method result is saved across the call to post_method_exit. If this
1680     // is changed then the interpreter_frame_result implementation will
1681     // need to be updated too.
1682 
1683     // template interpreter will leave the result on the top of the stack.
1684     push(state);
1685     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1686     testl(rdx, rdx);
1687     jcc(Assembler::zero, L);
1688     call_VM(noreg,
1689             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1690     bind(L);
1691     pop(state);
1692   }
1693 
1694   if (DTraceMethodProbes) {
1695     push(state);
1696     get_method(rarg);
1697     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1698                  rthread, rarg);
1699     pop(state);
1700   }
1701 }
1702 
1703 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1704   // Get index out of bytecode pointer
1705   get_cache_index_at_bcp(index, 1, sizeof(u4));
1706   // Get address of invokedynamic array
1707   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
1708   movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1709   if (is_power_of_2(sizeof(ResolvedIndyEntry))) {
1710     shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2
1711   } else {
1712     imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1713   }
1714   lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes()));
1715 }
1716 
1717 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1718   // Get index out of bytecode pointer
1719   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
1720   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1721 
1722   movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset()));
1723   // Take shortcut if the size is a power of 2
1724   if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1725     shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1726   } else {
1727     imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1728   }
1729   lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes()));
1730 }
1731 
1732 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1733   // Get index out of bytecode pointer
1734   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
1735   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1736 
1737   movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset()));
1738   imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1739   lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes()));
1740 }