1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compiler_globals.hpp" 26 #include "interp_masm_x86.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "logging/log.hpp" 30 #include "oops/arrayOop.hpp" 31 #include "oops/markWord.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/method.hpp" 34 #include "oops/resolvedFieldEntry.hpp" 35 #include "oops/resolvedIndyEntry.hpp" 36 #include "oops/resolvedMethodEntry.hpp" 37 #include "prims/jvmtiExport.hpp" 38 #include "prims/jvmtiThreadState.hpp" 39 #include "runtime/basicLock.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/javaThread.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 46 // Implementation of InterpreterMacroAssembler 47 48 void InterpreterMacroAssembler::jump_to_entry(address entry) { 49 assert(entry, "Entry must have been generated by now"); 50 jump(RuntimeAddress(entry)); 51 } 52 53 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 54 Label update, next, none; 55 56 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 57 58 interp_verify_oop(obj, atos); 59 60 testptr(obj, obj); 61 jccb(Assembler::notZero, update); 62 testptr(mdo_addr, TypeEntries::null_seen); 63 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore. 64 // atomic update to prevent overwriting Klass* with 0 65 lock(); 66 orptr(mdo_addr, TypeEntries::null_seen); 67 jmpb(next); 68 69 bind(update); 70 load_klass(obj, obj, rscratch1); 71 mov(rscratch1, obj); 72 73 xorptr(obj, mdo_addr); 74 testptr(obj, TypeEntries::type_klass_mask); 75 jccb(Assembler::zero, next); // klass seen before, nothing to 76 // do. The unknown bit may have been 77 // set already but no need to check. 78 79 testptr(obj, TypeEntries::type_unknown); 80 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 81 82 cmpptr(mdo_addr, 0); 83 jccb(Assembler::equal, none); 84 cmpptr(mdo_addr, TypeEntries::null_seen); 85 jccb(Assembler::equal, none); 86 87 // There is a chance that the checks above (re-reading profiling 88 // data from memory) fail if another thread has just set the 89 // profiling to this obj's klass 90 mov(obj, rscratch1); 91 xorptr(obj, mdo_addr); 92 testptr(obj, TypeEntries::type_klass_mask); 93 jccb(Assembler::zero, next); 94 95 // different than before. Cannot keep accurate profile. 96 orptr(mdo_addr, TypeEntries::type_unknown); 97 jmpb(next); 98 99 bind(none); 100 // first time here. Set profile type. 101 movptr(mdo_addr, obj); 102 #ifdef ASSERT 103 andptr(obj, TypeEntries::type_klass_mask); 104 verify_klass_ptr(obj); 105 #endif 106 107 bind(next); 108 } 109 110 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 111 if (!ProfileInterpreter) { 112 return; 113 } 114 115 if (MethodData::profile_arguments() || MethodData::profile_return()) { 116 Label profile_continue; 117 118 test_method_data_pointer(mdp, profile_continue); 119 120 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 121 122 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 123 jcc(Assembler::notEqual, profile_continue); 124 125 if (MethodData::profile_arguments()) { 126 Label done; 127 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 128 addptr(mdp, off_to_args); 129 130 for (int i = 0; i < TypeProfileArgsLimit; i++) { 131 if (i > 0 || MethodData::profile_return()) { 132 // If return value type is profiled we may have no argument to profile 133 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 134 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 135 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 136 jcc(Assembler::less, done); 137 } 138 movptr(tmp, Address(callee, Method::const_offset())); 139 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 140 // stack offset o (zero based) from the start of the argument 141 // list, for n arguments translates into offset n - o - 1 from 142 // the end of the argument list 143 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 144 subl(tmp, 1); 145 Address arg_addr = argument_address(tmp); 146 movptr(tmp, arg_addr); 147 148 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 149 profile_obj_type(tmp, mdo_arg_addr); 150 151 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 152 addptr(mdp, to_add); 153 off_to_args += to_add; 154 } 155 156 if (MethodData::profile_return()) { 157 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 158 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 159 } 160 161 bind(done); 162 163 if (MethodData::profile_return()) { 164 // We're right after the type profile for the last 165 // argument. tmp is the number of cells left in the 166 // CallTypeData/VirtualCallTypeData to reach its end. Non null 167 // if there's a return to profile. 168 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 169 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 170 addptr(mdp, tmp); 171 } 172 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 173 } else { 174 assert(MethodData::profile_return(), "either profile call args or call ret"); 175 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 176 } 177 178 // mdp points right after the end of the 179 // CallTypeData/VirtualCallTypeData, right after the cells for the 180 // return value type if there's one 181 182 bind(profile_continue); 183 } 184 } 185 186 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 187 assert_different_registers(mdp, ret, tmp, _bcp_register); 188 if (ProfileInterpreter && MethodData::profile_return()) { 189 Label profile_continue; 190 191 test_method_data_pointer(mdp, profile_continue); 192 193 if (MethodData::profile_return_jsr292_only()) { 194 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 195 196 // If we don't profile all invoke bytecodes we must make sure 197 // it's a bytecode we indeed profile. We can't go back to the 198 // beginning of the ProfileData we intend to update to check its 199 // type because we're right after it and we don't known its 200 // length 201 Label do_profile; 202 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 203 jcc(Assembler::equal, do_profile); 204 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 205 jcc(Assembler::equal, do_profile); 206 get_method(tmp); 207 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 208 jcc(Assembler::notEqual, profile_continue); 209 210 bind(do_profile); 211 } 212 213 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 214 mov(tmp, ret); 215 profile_obj_type(tmp, mdo_ret_addr); 216 217 bind(profile_continue); 218 } 219 } 220 221 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 222 if (ProfileInterpreter && MethodData::profile_parameters()) { 223 Label profile_continue; 224 225 test_method_data_pointer(mdp, profile_continue); 226 227 // Load the offset of the area within the MDO used for 228 // parameters. If it's negative we're not profiling any parameters 229 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 230 testl(tmp1, tmp1); 231 jcc(Assembler::negative, profile_continue); 232 233 // Compute a pointer to the area for parameters from the offset 234 // and move the pointer to the slot for the last 235 // parameters. Collect profiling from last parameter down. 236 // mdo start + parameters offset + array length - 1 237 addptr(mdp, tmp1); 238 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 239 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 240 241 Label loop; 242 bind(loop); 243 244 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 245 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 246 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 247 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 248 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 249 250 // load offset on the stack from the slot for this parameter 251 movptr(tmp2, arg_off); 252 negptr(tmp2); 253 // read the parameter from the local area 254 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 255 256 // profile the parameter 257 profile_obj_type(tmp2, arg_type); 258 259 // go to next parameter 260 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 261 jcc(Assembler::positive, loop); 262 263 bind(profile_continue); 264 } 265 } 266 267 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 268 int number_of_arguments) { 269 // interpreter specific 270 // 271 // Note: No need to save/restore bcp & locals registers 272 // since these are callee saved registers and no blocking/ 273 // GC can happen in leaf calls. 274 // Further Note: DO NOT save/restore bcp/locals. If a caller has 275 // already saved them so that it can use rsi/rdi as temporaries 276 // then a save/restore here will DESTROY the copy the caller 277 // saved! There used to be a save_bcp() that only happened in 278 // the ASSERT path (no restore_bcp). Which caused bizarre failures 279 // when jvm built with ASSERTs. 280 #ifdef ASSERT 281 { 282 Label L; 283 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 284 jcc(Assembler::equal, L); 285 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 286 " last_sp != null"); 287 bind(L); 288 } 289 #endif 290 // super call 291 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 292 // interpreter specific 293 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 294 // but since they may not have been saved (and we don't want to 295 // save them here (see note above) the assert is invalid. 296 } 297 298 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 299 Register last_java_sp, 300 address entry_point, 301 int number_of_arguments, 302 bool check_exceptions) { 303 // interpreter specific 304 // 305 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 306 // really make a difference for these runtime calls, since they are 307 // slow anyway. Btw., bcp must be saved/restored since it may change 308 // due to GC. 309 save_bcp(); 310 #ifdef ASSERT 311 { 312 Label L; 313 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 314 jcc(Assembler::equal, L); 315 stop("InterpreterMacroAssembler::call_VM_base:" 316 " last_sp isn't null"); 317 bind(L); 318 } 319 #endif /* ASSERT */ 320 // super call 321 MacroAssembler::call_VM_base(oop_result, last_java_sp, 322 entry_point, number_of_arguments, 323 check_exceptions); 324 // interpreter specific 325 restore_bcp(); 326 restore_locals(); 327 } 328 329 void InterpreterMacroAssembler::call_VM_preemptable_helper(Register oop_result, 330 address entry_point, 331 int number_of_arguments, 332 bool check_exceptions) { 333 Label resume_pc, not_preempted; 334 335 #ifdef ASSERT 336 { 337 Label L; 338 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 339 jcc(Assembler::equal, L); 340 stop("Should not have alternate return address set"); 341 bind(L); 342 } 343 #endif /* ASSERT */ 344 345 // Force freeze slow path. 346 push_cont_fastpath(); 347 348 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 349 // Note: call_VM_helper requires last_Java_pc for anchor to be at the top of the stack. 350 lea(rscratch1, resume_pc); 351 push(rscratch1); 352 MacroAssembler::call_VM_helper(oop_result, entry_point, number_of_arguments, check_exceptions); 353 pop(rscratch1); 354 355 pop_cont_fastpath(); 356 357 // Check if preempted. 358 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset())); 359 cmpptr(rscratch1, NULL_WORD); 360 jccb(Assembler::zero, not_preempted); 361 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 362 jmp(rscratch1); 363 364 // In case of preemption, this is where we will resume once we finally acquire the monitor. 365 bind(resume_pc); 366 restore_after_resume(false /* is_native */); 367 368 if (check_exceptions) { 369 // check for pending exceptions (java_thread is set upon return) 370 cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 371 Label ok; 372 jcc(Assembler::equal, ok); 373 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 374 bind(ok); 375 } 376 377 // get oop result if there is one and reset the value in the thread 378 if (oop_result->is_valid()) { 379 get_vm_result_oop(oop_result); 380 } 381 382 bind(not_preempted); 383 } 384 385 static void pass_arg1(MacroAssembler* masm, Register arg) { 386 if (c_rarg1 != arg ) { 387 masm->mov(c_rarg1, arg); 388 } 389 } 390 391 static void pass_arg2(MacroAssembler* masm, Register arg) { 392 if (c_rarg2 != arg ) { 393 masm->mov(c_rarg2, arg); 394 } 395 } 396 397 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 398 address entry_point, 399 Register arg_1, 400 bool check_exceptions) { 401 pass_arg1(this, arg_1); 402 call_VM_preemptable_helper(oop_result, entry_point, 1, check_exceptions); 403 } 404 405 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 406 address entry_point, 407 Register arg_1, 408 Register arg_2, 409 bool check_exceptions) { 410 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 411 pass_arg2(this, arg_2); 412 pass_arg1(this, arg_1); 413 call_VM_preemptable_helper(oop_result, entry_point, 2, check_exceptions); 414 } 415 416 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 417 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 418 call(rscratch1); 419 if (is_native) { 420 // On resume we need to set up stack as expected. 421 push(dtos); 422 push(ltos); 423 } 424 } 425 426 void InterpreterMacroAssembler::check_and_handle_popframe() { 427 if (JvmtiExport::can_pop_frame()) { 428 Label L; 429 // Initiate popframe handling only if it is not already being 430 // processed. If the flag has the popframe_processing bit set, it 431 // means that this code is called *during* popframe handling - we 432 // don't want to reenter. 433 // This method is only called just after the call into the vm in 434 // call_VM_base, so the arg registers are available. 435 Register pop_cond = c_rarg0; 436 movl(pop_cond, Address(r15_thread, JavaThread::popframe_condition_offset())); 437 testl(pop_cond, JavaThread::popframe_pending_bit); 438 jcc(Assembler::zero, L); 439 testl(pop_cond, JavaThread::popframe_processing_bit); 440 jcc(Assembler::notZero, L); 441 // Call Interpreter::remove_activation_preserving_args_entry() to get the 442 // address of the same-named entrypoint in the generated interpreter code. 443 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 444 jmp(rax); 445 bind(L); 446 } 447 } 448 449 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 450 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); 451 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 452 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 453 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 454 455 switch (state) { 456 case atos: movptr(rax, oop_addr); 457 movptr(oop_addr, NULL_WORD); 458 interp_verify_oop(rax, state); break; 459 case ltos: movptr(rax, val_addr); break; 460 case btos: // fall through 461 case ztos: // fall through 462 case ctos: // fall through 463 case stos: // fall through 464 case itos: movl(rax, val_addr); break; 465 case ftos: movflt(xmm0, val_addr); break; 466 case dtos: movdbl(xmm0, val_addr); break; 467 case vtos: /* nothing to do */ break; 468 default : ShouldNotReachHere(); 469 } 470 471 // Clean up tos value in the thread object 472 movl(tos_addr, ilgl); 473 movptr(val_addr, NULL_WORD); 474 } 475 476 477 void InterpreterMacroAssembler::check_and_handle_earlyret() { 478 if (JvmtiExport::can_force_early_return()) { 479 Label L; 480 Register tmp = c_rarg0; 481 Register rthread = r15_thread; 482 483 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 484 testptr(tmp, tmp); 485 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit; 486 487 // Initiate earlyret handling only if it is not already being processed. 488 // If the flag has the earlyret_processing bit set, it means that this code 489 // is called *during* earlyret handling - we don't want to reenter. 490 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 491 cmpl(tmp, JvmtiThreadState::earlyret_pending); 492 jcc(Assembler::notEqual, L); 493 494 // Call Interpreter::remove_activation_early_entry() to get the address of the 495 // same-named entrypoint in the generated interpreter code. 496 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 497 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 498 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 499 jmp(rax); 500 bind(L); 501 } 502 } 503 504 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 505 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 506 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 507 bswapl(reg); 508 shrl(reg, 16); 509 } 510 511 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 512 int bcp_offset, 513 size_t index_size) { 514 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 515 if (index_size == sizeof(u2)) { 516 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 517 } else if (index_size == sizeof(u4)) { 518 movl(index, Address(_bcp_register, bcp_offset)); 519 } else if (index_size == sizeof(u1)) { 520 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 521 } else { 522 ShouldNotReachHere(); 523 } 524 } 525 526 // Load object from cpool->resolved_references(index) 527 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 528 Register index, 529 Register tmp) { 530 assert_different_registers(result, index); 531 532 get_constant_pool(result); 533 // load pointer for resolved_references[] objArray 534 movptr(result, Address(result, ConstantPool::cache_offset())); 535 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 536 resolve_oop_handle(result, tmp); 537 load_heap_oop(result, Address(result, index, 538 UseCompressedOops ? Address::times_4 : Address::times_ptr, 539 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 540 } 541 542 // load cpool->resolved_klass_at(index) 543 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 544 Register cpool, 545 Register index) { 546 assert_different_registers(cpool, index); 547 548 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 549 Register resolved_klasses = cpool; 550 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset())); 551 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 552 } 553 554 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 555 // subtype of super_klass. 556 // 557 // Args: 558 // rax: superklass 559 // Rsub_klass: subklass 560 // 561 // Kills: 562 // rcx, rdi 563 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 564 Label& ok_is_subtype) { 565 assert(Rsub_klass != rax, "rax holds superklass"); 566 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 567 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 568 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 569 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 570 571 // Profile the not-null value's klass. 572 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 573 574 // Do the check. 575 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 576 } 577 578 579 // Java Expression Stack 580 581 void InterpreterMacroAssembler::pop_ptr(Register r) { 582 pop(r); 583 } 584 585 void InterpreterMacroAssembler::push_ptr(Register r) { 586 push(r); 587 } 588 589 void InterpreterMacroAssembler::push_i(Register r) { 590 push(r); 591 } 592 593 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 594 push(r); 595 } 596 597 void InterpreterMacroAssembler::push_f(XMMRegister r) { 598 subptr(rsp, wordSize); 599 movflt(Address(rsp, 0), r); 600 } 601 602 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 603 movflt(r, Address(rsp, 0)); 604 addptr(rsp, wordSize); 605 } 606 607 void InterpreterMacroAssembler::push_d(XMMRegister r) { 608 subptr(rsp, 2 * wordSize); 609 movdbl(Address(rsp, 0), r); 610 } 611 612 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 613 movdbl(r, Address(rsp, 0)); 614 addptr(rsp, 2 * Interpreter::stackElementSize); 615 } 616 617 void InterpreterMacroAssembler::pop_i(Register r) { 618 // XXX can't use pop currently, upper half non clean 619 movl(r, Address(rsp, 0)); 620 addptr(rsp, wordSize); 621 } 622 623 void InterpreterMacroAssembler::pop_l(Register r) { 624 movq(r, Address(rsp, 0)); 625 addptr(rsp, 2 * Interpreter::stackElementSize); 626 } 627 628 void InterpreterMacroAssembler::push_l(Register r) { 629 subptr(rsp, 2 * wordSize); 630 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 631 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 632 } 633 634 void InterpreterMacroAssembler::pop(TosState state) { 635 switch (state) { 636 case atos: pop_ptr(); break; 637 case btos: 638 case ztos: 639 case ctos: 640 case stos: 641 case itos: pop_i(); break; 642 case ltos: pop_l(); break; 643 case ftos: pop_f(xmm0); break; 644 case dtos: pop_d(xmm0); break; 645 case vtos: /* nothing to do */ break; 646 default: ShouldNotReachHere(); 647 } 648 interp_verify_oop(rax, state); 649 } 650 651 void InterpreterMacroAssembler::push(TosState state) { 652 interp_verify_oop(rax, state); 653 switch (state) { 654 case atos: push_ptr(); break; 655 case btos: 656 case ztos: 657 case ctos: 658 case stos: 659 case itos: push_i(); break; 660 case ltos: push_l(); break; 661 case ftos: push_f(xmm0); break; 662 case dtos: push_d(xmm0); break; 663 case vtos: /* nothing to do */ break; 664 default : ShouldNotReachHere(); 665 } 666 } 667 668 // Helpers for swap and dup 669 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 670 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 671 } 672 673 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 674 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 675 } 676 677 678 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 679 // set sender sp 680 lea(_bcp_register, Address(rsp, wordSize)); 681 // record last_sp 682 mov(rcx, _bcp_register); 683 subptr(rcx, rbp); 684 sarptr(rcx, LogBytesPerWord); 685 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx); 686 } 687 688 689 // Jump to from_interpreted entry of a call unless single stepping is possible 690 // in this thread in which case we must call the i2i entry 691 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 692 prepare_to_jump_from_interpreted(); 693 694 if (JvmtiExport::can_post_interpreter_events()) { 695 Label run_compiled_code; 696 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 697 // compiled code in threads for which the event is enabled. Check here for 698 // interp_only_mode if these events CAN be enabled. 699 // interp_only is an int, on little endian it is sufficient to test the byte only 700 // Is a cmpl faster? 701 cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0); 702 jccb(Assembler::zero, run_compiled_code); 703 jmp(Address(method, Method::interpreter_entry_offset())); 704 bind(run_compiled_code); 705 } 706 707 jmp(Address(method, Method::from_interpreted_offset())); 708 } 709 710 // The following two routines provide a hook so that an implementation 711 // can schedule the dispatch in two parts. x86 does not do this. 712 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 713 // Nothing x86 specific to be done here 714 } 715 716 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 717 dispatch_next(state, step); 718 } 719 720 void InterpreterMacroAssembler::dispatch_base(TosState state, 721 address* table, 722 bool verifyoop, 723 bool generate_poll) { 724 if (VerifyActivationFrameSize) { 725 Label L; 726 mov(rcx, rbp); 727 subptr(rcx, rsp); 728 int32_t min_frame_size = 729 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 730 wordSize; 731 cmpptr(rcx, min_frame_size); 732 jcc(Assembler::greaterEqual, L); 733 stop("broken stack frame"); 734 bind(L); 735 } 736 if (verifyoop) { 737 interp_verify_oop(rax, state); 738 } 739 740 address* const safepoint_table = Interpreter::safept_table(state); 741 Label no_safepoint, dispatch; 742 if (table != safepoint_table && generate_poll) { 743 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 744 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 745 746 jccb(Assembler::zero, no_safepoint); 747 lea(rscratch1, ExternalAddress((address)safepoint_table)); 748 jmpb(dispatch); 749 } 750 751 bind(no_safepoint); 752 lea(rscratch1, ExternalAddress((address)table)); 753 bind(dispatch); 754 jmp(Address(rscratch1, rbx, Address::times_8)); 755 } 756 757 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 758 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 759 } 760 761 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 762 dispatch_base(state, Interpreter::normal_table(state)); 763 } 764 765 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 766 dispatch_base(state, Interpreter::normal_table(state), false); 767 } 768 769 770 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 771 // load next bytecode (load before advancing _bcp_register to prevent AGI) 772 load_unsigned_byte(rbx, Address(_bcp_register, step)); 773 // advance _bcp_register 774 increment(_bcp_register, step); 775 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 776 } 777 778 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 779 // load current bytecode 780 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 781 dispatch_base(state, table); 782 } 783 784 void InterpreterMacroAssembler::narrow(Register result) { 785 786 // Get method->_constMethod->_result_type 787 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 788 movptr(rcx, Address(rcx, Method::const_offset())); 789 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 790 791 Label done, notBool, notByte, notChar; 792 793 // common case first 794 cmpl(rcx, T_INT); 795 jcc(Assembler::equal, done); 796 797 // mask integer result to narrower return type. 798 cmpl(rcx, T_BOOLEAN); 799 jcc(Assembler::notEqual, notBool); 800 andl(result, 0x1); 801 jmp(done); 802 803 bind(notBool); 804 cmpl(rcx, T_BYTE); 805 jcc(Assembler::notEqual, notByte); 806 movsbl(result, result); 807 jmp(done); 808 809 bind(notByte); 810 cmpl(rcx, T_CHAR); 811 jcc(Assembler::notEqual, notChar); 812 movzwl(result, result); 813 jmp(done); 814 815 bind(notChar); 816 // cmpl(rcx, T_SHORT); // all that's left 817 // jcc(Assembler::notEqual, done); 818 movswl(result, result); 819 820 // Nothing to do for T_INT 821 bind(done); 822 } 823 824 // remove activation 825 // 826 // Apply stack watermark barrier. 827 // Unlock the receiver if this is a synchronized method. 828 // Unlock any Java monitors from synchronized blocks. 829 // Remove the activation from the stack. 830 // 831 // If there are locked Java monitors 832 // If throw_monitor_exception 833 // throws IllegalMonitorStateException 834 // Else if install_monitor_exception 835 // installs IllegalMonitorStateException 836 // Else 837 // no error processing 838 void InterpreterMacroAssembler::remove_activation( 839 TosState state, 840 Register ret_addr, 841 bool throw_monitor_exception, 842 bool install_monitor_exception, 843 bool notify_jvmdi) { 844 // Note: Registers rdx xmm0 may be in use for the 845 // result check if synchronized method 846 Label unlocked, unlock, no_unlock; 847 848 const Register rthread = r15_thread; 849 const Register robj = c_rarg1; 850 const Register rmon = c_rarg1; 851 852 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 853 // that would normally not be safe to use. Such bad returns into unsafe territory of 854 // the stack, will call InterpreterRuntime::at_unwind. 855 Label slow_path; 856 Label fast_path; 857 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */); 858 jmp(fast_path); 859 bind(slow_path); 860 push(state); 861 set_last_Java_frame(noreg, rbp, (address)pc(), rscratch1); 862 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 863 reset_last_Java_frame(true); 864 pop(state); 865 bind(fast_path); 866 867 // get the value of _do_not_unlock_if_synchronized into rdx 868 const Address do_not_unlock_if_synchronized(rthread, 869 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 870 movbool(rbx, do_not_unlock_if_synchronized); 871 movbool(do_not_unlock_if_synchronized, false); // reset the flag 872 873 // get method access flags 874 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 875 load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset())); 876 testl(rcx, JVM_ACC_SYNCHRONIZED); 877 jcc(Assembler::zero, unlocked); 878 879 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 880 // is set. 881 testbool(rbx); 882 jcc(Assembler::notZero, no_unlock); 883 884 // unlock monitor 885 push(state); // save result 886 887 // BasicObjectLock will be first in list, since this is a 888 // synchronized method. However, need to check that the object has 889 // not been unlocked by an explicit monitorexit bytecode. 890 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 891 wordSize - (int) sizeof(BasicObjectLock)); 892 // We use c_rarg1/rdx so that if we go slow path it will be the correct 893 // register for unlock_object to pass to VM directly 894 lea(robj, monitor); // address of first monitor 895 896 movptr(rax, Address(robj, BasicObjectLock::obj_offset())); 897 testptr(rax, rax); 898 jcc(Assembler::notZero, unlock); 899 900 pop(state); 901 if (throw_monitor_exception) { 902 // Entry already unlocked, need to throw exception 903 call_VM(noreg, CAST_FROM_FN_PTR(address, 904 InterpreterRuntime::throw_illegal_monitor_state_exception)); 905 should_not_reach_here(); 906 } else { 907 // Monitor already unlocked during a stack unroll. If requested, 908 // install an illegal_monitor_state_exception. Continue with 909 // stack unrolling. 910 if (install_monitor_exception) { 911 call_VM(noreg, CAST_FROM_FN_PTR(address, 912 InterpreterRuntime::new_illegal_monitor_state_exception)); 913 } 914 jmp(unlocked); 915 } 916 917 bind(unlock); 918 unlock_object(robj); 919 pop(state); 920 921 // Check that for block-structured locking (i.e., that all locked 922 // objects has been unlocked) 923 bind(unlocked); 924 925 // rax, rdx: Might contain return value 926 927 // Check that all monitors are unlocked 928 { 929 Label loop, exception, entry, restart; 930 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 931 const Address monitor_block_top( 932 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 933 const Address monitor_block_bot( 934 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 935 936 bind(restart); 937 // We use c_rarg1 so that if we go slow path it will be the correct 938 // register for unlock_object to pass to VM directly 939 movptr(rmon, monitor_block_top); // derelativize pointer 940 lea(rmon, Address(rbp, rmon, Address::times_ptr)); 941 // c_rarg1 points to current entry, starting with top-most entry 942 943 lea(rbx, monitor_block_bot); // points to word before bottom of 944 // monitor block 945 jmp(entry); 946 947 // Entry already locked, need to throw exception 948 bind(exception); 949 950 if (throw_monitor_exception) { 951 // Throw exception 952 MacroAssembler::call_VM(noreg, 953 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 954 throw_illegal_monitor_state_exception)); 955 should_not_reach_here(); 956 } else { 957 // Stack unrolling. Unlock object and install illegal_monitor_exception. 958 // Unlock does not block, so don't have to worry about the frame. 959 // We don't have to preserve c_rarg1 since we are going to throw an exception. 960 961 push(state); 962 mov(robj, rmon); // nop if robj and rmon are the same 963 unlock_object(robj); 964 pop(state); 965 966 if (install_monitor_exception) { 967 call_VM(noreg, CAST_FROM_FN_PTR(address, 968 InterpreterRuntime:: 969 new_illegal_monitor_state_exception)); 970 } 971 972 jmp(restart); 973 } 974 975 bind(loop); 976 // check if current entry is used 977 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD); 978 jcc(Assembler::notEqual, exception); 979 980 addptr(rmon, entry_size); // otherwise advance to next entry 981 bind(entry); 982 cmpptr(rmon, rbx); // check if bottom reached 983 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 984 } 985 986 bind(no_unlock); 987 988 // jvmti support 989 if (notify_jvmdi) { 990 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 991 } else { 992 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 993 } 994 995 // remove activation 996 // get sender sp 997 movptr(rbx, 998 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 999 if (StackReservedPages > 0) { 1000 // testing if reserved zone needs to be re-enabled 1001 Register rthread = r15_thread; 1002 Label no_reserved_zone_enabling; 1003 1004 // check if already enabled - if so no re-enabling needed 1005 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 1006 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 1007 jcc(Assembler::equal, no_reserved_zone_enabling); 1008 1009 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 1010 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 1011 1012 call_VM_leaf( 1013 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 1014 call_VM(noreg, CAST_FROM_FN_PTR(address, 1015 InterpreterRuntime::throw_delayed_StackOverflowError)); 1016 should_not_reach_here(); 1017 1018 bind(no_reserved_zone_enabling); 1019 } 1020 leave(); // remove frame anchor 1021 pop(ret_addr); // get return address 1022 mov(rsp, rbx); // set sp to sender sp 1023 pop_cont_fastpath(); 1024 } 1025 1026 void InterpreterMacroAssembler::get_method_counters(Register method, 1027 Register mcs, Label& skip) { 1028 Label has_counters; 1029 movptr(mcs, Address(method, Method::method_counters_offset())); 1030 testptr(mcs, mcs); 1031 jcc(Assembler::notZero, has_counters); 1032 call_VM(noreg, CAST_FROM_FN_PTR(address, 1033 InterpreterRuntime::build_method_counters), method); 1034 movptr(mcs, Address(method,Method::method_counters_offset())); 1035 testptr(mcs, mcs); 1036 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1037 bind(has_counters); 1038 } 1039 1040 1041 // Lock object 1042 // 1043 // Args: 1044 // rdx, c_rarg1: BasicObjectLock to be used for locking 1045 // 1046 // Kills: 1047 // rax, rbx 1048 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1049 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1050 1051 if (LockingMode == LM_MONITOR) { 1052 call_VM_preemptable(noreg, 1053 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1054 lock_reg); 1055 } else { 1056 Label count_locking, done, slow_case; 1057 1058 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1059 const Register tmp_reg = rbx; 1060 const Register obj_reg = c_rarg3; // Will contain the oop 1061 const Register rklass_decode_tmp = rscratch1; 1062 1063 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 1064 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1065 const int mark_offset = lock_offset + 1066 BasicLock::displaced_header_offset_in_bytes(); 1067 1068 // Load object pointer into obj_reg 1069 movptr(obj_reg, Address(lock_reg, obj_offset)); 1070 1071 if (DiagnoseSyncOnValueBasedClasses != 0) { 1072 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1073 testb(Address(tmp_reg, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 1074 jcc(Assembler::notZero, slow_case); 1075 } 1076 1077 if (LockingMode == LM_LIGHTWEIGHT) { 1078 lightweight_lock(lock_reg, obj_reg, swap_reg, tmp_reg, slow_case); 1079 } else if (LockingMode == LM_LEGACY) { 1080 // Load immediate 1 into swap_reg %rax 1081 movl(swap_reg, 1); 1082 1083 // Load (object->mark() | 1) into swap_reg %rax 1084 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1085 1086 // Save (object->mark() | 1) into BasicLock's displaced header 1087 movptr(Address(lock_reg, mark_offset), swap_reg); 1088 1089 assert(lock_offset == 0, 1090 "displaced header must be first word in BasicObjectLock"); 1091 1092 lock(); 1093 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1094 jcc(Assembler::zero, count_locking); 1095 1096 const int zero_bits = 7; 1097 1098 // Fast check for recursive lock. 1099 // 1100 // Can apply the optimization only if this is a stack lock 1101 // allocated in this thread. For efficiency, we can focus on 1102 // recently allocated stack locks (instead of reading the stack 1103 // base and checking whether 'mark' points inside the current 1104 // thread stack): 1105 // 1) (mark & zero_bits) == 0, and 1106 // 2) rsp <= mark < mark + os::pagesize() 1107 // 1108 // Warning: rsp + os::pagesize can overflow the stack base. We must 1109 // neither apply the optimization for an inflated lock allocated 1110 // just above the thread stack (this is why condition 1 matters) 1111 // nor apply the optimization if the stack lock is inside the stack 1112 // of another thread. The latter is avoided even in case of overflow 1113 // because we have guard pages at the end of all stacks. Hence, if 1114 // we go over the stack base and hit the stack of another thread, 1115 // this should not be in a writeable area that could contain a 1116 // stack lock allocated by that thread. As a consequence, a stack 1117 // lock less than page size away from rsp is guaranteed to be 1118 // owned by the current thread. 1119 // 1120 // These 3 tests can be done by evaluating the following 1121 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1122 // assuming both stack pointer and pagesize have their 1123 // least significant bits clear. 1124 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1125 subptr(swap_reg, rsp); 1126 andptr(swap_reg, zero_bits - (int)os::vm_page_size()); 1127 1128 // Save the test result, for recursive case, the result is zero 1129 movptr(Address(lock_reg, mark_offset), swap_reg); 1130 jcc(Assembler::notZero, slow_case); 1131 1132 bind(count_locking); 1133 inc_held_monitor_count(); 1134 } 1135 jmp(done); 1136 1137 bind(slow_case); 1138 1139 // Call the runtime routine for slow case 1140 call_VM_preemptable(noreg, 1141 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1142 lock_reg); 1143 bind(done); 1144 } 1145 } 1146 1147 1148 // Unlocks an object. Used in monitorexit bytecode and 1149 // remove_activation. Throws an IllegalMonitorException if object is 1150 // not locked by current thread. 1151 // 1152 // Args: 1153 // rdx, c_rarg1: BasicObjectLock for lock 1154 // 1155 // Kills: 1156 // rax 1157 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1158 // rscratch1 (scratch reg) 1159 // rax, rbx, rcx, rdx 1160 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1161 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1162 1163 if (LockingMode == LM_MONITOR) { 1164 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1165 } else { 1166 Label count_locking, done, slow_case; 1167 1168 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1169 const Register header_reg = c_rarg2; // Will contain the old oopMark 1170 const Register obj_reg = c_rarg3; // Will contain the oop 1171 1172 save_bcp(); // Save in case of exception 1173 1174 if (LockingMode != LM_LIGHTWEIGHT) { 1175 // Convert from BasicObjectLock structure to object and BasicLock 1176 // structure Store the BasicLock address into %rax 1177 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 1178 } 1179 1180 // Load oop into obj_reg(%c_rarg3) 1181 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1182 1183 // Free entry 1184 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD); 1185 1186 if (LockingMode == LM_LIGHTWEIGHT) { 1187 lightweight_unlock(obj_reg, swap_reg, header_reg, slow_case); 1188 } else if (LockingMode == LM_LEGACY) { 1189 // Load the old header from BasicLock structure 1190 movptr(header_reg, Address(swap_reg, 1191 BasicLock::displaced_header_offset_in_bytes())); 1192 1193 // Test for recursion 1194 testptr(header_reg, header_reg); 1195 1196 // zero for recursive case 1197 jcc(Assembler::zero, count_locking); 1198 1199 // Atomic swap back the old header 1200 lock(); 1201 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1202 1203 // zero for simple unlock of a stack-lock case 1204 jcc(Assembler::notZero, slow_case); 1205 1206 bind(count_locking); 1207 dec_held_monitor_count(); 1208 } 1209 jmp(done); 1210 1211 bind(slow_case); 1212 // Call the runtime routine for slow case. 1213 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj 1214 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1215 1216 bind(done); 1217 1218 restore_bcp(); 1219 } 1220 } 1221 1222 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1223 Label& zero_continue) { 1224 assert(ProfileInterpreter, "must be profiling interpreter"); 1225 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1226 testptr(mdp, mdp); 1227 jcc(Assembler::zero, zero_continue); 1228 } 1229 1230 1231 // Set the method data pointer for the current bcp. 1232 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1233 assert(ProfileInterpreter, "must be profiling interpreter"); 1234 Label set_mdp; 1235 push(rax); 1236 push(rbx); 1237 1238 get_method(rbx); 1239 // Test MDO to avoid the call if it is null. 1240 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1241 testptr(rax, rax); 1242 jcc(Assembler::zero, set_mdp); 1243 // rbx: method 1244 // _bcp_register: bcp 1245 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1246 // rax: mdi 1247 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1248 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1249 addptr(rbx, in_bytes(MethodData::data_offset())); 1250 addptr(rax, rbx); 1251 bind(set_mdp); 1252 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1253 pop(rbx); 1254 pop(rax); 1255 } 1256 1257 void InterpreterMacroAssembler::verify_method_data_pointer() { 1258 assert(ProfileInterpreter, "must be profiling interpreter"); 1259 #ifdef ASSERT 1260 Label verify_continue; 1261 push(rax); 1262 push(rbx); 1263 Register arg3_reg = c_rarg3; 1264 Register arg2_reg = c_rarg2; 1265 push(arg3_reg); 1266 push(arg2_reg); 1267 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1268 get_method(rbx); 1269 1270 // If the mdp is valid, it will point to a DataLayout header which is 1271 // consistent with the bcp. The converse is highly probable also. 1272 load_unsigned_short(arg2_reg, 1273 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1274 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1275 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1276 cmpptr(arg2_reg, _bcp_register); 1277 jcc(Assembler::equal, verify_continue); 1278 // rbx: method 1279 // _bcp_register: bcp 1280 // c_rarg3: mdp 1281 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1282 rbx, _bcp_register, arg3_reg); 1283 bind(verify_continue); 1284 pop(arg2_reg); 1285 pop(arg3_reg); 1286 pop(rbx); 1287 pop(rax); 1288 #endif // ASSERT 1289 } 1290 1291 1292 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1293 int constant, 1294 Register value) { 1295 assert(ProfileInterpreter, "must be profiling interpreter"); 1296 Address data(mdp_in, constant); 1297 movptr(data, value); 1298 } 1299 1300 1301 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1302 int constant, 1303 bool decrement) { 1304 // Counter address 1305 Address data(mdp_in, constant); 1306 1307 increment_mdp_data_at(data, decrement); 1308 } 1309 1310 void InterpreterMacroAssembler::increment_mdp_data_at(Address data, 1311 bool decrement) { 1312 assert(ProfileInterpreter, "must be profiling interpreter"); 1313 // %%% this does 64bit counters at best it is wasting space 1314 // at worst it is a rare bug when counters overflow 1315 1316 if (decrement) { 1317 // Decrement the register. Set condition codes. 1318 addptr(data, -DataLayout::counter_increment); 1319 // If the decrement causes the counter to overflow, stay negative 1320 Label L; 1321 jcc(Assembler::negative, L); 1322 addptr(data, DataLayout::counter_increment); 1323 bind(L); 1324 } else { 1325 assert(DataLayout::counter_increment == 1, 1326 "flow-free idiom only works with 1"); 1327 // Increment the register. Set carry flag. 1328 addptr(data, DataLayout::counter_increment); 1329 // If the increment causes the counter to overflow, pull back by 1. 1330 sbbptr(data, 0); 1331 } 1332 } 1333 1334 1335 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1336 Register reg, 1337 int constant, 1338 bool decrement) { 1339 Address data(mdp_in, reg, Address::times_1, constant); 1340 1341 increment_mdp_data_at(data, decrement); 1342 } 1343 1344 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1345 int flag_byte_constant) { 1346 assert(ProfileInterpreter, "must be profiling interpreter"); 1347 int header_offset = in_bytes(DataLayout::flags_offset()); 1348 int header_bits = flag_byte_constant; 1349 // Set the flag 1350 orb(Address(mdp_in, header_offset), header_bits); 1351 } 1352 1353 1354 1355 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1356 int offset, 1357 Register value, 1358 Register test_value_out, 1359 Label& not_equal_continue) { 1360 assert(ProfileInterpreter, "must be profiling interpreter"); 1361 if (test_value_out == noreg) { 1362 cmpptr(value, Address(mdp_in, offset)); 1363 } else { 1364 // Put the test value into a register, so caller can use it: 1365 movptr(test_value_out, Address(mdp_in, offset)); 1366 cmpptr(test_value_out, value); 1367 } 1368 jcc(Assembler::notEqual, not_equal_continue); 1369 } 1370 1371 1372 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1373 int offset_of_disp) { 1374 assert(ProfileInterpreter, "must be profiling interpreter"); 1375 Address disp_address(mdp_in, offset_of_disp); 1376 addptr(mdp_in, disp_address); 1377 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1378 } 1379 1380 1381 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1382 Register reg, 1383 int offset_of_disp) { 1384 assert(ProfileInterpreter, "must be profiling interpreter"); 1385 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1386 addptr(mdp_in, disp_address); 1387 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1388 } 1389 1390 1391 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1392 int constant) { 1393 assert(ProfileInterpreter, "must be profiling interpreter"); 1394 addptr(mdp_in, constant); 1395 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1396 } 1397 1398 1399 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1400 assert(ProfileInterpreter, "must be profiling interpreter"); 1401 push(return_bci); // save/restore across call_VM 1402 call_VM(noreg, 1403 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1404 return_bci); 1405 pop(return_bci); 1406 } 1407 1408 1409 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1410 Register bumped_count) { 1411 if (ProfileInterpreter) { 1412 Label profile_continue; 1413 1414 // If no method data exists, go to profile_continue. 1415 // Otherwise, assign to mdp 1416 test_method_data_pointer(mdp, profile_continue); 1417 1418 // We are taking a branch. Increment the taken count. 1419 // We inline increment_mdp_data_at to return bumped_count in a register 1420 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1421 Address data(mdp, in_bytes(JumpData::taken_offset())); 1422 movptr(bumped_count, data); 1423 assert(DataLayout::counter_increment == 1, 1424 "flow-free idiom only works with 1"); 1425 addptr(bumped_count, DataLayout::counter_increment); 1426 sbbptr(bumped_count, 0); 1427 movptr(data, bumped_count); // Store back out 1428 1429 // The method data pointer needs to be updated to reflect the new target. 1430 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1431 bind(profile_continue); 1432 } 1433 } 1434 1435 1436 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1437 if (ProfileInterpreter) { 1438 Label profile_continue; 1439 1440 // If no method data exists, go to profile_continue. 1441 test_method_data_pointer(mdp, profile_continue); 1442 1443 // We are taking a branch. Increment the not taken count. 1444 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1445 1446 // The method data pointer needs to be updated to correspond to 1447 // the next bytecode 1448 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1449 bind(profile_continue); 1450 } 1451 } 1452 1453 void InterpreterMacroAssembler::profile_call(Register mdp) { 1454 if (ProfileInterpreter) { 1455 Label profile_continue; 1456 1457 // If no method data exists, go to profile_continue. 1458 test_method_data_pointer(mdp, profile_continue); 1459 1460 // We are making a call. Increment the count. 1461 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1462 1463 // The method data pointer needs to be updated to reflect the new target. 1464 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1465 bind(profile_continue); 1466 } 1467 } 1468 1469 1470 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1471 if (ProfileInterpreter) { 1472 Label profile_continue; 1473 1474 // If no method data exists, go to profile_continue. 1475 test_method_data_pointer(mdp, profile_continue); 1476 1477 // We are making a call. Increment the count. 1478 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1479 1480 // The method data pointer needs to be updated to reflect the new target. 1481 update_mdp_by_constant(mdp, 1482 in_bytes(VirtualCallData:: 1483 virtual_call_data_size())); 1484 bind(profile_continue); 1485 } 1486 } 1487 1488 1489 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1490 Register mdp, 1491 Register reg2, 1492 bool receiver_can_be_null) { 1493 if (ProfileInterpreter) { 1494 Label profile_continue; 1495 1496 // If no method data exists, go to profile_continue. 1497 test_method_data_pointer(mdp, profile_continue); 1498 1499 Label skip_receiver_profile; 1500 if (receiver_can_be_null) { 1501 Label not_null; 1502 testptr(receiver, receiver); 1503 jccb(Assembler::notZero, not_null); 1504 // We are making a call. Increment the count for null receiver. 1505 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1506 jmp(skip_receiver_profile); 1507 bind(not_null); 1508 } 1509 1510 // Record the receiver type. 1511 record_klass_in_profile(receiver, mdp, reg2, true); 1512 bind(skip_receiver_profile); 1513 1514 // The method data pointer needs to be updated to reflect the new target. 1515 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1516 bind(profile_continue); 1517 } 1518 } 1519 1520 // This routine creates a state machine for updating the multi-row 1521 // type profile at a virtual call site (or other type-sensitive bytecode). 1522 // The machine visits each row (of receiver/count) until the receiver type 1523 // is found, or until it runs out of rows. At the same time, it remembers 1524 // the location of the first empty row. (An empty row records null for its 1525 // receiver, and can be allocated for a newly-observed receiver type.) 1526 // Because there are two degrees of freedom in the state, a simple linear 1527 // search will not work; it must be a decision tree. Hence this helper 1528 // function is recursive, to generate the required tree structured code. 1529 // It's the interpreter, so we are trading off code space for speed. 1530 // See below for example code. 1531 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1532 Register receiver, Register mdp, 1533 Register reg2, int start_row, 1534 Label& done, bool is_virtual_call) { 1535 if (TypeProfileWidth == 0) { 1536 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1537 } else { 1538 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1539 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1540 } 1541 } 1542 1543 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row, 1544 Label& done, int total_rows, 1545 OffsetFunction item_offset_fn, 1546 OffsetFunction item_count_offset_fn) { 1547 int last_row = total_rows - 1; 1548 assert(start_row <= last_row, "must be work left to do"); 1549 // Test this row for both the item and for null. 1550 // Take any of three different outcomes: 1551 // 1. found item => increment count and goto done 1552 // 2. found null => keep looking for case 1, maybe allocate this cell 1553 // 3. found something else => keep looking for cases 1 and 2 1554 // Case 3 is handled by a recursive call. 1555 for (int row = start_row; row <= last_row; row++) { 1556 Label next_test; 1557 bool test_for_null_also = (row == start_row); 1558 1559 // See if the item is item[n]. 1560 int item_offset = in_bytes(item_offset_fn(row)); 1561 test_mdp_data_at(mdp, item_offset, item, 1562 (test_for_null_also ? reg2 : noreg), 1563 next_test); 1564 // (Reg2 now contains the item from the CallData.) 1565 1566 // The item is item[n]. Increment count[n]. 1567 int count_offset = in_bytes(item_count_offset_fn(row)); 1568 increment_mdp_data_at(mdp, count_offset); 1569 jmp(done); 1570 bind(next_test); 1571 1572 if (test_for_null_also) { 1573 // Failed the equality check on item[n]... Test for null. 1574 testptr(reg2, reg2); 1575 if (start_row == last_row) { 1576 // The only thing left to do is handle the null case. 1577 Label found_null; 1578 jccb(Assembler::zero, found_null); 1579 // Item did not match any saved item and there is no empty row for it. 1580 // Increment total counter to indicate polymorphic case. 1581 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1582 jmp(done); 1583 bind(found_null); 1584 break; 1585 } 1586 Label found_null; 1587 // Since null is rare, make it be the branch-taken case. 1588 jcc(Assembler::zero, found_null); 1589 1590 // Put all the "Case 3" tests here. 1591 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1592 item_offset_fn, item_count_offset_fn); 1593 1594 // Found a null. Keep searching for a matching item, 1595 // but remember that this is an empty (unused) slot. 1596 bind(found_null); 1597 } 1598 } 1599 1600 // In the fall-through case, we found no matching item, but we 1601 // observed the item[start_row] is null. 1602 1603 // Fill in the item field and increment the count. 1604 int item_offset = in_bytes(item_offset_fn(start_row)); 1605 set_mdp_data_at(mdp, item_offset, item); 1606 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1607 movl(reg2, DataLayout::counter_increment); 1608 set_mdp_data_at(mdp, count_offset, reg2); 1609 if (start_row > 0) { 1610 jmp(done); 1611 } 1612 } 1613 1614 // Example state machine code for three profile rows: 1615 // // main copy of decision tree, rooted at row[1] 1616 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1617 // if (row[0].rec != nullptr) { 1618 // // inner copy of decision tree, rooted at row[1] 1619 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1620 // if (row[1].rec != nullptr) { 1621 // // degenerate decision tree, rooted at row[2] 1622 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1623 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1624 // row[2].init(rec); goto done; 1625 // } else { 1626 // // remember row[1] is empty 1627 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1628 // row[1].init(rec); goto done; 1629 // } 1630 // } else { 1631 // // remember row[0] is empty 1632 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1633 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1634 // row[0].init(rec); goto done; 1635 // } 1636 // done: 1637 1638 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1639 Register mdp, Register reg2, 1640 bool is_virtual_call) { 1641 assert(ProfileInterpreter, "must be profiling"); 1642 Label done; 1643 1644 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1645 1646 bind (done); 1647 } 1648 1649 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1650 Register mdp) { 1651 if (ProfileInterpreter) { 1652 Label profile_continue; 1653 uint row; 1654 1655 // If no method data exists, go to profile_continue. 1656 test_method_data_pointer(mdp, profile_continue); 1657 1658 // Update the total ret count. 1659 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1660 1661 for (row = 0; row < RetData::row_limit(); row++) { 1662 Label next_test; 1663 1664 // See if return_bci is equal to bci[n]: 1665 test_mdp_data_at(mdp, 1666 in_bytes(RetData::bci_offset(row)), 1667 return_bci, noreg, 1668 next_test); 1669 1670 // return_bci is equal to bci[n]. Increment the count. 1671 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1672 1673 // The method data pointer needs to be updated to reflect the new target. 1674 update_mdp_by_offset(mdp, 1675 in_bytes(RetData::bci_displacement_offset(row))); 1676 jmp(profile_continue); 1677 bind(next_test); 1678 } 1679 1680 update_mdp_for_ret(return_bci); 1681 1682 bind(profile_continue); 1683 } 1684 } 1685 1686 1687 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1688 if (ProfileInterpreter) { 1689 Label profile_continue; 1690 1691 // If no method data exists, go to profile_continue. 1692 test_method_data_pointer(mdp, profile_continue); 1693 1694 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1695 1696 // The method data pointer needs to be updated. 1697 int mdp_delta = in_bytes(BitData::bit_data_size()); 1698 if (TypeProfileCasts) { 1699 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1700 } 1701 update_mdp_by_constant(mdp, mdp_delta); 1702 1703 bind(profile_continue); 1704 } 1705 } 1706 1707 1708 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1709 if (ProfileInterpreter) { 1710 Label profile_continue; 1711 1712 // If no method data exists, go to profile_continue. 1713 test_method_data_pointer(mdp, profile_continue); 1714 1715 // The method data pointer needs to be updated. 1716 int mdp_delta = in_bytes(BitData::bit_data_size()); 1717 if (TypeProfileCasts) { 1718 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1719 1720 // Record the object type. 1721 record_klass_in_profile(klass, mdp, reg2, false); 1722 } 1723 update_mdp_by_constant(mdp, mdp_delta); 1724 1725 bind(profile_continue); 1726 } 1727 } 1728 1729 1730 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1731 if (ProfileInterpreter) { 1732 Label profile_continue; 1733 1734 // If no method data exists, go to profile_continue. 1735 test_method_data_pointer(mdp, profile_continue); 1736 1737 // Update the default case count 1738 increment_mdp_data_at(mdp, 1739 in_bytes(MultiBranchData::default_count_offset())); 1740 1741 // The method data pointer needs to be updated. 1742 update_mdp_by_offset(mdp, 1743 in_bytes(MultiBranchData:: 1744 default_displacement_offset())); 1745 1746 bind(profile_continue); 1747 } 1748 } 1749 1750 1751 void InterpreterMacroAssembler::profile_switch_case(Register index, 1752 Register mdp, 1753 Register reg2) { 1754 if (ProfileInterpreter) { 1755 Label profile_continue; 1756 1757 // If no method data exists, go to profile_continue. 1758 test_method_data_pointer(mdp, profile_continue); 1759 1760 // Build the base (index * per_case_size_in_bytes()) + 1761 // case_array_offset_in_bytes() 1762 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1763 imulptr(index, reg2); // XXX l ? 1764 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1765 1766 // Update the case count 1767 increment_mdp_data_at(mdp, 1768 index, 1769 in_bytes(MultiBranchData::relative_count_offset())); 1770 1771 // The method data pointer needs to be updated. 1772 update_mdp_by_offset(mdp, 1773 index, 1774 in_bytes(MultiBranchData:: 1775 relative_displacement_offset())); 1776 1777 bind(profile_continue); 1778 } 1779 } 1780 1781 1782 1783 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1784 if (state == atos) { 1785 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1786 } 1787 } 1788 1789 1790 // Jump if ((*counter_addr += increment) & mask) == 0 1791 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 1792 Register scratch, Label* where) { 1793 // This update is actually not atomic and can lose a number of updates 1794 // under heavy contention, but the alternative of using the (contended) 1795 // atomic update here penalizes profiling paths too much. 1796 movl(scratch, counter_addr); 1797 incrementl(scratch, InvocationCounter::count_increment); 1798 movl(counter_addr, scratch); 1799 andl(scratch, mask); 1800 if (where != nullptr) { 1801 jcc(Assembler::zero, *where); 1802 } 1803 } 1804 1805 void InterpreterMacroAssembler::notify_method_entry() { 1806 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1807 // track stack depth. If it is possible to enter interp_only_mode we add 1808 // the code to check if the event should be sent. 1809 Register rthread = r15_thread; 1810 Register rarg = c_rarg1; 1811 if (JvmtiExport::can_post_interpreter_events()) { 1812 Label L; 1813 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1814 testl(rdx, rdx); 1815 jcc(Assembler::zero, L); 1816 call_VM(noreg, CAST_FROM_FN_PTR(address, 1817 InterpreterRuntime::post_method_entry)); 1818 bind(L); 1819 } 1820 1821 if (DTraceMethodProbes) { 1822 get_method(rarg); 1823 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1824 rthread, rarg); 1825 } 1826 1827 // RedefineClasses() tracing support for obsolete method entry 1828 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1829 get_method(rarg); 1830 call_VM_leaf( 1831 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1832 rthread, rarg); 1833 } 1834 } 1835 1836 1837 void InterpreterMacroAssembler::notify_method_exit( 1838 TosState state, NotifyMethodExitMode mode) { 1839 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1840 // track stack depth. If it is possible to enter interp_only_mode we add 1841 // the code to check if the event should be sent. 1842 Register rthread = r15_thread; 1843 Register rarg = c_rarg1; 1844 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1845 Label L; 1846 // Note: frame::interpreter_frame_result has a dependency on how the 1847 // method result is saved across the call to post_method_exit. If this 1848 // is changed then the interpreter_frame_result implementation will 1849 // need to be updated too. 1850 1851 // template interpreter will leave the result on the top of the stack. 1852 push(state); 1853 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1854 testl(rdx, rdx); 1855 jcc(Assembler::zero, L); 1856 call_VM(noreg, 1857 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1858 bind(L); 1859 pop(state); 1860 } 1861 1862 if (DTraceMethodProbes) { 1863 push(state); 1864 get_method(rarg); 1865 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1866 rthread, rarg); 1867 pop(state); 1868 } 1869 } 1870 1871 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1872 // Get index out of bytecode pointer 1873 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1874 // Get address of invokedynamic array 1875 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1876 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1877 if (is_power_of_2(sizeof(ResolvedIndyEntry))) { 1878 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2 1879 } else { 1880 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1881 } 1882 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes())); 1883 } 1884 1885 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1886 // Get index out of bytecode pointer 1887 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1888 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1889 1890 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset())); 1891 // Take shortcut if the size is a power of 2 1892 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1893 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1894 } else { 1895 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1896 } 1897 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes())); 1898 } 1899 1900 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1901 // Get index out of bytecode pointer 1902 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1903 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1904 1905 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset())); 1906 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1907 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes())); 1908 }