1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "compiler/compiler_globals.hpp"
  26 #include "interp_masm_x86.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "logging/log.hpp"
  30 #include "oops/arrayOop.hpp"
  31 #include "oops/markWord.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/method.hpp"
  34 #include "oops/resolvedFieldEntry.hpp"
  35 #include "oops/resolvedIndyEntry.hpp"
  36 #include "oops/resolvedMethodEntry.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/basicLock.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/javaThread.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "utilities/powerOfTwo.hpp"
  45 
  46 // Implementation of InterpreterMacroAssembler
  47 
  48 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  49   assert(entry, "Entry must have been generated by now");
  50   jump(RuntimeAddress(entry));
  51 }
  52 
  53 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
  54   Label update, next, none;
  55 
  56   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
  57 
  58   interp_verify_oop(obj, atos);
  59 
  60   testptr(obj, obj);
  61   jccb(Assembler::notZero, update);
  62   testptr(mdo_addr, TypeEntries::null_seen);
  63   jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore.
  64   // atomic update to prevent overwriting Klass* with 0
  65   lock();
  66   orptr(mdo_addr, TypeEntries::null_seen);
  67   jmpb(next);
  68 
  69   bind(update);
  70   load_klass(obj, obj, rscratch1);
  71   mov(rscratch1, obj);
  72 
  73   xorptr(obj, mdo_addr);
  74   testptr(obj, TypeEntries::type_klass_mask);
  75   jccb(Assembler::zero, next); // klass seen before, nothing to
  76                                // do. The unknown bit may have been
  77                                // set already but no need to check.
  78 
  79   testptr(obj, TypeEntries::type_unknown);
  80   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  81 
  82   cmpptr(mdo_addr, 0);
  83   jccb(Assembler::equal, none);
  84   cmpptr(mdo_addr, TypeEntries::null_seen);
  85   jccb(Assembler::equal, none);
  86 
  87   // There is a chance that the checks above (re-reading profiling
  88   // data from memory) fail if another thread has just set the
  89   // profiling to this obj's klass
  90   mov(obj, rscratch1);
  91   xorptr(obj, mdo_addr);
  92   testptr(obj, TypeEntries::type_klass_mask);
  93   jccb(Assembler::zero, next);
  94 
  95   // different than before. Cannot keep accurate profile.
  96   orptr(mdo_addr, TypeEntries::type_unknown);
  97   jmpb(next);
  98 
  99   bind(none);
 100   // first time here. Set profile type.
 101   movptr(mdo_addr, obj);
 102 #ifdef ASSERT
 103   andptr(obj, TypeEntries::type_klass_mask);
 104   verify_klass_ptr(obj);
 105 #endif
 106 
 107   bind(next);
 108 }
 109 
 110 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
 111   if (!ProfileInterpreter) {
 112     return;
 113   }
 114 
 115   if (MethodData::profile_arguments() || MethodData::profile_return()) {
 116     Label profile_continue;
 117 
 118     test_method_data_pointer(mdp, profile_continue);
 119 
 120     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
 121 
 122     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
 123     jcc(Assembler::notEqual, profile_continue);
 124 
 125     if (MethodData::profile_arguments()) {
 126       Label done;
 127       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
 128       addptr(mdp, off_to_args);
 129 
 130       for (int i = 0; i < TypeProfileArgsLimit; i++) {
 131         if (i > 0 || MethodData::profile_return()) {
 132           // If return value type is profiled we may have no argument to profile
 133           movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 134           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
 135           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
 136           jcc(Assembler::less, done);
 137         }
 138         movptr(tmp, Address(callee, Method::const_offset()));
 139         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
 140         // stack offset o (zero based) from the start of the argument
 141         // list, for n arguments translates into offset n - o - 1 from
 142         // the end of the argument list
 143         subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
 144         subl(tmp, 1);
 145         Address arg_addr = argument_address(tmp);
 146         movptr(tmp, arg_addr);
 147 
 148         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
 149         profile_obj_type(tmp, mdo_arg_addr);
 150 
 151         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
 152         addptr(mdp, to_add);
 153         off_to_args += to_add;
 154       }
 155 
 156       if (MethodData::profile_return()) {
 157         movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 158         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
 159       }
 160 
 161       bind(done);
 162 
 163       if (MethodData::profile_return()) {
 164         // We're right after the type profile for the last
 165         // argument. tmp is the number of cells left in the
 166         // CallTypeData/VirtualCallTypeData to reach its end. Non null
 167         // if there's a return to profile.
 168         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
 169         shll(tmp, log2i_exact((int)DataLayout::cell_size));
 170         addptr(mdp, tmp);
 171       }
 172       movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
 173     } else {
 174       assert(MethodData::profile_return(), "either profile call args or call ret");
 175       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
 176     }
 177 
 178     // mdp points right after the end of the
 179     // CallTypeData/VirtualCallTypeData, right after the cells for the
 180     // return value type if there's one
 181 
 182     bind(profile_continue);
 183   }
 184 }
 185 
 186 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
 187   assert_different_registers(mdp, ret, tmp, _bcp_register);
 188   if (ProfileInterpreter && MethodData::profile_return()) {
 189     Label profile_continue;
 190 
 191     test_method_data_pointer(mdp, profile_continue);
 192 
 193     if (MethodData::profile_return_jsr292_only()) {
 194       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
 195 
 196       // If we don't profile all invoke bytecodes we must make sure
 197       // it's a bytecode we indeed profile. We can't go back to the
 198       // beginning of the ProfileData we intend to update to check its
 199       // type because we're right after it and we don't known its
 200       // length
 201       Label do_profile;
 202       cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
 203       jcc(Assembler::equal, do_profile);
 204       cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
 205       jcc(Assembler::equal, do_profile);
 206       get_method(tmp);
 207       cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm));
 208       jcc(Assembler::notEqual, profile_continue);
 209 
 210       bind(do_profile);
 211     }
 212 
 213     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
 214     mov(tmp, ret);
 215     profile_obj_type(tmp, mdo_ret_addr);
 216 
 217     bind(profile_continue);
 218   }
 219 }
 220 
 221 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
 222   if (ProfileInterpreter && MethodData::profile_parameters()) {
 223     Label profile_continue;
 224 
 225     test_method_data_pointer(mdp, profile_continue);
 226 
 227     // Load the offset of the area within the MDO used for
 228     // parameters. If it's negative we're not profiling any parameters
 229     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
 230     testl(tmp1, tmp1);
 231     jcc(Assembler::negative, profile_continue);
 232 
 233     // Compute a pointer to the area for parameters from the offset
 234     // and move the pointer to the slot for the last
 235     // parameters. Collect profiling from last parameter down.
 236     // mdo start + parameters offset + array length - 1
 237     addptr(mdp, tmp1);
 238     movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
 239     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 240 
 241     Label loop;
 242     bind(loop);
 243 
 244     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
 245     int type_base = in_bytes(ParametersTypeData::type_offset(0));
 246     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
 247     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
 248     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
 249 
 250     // load offset on the stack from the slot for this parameter
 251     movptr(tmp2, arg_off);
 252     negptr(tmp2);
 253     // read the parameter from the local area
 254     movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
 255 
 256     // profile the parameter
 257     profile_obj_type(tmp2, arg_type);
 258 
 259     // go to next parameter
 260     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 261     jcc(Assembler::positive, loop);
 262 
 263     bind(profile_continue);
 264   }
 265 }
 266 
 267 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
 268                                                   int number_of_arguments) {
 269   // interpreter specific
 270   //
 271   // Note: No need to save/restore bcp & locals registers
 272   //       since these are callee saved registers and no blocking/
 273   //       GC can happen in leaf calls.
 274   // Further Note: DO NOT save/restore bcp/locals. If a caller has
 275   // already saved them so that it can use rsi/rdi as temporaries
 276   // then a save/restore here will DESTROY the copy the caller
 277   // saved! There used to be a save_bcp() that only happened in
 278   // the ASSERT path (no restore_bcp). Which caused bizarre failures
 279   // when jvm built with ASSERTs.
 280 #ifdef ASSERT
 281   {
 282     Label L;
 283     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 284     jcc(Assembler::equal, L);
 285     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 286          " last_sp != null");
 287     bind(L);
 288   }
 289 #endif
 290   // super call
 291   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 292   // interpreter specific
 293   // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
 294   // but since they may not have been saved (and we don't want to
 295   // save them here (see note above) the assert is invalid.
 296 }
 297 
 298 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
 299                                              Register last_java_sp,
 300                                              address  entry_point,
 301                                              int      number_of_arguments,
 302                                              bool     check_exceptions) {
 303   // interpreter specific
 304   //
 305   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 306   //       really make a difference for these runtime calls, since they are
 307   //       slow anyway. Btw., bcp must be saved/restored since it may change
 308   //       due to GC.
 309   save_bcp();
 310 #ifdef ASSERT
 311   {
 312     Label L;
 313     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 314     jcc(Assembler::equal, L);
 315     stop("InterpreterMacroAssembler::call_VM_base:"
 316          " last_sp isn't null");
 317     bind(L);
 318   }
 319 #endif /* ASSERT */
 320   // super call
 321   MacroAssembler::call_VM_base(oop_result, last_java_sp,
 322                                entry_point, number_of_arguments,
 323                                check_exceptions);
 324   // interpreter specific
 325   restore_bcp();
 326   restore_locals();
 327 }
 328 
 329 void InterpreterMacroAssembler::call_VM_preemptable_helper(Register oop_result,
 330                                                            address entry_point,
 331                                                            int number_of_arguments,
 332                                                            bool check_exceptions) {
 333   assert(InterpreterRuntime::is_preemptable_call(entry_point), "VM call not preemptable, should use call_VM()");
 334   Label resume_pc, not_preempted;
 335 
 336 #ifdef ASSERT
 337   {
 338     Label L1, L2;
 339     cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
 340     jcc(Assembler::equal, L1);
 341     stop("call_VM_preemptable_helper: should not have alternate return address set");
 342     bind(L1);
 343     // We check this counter in patch_return_pc_with_preempt_stub() during freeze.
 344     incrementl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
 345     cmpl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()), 0);
 346     jcc(Assembler::greater, L2);
 347     stop("call_VM_preemptable_helper: should be > 0");
 348     bind(L2);
 349   }
 350 #endif /* ASSERT */
 351 
 352   // Force freeze slow path.
 353   push_cont_fastpath();
 354 
 355   // Make VM call. In case of preemption set last_pc to the one we want to resume to.
 356   lea(rscratch1, resume_pc);
 357   push(rscratch1);
 358   lea(rax, Address(rsp, wordSize));
 359   call_VM_base(noreg, rax, entry_point, number_of_arguments, false);
 360   pop(rscratch1);
 361 
 362   pop_cont_fastpath();
 363 
 364 #ifdef ASSERT
 365   {
 366     Label L;
 367     decrementl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
 368     cmpl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()), 0);
 369     jcc(Assembler::greaterEqual, L);
 370     stop("call_VM_preemptable_helper: should be >= 0");
 371     bind(L);
 372   }
 373 #endif /* ASSERT */
 374 
 375   // Check if preempted.
 376   movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset()));
 377   cmpptr(rscratch1, NULL_WORD);
 378   jccb(Assembler::zero, not_preempted);
 379   movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
 380   jmp(rscratch1);
 381 
 382   // In case of preemption, this is where we will resume once we finally acquire the monitor.
 383   bind(resume_pc);
 384   restore_after_resume(false /* is_native */);
 385 
 386   bind(not_preempted);
 387   if (check_exceptions) {
 388     // check for pending exceptions (java_thread is set upon return)
 389     cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 390     Label ok;
 391     jcc(Assembler::equal, ok);
 392     // Exception stub expects return pc to be at top of stack. We only need
 393     // it to check Interpreter::contains(return_address) so anything will do.
 394     lea(rscratch1, resume_pc);
 395     push(rscratch1);
 396     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 397     bind(ok);
 398   }
 399 
 400   // get oop result if there is one and reset the value in the thread
 401   if (oop_result->is_valid()) {
 402     get_vm_result_oop(oop_result);
 403   }
 404 }
 405 
 406 static void pass_arg1(MacroAssembler* masm, Register arg) {
 407   if (c_rarg1 != arg ) {
 408     masm->mov(c_rarg1, arg);
 409   }
 410 }
 411 
 412 static void pass_arg2(MacroAssembler* masm, Register arg) {
 413   if (c_rarg2 != arg ) {
 414     masm->mov(c_rarg2, arg);
 415   }
 416 }
 417 
 418 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
 419                                          address entry_point,
 420                                          Register arg_1,
 421                                          bool check_exceptions) {
 422   pass_arg1(this, arg_1);
 423   call_VM_preemptable_helper(oop_result, entry_point, 1, check_exceptions);
 424 }
 425 
 426 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
 427                                          address entry_point,
 428                                          Register arg_1,
 429                                          Register arg_2,
 430                                          bool check_exceptions) {
 431   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 432   pass_arg2(this, arg_2);
 433   pass_arg1(this, arg_1);
 434   call_VM_preemptable_helper(oop_result, entry_point, 2, check_exceptions);
 435 }
 436 
 437 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
 438   lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
 439   call(rscratch1);
 440   if (is_native) {
 441     // On resume we need to set up stack as expected.
 442     push(dtos);
 443     push(ltos);
 444   }
 445 }
 446 
 447 void InterpreterMacroAssembler::check_and_handle_popframe() {
 448   if (JvmtiExport::can_pop_frame()) {
 449     Label L;
 450     // Initiate popframe handling only if it is not already being
 451     // processed.  If the flag has the popframe_processing bit set, it
 452     // means that this code is called *during* popframe handling - we
 453     // don't want to reenter.
 454     // This method is only called just after the call into the vm in
 455     // call_VM_base, so the arg registers are available.
 456     Register pop_cond = c_rarg0;
 457     movl(pop_cond, Address(r15_thread, JavaThread::popframe_condition_offset()));
 458     testl(pop_cond, JavaThread::popframe_pending_bit);
 459     jcc(Assembler::zero, L);
 460     testl(pop_cond, JavaThread::popframe_processing_bit);
 461     jcc(Assembler::notZero, L);
 462     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 463     // address of the same-named entrypoint in the generated interpreter code.
 464     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 465     jmp(rax);
 466     bind(L);
 467   }
 468 }
 469 
 470 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 471   movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 472   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 473   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 474   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 475 
 476   switch (state) {
 477     case atos: movptr(rax, oop_addr);
 478                movptr(oop_addr, NULL_WORD);
 479                interp_verify_oop(rax, state);         break;
 480     case ltos: movptr(rax, val_addr);                 break;
 481     case btos:                                   // fall through
 482     case ztos:                                   // fall through
 483     case ctos:                                   // fall through
 484     case stos:                                   // fall through
 485     case itos: movl(rax, val_addr);                 break;
 486     case ftos: movflt(xmm0, val_addr);              break;
 487     case dtos: movdbl(xmm0, val_addr);              break;
 488     case vtos: /* nothing to do */                  break;
 489     default  : ShouldNotReachHere();
 490   }
 491 
 492   // Clean up tos value in the thread object
 493   movl(tos_addr, ilgl);
 494   movptr(val_addr, NULL_WORD);
 495 }
 496 
 497 
 498 void InterpreterMacroAssembler::check_and_handle_earlyret() {
 499   if (JvmtiExport::can_force_early_return()) {
 500     Label L;
 501     Register tmp = c_rarg0;
 502     Register rthread = r15_thread;
 503 
 504     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 505     testptr(tmp, tmp);
 506     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit;
 507 
 508     // Initiate earlyret handling only if it is not already being processed.
 509     // If the flag has the earlyret_processing bit set, it means that this code
 510     // is called *during* earlyret handling - we don't want to reenter.
 511     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 512     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 513     jcc(Assembler::notEqual, L);
 514 
 515     // Call Interpreter::remove_activation_early_entry() to get the address of the
 516     // same-named entrypoint in the generated interpreter code.
 517     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 518     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 519     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
 520     jmp(rax);
 521     bind(L);
 522   }
 523 }
 524 
 525 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 526   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 527   load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
 528   bswapl(reg);
 529   shrl(reg, 16);
 530 }
 531 
 532 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 533                                                        int bcp_offset,
 534                                                        size_t index_size) {
 535   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 536   if (index_size == sizeof(u2)) {
 537     load_unsigned_short(index, Address(_bcp_register, bcp_offset));
 538   } else if (index_size == sizeof(u4)) {
 539     movl(index, Address(_bcp_register, bcp_offset));
 540   } else if (index_size == sizeof(u1)) {
 541     load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
 542   } else {
 543     ShouldNotReachHere();
 544   }
 545 }
 546 
 547 // Load object from cpool->resolved_references(index)
 548 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
 549                                                                  Register index,
 550                                                                  Register tmp) {
 551   assert_different_registers(result, index);
 552 
 553   get_constant_pool(result);
 554   // load pointer for resolved_references[] objArray
 555   movptr(result, Address(result, ConstantPool::cache_offset()));
 556   movptr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
 557   resolve_oop_handle(result, tmp);
 558   load_heap_oop(result, Address(result, index,
 559                                 UseCompressedOops ? Address::times_4 : Address::times_ptr,
 560                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
 561 }
 562 
 563 // load cpool->resolved_klass_at(index)
 564 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
 565                                                              Register cpool,
 566                                                              Register index) {
 567   assert_different_registers(cpool, index);
 568 
 569   movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
 570   Register resolved_klasses = cpool;
 571   movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset()));
 572   movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
 573 }
 574 
 575 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 576 // subtype of super_klass.
 577 //
 578 // Args:
 579 //      rax: superklass
 580 //      Rsub_klass: subklass
 581 //
 582 // Kills:
 583 //      rcx, rdi
 584 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 585                                                   Label& ok_is_subtype) {
 586   assert(Rsub_klass != rax, "rax holds superklass");
 587   LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
 588   LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
 589   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 590   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 591 
 592   // Profile the not-null value's klass.
 593   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 594 
 595   // Do the check.
 596   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 597 }
 598 
 599 
 600 // Java Expression Stack
 601 
 602 void InterpreterMacroAssembler::pop_ptr(Register r) {
 603   pop(r);
 604 }
 605 
 606 void InterpreterMacroAssembler::push_ptr(Register r) {
 607   push(r);
 608 }
 609 
 610 void InterpreterMacroAssembler::push_i(Register r) {
 611   push(r);
 612 }
 613 
 614 void InterpreterMacroAssembler::push_i_or_ptr(Register r) {
 615   push(r);
 616 }
 617 
 618 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 619   subptr(rsp, wordSize);
 620   movflt(Address(rsp, 0), r);
 621 }
 622 
 623 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 624   movflt(r, Address(rsp, 0));
 625   addptr(rsp, wordSize);
 626 }
 627 
 628 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 629   subptr(rsp, 2 * wordSize);
 630   movdbl(Address(rsp, 0), r);
 631 }
 632 
 633 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 634   movdbl(r, Address(rsp, 0));
 635   addptr(rsp, 2 * Interpreter::stackElementSize);
 636 }
 637 
 638 void InterpreterMacroAssembler::pop_i(Register r) {
 639   // XXX can't use pop currently, upper half non clean
 640   movl(r, Address(rsp, 0));
 641   addptr(rsp, wordSize);
 642 }
 643 
 644 void InterpreterMacroAssembler::pop_l(Register r) {
 645   movq(r, Address(rsp, 0));
 646   addptr(rsp, 2 * Interpreter::stackElementSize);
 647 }
 648 
 649 void InterpreterMacroAssembler::push_l(Register r) {
 650   subptr(rsp, 2 * wordSize);
 651   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r         );
 652   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
 653 }
 654 
 655 void InterpreterMacroAssembler::pop(TosState state) {
 656   switch (state) {
 657   case atos: pop_ptr();                 break;
 658   case btos:
 659   case ztos:
 660   case ctos:
 661   case stos:
 662   case itos: pop_i();                   break;
 663   case ltos: pop_l();                   break;
 664   case ftos: pop_f(xmm0);               break;
 665   case dtos: pop_d(xmm0);               break;
 666   case vtos: /* nothing to do */        break;
 667   default:   ShouldNotReachHere();
 668   }
 669   interp_verify_oop(rax, state);
 670 }
 671 
 672 void InterpreterMacroAssembler::push(TosState state) {
 673   interp_verify_oop(rax, state);
 674   switch (state) {
 675   case atos: push_ptr();                break;
 676   case btos:
 677   case ztos:
 678   case ctos:
 679   case stos:
 680   case itos: push_i();                  break;
 681   case ltos: push_l();                  break;
 682   case ftos: push_f(xmm0);              break;
 683   case dtos: push_d(xmm0);              break;
 684   case vtos: /* nothing to do */        break;
 685   default  : ShouldNotReachHere();
 686   }
 687 }
 688 
 689 // Helpers for swap and dup
 690 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 691   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 692 }
 693 
 694 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 695   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 696 }
 697 
 698 
 699 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 700   // set sender sp
 701   lea(_bcp_register, Address(rsp, wordSize));
 702   // record last_sp
 703   mov(rcx, _bcp_register);
 704   subptr(rcx, rbp);
 705   sarptr(rcx, LogBytesPerWord);
 706   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx);
 707 }
 708 
 709 
 710 // Jump to from_interpreted entry of a call unless single stepping is possible
 711 // in this thread in which case we must call the i2i entry
 712 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 713   prepare_to_jump_from_interpreted();
 714 
 715   if (JvmtiExport::can_post_interpreter_events()) {
 716     Label run_compiled_code;
 717     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 718     // compiled code in threads for which the event is enabled.  Check here for
 719     // interp_only_mode if these events CAN be enabled.
 720     // interp_only is an int, on little endian it is sufficient to test the byte only
 721     // Is a cmpl faster?
 722     cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
 723     jccb(Assembler::zero, run_compiled_code);
 724     jmp(Address(method, Method::interpreter_entry_offset()));
 725     bind(run_compiled_code);
 726   }
 727 
 728   jmp(Address(method, Method::from_interpreted_offset()));
 729 }
 730 
 731 // The following two routines provide a hook so that an implementation
 732 // can schedule the dispatch in two parts.  x86 does not do this.
 733 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 734   // Nothing x86 specific to be done here
 735 }
 736 
 737 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 738   dispatch_next(state, step);
 739 }
 740 
 741 void InterpreterMacroAssembler::dispatch_base(TosState state,
 742                                               address* table,
 743                                               bool verifyoop,
 744                                               bool generate_poll) {
 745   if (VerifyActivationFrameSize) {
 746     Label L;
 747     mov(rcx, rbp);
 748     subptr(rcx, rsp);
 749     int32_t min_frame_size =
 750       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 751       wordSize;
 752     cmpptr(rcx, min_frame_size);
 753     jcc(Assembler::greaterEqual, L);
 754     stop("broken stack frame");
 755     bind(L);
 756   }
 757   if (verifyoop) {
 758     interp_verify_oop(rax, state);
 759   }
 760 
 761   address* const safepoint_table = Interpreter::safept_table(state);
 762   Label no_safepoint, dispatch;
 763   if (table != safepoint_table && generate_poll) {
 764     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 765     testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
 766 
 767     jccb(Assembler::zero, no_safepoint);
 768     lea(rscratch1, ExternalAddress((address)safepoint_table));
 769     jmpb(dispatch);
 770   }
 771 
 772   bind(no_safepoint);
 773   lea(rscratch1, ExternalAddress((address)table));
 774   bind(dispatch);
 775   jmp(Address(rscratch1, rbx, Address::times_8));
 776 }
 777 
 778 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 779   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 780 }
 781 
 782 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 783   dispatch_base(state, Interpreter::normal_table(state));
 784 }
 785 
 786 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 787   dispatch_base(state, Interpreter::normal_table(state), false);
 788 }
 789 
 790 
 791 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 792   // load next bytecode (load before advancing _bcp_register to prevent AGI)
 793   load_unsigned_byte(rbx, Address(_bcp_register, step));
 794   // advance _bcp_register
 795   increment(_bcp_register, step);
 796   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 797 }
 798 
 799 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 800   // load current bytecode
 801   load_unsigned_byte(rbx, Address(_bcp_register, 0));
 802   dispatch_base(state, table);
 803 }
 804 
 805 void InterpreterMacroAssembler::narrow(Register result) {
 806 
 807   // Get method->_constMethod->_result_type
 808   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 809   movptr(rcx, Address(rcx, Method::const_offset()));
 810   load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
 811 
 812   Label done, notBool, notByte, notChar;
 813 
 814   // common case first
 815   cmpl(rcx, T_INT);
 816   jcc(Assembler::equal, done);
 817 
 818   // mask integer result to narrower return type.
 819   cmpl(rcx, T_BOOLEAN);
 820   jcc(Assembler::notEqual, notBool);
 821   andl(result, 0x1);
 822   jmp(done);
 823 
 824   bind(notBool);
 825   cmpl(rcx, T_BYTE);
 826   jcc(Assembler::notEqual, notByte);
 827   movsbl(result, result);
 828   jmp(done);
 829 
 830   bind(notByte);
 831   cmpl(rcx, T_CHAR);
 832   jcc(Assembler::notEqual, notChar);
 833   movzwl(result, result);
 834   jmp(done);
 835 
 836   bind(notChar);
 837   // cmpl(rcx, T_SHORT);  // all that's left
 838   // jcc(Assembler::notEqual, done);
 839   movswl(result, result);
 840 
 841   // Nothing to do for T_INT
 842   bind(done);
 843 }
 844 
 845 // remove activation
 846 //
 847 // Unlock the receiver if this is a synchronized method.
 848 // Unlock any Java monitors from synchronized blocks.
 849 // Apply stack watermark barrier.
 850 // Notify JVMTI.
 851 // Remove the activation from the stack.
 852 //
 853 // If there are locked Java monitors
 854 //    If throw_monitor_exception
 855 //       throws IllegalMonitorStateException
 856 //    Else if install_monitor_exception
 857 //       installs IllegalMonitorStateException
 858 //    Else
 859 //       no error processing
 860 void InterpreterMacroAssembler::remove_activation(TosState state,
 861                                                   Register ret_addr,
 862                                                   bool throw_monitor_exception,
 863                                                   bool install_monitor_exception,
 864                                                   bool notify_jvmdi) {
 865   // Note: Registers rdx xmm0 may be in use for the
 866   // result check if synchronized method
 867   Label unlocked, unlock, no_unlock;
 868 
 869 #ifdef ASSERT
 870   Label not_preempted;
 871   cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
 872   jcc(Assembler::equal, not_preempted);
 873   stop("remove_activation: should not have alternate return address set");
 874   bind(not_preempted);
 875 #endif /* ASSERT */
 876 
 877   const Register rthread = r15_thread;
 878   const Register robj    = c_rarg1;
 879   const Register rmon    = c_rarg1;
 880 
 881   // get the value of _do_not_unlock_if_synchronized into rdx
 882   const Address do_not_unlock_if_synchronized(rthread,
 883     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 884   movbool(rbx, do_not_unlock_if_synchronized);
 885   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 886 
 887  // get method access flags
 888   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 889   load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset()));
 890   testl(rcx, JVM_ACC_SYNCHRONIZED);
 891   jcc(Assembler::zero, unlocked);
 892 
 893   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 894   // is set.
 895   testbool(rbx);
 896   jcc(Assembler::notZero, no_unlock);
 897 
 898   // unlock monitor
 899   push(state); // save result
 900 
 901   // BasicObjectLock will be first in list, since this is a
 902   // synchronized method. However, need to check that the object has
 903   // not been unlocked by an explicit monitorexit bytecode.
 904   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 905                         wordSize - (int) sizeof(BasicObjectLock));
 906   // We use c_rarg1/rdx so that if we go slow path it will be the correct
 907   // register for unlock_object to pass to VM directly
 908   lea(robj, monitor); // address of first monitor
 909 
 910   movptr(rax, Address(robj, BasicObjectLock::obj_offset()));
 911   testptr(rax, rax);
 912   jcc(Assembler::notZero, unlock);
 913 
 914   pop(state);
 915   if (throw_monitor_exception) {
 916     // Entry already unlocked, need to throw exception
 917     call_VM(noreg, CAST_FROM_FN_PTR(address,
 918                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 919     should_not_reach_here();
 920   } else {
 921     // Monitor already unlocked during a stack unroll. If requested,
 922     // install an illegal_monitor_state_exception.  Continue with
 923     // stack unrolling.
 924     if (install_monitor_exception) {
 925       call_VM(noreg, CAST_FROM_FN_PTR(address,
 926                      InterpreterRuntime::new_illegal_monitor_state_exception));
 927     }
 928     jmp(unlocked);
 929   }
 930 
 931   bind(unlock);
 932   unlock_object(robj);
 933   pop(state);
 934 
 935   // Check that for block-structured locking (i.e., that all locked
 936   // objects has been unlocked)
 937   bind(unlocked);
 938 
 939   // rax, rdx: Might contain return value
 940 
 941   // Check that all monitors are unlocked
 942   {
 943     Label loop, exception, entry, restart;
 944     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 945     const Address monitor_block_top(
 946         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 947     const Address monitor_block_bot(
 948         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
 949 
 950     bind(restart);
 951     // We use c_rarg1 so that if we go slow path it will be the correct
 952     // register for unlock_object to pass to VM directly
 953     movptr(rmon, monitor_block_top); // derelativize pointer
 954     lea(rmon, Address(rbp, rmon, Address::times_ptr));
 955     // c_rarg1 points to current entry, starting with top-most entry
 956 
 957     lea(rbx, monitor_block_bot);  // points to word before bottom of
 958                                   // monitor block
 959     jmp(entry);
 960 
 961     // Entry already locked, need to throw exception
 962     bind(exception);
 963 
 964     if (throw_monitor_exception) {
 965       // Throw exception
 966       MacroAssembler::call_VM(noreg,
 967                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 968                                    throw_illegal_monitor_state_exception));
 969       should_not_reach_here();
 970     } else {
 971       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 972       // Unlock does not block, so don't have to worry about the frame.
 973       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 974 
 975       push(state);
 976       mov(robj, rmon);   // nop if robj and rmon are the same
 977       unlock_object(robj);
 978       pop(state);
 979 
 980       if (install_monitor_exception) {
 981         call_VM(noreg, CAST_FROM_FN_PTR(address,
 982                                         InterpreterRuntime::
 983                                         new_illegal_monitor_state_exception));
 984       }
 985 
 986       jmp(restart);
 987     }
 988 
 989     bind(loop);
 990     // check if current entry is used
 991     cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD);
 992     jcc(Assembler::notEqual, exception);
 993 
 994     addptr(rmon, entry_size); // otherwise advance to next entry
 995     bind(entry);
 996     cmpptr(rmon, rbx); // check if bottom reached
 997     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
 998   }
 999 
1000   bind(no_unlock);
1001 
1002   JFR_ONLY(enter_jfr_critical_section();)
1003 
1004   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
1005   // that would normally not be safe to use. Such bad returns into unsafe territory of
1006   // the stack, will call InterpreterRuntime::at_unwind.
1007   Label slow_path;
1008   Label fast_path;
1009   safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
1010   jmp(fast_path);
1011   bind(slow_path);
1012   push(state);
1013   set_last_Java_frame(noreg, rbp, (address)pc(), rscratch1);
1014   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), r15_thread);
1015   reset_last_Java_frame(true);
1016   pop(state);
1017   bind(fast_path);
1018 
1019   // JVMTI support. Make sure the safepoint poll test is issued prior.
1020   if (notify_jvmdi) {
1021     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
1022   } else {
1023     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1024   }
1025 
1026   // remove activation
1027   // get sender sp
1028   movptr(rbx,
1029          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1030   if (StackReservedPages > 0) {
1031     // testing if reserved zone needs to be re-enabled
1032     Register rthread = r15_thread;
1033     Label no_reserved_zone_enabling;
1034 
1035     // check if already enabled - if so no re-enabling needed
1036     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
1037     cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled);
1038     jcc(Assembler::equal, no_reserved_zone_enabling);
1039 
1040     cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1041     jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1042 
1043     JFR_ONLY(leave_jfr_critical_section();)
1044 
1045     call_VM_leaf(
1046       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1047     call_VM(noreg, CAST_FROM_FN_PTR(address,
1048                    InterpreterRuntime::throw_delayed_StackOverflowError));
1049     should_not_reach_here();
1050 
1051     bind(no_reserved_zone_enabling);
1052   }
1053 
1054   leave();                           // remove frame anchor
1055 
1056   JFR_ONLY(leave_jfr_critical_section();)
1057 
1058   pop(ret_addr);                     // get return address
1059   mov(rsp, rbx);                     // set sp to sender sp
1060   pop_cont_fastpath();
1061 
1062 }
1063 
1064 #if INCLUDE_JFR
1065 void InterpreterMacroAssembler::enter_jfr_critical_section() {
1066   const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
1067   movbool(sampling_critical_section, true);
1068 }
1069 
1070 void InterpreterMacroAssembler::leave_jfr_critical_section() {
1071   const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
1072   movbool(sampling_critical_section, false);
1073 }
1074 #endif // INCLUDE_JFR
1075 
1076 void InterpreterMacroAssembler::get_method_counters(Register method,
1077                                                     Register mcs, Label& skip) {
1078   Label has_counters;
1079   movptr(mcs, Address(method, Method::method_counters_offset()));
1080   testptr(mcs, mcs);
1081   jcc(Assembler::notZero, has_counters);
1082   call_VM(noreg, CAST_FROM_FN_PTR(address,
1083           InterpreterRuntime::build_method_counters), method);
1084   movptr(mcs, Address(method,Method::method_counters_offset()));
1085   testptr(mcs, mcs);
1086   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1087   bind(has_counters);
1088 }
1089 
1090 
1091 // Lock object
1092 //
1093 // Args:
1094 //      rdx, c_rarg1: BasicObjectLock to be used for locking
1095 //
1096 // Kills:
1097 //      rax, rbx
1098 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1099   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
1100 
1101   Label done, slow_case;
1102 
1103   const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1104   const Register tmp_reg = rbx;
1105   const Register obj_reg = c_rarg3; // Will contain the oop
1106 
1107   // Load object pointer into obj_reg
1108   movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1109 
1110   lightweight_lock(lock_reg, obj_reg, swap_reg, tmp_reg, slow_case);
1111   jmp(done);
1112 
1113   bind(slow_case);
1114 
1115   // Call the runtime routine for slow case
1116   call_VM_preemptable(noreg,
1117           CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1118           lock_reg);
1119   bind(done);
1120 }
1121 
1122 
1123 // Unlocks an object. Used in monitorexit bytecode and
1124 // remove_activation.  Throws an IllegalMonitorException if object is
1125 // not locked by current thread.
1126 //
1127 // Args:
1128 //      rdx, c_rarg1: BasicObjectLock for lock
1129 //
1130 // Kills:
1131 //      rax
1132 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1133 //      rscratch1 (scratch reg)
1134 // rax, rbx, rcx, rdx
1135 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1136   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
1137 
1138   Label done, slow_case;
1139 
1140   const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1141   const Register header_reg = c_rarg2;  // Will contain the old oopMark
1142   const Register obj_reg    = c_rarg3;  // Will contain the oop
1143 
1144   save_bcp(); // Save in case of exception
1145 
1146   // Load oop into obj_reg(%c_rarg3)
1147   movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1148 
1149   // Free entry
1150   movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD);
1151 
1152   lightweight_unlock(obj_reg, swap_reg, header_reg, slow_case);
1153   jmp(done);
1154 
1155   bind(slow_case);
1156   // Call the runtime routine for slow case.
1157   movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj
1158   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1159 
1160   bind(done);
1161 
1162   restore_bcp();
1163 }
1164 
1165 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1166                                                          Label& zero_continue) {
1167   assert(ProfileInterpreter, "must be profiling interpreter");
1168   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1169   testptr(mdp, mdp);
1170   jcc(Assembler::zero, zero_continue);
1171 }
1172 
1173 
1174 // Set the method data pointer for the current bcp.
1175 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1176   assert(ProfileInterpreter, "must be profiling interpreter");
1177   Label set_mdp;
1178   push(rax);
1179   push(rbx);
1180 
1181   get_method(rbx);
1182   // Test MDO to avoid the call if it is null.
1183   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1184   testptr(rax, rax);
1185   jcc(Assembler::zero, set_mdp);
1186   // rbx: method
1187   // _bcp_register: bcp
1188   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1189   // rax: mdi
1190   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1191   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1192   addptr(rbx, in_bytes(MethodData::data_offset()));
1193   addptr(rax, rbx);
1194   bind(set_mdp);
1195   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1196   pop(rbx);
1197   pop(rax);
1198 }
1199 
1200 void InterpreterMacroAssembler::verify_method_data_pointer() {
1201   assert(ProfileInterpreter, "must be profiling interpreter");
1202 #ifdef ASSERT
1203   Label verify_continue;
1204   push(rax);
1205   push(rbx);
1206   Register arg3_reg = c_rarg3;
1207   Register arg2_reg = c_rarg2;
1208   push(arg3_reg);
1209   push(arg2_reg);
1210   test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1211   get_method(rbx);
1212 
1213   // If the mdp is valid, it will point to a DataLayout header which is
1214   // consistent with the bcp.  The converse is highly probable also.
1215   load_unsigned_short(arg2_reg,
1216                       Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1217   addptr(arg2_reg, Address(rbx, Method::const_offset()));
1218   lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1219   cmpptr(arg2_reg, _bcp_register);
1220   jcc(Assembler::equal, verify_continue);
1221   // rbx: method
1222   // _bcp_register: bcp
1223   // c_rarg3: mdp
1224   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1225                rbx, _bcp_register, arg3_reg);
1226   bind(verify_continue);
1227   pop(arg2_reg);
1228   pop(arg3_reg);
1229   pop(rbx);
1230   pop(rax);
1231 #endif // ASSERT
1232 }
1233 
1234 
1235 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1236                                                 int constant,
1237                                                 Register value) {
1238   assert(ProfileInterpreter, "must be profiling interpreter");
1239   Address data(mdp_in, constant);
1240   movptr(data, value);
1241 }
1242 
1243 
1244 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1245                                                       int constant) {
1246   assert(ProfileInterpreter, "must be profiling interpreter");
1247   Address data(mdp_in, constant);
1248   addptr(data, DataLayout::counter_increment);
1249 }
1250 
1251 
1252 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1253                                                       Register index,
1254                                                       int constant) {
1255   assert(ProfileInterpreter, "must be profiling interpreter");
1256   Address data(mdp_in, index, Address::times_1, constant);
1257   addptr(data, DataLayout::counter_increment);
1258 }
1259 
1260 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1261                                                 int flag_byte_constant) {
1262   assert(ProfileInterpreter, "must be profiling interpreter");
1263   int header_offset = in_bytes(DataLayout::flags_offset());
1264   int header_bits = flag_byte_constant;
1265   // Set the flag
1266   orb(Address(mdp_in, header_offset), header_bits);
1267 }
1268 
1269 
1270 
1271 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1272                                                  int offset,
1273                                                  Register value,
1274                                                  Register test_value_out,
1275                                                  Label& not_equal_continue) {
1276   assert(ProfileInterpreter, "must be profiling interpreter");
1277   if (test_value_out == noreg) {
1278     cmpptr(value, Address(mdp_in, offset));
1279   } else {
1280     // Put the test value into a register, so caller can use it:
1281     movptr(test_value_out, Address(mdp_in, offset));
1282     cmpptr(test_value_out, value);
1283   }
1284   jcc(Assembler::notEqual, not_equal_continue);
1285 }
1286 
1287 
1288 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1289                                                      int offset_of_disp) {
1290   assert(ProfileInterpreter, "must be profiling interpreter");
1291   Address disp_address(mdp_in, offset_of_disp);
1292   addptr(mdp_in, disp_address);
1293   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1294 }
1295 
1296 
1297 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1298                                                      Register reg,
1299                                                      int offset_of_disp) {
1300   assert(ProfileInterpreter, "must be profiling interpreter");
1301   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1302   addptr(mdp_in, disp_address);
1303   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1304 }
1305 
1306 
1307 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1308                                                        int constant) {
1309   assert(ProfileInterpreter, "must be profiling interpreter");
1310   addptr(mdp_in, constant);
1311   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1312 }
1313 
1314 
1315 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1316   assert(ProfileInterpreter, "must be profiling interpreter");
1317   push(return_bci); // save/restore across call_VM
1318   call_VM(noreg,
1319           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1320           return_bci);
1321   pop(return_bci);
1322 }
1323 
1324 
1325 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
1326   if (ProfileInterpreter) {
1327     Label profile_continue;
1328 
1329     // If no method data exists, go to profile_continue.
1330     test_method_data_pointer(mdp, profile_continue);
1331 
1332     // We are taking a branch.  Increment the taken count.
1333     increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1334 
1335     // The method data pointer needs to be updated to reflect the new target.
1336     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1337     bind(profile_continue);
1338   }
1339 }
1340 
1341 
1342 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1343   if (ProfileInterpreter) {
1344     Label profile_continue;
1345 
1346     // If no method data exists, go to profile_continue.
1347     test_method_data_pointer(mdp, profile_continue);
1348 
1349     // We are not taking a branch.  Increment the not taken count.
1350     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1351 
1352     // The method data pointer needs to be updated to correspond to
1353     // the next bytecode
1354     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1355     bind(profile_continue);
1356   }
1357 }
1358 
1359 void InterpreterMacroAssembler::profile_call(Register mdp) {
1360   if (ProfileInterpreter) {
1361     Label profile_continue;
1362 
1363     // If no method data exists, go to profile_continue.
1364     test_method_data_pointer(mdp, profile_continue);
1365 
1366     // We are making a call.  Increment the count.
1367     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1368 
1369     // The method data pointer needs to be updated to reflect the new target.
1370     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1371     bind(profile_continue);
1372   }
1373 }
1374 
1375 
1376 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1377   if (ProfileInterpreter) {
1378     Label profile_continue;
1379 
1380     // If no method data exists, go to profile_continue.
1381     test_method_data_pointer(mdp, profile_continue);
1382 
1383     // We are making a call.  Increment the count.
1384     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1385 
1386     // The method data pointer needs to be updated to reflect the new target.
1387     update_mdp_by_constant(mdp,
1388                            in_bytes(VirtualCallData::
1389                                     virtual_call_data_size()));
1390     bind(profile_continue);
1391   }
1392 }
1393 
1394 
1395 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1396                                                      Register mdp,
1397                                                      Register reg2,
1398                                                      bool receiver_can_be_null) {
1399   if (ProfileInterpreter) {
1400     Label profile_continue;
1401 
1402     // If no method data exists, go to profile_continue.
1403     test_method_data_pointer(mdp, profile_continue);
1404 
1405     Label skip_receiver_profile;
1406     if (receiver_can_be_null) {
1407       Label not_null;
1408       testptr(receiver, receiver);
1409       jccb(Assembler::notZero, not_null);
1410       // We are making a call.  Increment the count for null receiver.
1411       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1412       jmp(skip_receiver_profile);
1413       bind(not_null);
1414     }
1415 
1416     // Record the receiver type.
1417     record_klass_in_profile(receiver, mdp, reg2, true);
1418     bind(skip_receiver_profile);
1419 
1420     // The method data pointer needs to be updated to reflect the new target.
1421     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1422     bind(profile_continue);
1423   }
1424 }
1425 
1426 // This routine creates a state machine for updating the multi-row
1427 // type profile at a virtual call site (or other type-sensitive bytecode).
1428 // The machine visits each row (of receiver/count) until the receiver type
1429 // is found, or until it runs out of rows.  At the same time, it remembers
1430 // the location of the first empty row.  (An empty row records null for its
1431 // receiver, and can be allocated for a newly-observed receiver type.)
1432 // Because there are two degrees of freedom in the state, a simple linear
1433 // search will not work; it must be a decision tree.  Hence this helper
1434 // function is recursive, to generate the required tree structured code.
1435 // It's the interpreter, so we are trading off code space for speed.
1436 // See below for example code.
1437 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1438                                         Register receiver, Register mdp,
1439                                         Register reg2, int start_row,
1440                                         Label& done, bool is_virtual_call) {
1441   if (TypeProfileWidth == 0) {
1442     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1443   } else {
1444     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1445                                   &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1446   }
1447 }
1448 
1449 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row,
1450                                                               Label& done, int total_rows,
1451                                                               OffsetFunction item_offset_fn,
1452                                                               OffsetFunction item_count_offset_fn) {
1453   int last_row = total_rows - 1;
1454   assert(start_row <= last_row, "must be work left to do");
1455   // Test this row for both the item and for null.
1456   // Take any of three different outcomes:
1457   //   1. found item => increment count and goto done
1458   //   2. found null => keep looking for case 1, maybe allocate this cell
1459   //   3. found something else => keep looking for cases 1 and 2
1460   // Case 3 is handled by a recursive call.
1461   for (int row = start_row; row <= last_row; row++) {
1462     Label next_test;
1463     bool test_for_null_also = (row == start_row);
1464 
1465     // See if the item is item[n].
1466     int item_offset = in_bytes(item_offset_fn(row));
1467     test_mdp_data_at(mdp, item_offset, item,
1468                      (test_for_null_also ? reg2 : noreg),
1469                      next_test);
1470     // (Reg2 now contains the item from the CallData.)
1471 
1472     // The item is item[n].  Increment count[n].
1473     int count_offset = in_bytes(item_count_offset_fn(row));
1474     increment_mdp_data_at(mdp, count_offset);
1475     jmp(done);
1476     bind(next_test);
1477 
1478     if (test_for_null_also) {
1479       // Failed the equality check on item[n]...  Test for null.
1480       testptr(reg2, reg2);
1481       if (start_row == last_row) {
1482         // The only thing left to do is handle the null case.
1483         Label found_null;
1484         jccb(Assembler::zero, found_null);
1485         // Item did not match any saved item and there is no empty row for it.
1486         // Increment total counter to indicate polymorphic case.
1487         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1488         jmp(done);
1489         bind(found_null);
1490         break;
1491       }
1492       Label found_null;
1493       // Since null is rare, make it be the branch-taken case.
1494       jcc(Assembler::zero, found_null);
1495 
1496       // Put all the "Case 3" tests here.
1497       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1498                                     item_offset_fn, item_count_offset_fn);
1499 
1500       // Found a null.  Keep searching for a matching item,
1501       // but remember that this is an empty (unused) slot.
1502       bind(found_null);
1503     }
1504   }
1505 
1506   // In the fall-through case, we found no matching item, but we
1507   // observed the item[start_row] is null.
1508 
1509   // Fill in the item field and increment the count.
1510   int item_offset = in_bytes(item_offset_fn(start_row));
1511   set_mdp_data_at(mdp, item_offset, item);
1512   int count_offset = in_bytes(item_count_offset_fn(start_row));
1513   movl(reg2, DataLayout::counter_increment);
1514   set_mdp_data_at(mdp, count_offset, reg2);
1515   if (start_row > 0) {
1516     jmp(done);
1517   }
1518 }
1519 
1520 // Example state machine code for three profile rows:
1521 //   // main copy of decision tree, rooted at row[1]
1522 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1523 //   if (row[0].rec != nullptr) {
1524 //     // inner copy of decision tree, rooted at row[1]
1525 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1526 //     if (row[1].rec != nullptr) {
1527 //       // degenerate decision tree, rooted at row[2]
1528 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1529 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1530 //       row[2].init(rec); goto done;
1531 //     } else {
1532 //       // remember row[1] is empty
1533 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1534 //       row[1].init(rec); goto done;
1535 //     }
1536 //   } else {
1537 //     // remember row[0] is empty
1538 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1539 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1540 //     row[0].init(rec); goto done;
1541 //   }
1542 //   done:
1543 
1544 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1545                                                         Register mdp, Register reg2,
1546                                                         bool is_virtual_call) {
1547   assert(ProfileInterpreter, "must be profiling");
1548   Label done;
1549 
1550   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1551 
1552   bind (done);
1553 }
1554 
1555 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1556                                             Register mdp) {
1557   if (ProfileInterpreter) {
1558     Label profile_continue;
1559     uint row;
1560 
1561     // If no method data exists, go to profile_continue.
1562     test_method_data_pointer(mdp, profile_continue);
1563 
1564     // Update the total ret count.
1565     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1566 
1567     for (row = 0; row < RetData::row_limit(); row++) {
1568       Label next_test;
1569 
1570       // See if return_bci is equal to bci[n]:
1571       test_mdp_data_at(mdp,
1572                        in_bytes(RetData::bci_offset(row)),
1573                        return_bci, noreg,
1574                        next_test);
1575 
1576       // return_bci is equal to bci[n].  Increment the count.
1577       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1578 
1579       // The method data pointer needs to be updated to reflect the new target.
1580       update_mdp_by_offset(mdp,
1581                            in_bytes(RetData::bci_displacement_offset(row)));
1582       jmp(profile_continue);
1583       bind(next_test);
1584     }
1585 
1586     update_mdp_for_ret(return_bci);
1587 
1588     bind(profile_continue);
1589   }
1590 }
1591 
1592 
1593 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1594   if (ProfileInterpreter) {
1595     Label profile_continue;
1596 
1597     // If no method data exists, go to profile_continue.
1598     test_method_data_pointer(mdp, profile_continue);
1599 
1600     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1601 
1602     // The method data pointer needs to be updated.
1603     int mdp_delta = in_bytes(BitData::bit_data_size());
1604     if (TypeProfileCasts) {
1605       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1606     }
1607     update_mdp_by_constant(mdp, mdp_delta);
1608 
1609     bind(profile_continue);
1610   }
1611 }
1612 
1613 
1614 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1615   if (ProfileInterpreter) {
1616     Label profile_continue;
1617 
1618     // If no method data exists, go to profile_continue.
1619     test_method_data_pointer(mdp, profile_continue);
1620 
1621     // The method data pointer needs to be updated.
1622     int mdp_delta = in_bytes(BitData::bit_data_size());
1623     if (TypeProfileCasts) {
1624       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1625 
1626       // Record the object type.
1627       record_klass_in_profile(klass, mdp, reg2, false);
1628     }
1629     update_mdp_by_constant(mdp, mdp_delta);
1630 
1631     bind(profile_continue);
1632   }
1633 }
1634 
1635 
1636 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1637   if (ProfileInterpreter) {
1638     Label profile_continue;
1639 
1640     // If no method data exists, go to profile_continue.
1641     test_method_data_pointer(mdp, profile_continue);
1642 
1643     // Update the default case count
1644     increment_mdp_data_at(mdp,
1645                           in_bytes(MultiBranchData::default_count_offset()));
1646 
1647     // The method data pointer needs to be updated.
1648     update_mdp_by_offset(mdp,
1649                          in_bytes(MultiBranchData::
1650                                   default_displacement_offset()));
1651 
1652     bind(profile_continue);
1653   }
1654 }
1655 
1656 
1657 void InterpreterMacroAssembler::profile_switch_case(Register index,
1658                                                     Register mdp,
1659                                                     Register reg2) {
1660   if (ProfileInterpreter) {
1661     Label profile_continue;
1662 
1663     // If no method data exists, go to profile_continue.
1664     test_method_data_pointer(mdp, profile_continue);
1665 
1666     // Build the base (index * per_case_size_in_bytes()) +
1667     // case_array_offset_in_bytes()
1668     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1669     imulptr(index, reg2); // XXX l ?
1670     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1671 
1672     // Update the case count
1673     increment_mdp_data_at(mdp,
1674                           index,
1675                           in_bytes(MultiBranchData::relative_count_offset()));
1676 
1677     // The method data pointer needs to be updated.
1678     update_mdp_by_offset(mdp,
1679                          index,
1680                          in_bytes(MultiBranchData::
1681                                   relative_displacement_offset()));
1682 
1683     bind(profile_continue);
1684   }
1685 }
1686 
1687 
1688 
1689 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1690   if (state == atos) {
1691     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1692   }
1693 }
1694 
1695 
1696 // Jump if ((*counter_addr += increment) & mask) == 0
1697 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask,
1698                                                         Register scratch, Label* where) {
1699   // This update is actually not atomic and can lose a number of updates
1700   // under heavy contention, but the alternative of using the (contended)
1701   // atomic update here penalizes profiling paths too much.
1702   movl(scratch, counter_addr);
1703   incrementl(scratch, InvocationCounter::count_increment);
1704   movl(counter_addr, scratch);
1705   andl(scratch, mask);
1706   if (where != nullptr) {
1707     jcc(Assembler::zero, *where);
1708   }
1709 }
1710 
1711 void InterpreterMacroAssembler::notify_method_entry() {
1712   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1713   // track stack depth.  If it is possible to enter interp_only_mode we add
1714   // the code to check if the event should be sent.
1715   Register rthread = r15_thread;
1716   Register rarg = c_rarg1;
1717   if (JvmtiExport::can_post_interpreter_events()) {
1718     Label L;
1719     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1720     testl(rdx, rdx);
1721     jcc(Assembler::zero, L);
1722     call_VM(noreg, CAST_FROM_FN_PTR(address,
1723                                     InterpreterRuntime::post_method_entry));
1724     bind(L);
1725   }
1726 
1727   if (DTraceMethodProbes) {
1728     get_method(rarg);
1729     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1730                  rthread, rarg);
1731   }
1732 
1733   // RedefineClasses() tracing support for obsolete method entry
1734   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1735     get_method(rarg);
1736     call_VM_leaf(
1737       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1738       rthread, rarg);
1739   }
1740 }
1741 
1742 
1743 void InterpreterMacroAssembler::notify_method_exit(
1744     TosState state, NotifyMethodExitMode mode) {
1745   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1746   // track stack depth.  If it is possible to enter interp_only_mode we add
1747   // the code to check if the event should be sent.
1748   Register rthread = r15_thread;
1749   Register rarg = c_rarg1;
1750   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1751     Label L;
1752     // Note: frame::interpreter_frame_result has a dependency on how the
1753     // method result is saved across the call to post_method_exit. If this
1754     // is changed then the interpreter_frame_result implementation will
1755     // need to be updated too.
1756 
1757     // template interpreter will leave the result on the top of the stack.
1758     push(state);
1759     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1760     testl(rdx, rdx);
1761     jcc(Assembler::zero, L);
1762     call_VM(noreg,
1763             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1764     bind(L);
1765     pop(state);
1766   }
1767 
1768   if (DTraceMethodProbes) {
1769     push(state);
1770     get_method(rarg);
1771     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1772                  rthread, rarg);
1773     pop(state);
1774   }
1775 }
1776 
1777 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1778   // Get index out of bytecode pointer
1779   get_cache_index_at_bcp(index, 1, sizeof(u4));
1780   // Get address of invokedynamic array
1781   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
1782   movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1783   if (is_power_of_2(sizeof(ResolvedIndyEntry))) {
1784     shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2
1785   } else {
1786     imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1787   }
1788   lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes()));
1789 }
1790 
1791 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1792   // Get index out of bytecode pointer
1793   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
1794   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1795 
1796   movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset()));
1797   // Take shortcut if the size is a power of 2
1798   if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1799     shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1800   } else {
1801     imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1802   }
1803   lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes()));
1804 }
1805 
1806 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1807   // Get index out of bytecode pointer
1808   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
1809   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1810 
1811   movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset()));
1812   imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1813   lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes()));
1814 }