1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compiler_globals.hpp" 26 #include "interp_masm_x86.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "logging/log.hpp" 30 #include "oops/arrayOop.hpp" 31 #include "oops/markWord.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/method.hpp" 34 #include "oops/resolvedFieldEntry.hpp" 35 #include "oops/resolvedIndyEntry.hpp" 36 #include "oops/resolvedMethodEntry.hpp" 37 #include "prims/jvmtiExport.hpp" 38 #include "prims/jvmtiThreadState.hpp" 39 #include "runtime/basicLock.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/javaThread.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 46 // Implementation of InterpreterMacroAssembler 47 48 void InterpreterMacroAssembler::jump_to_entry(address entry) { 49 assert(entry, "Entry must have been generated by now"); 50 jump(RuntimeAddress(entry)); 51 } 52 53 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 54 Label update, next, none; 55 56 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 57 58 interp_verify_oop(obj, atos); 59 60 testptr(obj, obj); 61 jccb(Assembler::notZero, update); 62 testptr(mdo_addr, TypeEntries::null_seen); 63 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore. 64 // atomic update to prevent overwriting Klass* with 0 65 lock(); 66 orptr(mdo_addr, TypeEntries::null_seen); 67 jmpb(next); 68 69 bind(update); 70 load_klass(obj, obj, rscratch1); 71 mov(rscratch1, obj); 72 73 xorptr(obj, mdo_addr); 74 testptr(obj, TypeEntries::type_klass_mask); 75 jccb(Assembler::zero, next); // klass seen before, nothing to 76 // do. The unknown bit may have been 77 // set already but no need to check. 78 79 testptr(obj, TypeEntries::type_unknown); 80 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 81 82 cmpptr(mdo_addr, 0); 83 jccb(Assembler::equal, none); 84 cmpptr(mdo_addr, TypeEntries::null_seen); 85 jccb(Assembler::equal, none); 86 87 // There is a chance that the checks above (re-reading profiling 88 // data from memory) fail if another thread has just set the 89 // profiling to this obj's klass 90 mov(obj, rscratch1); 91 xorptr(obj, mdo_addr); 92 testptr(obj, TypeEntries::type_klass_mask); 93 jccb(Assembler::zero, next); 94 95 // different than before. Cannot keep accurate profile. 96 orptr(mdo_addr, TypeEntries::type_unknown); 97 jmpb(next); 98 99 bind(none); 100 // first time here. Set profile type. 101 movptr(mdo_addr, obj); 102 #ifdef ASSERT 103 andptr(obj, TypeEntries::type_klass_mask); 104 verify_klass_ptr(obj); 105 #endif 106 107 bind(next); 108 } 109 110 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 111 if (!ProfileInterpreter) { 112 return; 113 } 114 115 if (MethodData::profile_arguments() || MethodData::profile_return()) { 116 Label profile_continue; 117 118 test_method_data_pointer(mdp, profile_continue); 119 120 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 121 122 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 123 jcc(Assembler::notEqual, profile_continue); 124 125 if (MethodData::profile_arguments()) { 126 Label done; 127 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 128 addptr(mdp, off_to_args); 129 130 for (int i = 0; i < TypeProfileArgsLimit; i++) { 131 if (i > 0 || MethodData::profile_return()) { 132 // If return value type is profiled we may have no argument to profile 133 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 134 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 135 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 136 jcc(Assembler::less, done); 137 } 138 movptr(tmp, Address(callee, Method::const_offset())); 139 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 140 // stack offset o (zero based) from the start of the argument 141 // list, for n arguments translates into offset n - o - 1 from 142 // the end of the argument list 143 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 144 subl(tmp, 1); 145 Address arg_addr = argument_address(tmp); 146 movptr(tmp, arg_addr); 147 148 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 149 profile_obj_type(tmp, mdo_arg_addr); 150 151 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 152 addptr(mdp, to_add); 153 off_to_args += to_add; 154 } 155 156 if (MethodData::profile_return()) { 157 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 158 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 159 } 160 161 bind(done); 162 163 if (MethodData::profile_return()) { 164 // We're right after the type profile for the last 165 // argument. tmp is the number of cells left in the 166 // CallTypeData/VirtualCallTypeData to reach its end. Non null 167 // if there's a return to profile. 168 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 169 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 170 addptr(mdp, tmp); 171 } 172 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 173 } else { 174 assert(MethodData::profile_return(), "either profile call args or call ret"); 175 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 176 } 177 178 // mdp points right after the end of the 179 // CallTypeData/VirtualCallTypeData, right after the cells for the 180 // return value type if there's one 181 182 bind(profile_continue); 183 } 184 } 185 186 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 187 assert_different_registers(mdp, ret, tmp, _bcp_register); 188 if (ProfileInterpreter && MethodData::profile_return()) { 189 Label profile_continue; 190 191 test_method_data_pointer(mdp, profile_continue); 192 193 if (MethodData::profile_return_jsr292_only()) { 194 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 195 196 // If we don't profile all invoke bytecodes we must make sure 197 // it's a bytecode we indeed profile. We can't go back to the 198 // beginning of the ProfileData we intend to update to check its 199 // type because we're right after it and we don't known its 200 // length 201 Label do_profile; 202 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 203 jcc(Assembler::equal, do_profile); 204 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 205 jcc(Assembler::equal, do_profile); 206 get_method(tmp); 207 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 208 jcc(Assembler::notEqual, profile_continue); 209 210 bind(do_profile); 211 } 212 213 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 214 mov(tmp, ret); 215 profile_obj_type(tmp, mdo_ret_addr); 216 217 bind(profile_continue); 218 } 219 } 220 221 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 222 if (ProfileInterpreter && MethodData::profile_parameters()) { 223 Label profile_continue; 224 225 test_method_data_pointer(mdp, profile_continue); 226 227 // Load the offset of the area within the MDO used for 228 // parameters. If it's negative we're not profiling any parameters 229 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 230 testl(tmp1, tmp1); 231 jcc(Assembler::negative, profile_continue); 232 233 // Compute a pointer to the area for parameters from the offset 234 // and move the pointer to the slot for the last 235 // parameters. Collect profiling from last parameter down. 236 // mdo start + parameters offset + array length - 1 237 addptr(mdp, tmp1); 238 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 239 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 240 241 Label loop; 242 bind(loop); 243 244 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 245 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 246 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 247 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 248 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 249 250 // load offset on the stack from the slot for this parameter 251 movptr(tmp2, arg_off); 252 negptr(tmp2); 253 // read the parameter from the local area 254 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 255 256 // profile the parameter 257 profile_obj_type(tmp2, arg_type); 258 259 // go to next parameter 260 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 261 jcc(Assembler::positive, loop); 262 263 bind(profile_continue); 264 } 265 } 266 267 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 268 int number_of_arguments) { 269 // interpreter specific 270 // 271 // Note: No need to save/restore bcp & locals registers 272 // since these are callee saved registers and no blocking/ 273 // GC can happen in leaf calls. 274 // Further Note: DO NOT save/restore bcp/locals. If a caller has 275 // already saved them so that it can use rsi/rdi as temporaries 276 // then a save/restore here will DESTROY the copy the caller 277 // saved! There used to be a save_bcp() that only happened in 278 // the ASSERT path (no restore_bcp). Which caused bizarre failures 279 // when jvm built with ASSERTs. 280 #ifdef ASSERT 281 { 282 Label L; 283 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 284 jcc(Assembler::equal, L); 285 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 286 " last_sp != null"); 287 bind(L); 288 } 289 #endif 290 // super call 291 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 292 // interpreter specific 293 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 294 // but since they may not have been saved (and we don't want to 295 // save them here (see note above) the assert is invalid. 296 } 297 298 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 299 Register last_java_sp, 300 address entry_point, 301 int number_of_arguments, 302 bool check_exceptions) { 303 // interpreter specific 304 // 305 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 306 // really make a difference for these runtime calls, since they are 307 // slow anyway. Btw., bcp must be saved/restored since it may change 308 // due to GC. 309 save_bcp(); 310 #ifdef ASSERT 311 { 312 Label L; 313 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 314 jcc(Assembler::equal, L); 315 stop("InterpreterMacroAssembler::call_VM_base:" 316 " last_sp isn't null"); 317 bind(L); 318 } 319 #endif /* ASSERT */ 320 // super call 321 MacroAssembler::call_VM_base(oop_result, last_java_sp, 322 entry_point, number_of_arguments, 323 check_exceptions); 324 // interpreter specific 325 restore_bcp(); 326 restore_locals(); 327 } 328 329 void InterpreterMacroAssembler::call_VM_preemptable_helper(Register oop_result, 330 address entry_point, 331 int number_of_arguments, 332 bool check_exceptions) { 333 assert(InterpreterRuntime::is_preemptable_call(entry_point), "VM call not preemptable, should use call_VM()"); 334 Label resume_pc, not_preempted; 335 336 #ifdef ASSERT 337 { 338 Label L1, L2; 339 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 340 jcc(Assembler::equal, L1); 341 stop("call_VM_preemptable_helper: should not have alternate return address set"); 342 bind(L1); 343 // We check this counter in patch_return_pc_with_preempt_stub() during freeze. 344 incrementl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset())); 345 cmpl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()), 0); 346 jcc(Assembler::greater, L2); 347 stop("call_VM_preemptable_helper: should be > 0"); 348 bind(L2); 349 } 350 #endif /* ASSERT */ 351 352 // Force freeze slow path. 353 push_cont_fastpath(); 354 355 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 356 lea(rscratch1, resume_pc); 357 push(rscratch1); 358 lea(rax, Address(rsp, wordSize)); 359 call_VM_base(noreg, rax, entry_point, number_of_arguments, false); 360 pop(rscratch1); 361 362 pop_cont_fastpath(); 363 364 #ifdef ASSERT 365 { 366 Label L; 367 decrementl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset())); 368 cmpl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()), 0); 369 jcc(Assembler::greaterEqual, L); 370 stop("call_VM_preemptable_helper: should be >= 0"); 371 bind(L); 372 } 373 #endif /* ASSERT */ 374 375 // Check if preempted. 376 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset())); 377 cmpptr(rscratch1, NULL_WORD); 378 jccb(Assembler::zero, not_preempted); 379 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 380 jmp(rscratch1); 381 382 // In case of preemption, this is where we will resume once we finally acquire the monitor. 383 bind(resume_pc); 384 restore_after_resume(false /* is_native */); 385 386 bind(not_preempted); 387 if (check_exceptions) { 388 // check for pending exceptions (java_thread is set upon return) 389 cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 390 Label ok; 391 jcc(Assembler::equal, ok); 392 // Exception stub expects return pc to be at top of stack. We only need 393 // it to check Interpreter::contains(return_address) so anything will do. 394 lea(rscratch1, resume_pc); 395 push(rscratch1); 396 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 397 bind(ok); 398 } 399 400 // get oop result if there is one and reset the value in the thread 401 if (oop_result->is_valid()) { 402 get_vm_result_oop(oop_result); 403 } 404 } 405 406 static void pass_arg1(MacroAssembler* masm, Register arg) { 407 if (c_rarg1 != arg ) { 408 masm->mov(c_rarg1, arg); 409 } 410 } 411 412 static void pass_arg2(MacroAssembler* masm, Register arg) { 413 if (c_rarg2 != arg ) { 414 masm->mov(c_rarg2, arg); 415 } 416 } 417 418 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 419 address entry_point, 420 Register arg_1, 421 bool check_exceptions) { 422 pass_arg1(this, arg_1); 423 call_VM_preemptable_helper(oop_result, entry_point, 1, check_exceptions); 424 } 425 426 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 427 address entry_point, 428 Register arg_1, 429 Register arg_2, 430 bool check_exceptions) { 431 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 432 pass_arg2(this, arg_2); 433 pass_arg1(this, arg_1); 434 call_VM_preemptable_helper(oop_result, entry_point, 2, check_exceptions); 435 } 436 437 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 438 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 439 call(rscratch1); 440 if (is_native) { 441 // On resume we need to set up stack as expected. 442 push(dtos); 443 push(ltos); 444 } 445 } 446 447 void InterpreterMacroAssembler::check_and_handle_popframe() { 448 if (JvmtiExport::can_pop_frame()) { 449 Label L; 450 // Initiate popframe handling only if it is not already being 451 // processed. If the flag has the popframe_processing bit set, it 452 // means that this code is called *during* popframe handling - we 453 // don't want to reenter. 454 // This method is only called just after the call into the vm in 455 // call_VM_base, so the arg registers are available. 456 Register pop_cond = c_rarg0; 457 movl(pop_cond, Address(r15_thread, JavaThread::popframe_condition_offset())); 458 testl(pop_cond, JavaThread::popframe_pending_bit); 459 jcc(Assembler::zero, L); 460 testl(pop_cond, JavaThread::popframe_processing_bit); 461 jcc(Assembler::notZero, L); 462 // Call Interpreter::remove_activation_preserving_args_entry() to get the 463 // address of the same-named entrypoint in the generated interpreter code. 464 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 465 jmp(rax); 466 bind(L); 467 } 468 } 469 470 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 471 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); 472 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 473 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 474 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 475 476 switch (state) { 477 case atos: movptr(rax, oop_addr); 478 movptr(oop_addr, NULL_WORD); 479 interp_verify_oop(rax, state); break; 480 case ltos: movptr(rax, val_addr); break; 481 case btos: // fall through 482 case ztos: // fall through 483 case ctos: // fall through 484 case stos: // fall through 485 case itos: movl(rax, val_addr); break; 486 case ftos: movflt(xmm0, val_addr); break; 487 case dtos: movdbl(xmm0, val_addr); break; 488 case vtos: /* nothing to do */ break; 489 default : ShouldNotReachHere(); 490 } 491 492 // Clean up tos value in the thread object 493 movl(tos_addr, ilgl); 494 movptr(val_addr, NULL_WORD); 495 } 496 497 498 void InterpreterMacroAssembler::check_and_handle_earlyret() { 499 if (JvmtiExport::can_force_early_return()) { 500 Label L; 501 Register tmp = c_rarg0; 502 Register rthread = r15_thread; 503 504 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 505 testptr(tmp, tmp); 506 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit; 507 508 // Initiate earlyret handling only if it is not already being processed. 509 // If the flag has the earlyret_processing bit set, it means that this code 510 // is called *during* earlyret handling - we don't want to reenter. 511 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 512 cmpl(tmp, JvmtiThreadState::earlyret_pending); 513 jcc(Assembler::notEqual, L); 514 515 // Call Interpreter::remove_activation_early_entry() to get the address of the 516 // same-named entrypoint in the generated interpreter code. 517 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 518 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 519 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 520 jmp(rax); 521 bind(L); 522 } 523 } 524 525 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 526 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 527 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 528 bswapl(reg); 529 shrl(reg, 16); 530 } 531 532 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 533 int bcp_offset, 534 size_t index_size) { 535 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 536 if (index_size == sizeof(u2)) { 537 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 538 } else if (index_size == sizeof(u4)) { 539 movl(index, Address(_bcp_register, bcp_offset)); 540 } else if (index_size == sizeof(u1)) { 541 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 542 } else { 543 ShouldNotReachHere(); 544 } 545 } 546 547 // Load object from cpool->resolved_references(index) 548 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 549 Register index, 550 Register tmp) { 551 assert_different_registers(result, index); 552 553 get_constant_pool(result); 554 // load pointer for resolved_references[] objArray 555 movptr(result, Address(result, ConstantPool::cache_offset())); 556 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 557 resolve_oop_handle(result, tmp); 558 load_heap_oop(result, Address(result, index, 559 UseCompressedOops ? Address::times_4 : Address::times_ptr, 560 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 561 } 562 563 // load cpool->resolved_klass_at(index) 564 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 565 Register cpool, 566 Register index) { 567 assert_different_registers(cpool, index); 568 569 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 570 Register resolved_klasses = cpool; 571 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset())); 572 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 573 } 574 575 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 576 // subtype of super_klass. 577 // 578 // Args: 579 // rax: superklass 580 // Rsub_klass: subklass 581 // 582 // Kills: 583 // rcx, rdi 584 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 585 Label& ok_is_subtype) { 586 assert(Rsub_klass != rax, "rax holds superklass"); 587 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 588 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 589 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 590 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 591 592 // Profile the not-null value's klass. 593 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 594 595 // Do the check. 596 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 597 } 598 599 600 // Java Expression Stack 601 602 void InterpreterMacroAssembler::pop_ptr(Register r) { 603 pop(r); 604 } 605 606 void InterpreterMacroAssembler::push_ptr(Register r) { 607 push(r); 608 } 609 610 void InterpreterMacroAssembler::push_i(Register r) { 611 push(r); 612 } 613 614 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 615 push(r); 616 } 617 618 void InterpreterMacroAssembler::push_f(XMMRegister r) { 619 subptr(rsp, wordSize); 620 movflt(Address(rsp, 0), r); 621 } 622 623 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 624 movflt(r, Address(rsp, 0)); 625 addptr(rsp, wordSize); 626 } 627 628 void InterpreterMacroAssembler::push_d(XMMRegister r) { 629 subptr(rsp, 2 * wordSize); 630 movdbl(Address(rsp, 0), r); 631 } 632 633 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 634 movdbl(r, Address(rsp, 0)); 635 addptr(rsp, 2 * Interpreter::stackElementSize); 636 } 637 638 void InterpreterMacroAssembler::pop_i(Register r) { 639 // XXX can't use pop currently, upper half non clean 640 movl(r, Address(rsp, 0)); 641 addptr(rsp, wordSize); 642 } 643 644 void InterpreterMacroAssembler::pop_l(Register r) { 645 movq(r, Address(rsp, 0)); 646 addptr(rsp, 2 * Interpreter::stackElementSize); 647 } 648 649 void InterpreterMacroAssembler::push_l(Register r) { 650 subptr(rsp, 2 * wordSize); 651 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 652 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 653 } 654 655 void InterpreterMacroAssembler::pop(TosState state) { 656 switch (state) { 657 case atos: pop_ptr(); break; 658 case btos: 659 case ztos: 660 case ctos: 661 case stos: 662 case itos: pop_i(); break; 663 case ltos: pop_l(); break; 664 case ftos: pop_f(xmm0); break; 665 case dtos: pop_d(xmm0); break; 666 case vtos: /* nothing to do */ break; 667 default: ShouldNotReachHere(); 668 } 669 interp_verify_oop(rax, state); 670 } 671 672 void InterpreterMacroAssembler::push(TosState state) { 673 interp_verify_oop(rax, state); 674 switch (state) { 675 case atos: push_ptr(); break; 676 case btos: 677 case ztos: 678 case ctos: 679 case stos: 680 case itos: push_i(); break; 681 case ltos: push_l(); break; 682 case ftos: push_f(xmm0); break; 683 case dtos: push_d(xmm0); break; 684 case vtos: /* nothing to do */ break; 685 default : ShouldNotReachHere(); 686 } 687 } 688 689 // Helpers for swap and dup 690 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 691 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 692 } 693 694 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 695 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 696 } 697 698 699 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 700 // set sender sp 701 lea(_bcp_register, Address(rsp, wordSize)); 702 // record last_sp 703 mov(rcx, _bcp_register); 704 subptr(rcx, rbp); 705 sarptr(rcx, LogBytesPerWord); 706 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx); 707 } 708 709 710 // Jump to from_interpreted entry of a call unless single stepping is possible 711 // in this thread in which case we must call the i2i entry 712 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 713 prepare_to_jump_from_interpreted(); 714 715 if (JvmtiExport::can_post_interpreter_events()) { 716 Label run_compiled_code; 717 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 718 // compiled code in threads for which the event is enabled. Check here for 719 // interp_only_mode if these events CAN be enabled. 720 // interp_only is an int, on little endian it is sufficient to test the byte only 721 // Is a cmpl faster? 722 cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0); 723 jccb(Assembler::zero, run_compiled_code); 724 jmp(Address(method, Method::interpreter_entry_offset())); 725 bind(run_compiled_code); 726 } 727 728 jmp(Address(method, Method::from_interpreted_offset())); 729 } 730 731 // The following two routines provide a hook so that an implementation 732 // can schedule the dispatch in two parts. x86 does not do this. 733 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 734 // Nothing x86 specific to be done here 735 } 736 737 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 738 dispatch_next(state, step); 739 } 740 741 void InterpreterMacroAssembler::dispatch_base(TosState state, 742 address* table, 743 bool verifyoop, 744 bool generate_poll) { 745 if (VerifyActivationFrameSize) { 746 Label L; 747 mov(rcx, rbp); 748 subptr(rcx, rsp); 749 int32_t min_frame_size = 750 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 751 wordSize; 752 cmpptr(rcx, min_frame_size); 753 jcc(Assembler::greaterEqual, L); 754 stop("broken stack frame"); 755 bind(L); 756 } 757 if (verifyoop) { 758 interp_verify_oop(rax, state); 759 } 760 761 address* const safepoint_table = Interpreter::safept_table(state); 762 Label no_safepoint, dispatch; 763 if (table != safepoint_table && generate_poll) { 764 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 765 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 766 767 jccb(Assembler::zero, no_safepoint); 768 lea(rscratch1, ExternalAddress((address)safepoint_table)); 769 jmpb(dispatch); 770 } 771 772 bind(no_safepoint); 773 lea(rscratch1, ExternalAddress((address)table)); 774 bind(dispatch); 775 jmp(Address(rscratch1, rbx, Address::times_8)); 776 } 777 778 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 779 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 780 } 781 782 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 783 dispatch_base(state, Interpreter::normal_table(state)); 784 } 785 786 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 787 dispatch_base(state, Interpreter::normal_table(state), false); 788 } 789 790 791 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 792 // load next bytecode (load before advancing _bcp_register to prevent AGI) 793 load_unsigned_byte(rbx, Address(_bcp_register, step)); 794 // advance _bcp_register 795 increment(_bcp_register, step); 796 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 797 } 798 799 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 800 // load current bytecode 801 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 802 dispatch_base(state, table); 803 } 804 805 void InterpreterMacroAssembler::narrow(Register result) { 806 807 // Get method->_constMethod->_result_type 808 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 809 movptr(rcx, Address(rcx, Method::const_offset())); 810 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 811 812 Label done, notBool, notByte, notChar; 813 814 // common case first 815 cmpl(rcx, T_INT); 816 jcc(Assembler::equal, done); 817 818 // mask integer result to narrower return type. 819 cmpl(rcx, T_BOOLEAN); 820 jcc(Assembler::notEqual, notBool); 821 andl(result, 0x1); 822 jmp(done); 823 824 bind(notBool); 825 cmpl(rcx, T_BYTE); 826 jcc(Assembler::notEqual, notByte); 827 movsbl(result, result); 828 jmp(done); 829 830 bind(notByte); 831 cmpl(rcx, T_CHAR); 832 jcc(Assembler::notEqual, notChar); 833 movzwl(result, result); 834 jmp(done); 835 836 bind(notChar); 837 // cmpl(rcx, T_SHORT); // all that's left 838 // jcc(Assembler::notEqual, done); 839 movswl(result, result); 840 841 // Nothing to do for T_INT 842 bind(done); 843 } 844 845 // remove activation 846 // 847 // Unlock the receiver if this is a synchronized method. 848 // Unlock any Java monitors from synchronized blocks. 849 // Apply stack watermark barrier. 850 // Notify JVMTI. 851 // Remove the activation from the stack. 852 // 853 // If there are locked Java monitors 854 // If throw_monitor_exception 855 // throws IllegalMonitorStateException 856 // Else if install_monitor_exception 857 // installs IllegalMonitorStateException 858 // Else 859 // no error processing 860 void InterpreterMacroAssembler::remove_activation(TosState state, 861 Register ret_addr, 862 bool throw_monitor_exception, 863 bool install_monitor_exception, 864 bool notify_jvmdi) { 865 // Note: Registers rdx xmm0 may be in use for the 866 // result check if synchronized method 867 Label unlocked, unlock, no_unlock; 868 869 #ifdef ASSERT 870 Label not_preempted; 871 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 872 jcc(Assembler::equal, not_preempted); 873 stop("remove_activation: should not have alternate return address set"); 874 bind(not_preempted); 875 #endif /* ASSERT */ 876 877 const Register rthread = r15_thread; 878 const Register robj = c_rarg1; 879 const Register rmon = c_rarg1; 880 881 // get the value of _do_not_unlock_if_synchronized into rdx 882 const Address do_not_unlock_if_synchronized(rthread, 883 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 884 movbool(rbx, do_not_unlock_if_synchronized); 885 movbool(do_not_unlock_if_synchronized, false); // reset the flag 886 887 // get method access flags 888 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 889 load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset())); 890 testl(rcx, JVM_ACC_SYNCHRONIZED); 891 jcc(Assembler::zero, unlocked); 892 893 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 894 // is set. 895 testbool(rbx); 896 jcc(Assembler::notZero, no_unlock); 897 898 // unlock monitor 899 push(state); // save result 900 901 // BasicObjectLock will be first in list, since this is a 902 // synchronized method. However, need to check that the object has 903 // not been unlocked by an explicit monitorexit bytecode. 904 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 905 wordSize - (int) sizeof(BasicObjectLock)); 906 // We use c_rarg1/rdx so that if we go slow path it will be the correct 907 // register for unlock_object to pass to VM directly 908 lea(robj, monitor); // address of first monitor 909 910 movptr(rax, Address(robj, BasicObjectLock::obj_offset())); 911 testptr(rax, rax); 912 jcc(Assembler::notZero, unlock); 913 914 pop(state); 915 if (throw_monitor_exception) { 916 // Entry already unlocked, need to throw exception 917 call_VM(noreg, CAST_FROM_FN_PTR(address, 918 InterpreterRuntime::throw_illegal_monitor_state_exception)); 919 should_not_reach_here(); 920 } else { 921 // Monitor already unlocked during a stack unroll. If requested, 922 // install an illegal_monitor_state_exception. Continue with 923 // stack unrolling. 924 if (install_monitor_exception) { 925 call_VM(noreg, CAST_FROM_FN_PTR(address, 926 InterpreterRuntime::new_illegal_monitor_state_exception)); 927 } 928 jmp(unlocked); 929 } 930 931 bind(unlock); 932 unlock_object(robj); 933 pop(state); 934 935 // Check that for block-structured locking (i.e., that all locked 936 // objects has been unlocked) 937 bind(unlocked); 938 939 // rax, rdx: Might contain return value 940 941 // Check that all monitors are unlocked 942 { 943 Label loop, exception, entry, restart; 944 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 945 const Address monitor_block_top( 946 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 947 const Address monitor_block_bot( 948 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 949 950 bind(restart); 951 // We use c_rarg1 so that if we go slow path it will be the correct 952 // register for unlock_object to pass to VM directly 953 movptr(rmon, monitor_block_top); // derelativize pointer 954 lea(rmon, Address(rbp, rmon, Address::times_ptr)); 955 // c_rarg1 points to current entry, starting with top-most entry 956 957 lea(rbx, monitor_block_bot); // points to word before bottom of 958 // monitor block 959 jmp(entry); 960 961 // Entry already locked, need to throw exception 962 bind(exception); 963 964 if (throw_monitor_exception) { 965 // Throw exception 966 MacroAssembler::call_VM(noreg, 967 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 968 throw_illegal_monitor_state_exception)); 969 should_not_reach_here(); 970 } else { 971 // Stack unrolling. Unlock object and install illegal_monitor_exception. 972 // Unlock does not block, so don't have to worry about the frame. 973 // We don't have to preserve c_rarg1 since we are going to throw an exception. 974 975 push(state); 976 mov(robj, rmon); // nop if robj and rmon are the same 977 unlock_object(robj); 978 pop(state); 979 980 if (install_monitor_exception) { 981 call_VM(noreg, CAST_FROM_FN_PTR(address, 982 InterpreterRuntime:: 983 new_illegal_monitor_state_exception)); 984 } 985 986 jmp(restart); 987 } 988 989 bind(loop); 990 // check if current entry is used 991 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD); 992 jcc(Assembler::notEqual, exception); 993 994 addptr(rmon, entry_size); // otherwise advance to next entry 995 bind(entry); 996 cmpptr(rmon, rbx); // check if bottom reached 997 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 998 } 999 1000 bind(no_unlock); 1001 1002 JFR_ONLY(enter_jfr_critical_section();) 1003 1004 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 1005 // that would normally not be safe to use. Such bad returns into unsafe territory of 1006 // the stack, will call InterpreterRuntime::at_unwind. 1007 Label slow_path; 1008 Label fast_path; 1009 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */); 1010 jmp(fast_path); 1011 bind(slow_path); 1012 push(state); 1013 set_last_Java_frame(noreg, rbp, (address)pc(), rscratch1); 1014 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), r15_thread); 1015 reset_last_Java_frame(true); 1016 pop(state); 1017 bind(fast_path); 1018 1019 // JVMTI support. Make sure the safepoint poll test is issued prior. 1020 if (notify_jvmdi) { 1021 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 1022 } else { 1023 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 1024 } 1025 1026 // remove activation 1027 // get sender sp 1028 movptr(rbx, 1029 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1030 if (StackReservedPages > 0) { 1031 // testing if reserved zone needs to be re-enabled 1032 Register rthread = r15_thread; 1033 Label no_reserved_zone_enabling; 1034 1035 // check if already enabled - if so no re-enabling needed 1036 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 1037 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 1038 jcc(Assembler::equal, no_reserved_zone_enabling); 1039 1040 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 1041 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 1042 1043 JFR_ONLY(leave_jfr_critical_section();) 1044 1045 call_VM_leaf( 1046 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 1047 call_VM(noreg, CAST_FROM_FN_PTR(address, 1048 InterpreterRuntime::throw_delayed_StackOverflowError)); 1049 should_not_reach_here(); 1050 1051 bind(no_reserved_zone_enabling); 1052 } 1053 1054 leave(); // remove frame anchor 1055 1056 JFR_ONLY(leave_jfr_critical_section();) 1057 1058 pop(ret_addr); // get return address 1059 mov(rsp, rbx); // set sp to sender sp 1060 pop_cont_fastpath(); 1061 1062 } 1063 1064 #if INCLUDE_JFR 1065 void InterpreterMacroAssembler::enter_jfr_critical_section() { 1066 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 1067 movbool(sampling_critical_section, true); 1068 } 1069 1070 void InterpreterMacroAssembler::leave_jfr_critical_section() { 1071 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 1072 movbool(sampling_critical_section, false); 1073 } 1074 #endif // INCLUDE_JFR 1075 1076 void InterpreterMacroAssembler::get_method_counters(Register method, 1077 Register mcs, Label& skip) { 1078 Label has_counters; 1079 movptr(mcs, Address(method, Method::method_counters_offset())); 1080 testptr(mcs, mcs); 1081 jcc(Assembler::notZero, has_counters); 1082 call_VM(noreg, CAST_FROM_FN_PTR(address, 1083 InterpreterRuntime::build_method_counters), method); 1084 movptr(mcs, Address(method,Method::method_counters_offset())); 1085 testptr(mcs, mcs); 1086 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1087 bind(has_counters); 1088 } 1089 1090 1091 // Lock object 1092 // 1093 // Args: 1094 // rdx, c_rarg1: BasicObjectLock to be used for locking 1095 // 1096 // Kills: 1097 // rax, rbx 1098 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1099 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1100 1101 Label done, slow_case; 1102 1103 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1104 const Register tmp_reg = rbx; 1105 const Register obj_reg = c_rarg3; // Will contain the oop 1106 1107 // Load object pointer into obj_reg 1108 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1109 1110 lightweight_lock(lock_reg, obj_reg, swap_reg, tmp_reg, slow_case); 1111 jmp(done); 1112 1113 bind(slow_case); 1114 1115 // Call the runtime routine for slow case 1116 call_VM_preemptable(noreg, 1117 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1118 lock_reg); 1119 bind(done); 1120 } 1121 1122 1123 // Unlocks an object. Used in monitorexit bytecode and 1124 // remove_activation. Throws an IllegalMonitorException if object is 1125 // not locked by current thread. 1126 // 1127 // Args: 1128 // rdx, c_rarg1: BasicObjectLock for lock 1129 // 1130 // Kills: 1131 // rax 1132 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1133 // rscratch1 (scratch reg) 1134 // rax, rbx, rcx, rdx 1135 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1136 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1137 1138 Label done, slow_case; 1139 1140 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1141 const Register header_reg = c_rarg2; // Will contain the old oopMark 1142 const Register obj_reg = c_rarg3; // Will contain the oop 1143 1144 save_bcp(); // Save in case of exception 1145 1146 // Load oop into obj_reg(%c_rarg3) 1147 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1148 1149 // Free entry 1150 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD); 1151 1152 lightweight_unlock(obj_reg, swap_reg, header_reg, slow_case); 1153 jmp(done); 1154 1155 bind(slow_case); 1156 // Call the runtime routine for slow case. 1157 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj 1158 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1159 1160 bind(done); 1161 1162 restore_bcp(); 1163 } 1164 1165 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1166 Label& zero_continue) { 1167 assert(ProfileInterpreter, "must be profiling interpreter"); 1168 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1169 testptr(mdp, mdp); 1170 jcc(Assembler::zero, zero_continue); 1171 } 1172 1173 1174 // Set the method data pointer for the current bcp. 1175 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1176 assert(ProfileInterpreter, "must be profiling interpreter"); 1177 Label set_mdp; 1178 push(rax); 1179 push(rbx); 1180 1181 get_method(rbx); 1182 // Test MDO to avoid the call if it is null. 1183 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1184 testptr(rax, rax); 1185 jcc(Assembler::zero, set_mdp); 1186 // rbx: method 1187 // _bcp_register: bcp 1188 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1189 // rax: mdi 1190 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1191 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1192 addptr(rbx, in_bytes(MethodData::data_offset())); 1193 addptr(rax, rbx); 1194 bind(set_mdp); 1195 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1196 pop(rbx); 1197 pop(rax); 1198 } 1199 1200 void InterpreterMacroAssembler::verify_method_data_pointer() { 1201 assert(ProfileInterpreter, "must be profiling interpreter"); 1202 #ifdef ASSERT 1203 Label verify_continue; 1204 push(rax); 1205 push(rbx); 1206 Register arg3_reg = c_rarg3; 1207 Register arg2_reg = c_rarg2; 1208 push(arg3_reg); 1209 push(arg2_reg); 1210 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1211 get_method(rbx); 1212 1213 // If the mdp is valid, it will point to a DataLayout header which is 1214 // consistent with the bcp. The converse is highly probable also. 1215 load_unsigned_short(arg2_reg, 1216 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1217 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1218 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1219 cmpptr(arg2_reg, _bcp_register); 1220 jcc(Assembler::equal, verify_continue); 1221 // rbx: method 1222 // _bcp_register: bcp 1223 // c_rarg3: mdp 1224 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1225 rbx, _bcp_register, arg3_reg); 1226 bind(verify_continue); 1227 pop(arg2_reg); 1228 pop(arg3_reg); 1229 pop(rbx); 1230 pop(rax); 1231 #endif // ASSERT 1232 } 1233 1234 1235 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1236 int constant, 1237 Register value) { 1238 assert(ProfileInterpreter, "must be profiling interpreter"); 1239 Address data(mdp_in, constant); 1240 movptr(data, value); 1241 } 1242 1243 1244 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1245 int constant) { 1246 assert(ProfileInterpreter, "must be profiling interpreter"); 1247 Address data(mdp_in, constant); 1248 addptr(data, DataLayout::counter_increment); 1249 } 1250 1251 1252 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1253 Register index, 1254 int constant) { 1255 assert(ProfileInterpreter, "must be profiling interpreter"); 1256 Address data(mdp_in, index, Address::times_1, constant); 1257 addptr(data, DataLayout::counter_increment); 1258 } 1259 1260 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1261 int flag_byte_constant) { 1262 assert(ProfileInterpreter, "must be profiling interpreter"); 1263 int header_offset = in_bytes(DataLayout::flags_offset()); 1264 int header_bits = flag_byte_constant; 1265 // Set the flag 1266 orb(Address(mdp_in, header_offset), header_bits); 1267 } 1268 1269 1270 1271 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1272 int offset, 1273 Register value, 1274 Register test_value_out, 1275 Label& not_equal_continue) { 1276 assert(ProfileInterpreter, "must be profiling interpreter"); 1277 if (test_value_out == noreg) { 1278 cmpptr(value, Address(mdp_in, offset)); 1279 } else { 1280 // Put the test value into a register, so caller can use it: 1281 movptr(test_value_out, Address(mdp_in, offset)); 1282 cmpptr(test_value_out, value); 1283 } 1284 jcc(Assembler::notEqual, not_equal_continue); 1285 } 1286 1287 1288 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1289 int offset_of_disp) { 1290 assert(ProfileInterpreter, "must be profiling interpreter"); 1291 Address disp_address(mdp_in, offset_of_disp); 1292 addptr(mdp_in, disp_address); 1293 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1294 } 1295 1296 1297 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1298 Register reg, 1299 int offset_of_disp) { 1300 assert(ProfileInterpreter, "must be profiling interpreter"); 1301 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1302 addptr(mdp_in, disp_address); 1303 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1304 } 1305 1306 1307 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1308 int constant) { 1309 assert(ProfileInterpreter, "must be profiling interpreter"); 1310 addptr(mdp_in, constant); 1311 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1312 } 1313 1314 1315 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1316 assert(ProfileInterpreter, "must be profiling interpreter"); 1317 push(return_bci); // save/restore across call_VM 1318 call_VM(noreg, 1319 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1320 return_bci); 1321 pop(return_bci); 1322 } 1323 1324 1325 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) { 1326 if (ProfileInterpreter) { 1327 Label profile_continue; 1328 1329 // If no method data exists, go to profile_continue. 1330 test_method_data_pointer(mdp, profile_continue); 1331 1332 // We are taking a branch. Increment the taken count. 1333 increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1334 1335 // The method data pointer needs to be updated to reflect the new target. 1336 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1337 bind(profile_continue); 1338 } 1339 } 1340 1341 1342 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1343 if (ProfileInterpreter) { 1344 Label profile_continue; 1345 1346 // If no method data exists, go to profile_continue. 1347 test_method_data_pointer(mdp, profile_continue); 1348 1349 // We are not taking a branch. Increment the not taken count. 1350 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1351 1352 // The method data pointer needs to be updated to correspond to 1353 // the next bytecode 1354 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1355 bind(profile_continue); 1356 } 1357 } 1358 1359 void InterpreterMacroAssembler::profile_call(Register mdp) { 1360 if (ProfileInterpreter) { 1361 Label profile_continue; 1362 1363 // If no method data exists, go to profile_continue. 1364 test_method_data_pointer(mdp, profile_continue); 1365 1366 // We are making a call. Increment the count. 1367 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1368 1369 // The method data pointer needs to be updated to reflect the new target. 1370 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1371 bind(profile_continue); 1372 } 1373 } 1374 1375 1376 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1377 if (ProfileInterpreter) { 1378 Label profile_continue; 1379 1380 // If no method data exists, go to profile_continue. 1381 test_method_data_pointer(mdp, profile_continue); 1382 1383 // We are making a call. Increment the count. 1384 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1385 1386 // The method data pointer needs to be updated to reflect the new target. 1387 update_mdp_by_constant(mdp, 1388 in_bytes(VirtualCallData:: 1389 virtual_call_data_size())); 1390 bind(profile_continue); 1391 } 1392 } 1393 1394 1395 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1396 Register mdp, 1397 Register reg2, 1398 bool receiver_can_be_null) { 1399 if (ProfileInterpreter) { 1400 Label profile_continue; 1401 1402 // If no method data exists, go to profile_continue. 1403 test_method_data_pointer(mdp, profile_continue); 1404 1405 Label skip_receiver_profile; 1406 if (receiver_can_be_null) { 1407 Label not_null; 1408 testptr(receiver, receiver); 1409 jccb(Assembler::notZero, not_null); 1410 // We are making a call. Increment the count for null receiver. 1411 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1412 jmp(skip_receiver_profile); 1413 bind(not_null); 1414 } 1415 1416 // Record the receiver type. 1417 record_klass_in_profile(receiver, mdp, reg2, true); 1418 bind(skip_receiver_profile); 1419 1420 // The method data pointer needs to be updated to reflect the new target. 1421 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1422 bind(profile_continue); 1423 } 1424 } 1425 1426 // This routine creates a state machine for updating the multi-row 1427 // type profile at a virtual call site (or other type-sensitive bytecode). 1428 // The machine visits each row (of receiver/count) until the receiver type 1429 // is found, or until it runs out of rows. At the same time, it remembers 1430 // the location of the first empty row. (An empty row records null for its 1431 // receiver, and can be allocated for a newly-observed receiver type.) 1432 // Because there are two degrees of freedom in the state, a simple linear 1433 // search will not work; it must be a decision tree. Hence this helper 1434 // function is recursive, to generate the required tree structured code. 1435 // It's the interpreter, so we are trading off code space for speed. 1436 // See below for example code. 1437 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1438 Register receiver, Register mdp, 1439 Register reg2, int start_row, 1440 Label& done, bool is_virtual_call) { 1441 if (TypeProfileWidth == 0) { 1442 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1443 } else { 1444 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1445 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1446 } 1447 } 1448 1449 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row, 1450 Label& done, int total_rows, 1451 OffsetFunction item_offset_fn, 1452 OffsetFunction item_count_offset_fn) { 1453 int last_row = total_rows - 1; 1454 assert(start_row <= last_row, "must be work left to do"); 1455 // Test this row for both the item and for null. 1456 // Take any of three different outcomes: 1457 // 1. found item => increment count and goto done 1458 // 2. found null => keep looking for case 1, maybe allocate this cell 1459 // 3. found something else => keep looking for cases 1 and 2 1460 // Case 3 is handled by a recursive call. 1461 for (int row = start_row; row <= last_row; row++) { 1462 Label next_test; 1463 bool test_for_null_also = (row == start_row); 1464 1465 // See if the item is item[n]. 1466 int item_offset = in_bytes(item_offset_fn(row)); 1467 test_mdp_data_at(mdp, item_offset, item, 1468 (test_for_null_also ? reg2 : noreg), 1469 next_test); 1470 // (Reg2 now contains the item from the CallData.) 1471 1472 // The item is item[n]. Increment count[n]. 1473 int count_offset = in_bytes(item_count_offset_fn(row)); 1474 increment_mdp_data_at(mdp, count_offset); 1475 jmp(done); 1476 bind(next_test); 1477 1478 if (test_for_null_also) { 1479 // Failed the equality check on item[n]... Test for null. 1480 testptr(reg2, reg2); 1481 if (start_row == last_row) { 1482 // The only thing left to do is handle the null case. 1483 Label found_null; 1484 jccb(Assembler::zero, found_null); 1485 // Item did not match any saved item and there is no empty row for it. 1486 // Increment total counter to indicate polymorphic case. 1487 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1488 jmp(done); 1489 bind(found_null); 1490 break; 1491 } 1492 Label found_null; 1493 // Since null is rare, make it be the branch-taken case. 1494 jcc(Assembler::zero, found_null); 1495 1496 // Put all the "Case 3" tests here. 1497 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1498 item_offset_fn, item_count_offset_fn); 1499 1500 // Found a null. Keep searching for a matching item, 1501 // but remember that this is an empty (unused) slot. 1502 bind(found_null); 1503 } 1504 } 1505 1506 // In the fall-through case, we found no matching item, but we 1507 // observed the item[start_row] is null. 1508 1509 // Fill in the item field and increment the count. 1510 int item_offset = in_bytes(item_offset_fn(start_row)); 1511 set_mdp_data_at(mdp, item_offset, item); 1512 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1513 movl(reg2, DataLayout::counter_increment); 1514 set_mdp_data_at(mdp, count_offset, reg2); 1515 if (start_row > 0) { 1516 jmp(done); 1517 } 1518 } 1519 1520 // Example state machine code for three profile rows: 1521 // // main copy of decision tree, rooted at row[1] 1522 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1523 // if (row[0].rec != nullptr) { 1524 // // inner copy of decision tree, rooted at row[1] 1525 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1526 // if (row[1].rec != nullptr) { 1527 // // degenerate decision tree, rooted at row[2] 1528 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1529 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1530 // row[2].init(rec); goto done; 1531 // } else { 1532 // // remember row[1] is empty 1533 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1534 // row[1].init(rec); goto done; 1535 // } 1536 // } else { 1537 // // remember row[0] is empty 1538 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1539 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1540 // row[0].init(rec); goto done; 1541 // } 1542 // done: 1543 1544 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1545 Register mdp, Register reg2, 1546 bool is_virtual_call) { 1547 assert(ProfileInterpreter, "must be profiling"); 1548 Label done; 1549 1550 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1551 1552 bind (done); 1553 } 1554 1555 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1556 Register mdp) { 1557 if (ProfileInterpreter) { 1558 Label profile_continue; 1559 uint row; 1560 1561 // If no method data exists, go to profile_continue. 1562 test_method_data_pointer(mdp, profile_continue); 1563 1564 // Update the total ret count. 1565 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1566 1567 for (row = 0; row < RetData::row_limit(); row++) { 1568 Label next_test; 1569 1570 // See if return_bci is equal to bci[n]: 1571 test_mdp_data_at(mdp, 1572 in_bytes(RetData::bci_offset(row)), 1573 return_bci, noreg, 1574 next_test); 1575 1576 // return_bci is equal to bci[n]. Increment the count. 1577 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1578 1579 // The method data pointer needs to be updated to reflect the new target. 1580 update_mdp_by_offset(mdp, 1581 in_bytes(RetData::bci_displacement_offset(row))); 1582 jmp(profile_continue); 1583 bind(next_test); 1584 } 1585 1586 update_mdp_for_ret(return_bci); 1587 1588 bind(profile_continue); 1589 } 1590 } 1591 1592 1593 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1594 if (ProfileInterpreter) { 1595 Label profile_continue; 1596 1597 // If no method data exists, go to profile_continue. 1598 test_method_data_pointer(mdp, profile_continue); 1599 1600 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1601 1602 // The method data pointer needs to be updated. 1603 int mdp_delta = in_bytes(BitData::bit_data_size()); 1604 if (TypeProfileCasts) { 1605 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1606 } 1607 update_mdp_by_constant(mdp, mdp_delta); 1608 1609 bind(profile_continue); 1610 } 1611 } 1612 1613 1614 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1615 if (ProfileInterpreter) { 1616 Label profile_continue; 1617 1618 // If no method data exists, go to profile_continue. 1619 test_method_data_pointer(mdp, profile_continue); 1620 1621 // The method data pointer needs to be updated. 1622 int mdp_delta = in_bytes(BitData::bit_data_size()); 1623 if (TypeProfileCasts) { 1624 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1625 1626 // Record the object type. 1627 record_klass_in_profile(klass, mdp, reg2, false); 1628 } 1629 update_mdp_by_constant(mdp, mdp_delta); 1630 1631 bind(profile_continue); 1632 } 1633 } 1634 1635 1636 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1637 if (ProfileInterpreter) { 1638 Label profile_continue; 1639 1640 // If no method data exists, go to profile_continue. 1641 test_method_data_pointer(mdp, profile_continue); 1642 1643 // Update the default case count 1644 increment_mdp_data_at(mdp, 1645 in_bytes(MultiBranchData::default_count_offset())); 1646 1647 // The method data pointer needs to be updated. 1648 update_mdp_by_offset(mdp, 1649 in_bytes(MultiBranchData:: 1650 default_displacement_offset())); 1651 1652 bind(profile_continue); 1653 } 1654 } 1655 1656 1657 void InterpreterMacroAssembler::profile_switch_case(Register index, 1658 Register mdp, 1659 Register reg2) { 1660 if (ProfileInterpreter) { 1661 Label profile_continue; 1662 1663 // If no method data exists, go to profile_continue. 1664 test_method_data_pointer(mdp, profile_continue); 1665 1666 // Build the base (index * per_case_size_in_bytes()) + 1667 // case_array_offset_in_bytes() 1668 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1669 imulptr(index, reg2); // XXX l ? 1670 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1671 1672 // Update the case count 1673 increment_mdp_data_at(mdp, 1674 index, 1675 in_bytes(MultiBranchData::relative_count_offset())); 1676 1677 // The method data pointer needs to be updated. 1678 update_mdp_by_offset(mdp, 1679 index, 1680 in_bytes(MultiBranchData:: 1681 relative_displacement_offset())); 1682 1683 bind(profile_continue); 1684 } 1685 } 1686 1687 1688 1689 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1690 if (state == atos) { 1691 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1692 } 1693 } 1694 1695 1696 // Jump if ((*counter_addr += increment) & mask) == 0 1697 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 1698 Register scratch, Label* where) { 1699 // This update is actually not atomic and can lose a number of updates 1700 // under heavy contention, but the alternative of using the (contended) 1701 // atomic update here penalizes profiling paths too much. 1702 movl(scratch, counter_addr); 1703 incrementl(scratch, InvocationCounter::count_increment); 1704 movl(counter_addr, scratch); 1705 andl(scratch, mask); 1706 if (where != nullptr) { 1707 jcc(Assembler::zero, *where); 1708 } 1709 } 1710 1711 void InterpreterMacroAssembler::notify_method_entry() { 1712 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1713 // track stack depth. If it is possible to enter interp_only_mode we add 1714 // the code to check if the event should be sent. 1715 Register rthread = r15_thread; 1716 Register rarg = c_rarg1; 1717 if (JvmtiExport::can_post_interpreter_events()) { 1718 Label L; 1719 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1720 testl(rdx, rdx); 1721 jcc(Assembler::zero, L); 1722 call_VM(noreg, CAST_FROM_FN_PTR(address, 1723 InterpreterRuntime::post_method_entry)); 1724 bind(L); 1725 } 1726 1727 if (DTraceMethodProbes) { 1728 get_method(rarg); 1729 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1730 rthread, rarg); 1731 } 1732 1733 // RedefineClasses() tracing support for obsolete method entry 1734 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1735 get_method(rarg); 1736 call_VM_leaf( 1737 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1738 rthread, rarg); 1739 } 1740 } 1741 1742 1743 void InterpreterMacroAssembler::notify_method_exit( 1744 TosState state, NotifyMethodExitMode mode) { 1745 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1746 // track stack depth. If it is possible to enter interp_only_mode we add 1747 // the code to check if the event should be sent. 1748 Register rthread = r15_thread; 1749 Register rarg = c_rarg1; 1750 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1751 Label L; 1752 // Note: frame::interpreter_frame_result has a dependency on how the 1753 // method result is saved across the call to post_method_exit. If this 1754 // is changed then the interpreter_frame_result implementation will 1755 // need to be updated too. 1756 1757 // template interpreter will leave the result on the top of the stack. 1758 push(state); 1759 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1760 testl(rdx, rdx); 1761 jcc(Assembler::zero, L); 1762 call_VM(noreg, 1763 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1764 bind(L); 1765 pop(state); 1766 } 1767 1768 if (DTraceMethodProbes) { 1769 push(state); 1770 get_method(rarg); 1771 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1772 rthread, rarg); 1773 pop(state); 1774 } 1775 } 1776 1777 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1778 // Get index out of bytecode pointer 1779 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1780 // Get address of invokedynamic array 1781 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1782 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1783 if (is_power_of_2(sizeof(ResolvedIndyEntry))) { 1784 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2 1785 } else { 1786 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1787 } 1788 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes())); 1789 } 1790 1791 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1792 // Get index out of bytecode pointer 1793 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1794 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1795 1796 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset())); 1797 // Take shortcut if the size is a power of 2 1798 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1799 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1800 } else { 1801 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1802 } 1803 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes())); 1804 } 1805 1806 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1807 // Get index out of bytecode pointer 1808 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1809 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1810 1811 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset())); 1812 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1813 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes())); 1814 }