1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compiler_globals.hpp" 26 #include "interp_masm_x86.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "logging/log.hpp" 30 #include "oops/arrayOop.hpp" 31 #include "oops/markWord.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/method.hpp" 34 #include "oops/resolvedFieldEntry.hpp" 35 #include "oops/resolvedIndyEntry.hpp" 36 #include "oops/resolvedMethodEntry.hpp" 37 #include "prims/jvmtiExport.hpp" 38 #include "prims/jvmtiThreadState.hpp" 39 #include "runtime/basicLock.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/javaThread.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 46 // Implementation of InterpreterMacroAssembler 47 48 void InterpreterMacroAssembler::jump_to_entry(address entry) { 49 assert(entry, "Entry must have been generated by now"); 50 jump(RuntimeAddress(entry)); 51 } 52 53 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 54 Label update, next, none; 55 56 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 57 58 interp_verify_oop(obj, atos); 59 60 testptr(obj, obj); 61 jccb(Assembler::notZero, update); 62 testptr(mdo_addr, TypeEntries::null_seen); 63 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore. 64 // atomic update to prevent overwriting Klass* with 0 65 lock(); 66 orptr(mdo_addr, TypeEntries::null_seen); 67 jmpb(next); 68 69 bind(update); 70 load_klass(obj, obj, rscratch1); 71 mov(rscratch1, obj); 72 73 xorptr(obj, mdo_addr); 74 testptr(obj, TypeEntries::type_klass_mask); 75 jccb(Assembler::zero, next); // klass seen before, nothing to 76 // do. The unknown bit may have been 77 // set already but no need to check. 78 79 testptr(obj, TypeEntries::type_unknown); 80 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 81 82 cmpptr(mdo_addr, 0); 83 jccb(Assembler::equal, none); 84 cmpptr(mdo_addr, TypeEntries::null_seen); 85 jccb(Assembler::equal, none); 86 87 // There is a chance that the checks above (re-reading profiling 88 // data from memory) fail if another thread has just set the 89 // profiling to this obj's klass 90 mov(obj, rscratch1); 91 xorptr(obj, mdo_addr); 92 testptr(obj, TypeEntries::type_klass_mask); 93 jccb(Assembler::zero, next); 94 95 // different than before. Cannot keep accurate profile. 96 orptr(mdo_addr, TypeEntries::type_unknown); 97 jmpb(next); 98 99 bind(none); 100 // first time here. Set profile type. 101 movptr(mdo_addr, obj); 102 #ifdef ASSERT 103 andptr(obj, TypeEntries::type_klass_mask); 104 verify_klass_ptr(obj); 105 #endif 106 107 bind(next); 108 } 109 110 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 111 if (!ProfileInterpreter) { 112 return; 113 } 114 115 if (MethodData::profile_arguments() || MethodData::profile_return()) { 116 Label profile_continue; 117 118 test_method_data_pointer(mdp, profile_continue); 119 120 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 121 122 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 123 jcc(Assembler::notEqual, profile_continue); 124 125 if (MethodData::profile_arguments()) { 126 Label done; 127 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 128 addptr(mdp, off_to_args); 129 130 for (int i = 0; i < TypeProfileArgsLimit; i++) { 131 if (i > 0 || MethodData::profile_return()) { 132 // If return value type is profiled we may have no argument to profile 133 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 134 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 135 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 136 jcc(Assembler::less, done); 137 } 138 movptr(tmp, Address(callee, Method::const_offset())); 139 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 140 // stack offset o (zero based) from the start of the argument 141 // list, for n arguments translates into offset n - o - 1 from 142 // the end of the argument list 143 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 144 subl(tmp, 1); 145 Address arg_addr = argument_address(tmp); 146 movptr(tmp, arg_addr); 147 148 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 149 profile_obj_type(tmp, mdo_arg_addr); 150 151 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 152 addptr(mdp, to_add); 153 off_to_args += to_add; 154 } 155 156 if (MethodData::profile_return()) { 157 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 158 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 159 } 160 161 bind(done); 162 163 if (MethodData::profile_return()) { 164 // We're right after the type profile for the last 165 // argument. tmp is the number of cells left in the 166 // CallTypeData/VirtualCallTypeData to reach its end. Non null 167 // if there's a return to profile. 168 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 169 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 170 addptr(mdp, tmp); 171 } 172 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 173 } else { 174 assert(MethodData::profile_return(), "either profile call args or call ret"); 175 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 176 } 177 178 // mdp points right after the end of the 179 // CallTypeData/VirtualCallTypeData, right after the cells for the 180 // return value type if there's one 181 182 bind(profile_continue); 183 } 184 } 185 186 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 187 assert_different_registers(mdp, ret, tmp, _bcp_register); 188 if (ProfileInterpreter && MethodData::profile_return()) { 189 Label profile_continue; 190 191 test_method_data_pointer(mdp, profile_continue); 192 193 if (MethodData::profile_return_jsr292_only()) { 194 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 195 196 // If we don't profile all invoke bytecodes we must make sure 197 // it's a bytecode we indeed profile. We can't go back to the 198 // beginning of the ProfileData we intend to update to check its 199 // type because we're right after it and we don't known its 200 // length 201 Label do_profile; 202 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 203 jcc(Assembler::equal, do_profile); 204 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 205 jcc(Assembler::equal, do_profile); 206 get_method(tmp); 207 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 208 jcc(Assembler::notEqual, profile_continue); 209 210 bind(do_profile); 211 } 212 213 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 214 mov(tmp, ret); 215 profile_obj_type(tmp, mdo_ret_addr); 216 217 bind(profile_continue); 218 } 219 } 220 221 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 222 if (ProfileInterpreter && MethodData::profile_parameters()) { 223 Label profile_continue; 224 225 test_method_data_pointer(mdp, profile_continue); 226 227 // Load the offset of the area within the MDO used for 228 // parameters. If it's negative we're not profiling any parameters 229 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 230 testl(tmp1, tmp1); 231 jcc(Assembler::negative, profile_continue); 232 233 // Compute a pointer to the area for parameters from the offset 234 // and move the pointer to the slot for the last 235 // parameters. Collect profiling from last parameter down. 236 // mdo start + parameters offset + array length - 1 237 addptr(mdp, tmp1); 238 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 239 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 240 241 Label loop; 242 bind(loop); 243 244 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 245 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 246 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 247 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 248 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 249 250 // load offset on the stack from the slot for this parameter 251 movptr(tmp2, arg_off); 252 negptr(tmp2); 253 // read the parameter from the local area 254 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 255 256 // profile the parameter 257 profile_obj_type(tmp2, arg_type); 258 259 // go to next parameter 260 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 261 jcc(Assembler::positive, loop); 262 263 bind(profile_continue); 264 } 265 } 266 267 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 268 int number_of_arguments) { 269 // interpreter specific 270 // 271 // Note: No need to save/restore bcp & locals registers 272 // since these are callee saved registers and no blocking/ 273 // GC can happen in leaf calls. 274 // Further Note: DO NOT save/restore bcp/locals. If a caller has 275 // already saved them so that it can use rsi/rdi as temporaries 276 // then a save/restore here will DESTROY the copy the caller 277 // saved! There used to be a save_bcp() that only happened in 278 // the ASSERT path (no restore_bcp). Which caused bizarre failures 279 // when jvm built with ASSERTs. 280 #ifdef ASSERT 281 { 282 Label L; 283 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 284 jcc(Assembler::equal, L); 285 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 286 " last_sp != null"); 287 bind(L); 288 } 289 #endif 290 // super call 291 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 292 // interpreter specific 293 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 294 // but since they may not have been saved (and we don't want to 295 // save them here (see note above) the assert is invalid. 296 } 297 298 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 299 Register last_java_sp, 300 address entry_point, 301 int number_of_arguments, 302 bool check_exceptions) { 303 // interpreter specific 304 // 305 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 306 // really make a difference for these runtime calls, since they are 307 // slow anyway. Btw., bcp must be saved/restored since it may change 308 // due to GC. 309 save_bcp(); 310 #ifdef ASSERT 311 { 312 Label L; 313 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 314 jcc(Assembler::equal, L); 315 stop("InterpreterMacroAssembler::call_VM_base:" 316 " last_sp isn't null"); 317 bind(L); 318 } 319 #endif /* ASSERT */ 320 // super call 321 MacroAssembler::call_VM_base(oop_result, last_java_sp, 322 entry_point, number_of_arguments, 323 check_exceptions); 324 // interpreter specific 325 restore_bcp(); 326 restore_locals(); 327 } 328 329 void InterpreterMacroAssembler::call_VM_preemptable_helper(Register oop_result, 330 address entry_point, 331 int number_of_arguments, 332 bool check_exceptions) { 333 Label resume_pc, not_preempted; 334 335 #ifdef ASSERT 336 { 337 Label L; 338 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 339 jcc(Assembler::equal, L); 340 stop("Should not have alternate return address set"); 341 bind(L); 342 } 343 #endif /* ASSERT */ 344 345 // Force freeze slow path. 346 push_cont_fastpath(); 347 348 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 349 // Note: call_VM_helper requires last_Java_pc for anchor to be at the top of the stack. 350 lea(rscratch1, resume_pc); 351 push(rscratch1); 352 MacroAssembler::call_VM_helper(oop_result, entry_point, number_of_arguments, check_exceptions); 353 pop(rscratch1); 354 355 pop_cont_fastpath(); 356 357 // Check if preempted. 358 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset())); 359 cmpptr(rscratch1, NULL_WORD); 360 jccb(Assembler::zero, not_preempted); 361 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 362 jmp(rscratch1); 363 364 // In case of preemption, this is where we will resume once we finally acquire the monitor. 365 bind(resume_pc); 366 restore_after_resume(false /* is_native */); 367 368 if (check_exceptions) { 369 // check for pending exceptions (java_thread is set upon return) 370 cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 371 Label ok; 372 jcc(Assembler::equal, ok); 373 // Exception stub expects return pc to be at top of stack. We only need 374 // it to check Interpreter::contains(return_address) so anything will do. 375 lea(rscratch1, resume_pc); 376 push(rscratch1); 377 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 378 bind(ok); 379 } 380 381 // get oop result if there is one and reset the value in the thread 382 if (oop_result->is_valid()) { 383 get_vm_result_oop(oop_result); 384 } 385 386 bind(not_preempted); 387 } 388 389 static void pass_arg1(MacroAssembler* masm, Register arg) { 390 if (c_rarg1 != arg ) { 391 masm->mov(c_rarg1, arg); 392 } 393 } 394 395 static void pass_arg2(MacroAssembler* masm, Register arg) { 396 if (c_rarg2 != arg ) { 397 masm->mov(c_rarg2, arg); 398 } 399 } 400 401 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 402 address entry_point, 403 Register arg_1, 404 bool check_exceptions) { 405 pass_arg1(this, arg_1); 406 call_VM_preemptable_helper(oop_result, entry_point, 1, check_exceptions); 407 } 408 409 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 410 address entry_point, 411 Register arg_1, 412 Register arg_2, 413 bool check_exceptions) { 414 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 415 pass_arg2(this, arg_2); 416 pass_arg1(this, arg_1); 417 call_VM_preemptable_helper(oop_result, entry_point, 2, check_exceptions); 418 } 419 420 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 421 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 422 call(rscratch1); 423 if (is_native) { 424 // On resume we need to set up stack as expected. 425 push(dtos); 426 push(ltos); 427 } 428 } 429 430 void InterpreterMacroAssembler::check_and_handle_popframe() { 431 if (JvmtiExport::can_pop_frame()) { 432 Label L; 433 // Initiate popframe handling only if it is not already being 434 // processed. If the flag has the popframe_processing bit set, it 435 // means that this code is called *during* popframe handling - we 436 // don't want to reenter. 437 // This method is only called just after the call into the vm in 438 // call_VM_base, so the arg registers are available. 439 Register pop_cond = c_rarg0; 440 movl(pop_cond, Address(r15_thread, JavaThread::popframe_condition_offset())); 441 testl(pop_cond, JavaThread::popframe_pending_bit); 442 jcc(Assembler::zero, L); 443 testl(pop_cond, JavaThread::popframe_processing_bit); 444 jcc(Assembler::notZero, L); 445 // Call Interpreter::remove_activation_preserving_args_entry() to get the 446 // address of the same-named entrypoint in the generated interpreter code. 447 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 448 jmp(rax); 449 bind(L); 450 } 451 } 452 453 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 454 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); 455 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 456 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 457 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 458 459 switch (state) { 460 case atos: movptr(rax, oop_addr); 461 movptr(oop_addr, NULL_WORD); 462 interp_verify_oop(rax, state); break; 463 case ltos: movptr(rax, val_addr); break; 464 case btos: // fall through 465 case ztos: // fall through 466 case ctos: // fall through 467 case stos: // fall through 468 case itos: movl(rax, val_addr); break; 469 case ftos: movflt(xmm0, val_addr); break; 470 case dtos: movdbl(xmm0, val_addr); break; 471 case vtos: /* nothing to do */ break; 472 default : ShouldNotReachHere(); 473 } 474 475 // Clean up tos value in the thread object 476 movl(tos_addr, ilgl); 477 movptr(val_addr, NULL_WORD); 478 } 479 480 481 void InterpreterMacroAssembler::check_and_handle_earlyret() { 482 if (JvmtiExport::can_force_early_return()) { 483 Label L; 484 Register tmp = c_rarg0; 485 Register rthread = r15_thread; 486 487 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 488 testptr(tmp, tmp); 489 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit; 490 491 // Initiate earlyret handling only if it is not already being processed. 492 // If the flag has the earlyret_processing bit set, it means that this code 493 // is called *during* earlyret handling - we don't want to reenter. 494 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 495 cmpl(tmp, JvmtiThreadState::earlyret_pending); 496 jcc(Assembler::notEqual, L); 497 498 // Call Interpreter::remove_activation_early_entry() to get the address of the 499 // same-named entrypoint in the generated interpreter code. 500 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 501 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 502 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 503 jmp(rax); 504 bind(L); 505 } 506 } 507 508 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 509 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 510 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 511 bswapl(reg); 512 shrl(reg, 16); 513 } 514 515 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 516 int bcp_offset, 517 size_t index_size) { 518 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 519 if (index_size == sizeof(u2)) { 520 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 521 } else if (index_size == sizeof(u4)) { 522 movl(index, Address(_bcp_register, bcp_offset)); 523 } else if (index_size == sizeof(u1)) { 524 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 525 } else { 526 ShouldNotReachHere(); 527 } 528 } 529 530 // Load object from cpool->resolved_references(index) 531 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 532 Register index, 533 Register tmp) { 534 assert_different_registers(result, index); 535 536 get_constant_pool(result); 537 // load pointer for resolved_references[] objArray 538 movptr(result, Address(result, ConstantPool::cache_offset())); 539 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 540 resolve_oop_handle(result, tmp); 541 load_heap_oop(result, Address(result, index, 542 UseCompressedOops ? Address::times_4 : Address::times_ptr, 543 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 544 } 545 546 // load cpool->resolved_klass_at(index) 547 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 548 Register cpool, 549 Register index) { 550 assert_different_registers(cpool, index); 551 552 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 553 Register resolved_klasses = cpool; 554 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset())); 555 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 556 } 557 558 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 559 // subtype of super_klass. 560 // 561 // Args: 562 // rax: superklass 563 // Rsub_klass: subklass 564 // 565 // Kills: 566 // rcx, rdi 567 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 568 Label& ok_is_subtype) { 569 assert(Rsub_klass != rax, "rax holds superklass"); 570 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 571 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 572 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 573 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 574 575 // Profile the not-null value's klass. 576 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 577 578 // Do the check. 579 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 580 } 581 582 583 // Java Expression Stack 584 585 void InterpreterMacroAssembler::pop_ptr(Register r) { 586 pop(r); 587 } 588 589 void InterpreterMacroAssembler::push_ptr(Register r) { 590 push(r); 591 } 592 593 void InterpreterMacroAssembler::push_i(Register r) { 594 push(r); 595 } 596 597 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 598 push(r); 599 } 600 601 void InterpreterMacroAssembler::push_f(XMMRegister r) { 602 subptr(rsp, wordSize); 603 movflt(Address(rsp, 0), r); 604 } 605 606 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 607 movflt(r, Address(rsp, 0)); 608 addptr(rsp, wordSize); 609 } 610 611 void InterpreterMacroAssembler::push_d(XMMRegister r) { 612 subptr(rsp, 2 * wordSize); 613 movdbl(Address(rsp, 0), r); 614 } 615 616 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 617 movdbl(r, Address(rsp, 0)); 618 addptr(rsp, 2 * Interpreter::stackElementSize); 619 } 620 621 void InterpreterMacroAssembler::pop_i(Register r) { 622 // XXX can't use pop currently, upper half non clean 623 movl(r, Address(rsp, 0)); 624 addptr(rsp, wordSize); 625 } 626 627 void InterpreterMacroAssembler::pop_l(Register r) { 628 movq(r, Address(rsp, 0)); 629 addptr(rsp, 2 * Interpreter::stackElementSize); 630 } 631 632 void InterpreterMacroAssembler::push_l(Register r) { 633 subptr(rsp, 2 * wordSize); 634 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 635 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 636 } 637 638 void InterpreterMacroAssembler::pop(TosState state) { 639 switch (state) { 640 case atos: pop_ptr(); break; 641 case btos: 642 case ztos: 643 case ctos: 644 case stos: 645 case itos: pop_i(); break; 646 case ltos: pop_l(); break; 647 case ftos: pop_f(xmm0); break; 648 case dtos: pop_d(xmm0); break; 649 case vtos: /* nothing to do */ break; 650 default: ShouldNotReachHere(); 651 } 652 interp_verify_oop(rax, state); 653 } 654 655 void InterpreterMacroAssembler::push(TosState state) { 656 interp_verify_oop(rax, state); 657 switch (state) { 658 case atos: push_ptr(); break; 659 case btos: 660 case ztos: 661 case ctos: 662 case stos: 663 case itos: push_i(); break; 664 case ltos: push_l(); break; 665 case ftos: push_f(xmm0); break; 666 case dtos: push_d(xmm0); break; 667 case vtos: /* nothing to do */ break; 668 default : ShouldNotReachHere(); 669 } 670 } 671 672 // Helpers for swap and dup 673 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 674 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 675 } 676 677 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 678 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 679 } 680 681 682 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 683 // set sender sp 684 lea(_bcp_register, Address(rsp, wordSize)); 685 // record last_sp 686 mov(rcx, _bcp_register); 687 subptr(rcx, rbp); 688 sarptr(rcx, LogBytesPerWord); 689 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx); 690 } 691 692 693 // Jump to from_interpreted entry of a call unless single stepping is possible 694 // in this thread in which case we must call the i2i entry 695 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 696 prepare_to_jump_from_interpreted(); 697 698 if (JvmtiExport::can_post_interpreter_events()) { 699 Label run_compiled_code; 700 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 701 // compiled code in threads for which the event is enabled. Check here for 702 // interp_only_mode if these events CAN be enabled. 703 // interp_only is an int, on little endian it is sufficient to test the byte only 704 // Is a cmpl faster? 705 cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0); 706 jccb(Assembler::zero, run_compiled_code); 707 jmp(Address(method, Method::interpreter_entry_offset())); 708 bind(run_compiled_code); 709 } 710 711 jmp(Address(method, Method::from_interpreted_offset())); 712 } 713 714 // The following two routines provide a hook so that an implementation 715 // can schedule the dispatch in two parts. x86 does not do this. 716 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 717 // Nothing x86 specific to be done here 718 } 719 720 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 721 dispatch_next(state, step); 722 } 723 724 void InterpreterMacroAssembler::dispatch_base(TosState state, 725 address* table, 726 bool verifyoop, 727 bool generate_poll) { 728 if (VerifyActivationFrameSize) { 729 Label L; 730 mov(rcx, rbp); 731 subptr(rcx, rsp); 732 int32_t min_frame_size = 733 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 734 wordSize; 735 cmpptr(rcx, min_frame_size); 736 jcc(Assembler::greaterEqual, L); 737 stop("broken stack frame"); 738 bind(L); 739 } 740 if (verifyoop) { 741 interp_verify_oop(rax, state); 742 } 743 744 address* const safepoint_table = Interpreter::safept_table(state); 745 Label no_safepoint, dispatch; 746 if (table != safepoint_table && generate_poll) { 747 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 748 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 749 750 jccb(Assembler::zero, no_safepoint); 751 lea(rscratch1, ExternalAddress((address)safepoint_table)); 752 jmpb(dispatch); 753 } 754 755 bind(no_safepoint); 756 lea(rscratch1, ExternalAddress((address)table)); 757 bind(dispatch); 758 jmp(Address(rscratch1, rbx, Address::times_8)); 759 } 760 761 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 762 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 763 } 764 765 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 766 dispatch_base(state, Interpreter::normal_table(state)); 767 } 768 769 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 770 dispatch_base(state, Interpreter::normal_table(state), false); 771 } 772 773 774 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 775 // load next bytecode (load before advancing _bcp_register to prevent AGI) 776 load_unsigned_byte(rbx, Address(_bcp_register, step)); 777 // advance _bcp_register 778 increment(_bcp_register, step); 779 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 780 } 781 782 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 783 // load current bytecode 784 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 785 dispatch_base(state, table); 786 } 787 788 void InterpreterMacroAssembler::narrow(Register result) { 789 790 // Get method->_constMethod->_result_type 791 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 792 movptr(rcx, Address(rcx, Method::const_offset())); 793 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 794 795 Label done, notBool, notByte, notChar; 796 797 // common case first 798 cmpl(rcx, T_INT); 799 jcc(Assembler::equal, done); 800 801 // mask integer result to narrower return type. 802 cmpl(rcx, T_BOOLEAN); 803 jcc(Assembler::notEqual, notBool); 804 andl(result, 0x1); 805 jmp(done); 806 807 bind(notBool); 808 cmpl(rcx, T_BYTE); 809 jcc(Assembler::notEqual, notByte); 810 movsbl(result, result); 811 jmp(done); 812 813 bind(notByte); 814 cmpl(rcx, T_CHAR); 815 jcc(Assembler::notEqual, notChar); 816 movzwl(result, result); 817 jmp(done); 818 819 bind(notChar); 820 // cmpl(rcx, T_SHORT); // all that's left 821 // jcc(Assembler::notEqual, done); 822 movswl(result, result); 823 824 // Nothing to do for T_INT 825 bind(done); 826 } 827 828 // remove activation 829 // 830 // Unlock the receiver if this is a synchronized method. 831 // Unlock any Java monitors from synchronized blocks. 832 // Apply stack watermark barrier. 833 // Notify JVMTI. 834 // Remove the activation from the stack. 835 // 836 // If there are locked Java monitors 837 // If throw_monitor_exception 838 // throws IllegalMonitorStateException 839 // Else if install_monitor_exception 840 // installs IllegalMonitorStateException 841 // Else 842 // no error processing 843 void InterpreterMacroAssembler::remove_activation(TosState state, 844 Register ret_addr, 845 bool throw_monitor_exception, 846 bool install_monitor_exception, 847 bool notify_jvmdi) { 848 // Note: Registers rdx xmm0 may be in use for the 849 // result check if synchronized method 850 Label unlocked, unlock, no_unlock; 851 852 const Register rthread = r15_thread; 853 const Register robj = c_rarg1; 854 const Register rmon = c_rarg1; 855 856 // get the value of _do_not_unlock_if_synchronized into rdx 857 const Address do_not_unlock_if_synchronized(rthread, 858 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 859 movbool(rbx, do_not_unlock_if_synchronized); 860 movbool(do_not_unlock_if_synchronized, false); // reset the flag 861 862 // get method access flags 863 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 864 load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset())); 865 testl(rcx, JVM_ACC_SYNCHRONIZED); 866 jcc(Assembler::zero, unlocked); 867 868 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 869 // is set. 870 testbool(rbx); 871 jcc(Assembler::notZero, no_unlock); 872 873 // unlock monitor 874 push(state); // save result 875 876 // BasicObjectLock will be first in list, since this is a 877 // synchronized method. However, need to check that the object has 878 // not been unlocked by an explicit monitorexit bytecode. 879 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 880 wordSize - (int) sizeof(BasicObjectLock)); 881 // We use c_rarg1/rdx so that if we go slow path it will be the correct 882 // register for unlock_object to pass to VM directly 883 lea(robj, monitor); // address of first monitor 884 885 movptr(rax, Address(robj, BasicObjectLock::obj_offset())); 886 testptr(rax, rax); 887 jcc(Assembler::notZero, unlock); 888 889 pop(state); 890 if (throw_monitor_exception) { 891 // Entry already unlocked, need to throw exception 892 call_VM(noreg, CAST_FROM_FN_PTR(address, 893 InterpreterRuntime::throw_illegal_monitor_state_exception)); 894 should_not_reach_here(); 895 } else { 896 // Monitor already unlocked during a stack unroll. If requested, 897 // install an illegal_monitor_state_exception. Continue with 898 // stack unrolling. 899 if (install_monitor_exception) { 900 call_VM(noreg, CAST_FROM_FN_PTR(address, 901 InterpreterRuntime::new_illegal_monitor_state_exception)); 902 } 903 jmp(unlocked); 904 } 905 906 bind(unlock); 907 unlock_object(robj); 908 pop(state); 909 910 // Check that for block-structured locking (i.e., that all locked 911 // objects has been unlocked) 912 bind(unlocked); 913 914 // rax, rdx: Might contain return value 915 916 // Check that all monitors are unlocked 917 { 918 Label loop, exception, entry, restart; 919 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 920 const Address monitor_block_top( 921 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 922 const Address monitor_block_bot( 923 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 924 925 bind(restart); 926 // We use c_rarg1 so that if we go slow path it will be the correct 927 // register for unlock_object to pass to VM directly 928 movptr(rmon, monitor_block_top); // derelativize pointer 929 lea(rmon, Address(rbp, rmon, Address::times_ptr)); 930 // c_rarg1 points to current entry, starting with top-most entry 931 932 lea(rbx, monitor_block_bot); // points to word before bottom of 933 // monitor block 934 jmp(entry); 935 936 // Entry already locked, need to throw exception 937 bind(exception); 938 939 if (throw_monitor_exception) { 940 // Throw exception 941 MacroAssembler::call_VM(noreg, 942 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 943 throw_illegal_monitor_state_exception)); 944 should_not_reach_here(); 945 } else { 946 // Stack unrolling. Unlock object and install illegal_monitor_exception. 947 // Unlock does not block, so don't have to worry about the frame. 948 // We don't have to preserve c_rarg1 since we are going to throw an exception. 949 950 push(state); 951 mov(robj, rmon); // nop if robj and rmon are the same 952 unlock_object(robj); 953 pop(state); 954 955 if (install_monitor_exception) { 956 call_VM(noreg, CAST_FROM_FN_PTR(address, 957 InterpreterRuntime:: 958 new_illegal_monitor_state_exception)); 959 } 960 961 jmp(restart); 962 } 963 964 bind(loop); 965 // check if current entry is used 966 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD); 967 jcc(Assembler::notEqual, exception); 968 969 addptr(rmon, entry_size); // otherwise advance to next entry 970 bind(entry); 971 cmpptr(rmon, rbx); // check if bottom reached 972 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 973 } 974 975 bind(no_unlock); 976 977 JFR_ONLY(enter_jfr_critical_section();) 978 979 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 980 // that would normally not be safe to use. Such bad returns into unsafe territory of 981 // the stack, will call InterpreterRuntime::at_unwind. 982 Label slow_path; 983 Label fast_path; 984 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */); 985 jmp(fast_path); 986 bind(slow_path); 987 push(state); 988 set_last_Java_frame(noreg, rbp, (address)pc(), rscratch1); 989 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), r15_thread); 990 reset_last_Java_frame(true); 991 pop(state); 992 bind(fast_path); 993 994 // JVMTI support. Make sure the safepoint poll test is issued prior. 995 if (notify_jvmdi) { 996 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 997 } else { 998 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 999 } 1000 1001 // remove activation 1002 // get sender sp 1003 movptr(rbx, 1004 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1005 if (StackReservedPages > 0) { 1006 // testing if reserved zone needs to be re-enabled 1007 Register rthread = r15_thread; 1008 Label no_reserved_zone_enabling; 1009 1010 // check if already enabled - if so no re-enabling needed 1011 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 1012 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 1013 jcc(Assembler::equal, no_reserved_zone_enabling); 1014 1015 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 1016 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 1017 1018 JFR_ONLY(leave_jfr_critical_section();) 1019 1020 call_VM_leaf( 1021 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 1022 call_VM(noreg, CAST_FROM_FN_PTR(address, 1023 InterpreterRuntime::throw_delayed_StackOverflowError)); 1024 should_not_reach_here(); 1025 1026 bind(no_reserved_zone_enabling); 1027 } 1028 1029 leave(); // remove frame anchor 1030 1031 JFR_ONLY(leave_jfr_critical_section();) 1032 1033 pop(ret_addr); // get return address 1034 mov(rsp, rbx); // set sp to sender sp 1035 pop_cont_fastpath(); 1036 1037 } 1038 1039 #if INCLUDE_JFR 1040 void InterpreterMacroAssembler::enter_jfr_critical_section() { 1041 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 1042 movbool(sampling_critical_section, true); 1043 } 1044 1045 void InterpreterMacroAssembler::leave_jfr_critical_section() { 1046 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 1047 movbool(sampling_critical_section, false); 1048 } 1049 #endif // INCLUDE_JFR 1050 1051 void InterpreterMacroAssembler::get_method_counters(Register method, 1052 Register mcs, Label& skip) { 1053 Label has_counters; 1054 movptr(mcs, Address(method, Method::method_counters_offset())); 1055 testptr(mcs, mcs); 1056 jcc(Assembler::notZero, has_counters); 1057 call_VM(noreg, CAST_FROM_FN_PTR(address, 1058 InterpreterRuntime::build_method_counters), method); 1059 movptr(mcs, Address(method,Method::method_counters_offset())); 1060 testptr(mcs, mcs); 1061 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1062 bind(has_counters); 1063 } 1064 1065 1066 // Lock object 1067 // 1068 // Args: 1069 // rdx, c_rarg1: BasicObjectLock to be used for locking 1070 // 1071 // Kills: 1072 // rax, rbx 1073 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1074 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1075 1076 Label done, slow_case; 1077 1078 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1079 const Register tmp_reg = rbx; 1080 const Register obj_reg = c_rarg3; // Will contain the oop 1081 1082 // Load object pointer into obj_reg 1083 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1084 1085 lightweight_lock(lock_reg, obj_reg, swap_reg, tmp_reg, slow_case); 1086 jmp(done); 1087 1088 bind(slow_case); 1089 1090 // Call the runtime routine for slow case 1091 call_VM_preemptable(noreg, 1092 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1093 lock_reg); 1094 bind(done); 1095 } 1096 1097 1098 // Unlocks an object. Used in monitorexit bytecode and 1099 // remove_activation. Throws an IllegalMonitorException if object is 1100 // not locked by current thread. 1101 // 1102 // Args: 1103 // rdx, c_rarg1: BasicObjectLock for lock 1104 // 1105 // Kills: 1106 // rax 1107 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1108 // rscratch1 (scratch reg) 1109 // rax, rbx, rcx, rdx 1110 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1111 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1112 1113 Label done, slow_case; 1114 1115 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1116 const Register header_reg = c_rarg2; // Will contain the old oopMark 1117 const Register obj_reg = c_rarg3; // Will contain the oop 1118 1119 save_bcp(); // Save in case of exception 1120 1121 // Load oop into obj_reg(%c_rarg3) 1122 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1123 1124 // Free entry 1125 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD); 1126 1127 lightweight_unlock(obj_reg, swap_reg, header_reg, slow_case); 1128 jmp(done); 1129 1130 bind(slow_case); 1131 // Call the runtime routine for slow case. 1132 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj 1133 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1134 1135 bind(done); 1136 1137 restore_bcp(); 1138 } 1139 1140 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1141 Label& zero_continue) { 1142 assert(ProfileInterpreter, "must be profiling interpreter"); 1143 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1144 testptr(mdp, mdp); 1145 jcc(Assembler::zero, zero_continue); 1146 } 1147 1148 1149 // Set the method data pointer for the current bcp. 1150 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1151 assert(ProfileInterpreter, "must be profiling interpreter"); 1152 Label set_mdp; 1153 push(rax); 1154 push(rbx); 1155 1156 get_method(rbx); 1157 // Test MDO to avoid the call if it is null. 1158 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1159 testptr(rax, rax); 1160 jcc(Assembler::zero, set_mdp); 1161 // rbx: method 1162 // _bcp_register: bcp 1163 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1164 // rax: mdi 1165 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1166 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1167 addptr(rbx, in_bytes(MethodData::data_offset())); 1168 addptr(rax, rbx); 1169 bind(set_mdp); 1170 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1171 pop(rbx); 1172 pop(rax); 1173 } 1174 1175 void InterpreterMacroAssembler::verify_method_data_pointer() { 1176 assert(ProfileInterpreter, "must be profiling interpreter"); 1177 #ifdef ASSERT 1178 Label verify_continue; 1179 push(rax); 1180 push(rbx); 1181 Register arg3_reg = c_rarg3; 1182 Register arg2_reg = c_rarg2; 1183 push(arg3_reg); 1184 push(arg2_reg); 1185 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1186 get_method(rbx); 1187 1188 // If the mdp is valid, it will point to a DataLayout header which is 1189 // consistent with the bcp. The converse is highly probable also. 1190 load_unsigned_short(arg2_reg, 1191 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1192 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1193 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1194 cmpptr(arg2_reg, _bcp_register); 1195 jcc(Assembler::equal, verify_continue); 1196 // rbx: method 1197 // _bcp_register: bcp 1198 // c_rarg3: mdp 1199 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1200 rbx, _bcp_register, arg3_reg); 1201 bind(verify_continue); 1202 pop(arg2_reg); 1203 pop(arg3_reg); 1204 pop(rbx); 1205 pop(rax); 1206 #endif // ASSERT 1207 } 1208 1209 1210 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1211 int constant, 1212 Register value) { 1213 assert(ProfileInterpreter, "must be profiling interpreter"); 1214 Address data(mdp_in, constant); 1215 movptr(data, value); 1216 } 1217 1218 1219 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1220 int constant) { 1221 assert(ProfileInterpreter, "must be profiling interpreter"); 1222 Address data(mdp_in, constant); 1223 addptr(data, DataLayout::counter_increment); 1224 } 1225 1226 1227 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1228 Register index, 1229 int constant) { 1230 assert(ProfileInterpreter, "must be profiling interpreter"); 1231 Address data(mdp_in, index, Address::times_1, constant); 1232 addptr(data, DataLayout::counter_increment); 1233 } 1234 1235 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1236 int flag_byte_constant) { 1237 assert(ProfileInterpreter, "must be profiling interpreter"); 1238 int header_offset = in_bytes(DataLayout::flags_offset()); 1239 int header_bits = flag_byte_constant; 1240 // Set the flag 1241 orb(Address(mdp_in, header_offset), header_bits); 1242 } 1243 1244 1245 1246 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1247 int offset, 1248 Register value, 1249 Register test_value_out, 1250 Label& not_equal_continue) { 1251 assert(ProfileInterpreter, "must be profiling interpreter"); 1252 if (test_value_out == noreg) { 1253 cmpptr(value, Address(mdp_in, offset)); 1254 } else { 1255 // Put the test value into a register, so caller can use it: 1256 movptr(test_value_out, Address(mdp_in, offset)); 1257 cmpptr(test_value_out, value); 1258 } 1259 jcc(Assembler::notEqual, not_equal_continue); 1260 } 1261 1262 1263 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1264 int offset_of_disp) { 1265 assert(ProfileInterpreter, "must be profiling interpreter"); 1266 Address disp_address(mdp_in, offset_of_disp); 1267 addptr(mdp_in, disp_address); 1268 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1269 } 1270 1271 1272 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1273 Register reg, 1274 int offset_of_disp) { 1275 assert(ProfileInterpreter, "must be profiling interpreter"); 1276 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1277 addptr(mdp_in, disp_address); 1278 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1279 } 1280 1281 1282 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1283 int constant) { 1284 assert(ProfileInterpreter, "must be profiling interpreter"); 1285 addptr(mdp_in, constant); 1286 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1287 } 1288 1289 1290 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1291 assert(ProfileInterpreter, "must be profiling interpreter"); 1292 push(return_bci); // save/restore across call_VM 1293 call_VM(noreg, 1294 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1295 return_bci); 1296 pop(return_bci); 1297 } 1298 1299 1300 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) { 1301 if (ProfileInterpreter) { 1302 Label profile_continue; 1303 1304 // If no method data exists, go to profile_continue. 1305 test_method_data_pointer(mdp, profile_continue); 1306 1307 // We are taking a branch. Increment the taken count. 1308 increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1309 1310 // The method data pointer needs to be updated to reflect the new target. 1311 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1312 bind(profile_continue); 1313 } 1314 } 1315 1316 1317 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1318 if (ProfileInterpreter) { 1319 Label profile_continue; 1320 1321 // If no method data exists, go to profile_continue. 1322 test_method_data_pointer(mdp, profile_continue); 1323 1324 // We are not taking a branch. Increment the not taken count. 1325 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1326 1327 // The method data pointer needs to be updated to correspond to 1328 // the next bytecode 1329 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1330 bind(profile_continue); 1331 } 1332 } 1333 1334 void InterpreterMacroAssembler::profile_call(Register mdp) { 1335 if (ProfileInterpreter) { 1336 Label profile_continue; 1337 1338 // If no method data exists, go to profile_continue. 1339 test_method_data_pointer(mdp, profile_continue); 1340 1341 // We are making a call. Increment the count. 1342 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1343 1344 // The method data pointer needs to be updated to reflect the new target. 1345 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1346 bind(profile_continue); 1347 } 1348 } 1349 1350 1351 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1352 if (ProfileInterpreter) { 1353 Label profile_continue; 1354 1355 // If no method data exists, go to profile_continue. 1356 test_method_data_pointer(mdp, profile_continue); 1357 1358 // We are making a call. Increment the count. 1359 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1360 1361 // The method data pointer needs to be updated to reflect the new target. 1362 update_mdp_by_constant(mdp, 1363 in_bytes(VirtualCallData:: 1364 virtual_call_data_size())); 1365 bind(profile_continue); 1366 } 1367 } 1368 1369 1370 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1371 Register mdp, 1372 Register reg2, 1373 bool receiver_can_be_null) { 1374 if (ProfileInterpreter) { 1375 Label profile_continue; 1376 1377 // If no method data exists, go to profile_continue. 1378 test_method_data_pointer(mdp, profile_continue); 1379 1380 Label skip_receiver_profile; 1381 if (receiver_can_be_null) { 1382 Label not_null; 1383 testptr(receiver, receiver); 1384 jccb(Assembler::notZero, not_null); 1385 // We are making a call. Increment the count for null receiver. 1386 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1387 jmp(skip_receiver_profile); 1388 bind(not_null); 1389 } 1390 1391 // Record the receiver type. 1392 record_klass_in_profile(receiver, mdp, reg2, true); 1393 bind(skip_receiver_profile); 1394 1395 // The method data pointer needs to be updated to reflect the new target. 1396 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1397 bind(profile_continue); 1398 } 1399 } 1400 1401 // This routine creates a state machine for updating the multi-row 1402 // type profile at a virtual call site (or other type-sensitive bytecode). 1403 // The machine visits each row (of receiver/count) until the receiver type 1404 // is found, or until it runs out of rows. At the same time, it remembers 1405 // the location of the first empty row. (An empty row records null for its 1406 // receiver, and can be allocated for a newly-observed receiver type.) 1407 // Because there are two degrees of freedom in the state, a simple linear 1408 // search will not work; it must be a decision tree. Hence this helper 1409 // function is recursive, to generate the required tree structured code. 1410 // It's the interpreter, so we are trading off code space for speed. 1411 // See below for example code. 1412 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1413 Register receiver, Register mdp, 1414 Register reg2, int start_row, 1415 Label& done, bool is_virtual_call) { 1416 if (TypeProfileWidth == 0) { 1417 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1418 } else { 1419 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1420 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1421 } 1422 } 1423 1424 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row, 1425 Label& done, int total_rows, 1426 OffsetFunction item_offset_fn, 1427 OffsetFunction item_count_offset_fn) { 1428 int last_row = total_rows - 1; 1429 assert(start_row <= last_row, "must be work left to do"); 1430 // Test this row for both the item and for null. 1431 // Take any of three different outcomes: 1432 // 1. found item => increment count and goto done 1433 // 2. found null => keep looking for case 1, maybe allocate this cell 1434 // 3. found something else => keep looking for cases 1 and 2 1435 // Case 3 is handled by a recursive call. 1436 for (int row = start_row; row <= last_row; row++) { 1437 Label next_test; 1438 bool test_for_null_also = (row == start_row); 1439 1440 // See if the item is item[n]. 1441 int item_offset = in_bytes(item_offset_fn(row)); 1442 test_mdp_data_at(mdp, item_offset, item, 1443 (test_for_null_also ? reg2 : noreg), 1444 next_test); 1445 // (Reg2 now contains the item from the CallData.) 1446 1447 // The item is item[n]. Increment count[n]. 1448 int count_offset = in_bytes(item_count_offset_fn(row)); 1449 increment_mdp_data_at(mdp, count_offset); 1450 jmp(done); 1451 bind(next_test); 1452 1453 if (test_for_null_also) { 1454 // Failed the equality check on item[n]... Test for null. 1455 testptr(reg2, reg2); 1456 if (start_row == last_row) { 1457 // The only thing left to do is handle the null case. 1458 Label found_null; 1459 jccb(Assembler::zero, found_null); 1460 // Item did not match any saved item and there is no empty row for it. 1461 // Increment total counter to indicate polymorphic case. 1462 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1463 jmp(done); 1464 bind(found_null); 1465 break; 1466 } 1467 Label found_null; 1468 // Since null is rare, make it be the branch-taken case. 1469 jcc(Assembler::zero, found_null); 1470 1471 // Put all the "Case 3" tests here. 1472 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1473 item_offset_fn, item_count_offset_fn); 1474 1475 // Found a null. Keep searching for a matching item, 1476 // but remember that this is an empty (unused) slot. 1477 bind(found_null); 1478 } 1479 } 1480 1481 // In the fall-through case, we found no matching item, but we 1482 // observed the item[start_row] is null. 1483 1484 // Fill in the item field and increment the count. 1485 int item_offset = in_bytes(item_offset_fn(start_row)); 1486 set_mdp_data_at(mdp, item_offset, item); 1487 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1488 movl(reg2, DataLayout::counter_increment); 1489 set_mdp_data_at(mdp, count_offset, reg2); 1490 if (start_row > 0) { 1491 jmp(done); 1492 } 1493 } 1494 1495 // Example state machine code for three profile rows: 1496 // // main copy of decision tree, rooted at row[1] 1497 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1498 // if (row[0].rec != nullptr) { 1499 // // inner copy of decision tree, rooted at row[1] 1500 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1501 // if (row[1].rec != nullptr) { 1502 // // degenerate decision tree, rooted at row[2] 1503 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1504 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1505 // row[2].init(rec); goto done; 1506 // } else { 1507 // // remember row[1] is empty 1508 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1509 // row[1].init(rec); goto done; 1510 // } 1511 // } else { 1512 // // remember row[0] is empty 1513 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1514 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1515 // row[0].init(rec); goto done; 1516 // } 1517 // done: 1518 1519 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1520 Register mdp, Register reg2, 1521 bool is_virtual_call) { 1522 assert(ProfileInterpreter, "must be profiling"); 1523 Label done; 1524 1525 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1526 1527 bind (done); 1528 } 1529 1530 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1531 Register mdp) { 1532 if (ProfileInterpreter) { 1533 Label profile_continue; 1534 uint row; 1535 1536 // If no method data exists, go to profile_continue. 1537 test_method_data_pointer(mdp, profile_continue); 1538 1539 // Update the total ret count. 1540 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1541 1542 for (row = 0; row < RetData::row_limit(); row++) { 1543 Label next_test; 1544 1545 // See if return_bci is equal to bci[n]: 1546 test_mdp_data_at(mdp, 1547 in_bytes(RetData::bci_offset(row)), 1548 return_bci, noreg, 1549 next_test); 1550 1551 // return_bci is equal to bci[n]. Increment the count. 1552 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1553 1554 // The method data pointer needs to be updated to reflect the new target. 1555 update_mdp_by_offset(mdp, 1556 in_bytes(RetData::bci_displacement_offset(row))); 1557 jmp(profile_continue); 1558 bind(next_test); 1559 } 1560 1561 update_mdp_for_ret(return_bci); 1562 1563 bind(profile_continue); 1564 } 1565 } 1566 1567 1568 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1569 if (ProfileInterpreter) { 1570 Label profile_continue; 1571 1572 // If no method data exists, go to profile_continue. 1573 test_method_data_pointer(mdp, profile_continue); 1574 1575 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1576 1577 // The method data pointer needs to be updated. 1578 int mdp_delta = in_bytes(BitData::bit_data_size()); 1579 if (TypeProfileCasts) { 1580 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1581 } 1582 update_mdp_by_constant(mdp, mdp_delta); 1583 1584 bind(profile_continue); 1585 } 1586 } 1587 1588 1589 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1590 if (ProfileInterpreter) { 1591 Label profile_continue; 1592 1593 // If no method data exists, go to profile_continue. 1594 test_method_data_pointer(mdp, profile_continue); 1595 1596 // The method data pointer needs to be updated. 1597 int mdp_delta = in_bytes(BitData::bit_data_size()); 1598 if (TypeProfileCasts) { 1599 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1600 1601 // Record the object type. 1602 record_klass_in_profile(klass, mdp, reg2, false); 1603 } 1604 update_mdp_by_constant(mdp, mdp_delta); 1605 1606 bind(profile_continue); 1607 } 1608 } 1609 1610 1611 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1612 if (ProfileInterpreter) { 1613 Label profile_continue; 1614 1615 // If no method data exists, go to profile_continue. 1616 test_method_data_pointer(mdp, profile_continue); 1617 1618 // Update the default case count 1619 increment_mdp_data_at(mdp, 1620 in_bytes(MultiBranchData::default_count_offset())); 1621 1622 // The method data pointer needs to be updated. 1623 update_mdp_by_offset(mdp, 1624 in_bytes(MultiBranchData:: 1625 default_displacement_offset())); 1626 1627 bind(profile_continue); 1628 } 1629 } 1630 1631 1632 void InterpreterMacroAssembler::profile_switch_case(Register index, 1633 Register mdp, 1634 Register reg2) { 1635 if (ProfileInterpreter) { 1636 Label profile_continue; 1637 1638 // If no method data exists, go to profile_continue. 1639 test_method_data_pointer(mdp, profile_continue); 1640 1641 // Build the base (index * per_case_size_in_bytes()) + 1642 // case_array_offset_in_bytes() 1643 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1644 imulptr(index, reg2); // XXX l ? 1645 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1646 1647 // Update the case count 1648 increment_mdp_data_at(mdp, 1649 index, 1650 in_bytes(MultiBranchData::relative_count_offset())); 1651 1652 // The method data pointer needs to be updated. 1653 update_mdp_by_offset(mdp, 1654 index, 1655 in_bytes(MultiBranchData:: 1656 relative_displacement_offset())); 1657 1658 bind(profile_continue); 1659 } 1660 } 1661 1662 1663 1664 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1665 if (state == atos) { 1666 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1667 } 1668 } 1669 1670 1671 // Jump if ((*counter_addr += increment) & mask) == 0 1672 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 1673 Register scratch, Label* where) { 1674 // This update is actually not atomic and can lose a number of updates 1675 // under heavy contention, but the alternative of using the (contended) 1676 // atomic update here penalizes profiling paths too much. 1677 movl(scratch, counter_addr); 1678 incrementl(scratch, InvocationCounter::count_increment); 1679 movl(counter_addr, scratch); 1680 andl(scratch, mask); 1681 if (where != nullptr) { 1682 jcc(Assembler::zero, *where); 1683 } 1684 } 1685 1686 void InterpreterMacroAssembler::notify_method_entry() { 1687 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1688 // track stack depth. If it is possible to enter interp_only_mode we add 1689 // the code to check if the event should be sent. 1690 Register rthread = r15_thread; 1691 Register rarg = c_rarg1; 1692 if (JvmtiExport::can_post_interpreter_events()) { 1693 Label L; 1694 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1695 testl(rdx, rdx); 1696 jcc(Assembler::zero, L); 1697 call_VM(noreg, CAST_FROM_FN_PTR(address, 1698 InterpreterRuntime::post_method_entry)); 1699 bind(L); 1700 } 1701 1702 if (DTraceMethodProbes) { 1703 get_method(rarg); 1704 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1705 rthread, rarg); 1706 } 1707 1708 // RedefineClasses() tracing support for obsolete method entry 1709 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1710 get_method(rarg); 1711 call_VM_leaf( 1712 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1713 rthread, rarg); 1714 } 1715 } 1716 1717 1718 void InterpreterMacroAssembler::notify_method_exit( 1719 TosState state, NotifyMethodExitMode mode) { 1720 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1721 // track stack depth. If it is possible to enter interp_only_mode we add 1722 // the code to check if the event should be sent. 1723 Register rthread = r15_thread; 1724 Register rarg = c_rarg1; 1725 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1726 Label L; 1727 // Note: frame::interpreter_frame_result has a dependency on how the 1728 // method result is saved across the call to post_method_exit. If this 1729 // is changed then the interpreter_frame_result implementation will 1730 // need to be updated too. 1731 1732 // template interpreter will leave the result on the top of the stack. 1733 push(state); 1734 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1735 testl(rdx, rdx); 1736 jcc(Assembler::zero, L); 1737 call_VM(noreg, 1738 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1739 bind(L); 1740 pop(state); 1741 } 1742 1743 if (DTraceMethodProbes) { 1744 push(state); 1745 get_method(rarg); 1746 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1747 rthread, rarg); 1748 pop(state); 1749 } 1750 } 1751 1752 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1753 // Get index out of bytecode pointer 1754 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1755 // Get address of invokedynamic array 1756 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1757 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1758 if (is_power_of_2(sizeof(ResolvedIndyEntry))) { 1759 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2 1760 } else { 1761 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1762 } 1763 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes())); 1764 } 1765 1766 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1767 // Get index out of bytecode pointer 1768 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1769 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1770 1771 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset())); 1772 // Take shortcut if the size is a power of 2 1773 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1774 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1775 } else { 1776 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1777 } 1778 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes())); 1779 } 1780 1781 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1782 // Get index out of bytecode pointer 1783 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1784 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1785 1786 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset())); 1787 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1788 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes())); 1789 }