1 /*
  2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef CPU_X86_VM_VERSION_X86_HPP
 26 #define CPU_X86_VM_VERSION_X86_HPP
 27 
 28 #include "runtime/abstract_vm_version.hpp"
 29 #include "utilities/debug.hpp"
 30 #include "utilities/macros.hpp"
 31 #include "utilities/sizes.hpp"
 32 
 33 class VM_Version : public Abstract_VM_Version {
 34   friend class VMStructs;
 35   friend class JVMCIVMStructs;
 36 
 37  public:
 38   // cpuid result register layouts.  These are all unions of a uint32_t
 39   // (in case anyone wants access to the register as a whole) and a bitfield.
 40 
 41   union StdCpuid1Eax {
 42     uint32_t value;
 43     struct {
 44       uint32_t stepping   : 4,
 45                model      : 4,
 46                family     : 4,
 47                proc_type  : 2,
 48                           : 2,
 49                ext_model  : 4,
 50                ext_family : 8,
 51                           : 4;
 52     } bits;
 53   };
 54 
 55   union StdCpuid1Ebx { // example, unused
 56     uint32_t value;
 57     struct {
 58       uint32_t brand_id         : 8,
 59                clflush_size     : 8,
 60                threads_per_cpu  : 8,
 61                apic_id          : 8;
 62     } bits;
 63   };
 64 
 65   union StdCpuid1Ecx {
 66     uint32_t value;
 67     struct {
 68       uint32_t sse3     : 1,
 69                clmul    : 1,
 70                         : 1,
 71                monitor  : 1,
 72                         : 1,
 73                vmx      : 1,
 74                         : 1,
 75                est      : 1,
 76                         : 1,
 77                ssse3    : 1,
 78                cid      : 1,
 79                         : 1,
 80                fma      : 1,
 81                cmpxchg16: 1,
 82                         : 4,
 83                dca      : 1,
 84                sse4_1   : 1,
 85                sse4_2   : 1,
 86                         : 2,
 87                popcnt   : 1,
 88                         : 1,
 89                aes      : 1,
 90                         : 1,
 91                osxsave  : 1,
 92                avx      : 1,
 93                f16c     : 1,
 94                         : 1,
 95                hv       : 1;
 96     } bits;
 97   };
 98 
 99   union StdCpuid1Edx {
100     uint32_t value;
101     struct {
102       uint32_t          : 4,
103                tsc      : 1,
104                         : 3,
105                cmpxchg8 : 1,
106                         : 6,
107                cmov     : 1,
108                         : 3,
109                clflush  : 1,
110                         : 3,
111                mmx      : 1,
112                fxsr     : 1,
113                sse      : 1,
114                sse2     : 1,
115                         : 1,
116                ht       : 1,
117                         : 3;
118     } bits;
119   };
120 
121   union DcpCpuid4Eax {
122     uint32_t value;
123     struct {
124       uint32_t cache_type    : 5,
125                              : 21,
126                cores_per_cpu : 6;
127     } bits;
128   };
129 
130   union DcpCpuid4Ebx {
131     uint32_t value;
132     struct {
133       uint32_t L1_line_size  : 12,
134                partitions    : 10,
135                associativity : 10;
136     } bits;
137   };
138 
139   union TplCpuidBEbx {
140     uint32_t value;
141     struct {
142       uint32_t logical_cpus : 16,
143                             : 16;
144     } bits;
145   };
146 
147   union ExtCpuid1Ecx {
148     uint32_t value;
149     struct {
150       uint32_t LahfSahf     : 1,
151                CmpLegacy    : 1,
152                             : 3,
153                lzcnt        : 1,
154                sse4a        : 1,
155                misalignsse  : 1,
156                prefetchw    : 1,
157                             : 23;
158     } bits;
159   };
160 
161   union ExtCpuid1Edx {
162     uint32_t value;
163     struct {
164       uint32_t           : 22,
165                mmx_amd   : 1,
166                mmx       : 1,
167                fxsr      : 1,
168                fxsr_opt  : 1,
169                pdpe1gb   : 1,
170                rdtscp    : 1,
171                          : 1,
172                long_mode : 1,
173                tdnow2    : 1,
174                tdnow     : 1;
175     } bits;
176   };
177 
178   union ExtCpuid5Ex {
179     uint32_t value;
180     struct {
181       uint32_t L1_line_size : 8,
182                L1_tag_lines : 8,
183                L1_assoc     : 8,
184                L1_size      : 8;
185     } bits;
186   };
187 
188   union ExtCpuid7Edx {
189     uint32_t value;
190     struct {
191       uint32_t               : 8,
192               tsc_invariance : 1,
193                              : 23;
194     } bits;
195   };
196 
197   union ExtCpuid8Ecx {
198     uint32_t value;
199     struct {
200       uint32_t cores_per_cpu : 8,
201                              : 24;
202     } bits;
203   };
204 
205   union SefCpuid7Eax {
206     uint32_t value;
207   };
208 
209   union SefCpuid7Ebx {
210     uint32_t value;
211     struct {
212       uint32_t fsgsbase : 1,
213                         : 2,
214                    bmi1 : 1,
215                         : 1,
216                    avx2 : 1,
217                         : 2,
218                    bmi2 : 1,
219                    erms : 1,
220                         : 1,
221                     rtm : 1,
222                         : 4,
223                 avx512f : 1,
224                avx512dq : 1,
225                         : 1,
226                     adx : 1,
227                         : 1,
228              avx512ifma : 1,
229                         : 1,
230              clflushopt : 1,
231                    clwb : 1,
232                         : 1,
233                avx512pf : 1,
234                avx512er : 1,
235                avx512cd : 1,
236                     sha : 1,
237                avx512bw : 1,
238                avx512vl : 1;
239     } bits;
240   };
241 
242   union SefCpuid7Ecx {
243     uint32_t value;
244     struct {
245       uint32_t prefetchwt1 : 1,
246                avx512_vbmi : 1,
247                       umip : 1,
248                        pku : 1,
249                      ospke : 1,
250                            : 1,
251               avx512_vbmi2 : 1,
252                     cet_ss : 1,
253                       gfni : 1,
254                       vaes : 1,
255          avx512_vpclmulqdq : 1,
256                avx512_vnni : 1,
257              avx512_bitalg : 1,
258                            : 1,
259           avx512_vpopcntdq : 1,
260                            : 1,
261                            : 1,
262                      mawau : 5,
263                      rdpid : 1,
264                            : 9;
265     } bits;
266   };
267 
268   union SefCpuid7Edx {
269     uint32_t value;
270     struct {
271       uint32_t             : 2,
272              avx512_4vnniw : 1,
273              avx512_4fmaps : 1,
274         fast_short_rep_mov : 1,
275                            : 9,
276                  serialize : 1,
277                            : 5,
278                    cet_ibt : 1,
279                            : 11;
280     } bits;
281   };
282 
283   union SefCpuid7SubLeaf1Eax {
284     uint32_t value;
285     struct {
286       uint32_t             : 23,
287                   avx_ifma : 1,
288                            : 8;
289     } bits;
290   };
291 
292   union SefCpuid7SubLeaf1Edx {
293     uint32_t value;
294     struct {
295       uint32_t       : 21,
296               apx_f  : 1,
297                      : 10;
298     } bits;
299   };
300 
301   union ExtCpuid1EEbx {
302     uint32_t value;
303     struct {
304       uint32_t                  : 8,
305                threads_per_core : 8,
306                                 : 16;
307     } bits;
308   };
309 
310   union XemXcr0Eax {
311     uint32_t value;
312     struct {
313       uint32_t x87     : 1,
314                sse     : 1,
315                ymm     : 1,
316                bndregs : 1,
317                bndcsr  : 1,
318                opmask  : 1,
319                zmm512  : 1,
320                zmm32   : 1,
321                        : 11,
322                apx_f   : 1,
323                        : 12;
324     } bits;
325   };
326 
327 protected:
328   static int _cpu;
329   static int _model;
330   static int _stepping;
331 
332   static bool _has_intel_jcc_erratum;
333 
334   static address   _cpuinfo_segv_addr;     // address of instruction which causes SEGV
335   static address   _cpuinfo_cont_addr;     // address of instruction after the one which causes SEGV
336   static address   _cpuinfo_segv_addr_apx; // address of instruction which causes APX specific SEGV
337   static address   _cpuinfo_cont_addr_apx; // address of instruction after the one which causes APX specific SEGV
338 
339   /*
340    * Update following files when declaring new flags:
341    * test/lib-test/jdk/test/whitebox/CPUInfoTest.java
342    * src/jdk.internal.vm.ci/share/classes/jdk.vm.ci.amd64/src/jdk/vm/ci/amd64/AMD64.java
343    */
344   enum Feature_Flag : uint64_t {
345 #define CPU_FEATURE_FLAGS(decl) \
346     decl(CX8,               "cx8",               0)  /*  next bits are from cpuid 1 (EDX) */ \
347     decl(CMOV,              "cmov",              1)  \
348     decl(FXSR,              "fxsr",              2)  \
349     decl(HT,                "ht",                3)  \
350                                                      \
351     decl(MMX,               "mmx",               4)  \
352     decl(3DNOW_PREFETCH,    "3dnowpref",         5)  /* Processor supports 3dnow prefetch and prefetchw instructions */ \
353                                                      /* may not necessarily support other 3dnow instructions */ \
354     decl(SSE,               "sse",               6)  \
355     decl(SSE2,              "sse2",              7)  \
356                                                      \
357     decl(SSE3,              "sse3",              8 ) /* SSE3 comes from cpuid 1 (ECX) */ \
358     decl(SSSE3,             "ssse3",             9 ) \
359     decl(SSE4A,             "sse4a",             10) \
360     decl(SSE4_1,            "sse4.1",            11) \
361                                                      \
362     decl(SSE4_2,            "sse4.2",            12) \
363     decl(POPCNT,            "popcnt",            13) \
364     decl(LZCNT,             "lzcnt",             14) \
365     decl(TSC,               "tsc",               15) \
366                                                      \
367     decl(TSCINV_BIT,        "tscinvbit",         16) \
368     decl(TSCINV,            "tscinv",            17) \
369     decl(AVX,               "avx",               18) \
370     decl(AVX2,              "avx2",              19) \
371                                                      \
372     decl(AES,               "aes",               20) \
373     decl(ERMS,              "erms",              21) /* enhanced 'rep movsb/stosb' instructions */ \
374     decl(CLMUL,             "clmul",             22) /* carryless multiply for CRC */ \
375     decl(BMI1,              "bmi1",              23) \
376                                                      \
377     decl(BMI2,              "bmi2",              24) \
378     decl(RTM,               "rtm",               25) /* Restricted Transactional Memory instructions */ \
379     decl(ADX,               "adx",               26) \
380     decl(AVX512F,           "avx512f",           27) /* AVX 512bit foundation instructions */ \
381                                                      \
382     decl(AVX512DQ,          "avx512dq",          28) \
383     decl(AVX512PF,          "avx512pf",          29) \
384     decl(AVX512ER,          "avx512er",          30) \
385     decl(AVX512CD,          "avx512cd",          31) \
386                                                      \
387     decl(AVX512BW,          "avx512bw",          32) /* Byte and word vector instructions */ \
388     decl(AVX512VL,          "avx512vl",          33) /* EVEX instructions with smaller vector length */ \
389     decl(SHA,               "sha",               34) /* SHA instructions */ \
390     decl(FMA,               "fma",               35) /* FMA instructions */ \
391                                                      \
392     decl(VZEROUPPER,        "vzeroupper",        36) /* Vzeroupper instruction */ \
393     decl(AVX512_VPOPCNTDQ,  "avx512_vpopcntdq",  37) /* Vector popcount */ \
394     decl(AVX512_VPCLMULQDQ, "avx512_vpclmulqdq", 38) /* Vector carryless multiplication */ \
395     decl(AVX512_VAES,       "avx512_vaes",       39) /* Vector AES instruction */ \
396                                                      \
397     decl(AVX512_VNNI,       "avx512_vnni",       40) /* Vector Neural Network Instructions */ \
398     decl(FLUSH,             "clflush",           41) /* flush instruction */ \
399     decl(FLUSHOPT,          "clflushopt",        42) /* flusopth instruction */ \
400     decl(CLWB,              "clwb",              43) /* clwb instruction */ \
401                                                      \
402     decl(AVX512_VBMI2,      "avx512_vbmi2",      44) /* VBMI2 shift left double instructions */ \
403     decl(AVX512_VBMI,       "avx512_vbmi",       45) /* Vector BMI instructions */ \
404     decl(HV,                "hv",                46) /* Hypervisor instructions */ \
405     decl(SERIALIZE,         "serialize",         47) /* CPU SERIALIZE */ \
406     decl(RDTSCP,            "rdtscp",            48) /* RDTSCP instruction */ \
407     decl(RDPID,             "rdpid",             49) /* RDPID instruction */ \
408     decl(FSRM,              "fsrm",              50) /* Fast Short REP MOV */ \
409     decl(GFNI,              "gfni",              51) /* Vector GFNI instructions */ \
410     decl(AVX512_BITALG,     "avx512_bitalg",     52) /* Vector sub-word popcount and bit gather instructions */\
411     decl(F16C,              "f16c",              53) /* Half-precision and single precision FP conversion instructions*/ \
412     decl(PKU,               "pku",               54) /* Protection keys for user-mode pages */ \
413     decl(OSPKE,             "ospke",             55) /* OS enables protection keys */ \
414     decl(CET_IBT,           "cet_ibt",           56) /* Control Flow Enforcement - Indirect Branch Tracking */ \
415     decl(CET_SS,            "cet_ss",            57) /* Control Flow Enforcement - Shadow Stack */ \
416     decl(AVX512_IFMA,       "avx512_ifma",       58) /* Integer Vector FMA instructions*/ \
417     decl(AVX_IFMA,          "avx_ifma",          59) /* 256-bit VEX-coded variant of AVX512-IFMA*/ \
418     decl(APX_F,             "apx_f",             60) /* Intel Advanced Performance Extensions*/
419 
420 #define DECLARE_CPU_FEATURE_FLAG(id, name, bit) CPU_##id = (1ULL << bit),
421     CPU_FEATURE_FLAGS(DECLARE_CPU_FEATURE_FLAG)
422 #undef DECLARE_CPU_FEATURE_FLAG
423   };
424 
425   static const char* _features_names[];
426 
427   enum Extended_Family {
428     // AMD
429     CPU_FAMILY_AMD_11H       = 0x11,
430     // ZX
431     CPU_FAMILY_ZX_CORE_F6    = 6,
432     CPU_FAMILY_ZX_CORE_F7    = 7,
433     // Intel
434     CPU_FAMILY_INTEL_CORE    = 6,
435     CPU_MODEL_NEHALEM        = 0x1e,
436     CPU_MODEL_NEHALEM_EP     = 0x1a,
437     CPU_MODEL_NEHALEM_EX     = 0x2e,
438     CPU_MODEL_WESTMERE       = 0x25,
439     CPU_MODEL_WESTMERE_EP    = 0x2c,
440     CPU_MODEL_WESTMERE_EX    = 0x2f,
441     CPU_MODEL_SANDYBRIDGE    = 0x2a,
442     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
443     CPU_MODEL_IVYBRIDGE_EP   = 0x3a,
444     CPU_MODEL_HASWELL_E3     = 0x3c,
445     CPU_MODEL_HASWELL_E7     = 0x3f,
446     CPU_MODEL_BROADWELL      = 0x3d,
447     CPU_MODEL_SKYLAKE        = 0x55
448   };
449 
450   // cpuid information block.  All info derived from executing cpuid with
451   // various function numbers is stored here.  Intel and AMD info is
452   // merged in this block: accessor methods disentangle it.
453   //
454   // The info block is laid out in subblocks of 4 dwords corresponding to
455   // eax, ebx, ecx and edx, whether or not they contain anything useful.
456   class CpuidInfo {
457   public:
458     // cpuid function 0
459     uint32_t std_max_function;
460     uint32_t std_vendor_name_0;
461     uint32_t std_vendor_name_1;
462     uint32_t std_vendor_name_2;
463 
464     // cpuid function 1
465     StdCpuid1Eax std_cpuid1_eax;
466     StdCpuid1Ebx std_cpuid1_ebx;
467     StdCpuid1Ecx std_cpuid1_ecx;
468     StdCpuid1Edx std_cpuid1_edx;
469 
470     // cpuid function 4 (deterministic cache parameters)
471     DcpCpuid4Eax dcp_cpuid4_eax;
472     DcpCpuid4Ebx dcp_cpuid4_ebx;
473     uint32_t     dcp_cpuid4_ecx; // unused currently
474     uint32_t     dcp_cpuid4_edx; // unused currently
475 
476     // cpuid function 7 (structured extended features enumeration leaf)
477     // eax = 7, ecx = 0
478     SefCpuid7Eax sef_cpuid7_eax;
479     SefCpuid7Ebx sef_cpuid7_ebx;
480     SefCpuid7Ecx sef_cpuid7_ecx;
481     SefCpuid7Edx sef_cpuid7_edx;
482 
483     // cpuid function 7 (structured extended features enumeration sub-leaf 1)
484     // eax = 7, ecx = 1
485     SefCpuid7SubLeaf1Eax sefsl1_cpuid7_eax;
486     SefCpuid7SubLeaf1Edx sefsl1_cpuid7_edx;
487 
488     // cpuid function 0xB (processor topology)
489     // ecx = 0
490     uint32_t     tpl_cpuidB0_eax;
491     TplCpuidBEbx tpl_cpuidB0_ebx;
492     uint32_t     tpl_cpuidB0_ecx; // unused currently
493     uint32_t     tpl_cpuidB0_edx; // unused currently
494 
495     // ecx = 1
496     uint32_t     tpl_cpuidB1_eax;
497     TplCpuidBEbx tpl_cpuidB1_ebx;
498     uint32_t     tpl_cpuidB1_ecx; // unused currently
499     uint32_t     tpl_cpuidB1_edx; // unused currently
500 
501     // ecx = 2
502     uint32_t     tpl_cpuidB2_eax;
503     TplCpuidBEbx tpl_cpuidB2_ebx;
504     uint32_t     tpl_cpuidB2_ecx; // unused currently
505     uint32_t     tpl_cpuidB2_edx; // unused currently
506 
507     // cpuid function 0x80000000 // example, unused
508     uint32_t ext_max_function;
509     uint32_t ext_vendor_name_0;
510     uint32_t ext_vendor_name_1;
511     uint32_t ext_vendor_name_2;
512 
513     // cpuid function 0x80000001
514     uint32_t     ext_cpuid1_eax; // reserved
515     uint32_t     ext_cpuid1_ebx; // reserved
516     ExtCpuid1Ecx ext_cpuid1_ecx;
517     ExtCpuid1Edx ext_cpuid1_edx;
518 
519     // cpuid functions 0x80000002 thru 0x80000004: example, unused
520     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
521     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
522     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
523 
524     // cpuid function 0x80000005 // AMD L1, Intel reserved
525     uint32_t     ext_cpuid5_eax; // unused currently
526     uint32_t     ext_cpuid5_ebx; // reserved
527     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
528     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
529 
530     // cpuid function 0x80000007
531     uint32_t     ext_cpuid7_eax; // reserved
532     uint32_t     ext_cpuid7_ebx; // reserved
533     uint32_t     ext_cpuid7_ecx; // reserved
534     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
535 
536     // cpuid function 0x80000008
537     uint32_t     ext_cpuid8_eax; // unused currently
538     uint32_t     ext_cpuid8_ebx; // reserved
539     ExtCpuid8Ecx ext_cpuid8_ecx;
540     uint32_t     ext_cpuid8_edx; // reserved
541 
542     // cpuid function 0x8000001E // AMD 17h
543     uint32_t      ext_cpuid1E_eax;
544     ExtCpuid1EEbx ext_cpuid1E_ebx; // threads per core (AMD17h)
545     uint32_t      ext_cpuid1E_ecx;
546     uint32_t      ext_cpuid1E_edx; // unused currently
547 
548     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
549     XemXcr0Eax   xem_xcr0_eax;
550     uint32_t     xem_xcr0_edx; // reserved
551 
552     // Space to save ymm registers after signal handle
553     int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
554 
555     // Space to save zmm registers after signal handle
556     int          zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31
557 
558     // Space to save apx registers after signal handle
559     jlong        apx_save[2]; // Save r16 and r31
560 
561     uint64_t feature_flags() const;
562 
563     // Asserts
564     void assert_is_initialized() const {
565       assert(std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
566     }
567 
568     // Extractors
569     uint32_t extended_cpu_family() const {
570       uint32_t result = std_cpuid1_eax.bits.family;
571       result += std_cpuid1_eax.bits.ext_family;
572       return result;
573     }
574 
575     uint32_t extended_cpu_model() const {
576       uint32_t result = std_cpuid1_eax.bits.model;
577       result |= std_cpuid1_eax.bits.ext_model << 4;
578       return result;
579     }
580 
581     uint32_t cpu_stepping() const {
582       uint32_t result = std_cpuid1_eax.bits.stepping;
583       return result;
584     }
585   };
586 
587 private:
588   // The actual cpuid info block
589   static CpuidInfo _cpuid_info;
590 
591   // Extractors and predicates
592   static uint logical_processor_count() {
593     uint result = threads_per_core();
594     return result;
595   }
596 
597   static bool compute_has_intel_jcc_erratum();
598 
599   static bool os_supports_avx_vectors();
600   static bool os_supports_apx_egprs();
601   static void get_processor_features();
602 
603 public:
604   // Offsets for cpuid asm stub
605   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
606   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
607   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
608   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
609   static ByteSize sefsl1_cpuid7_offset() { return byte_offset_of(CpuidInfo, sefsl1_cpuid7_eax); }
610   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
611   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
612   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
613   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
614   static ByteSize ext_cpuid1E_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1E_eax); }
615   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
616   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
617   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
618   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
619   static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
620   static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); }
621   static ByteSize apx_save_offset() { return byte_offset_of(CpuidInfo, apx_save); }
622 
623   // The value used to check ymm register after signal handle
624   static int ymm_test_value()    { return 0xCAFEBABE; }
625   static jlong egpr_test_value()   { return 0xCAFEBABECAFEBABELL; }
626 
627   static void get_cpu_info_wrapper();
628   static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
629   static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
630   static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
631   static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
632 
633   static void set_cpuinfo_segv_addr_apx(address pc) { _cpuinfo_segv_addr_apx = pc; }
634   static bool  is_cpuinfo_segv_addr_apx(address pc) { return _cpuinfo_segv_addr_apx == pc; }
635   static void set_cpuinfo_cont_addr_apx(address pc) { _cpuinfo_cont_addr_apx = pc; }
636   static address  cpuinfo_cont_addr_apx()           { return _cpuinfo_cont_addr_apx; }
637 
638   LP64_ONLY(static void clear_apx_test_state());
639 
640   static void clean_cpuFeatures()   { _features = 0; }
641   static void set_avx_cpuFeatures() { _features = (CPU_SSE | CPU_SSE2 | CPU_AVX | CPU_VZEROUPPER ); }
642   static void set_evex_cpuFeatures() { _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 | CPU_VZEROUPPER ); }
643   static void set_apx_cpuFeatures() { _features |= CPU_APX_F; }
644 
645   // Initialization
646   static void initialize();
647 
648   // Override Abstract_VM_Version implementation
649   static void print_platform_virtualization_info(outputStream*);
650 
651   //
652   // Processor family:
653   //       3   -  386
654   //       4   -  486
655   //       5   -  Pentium
656   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
657   //              Pentium M, Core Solo, Core Duo, Core2 Duo
658   //    family 6 model:   9,        13,       14,        15
659   //    0x0f   -  Pentium 4, Opteron
660   //
661   // Note: The cpu family should be used to select between
662   //       instruction sequences which are valid on all Intel
663   //       processors.  Use the feature test functions below to
664   //       determine whether a particular instruction is supported.
665   //
666   static void     assert_is_initialized() { _cpuid_info.assert_is_initialized(); }
667   static uint32_t extended_cpu_family()   { return _cpuid_info.extended_cpu_family(); }
668   static uint32_t extended_cpu_model()    { return _cpuid_info.extended_cpu_model(); }
669   static uint32_t cpu_stepping()          { return _cpuid_info.cpu_stepping(); }
670   static int  cpu_family()        { return _cpu;}
671   static bool is_P6()             { return cpu_family() >= 6; }
672   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
673   static bool is_hygon()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x6F677948; } // 'ogyH'
674   static bool is_amd_family()     { return is_amd() || is_hygon(); }
675   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
676   static bool is_zx()             { assert_is_initialized(); return (_cpuid_info.std_vendor_name_0 == 0x746e6543) || (_cpuid_info.std_vendor_name_0 == 0x68532020); } // 'tneC'||'hS  '
677   static bool is_atom_family()    { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x36) || (extended_cpu_model() == 0x37) || (extended_cpu_model() == 0x4D))); } //Silvermont and Centerton
678   static bool is_knights_family() { return UseKNLSetting || ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x57) || (extended_cpu_model() == 0x85))); } // Xeon Phi 3200/5200/7200 and Future Xeon Phi
679 
680   static bool supports_processor_topology() {
681     return (_cpuid_info.std_max_function >= 0xB) &&
682            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
683            // Some cpus have max cpuid >= 0xB but do not support processor topology.
684            (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
685   }
686 
687   static uint cores_per_cpu();
688   static uint threads_per_core();
689   static uint L1_line_size();
690 
691   static uint prefetch_data_size()  {
692     return L1_line_size();
693   }
694 
695   //
696   // Feature identification which can be affected by VM settings
697   //
698   static bool supports_cpuid()        { return _features  != 0; }
699   static bool supports_cmov()         { return (_features & CPU_CMOV) != 0; }
700   static bool supports_fxsr()         { return (_features & CPU_FXSR) != 0; }
701   static bool supports_ht()           { return (_features & CPU_HT) != 0; }
702   static bool supports_mmx()          { return (_features & CPU_MMX) != 0; }
703   static bool supports_sse()          { return (_features & CPU_SSE) != 0; }
704   static bool supports_sse2()         { return (_features & CPU_SSE2) != 0; }
705   static bool supports_sse3()         { return (_features & CPU_SSE3) != 0; }
706   static bool supports_ssse3()        { return (_features & CPU_SSSE3)!= 0; }
707   static bool supports_sse4_1()       { return (_features & CPU_SSE4_1) != 0; }
708   static bool supports_sse4_2()       { return (_features & CPU_SSE4_2) != 0; }
709   static bool supports_popcnt()       { return (_features & CPU_POPCNT) != 0; }
710   static bool supports_avx()          { return (_features & CPU_AVX) != 0; }
711   static bool supports_avx2()         { return (_features & CPU_AVX2) != 0; }
712   static bool supports_tsc()          { return (_features & CPU_TSC) != 0; }
713   static bool supports_rdtscp()       { return (_features & CPU_RDTSCP) != 0; }
714   static bool supports_rdpid()        { return (_features & CPU_RDPID) != 0; }
715   static bool supports_aes()          { return (_features & CPU_AES) != 0; }
716   static bool supports_erms()         { return (_features & CPU_ERMS) != 0; }
717   static bool supports_fsrm()         { return (_features & CPU_FSRM) != 0; }
718   static bool supports_clmul()        { return (_features & CPU_CLMUL) != 0; }
719   static bool supports_rtm()          { return (_features & CPU_RTM) != 0; }
720   static bool supports_bmi1()         { return (_features & CPU_BMI1) != 0; }
721   static bool supports_bmi2()         { return (_features & CPU_BMI2) != 0; }
722   static bool supports_adx()          { return (_features & CPU_ADX) != 0; }
723   static bool supports_evex()         { return (_features & CPU_AVX512F) != 0; }
724   static bool supports_avx512dq()     { return (_features & CPU_AVX512DQ) != 0; }
725   static bool supports_avx512ifma()   { return (_features & CPU_AVX512_IFMA) != 0; }
726   static bool supports_avxifma()      { return (_features & CPU_AVX_IFMA) != 0; }
727   static bool supports_avx512pf()     { return (_features & CPU_AVX512PF) != 0; }
728   static bool supports_avx512er()     { return (_features & CPU_AVX512ER) != 0; }
729   static bool supports_avx512cd()     { return (_features & CPU_AVX512CD) != 0; }
730   static bool supports_avx512bw()     { return (_features & CPU_AVX512BW) != 0; }
731   static bool supports_avx512vl()     { return (_features & CPU_AVX512VL) != 0; }
732   static bool supports_avx512vlbw()   { return (supports_evex() && supports_avx512bw() && supports_avx512vl()); }
733   static bool supports_avx512bwdq()   { return (supports_evex() && supports_avx512bw() && supports_avx512dq()); }
734   static bool supports_avx512vldq()   { return (supports_evex() && supports_avx512dq() && supports_avx512vl()); }
735   static bool supports_avx512vlbwdq() { return (supports_evex() && supports_avx512vl() &&
736                                                 supports_avx512bw() && supports_avx512dq()); }
737   static bool supports_avx512novl()   { return (supports_evex() && !supports_avx512vl()); }
738   static bool supports_avx512nobw()   { return (supports_evex() && !supports_avx512bw()); }
739   static bool supports_avx256only()   { return (supports_avx2() && !supports_evex()); }
740   static bool supports_apx_f()        { return (_features & CPU_APX_F) != 0; }
741   static bool supports_avxonly()      { return ((supports_avx2() || supports_avx()) && !supports_evex()); }
742   static bool supports_sha()          { return (_features & CPU_SHA) != 0; }
743   static bool supports_fma()          { return (_features & CPU_FMA) != 0 && supports_avx(); }
744   static bool supports_vzeroupper()   { return (_features & CPU_VZEROUPPER) != 0; }
745   static bool supports_avx512_vpopcntdq()  { return (_features & CPU_AVX512_VPOPCNTDQ) != 0; }
746   static bool supports_avx512_vpclmulqdq() { return (_features & CPU_AVX512_VPCLMULQDQ) != 0; }
747   static bool supports_avx512_vaes()  { return (_features & CPU_AVX512_VAES) != 0; }
748   static bool supports_gfni()         { return (_features & CPU_GFNI) != 0; }
749   static bool supports_avx512_vnni()  { return (_features & CPU_AVX512_VNNI) != 0; }
750   static bool supports_avx512_bitalg()  { return (_features & CPU_AVX512_BITALG) != 0; }
751   static bool supports_avx512_vbmi()  { return (_features & CPU_AVX512_VBMI) != 0; }
752   static bool supports_avx512_vbmi2() { return (_features & CPU_AVX512_VBMI2) != 0; }
753   static bool supports_hv()           { return (_features & CPU_HV) != 0; }
754   static bool supports_serialize()    { return (_features & CPU_SERIALIZE) != 0; }
755   static bool supports_f16c()         { return (_features & CPU_F16C) != 0; }
756   static bool supports_pku()          { return (_features & CPU_PKU) != 0; }
757   static bool supports_ospke()        { return (_features & CPU_OSPKE) != 0; }
758   static bool supports_cet_ss()       { return (_features & CPU_CET_SS) != 0; }
759   static bool supports_cet_ibt()      { return (_features & CPU_CET_IBT) != 0; }
760 
761   //
762   // Feature identification not affected by VM flags
763   //
764   static bool cpu_supports_evex()     { return (_cpu_features & CPU_AVX512F) != 0; }
765 
766   // Intel features
767   static bool is_intel_family_core() { return is_intel() &&
768                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
769 
770   static bool is_intel_skylake() { return is_intel_family_core() &&
771                                           extended_cpu_model() == CPU_MODEL_SKYLAKE; }
772 
773 #ifdef COMPILER2
774   // Determine if it's running on Cascade Lake using default options.
775   static bool is_default_intel_cascade_lake();
776 #endif
777 
778   static bool is_intel_cascade_lake();
779 
780   static int avx3_threshold();
781 
782   static bool is_intel_tsc_synched_at_init();
783 
784   // This checks if the JVM is potentially affected by an erratum on Intel CPUs (SKX102)
785   // that causes unpredictable behaviour when jcc crosses 64 byte boundaries. Its microcode
786   // mitigation causes regressions when jumps or fused conditional branches cross or end at
787   // 32 byte boundaries.
788   static bool has_intel_jcc_erratum() { return _has_intel_jcc_erratum; }
789 
790   // AMD features
791   static bool supports_3dnow_prefetch()    { return (_features & CPU_3DNOW_PREFETCH) != 0; }
792   static bool supports_lzcnt()    { return (_features & CPU_LZCNT) != 0; }
793   static bool supports_sse4a()    { return (_features & CPU_SSE4A) != 0; }
794 
795   static bool is_amd_Barcelona()  { return is_amd() &&
796                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
797 
798   // Intel and AMD newer cores support fast timestamps well
799   static bool supports_tscinv_bit() {
800     return (_features & CPU_TSCINV_BIT) != 0;
801   }
802   static bool supports_tscinv() {
803     return (_features & CPU_TSCINV) != 0;
804   }
805 
806   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
807   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
808                                            supports_sse3() && _model != 0x1C; }
809 
810   static bool supports_compare_and_exchange() { return true; }
811 
812   static int allocate_prefetch_distance(bool use_watermark_prefetch);
813 
814   // SSE2 and later processors implement a 'pause' instruction
815   // that can be used for efficient implementation of
816   // the intrinsic for java.lang.Thread.onSpinWait()
817   static bool supports_on_spin_wait() { return supports_sse2(); }
818 
819   // x86_64 supports fast class initialization checks
820   static bool supports_fast_class_init_checks() {
821     return LP64_ONLY(true) NOT_LP64(false); // not implemented on x86_32
822   }
823 
824   // x86_64 supports secondary supers table
825   constexpr static bool supports_secondary_supers_table() {
826     return LP64_ONLY(true) NOT_LP64(false); // not implemented on x86_32
827   }
828 
829   constexpr static bool supports_stack_watermark_barrier() {
830     return true;
831   }
832 
833   constexpr static bool supports_recursive_lightweight_locking() {
834     return true;
835   }
836 
837   // For AVX CPUs only. f16c support is disabled if UseAVX == 0.
838   static bool supports_float16() {
839     return supports_f16c() || supports_avx512vl();
840   }
841 
842   // Check intrinsic support
843   static bool is_intrinsic_supported(vmIntrinsicID id);
844 
845   // there are several insns to force cache line sync to memory which
846   // we can use to ensure mapped non-volatile memory is up to date with
847   // pending in-cache changes.
848   //
849   // 64 bit cpus always support clflush which writes back and evicts
850   // on 32 bit cpus support is recorded via a feature flag
851   //
852   // clflushopt is optional and acts like clflush except it does
853   // not synchronize with other memory ops. it needs a preceding
854   // and trailing StoreStore fence
855   //
856   // clwb is an optional intel-specific instruction which
857   // writes back without evicting the line. it also does not
858   // synchronize with other memory ops. so, it needs preceding
859   // and trailing StoreStore fences.
860 
861 #ifdef _LP64
862   static bool supports_clflush(); // Can't inline due to header file conflict
863 #else
864   static bool supports_clflush() { return  ((_features & CPU_FLUSH) != 0); }
865 #endif // _LP64
866 
867   // Note: CPU_FLUSHOPT and CPU_CLWB bits should always be zero for 32-bit
868   static bool supports_clflushopt() { return ((_features & CPU_FLUSHOPT) != 0); }
869   static bool supports_clwb() { return ((_features & CPU_CLWB) != 0); }
870 
871   // Old CPUs perform lea on AGU which causes additional latency transferring the
872   // value from/to ALU for other operations
873   static bool supports_fast_2op_lea() {
874     return (is_intel() && supports_avx()) || // Sandy Bridge and above
875            (is_amd()   && supports_avx());   // Jaguar and Bulldozer and above
876   }
877 
878   // Pre Icelake Intels suffer inefficiency regarding 3-operand lea, which contains
879   // all of base register, index register and displacement immediate, with 3 latency.
880   // Note that when the address contains no displacement but the base register is
881   // rbp or r13, the machine code must contain a zero displacement immediate,
882   // effectively transform a 2-operand lea into a 3-operand lea. This can be
883   // replaced by add-add or lea-add
884   static bool supports_fast_3op_lea() {
885     return supports_fast_2op_lea() &&
886            ((is_intel() && supports_clwb() && !is_intel_skylake()) || // Icelake and above
887             is_amd());
888   }
889 
890 #ifdef __APPLE__
891   // Is the CPU running emulated (for example macOS Rosetta running x86_64 code on M1 ARM (aarch64)
892   static bool is_cpu_emulated();
893 #endif
894 
895   // support functions for virtualization detection
896  private:
897   static void check_virtualizations();
898 
899   static const char* cpu_family_description(void);
900   static const char* cpu_model_description(void);
901   static const char* cpu_brand(void);
902   static const char* cpu_brand_string(void);
903 
904   static int cpu_type_description(char* const buf, size_t buf_len);
905   static int cpu_detailed_description(char* const buf, size_t buf_len);
906   static int cpu_extended_brand_string(char* const buf, size_t buf_len);
907 
908   static bool cpu_is_em64t(void);
909   static bool is_netburst(void);
910 
911   // Returns bytes written excluding termninating null byte.
912   static size_t cpu_write_support_string(char* const buf, size_t buf_len);
913   static void resolve_cpu_information_details(void);
914   static int64_t max_qualified_cpu_freq_from_brand_string(void);
915 
916  public:
917   // Offsets for cpuid asm stub brand string
918   static ByteSize proc_name_0_offset() { return byte_offset_of(CpuidInfo, proc_name_0); }
919   static ByteSize proc_name_1_offset() { return byte_offset_of(CpuidInfo, proc_name_1); }
920   static ByteSize proc_name_2_offset() { return byte_offset_of(CpuidInfo, proc_name_2); }
921   static ByteSize proc_name_3_offset() { return byte_offset_of(CpuidInfo, proc_name_3); }
922   static ByteSize proc_name_4_offset() { return byte_offset_of(CpuidInfo, proc_name_4); }
923   static ByteSize proc_name_5_offset() { return byte_offset_of(CpuidInfo, proc_name_5); }
924   static ByteSize proc_name_6_offset() { return byte_offset_of(CpuidInfo, proc_name_6); }
925   static ByteSize proc_name_7_offset() { return byte_offset_of(CpuidInfo, proc_name_7); }
926   static ByteSize proc_name_8_offset() { return byte_offset_of(CpuidInfo, proc_name_8); }
927   static ByteSize proc_name_9_offset() { return byte_offset_of(CpuidInfo, proc_name_9); }
928   static ByteSize proc_name_10_offset() { return byte_offset_of(CpuidInfo, proc_name_10); }
929   static ByteSize proc_name_11_offset() { return byte_offset_of(CpuidInfo, proc_name_11); }
930 
931   static int64_t maximum_qualified_cpu_frequency(void);
932 
933   static bool supports_tscinv_ext(void);
934 
935   static void initialize_tsc();
936   static void initialize_cpu_information(void);
937 };
938 
939 #endif // CPU_X86_VM_VERSION_X86_HPP