1 /*
   2  * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/c1/barrierSetC1.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/vm_version.hpp"
  43 #include "utilities/bitMap.inline.hpp"
  44 #include "utilities/macros.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 
  47 #ifdef ASSERT
  48 #define __ gen()->lir(__FILE__, __LINE__)->
  49 #else
  50 #define __ gen()->lir()->
  51 #endif
  52 
  53 #ifndef PATCHED_ADDR
  54 #define PATCHED_ADDR  (max_jint)
  55 #endif
  56 
  57 void PhiResolverState::reset() {
  58   _virtual_operands.clear();
  59   _other_operands.clear();
  60   _vreg_table.clear();
  61 }
  62 
  63 
  64 //--------------------------------------------------------------
  65 // PhiResolver
  66 
  67 // Resolves cycles:
  68 //
  69 //  r1 := r2  becomes  temp := r1
  70 //  r2 := r1           r1 := r2
  71 //                     r2 := temp
  72 // and orders moves:
  73 //
  74 //  r2 := r3  becomes  r1 := r2
  75 //  r1 := r2           r2 := r3
  76 
  77 PhiResolver::PhiResolver(LIRGenerator* gen)
  78  : _gen(gen)
  79  , _state(gen->resolver_state())
  80  , _temp(LIR_OprFact::illegalOpr)
  81 {
  82   // reinitialize the shared state arrays
  83   _state.reset();
  84 }
  85 
  86 
  87 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  88   assert(src->is_valid(), "");
  89   assert(dest->is_valid(), "");
  90   __ move(src, dest);
  91 }
  92 
  93 
  94 void PhiResolver::move_temp_to(LIR_Opr dest) {
  95   assert(_temp->is_valid(), "");
  96   emit_move(_temp, dest);
  97   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
  98 }
  99 
 100 
 101 void PhiResolver::move_to_temp(LIR_Opr src) {
 102   assert(_temp->is_illegal(), "");
 103   _temp = _gen->new_register(src->type());
 104   emit_move(src, _temp);
 105 }
 106 
 107 
 108 // Traverse assignment graph in depth first order and generate moves in post order
 109 // ie. two assignments: b := c, a := b start with node c:
 110 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 111 // Generates moves in this order: move b to a and move c to b
 112 // ie. cycle a := b, b := a start with node a
 113 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 114 // Generates moves in this order: move b to temp, move a to b, move temp to a
 115 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 116   if (!dest->visited()) {
 117     dest->set_visited();
 118     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 119       move(dest, dest->destination_at(i));
 120     }
 121   } else if (!dest->start_node()) {
 122     // cylce in graph detected
 123     assert(_loop == NULL, "only one loop valid!");
 124     _loop = dest;
 125     move_to_temp(src->operand());
 126     return;
 127   } // else dest is a start node
 128 
 129   if (!dest->assigned()) {
 130     if (_loop == dest) {
 131       move_temp_to(dest->operand());
 132       dest->set_assigned();
 133     } else if (src != NULL) {
 134       emit_move(src->operand(), dest->operand());
 135       dest->set_assigned();
 136     }
 137   }
 138 }
 139 
 140 
 141 PhiResolver::~PhiResolver() {
 142   int i;
 143   // resolve any cycles in moves from and to virtual registers
 144   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 145     ResolveNode* node = virtual_operands().at(i);
 146     if (!node->visited()) {
 147       _loop = NULL;
 148       move(NULL, node);
 149       node->set_start_node();
 150       assert(_temp->is_illegal(), "move_temp_to() call missing");
 151     }
 152   }
 153 
 154   // generate move for move from non virtual register to abitrary destination
 155   for (i = other_operands().length() - 1; i >= 0; i --) {
 156     ResolveNode* node = other_operands().at(i);
 157     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 158       emit_move(node->operand(), node->destination_at(j)->operand());
 159     }
 160   }
 161 }
 162 
 163 
 164 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 165   ResolveNode* node;
 166   if (opr->is_virtual()) {
 167     int vreg_num = opr->vreg_number();
 168     node = vreg_table().at_grow(vreg_num, NULL);
 169     assert(node == NULL || node->operand() == opr, "");
 170     if (node == NULL) {
 171       node = new ResolveNode(opr);
 172       vreg_table().at_put(vreg_num, node);
 173     }
 174     // Make sure that all virtual operands show up in the list when
 175     // they are used as the source of a move.
 176     if (source && !virtual_operands().contains(node)) {
 177       virtual_operands().append(node);
 178     }
 179   } else {
 180     assert(source, "");
 181     node = new ResolveNode(opr);
 182     other_operands().append(node);
 183   }
 184   return node;
 185 }
 186 
 187 
 188 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 189   assert(dest->is_virtual(), "");
 190   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 191   assert(src->is_valid(), "");
 192   assert(dest->is_valid(), "");
 193   ResolveNode* source = source_node(src);
 194   source->append(destination_node(dest));
 195 }
 196 
 197 
 198 //--------------------------------------------------------------
 199 // LIRItem
 200 
 201 void LIRItem::set_result(LIR_Opr opr) {
 202   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 203   value()->set_operand(opr);
 204 
 205   if (opr->is_virtual()) {
 206     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 207   }
 208 
 209   _result = opr;
 210 }
 211 
 212 void LIRItem::load_item() {
 213   if (result()->is_illegal()) {
 214     // update the items result
 215     _result = value()->operand();
 216   }
 217   if (!result()->is_register()) {
 218     LIR_Opr reg = _gen->new_register(value()->type());
 219     __ move(result(), reg);
 220     if (result()->is_constant()) {
 221       _result = reg;
 222     } else {
 223       set_result(reg);
 224     }
 225   }
 226 }
 227 
 228 
 229 void LIRItem::load_for_store(BasicType type) {
 230   if (_gen->can_store_as_constant(value(), type)) {
 231     _result = value()->operand();
 232     if (!_result->is_constant()) {
 233       _result = LIR_OprFact::value_type(value()->type());
 234     }
 235   } else if (type == T_BYTE || type == T_BOOLEAN) {
 236     load_byte_item();
 237   } else {
 238     load_item();
 239   }
 240 }
 241 
 242 void LIRItem::load_item_force(LIR_Opr reg) {
 243   LIR_Opr r = result();
 244   if (r != reg) {
 245 #if !defined(ARM) && !defined(E500V2)
 246     if (r->type() != reg->type()) {
 247       // moves between different types need an intervening spill slot
 248       r = _gen->force_to_spill(r, reg->type());
 249     }
 250 #endif
 251     __ move(r, reg);
 252     _result = reg;
 253   }
 254 }
 255 
 256 ciObject* LIRItem::get_jobject_constant() const {
 257   ObjectType* oc = type()->as_ObjectType();
 258   if (oc) {
 259     return oc->constant_value();
 260   }
 261   return NULL;
 262 }
 263 
 264 
 265 jint LIRItem::get_jint_constant() const {
 266   assert(is_constant() && value() != NULL, "");
 267   assert(type()->as_IntConstant() != NULL, "type check");
 268   return type()->as_IntConstant()->value();
 269 }
 270 
 271 
 272 jint LIRItem::get_address_constant() const {
 273   assert(is_constant() && value() != NULL, "");
 274   assert(type()->as_AddressConstant() != NULL, "type check");
 275   return type()->as_AddressConstant()->value();
 276 }
 277 
 278 
 279 jfloat LIRItem::get_jfloat_constant() const {
 280   assert(is_constant() && value() != NULL, "");
 281   assert(type()->as_FloatConstant() != NULL, "type check");
 282   return type()->as_FloatConstant()->value();
 283 }
 284 
 285 
 286 jdouble LIRItem::get_jdouble_constant() const {
 287   assert(is_constant() && value() != NULL, "");
 288   assert(type()->as_DoubleConstant() != NULL, "type check");
 289   return type()->as_DoubleConstant()->value();
 290 }
 291 
 292 
 293 jlong LIRItem::get_jlong_constant() const {
 294   assert(is_constant() && value() != NULL, "");
 295   assert(type()->as_LongConstant() != NULL, "type check");
 296   return type()->as_LongConstant()->value();
 297 }
 298 
 299 
 300 
 301 //--------------------------------------------------------------
 302 
 303 
 304 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 305 #ifndef PRODUCT
 306   if (PrintIRWithLIR) {
 307     block->print();
 308   }
 309 #endif
 310 
 311   // set up the list of LIR instructions
 312   assert(block->lir() == NULL, "LIR list already computed for this block");
 313   _lir = new LIR_List(compilation(), block);
 314   block->set_lir(_lir);
 315 
 316   __ branch_destination(block->label());
 317 
 318   if (LIRTraceExecution &&
 319       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 320       !block->is_set(BlockBegin::exception_entry_flag)) {
 321     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 322     trace_block_entry(block);
 323   }
 324 }
 325 
 326 
 327 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 328 #ifndef PRODUCT
 329   if (PrintIRWithLIR) {
 330     tty->cr();
 331   }
 332 #endif
 333 
 334   // LIR_Opr for unpinned constants shouldn't be referenced by other
 335   // blocks so clear them out after processing the block.
 336   for (int i = 0; i < _unpinned_constants.length(); i++) {
 337     _unpinned_constants.at(i)->clear_operand();
 338   }
 339   _unpinned_constants.trunc_to(0);
 340 
 341   // clear our any registers for other local constants
 342   _constants.trunc_to(0);
 343   _reg_for_constants.trunc_to(0);
 344 }
 345 
 346 
 347 void LIRGenerator::block_do(BlockBegin* block) {
 348   CHECK_BAILOUT();
 349 
 350   block_do_prolog(block);
 351   set_block(block);
 352 
 353   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 354     if (instr->is_pinned()) do_root(instr);
 355   }
 356 
 357   set_block(NULL);
 358   block_do_epilog(block);
 359 }
 360 
 361 
 362 //-------------------------LIRGenerator-----------------------------
 363 
 364 // This is where the tree-walk starts; instr must be root;
 365 void LIRGenerator::do_root(Value instr) {
 366   CHECK_BAILOUT();
 367 
 368   InstructionMark im(compilation(), instr);
 369 
 370   assert(instr->is_pinned(), "use only with roots");
 371   assert(instr->subst() == instr, "shouldn't have missed substitution");
 372 
 373   instr->visit(this);
 374 
 375   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 376          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 377 }
 378 
 379 
 380 // This is called for each node in tree; the walk stops if a root is reached
 381 void LIRGenerator::walk(Value instr) {
 382   InstructionMark im(compilation(), instr);
 383   //stop walk when encounter a root
 384   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 385     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 386   } else {
 387     assert(instr->subst() == instr, "shouldn't have missed substitution");
 388     instr->visit(this);
 389     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 390   }
 391 }
 392 
 393 
 394 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 395   assert(state != NULL, "state must be defined");
 396 
 397 #ifndef PRODUCT
 398   state->verify();
 399 #endif
 400 
 401   ValueStack* s = state;
 402   for_each_state(s) {
 403     if (s->kind() == ValueStack::EmptyExceptionState) {
 404       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 405       continue;
 406     }
 407 
 408     int index;
 409     Value value;
 410     for_each_stack_value(s, index, value) {
 411       assert(value->subst() == value, "missed substitution");
 412       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 413         walk(value);
 414         assert(value->operand()->is_valid(), "must be evaluated now");
 415       }
 416     }
 417 
 418     int bci = s->bci();
 419     IRScope* scope = s->scope();
 420     ciMethod* method = scope->method();
 421 
 422     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 423     if (bci == SynchronizationEntryBCI) {
 424       if (x->as_ExceptionObject() || x->as_Throw()) {
 425         // all locals are dead on exit from the synthetic unlocker
 426         liveness.clear();
 427       } else {
 428         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 429       }
 430     }
 431     if (!liveness.is_valid()) {
 432       // Degenerate or breakpointed method.
 433       bailout("Degenerate or breakpointed method");
 434     } else {
 435       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 436       for_each_local_value(s, index, value) {
 437         assert(value->subst() == value, "missed substition");
 438         if (liveness.at(index) && !value->type()->is_illegal()) {
 439           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 440             walk(value);
 441             assert(value->operand()->is_valid(), "must be evaluated now");
 442           }
 443         } else {
 444           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 445           s->invalidate_local(index);
 446         }
 447       }
 448     }
 449   }
 450 
 451   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 452 }
 453 
 454 
 455 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 456   return state_for(x, x->exception_state());
 457 }
 458 
 459 
 460 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 461   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 462    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 463    * the class. */
 464   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 465     assert(info != NULL, "info must be set if class is not loaded");
 466     __ klass2reg_patch(NULL, r, info);
 467   } else {
 468     // no patching needed
 469     __ metadata2reg(obj->constant_encoding(), r);
 470   }
 471 }
 472 
 473 
 474 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 475                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 476   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 477   if (index->is_constant()) {
 478     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 479                 index->as_jint(), null_check_info);
 480     __ branch(lir_cond_belowEqual, stub); // forward branch
 481   } else {
 482     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 483                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 484     __ branch(lir_cond_aboveEqual, stub); // forward branch
 485   }
 486 }
 487 
 488 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 489   LIR_Opr result_op = result;
 490   LIR_Opr left_op   = left;
 491   LIR_Opr right_op  = right;
 492 
 493   if (TwoOperandLIRForm && left_op != result_op) {
 494     assert(right_op != result_op, "malformed");
 495     __ move(left_op, result_op);
 496     left_op = result_op;
 497   }
 498 
 499   switch(code) {
 500     case Bytecodes::_dadd:
 501     case Bytecodes::_fadd:
 502     case Bytecodes::_ladd:
 503     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 504     case Bytecodes::_fmul:
 505     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 506 
 507     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 508 
 509     case Bytecodes::_imul:
 510       {
 511         bool did_strength_reduce = false;
 512 
 513         if (right->is_constant()) {
 514           jint c = right->as_jint();
 515           if (c > 0 && is_power_of_2(c)) {
 516             // do not need tmp here
 517             __ shift_left(left_op, exact_log2(c), result_op);
 518             did_strength_reduce = true;
 519           } else {
 520             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 521           }
 522         }
 523         // we couldn't strength reduce so just emit the multiply
 524         if (!did_strength_reduce) {
 525           __ mul(left_op, right_op, result_op);
 526         }
 527       }
 528       break;
 529 
 530     case Bytecodes::_dsub:
 531     case Bytecodes::_fsub:
 532     case Bytecodes::_lsub:
 533     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 534 
 535     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 536     // ldiv and lrem are implemented with a direct runtime call
 537 
 538     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 539 
 540     case Bytecodes::_drem:
 541     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 542 
 543     default: ShouldNotReachHere();
 544   }
 545 }
 546 
 547 
 548 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 549   arithmetic_op(code, result, left, right, tmp);
 550 }
 551 
 552 
 553 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 554   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 555 }
 556 
 557 
 558 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 559   arithmetic_op(code, result, left, right, tmp);
 560 }
 561 
 562 
 563 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 564 
 565   if (TwoOperandLIRForm && value != result_op
 566       // Only 32bit right shifts require two operand form on S390.
 567       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 568     assert(count != result_op, "malformed");
 569     __ move(value, result_op);
 570     value = result_op;
 571   }
 572 
 573   assert(count->is_constant() || count->is_register(), "must be");
 574   switch(code) {
 575   case Bytecodes::_ishl:
 576   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 577   case Bytecodes::_ishr:
 578   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 579   case Bytecodes::_iushr:
 580   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 581   default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 587   if (TwoOperandLIRForm && left_op != result_op) {
 588     assert(right_op != result_op, "malformed");
 589     __ move(left_op, result_op);
 590     left_op = result_op;
 591   }
 592 
 593   switch(code) {
 594     case Bytecodes::_iand:
 595     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 596 
 597     case Bytecodes::_ior:
 598     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 599 
 600     case Bytecodes::_ixor:
 601     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 602 
 603     default: ShouldNotReachHere();
 604   }
 605 }
 606 
 607 
 608 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 609   if (!GenerateSynchronizationCode) return;
 610   // for slow path, use debug info for state after successful locking
 611   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 612   __ load_stack_address_monitor(monitor_no, lock);
 613   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 614   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 615 }
 616 
 617 
 618 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 619   if (!GenerateSynchronizationCode) return;
 620   // setup registers
 621   LIR_Opr hdr = lock;
 622   lock = new_hdr;
 623   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 624   __ load_stack_address_monitor(monitor_no, lock);
 625   __ unlock_object(hdr, object, lock, scratch, slow_path);
 626 }
 627 
 628 #ifndef PRODUCT
 629 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 630   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 631     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 632   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 633     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 634   }
 635 }
 636 #endif
 637 
 638 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 639   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 640   // If klass is not loaded we do not know if the klass has finalizers:
 641   if (UseFastNewInstance && klass->is_loaded()
 642       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 643 
 644     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 645 
 646     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 647 
 648     assert(klass->is_loaded(), "must be loaded");
 649     // allocate space for instance
 650     assert(klass->size_helper() > 0, "illegal instance size");
 651     const int instance_size = align_object_size(klass->size_helper());
 652     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 653                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 654   } else {
 655     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 656     __ branch(lir_cond_always, slow_path);
 657     __ branch_destination(slow_path->continuation());
 658   }
 659 }
 660 
 661 
 662 static bool is_constant_zero(Instruction* inst) {
 663   IntConstant* c = inst->type()->as_IntConstant();
 664   if (c) {
 665     return (c->value() == 0);
 666   }
 667   return false;
 668 }
 669 
 670 
 671 static bool positive_constant(Instruction* inst) {
 672   IntConstant* c = inst->type()->as_IntConstant();
 673   if (c) {
 674     return (c->value() >= 0);
 675   }
 676   return false;
 677 }
 678 
 679 
 680 static ciArrayKlass* as_array_klass(ciType* type) {
 681   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 682     return (ciArrayKlass*)type;
 683   } else {
 684     return NULL;
 685   }
 686 }
 687 
 688 static ciType* phi_declared_type(Phi* phi) {
 689   ciType* t = phi->operand_at(0)->declared_type();
 690   if (t == NULL) {
 691     return NULL;
 692   }
 693   for(int i = 1; i < phi->operand_count(); i++) {
 694     if (t != phi->operand_at(i)->declared_type()) {
 695       return NULL;
 696     }
 697   }
 698   return t;
 699 }
 700 
 701 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 702   Instruction* src     = x->argument_at(0);
 703   Instruction* src_pos = x->argument_at(1);
 704   Instruction* dst     = x->argument_at(2);
 705   Instruction* dst_pos = x->argument_at(3);
 706   Instruction* length  = x->argument_at(4);
 707 
 708   // first try to identify the likely type of the arrays involved
 709   ciArrayKlass* expected_type = NULL;
 710   bool is_exact = false, src_objarray = false, dst_objarray = false;
 711   {
 712     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 713     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 714     Phi* phi;
 715     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 716       src_declared_type = as_array_klass(phi_declared_type(phi));
 717     }
 718     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 719     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 720     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 721       dst_declared_type = as_array_klass(phi_declared_type(phi));
 722     }
 723 
 724     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 725       // the types exactly match so the type is fully known
 726       is_exact = true;
 727       expected_type = src_exact_type;
 728     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 729       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 730       ciArrayKlass* src_type = NULL;
 731       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 732         src_type = (ciArrayKlass*) src_exact_type;
 733       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 734         src_type = (ciArrayKlass*) src_declared_type;
 735       }
 736       if (src_type != NULL) {
 737         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 738           is_exact = true;
 739           expected_type = dst_type;
 740         }
 741       }
 742     }
 743     // at least pass along a good guess
 744     if (expected_type == NULL) expected_type = dst_exact_type;
 745     if (expected_type == NULL) expected_type = src_declared_type;
 746     if (expected_type == NULL) expected_type = dst_declared_type;
 747 
 748     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 749     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 750   }
 751 
 752   // if a probable array type has been identified, figure out if any
 753   // of the required checks for a fast case can be elided.
 754   int flags = LIR_OpArrayCopy::all_flags;
 755 
 756   if (!src_objarray)
 757     flags &= ~LIR_OpArrayCopy::src_objarray;
 758   if (!dst_objarray)
 759     flags &= ~LIR_OpArrayCopy::dst_objarray;
 760 
 761   if (!x->arg_needs_null_check(0))
 762     flags &= ~LIR_OpArrayCopy::src_null_check;
 763   if (!x->arg_needs_null_check(2))
 764     flags &= ~LIR_OpArrayCopy::dst_null_check;
 765 
 766 
 767   if (expected_type != NULL) {
 768     Value length_limit = NULL;
 769 
 770     IfOp* ifop = length->as_IfOp();
 771     if (ifop != NULL) {
 772       // look for expressions like min(v, a.length) which ends up as
 773       //   x > y ? y : x  or  x >= y ? y : x
 774       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 775           ifop->x() == ifop->fval() &&
 776           ifop->y() == ifop->tval()) {
 777         length_limit = ifop->y();
 778       }
 779     }
 780 
 781     // try to skip null checks and range checks
 782     NewArray* src_array = src->as_NewArray();
 783     if (src_array != NULL) {
 784       flags &= ~LIR_OpArrayCopy::src_null_check;
 785       if (length_limit != NULL &&
 786           src_array->length() == length_limit &&
 787           is_constant_zero(src_pos)) {
 788         flags &= ~LIR_OpArrayCopy::src_range_check;
 789       }
 790     }
 791 
 792     NewArray* dst_array = dst->as_NewArray();
 793     if (dst_array != NULL) {
 794       flags &= ~LIR_OpArrayCopy::dst_null_check;
 795       if (length_limit != NULL &&
 796           dst_array->length() == length_limit &&
 797           is_constant_zero(dst_pos)) {
 798         flags &= ~LIR_OpArrayCopy::dst_range_check;
 799       }
 800     }
 801 
 802     // check from incoming constant values
 803     if (positive_constant(src_pos))
 804       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 805     if (positive_constant(dst_pos))
 806       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 807     if (positive_constant(length))
 808       flags &= ~LIR_OpArrayCopy::length_positive_check;
 809 
 810     // see if the range check can be elided, which might also imply
 811     // that src or dst is non-null.
 812     ArrayLength* al = length->as_ArrayLength();
 813     if (al != NULL) {
 814       if (al->array() == src) {
 815         // it's the length of the source array
 816         flags &= ~LIR_OpArrayCopy::length_positive_check;
 817         flags &= ~LIR_OpArrayCopy::src_null_check;
 818         if (is_constant_zero(src_pos))
 819           flags &= ~LIR_OpArrayCopy::src_range_check;
 820       }
 821       if (al->array() == dst) {
 822         // it's the length of the destination array
 823         flags &= ~LIR_OpArrayCopy::length_positive_check;
 824         flags &= ~LIR_OpArrayCopy::dst_null_check;
 825         if (is_constant_zero(dst_pos))
 826           flags &= ~LIR_OpArrayCopy::dst_range_check;
 827       }
 828     }
 829     if (is_exact) {
 830       flags &= ~LIR_OpArrayCopy::type_check;
 831     }
 832   }
 833 
 834   IntConstant* src_int = src_pos->type()->as_IntConstant();
 835   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 836   if (src_int && dst_int) {
 837     int s_offs = src_int->value();
 838     int d_offs = dst_int->value();
 839     if (src_int->value() >= dst_int->value()) {
 840       flags &= ~LIR_OpArrayCopy::overlapping;
 841     }
 842     if (expected_type != NULL) {
 843       BasicType t = expected_type->element_type()->basic_type();
 844       int element_size = type2aelembytes(t);
 845       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 846           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 847         flags &= ~LIR_OpArrayCopy::unaligned;
 848       }
 849     }
 850   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 851     // src and dest positions are the same, or dst is zero so assume
 852     // nonoverlapping copy.
 853     flags &= ~LIR_OpArrayCopy::overlapping;
 854   }
 855 
 856   if (src == dst) {
 857     // moving within a single array so no type checks are needed
 858     if (flags & LIR_OpArrayCopy::type_check) {
 859       flags &= ~LIR_OpArrayCopy::type_check;
 860     }
 861   }
 862   *flagsp = flags;
 863   *expected_typep = (ciArrayKlass*)expected_type;
 864 }
 865 
 866 
 867 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 868   assert(opr->is_register(), "why spill if item is not register?");
 869 
 870   if (strict_fp_requires_explicit_rounding) {
 871 #ifdef IA32
 872     if (UseSSE < 1 && opr->is_single_fpu()) {
 873       LIR_Opr result = new_register(T_FLOAT);
 874       set_vreg_flag(result, must_start_in_memory);
 875       assert(opr->is_register(), "only a register can be spilled");
 876       assert(opr->value_type()->is_float(), "rounding only for floats available");
 877       __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 878       return result;
 879     }
 880 #else
 881     Unimplemented();
 882 #endif // IA32
 883   }
 884   return opr;
 885 }
 886 
 887 
 888 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 889   assert(type2size[t] == type2size[value->type()],
 890          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 891   if (!value->is_register()) {
 892     // force into a register
 893     LIR_Opr r = new_register(value->type());
 894     __ move(value, r);
 895     value = r;
 896   }
 897 
 898   // create a spill location
 899   LIR_Opr tmp = new_register(t);
 900   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 901 
 902   // move from register to spill
 903   __ move(value, tmp);
 904   return tmp;
 905 }
 906 
 907 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 908   if (if_instr->should_profile()) {
 909     ciMethod* method = if_instr->profiled_method();
 910     assert(method != NULL, "method should be set if branch is profiled");
 911     ciMethodData* md = method->method_data_or_null();
 912     assert(md != NULL, "Sanity");
 913     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 914     assert(data != NULL, "must have profiling data");
 915     assert(data->is_BranchData(), "need BranchData for two-way branches");
 916     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 917     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 918     if (if_instr->is_swapped()) {
 919       int t = taken_count_offset;
 920       taken_count_offset = not_taken_count_offset;
 921       not_taken_count_offset = t;
 922     }
 923 
 924     LIR_Opr md_reg = new_register(T_METADATA);
 925     __ metadata2reg(md->constant_encoding(), md_reg);
 926 
 927     LIR_Opr data_offset_reg = new_pointer_register();
 928     __ cmove(lir_cond(cond),
 929              LIR_OprFact::intptrConst(taken_count_offset),
 930              LIR_OprFact::intptrConst(not_taken_count_offset),
 931              data_offset_reg, as_BasicType(if_instr->x()->type()));
 932 
 933     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 934     LIR_Opr data_reg = new_pointer_register();
 935     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 936     __ move(data_addr, data_reg);
 937     // Use leal instead of add to avoid destroying condition codes on x86
 938     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 939     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 940     __ move(data_reg, data_addr);
 941   }
 942 }
 943 
 944 // Phi technique:
 945 // This is about passing live values from one basic block to the other.
 946 // In code generated with Java it is rather rare that more than one
 947 // value is on the stack from one basic block to the other.
 948 // We optimize our technique for efficient passing of one value
 949 // (of type long, int, double..) but it can be extended.
 950 // When entering or leaving a basic block, all registers and all spill
 951 // slots are release and empty. We use the released registers
 952 // and spill slots to pass the live values from one block
 953 // to the other. The topmost value, i.e., the value on TOS of expression
 954 // stack is passed in registers. All other values are stored in spilling
 955 // area. Every Phi has an index which designates its spill slot
 956 // At exit of a basic block, we fill the register(s) and spill slots.
 957 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 958 // and locks necessary registers and spilling slots.
 959 
 960 
 961 // move current value to referenced phi function
 962 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 963   Phi* phi = sux_val->as_Phi();
 964   // cur_val can be null without phi being null in conjunction with inlining
 965   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 966     Phi* cur_phi = cur_val->as_Phi();
 967     if (cur_phi != NULL && cur_phi->is_illegal()) {
 968       // Phi and local would need to get invalidated
 969       // (which is unexpected for Linear Scan).
 970       // But this case is very rare so we simply bail out.
 971       bailout("propagation of illegal phi");
 972       return;
 973     }
 974     LIR_Opr operand = cur_val->operand();
 975     if (operand->is_illegal()) {
 976       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 977              "these can be produced lazily");
 978       operand = operand_for_instruction(cur_val);
 979     }
 980     resolver->move(operand, operand_for_instruction(phi));
 981   }
 982 }
 983 
 984 
 985 // Moves all stack values into their PHI position
 986 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 987   BlockBegin* bb = block();
 988   if (bb->number_of_sux() == 1) {
 989     BlockBegin* sux = bb->sux_at(0);
 990     assert(sux->number_of_preds() > 0, "invalid CFG");
 991 
 992     // a block with only one predecessor never has phi functions
 993     if (sux->number_of_preds() > 1) {
 994       PhiResolver resolver(this);
 995 
 996       ValueStack* sux_state = sux->state();
 997       Value sux_value;
 998       int index;
 999 
1000       assert(cur_state->scope() == sux_state->scope(), "not matching");
1001       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1002       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1003 
1004       for_each_stack_value(sux_state, index, sux_value) {
1005         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1006       }
1007 
1008       for_each_local_value(sux_state, index, sux_value) {
1009         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1010       }
1011 
1012       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1013     }
1014   }
1015 }
1016 
1017 
1018 LIR_Opr LIRGenerator::new_register(BasicType type) {
1019   int vreg_num = _virtual_register_number;
1020   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1021   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1022   if (vreg_num + 20 >= LIR_OprDesc::vreg_max) {
1023     bailout("out of virtual registers in LIR generator");
1024     if (vreg_num + 2 >= LIR_OprDesc::vreg_max) {
1025       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1026       _virtual_register_number = LIR_OprDesc::vreg_base;
1027       vreg_num = LIR_OprDesc::vreg_base;
1028     }
1029   }
1030   _virtual_register_number += 1;
1031   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1032   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1033   return vreg;
1034 }
1035 
1036 
1037 // Try to lock using register in hint
1038 LIR_Opr LIRGenerator::rlock(Value instr) {
1039   return new_register(instr->type());
1040 }
1041 
1042 
1043 // does an rlock and sets result
1044 LIR_Opr LIRGenerator::rlock_result(Value x) {
1045   LIR_Opr reg = rlock(x);
1046   set_result(x, reg);
1047   return reg;
1048 }
1049 
1050 
1051 // does an rlock and sets result
1052 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1053   LIR_Opr reg;
1054   switch (type) {
1055   case T_BYTE:
1056   case T_BOOLEAN:
1057     reg = rlock_byte(type);
1058     break;
1059   default:
1060     reg = rlock(x);
1061     break;
1062   }
1063 
1064   set_result(x, reg);
1065   return reg;
1066 }
1067 
1068 
1069 //---------------------------------------------------------------------
1070 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1071   ObjectType* oc = value->type()->as_ObjectType();
1072   if (oc) {
1073     return oc->constant_value();
1074   }
1075   return NULL;
1076 }
1077 
1078 
1079 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1080   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1081   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1082 
1083   // no moves are created for phi functions at the begin of exception
1084   // handlers, so assign operands manually here
1085   for_each_phi_fun(block(), phi,
1086                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1087 
1088   LIR_Opr thread_reg = getThreadPointer();
1089   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1090                exceptionOopOpr());
1091   __ move_wide(LIR_OprFact::oopConst(NULL),
1092                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1093   __ move_wide(LIR_OprFact::oopConst(NULL),
1094                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1095 
1096   LIR_Opr result = new_register(T_OBJECT);
1097   __ move(exceptionOopOpr(), result);
1098   set_result(x, result);
1099 }
1100 
1101 
1102 //----------------------------------------------------------------------
1103 //----------------------------------------------------------------------
1104 //----------------------------------------------------------------------
1105 //----------------------------------------------------------------------
1106 //                        visitor functions
1107 //----------------------------------------------------------------------
1108 //----------------------------------------------------------------------
1109 //----------------------------------------------------------------------
1110 //----------------------------------------------------------------------
1111 
1112 void LIRGenerator::do_Phi(Phi* x) {
1113   // phi functions are never visited directly
1114   ShouldNotReachHere();
1115 }
1116 
1117 
1118 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1119 void LIRGenerator::do_Constant(Constant* x) {
1120   if (x->state_before() != NULL) {
1121     // Any constant with a ValueStack requires patching so emit the patch here
1122     LIR_Opr reg = rlock_result(x);
1123     CodeEmitInfo* info = state_for(x, x->state_before());
1124     __ oop2reg_patch(NULL, reg, info);
1125   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1126     if (!x->is_pinned()) {
1127       // unpinned constants are handled specially so that they can be
1128       // put into registers when they are used multiple times within a
1129       // block.  After the block completes their operand will be
1130       // cleared so that other blocks can't refer to that register.
1131       set_result(x, load_constant(x));
1132     } else {
1133       LIR_Opr res = x->operand();
1134       if (!res->is_valid()) {
1135         res = LIR_OprFact::value_type(x->type());
1136       }
1137       if (res->is_constant()) {
1138         LIR_Opr reg = rlock_result(x);
1139         __ move(res, reg);
1140       } else {
1141         set_result(x, res);
1142       }
1143     }
1144   } else {
1145     set_result(x, LIR_OprFact::value_type(x->type()));
1146   }
1147 }
1148 
1149 
1150 void LIRGenerator::do_Local(Local* x) {
1151   // operand_for_instruction has the side effect of setting the result
1152   // so there's no need to do it here.
1153   operand_for_instruction(x);
1154 }
1155 
1156 
1157 void LIRGenerator::do_Return(Return* x) {
1158   if (compilation()->env()->dtrace_method_probes()) {
1159     BasicTypeList signature;
1160     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1161     signature.append(T_METADATA); // Method*
1162     LIR_OprList* args = new LIR_OprList();
1163     args->append(getThreadPointer());
1164     LIR_Opr meth = new_register(T_METADATA);
1165     __ metadata2reg(method()->constant_encoding(), meth);
1166     args->append(meth);
1167     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1168   }
1169 
1170   if (x->type()->is_void()) {
1171     __ return_op(LIR_OprFact::illegalOpr);
1172   } else {
1173     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1174     LIRItem result(x->result(), this);
1175 
1176     result.load_item_force(reg);
1177     __ return_op(result.result());
1178   }
1179   set_no_result(x);
1180 }
1181 
1182 // Examble: ref.get()
1183 // Combination of LoadField and g1 pre-write barrier
1184 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1185 
1186   const int referent_offset = java_lang_ref_Reference::referent_offset();
1187 
1188   assert(x->number_of_arguments() == 1, "wrong type");
1189 
1190   LIRItem reference(x->argument_at(0), this);
1191   reference.load_item();
1192 
1193   // need to perform the null check on the reference objecy
1194   CodeEmitInfo* info = NULL;
1195   if (x->needs_null_check()) {
1196     info = state_for(x);
1197   }
1198 
1199   LIR_Opr result = rlock_result(x, T_OBJECT);
1200   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1201                  reference, LIR_OprFact::intConst(referent_offset), result);
1202 }
1203 
1204 // Example: clazz.isInstance(object)
1205 void LIRGenerator::do_isInstance(Intrinsic* x) {
1206   assert(x->number_of_arguments() == 2, "wrong type");
1207 
1208   // TODO could try to substitute this node with an equivalent InstanceOf
1209   // if clazz is known to be a constant Class. This will pick up newly found
1210   // constants after HIR construction. I'll leave this to a future change.
1211 
1212   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1213   // could follow the aastore example in a future change.
1214 
1215   LIRItem clazz(x->argument_at(0), this);
1216   LIRItem object(x->argument_at(1), this);
1217   clazz.load_item();
1218   object.load_item();
1219   LIR_Opr result = rlock_result(x);
1220 
1221   // need to perform null check on clazz
1222   if (x->needs_null_check()) {
1223     CodeEmitInfo* info = state_for(x);
1224     __ null_check(clazz.result(), info);
1225   }
1226 
1227   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1228                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1229                                      x->type(),
1230                                      NULL); // NULL CodeEmitInfo results in a leaf call
1231   __ move(call_result, result);
1232 }
1233 
1234 // Example: object.getClass ()
1235 void LIRGenerator::do_getClass(Intrinsic* x) {
1236   assert(x->number_of_arguments() == 1, "wrong type");
1237 
1238   LIRItem rcvr(x->argument_at(0), this);
1239   rcvr.load_item();
1240   LIR_Opr temp = new_register(T_METADATA);
1241   LIR_Opr result = rlock_result(x);
1242 
1243   // need to perform the null check on the rcvr
1244   CodeEmitInfo* info = NULL;
1245   if (x->needs_null_check()) {
1246     info = state_for(x);
1247   }
1248 
1249   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1250   // meaning of these two is mixed up (see JDK-8026837).
1251   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1252   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1253   // mirror = ((OopHandle)mirror)->resolve();
1254   access_load(IN_NATIVE, T_OBJECT,
1255               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1256 }
1257 
1258 // java.lang.Class::isPrimitive()
1259 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1260   assert(x->number_of_arguments() == 1, "wrong type");
1261 
1262   LIRItem rcvr(x->argument_at(0), this);
1263   rcvr.load_item();
1264   LIR_Opr temp = new_register(T_METADATA);
1265   LIR_Opr result = rlock_result(x);
1266 
1267   CodeEmitInfo* info = NULL;
1268   if (x->needs_null_check()) {
1269     info = state_for(x);
1270   }
1271 
1272   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1273   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1274   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1275 }
1276 
1277 // Example: Foo.class.getModifiers()
1278 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1279   assert(x->number_of_arguments() == 1, "wrong type");
1280 
1281   LIRItem receiver(x->argument_at(0), this);
1282   receiver.load_item();
1283   LIR_Opr result = rlock_result(x);
1284 
1285   CodeEmitInfo* info = NULL;
1286   if (x->needs_null_check()) {
1287     info = state_for(x);
1288   }
1289 
1290   LabelObj* L_not_prim = new LabelObj();
1291   LabelObj* L_done = new LabelObj();
1292 
1293   LIR_Opr klass = new_register(T_METADATA);
1294   // Checking if it's a java mirror of primitive type
1295   __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), klass, info);
1296   __ cmp(lir_cond_notEqual, klass, LIR_OprFact::metadataConst(0));
1297   __ branch(lir_cond_notEqual, L_not_prim->label());
1298   __ move(LIR_OprFact::intConst(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), result);
1299   __ branch(lir_cond_always, L_done->label());
1300 
1301   __ branch_destination(L_not_prim->label());
1302   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1303   __ branch_destination(L_done->label());
1304 }
1305 
1306 // Example: Thread.currentThread()
1307 void LIRGenerator::do_currentThread(Intrinsic* x) {
1308   assert(x->number_of_arguments() == 0, "wrong type");
1309   LIR_Opr temp = new_register(T_ADDRESS);
1310   LIR_Opr reg = rlock_result(x);
1311   __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp);
1312   // threadObj = ((OopHandle)_threadObj)->resolve();
1313   access_load(IN_NATIVE, T_OBJECT,
1314               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1315 }
1316 
1317 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1318   assert(x->number_of_arguments() == 3, "wrong type");
1319   LIR_Opr result_reg = rlock_result(x);
1320 
1321   LIRItem value(x->argument_at(2), this);
1322   value.load_item();
1323 
1324   LIR_Opr klass = new_register(T_METADATA);
1325   __ move(new LIR_Address(value.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, NULL);
1326   LIR_Opr layout = new_register(T_INT);
1327   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1328 
1329   LabelObj* L_done = new LabelObj();
1330   LabelObj* L_array = new LabelObj();
1331 
1332   __ cmp(lir_cond_lessEqual, layout, 0);
1333   __ branch(lir_cond_lessEqual, L_array->label());
1334 
1335   // Instance case: the layout helper gives us instance size almost directly,
1336   // but we need to mask out the _lh_instance_slow_path_bit.
1337   __ convert(Bytecodes::_i2l, layout, result_reg);
1338 
1339   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1340   jlong mask = ~(jlong) right_n_bits(LogBytesPerLong);
1341   __ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg);
1342 
1343   __ branch(lir_cond_always, L_done->label());
1344 
1345   // Array case: size is round(header + element_size*arraylength).
1346   // Since arraylength is different for every array instance, we have to
1347   // compute the whole thing at runtime.
1348 
1349   __ branch_destination(L_array->label());
1350 
1351   int round_mask = MinObjAlignmentInBytes - 1;
1352 
1353   // Figure out header sizes first.
1354   LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift);
1355   LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask);
1356 
1357   LIR_Opr header_size = new_register(T_INT);
1358   __ move(layout, header_size);
1359   LIR_Opr tmp = new_register(T_INT);
1360   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1361   __ logical_and(header_size, hsm, header_size);
1362   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1363 
1364   // Figure out the array length in bytes
1365   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1366   LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask);
1367   __ logical_and(layout, l2esm, layout);
1368 
1369   LIR_Opr length_int = new_register(T_INT);
1370   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1371 
1372 #ifdef _LP64
1373   LIR_Opr length = new_register(T_LONG);
1374   __ convert(Bytecodes::_i2l, length_int, length);
1375 #endif
1376 
1377   // Shift-left awkwardness. Normally it is just:
1378   //   __ shift_left(length, layout, length);
1379   // But C1 cannot perform shift_left with non-constant count, so we end up
1380   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1381   // longs, so we have to act on ints.
1382   LabelObj* L_shift_loop = new LabelObj();
1383   LabelObj* L_shift_exit = new LabelObj();
1384 
1385   __ branch_destination(L_shift_loop->label());
1386   __ cmp(lir_cond_equal, layout, 0);
1387   __ branch(lir_cond_equal, L_shift_exit->label());
1388 
1389 #ifdef _LP64
1390   __ shift_left(length, 1, length);
1391 #else
1392   __ shift_left(length_int, 1, length_int);
1393 #endif
1394 
1395   __ sub(layout, LIR_OprFact::intConst(1), layout);
1396 
1397   __ branch(lir_cond_always, L_shift_loop->label());
1398   __ branch_destination(L_shift_exit->label());
1399 
1400   // Mix all up, round, and push to the result.
1401 #ifdef _LP64
1402   LIR_Opr header_size_long = new_register(T_LONG);
1403   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1404   __ add(length, header_size_long, length);
1405   if (round_mask != 0) {
1406     __ logical_and(length, LIR_OprFact::longConst(~round_mask), length);
1407   }
1408   __ move(length, result_reg);
1409 #else
1410   __ add(length_int, header_size, length_int);
1411   if (round_mask != 0) {
1412     __ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int);
1413   }
1414   __ convert(Bytecodes::_i2l, length_int, result_reg);
1415 #endif
1416 
1417   __ branch_destination(L_done->label());
1418 }
1419 
1420 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1421   assert(x->number_of_arguments() == 1, "wrong type");
1422   LIRItem receiver(x->argument_at(0), this);
1423 
1424   receiver.load_item();
1425   BasicTypeList signature;
1426   signature.append(T_OBJECT); // receiver
1427   LIR_OprList* args = new LIR_OprList();
1428   args->append(receiver.result());
1429   CodeEmitInfo* info = state_for(x, x->state());
1430   call_runtime(&signature, args,
1431                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1432                voidType, info);
1433 
1434   set_no_result(x);
1435 }
1436 
1437 
1438 //------------------------local access--------------------------------------
1439 
1440 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1441   if (x->operand()->is_illegal()) {
1442     Constant* c = x->as_Constant();
1443     if (c != NULL) {
1444       x->set_operand(LIR_OprFact::value_type(c->type()));
1445     } else {
1446       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1447       // allocate a virtual register for this local or phi
1448       x->set_operand(rlock(x));
1449       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1450     }
1451   }
1452   return x->operand();
1453 }
1454 
1455 
1456 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1457   if (opr->is_virtual()) {
1458     return instruction_for_vreg(opr->vreg_number());
1459   }
1460   return NULL;
1461 }
1462 
1463 
1464 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1465   if (reg_num < _instruction_for_operand.length()) {
1466     return _instruction_for_operand.at(reg_num);
1467   }
1468   return NULL;
1469 }
1470 
1471 
1472 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1473   if (_vreg_flags.size_in_bits() == 0) {
1474     BitMap2D temp(100, num_vreg_flags);
1475     _vreg_flags = temp;
1476   }
1477   _vreg_flags.at_put_grow(vreg_num, f, true);
1478 }
1479 
1480 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1481   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1482     return false;
1483   }
1484   return _vreg_flags.at(vreg_num, f);
1485 }
1486 
1487 
1488 // Block local constant handling.  This code is useful for keeping
1489 // unpinned constants and constants which aren't exposed in the IR in
1490 // registers.  Unpinned Constant instructions have their operands
1491 // cleared when the block is finished so that other blocks can't end
1492 // up referring to their registers.
1493 
1494 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1495   assert(!x->is_pinned(), "only for unpinned constants");
1496   _unpinned_constants.append(x);
1497   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1498 }
1499 
1500 
1501 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1502   BasicType t = c->type();
1503   for (int i = 0; i < _constants.length(); i++) {
1504     LIR_Const* other = _constants.at(i);
1505     if (t == other->type()) {
1506       switch (t) {
1507       case T_INT:
1508       case T_FLOAT:
1509         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1510         break;
1511       case T_LONG:
1512       case T_DOUBLE:
1513         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1514         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1515         break;
1516       case T_OBJECT:
1517         if (c->as_jobject() != other->as_jobject()) continue;
1518         break;
1519       default:
1520         break;
1521       }
1522       return _reg_for_constants.at(i);
1523     }
1524   }
1525 
1526   LIR_Opr result = new_register(t);
1527   __ move((LIR_Opr)c, result);
1528   _constants.append(c);
1529   _reg_for_constants.append(result);
1530   return result;
1531 }
1532 
1533 //------------------------field access--------------------------------------
1534 
1535 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1536   assert(x->number_of_arguments() == 4, "wrong type");
1537   LIRItem obj   (x->argument_at(0), this);  // object
1538   LIRItem offset(x->argument_at(1), this);  // offset of field
1539   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1540   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1541   assert(obj.type()->tag() == objectTag, "invalid type");
1542   assert(cmp.type()->tag() == type->tag(), "invalid type");
1543   assert(val.type()->tag() == type->tag(), "invalid type");
1544 
1545   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1546                                             obj, offset, cmp, val);
1547   set_result(x, result);
1548 }
1549 
1550 // Comment copied form templateTable_i486.cpp
1551 // ----------------------------------------------------------------------------
1552 // Volatile variables demand their effects be made known to all CPU's in
1553 // order.  Store buffers on most chips allow reads & writes to reorder; the
1554 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1555 // memory barrier (i.e., it's not sufficient that the interpreter does not
1556 // reorder volatile references, the hardware also must not reorder them).
1557 //
1558 // According to the new Java Memory Model (JMM):
1559 // (1) All volatiles are serialized wrt to each other.
1560 // ALSO reads & writes act as aquire & release, so:
1561 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1562 // the read float up to before the read.  It's OK for non-volatile memory refs
1563 // that happen before the volatile read to float down below it.
1564 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1565 // that happen BEFORE the write float down to after the write.  It's OK for
1566 // non-volatile memory refs that happen after the volatile write to float up
1567 // before it.
1568 //
1569 // We only put in barriers around volatile refs (they are expensive), not
1570 // _between_ memory refs (that would require us to track the flavor of the
1571 // previous memory refs).  Requirements (2) and (3) require some barriers
1572 // before volatile stores and after volatile loads.  These nearly cover
1573 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1574 // case is placed after volatile-stores although it could just as well go
1575 // before volatile-loads.
1576 
1577 
1578 void LIRGenerator::do_StoreField(StoreField* x) {
1579   bool needs_patching = x->needs_patching();
1580   bool is_volatile = x->field()->is_volatile();
1581   BasicType field_type = x->field_type();
1582 
1583   CodeEmitInfo* info = NULL;
1584   if (needs_patching) {
1585     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1586     info = state_for(x, x->state_before());
1587   } else if (x->needs_null_check()) {
1588     NullCheck* nc = x->explicit_null_check();
1589     if (nc == NULL) {
1590       info = state_for(x);
1591     } else {
1592       info = state_for(nc);
1593     }
1594   }
1595 
1596   LIRItem object(x->obj(), this);
1597   LIRItem value(x->value(),  this);
1598 
1599   object.load_item();
1600 
1601   if (is_volatile || needs_patching) {
1602     // load item if field is volatile (fewer special cases for volatiles)
1603     // load item if field not initialized
1604     // load item if field not constant
1605     // because of code patching we cannot inline constants
1606     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1607       value.load_byte_item();
1608     } else  {
1609       value.load_item();
1610     }
1611   } else {
1612     value.load_for_store(field_type);
1613   }
1614 
1615   set_no_result(x);
1616 
1617 #ifndef PRODUCT
1618   if (PrintNotLoaded && needs_patching) {
1619     tty->print_cr("   ###class not loaded at store_%s bci %d",
1620                   x->is_static() ?  "static" : "field", x->printable_bci());
1621   }
1622 #endif
1623 
1624   if (x->needs_null_check() &&
1625       (needs_patching ||
1626        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1627     // Emit an explicit null check because the offset is too large.
1628     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1629     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1630     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1631   }
1632 
1633   DecoratorSet decorators = IN_HEAP;
1634   if (is_volatile) {
1635     decorators |= MO_SEQ_CST;
1636   }
1637   if (needs_patching) {
1638     decorators |= C1_NEEDS_PATCHING;
1639   }
1640 
1641   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1642                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1643 }
1644 
1645 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1646   assert(x->is_pinned(),"");
1647   bool needs_range_check = x->compute_needs_range_check();
1648   bool use_length = x->length() != NULL;
1649   bool obj_store = is_reference_type(x->elt_type());
1650   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1651                                          !get_jobject_constant(x->value())->is_null_object() ||
1652                                          x->should_profile());
1653 
1654   LIRItem array(x->array(), this);
1655   LIRItem index(x->index(), this);
1656   LIRItem value(x->value(), this);
1657   LIRItem length(this);
1658 
1659   array.load_item();
1660   index.load_nonconstant();
1661 
1662   if (use_length && needs_range_check) {
1663     length.set_instruction(x->length());
1664     length.load_item();
1665 
1666   }
1667   if (needs_store_check || x->check_boolean()) {
1668     value.load_item();
1669   } else {
1670     value.load_for_store(x->elt_type());
1671   }
1672 
1673   set_no_result(x);
1674 
1675   // the CodeEmitInfo must be duplicated for each different
1676   // LIR-instruction because spilling can occur anywhere between two
1677   // instructions and so the debug information must be different
1678   CodeEmitInfo* range_check_info = state_for(x);
1679   CodeEmitInfo* null_check_info = NULL;
1680   if (x->needs_null_check()) {
1681     null_check_info = new CodeEmitInfo(range_check_info);
1682   }
1683 
1684   if (GenerateRangeChecks && needs_range_check) {
1685     if (use_length) {
1686       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1687       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1688     } else {
1689       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1690       // range_check also does the null check
1691       null_check_info = NULL;
1692     }
1693   }
1694 
1695   if (GenerateArrayStoreCheck && needs_store_check) {
1696     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1697     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1698   }
1699 
1700   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1701   if (x->check_boolean()) {
1702     decorators |= C1_MASK_BOOLEAN;
1703   }
1704 
1705   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1706                   NULL, null_check_info);
1707 }
1708 
1709 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1710                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1711                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1712   decorators |= ACCESS_READ;
1713   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1714   if (access.is_raw()) {
1715     _barrier_set->BarrierSetC1::load_at(access, result);
1716   } else {
1717     _barrier_set->load_at(access, result);
1718   }
1719 }
1720 
1721 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1722                                LIR_Opr addr, LIR_Opr result) {
1723   decorators |= ACCESS_READ;
1724   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1725   access.set_resolved_addr(addr);
1726   if (access.is_raw()) {
1727     _barrier_set->BarrierSetC1::load(access, result);
1728   } else {
1729     _barrier_set->load(access, result);
1730   }
1731 }
1732 
1733 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1734                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1735                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1736   decorators |= ACCESS_WRITE;
1737   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1738   if (access.is_raw()) {
1739     _barrier_set->BarrierSetC1::store_at(access, value);
1740   } else {
1741     _barrier_set->store_at(access, value);
1742   }
1743 }
1744 
1745 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1746                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1747   decorators |= ACCESS_READ;
1748   decorators |= ACCESS_WRITE;
1749   // Atomic operations are SEQ_CST by default
1750   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1751   LIRAccess access(this, decorators, base, offset, type);
1752   if (access.is_raw()) {
1753     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1754   } else {
1755     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1756   }
1757 }
1758 
1759 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1760                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1761   decorators |= ACCESS_READ;
1762   decorators |= ACCESS_WRITE;
1763   // Atomic operations are SEQ_CST by default
1764   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1765   LIRAccess access(this, decorators, base, offset, type);
1766   if (access.is_raw()) {
1767     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1768   } else {
1769     return _barrier_set->atomic_xchg_at(access, value);
1770   }
1771 }
1772 
1773 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1774                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1775   decorators |= ACCESS_READ;
1776   decorators |= ACCESS_WRITE;
1777   // Atomic operations are SEQ_CST by default
1778   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1779   LIRAccess access(this, decorators, base, offset, type);
1780   if (access.is_raw()) {
1781     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1782   } else {
1783     return _barrier_set->atomic_add_at(access, value);
1784   }
1785 }
1786 
1787 void LIRGenerator::do_LoadField(LoadField* x) {
1788   bool needs_patching = x->needs_patching();
1789   bool is_volatile = x->field()->is_volatile();
1790   BasicType field_type = x->field_type();
1791 
1792   CodeEmitInfo* info = NULL;
1793   if (needs_patching) {
1794     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1795     info = state_for(x, x->state_before());
1796   } else if (x->needs_null_check()) {
1797     NullCheck* nc = x->explicit_null_check();
1798     if (nc == NULL) {
1799       info = state_for(x);
1800     } else {
1801       info = state_for(nc);
1802     }
1803   }
1804 
1805   LIRItem object(x->obj(), this);
1806 
1807   object.load_item();
1808 
1809 #ifndef PRODUCT
1810   if (PrintNotLoaded && needs_patching) {
1811     tty->print_cr("   ###class not loaded at load_%s bci %d",
1812                   x->is_static() ?  "static" : "field", x->printable_bci());
1813   }
1814 #endif
1815 
1816   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1817   if (x->needs_null_check() &&
1818       (needs_patching ||
1819        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1820        stress_deopt)) {
1821     LIR_Opr obj = object.result();
1822     if (stress_deopt) {
1823       obj = new_register(T_OBJECT);
1824       __ move(LIR_OprFact::oopConst(NULL), obj);
1825     }
1826     // Emit an explicit null check because the offset is too large.
1827     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1828     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1829     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1830   }
1831 
1832   DecoratorSet decorators = IN_HEAP;
1833   if (is_volatile) {
1834     decorators |= MO_SEQ_CST;
1835   }
1836   if (needs_patching) {
1837     decorators |= C1_NEEDS_PATCHING;
1838   }
1839 
1840   LIR_Opr result = rlock_result(x, field_type);
1841   access_load_at(decorators, field_type,
1842                  object, LIR_OprFact::intConst(x->offset()), result,
1843                  info ? new CodeEmitInfo(info) : NULL, info);
1844 }
1845 
1846 // int/long jdk.internal.util.Preconditions.checkIndex
1847 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1848   assert(x->number_of_arguments() == 3, "wrong type");
1849   LIRItem index(x->argument_at(0), this);
1850   LIRItem length(x->argument_at(1), this);
1851   LIRItem oobef(x->argument_at(2), this);
1852 
1853   index.load_item();
1854   length.load_item();
1855   oobef.load_item();
1856 
1857   LIR_Opr result = rlock_result(x);
1858   // x->state() is created from copy_state_for_exception, it does not contains arguments
1859   // we should prepare them before entering into interpreter mode due to deoptimization.
1860   ValueStack* state = x->state();
1861   for (int i = 0; i < x->number_of_arguments(); i++) {
1862     Value arg = x->argument_at(i);
1863     state->push(arg->type(), arg);
1864   }
1865   CodeEmitInfo* info = state_for(x, state);
1866 
1867   LIR_Opr len = length.result();
1868   LIR_Opr zero = NULL;
1869   if (type == T_INT) {
1870     zero = LIR_OprFact::intConst(0);
1871     if (length.result()->is_constant()){
1872       len = LIR_OprFact::intConst(length.result()->as_jint());
1873     }
1874   } else {
1875     assert(type == T_LONG, "sanity check");
1876     zero = LIR_OprFact::longConst(0);
1877     if (length.result()->is_constant()){
1878       len = LIR_OprFact::longConst(length.result()->as_jlong());
1879     }
1880   }
1881   // C1 can not handle the case that comparing index with constant value while condition
1882   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1883   LIR_Opr zero_reg = new_register(type);
1884   __ move(zero, zero_reg);
1885 #if defined(X86) && !defined(_LP64)
1886   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1887   LIR_Opr index_copy = new_register(index.type());
1888   // index >= 0
1889   __ move(index.result(), index_copy);
1890   __ cmp(lir_cond_less, index_copy, zero_reg);
1891   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1892                                                     Deoptimization::Action_make_not_entrant));
1893   // index < length
1894   __ move(index.result(), index_copy);
1895   __ cmp(lir_cond_greaterEqual, index_copy, len);
1896   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1897                                                             Deoptimization::Action_make_not_entrant));
1898 #else
1899   // index >= 0
1900   __ cmp(lir_cond_less, index.result(), zero_reg);
1901   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1902                                                     Deoptimization::Action_make_not_entrant));
1903   // index < length
1904   __ cmp(lir_cond_greaterEqual, index.result(), len);
1905   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1906                                                             Deoptimization::Action_make_not_entrant));
1907 #endif
1908   __ move(index.result(), result);
1909 }
1910 
1911 //------------------------array access--------------------------------------
1912 
1913 
1914 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1915   LIRItem array(x->array(), this);
1916   array.load_item();
1917   LIR_Opr reg = rlock_result(x);
1918 
1919   CodeEmitInfo* info = NULL;
1920   if (x->needs_null_check()) {
1921     NullCheck* nc = x->explicit_null_check();
1922     if (nc == NULL) {
1923       info = state_for(x);
1924     } else {
1925       info = state_for(nc);
1926     }
1927     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1928       LIR_Opr obj = new_register(T_OBJECT);
1929       __ move(LIR_OprFact::oopConst(NULL), obj);
1930       __ null_check(obj, new CodeEmitInfo(info));
1931     }
1932   }
1933   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1934 }
1935 
1936 
1937 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1938   bool use_length = x->length() != NULL;
1939   LIRItem array(x->array(), this);
1940   LIRItem index(x->index(), this);
1941   LIRItem length(this);
1942   bool needs_range_check = x->compute_needs_range_check();
1943 
1944   if (use_length && needs_range_check) {
1945     length.set_instruction(x->length());
1946     length.load_item();
1947   }
1948 
1949   array.load_item();
1950   if (index.is_constant() && can_inline_as_constant(x->index())) {
1951     // let it be a constant
1952     index.dont_load_item();
1953   } else {
1954     index.load_item();
1955   }
1956 
1957   CodeEmitInfo* range_check_info = state_for(x);
1958   CodeEmitInfo* null_check_info = NULL;
1959   if (x->needs_null_check()) {
1960     NullCheck* nc = x->explicit_null_check();
1961     if (nc != NULL) {
1962       null_check_info = state_for(nc);
1963     } else {
1964       null_check_info = range_check_info;
1965     }
1966     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1967       LIR_Opr obj = new_register(T_OBJECT);
1968       __ move(LIR_OprFact::oopConst(NULL), obj);
1969       __ null_check(obj, new CodeEmitInfo(null_check_info));
1970     }
1971   }
1972 
1973   if (GenerateRangeChecks && needs_range_check) {
1974     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1975       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1976     } else if (use_length) {
1977       // TODO: use a (modified) version of array_range_check that does not require a
1978       //       constant length to be loaded to a register
1979       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1980       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1981     } else {
1982       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1983       // The range check performs the null check, so clear it out for the load
1984       null_check_info = NULL;
1985     }
1986   }
1987 
1988   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1989 
1990   LIR_Opr result = rlock_result(x, x->elt_type());
1991   access_load_at(decorators, x->elt_type(),
1992                  array, index.result(), result,
1993                  NULL, null_check_info);
1994 }
1995 
1996 
1997 void LIRGenerator::do_NullCheck(NullCheck* x) {
1998   if (x->can_trap()) {
1999     LIRItem value(x->obj(), this);
2000     value.load_item();
2001     CodeEmitInfo* info = state_for(x);
2002     __ null_check(value.result(), info);
2003   }
2004 }
2005 
2006 
2007 void LIRGenerator::do_TypeCast(TypeCast* x) {
2008   LIRItem value(x->obj(), this);
2009   value.load_item();
2010   // the result is the same as from the node we are casting
2011   set_result(x, value.result());
2012 }
2013 
2014 
2015 void LIRGenerator::do_Throw(Throw* x) {
2016   LIRItem exception(x->exception(), this);
2017   exception.load_item();
2018   set_no_result(x);
2019   LIR_Opr exception_opr = exception.result();
2020   CodeEmitInfo* info = state_for(x, x->state());
2021 
2022 #ifndef PRODUCT
2023   if (PrintC1Statistics) {
2024     increment_counter(Runtime1::throw_count_address(), T_INT);
2025   }
2026 #endif
2027 
2028   // check if the instruction has an xhandler in any of the nested scopes
2029   bool unwind = false;
2030   if (info->exception_handlers()->length() == 0) {
2031     // this throw is not inside an xhandler
2032     unwind = true;
2033   } else {
2034     // get some idea of the throw type
2035     bool type_is_exact = true;
2036     ciType* throw_type = x->exception()->exact_type();
2037     if (throw_type == NULL) {
2038       type_is_exact = false;
2039       throw_type = x->exception()->declared_type();
2040     }
2041     if (throw_type != NULL && throw_type->is_instance_klass()) {
2042       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2043       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2044     }
2045   }
2046 
2047   // do null check before moving exception oop into fixed register
2048   // to avoid a fixed interval with an oop during the null check.
2049   // Use a copy of the CodeEmitInfo because debug information is
2050   // different for null_check and throw.
2051   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2052     // if the exception object wasn't created using new then it might be null.
2053     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2054   }
2055 
2056   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2057     // we need to go through the exception lookup path to get JVMTI
2058     // notification done
2059     unwind = false;
2060   }
2061 
2062   // move exception oop into fixed register
2063   __ move(exception_opr, exceptionOopOpr());
2064 
2065   if (unwind) {
2066     __ unwind_exception(exceptionOopOpr());
2067   } else {
2068     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2069   }
2070 }
2071 
2072 
2073 void LIRGenerator::do_RoundFP(RoundFP* x) {
2074   assert(strict_fp_requires_explicit_rounding, "not required");
2075 
2076   LIRItem input(x->input(), this);
2077   input.load_item();
2078   LIR_Opr input_opr = input.result();
2079   assert(input_opr->is_register(), "why round if value is not in a register?");
2080   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2081   if (input_opr->is_single_fpu()) {
2082     set_result(x, round_item(input_opr)); // This code path not currently taken
2083   } else {
2084     LIR_Opr result = new_register(T_DOUBLE);
2085     set_vreg_flag(result, must_start_in_memory);
2086     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2087     set_result(x, result);
2088   }
2089 }
2090 
2091 
2092 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2093   BasicType type = x->basic_type();
2094   LIRItem src(x->object(), this);
2095   LIRItem off(x->offset(), this);
2096 
2097   off.load_item();
2098   src.load_item();
2099 
2100   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2101 
2102   if (x->is_volatile()) {
2103     decorators |= MO_SEQ_CST;
2104   }
2105   if (type == T_BOOLEAN) {
2106     decorators |= C1_MASK_BOOLEAN;
2107   }
2108   if (is_reference_type(type)) {
2109     decorators |= ON_UNKNOWN_OOP_REF;
2110   }
2111 
2112   LIR_Opr result = rlock_result(x, type);
2113   if (!x->is_raw()) {
2114     access_load_at(decorators, type, src, off.result(), result);
2115   } else {
2116     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2117     // It reads the value from [src + offset] directly.
2118 #ifdef _LP64
2119     LIR_Opr offset = new_register(T_LONG);
2120     __ convert(Bytecodes::_i2l, off.result(), offset);
2121 #else
2122     LIR_Opr offset = off.result();
2123 #endif
2124     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2125     if (is_reference_type(type)) {
2126       __ move_wide(addr, result);
2127     } else {
2128       __ move(addr, result);
2129     }
2130   }
2131 }
2132 
2133 
2134 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2135   BasicType type = x->basic_type();
2136   LIRItem src(x->object(), this);
2137   LIRItem off(x->offset(), this);
2138   LIRItem data(x->value(), this);
2139 
2140   src.load_item();
2141   if (type == T_BOOLEAN || type == T_BYTE) {
2142     data.load_byte_item();
2143   } else {
2144     data.load_item();
2145   }
2146   off.load_item();
2147 
2148   set_no_result(x);
2149 
2150   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2151   if (is_reference_type(type)) {
2152     decorators |= ON_UNKNOWN_OOP_REF;
2153   }
2154   if (x->is_volatile()) {
2155     decorators |= MO_SEQ_CST;
2156   }
2157   access_store_at(decorators, type, src, off.result(), data.result());
2158 }
2159 
2160 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2161   BasicType type = x->basic_type();
2162   LIRItem src(x->object(), this);
2163   LIRItem off(x->offset(), this);
2164   LIRItem value(x->value(), this);
2165 
2166   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2167 
2168   if (is_reference_type(type)) {
2169     decorators |= ON_UNKNOWN_OOP_REF;
2170   }
2171 
2172   LIR_Opr result;
2173   if (x->is_add()) {
2174     result = access_atomic_add_at(decorators, type, src, off, value);
2175   } else {
2176     result = access_atomic_xchg_at(decorators, type, src, off, value);
2177   }
2178   set_result(x, result);
2179 }
2180 
2181 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2182   int lng = x->length();
2183 
2184   for (int i = 0; i < lng; i++) {
2185     C1SwitchRange* one_range = x->at(i);
2186     int low_key = one_range->low_key();
2187     int high_key = one_range->high_key();
2188     BlockBegin* dest = one_range->sux();
2189     if (low_key == high_key) {
2190       __ cmp(lir_cond_equal, value, low_key);
2191       __ branch(lir_cond_equal, dest);
2192     } else if (high_key - low_key == 1) {
2193       __ cmp(lir_cond_equal, value, low_key);
2194       __ branch(lir_cond_equal, dest);
2195       __ cmp(lir_cond_equal, value, high_key);
2196       __ branch(lir_cond_equal, dest);
2197     } else {
2198       LabelObj* L = new LabelObj();
2199       __ cmp(lir_cond_less, value, low_key);
2200       __ branch(lir_cond_less, L->label());
2201       __ cmp(lir_cond_lessEqual, value, high_key);
2202       __ branch(lir_cond_lessEqual, dest);
2203       __ branch_destination(L->label());
2204     }
2205   }
2206   __ jump(default_sux);
2207 }
2208 
2209 
2210 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2211   SwitchRangeList* res = new SwitchRangeList();
2212   int len = x->length();
2213   if (len > 0) {
2214     BlockBegin* sux = x->sux_at(0);
2215     int key = x->lo_key();
2216     BlockBegin* default_sux = x->default_sux();
2217     C1SwitchRange* range = new C1SwitchRange(key, sux);
2218     for (int i = 0; i < len; i++, key++) {
2219       BlockBegin* new_sux = x->sux_at(i);
2220       if (sux == new_sux) {
2221         // still in same range
2222         range->set_high_key(key);
2223       } else {
2224         // skip tests which explicitly dispatch to the default
2225         if (sux != default_sux) {
2226           res->append(range);
2227         }
2228         range = new C1SwitchRange(key, new_sux);
2229       }
2230       sux = new_sux;
2231     }
2232     if (res->length() == 0 || res->last() != range)  res->append(range);
2233   }
2234   return res;
2235 }
2236 
2237 
2238 // we expect the keys to be sorted by increasing value
2239 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2240   SwitchRangeList* res = new SwitchRangeList();
2241   int len = x->length();
2242   if (len > 0) {
2243     BlockBegin* default_sux = x->default_sux();
2244     int key = x->key_at(0);
2245     BlockBegin* sux = x->sux_at(0);
2246     C1SwitchRange* range = new C1SwitchRange(key, sux);
2247     for (int i = 1; i < len; i++) {
2248       int new_key = x->key_at(i);
2249       BlockBegin* new_sux = x->sux_at(i);
2250       if (key+1 == new_key && sux == new_sux) {
2251         // still in same range
2252         range->set_high_key(new_key);
2253       } else {
2254         // skip tests which explicitly dispatch to the default
2255         if (range->sux() != default_sux) {
2256           res->append(range);
2257         }
2258         range = new C1SwitchRange(new_key, new_sux);
2259       }
2260       key = new_key;
2261       sux = new_sux;
2262     }
2263     if (res->length() == 0 || res->last() != range)  res->append(range);
2264   }
2265   return res;
2266 }
2267 
2268 
2269 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2270   LIRItem tag(x->tag(), this);
2271   tag.load_item();
2272   set_no_result(x);
2273 
2274   if (x->is_safepoint()) {
2275     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2276   }
2277 
2278   // move values into phi locations
2279   move_to_phi(x->state());
2280 
2281   int lo_key = x->lo_key();
2282   int len = x->length();
2283   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2284   LIR_Opr value = tag.result();
2285 
2286   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2287     ciMethod* method = x->state()->scope()->method();
2288     ciMethodData* md = method->method_data_or_null();
2289     assert(md != NULL, "Sanity");
2290     ciProfileData* data = md->bci_to_data(x->state()->bci());
2291     assert(data != NULL, "must have profiling data");
2292     assert(data->is_MultiBranchData(), "bad profile data?");
2293     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2294     LIR_Opr md_reg = new_register(T_METADATA);
2295     __ metadata2reg(md->constant_encoding(), md_reg);
2296     LIR_Opr data_offset_reg = new_pointer_register();
2297     LIR_Opr tmp_reg = new_pointer_register();
2298 
2299     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2300     for (int i = 0; i < len; i++) {
2301       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2302       __ cmp(lir_cond_equal, value, i + lo_key);
2303       __ move(data_offset_reg, tmp_reg);
2304       __ cmove(lir_cond_equal,
2305                LIR_OprFact::intptrConst(count_offset),
2306                tmp_reg,
2307                data_offset_reg, T_INT);
2308     }
2309 
2310     LIR_Opr data_reg = new_pointer_register();
2311     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2312     __ move(data_addr, data_reg);
2313     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2314     __ move(data_reg, data_addr);
2315   }
2316 
2317   if (UseTableRanges) {
2318     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2319   } else {
2320     for (int i = 0; i < len; i++) {
2321       __ cmp(lir_cond_equal, value, i + lo_key);
2322       __ branch(lir_cond_equal, x->sux_at(i));
2323     }
2324     __ jump(x->default_sux());
2325   }
2326 }
2327 
2328 
2329 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2330   LIRItem tag(x->tag(), this);
2331   tag.load_item();
2332   set_no_result(x);
2333 
2334   if (x->is_safepoint()) {
2335     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2336   }
2337 
2338   // move values into phi locations
2339   move_to_phi(x->state());
2340 
2341   LIR_Opr value = tag.result();
2342   int len = x->length();
2343 
2344   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2345     ciMethod* method = x->state()->scope()->method();
2346     ciMethodData* md = method->method_data_or_null();
2347     assert(md != NULL, "Sanity");
2348     ciProfileData* data = md->bci_to_data(x->state()->bci());
2349     assert(data != NULL, "must have profiling data");
2350     assert(data->is_MultiBranchData(), "bad profile data?");
2351     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2352     LIR_Opr md_reg = new_register(T_METADATA);
2353     __ metadata2reg(md->constant_encoding(), md_reg);
2354     LIR_Opr data_offset_reg = new_pointer_register();
2355     LIR_Opr tmp_reg = new_pointer_register();
2356 
2357     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2358     for (int i = 0; i < len; i++) {
2359       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2360       __ cmp(lir_cond_equal, value, x->key_at(i));
2361       __ move(data_offset_reg, tmp_reg);
2362       __ cmove(lir_cond_equal,
2363                LIR_OprFact::intptrConst(count_offset),
2364                tmp_reg,
2365                data_offset_reg, T_INT);
2366     }
2367 
2368     LIR_Opr data_reg = new_pointer_register();
2369     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2370     __ move(data_addr, data_reg);
2371     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2372     __ move(data_reg, data_addr);
2373   }
2374 
2375   if (UseTableRanges) {
2376     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2377   } else {
2378     int len = x->length();
2379     for (int i = 0; i < len; i++) {
2380       __ cmp(lir_cond_equal, value, x->key_at(i));
2381       __ branch(lir_cond_equal, x->sux_at(i));
2382     }
2383     __ jump(x->default_sux());
2384   }
2385 }
2386 
2387 
2388 void LIRGenerator::do_Goto(Goto* x) {
2389   set_no_result(x);
2390 
2391   if (block()->next()->as_OsrEntry()) {
2392     // need to free up storage used for OSR entry point
2393     LIR_Opr osrBuffer = block()->next()->operand();
2394     BasicTypeList signature;
2395     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2396     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2397     __ move(osrBuffer, cc->args()->at(0));
2398     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2399                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2400   }
2401 
2402   if (x->is_safepoint()) {
2403     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2404 
2405     // increment backedge counter if needed
2406     CodeEmitInfo* info = state_for(x, state);
2407     increment_backedge_counter(info, x->profiled_bci());
2408     CodeEmitInfo* safepoint_info = state_for(x, state);
2409     __ safepoint(safepoint_poll_register(), safepoint_info);
2410   }
2411 
2412   // Gotos can be folded Ifs, handle this case.
2413   if (x->should_profile()) {
2414     ciMethod* method = x->profiled_method();
2415     assert(method != NULL, "method should be set if branch is profiled");
2416     ciMethodData* md = method->method_data_or_null();
2417     assert(md != NULL, "Sanity");
2418     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2419     assert(data != NULL, "must have profiling data");
2420     int offset;
2421     if (x->direction() == Goto::taken) {
2422       assert(data->is_BranchData(), "need BranchData for two-way branches");
2423       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2424     } else if (x->direction() == Goto::not_taken) {
2425       assert(data->is_BranchData(), "need BranchData for two-way branches");
2426       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2427     } else {
2428       assert(data->is_JumpData(), "need JumpData for branches");
2429       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2430     }
2431     LIR_Opr md_reg = new_register(T_METADATA);
2432     __ metadata2reg(md->constant_encoding(), md_reg);
2433 
2434     increment_counter(new LIR_Address(md_reg, offset,
2435                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2436   }
2437 
2438   // emit phi-instruction move after safepoint since this simplifies
2439   // describing the state as the safepoint.
2440   move_to_phi(x->state());
2441 
2442   __ jump(x->default_sux());
2443 }
2444 
2445 /**
2446  * Emit profiling code if needed for arguments, parameters, return value types
2447  *
2448  * @param md                    MDO the code will update at runtime
2449  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2450  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2451  * @param profiled_k            current profile
2452  * @param obj                   IR node for the object to be profiled
2453  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2454  *                              Set once we find an update to make and use for next ones.
2455  * @param not_null              true if we know obj cannot be null
2456  * @param signature_at_call_k   signature at call for obj
2457  * @param callee_signature_k    signature of callee for obj
2458  *                              at call and callee signatures differ at method handle call
2459  * @return                      the only klass we know will ever be seen at this profile point
2460  */
2461 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2462                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2463                                     ciKlass* callee_signature_k) {
2464   ciKlass* result = NULL;
2465   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2466   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2467   // known not to be null or null bit already set and already set to
2468   // unknown: nothing we can do to improve profiling
2469   if (!do_null && !do_update) {
2470     return result;
2471   }
2472 
2473   ciKlass* exact_klass = NULL;
2474   Compilation* comp = Compilation::current();
2475   if (do_update) {
2476     // try to find exact type, using CHA if possible, so that loading
2477     // the klass from the object can be avoided
2478     ciType* type = obj->exact_type();
2479     if (type == NULL) {
2480       type = obj->declared_type();
2481       type = comp->cha_exact_type(type);
2482     }
2483     assert(type == NULL || type->is_klass(), "type should be class");
2484     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2485 
2486     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2487   }
2488 
2489   if (!do_null && !do_update) {
2490     return result;
2491   }
2492 
2493   ciKlass* exact_signature_k = NULL;
2494   if (do_update) {
2495     // Is the type from the signature exact (the only one possible)?
2496     exact_signature_k = signature_at_call_k->exact_klass();
2497     if (exact_signature_k == NULL) {
2498       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2499     } else {
2500       result = exact_signature_k;
2501       // Known statically. No need to emit any code: prevent
2502       // LIR_Assembler::emit_profile_type() from emitting useless code
2503       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2504     }
2505     // exact_klass and exact_signature_k can be both non NULL but
2506     // different if exact_klass is loaded after the ciObject for
2507     // exact_signature_k is created.
2508     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2509       // sometimes the type of the signature is better than the best type
2510       // the compiler has
2511       exact_klass = exact_signature_k;
2512     }
2513     if (callee_signature_k != NULL &&
2514         callee_signature_k != signature_at_call_k) {
2515       ciKlass* improved_klass = callee_signature_k->exact_klass();
2516       if (improved_klass == NULL) {
2517         improved_klass = comp->cha_exact_type(callee_signature_k);
2518       }
2519       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2520         exact_klass = exact_signature_k;
2521       }
2522     }
2523     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2524   }
2525 
2526   if (!do_null && !do_update) {
2527     return result;
2528   }
2529 
2530   if (mdp == LIR_OprFact::illegalOpr) {
2531     mdp = new_register(T_METADATA);
2532     __ metadata2reg(md->constant_encoding(), mdp);
2533     if (md_base_offset != 0) {
2534       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2535       mdp = new_pointer_register();
2536       __ leal(LIR_OprFact::address(base_type_address), mdp);
2537     }
2538   }
2539   LIRItem value(obj, this);
2540   value.load_item();
2541   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2542                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2543   return result;
2544 }
2545 
2546 // profile parameters on entry to the root of the compilation
2547 void LIRGenerator::profile_parameters(Base* x) {
2548   if (compilation()->profile_parameters()) {
2549     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2550     ciMethodData* md = scope()->method()->method_data_or_null();
2551     assert(md != NULL, "Sanity");
2552 
2553     if (md->parameters_type_data() != NULL) {
2554       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2555       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2556       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2557       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2558         LIR_Opr src = args->at(i);
2559         assert(!src->is_illegal(), "check");
2560         BasicType t = src->type();
2561         if (is_reference_type(t)) {
2562           intptr_t profiled_k = parameters->type(j);
2563           Local* local = x->state()->local_at(java_index)->as_Local();
2564           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2565                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2566                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2567           // If the profile is known statically set it once for all and do not emit any code
2568           if (exact != NULL) {
2569             md->set_parameter_type(j, exact);
2570           }
2571           j++;
2572         }
2573         java_index += type2size[t];
2574       }
2575     }
2576   }
2577 }
2578 
2579 void LIRGenerator::do_Base(Base* x) {
2580   __ std_entry(LIR_OprFact::illegalOpr);
2581   // Emit moves from physical registers / stack slots to virtual registers
2582   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2583   IRScope* irScope = compilation()->hir()->top_scope();
2584   int java_index = 0;
2585   for (int i = 0; i < args->length(); i++) {
2586     LIR_Opr src = args->at(i);
2587     assert(!src->is_illegal(), "check");
2588     BasicType t = src->type();
2589 
2590     // Types which are smaller than int are passed as int, so
2591     // correct the type which passed.
2592     switch (t) {
2593     case T_BYTE:
2594     case T_BOOLEAN:
2595     case T_SHORT:
2596     case T_CHAR:
2597       t = T_INT;
2598       break;
2599     default:
2600       break;
2601     }
2602 
2603     LIR_Opr dest = new_register(t);
2604     __ move(src, dest);
2605 
2606     // Assign new location to Local instruction for this local
2607     Local* local = x->state()->local_at(java_index)->as_Local();
2608     assert(local != NULL, "Locals for incoming arguments must have been created");
2609 #ifndef __SOFTFP__
2610     // The java calling convention passes double as long and float as int.
2611     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2612 #endif // __SOFTFP__
2613     local->set_operand(dest);
2614     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2615     java_index += type2size[t];
2616   }
2617 
2618   if (compilation()->env()->dtrace_method_probes()) {
2619     BasicTypeList signature;
2620     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2621     signature.append(T_METADATA); // Method*
2622     LIR_OprList* args = new LIR_OprList();
2623     args->append(getThreadPointer());
2624     LIR_Opr meth = new_register(T_METADATA);
2625     __ metadata2reg(method()->constant_encoding(), meth);
2626     args->append(meth);
2627     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2628   }
2629 
2630   if (method()->is_synchronized()) {
2631     LIR_Opr obj;
2632     if (method()->is_static()) {
2633       obj = new_register(T_OBJECT);
2634       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2635     } else {
2636       Local* receiver = x->state()->local_at(0)->as_Local();
2637       assert(receiver != NULL, "must already exist");
2638       obj = receiver->operand();
2639     }
2640     assert(obj->is_valid(), "must be valid");
2641 
2642     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2643       LIR_Opr lock = syncLockOpr();
2644       __ load_stack_address_monitor(0, lock);
2645 
2646       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2647       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2648 
2649       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2650       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2651     }
2652   }
2653   if (compilation()->age_code()) {
2654     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2655     decrement_age(info);
2656   }
2657   // increment invocation counters if needed
2658   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2659     profile_parameters(x);
2660     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2661     increment_invocation_counter(info);
2662   }
2663 
2664   // all blocks with a successor must end with an unconditional jump
2665   // to the successor even if they are consecutive
2666   __ jump(x->default_sux());
2667 }
2668 
2669 
2670 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2671   // construct our frame and model the production of incoming pointer
2672   // to the OSR buffer.
2673   __ osr_entry(LIR_Assembler::osrBufferPointer());
2674   LIR_Opr result = rlock_result(x);
2675   __ move(LIR_Assembler::osrBufferPointer(), result);
2676 }
2677 
2678 
2679 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2680   assert(args->length() == arg_list->length(),
2681          "args=%d, arg_list=%d", args->length(), arg_list->length());
2682   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2683     LIRItem* param = args->at(i);
2684     LIR_Opr loc = arg_list->at(i);
2685     if (loc->is_register()) {
2686       param->load_item_force(loc);
2687     } else {
2688       LIR_Address* addr = loc->as_address_ptr();
2689       param->load_for_store(addr->type());
2690       if (addr->type() == T_OBJECT) {
2691         __ move_wide(param->result(), addr);
2692       } else
2693         __ move(param->result(), addr);
2694     }
2695   }
2696 
2697   if (x->has_receiver()) {
2698     LIRItem* receiver = args->at(0);
2699     LIR_Opr loc = arg_list->at(0);
2700     if (loc->is_register()) {
2701       receiver->load_item_force(loc);
2702     } else {
2703       assert(loc->is_address(), "just checking");
2704       receiver->load_for_store(T_OBJECT);
2705       __ move_wide(receiver->result(), loc->as_address_ptr());
2706     }
2707   }
2708 }
2709 
2710 
2711 // Visits all arguments, returns appropriate items without loading them
2712 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2713   LIRItemList* argument_items = new LIRItemList();
2714   if (x->has_receiver()) {
2715     LIRItem* receiver = new LIRItem(x->receiver(), this);
2716     argument_items->append(receiver);
2717   }
2718   for (int i = 0; i < x->number_of_arguments(); i++) {
2719     LIRItem* param = new LIRItem(x->argument_at(i), this);
2720     argument_items->append(param);
2721   }
2722   return argument_items;
2723 }
2724 
2725 
2726 // The invoke with receiver has following phases:
2727 //   a) traverse and load/lock receiver;
2728 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2729 //   c) push receiver on stack
2730 //   d) load each of the items and push on stack
2731 //   e) unlock receiver
2732 //   f) move receiver into receiver-register %o0
2733 //   g) lock result registers and emit call operation
2734 //
2735 // Before issuing a call, we must spill-save all values on stack
2736 // that are in caller-save register. "spill-save" moves those registers
2737 // either in a free callee-save register or spills them if no free
2738 // callee save register is available.
2739 //
2740 // The problem is where to invoke spill-save.
2741 // - if invoked between e) and f), we may lock callee save
2742 //   register in "spill-save" that destroys the receiver register
2743 //   before f) is executed
2744 // - if we rearrange f) to be earlier (by loading %o0) it
2745 //   may destroy a value on the stack that is currently in %o0
2746 //   and is waiting to be spilled
2747 // - if we keep the receiver locked while doing spill-save,
2748 //   we cannot spill it as it is spill-locked
2749 //
2750 void LIRGenerator::do_Invoke(Invoke* x) {
2751   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2752 
2753   LIR_OprList* arg_list = cc->args();
2754   LIRItemList* args = invoke_visit_arguments(x);
2755   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2756 
2757   // setup result register
2758   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2759   if (x->type() != voidType) {
2760     result_register = result_register_for(x->type());
2761   }
2762 
2763   CodeEmitInfo* info = state_for(x, x->state());
2764 
2765   invoke_load_arguments(x, args, arg_list);
2766 
2767   if (x->has_receiver()) {
2768     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2769     receiver = args->at(0)->result();
2770   }
2771 
2772   // emit invoke code
2773   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2774 
2775   // JSR 292
2776   // Preserve the SP over MethodHandle call sites, if needed.
2777   ciMethod* target = x->target();
2778   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2779                                   target->is_method_handle_intrinsic() ||
2780                                   target->is_compiled_lambda_form());
2781   if (is_method_handle_invoke) {
2782     info->set_is_method_handle_invoke(true);
2783     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2784         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2785     }
2786   }
2787 
2788   switch (x->code()) {
2789     case Bytecodes::_invokestatic:
2790       __ call_static(target, result_register,
2791                      SharedRuntime::get_resolve_static_call_stub(),
2792                      arg_list, info);
2793       break;
2794     case Bytecodes::_invokespecial:
2795     case Bytecodes::_invokevirtual:
2796     case Bytecodes::_invokeinterface:
2797       // for loaded and final (method or class) target we still produce an inline cache,
2798       // in order to be able to call mixed mode
2799       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2800         __ call_opt_virtual(target, receiver, result_register,
2801                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2802                             arg_list, info);
2803       } else {
2804         __ call_icvirtual(target, receiver, result_register,
2805                           SharedRuntime::get_resolve_virtual_call_stub(),
2806                           arg_list, info);
2807       }
2808       break;
2809     case Bytecodes::_invokedynamic: {
2810       __ call_dynamic(target, receiver, result_register,
2811                       SharedRuntime::get_resolve_static_call_stub(),
2812                       arg_list, info);
2813       break;
2814     }
2815     default:
2816       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2817       break;
2818   }
2819 
2820   // JSR 292
2821   // Restore the SP after MethodHandle call sites, if needed.
2822   if (is_method_handle_invoke
2823       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2824     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2825   }
2826 
2827   if (result_register->is_valid()) {
2828     LIR_Opr result = rlock_result(x);
2829     __ move(result_register, result);
2830   }
2831 }
2832 
2833 
2834 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2835   assert(x->number_of_arguments() == 1, "wrong type");
2836   LIRItem value       (x->argument_at(0), this);
2837   LIR_Opr reg = rlock_result(x);
2838   value.load_item();
2839   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2840   __ move(tmp, reg);
2841 }
2842 
2843 
2844 
2845 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2846 void LIRGenerator::do_IfOp(IfOp* x) {
2847 #ifdef ASSERT
2848   {
2849     ValueTag xtag = x->x()->type()->tag();
2850     ValueTag ttag = x->tval()->type()->tag();
2851     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2852     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2853     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2854   }
2855 #endif
2856 
2857   LIRItem left(x->x(), this);
2858   LIRItem right(x->y(), this);
2859   left.load_item();
2860   if (can_inline_as_constant(right.value())) {
2861     right.dont_load_item();
2862   } else {
2863     right.load_item();
2864   }
2865 
2866   LIRItem t_val(x->tval(), this);
2867   LIRItem f_val(x->fval(), this);
2868   t_val.dont_load_item();
2869   f_val.dont_load_item();
2870   LIR_Opr reg = rlock_result(x);
2871 
2872   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2873   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2874 }
2875 
2876 #ifdef JFR_HAVE_INTRINSICS
2877 
2878 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
2879   LabelObj* L_end = new LabelObj();
2880 
2881   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
2882   // meaning of these two is mixed up (see JDK-8026837).
2883   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
2884                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
2885                                            T_ADDRESS);
2886   LIR_Opr result = rlock_result(x);
2887   __ move(LIR_OprFact::oopConst(NULL), result);
2888   LIR_Opr jobj = new_register(T_METADATA);
2889   __ move_wide(jobj_addr, jobj);
2890   __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0));
2891   __ branch(lir_cond_equal, L_end->label());
2892 
2893   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
2894 
2895   __ branch_destination(L_end->label());
2896 }
2897 
2898 #endif
2899 
2900 
2901 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2902   assert(x->number_of_arguments() == 0, "wrong type");
2903   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2904   BasicTypeList signature;
2905   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2906   LIR_Opr reg = result_register_for(x->type());
2907   __ call_runtime_leaf(routine, getThreadTemp(),
2908                        reg, new LIR_OprList());
2909   LIR_Opr result = rlock_result(x);
2910   __ move(reg, result);
2911 }
2912 
2913 
2914 
2915 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2916   switch (x->id()) {
2917   case vmIntrinsics::_intBitsToFloat      :
2918   case vmIntrinsics::_doubleToRawLongBits :
2919   case vmIntrinsics::_longBitsToDouble    :
2920   case vmIntrinsics::_floatToRawIntBits   : {
2921     do_FPIntrinsics(x);
2922     break;
2923   }
2924 
2925 #ifdef JFR_HAVE_INTRINSICS
2926   case vmIntrinsics::_getEventWriter:
2927     do_getEventWriter(x);
2928     break;
2929   case vmIntrinsics::_counterTime:
2930     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
2931     break;
2932 #endif
2933 
2934   case vmIntrinsics::_currentTimeMillis:
2935     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2936     break;
2937 
2938   case vmIntrinsics::_nanoTime:
2939     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2940     break;
2941 
2942   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2943   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2944   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
2945   case vmIntrinsics::_getModifiers:   do_getModifiers(x);  break;
2946   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2947   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2948   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
2949 
2950   case vmIntrinsics::_dlog:           // fall through
2951   case vmIntrinsics::_dlog10:         // fall through
2952   case vmIntrinsics::_dabs:           // fall through
2953   case vmIntrinsics::_dsqrt:          // fall through
2954   case vmIntrinsics::_dtan:           // fall through
2955   case vmIntrinsics::_dsin :          // fall through
2956   case vmIntrinsics::_dcos :          // fall through
2957   case vmIntrinsics::_dexp :          // fall through
2958   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2959   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2960 
2961   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2962   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2963 
2964   case vmIntrinsics::_Preconditions_checkIndex:
2965     do_PreconditionsCheckIndex(x, T_INT);
2966     break;
2967   case vmIntrinsics::_Preconditions_checkLongIndex:
2968     do_PreconditionsCheckIndex(x, T_LONG);
2969     break;
2970 
2971   case vmIntrinsics::_compareAndSetReference:
2972     do_CompareAndSwap(x, objectType);
2973     break;
2974   case vmIntrinsics::_compareAndSetInt:
2975     do_CompareAndSwap(x, intType);
2976     break;
2977   case vmIntrinsics::_compareAndSetLong:
2978     do_CompareAndSwap(x, longType);
2979     break;
2980 
2981   case vmIntrinsics::_loadFence :
2982     __ membar_acquire();
2983     break;
2984   case vmIntrinsics::_storeFence:
2985     __ membar_release();
2986     break;
2987   case vmIntrinsics::_fullFence :
2988     __ membar();
2989     break;
2990   case vmIntrinsics::_onSpinWait:
2991     __ on_spin_wait();
2992     break;
2993   case vmIntrinsics::_Reference_get:
2994     do_Reference_get(x);
2995     break;
2996 
2997   case vmIntrinsics::_updateCRC32:
2998   case vmIntrinsics::_updateBytesCRC32:
2999   case vmIntrinsics::_updateByteBufferCRC32:
3000     do_update_CRC32(x);
3001     break;
3002 
3003   case vmIntrinsics::_updateBytesCRC32C:
3004   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3005     do_update_CRC32C(x);
3006     break;
3007 
3008   case vmIntrinsics::_vectorizedMismatch:
3009     do_vectorizedMismatch(x);
3010     break;
3011 
3012   case vmIntrinsics::_blackhole:
3013     do_blackhole(x);
3014     break;
3015 
3016   default: ShouldNotReachHere(); break;
3017   }
3018 }
3019 
3020 void LIRGenerator::profile_arguments(ProfileCall* x) {
3021   if (compilation()->profile_arguments()) {
3022     int bci = x->bci_of_invoke();
3023     ciMethodData* md = x->method()->method_data_or_null();
3024     assert(md != NULL, "Sanity");
3025     ciProfileData* data = md->bci_to_data(bci);
3026     if (data != NULL) {
3027       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3028           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3029         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3030         int base_offset = md->byte_offset_of_slot(data, extra);
3031         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3032         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3033 
3034         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3035         int start = 0;
3036         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3037         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3038           // first argument is not profiled at call (method handle invoke)
3039           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3040           start = 1;
3041         }
3042         ciSignature* callee_signature = x->callee()->signature();
3043         // method handle call to virtual method
3044         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3045         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3046 
3047         bool ignored_will_link;
3048         ciSignature* signature_at_call = NULL;
3049         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3050         ciSignatureStream signature_at_call_stream(signature_at_call);
3051 
3052         // if called through method handle invoke, some arguments may have been popped
3053         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3054           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3055           ciKlass* exact = profile_type(md, base_offset, off,
3056               args->type(i), x->profiled_arg_at(i+start), mdp,
3057               !x->arg_needs_null_check(i+start),
3058               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3059           if (exact != NULL) {
3060             md->set_argument_type(bci, i, exact);
3061           }
3062         }
3063       } else {
3064 #ifdef ASSERT
3065         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3066         int n = x->nb_profiled_args();
3067         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3068             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3069             "only at JSR292 bytecodes");
3070 #endif
3071       }
3072     }
3073   }
3074 }
3075 
3076 // profile parameters on entry to an inlined method
3077 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3078   if (compilation()->profile_parameters() && x->inlined()) {
3079     ciMethodData* md = x->callee()->method_data_or_null();
3080     if (md != NULL) {
3081       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3082       if (parameters_type_data != NULL) {
3083         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3084         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3085         bool has_receiver = !x->callee()->is_static();
3086         ciSignature* sig = x->callee()->signature();
3087         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3088         int i = 0; // to iterate on the Instructions
3089         Value arg = x->recv();
3090         bool not_null = false;
3091         int bci = x->bci_of_invoke();
3092         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3093         // The first parameter is the receiver so that's what we start
3094         // with if it exists. One exception is method handle call to
3095         // virtual method: the receiver is in the args list
3096         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3097           i = 1;
3098           arg = x->profiled_arg_at(0);
3099           not_null = !x->arg_needs_null_check(0);
3100         }
3101         int k = 0; // to iterate on the profile data
3102         for (;;) {
3103           intptr_t profiled_k = parameters->type(k);
3104           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3105                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3106                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3107           // If the profile is known statically set it once for all and do not emit any code
3108           if (exact != NULL) {
3109             md->set_parameter_type(k, exact);
3110           }
3111           k++;
3112           if (k >= parameters_type_data->number_of_parameters()) {
3113 #ifdef ASSERT
3114             int extra = 0;
3115             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3116                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3117                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3118               extra += 1;
3119             }
3120             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3121 #endif
3122             break;
3123           }
3124           arg = x->profiled_arg_at(i);
3125           not_null = !x->arg_needs_null_check(i);
3126           i++;
3127         }
3128       }
3129     }
3130   }
3131 }
3132 
3133 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3134   // Need recv in a temporary register so it interferes with the other temporaries
3135   LIR_Opr recv = LIR_OprFact::illegalOpr;
3136   LIR_Opr mdo = new_register(T_METADATA);
3137   // tmp is used to hold the counters on SPARC
3138   LIR_Opr tmp = new_pointer_register();
3139 
3140   if (x->nb_profiled_args() > 0) {
3141     profile_arguments(x);
3142   }
3143 
3144   // profile parameters on inlined method entry including receiver
3145   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3146     profile_parameters_at_call(x);
3147   }
3148 
3149   if (x->recv() != NULL) {
3150     LIRItem value(x->recv(), this);
3151     value.load_item();
3152     recv = new_register(T_OBJECT);
3153     __ move(value.result(), recv);
3154   }
3155   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3156 }
3157 
3158 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3159   int bci = x->bci_of_invoke();
3160   ciMethodData* md = x->method()->method_data_or_null();
3161   assert(md != NULL, "Sanity");
3162   ciProfileData* data = md->bci_to_data(bci);
3163   if (data != NULL) {
3164     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3165     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3166     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3167 
3168     bool ignored_will_link;
3169     ciSignature* signature_at_call = NULL;
3170     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3171 
3172     // The offset within the MDO of the entry to update may be too large
3173     // to be used in load/store instructions on some platforms. So have
3174     // profile_type() compute the address of the profile in a register.
3175     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3176         ret->type(), x->ret(), mdp,
3177         !x->needs_null_check(),
3178         signature_at_call->return_type()->as_klass(),
3179         x->callee()->signature()->return_type()->as_klass());
3180     if (exact != NULL) {
3181       md->set_return_type(bci, exact);
3182     }
3183   }
3184 }
3185 
3186 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3187   // We can safely ignore accessors here, since c2 will inline them anyway,
3188   // accessors are also always mature.
3189   if (!x->inlinee()->is_accessor()) {
3190     CodeEmitInfo* info = state_for(x, x->state(), true);
3191     // Notify the runtime very infrequently only to take care of counter overflows
3192     int freq_log = Tier23InlineeNotifyFreqLog;
3193     double scale;
3194     if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3195       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3196     }
3197     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3198   }
3199 }
3200 
3201 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3202   if (compilation()->is_profiling()) {
3203 #if defined(X86) && !defined(_LP64)
3204     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3205     LIR_Opr left_copy = new_register(left->type());
3206     __ move(left, left_copy);
3207     __ cmp(cond, left_copy, right);
3208 #else
3209     __ cmp(cond, left, right);
3210 #endif
3211     LIR_Opr step = new_register(T_INT);
3212     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3213     LIR_Opr zero = LIR_OprFact::intConst(0);
3214     __ cmove(cond,
3215         (left_bci < bci) ? plus_one : zero,
3216         (right_bci < bci) ? plus_one : zero,
3217         step, left->type());
3218     increment_backedge_counter(info, step, bci);
3219   }
3220 }
3221 
3222 
3223 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3224   int freq_log = 0;
3225   int level = compilation()->env()->comp_level();
3226   if (level == CompLevel_limited_profile) {
3227     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3228   } else if (level == CompLevel_full_profile) {
3229     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3230   } else {
3231     ShouldNotReachHere();
3232   }
3233   // Increment the appropriate invocation/backedge counter and notify the runtime.
3234   double scale;
3235   if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3236     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3237   }
3238   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3239 }
3240 
3241 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3242   ciMethod* method = info->scope()->method();
3243   MethodCounters* mc_adr = method->ensure_method_counters();
3244   if (mc_adr != NULL) {
3245     LIR_Opr mc = new_pointer_register();
3246     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3247     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3248     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3249     LIR_Opr result = new_register(T_INT);
3250     __ load(counter, result);
3251     __ sub(result, LIR_OprFact::intConst(1), result);
3252     __ store(result, counter);
3253     // DeoptimizeStub will reexecute from the current state in code info.
3254     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3255                                          Deoptimization::Action_make_not_entrant);
3256     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3257     __ branch(lir_cond_lessEqual, deopt);
3258   }
3259 }
3260 
3261 
3262 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3263                                                 ciMethod *method, LIR_Opr step, int frequency,
3264                                                 int bci, bool backedge, bool notify) {
3265   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3266   int level = _compilation->env()->comp_level();
3267   assert(level > CompLevel_simple, "Shouldn't be here");
3268 
3269   int offset = -1;
3270   LIR_Opr counter_holder = NULL;
3271   if (level == CompLevel_limited_profile) {
3272     MethodCounters* counters_adr = method->ensure_method_counters();
3273     if (counters_adr == NULL) {
3274       bailout("method counters allocation failed");
3275       return;
3276     }
3277     counter_holder = new_pointer_register();
3278     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3279     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3280                                  MethodCounters::invocation_counter_offset());
3281   } else if (level == CompLevel_full_profile) {
3282     counter_holder = new_register(T_METADATA);
3283     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3284                                  MethodData::invocation_counter_offset());
3285     ciMethodData* md = method->method_data_or_null();
3286     assert(md != NULL, "Sanity");
3287     __ metadata2reg(md->constant_encoding(), counter_holder);
3288   } else {
3289     ShouldNotReachHere();
3290   }
3291   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3292   LIR_Opr result = new_register(T_INT);
3293   __ load(counter, result);
3294   __ add(result, step, result);
3295   __ store(result, counter);
3296   if (notify && (!backedge || UseOnStackReplacement)) {
3297     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3298     // The bci for info can point to cmp for if's we want the if bci
3299     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3300     int freq = frequency << InvocationCounter::count_shift;
3301     if (freq == 0) {
3302       if (!step->is_constant()) {
3303         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3304         __ branch(lir_cond_notEqual, overflow);
3305       } else {
3306         __ branch(lir_cond_always, overflow);
3307       }
3308     } else {
3309       LIR_Opr mask = load_immediate(freq, T_INT);
3310       if (!step->is_constant()) {
3311         // If step is 0, make sure the overflow check below always fails
3312         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3313         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3314       }
3315       __ logical_and(result, mask, result);
3316       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3317       __ branch(lir_cond_equal, overflow);
3318     }
3319     __ branch_destination(overflow->continuation());
3320   }
3321 }
3322 
3323 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3324   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3325   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3326 
3327   if (x->pass_thread()) {
3328     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3329     args->append(getThreadPointer());
3330   }
3331 
3332   for (int i = 0; i < x->number_of_arguments(); i++) {
3333     Value a = x->argument_at(i);
3334     LIRItem* item = new LIRItem(a, this);
3335     item->load_item();
3336     args->append(item->result());
3337     signature->append(as_BasicType(a->type()));
3338   }
3339 
3340   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3341   if (x->type() == voidType) {
3342     set_no_result(x);
3343   } else {
3344     __ move(result, rlock_result(x));
3345   }
3346 }
3347 
3348 #ifdef ASSERT
3349 void LIRGenerator::do_Assert(Assert *x) {
3350   ValueTag tag = x->x()->type()->tag();
3351   If::Condition cond = x->cond();
3352 
3353   LIRItem xitem(x->x(), this);
3354   LIRItem yitem(x->y(), this);
3355   LIRItem* xin = &xitem;
3356   LIRItem* yin = &yitem;
3357 
3358   assert(tag == intTag, "Only integer assertions are valid!");
3359 
3360   xin->load_item();
3361   yin->dont_load_item();
3362 
3363   set_no_result(x);
3364 
3365   LIR_Opr left = xin->result();
3366   LIR_Opr right = yin->result();
3367 
3368   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3369 }
3370 #endif
3371 
3372 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3373 
3374 
3375   Instruction *a = x->x();
3376   Instruction *b = x->y();
3377   if (!a || StressRangeCheckElimination) {
3378     assert(!b || StressRangeCheckElimination, "B must also be null");
3379 
3380     CodeEmitInfo *info = state_for(x, x->state());
3381     CodeStub* stub = new PredicateFailedStub(info);
3382 
3383     __ jump(stub);
3384   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3385     int a_int = a->type()->as_IntConstant()->value();
3386     int b_int = b->type()->as_IntConstant()->value();
3387 
3388     bool ok = false;
3389 
3390     switch(x->cond()) {
3391       case Instruction::eql: ok = (a_int == b_int); break;
3392       case Instruction::neq: ok = (a_int != b_int); break;
3393       case Instruction::lss: ok = (a_int < b_int); break;
3394       case Instruction::leq: ok = (a_int <= b_int); break;
3395       case Instruction::gtr: ok = (a_int > b_int); break;
3396       case Instruction::geq: ok = (a_int >= b_int); break;
3397       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3398       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3399       default: ShouldNotReachHere();
3400     }
3401 
3402     if (ok) {
3403 
3404       CodeEmitInfo *info = state_for(x, x->state());
3405       CodeStub* stub = new PredicateFailedStub(info);
3406 
3407       __ jump(stub);
3408     }
3409   } else {
3410 
3411     ValueTag tag = x->x()->type()->tag();
3412     If::Condition cond = x->cond();
3413     LIRItem xitem(x->x(), this);
3414     LIRItem yitem(x->y(), this);
3415     LIRItem* xin = &xitem;
3416     LIRItem* yin = &yitem;
3417 
3418     assert(tag == intTag, "Only integer deoptimizations are valid!");
3419 
3420     xin->load_item();
3421     yin->dont_load_item();
3422     set_no_result(x);
3423 
3424     LIR_Opr left = xin->result();
3425     LIR_Opr right = yin->result();
3426 
3427     CodeEmitInfo *info = state_for(x, x->state());
3428     CodeStub* stub = new PredicateFailedStub(info);
3429 
3430     __ cmp(lir_cond(cond), left, right);
3431     __ branch(lir_cond(cond), stub);
3432   }
3433 }
3434 
3435 void LIRGenerator::do_blackhole(Intrinsic *x) {
3436   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3437   for (int c = 0; c < x->number_of_arguments(); c++) {
3438     // Load the argument
3439     LIRItem vitem(x->argument_at(c), this);
3440     vitem.load_item();
3441     // ...and leave it unused.
3442   }
3443 }
3444 
3445 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3446   LIRItemList args(1);
3447   LIRItem value(arg1, this);
3448   args.append(&value);
3449   BasicTypeList signature;
3450   signature.append(as_BasicType(arg1->type()));
3451 
3452   return call_runtime(&signature, &args, entry, result_type, info);
3453 }
3454 
3455 
3456 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3457   LIRItemList args(2);
3458   LIRItem value1(arg1, this);
3459   LIRItem value2(arg2, this);
3460   args.append(&value1);
3461   args.append(&value2);
3462   BasicTypeList signature;
3463   signature.append(as_BasicType(arg1->type()));
3464   signature.append(as_BasicType(arg2->type()));
3465 
3466   return call_runtime(&signature, &args, entry, result_type, info);
3467 }
3468 
3469 
3470 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3471                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3472   // get a result register
3473   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3474   LIR_Opr result = LIR_OprFact::illegalOpr;
3475   if (result_type->tag() != voidTag) {
3476     result = new_register(result_type);
3477     phys_reg = result_register_for(result_type);
3478   }
3479 
3480   // move the arguments into the correct location
3481   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3482   assert(cc->length() == args->length(), "argument mismatch");
3483   for (int i = 0; i < args->length(); i++) {
3484     LIR_Opr arg = args->at(i);
3485     LIR_Opr loc = cc->at(i);
3486     if (loc->is_register()) {
3487       __ move(arg, loc);
3488     } else {
3489       LIR_Address* addr = loc->as_address_ptr();
3490 //           if (!can_store_as_constant(arg)) {
3491 //             LIR_Opr tmp = new_register(arg->type());
3492 //             __ move(arg, tmp);
3493 //             arg = tmp;
3494 //           }
3495       __ move(arg, addr);
3496     }
3497   }
3498 
3499   if (info) {
3500     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3501   } else {
3502     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3503   }
3504   if (result->is_valid()) {
3505     __ move(phys_reg, result);
3506   }
3507   return result;
3508 }
3509 
3510 
3511 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3512                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3513   // get a result register
3514   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3515   LIR_Opr result = LIR_OprFact::illegalOpr;
3516   if (result_type->tag() != voidTag) {
3517     result = new_register(result_type);
3518     phys_reg = result_register_for(result_type);
3519   }
3520 
3521   // move the arguments into the correct location
3522   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3523 
3524   assert(cc->length() == args->length(), "argument mismatch");
3525   for (int i = 0; i < args->length(); i++) {
3526     LIRItem* arg = args->at(i);
3527     LIR_Opr loc = cc->at(i);
3528     if (loc->is_register()) {
3529       arg->load_item_force(loc);
3530     } else {
3531       LIR_Address* addr = loc->as_address_ptr();
3532       arg->load_for_store(addr->type());
3533       __ move(arg->result(), addr);
3534     }
3535   }
3536 
3537   if (info) {
3538     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3539   } else {
3540     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3541   }
3542   if (result->is_valid()) {
3543     __ move(phys_reg, result);
3544   }
3545   return result;
3546 }
3547 
3548 void LIRGenerator::do_MemBar(MemBar* x) {
3549   LIR_Code code = x->code();
3550   switch(code) {
3551   case lir_membar_acquire   : __ membar_acquire(); break;
3552   case lir_membar_release   : __ membar_release(); break;
3553   case lir_membar           : __ membar(); break;
3554   case lir_membar_loadload  : __ membar_loadload(); break;
3555   case lir_membar_storestore: __ membar_storestore(); break;
3556   case lir_membar_loadstore : __ membar_loadstore(); break;
3557   case lir_membar_storeload : __ membar_storeload(); break;
3558   default                   : ShouldNotReachHere(); break;
3559   }
3560 }
3561 
3562 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3563   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3564   if (TwoOperandLIRForm) {
3565     __ move(value, value_fixed);
3566     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3567   } else {
3568     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3569   }
3570   LIR_Opr klass = new_register(T_METADATA);
3571   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3572   null_check_info = NULL;
3573   LIR_Opr layout = new_register(T_INT);
3574   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3575   int diffbit = Klass::layout_helper_boolean_diffbit();
3576   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3577   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3578   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3579   value = value_fixed;
3580   return value;
3581 }