1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "compiler/compilationPolicy.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "gc/shared/barrierSetNMethod.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "interpreter/bytecodeTracer.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/interpreterRuntime.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/templateTable.hpp"
  41 #include "jvm_io.h"
  42 #include "logging/log.hpp"
  43 #include "memory/oopFactory.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/universe.hpp"
  46 #include "oops/constantPool.inline.hpp"
  47 #include "oops/cpCache.inline.hpp"
  48 #include "oops/instanceKlass.inline.hpp"
  49 #include "oops/klass.inline.hpp"
  50 #include "oops/methodData.hpp"
  51 #include "oops/method.inline.hpp"
  52 #include "oops/objArrayKlass.hpp"
  53 #include "oops/objArrayOop.inline.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "oops/symbol.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/methodHandles.hpp"
  58 #include "prims/nativeLookup.hpp"
  59 #include "runtime/atomic.hpp"
  60 #include "runtime/continuation.hpp"
  61 #include "runtime/deoptimization.hpp"
  62 #include "runtime/fieldDescriptor.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/icache.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/jfieldIDWorkaround.hpp"
  70 #include "runtime/osThread.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/stackWatermarkSet.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/synchronizer.hpp"
  75 #include "runtime/threadCritical.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/checkedCast.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/events.hpp"
  80 #ifdef COMPILER2
  81 #include "opto/runtime.hpp"
  82 #endif
  83 
  84 // Helper class to access current interpreter state
  85 class LastFrameAccessor : public StackObj {
  86   frame _last_frame;
  87 public:
  88   LastFrameAccessor(JavaThread* current) {
  89     assert(current == Thread::current(), "sanity");
  90     _last_frame = current->last_frame();
  91   }
  92   bool is_interpreted_frame() const              { return _last_frame.is_interpreted_frame(); }
  93   Method*   method() const                       { return _last_frame.interpreter_frame_method(); }
  94   address   bcp() const                          { return _last_frame.interpreter_frame_bcp(); }
  95   int       bci() const                          { return _last_frame.interpreter_frame_bci(); }
  96   address   mdp() const                          { return _last_frame.interpreter_frame_mdp(); }
  97 
  98   void      set_bcp(address bcp)                 { _last_frame.interpreter_frame_set_bcp(bcp); }
  99   void      set_mdp(address dp)                  { _last_frame.interpreter_frame_set_mdp(dp); }
 100 
 101   // pass method to avoid calling unsafe bcp_to_method (partial fix 4926272)
 102   Bytecodes::Code code() const                   { return Bytecodes::code_at(method(), bcp()); }
 103 
 104   Bytecode  bytecode() const                     { return Bytecode(method(), bcp()); }
 105   int get_index_u1(Bytecodes::Code bc) const     { return bytecode().get_index_u1(bc); }
 106   int get_index_u2(Bytecodes::Code bc) const     { return bytecode().get_index_u2(bc); }
 107   int get_index_u4(Bytecodes::Code bc) const     { return bytecode().get_index_u4(bc); }
 108   int number_of_dimensions() const               { return bcp()[3]; }
 109 
 110   oop callee_receiver(Symbol* signature) {
 111     return _last_frame.interpreter_callee_receiver(signature);
 112   }
 113   BasicObjectLock* monitor_begin() const {
 114     return _last_frame.interpreter_frame_monitor_begin();
 115   }
 116   BasicObjectLock* monitor_end() const {
 117     return _last_frame.interpreter_frame_monitor_end();
 118   }
 119   BasicObjectLock* next_monitor(BasicObjectLock* current) const {
 120     return _last_frame.next_monitor_in_interpreter_frame(current);
 121   }
 122 
 123   frame& get_frame()                             { return _last_frame; }
 124 };
 125 
 126 //------------------------------------------------------------------------------------------------------------------------
 127 // State accessors
 128 
 129 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread* current) {
 130   LastFrameAccessor last_frame(current);
 131   last_frame.set_bcp(bcp);
 132   if (ProfileInterpreter) {
 133     // ProfileTraps uses MDOs independently of ProfileInterpreter.
 134     // That is why we must check both ProfileInterpreter and mdo != nullptr.
 135     MethodData* mdo = last_frame.method()->method_data();
 136     if (mdo != nullptr) {
 137       NEEDS_CLEANUP;
 138       last_frame.set_mdp(mdo->bci_to_dp(last_frame.bci()));
 139     }
 140   }
 141 }
 142 
 143 //------------------------------------------------------------------------------------------------------------------------
 144 // Constants
 145 
 146 
 147 JRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* current, bool wide))
 148   // access constant pool
 149   LastFrameAccessor last_frame(current);
 150   ConstantPool* pool = last_frame.method()->constants();
 151   int cp_index = wide ? last_frame.get_index_u2(Bytecodes::_ldc_w) : last_frame.get_index_u1(Bytecodes::_ldc);
 152   constantTag tag = pool->tag_at(cp_index);
 153 
 154   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 155   Klass* klass = pool->klass_at(cp_index, CHECK);
 156   oop java_class = klass->java_mirror();
 157   current->set_vm_result(java_class);
 158 JRT_END
 159 
 160 JRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* current, Bytecodes::Code bytecode)) {
 161   assert(bytecode == Bytecodes::_ldc ||
 162          bytecode == Bytecodes::_ldc_w ||
 163          bytecode == Bytecodes::_ldc2_w ||
 164          bytecode == Bytecodes::_fast_aldc ||
 165          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 166   ResourceMark rm(current);
 167   const bool is_fast_aldc = (bytecode == Bytecodes::_fast_aldc ||
 168                              bytecode == Bytecodes::_fast_aldc_w);
 169   LastFrameAccessor last_frame(current);
 170   methodHandle m (current, last_frame.method());
 171   Bytecode_loadconstant ldc(m, last_frame.bci());
 172 
 173   // Double-check the size.  (Condy can have any type.)
 174   BasicType type = ldc.result_type();
 175   switch (type2size[type]) {
 176   case 2: guarantee(bytecode == Bytecodes::_ldc2_w, ""); break;
 177   case 1: guarantee(bytecode != Bytecodes::_ldc2_w, ""); break;
 178   default: ShouldNotReachHere();
 179   }
 180 
 181   // Resolve the constant.  This does not do unboxing.
 182   // But it does replace Universe::the_null_sentinel by null.
 183   oop result = ldc.resolve_constant(CHECK);
 184   assert(result != nullptr || is_fast_aldc, "null result only valid for fast_aldc");
 185 
 186 #ifdef ASSERT
 187   {
 188     // The bytecode wrappers aren't GC-safe so construct a new one
 189     Bytecode_loadconstant ldc2(m, last_frame.bci());
 190     int rindex = ldc2.cache_index();
 191     if (rindex < 0)
 192       rindex = m->constants()->cp_to_object_index(ldc2.pool_index());
 193     if (rindex >= 0) {
 194       oop coop = m->constants()->resolved_reference_at(rindex);
 195       oop roop = (result == nullptr ? Universe::the_null_sentinel() : result);
 196       assert(roop == coop, "expected result for assembly code");
 197     }
 198   }
 199 #endif
 200   current->set_vm_result(result);
 201   if (!is_fast_aldc) {
 202     // Tell the interpreter how to unbox the primitive.
 203     guarantee(java_lang_boxing_object::is_instance(result, type), "");
 204     int offset = java_lang_boxing_object::value_offset(type);
 205     intptr_t flags = ((as_TosState(type) << ConstantPoolCache::tos_state_shift)
 206                       | (offset & ConstantPoolCache::field_index_mask));
 207     current->set_vm_result_2((Metadata*)flags);
 208   }
 209 }
 210 JRT_END
 211 
 212 
 213 //------------------------------------------------------------------------------------------------------------------------
 214 // Allocation
 215 
 216 JRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* current, ConstantPool* pool, int index))
 217   Klass* k = pool->klass_at(index, CHECK);
 218   InstanceKlass* klass = InstanceKlass::cast(k);
 219 
 220   // Make sure we are not instantiating an abstract klass
 221   klass->check_valid_for_instantiation(true, CHECK);
 222 
 223   // Make sure klass is initialized
 224   klass->initialize(CHECK);
 225 
 226   // At this point the class may not be fully initialized
 227   // because of recursive initialization. If it is fully
 228   // initialized & has_finalized is not set, we rewrite
 229   // it into its fast version (Note: no locking is needed
 230   // here since this is an atomic byte write and can be
 231   // done more than once).
 232   //
 233   // Note: In case of classes with has_finalized we don't
 234   //       rewrite since that saves us an extra check in
 235   //       the fast version which then would call the
 236   //       slow version anyway (and do a call back into
 237   //       Java).
 238   //       If we have a breakpoint, then we don't rewrite
 239   //       because the _breakpoint bytecode would be lost.
 240   oop obj = klass->allocate_instance(CHECK);
 241   current->set_vm_result(obj);
 242 JRT_END
 243 
 244 
 245 JRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* current, BasicType type, jint size))
 246   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 247   current->set_vm_result(obj);
 248 JRT_END
 249 
 250 
 251 JRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* current, ConstantPool* pool, int index, jint size))
 252   Klass*    klass = pool->klass_at(index, CHECK);
 253   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 254   current->set_vm_result(obj);
 255 JRT_END
 256 
 257 
 258 JRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* current, jint* first_size_address))
 259   // We may want to pass in more arguments - could make this slightly faster
 260   LastFrameAccessor last_frame(current);
 261   ConstantPool* constants = last_frame.method()->constants();
 262   int          i = last_frame.get_index_u2(Bytecodes::_multianewarray);
 263   Klass* klass   = constants->klass_at(i, CHECK);
 264   int   nof_dims = last_frame.number_of_dimensions();
 265   assert(klass->is_klass(), "not a class");
 266   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 267 
 268   // We must create an array of jints to pass to multi_allocate.
 269   ResourceMark rm(current);
 270   const int small_dims = 10;
 271   jint dim_array[small_dims];
 272   jint *dims = &dim_array[0];
 273   if (nof_dims > small_dims) {
 274     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 275   }
 276   for (int index = 0; index < nof_dims; index++) {
 277     // offset from first_size_address is addressed as local[index]
 278     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 279     dims[index] = first_size_address[n];
 280   }
 281   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 282   current->set_vm_result(obj);
 283 JRT_END
 284 
 285 
 286 JRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
 287   assert(oopDesc::is_oop(obj), "must be a valid oop");
 288   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 289   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 290 JRT_END
 291 
 292 
 293 // Quicken instance-of and check-cast bytecodes
 294 JRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* current))
 295   // Force resolving; quicken the bytecode
 296   LastFrameAccessor last_frame(current);
 297   int which = last_frame.get_index_u2(Bytecodes::_checkcast);
 298   ConstantPool* cpool = last_frame.method()->constants();
 299   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 300   // program we might have seen an unquick'd bytecode in the interpreter but have another
 301   // thread quicken the bytecode before we get here.
 302   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 303   Klass* klass = cpool->klass_at(which, CHECK);
 304   current->set_vm_result_2(klass);
 305 JRT_END
 306 
 307 
 308 //------------------------------------------------------------------------------------------------------------------------
 309 // Exceptions
 310 
 311 void InterpreterRuntime::note_trap_inner(JavaThread* current, int reason,
 312                                          const methodHandle& trap_method, int trap_bci) {
 313   if (trap_method.not_null()) {
 314     MethodData* trap_mdo = trap_method->method_data();
 315     if (trap_mdo == nullptr) {
 316       ExceptionMark em(current);
 317       JavaThread* THREAD = current; // For exception macros.
 318       Method::build_profiling_method_data(trap_method, THREAD);
 319       if (HAS_PENDING_EXCEPTION) {
 320         // Only metaspace OOM is expected. No Java code executed.
 321         assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())),
 322                "we expect only an OOM error here");
 323         CLEAR_PENDING_EXCEPTION;
 324       }
 325       trap_mdo = trap_method->method_data();
 326       // and fall through...
 327     }
 328     if (trap_mdo != nullptr) {
 329       // Update per-method count of trap events.  The interpreter
 330       // is updating the MDO to simulate the effect of compiler traps.
 331       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 332     }
 333   }
 334 }
 335 
 336 // Assume the compiler is (or will be) interested in this event.
 337 // If necessary, create an MDO to hold the information, and record it.
 338 void InterpreterRuntime::note_trap(JavaThread* current, int reason) {
 339   assert(ProfileTraps, "call me only if profiling");
 340   LastFrameAccessor last_frame(current);
 341   methodHandle trap_method(current, last_frame.method());
 342   int trap_bci = trap_method->bci_from(last_frame.bcp());
 343   note_trap_inner(current, reason, trap_method, trap_bci);
 344 }
 345 
 346 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 347   // get klass
 348   InstanceKlass* klass = InstanceKlass::cast(k);
 349   assert(klass->is_initialized(),
 350          "this klass should have been initialized during VM initialization");
 351   // create instance - do not call constructor since we may have no
 352   // (java) stack space left (should assert constructor is empty)
 353   Handle exception;
 354   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 355   exception = Handle(THREAD, exception_oop);
 356   if (StackTraceInThrowable) {
 357     java_lang_Throwable::fill_in_stack_trace(exception);
 358   }
 359   return exception;
 360 }
 361 
 362 // Special handling for stack overflow: since we don't have any (java) stack
 363 // space left we use the pre-allocated & pre-initialized StackOverflowError
 364 // klass to create an stack overflow error instance.  We do not call its
 365 // constructor for the same reason (it is empty, anyway).
 366 JRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* current))
 367   Handle exception = get_preinitialized_exception(
 368                                  vmClasses::StackOverflowError_klass(),
 369                                  CHECK);
 370   // Increment counter for hs_err file reporting
 371   Atomic::inc(&Exceptions::_stack_overflow_errors);
 372   // Remove the ScopedValue bindings in case we got a StackOverflowError
 373   // while we were trying to manipulate ScopedValue bindings.
 374   current->clear_scopedValueBindings();
 375   THROW_HANDLE(exception);
 376 JRT_END
 377 
 378 JRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 379   Handle exception = get_preinitialized_exception(
 380                                  vmClasses::StackOverflowError_klass(),
 381                                  CHECK);
 382   java_lang_Throwable::set_message(exception(),
 383           Universe::delayed_stack_overflow_error_message());
 384   // Increment counter for hs_err file reporting
 385   Atomic::inc(&Exceptions::_stack_overflow_errors);
 386   // Remove the ScopedValue bindings in case we got a StackOverflowError
 387   // while we were trying to manipulate ScopedValue bindings.
 388   current->clear_scopedValueBindings();
 389   THROW_HANDLE(exception);
 390 JRT_END
 391 
 392 JRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* current, char* name, char* message))
 393   // lookup exception klass
 394   TempNewSymbol s = SymbolTable::new_symbol(name);
 395   if (ProfileTraps) {
 396     if (s == vmSymbols::java_lang_ArithmeticException()) {
 397       note_trap(current, Deoptimization::Reason_div0_check);
 398     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 399       note_trap(current, Deoptimization::Reason_null_check);
 400     }
 401   }
 402   // create exception
 403   Handle exception = Exceptions::new_exception(current, s, message);
 404   current->set_vm_result(exception());
 405 JRT_END
 406 
 407 
 408 JRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* current, char* name, oopDesc* obj))
 409   // Produce the error message first because note_trap can safepoint
 410   ResourceMark rm(current);
 411   const char* klass_name = obj->klass()->external_name();
 412   // lookup exception klass
 413   TempNewSymbol s = SymbolTable::new_symbol(name);
 414   if (ProfileTraps) {
 415     if (s == vmSymbols::java_lang_ArrayStoreException()) {
 416       note_trap(current, Deoptimization::Reason_array_check);
 417     } else {
 418       note_trap(current, Deoptimization::Reason_class_check);
 419     }
 420   }
 421   // create exception, with klass name as detail message
 422   Handle exception = Exceptions::new_exception(current, s, klass_name);
 423   current->set_vm_result(exception());
 424 JRT_END
 425 
 426 JRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* current, arrayOopDesc* a, jint index))
 427   // Produce the error message first because note_trap can safepoint
 428   ResourceMark rm(current);
 429   stringStream ss;
 430   ss.print("Index %d out of bounds for length %d", index, a->length());
 431 
 432   if (ProfileTraps) {
 433     note_trap(current, Deoptimization::Reason_range_check);
 434   }
 435 
 436   THROW_MSG(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), ss.as_string());
 437 JRT_END
 438 
 439 JRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 440   JavaThread* current, oopDesc* obj))
 441 
 442   // Produce the error message first because note_trap can safepoint
 443   ResourceMark rm(current);
 444   char* message = SharedRuntime::generate_class_cast_message(
 445     current, obj->klass());
 446 
 447   if (ProfileTraps) {
 448     note_trap(current, Deoptimization::Reason_class_check);
 449   }
 450 
 451   // create exception
 452   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 453 JRT_END
 454 
 455 // exception_handler_for_exception(...) returns the continuation address,
 456 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 457 // The exception oop is returned to make sure it is preserved over GC (it
 458 // is only on the stack if the exception was thrown explicitly via athrow).
 459 // During this operation, the expression stack contains the values for the
 460 // bci where the exception happened. If the exception was propagated back
 461 // from a call, the expression stack contains the values for the bci at the
 462 // invoke w/o arguments (i.e., as if one were inside the call).
 463 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 464 JRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* current, oopDesc* exception))
 465   // We get here after we have unwound from a callee throwing an exception
 466   // into the interpreter. Any deferred stack processing is notified of
 467   // the event via the StackWatermarkSet.
 468   StackWatermarkSet::after_unwind(current);
 469 
 470   LastFrameAccessor last_frame(current);
 471   Handle             h_exception(current, exception);
 472   methodHandle       h_method   (current, last_frame.method());
 473   constantPoolHandle h_constants(current, h_method->constants());
 474   bool               should_repeat;
 475   int                handler_bci;
 476   int                current_bci = last_frame.bci();
 477 
 478   if (current->frames_to_pop_failed_realloc() > 0) {
 479     // Allocation of scalar replaced object used in this frame
 480     // failed. Unconditionally pop the frame.
 481     current->dec_frames_to_pop_failed_realloc();
 482     current->set_vm_result(h_exception());
 483     // If the method is synchronized we already unlocked the monitor
 484     // during deoptimization so the interpreter needs to skip it when
 485     // the frame is popped.
 486     current->set_do_not_unlock_if_synchronized(true);
 487     return Interpreter::remove_activation_entry();
 488   }
 489 
 490   // Need to do this check first since when _do_not_unlock_if_synchronized
 491   // is set, we don't want to trigger any classloading which may make calls
 492   // into java, or surprisingly find a matching exception handler for bci 0
 493   // since at this moment the method hasn't been "officially" entered yet.
 494   if (current->do_not_unlock_if_synchronized()) {
 495     ResourceMark rm;
 496     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 497     current->set_vm_result(exception);
 498     return Interpreter::remove_activation_entry();
 499   }
 500 
 501   do {
 502     should_repeat = false;
 503 
 504     // assertions
 505     assert(h_exception.not_null(), "null exceptions should be handled by athrow");
 506     // Check that exception is a subclass of Throwable.
 507     assert(h_exception->is_a(vmClasses::Throwable_klass()),
 508            "Exception not subclass of Throwable");
 509 
 510     // tracing
 511     if (log_is_enabled(Info, exceptions)) {
 512       ResourceMark rm(current);
 513       stringStream tempst;
 514       tempst.print("interpreter method <%s>\n"
 515                    " at bci %d for thread " INTPTR_FORMAT " (%s)",
 516                    h_method->print_value_string(), current_bci, p2i(current), current->name());
 517       Exceptions::log_exception(h_exception, tempst.as_string());
 518     }
 519 // Don't go paging in something which won't be used.
 520 //     else if (extable->length() == 0) {
 521 //       // disabled for now - interpreter is not using shortcut yet
 522 //       // (shortcut is not to call runtime if we have no exception handlers)
 523 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 524 //     }
 525     // for AbortVMOnException flag
 526     Exceptions::debug_check_abort(h_exception);
 527 
 528     // exception handler lookup
 529     Klass* klass = h_exception->klass();
 530     handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD);
 531     if (HAS_PENDING_EXCEPTION) {
 532       // We threw an exception while trying to find the exception handler.
 533       // Transfer the new exception to the exception handle which will
 534       // be set into thread local storage, and do another lookup for an
 535       // exception handler for this exception, this time starting at the
 536       // BCI of the exception handler which caused the exception to be
 537       // thrown (bug 4307310).
 538       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 539       CLEAR_PENDING_EXCEPTION;
 540       if (handler_bci >= 0) {
 541         current_bci = handler_bci;
 542         should_repeat = true;
 543       }
 544     }
 545   } while (should_repeat == true);
 546 
 547 #if INCLUDE_JVMCI
 548   if (EnableJVMCI && h_method->method_data() != nullptr) {
 549     ResourceMark rm(current);
 550     MethodData* mdo = h_method->method_data();
 551 
 552     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 553     MutexLocker ml(mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 554 
 555     ProfileData* pdata = mdo->allocate_bci_to_data(current_bci, nullptr);
 556     if (pdata != nullptr && pdata->is_BitData()) {
 557       BitData* bit_data = (BitData*) pdata;
 558       bit_data->set_exception_seen();
 559     }
 560   }
 561 #endif
 562 
 563   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 564   // time throw or a stack unwinding throw and accordingly notify the debugger
 565   if (JvmtiExport::can_post_on_exceptions()) {
 566     JvmtiExport::post_exception_throw(current, h_method(), last_frame.bcp(), h_exception());
 567   }
 568 
 569   address continuation = nullptr;
 570   address handler_pc = nullptr;
 571   if (handler_bci < 0 || !current->stack_overflow_state()->reguard_stack((address) &continuation)) {
 572     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 573     // handler in this method, or (b) after a stack overflow there is not yet
 574     // enough stack space available to reprotect the stack.
 575     continuation = Interpreter::remove_activation_entry();
 576 #if COMPILER2_OR_JVMCI
 577     // Count this for compilation purposes
 578     h_method->interpreter_throwout_increment(THREAD);
 579 #endif
 580   } else {
 581     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 582     handler_pc = h_method->code_base() + handler_bci;
 583     h_method->set_exception_handler_entered(handler_bci); // profiling
 584 #ifndef ZERO
 585     set_bcp_and_mdp(handler_pc, current);
 586     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 587 #else
 588     continuation = (address)(intptr_t) handler_bci;
 589 #endif
 590   }
 591 
 592   // notify debugger of an exception catch
 593   // (this is good for exceptions caught in native methods as well)
 594   if (JvmtiExport::can_post_on_exceptions()) {
 595     JvmtiExport::notice_unwind_due_to_exception(current, h_method(), handler_pc, h_exception(), (handler_pc != nullptr));
 596   }
 597 
 598   current->set_vm_result(h_exception());
 599   return continuation;
 600 JRT_END
 601 
 602 
 603 JRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* current))
 604   assert(current->has_pending_exception(), "must only be called if there's an exception pending");
 605   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 606 JRT_END
 607 
 608 
 609 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* current))
 610   THROW(vmSymbols::java_lang_AbstractMethodError());
 611 JRT_END
 612 
 613 // This method is called from the "abstract_entry" of the interpreter.
 614 // At that point, the arguments have already been removed from the stack
 615 // and therefore we don't have the receiver object at our fingertips. (Though,
 616 // on some platforms the receiver still resides in a register...). Thus,
 617 // we have no choice but print an error message not containing the receiver
 618 // type.
 619 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorWithMethod(JavaThread* current,
 620                                                                         Method* missingMethod))
 621   ResourceMark rm(current);
 622   assert(missingMethod != nullptr, "sanity");
 623   methodHandle m(current, missingMethod);
 624   LinkResolver::throw_abstract_method_error(m, THREAD);
 625 JRT_END
 626 
 627 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorVerbose(JavaThread* current,
 628                                                                      Klass* recvKlass,
 629                                                                      Method* missingMethod))
 630   ResourceMark rm(current);
 631   methodHandle mh = methodHandle(current, missingMethod);
 632   LinkResolver::throw_abstract_method_error(mh, recvKlass, THREAD);
 633 JRT_END
 634 
 635 
 636 JRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 637   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 638 JRT_END
 639 
 640 JRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(JavaThread* current,
 641                                                                               Klass* recvKlass,
 642                                                                               Klass* interfaceKlass))
 643   ResourceMark rm(current);
 644   char buf[1000];
 645   buf[0] = '\0';
 646   jio_snprintf(buf, sizeof(buf),
 647                "Class %s does not implement the requested interface %s",
 648                recvKlass ? recvKlass->external_name() : "nullptr",
 649                interfaceKlass ? interfaceKlass->external_name() : "nullptr");
 650   THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
 651 JRT_END
 652 
 653 JRT_ENTRY(void, InterpreterRuntime::throw_NullPointerException(JavaThread* current))
 654   THROW(vmSymbols::java_lang_NullPointerException());
 655 JRT_END
 656 
 657 //------------------------------------------------------------------------------------------------------------------------
 658 // Fields
 659 //
 660 
 661 void InterpreterRuntime::resolve_get_put(JavaThread* current, Bytecodes::Code bytecode) {
 662   // resolve field
 663   fieldDescriptor info;
 664   LastFrameAccessor last_frame(current);
 665   constantPoolHandle pool(current, last_frame.method()->constants());
 666   methodHandle m(current, last_frame.method());
 667   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 668                     bytecode == Bytecodes::_putstatic);
 669   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 670 
 671   int field_index = last_frame.get_index_u2(bytecode);
 672   {
 673     JvmtiHideSingleStepping jhss(current);
 674     JavaThread* THREAD = current; // For exception macros.
 675     LinkResolver::resolve_field_access(info, pool, field_index,
 676                                        m, bytecode, CHECK);
 677   } // end JvmtiHideSingleStepping
 678 
 679   // check if link resolution caused cpCache to be updated
 680   if (pool->resolved_field_entry_at(field_index)->is_resolved(bytecode)) return;
 681 
 682 
 683   // compute auxiliary field attributes
 684   TosState state  = as_TosState(info.field_type());
 685 
 686   // Resolution of put instructions on final fields is delayed. That is required so that
 687   // exceptions are thrown at the correct place (when the instruction is actually invoked).
 688   // If we do not resolve an instruction in the current pass, leaving the put_code
 689   // set to zero will cause the next put instruction to the same field to reresolve.
 690 
 691   // Resolution of put instructions to final instance fields with invalid updates (i.e.,
 692   // to final instance fields with updates originating from a method different than <init>)
 693   // is inhibited. A putfield instruction targeting an instance final field must throw
 694   // an IllegalAccessError if the instruction is not in an instance
 695   // initializer method <init>. If resolution were not inhibited, a putfield
 696   // in an initializer method could be resolved in the initializer. Subsequent
 697   // putfield instructions to the same field would then use cached information.
 698   // As a result, those instructions would not pass through the VM. That is,
 699   // checks in resolve_field_access() would not be executed for those instructions
 700   // and the required IllegalAccessError would not be thrown.
 701   //
 702   // Also, we need to delay resolving getstatic and putstatic instructions until the
 703   // class is initialized.  This is required so that access to the static
 704   // field will call the initialization function every time until the class
 705   // is completely initialized ala. in 2.17.5 in JVM Specification.
 706   InstanceKlass* klass = info.field_holder();
 707   bool uninitialized_static = is_static && !klass->is_initialized();
 708   bool has_initialized_final_update = info.field_holder()->major_version() >= 53 &&
 709                                       info.has_initialized_final_update();
 710   assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
 711 
 712   Bytecodes::Code get_code = (Bytecodes::Code)0;
 713   Bytecodes::Code put_code = (Bytecodes::Code)0;
 714   if (!uninitialized_static) {
 715     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 716     if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
 717       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 718     }
 719   }
 720 
 721   ResolvedFieldEntry* entry = pool->resolved_field_entry_at(field_index);
 722   entry->set_flags(info.access_flags().is_final(), info.access_flags().is_volatile());
 723   entry->fill_in(info.field_holder(), info.offset(),
 724                  checked_cast<u2>(info.index()), checked_cast<u1>(state),
 725                  static_cast<u1>(get_code), static_cast<u1>(put_code));
 726 }
 727 
 728 
 729 //------------------------------------------------------------------------------------------------------------------------
 730 // Synchronization
 731 //
 732 // The interpreter's synchronization code is factored out so that it can
 733 // be shared by method invocation and synchronized blocks.
 734 //%note synchronization_3
 735 
 736 //%note monitor_1
 737 JRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* current, BasicObjectLock* elem))
 738   assert(LockingMode != LM_LIGHTWEIGHT, "Should call monitorenter_obj() when using the new lightweight locking");
 739 #ifdef ASSERT
 740   current->last_frame().interpreter_frame_verify_monitor(elem);
 741 #endif
 742   Handle h_obj(current, elem->obj());
 743   assert(Universe::heap()->is_in_or_null(h_obj()),
 744          "must be null or an object");
 745   ObjectSynchronizer::enter(h_obj, elem->lock(), current);
 746   assert(Universe::heap()->is_in_or_null(elem->obj()),
 747          "must be null or an object");
 748 #ifdef ASSERT
 749   current->last_frame().interpreter_frame_verify_monitor(elem);
 750 #endif
 751 JRT_END
 752 
 753 // NOTE: We provide a separate implementation for the new lightweight locking to workaround a limitation
 754 // of registers in x86_32. This entry point accepts an oop instead of a BasicObjectLock*.
 755 // The problem is that we would need to preserve the register that holds the BasicObjectLock,
 756 // but we are using that register to hold the thread. We don't have enough registers to
 757 // also keep the BasicObjectLock, but we don't really need it anyway, we only need
 758 // the object. See also InterpreterMacroAssembler::lock_object().
 759 // As soon as legacy stack-locking goes away we could remove the other monitorenter() entry
 760 // point, and only use oop-accepting entries (same for monitorexit() below).
 761 JRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter_obj(JavaThread* current, oopDesc* obj))
 762   assert(LockingMode == LM_LIGHTWEIGHT, "Should call monitorenter() when not using the new lightweight locking");
 763   Handle h_obj(current, cast_to_oop(obj));
 764   assert(Universe::heap()->is_in_or_null(h_obj()),
 765          "must be null or an object");
 766   ObjectSynchronizer::enter(h_obj, nullptr, current);
 767   return;
 768 JRT_END
 769 
 770 JRT_LEAF(void, InterpreterRuntime::monitorexit(BasicObjectLock* elem))
 771   oop obj = elem->obj();
 772   assert(Universe::heap()->is_in(obj), "must be an object");
 773   // The object could become unlocked through a JNI call, which we have no other checks for.
 774   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
 775   if (obj->is_unlocked()) {
 776     if (CheckJNICalls) {
 777       fatal("Object has been unlocked by JNI");
 778     }
 779     return;
 780   }
 781   ObjectSynchronizer::exit(obj, elem->lock(), JavaThread::current());
 782   // Free entry. If it is not cleared, the exception handling code will try to unlock the monitor
 783   // again at method exit or in the case of an exception.
 784   elem->set_obj(nullptr);
 785 JRT_END
 786 
 787 
 788 JRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* current))
 789   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 790 JRT_END
 791 
 792 
 793 JRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* current))
 794   // Returns an illegal exception to install into the current thread. The
 795   // pending_exception flag is cleared so normal exception handling does not
 796   // trigger. Any current installed exception will be overwritten. This
 797   // method will be called during an exception unwind.
 798 
 799   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 800   Handle exception(current, current->vm_result());
 801   assert(exception() != nullptr, "vm result should be set");
 802   current->set_vm_result(nullptr); // clear vm result before continuing (may cause memory leaks and assert failures)
 803   exception = get_preinitialized_exception(vmClasses::IllegalMonitorStateException_klass(), CATCH);
 804   current->set_vm_result(exception());
 805 JRT_END
 806 
 807 
 808 //------------------------------------------------------------------------------------------------------------------------
 809 // Invokes
 810 
 811 JRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* current, Method* method, address bcp))
 812   return method->orig_bytecode_at(method->bci_from(bcp));
 813 JRT_END
 814 
 815 JRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* current, Method* method, address bcp, Bytecodes::Code new_code))
 816   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 817 JRT_END
 818 
 819 JRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* current, Method* method, address bcp))
 820   JvmtiExport::post_raw_breakpoint(current, method, bcp);
 821 JRT_END
 822 
 823 void InterpreterRuntime::resolve_invoke(JavaThread* current, Bytecodes::Code bytecode) {
 824   LastFrameAccessor last_frame(current);
 825   // extract receiver from the outgoing argument list if necessary
 826   Handle receiver(current, nullptr);
 827   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface ||
 828       bytecode == Bytecodes::_invokespecial) {
 829     ResourceMark rm(current);
 830     methodHandle m (current, last_frame.method());
 831     Bytecode_invoke call(m, last_frame.bci());
 832     Symbol* signature = call.signature();
 833     receiver = Handle(current, last_frame.callee_receiver(signature));
 834 
 835     assert(Universe::heap()->is_in_or_null(receiver()),
 836            "sanity check");
 837     assert(receiver.is_null() ||
 838            !Universe::heap()->is_in(receiver->klass()),
 839            "sanity check");
 840   }
 841 
 842   // resolve method
 843   CallInfo info;
 844   constantPoolHandle pool(current, last_frame.method()->constants());
 845   ConstantPoolCache* cache = pool->cache();
 846 
 847   methodHandle resolved_method;
 848 
 849   int method_index = last_frame.get_index_u2(bytecode);
 850   {
 851     JvmtiHideSingleStepping jhss(current);
 852     JavaThread* THREAD = current; // For exception macros.
 853     LinkResolver::resolve_invoke(info, receiver, pool,
 854                                  method_index, bytecode,
 855                                  THREAD);
 856 
 857     if (HAS_PENDING_EXCEPTION) {
 858       if (ProfileTraps && PENDING_EXCEPTION->klass()->name() == vmSymbols::java_lang_NullPointerException()) {
 859         // Preserve the original exception across the call to note_trap()
 860         PreserveExceptionMark pm(current);
 861         // Recording the trap will help the compiler to potentially recognize this exception as "hot"
 862         note_trap(current, Deoptimization::Reason_null_check);
 863       }
 864       return;
 865     }
 866 
 867     if (JvmtiExport::can_hotswap_or_post_breakpoint() && info.resolved_method()->is_old()) {
 868       resolved_method = methodHandle(current, info.resolved_method()->get_new_method());
 869     } else {
 870       resolved_method = methodHandle(current, info.resolved_method());
 871     }
 872   } // end JvmtiHideSingleStepping
 873 
 874   // check if link resolution caused cpCache to be updated
 875   if (cache->resolved_method_entry_at(method_index)->is_resolved(bytecode)) return;
 876 
 877 #ifdef ASSERT
 878   if (bytecode == Bytecodes::_invokeinterface) {
 879     if (resolved_method->method_holder() == vmClasses::Object_klass()) {
 880       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 881       // (see also CallInfo::set_interface for details)
 882       assert(info.call_kind() == CallInfo::vtable_call ||
 883              info.call_kind() == CallInfo::direct_call, "");
 884       assert(resolved_method->is_final() || info.has_vtable_index(),
 885              "should have been set already");
 886     } else if (!resolved_method->has_itable_index()) {
 887       // Resolved something like CharSequence.toString.  Use vtable not itable.
 888       assert(info.call_kind() != CallInfo::itable_call, "");
 889     } else {
 890       // Setup itable entry
 891       assert(info.call_kind() == CallInfo::itable_call, "");
 892       int index = resolved_method->itable_index();
 893       assert(info.itable_index() == index, "");
 894     }
 895   } else if (bytecode == Bytecodes::_invokespecial) {
 896     assert(info.call_kind() == CallInfo::direct_call, "must be direct call");
 897   } else {
 898     assert(info.call_kind() == CallInfo::direct_call ||
 899            info.call_kind() == CallInfo::vtable_call, "");
 900   }
 901 #endif
 902   // Get sender and only set cpCache entry to resolved if it is not an
 903   // interface.  The receiver for invokespecial calls within interface
 904   // methods must be checked for every call.
 905   InstanceKlass* sender = pool->pool_holder();
 906 
 907   switch (info.call_kind()) {
 908   case CallInfo::direct_call:
 909     cache->set_direct_call(bytecode, method_index, resolved_method, sender->is_interface());
 910     break;
 911   case CallInfo::vtable_call:
 912     cache->set_vtable_call(bytecode, method_index, resolved_method, info.vtable_index());
 913     break;
 914   case CallInfo::itable_call:
 915     cache->set_itable_call(
 916       bytecode,
 917       method_index,
 918       info.resolved_klass(),
 919       resolved_method,
 920       info.itable_index());
 921     break;
 922   default:  ShouldNotReachHere();
 923   }
 924 }
 925 
 926 
 927 // First time execution:  Resolve symbols, create a permanent MethodType object.
 928 void InterpreterRuntime::resolve_invokehandle(JavaThread* current) {
 929   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
 930   LastFrameAccessor last_frame(current);
 931 
 932   // resolve method
 933   CallInfo info;
 934   constantPoolHandle pool(current, last_frame.method()->constants());
 935   int method_index = last_frame.get_index_u2(bytecode);
 936   {
 937     JvmtiHideSingleStepping jhss(current);
 938     JavaThread* THREAD = current; // For exception macros.
 939     LinkResolver::resolve_invoke(info, Handle(), pool,
 940                                  method_index, bytecode,
 941                                  CHECK);
 942   } // end JvmtiHideSingleStepping
 943 
 944   pool->cache()->set_method_handle(method_index, info);
 945 }
 946 
 947 // First time execution:  Resolve symbols, create a permanent CallSite object.
 948 void InterpreterRuntime::resolve_invokedynamic(JavaThread* current) {
 949   LastFrameAccessor last_frame(current);
 950   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 951 
 952   // resolve method
 953   CallInfo info;
 954   constantPoolHandle pool(current, last_frame.method()->constants());
 955   int index = last_frame.get_index_u4(bytecode);
 956   {
 957     JvmtiHideSingleStepping jhss(current);
 958     JavaThread* THREAD = current; // For exception macros.
 959     LinkResolver::resolve_invoke(info, Handle(), pool,
 960                                  index, bytecode, CHECK);
 961   } // end JvmtiHideSingleStepping
 962 
 963   pool->cache()->set_dynamic_call(info, pool->decode_invokedynamic_index(index));
 964 }
 965 
 966 // This function is the interface to the assembly code. It returns the resolved
 967 // cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
 968 // This function will check for redefinition!
 969 JRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* current, Bytecodes::Code bytecode)) {
 970   switch (bytecode) {
 971   case Bytecodes::_getstatic:
 972   case Bytecodes::_putstatic:
 973   case Bytecodes::_getfield:
 974   case Bytecodes::_putfield:
 975     resolve_get_put(current, bytecode);
 976     break;
 977   case Bytecodes::_invokevirtual:
 978   case Bytecodes::_invokespecial:
 979   case Bytecodes::_invokestatic:
 980   case Bytecodes::_invokeinterface:
 981     resolve_invoke(current, bytecode);
 982     break;
 983   case Bytecodes::_invokehandle:
 984     resolve_invokehandle(current);
 985     break;
 986   case Bytecodes::_invokedynamic:
 987     resolve_invokedynamic(current);
 988     break;
 989   default:
 990     fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
 991     break;
 992   }
 993 }
 994 JRT_END
 995 
 996 //------------------------------------------------------------------------------------------------------------------------
 997 // Miscellaneous
 998 
 999 
1000 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* current, address branch_bcp) {
1001   // Enable WXWrite: the function is called directly by interpreter.
1002   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1003 
1004   // frequency_counter_overflow_inner can throw async exception.
1005   nmethod* nm = frequency_counter_overflow_inner(current, branch_bcp);
1006   assert(branch_bcp != nullptr || nm == nullptr, "always returns null for non OSR requests");
1007   if (branch_bcp != nullptr && nm != nullptr) {
1008     // This was a successful request for an OSR nmethod.  Because
1009     // frequency_counter_overflow_inner ends with a safepoint check,
1010     // nm could have been unloaded so look it up again.  It's unsafe
1011     // to examine nm directly since it might have been freed and used
1012     // for something else.
1013     LastFrameAccessor last_frame(current);
1014     Method* method =  last_frame.method();
1015     int bci = method->bci_from(last_frame.bcp());
1016     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
1017     BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
1018     if (nm != nullptr && bs_nm != nullptr) {
1019       // in case the transition passed a safepoint we need to barrier this again
1020       if (!bs_nm->nmethod_osr_entry_barrier(nm)) {
1021         nm = nullptr;
1022       }
1023     }
1024   }
1025   if (nm != nullptr && current->is_interp_only_mode()) {
1026     // Normally we never get an nm if is_interp_only_mode() is true, because
1027     // policy()->event has a check for this and won't compile the method when
1028     // true. However, it's possible for is_interp_only_mode() to become true
1029     // during the compilation. We don't want to return the nm in that case
1030     // because we want to continue to execute interpreted.
1031     nm = nullptr;
1032   }
1033 #ifndef PRODUCT
1034   if (TraceOnStackReplacement) {
1035     if (nm != nullptr) {
1036       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
1037       nm->print();
1038     }
1039   }
1040 #endif
1041   return nm;
1042 }
1043 
1044 JRT_ENTRY(nmethod*,
1045           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* current, address branch_bcp))
1046   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
1047   // flag, in case this method triggers classloading which will call into Java.
1048   UnlockFlagSaver fs(current);
1049 
1050   LastFrameAccessor last_frame(current);
1051   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1052   methodHandle method(current, last_frame.method());
1053   const int branch_bci = branch_bcp != nullptr ? method->bci_from(branch_bcp) : InvocationEntryBci;
1054   const int bci = branch_bcp != nullptr ? method->bci_from(last_frame.bcp()) : InvocationEntryBci;
1055 
1056   nmethod* osr_nm = CompilationPolicy::event(method, method, branch_bci, bci, CompLevel_none, nullptr, CHECK_NULL);
1057 
1058   BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
1059   if (osr_nm != nullptr && bs_nm != nullptr) {
1060     if (!bs_nm->nmethod_osr_entry_barrier(osr_nm)) {
1061       osr_nm = nullptr;
1062     }
1063   }
1064   return osr_nm;
1065 JRT_END
1066 
1067 JRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
1068   assert(ProfileInterpreter, "must be profiling interpreter");
1069   int bci = method->bci_from(cur_bcp);
1070   MethodData* mdo = method->method_data();
1071   if (mdo == nullptr)  return 0;
1072   return mdo->bci_to_di(bci);
1073 JRT_END
1074 
1075 #ifdef ASSERT
1076 JRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
1077   assert(ProfileInterpreter, "must be profiling interpreter");
1078 
1079   MethodData* mdo = method->method_data();
1080   assert(mdo != nullptr, "must not be null");
1081 
1082   int bci = method->bci_from(bcp);
1083 
1084   address mdp2 = mdo->bci_to_dp(bci);
1085   if (mdp != mdp2) {
1086     ResourceMark rm;
1087     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
1088     int current_di = mdo->dp_to_di(mdp);
1089     int expected_di  = mdo->dp_to_di(mdp2);
1090     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
1091     int expected_approx_bci = mdo->data_at(expected_di)->bci();
1092     int approx_bci = -1;
1093     if (current_di >= 0) {
1094       approx_bci = mdo->data_at(current_di)->bci();
1095     }
1096     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
1097     mdo->print_on(tty);
1098     method->print_codes();
1099   }
1100   assert(mdp == mdp2, "wrong mdp");
1101 JRT_END
1102 #endif // ASSERT
1103 
1104 JRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* current, int return_bci))
1105   assert(ProfileInterpreter, "must be profiling interpreter");
1106   ResourceMark rm(current);
1107   LastFrameAccessor last_frame(current);
1108   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1109   MethodData* h_mdo = last_frame.method()->method_data();
1110 
1111   // Grab a lock to ensure atomic access to setting the return bci and
1112   // the displacement.  This can block and GC, invalidating all naked oops.
1113   MutexLocker ml(RetData_lock);
1114 
1115   // ProfileData is essentially a wrapper around a derived oop, so we
1116   // need to take the lock before making any ProfileData structures.
1117   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(last_frame.mdp()));
1118   guarantee(data != nullptr, "profile data must be valid");
1119   RetData* rdata = data->as_RetData();
1120   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1121   last_frame.set_mdp(new_mdp);
1122 JRT_END
1123 
1124 JRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* current, Method* m))
1125   return Method::build_method_counters(current, m);
1126 JRT_END
1127 
1128 
1129 JRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* current))
1130   // We used to need an explicit preserve_arguments here for invoke bytecodes. However,
1131   // stack traversal automatically takes care of preserving arguments for invoke, so
1132   // this is no longer needed.
1133 
1134   // JRT_END does an implicit safepoint check, hence we are guaranteed to block
1135   // if this is called during a safepoint
1136 
1137   if (JvmtiExport::should_post_single_step()) {
1138     // This function is called by the interpreter when single stepping. Such single
1139     // stepping could unwind a frame. Then, it is important that we process any frames
1140     // that we might return into.
1141     StackWatermarkSet::before_unwind(current);
1142 
1143     // We are called during regular safepoints and when the VM is
1144     // single stepping. If any thread is marked for single stepping,
1145     // then we may have JVMTI work to do.
1146     LastFrameAccessor last_frame(current);
1147     JvmtiExport::at_single_stepping_point(current, last_frame.method(), last_frame.bcp());
1148   }
1149 JRT_END
1150 
1151 JRT_LEAF(void, InterpreterRuntime::at_unwind(JavaThread* current))
1152   assert(current == JavaThread::current(), "pre-condition");
1153   // This function is called by the interpreter when the return poll found a reason
1154   // to call the VM. The reason could be that we are returning into a not yet safe
1155   // to access frame. We handle that below.
1156   // Note that this path does not check for single stepping, because we do not want
1157   // to single step when unwinding frames for an exception being thrown. Instead,
1158   // such single stepping code will use the safepoint table, which will use the
1159   // InterpreterRuntime::at_safepoint callback.
1160   StackWatermarkSet::before_unwind(current);
1161 JRT_END
1162 
1163 JRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread* current, oopDesc* obj,
1164                                                       ResolvedFieldEntry *entry))
1165 
1166   // check the access_flags for the field in the klass
1167 
1168   InstanceKlass* ik = entry->field_holder();
1169   int index = entry->field_index();
1170   if (!ik->field_status(index).is_access_watched()) return;
1171 
1172   bool is_static = (obj == nullptr);
1173   HandleMark hm(current);
1174 
1175   Handle h_obj;
1176   if (!is_static) {
1177     // non-static field accessors have an object, but we need a handle
1178     h_obj = Handle(current, obj);
1179   }
1180   InstanceKlass* field_holder = entry->field_holder(); // HERE
1181   jfieldID fid = jfieldIDWorkaround::to_jfieldID(field_holder, entry->field_offset(), is_static);
1182   LastFrameAccessor last_frame(current);
1183   JvmtiExport::post_field_access(current, last_frame.method(), last_frame.bcp(), field_holder, h_obj, fid);
1184 JRT_END
1185 
1186 JRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread* current, oopDesc* obj,
1187                                                             ResolvedFieldEntry *entry, jvalue *value))
1188 
1189   InstanceKlass* ik = entry->field_holder();
1190 
1191   // check the access_flags for the field in the klass
1192   int index = entry->field_index();
1193   // bail out if field modifications are not watched
1194   if (!ik->field_status(index).is_modification_watched()) return;
1195 
1196   char sig_type = '\0';
1197 
1198   switch((TosState)entry->tos_state()) {
1199     case btos: sig_type = JVM_SIGNATURE_BYTE;    break;
1200     case ztos: sig_type = JVM_SIGNATURE_BOOLEAN; break;
1201     case ctos: sig_type = JVM_SIGNATURE_CHAR;    break;
1202     case stos: sig_type = JVM_SIGNATURE_SHORT;   break;
1203     case itos: sig_type = JVM_SIGNATURE_INT;     break;
1204     case ftos: sig_type = JVM_SIGNATURE_FLOAT;   break;
1205     case atos: sig_type = JVM_SIGNATURE_CLASS;   break;
1206     case ltos: sig_type = JVM_SIGNATURE_LONG;    break;
1207     case dtos: sig_type = JVM_SIGNATURE_DOUBLE;  break;
1208     default:  ShouldNotReachHere(); return;
1209   }
1210   bool is_static = (obj == nullptr);
1211 
1212   HandleMark hm(current);
1213   jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, entry->field_offset(), is_static);
1214   jvalue fvalue;
1215 #ifdef _LP64
1216   fvalue = *value;
1217 #else
1218   // Long/double values are stored unaligned and also noncontiguously with
1219   // tagged stacks.  We can't just do a simple assignment even in the non-
1220   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1221   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1222   // We assume that the two halves of longs/doubles are stored in interpreter
1223   // stack slots in platform-endian order.
1224   jlong_accessor u;
1225   jint* newval = (jint*)value;
1226   u.words[0] = newval[0];
1227   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1228   fvalue.j = u.long_value;
1229 #endif // _LP64
1230 
1231   Handle h_obj;
1232   if (!is_static) {
1233     // non-static field accessors have an object, but we need a handle
1234     h_obj = Handle(current, obj);
1235   }
1236 
1237   LastFrameAccessor last_frame(current);
1238   JvmtiExport::post_raw_field_modification(current, last_frame.method(), last_frame.bcp(), ik, h_obj,
1239                                            fid, sig_type, &fvalue);
1240 JRT_END
1241 
1242 JRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread* current))
1243   LastFrameAccessor last_frame(current);
1244   JvmtiExport::post_method_entry(current, last_frame.method(), last_frame.get_frame());
1245 JRT_END
1246 
1247 
1248 // This is a JRT_BLOCK_ENTRY because we have to stash away the return oop
1249 // before transitioning to VM, and restore it after transitioning back
1250 // to Java. The return oop at the top-of-stack, is not walked by the GC.
1251 JRT_BLOCK_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread* current))
1252   LastFrameAccessor last_frame(current);
1253   JvmtiExport::post_method_exit(current, last_frame.method(), last_frame.get_frame());
1254 JRT_END
1255 
1256 JRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1257 {
1258   return (Interpreter::contains(Continuation::get_top_return_pc_post_barrier(JavaThread::current(), pc)) ? 1 : 0);
1259 }
1260 JRT_END
1261 
1262 
1263 // Implementation of SignatureHandlerLibrary
1264 
1265 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS
1266 // Dummy definition (else normalization method is defined in CPU
1267 // dependent code)
1268 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
1269   return fingerprint;
1270 }
1271 #endif
1272 
1273 address SignatureHandlerLibrary::set_handler_blob() {
1274   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1275   if (handler_blob == nullptr) {
1276     return nullptr;
1277   }
1278   address handler = handler_blob->code_begin();
1279   _handler_blob = handler_blob;
1280   _handler = handler;
1281   return handler;
1282 }
1283 
1284 void SignatureHandlerLibrary::initialize() {
1285   if (_fingerprints != nullptr) {
1286     return;
1287   }
1288   if (set_handler_blob() == nullptr) {
1289     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1290   }
1291 
1292   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1293                                       SignatureHandlerLibrary::buffer_size);
1294   _buffer = bb->code_begin();
1295 
1296   _fingerprints = new (mtCode) GrowableArray<uint64_t>(32, mtCode);
1297   _handlers     = new (mtCode) GrowableArray<address>(32, mtCode);
1298 }
1299 
1300 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1301   address handler   = _handler;
1302   int     insts_size = buffer->pure_insts_size();
1303   if (handler + insts_size > _handler_blob->code_end()) {
1304     // get a new handler blob
1305     handler = set_handler_blob();
1306   }
1307   if (handler != nullptr) {
1308     memcpy(handler, buffer->insts_begin(), insts_size);
1309     pd_set_handler(handler);
1310     ICache::invalidate_range(handler, insts_size);
1311     _handler = handler + insts_size;
1312   }
1313   return handler;
1314 }
1315 
1316 void SignatureHandlerLibrary::add(const methodHandle& method) {
1317   if (method->signature_handler() == nullptr) {
1318     // use slow signature handler if we can't do better
1319     int handler_index = -1;
1320     // check if we can use customized (fast) signature handler
1321     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::fp_max_size_of_parameters) {
1322       // use customized signature handler
1323       MutexLocker mu(SignatureHandlerLibrary_lock);
1324       // make sure data structure is initialized
1325       initialize();
1326       // lookup method signature's fingerprint
1327       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1328       // allow CPU dependent code to optimize the fingerprints for the fast handler
1329       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1330       handler_index = _fingerprints->find(fingerprint);
1331       // create handler if necessary
1332       if (handler_index < 0) {
1333         ResourceMark rm;
1334         ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer;
1335         CodeBuffer buffer((address)(_buffer + align_offset),
1336                           checked_cast<int>(SignatureHandlerLibrary::buffer_size - align_offset));
1337         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1338         // copy into code heap
1339         address handler = set_handler(&buffer);
1340         if (handler == nullptr) {
1341           // use slow signature handler (without memorizing it in the fingerprints)
1342         } else {
1343           // debugging support
1344           if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1345             ttyLocker ttyl;
1346             tty->cr();
1347             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1348                           _handlers->length(),
1349                           (method->is_static() ? "static" : "receiver"),
1350                           method->name_and_sig_as_C_string(),
1351                           fingerprint,
1352                           buffer.insts_size());
1353             if (buffer.insts_size() > 0) {
1354               Disassembler::decode(handler, handler + buffer.insts_size(), tty
1355                                    NOT_PRODUCT(COMMA &buffer.asm_remarks()));
1356             }
1357 #ifndef PRODUCT
1358             address rh_begin = Interpreter::result_handler(method()->result_type());
1359             if (CodeCache::contains(rh_begin)) {
1360               // else it might be special platform dependent values
1361               tty->print_cr(" --- associated result handler ---");
1362               address rh_end = rh_begin;
1363               while (*(int*)rh_end != 0) {
1364                 rh_end += sizeof(int);
1365               }
1366               Disassembler::decode(rh_begin, rh_end);
1367             } else {
1368               tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
1369             }
1370 #endif
1371           }
1372           // add handler to library
1373           _fingerprints->append(fingerprint);
1374           _handlers->append(handler);
1375           // set handler index
1376           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1377           handler_index = _fingerprints->length() - 1;
1378         }
1379       }
1380       // Set handler under SignatureHandlerLibrary_lock
1381       if (handler_index < 0) {
1382         // use generic signature handler
1383         method->set_signature_handler(Interpreter::slow_signature_handler());
1384       } else {
1385         // set handler
1386         method->set_signature_handler(_handlers->at(handler_index));
1387       }
1388     } else {
1389       DEBUG_ONLY(JavaThread::current()->check_possible_safepoint());
1390       // use generic signature handler
1391       method->set_signature_handler(Interpreter::slow_signature_handler());
1392     }
1393   }
1394 #ifdef ASSERT
1395   int handler_index = -1;
1396   int fingerprint_index = -2;
1397   {
1398     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1399     // in any way if accessed from multiple threads. To avoid races with another
1400     // thread which may change the arrays in the above, mutex protected block, we
1401     // have to protect this read access here with the same mutex as well!
1402     MutexLocker mu(SignatureHandlerLibrary_lock);
1403     if (_handlers != nullptr) {
1404       handler_index = _handlers->find(method->signature_handler());
1405       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1406       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1407       fingerprint_index = _fingerprints->find(fingerprint);
1408     }
1409   }
1410   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1411          handler_index == fingerprint_index, "sanity check");
1412 #endif // ASSERT
1413 }
1414 
1415 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
1416   int handler_index = -1;
1417   // use customized signature handler
1418   MutexLocker mu(SignatureHandlerLibrary_lock);
1419   // make sure data structure is initialized
1420   initialize();
1421   fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1422   handler_index = _fingerprints->find(fingerprint);
1423   // create handler if necessary
1424   if (handler_index < 0) {
1425     if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1426       tty->cr();
1427       tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
1428                     _handlers->length(),
1429                     p2i(handler),
1430                     fingerprint);
1431     }
1432     _fingerprints->append(fingerprint);
1433     _handlers->append(handler);
1434   } else {
1435     if (PrintSignatureHandlers) {
1436       tty->cr();
1437       tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
1438                     _handlers->length(),
1439                     fingerprint,
1440                     p2i(_handlers->at(handler_index)),
1441                     p2i(handler));
1442     }
1443   }
1444 }
1445 
1446 
1447 BufferBlob*              SignatureHandlerLibrary::_handler_blob = nullptr;
1448 address                  SignatureHandlerLibrary::_handler      = nullptr;
1449 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = nullptr;
1450 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = nullptr;
1451 address                  SignatureHandlerLibrary::_buffer       = nullptr;
1452 
1453 
1454 JRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* current, Method* method))
1455   methodHandle m(current, method);
1456   assert(m->is_native(), "sanity check");
1457   // lookup native function entry point if it doesn't exist
1458   if (!m->has_native_function()) {
1459     NativeLookup::lookup(m, CHECK);
1460   }
1461   // make sure signature handler is installed
1462   SignatureHandlerLibrary::add(m);
1463   // The interpreter entry point checks the signature handler first,
1464   // before trying to fetch the native entry point and klass mirror.
1465   // We must set the signature handler last, so that multiple processors
1466   // preparing the same method will be sure to see non-null entry & mirror.
1467 JRT_END
1468 
1469 #if defined(IA32) || defined(AMD64) || defined(ARM)
1470 JRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* current, void* src_address, void* dest_address))
1471   assert(current == JavaThread::current(), "pre-condition");
1472   if (src_address == dest_address) {
1473     return;
1474   }
1475   ResourceMark rm;
1476   LastFrameAccessor last_frame(current);
1477   assert(last_frame.is_interpreted_frame(), "");
1478   jint bci = last_frame.bci();
1479   methodHandle mh(current, last_frame.method());
1480   Bytecode_invoke invoke(mh, bci);
1481   ArgumentSizeComputer asc(invoke.signature());
1482   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1483   Copy::conjoint_jbytes(src_address, dest_address,
1484                        size_of_arguments * Interpreter::stackElementSize);
1485 JRT_END
1486 #endif
1487 
1488 #if INCLUDE_JVMTI
1489 // This is a support of the JVMTI PopFrame interface.
1490 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1491 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1492 // The member_name argument is a saved reference (in local#0) to the member_name.
1493 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1494 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1495 JRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* current, address member_name,
1496                                                             Method* method, address bcp))
1497   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1498   if (code != Bytecodes::_invokestatic) {
1499     return;
1500   }
1501   ConstantPool* cpool = method->constants();
1502   int cp_index = Bytes::get_native_u2(bcp + 1);
1503   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index, code));
1504   Symbol* mname = cpool->name_ref_at(cp_index, code);
1505 
1506   if (MethodHandles::has_member_arg(cname, mname)) {
1507     oop member_name_oop = cast_to_oop(member_name);
1508     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1509       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1510       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1511     }
1512     current->set_vm_result(member_name_oop);
1513   } else {
1514     current->set_vm_result(nullptr);
1515   }
1516 JRT_END
1517 #endif // INCLUDE_JVMTI
1518 
1519 #ifndef PRODUCT
1520 // This must be a JRT_LEAF function because the interpreter must save registers on x86 to
1521 // call this, which changes rsp and makes the interpreter's expression stack not walkable.
1522 // The generated code still uses call_VM because that will set up the frame pointer for
1523 // bcp and method.
1524 JRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* current, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1525   assert(current == JavaThread::current(), "pre-condition");
1526   LastFrameAccessor last_frame(current);
1527   assert(last_frame.is_interpreted_frame(), "must be an interpreted frame");
1528   methodHandle mh(current, last_frame.method());
1529   BytecodeTracer::trace_interpreter(mh, last_frame.bcp(), tos, tos2);
1530   return preserve_this_value;
1531 JRT_END
1532 #endif // !PRODUCT