1 /*
   2  * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm_io.h"
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "compiler/compilationPolicy.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "gc/shared/barrierSetNMethod.hpp"
  36 #include "gc/shared/collectedHeap.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/interpreterRuntime.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/templateTable.hpp"
  41 #include "logging/log.hpp"
  42 #include "memory/oopFactory.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.hpp"
  45 #include "oops/constantPool.hpp"
  46 #include "oops/cpCache.inline.hpp"
  47 #include "oops/instanceKlass.inline.hpp"
  48 #include "oops/klass.inline.hpp"
  49 #include "oops/methodData.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/objArrayOop.inline.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "oops/symbol.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/continuation.hpp"
  59 #include "runtime/deoptimization.hpp"
  60 #include "runtime/fieldDescriptor.inline.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/icache.hpp"
  64 #include "runtime/interfaceSupport.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/jfieldIDWorkaround.hpp"
  68 #include "runtime/osThread.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/stackWatermarkSet.hpp"
  71 #include "runtime/stubRoutines.hpp"
  72 #include "runtime/synchronizer.hpp"
  73 #include "runtime/threadCritical.hpp"
  74 #include "utilities/align.hpp"
  75 #include "utilities/copy.hpp"
  76 #include "utilities/events.hpp"
  77 #ifdef COMPILER2
  78 #include "opto/runtime.hpp"
  79 #endif
  80 
  81 // Helper class to access current interpreter state
  82 class LastFrameAccessor : public StackObj {
  83   frame _last_frame;
  84 public:
  85   LastFrameAccessor(JavaThread* current) {
  86     assert(current == Thread::current(), "sanity");
  87     _last_frame = current->last_frame();
  88   }
  89   bool is_interpreted_frame() const              { return _last_frame.is_interpreted_frame(); }
  90   Method*   method() const                       { return _last_frame.interpreter_frame_method(); }
  91   address   bcp() const                          { return _last_frame.interpreter_frame_bcp(); }
  92   int       bci() const                          { return _last_frame.interpreter_frame_bci(); }
  93   address   mdp() const                          { return _last_frame.interpreter_frame_mdp(); }
  94 
  95   void      set_bcp(address bcp)                 { _last_frame.interpreter_frame_set_bcp(bcp); }
  96   void      set_mdp(address dp)                  { _last_frame.interpreter_frame_set_mdp(dp); }
  97 
  98   // pass method to avoid calling unsafe bcp_to_method (partial fix 4926272)
  99   Bytecodes::Code code() const                   { return Bytecodes::code_at(method(), bcp()); }
 100 
 101   Bytecode  bytecode() const                     { return Bytecode(method(), bcp()); }
 102   int get_index_u1(Bytecodes::Code bc) const     { return bytecode().get_index_u1(bc); }
 103   int get_index_u2(Bytecodes::Code bc) const     { return bytecode().get_index_u2(bc); }
 104   int get_index_u2_cpcache(Bytecodes::Code bc) const
 105                                                  { return bytecode().get_index_u2_cpcache(bc); }
 106   int get_index_u4(Bytecodes::Code bc) const     { return bytecode().get_index_u4(bc); }
 107   int number_of_dimensions() const               { return bcp()[3]; }
 108   ConstantPoolCacheEntry* cache_entry_at(int i) const
 109                                                  { return method()->constants()->cache()->entry_at(i); }
 110   ConstantPoolCacheEntry* cache_entry() const    { return cache_entry_at(Bytes::get_native_u2(bcp() + 1)); }
 111 
 112   oop callee_receiver(Symbol* signature) {
 113     return _last_frame.interpreter_callee_receiver(signature);
 114   }
 115   BasicObjectLock* monitor_begin() const {
 116     return _last_frame.interpreter_frame_monitor_begin();
 117   }
 118   BasicObjectLock* monitor_end() const {
 119     return _last_frame.interpreter_frame_monitor_end();
 120   }
 121   BasicObjectLock* next_monitor(BasicObjectLock* current) const {
 122     return _last_frame.next_monitor_in_interpreter_frame(current);
 123   }
 124 
 125   frame& get_frame()                             { return _last_frame; }
 126 };
 127 
 128 //------------------------------------------------------------------------------------------------------------------------
 129 // State accessors
 130 
 131 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread* current) {
 132   LastFrameAccessor last_frame(current);
 133   last_frame.set_bcp(bcp);
 134   if (ProfileInterpreter) {
 135     // ProfileTraps uses MDOs independently of ProfileInterpreter.
 136     // That is why we must check both ProfileInterpreter and mdo != NULL.
 137     MethodData* mdo = last_frame.method()->method_data();
 138     if (mdo != NULL) {
 139       NEEDS_CLEANUP;
 140       last_frame.set_mdp(mdo->bci_to_dp(last_frame.bci()));
 141     }
 142   }
 143 }
 144 
 145 //------------------------------------------------------------------------------------------------------------------------
 146 // Constants
 147 
 148 
 149 JRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* current, bool wide))
 150   // access constant pool
 151   LastFrameAccessor last_frame(current);
 152   ConstantPool* pool = last_frame.method()->constants();
 153   int index = wide ? last_frame.get_index_u2(Bytecodes::_ldc_w) : last_frame.get_index_u1(Bytecodes::_ldc);
 154   constantTag tag = pool->tag_at(index);
 155 
 156   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 157   Klass* klass = pool->klass_at(index, CHECK);
 158   oop java_class = klass->java_mirror();
 159   current->set_vm_result(java_class);
 160 JRT_END
 161 
 162 JRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* current, Bytecodes::Code bytecode)) {
 163   assert(bytecode == Bytecodes::_ldc ||
 164          bytecode == Bytecodes::_ldc_w ||
 165          bytecode == Bytecodes::_ldc2_w ||
 166          bytecode == Bytecodes::_fast_aldc ||
 167          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 168   ResourceMark rm(current);
 169   const bool is_fast_aldc = (bytecode == Bytecodes::_fast_aldc ||
 170                              bytecode == Bytecodes::_fast_aldc_w);
 171   LastFrameAccessor last_frame(current);
 172   methodHandle m (current, last_frame.method());
 173   Bytecode_loadconstant ldc(m, last_frame.bci());
 174 
 175   // Double-check the size.  (Condy can have any type.)
 176   BasicType type = ldc.result_type();
 177   switch (type2size[type]) {
 178   case 2: guarantee(bytecode == Bytecodes::_ldc2_w, ""); break;
 179   case 1: guarantee(bytecode != Bytecodes::_ldc2_w, ""); break;
 180   default: ShouldNotReachHere();
 181   }
 182 
 183   // Resolve the constant.  This does not do unboxing.
 184   // But it does replace Universe::the_null_sentinel by null.
 185   oop result = ldc.resolve_constant(CHECK);
 186   assert(result != NULL || is_fast_aldc, "null result only valid for fast_aldc");
 187 
 188 #ifdef ASSERT
 189   {
 190     // The bytecode wrappers aren't GC-safe so construct a new one
 191     Bytecode_loadconstant ldc2(m, last_frame.bci());
 192     int rindex = ldc2.cache_index();
 193     if (rindex < 0)
 194       rindex = m->constants()->cp_to_object_index(ldc2.pool_index());
 195     if (rindex >= 0) {
 196       oop coop = m->constants()->resolved_references()->obj_at(rindex);
 197       oop roop = (result == NULL ? Universe::the_null_sentinel() : result);
 198       assert(roop == coop, "expected result for assembly code");
 199     }
 200   }
 201 #endif
 202   current->set_vm_result(result);
 203   if (!is_fast_aldc) {
 204     // Tell the interpreter how to unbox the primitive.
 205     guarantee(java_lang_boxing_object::is_instance(result, type), "");
 206     int offset = java_lang_boxing_object::value_offset(type);
 207     intptr_t flags = ((as_TosState(type) << ConstantPoolCacheEntry::tos_state_shift)
 208                       | (offset & ConstantPoolCacheEntry::field_index_mask));
 209     current->set_vm_result_2((Metadata*)flags);
 210   }
 211 }
 212 JRT_END
 213 
 214 
 215 //------------------------------------------------------------------------------------------------------------------------
 216 // Allocation
 217 
 218 JRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* current, ConstantPool* pool, int index))
 219   Klass* k = pool->klass_at(index, CHECK);
 220   InstanceKlass* klass = InstanceKlass::cast(k);
 221 
 222   // Make sure we are not instantiating an abstract klass
 223   klass->check_valid_for_instantiation(true, CHECK);
 224 
 225   // Make sure klass is initialized
 226   klass->initialize(CHECK);
 227 
 228   // At this point the class may not be fully initialized
 229   // because of recursive initialization. If it is fully
 230   // initialized & has_finalized is not set, we rewrite
 231   // it into its fast version (Note: no locking is needed
 232   // here since this is an atomic byte write and can be
 233   // done more than once).
 234   //
 235   // Note: In case of classes with has_finalized we don't
 236   //       rewrite since that saves us an extra check in
 237   //       the fast version which then would call the
 238   //       slow version anyway (and do a call back into
 239   //       Java).
 240   //       If we have a breakpoint, then we don't rewrite
 241   //       because the _breakpoint bytecode would be lost.
 242   oop obj = klass->allocate_instance(CHECK);
 243   current->set_vm_result(obj);
 244 JRT_END
 245 
 246 
 247 JRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* current, BasicType type, jint size))
 248   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 249   current->set_vm_result(obj);
 250 JRT_END
 251 
 252 
 253 JRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* current, ConstantPool* pool, int index, jint size))
 254   Klass*    klass = pool->klass_at(index, CHECK);
 255   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 256   current->set_vm_result(obj);
 257 JRT_END
 258 
 259 
 260 JRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* current, jint* first_size_address))
 261   // We may want to pass in more arguments - could make this slightly faster
 262   LastFrameAccessor last_frame(current);
 263   ConstantPool* constants = last_frame.method()->constants();
 264   int          i = last_frame.get_index_u2(Bytecodes::_multianewarray);
 265   Klass* klass   = constants->klass_at(i, CHECK);
 266   int   nof_dims = last_frame.number_of_dimensions();
 267   assert(klass->is_klass(), "not a class");
 268   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 269 
 270   // We must create an array of jints to pass to multi_allocate.
 271   ResourceMark rm(current);
 272   const int small_dims = 10;
 273   jint dim_array[small_dims];
 274   jint *dims = &dim_array[0];
 275   if (nof_dims > small_dims) {
 276     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 277   }
 278   for (int index = 0; index < nof_dims; index++) {
 279     // offset from first_size_address is addressed as local[index]
 280     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 281     dims[index] = first_size_address[n];
 282   }
 283   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 284   current->set_vm_result(obj);
 285 JRT_END
 286 
 287 
 288 JRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
 289   assert(oopDesc::is_oop(obj), "must be a valid oop");
 290   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 291   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 292 JRT_END
 293 
 294 
 295 // Quicken instance-of and check-cast bytecodes
 296 JRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* current))
 297   // Force resolving; quicken the bytecode
 298   LastFrameAccessor last_frame(current);
 299   int which = last_frame.get_index_u2(Bytecodes::_checkcast);
 300   ConstantPool* cpool = last_frame.method()->constants();
 301   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 302   // program we might have seen an unquick'd bytecode in the interpreter but have another
 303   // thread quicken the bytecode before we get here.
 304   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 305   Klass* klass = cpool->klass_at(which, CHECK);
 306   current->set_vm_result_2(klass);
 307 JRT_END
 308 
 309 
 310 //------------------------------------------------------------------------------------------------------------------------
 311 // Exceptions
 312 
 313 void InterpreterRuntime::note_trap_inner(JavaThread* current, int reason,
 314                                          const methodHandle& trap_method, int trap_bci) {
 315   if (trap_method.not_null()) {
 316     MethodData* trap_mdo = trap_method->method_data();
 317     if (trap_mdo == NULL) {
 318       ExceptionMark em(current);
 319       JavaThread* THREAD = current; // For exception macros.
 320       Method::build_interpreter_method_data(trap_method, THREAD);
 321       if (HAS_PENDING_EXCEPTION) {
 322         // Only metaspace OOM is expected. No Java code executed.
 323         assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())),
 324                "we expect only an OOM error here");
 325         CLEAR_PENDING_EXCEPTION;
 326       }
 327       trap_mdo = trap_method->method_data();
 328       // and fall through...
 329     }
 330     if (trap_mdo != NULL) {
 331       // Update per-method count of trap events.  The interpreter
 332       // is updating the MDO to simulate the effect of compiler traps.
 333       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 334     }
 335   }
 336 }
 337 
 338 // Assume the compiler is (or will be) interested in this event.
 339 // If necessary, create an MDO to hold the information, and record it.
 340 void InterpreterRuntime::note_trap(JavaThread* current, int reason) {
 341   assert(ProfileTraps, "call me only if profiling");
 342   LastFrameAccessor last_frame(current);
 343   methodHandle trap_method(current, last_frame.method());
 344   int trap_bci = trap_method->bci_from(last_frame.bcp());
 345   note_trap_inner(current, reason, trap_method, trap_bci);
 346 }
 347 
 348 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 349   // get klass
 350   InstanceKlass* klass = InstanceKlass::cast(k);
 351   assert(klass->is_initialized(),
 352          "this klass should have been initialized during VM initialization");
 353   // create instance - do not call constructor since we may have no
 354   // (java) stack space left (should assert constructor is empty)
 355   Handle exception;
 356   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 357   exception = Handle(THREAD, exception_oop);
 358   if (StackTraceInThrowable) {
 359     java_lang_Throwable::fill_in_stack_trace(exception);
 360   }
 361   return exception;
 362 }
 363 
 364 // Special handling for stack overflow: since we don't have any (java) stack
 365 // space left we use the pre-allocated & pre-initialized StackOverflowError
 366 // klass to create an stack overflow error instance.  We do not call its
 367 // constructor for the same reason (it is empty, anyway).
 368 JRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* current))
 369   Handle exception = get_preinitialized_exception(
 370                                  vmClasses::StackOverflowError_klass(),
 371                                  CHECK);
 372   // Increment counter for hs_err file reporting
 373   Atomic::inc(&Exceptions::_stack_overflow_errors);
 374   THROW_HANDLE(exception);
 375 JRT_END
 376 
 377 JRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 378   Handle exception = get_preinitialized_exception(
 379                                  vmClasses::StackOverflowError_klass(),
 380                                  CHECK);
 381   java_lang_Throwable::set_message(exception(),
 382           Universe::delayed_stack_overflow_error_message());
 383   // Increment counter for hs_err file reporting
 384   Atomic::inc(&Exceptions::_stack_overflow_errors);
 385   THROW_HANDLE(exception);
 386 JRT_END
 387 
 388 JRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* current, char* name, char* message))
 389   // lookup exception klass
 390   TempNewSymbol s = SymbolTable::new_symbol(name);
 391   if (ProfileTraps) {
 392     if (s == vmSymbols::java_lang_ArithmeticException()) {
 393       note_trap(current, Deoptimization::Reason_div0_check);
 394     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 395       note_trap(current, Deoptimization::Reason_null_check);
 396     }
 397   }
 398   // create exception
 399   Handle exception = Exceptions::new_exception(current, s, message);
 400   current->set_vm_result(exception());
 401 JRT_END
 402 
 403 
 404 JRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* current, char* name, oopDesc* obj))
 405   // Produce the error message first because note_trap can safepoint
 406   ResourceMark rm(current);
 407   const char* klass_name = obj->klass()->external_name();
 408   // lookup exception klass
 409   TempNewSymbol s = SymbolTable::new_symbol(name);
 410   if (ProfileTraps) {
 411     note_trap(current, Deoptimization::Reason_class_check);
 412   }
 413   // create exception, with klass name as detail message
 414   Handle exception = Exceptions::new_exception(current, s, klass_name);
 415   current->set_vm_result(exception());
 416 JRT_END
 417 
 418 JRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* current, arrayOopDesc* a, jint index))
 419   // Produce the error message first because note_trap can safepoint
 420   ResourceMark rm(current);
 421   stringStream ss;
 422   ss.print("Index %d out of bounds for length %d", index, a->length());
 423 
 424   if (ProfileTraps) {
 425     note_trap(current, Deoptimization::Reason_range_check);
 426   }
 427 
 428   THROW_MSG(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), ss.as_string());
 429 JRT_END
 430 
 431 JRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 432   JavaThread* current, oopDesc* obj))
 433 
 434   // Produce the error message first because note_trap can safepoint
 435   ResourceMark rm(current);
 436   char* message = SharedRuntime::generate_class_cast_message(
 437     current, obj->klass());
 438 
 439   if (ProfileTraps) {
 440     note_trap(current, Deoptimization::Reason_class_check);
 441   }
 442 
 443   // create exception
 444   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 445 JRT_END
 446 
 447 // exception_handler_for_exception(...) returns the continuation address,
 448 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 449 // The exception oop is returned to make sure it is preserved over GC (it
 450 // is only on the stack if the exception was thrown explicitly via athrow).
 451 // During this operation, the expression stack contains the values for the
 452 // bci where the exception happened. If the exception was propagated back
 453 // from a call, the expression stack contains the values for the bci at the
 454 // invoke w/o arguments (i.e., as if one were inside the call).
 455 JRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* current, oopDesc* exception))
 456   // We get here after we have unwound from a callee throwing an exception
 457   // into the interpreter. Any deferred stack processing is notified of
 458   // the event via the StackWatermarkSet.
 459   StackWatermarkSet::after_unwind(current);
 460 
 461   LastFrameAccessor last_frame(current);
 462   Handle             h_exception(current, exception);
 463   methodHandle       h_method   (current, last_frame.method());
 464   constantPoolHandle h_constants(current, h_method->constants());
 465   bool               should_repeat;
 466   int                handler_bci;
 467   int                current_bci = last_frame.bci();
 468 
 469   if (current->frames_to_pop_failed_realloc() > 0) {
 470     // Allocation of scalar replaced object used in this frame
 471     // failed. Unconditionally pop the frame.
 472     current->dec_frames_to_pop_failed_realloc();
 473     current->set_vm_result(h_exception());
 474     // If the method is synchronized we already unlocked the monitor
 475     // during deoptimization so the interpreter needs to skip it when
 476     // the frame is popped.
 477     current->set_do_not_unlock_if_synchronized(true);
 478     return Interpreter::remove_activation_entry();
 479   }
 480 
 481   // Need to do this check first since when _do_not_unlock_if_synchronized
 482   // is set, we don't want to trigger any classloading which may make calls
 483   // into java, or surprisingly find a matching exception handler for bci 0
 484   // since at this moment the method hasn't been "officially" entered yet.
 485   if (current->do_not_unlock_if_synchronized()) {
 486     ResourceMark rm;
 487     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 488     current->set_vm_result(exception);
 489     return Interpreter::remove_activation_entry();
 490   }
 491 
 492   do {
 493     should_repeat = false;
 494 
 495     // assertions
 496     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 497     // Check that exception is a subclass of Throwable.
 498     assert(h_exception->is_a(vmClasses::Throwable_klass()),
 499            "Exception not subclass of Throwable");
 500 
 501     // tracing
 502     if (log_is_enabled(Info, exceptions)) {
 503       ResourceMark rm(current);
 504       stringStream tempst;
 505       tempst.print("interpreter method <%s>\n"
 506                    " at bci %d for thread " INTPTR_FORMAT " (%s)",
 507                    h_method->print_value_string(), current_bci, p2i(current), current->name());
 508       Exceptions::log_exception(h_exception, tempst.as_string());
 509     }
 510 // Don't go paging in something which won't be used.
 511 //     else if (extable->length() == 0) {
 512 //       // disabled for now - interpreter is not using shortcut yet
 513 //       // (shortcut is not to call runtime if we have no exception handlers)
 514 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 515 //     }
 516     // for AbortVMOnException flag
 517     Exceptions::debug_check_abort(h_exception);
 518 
 519     // exception handler lookup
 520     Klass* klass = h_exception->klass();
 521     handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD);
 522     if (HAS_PENDING_EXCEPTION) {
 523       // We threw an exception while trying to find the exception handler.
 524       // Transfer the new exception to the exception handle which will
 525       // be set into thread local storage, and do another lookup for an
 526       // exception handler for this exception, this time starting at the
 527       // BCI of the exception handler which caused the exception to be
 528       // thrown (bug 4307310).
 529       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 530       CLEAR_PENDING_EXCEPTION;
 531       if (handler_bci >= 0) {
 532         current_bci = handler_bci;
 533         should_repeat = true;
 534       }
 535     }
 536   } while (should_repeat == true);
 537 
 538 #if INCLUDE_JVMCI
 539   if (EnableJVMCI && h_method->method_data() != NULL) {
 540     ResourceMark rm(current);
 541     ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL);
 542     if (pdata != NULL && pdata->is_BitData()) {
 543       BitData* bit_data = (BitData*) pdata;
 544       bit_data->set_exception_seen();
 545     }
 546   }
 547 #endif
 548 
 549   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 550   // time throw or a stack unwinding throw and accordingly notify the debugger
 551   if (JvmtiExport::can_post_on_exceptions()) {
 552     JvmtiExport::post_exception_throw(current, h_method(), last_frame.bcp(), h_exception());
 553   }
 554 
 555   address continuation = NULL;
 556   address handler_pc = NULL;
 557   if (handler_bci < 0 || !current->stack_overflow_state()->reguard_stack((address) &continuation)) {
 558     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 559     // handler in this method, or (b) after a stack overflow there is not yet
 560     // enough stack space available to reprotect the stack.
 561     continuation = Interpreter::remove_activation_entry();
 562 #if COMPILER2_OR_JVMCI
 563     // Count this for compilation purposes
 564     h_method->interpreter_throwout_increment(THREAD);
 565 #endif
 566   } else {
 567     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 568     handler_pc = h_method->code_base() + handler_bci;
 569 #ifndef ZERO
 570     set_bcp_and_mdp(handler_pc, current);
 571     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 572 #else
 573     continuation = (address)(intptr_t) handler_bci;
 574 #endif
 575   }
 576 
 577   // notify debugger of an exception catch
 578   // (this is good for exceptions caught in native methods as well)
 579   if (JvmtiExport::can_post_on_exceptions()) {
 580     JvmtiExport::notice_unwind_due_to_exception(current, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 581   }
 582 
 583   current->set_vm_result(h_exception());
 584   return continuation;
 585 JRT_END
 586 
 587 
 588 JRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* current))
 589   assert(current->has_pending_exception(), "must only be called if there's an exception pending");
 590   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 591 JRT_END
 592 
 593 
 594 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* current))
 595   THROW(vmSymbols::java_lang_AbstractMethodError());
 596 JRT_END
 597 
 598 // This method is called from the "abstract_entry" of the interpreter.
 599 // At that point, the arguments have already been removed from the stack
 600 // and therefore we don't have the receiver object at our fingertips. (Though,
 601 // on some platforms the receiver still resides in a register...). Thus,
 602 // we have no choice but print an error message not containing the receiver
 603 // type.
 604 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorWithMethod(JavaThread* current,
 605                                                                         Method* missingMethod))
 606   ResourceMark rm(current);
 607   assert(missingMethod != NULL, "sanity");
 608   methodHandle m(current, missingMethod);
 609   LinkResolver::throw_abstract_method_error(m, THREAD);
 610 JRT_END
 611 
 612 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorVerbose(JavaThread* current,
 613                                                                      Klass* recvKlass,
 614                                                                      Method* missingMethod))
 615   ResourceMark rm(current);
 616   methodHandle mh = methodHandle(current, missingMethod);
 617   LinkResolver::throw_abstract_method_error(mh, recvKlass, THREAD);
 618 JRT_END
 619 
 620 
 621 JRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 622   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 623 JRT_END
 624 
 625 JRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(JavaThread* current,
 626                                                                               Klass* recvKlass,
 627                                                                               Klass* interfaceKlass))
 628   ResourceMark rm(current);
 629   char buf[1000];
 630   buf[0] = '\0';
 631   jio_snprintf(buf, sizeof(buf),
 632                "Class %s does not implement the requested interface %s",
 633                recvKlass ? recvKlass->external_name() : "NULL",
 634                interfaceKlass ? interfaceKlass->external_name() : "NULL");
 635   THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
 636 JRT_END
 637 
 638 JRT_ENTRY(void, InterpreterRuntime::throw_NullPointerException(JavaThread* current))
 639   THROW(vmSymbols::java_lang_NullPointerException());
 640 JRT_END
 641 
 642 //------------------------------------------------------------------------------------------------------------------------
 643 // Fields
 644 //
 645 
 646 void InterpreterRuntime::resolve_get_put(JavaThread* current, Bytecodes::Code bytecode) {
 647   // resolve field
 648   fieldDescriptor info;
 649   LastFrameAccessor last_frame(current);
 650   constantPoolHandle pool(current, last_frame.method()->constants());
 651   methodHandle m(current, last_frame.method());
 652   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 653                     bytecode == Bytecodes::_putstatic);
 654   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 655 
 656   {
 657     JvmtiHideSingleStepping jhss(current);
 658     JavaThread* THREAD = current; // For exception macros.
 659     LinkResolver::resolve_field_access(info, pool, last_frame.get_index_u2_cpcache(bytecode),
 660                                        m, bytecode, CHECK);
 661   } // end JvmtiHideSingleStepping
 662 
 663   // check if link resolution caused cpCache to be updated
 664   ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry();
 665   if (cp_cache_entry->is_resolved(bytecode)) return;
 666 
 667   // compute auxiliary field attributes
 668   TosState state  = as_TosState(info.field_type());
 669 
 670   // Resolution of put instructions on final fields is delayed. That is required so that
 671   // exceptions are thrown at the correct place (when the instruction is actually invoked).
 672   // If we do not resolve an instruction in the current pass, leaving the put_code
 673   // set to zero will cause the next put instruction to the same field to reresolve.
 674 
 675   // Resolution of put instructions to final instance fields with invalid updates (i.e.,
 676   // to final instance fields with updates originating from a method different than <init>)
 677   // is inhibited. A putfield instruction targeting an instance final field must throw
 678   // an IllegalAccessError if the instruction is not in an instance
 679   // initializer method <init>. If resolution were not inhibited, a putfield
 680   // in an initializer method could be resolved in the initializer. Subsequent
 681   // putfield instructions to the same field would then use cached information.
 682   // As a result, those instructions would not pass through the VM. That is,
 683   // checks in resolve_field_access() would not be executed for those instructions
 684   // and the required IllegalAccessError would not be thrown.
 685   //
 686   // Also, we need to delay resolving getstatic and putstatic instructions until the
 687   // class is initialized.  This is required so that access to the static
 688   // field will call the initialization function every time until the class
 689   // is completely initialized ala. in 2.17.5 in JVM Specification.
 690   InstanceKlass* klass = info.field_holder();
 691   bool uninitialized_static = is_static && !klass->is_initialized();
 692   bool has_initialized_final_update = info.field_holder()->major_version() >= 53 &&
 693                                       info.has_initialized_final_update();
 694   assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
 695 
 696   Bytecodes::Code get_code = (Bytecodes::Code)0;
 697   Bytecodes::Code put_code = (Bytecodes::Code)0;
 698   if (!uninitialized_static) {
 699     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 700     if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
 701       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 702     }
 703   }
 704 
 705   cp_cache_entry->set_field(
 706     get_code,
 707     put_code,
 708     info.field_holder(),
 709     info.index(),
 710     info.offset(),
 711     state,
 712     info.access_flags().is_final(),
 713     info.access_flags().is_volatile()
 714   );
 715 }
 716 
 717 
 718 //------------------------------------------------------------------------------------------------------------------------
 719 // Synchronization
 720 //
 721 // The interpreter's synchronization code is factored out so that it can
 722 // be shared by method invocation and synchronized blocks.
 723 //%note synchronization_3
 724 
 725 //%note monitor_1
 726 JRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* current, BasicObjectLock* elem))
 727 #ifdef ASSERT
 728   current->last_frame().interpreter_frame_verify_monitor(elem);
 729 #endif
 730   Handle h_obj(current, elem->obj());
 731   assert(Universe::heap()->is_in_or_null(h_obj()),
 732          "must be NULL or an object");
 733   ObjectSynchronizer::enter(h_obj, elem->lock(), current);
 734   assert(Universe::heap()->is_in_or_null(elem->obj()),
 735          "must be NULL or an object");
 736 #ifdef ASSERT
 737   current->last_frame().interpreter_frame_verify_monitor(elem);
 738 #endif
 739 JRT_END
 740 
 741 
 742 JRT_LEAF(void, InterpreterRuntime::monitorexit(BasicObjectLock* elem))
 743   oop obj = elem->obj();
 744   assert(Universe::heap()->is_in(obj), "must be an object");
 745   // The object could become unlocked through a JNI call, which we have no other checks for.
 746   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
 747   if (obj->is_unlocked()) {
 748     if (CheckJNICalls) {
 749       fatal("Object has been unlocked by JNI");
 750     }
 751     return;
 752   }
 753   ObjectSynchronizer::exit(obj, elem->lock(), JavaThread::current());
 754   // Free entry. If it is not cleared, the exception handling code will try to unlock the monitor
 755   // again at method exit or in the case of an exception.
 756   elem->set_obj(NULL);
 757 JRT_END
 758 
 759 
 760 JRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* current))
 761   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 762 JRT_END
 763 
 764 
 765 JRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* current))
 766   // Returns an illegal exception to install into the current thread. The
 767   // pending_exception flag is cleared so normal exception handling does not
 768   // trigger. Any current installed exception will be overwritten. This
 769   // method will be called during an exception unwind.
 770 
 771   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 772   Handle exception(current, current->vm_result());
 773   assert(exception() != NULL, "vm result should be set");
 774   current->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
 775   if (!exception->is_a(vmClasses::ThreadDeath_klass())) {
 776     exception = get_preinitialized_exception(
 777                        vmClasses::IllegalMonitorStateException_klass(),
 778                        CATCH);
 779   }
 780   current->set_vm_result(exception());
 781 JRT_END
 782 
 783 
 784 //------------------------------------------------------------------------------------------------------------------------
 785 // Invokes
 786 
 787 JRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* current, Method* method, address bcp))
 788   return method->orig_bytecode_at(method->bci_from(bcp));
 789 JRT_END
 790 
 791 JRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* current, Method* method, address bcp, Bytecodes::Code new_code))
 792   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 793 JRT_END
 794 
 795 JRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* current, Method* method, address bcp))
 796   JvmtiExport::post_raw_breakpoint(current, method, bcp);
 797 JRT_END
 798 
 799 void InterpreterRuntime::resolve_invoke(JavaThread* current, Bytecodes::Code bytecode) {
 800   LastFrameAccessor last_frame(current);
 801   // extract receiver from the outgoing argument list if necessary
 802   Handle receiver(current, NULL);
 803   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface ||
 804       bytecode == Bytecodes::_invokespecial) {
 805     ResourceMark rm(current);
 806     methodHandle m (current, last_frame.method());
 807     Bytecode_invoke call(m, last_frame.bci());
 808     Symbol* signature = call.signature();
 809     receiver = Handle(current, last_frame.callee_receiver(signature));
 810 
 811     assert(Universe::heap()->is_in_or_null(receiver()),
 812            "sanity check");
 813     assert(receiver.is_null() ||
 814            !Universe::heap()->is_in(receiver->klass()),
 815            "sanity check");
 816   }
 817 
 818   // resolve method
 819   CallInfo info;
 820   constantPoolHandle pool(current, last_frame.method()->constants());
 821 
 822   methodHandle resolved_method;
 823 
 824   {
 825     JvmtiHideSingleStepping jhss(current);
 826     JavaThread* THREAD = current; // For exception macros.
 827     LinkResolver::resolve_invoke(info, receiver, pool,
 828                                  last_frame.get_index_u2_cpcache(bytecode), bytecode,
 829                                  CHECK);
 830     if (JvmtiExport::can_hotswap_or_post_breakpoint() && info.resolved_method()->is_old()) {
 831       resolved_method = methodHandle(current, info.resolved_method()->get_new_method());
 832     } else {
 833       resolved_method = methodHandle(current, info.resolved_method());
 834     }
 835   } // end JvmtiHideSingleStepping
 836 
 837   // check if link resolution caused cpCache to be updated
 838   ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry();
 839   if (cp_cache_entry->is_resolved(bytecode)) return;
 840 
 841 #ifdef ASSERT
 842   if (bytecode == Bytecodes::_invokeinterface) {
 843     if (resolved_method->method_holder() == vmClasses::Object_klass()) {
 844       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 845       // (see also CallInfo::set_interface for details)
 846       assert(info.call_kind() == CallInfo::vtable_call ||
 847              info.call_kind() == CallInfo::direct_call, "");
 848       assert(resolved_method->is_final() || info.has_vtable_index(),
 849              "should have been set already");
 850     } else if (!resolved_method->has_itable_index()) {
 851       // Resolved something like CharSequence.toString.  Use vtable not itable.
 852       assert(info.call_kind() != CallInfo::itable_call, "");
 853     } else {
 854       // Setup itable entry
 855       assert(info.call_kind() == CallInfo::itable_call, "");
 856       int index = resolved_method->itable_index();
 857       assert(info.itable_index() == index, "");
 858     }
 859   } else if (bytecode == Bytecodes::_invokespecial) {
 860     assert(info.call_kind() == CallInfo::direct_call, "must be direct call");
 861   } else {
 862     assert(info.call_kind() == CallInfo::direct_call ||
 863            info.call_kind() == CallInfo::vtable_call, "");
 864   }
 865 #endif
 866   // Get sender and only set cpCache entry to resolved if it is not an
 867   // interface.  The receiver for invokespecial calls within interface
 868   // methods must be checked for every call.
 869   InstanceKlass* sender = pool->pool_holder();
 870 
 871   switch (info.call_kind()) {
 872   case CallInfo::direct_call:
 873     cp_cache_entry->set_direct_call(
 874       bytecode,
 875       resolved_method,
 876       sender->is_interface());
 877     break;
 878   case CallInfo::vtable_call:
 879     cp_cache_entry->set_vtable_call(
 880       bytecode,
 881       resolved_method,
 882       info.vtable_index());
 883     break;
 884   case CallInfo::itable_call:
 885     cp_cache_entry->set_itable_call(
 886       bytecode,
 887       info.resolved_klass(),
 888       resolved_method,
 889       info.itable_index());
 890     break;
 891   default:  ShouldNotReachHere();
 892   }
 893 }
 894 
 895 
 896 // First time execution:  Resolve symbols, create a permanent MethodType object.
 897 void InterpreterRuntime::resolve_invokehandle(JavaThread* current) {
 898   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
 899   LastFrameAccessor last_frame(current);
 900 
 901   // resolve method
 902   CallInfo info;
 903   constantPoolHandle pool(current, last_frame.method()->constants());
 904   {
 905     JvmtiHideSingleStepping jhss(current);
 906     JavaThread* THREAD = current; // For exception macros.
 907     LinkResolver::resolve_invoke(info, Handle(), pool,
 908                                  last_frame.get_index_u2_cpcache(bytecode), bytecode,
 909                                  CHECK);
 910   } // end JvmtiHideSingleStepping
 911 
 912   ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry();
 913   cp_cache_entry->set_method_handle(pool, info);
 914 }
 915 
 916 // First time execution:  Resolve symbols, create a permanent CallSite object.
 917 void InterpreterRuntime::resolve_invokedynamic(JavaThread* current) {
 918   LastFrameAccessor last_frame(current);
 919   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 920 
 921   // resolve method
 922   CallInfo info;
 923   constantPoolHandle pool(current, last_frame.method()->constants());
 924   int index = last_frame.get_index_u4(bytecode);
 925   {
 926     JvmtiHideSingleStepping jhss(current);
 927     JavaThread* THREAD = current; // For exception macros.
 928     LinkResolver::resolve_invoke(info, Handle(), pool,
 929                                  index, bytecode, CHECK);
 930   } // end JvmtiHideSingleStepping
 931 
 932   ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
 933   cp_cache_entry->set_dynamic_call(pool, info);
 934 }
 935 
 936 // This function is the interface to the assembly code. It returns the resolved
 937 // cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
 938 // This function will check for redefinition!
 939 JRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* current, Bytecodes::Code bytecode)) {
 940   switch (bytecode) {
 941   case Bytecodes::_getstatic:
 942   case Bytecodes::_putstatic:
 943   case Bytecodes::_getfield:
 944   case Bytecodes::_putfield:
 945     resolve_get_put(current, bytecode);
 946     break;
 947   case Bytecodes::_invokevirtual:
 948   case Bytecodes::_invokespecial:
 949   case Bytecodes::_invokestatic:
 950   case Bytecodes::_invokeinterface:
 951     resolve_invoke(current, bytecode);
 952     break;
 953   case Bytecodes::_invokehandle:
 954     resolve_invokehandle(current);
 955     break;
 956   case Bytecodes::_invokedynamic:
 957     resolve_invokedynamic(current);
 958     break;
 959   default:
 960     fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
 961     break;
 962   }
 963 }
 964 JRT_END
 965 
 966 //------------------------------------------------------------------------------------------------------------------------
 967 // Miscellaneous
 968 
 969 
 970 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* current, address branch_bcp) {
 971   // Enable WXWrite: the function is called directly by interpreter.
 972   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
 973 
 974   // frequency_counter_overflow_inner can throw async exception.
 975   nmethod* nm = frequency_counter_overflow_inner(current, branch_bcp);
 976   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
 977   if (branch_bcp != NULL && nm != NULL) {
 978     // This was a successful request for an OSR nmethod.  Because
 979     // frequency_counter_overflow_inner ends with a safepoint check,
 980     // nm could have been unloaded so look it up again.  It's unsafe
 981     // to examine nm directly since it might have been freed and used
 982     // for something else.
 983     LastFrameAccessor last_frame(current);
 984     Method* method =  last_frame.method();
 985     int bci = method->bci_from(last_frame.bcp());
 986     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
 987     BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
 988     if (nm != NULL && bs_nm != NULL) {
 989       // in case the transition passed a safepoint we need to barrier this again
 990       if (!bs_nm->nmethod_osr_entry_barrier(nm)) {
 991         nm = NULL;
 992       }
 993     }
 994   }
 995   if (nm != NULL && current->is_interp_only_mode()) {
 996     // Normally we never get an nm if is_interp_only_mode() is true, because
 997     // policy()->event has a check for this and won't compile the method when
 998     // true. However, it's possible for is_interp_only_mode() to become true
 999     // during the compilation. We don't want to return the nm in that case
1000     // because we want to continue to execute interpreted.
1001     nm = NULL;
1002   }
1003 #ifndef PRODUCT
1004   if (TraceOnStackReplacement) {
1005     if (nm != NULL) {
1006       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
1007       nm->print();
1008     }
1009   }
1010 #endif
1011   return nm;
1012 }
1013 
1014 JRT_ENTRY(nmethod*,
1015           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* current, address branch_bcp))
1016   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
1017   // flag, in case this method triggers classloading which will call into Java.
1018   UnlockFlagSaver fs(current);
1019 
1020   LastFrameAccessor last_frame(current);
1021   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1022   methodHandle method(current, last_frame.method());
1023   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
1024   const int bci = branch_bcp != NULL ? method->bci_from(last_frame.bcp()) : InvocationEntryBci;
1025 
1026   nmethod* osr_nm = CompilationPolicy::event(method, method, branch_bci, bci, CompLevel_none, NULL, CHECK_NULL);
1027 
1028   BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
1029   if (osr_nm != NULL && bs_nm != NULL) {
1030     if (!bs_nm->nmethod_osr_entry_barrier(osr_nm)) {
1031       osr_nm = NULL;
1032     }
1033   }
1034   return osr_nm;
1035 JRT_END
1036 
1037 JRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
1038   assert(ProfileInterpreter, "must be profiling interpreter");
1039   int bci = method->bci_from(cur_bcp);
1040   MethodData* mdo = method->method_data();
1041   if (mdo == NULL)  return 0;
1042   return mdo->bci_to_di(bci);
1043 JRT_END
1044 
1045 #ifdef ASSERT
1046 JRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
1047   assert(ProfileInterpreter, "must be profiling interpreter");
1048 
1049   MethodData* mdo = method->method_data();
1050   assert(mdo != NULL, "must not be null");
1051 
1052   int bci = method->bci_from(bcp);
1053 
1054   address mdp2 = mdo->bci_to_dp(bci);
1055   if (mdp != mdp2) {
1056     ResourceMark rm;
1057     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
1058     int current_di = mdo->dp_to_di(mdp);
1059     int expected_di  = mdo->dp_to_di(mdp2);
1060     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
1061     int expected_approx_bci = mdo->data_at(expected_di)->bci();
1062     int approx_bci = -1;
1063     if (current_di >= 0) {
1064       approx_bci = mdo->data_at(current_di)->bci();
1065     }
1066     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
1067     mdo->print_on(tty);
1068     method->print_codes();
1069   }
1070   assert(mdp == mdp2, "wrong mdp");
1071 JRT_END
1072 #endif // ASSERT
1073 
1074 JRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* current, int return_bci))
1075   assert(ProfileInterpreter, "must be profiling interpreter");
1076   ResourceMark rm(current);
1077   LastFrameAccessor last_frame(current);
1078   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1079   MethodData* h_mdo = last_frame.method()->method_data();
1080 
1081   // Grab a lock to ensure atomic access to setting the return bci and
1082   // the displacement.  This can block and GC, invalidating all naked oops.
1083   MutexLocker ml(RetData_lock);
1084 
1085   // ProfileData is essentially a wrapper around a derived oop, so we
1086   // need to take the lock before making any ProfileData structures.
1087   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(last_frame.mdp()));
1088   guarantee(data != NULL, "profile data must be valid");
1089   RetData* rdata = data->as_RetData();
1090   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1091   last_frame.set_mdp(new_mdp);
1092 JRT_END
1093 
1094 JRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* current, Method* m))
1095   return Method::build_method_counters(current, m);
1096 JRT_END
1097 
1098 
1099 JRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* current))
1100   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
1101   // stack traversal automatically takes care of preserving arguments for invoke, so
1102   // this is no longer needed.
1103 
1104   // JRT_END does an implicit safepoint check, hence we are guaranteed to block
1105   // if this is called during a safepoint
1106 
1107   if (java_lang_VirtualThread::notify_jvmti_events()) {
1108     JvmtiExport::check_suspend_at_safepoint(current);
1109   }
1110 
1111   if (JvmtiExport::should_post_single_step()) {
1112     // This function is called by the interpreter when single stepping. Such single
1113     // stepping could unwind a frame. Then, it is important that we process any frames
1114     // that we might return into.
1115     StackWatermarkSet::before_unwind(current);
1116 
1117     // We are called during regular safepoints and when the VM is
1118     // single stepping. If any thread is marked for single stepping,
1119     // then we may have JVMTI work to do.
1120     LastFrameAccessor last_frame(current);
1121     JvmtiExport::at_single_stepping_point(current, last_frame.method(), last_frame.bcp());
1122   }
1123 JRT_END
1124 
1125 JRT_LEAF(void, InterpreterRuntime::at_unwind(JavaThread* current))
1126   // This function is called by the interpreter when the return poll found a reason
1127   // to call the VM. The reason could be that we are returning into a not yet safe
1128   // to access frame. We handle that below.
1129   // Note that this path does not check for single stepping, because we do not want
1130   // to single step when unwinding frames for an exception being thrown. Instead,
1131   // such single stepping code will use the safepoint table, which will use the
1132   // InterpreterRuntime::at_safepoint callback.
1133   StackWatermarkSet::before_unwind(current);
1134 JRT_END
1135 
1136 JRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread* current, oopDesc* obj,
1137                                                       ConstantPoolCacheEntry *cp_entry))
1138 
1139   // check the access_flags for the field in the klass
1140 
1141   InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1142   int index = cp_entry->field_index();
1143   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1144 
1145   bool is_static = (obj == NULL);
1146   HandleMark hm(current);
1147 
1148   Handle h_obj;
1149   if (!is_static) {
1150     // non-static field accessors have an object, but we need a handle
1151     h_obj = Handle(current, obj);
1152   }
1153   InstanceKlass* cp_entry_f1 = InstanceKlass::cast(cp_entry->f1_as_klass());
1154   jfieldID fid = jfieldIDWorkaround::to_jfieldID(cp_entry_f1, cp_entry->f2_as_index(), is_static);
1155   LastFrameAccessor last_frame(current);
1156   JvmtiExport::post_field_access(current, last_frame.method(), last_frame.bcp(), cp_entry_f1, h_obj, fid);
1157 JRT_END
1158 
1159 JRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread* current, oopDesc* obj,
1160                                                             ConstantPoolCacheEntry *cp_entry, jvalue *value))
1161 
1162   Klass* k = cp_entry->f1_as_klass();
1163 
1164   // check the access_flags for the field in the klass
1165   InstanceKlass* ik = InstanceKlass::cast(k);
1166   int index = cp_entry->field_index();
1167   // bail out if field modifications are not watched
1168   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1169 
1170   char sig_type = '\0';
1171 
1172   switch(cp_entry->flag_state()) {
1173     case btos: sig_type = JVM_SIGNATURE_BYTE;    break;
1174     case ztos: sig_type = JVM_SIGNATURE_BOOLEAN; break;
1175     case ctos: sig_type = JVM_SIGNATURE_CHAR;    break;
1176     case stos: sig_type = JVM_SIGNATURE_SHORT;   break;
1177     case itos: sig_type = JVM_SIGNATURE_INT;     break;
1178     case ftos: sig_type = JVM_SIGNATURE_FLOAT;   break;
1179     case atos: sig_type = JVM_SIGNATURE_CLASS;   break;
1180     case ltos: sig_type = JVM_SIGNATURE_LONG;    break;
1181     case dtos: sig_type = JVM_SIGNATURE_DOUBLE;  break;
1182     default:  ShouldNotReachHere(); return;
1183   }
1184   bool is_static = (obj == NULL);
1185 
1186   HandleMark hm(current);
1187   jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, cp_entry->f2_as_index(), is_static);
1188   jvalue fvalue;
1189 #ifdef _LP64
1190   fvalue = *value;
1191 #else
1192   // Long/double values are stored unaligned and also noncontiguously with
1193   // tagged stacks.  We can't just do a simple assignment even in the non-
1194   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1195   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1196   // We assume that the two halves of longs/doubles are stored in interpreter
1197   // stack slots in platform-endian order.
1198   jlong_accessor u;
1199   jint* newval = (jint*)value;
1200   u.words[0] = newval[0];
1201   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1202   fvalue.j = u.long_value;
1203 #endif // _LP64
1204 
1205   Handle h_obj;
1206   if (!is_static) {
1207     // non-static field accessors have an object, but we need a handle
1208     h_obj = Handle(current, obj);
1209   }
1210 
1211   LastFrameAccessor last_frame(current);
1212   JvmtiExport::post_raw_field_modification(current, last_frame.method(), last_frame.bcp(), ik, h_obj,
1213                                            fid, sig_type, &fvalue);
1214 JRT_END
1215 
1216 JRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread* current))
1217   LastFrameAccessor last_frame(current);
1218   JvmtiExport::post_method_entry(current, last_frame.method(), last_frame.get_frame());
1219 JRT_END
1220 
1221 
1222 // This is a JRT_BLOCK_ENTRY because we have to stash away the return oop
1223 // before transitioning to VM, and restore it after transitioning back
1224 // to Java. The return oop at the top-of-stack, is not walked by the GC.
1225 JRT_BLOCK_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread* current))
1226   LastFrameAccessor last_frame(current);
1227   JvmtiExport::post_method_exit(current, last_frame.method(), last_frame.get_frame());
1228 JRT_END
1229 
1230 JRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1231 {
1232   return (Interpreter::contains(Continuation::get_top_return_pc_post_barrier(JavaThread::current(), pc)) ? 1 : 0);
1233 }
1234 JRT_END
1235 
1236 
1237 // Implementation of SignatureHandlerLibrary
1238 
1239 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS
1240 // Dummy definition (else normalization method is defined in CPU
1241 // dependant code)
1242 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
1243   return fingerprint;
1244 }
1245 #endif
1246 
1247 address SignatureHandlerLibrary::set_handler_blob() {
1248   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1249   if (handler_blob == NULL) {
1250     return NULL;
1251   }
1252   address handler = handler_blob->code_begin();
1253   _handler_blob = handler_blob;
1254   _handler = handler;
1255   return handler;
1256 }
1257 
1258 void SignatureHandlerLibrary::initialize() {
1259   if (_fingerprints != NULL) {
1260     return;
1261   }
1262   if (set_handler_blob() == NULL) {
1263     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1264   }
1265 
1266   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1267                                       SignatureHandlerLibrary::buffer_size);
1268   _buffer = bb->code_begin();
1269 
1270   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, mtCode);
1271   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, mtCode);
1272 }
1273 
1274 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1275   address handler   = _handler;
1276   int     insts_size = buffer->pure_insts_size();
1277   if (handler + insts_size > _handler_blob->code_end()) {
1278     // get a new handler blob
1279     handler = set_handler_blob();
1280   }
1281   if (handler != NULL) {
1282     memcpy(handler, buffer->insts_begin(), insts_size);
1283     pd_set_handler(handler);
1284     ICache::invalidate_range(handler, insts_size);
1285     _handler = handler + insts_size;
1286   }
1287   return handler;
1288 }
1289 
1290 void SignatureHandlerLibrary::add(const methodHandle& method) {
1291   if (method->signature_handler() == NULL) {
1292     // use slow signature handler if we can't do better
1293     int handler_index = -1;
1294     // check if we can use customized (fast) signature handler
1295     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::fp_max_size_of_parameters) {
1296       // use customized signature handler
1297       MutexLocker mu(SignatureHandlerLibrary_lock);
1298       // make sure data structure is initialized
1299       initialize();
1300       // lookup method signature's fingerprint
1301       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1302       // allow CPU dependant code to optimize the fingerprints for the fast handler
1303       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1304       handler_index = _fingerprints->find(fingerprint);
1305       // create handler if necessary
1306       if (handler_index < 0) {
1307         ResourceMark rm;
1308         ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer;
1309         CodeBuffer buffer((address)(_buffer + align_offset),
1310                           SignatureHandlerLibrary::buffer_size - align_offset);
1311         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1312         // copy into code heap
1313         address handler = set_handler(&buffer);
1314         if (handler == NULL) {
1315           // use slow signature handler (without memorizing it in the fingerprints)
1316         } else {
1317           // debugging suppport
1318           if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1319             ttyLocker ttyl;
1320             tty->cr();
1321             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1322                           _handlers->length(),
1323                           (method->is_static() ? "static" : "receiver"),
1324                           method->name_and_sig_as_C_string(),
1325                           fingerprint,
1326                           buffer.insts_size());
1327             if (buffer.insts_size() > 0) {
1328               Disassembler::decode(handler, handler + buffer.insts_size(), tty
1329                                    NOT_PRODUCT(COMMA &buffer.asm_remarks()));
1330             }
1331 #ifndef PRODUCT
1332             address rh_begin = Interpreter::result_handler(method()->result_type());
1333             if (CodeCache::contains(rh_begin)) {
1334               // else it might be special platform dependent values
1335               tty->print_cr(" --- associated result handler ---");
1336               address rh_end = rh_begin;
1337               while (*(int*)rh_end != 0) {
1338                 rh_end += sizeof(int);
1339               }
1340               Disassembler::decode(rh_begin, rh_end);
1341             } else {
1342               tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
1343             }
1344 #endif
1345           }
1346           // add handler to library
1347           _fingerprints->append(fingerprint);
1348           _handlers->append(handler);
1349           // set handler index
1350           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1351           handler_index = _fingerprints->length() - 1;
1352         }
1353       }
1354       // Set handler under SignatureHandlerLibrary_lock
1355       if (handler_index < 0) {
1356         // use generic signature handler
1357         method->set_signature_handler(Interpreter::slow_signature_handler());
1358       } else {
1359         // set handler
1360         method->set_signature_handler(_handlers->at(handler_index));
1361       }
1362     } else {
1363       DEBUG_ONLY(JavaThread::current()->check_possible_safepoint());
1364       // use generic signature handler
1365       method->set_signature_handler(Interpreter::slow_signature_handler());
1366     }
1367   }
1368 #ifdef ASSERT
1369   int handler_index = -1;
1370   int fingerprint_index = -2;
1371   {
1372     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1373     // in any way if accessed from multiple threads. To avoid races with another
1374     // thread which may change the arrays in the above, mutex protected block, we
1375     // have to protect this read access here with the same mutex as well!
1376     MutexLocker mu(SignatureHandlerLibrary_lock);
1377     if (_handlers != NULL) {
1378       handler_index = _handlers->find(method->signature_handler());
1379       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1380       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1381       fingerprint_index = _fingerprints->find(fingerprint);
1382     }
1383   }
1384   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1385          handler_index == fingerprint_index, "sanity check");
1386 #endif // ASSERT
1387 }
1388 
1389 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
1390   int handler_index = -1;
1391   // use customized signature handler
1392   MutexLocker mu(SignatureHandlerLibrary_lock);
1393   // make sure data structure is initialized
1394   initialize();
1395   fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1396   handler_index = _fingerprints->find(fingerprint);
1397   // create handler if necessary
1398   if (handler_index < 0) {
1399     if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1400       tty->cr();
1401       tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
1402                     _handlers->length(),
1403                     p2i(handler),
1404                     fingerprint);
1405     }
1406     _fingerprints->append(fingerprint);
1407     _handlers->append(handler);
1408   } else {
1409     if (PrintSignatureHandlers) {
1410       tty->cr();
1411       tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
1412                     _handlers->length(),
1413                     fingerprint,
1414                     p2i(_handlers->at(handler_index)),
1415                     p2i(handler));
1416     }
1417   }
1418 }
1419 
1420 
1421 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1422 address                  SignatureHandlerLibrary::_handler      = NULL;
1423 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1424 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1425 address                  SignatureHandlerLibrary::_buffer       = NULL;
1426 
1427 
1428 JRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* current, Method* method))
1429   methodHandle m(current, method);
1430   assert(m->is_native(), "sanity check");
1431   // lookup native function entry point if it doesn't exist
1432   if (!m->has_native_function()) {
1433     NativeLookup::lookup(m, CHECK);
1434   }
1435   // make sure signature handler is installed
1436   SignatureHandlerLibrary::add(m);
1437   // The interpreter entry point checks the signature handler first,
1438   // before trying to fetch the native entry point and klass mirror.
1439   // We must set the signature handler last, so that multiple processors
1440   // preparing the same method will be sure to see non-null entry & mirror.
1441 JRT_END
1442 
1443 #if defined(IA32) || defined(AMD64) || defined(ARM)
1444 JRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* current, void* src_address, void* dest_address))
1445   if (src_address == dest_address) {
1446     return;
1447   }
1448   ResourceMark rm;
1449   LastFrameAccessor last_frame(current);
1450   assert(last_frame.is_interpreted_frame(), "");
1451   jint bci = last_frame.bci();
1452   methodHandle mh(current, last_frame.method());
1453   Bytecode_invoke invoke(mh, bci);
1454   ArgumentSizeComputer asc(invoke.signature());
1455   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1456   Copy::conjoint_jbytes(src_address, dest_address,
1457                        size_of_arguments * Interpreter::stackElementSize);
1458 JRT_END
1459 #endif
1460 
1461 #if INCLUDE_JVMTI
1462 // This is a support of the JVMTI PopFrame interface.
1463 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1464 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1465 // The member_name argument is a saved reference (in local#0) to the member_name.
1466 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1467 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1468 JRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* current, address member_name,
1469                                                             Method* method, address bcp))
1470   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1471   if (code != Bytecodes::_invokestatic) {
1472     return;
1473   }
1474   ConstantPool* cpool = method->constants();
1475   int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1476   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1477   Symbol* mname = cpool->name_ref_at(cp_index);
1478 
1479   if (MethodHandles::has_member_arg(cname, mname)) {
1480     oop member_name_oop = cast_to_oop(member_name);
1481     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1482       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1483       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1484     }
1485     current->set_vm_result(member_name_oop);
1486   } else {
1487     current->set_vm_result(NULL);
1488   }
1489 JRT_END
1490 #endif // INCLUDE_JVMTI
1491 
1492 #ifndef PRODUCT
1493 // This must be a JRT_LEAF function because the interpreter must save registers on x86 to
1494 // call this, which changes rsp and makes the interpreter's expression stack not walkable.
1495 // The generated code still uses call_VM because that will set up the frame pointer for
1496 // bcp and method.
1497 JRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* current, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1498   LastFrameAccessor last_frame(current);
1499   assert(last_frame.is_interpreted_frame(), "must be an interpreted frame");
1500   methodHandle mh(current, last_frame.method());
1501   BytecodeTracer::trace(mh, last_frame.bcp(), tos, tos2);
1502   return preserve_this_value;
1503 JRT_END
1504 #endif // !PRODUCT