1 /*
  2  * Copyright (c) 2017, 2020, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OOPS_ACCESS_HPP
 26 #define SHARE_OOPS_ACCESS_HPP
 27 
 28 #include "memory/allocation.hpp"
 29 #include "oops/accessBackend.hpp"
 30 #include "oops/accessDecorators.hpp"
 31 #include "oops/oopsHierarchy.hpp"
 32 #include "utilities/debug.hpp"
 33 #include "utilities/globalDefinitions.hpp"
 34 
 35 
 36 // = GENERAL =
 37 // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators".
 38 // A decorator is an attribute or property that affects the way a memory access is performed in some way.
 39 // There are different groups of decorators. Some have to do with memory ordering, others to do with,
 40 // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
 41 // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
 42 // at callsites such as whether an access is in the heap or not, and others are resolved at runtime
 43 // such as GC-specific barriers and encoding/decoding compressed oops. For more information about what
 44 // decorators are available, cf. oops/accessDecorators.hpp.
 45 // By pipelining handling of these decorators, the design of the Access API allows separation of concern
 46 // over the different orthogonal concerns of decorators, while providing a powerful way of
 47 // expressing these orthogonal semantic properties in a unified way.
 48 //
 49 // == OPERATIONS ==
 50 // * load: Load a value from an address.
 51 // * load_at: Load a value from an internal pointer relative to a base object.
 52 // * store: Store a value at an address.
 53 // * store_at: Store a value in an internal pointer relative to a base object.
 54 // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value.
 55 // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value.
 56 // * atomic_xchg: Atomically swap a new value at an address if previous value matched the compared value.
 57 // * atomic_xchg_at: Atomically swap a new value at an internal pointer address if previous value matched the compared value.
 58 // * arraycopy: Copy data from one heap array to another heap array. The ArrayAccess class has convenience functions for this.
 59 // * clone: Clone the contents of an object to a newly allocated object.
 60 //
 61 // == IMPLEMENTATION ==
 62 // Each access goes through the following steps in a template pipeline.
 63 // There are essentially 5 steps for each access:
 64 // * Step 1:   Set default decorators and decay types. This step gets rid of CV qualifiers
 65 //             and sets default decorators to sensible values.
 66 // * Step 2:   Reduce types. This step makes sure there is only a single T type and not
 67 //             multiple types. The P type of the address and T type of the value must
 68 //             match.
 69 // * Step 3:   Pre-runtime dispatch. This step checks whether a runtime call can be
 70 //             avoided, and in that case avoids it (calling raw accesses or
 71 //             primitive accesses in a build that does not require primitive GC barriers)
 72 // * Step 4:   Runtime-dispatch. This step performs a runtime dispatch to the corresponding
 73 //             BarrierSet::AccessBarrier accessor that attaches GC-required barriers
 74 //             to the access.
 75 // * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch
 76 //             happens for an access. The appropriate BarrierSet::AccessBarrier accessor
 77 //             is resolved, then the function pointer is updated to that accessor for
 78 //             future invocations.
 79 // * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such
 80 //             as the address type of an oop on the heap (is it oop* or narrowOop*) to
 81 //             the appropriate type. It also splits sufficiently orthogonal accesses into
 82 //             different functions, such as whether the access involves oops or primitives
 83 //             and whether the access is performed on the heap or outside. Then the
 84 //             appropriate BarrierSet::AccessBarrier is called to perform the access.
 85 //
 86 // The implementation of step 1-4 resides in in accessBackend.hpp, to allow selected
 87 // accesses to be accessible from only access.hpp, as opposed to access.inline.hpp.
 88 // Steps 5.a and 5.b require knowledge about the GC backends, and therefore needs to
 89 // include the various GC backend .inline.hpp headers. Their implementation resides in
 90 // access.inline.hpp. The accesses that are allowed through the access.hpp file
 91 // must be instantiated in access.cpp using the INSTANTIATE_HPP_ACCESS macro.
 92 
 93 template <DecoratorSet decorators = DECORATORS_NONE>
 94 class Access: public AllStatic {
 95   // This function asserts that if an access gets passed in a decorator outside
 96   // of the expected_decorators, then something is wrong. It additionally checks
 97   // the consistency of the decorators so that supposedly disjoint decorators are indeed
 98   // disjoint. For example, an access can not be both in heap and on root at the
 99   // same time.
100   template <DecoratorSet expected_decorators>
101   static void verify_decorators();
102 
103   template <DecoratorSet expected_mo_decorators>
104   static void verify_primitive_decorators() {
105     const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) |
106                                               IN_HEAP | IS_ARRAY;
107     verify_decorators<expected_mo_decorators | primitive_decorators>();
108   }
109 
110   template <DecoratorSet expected_mo_decorators>
111   static void verify_oop_decorators() {
112     const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK |
113                                         (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap
114                                         IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
115     verify_decorators<expected_mo_decorators | oop_decorators>();
116   }
117 
118   template <DecoratorSet expected_mo_decorators>
119   static void verify_heap_oop_decorators() {
120     const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK |
121                                              IN_HEAP | IS_ARRAY | IS_NOT_NULL;
122     verify_decorators<expected_mo_decorators | heap_oop_decorators>();
123   }
124 
125   static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST;
126   static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_RELAXED | MO_RELEASE | MO_SEQ_CST;
127   static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST;
128   static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST;
129 
130 protected:
131   template <typename T>
132   static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
133                                    arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
134                                    size_t length) {
135     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
136                       AS_DECORATOR_MASK | IS_ARRAY | IS_DEST_UNINITIALIZED>();
137     return AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, src_offset_in_bytes, src_raw,
138                                                                          dst_obj, dst_offset_in_bytes, dst_raw,
139                                                                          length);
140   }
141 
142   template <typename T>
143   static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
144                                arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
145                                size_t length) {
146     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
147                       AS_DECORATOR_MASK | IS_ARRAY>();
148     AccessInternal::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
149                                           dst_obj, dst_offset_in_bytes, dst_raw,
150                                           length);
151   }
152 
153 public:
154   // Primitive heap accesses
155   static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) {
156     verify_primitive_decorators<load_mo_decorators>();
157     return AccessInternal::LoadAtProxy<decorators>(base, offset);
158   }
159 
160   template <typename T>
161   static inline void store_at(oop base, ptrdiff_t offset, T value) {
162     verify_primitive_decorators<store_mo_decorators>();
163     AccessInternal::store_at<decorators>(base, offset, value);
164   }
165 
166   template <typename T>
167   static inline T atomic_cmpxchg_at(oop base, ptrdiff_t offset, T compare_value, T new_value) {
168     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
169     return AccessInternal::atomic_cmpxchg_at<decorators>(base, offset, compare_value, new_value);
170   }
171 
172   template <typename T>
173   static inline T atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
174     verify_primitive_decorators<atomic_xchg_mo_decorators>();
175     return AccessInternal::atomic_xchg_at<decorators>(base, offset, new_value);
176   }
177 
178   // Oop heap accesses
179   static inline AccessInternal::OopLoadAtProxy<decorators> oop_load_at(oop base, ptrdiff_t offset) {
180     verify_heap_oop_decorators<load_mo_decorators>();
181     return AccessInternal::OopLoadAtProxy<decorators>(base, offset);
182   }
183 
184   template <typename T>
185   static inline void oop_store_at(oop base, ptrdiff_t offset, T value) {
186     verify_heap_oop_decorators<store_mo_decorators>();
187     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
188     OopType oop_value = value;
189     AccessInternal::store_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, oop_value);
190   }
191 
192   template <typename T>
193   static inline T oop_atomic_cmpxchg_at(oop base, ptrdiff_t offset, T compare_value, T new_value) {
194     verify_heap_oop_decorators<atomic_cmpxchg_mo_decorators>();
195     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
196     OopType new_oop_value = new_value;
197     OopType compare_oop_value = compare_value;
198     return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, compare_oop_value, new_oop_value);
199   }
200 
201   template <typename T>
202   static inline T oop_atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
203     verify_heap_oop_decorators<atomic_xchg_mo_decorators>();
204     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
205     OopType new_oop_value = new_value;
206     return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, new_oop_value);
207   }
208 
209   // Clone an object from src to dst
210   static inline void clone(oop src, oop dst, size_t size) {
211     verify_decorators<IN_HEAP>();
212     AccessInternal::clone<decorators>(src, dst, size);
213   }
214 
215   // Primitive accesses
216   template <typename P>
217   static inline P load(P* addr) {
218     verify_primitive_decorators<load_mo_decorators>();
219     return AccessInternal::load<decorators, P, P>(addr);
220   }
221 
222   template <typename P, typename T>
223   static inline void store(P* addr, T value) {
224     verify_primitive_decorators<store_mo_decorators>();
225     AccessInternal::store<decorators>(addr, value);
226   }
227 
228   template <typename P, typename T>
229   static inline T atomic_cmpxchg(P* addr, T compare_value, T new_value) {
230     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
231     return AccessInternal::atomic_cmpxchg<decorators>(addr, compare_value, new_value);
232   }
233 
234   template <typename P, typename T>
235   static inline T atomic_xchg(P* addr, T new_value) {
236     verify_primitive_decorators<atomic_xchg_mo_decorators>();
237     return AccessInternal::atomic_xchg<decorators>(addr, new_value);
238   }
239 
240   // Oop accesses
241   template <typename P>
242   static inline AccessInternal::OopLoadProxy<P, decorators> oop_load(P* addr) {
243     verify_oop_decorators<load_mo_decorators>();
244     return AccessInternal::OopLoadProxy<P, decorators>(addr);
245   }
246 
247   template <typename P, typename T>
248   static inline void oop_store(P* addr, T value) {
249     verify_oop_decorators<store_mo_decorators>();
250     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
251     OopType oop_value = value;
252     AccessInternal::store<decorators | INTERNAL_VALUE_IS_OOP>(addr, oop_value);
253   }
254 
255   template <typename P, typename T>
256   static inline T oop_atomic_cmpxchg(P* addr, T compare_value, T new_value) {
257     verify_oop_decorators<atomic_cmpxchg_mo_decorators>();
258     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
259     OopType new_oop_value = new_value;
260     OopType compare_oop_value = compare_value;
261     return AccessInternal::atomic_cmpxchg<decorators | INTERNAL_VALUE_IS_OOP>(addr, compare_oop_value, new_oop_value);
262   }
263 
264   template <typename P, typename T>
265   static inline T oop_atomic_xchg(P* addr, T new_value) {
266     verify_oop_decorators<atomic_xchg_mo_decorators>();
267     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
268     OopType new_oop_value = new_value;
269     return AccessInternal::atomic_xchg<decorators | INTERNAL_VALUE_IS_OOP>(addr, new_oop_value);
270   }
271 };
272 
273 // Helper for performing raw accesses (knows only of memory ordering
274 // atomicity decorators as well as compressed oops)
275 template <DecoratorSet decorators = DECORATORS_NONE>
276 class RawAccess: public Access<AS_RAW | decorators> {};
277 
278 // Helper for performing normal accesses on the heap. These accesses
279 // may resolve an accessor on a GC barrier set
280 template <DecoratorSet decorators = DECORATORS_NONE>
281 class HeapAccess: public Access<IN_HEAP | decorators> {};
282 
283 // Helper for performing normal accesses in roots. These accesses
284 // may resolve an accessor on a GC barrier set
285 template <DecoratorSet decorators = DECORATORS_NONE>
286 class NativeAccess: public Access<IN_NATIVE | decorators> {};
287 
288 // Helper for array access.
289 template <DecoratorSet decorators = DECORATORS_NONE>
290 class ArrayAccess: public HeapAccess<IS_ARRAY | decorators> {
291   typedef HeapAccess<IS_ARRAY | decorators> AccessT;
292 public:
293   template <typename T>
294   static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes,
295                                arrayOop dst_obj, size_t dst_offset_in_bytes,
296                                size_t length) {
297     AccessT::arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const T*>(NULL),
298                        dst_obj, dst_offset_in_bytes, reinterpret_cast<T*>(NULL),
299                        length);
300   }
301 
302   template <typename T>
303   static inline void arraycopy_to_native(arrayOop src_obj, size_t src_offset_in_bytes,
304                                          T* dst,
305                                          size_t length) {
306     AccessT::arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const T*>(NULL),
307                        NULL, 0, dst,
308                        length);
309   }
310 
311   template <typename T>
312   static inline void arraycopy_from_native(const T* src,
313                                            arrayOop dst_obj, size_t dst_offset_in_bytes,
314                                            size_t length) {
315     AccessT::arraycopy(NULL, 0, src,
316                        dst_obj, dst_offset_in_bytes, reinterpret_cast<T*>(NULL),
317                        length);
318   }
319 
320   static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes,
321                                    arrayOop dst_obj, size_t dst_offset_in_bytes,
322                                    size_t length) {
323     return AccessT::oop_arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const HeapWord*>(NULL),
324                                   dst_obj, dst_offset_in_bytes, reinterpret_cast<HeapWord*>(NULL),
325                                   length);
326   }
327 
328   template <typename T>
329   static inline bool oop_arraycopy_raw(T* src, T* dst, size_t length) {
330     return AccessT::oop_arraycopy(NULL, 0, src,
331                                   NULL, 0, dst,
332                                   length);
333   }
334 
335 };
336 
337 template <DecoratorSet decorators>
338 template <DecoratorSet expected_decorators>
339 void Access<decorators>::verify_decorators() {
340   STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used
341   const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK;
342   STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set
343     (barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 ||
344     (barrier_strength_decorators ^ AS_RAW) == 0 ||
345     (barrier_strength_decorators ^ AS_NORMAL) == 0
346   ));
347   const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK;
348   STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set
349     (ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 ||
350     (ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 ||
351     (ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 ||
352     (ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0
353   ));
354   const DecoratorSet memory_ordering_decorators = decorators & MO_DECORATOR_MASK;
355   STATIC_ASSERT(memory_ordering_decorators == 0 || ( // make sure memory ordering decorators are disjoint if set
356     (memory_ordering_decorators ^ MO_UNORDERED) == 0 ||
357     (memory_ordering_decorators ^ MO_RELAXED) == 0 ||
358     (memory_ordering_decorators ^ MO_ACQUIRE) == 0 ||
359     (memory_ordering_decorators ^ MO_RELEASE) == 0 ||
360     (memory_ordering_decorators ^ MO_SEQ_CST) == 0
361   ));
362   const DecoratorSet location_decorators = decorators & IN_DECORATOR_MASK;
363   STATIC_ASSERT(location_decorators == 0 || ( // make sure location decorators are disjoint if set
364     (location_decorators ^ IN_NATIVE) == 0 ||
365     (location_decorators ^ IN_HEAP) == 0
366   ));
367 }
368 
369 #endif // SHARE_OOPS_ACCESS_HPP