1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveHeapLoader.hpp"
  26 #include "cds/cdsConfig.hpp"
  27 #include "cds/heapShared.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/classLoaderData.inline.hpp"
  30 #include "classfile/classLoaderDataGraph.inline.hpp"
  31 #include "classfile/javaClasses.inline.hpp"
  32 #include "classfile/moduleEntry.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/systemDictionaryShared.hpp"
  35 #include "classfile/vmClasses.hpp"
  36 #include "classfile/vmSymbols.hpp"
  37 #include "gc/shared/collectedHeap.inline.hpp"
  38 #include "jvm_io.h"
  39 #include "logging/log.hpp"
  40 #include "memory/metadataFactory.hpp"
  41 #include "memory/metaspaceClosure.hpp"
  42 #include "memory/oopFactory.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.hpp"
  45 #include "oops/compressedKlass.inline.hpp"
  46 #include "oops/compressedOops.inline.hpp"
  47 #include "oops/instanceKlass.hpp"
  48 #include "oops/klass.inline.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/oopHandle.inline.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "runtime/atomic.hpp"
  54 #include "runtime/handles.inline.hpp"
  55 #include "runtime/perfData.hpp"
  56 #include "utilities/macros.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 #include "utilities/rotate_bits.hpp"
  59 #include "utilities/stack.inline.hpp"
  60 
  61 void Klass::set_java_mirror(Handle m) {
  62   assert(!m.is_null(), "New mirror should never be null.");
  63   assert(_java_mirror.is_empty(), "should only be used to initialize mirror");
  64   _java_mirror = class_loader_data()->add_handle(m);
  65 }
  66 
  67 bool Klass::is_cloneable() const {
  68   return _misc_flags.is_cloneable_fast() ||
  69          is_subtype_of(vmClasses::Cloneable_klass());
  70 }
  71 
  72 void Klass::set_is_cloneable() {
  73   if (name() == vmSymbols::java_lang_invoke_MemberName()) {
  74     assert(is_final(), "no subclasses allowed");
  75     // MemberName cloning should not be intrinsified and always happen in JVM_Clone.
  76   } else if (is_instance_klass() && InstanceKlass::cast(this)->reference_type() != REF_NONE) {
  77     // Reference cloning should not be intrinsified and always happen in JVM_Clone.
  78   } else {
  79     _misc_flags.set_is_cloneable_fast(true);
  80   }
  81 }
  82 
  83 uint8_t Klass::compute_hash_slot(Symbol* n) {
  84   uint hash_code;
  85   // Special cases for the two superclasses of all Array instances.
  86   // Code elsewhere assumes, for all instances of ArrayKlass, that
  87   // these two interfaces will be in this order.
  88 
  89   // We ensure there are some empty slots in the hash table between
  90   // these two very common interfaces because if they were adjacent
  91   // (e.g. Slots 0 and 1), then any other class which hashed to 0 or 1
  92   // would result in a probe length of 3.
  93   if (n == vmSymbols::java_lang_Cloneable()) {
  94     hash_code = 0;
  95   } else if (n == vmSymbols::java_io_Serializable()) {
  96     hash_code = SECONDARY_SUPERS_TABLE_SIZE / 2;
  97   } else {
  98     auto s = (const jbyte*) n->bytes();
  99     hash_code = java_lang_String::hash_code(s, n->utf8_length());
 100     // We use String::hash_code here (rather than e.g.
 101     // Symbol::identity_hash()) in order to have a hash code that
 102     // does not change from run to run. We want that because the
 103     // hash value for a secondary superclass appears in generated
 104     // code as a constant.
 105 
 106     // This constant is magic: see Knuth, "Fibonacci Hashing".
 107     constexpr uint multiplier
 108       = 2654435769; // (uint)(((u8)1 << 32) / ((1 + sqrt(5)) / 2 ))
 109     constexpr uint hash_shift = sizeof(hash_code) * 8 - 6;
 110     // The leading bits of the least significant half of the product.
 111     hash_code = (hash_code * multiplier) >> hash_shift;
 112 
 113     if (StressSecondarySupers) {
 114       // Generate many hash collisions in order to stress-test the
 115       // linear search fallback.
 116       hash_code = hash_code % 3;
 117       hash_code = hash_code * (SECONDARY_SUPERS_TABLE_SIZE / 3);
 118     }
 119   }
 120 
 121   return (hash_code & SECONDARY_SUPERS_TABLE_MASK);
 122 }
 123 
 124 void Klass::set_name(Symbol* n) {
 125   _name = n;
 126 
 127   if (_name != nullptr) {
 128     _name->increment_refcount();
 129   }
 130 
 131   {
 132     elapsedTimer selftime;
 133     selftime.start();
 134 
 135     _hash_slot = compute_hash_slot(n);
 136     assert(_hash_slot < SECONDARY_SUPERS_TABLE_SIZE, "required");
 137 
 138     selftime.stop();
 139     if (UsePerfData) {
 140       ClassLoader::perf_secondary_hash_time()->inc(selftime.ticks());
 141     }
 142   }
 143 
 144   if (CDSConfig::is_dumping_archive() && is_instance_klass()) {
 145     SystemDictionaryShared::init_dumptime_info(InstanceKlass::cast(this));
 146   }
 147 }
 148 
 149 bool Klass::is_subclass_of(const Klass* k) const {
 150   // Run up the super chain and check
 151   if (this == k) return true;
 152 
 153   Klass* t = const_cast<Klass*>(this)->super();
 154 
 155   while (t != nullptr) {
 156     if (t == k) return true;
 157     t = t->super();
 158   }
 159   return false;
 160 }
 161 
 162 void Klass::release_C_heap_structures(bool release_constant_pool) {
 163   if (_name != nullptr) _name->decrement_refcount();
 164 }
 165 
 166 bool Klass::linear_search_secondary_supers(const Klass* k) const {
 167   // Scan the array-of-objects for a match
 168   // FIXME: We could do something smarter here, maybe a vectorized
 169   // comparison or a binary search, but is that worth any added
 170   // complexity?
 171   int cnt = secondary_supers()->length();
 172   for (int i = 0; i < cnt; i++) {
 173     if (secondary_supers()->at(i) == k) {
 174       return true;
 175     }
 176   }
 177   return false;
 178 }
 179 
 180 // Given a secondary superklass k, an initial array index, and an
 181 // occupancy bitmap rotated such that Bit 1 is the next bit to test,
 182 // search for k.
 183 bool Klass::fallback_search_secondary_supers(const Klass* k, int index, uintx rotated_bitmap) const {
 184   // Once the occupancy bitmap is almost full, it's faster to use a
 185   // linear search.
 186   if (secondary_supers()->length() > SECONDARY_SUPERS_TABLE_SIZE - 2) {
 187     return linear_search_secondary_supers(k);
 188   }
 189 
 190   // This is conventional linear probing, but instead of terminating
 191   // when a null entry is found in the table, we maintain a bitmap
 192   // in which a 0 indicates missing entries.
 193 
 194   precond((int)population_count(rotated_bitmap) == secondary_supers()->length());
 195 
 196   // The check for secondary_supers()->length() <= SECONDARY_SUPERS_TABLE_SIZE - 2
 197   // at the start of this function guarantees there are 0s in the
 198   // bitmap, so this loop eventually terminates.
 199   while ((rotated_bitmap & 2) != 0) {
 200     if (++index == secondary_supers()->length()) {
 201       index = 0;
 202     }
 203     if (secondary_supers()->at(index) == k) {
 204       return true;
 205     }
 206     rotated_bitmap = rotate_right(rotated_bitmap, 1);
 207   }
 208   return false;
 209 }
 210 
 211 // Return self, except for abstract classes with exactly 1
 212 // implementor.  Then return the 1 concrete implementation.
 213 Klass *Klass::up_cast_abstract() {
 214   Klass *r = this;
 215   while( r->is_abstract() ) {   // Receiver is abstract?
 216     Klass *s = r->subklass();   // Check for exactly 1 subklass
 217     if (s == nullptr || s->next_sibling() != nullptr) // Oops; wrong count; give up
 218       return this;              // Return 'this' as a no-progress flag
 219     r = s;                    // Loop till find concrete class
 220   }
 221   return r;                   // Return the 1 concrete class
 222 }
 223 
 224 // Find LCA in class hierarchy
 225 Klass *Klass::LCA( Klass *k2 ) {
 226   Klass *k1 = this;
 227   while( 1 ) {
 228     if( k1->is_subtype_of(k2) ) return k2;
 229     if( k2->is_subtype_of(k1) ) return k1;
 230     k1 = k1->super();
 231     k2 = k2->super();
 232   }
 233 }
 234 
 235 
 236 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 237   ResourceMark rm(THREAD);
 238   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 239             : vmSymbols::java_lang_InstantiationException(), external_name());
 240 }
 241 
 242 
 243 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 244   ResourceMark rm(THREAD);
 245   assert(s != nullptr, "Throw NPE!");
 246   THROW_MSG(vmSymbols::java_lang_ArrayStoreException(),
 247             err_msg("arraycopy: source type %s is not an array", s->klass()->external_name()));
 248 }
 249 
 250 
 251 void Klass::initialize(TRAPS) {
 252   ShouldNotReachHere();
 253 }
 254 
 255 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const {
 256 #ifdef ASSERT
 257   tty->print_cr("Error: find_field called on a klass oop."
 258                 " Likely error: reflection method does not correctly"
 259                 " wrap return value in a mirror object.");
 260 #endif
 261   ShouldNotReachHere();
 262   return nullptr;
 263 }
 264 
 265 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature,
 266                                       OverpassLookupMode overpass_mode,
 267                                       PrivateLookupMode private_mode) const {
 268 #ifdef ASSERT
 269   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 270                 " Likely error: reflection method does not correctly"
 271                 " wrap return value in a mirror object.");
 272 #endif
 273   ShouldNotReachHere();
 274   return nullptr;
 275 }
 276 
 277 static markWord make_prototype(const Klass* kls) {
 278   markWord prototype = markWord::prototype();
 279 #ifdef _LP64
 280   if (UseCompactObjectHeaders) {
 281     // With compact object headers, the narrow Klass ID is part of the mark word.
 282     // We therfore seed the mark word with the narrow Klass ID.
 283     // Note that only those Klass that can be instantiated have a narrow Klass ID.
 284     // For those who don't, we leave the klass bits empty and assert if someone
 285     // tries to use those.
 286     const narrowKlass nk = CompressedKlassPointers::is_encodable(kls) ?
 287         CompressedKlassPointers::encode(const_cast<Klass*>(kls)) : 0;
 288     prototype = prototype.set_narrow_klass(nk);
 289   }
 290 #endif
 291   return prototype;
 292 }
 293 
 294 Klass::Klass() : _kind(UnknownKlassKind) {
 295   assert(CDSConfig::is_dumping_static_archive() || CDSConfig::is_using_archive(), "only for cds");
 296 }
 297 
 298 // "Normal" instantiation is preceded by a MetaspaceObj allocation
 299 // which zeros out memory - calloc equivalent.
 300 // The constructor is also used from CppVtableCloner,
 301 // which doesn't zero out the memory before calling the constructor.
 302 Klass::Klass(KlassKind kind) : _kind(kind),
 303                                _prototype_header(make_prototype(this)),
 304                                _shared_class_path_index(-1) {
 305   CDS_ONLY(_aot_class_flags = 0;)
 306   CDS_JAVA_HEAP_ONLY(_archived_mirror_index = -1;)
 307   _primary_supers[0] = this;
 308   set_super_check_offset(in_bytes(primary_supers_offset()));
 309 }
 310 
 311 jint Klass::array_layout_helper(BasicType etype) {
 312   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 313   // Note that T_ARRAY is not allowed here.
 314   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 315   int  esize = type2aelembytes(etype);
 316   bool isobj = (etype == T_OBJECT);
 317   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
 318   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
 319 
 320   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 321   assert(layout_helper_is_array(lh), "correct kind");
 322   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
 323   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 324   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 325   assert(layout_helper_element_type(lh) == etype, "correct decode");
 326   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 327 
 328   return lh;
 329 }
 330 
 331 int Klass::modifier_flags() const {
 332   int mods = java_lang_Class::modifiers(java_mirror());
 333   assert(mods == compute_modifier_flags(), "should be same");
 334   return mods;
 335 }
 336 
 337 bool Klass::can_be_primary_super_slow() const {
 338   if (super() == nullptr)
 339     return true;
 340   else if (super()->super_depth() >= primary_super_limit()-1)
 341     return false;
 342   else
 343     return true;
 344 }
 345 
 346 void Klass::set_secondary_supers(Array<Klass*>* secondaries, uintx bitmap) {
 347 #ifdef ASSERT
 348   if (secondaries != nullptr) {
 349     uintx real_bitmap = compute_secondary_supers_bitmap(secondaries);
 350     assert(bitmap == real_bitmap, "must be");
 351     assert(secondaries->length() >= (int)population_count(bitmap), "must be");
 352   }
 353 #endif
 354   _secondary_supers_bitmap = bitmap;
 355   _secondary_supers = secondaries;
 356 
 357   if (secondaries != nullptr) {
 358     LogMessage(class, load) msg;
 359     NonInterleavingLogStream log {LogLevel::Debug, msg};
 360     if (log.is_enabled()) {
 361       ResourceMark rm;
 362       log.print_cr("set_secondary_supers: hash_slot: %d; klass: %s", hash_slot(), external_name());
 363       print_secondary_supers_on(&log);
 364     }
 365   }
 366 }
 367 
 368 // Hashed secondary superclasses
 369 //
 370 // We use a compressed 64-entry hash table with linear probing. We
 371 // start by creating a hash table in the usual way, followed by a pass
 372 // that removes all the null entries. To indicate which entries would
 373 // have been null we use a bitmap that contains a 1 in each position
 374 // where an entry is present, 0 otherwise. This bitmap also serves as
 375 // a kind of Bloom filter, which in many cases allows us quickly to
 376 // eliminate the possibility that something is a member of a set of
 377 // secondaries.
 378 uintx Klass::hash_secondary_supers(Array<Klass*>* secondaries, bool rewrite) {
 379   const int length = secondaries->length();
 380 
 381   if (length == 0) {
 382     return SECONDARY_SUPERS_BITMAP_EMPTY;
 383   }
 384 
 385   if (length == 1) {
 386     int hash_slot = secondaries->at(0)->hash_slot();
 387     return uintx(1) << hash_slot;
 388   }
 389 
 390   // Invariant: _secondary_supers.length >= population_count(_secondary_supers_bitmap)
 391 
 392   // Don't attempt to hash a table that's completely full, because in
 393   // the case of an absent interface linear probing would not
 394   // terminate.
 395   if (length >= SECONDARY_SUPERS_TABLE_SIZE) {
 396     return SECONDARY_SUPERS_BITMAP_FULL;
 397   }
 398 
 399   {
 400     PerfTraceTime ptt(ClassLoader::perf_secondary_hash_time());
 401 
 402     ResourceMark rm;
 403     uintx bitmap = SECONDARY_SUPERS_BITMAP_EMPTY;
 404     auto hashed_secondaries = new GrowableArray<Klass*>(SECONDARY_SUPERS_TABLE_SIZE,
 405                                                         SECONDARY_SUPERS_TABLE_SIZE, nullptr);
 406 
 407     for (int j = 0; j < length; j++) {
 408       Klass* k = secondaries->at(j);
 409       hash_insert(k, hashed_secondaries, bitmap);
 410     }
 411 
 412     // Pack the hashed secondaries array by copying it into the
 413     // secondaries array, sans nulls, if modification is allowed.
 414     // Otherwise, validate the order.
 415     int i = 0;
 416     for (int slot = 0; slot < SECONDARY_SUPERS_TABLE_SIZE; slot++) {
 417       bool has_element = ((bitmap >> slot) & 1) != 0;
 418       assert(has_element == (hashed_secondaries->at(slot) != nullptr), "");
 419       if (has_element) {
 420         Klass* k = hashed_secondaries->at(slot);
 421         if (rewrite) {
 422           secondaries->at_put(i, k);
 423         } else if (secondaries->at(i) != k) {
 424           assert(false, "broken secondary supers hash table");
 425           return SECONDARY_SUPERS_BITMAP_FULL;
 426         }
 427         i++;
 428       }
 429     }
 430     assert(i == secondaries->length(), "mismatch");
 431     postcond((int)population_count(bitmap) == secondaries->length());
 432 
 433     return bitmap;
 434   }
 435 }
 436 
 437 void Klass::hash_insert(Klass* klass, GrowableArray<Klass*>* secondaries, uintx& bitmap) {
 438   assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
 439 
 440   int dist = 0;
 441   for (int slot = klass->hash_slot(); true; slot = (slot + 1) & SECONDARY_SUPERS_TABLE_MASK) {
 442     Klass* existing = secondaries->at(slot);
 443     assert(((bitmap >> slot) & 1) == (existing != nullptr), "mismatch");
 444     if (existing == nullptr) { // no conflict
 445       secondaries->at_put(slot, klass);
 446       bitmap |= uintx(1) << slot;
 447       assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
 448       return;
 449     } else {
 450       // Use Robin Hood hashing to minimize the worst case search.
 451       // Also, every permutation of the insertion sequence produces
 452       // the same final Robin Hood hash table, provided that a
 453       // consistent tie breaker is used.
 454       int existing_dist = (slot - existing->hash_slot()) & SECONDARY_SUPERS_TABLE_MASK;
 455       if (existing_dist < dist
 456           // This tie breaker ensures that the hash order is maintained.
 457           || ((existing_dist == dist)
 458               && (uintptr_t(existing) < uintptr_t(klass)))) {
 459         Klass* tmp = secondaries->at(slot);
 460         secondaries->at_put(slot, klass);
 461         klass = tmp;
 462         dist = existing_dist;
 463       }
 464       ++dist;
 465     }
 466   }
 467 }
 468 
 469 Array<Klass*>* Klass::pack_secondary_supers(ClassLoaderData* loader_data,
 470                                             GrowableArray<Klass*>* primaries,
 471                                             GrowableArray<Klass*>* secondaries,
 472                                             uintx& bitmap, TRAPS) {
 473   int new_length = primaries->length() + secondaries->length();
 474   Array<Klass*>* secondary_supers = MetadataFactory::new_array<Klass*>(loader_data, new_length, CHECK_NULL);
 475 
 476   // Combine the two arrays into a metadata object to pack the array.
 477   // The primaries are added in the reverse order, then the secondaries.
 478   int fill_p = primaries->length();
 479   for (int j = 0; j < fill_p; j++) {
 480     secondary_supers->at_put(j, primaries->pop());  // add primaries in reverse order.
 481   }
 482   for( int j = 0; j < secondaries->length(); j++ ) {
 483     secondary_supers->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 484   }
 485 #ifdef ASSERT
 486   // We must not copy any null placeholders left over from bootstrap.
 487   for (int j = 0; j < secondary_supers->length(); j++) {
 488     assert(secondary_supers->at(j) != nullptr, "correct bootstrapping order");
 489   }
 490 #endif
 491 
 492   bitmap = hash_secondary_supers(secondary_supers, /*rewrite=*/true); // rewrites freshly allocated array
 493   return secondary_supers;
 494 }
 495 
 496 uintx Klass::compute_secondary_supers_bitmap(Array<Klass*>* secondary_supers) {
 497   return hash_secondary_supers(secondary_supers, /*rewrite=*/false); // no rewrites allowed
 498 }
 499 
 500 uint8_t Klass::compute_home_slot(Klass* k, uintx bitmap) {
 501   uint8_t hash = k->hash_slot();
 502   if (hash > 0) {
 503     return population_count(bitmap << (SECONDARY_SUPERS_TABLE_SIZE - hash));
 504   }
 505   return 0;
 506 }
 507 
 508 
 509 void Klass::initialize_supers(Klass* k, Array<InstanceKlass*>* transitive_interfaces, TRAPS) {
 510   if (k == nullptr) {
 511     set_super(nullptr);
 512     _primary_supers[0] = this;
 513     assert(super_depth() == 0, "Object must already be initialized properly");
 514   } else if (k != super() || k == vmClasses::Object_klass()) {
 515     assert(super() == nullptr || super() == vmClasses::Object_klass(),
 516            "initialize this only once to a non-trivial value");
 517     set_super(k);
 518     Klass* sup = k;
 519     int sup_depth = sup->super_depth();
 520     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 521     if (!can_be_primary_super_slow())
 522       my_depth = primary_super_limit();
 523     for (juint i = 0; i < my_depth; i++) {
 524       _primary_supers[i] = sup->_primary_supers[i];
 525     }
 526     Klass* *super_check_cell;
 527     if (my_depth < primary_super_limit()) {
 528       _primary_supers[my_depth] = this;
 529       super_check_cell = &_primary_supers[my_depth];
 530     } else {
 531       // Overflow of the primary_supers array forces me to be secondary.
 532       super_check_cell = &_secondary_super_cache;
 533     }
 534     set_super_check_offset(u4((address)super_check_cell - (address) this));
 535 
 536 #ifdef ASSERT
 537     {
 538       juint j = super_depth();
 539       assert(j == my_depth, "computed accessor gets right answer");
 540       Klass* t = this;
 541       while (!t->can_be_primary_super()) {
 542         t = t->super();
 543         j = t->super_depth();
 544       }
 545       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 546         assert(primary_super_of_depth(j1) == nullptr, "super list padding");
 547       }
 548       while (t != nullptr) {
 549         assert(primary_super_of_depth(j) == t, "super list initialization");
 550         t = t->super();
 551         --j;
 552       }
 553       assert(j == (juint)-1, "correct depth count");
 554     }
 555 #endif
 556   }
 557 
 558   if (secondary_supers() == nullptr) {
 559 
 560     // Now compute the list of secondary supertypes.
 561     // Secondaries can occasionally be on the super chain,
 562     // if the inline "_primary_supers" array overflows.
 563     int extras = 0;
 564     Klass* p;
 565     for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
 566       ++extras;
 567     }
 568 
 569     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 570 
 571     // Compute the "real" non-extra secondaries.
 572     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras, transitive_interfaces);
 573     if (secondaries == nullptr) {
 574       // secondary_supers set by compute_secondary_supers
 575       return;
 576     }
 577 
 578     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 579 
 580     for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
 581       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 582 
 583       // This happens frequently for very deeply nested arrays: the
 584       // primary superclass chain overflows into the secondary.  The
 585       // secondary list contains the element_klass's secondaries with
 586       // an extra array dimension added.  If the element_klass's
 587       // secondary list already contains some primary overflows, they
 588       // (with the extra level of array-ness) will collide with the
 589       // normal primary superclass overflows.
 590       for( i = 0; i < secondaries->length(); i++ ) {
 591         if( secondaries->at(i) == p )
 592           break;
 593       }
 594       if( i < secondaries->length() )
 595         continue;               // It's a dup, don't put it in
 596       primaries->push(p);
 597     }
 598     // Combine the two arrays into a metadata object to pack the array.
 599     uintx bitmap = 0;
 600     Array<Klass*>* s2 = pack_secondary_supers(class_loader_data(), primaries, secondaries, bitmap, CHECK);
 601     set_secondary_supers(s2, bitmap);
 602   }
 603 }
 604 
 605 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots,
 606                                                        Array<InstanceKlass*>* transitive_interfaces) {
 607   assert(num_extra_slots == 0, "override for complex klasses");
 608   assert(transitive_interfaces == nullptr, "sanity");
 609   set_secondary_supers(Universe::the_empty_klass_array(), Universe::the_empty_klass_bitmap());
 610   return nullptr;
 611 }
 612 
 613 
 614 // subklass links.  Used by the compiler (and vtable initialization)
 615 // May be cleaned concurrently, so must use the Compile_lock.
 616 // The log parameter is for clean_weak_klass_links to report unlinked classes.
 617 Klass* Klass::subklass(bool log) const {
 618   // Need load_acquire on the _subklass, because it races with inserts that
 619   // publishes freshly initialized data.
 620   for (Klass* chain = Atomic::load_acquire(&_subklass);
 621        chain != nullptr;
 622        // Do not need load_acquire on _next_sibling, because inserts never
 623        // create _next_sibling edges to dead data.
 624        chain = Atomic::load(&chain->_next_sibling))
 625   {
 626     if (chain->is_loader_alive()) {
 627       return chain;
 628     } else if (log) {
 629       if (log_is_enabled(Trace, class, unload)) {
 630         ResourceMark rm;
 631         log_trace(class, unload)("unlinking class (subclass): %s", chain->external_name());
 632       }
 633     }
 634   }
 635   return nullptr;
 636 }
 637 
 638 Klass* Klass::next_sibling(bool log) const {
 639   // Do not need load_acquire on _next_sibling, because inserts never
 640   // create _next_sibling edges to dead data.
 641   for (Klass* chain = Atomic::load(&_next_sibling);
 642        chain != nullptr;
 643        chain = Atomic::load(&chain->_next_sibling)) {
 644     // Only return alive klass, there may be stale klass
 645     // in this chain if cleaned concurrently.
 646     if (chain->is_loader_alive()) {
 647       return chain;
 648     } else if (log) {
 649       if (log_is_enabled(Trace, class, unload)) {
 650         ResourceMark rm;
 651         log_trace(class, unload)("unlinking class (sibling): %s", chain->external_name());
 652       }
 653     }
 654   }
 655   return nullptr;
 656 }
 657 
 658 void Klass::set_subklass(Klass* s) {
 659   assert(s != this, "sanity check");
 660   Atomic::release_store(&_subklass, s);
 661 }
 662 
 663 void Klass::set_next_sibling(Klass* s) {
 664   assert(s != this, "sanity check");
 665   // Does not need release semantics. If used by cleanup, it will link to
 666   // already safely published data, and if used by inserts, will be published
 667   // safely using cmpxchg.
 668   Atomic::store(&_next_sibling, s);
 669 }
 670 
 671 void Klass::append_to_sibling_list() {
 672   if (Universe::is_fully_initialized()) {
 673     assert_locked_or_safepoint(Compile_lock);
 674   }
 675   DEBUG_ONLY(verify();)
 676   // add ourselves to super' subklass list
 677   InstanceKlass* super = java_super();
 678   if (super == nullptr) return;     // special case: class Object
 679   assert((!super->is_interface()    // interfaces cannot be supers
 680           && (super->java_super() == nullptr || !is_interface())),
 681          "an interface can only be a subklass of Object");
 682 
 683   // Make sure there is no stale subklass head
 684   super->clean_subklass();
 685 
 686   for (;;) {
 687     Klass* prev_first_subklass = Atomic::load_acquire(&_super->_subklass);
 688     if (prev_first_subklass != nullptr) {
 689       // set our sibling to be the super' previous first subklass
 690       assert(prev_first_subklass->is_loader_alive(), "May not attach not alive klasses");
 691       set_next_sibling(prev_first_subklass);
 692     }
 693     // Note that the prev_first_subklass is always alive, meaning no sibling_next links
 694     // are ever created to not alive klasses. This is an important invariant of the lock-free
 695     // cleaning protocol, that allows us to safely unlink dead klasses from the sibling list.
 696     if (Atomic::cmpxchg(&super->_subklass, prev_first_subklass, this) == prev_first_subklass) {
 697       return;
 698     }
 699   }
 700   DEBUG_ONLY(verify();)
 701 }
 702 
 703 void Klass::clean_subklass() {
 704   for (;;) {
 705     // Need load_acquire, due to contending with concurrent inserts
 706     Klass* subklass = Atomic::load_acquire(&_subklass);
 707     if (subklass == nullptr || subklass->is_loader_alive()) {
 708       return;
 709     }
 710     // Try to fix _subklass until it points at something not dead.
 711     Atomic::cmpxchg(&_subklass, subklass, subklass->next_sibling());
 712   }
 713 }
 714 
 715 void Klass::clean_weak_klass_links(bool unloading_occurred, bool clean_alive_klasses) {
 716   if (!ClassUnloading || !unloading_occurred) {
 717     return;
 718   }
 719 
 720   Klass* root = vmClasses::Object_klass();
 721   Stack<Klass*, mtGC> stack;
 722 
 723   stack.push(root);
 724   while (!stack.is_empty()) {
 725     Klass* current = stack.pop();
 726 
 727     assert(current->is_loader_alive(), "just checking, this should be live");
 728 
 729     // Find and set the first alive subklass
 730     Klass* sub = current->subklass(true);
 731     current->clean_subklass();
 732     if (sub != nullptr) {
 733       stack.push(sub);
 734     }
 735 
 736     // Find and set the first alive sibling
 737     Klass* sibling = current->next_sibling(true);
 738     current->set_next_sibling(sibling);
 739     if (sibling != nullptr) {
 740       stack.push(sibling);
 741     }
 742 
 743     // Clean the implementors list and method data.
 744     if (clean_alive_klasses && current->is_instance_klass()) {
 745       InstanceKlass* ik = InstanceKlass::cast(current);
 746       clean_weak_instanceklass_links(ik);
 747     }
 748   }
 749 }
 750 
 751 void Klass::clean_weak_instanceklass_links(InstanceKlass* ik) {
 752   ik->clean_weak_instanceklass_links();
 753   // JVMTI RedefineClasses creates previous versions that are not in
 754   // the class hierarchy, so process them here.
 755   while ((ik = ik->previous_versions()) != nullptr) {
 756     ik->clean_weak_instanceklass_links();
 757   }
 758 }
 759 
 760 void Klass::metaspace_pointers_do(MetaspaceClosure* it) {
 761   if (log_is_enabled(Trace, aot)) {
 762     ResourceMark rm;
 763     log_trace(aot)("Iter(Klass): %p (%s)", this, external_name());
 764   }
 765 
 766   it->push(&_name);
 767   it->push(&_secondary_supers);
 768   for (int i = 0; i < _primary_super_limit; i++) {
 769     it->push(&_primary_supers[i]);
 770   }
 771   it->push(&_super);
 772   if (!CDSConfig::is_dumping_archive()) {
 773     // If dumping archive, these may point to excluded classes. There's no need
 774     // to follow these pointers anyway, as they will be set to null in
 775     // remove_unshareable_info().
 776     it->push((Klass**)&_subklass);
 777     it->push((Klass**)&_next_sibling);
 778     it->push(&_next_link);
 779   }
 780 
 781   vtableEntry* vt = start_of_vtable();
 782   for (int i=0; i<vtable_length(); i++) {
 783     it->push(vt[i].method_addr());
 784   }
 785 }
 786 
 787 #if INCLUDE_CDS
 788 void Klass::remove_unshareable_info() {
 789   assert(CDSConfig::is_dumping_archive(),
 790           "only called during CDS dump time");
 791   JFR_ONLY(REMOVE_ID(this);)
 792   if (log_is_enabled(Trace, aot, unshareable)) {
 793     ResourceMark rm;
 794     log_trace(aot, unshareable)("remove: %s", external_name());
 795   }
 796 
 797   // _secondary_super_cache may be updated by an is_subtype_of() call
 798   // while ArchiveBuilder is copying metaspace objects. Let's reset it to
 799   // null and let it be repopulated at runtime.
 800   set_secondary_super_cache(nullptr);
 801 
 802   set_subklass(nullptr);
 803   set_next_sibling(nullptr);
 804   set_next_link(nullptr);
 805 
 806   // Null out class_loader_data because we don't share that yet.
 807   set_class_loader_data(nullptr);
 808   set_in_aot_cache();
 809 
 810   if (CDSConfig::is_dumping_classic_static_archive()) {
 811     // "Classic" static archives are required to have deterministic contents.
 812     // The elements in _secondary_supers are addresses in the ArchiveBuilder
 813     // output buffer, so they should have deterministic values. If we rehash
 814     // _secondary_supers, its elements will appear in a deterministic order.
 815     //
 816     // Note that the bitmap is guaranteed to be deterministic, regardless of the
 817     // actual addresses of the elements in _secondary_supers. So rehashing shouldn't
 818     // change it.
 819     uintx bitmap = hash_secondary_supers(secondary_supers(), true);
 820     assert(bitmap == _secondary_supers_bitmap, "bitmap should not be changed due to rehashing");
 821   }
 822 }
 823 
 824 void Klass::remove_java_mirror() {
 825   assert(CDSConfig::is_dumping_archive(), "sanity");
 826   if (log_is_enabled(Trace, aot, unshareable)) {
 827     ResourceMark rm;
 828     log_trace(aot, unshareable)("remove java_mirror: %s", external_name());
 829   }
 830 
 831 #if INCLUDE_CDS_JAVA_HEAP
 832   _archived_mirror_index = -1;
 833   if (CDSConfig::is_dumping_heap()) {
 834     Klass* src_k = ArchiveBuilder::current()->get_source_addr(this);
 835     oop orig_mirror = src_k->java_mirror();
 836     if (orig_mirror == nullptr) {
 837       assert(CDSConfig::is_dumping_final_static_archive(), "sanity");
 838       if (is_instance_klass()) {
 839         assert(InstanceKlass::cast(this)->defined_by_other_loaders(), "sanity");
 840       } else {
 841         precond(is_objArray_klass());
 842         Klass *k = ObjArrayKlass::cast(this)->bottom_klass();
 843         precond(k->is_instance_klass());
 844         assert(InstanceKlass::cast(k)->defined_by_other_loaders(), "sanity");
 845       }
 846     } else {
 847       oop scratch_mirror = HeapShared::scratch_java_mirror(orig_mirror);
 848       if (scratch_mirror != nullptr) {
 849         _archived_mirror_index = HeapShared::append_root(scratch_mirror);
 850       }
 851     }
 852   }
 853 #endif
 854 
 855   // Just null out the mirror.  The class_loader_data() no longer exists.
 856   clear_java_mirror_handle();
 857 }
 858 
 859 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) {
 860   assert(is_klass(), "ensure C++ vtable is restored");
 861   assert(in_aot_cache(), "must be set");
 862   assert(secondary_supers()->length() >= (int)population_count(_secondary_supers_bitmap), "must be");
 863   JFR_ONLY(RESTORE_ID(this);)
 864   if (log_is_enabled(Trace, aot, unshareable)) {
 865     ResourceMark rm(THREAD);
 866     oop class_loader = loader_data->class_loader();
 867     log_trace(aot, unshareable)("restore: %s with class loader: %s", external_name(),
 868       class_loader != nullptr ? class_loader->klass()->external_name() : "boot");
 869   }
 870 
 871   // If an exception happened during CDS restore, some of these fields may already be
 872   // set.  We leave the class on the CLD list, even if incomplete so that we don't
 873   // modify the CLD list outside a safepoint.
 874   if (class_loader_data() == nullptr) {
 875     set_class_loader_data(loader_data);
 876 
 877     // Add to class loader list first before creating the mirror
 878     // (same order as class file parsing)
 879     loader_data->add_class(this);
 880   }
 881 
 882   Handle loader(THREAD, loader_data->class_loader());
 883   ModuleEntry* module_entry = nullptr;
 884   Klass* k = this;
 885   if (k->is_objArray_klass()) {
 886     k = ObjArrayKlass::cast(k)->bottom_klass();
 887   }
 888   // Obtain klass' module.
 889   if (k->is_instance_klass()) {
 890     InstanceKlass* ik = (InstanceKlass*) k;
 891     module_entry = ik->module();
 892   } else {
 893     module_entry = ModuleEntryTable::javabase_moduleEntry();
 894   }
 895   // Obtain java.lang.Module, if available
 896   Handle module_handle(THREAD, ((module_entry != nullptr) ? module_entry->module_oop() : (oop)nullptr));
 897 
 898   if (this->has_archived_mirror_index()) {
 899     ResourceMark rm(THREAD);
 900     log_debug(aot, mirror)("%s has raw archived mirror", external_name());
 901     if (ArchiveHeapLoader::is_in_use()) {
 902       bool present = java_lang_Class::restore_archived_mirror(this, loader, module_handle,
 903                                                               protection_domain,
 904                                                               CHECK);
 905       if (present) {
 906         return;
 907       }
 908     }
 909 
 910     // No archived mirror data
 911     log_debug(aot, mirror)("No archived mirror data for %s", external_name());
 912     clear_java_mirror_handle();
 913     this->clear_archived_mirror_index();
 914   }
 915 
 916   // Only recreate it if not present.  A previous attempt to restore may have
 917   // gotten an OOM later but keep the mirror if it was created.
 918   if (java_mirror() == nullptr) {
 919     ResourceMark rm(THREAD);
 920     log_trace(aot, mirror)("Recreate mirror for %s", external_name());
 921     java_lang_Class::create_mirror(this, loader, module_handle, protection_domain, Handle(), CHECK);
 922   }
 923 }
 924 #endif // INCLUDE_CDS
 925 
 926 #if INCLUDE_CDS_JAVA_HEAP
 927 oop Klass::archived_java_mirror() {
 928   assert(has_archived_mirror_index(), "must have archived mirror");
 929   return HeapShared::get_root(_archived_mirror_index);
 930 }
 931 
 932 void Klass::clear_archived_mirror_index() {
 933   if (_archived_mirror_index >= 0) {
 934     HeapShared::clear_root(_archived_mirror_index);
 935   }
 936   _archived_mirror_index = -1;
 937 }
 938 #endif // INCLUDE_CDS_JAVA_HEAP
 939 
 940 void Klass::check_array_allocation_length(int length, int max_length, TRAPS) {
 941   if (length > max_length) {
 942     if (!THREAD->is_in_internal_oome_mark()) {
 943       report_java_out_of_memory("Requested array size exceeds VM limit");
 944       JvmtiExport::post_array_size_exhausted();
 945       THROW_OOP(Universe::out_of_memory_error_array_size());
 946     } else {
 947       THROW_OOP(Universe::out_of_memory_error_java_heap_without_backtrace());
 948     }
 949   } else if (length < 0) {
 950     THROW_MSG(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length));
 951   }
 952 }
 953 
 954 // Replace the last '+' char with '/'.
 955 static char* convert_hidden_name_to_java(Symbol* name) {
 956   size_t name_len = name->utf8_length();
 957   char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
 958   name->as_klass_external_name(result, (int)name_len + 1);
 959   for (int index = (int)name_len; index > 0; index--) {
 960     if (result[index] == '+') {
 961       result[index] = JVM_SIGNATURE_SLASH;
 962       break;
 963     }
 964   }
 965   return result;
 966 }
 967 
 968 // In product mode, this function doesn't have virtual function calls so
 969 // there might be some performance advantage to handling InstanceKlass here.
 970 const char* Klass::external_name() const {
 971   if (is_instance_klass()) {
 972     const InstanceKlass* ik = static_cast<const InstanceKlass*>(this);
 973     if (ik->is_hidden()) {
 974       char* result = convert_hidden_name_to_java(name());
 975       return result;
 976     }
 977   } else if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
 978     char* result = convert_hidden_name_to_java(name());
 979     return result;
 980   }
 981   if (name() == nullptr)  return "<unknown>";
 982   return name()->as_klass_external_name();
 983 }
 984 
 985 const char* Klass::signature_name() const {
 986   if (name() == nullptr)  return "<unknown>";
 987   if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
 988     size_t name_len = name()->utf8_length();
 989     char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
 990     name()->as_C_string(result, (int)name_len + 1);
 991     for (int index = (int)name_len; index > 0; index--) {
 992       if (result[index] == '+') {
 993         result[index] = JVM_SIGNATURE_DOT;
 994         break;
 995       }
 996     }
 997     return result;
 998   }
 999   return name()->as_C_string();
1000 }
1001 
1002 const char* Klass::external_kind() const {
1003   if (is_interface()) return "interface";
1004   if (is_abstract()) return "abstract class";
1005   return "class";
1006 }
1007 
1008 // Unless overridden, jvmti_class_status has no flags set.
1009 jint Klass::jvmti_class_status() const {
1010   return 0;
1011 }
1012 
1013 
1014 // Printing
1015 
1016 void Klass::print_on(outputStream* st) const {
1017   ResourceMark rm;
1018   // print title
1019   st->print("%s", internal_name());
1020   print_address_on(st);
1021   st->cr();
1022 }
1023 
1024 #define BULLET  " - "
1025 
1026 // Caller needs ResourceMark
1027 void Klass::oop_print_on(oop obj, outputStream* st) {
1028   // print title
1029   st->print_cr("%s ", internal_name());
1030   obj->print_address_on(st);
1031 
1032   if (WizardMode) {
1033      // print header
1034      obj->mark().print_on(st);
1035      st->cr();
1036      if (UseCompactObjectHeaders) {
1037        st->print(BULLET"prototype_header: " INTPTR_FORMAT, _prototype_header.value());
1038        st->cr();
1039      }
1040   }
1041 
1042   // print class
1043   st->print(BULLET"klass: ");
1044   obj->klass()->print_value_on(st);
1045   st->print(BULLET"flags: "); _misc_flags.print_on(st); st->cr();
1046   st->cr();
1047 }
1048 
1049 void Klass::oop_print_value_on(oop obj, outputStream* st) {
1050   // print title
1051   ResourceMark rm;              // Cannot print in debug mode without this
1052   st->print("%s", internal_name());
1053   obj->print_address_on(st);
1054 }
1055 
1056 // Verification
1057 
1058 void Klass::verify_on(outputStream* st) {
1059 
1060   // This can be expensive, but it is worth checking that this klass is actually
1061   // in the CLD graph but not in production.
1062 #ifdef ASSERT
1063   if (UseCompressedClassPointers && needs_narrow_id()) {
1064     // Stricter checks for both correct alignment and placement
1065     CompressedKlassPointers::check_encodable(this);
1066   } else {
1067     assert(Metaspace::contains((address)this), "Should be");
1068   }
1069 #endif // ASSERT
1070 
1071   guarantee(this->is_klass(),"should be klass");
1072 
1073   if (super() != nullptr) {
1074     guarantee(super()->is_klass(), "should be klass");
1075   }
1076   if (secondary_super_cache() != nullptr) {
1077     Klass* ko = secondary_super_cache();
1078     guarantee(ko->is_klass(), "should be klass");
1079   }
1080   for ( uint i = 0; i < primary_super_limit(); i++ ) {
1081     Klass* ko = _primary_supers[i];
1082     if (ko != nullptr) {
1083       guarantee(ko->is_klass(), "should be klass");
1084     }
1085   }
1086 
1087   if (java_mirror_no_keepalive() != nullptr) {
1088     guarantee(java_lang_Class::is_instance(java_mirror_no_keepalive()), "should be instance");
1089   }
1090 }
1091 
1092 void Klass::oop_verify_on(oop obj, outputStream* st) {
1093   guarantee(oopDesc::is_oop(obj),  "should be oop");
1094   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
1095 }
1096 
1097 // Note: this function is called with an address that may or may not be a Klass.
1098 // The point is not to assert it is but to check if it could be.
1099 bool Klass::is_valid(Klass* k) {
1100   if (!is_aligned(k, sizeof(MetaWord))) return false;
1101   if ((size_t)k < os::min_page_size()) return false;
1102 
1103   if (!os::is_readable_range(k, k + 1)) return false;
1104   if (!Metaspace::contains(k)) return false;
1105 
1106   if (!Symbol::is_valid(k->name())) return false;
1107   return ClassLoaderDataGraph::is_valid(k->class_loader_data());
1108 }
1109 
1110 Method* Klass::method_at_vtable(int index)  {
1111 #ifndef PRODUCT
1112   assert(index >= 0, "valid vtable index");
1113   if (DebugVtables) {
1114     verify_vtable_index(index);
1115   }
1116 #endif
1117   return start_of_vtable()[index].method();
1118 }
1119 
1120 
1121 #ifndef PRODUCT
1122 
1123 bool Klass::verify_vtable_index(int i) {
1124   int limit = vtable_length()/vtableEntry::size();
1125   assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit);
1126   return true;
1127 }
1128 
1129 #endif // PRODUCT
1130 
1131 // Caller needs ResourceMark
1132 // joint_in_module_of_loader provides an optimization if 2 classes are in
1133 // the same module to succinctly print out relevant information about their
1134 // module name and class loader's name_and_id for error messages.
1135 // Format:
1136 //   <fully-qualified-external-class-name1> and <fully-qualified-external-class-name2>
1137 //                      are in module <module-name>[@<version>]
1138 //                      of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1139 const char* Klass::joint_in_module_of_loader(const Klass* class2, bool include_parent_loader) const {
1140   assert(module() == class2->module(), "classes do not have the same module");
1141   const char* class1_name = external_name();
1142   size_t len = strlen(class1_name) + 1;
1143 
1144   const char* class2_description = class2->class_in_module_of_loader(true, include_parent_loader);
1145   len += strlen(class2_description);
1146 
1147   len += strlen(" and ");
1148 
1149   char* joint_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1150 
1151   // Just return the FQN if error when allocating string
1152   if (joint_description == nullptr) {
1153     return class1_name;
1154   }
1155 
1156   jio_snprintf(joint_description, len, "%s and %s",
1157                class1_name,
1158                class2_description);
1159 
1160   return joint_description;
1161 }
1162 
1163 // Caller needs ResourceMark
1164 // class_in_module_of_loader provides a standard way to include
1165 // relevant information about a class, such as its module name as
1166 // well as its class loader's name_and_id, in error messages and logging.
1167 // Format:
1168 //   <fully-qualified-external-class-name> is in module <module-name>[@<version>]
1169 //                                         of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1170 const char* Klass::class_in_module_of_loader(bool use_are, bool include_parent_loader) const {
1171   // 1. fully qualified external name of class
1172   const char* klass_name = external_name();
1173   size_t len = strlen(klass_name) + 1;
1174 
1175   // 2. module name + @version
1176   const char* module_name = "";
1177   const char* version = "";
1178   bool has_version = false;
1179   bool module_is_named = false;
1180   const char* module_name_phrase = "";
1181   const Klass* bottom_klass = is_objArray_klass() ?
1182                                 ObjArrayKlass::cast(this)->bottom_klass() : this;
1183   if (bottom_klass->is_instance_klass()) {
1184     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1185     if (module->is_named()) {
1186       module_is_named = true;
1187       module_name_phrase = "module ";
1188       module_name = module->name()->as_C_string();
1189       len += strlen(module_name);
1190       // Use version if exists and is not a jdk module
1191       if (module->should_show_version()) {
1192         has_version = true;
1193         version = module->version()->as_C_string();
1194         // Include stlen(version) + 1 for the "@"
1195         len += strlen(version) + 1;
1196       }
1197     } else {
1198       module_name = UNNAMED_MODULE;
1199       len += UNNAMED_MODULE_LEN;
1200     }
1201   } else {
1202     // klass is an array of primitives, module is java.base
1203     module_is_named = true;
1204     module_name_phrase = "module ";
1205     module_name = JAVA_BASE_NAME;
1206     len += JAVA_BASE_NAME_LEN;
1207   }
1208 
1209   // 3. class loader's name_and_id
1210   ClassLoaderData* cld = class_loader_data();
1211   assert(cld != nullptr, "class_loader_data should not be null");
1212   const char* loader_name_and_id = cld->loader_name_and_id();
1213   len += strlen(loader_name_and_id);
1214 
1215   // 4. include parent loader information
1216   const char* parent_loader_phrase = "";
1217   const char* parent_loader_name_and_id = "";
1218   if (include_parent_loader &&
1219       !cld->is_builtin_class_loader_data()) {
1220     oop parent_loader = java_lang_ClassLoader::parent(class_loader());
1221     ClassLoaderData *parent_cld = ClassLoaderData::class_loader_data_or_null(parent_loader);
1222     // The parent loader's ClassLoaderData could be null if it is
1223     // a delegating class loader that has never defined a class.
1224     // In this case the loader's name must be obtained via the parent loader's oop.
1225     if (parent_cld == nullptr) {
1226       oop cl_name_and_id = java_lang_ClassLoader::nameAndId(parent_loader);
1227       if (cl_name_and_id != nullptr) {
1228         parent_loader_name_and_id = java_lang_String::as_utf8_string(cl_name_and_id);
1229       }
1230     } else {
1231       parent_loader_name_and_id = parent_cld->loader_name_and_id();
1232     }
1233     parent_loader_phrase = ", parent loader ";
1234     len += strlen(parent_loader_phrase) + strlen(parent_loader_name_and_id);
1235   }
1236 
1237   // Start to construct final full class description string
1238   len += ((use_are) ? strlen(" are in ") : strlen(" is in "));
1239   len += strlen(module_name_phrase) + strlen(" of loader ");
1240 
1241   char* class_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1242 
1243   // Just return the FQN if error when allocating string
1244   if (class_description == nullptr) {
1245     return klass_name;
1246   }
1247 
1248   jio_snprintf(class_description, len, "%s %s in %s%s%s%s of loader %s%s%s",
1249                klass_name,
1250                (use_are) ? "are" : "is",
1251                module_name_phrase,
1252                module_name,
1253                (has_version) ? "@" : "",
1254                (has_version) ? version : "",
1255                loader_name_and_id,
1256                parent_loader_phrase,
1257                parent_loader_name_and_id);
1258 
1259   return class_description;
1260 }
1261 
1262 class LookupStats : StackObj {
1263  private:
1264   uint _no_of_samples;
1265   uint _worst;
1266   uint _worst_count;
1267   uint _average;
1268   uint _best;
1269   uint _best_count;
1270  public:
1271   LookupStats() : _no_of_samples(0), _worst(0), _worst_count(0), _average(0), _best(INT_MAX), _best_count(0) {}
1272 
1273   ~LookupStats() {
1274     assert(_best <= _worst || _no_of_samples == 0, "sanity");
1275   }
1276 
1277   void sample(uint value) {
1278     ++_no_of_samples;
1279     _average += value;
1280 
1281     if (_worst < value) {
1282       _worst = value;
1283       _worst_count = 1;
1284     } else if (_worst == value) {
1285       ++_worst_count;
1286     }
1287 
1288     if (_best > value) {
1289       _best = value;
1290       _best_count = 1;
1291     } else if (_best == value) {
1292       ++_best_count;
1293     }
1294   }
1295 
1296   void print_on(outputStream* st) const {
1297     st->print("best: %2d (%4.1f%%)", _best, (100.0 * _best_count) / _no_of_samples);
1298     if (_best_count < _no_of_samples) {
1299       st->print("; average: %4.1f; worst: %2d (%4.1f%%)",
1300                 (1.0 * _average) / _no_of_samples,
1301                 _worst, (100.0 * _worst_count) / _no_of_samples);
1302     }
1303   }
1304 };
1305 
1306 static void print_positive_lookup_stats(Array<Klass*>* secondary_supers, uintx bitmap, outputStream* st) {
1307   int num_of_supers = secondary_supers->length();
1308 
1309   LookupStats s;
1310   for (int i = 0; i < num_of_supers; i++) {
1311     Klass* secondary_super = secondary_supers->at(i);
1312     int home_slot = Klass::compute_home_slot(secondary_super, bitmap);
1313     uint score = 1 + ((i - home_slot) & Klass::SECONDARY_SUPERS_TABLE_MASK);
1314     s.sample(score);
1315   }
1316   st->print("positive_lookup: "); s.print_on(st);
1317 }
1318 
1319 static uint compute_distance_to_nearest_zero(int slot, uintx bitmap) {
1320   assert(~bitmap != 0, "no zeroes");
1321   uintx start = rotate_right(bitmap, slot);
1322   return count_trailing_zeros(~start);
1323 }
1324 
1325 static void print_negative_lookup_stats(uintx bitmap, outputStream* st) {
1326   LookupStats s;
1327   for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
1328     uint score = compute_distance_to_nearest_zero(slot, bitmap);
1329     s.sample(score);
1330   }
1331   st->print("negative_lookup: "); s.print_on(st);
1332 }
1333 
1334 void Klass::print_secondary_supers_on(outputStream* st) const {
1335   if (secondary_supers() != nullptr) {
1336     st->print("  - "); st->print("%d elements;", _secondary_supers->length());
1337     st->print_cr(" bitmap: " UINTX_FORMAT_X_0, _secondary_supers_bitmap);
1338     if (_secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_EMPTY &&
1339         _secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_FULL) {
1340       st->print("  - "); print_positive_lookup_stats(secondary_supers(),
1341                                                      _secondary_supers_bitmap, st); st->cr();
1342       st->print("  - "); print_negative_lookup_stats(_secondary_supers_bitmap, st); st->cr();
1343     }
1344   } else {
1345     st->print("null");
1346   }
1347 }
1348 
1349 void Klass::on_secondary_supers_verification_failure(Klass* super, Klass* sub, bool linear_result, bool table_result, const char* msg) {
1350   ResourceMark rm;
1351   super->print();
1352   sub->print();
1353   fatal("%s: %s implements %s: linear_search: %d; table_lookup: %d",
1354         msg, sub->external_name(), super->external_name(), linear_result, table_result);
1355 }