1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveHeapLoader.hpp"
  26 #include "cds/cdsConfig.hpp"
  27 #include "cds/heapShared.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/classLoaderData.inline.hpp"
  30 #include "classfile/classLoaderDataGraph.inline.hpp"
  31 #include "classfile/javaClasses.inline.hpp"
  32 #include "classfile/moduleEntry.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/systemDictionaryShared.hpp"
  35 #include "classfile/vmClasses.hpp"
  36 #include "classfile/vmSymbols.hpp"
  37 #include "gc/shared/collectedHeap.inline.hpp"
  38 #include "jvm_io.h"
  39 #include "logging/log.hpp"
  40 #include "memory/metadataFactory.hpp"
  41 #include "memory/metaspaceClosure.hpp"
  42 #include "memory/oopFactory.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.hpp"
  45 #include "oops/compressedKlass.inline.hpp"
  46 #include "oops/compressedOops.inline.hpp"
  47 #include "oops/instanceKlass.hpp"
  48 #include "oops/klass.inline.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/oopHandle.inline.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "runtime/atomic.hpp"
  54 #include "runtime/handles.inline.hpp"
  55 #include "runtime/perfData.hpp"
  56 #include "utilities/macros.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 #include "utilities/rotate_bits.hpp"
  59 #include "utilities/stack.inline.hpp"
  60 
  61 void Klass::set_java_mirror(Handle m) {
  62   assert(!m.is_null(), "New mirror should never be null.");
  63   assert(_java_mirror.is_empty(), "should only be used to initialize mirror");
  64   _java_mirror = class_loader_data()->add_handle(m);
  65 }
  66 
  67 bool Klass::is_cloneable() const {
  68   return _misc_flags.is_cloneable_fast() ||
  69          is_subtype_of(vmClasses::Cloneable_klass());
  70 }
  71 
  72 void Klass::set_is_cloneable() {
  73   if (name() == vmSymbols::java_lang_invoke_MemberName()) {
  74     assert(is_final(), "no subclasses allowed");
  75     // MemberName cloning should not be intrinsified and always happen in JVM_Clone.
  76   } else if (is_instance_klass() && InstanceKlass::cast(this)->reference_type() != REF_NONE) {
  77     // Reference cloning should not be intrinsified and always happen in JVM_Clone.
  78   } else {
  79     _misc_flags.set_is_cloneable_fast(true);
  80   }
  81 }
  82 
  83 uint8_t Klass::compute_hash_slot(Symbol* n) {
  84   uint hash_code;
  85   // Special cases for the two superclasses of all Array instances.
  86   // Code elsewhere assumes, for all instances of ArrayKlass, that
  87   // these two interfaces will be in this order.
  88 
  89   // We ensure there are some empty slots in the hash table between
  90   // these two very common interfaces because if they were adjacent
  91   // (e.g. Slots 0 and 1), then any other class which hashed to 0 or 1
  92   // would result in a probe length of 3.
  93   if (n == vmSymbols::java_lang_Cloneable()) {
  94     hash_code = 0;
  95   } else if (n == vmSymbols::java_io_Serializable()) {
  96     hash_code = SECONDARY_SUPERS_TABLE_SIZE / 2;
  97   } else {
  98     auto s = (const jbyte*) n->bytes();
  99     hash_code = java_lang_String::hash_code(s, n->utf8_length());
 100     // We use String::hash_code here (rather than e.g.
 101     // Symbol::identity_hash()) in order to have a hash code that
 102     // does not change from run to run. We want that because the
 103     // hash value for a secondary superclass appears in generated
 104     // code as a constant.
 105 
 106     // This constant is magic: see Knuth, "Fibonacci Hashing".
 107     constexpr uint multiplier
 108       = 2654435769; // (uint)(((u8)1 << 32) / ((1 + sqrt(5)) / 2 ))
 109     constexpr uint hash_shift = sizeof(hash_code) * 8 - 6;
 110     // The leading bits of the least significant half of the product.
 111     hash_code = (hash_code * multiplier) >> hash_shift;
 112 
 113     if (StressSecondarySupers) {
 114       // Generate many hash collisions in order to stress-test the
 115       // linear search fallback.
 116       hash_code = hash_code % 3;
 117       hash_code = hash_code * (SECONDARY_SUPERS_TABLE_SIZE / 3);
 118     }
 119   }
 120 
 121   return (hash_code & SECONDARY_SUPERS_TABLE_MASK);
 122 }
 123 
 124 void Klass::set_name(Symbol* n) {
 125   _name = n;
 126 
 127   if (_name != nullptr) {
 128     _name->increment_refcount();
 129   }
 130 
 131   {
 132     elapsedTimer selftime;
 133     selftime.start();
 134 
 135     _hash_slot = compute_hash_slot(n);
 136     assert(_hash_slot < SECONDARY_SUPERS_TABLE_SIZE, "required");
 137 
 138     selftime.stop();
 139     if (UsePerfData) {
 140       ClassLoader::perf_secondary_hash_time()->inc(selftime.ticks());
 141     }
 142   }
 143 
 144   if (CDSConfig::is_dumping_archive() && is_instance_klass()) {
 145     SystemDictionaryShared::init_dumptime_info(InstanceKlass::cast(this));
 146   }
 147 }
 148 
 149 bool Klass::is_subclass_of(const Klass* k) const {
 150   // Run up the super chain and check
 151   if (this == k) return true;
 152 
 153   Klass* t = const_cast<Klass*>(this)->super();
 154 
 155   while (t != nullptr) {
 156     if (t == k) return true;
 157     t = t->super();
 158   }
 159   return false;
 160 }
 161 
 162 void Klass::release_C_heap_structures(bool release_constant_pool) {
 163   if (_name != nullptr) _name->decrement_refcount();
 164 }
 165 
 166 bool Klass::linear_search_secondary_supers(const Klass* k) const {
 167   // Scan the array-of-objects for a match
 168   // FIXME: We could do something smarter here, maybe a vectorized
 169   // comparison or a binary search, but is that worth any added
 170   // complexity?
 171   int cnt = secondary_supers()->length();
 172   for (int i = 0; i < cnt; i++) {
 173     if (secondary_supers()->at(i) == k) {
 174       return true;
 175     }
 176   }
 177   return false;
 178 }
 179 
 180 // Given a secondary superklass k, an initial array index, and an
 181 // occupancy bitmap rotated such that Bit 1 is the next bit to test,
 182 // search for k.
 183 bool Klass::fallback_search_secondary_supers(const Klass* k, int index, uintx rotated_bitmap) const {
 184   // Once the occupancy bitmap is almost full, it's faster to use a
 185   // linear search.
 186   if (secondary_supers()->length() > SECONDARY_SUPERS_TABLE_SIZE - 2) {
 187     return linear_search_secondary_supers(k);
 188   }
 189 
 190   // This is conventional linear probing, but instead of terminating
 191   // when a null entry is found in the table, we maintain a bitmap
 192   // in which a 0 indicates missing entries.
 193 
 194   precond((int)population_count(rotated_bitmap) == secondary_supers()->length());
 195 
 196   // The check for secondary_supers()->length() <= SECONDARY_SUPERS_TABLE_SIZE - 2
 197   // at the start of this function guarantees there are 0s in the
 198   // bitmap, so this loop eventually terminates.
 199   while ((rotated_bitmap & 2) != 0) {
 200     if (++index == secondary_supers()->length()) {
 201       index = 0;
 202     }
 203     if (secondary_supers()->at(index) == k) {
 204       return true;
 205     }
 206     rotated_bitmap = rotate_right(rotated_bitmap, 1);
 207   }
 208   return false;
 209 }
 210 
 211 // Return self, except for abstract classes with exactly 1
 212 // implementor.  Then return the 1 concrete implementation.
 213 Klass *Klass::up_cast_abstract() {
 214   Klass *r = this;
 215   while( r->is_abstract() ) {   // Receiver is abstract?
 216     Klass *s = r->subklass();   // Check for exactly 1 subklass
 217     if (s == nullptr || s->next_sibling() != nullptr) // Oops; wrong count; give up
 218       return this;              // Return 'this' as a no-progress flag
 219     r = s;                    // Loop till find concrete class
 220   }
 221   return r;                   // Return the 1 concrete class
 222 }
 223 
 224 // Find LCA in class hierarchy
 225 Klass *Klass::LCA( Klass *k2 ) {
 226   Klass *k1 = this;
 227   while( 1 ) {
 228     if( k1->is_subtype_of(k2) ) return k2;
 229     if( k2->is_subtype_of(k1) ) return k1;
 230     k1 = k1->super();
 231     k2 = k2->super();
 232   }
 233 }
 234 
 235 
 236 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 237   ResourceMark rm(THREAD);
 238   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 239             : vmSymbols::java_lang_InstantiationException(), external_name());
 240 }
 241 
 242 
 243 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 244   ResourceMark rm(THREAD);
 245   assert(s != nullptr, "Throw NPE!");
 246   THROW_MSG(vmSymbols::java_lang_ArrayStoreException(),
 247             err_msg("arraycopy: source type %s is not an array", s->klass()->external_name()));
 248 }
 249 
 250 
 251 void Klass::initialize(TRAPS) {
 252   ShouldNotReachHere();
 253 }
 254 
 255 void Klass::initialize_preemptable(TRAPS) {
 256   ShouldNotReachHere();
 257 }
 258 
 259 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const {
 260 #ifdef ASSERT
 261   tty->print_cr("Error: find_field called on a klass oop."
 262                 " Likely error: reflection method does not correctly"
 263                 " wrap return value in a mirror object.");
 264 #endif
 265   ShouldNotReachHere();
 266   return nullptr;
 267 }
 268 
 269 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature,
 270                                       OverpassLookupMode overpass_mode,
 271                                       PrivateLookupMode private_mode) const {
 272 #ifdef ASSERT
 273   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 274                 " Likely error: reflection method does not correctly"
 275                 " wrap return value in a mirror object.");
 276 #endif
 277   ShouldNotReachHere();
 278   return nullptr;
 279 }
 280 
 281 static markWord make_prototype(const Klass* kls) {
 282   markWord prototype = markWord::prototype();
 283 #ifdef _LP64
 284   if (UseCompactObjectHeaders) {
 285     // With compact object headers, the narrow Klass ID is part of the mark word.
 286     // We therfore seed the mark word with the narrow Klass ID.
 287     // Note that only those Klass that can be instantiated have a narrow Klass ID.
 288     // For those who don't, we leave the klass bits empty and assert if someone
 289     // tries to use those.
 290     const narrowKlass nk = CompressedKlassPointers::is_encodable(kls) ?
 291         CompressedKlassPointers::encode(const_cast<Klass*>(kls)) : 0;
 292     prototype = prototype.set_narrow_klass(nk);
 293   }
 294 #endif
 295   return prototype;
 296 }
 297 
 298 Klass::Klass() : _kind(UnknownKlassKind) {
 299   assert(CDSConfig::is_dumping_static_archive() || CDSConfig::is_using_archive(), "only for cds");
 300 }
 301 
 302 // "Normal" instantiation is preceded by a MetaspaceObj allocation
 303 // which zeros out memory - calloc equivalent.
 304 // The constructor is also used from CppVtableCloner,
 305 // which doesn't zero out the memory before calling the constructor.
 306 Klass::Klass(KlassKind kind) : _kind(kind),
 307                                _prototype_header(make_prototype(this)),
 308                                _shared_class_path_index(-1) {
 309   CDS_ONLY(_aot_class_flags = 0;)
 310   CDS_JAVA_HEAP_ONLY(_archived_mirror_index = -1;)
 311   _primary_supers[0] = this;
 312   set_super_check_offset(in_bytes(primary_supers_offset()));
 313 }
 314 
 315 jint Klass::array_layout_helper(BasicType etype) {
 316   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 317   // Note that T_ARRAY is not allowed here.
 318   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 319   int  esize = type2aelembytes(etype);
 320   bool isobj = (etype == T_OBJECT);
 321   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
 322   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
 323 
 324   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 325   assert(layout_helper_is_array(lh), "correct kind");
 326   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
 327   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 328   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 329   assert(layout_helper_element_type(lh) == etype, "correct decode");
 330   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 331 
 332   return lh;
 333 }
 334 
 335 int Klass::modifier_flags() const {
 336   int mods = java_lang_Class::modifiers(java_mirror());
 337   assert(mods == compute_modifier_flags(), "should be same");
 338   return mods;
 339 }
 340 
 341 bool Klass::can_be_primary_super_slow() const {
 342   if (super() == nullptr)
 343     return true;
 344   else if (super()->super_depth() >= primary_super_limit()-1)
 345     return false;
 346   else
 347     return true;
 348 }
 349 
 350 void Klass::set_secondary_supers(Array<Klass*>* secondaries, uintx bitmap) {
 351 #ifdef ASSERT
 352   if (secondaries != nullptr) {
 353     uintx real_bitmap = compute_secondary_supers_bitmap(secondaries);
 354     assert(bitmap == real_bitmap, "must be");
 355     assert(secondaries->length() >= (int)population_count(bitmap), "must be");
 356   }
 357 #endif
 358   _secondary_supers_bitmap = bitmap;
 359   _secondary_supers = secondaries;
 360 
 361   if (secondaries != nullptr) {
 362     LogMessage(class, load) msg;
 363     NonInterleavingLogStream log {LogLevel::Debug, msg};
 364     if (log.is_enabled()) {
 365       ResourceMark rm;
 366       log.print_cr("set_secondary_supers: hash_slot: %d; klass: %s", hash_slot(), external_name());
 367       print_secondary_supers_on(&log);
 368     }
 369   }
 370 }
 371 
 372 // Hashed secondary superclasses
 373 //
 374 // We use a compressed 64-entry hash table with linear probing. We
 375 // start by creating a hash table in the usual way, followed by a pass
 376 // that removes all the null entries. To indicate which entries would
 377 // have been null we use a bitmap that contains a 1 in each position
 378 // where an entry is present, 0 otherwise. This bitmap also serves as
 379 // a kind of Bloom filter, which in many cases allows us quickly to
 380 // eliminate the possibility that something is a member of a set of
 381 // secondaries.
 382 uintx Klass::hash_secondary_supers(Array<Klass*>* secondaries, bool rewrite) {
 383   const int length = secondaries->length();
 384 
 385   if (length == 0) {
 386     return SECONDARY_SUPERS_BITMAP_EMPTY;
 387   }
 388 
 389   if (length == 1) {
 390     int hash_slot = secondaries->at(0)->hash_slot();
 391     return uintx(1) << hash_slot;
 392   }
 393 
 394   // Invariant: _secondary_supers.length >= population_count(_secondary_supers_bitmap)
 395 
 396   // Don't attempt to hash a table that's completely full, because in
 397   // the case of an absent interface linear probing would not
 398   // terminate.
 399   if (length >= SECONDARY_SUPERS_TABLE_SIZE) {
 400     return SECONDARY_SUPERS_BITMAP_FULL;
 401   }
 402 
 403   {
 404     PerfTraceTime ptt(ClassLoader::perf_secondary_hash_time());
 405 
 406     ResourceMark rm;
 407     uintx bitmap = SECONDARY_SUPERS_BITMAP_EMPTY;
 408     auto hashed_secondaries = new GrowableArray<Klass*>(SECONDARY_SUPERS_TABLE_SIZE,
 409                                                         SECONDARY_SUPERS_TABLE_SIZE, nullptr);
 410 
 411     for (int j = 0; j < length; j++) {
 412       Klass* k = secondaries->at(j);
 413       hash_insert(k, hashed_secondaries, bitmap);
 414     }
 415 
 416     // Pack the hashed secondaries array by copying it into the
 417     // secondaries array, sans nulls, if modification is allowed.
 418     // Otherwise, validate the order.
 419     int i = 0;
 420     for (int slot = 0; slot < SECONDARY_SUPERS_TABLE_SIZE; slot++) {
 421       bool has_element = ((bitmap >> slot) & 1) != 0;
 422       assert(has_element == (hashed_secondaries->at(slot) != nullptr), "");
 423       if (has_element) {
 424         Klass* k = hashed_secondaries->at(slot);
 425         if (rewrite) {
 426           secondaries->at_put(i, k);
 427         } else if (secondaries->at(i) != k) {
 428           assert(false, "broken secondary supers hash table");
 429           return SECONDARY_SUPERS_BITMAP_FULL;
 430         }
 431         i++;
 432       }
 433     }
 434     assert(i == secondaries->length(), "mismatch");
 435     postcond((int)population_count(bitmap) == secondaries->length());
 436 
 437     return bitmap;
 438   }
 439 }
 440 
 441 void Klass::hash_insert(Klass* klass, GrowableArray<Klass*>* secondaries, uintx& bitmap) {
 442   assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
 443 
 444   int dist = 0;
 445   for (int slot = klass->hash_slot(); true; slot = (slot + 1) & SECONDARY_SUPERS_TABLE_MASK) {
 446     Klass* existing = secondaries->at(slot);
 447     assert(((bitmap >> slot) & 1) == (existing != nullptr), "mismatch");
 448     if (existing == nullptr) { // no conflict
 449       secondaries->at_put(slot, klass);
 450       bitmap |= uintx(1) << slot;
 451       assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
 452       return;
 453     } else {
 454       // Use Robin Hood hashing to minimize the worst case search.
 455       // Also, every permutation of the insertion sequence produces
 456       // the same final Robin Hood hash table, provided that a
 457       // consistent tie breaker is used.
 458       int existing_dist = (slot - existing->hash_slot()) & SECONDARY_SUPERS_TABLE_MASK;
 459       if (existing_dist < dist
 460           // This tie breaker ensures that the hash order is maintained.
 461           || ((existing_dist == dist)
 462               && (uintptr_t(existing) < uintptr_t(klass)))) {
 463         Klass* tmp = secondaries->at(slot);
 464         secondaries->at_put(slot, klass);
 465         klass = tmp;
 466         dist = existing_dist;
 467       }
 468       ++dist;
 469     }
 470   }
 471 }
 472 
 473 Array<Klass*>* Klass::pack_secondary_supers(ClassLoaderData* loader_data,
 474                                             GrowableArray<Klass*>* primaries,
 475                                             GrowableArray<Klass*>* secondaries,
 476                                             uintx& bitmap, TRAPS) {
 477   int new_length = primaries->length() + secondaries->length();
 478   Array<Klass*>* secondary_supers = MetadataFactory::new_array<Klass*>(loader_data, new_length, CHECK_NULL);
 479 
 480   // Combine the two arrays into a metadata object to pack the array.
 481   // The primaries are added in the reverse order, then the secondaries.
 482   int fill_p = primaries->length();
 483   for (int j = 0; j < fill_p; j++) {
 484     secondary_supers->at_put(j, primaries->pop());  // add primaries in reverse order.
 485   }
 486   for( int j = 0; j < secondaries->length(); j++ ) {
 487     secondary_supers->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 488   }
 489 #ifdef ASSERT
 490   // We must not copy any null placeholders left over from bootstrap.
 491   for (int j = 0; j < secondary_supers->length(); j++) {
 492     assert(secondary_supers->at(j) != nullptr, "correct bootstrapping order");
 493   }
 494 #endif
 495 
 496   bitmap = hash_secondary_supers(secondary_supers, /*rewrite=*/true); // rewrites freshly allocated array
 497   return secondary_supers;
 498 }
 499 
 500 uintx Klass::compute_secondary_supers_bitmap(Array<Klass*>* secondary_supers) {
 501   return hash_secondary_supers(secondary_supers, /*rewrite=*/false); // no rewrites allowed
 502 }
 503 
 504 uint8_t Klass::compute_home_slot(Klass* k, uintx bitmap) {
 505   uint8_t hash = k->hash_slot();
 506   if (hash > 0) {
 507     return population_count(bitmap << (SECONDARY_SUPERS_TABLE_SIZE - hash));
 508   }
 509   return 0;
 510 }
 511 
 512 
 513 void Klass::initialize_supers(Klass* k, Array<InstanceKlass*>* transitive_interfaces, TRAPS) {
 514   if (k == nullptr) {
 515     set_super(nullptr);
 516     _primary_supers[0] = this;
 517     assert(super_depth() == 0, "Object must already be initialized properly");
 518   } else if (k != super() || k == vmClasses::Object_klass()) {
 519     assert(super() == nullptr || super() == vmClasses::Object_klass(),
 520            "initialize this only once to a non-trivial value");
 521     set_super(k);
 522     Klass* sup = k;
 523     int sup_depth = sup->super_depth();
 524     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 525     if (!can_be_primary_super_slow())
 526       my_depth = primary_super_limit();
 527     for (juint i = 0; i < my_depth; i++) {
 528       _primary_supers[i] = sup->_primary_supers[i];
 529     }
 530     Klass* *super_check_cell;
 531     if (my_depth < primary_super_limit()) {
 532       _primary_supers[my_depth] = this;
 533       super_check_cell = &_primary_supers[my_depth];
 534     } else {
 535       // Overflow of the primary_supers array forces me to be secondary.
 536       super_check_cell = &_secondary_super_cache;
 537     }
 538     set_super_check_offset(u4((address)super_check_cell - (address) this));
 539 
 540 #ifdef ASSERT
 541     {
 542       juint j = super_depth();
 543       assert(j == my_depth, "computed accessor gets right answer");
 544       Klass* t = this;
 545       while (!t->can_be_primary_super()) {
 546         t = t->super();
 547         j = t->super_depth();
 548       }
 549       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 550         assert(primary_super_of_depth(j1) == nullptr, "super list padding");
 551       }
 552       while (t != nullptr) {
 553         assert(primary_super_of_depth(j) == t, "super list initialization");
 554         t = t->super();
 555         --j;
 556       }
 557       assert(j == (juint)-1, "correct depth count");
 558     }
 559 #endif
 560   }
 561 
 562   if (secondary_supers() == nullptr) {
 563 
 564     // Now compute the list of secondary supertypes.
 565     // Secondaries can occasionally be on the super chain,
 566     // if the inline "_primary_supers" array overflows.
 567     int extras = 0;
 568     Klass* p;
 569     for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
 570       ++extras;
 571     }
 572 
 573     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 574 
 575     // Compute the "real" non-extra secondaries.
 576     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras, transitive_interfaces);
 577     if (secondaries == nullptr) {
 578       // secondary_supers set by compute_secondary_supers
 579       return;
 580     }
 581 
 582     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 583 
 584     for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
 585       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 586 
 587       // This happens frequently for very deeply nested arrays: the
 588       // primary superclass chain overflows into the secondary.  The
 589       // secondary list contains the element_klass's secondaries with
 590       // an extra array dimension added.  If the element_klass's
 591       // secondary list already contains some primary overflows, they
 592       // (with the extra level of array-ness) will collide with the
 593       // normal primary superclass overflows.
 594       for( i = 0; i < secondaries->length(); i++ ) {
 595         if( secondaries->at(i) == p )
 596           break;
 597       }
 598       if( i < secondaries->length() )
 599         continue;               // It's a dup, don't put it in
 600       primaries->push(p);
 601     }
 602     // Combine the two arrays into a metadata object to pack the array.
 603     uintx bitmap = 0;
 604     Array<Klass*>* s2 = pack_secondary_supers(class_loader_data(), primaries, secondaries, bitmap, CHECK);
 605     set_secondary_supers(s2, bitmap);
 606   }
 607 }
 608 
 609 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots,
 610                                                        Array<InstanceKlass*>* transitive_interfaces) {
 611   assert(num_extra_slots == 0, "override for complex klasses");
 612   assert(transitive_interfaces == nullptr, "sanity");
 613   set_secondary_supers(Universe::the_empty_klass_array(), Universe::the_empty_klass_bitmap());
 614   return nullptr;
 615 }
 616 
 617 
 618 // subklass links.  Used by the compiler (and vtable initialization)
 619 // May be cleaned concurrently, so must use the Compile_lock.
 620 // The log parameter is for clean_weak_klass_links to report unlinked classes.
 621 Klass* Klass::subklass(bool log) const {
 622   // Need load_acquire on the _subklass, because it races with inserts that
 623   // publishes freshly initialized data.
 624   for (Klass* chain = Atomic::load_acquire(&_subklass);
 625        chain != nullptr;
 626        // Do not need load_acquire on _next_sibling, because inserts never
 627        // create _next_sibling edges to dead data.
 628        chain = Atomic::load(&chain->_next_sibling))
 629   {
 630     if (chain->is_loader_alive()) {
 631       return chain;
 632     } else if (log) {
 633       if (log_is_enabled(Trace, class, unload)) {
 634         ResourceMark rm;
 635         log_trace(class, unload)("unlinking class (subclass): %s", chain->external_name());
 636       }
 637     }
 638   }
 639   return nullptr;
 640 }
 641 
 642 Klass* Klass::next_sibling(bool log) const {
 643   // Do not need load_acquire on _next_sibling, because inserts never
 644   // create _next_sibling edges to dead data.
 645   for (Klass* chain = Atomic::load(&_next_sibling);
 646        chain != nullptr;
 647        chain = Atomic::load(&chain->_next_sibling)) {
 648     // Only return alive klass, there may be stale klass
 649     // in this chain if cleaned concurrently.
 650     if (chain->is_loader_alive()) {
 651       return chain;
 652     } else if (log) {
 653       if (log_is_enabled(Trace, class, unload)) {
 654         ResourceMark rm;
 655         log_trace(class, unload)("unlinking class (sibling): %s", chain->external_name());
 656       }
 657     }
 658   }
 659   return nullptr;
 660 }
 661 
 662 void Klass::set_subklass(Klass* s) {
 663   assert(s != this, "sanity check");
 664   Atomic::release_store(&_subklass, s);
 665 }
 666 
 667 void Klass::set_next_sibling(Klass* s) {
 668   assert(s != this, "sanity check");
 669   // Does not need release semantics. If used by cleanup, it will link to
 670   // already safely published data, and if used by inserts, will be published
 671   // safely using cmpxchg.
 672   Atomic::store(&_next_sibling, s);
 673 }
 674 
 675 void Klass::append_to_sibling_list() {
 676   if (Universe::is_fully_initialized()) {
 677     assert_locked_or_safepoint(Compile_lock);
 678   }
 679   DEBUG_ONLY(verify();)
 680   // add ourselves to super' subklass list
 681   InstanceKlass* super = java_super();
 682   if (super == nullptr) return;     // special case: class Object
 683   assert((!super->is_interface()    // interfaces cannot be supers
 684           && (super->java_super() == nullptr || !is_interface())),
 685          "an interface can only be a subklass of Object");
 686 
 687   // Make sure there is no stale subklass head
 688   super->clean_subklass();
 689 
 690   for (;;) {
 691     Klass* prev_first_subklass = Atomic::load_acquire(&_super->_subklass);
 692     if (prev_first_subklass != nullptr) {
 693       // set our sibling to be the super' previous first subklass
 694       assert(prev_first_subklass->is_loader_alive(), "May not attach not alive klasses");
 695       set_next_sibling(prev_first_subklass);
 696     }
 697     // Note that the prev_first_subklass is always alive, meaning no sibling_next links
 698     // are ever created to not alive klasses. This is an important invariant of the lock-free
 699     // cleaning protocol, that allows us to safely unlink dead klasses from the sibling list.
 700     if (Atomic::cmpxchg(&super->_subklass, prev_first_subklass, this) == prev_first_subklass) {
 701       return;
 702     }
 703   }
 704   DEBUG_ONLY(verify();)
 705 }
 706 
 707 void Klass::clean_subklass() {
 708   for (;;) {
 709     // Need load_acquire, due to contending with concurrent inserts
 710     Klass* subklass = Atomic::load_acquire(&_subklass);
 711     if (subklass == nullptr || subklass->is_loader_alive()) {
 712       return;
 713     }
 714     // Try to fix _subklass until it points at something not dead.
 715     Atomic::cmpxchg(&_subklass, subklass, subklass->next_sibling());
 716   }
 717 }
 718 
 719 void Klass::clean_weak_klass_links(bool unloading_occurred, bool clean_alive_klasses) {
 720   if (!ClassUnloading || !unloading_occurred) {
 721     return;
 722   }
 723 
 724   Klass* root = vmClasses::Object_klass();
 725   Stack<Klass*, mtGC> stack;
 726 
 727   stack.push(root);
 728   while (!stack.is_empty()) {
 729     Klass* current = stack.pop();
 730 
 731     assert(current->is_loader_alive(), "just checking, this should be live");
 732 
 733     // Find and set the first alive subklass
 734     Klass* sub = current->subklass(true);
 735     current->clean_subklass();
 736     if (sub != nullptr) {
 737       stack.push(sub);
 738     }
 739 
 740     // Find and set the first alive sibling
 741     Klass* sibling = current->next_sibling(true);
 742     current->set_next_sibling(sibling);
 743     if (sibling != nullptr) {
 744       stack.push(sibling);
 745     }
 746 
 747     // Clean the implementors list and method data.
 748     if (clean_alive_klasses && current->is_instance_klass()) {
 749       InstanceKlass* ik = InstanceKlass::cast(current);
 750       clean_weak_instanceklass_links(ik);
 751     }
 752   }
 753 }
 754 
 755 void Klass::clean_weak_instanceklass_links(InstanceKlass* ik) {
 756   ik->clean_weak_instanceklass_links();
 757   // JVMTI RedefineClasses creates previous versions that are not in
 758   // the class hierarchy, so process them here.
 759   while ((ik = ik->previous_versions()) != nullptr) {
 760     ik->clean_weak_instanceklass_links();
 761   }
 762 }
 763 
 764 void Klass::metaspace_pointers_do(MetaspaceClosure* it) {
 765   if (log_is_enabled(Trace, aot)) {
 766     ResourceMark rm;
 767     log_trace(aot)("Iter(Klass): %p (%s)", this, external_name());
 768   }
 769 
 770   it->push(&_name);
 771   it->push(&_secondary_supers);
 772   for (int i = 0; i < _primary_super_limit; i++) {
 773     it->push(&_primary_supers[i]);
 774   }
 775   it->push(&_super);
 776   if (!CDSConfig::is_dumping_archive()) {
 777     // If dumping archive, these may point to excluded classes. There's no need
 778     // to follow these pointers anyway, as they will be set to null in
 779     // remove_unshareable_info().
 780     it->push((Klass**)&_subklass);
 781     it->push((Klass**)&_next_sibling);
 782     it->push(&_next_link);
 783   }
 784 
 785   vtableEntry* vt = start_of_vtable();
 786   for (int i=0; i<vtable_length(); i++) {
 787     it->push(vt[i].method_addr());
 788   }
 789 }
 790 
 791 #if INCLUDE_CDS
 792 void Klass::remove_unshareable_info() {
 793   assert(CDSConfig::is_dumping_archive(),
 794           "only called during CDS dump time");
 795   JFR_ONLY(REMOVE_ID(this);)
 796   if (log_is_enabled(Trace, aot, unshareable)) {
 797     ResourceMark rm;
 798     log_trace(aot, unshareable)("remove: %s", external_name());
 799   }
 800 
 801   // _secondary_super_cache may be updated by an is_subtype_of() call
 802   // while ArchiveBuilder is copying metaspace objects. Let's reset it to
 803   // null and let it be repopulated at runtime.
 804   set_secondary_super_cache(nullptr);
 805 
 806   set_subklass(nullptr);
 807   set_next_sibling(nullptr);
 808   set_next_link(nullptr);
 809 
 810   // Null out class_loader_data because we don't share that yet.
 811   set_class_loader_data(nullptr);
 812   set_in_aot_cache();
 813 
 814   if (CDSConfig::is_dumping_classic_static_archive()) {
 815     // "Classic" static archives are required to have deterministic contents.
 816     // The elements in _secondary_supers are addresses in the ArchiveBuilder
 817     // output buffer, so they should have deterministic values. If we rehash
 818     // _secondary_supers, its elements will appear in a deterministic order.
 819     //
 820     // Note that the bitmap is guaranteed to be deterministic, regardless of the
 821     // actual addresses of the elements in _secondary_supers. So rehashing shouldn't
 822     // change it.
 823     uintx bitmap = hash_secondary_supers(secondary_supers(), true);
 824     assert(bitmap == _secondary_supers_bitmap, "bitmap should not be changed due to rehashing");
 825   }
 826 }
 827 
 828 void Klass::remove_java_mirror() {
 829   assert(CDSConfig::is_dumping_archive(), "sanity");
 830   if (log_is_enabled(Trace, aot, unshareable)) {
 831     ResourceMark rm;
 832     log_trace(aot, unshareable)("remove java_mirror: %s", external_name());
 833   }
 834 
 835 #if INCLUDE_CDS_JAVA_HEAP
 836   _archived_mirror_index = -1;
 837   if (CDSConfig::is_dumping_heap()) {
 838     Klass* src_k = ArchiveBuilder::current()->get_source_addr(this);
 839     oop orig_mirror = src_k->java_mirror();
 840     if (orig_mirror == nullptr) {
 841       assert(CDSConfig::is_dumping_final_static_archive(), "sanity");
 842       if (is_instance_klass()) {
 843         assert(InstanceKlass::cast(this)->defined_by_other_loaders(), "sanity");
 844       } else {
 845         precond(is_objArray_klass());
 846         Klass *k = ObjArrayKlass::cast(this)->bottom_klass();
 847         precond(k->is_instance_klass());
 848         assert(InstanceKlass::cast(k)->defined_by_other_loaders(), "sanity");
 849       }
 850     } else {
 851       oop scratch_mirror = HeapShared::scratch_java_mirror(orig_mirror);
 852       if (scratch_mirror != nullptr) {
 853         _archived_mirror_index = HeapShared::append_root(scratch_mirror);
 854       }
 855     }
 856   }
 857 #endif
 858 
 859   // Just null out the mirror.  The class_loader_data() no longer exists.
 860   clear_java_mirror_handle();
 861 }
 862 
 863 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) {
 864   assert(is_klass(), "ensure C++ vtable is restored");
 865   assert(in_aot_cache(), "must be set");
 866   assert(secondary_supers()->length() >= (int)population_count(_secondary_supers_bitmap), "must be");
 867   JFR_ONLY(RESTORE_ID(this);)
 868   if (log_is_enabled(Trace, aot, unshareable)) {
 869     ResourceMark rm(THREAD);
 870     oop class_loader = loader_data->class_loader();
 871     log_trace(aot, unshareable)("restore: %s with class loader: %s", external_name(),
 872       class_loader != nullptr ? class_loader->klass()->external_name() : "boot");
 873   }
 874 
 875   // If an exception happened during CDS restore, some of these fields may already be
 876   // set.  We leave the class on the CLD list, even if incomplete so that we don't
 877   // modify the CLD list outside a safepoint.
 878   if (class_loader_data() == nullptr) {
 879     set_class_loader_data(loader_data);
 880 
 881     // Add to class loader list first before creating the mirror
 882     // (same order as class file parsing)
 883     loader_data->add_class(this);
 884   }
 885 
 886   Handle loader(THREAD, loader_data->class_loader());
 887   ModuleEntry* module_entry = nullptr;
 888   Klass* k = this;
 889   if (k->is_objArray_klass()) {
 890     k = ObjArrayKlass::cast(k)->bottom_klass();
 891   }
 892   // Obtain klass' module.
 893   if (k->is_instance_klass()) {
 894     InstanceKlass* ik = (InstanceKlass*) k;
 895     module_entry = ik->module();
 896   } else {
 897     module_entry = ModuleEntryTable::javabase_moduleEntry();
 898   }
 899   // Obtain java.lang.Module, if available
 900   Handle module_handle(THREAD, ((module_entry != nullptr) ? module_entry->module_oop() : (oop)nullptr));
 901 
 902   if (this->has_archived_mirror_index()) {
 903     ResourceMark rm(THREAD);
 904     log_debug(aot, mirror)("%s has raw archived mirror", external_name());
 905     if (ArchiveHeapLoader::is_in_use()) {
 906       bool present = java_lang_Class::restore_archived_mirror(this, loader, module_handle,
 907                                                               protection_domain,
 908                                                               CHECK);
 909       if (present) {
 910         return;
 911       }
 912     }
 913 
 914     // No archived mirror data
 915     log_debug(aot, mirror)("No archived mirror data for %s", external_name());
 916     clear_java_mirror_handle();
 917     this->clear_archived_mirror_index();
 918   }
 919 
 920   // Only recreate it if not present.  A previous attempt to restore may have
 921   // gotten an OOM later but keep the mirror if it was created.
 922   if (java_mirror() == nullptr) {
 923     ResourceMark rm(THREAD);
 924     log_trace(aot, mirror)("Recreate mirror for %s", external_name());
 925     java_lang_Class::create_mirror(this, loader, module_handle, protection_domain, Handle(), CHECK);
 926   }
 927 }
 928 #endif // INCLUDE_CDS
 929 
 930 #if INCLUDE_CDS_JAVA_HEAP
 931 oop Klass::archived_java_mirror() {
 932   assert(has_archived_mirror_index(), "must have archived mirror");
 933   return HeapShared::get_root(_archived_mirror_index);
 934 }
 935 
 936 void Klass::clear_archived_mirror_index() {
 937   if (_archived_mirror_index >= 0) {
 938     HeapShared::clear_root(_archived_mirror_index);
 939   }
 940   _archived_mirror_index = -1;
 941 }
 942 #endif // INCLUDE_CDS_JAVA_HEAP
 943 
 944 void Klass::check_array_allocation_length(int length, int max_length, TRAPS) {
 945   if (length > max_length) {
 946     if (!THREAD->is_in_internal_oome_mark()) {
 947       report_java_out_of_memory("Requested array size exceeds VM limit");
 948       JvmtiExport::post_array_size_exhausted();
 949       THROW_OOP(Universe::out_of_memory_error_array_size());
 950     } else {
 951       THROW_OOP(Universe::out_of_memory_error_java_heap_without_backtrace());
 952     }
 953   } else if (length < 0) {
 954     THROW_MSG(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length));
 955   }
 956 }
 957 
 958 // Replace the last '+' char with '/'.
 959 static char* convert_hidden_name_to_java(Symbol* name) {
 960   size_t name_len = name->utf8_length();
 961   char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
 962   name->as_klass_external_name(result, (int)name_len + 1);
 963   for (int index = (int)name_len; index > 0; index--) {
 964     if (result[index] == '+') {
 965       result[index] = JVM_SIGNATURE_SLASH;
 966       break;
 967     }
 968   }
 969   return result;
 970 }
 971 
 972 // In product mode, this function doesn't have virtual function calls so
 973 // there might be some performance advantage to handling InstanceKlass here.
 974 const char* Klass::external_name() const {
 975   if (is_instance_klass()) {
 976     const InstanceKlass* ik = static_cast<const InstanceKlass*>(this);
 977     if (ik->is_hidden()) {
 978       char* result = convert_hidden_name_to_java(name());
 979       return result;
 980     }
 981   } else if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
 982     char* result = convert_hidden_name_to_java(name());
 983     return result;
 984   }
 985   if (name() == nullptr)  return "<unknown>";
 986   return name()->as_klass_external_name();
 987 }
 988 
 989 const char* Klass::signature_name() const {
 990   if (name() == nullptr)  return "<unknown>";
 991   if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
 992     size_t name_len = name()->utf8_length();
 993     char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
 994     name()->as_C_string(result, (int)name_len + 1);
 995     for (int index = (int)name_len; index > 0; index--) {
 996       if (result[index] == '+') {
 997         result[index] = JVM_SIGNATURE_DOT;
 998         break;
 999       }
1000     }
1001     return result;
1002   }
1003   return name()->as_C_string();
1004 }
1005 
1006 const char* Klass::external_kind() const {
1007   if (is_interface()) return "interface";
1008   if (is_abstract()) return "abstract class";
1009   return "class";
1010 }
1011 
1012 // Unless overridden, jvmti_class_status has no flags set.
1013 jint Klass::jvmti_class_status() const {
1014   return 0;
1015 }
1016 
1017 
1018 // Printing
1019 
1020 void Klass::print_on(outputStream* st) const {
1021   ResourceMark rm;
1022   // print title
1023   st->print("%s", internal_name());
1024   print_address_on(st);
1025   st->cr();
1026 }
1027 
1028 #define BULLET  " - "
1029 
1030 // Caller needs ResourceMark
1031 void Klass::oop_print_on(oop obj, outputStream* st) {
1032   // print title
1033   st->print_cr("%s ", internal_name());
1034   obj->print_address_on(st);
1035 
1036   if (WizardMode) {
1037      // print header
1038      obj->mark().print_on(st);
1039      st->cr();
1040      if (UseCompactObjectHeaders) {
1041        st->print(BULLET"prototype_header: " INTPTR_FORMAT, _prototype_header.value());
1042        st->cr();
1043      }
1044   }
1045 
1046   // print class
1047   st->print(BULLET"klass: ");
1048   obj->klass()->print_value_on(st);
1049   st->print(BULLET"flags: "); _misc_flags.print_on(st); st->cr();
1050   st->cr();
1051 }
1052 
1053 void Klass::oop_print_value_on(oop obj, outputStream* st) {
1054   // print title
1055   ResourceMark rm;              // Cannot print in debug mode without this
1056   st->print("%s", internal_name());
1057   obj->print_address_on(st);
1058 }
1059 
1060 // Verification
1061 
1062 void Klass::verify_on(outputStream* st) {
1063 
1064   // This can be expensive, but it is worth checking that this klass is actually
1065   // in the CLD graph but not in production.
1066 #ifdef ASSERT
1067   if (UseCompressedClassPointers && needs_narrow_id()) {
1068     // Stricter checks for both correct alignment and placement
1069     CompressedKlassPointers::check_encodable(this);
1070   } else {
1071     assert(Metaspace::contains((address)this), "Should be");
1072   }
1073 #endif // ASSERT
1074 
1075   guarantee(this->is_klass(),"should be klass");
1076 
1077   if (super() != nullptr) {
1078     guarantee(super()->is_klass(), "should be klass");
1079   }
1080   if (secondary_super_cache() != nullptr) {
1081     Klass* ko = secondary_super_cache();
1082     guarantee(ko->is_klass(), "should be klass");
1083   }
1084   for ( uint i = 0; i < primary_super_limit(); i++ ) {
1085     Klass* ko = _primary_supers[i];
1086     if (ko != nullptr) {
1087       guarantee(ko->is_klass(), "should be klass");
1088     }
1089   }
1090 
1091   if (java_mirror_no_keepalive() != nullptr) {
1092     guarantee(java_lang_Class::is_instance(java_mirror_no_keepalive()), "should be instance");
1093   }
1094 }
1095 
1096 void Klass::oop_verify_on(oop obj, outputStream* st) {
1097   guarantee(oopDesc::is_oop(obj),  "should be oop");
1098   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
1099 }
1100 
1101 // Note: this function is called with an address that may or may not be a Klass.
1102 // The point is not to assert it is but to check if it could be.
1103 bool Klass::is_valid(Klass* k) {
1104   if (!is_aligned(k, sizeof(MetaWord))) return false;
1105   if ((size_t)k < os::min_page_size()) return false;
1106 
1107   if (!os::is_readable_range(k, k + 1)) return false;
1108   if (!Metaspace::contains(k)) return false;
1109 
1110   if (!Symbol::is_valid(k->name())) return false;
1111   return ClassLoaderDataGraph::is_valid(k->class_loader_data());
1112 }
1113 
1114 Method* Klass::method_at_vtable(int index)  {
1115 #ifndef PRODUCT
1116   assert(index >= 0, "valid vtable index");
1117   if (DebugVtables) {
1118     verify_vtable_index(index);
1119   }
1120 #endif
1121   return start_of_vtable()[index].method();
1122 }
1123 
1124 
1125 #ifndef PRODUCT
1126 
1127 bool Klass::verify_vtable_index(int i) {
1128   int limit = vtable_length()/vtableEntry::size();
1129   assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit);
1130   return true;
1131 }
1132 
1133 #endif // PRODUCT
1134 
1135 // Caller needs ResourceMark
1136 // joint_in_module_of_loader provides an optimization if 2 classes are in
1137 // the same module to succinctly print out relevant information about their
1138 // module name and class loader's name_and_id for error messages.
1139 // Format:
1140 //   <fully-qualified-external-class-name1> and <fully-qualified-external-class-name2>
1141 //                      are in module <module-name>[@<version>]
1142 //                      of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1143 const char* Klass::joint_in_module_of_loader(const Klass* class2, bool include_parent_loader) const {
1144   assert(module() == class2->module(), "classes do not have the same module");
1145   const char* class1_name = external_name();
1146   size_t len = strlen(class1_name) + 1;
1147 
1148   const char* class2_description = class2->class_in_module_of_loader(true, include_parent_loader);
1149   len += strlen(class2_description);
1150 
1151   len += strlen(" and ");
1152 
1153   char* joint_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1154 
1155   // Just return the FQN if error when allocating string
1156   if (joint_description == nullptr) {
1157     return class1_name;
1158   }
1159 
1160   jio_snprintf(joint_description, len, "%s and %s",
1161                class1_name,
1162                class2_description);
1163 
1164   return joint_description;
1165 }
1166 
1167 // Caller needs ResourceMark
1168 // class_in_module_of_loader provides a standard way to include
1169 // relevant information about a class, such as its module name as
1170 // well as its class loader's name_and_id, in error messages and logging.
1171 // Format:
1172 //   <fully-qualified-external-class-name> is in module <module-name>[@<version>]
1173 //                                         of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1174 const char* Klass::class_in_module_of_loader(bool use_are, bool include_parent_loader) const {
1175   // 1. fully qualified external name of class
1176   const char* klass_name = external_name();
1177   size_t len = strlen(klass_name) + 1;
1178 
1179   // 2. module name + @version
1180   const char* module_name = "";
1181   const char* version = "";
1182   bool has_version = false;
1183   bool module_is_named = false;
1184   const char* module_name_phrase = "";
1185   const Klass* bottom_klass = is_objArray_klass() ?
1186                                 ObjArrayKlass::cast(this)->bottom_klass() : this;
1187   if (bottom_klass->is_instance_klass()) {
1188     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1189     if (module->is_named()) {
1190       module_is_named = true;
1191       module_name_phrase = "module ";
1192       module_name = module->name()->as_C_string();
1193       len += strlen(module_name);
1194       // Use version if exists and is not a jdk module
1195       if (module->should_show_version()) {
1196         has_version = true;
1197         version = module->version()->as_C_string();
1198         // Include stlen(version) + 1 for the "@"
1199         len += strlen(version) + 1;
1200       }
1201     } else {
1202       module_name = UNNAMED_MODULE;
1203       len += UNNAMED_MODULE_LEN;
1204     }
1205   } else {
1206     // klass is an array of primitives, module is java.base
1207     module_is_named = true;
1208     module_name_phrase = "module ";
1209     module_name = JAVA_BASE_NAME;
1210     len += JAVA_BASE_NAME_LEN;
1211   }
1212 
1213   // 3. class loader's name_and_id
1214   ClassLoaderData* cld = class_loader_data();
1215   assert(cld != nullptr, "class_loader_data should not be null");
1216   const char* loader_name_and_id = cld->loader_name_and_id();
1217   len += strlen(loader_name_and_id);
1218 
1219   // 4. include parent loader information
1220   const char* parent_loader_phrase = "";
1221   const char* parent_loader_name_and_id = "";
1222   if (include_parent_loader &&
1223       !cld->is_builtin_class_loader_data()) {
1224     oop parent_loader = java_lang_ClassLoader::parent(class_loader());
1225     ClassLoaderData *parent_cld = ClassLoaderData::class_loader_data_or_null(parent_loader);
1226     // The parent loader's ClassLoaderData could be null if it is
1227     // a delegating class loader that has never defined a class.
1228     // In this case the loader's name must be obtained via the parent loader's oop.
1229     if (parent_cld == nullptr) {
1230       oop cl_name_and_id = java_lang_ClassLoader::nameAndId(parent_loader);
1231       if (cl_name_and_id != nullptr) {
1232         parent_loader_name_and_id = java_lang_String::as_utf8_string(cl_name_and_id);
1233       }
1234     } else {
1235       parent_loader_name_and_id = parent_cld->loader_name_and_id();
1236     }
1237     parent_loader_phrase = ", parent loader ";
1238     len += strlen(parent_loader_phrase) + strlen(parent_loader_name_and_id);
1239   }
1240 
1241   // Start to construct final full class description string
1242   len += ((use_are) ? strlen(" are in ") : strlen(" is in "));
1243   len += strlen(module_name_phrase) + strlen(" of loader ");
1244 
1245   char* class_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1246 
1247   // Just return the FQN if error when allocating string
1248   if (class_description == nullptr) {
1249     return klass_name;
1250   }
1251 
1252   jio_snprintf(class_description, len, "%s %s in %s%s%s%s of loader %s%s%s",
1253                klass_name,
1254                (use_are) ? "are" : "is",
1255                module_name_phrase,
1256                module_name,
1257                (has_version) ? "@" : "",
1258                (has_version) ? version : "",
1259                loader_name_and_id,
1260                parent_loader_phrase,
1261                parent_loader_name_and_id);
1262 
1263   return class_description;
1264 }
1265 
1266 class LookupStats : StackObj {
1267  private:
1268   uint _no_of_samples;
1269   uint _worst;
1270   uint _worst_count;
1271   uint _average;
1272   uint _best;
1273   uint _best_count;
1274  public:
1275   LookupStats() : _no_of_samples(0), _worst(0), _worst_count(0), _average(0), _best(INT_MAX), _best_count(0) {}
1276 
1277   ~LookupStats() {
1278     assert(_best <= _worst || _no_of_samples == 0, "sanity");
1279   }
1280 
1281   void sample(uint value) {
1282     ++_no_of_samples;
1283     _average += value;
1284 
1285     if (_worst < value) {
1286       _worst = value;
1287       _worst_count = 1;
1288     } else if (_worst == value) {
1289       ++_worst_count;
1290     }
1291 
1292     if (_best > value) {
1293       _best = value;
1294       _best_count = 1;
1295     } else if (_best == value) {
1296       ++_best_count;
1297     }
1298   }
1299 
1300   void print_on(outputStream* st) const {
1301     st->print("best: %2d (%4.1f%%)", _best, (100.0 * _best_count) / _no_of_samples);
1302     if (_best_count < _no_of_samples) {
1303       st->print("; average: %4.1f; worst: %2d (%4.1f%%)",
1304                 (1.0 * _average) / _no_of_samples,
1305                 _worst, (100.0 * _worst_count) / _no_of_samples);
1306     }
1307   }
1308 };
1309 
1310 static void print_positive_lookup_stats(Array<Klass*>* secondary_supers, uintx bitmap, outputStream* st) {
1311   int num_of_supers = secondary_supers->length();
1312 
1313   LookupStats s;
1314   for (int i = 0; i < num_of_supers; i++) {
1315     Klass* secondary_super = secondary_supers->at(i);
1316     int home_slot = Klass::compute_home_slot(secondary_super, bitmap);
1317     uint score = 1 + ((i - home_slot) & Klass::SECONDARY_SUPERS_TABLE_MASK);
1318     s.sample(score);
1319   }
1320   st->print("positive_lookup: "); s.print_on(st);
1321 }
1322 
1323 static uint compute_distance_to_nearest_zero(int slot, uintx bitmap) {
1324   assert(~bitmap != 0, "no zeroes");
1325   uintx start = rotate_right(bitmap, slot);
1326   return count_trailing_zeros(~start);
1327 }
1328 
1329 static void print_negative_lookup_stats(uintx bitmap, outputStream* st) {
1330   LookupStats s;
1331   for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
1332     uint score = compute_distance_to_nearest_zero(slot, bitmap);
1333     s.sample(score);
1334   }
1335   st->print("negative_lookup: "); s.print_on(st);
1336 }
1337 
1338 void Klass::print_secondary_supers_on(outputStream* st) const {
1339   if (secondary_supers() != nullptr) {
1340     st->print("  - "); st->print("%d elements;", _secondary_supers->length());
1341     st->print_cr(" bitmap: " UINTX_FORMAT_X_0, _secondary_supers_bitmap);
1342     if (_secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_EMPTY &&
1343         _secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_FULL) {
1344       st->print("  - "); print_positive_lookup_stats(secondary_supers(),
1345                                                      _secondary_supers_bitmap, st); st->cr();
1346       st->print("  - "); print_negative_lookup_stats(_secondary_supers_bitmap, st); st->cr();
1347     }
1348   } else {
1349     st->print("null");
1350   }
1351 }
1352 
1353 void Klass::on_secondary_supers_verification_failure(Klass* super, Klass* sub, bool linear_result, bool table_result, const char* msg) {
1354   ResourceMark rm;
1355   super->print();
1356   sub->print();
1357   fatal("%s: %s implements %s: linear_search: %d; table_lookup: %d",
1358         msg, sub->external_name(), super->external_name(), linear_result, table_result);
1359 }