1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveHeapLoader.hpp"
  26 #include "cds/cdsConfig.hpp"
  27 #include "cds/heapShared.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/classLoaderData.inline.hpp"
  30 #include "classfile/classLoaderDataGraph.inline.hpp"
  31 #include "classfile/javaClasses.inline.hpp"
  32 #include "classfile/moduleEntry.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/systemDictionaryShared.hpp"
  35 #include "classfile/vmClasses.hpp"
  36 #include "classfile/vmSymbols.hpp"
  37 #include "gc/shared/collectedHeap.inline.hpp"
  38 #include "jvm_io.h"
  39 #include "logging/log.hpp"
  40 #include "memory/metadataFactory.hpp"
  41 #include "memory/metaspaceClosure.hpp"
  42 #include "memory/oopFactory.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.hpp"
  45 #include "oops/compressedKlass.inline.hpp"
  46 #include "oops/compressedOops.inline.hpp"
  47 #include "oops/instanceKlass.hpp"
  48 #include "oops/klass.inline.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/oopHandle.inline.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "runtime/atomicAccess.hpp"
  54 #include "runtime/handles.inline.hpp"
  55 #include "runtime/perfData.hpp"
  56 #include "utilities/macros.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 #include "utilities/rotate_bits.hpp"
  59 #include "utilities/stack.inline.hpp"
  60 
  61 void Klass::set_java_mirror(Handle m) {
  62   assert(!m.is_null(), "New mirror should never be null.");
  63   assert(_java_mirror.is_empty(), "should only be used to initialize mirror");
  64   _java_mirror = class_loader_data()->add_handle(m);
  65 }
  66 
  67 bool Klass::is_cloneable() const {
  68   return _misc_flags.is_cloneable_fast() ||
  69          is_subtype_of(vmClasses::Cloneable_klass());
  70 }
  71 
  72 void Klass::set_is_cloneable() {
  73   if (name() == vmSymbols::java_lang_invoke_MemberName()) {
  74     assert(is_final(), "no subclasses allowed");
  75     // MemberName cloning should not be intrinsified and always happen in JVM_Clone.
  76   } else if (is_instance_klass() && InstanceKlass::cast(this)->reference_type() != REF_NONE) {
  77     // Reference cloning should not be intrinsified and always happen in JVM_Clone.
  78   } else {
  79     _misc_flags.set_is_cloneable_fast(true);
  80   }
  81 }
  82 
  83 uint8_t Klass::compute_hash_slot(Symbol* n) {
  84   uint hash_code;
  85   // Special cases for the two superclasses of all Array instances.
  86   // Code elsewhere assumes, for all instances of ArrayKlass, that
  87   // these two interfaces will be in this order.
  88 
  89   // We ensure there are some empty slots in the hash table between
  90   // these two very common interfaces because if they were adjacent
  91   // (e.g. Slots 0 and 1), then any other class which hashed to 0 or 1
  92   // would result in a probe length of 3.
  93   if (n == vmSymbols::java_lang_Cloneable()) {
  94     hash_code = 0;
  95   } else if (n == vmSymbols::java_io_Serializable()) {
  96     hash_code = SECONDARY_SUPERS_TABLE_SIZE / 2;
  97   } else {
  98     auto s = (const jbyte*) n->bytes();
  99     hash_code = java_lang_String::hash_code(s, n->utf8_length());
 100     // We use String::hash_code here (rather than e.g.
 101     // Symbol::identity_hash()) in order to have a hash code that
 102     // does not change from run to run. We want that because the
 103     // hash value for a secondary superclass appears in generated
 104     // code as a constant.
 105 
 106     // This constant is magic: see Knuth, "Fibonacci Hashing".
 107     constexpr uint multiplier
 108       = 2654435769; // (uint)(((u8)1 << 32) / ((1 + sqrt(5)) / 2 ))
 109     constexpr uint hash_shift = sizeof(hash_code) * 8 - 6;
 110     // The leading bits of the least significant half of the product.
 111     hash_code = (hash_code * multiplier) >> hash_shift;
 112 
 113     if (StressSecondarySupers) {
 114       // Generate many hash collisions in order to stress-test the
 115       // linear search fallback.
 116       hash_code = hash_code % 3;
 117       hash_code = hash_code * (SECONDARY_SUPERS_TABLE_SIZE / 3);
 118     }
 119   }
 120 
 121   return (hash_code & SECONDARY_SUPERS_TABLE_MASK);
 122 }
 123 
 124 void Klass::set_name(Symbol* n) {
 125   _name = n;
 126 
 127   if (_name != nullptr) {
 128     _name->increment_refcount();
 129   }
 130 
 131   {
 132     elapsedTimer selftime;
 133     selftime.start();
 134 
 135     _hash_slot = compute_hash_slot(n);
 136     assert(_hash_slot < SECONDARY_SUPERS_TABLE_SIZE, "required");
 137 
 138     selftime.stop();
 139     if (UsePerfData) {
 140       ClassLoader::perf_secondary_hash_time()->inc(selftime.ticks());
 141     }
 142   }
 143 
 144   if (CDSConfig::is_dumping_archive() && is_instance_klass()) {
 145     SystemDictionaryShared::init_dumptime_info(InstanceKlass::cast(this));
 146   }
 147 }
 148 
 149 bool Klass::is_subclass_of(const Klass* k) const {
 150   // Run up the super chain and check
 151   if (this == k) return true;
 152 
 153   Klass* t = const_cast<Klass*>(this)->super();
 154 
 155   while (t != nullptr) {
 156     if (t == k) return true;
 157     t = t->super();
 158   }
 159   return false;
 160 }
 161 
 162 void Klass::release_C_heap_structures(bool release_constant_pool) {
 163   if (_name != nullptr) _name->decrement_refcount();
 164 }
 165 
 166 bool Klass::linear_search_secondary_supers(const Klass* k) const {
 167   // Scan the array-of-objects for a match
 168   // FIXME: We could do something smarter here, maybe a vectorized
 169   // comparison or a binary search, but is that worth any added
 170   // complexity?
 171   int cnt = secondary_supers()->length();
 172   for (int i = 0; i < cnt; i++) {
 173     if (secondary_supers()->at(i) == k) {
 174       return true;
 175     }
 176   }
 177   return false;
 178 }
 179 
 180 // Given a secondary superklass k, an initial array index, and an
 181 // occupancy bitmap rotated such that Bit 1 is the next bit to test,
 182 // search for k.
 183 bool Klass::fallback_search_secondary_supers(const Klass* k, int index, uintx rotated_bitmap) const {
 184   // Once the occupancy bitmap is almost full, it's faster to use a
 185   // linear search.
 186   if (secondary_supers()->length() > SECONDARY_SUPERS_TABLE_SIZE - 2) {
 187     return linear_search_secondary_supers(k);
 188   }
 189 
 190   // This is conventional linear probing, but instead of terminating
 191   // when a null entry is found in the table, we maintain a bitmap
 192   // in which a 0 indicates missing entries.
 193 
 194   precond((int)population_count(rotated_bitmap) == secondary_supers()->length());
 195 
 196   // The check for secondary_supers()->length() <= SECONDARY_SUPERS_TABLE_SIZE - 2
 197   // at the start of this function guarantees there are 0s in the
 198   // bitmap, so this loop eventually terminates.
 199   while ((rotated_bitmap & 2) != 0) {
 200     if (++index == secondary_supers()->length()) {
 201       index = 0;
 202     }
 203     if (secondary_supers()->at(index) == k) {
 204       return true;
 205     }
 206     rotated_bitmap = rotate_right(rotated_bitmap, 1);
 207   }
 208   return false;
 209 }
 210 
 211 // Return self, except for abstract classes with exactly 1
 212 // implementor.  Then return the 1 concrete implementation.
 213 Klass *Klass::up_cast_abstract() {
 214   Klass *r = this;
 215   while( r->is_abstract() ) {   // Receiver is abstract?
 216     Klass *s = r->subklass();   // Check for exactly 1 subklass
 217     if (s == nullptr || s->next_sibling() != nullptr) // Oops; wrong count; give up
 218       return this;              // Return 'this' as a no-progress flag
 219     r = s;                    // Loop till find concrete class
 220   }
 221   return r;                   // Return the 1 concrete class
 222 }
 223 
 224 // Find LCA in class hierarchy
 225 Klass *Klass::LCA( Klass *k2 ) {
 226   Klass *k1 = this;
 227   while( 1 ) {
 228     if( k1->is_subtype_of(k2) ) return k2;
 229     if( k2->is_subtype_of(k1) ) return k1;
 230     k1 = k1->super();
 231     k2 = k2->super();
 232   }
 233 }
 234 
 235 
 236 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 237   ResourceMark rm(THREAD);
 238   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 239             : vmSymbols::java_lang_InstantiationException(), external_name());
 240 }
 241 
 242 
 243 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 244   ResourceMark rm(THREAD);
 245   assert(s != nullptr, "Throw NPE!");
 246   THROW_MSG(vmSymbols::java_lang_ArrayStoreException(),
 247             err_msg("arraycopy: source type %s is not an array", s->klass()->external_name()));
 248 }
 249 
 250 
 251 void Klass::initialize(TRAPS) {
 252   ShouldNotReachHere();
 253 }
 254 
 255 void Klass::initialize_preemptable(TRAPS) {
 256   ShouldNotReachHere();
 257 }
 258 
 259 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const {
 260 #ifdef ASSERT
 261   tty->print_cr("Error: find_field called on a klass oop."
 262                 " Likely error: reflection method does not correctly"
 263                 " wrap return value in a mirror object.");
 264 #endif
 265   ShouldNotReachHere();
 266   return nullptr;
 267 }
 268 
 269 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature,
 270                                       OverpassLookupMode overpass_mode,
 271                                       PrivateLookupMode private_mode) const {
 272 #ifdef ASSERT
 273   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 274                 " Likely error: reflection method does not correctly"
 275                 " wrap return value in a mirror object.");
 276 #endif
 277   ShouldNotReachHere();
 278   return nullptr;
 279 }
 280 
 281 static markWord make_prototype(const Klass* kls) {
 282   markWord prototype = markWord::prototype();
 283 #ifdef _LP64
 284   if (UseCompactObjectHeaders) {
 285     // With compact object headers, the narrow Klass ID is part of the mark word.
 286     // We therefore seed the mark word with the narrow Klass ID.
 287     precond(CompressedKlassPointers::is_encodable(kls));
 288     const narrowKlass nk = CompressedKlassPointers::encode(const_cast<Klass*>(kls));
 289     prototype = prototype.set_narrow_klass(nk);
 290   }
 291 #endif
 292   return prototype;
 293 }
 294 
 295 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) throw() {
 296   return Metaspace::allocate(loader_data, word_size, MetaspaceObj::ClassType, THREAD);
 297 }
 298 
 299 Klass::Klass() : _kind(UnknownKlassKind) {
 300   assert(CDSConfig::is_dumping_static_archive() || CDSConfig::is_using_archive(), "only for cds");
 301 }
 302 
 303 // "Normal" instantiation is preceded by a MetaspaceObj allocation
 304 // which zeros out memory - calloc equivalent.
 305 // The constructor is also used from CppVtableCloner,
 306 // which doesn't zero out the memory before calling the constructor.
 307 Klass::Klass(KlassKind kind) : _kind(kind),
 308                                _prototype_header(make_prototype(this)),
 309                                _shared_class_path_index(-1) {
 310   CDS_ONLY(_aot_class_flags = 0;)
 311   CDS_JAVA_HEAP_ONLY(_archived_mirror_index = -1;)
 312   _primary_supers[0] = this;
 313   set_super_check_offset(in_bytes(primary_supers_offset()));
 314 }
 315 
 316 jint Klass::array_layout_helper(BasicType etype) {
 317   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 318   // Note that T_ARRAY is not allowed here.
 319   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 320   int  esize = type2aelembytes(etype);
 321   bool isobj = (etype == T_OBJECT);
 322   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
 323   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
 324 
 325   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 326   assert(layout_helper_is_array(lh), "correct kind");
 327   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
 328   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 329   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 330   assert(layout_helper_element_type(lh) == etype, "correct decode");
 331   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 332 
 333   return lh;
 334 }
 335 
 336 int Klass::modifier_flags() const {
 337   int mods = java_lang_Class::modifiers(java_mirror());
 338   assert(mods == compute_modifier_flags(), "should be same");
 339   return mods;
 340 }
 341 
 342 bool Klass::can_be_primary_super_slow() const {
 343   if (super() == nullptr)
 344     return true;
 345   else if (super()->super_depth() >= primary_super_limit()-1)
 346     return false;
 347   else
 348     return true;
 349 }
 350 
 351 void Klass::set_secondary_supers(Array<Klass*>* secondaries, uintx bitmap) {
 352 #ifdef ASSERT
 353   if (secondaries != nullptr) {
 354     uintx real_bitmap = compute_secondary_supers_bitmap(secondaries);
 355     assert(bitmap == real_bitmap, "must be");
 356     assert(secondaries->length() >= (int)population_count(bitmap), "must be");
 357   }
 358 #endif
 359   _secondary_supers_bitmap = bitmap;
 360   _secondary_supers = secondaries;
 361 
 362   if (secondaries != nullptr) {
 363     LogMessage(class, load) msg;
 364     NonInterleavingLogStream log {LogLevel::Debug, msg};
 365     if (log.is_enabled()) {
 366       ResourceMark rm;
 367       log.print_cr("set_secondary_supers: hash_slot: %d; klass: %s", hash_slot(), external_name());
 368       print_secondary_supers_on(&log);
 369     }
 370   }
 371 }
 372 
 373 // Hashed secondary superclasses
 374 //
 375 // We use a compressed 64-entry hash table with linear probing. We
 376 // start by creating a hash table in the usual way, followed by a pass
 377 // that removes all the null entries. To indicate which entries would
 378 // have been null we use a bitmap that contains a 1 in each position
 379 // where an entry is present, 0 otherwise. This bitmap also serves as
 380 // a kind of Bloom filter, which in many cases allows us quickly to
 381 // eliminate the possibility that something is a member of a set of
 382 // secondaries.
 383 uintx Klass::hash_secondary_supers(Array<Klass*>* secondaries, bool rewrite) {
 384   const int length = secondaries->length();
 385 
 386   if (length == 0) {
 387     return SECONDARY_SUPERS_BITMAP_EMPTY;
 388   }
 389 
 390   if (length == 1) {
 391     int hash_slot = secondaries->at(0)->hash_slot();
 392     return uintx(1) << hash_slot;
 393   }
 394 
 395   // Invariant: _secondary_supers.length >= population_count(_secondary_supers_bitmap)
 396 
 397   // Don't attempt to hash a table that's completely full, because in
 398   // the case of an absent interface linear probing would not
 399   // terminate.
 400   if (length >= SECONDARY_SUPERS_TABLE_SIZE) {
 401     return SECONDARY_SUPERS_BITMAP_FULL;
 402   }
 403 
 404   {
 405     PerfTraceTime ptt(ClassLoader::perf_secondary_hash_time());
 406 
 407     ResourceMark rm;
 408     uintx bitmap = SECONDARY_SUPERS_BITMAP_EMPTY;
 409     auto hashed_secondaries = new GrowableArray<Klass*>(SECONDARY_SUPERS_TABLE_SIZE,
 410                                                         SECONDARY_SUPERS_TABLE_SIZE, nullptr);
 411 
 412     for (int j = 0; j < length; j++) {
 413       Klass* k = secondaries->at(j);
 414       hash_insert(k, hashed_secondaries, bitmap);
 415     }
 416 
 417     // Pack the hashed secondaries array by copying it into the
 418     // secondaries array, sans nulls, if modification is allowed.
 419     // Otherwise, validate the order.
 420     int i = 0;
 421     for (int slot = 0; slot < SECONDARY_SUPERS_TABLE_SIZE; slot++) {
 422       bool has_element = ((bitmap >> slot) & 1) != 0;
 423       assert(has_element == (hashed_secondaries->at(slot) != nullptr), "");
 424       if (has_element) {
 425         Klass* k = hashed_secondaries->at(slot);
 426         if (rewrite) {
 427           secondaries->at_put(i, k);
 428         } else if (secondaries->at(i) != k) {
 429           assert(false, "broken secondary supers hash table");
 430           return SECONDARY_SUPERS_BITMAP_FULL;
 431         }
 432         i++;
 433       }
 434     }
 435     assert(i == secondaries->length(), "mismatch");
 436     postcond((int)population_count(bitmap) == secondaries->length());
 437 
 438     return bitmap;
 439   }
 440 }
 441 
 442 void Klass::hash_insert(Klass* klass, GrowableArray<Klass*>* secondaries, uintx& bitmap) {
 443   assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
 444 
 445   int dist = 0;
 446   for (int slot = klass->hash_slot(); true; slot = (slot + 1) & SECONDARY_SUPERS_TABLE_MASK) {
 447     Klass* existing = secondaries->at(slot);
 448     assert(((bitmap >> slot) & 1) == (existing != nullptr), "mismatch");
 449     if (existing == nullptr) { // no conflict
 450       secondaries->at_put(slot, klass);
 451       bitmap |= uintx(1) << slot;
 452       assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
 453       return;
 454     } else {
 455       // Use Robin Hood hashing to minimize the worst case search.
 456       // Also, every permutation of the insertion sequence produces
 457       // the same final Robin Hood hash table, provided that a
 458       // consistent tie breaker is used.
 459       int existing_dist = (slot - existing->hash_slot()) & SECONDARY_SUPERS_TABLE_MASK;
 460       if (existing_dist < dist
 461           // This tie breaker ensures that the hash order is maintained.
 462           || ((existing_dist == dist)
 463               && (uintptr_t(existing) < uintptr_t(klass)))) {
 464         Klass* tmp = secondaries->at(slot);
 465         secondaries->at_put(slot, klass);
 466         klass = tmp;
 467         dist = existing_dist;
 468       }
 469       ++dist;
 470     }
 471   }
 472 }
 473 
 474 Array<Klass*>* Klass::pack_secondary_supers(ClassLoaderData* loader_data,
 475                                             GrowableArray<Klass*>* primaries,
 476                                             GrowableArray<Klass*>* secondaries,
 477                                             uintx& bitmap, TRAPS) {
 478   int new_length = primaries->length() + secondaries->length();
 479   Array<Klass*>* secondary_supers = MetadataFactory::new_array<Klass*>(loader_data, new_length, CHECK_NULL);
 480 
 481   // Combine the two arrays into a metadata object to pack the array.
 482   // The primaries are added in the reverse order, then the secondaries.
 483   int fill_p = primaries->length();
 484   for (int j = 0; j < fill_p; j++) {
 485     secondary_supers->at_put(j, primaries->pop());  // add primaries in reverse order.
 486   }
 487   for( int j = 0; j < secondaries->length(); j++ ) {
 488     secondary_supers->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 489   }
 490 #ifdef ASSERT
 491   // We must not copy any null placeholders left over from bootstrap.
 492   for (int j = 0; j < secondary_supers->length(); j++) {
 493     assert(secondary_supers->at(j) != nullptr, "correct bootstrapping order");
 494   }
 495 #endif
 496 
 497   bitmap = hash_secondary_supers(secondary_supers, /*rewrite=*/true); // rewrites freshly allocated array
 498   return secondary_supers;
 499 }
 500 
 501 uintx Klass::compute_secondary_supers_bitmap(Array<Klass*>* secondary_supers) {
 502   return hash_secondary_supers(secondary_supers, /*rewrite=*/false); // no rewrites allowed
 503 }
 504 
 505 uint8_t Klass::compute_home_slot(Klass* k, uintx bitmap) {
 506   uint8_t hash = k->hash_slot();
 507   if (hash > 0) {
 508     return population_count(bitmap << (SECONDARY_SUPERS_TABLE_SIZE - hash));
 509   }
 510   return 0;
 511 }
 512 
 513 
 514 void Klass::initialize_supers(Klass* k, Array<InstanceKlass*>* transitive_interfaces, TRAPS) {
 515   if (k == nullptr) {
 516     set_super(nullptr);
 517     _primary_supers[0] = this;
 518     assert(super_depth() == 0, "Object must already be initialized properly");
 519   } else if (k != super() || k == vmClasses::Object_klass()) {
 520     assert(super() == nullptr || super() == vmClasses::Object_klass(),
 521            "initialize this only once to a non-trivial value");
 522     set_super(k);
 523     Klass* sup = k;
 524     int sup_depth = sup->super_depth();
 525     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 526     if (!can_be_primary_super_slow())
 527       my_depth = primary_super_limit();
 528     for (juint i = 0; i < my_depth; i++) {
 529       _primary_supers[i] = sup->_primary_supers[i];
 530     }
 531     Klass* *super_check_cell;
 532     if (my_depth < primary_super_limit()) {
 533       _primary_supers[my_depth] = this;
 534       super_check_cell = &_primary_supers[my_depth];
 535     } else {
 536       // Overflow of the primary_supers array forces me to be secondary.
 537       super_check_cell = &_secondary_super_cache;
 538     }
 539     set_super_check_offset(u4((address)super_check_cell - (address) this));
 540 
 541 #ifdef ASSERT
 542     {
 543       juint j = super_depth();
 544       assert(j == my_depth, "computed accessor gets right answer");
 545       Klass* t = this;
 546       while (!t->can_be_primary_super()) {
 547         t = t->super();
 548         j = t->super_depth();
 549       }
 550       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 551         assert(primary_super_of_depth(j1) == nullptr, "super list padding");
 552       }
 553       while (t != nullptr) {
 554         assert(primary_super_of_depth(j) == t, "super list initialization");
 555         t = t->super();
 556         --j;
 557       }
 558       assert(j == (juint)-1, "correct depth count");
 559     }
 560 #endif
 561   }
 562 
 563   if (secondary_supers() == nullptr) {
 564 
 565     // Now compute the list of secondary supertypes.
 566     // Secondaries can occasionally be on the super chain,
 567     // if the inline "_primary_supers" array overflows.
 568     int extras = 0;
 569     Klass* p;
 570     for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
 571       ++extras;
 572     }
 573 
 574     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 575 
 576     // Compute the "real" non-extra secondaries.
 577     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras, transitive_interfaces);
 578     if (secondaries == nullptr) {
 579       // secondary_supers set by compute_secondary_supers
 580       return;
 581     }
 582 
 583     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 584 
 585     for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
 586       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 587 
 588       // This happens frequently for very deeply nested arrays: the
 589       // primary superclass chain overflows into the secondary.  The
 590       // secondary list contains the element_klass's secondaries with
 591       // an extra array dimension added.  If the element_klass's
 592       // secondary list already contains some primary overflows, they
 593       // (with the extra level of array-ness) will collide with the
 594       // normal primary superclass overflows.
 595       for( i = 0; i < secondaries->length(); i++ ) {
 596         if( secondaries->at(i) == p )
 597           break;
 598       }
 599       if( i < secondaries->length() )
 600         continue;               // It's a dup, don't put it in
 601       primaries->push(p);
 602     }
 603     // Combine the two arrays into a metadata object to pack the array.
 604     uintx bitmap = 0;
 605     Array<Klass*>* s2 = pack_secondary_supers(class_loader_data(), primaries, secondaries, bitmap, CHECK);
 606     set_secondary_supers(s2, bitmap);
 607   }
 608 }
 609 
 610 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots,
 611                                                        Array<InstanceKlass*>* transitive_interfaces) {
 612   assert(num_extra_slots == 0, "override for complex klasses");
 613   assert(transitive_interfaces == nullptr, "sanity");
 614   set_secondary_supers(Universe::the_empty_klass_array(), Universe::the_empty_klass_bitmap());
 615   return nullptr;
 616 }
 617 
 618 
 619 // subklass links.  Used by the compiler (and vtable initialization)
 620 // May be cleaned concurrently, so must use the Compile_lock.
 621 Klass* Klass::subklass() const {
 622   // Need load_acquire on the _subklass, because it races with inserts that
 623   // publishes freshly initialized data.
 624   for (Klass* chain = AtomicAccess::load_acquire(&_subklass);
 625        chain != nullptr;
 626        // Do not need load_acquire on _next_sibling, because inserts never
 627        // create _next_sibling edges to dead data.
 628        chain = AtomicAccess::load(&chain->_next_sibling))
 629   {
 630     if (chain->is_loader_alive()) {
 631       return chain;
 632     }
 633   }
 634   return nullptr;
 635 }
 636 
 637 Klass* Klass::next_sibling(bool log) const {
 638   // Do not need load_acquire on _next_sibling, because inserts never
 639   // create _next_sibling edges to dead data.
 640   for (Klass* chain = AtomicAccess::load(&_next_sibling);
 641        chain != nullptr;
 642        chain = AtomicAccess::load(&chain->_next_sibling)) {
 643     // Only return alive klass, there may be stale klass
 644     // in this chain if cleaned concurrently.
 645     if (chain->is_loader_alive()) {
 646       return chain;
 647     } else if (log) {
 648       if (log_is_enabled(Trace, class, unload)) {
 649         ResourceMark rm;
 650         log_trace(class, unload)("unlinking class (sibling): %s", chain->external_name());
 651       }
 652     }
 653   }
 654   return nullptr;
 655 }
 656 
 657 void Klass::set_subklass(Klass* s) {
 658   assert(s != this, "sanity check");
 659   AtomicAccess::release_store(&_subklass, s);
 660 }
 661 
 662 void Klass::set_next_sibling(Klass* s) {
 663   assert(s != this, "sanity check");
 664   // Does not need release semantics. If used by cleanup, it will link to
 665   // already safely published data, and if used by inserts, will be published
 666   // safely using cmpxchg.
 667   AtomicAccess::store(&_next_sibling, s);
 668 }
 669 
 670 void Klass::append_to_sibling_list() {
 671   if (Universe::is_fully_initialized()) {
 672     assert_locked_or_safepoint(Compile_lock);
 673   }
 674   DEBUG_ONLY(verify();)
 675   // add ourselves to super' subklass list
 676   InstanceKlass* super = java_super();
 677   if (super == nullptr) return;     // special case: class Object
 678   assert((!super->is_interface()    // interfaces cannot be supers
 679           && (super->java_super() == nullptr || !is_interface())),
 680          "an interface can only be a subklass of Object");
 681 
 682   // Make sure there is no stale subklass head
 683   super->clean_subklass();
 684 
 685   for (;;) {
 686     Klass* prev_first_subklass = AtomicAccess::load_acquire(&_super->_subklass);
 687     if (prev_first_subklass != nullptr) {
 688       // set our sibling to be the super' previous first subklass
 689       assert(prev_first_subklass->is_loader_alive(), "May not attach not alive klasses");
 690       set_next_sibling(prev_first_subklass);
 691     }
 692     // Note that the prev_first_subklass is always alive, meaning no sibling_next links
 693     // are ever created to not alive klasses. This is an important invariant of the lock-free
 694     // cleaning protocol, that allows us to safely unlink dead klasses from the sibling list.
 695     if (AtomicAccess::cmpxchg(&super->_subklass, prev_first_subklass, this) == prev_first_subklass) {
 696       return;
 697     }
 698   }
 699   DEBUG_ONLY(verify();)
 700 }
 701 
 702 // The log parameter is for clean_weak_klass_links to report unlinked classes.
 703 Klass* Klass::clean_subklass(bool log) {
 704   for (;;) {
 705     // Need load_acquire, due to contending with concurrent inserts
 706     Klass* subklass = AtomicAccess::load_acquire(&_subklass);
 707     if (subklass == nullptr || subklass->is_loader_alive()) {
 708       return subklass;
 709     }
 710     if (log && log_is_enabled(Trace, class, unload)) {
 711       ResourceMark rm;
 712       log_trace(class, unload)("unlinking class (subclass): %s", subklass->external_name());
 713     }
 714     // Try to fix _subklass until it points at something not dead.
 715     AtomicAccess::cmpxchg(&_subklass, subklass, subklass->next_sibling(log));
 716   }
 717 }
 718 
 719 void Klass::clean_weak_klass_links(bool unloading_occurred, bool clean_alive_klasses) {
 720   if (!ClassUnloading || !unloading_occurred) {
 721     return;
 722   }
 723 
 724   Klass* root = vmClasses::Object_klass();
 725   Stack<Klass*, mtGC> stack;
 726 
 727   stack.push(root);
 728   while (!stack.is_empty()) {
 729     Klass* current = stack.pop();
 730 
 731     assert(current->is_loader_alive(), "just checking, this should be live");
 732 
 733     // Find and set the first alive subklass
 734     Klass* sub = current->clean_subklass(true);
 735     if (sub != nullptr) {
 736       stack.push(sub);
 737     }
 738 
 739     // Find and set the first alive sibling
 740     Klass* sibling = current->next_sibling(true);
 741     current->set_next_sibling(sibling);
 742     if (sibling != nullptr) {
 743       stack.push(sibling);
 744     }
 745 
 746     // Clean the implementors list and method data.
 747     if (clean_alive_klasses && current->is_instance_klass()) {
 748       InstanceKlass* ik = InstanceKlass::cast(current);
 749       clean_weak_instanceklass_links(ik);
 750     }
 751   }
 752 }
 753 
 754 void Klass::clean_weak_instanceklass_links(InstanceKlass* ik) {
 755   ik->clean_weak_instanceklass_links();
 756   // JVMTI RedefineClasses creates previous versions that are not in
 757   // the class hierarchy, so process them here.
 758   while ((ik = ik->previous_versions()) != nullptr) {
 759     ik->clean_weak_instanceklass_links();
 760   }
 761 }
 762 
 763 void Klass::metaspace_pointers_do(MetaspaceClosure* it) {
 764   if (log_is_enabled(Trace, aot)) {
 765     ResourceMark rm;
 766     log_trace(aot)("Iter(Klass): %p (%s)", this, external_name());
 767   }
 768 
 769   it->push(&_name);
 770   it->push(&_secondary_supers);
 771   for (int i = 0; i < _primary_super_limit; i++) {
 772     it->push(&_primary_supers[i]);
 773   }
 774   it->push(&_super);
 775   if (!CDSConfig::is_dumping_archive()) {
 776     // If dumping archive, these may point to excluded classes. There's no need
 777     // to follow these pointers anyway, as they will be set to null in
 778     // remove_unshareable_info().
 779     it->push((Klass**)&_subklass);
 780     it->push((Klass**)&_next_sibling);
 781     it->push(&_next_link);
 782   }
 783 
 784   vtableEntry* vt = start_of_vtable();
 785   for (int i=0; i<vtable_length(); i++) {
 786     it->push(vt[i].method_addr());
 787   }
 788 }
 789 
 790 #if INCLUDE_CDS
 791 void Klass::remove_unshareable_info() {
 792   assert(CDSConfig::is_dumping_archive(),
 793           "only called during CDS dump time");
 794   JFR_ONLY(REMOVE_ID(this);)
 795   if (log_is_enabled(Trace, aot, unshareable)) {
 796     ResourceMark rm;
 797     log_trace(aot, unshareable)("remove: %s", external_name());
 798   }
 799 
 800   // _secondary_super_cache may be updated by an is_subtype_of() call
 801   // while ArchiveBuilder is copying metaspace objects. Let's reset it to
 802   // null and let it be repopulated at runtime.
 803   set_secondary_super_cache(nullptr);
 804 
 805   set_subklass(nullptr);
 806   set_next_sibling(nullptr);
 807   set_next_link(nullptr);
 808 
 809   // Null out class_loader_data because we don't share that yet.
 810   set_class_loader_data(nullptr);
 811   set_in_aot_cache();
 812 
 813   if (CDSConfig::is_dumping_classic_static_archive()) {
 814     // "Classic" static archives are required to have deterministic contents.
 815     // The elements in _secondary_supers are addresses in the ArchiveBuilder
 816     // output buffer, so they should have deterministic values. If we rehash
 817     // _secondary_supers, its elements will appear in a deterministic order.
 818     //
 819     // Note that the bitmap is guaranteed to be deterministic, regardless of the
 820     // actual addresses of the elements in _secondary_supers. So rehashing shouldn't
 821     // change it.
 822     uintx bitmap = hash_secondary_supers(secondary_supers(), true);
 823     assert(bitmap == _secondary_supers_bitmap, "bitmap should not be changed due to rehashing");
 824   }
 825 }
 826 
 827 void Klass::remove_java_mirror() {
 828   assert(CDSConfig::is_dumping_archive(), "sanity");
 829   if (log_is_enabled(Trace, aot, unshareable)) {
 830     ResourceMark rm;
 831     log_trace(aot, unshareable)("remove java_mirror: %s", external_name());
 832   }
 833 
 834 #if INCLUDE_CDS_JAVA_HEAP
 835   _archived_mirror_index = -1;
 836   if (CDSConfig::is_dumping_heap()) {
 837     Klass* src_k = ArchiveBuilder::current()->get_source_addr(this);
 838     oop orig_mirror = src_k->java_mirror();
 839     if (orig_mirror == nullptr) {
 840       assert(CDSConfig::is_dumping_final_static_archive(), "sanity");
 841       if (is_instance_klass()) {
 842         assert(InstanceKlass::cast(this)->defined_by_other_loaders(), "sanity");
 843       } else {
 844         precond(is_objArray_klass());
 845         Klass *k = ObjArrayKlass::cast(this)->bottom_klass();
 846         precond(k->is_instance_klass());
 847         assert(InstanceKlass::cast(k)->defined_by_other_loaders(), "sanity");
 848       }
 849     } else {
 850       oop scratch_mirror = HeapShared::scratch_java_mirror(orig_mirror);
 851       if (scratch_mirror != nullptr) {
 852         _archived_mirror_index = HeapShared::append_root(scratch_mirror);
 853       }
 854     }
 855   }
 856 #endif
 857 
 858   // Just null out the mirror.  The class_loader_data() no longer exists.
 859   clear_java_mirror_handle();
 860 }
 861 
 862 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) {
 863   assert(is_klass(), "ensure C++ vtable is restored");
 864   assert(in_aot_cache(), "must be set");
 865   assert(secondary_supers()->length() >= (int)population_count(_secondary_supers_bitmap), "must be");
 866   JFR_ONLY(RESTORE_ID(this);)
 867   if (log_is_enabled(Trace, aot, unshareable)) {
 868     ResourceMark rm(THREAD);
 869     oop class_loader = loader_data->class_loader();
 870     log_trace(aot, unshareable)("restore: %s with class loader: %s", external_name(),
 871       class_loader != nullptr ? class_loader->klass()->external_name() : "boot");
 872   }
 873 
 874   // If an exception happened during CDS restore, some of these fields may already be
 875   // set.  We leave the class on the CLD list, even if incomplete so that we don't
 876   // modify the CLD list outside a safepoint.
 877   if (class_loader_data() == nullptr) {
 878     set_class_loader_data(loader_data);
 879 
 880     // Add to class loader list first before creating the mirror
 881     // (same order as class file parsing)
 882     loader_data->add_class(this);
 883   }
 884 
 885   Handle loader(THREAD, loader_data->class_loader());
 886   ModuleEntry* module_entry = nullptr;
 887   Klass* k = this;
 888   if (k->is_objArray_klass()) {
 889     k = ObjArrayKlass::cast(k)->bottom_klass();
 890   }
 891   // Obtain klass' module.
 892   if (k->is_instance_klass()) {
 893     InstanceKlass* ik = (InstanceKlass*) k;
 894     module_entry = ik->module();
 895   } else {
 896     module_entry = ModuleEntryTable::javabase_moduleEntry();
 897   }
 898   // Obtain java.lang.Module, if available
 899   Handle module_handle(THREAD, ((module_entry != nullptr) ? module_entry->module_oop() : (oop)nullptr));
 900 
 901   if (this->has_archived_mirror_index()) {
 902     ResourceMark rm(THREAD);
 903     log_debug(aot, mirror)("%s has raw archived mirror", external_name());
 904     if (ArchiveHeapLoader::is_in_use()) {
 905       bool present = java_lang_Class::restore_archived_mirror(this, loader, module_handle,
 906                                                               protection_domain,
 907                                                               CHECK);
 908       if (present) {
 909         return;
 910       }
 911     }
 912 
 913     // No archived mirror data
 914     log_debug(aot, mirror)("No archived mirror data for %s", external_name());
 915     clear_java_mirror_handle();
 916     this->clear_archived_mirror_index();
 917   }
 918 
 919   // Only recreate it if not present.  A previous attempt to restore may have
 920   // gotten an OOM later but keep the mirror if it was created.
 921   if (java_mirror() == nullptr) {
 922     ResourceMark rm(THREAD);
 923     log_trace(aot, mirror)("Recreate mirror for %s", external_name());
 924     java_lang_Class::create_mirror(this, loader, module_handle, protection_domain, Handle(), CHECK);
 925   }
 926 }
 927 #endif // INCLUDE_CDS
 928 
 929 #if INCLUDE_CDS_JAVA_HEAP
 930 oop Klass::archived_java_mirror() {
 931   assert(has_archived_mirror_index(), "must have archived mirror");
 932   return HeapShared::get_root(_archived_mirror_index);
 933 }
 934 
 935 void Klass::clear_archived_mirror_index() {
 936   if (_archived_mirror_index >= 0) {
 937     HeapShared::clear_root(_archived_mirror_index);
 938   }
 939   _archived_mirror_index = -1;
 940 }
 941 #endif // INCLUDE_CDS_JAVA_HEAP
 942 
 943 void Klass::check_array_allocation_length(int length, int max_length, TRAPS) {
 944   if (length > max_length) {
 945     if (!THREAD->is_in_internal_oome_mark()) {
 946       report_java_out_of_memory("Requested array size exceeds VM limit");
 947       JvmtiExport::post_array_size_exhausted();
 948       THROW_OOP(Universe::out_of_memory_error_array_size());
 949     } else {
 950       THROW_OOP(Universe::out_of_memory_error_java_heap_without_backtrace());
 951     }
 952   } else if (length < 0) {
 953     THROW_MSG(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length));
 954   }
 955 }
 956 
 957 // Replace the last '+' char with '/'.
 958 static char* convert_hidden_name_to_java(Symbol* name) {
 959   size_t name_len = name->utf8_length();
 960   char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
 961   name->as_klass_external_name(result, (int)name_len + 1);
 962   for (int index = (int)name_len; index > 0; index--) {
 963     if (result[index] == '+') {
 964       result[index] = JVM_SIGNATURE_SLASH;
 965       break;
 966     }
 967   }
 968   return result;
 969 }
 970 
 971 // In product mode, this function doesn't have virtual function calls so
 972 // there might be some performance advantage to handling InstanceKlass here.
 973 const char* Klass::external_name() const {
 974   if (is_instance_klass()) {
 975     const InstanceKlass* ik = static_cast<const InstanceKlass*>(this);
 976     if (ik->is_hidden()) {
 977       char* result = convert_hidden_name_to_java(name());
 978       return result;
 979     }
 980   } else if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
 981     char* result = convert_hidden_name_to_java(name());
 982     return result;
 983   }
 984   if (name() == nullptr)  return "<unknown>";
 985   return name()->as_klass_external_name();
 986 }
 987 
 988 const char* Klass::signature_name() const {
 989   if (name() == nullptr)  return "<unknown>";
 990   if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
 991     size_t name_len = name()->utf8_length();
 992     char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
 993     name()->as_C_string(result, (int)name_len + 1);
 994     for (int index = (int)name_len; index > 0; index--) {
 995       if (result[index] == '+') {
 996         result[index] = JVM_SIGNATURE_DOT;
 997         break;
 998       }
 999     }
1000     return result;
1001   }
1002   return name()->as_C_string();
1003 }
1004 
1005 const char* Klass::external_kind() const {
1006   if (is_interface()) return "interface";
1007   if (is_abstract()) return "abstract class";
1008   return "class";
1009 }
1010 
1011 // Unless overridden, jvmti_class_status has no flags set.
1012 jint Klass::jvmti_class_status() const {
1013   return 0;
1014 }
1015 
1016 
1017 // Printing
1018 
1019 void Klass::print_on(outputStream* st) const {
1020   ResourceMark rm;
1021   // print title
1022   st->print("%s", internal_name());
1023   print_address_on(st);
1024   st->cr();
1025 }
1026 
1027 #define BULLET  " - "
1028 
1029 // Caller needs ResourceMark
1030 void Klass::oop_print_on(oop obj, outputStream* st) {
1031   // print title
1032   st->print_cr("%s ", internal_name());
1033   obj->print_address_on(st);
1034 
1035   if (WizardMode) {
1036      // print header
1037      obj->mark().print_on(st);
1038      st->cr();
1039      if (UseCompactObjectHeaders) {
1040        st->print(BULLET"prototype_header: " INTPTR_FORMAT, _prototype_header.value());
1041        st->cr();
1042      }
1043   }
1044 
1045   // print class
1046   st->print(BULLET"klass: ");
1047   obj->klass()->print_value_on(st);
1048   st->print(BULLET"flags: "); _misc_flags.print_on(st); st->cr();
1049   st->cr();
1050 }
1051 
1052 void Klass::oop_print_value_on(oop obj, outputStream* st) {
1053   // print title
1054   ResourceMark rm;              // Cannot print in debug mode without this
1055   st->print("%s", internal_name());
1056   obj->print_address_on(st);
1057 }
1058 
1059 // Verification
1060 
1061 void Klass::verify_on(outputStream* st) {
1062 
1063   // This can be expensive, but it is worth checking that this klass is actually
1064   // in the CLD graph but not in production.
1065 #ifdef ASSERT
1066   if (UseCompressedClassPointers) {
1067     // Stricter checks for both correct alignment and placement
1068     CompressedKlassPointers::check_encodable(this);
1069   } else {
1070     assert(Metaspace::contains((address)this), "Should be");
1071   }
1072 #endif // ASSERT
1073 
1074   guarantee(this->is_klass(),"should be klass");
1075 
1076   if (super() != nullptr) {
1077     guarantee(super()->is_klass(), "should be klass");
1078   }
1079   if (secondary_super_cache() != nullptr) {
1080     Klass* ko = secondary_super_cache();
1081     guarantee(ko->is_klass(), "should be klass");
1082   }
1083   for ( uint i = 0; i < primary_super_limit(); i++ ) {
1084     Klass* ko = _primary_supers[i];
1085     if (ko != nullptr) {
1086       guarantee(ko->is_klass(), "should be klass");
1087     }
1088   }
1089 
1090   if (java_mirror_no_keepalive() != nullptr) {
1091     guarantee(java_lang_Class::is_instance(java_mirror_no_keepalive()), "should be instance");
1092   }
1093 }
1094 
1095 void Klass::oop_verify_on(oop obj, outputStream* st) {
1096   guarantee(oopDesc::is_oop(obj),  "should be oop");
1097   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
1098 }
1099 
1100 // Note: this function is called with an address that may or may not be a Klass.
1101 // The point is not to assert it is but to check if it could be.
1102 bool Klass::is_valid(Klass* k) {
1103   if (!is_aligned(k, sizeof(MetaWord))) return false;
1104   if ((size_t)k < os::min_page_size()) return false;
1105 
1106   if (!os::is_readable_range(k, k + 1)) return false;
1107   if (!Metaspace::contains(k)) return false;
1108 
1109   if (!Symbol::is_valid(k->name())) return false;
1110   return ClassLoaderDataGraph::is_valid(k->class_loader_data());
1111 }
1112 
1113 Method* Klass::method_at_vtable(int index)  {
1114 #ifndef PRODUCT
1115   assert(index >= 0, "valid vtable index");
1116   if (DebugVtables) {
1117     verify_vtable_index(index);
1118   }
1119 #endif
1120   return start_of_vtable()[index].method();
1121 }
1122 
1123 
1124 #ifndef PRODUCT
1125 
1126 bool Klass::verify_vtable_index(int i) {
1127   int limit = vtable_length()/vtableEntry::size();
1128   assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit);
1129   return true;
1130 }
1131 
1132 #endif // PRODUCT
1133 
1134 // Caller needs ResourceMark
1135 // joint_in_module_of_loader provides an optimization if 2 classes are in
1136 // the same module to succinctly print out relevant information about their
1137 // module name and class loader's name_and_id for error messages.
1138 // Format:
1139 //   <fully-qualified-external-class-name1> and <fully-qualified-external-class-name2>
1140 //                      are in module <module-name>[@<version>]
1141 //                      of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1142 const char* Klass::joint_in_module_of_loader(const Klass* class2, bool include_parent_loader) const {
1143   assert(module() == class2->module(), "classes do not have the same module");
1144   const char* class1_name = external_name();
1145   size_t len = strlen(class1_name) + 1;
1146 
1147   const char* class2_description = class2->class_in_module_of_loader(true, include_parent_loader);
1148   len += strlen(class2_description);
1149 
1150   len += strlen(" and ");
1151 
1152   char* joint_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1153 
1154   // Just return the FQN if error when allocating string
1155   if (joint_description == nullptr) {
1156     return class1_name;
1157   }
1158 
1159   jio_snprintf(joint_description, len, "%s and %s",
1160                class1_name,
1161                class2_description);
1162 
1163   return joint_description;
1164 }
1165 
1166 // Caller needs ResourceMark
1167 // class_in_module_of_loader provides a standard way to include
1168 // relevant information about a class, such as its module name as
1169 // well as its class loader's name_and_id, in error messages and logging.
1170 // Format:
1171 //   <fully-qualified-external-class-name> is in module <module-name>[@<version>]
1172 //                                         of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1173 const char* Klass::class_in_module_of_loader(bool use_are, bool include_parent_loader) const {
1174   // 1. fully qualified external name of class
1175   const char* klass_name = external_name();
1176   size_t len = strlen(klass_name) + 1;
1177 
1178   // 2. module name + @version
1179   const char* module_name = "";
1180   const char* version = "";
1181   bool has_version = false;
1182   bool module_is_named = false;
1183   const char* module_name_phrase = "";
1184   const Klass* bottom_klass = is_objArray_klass() ?
1185                                 ObjArrayKlass::cast(this)->bottom_klass() : this;
1186   if (bottom_klass->is_instance_klass()) {
1187     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1188     if (module->is_named()) {
1189       module_is_named = true;
1190       module_name_phrase = "module ";
1191       module_name = module->name()->as_C_string();
1192       len += strlen(module_name);
1193       // Use version if exists and is not a jdk module
1194       if (module->should_show_version()) {
1195         has_version = true;
1196         version = module->version()->as_C_string();
1197         // Include stlen(version) + 1 for the "@"
1198         len += strlen(version) + 1;
1199       }
1200     } else {
1201       module_name = UNNAMED_MODULE;
1202       len += UNNAMED_MODULE_LEN;
1203     }
1204   } else {
1205     // klass is an array of primitives, module is java.base
1206     module_is_named = true;
1207     module_name_phrase = "module ";
1208     module_name = JAVA_BASE_NAME;
1209     len += JAVA_BASE_NAME_LEN;
1210   }
1211 
1212   // 3. class loader's name_and_id
1213   ClassLoaderData* cld = class_loader_data();
1214   assert(cld != nullptr, "class_loader_data should not be null");
1215   const char* loader_name_and_id = cld->loader_name_and_id();
1216   len += strlen(loader_name_and_id);
1217 
1218   // 4. include parent loader information
1219   const char* parent_loader_phrase = "";
1220   const char* parent_loader_name_and_id = "";
1221   if (include_parent_loader &&
1222       !cld->is_builtin_class_loader_data()) {
1223     oop parent_loader = java_lang_ClassLoader::parent(class_loader());
1224     ClassLoaderData *parent_cld = ClassLoaderData::class_loader_data_or_null(parent_loader);
1225     // The parent loader's ClassLoaderData could be null if it is
1226     // a delegating class loader that has never defined a class.
1227     // In this case the loader's name must be obtained via the parent loader's oop.
1228     if (parent_cld == nullptr) {
1229       oop cl_name_and_id = java_lang_ClassLoader::nameAndId(parent_loader);
1230       if (cl_name_and_id != nullptr) {
1231         parent_loader_name_and_id = java_lang_String::as_utf8_string(cl_name_and_id);
1232       }
1233     } else {
1234       parent_loader_name_and_id = parent_cld->loader_name_and_id();
1235     }
1236     parent_loader_phrase = ", parent loader ";
1237     len += strlen(parent_loader_phrase) + strlen(parent_loader_name_and_id);
1238   }
1239 
1240   // Start to construct final full class description string
1241   len += ((use_are) ? strlen(" are in ") : strlen(" is in "));
1242   len += strlen(module_name_phrase) + strlen(" of loader ");
1243 
1244   char* class_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1245 
1246   // Just return the FQN if error when allocating string
1247   if (class_description == nullptr) {
1248     return klass_name;
1249   }
1250 
1251   jio_snprintf(class_description, len, "%s %s in %s%s%s%s of loader %s%s%s",
1252                klass_name,
1253                (use_are) ? "are" : "is",
1254                module_name_phrase,
1255                module_name,
1256                (has_version) ? "@" : "",
1257                (has_version) ? version : "",
1258                loader_name_and_id,
1259                parent_loader_phrase,
1260                parent_loader_name_and_id);
1261 
1262   return class_description;
1263 }
1264 
1265 class LookupStats : StackObj {
1266  private:
1267   uint _no_of_samples;
1268   uint _worst;
1269   uint _worst_count;
1270   uint _average;
1271   uint _best;
1272   uint _best_count;
1273  public:
1274   LookupStats() : _no_of_samples(0), _worst(0), _worst_count(0), _average(0), _best(INT_MAX), _best_count(0) {}
1275 
1276   ~LookupStats() {
1277     assert(_best <= _worst || _no_of_samples == 0, "sanity");
1278   }
1279 
1280   void sample(uint value) {
1281     ++_no_of_samples;
1282     _average += value;
1283 
1284     if (_worst < value) {
1285       _worst = value;
1286       _worst_count = 1;
1287     } else if (_worst == value) {
1288       ++_worst_count;
1289     }
1290 
1291     if (_best > value) {
1292       _best = value;
1293       _best_count = 1;
1294     } else if (_best == value) {
1295       ++_best_count;
1296     }
1297   }
1298 
1299   void print_on(outputStream* st) const {
1300     st->print("best: %2d (%4.1f%%)", _best, (100.0 * _best_count) / _no_of_samples);
1301     if (_best_count < _no_of_samples) {
1302       st->print("; average: %4.1f; worst: %2d (%4.1f%%)",
1303                 (1.0 * _average) / _no_of_samples,
1304                 _worst, (100.0 * _worst_count) / _no_of_samples);
1305     }
1306   }
1307 };
1308 
1309 static void print_positive_lookup_stats(Array<Klass*>* secondary_supers, uintx bitmap, outputStream* st) {
1310   int num_of_supers = secondary_supers->length();
1311 
1312   LookupStats s;
1313   for (int i = 0; i < num_of_supers; i++) {
1314     Klass* secondary_super = secondary_supers->at(i);
1315     int home_slot = Klass::compute_home_slot(secondary_super, bitmap);
1316     uint score = 1 + ((i - home_slot) & Klass::SECONDARY_SUPERS_TABLE_MASK);
1317     s.sample(score);
1318   }
1319   st->print("positive_lookup: "); s.print_on(st);
1320 }
1321 
1322 static uint compute_distance_to_nearest_zero(int slot, uintx bitmap) {
1323   assert(~bitmap != 0, "no zeroes");
1324   uintx start = rotate_right(bitmap, slot);
1325   return count_trailing_zeros(~start);
1326 }
1327 
1328 static void print_negative_lookup_stats(uintx bitmap, outputStream* st) {
1329   LookupStats s;
1330   for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
1331     uint score = compute_distance_to_nearest_zero(slot, bitmap);
1332     s.sample(score);
1333   }
1334   st->print("negative_lookup: "); s.print_on(st);
1335 }
1336 
1337 void Klass::print_secondary_supers_on(outputStream* st) const {
1338   if (secondary_supers() != nullptr) {
1339     st->print("  - "); st->print("%d elements;", _secondary_supers->length());
1340     st->print_cr(" bitmap: " UINTX_FORMAT_X_0, _secondary_supers_bitmap);
1341     if (_secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_EMPTY &&
1342         _secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_FULL) {
1343       st->print("  - "); print_positive_lookup_stats(secondary_supers(),
1344                                                      _secondary_supers_bitmap, st); st->cr();
1345       st->print("  - "); print_negative_lookup_stats(_secondary_supers_bitmap, st); st->cr();
1346     }
1347   } else {
1348     st->print("null");
1349   }
1350 }
1351 
1352 void Klass::on_secondary_supers_verification_failure(Klass* super, Klass* sub, bool linear_result, bool table_result, const char* msg) {
1353   ResourceMark rm;
1354   super->print();
1355   sub->print();
1356   fatal("%s: %s implements %s: linear_search: %d; table_lookup: %d",
1357         msg, sub->external_name(), super->external_name(), linear_result, table_result);
1358 }