1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/jvmtiThreadState.hpp"
  55 #include "prims/unsafe.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/objectMonitor.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "utilities/macros.hpp"
  61 #include "utilities/powerOfTwo.hpp"
  62 
  63 //---------------------------make_vm_intrinsic----------------------------
  64 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  65   vmIntrinsicID id = m->intrinsic_id();
  66   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  67 
  68   if (!m->is_loaded()) {
  69     // Do not attempt to inline unloaded methods.
  70     return nullptr;
  71   }
  72 
  73   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  74   bool is_available = false;
  75 
  76   {
  77     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  78     // the compiler must transition to '_thread_in_vm' state because both
  79     // methods access VM-internal data.
  80     VM_ENTRY_MARK;
  81     methodHandle mh(THREAD, m->get_Method());
  82     is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
  83     if (is_available && is_virtual) {
  84       is_available = vmIntrinsics::does_virtual_dispatch(id);
  85     }
  86   }
  87 
  88   if (is_available) {
  89     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
  90     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
  91     return new LibraryIntrinsic(m, is_virtual,
  92                                 vmIntrinsics::predicates_needed(id),
  93                                 vmIntrinsics::does_virtual_dispatch(id),
  94                                 id);
  95   } else {
  96     return nullptr;
  97   }
  98 }
  99 
 100 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 101   LibraryCallKit kit(jvms, this);
 102   Compile* C = kit.C;
 103   int nodes = C->unique();
 104 #ifndef PRODUCT
 105   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 106     char buf[1000];
 107     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 108     tty->print_cr("Intrinsic %s", str);
 109   }
 110 #endif
 111   ciMethod* callee = kit.callee();
 112   const int bci    = kit.bci();
 113 #ifdef ASSERT
 114   Node* ctrl = kit.control();
 115 #endif
 116   // Try to inline the intrinsic.
 117   if (callee->check_intrinsic_candidate() &&
 118       kit.try_to_inline(_last_predicate)) {
 119     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 120                                           : "(intrinsic)";
 121     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 122     if (C->print_intrinsics() || C->print_inlining()) {
 123       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 124     }
 125     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 126     if (C->log()) {
 127       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 128                      vmIntrinsics::name_at(intrinsic_id()),
 129                      (is_virtual() ? " virtual='1'" : ""),
 130                      C->unique() - nodes);
 131     }
 132     // Push the result from the inlined method onto the stack.
 133     kit.push_result();
 134     C->print_inlining_update(this);
 135     return kit.transfer_exceptions_into_jvms();
 136   }
 137 
 138   // The intrinsic bailed out
 139   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 140   if (jvms->has_method()) {
 141     // Not a root compile.
 142     const char* msg;
 143     if (callee->intrinsic_candidate()) {
 144       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 145     } else {
 146       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 147                          : "failed to inline (intrinsic), method not annotated";
 148     }
 149     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 150     if (C->print_intrinsics() || C->print_inlining()) {
 151       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 152     }
 153   } else {
 154     // Root compile
 155     ResourceMark rm;
 156     stringStream msg_stream;
 157     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 158                      vmIntrinsics::name_at(intrinsic_id()),
 159                      is_virtual() ? " (virtual)" : "", bci);
 160     const char *msg = msg_stream.freeze();
 161     log_debug(jit, inlining)("%s", msg);
 162     if (C->print_intrinsics() || C->print_inlining()) {
 163       tty->print("%s", msg);
 164     }
 165   }
 166   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 167   C->print_inlining_update(this);
 168 
 169   return nullptr;
 170 }
 171 
 172 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 173   LibraryCallKit kit(jvms, this);
 174   Compile* C = kit.C;
 175   int nodes = C->unique();
 176   _last_predicate = predicate;
 177 #ifndef PRODUCT
 178   assert(is_predicated() && predicate < predicates_count(), "sanity");
 179   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 180     char buf[1000];
 181     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 182     tty->print_cr("Predicate for intrinsic %s", str);
 183   }
 184 #endif
 185   ciMethod* callee = kit.callee();
 186   const int bci    = kit.bci();
 187 
 188   Node* slow_ctl = kit.try_to_predicate(predicate);
 189   if (!kit.failing()) {
 190     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 191                                           : "(intrinsic, predicate)";
 192     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 193     if (C->print_intrinsics() || C->print_inlining()) {
 194       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 195     }
 196     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 197     if (C->log()) {
 198       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 199                      vmIntrinsics::name_at(intrinsic_id()),
 200                      (is_virtual() ? " virtual='1'" : ""),
 201                      C->unique() - nodes);
 202     }
 203     return slow_ctl; // Could be null if the check folds.
 204   }
 205 
 206   // The intrinsic bailed out
 207   if (jvms->has_method()) {
 208     // Not a root compile.
 209     const char* msg = "failed to generate predicate for intrinsic";
 210     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 211     if (C->print_intrinsics() || C->print_inlining()) {
 212       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 213     }
 214   } else {
 215     // Root compile
 216     ResourceMark rm;
 217     stringStream msg_stream;
 218     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 219                      vmIntrinsics::name_at(intrinsic_id()),
 220                      is_virtual() ? " (virtual)" : "", bci);
 221     const char *msg = msg_stream.freeze();
 222     log_debug(jit, inlining)("%s", msg);
 223     if (C->print_intrinsics() || C->print_inlining()) {
 224       C->print_inlining_stream()->print("%s", msg);
 225     }
 226   }
 227   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 228   return nullptr;
 229 }
 230 
 231 bool LibraryCallKit::try_to_inline(int predicate) {
 232   // Handle symbolic names for otherwise undistinguished boolean switches:
 233   const bool is_store       = true;
 234   const bool is_compress    = true;
 235   const bool is_static      = true;
 236   const bool is_volatile    = true;
 237 
 238   if (!jvms()->has_method()) {
 239     // Root JVMState has a null method.
 240     assert(map()->memory()->Opcode() == Op_Parm, "");
 241     // Insert the memory aliasing node
 242     set_all_memory(reset_memory());
 243   }
 244   assert(merged_memory(), "");
 245 
 246   switch (intrinsic_id()) {
 247   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 248   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 249   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 250 
 251   case vmIntrinsics::_ceil:
 252   case vmIntrinsics::_floor:
 253   case vmIntrinsics::_rint:
 254   case vmIntrinsics::_dsin:
 255   case vmIntrinsics::_dcos:
 256   case vmIntrinsics::_dtan:
 257   case vmIntrinsics::_dabs:
 258   case vmIntrinsics::_fabs:
 259   case vmIntrinsics::_iabs:
 260   case vmIntrinsics::_labs:
 261   case vmIntrinsics::_datan2:
 262   case vmIntrinsics::_dsqrt:
 263   case vmIntrinsics::_dsqrt_strict:
 264   case vmIntrinsics::_dexp:
 265   case vmIntrinsics::_dlog:
 266   case vmIntrinsics::_dlog10:
 267   case vmIntrinsics::_dpow:
 268   case vmIntrinsics::_dcopySign:
 269   case vmIntrinsics::_fcopySign:
 270   case vmIntrinsics::_dsignum:
 271   case vmIntrinsics::_roundF:
 272   case vmIntrinsics::_roundD:
 273   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 274 
 275   case vmIntrinsics::_notify:
 276   case vmIntrinsics::_notifyAll:
 277     return inline_notify(intrinsic_id());
 278 
 279   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 280   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 281   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 282   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 283   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 284   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 285   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 286   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 287   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 288   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 289   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 290   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 291   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 292   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 293 
 294   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 295 
 296   case vmIntrinsics::_arraySort:                return inline_array_sort();
 297   case vmIntrinsics::_arrayPartition:           return inline_array_partition();
 298 
 299   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 300   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 301   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 302   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 303 
 304   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 305   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 306   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 307   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 308   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 309   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 310   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 311   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 312 
 313   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 314 
 315   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 316 
 317   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 318   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 319   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 320   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 321 
 322   case vmIntrinsics::_compressStringC:
 323   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 324   case vmIntrinsics::_inflateStringC:
 325   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 326 
 327   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 328   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 329   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 330   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 331   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 332   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 333   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 334   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 335   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 336 
 337   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 338   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 339   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 340   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 341   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 342   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 343   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 344   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 345   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 346 
 347   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 348   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 349   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 350   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 351   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 352   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 353   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 354   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 355   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 356 
 357   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 358   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 359   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 360   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 361   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 362   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 363   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 364   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 365   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 366 
 367   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 368   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 369   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 370   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 371 
 372   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 373   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 374   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 375   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 376 
 377   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 378   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 379   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 380   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 381   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 382   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 383   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 384   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 385   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 386 
 387   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 388   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 389   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 390   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 391   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 392   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 393   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 394   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 395   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 396 
 397   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 398   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 399   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 400   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 401   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 402   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 403   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 404   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 405   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 406 
 407   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 408   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 409   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 410   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 411   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 412   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 413   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 414   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 415   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 416 
 417   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 418   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 419   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 420   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 421   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 422 
 423   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 424   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 425   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 426   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 427   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 428   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 429   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 430   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 431   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 432   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 433   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 434   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 435   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 436   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 437   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 438   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 439   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 440   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 441   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 442   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 443 
 444   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 445   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 446   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 447   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 448   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 449   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 450   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 451   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 452   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 453   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 454   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 455   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 456   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 457   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 458   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 459 
 460   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 461   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 462   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 463   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 464 
 465   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 466   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 467   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 468   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 469   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 470 
 471   case vmIntrinsics::_loadFence:
 472   case vmIntrinsics::_storeFence:
 473   case vmIntrinsics::_storeStoreFence:
 474   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 475 
 476   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 477 
 478   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 479   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 480   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 481   case vmIntrinsics::_setLockId:                return inline_native_setLockId();
 482 
 483   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 484   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 485 
 486 #if INCLUDE_JVMTI
 487   case vmIntrinsics::_notifyJvmtiVThreadStart:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
 488                                                                                          "notifyJvmtiStart", true, false);
 489   case vmIntrinsics::_notifyJvmtiVThreadEnd:     return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
 490                                                                                          "notifyJvmtiEnd", false, true);
 491   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 492                                                                                          "notifyJvmtiMount", false, false);
 493   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 494                                                                                          "notifyJvmtiUnmount", false, false);
 495   case vmIntrinsics::_notifyJvmtiVThreadHideFrames:     return inline_native_notify_jvmti_hide();
 496   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 497 #endif
 498 
 499 #ifdef JFR_HAVE_INTRINSICS
 500   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 501   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 502   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 503 #endif
 504   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 505   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 506   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 507   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 508   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 509   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 510   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 511   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 512   case vmIntrinsics::_getLength:                return inline_native_getLength();
 513   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 514   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 515   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 516   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 517   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 518   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 519   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 520 
 521   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 522   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 523 
 524   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 525 
 526   case vmIntrinsics::_isInstance:
 527   case vmIntrinsics::_getModifiers:
 528   case vmIntrinsics::_isInterface:
 529   case vmIntrinsics::_isArray:
 530   case vmIntrinsics::_isPrimitive:
 531   case vmIntrinsics::_isHidden:
 532   case vmIntrinsics::_getSuperclass:
 533   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 534 
 535   case vmIntrinsics::_floatToRawIntBits:
 536   case vmIntrinsics::_floatToIntBits:
 537   case vmIntrinsics::_intBitsToFloat:
 538   case vmIntrinsics::_doubleToRawLongBits:
 539   case vmIntrinsics::_doubleToLongBits:
 540   case vmIntrinsics::_longBitsToDouble:
 541   case vmIntrinsics::_floatToFloat16:
 542   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 543 
 544   case vmIntrinsics::_floatIsFinite:
 545   case vmIntrinsics::_floatIsInfinite:
 546   case vmIntrinsics::_doubleIsFinite:
 547   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 548 
 549   case vmIntrinsics::_numberOfLeadingZeros_i:
 550   case vmIntrinsics::_numberOfLeadingZeros_l:
 551   case vmIntrinsics::_numberOfTrailingZeros_i:
 552   case vmIntrinsics::_numberOfTrailingZeros_l:
 553   case vmIntrinsics::_bitCount_i:
 554   case vmIntrinsics::_bitCount_l:
 555   case vmIntrinsics::_reverse_i:
 556   case vmIntrinsics::_reverse_l:
 557   case vmIntrinsics::_reverseBytes_i:
 558   case vmIntrinsics::_reverseBytes_l:
 559   case vmIntrinsics::_reverseBytes_s:
 560   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 561 
 562   case vmIntrinsics::_compress_i:
 563   case vmIntrinsics::_compress_l:
 564   case vmIntrinsics::_expand_i:
 565   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 566 
 567   case vmIntrinsics::_compareUnsigned_i:
 568   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 569 
 570   case vmIntrinsics::_divideUnsigned_i:
 571   case vmIntrinsics::_divideUnsigned_l:
 572   case vmIntrinsics::_remainderUnsigned_i:
 573   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 574 
 575   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 576 
 577   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 578   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 579   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 580 
 581   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 582 
 583   case vmIntrinsics::_aescrypt_encryptBlock:
 584   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 585 
 586   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 587   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 588     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 589 
 590   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 591   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 592     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 593 
 594   case vmIntrinsics::_counterMode_AESCrypt:
 595     return inline_counterMode_AESCrypt(intrinsic_id());
 596 
 597   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 598     return inline_galoisCounterMode_AESCrypt();
 599 
 600   case vmIntrinsics::_md5_implCompress:
 601   case vmIntrinsics::_sha_implCompress:
 602   case vmIntrinsics::_sha2_implCompress:
 603   case vmIntrinsics::_sha5_implCompress:
 604   case vmIntrinsics::_sha3_implCompress:
 605     return inline_digestBase_implCompress(intrinsic_id());
 606 
 607   case vmIntrinsics::_digestBase_implCompressMB:
 608     return inline_digestBase_implCompressMB(predicate);
 609 
 610   case vmIntrinsics::_multiplyToLen:
 611     return inline_multiplyToLen();
 612 
 613   case vmIntrinsics::_squareToLen:
 614     return inline_squareToLen();
 615 
 616   case vmIntrinsics::_mulAdd:
 617     return inline_mulAdd();
 618 
 619   case vmIntrinsics::_montgomeryMultiply:
 620     return inline_montgomeryMultiply();
 621   case vmIntrinsics::_montgomerySquare:
 622     return inline_montgomerySquare();
 623 
 624   case vmIntrinsics::_bigIntegerRightShiftWorker:
 625     return inline_bigIntegerShift(true);
 626   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 627     return inline_bigIntegerShift(false);
 628 
 629   case vmIntrinsics::_vectorizedMismatch:
 630     return inline_vectorizedMismatch();
 631 
 632   case vmIntrinsics::_ghash_processBlocks:
 633     return inline_ghash_processBlocks();
 634   case vmIntrinsics::_chacha20Block:
 635     return inline_chacha20Block();
 636   case vmIntrinsics::_base64_encodeBlock:
 637     return inline_base64_encodeBlock();
 638   case vmIntrinsics::_base64_decodeBlock:
 639     return inline_base64_decodeBlock();
 640   case vmIntrinsics::_poly1305_processBlocks:
 641     return inline_poly1305_processBlocks();
 642   case vmIntrinsics::_intpoly_montgomeryMult_P256:
 643     return inline_intpoly_montgomeryMult_P256();
 644   case vmIntrinsics::_intpoly_assign:
 645     return inline_intpoly_assign();
 646   case vmIntrinsics::_encodeISOArray:
 647   case vmIntrinsics::_encodeByteISOArray:
 648     return inline_encodeISOArray(false);
 649   case vmIntrinsics::_encodeAsciiArray:
 650     return inline_encodeISOArray(true);
 651 
 652   case vmIntrinsics::_updateCRC32:
 653     return inline_updateCRC32();
 654   case vmIntrinsics::_updateBytesCRC32:
 655     return inline_updateBytesCRC32();
 656   case vmIntrinsics::_updateByteBufferCRC32:
 657     return inline_updateByteBufferCRC32();
 658 
 659   case vmIntrinsics::_updateBytesCRC32C:
 660     return inline_updateBytesCRC32C();
 661   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 662     return inline_updateDirectByteBufferCRC32C();
 663 
 664   case vmIntrinsics::_updateBytesAdler32:
 665     return inline_updateBytesAdler32();
 666   case vmIntrinsics::_updateByteBufferAdler32:
 667     return inline_updateByteBufferAdler32();
 668 
 669   case vmIntrinsics::_profileBoolean:
 670     return inline_profileBoolean();
 671   case vmIntrinsics::_isCompileConstant:
 672     return inline_isCompileConstant();
 673 
 674   case vmIntrinsics::_countPositives:
 675     return inline_countPositives();
 676 
 677   case vmIntrinsics::_fmaD:
 678   case vmIntrinsics::_fmaF:
 679     return inline_fma(intrinsic_id());
 680 
 681   case vmIntrinsics::_isDigit:
 682   case vmIntrinsics::_isLowerCase:
 683   case vmIntrinsics::_isUpperCase:
 684   case vmIntrinsics::_isWhitespace:
 685     return inline_character_compare(intrinsic_id());
 686 
 687   case vmIntrinsics::_min:
 688   case vmIntrinsics::_max:
 689   case vmIntrinsics::_min_strict:
 690   case vmIntrinsics::_max_strict:
 691     return inline_min_max(intrinsic_id());
 692 
 693   case vmIntrinsics::_maxF:
 694   case vmIntrinsics::_minF:
 695   case vmIntrinsics::_maxD:
 696   case vmIntrinsics::_minD:
 697   case vmIntrinsics::_maxF_strict:
 698   case vmIntrinsics::_minF_strict:
 699   case vmIntrinsics::_maxD_strict:
 700   case vmIntrinsics::_minD_strict:
 701       return inline_fp_min_max(intrinsic_id());
 702 
 703   case vmIntrinsics::_VectorUnaryOp:
 704     return inline_vector_nary_operation(1);
 705   case vmIntrinsics::_VectorBinaryOp:
 706     return inline_vector_nary_operation(2);
 707   case vmIntrinsics::_VectorTernaryOp:
 708     return inline_vector_nary_operation(3);
 709   case vmIntrinsics::_VectorFromBitsCoerced:
 710     return inline_vector_frombits_coerced();
 711   case vmIntrinsics::_VectorShuffleIota:
 712     return inline_vector_shuffle_iota();
 713   case vmIntrinsics::_VectorMaskOp:
 714     return inline_vector_mask_operation();
 715   case vmIntrinsics::_VectorShuffleToVector:
 716     return inline_vector_shuffle_to_vector();
 717   case vmIntrinsics::_VectorLoadOp:
 718     return inline_vector_mem_operation(/*is_store=*/false);
 719   case vmIntrinsics::_VectorLoadMaskedOp:
 720     return inline_vector_mem_masked_operation(/*is_store*/false);
 721   case vmIntrinsics::_VectorStoreOp:
 722     return inline_vector_mem_operation(/*is_store=*/true);
 723   case vmIntrinsics::_VectorStoreMaskedOp:
 724     return inline_vector_mem_masked_operation(/*is_store=*/true);
 725   case vmIntrinsics::_VectorGatherOp:
 726     return inline_vector_gather_scatter(/*is_scatter*/ false);
 727   case vmIntrinsics::_VectorScatterOp:
 728     return inline_vector_gather_scatter(/*is_scatter*/ true);
 729   case vmIntrinsics::_VectorReductionCoerced:
 730     return inline_vector_reduction();
 731   case vmIntrinsics::_VectorTest:
 732     return inline_vector_test();
 733   case vmIntrinsics::_VectorBlend:
 734     return inline_vector_blend();
 735   case vmIntrinsics::_VectorRearrange:
 736     return inline_vector_rearrange();
 737   case vmIntrinsics::_VectorCompare:
 738     return inline_vector_compare();
 739   case vmIntrinsics::_VectorBroadcastInt:
 740     return inline_vector_broadcast_int();
 741   case vmIntrinsics::_VectorConvert:
 742     return inline_vector_convert();
 743   case vmIntrinsics::_VectorInsert:
 744     return inline_vector_insert();
 745   case vmIntrinsics::_VectorExtract:
 746     return inline_vector_extract();
 747   case vmIntrinsics::_VectorCompressExpand:
 748     return inline_vector_compress_expand();
 749   case vmIntrinsics::_IndexVector:
 750     return inline_index_vector();
 751   case vmIntrinsics::_IndexPartiallyInUpperRange:
 752     return inline_index_partially_in_upper_range();
 753 
 754   case vmIntrinsics::_getObjectSize:
 755     return inline_getObjectSize();
 756 
 757   case vmIntrinsics::_blackhole:
 758     return inline_blackhole();
 759 
 760   default:
 761     // If you get here, it may be that someone has added a new intrinsic
 762     // to the list in vmIntrinsics.hpp without implementing it here.
 763 #ifndef PRODUCT
 764     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 765       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 766                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 767     }
 768 #endif
 769     return false;
 770   }
 771 }
 772 
 773 Node* LibraryCallKit::try_to_predicate(int predicate) {
 774   if (!jvms()->has_method()) {
 775     // Root JVMState has a null method.
 776     assert(map()->memory()->Opcode() == Op_Parm, "");
 777     // Insert the memory aliasing node
 778     set_all_memory(reset_memory());
 779   }
 780   assert(merged_memory(), "");
 781 
 782   switch (intrinsic_id()) {
 783   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 784     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 785   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 786     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 787   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 788     return inline_electronicCodeBook_AESCrypt_predicate(false);
 789   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 790     return inline_electronicCodeBook_AESCrypt_predicate(true);
 791   case vmIntrinsics::_counterMode_AESCrypt:
 792     return inline_counterMode_AESCrypt_predicate();
 793   case vmIntrinsics::_digestBase_implCompressMB:
 794     return inline_digestBase_implCompressMB_predicate(predicate);
 795   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 796     return inline_galoisCounterMode_AESCrypt_predicate();
 797 
 798   default:
 799     // If you get here, it may be that someone has added a new intrinsic
 800     // to the list in vmIntrinsics.hpp without implementing it here.
 801 #ifndef PRODUCT
 802     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 803       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 804                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 805     }
 806 #endif
 807     Node* slow_ctl = control();
 808     set_control(top()); // No fast path intrinsic
 809     return slow_ctl;
 810   }
 811 }
 812 
 813 //------------------------------set_result-------------------------------
 814 // Helper function for finishing intrinsics.
 815 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 816   record_for_igvn(region);
 817   set_control(_gvn.transform(region));
 818   set_result( _gvn.transform(value));
 819   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 820 }
 821 
 822 //------------------------------generate_guard---------------------------
 823 // Helper function for generating guarded fast-slow graph structures.
 824 // The given 'test', if true, guards a slow path.  If the test fails
 825 // then a fast path can be taken.  (We generally hope it fails.)
 826 // In all cases, GraphKit::control() is updated to the fast path.
 827 // The returned value represents the control for the slow path.
 828 // The return value is never 'top'; it is either a valid control
 829 // or null if it is obvious that the slow path can never be taken.
 830 // Also, if region and the slow control are not null, the slow edge
 831 // is appended to the region.
 832 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 833   if (stopped()) {
 834     // Already short circuited.
 835     return nullptr;
 836   }
 837 
 838   // Build an if node and its projections.
 839   // If test is true we take the slow path, which we assume is uncommon.
 840   if (_gvn.type(test) == TypeInt::ZERO) {
 841     // The slow branch is never taken.  No need to build this guard.
 842     return nullptr;
 843   }
 844 
 845   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 846 
 847   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 848   if (if_slow == top()) {
 849     // The slow branch is never taken.  No need to build this guard.
 850     return nullptr;
 851   }
 852 
 853   if (region != nullptr)
 854     region->add_req(if_slow);
 855 
 856   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 857   set_control(if_fast);
 858 
 859   return if_slow;
 860 }
 861 
 862 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 863   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 864 }
 865 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 866   return generate_guard(test, region, PROB_FAIR);
 867 }
 868 
 869 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 870                                                      Node* *pos_index) {
 871   if (stopped())
 872     return nullptr;                // already stopped
 873   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 874     return nullptr;                // index is already adequately typed
 875   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 876   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 877   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 878   if (is_neg != nullptr && pos_index != nullptr) {
 879     // Emulate effect of Parse::adjust_map_after_if.
 880     Node* ccast = new CastIINode(control(), index, TypeInt::POS);
 881     (*pos_index) = _gvn.transform(ccast);
 882   }
 883   return is_neg;
 884 }
 885 
 886 // Make sure that 'position' is a valid limit index, in [0..length].
 887 // There are two equivalent plans for checking this:
 888 //   A. (offset + copyLength)  unsigned<=  arrayLength
 889 //   B. offset  <=  (arrayLength - copyLength)
 890 // We require that all of the values above, except for the sum and
 891 // difference, are already known to be non-negative.
 892 // Plan A is robust in the face of overflow, if offset and copyLength
 893 // are both hugely positive.
 894 //
 895 // Plan B is less direct and intuitive, but it does not overflow at
 896 // all, since the difference of two non-negatives is always
 897 // representable.  Whenever Java methods must perform the equivalent
 898 // check they generally use Plan B instead of Plan A.
 899 // For the moment we use Plan A.
 900 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 901                                                   Node* subseq_length,
 902                                                   Node* array_length,
 903                                                   RegionNode* region) {
 904   if (stopped())
 905     return nullptr;                // already stopped
 906   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 907   if (zero_offset && subseq_length->eqv_uncast(array_length))
 908     return nullptr;                // common case of whole-array copy
 909   Node* last = subseq_length;
 910   if (!zero_offset)             // last += offset
 911     last = _gvn.transform(new AddINode(last, offset));
 912   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 913   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 914   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 915   return is_over;
 916 }
 917 
 918 // Emit range checks for the given String.value byte array
 919 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 920   if (stopped()) {
 921     return; // already stopped
 922   }
 923   RegionNode* bailout = new RegionNode(1);
 924   record_for_igvn(bailout);
 925   if (char_count) {
 926     // Convert char count to byte count
 927     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 928   }
 929 
 930   // Offset and count must not be negative
 931   generate_negative_guard(offset, bailout);
 932   generate_negative_guard(count, bailout);
 933   // Offset + count must not exceed length of array
 934   generate_limit_guard(offset, count, load_array_length(array), bailout);
 935 
 936   if (bailout->req() > 1) {
 937     PreserveJVMState pjvms(this);
 938     set_control(_gvn.transform(bailout));
 939     uncommon_trap(Deoptimization::Reason_intrinsic,
 940                   Deoptimization::Action_maybe_recompile);
 941   }
 942 }
 943 
 944 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
 945                                             bool is_immutable) {
 946   ciKlass* thread_klass = env()->Thread_klass();
 947   const Type* thread_type
 948     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 949 
 950   Node* thread = _gvn.transform(new ThreadLocalNode());
 951   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
 952   tls_output = thread;
 953 
 954   Node* thread_obj_handle
 955     = (is_immutable
 956       ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
 957         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
 958       : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
 959   thread_obj_handle = _gvn.transform(thread_obj_handle);
 960 
 961   DecoratorSet decorators = IN_NATIVE;
 962   if (is_immutable) {
 963     decorators |= C2_IMMUTABLE_MEMORY;
 964   }
 965   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
 966 }
 967 
 968 //--------------------------generate_current_thread--------------------
 969 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 970   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
 971                                /*is_immutable*/false);
 972 }
 973 
 974 //--------------------------generate_virtual_thread--------------------
 975 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
 976   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
 977                                !C->method()->changes_current_thread());
 978 }
 979 
 980 //------------------------------make_string_method_node------------------------
 981 // Helper method for String intrinsic functions. This version is called with
 982 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 983 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 984 // containing the lengths of str1 and str2.
 985 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 986   Node* result = nullptr;
 987   switch (opcode) {
 988   case Op_StrIndexOf:
 989     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 990                                 str1_start, cnt1, str2_start, cnt2, ae);
 991     break;
 992   case Op_StrComp:
 993     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
 994                              str1_start, cnt1, str2_start, cnt2, ae);
 995     break;
 996   case Op_StrEquals:
 997     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
 998     // Use the constant length if there is one because optimized match rule may exist.
 999     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1000                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1001     break;
1002   default:
1003     ShouldNotReachHere();
1004     return nullptr;
1005   }
1006 
1007   // All these intrinsics have checks.
1008   C->set_has_split_ifs(true); // Has chance for split-if optimization
1009   clear_upper_avx();
1010 
1011   return _gvn.transform(result);
1012 }
1013 
1014 //------------------------------inline_string_compareTo------------------------
1015 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1016   Node* arg1 = argument(0);
1017   Node* arg2 = argument(1);
1018 
1019   arg1 = must_be_not_null(arg1, true);
1020   arg2 = must_be_not_null(arg2, true);
1021 
1022   // Get start addr and length of first argument
1023   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1024   Node* arg1_cnt    = load_array_length(arg1);
1025 
1026   // Get start addr and length of second argument
1027   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1028   Node* arg2_cnt    = load_array_length(arg2);
1029 
1030   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1031   set_result(result);
1032   return true;
1033 }
1034 
1035 //------------------------------inline_string_equals------------------------
1036 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1037   Node* arg1 = argument(0);
1038   Node* arg2 = argument(1);
1039 
1040   // paths (plus control) merge
1041   RegionNode* region = new RegionNode(3);
1042   Node* phi = new PhiNode(region, TypeInt::BOOL);
1043 
1044   if (!stopped()) {
1045 
1046     arg1 = must_be_not_null(arg1, true);
1047     arg2 = must_be_not_null(arg2, true);
1048 
1049     // Get start addr and length of first argument
1050     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1051     Node* arg1_cnt    = load_array_length(arg1);
1052 
1053     // Get start addr and length of second argument
1054     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1055     Node* arg2_cnt    = load_array_length(arg2);
1056 
1057     // Check for arg1_cnt != arg2_cnt
1058     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1059     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1060     Node* if_ne = generate_slow_guard(bol, nullptr);
1061     if (if_ne != nullptr) {
1062       phi->init_req(2, intcon(0));
1063       region->init_req(2, if_ne);
1064     }
1065 
1066     // Check for count == 0 is done by assembler code for StrEquals.
1067 
1068     if (!stopped()) {
1069       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1070       phi->init_req(1, equals);
1071       region->init_req(1, control());
1072     }
1073   }
1074 
1075   // post merge
1076   set_control(_gvn.transform(region));
1077   record_for_igvn(region);
1078 
1079   set_result(_gvn.transform(phi));
1080   return true;
1081 }
1082 
1083 //------------------------------inline_array_equals----------------------------
1084 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1085   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1086   Node* arg1 = argument(0);
1087   Node* arg2 = argument(1);
1088 
1089   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1090   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1091   clear_upper_avx();
1092 
1093   return true;
1094 }
1095 
1096 
1097 //------------------------------inline_countPositives------------------------------
1098 bool LibraryCallKit::inline_countPositives() {
1099   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1100     return false;
1101   }
1102 
1103   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1104   // no receiver since it is static method
1105   Node* ba         = argument(0);
1106   Node* offset     = argument(1);
1107   Node* len        = argument(2);
1108 
1109   ba = must_be_not_null(ba, true);
1110 
1111   // Range checks
1112   generate_string_range_check(ba, offset, len, false);
1113   if (stopped()) {
1114     return true;
1115   }
1116   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1117   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1118   set_result(_gvn.transform(result));
1119   clear_upper_avx();
1120   return true;
1121 }
1122 
1123 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1124   Node* index = argument(0);
1125   Node* length = bt == T_INT ? argument(1) : argument(2);
1126   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1127     return false;
1128   }
1129 
1130   // check that length is positive
1131   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1132   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1133 
1134   {
1135     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1136     uncommon_trap(Deoptimization::Reason_intrinsic,
1137                   Deoptimization::Action_make_not_entrant);
1138   }
1139 
1140   if (stopped()) {
1141     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1142     return true;
1143   }
1144 
1145   // length is now known positive, add a cast node to make this explicit
1146   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1147   Node* casted_length = ConstraintCastNode::make_cast_for_basic_type(
1148       control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1149       ConstraintCastNode::RegularDependency, bt);
1150   casted_length = _gvn.transform(casted_length);
1151   replace_in_map(length, casted_length);
1152   length = casted_length;
1153 
1154   // Use an unsigned comparison for the range check itself
1155   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1156   BoolTest::mask btest = BoolTest::lt;
1157   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1158   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1159   _gvn.set_type(rc, rc->Value(&_gvn));
1160   if (!rc_bool->is_Con()) {
1161     record_for_igvn(rc);
1162   }
1163   set_control(_gvn.transform(new IfTrueNode(rc)));
1164   {
1165     PreserveJVMState pjvms(this);
1166     set_control(_gvn.transform(new IfFalseNode(rc)));
1167     uncommon_trap(Deoptimization::Reason_range_check,
1168                   Deoptimization::Action_make_not_entrant);
1169   }
1170 
1171   if (stopped()) {
1172     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1173     return true;
1174   }
1175 
1176   // index is now known to be >= 0 and < length, cast it
1177   Node* result = ConstraintCastNode::make_cast_for_basic_type(
1178       control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1179       ConstraintCastNode::RegularDependency, bt);
1180   result = _gvn.transform(result);
1181   set_result(result);
1182   replace_in_map(index, result);
1183   return true;
1184 }
1185 
1186 //------------------------------inline_string_indexOf------------------------
1187 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1188   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1189     return false;
1190   }
1191   Node* src = argument(0);
1192   Node* tgt = argument(1);
1193 
1194   // Make the merge point
1195   RegionNode* result_rgn = new RegionNode(4);
1196   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1197 
1198   src = must_be_not_null(src, true);
1199   tgt = must_be_not_null(tgt, true);
1200 
1201   // Get start addr and length of source string
1202   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1203   Node* src_count = load_array_length(src);
1204 
1205   // Get start addr and length of substring
1206   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1207   Node* tgt_count = load_array_length(tgt);
1208 
1209   Node* result = nullptr;
1210   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1211 
1212   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1213     // Divide src size by 2 if String is UTF16 encoded
1214     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1215   }
1216   if (ae == StrIntrinsicNode::UU) {
1217     // Divide substring size by 2 if String is UTF16 encoded
1218     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1219   }
1220 
1221   if (call_opt_stub) {
1222     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1223                                    StubRoutines::_string_indexof_array[ae],
1224                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1225                                    src_count, tgt_start, tgt_count);
1226     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1227   } else {
1228     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1229                                result_rgn, result_phi, ae);
1230   }
1231   if (result != nullptr) {
1232     result_phi->init_req(3, result);
1233     result_rgn->init_req(3, control());
1234   }
1235   set_control(_gvn.transform(result_rgn));
1236   record_for_igvn(result_rgn);
1237   set_result(_gvn.transform(result_phi));
1238 
1239   return true;
1240 }
1241 
1242 //-----------------------------inline_string_indexOfI-----------------------
1243 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1244   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1245     return false;
1246   }
1247   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1248     return false;
1249   }
1250 
1251   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1252   Node* src         = argument(0); // byte[]
1253   Node* src_count   = argument(1); // char count
1254   Node* tgt         = argument(2); // byte[]
1255   Node* tgt_count   = argument(3); // char count
1256   Node* from_index  = argument(4); // char index
1257 
1258   src = must_be_not_null(src, true);
1259   tgt = must_be_not_null(tgt, true);
1260 
1261   // Multiply byte array index by 2 if String is UTF16 encoded
1262   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1263   src_count = _gvn.transform(new SubINode(src_count, from_index));
1264   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1265   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1266 
1267   // Range checks
1268   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1269   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1270   if (stopped()) {
1271     return true;
1272   }
1273 
1274   RegionNode* region = new RegionNode(5);
1275   Node* phi = new PhiNode(region, TypeInt::INT);
1276   Node* result = nullptr;
1277 
1278   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1279 
1280   if (call_opt_stub) {
1281     assert(arrayOopDesc::base_offset_in_bytes(T_BYTE) >= 16, "Needed for indexOf");
1282     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1283                                    StubRoutines::_string_indexof_array[ae],
1284                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1285                                    src_count, tgt_start, tgt_count);
1286     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1287   } else {
1288     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1289                                region, phi, ae);
1290   }
1291   if (result != nullptr) {
1292     // The result is index relative to from_index if substring was found, -1 otherwise.
1293     // Generate code which will fold into cmove.
1294     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1295     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1296 
1297     Node* if_lt = generate_slow_guard(bol, nullptr);
1298     if (if_lt != nullptr) {
1299       // result == -1
1300       phi->init_req(3, result);
1301       region->init_req(3, if_lt);
1302     }
1303     if (!stopped()) {
1304       result = _gvn.transform(new AddINode(result, from_index));
1305       phi->init_req(4, result);
1306       region->init_req(4, control());
1307     }
1308   }
1309 
1310   set_control(_gvn.transform(region));
1311   record_for_igvn(region);
1312   set_result(_gvn.transform(phi));
1313   clear_upper_avx();
1314 
1315   return true;
1316 }
1317 
1318 // Create StrIndexOfNode with fast path checks
1319 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1320                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1321   // Check for substr count > string count
1322   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1323   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1324   Node* if_gt = generate_slow_guard(bol, nullptr);
1325   if (if_gt != nullptr) {
1326     phi->init_req(1, intcon(-1));
1327     region->init_req(1, if_gt);
1328   }
1329   if (!stopped()) {
1330     // Check for substr count == 0
1331     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1332     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1333     Node* if_zero = generate_slow_guard(bol, nullptr);
1334     if (if_zero != nullptr) {
1335       phi->init_req(2, intcon(0));
1336       region->init_req(2, if_zero);
1337     }
1338   }
1339   if (!stopped()) {
1340     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1341   }
1342   return nullptr;
1343 }
1344 
1345 //-----------------------------inline_string_indexOfChar-----------------------
1346 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1347   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1348     return false;
1349   }
1350   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1351     return false;
1352   }
1353   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1354   Node* src         = argument(0); // byte[]
1355   Node* int_ch      = argument(1);
1356   Node* from_index  = argument(2);
1357   Node* max         = argument(3);
1358 
1359   src = must_be_not_null(src, true);
1360 
1361   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1362   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1363   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1364 
1365   // Range checks
1366   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1367 
1368   // Check for int_ch >= 0
1369   Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1370   Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1371   {
1372     BuildCutout unless(this, int_ch_bol, PROB_MAX);
1373     uncommon_trap(Deoptimization::Reason_intrinsic,
1374                   Deoptimization::Action_maybe_recompile);
1375   }
1376   if (stopped()) {
1377     return true;
1378   }
1379 
1380   RegionNode* region = new RegionNode(3);
1381   Node* phi = new PhiNode(region, TypeInt::INT);
1382 
1383   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1384   C->set_has_split_ifs(true); // Has chance for split-if optimization
1385   _gvn.transform(result);
1386 
1387   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1388   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1389 
1390   Node* if_lt = generate_slow_guard(bol, nullptr);
1391   if (if_lt != nullptr) {
1392     // result == -1
1393     phi->init_req(2, result);
1394     region->init_req(2, if_lt);
1395   }
1396   if (!stopped()) {
1397     result = _gvn.transform(new AddINode(result, from_index));
1398     phi->init_req(1, result);
1399     region->init_req(1, control());
1400   }
1401   set_control(_gvn.transform(region));
1402   record_for_igvn(region);
1403   set_result(_gvn.transform(phi));
1404   clear_upper_avx();
1405 
1406   return true;
1407 }
1408 //---------------------------inline_string_copy---------------------
1409 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1410 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1411 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1412 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1413 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1414 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1415 bool LibraryCallKit::inline_string_copy(bool compress) {
1416   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1417     return false;
1418   }
1419   int nargs = 5;  // 2 oops, 3 ints
1420   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1421 
1422   Node* src         = argument(0);
1423   Node* src_offset  = argument(1);
1424   Node* dst         = argument(2);
1425   Node* dst_offset  = argument(3);
1426   Node* length      = argument(4);
1427 
1428   // Check for allocation before we add nodes that would confuse
1429   // tightly_coupled_allocation()
1430   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1431 
1432   // Figure out the size and type of the elements we will be copying.
1433   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1434   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1435   if (src_type == nullptr || dst_type == nullptr) {
1436     return false;
1437   }
1438   BasicType src_elem = src_type->elem()->array_element_basic_type();
1439   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1440   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1441          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1442          "Unsupported array types for inline_string_copy");
1443 
1444   src = must_be_not_null(src, true);
1445   dst = must_be_not_null(dst, true);
1446 
1447   // Convert char[] offsets to byte[] offsets
1448   bool convert_src = (compress && src_elem == T_BYTE);
1449   bool convert_dst = (!compress && dst_elem == T_BYTE);
1450   if (convert_src) {
1451     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1452   } else if (convert_dst) {
1453     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1454   }
1455 
1456   // Range checks
1457   generate_string_range_check(src, src_offset, length, convert_src);
1458   generate_string_range_check(dst, dst_offset, length, convert_dst);
1459   if (stopped()) {
1460     return true;
1461   }
1462 
1463   Node* src_start = array_element_address(src, src_offset, src_elem);
1464   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1465   // 'src_start' points to src array + scaled offset
1466   // 'dst_start' points to dst array + scaled offset
1467   Node* count = nullptr;
1468   if (compress) {
1469     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1470   } else {
1471     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1472   }
1473 
1474   if (alloc != nullptr) {
1475     if (alloc->maybe_set_complete(&_gvn)) {
1476       // "You break it, you buy it."
1477       InitializeNode* init = alloc->initialization();
1478       assert(init->is_complete(), "we just did this");
1479       init->set_complete_with_arraycopy();
1480       assert(dst->is_CheckCastPP(), "sanity");
1481       assert(dst->in(0)->in(0) == init, "dest pinned");
1482     }
1483     // Do not let stores that initialize this object be reordered with
1484     // a subsequent store that would make this object accessible by
1485     // other threads.
1486     // Record what AllocateNode this StoreStore protects so that
1487     // escape analysis can go from the MemBarStoreStoreNode to the
1488     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1489     // based on the escape status of the AllocateNode.
1490     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1491   }
1492   if (compress) {
1493     set_result(_gvn.transform(count));
1494   }
1495   clear_upper_avx();
1496 
1497   return true;
1498 }
1499 
1500 #ifdef _LP64
1501 #define XTOP ,top() /*additional argument*/
1502 #else  //_LP64
1503 #define XTOP        /*no additional argument*/
1504 #endif //_LP64
1505 
1506 //------------------------inline_string_toBytesU--------------------------
1507 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1508 bool LibraryCallKit::inline_string_toBytesU() {
1509   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1510     return false;
1511   }
1512   // Get the arguments.
1513   Node* value     = argument(0);
1514   Node* offset    = argument(1);
1515   Node* length    = argument(2);
1516 
1517   Node* newcopy = nullptr;
1518 
1519   // Set the original stack and the reexecute bit for the interpreter to reexecute
1520   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1521   { PreserveReexecuteState preexecs(this);
1522     jvms()->set_should_reexecute(true);
1523 
1524     // Check if a null path was taken unconditionally.
1525     value = null_check(value);
1526 
1527     RegionNode* bailout = new RegionNode(1);
1528     record_for_igvn(bailout);
1529 
1530     // Range checks
1531     generate_negative_guard(offset, bailout);
1532     generate_negative_guard(length, bailout);
1533     generate_limit_guard(offset, length, load_array_length(value), bailout);
1534     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1535     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1536 
1537     if (bailout->req() > 1) {
1538       PreserveJVMState pjvms(this);
1539       set_control(_gvn.transform(bailout));
1540       uncommon_trap(Deoptimization::Reason_intrinsic,
1541                     Deoptimization::Action_maybe_recompile);
1542     }
1543     if (stopped()) {
1544       return true;
1545     }
1546 
1547     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1548     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1549     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1550     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1551     guarantee(alloc != nullptr, "created above");
1552 
1553     // Calculate starting addresses.
1554     Node* src_start = array_element_address(value, offset, T_CHAR);
1555     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1556 
1557     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1558     const TypeInt* toffset = gvn().type(offset)->is_int();
1559     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1560 
1561     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1562     const char* copyfunc_name = "arraycopy";
1563     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1564     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1565                       OptoRuntime::fast_arraycopy_Type(),
1566                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1567                       src_start, dst_start, ConvI2X(length) XTOP);
1568     // Do not let reads from the cloned object float above the arraycopy.
1569     if (alloc->maybe_set_complete(&_gvn)) {
1570       // "You break it, you buy it."
1571       InitializeNode* init = alloc->initialization();
1572       assert(init->is_complete(), "we just did this");
1573       init->set_complete_with_arraycopy();
1574       assert(newcopy->is_CheckCastPP(), "sanity");
1575       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1576     }
1577     // Do not let stores that initialize this object be reordered with
1578     // a subsequent store that would make this object accessible by
1579     // other threads.
1580     // Record what AllocateNode this StoreStore protects so that
1581     // escape analysis can go from the MemBarStoreStoreNode to the
1582     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1583     // based on the escape status of the AllocateNode.
1584     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1585   } // original reexecute is set back here
1586 
1587   C->set_has_split_ifs(true); // Has chance for split-if optimization
1588   if (!stopped()) {
1589     set_result(newcopy);
1590   }
1591   clear_upper_avx();
1592 
1593   return true;
1594 }
1595 
1596 //------------------------inline_string_getCharsU--------------------------
1597 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1598 bool LibraryCallKit::inline_string_getCharsU() {
1599   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1600     return false;
1601   }
1602 
1603   // Get the arguments.
1604   Node* src       = argument(0);
1605   Node* src_begin = argument(1);
1606   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1607   Node* dst       = argument(3);
1608   Node* dst_begin = argument(4);
1609 
1610   // Check for allocation before we add nodes that would confuse
1611   // tightly_coupled_allocation()
1612   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1613 
1614   // Check if a null path was taken unconditionally.
1615   src = null_check(src);
1616   dst = null_check(dst);
1617   if (stopped()) {
1618     return true;
1619   }
1620 
1621   // Get length and convert char[] offset to byte[] offset
1622   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1623   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1624 
1625   // Range checks
1626   generate_string_range_check(src, src_begin, length, true);
1627   generate_string_range_check(dst, dst_begin, length, false);
1628   if (stopped()) {
1629     return true;
1630   }
1631 
1632   if (!stopped()) {
1633     // Calculate starting addresses.
1634     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1635     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1636 
1637     // Check if array addresses are aligned to HeapWordSize
1638     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1639     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1640     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1641                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1642 
1643     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1644     const char* copyfunc_name = "arraycopy";
1645     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1646     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1647                       OptoRuntime::fast_arraycopy_Type(),
1648                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1649                       src_start, dst_start, ConvI2X(length) XTOP);
1650     // Do not let reads from the cloned object float above the arraycopy.
1651     if (alloc != nullptr) {
1652       if (alloc->maybe_set_complete(&_gvn)) {
1653         // "You break it, you buy it."
1654         InitializeNode* init = alloc->initialization();
1655         assert(init->is_complete(), "we just did this");
1656         init->set_complete_with_arraycopy();
1657         assert(dst->is_CheckCastPP(), "sanity");
1658         assert(dst->in(0)->in(0) == init, "dest pinned");
1659       }
1660       // Do not let stores that initialize this object be reordered with
1661       // a subsequent store that would make this object accessible by
1662       // other threads.
1663       // Record what AllocateNode this StoreStore protects so that
1664       // escape analysis can go from the MemBarStoreStoreNode to the
1665       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1666       // based on the escape status of the AllocateNode.
1667       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1668     } else {
1669       insert_mem_bar(Op_MemBarCPUOrder);
1670     }
1671   }
1672 
1673   C->set_has_split_ifs(true); // Has chance for split-if optimization
1674   return true;
1675 }
1676 
1677 //----------------------inline_string_char_access----------------------------
1678 // Store/Load char to/from byte[] array.
1679 // static void StringUTF16.putChar(byte[] val, int index, int c)
1680 // static char StringUTF16.getChar(byte[] val, int index)
1681 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1682   Node* value  = argument(0);
1683   Node* index  = argument(1);
1684   Node* ch = is_store ? argument(2) : nullptr;
1685 
1686   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1687   // correctly requires matched array shapes.
1688   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1689           "sanity: byte[] and char[] bases agree");
1690   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1691           "sanity: byte[] and char[] scales agree");
1692 
1693   // Bail when getChar over constants is requested: constant folding would
1694   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1695   // Java method would constant fold nicely instead.
1696   if (!is_store && value->is_Con() && index->is_Con()) {
1697     return false;
1698   }
1699 
1700   // Save state and restore on bailout
1701   uint old_sp = sp();
1702   SafePointNode* old_map = clone_map();
1703 
1704   value = must_be_not_null(value, true);
1705 
1706   Node* adr = array_element_address(value, index, T_CHAR);
1707   if (adr->is_top()) {
1708     set_map(old_map);
1709     set_sp(old_sp);
1710     return false;
1711   }
1712   destruct_map_clone(old_map);
1713   if (is_store) {
1714     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1715   } else {
1716     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1717     set_result(ch);
1718   }
1719   return true;
1720 }
1721 
1722 //--------------------------round_double_node--------------------------------
1723 // Round a double node if necessary.
1724 Node* LibraryCallKit::round_double_node(Node* n) {
1725   if (Matcher::strict_fp_requires_explicit_rounding) {
1726 #ifdef IA32
1727     if (UseSSE < 2) {
1728       n = _gvn.transform(new RoundDoubleNode(nullptr, n));
1729     }
1730 #else
1731     Unimplemented();
1732 #endif // IA32
1733   }
1734   return n;
1735 }
1736 
1737 //------------------------------inline_math-----------------------------------
1738 // public static double Math.abs(double)
1739 // public static double Math.sqrt(double)
1740 // public static double Math.log(double)
1741 // public static double Math.log10(double)
1742 // public static double Math.round(double)
1743 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1744   Node* arg = round_double_node(argument(0));
1745   Node* n = nullptr;
1746   switch (id) {
1747   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1748   case vmIntrinsics::_dsqrt:
1749   case vmIntrinsics::_dsqrt_strict:
1750                               n = new SqrtDNode(C, control(),  arg);  break;
1751   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1752   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1753   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1754   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1755   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break;
1756   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1757   default:  fatal_unexpected_iid(id);  break;
1758   }
1759   set_result(_gvn.transform(n));
1760   return true;
1761 }
1762 
1763 //------------------------------inline_math-----------------------------------
1764 // public static float Math.abs(float)
1765 // public static int Math.abs(int)
1766 // public static long Math.abs(long)
1767 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1768   Node* arg = argument(0);
1769   Node* n = nullptr;
1770   switch (id) {
1771   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1772   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1773   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1774   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1775   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1776   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1777   default:  fatal_unexpected_iid(id);  break;
1778   }
1779   set_result(_gvn.transform(n));
1780   return true;
1781 }
1782 
1783 //------------------------------runtime_math-----------------------------
1784 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1785   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1786          "must be (DD)D or (D)D type");
1787 
1788   // Inputs
1789   Node* a = round_double_node(argument(0));
1790   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr;
1791 
1792   const TypePtr* no_memory_effects = nullptr;
1793   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1794                                  no_memory_effects,
1795                                  a, top(), b, b ? top() : nullptr);
1796   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1797 #ifdef ASSERT
1798   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1799   assert(value_top == top(), "second value must be top");
1800 #endif
1801 
1802   set_result(value);
1803   return true;
1804 }
1805 
1806 //------------------------------inline_math_pow-----------------------------
1807 bool LibraryCallKit::inline_math_pow() {
1808   Node* exp = round_double_node(argument(2));
1809   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1810   if (d != nullptr) {
1811     if (d->getd() == 2.0) {
1812       // Special case: pow(x, 2.0) => x * x
1813       Node* base = round_double_node(argument(0));
1814       set_result(_gvn.transform(new MulDNode(base, base)));
1815       return true;
1816     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1817       // Special case: pow(x, 0.5) => sqrt(x)
1818       Node* base = round_double_node(argument(0));
1819       Node* zero = _gvn.zerocon(T_DOUBLE);
1820 
1821       RegionNode* region = new RegionNode(3);
1822       Node* phi = new PhiNode(region, Type::DOUBLE);
1823 
1824       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1825       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1826       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1827       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1828       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1829 
1830       Node* if_pow = generate_slow_guard(test, nullptr);
1831       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1832       phi->init_req(1, value_sqrt);
1833       region->init_req(1, control());
1834 
1835       if (if_pow != nullptr) {
1836         set_control(if_pow);
1837         address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1838                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1839         const TypePtr* no_memory_effects = nullptr;
1840         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1841                                        no_memory_effects, base, top(), exp, top());
1842         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1843 #ifdef ASSERT
1844         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1845         assert(value_top == top(), "second value must be top");
1846 #endif
1847         phi->init_req(2, value_pow);
1848         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1849       }
1850 
1851       C->set_has_split_ifs(true); // Has chance for split-if optimization
1852       set_control(_gvn.transform(region));
1853       record_for_igvn(region);
1854       set_result(_gvn.transform(phi));
1855 
1856       return true;
1857     }
1858   }
1859 
1860   return StubRoutines::dpow() != nullptr ?
1861     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1862     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1863 }
1864 
1865 //------------------------------inline_math_native-----------------------------
1866 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1867   switch (id) {
1868   case vmIntrinsics::_dsin:
1869     return StubRoutines::dsin() != nullptr ?
1870       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1871       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin),   "SIN");
1872   case vmIntrinsics::_dcos:
1873     return StubRoutines::dcos() != nullptr ?
1874       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1875       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos),   "COS");
1876   case vmIntrinsics::_dtan:
1877     return StubRoutines::dtan() != nullptr ?
1878       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1879       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1880   case vmIntrinsics::_dexp:
1881     return StubRoutines::dexp() != nullptr ?
1882       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1883       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp),  "EXP");
1884   case vmIntrinsics::_dlog:
1885     return StubRoutines::dlog() != nullptr ?
1886       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1887       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog),   "LOG");
1888   case vmIntrinsics::_dlog10:
1889     return StubRoutines::dlog10() != nullptr ?
1890       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1891       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1892 
1893   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1894   case vmIntrinsics::_ceil:
1895   case vmIntrinsics::_floor:
1896   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1897 
1898   case vmIntrinsics::_dsqrt:
1899   case vmIntrinsics::_dsqrt_strict:
1900                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1901   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1902   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1903   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1904   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1905 
1906   case vmIntrinsics::_dpow:      return inline_math_pow();
1907   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1908   case vmIntrinsics::_fcopySign: return inline_math(id);
1909   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1910   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1911   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1912 
1913    // These intrinsics are not yet correctly implemented
1914   case vmIntrinsics::_datan2:
1915     return false;
1916 
1917   default:
1918     fatal_unexpected_iid(id);
1919     return false;
1920   }
1921 }
1922 
1923 //----------------------------inline_notify-----------------------------------*
1924 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1925   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1926   address func;
1927   if (id == vmIntrinsics::_notify) {
1928     func = OptoRuntime::monitor_notify_Java();
1929   } else {
1930     func = OptoRuntime::monitor_notifyAll_Java();
1931   }
1932   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1933   make_slow_call_ex(call, env()->Throwable_klass(), false);
1934   return true;
1935 }
1936 
1937 
1938 //----------------------------inline_min_max-----------------------------------
1939 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1940   set_result(generate_min_max(id, argument(0), argument(1)));
1941   return true;
1942 }
1943 
1944 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1945   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1946   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1947   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1948   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1949 
1950   {
1951     PreserveJVMState pjvms(this);
1952     PreserveReexecuteState preexecs(this);
1953     jvms()->set_should_reexecute(true);
1954 
1955     set_control(slow_path);
1956     set_i_o(i_o());
1957 
1958     uncommon_trap(Deoptimization::Reason_intrinsic,
1959                   Deoptimization::Action_none);
1960   }
1961 
1962   set_control(fast_path);
1963   set_result(math);
1964 }
1965 
1966 template <typename OverflowOp>
1967 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1968   typedef typename OverflowOp::MathOp MathOp;
1969 
1970   MathOp* mathOp = new MathOp(arg1, arg2);
1971   Node* operation = _gvn.transform( mathOp );
1972   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1973   inline_math_mathExact(operation, ofcheck);
1974   return true;
1975 }
1976 
1977 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1978   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1979 }
1980 
1981 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1982   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1983 }
1984 
1985 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1986   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1987 }
1988 
1989 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1990   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1991 }
1992 
1993 bool LibraryCallKit::inline_math_negateExactI() {
1994   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1995 }
1996 
1997 bool LibraryCallKit::inline_math_negateExactL() {
1998   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1999 }
2000 
2001 bool LibraryCallKit::inline_math_multiplyExactI() {
2002   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2003 }
2004 
2005 bool LibraryCallKit::inline_math_multiplyExactL() {
2006   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2007 }
2008 
2009 bool LibraryCallKit::inline_math_multiplyHigh() {
2010   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2011   return true;
2012 }
2013 
2014 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
2015   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
2016   return true;
2017 }
2018 
2019 Node*
2020 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2021   Node* result_val = nullptr;
2022   switch (id) {
2023   case vmIntrinsics::_min:
2024   case vmIntrinsics::_min_strict:
2025     result_val = _gvn.transform(new MinINode(x0, y0));
2026     break;
2027   case vmIntrinsics::_max:
2028   case vmIntrinsics::_max_strict:
2029     result_val = _gvn.transform(new MaxINode(x0, y0));
2030     break;
2031   default:
2032     fatal_unexpected_iid(id);
2033     break;
2034   }
2035   return result_val;
2036 }
2037 
2038 inline int
2039 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2040   const TypePtr* base_type = TypePtr::NULL_PTR;
2041   if (base != nullptr)  base_type = _gvn.type(base)->isa_ptr();
2042   if (base_type == nullptr) {
2043     // Unknown type.
2044     return Type::AnyPtr;
2045   } else if (base_type == TypePtr::NULL_PTR) {
2046     // Since this is a null+long form, we have to switch to a rawptr.
2047     base   = _gvn.transform(new CastX2PNode(offset));
2048     offset = MakeConX(0);
2049     return Type::RawPtr;
2050   } else if (base_type->base() == Type::RawPtr) {
2051     return Type::RawPtr;
2052   } else if (base_type->isa_oopptr()) {
2053     // Base is never null => always a heap address.
2054     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2055       return Type::OopPtr;
2056     }
2057     // Offset is small => always a heap address.
2058     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2059     if (offset_type != nullptr &&
2060         base_type->offset() == 0 &&     // (should always be?)
2061         offset_type->_lo >= 0 &&
2062         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2063       return Type::OopPtr;
2064     } else if (type == T_OBJECT) {
2065       // off heap access to an oop doesn't make any sense. Has to be on
2066       // heap.
2067       return Type::OopPtr;
2068     }
2069     // Otherwise, it might either be oop+off or null+addr.
2070     return Type::AnyPtr;
2071   } else {
2072     // No information:
2073     return Type::AnyPtr;
2074   }
2075 }
2076 
2077 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2078   Node* uncasted_base = base;
2079   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2080   if (kind == Type::RawPtr) {
2081     return basic_plus_adr(top(), uncasted_base, offset);
2082   } else if (kind == Type::AnyPtr) {
2083     assert(base == uncasted_base, "unexpected base change");
2084     if (can_cast) {
2085       if (!_gvn.type(base)->speculative_maybe_null() &&
2086           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2087         // According to profiling, this access is always on
2088         // heap. Casting the base to not null and thus avoiding membars
2089         // around the access should allow better optimizations
2090         Node* null_ctl = top();
2091         base = null_check_oop(base, &null_ctl, true, true, true);
2092         assert(null_ctl->is_top(), "no null control here");
2093         return basic_plus_adr(base, offset);
2094       } else if (_gvn.type(base)->speculative_always_null() &&
2095                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2096         // According to profiling, this access is always off
2097         // heap.
2098         base = null_assert(base);
2099         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2100         offset = MakeConX(0);
2101         return basic_plus_adr(top(), raw_base, offset);
2102       }
2103     }
2104     // We don't know if it's an on heap or off heap access. Fall back
2105     // to raw memory access.
2106     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2107     return basic_plus_adr(top(), raw, offset);
2108   } else {
2109     assert(base == uncasted_base, "unexpected base change");
2110     // We know it's an on heap access so base can't be null
2111     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2112       base = must_be_not_null(base, true);
2113     }
2114     return basic_plus_adr(base, offset);
2115   }
2116 }
2117 
2118 //--------------------------inline_number_methods-----------------------------
2119 // inline int     Integer.numberOfLeadingZeros(int)
2120 // inline int        Long.numberOfLeadingZeros(long)
2121 //
2122 // inline int     Integer.numberOfTrailingZeros(int)
2123 // inline int        Long.numberOfTrailingZeros(long)
2124 //
2125 // inline int     Integer.bitCount(int)
2126 // inline int        Long.bitCount(long)
2127 //
2128 // inline char  Character.reverseBytes(char)
2129 // inline short     Short.reverseBytes(short)
2130 // inline int     Integer.reverseBytes(int)
2131 // inline long       Long.reverseBytes(long)
2132 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2133   Node* arg = argument(0);
2134   Node* n = nullptr;
2135   switch (id) {
2136   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2137   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2138   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2139   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2140   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2141   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2142   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(nullptr, arg);  break;
2143   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( nullptr, arg);  break;
2144   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( nullptr, arg);  break;
2145   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( nullptr, arg);  break;
2146   case vmIntrinsics::_reverse_i:                n = new ReverseINode(nullptr, arg); break;
2147   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(nullptr, arg); break;
2148   default:  fatal_unexpected_iid(id);  break;
2149   }
2150   set_result(_gvn.transform(n));
2151   return true;
2152 }
2153 
2154 //--------------------------inline_bitshuffle_methods-----------------------------
2155 // inline int Integer.compress(int, int)
2156 // inline int Integer.expand(int, int)
2157 // inline long Long.compress(long, long)
2158 // inline long Long.expand(long, long)
2159 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2160   Node* n = nullptr;
2161   switch (id) {
2162     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2163     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2164     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2165     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2166     default:  fatal_unexpected_iid(id);  break;
2167   }
2168   set_result(_gvn.transform(n));
2169   return true;
2170 }
2171 
2172 //--------------------------inline_number_methods-----------------------------
2173 // inline int Integer.compareUnsigned(int, int)
2174 // inline int    Long.compareUnsigned(long, long)
2175 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2176   Node* arg1 = argument(0);
2177   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2178   Node* n = nullptr;
2179   switch (id) {
2180     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2181     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2182     default:  fatal_unexpected_iid(id);  break;
2183   }
2184   set_result(_gvn.transform(n));
2185   return true;
2186 }
2187 
2188 //--------------------------inline_unsigned_divmod_methods-----------------------------
2189 // inline int Integer.divideUnsigned(int, int)
2190 // inline int Integer.remainderUnsigned(int, int)
2191 // inline long Long.divideUnsigned(long, long)
2192 // inline long Long.remainderUnsigned(long, long)
2193 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2194   Node* n = nullptr;
2195   switch (id) {
2196     case vmIntrinsics::_divideUnsigned_i: {
2197       zero_check_int(argument(1));
2198       // Compile-time detect of null-exception
2199       if (stopped()) {
2200         return true; // keep the graph constructed so far
2201       }
2202       n = new UDivINode(control(), argument(0), argument(1));
2203       break;
2204     }
2205     case vmIntrinsics::_divideUnsigned_l: {
2206       zero_check_long(argument(2));
2207       // Compile-time detect of null-exception
2208       if (stopped()) {
2209         return true; // keep the graph constructed so far
2210       }
2211       n = new UDivLNode(control(), argument(0), argument(2));
2212       break;
2213     }
2214     case vmIntrinsics::_remainderUnsigned_i: {
2215       zero_check_int(argument(1));
2216       // Compile-time detect of null-exception
2217       if (stopped()) {
2218         return true; // keep the graph constructed so far
2219       }
2220       n = new UModINode(control(), argument(0), argument(1));
2221       break;
2222     }
2223     case vmIntrinsics::_remainderUnsigned_l: {
2224       zero_check_long(argument(2));
2225       // Compile-time detect of null-exception
2226       if (stopped()) {
2227         return true; // keep the graph constructed so far
2228       }
2229       n = new UModLNode(control(), argument(0), argument(2));
2230       break;
2231     }
2232     default:  fatal_unexpected_iid(id);  break;
2233   }
2234   set_result(_gvn.transform(n));
2235   return true;
2236 }
2237 
2238 //----------------------------inline_unsafe_access----------------------------
2239 
2240 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2241   // Attempt to infer a sharper value type from the offset and base type.
2242   ciKlass* sharpened_klass = nullptr;
2243 
2244   // See if it is an instance field, with an object type.
2245   if (alias_type->field() != nullptr) {
2246     if (alias_type->field()->type()->is_klass()) {
2247       sharpened_klass = alias_type->field()->type()->as_klass();
2248     }
2249   }
2250 
2251   const TypeOopPtr* result = nullptr;
2252   // See if it is a narrow oop array.
2253   if (adr_type->isa_aryptr()) {
2254     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2255       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2256       if (elem_type != nullptr && elem_type->is_loaded()) {
2257         // Sharpen the value type.
2258         result = elem_type;
2259       }
2260     }
2261   }
2262 
2263   // The sharpened class might be unloaded if there is no class loader
2264   // contraint in place.
2265   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2266     // Sharpen the value type.
2267     result = TypeOopPtr::make_from_klass(sharpened_klass);
2268   }
2269   if (result != nullptr) {
2270 #ifndef PRODUCT
2271     if (C->print_intrinsics() || C->print_inlining()) {
2272       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2273       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2274     }
2275 #endif
2276   }
2277   return result;
2278 }
2279 
2280 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2281   switch (kind) {
2282       case Relaxed:
2283         return MO_UNORDERED;
2284       case Opaque:
2285         return MO_RELAXED;
2286       case Acquire:
2287         return MO_ACQUIRE;
2288       case Release:
2289         return MO_RELEASE;
2290       case Volatile:
2291         return MO_SEQ_CST;
2292       default:
2293         ShouldNotReachHere();
2294         return 0;
2295   }
2296 }
2297 
2298 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2299   if (callee()->is_static())  return false;  // caller must have the capability!
2300   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2301   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2302   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2303   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2304 
2305   if (is_reference_type(type)) {
2306     decorators |= ON_UNKNOWN_OOP_REF;
2307   }
2308 
2309   if (unaligned) {
2310     decorators |= C2_UNALIGNED;
2311   }
2312 
2313 #ifndef PRODUCT
2314   {
2315     ResourceMark rm;
2316     // Check the signatures.
2317     ciSignature* sig = callee()->signature();
2318 #ifdef ASSERT
2319     if (!is_store) {
2320       // Object getReference(Object base, int/long offset), etc.
2321       BasicType rtype = sig->return_type()->basic_type();
2322       assert(rtype == type, "getter must return the expected value");
2323       assert(sig->count() == 2, "oop getter has 2 arguments");
2324       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2325       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2326     } else {
2327       // void putReference(Object base, int/long offset, Object x), etc.
2328       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2329       assert(sig->count() == 3, "oop putter has 3 arguments");
2330       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2331       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2332       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2333       assert(vtype == type, "putter must accept the expected value");
2334     }
2335 #endif // ASSERT
2336  }
2337 #endif //PRODUCT
2338 
2339   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2340 
2341   Node* receiver = argument(0);  // type: oop
2342 
2343   // Build address expression.
2344   Node* heap_base_oop = top();
2345 
2346   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2347   Node* base = argument(1);  // type: oop
2348   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2349   Node* offset = argument(2);  // type: long
2350   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2351   // to be plain byte offsets, which are also the same as those accepted
2352   // by oopDesc::field_addr.
2353   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2354          "fieldOffset must be byte-scaled");
2355   // 32-bit machines ignore the high half!
2356   offset = ConvL2X(offset);
2357 
2358   // Save state and restore on bailout
2359   uint old_sp = sp();
2360   SafePointNode* old_map = clone_map();
2361 
2362   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2363 
2364   if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) {
2365     if (type != T_OBJECT) {
2366       decorators |= IN_NATIVE; // off-heap primitive access
2367     } else {
2368       set_map(old_map);
2369       set_sp(old_sp);
2370       return false; // off-heap oop accesses are not supported
2371     }
2372   } else {
2373     heap_base_oop = base; // on-heap or mixed access
2374   }
2375 
2376   // Can base be null? Otherwise, always on-heap access.
2377   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2378 
2379   if (!can_access_non_heap) {
2380     decorators |= IN_HEAP;
2381   }
2382 
2383   Node* val = is_store ? argument(4) : nullptr;
2384 
2385   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2386   if (adr_type == TypePtr::NULL_PTR) {
2387     set_map(old_map);
2388     set_sp(old_sp);
2389     return false; // off-heap access with zero address
2390   }
2391 
2392   // Try to categorize the address.
2393   Compile::AliasType* alias_type = C->alias_type(adr_type);
2394   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2395 
2396   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2397       alias_type->adr_type() == TypeAryPtr::RANGE) {
2398     set_map(old_map);
2399     set_sp(old_sp);
2400     return false; // not supported
2401   }
2402 
2403   bool mismatched = false;
2404   BasicType bt = alias_type->basic_type();
2405   if (bt != T_ILLEGAL) {
2406     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2407     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2408       // Alias type doesn't differentiate between byte[] and boolean[]).
2409       // Use address type to get the element type.
2410       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2411     }
2412     if (is_reference_type(bt, true)) {
2413       // accessing an array field with getReference is not a mismatch
2414       bt = T_OBJECT;
2415     }
2416     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2417       // Don't intrinsify mismatched object accesses
2418       set_map(old_map);
2419       set_sp(old_sp);
2420       return false;
2421     }
2422     mismatched = (bt != type);
2423   } else if (alias_type->adr_type()->isa_oopptr()) {
2424     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2425   }
2426 
2427   destruct_map_clone(old_map);
2428   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2429 
2430   if (mismatched) {
2431     decorators |= C2_MISMATCHED;
2432   }
2433 
2434   // First guess at the value type.
2435   const Type *value_type = Type::get_const_basic_type(type);
2436 
2437   // Figure out the memory ordering.
2438   decorators |= mo_decorator_for_access_kind(kind);
2439 
2440   if (!is_store && type == T_OBJECT) {
2441     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2442     if (tjp != nullptr) {
2443       value_type = tjp;
2444     }
2445   }
2446 
2447   receiver = null_check(receiver);
2448   if (stopped()) {
2449     return true;
2450   }
2451   // Heap pointers get a null-check from the interpreter,
2452   // as a courtesy.  However, this is not guaranteed by Unsafe,
2453   // and it is not possible to fully distinguish unintended nulls
2454   // from intended ones in this API.
2455 
2456   if (!is_store) {
2457     Node* p = nullptr;
2458     // Try to constant fold a load from a constant field
2459     ciField* field = alias_type->field();
2460     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2461       // final or stable field
2462       p = make_constant_from_field(field, heap_base_oop);
2463     }
2464 
2465     if (p == nullptr) { // Could not constant fold the load
2466       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2467       // Normalize the value returned by getBoolean in the following cases
2468       if (type == T_BOOLEAN &&
2469           (mismatched ||
2470            heap_base_oop == top() ||                  // - heap_base_oop is null or
2471            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2472                                                       //   and the unsafe access is made to large offset
2473                                                       //   (i.e., larger than the maximum offset necessary for any
2474                                                       //   field access)
2475             ) {
2476           IdealKit ideal = IdealKit(this);
2477 #define __ ideal.
2478           IdealVariable normalized_result(ideal);
2479           __ declarations_done();
2480           __ set(normalized_result, p);
2481           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2482           __ set(normalized_result, ideal.ConI(1));
2483           ideal.end_if();
2484           final_sync(ideal);
2485           p = __ value(normalized_result);
2486 #undef __
2487       }
2488     }
2489     if (type == T_ADDRESS) {
2490       p = gvn().transform(new CastP2XNode(nullptr, p));
2491       p = ConvX2UL(p);
2492     }
2493     // The load node has the control of the preceding MemBarCPUOrder.  All
2494     // following nodes will have the control of the MemBarCPUOrder inserted at
2495     // the end of this method.  So, pushing the load onto the stack at a later
2496     // point is fine.
2497     set_result(p);
2498   } else {
2499     if (bt == T_ADDRESS) {
2500       // Repackage the long as a pointer.
2501       val = ConvL2X(val);
2502       val = gvn().transform(new CastX2PNode(val));
2503     }
2504     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2505   }
2506 
2507   return true;
2508 }
2509 
2510 //----------------------------inline_unsafe_load_store----------------------------
2511 // This method serves a couple of different customers (depending on LoadStoreKind):
2512 //
2513 // LS_cmp_swap:
2514 //
2515 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2516 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2517 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2518 //
2519 // LS_cmp_swap_weak:
2520 //
2521 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2522 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2523 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2524 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2525 //
2526 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2527 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2528 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2529 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2530 //
2531 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2532 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2533 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2534 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2535 //
2536 // LS_cmp_exchange:
2537 //
2538 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2539 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2540 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2541 //
2542 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2543 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2544 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2545 //
2546 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2547 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2548 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2549 //
2550 // LS_get_add:
2551 //
2552 //   int  getAndAddInt( Object o, long offset, int  delta)
2553 //   long getAndAddLong(Object o, long offset, long delta)
2554 //
2555 // LS_get_set:
2556 //
2557 //   int    getAndSet(Object o, long offset, int    newValue)
2558 //   long   getAndSet(Object o, long offset, long   newValue)
2559 //   Object getAndSet(Object o, long offset, Object newValue)
2560 //
2561 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2562   // This basic scheme here is the same as inline_unsafe_access, but
2563   // differs in enough details that combining them would make the code
2564   // overly confusing.  (This is a true fact! I originally combined
2565   // them, but even I was confused by it!) As much code/comments as
2566   // possible are retained from inline_unsafe_access though to make
2567   // the correspondences clearer. - dl
2568 
2569   if (callee()->is_static())  return false;  // caller must have the capability!
2570 
2571   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2572   decorators |= mo_decorator_for_access_kind(access_kind);
2573 
2574 #ifndef PRODUCT
2575   BasicType rtype;
2576   {
2577     ResourceMark rm;
2578     // Check the signatures.
2579     ciSignature* sig = callee()->signature();
2580     rtype = sig->return_type()->basic_type();
2581     switch(kind) {
2582       case LS_get_add:
2583       case LS_get_set: {
2584       // Check the signatures.
2585 #ifdef ASSERT
2586       assert(rtype == type, "get and set must return the expected type");
2587       assert(sig->count() == 3, "get and set has 3 arguments");
2588       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2589       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2590       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2591       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2592 #endif // ASSERT
2593         break;
2594       }
2595       case LS_cmp_swap:
2596       case LS_cmp_swap_weak: {
2597       // Check the signatures.
2598 #ifdef ASSERT
2599       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2600       assert(sig->count() == 4, "CAS has 4 arguments");
2601       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2602       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2603 #endif // ASSERT
2604         break;
2605       }
2606       case LS_cmp_exchange: {
2607       // Check the signatures.
2608 #ifdef ASSERT
2609       assert(rtype == type, "CAS must return the expected type");
2610       assert(sig->count() == 4, "CAS has 4 arguments");
2611       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2612       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2613 #endif // ASSERT
2614         break;
2615       }
2616       default:
2617         ShouldNotReachHere();
2618     }
2619   }
2620 #endif //PRODUCT
2621 
2622   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2623 
2624   // Get arguments:
2625   Node* receiver = nullptr;
2626   Node* base     = nullptr;
2627   Node* offset   = nullptr;
2628   Node* oldval   = nullptr;
2629   Node* newval   = nullptr;
2630   switch(kind) {
2631     case LS_cmp_swap:
2632     case LS_cmp_swap_weak:
2633     case LS_cmp_exchange: {
2634       const bool two_slot_type = type2size[type] == 2;
2635       receiver = argument(0);  // type: oop
2636       base     = argument(1);  // type: oop
2637       offset   = argument(2);  // type: long
2638       oldval   = argument(4);  // type: oop, int, or long
2639       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2640       break;
2641     }
2642     case LS_get_add:
2643     case LS_get_set: {
2644       receiver = argument(0);  // type: oop
2645       base     = argument(1);  // type: oop
2646       offset   = argument(2);  // type: long
2647       oldval   = nullptr;
2648       newval   = argument(4);  // type: oop, int, or long
2649       break;
2650     }
2651     default:
2652       ShouldNotReachHere();
2653   }
2654 
2655   // Build field offset expression.
2656   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2657   // to be plain byte offsets, which are also the same as those accepted
2658   // by oopDesc::field_addr.
2659   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2660   // 32-bit machines ignore the high half of long offsets
2661   offset = ConvL2X(offset);
2662   // Save state and restore on bailout
2663   uint old_sp = sp();
2664   SafePointNode* old_map = clone_map();
2665   Node* adr = make_unsafe_address(base, offset,type, false);
2666   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2667 
2668   Compile::AliasType* alias_type = C->alias_type(adr_type);
2669   BasicType bt = alias_type->basic_type();
2670   if (bt != T_ILLEGAL &&
2671       (is_reference_type(bt) != (type == T_OBJECT))) {
2672     // Don't intrinsify mismatched object accesses.
2673     set_map(old_map);
2674     set_sp(old_sp);
2675     return false;
2676   }
2677 
2678   destruct_map_clone(old_map);
2679 
2680   // For CAS, unlike inline_unsafe_access, there seems no point in
2681   // trying to refine types. Just use the coarse types here.
2682   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2683   const Type *value_type = Type::get_const_basic_type(type);
2684 
2685   switch (kind) {
2686     case LS_get_set:
2687     case LS_cmp_exchange: {
2688       if (type == T_OBJECT) {
2689         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2690         if (tjp != nullptr) {
2691           value_type = tjp;
2692         }
2693       }
2694       break;
2695     }
2696     case LS_cmp_swap:
2697     case LS_cmp_swap_weak:
2698     case LS_get_add:
2699       break;
2700     default:
2701       ShouldNotReachHere();
2702   }
2703 
2704   // Null check receiver.
2705   receiver = null_check(receiver);
2706   if (stopped()) {
2707     return true;
2708   }
2709 
2710   int alias_idx = C->get_alias_index(adr_type);
2711 
2712   if (is_reference_type(type)) {
2713     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2714 
2715     // Transformation of a value which could be null pointer (CastPP #null)
2716     // could be delayed during Parse (for example, in adjust_map_after_if()).
2717     // Execute transformation here to avoid barrier generation in such case.
2718     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2719       newval = _gvn.makecon(TypePtr::NULL_PTR);
2720 
2721     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2722       // Refine the value to a null constant, when it is known to be null
2723       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2724     }
2725   }
2726 
2727   Node* result = nullptr;
2728   switch (kind) {
2729     case LS_cmp_exchange: {
2730       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2731                                             oldval, newval, value_type, type, decorators);
2732       break;
2733     }
2734     case LS_cmp_swap_weak:
2735       decorators |= C2_WEAK_CMPXCHG;
2736     case LS_cmp_swap: {
2737       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2738                                              oldval, newval, value_type, type, decorators);
2739       break;
2740     }
2741     case LS_get_set: {
2742       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2743                                      newval, value_type, type, decorators);
2744       break;
2745     }
2746     case LS_get_add: {
2747       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2748                                     newval, value_type, type, decorators);
2749       break;
2750     }
2751     default:
2752       ShouldNotReachHere();
2753   }
2754 
2755   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2756   set_result(result);
2757   return true;
2758 }
2759 
2760 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2761   // Regardless of form, don't allow previous ld/st to move down,
2762   // then issue acquire, release, or volatile mem_bar.
2763   insert_mem_bar(Op_MemBarCPUOrder);
2764   switch(id) {
2765     case vmIntrinsics::_loadFence:
2766       insert_mem_bar(Op_LoadFence);
2767       return true;
2768     case vmIntrinsics::_storeFence:
2769       insert_mem_bar(Op_StoreFence);
2770       return true;
2771     case vmIntrinsics::_storeStoreFence:
2772       insert_mem_bar(Op_StoreStoreFence);
2773       return true;
2774     case vmIntrinsics::_fullFence:
2775       insert_mem_bar(Op_MemBarVolatile);
2776       return true;
2777     default:
2778       fatal_unexpected_iid(id);
2779       return false;
2780   }
2781 }
2782 
2783 bool LibraryCallKit::inline_onspinwait() {
2784   insert_mem_bar(Op_OnSpinWait);
2785   return true;
2786 }
2787 
2788 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2789   if (!kls->is_Con()) {
2790     return true;
2791   }
2792   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2793   if (klsptr == nullptr) {
2794     return true;
2795   }
2796   ciInstanceKlass* ik = klsptr->instance_klass();
2797   // don't need a guard for a klass that is already initialized
2798   return !ik->is_initialized();
2799 }
2800 
2801 //----------------------------inline_unsafe_writeback0-------------------------
2802 // public native void Unsafe.writeback0(long address)
2803 bool LibraryCallKit::inline_unsafe_writeback0() {
2804   if (!Matcher::has_match_rule(Op_CacheWB)) {
2805     return false;
2806   }
2807 #ifndef PRODUCT
2808   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2809   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2810   ciSignature* sig = callee()->signature();
2811   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2812 #endif
2813   null_check_receiver();  // null-check, then ignore
2814   Node *addr = argument(1);
2815   addr = new CastX2PNode(addr);
2816   addr = _gvn.transform(addr);
2817   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2818   flush = _gvn.transform(flush);
2819   set_memory(flush, TypeRawPtr::BOTTOM);
2820   return true;
2821 }
2822 
2823 //----------------------------inline_unsafe_writeback0-------------------------
2824 // public native void Unsafe.writeback0(long address)
2825 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2826   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2827     return false;
2828   }
2829   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2830     return false;
2831   }
2832 #ifndef PRODUCT
2833   assert(Matcher::has_match_rule(Op_CacheWB),
2834          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2835                 : "found match rule for CacheWBPostSync but not CacheWB"));
2836 
2837 #endif
2838   null_check_receiver();  // null-check, then ignore
2839   Node *sync;
2840   if (is_pre) {
2841     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2842   } else {
2843     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2844   }
2845   sync = _gvn.transform(sync);
2846   set_memory(sync, TypeRawPtr::BOTTOM);
2847   return true;
2848 }
2849 
2850 //----------------------------inline_unsafe_allocate---------------------------
2851 // public native Object Unsafe.allocateInstance(Class<?> cls);
2852 bool LibraryCallKit::inline_unsafe_allocate() {
2853 
2854 #if INCLUDE_JVMTI
2855   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
2856     return false;
2857   }
2858 #endif //INCLUDE_JVMTI
2859 
2860   if (callee()->is_static())  return false;  // caller must have the capability!
2861 
2862   null_check_receiver();  // null-check, then ignore
2863   Node* cls = null_check(argument(1));
2864   if (stopped())  return true;
2865 
2866   Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
2867   kls = null_check(kls);
2868   if (stopped())  return true;  // argument was like int.class
2869 
2870 #if INCLUDE_JVMTI
2871     // Don't try to access new allocated obj in the intrinsic.
2872     // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
2873     // Deoptimize and allocate in interpreter instead.
2874     Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
2875     Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
2876     Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
2877     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2878     {
2879       BuildCutout unless(this, tst, PROB_MAX);
2880       uncommon_trap(Deoptimization::Reason_intrinsic,
2881                     Deoptimization::Action_make_not_entrant);
2882     }
2883     if (stopped()) {
2884       return true;
2885     }
2886 #endif //INCLUDE_JVMTI
2887 
2888   Node* test = nullptr;
2889   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2890     // Note:  The argument might still be an illegal value like
2891     // Serializable.class or Object[].class.   The runtime will handle it.
2892     // But we must make an explicit check for initialization.
2893     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2894     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2895     // can generate code to load it as unsigned byte.
2896     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2897     Node* bits = intcon(InstanceKlass::fully_initialized);
2898     test = _gvn.transform(new SubINode(inst, bits));
2899     // The 'test' is non-zero if we need to take a slow path.
2900   }
2901 
2902   Node* obj = new_instance(kls, test);
2903   set_result(obj);
2904   return true;
2905 }
2906 
2907 //------------------------inline_native_time_funcs--------------
2908 // inline code for System.currentTimeMillis() and System.nanoTime()
2909 // these have the same type and signature
2910 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2911   const TypeFunc* tf = OptoRuntime::void_long_Type();
2912   const TypePtr* no_memory_effects = nullptr;
2913   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2914   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2915 #ifdef ASSERT
2916   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2917   assert(value_top == top(), "second value must be top");
2918 #endif
2919   set_result(value);
2920   return true;
2921 }
2922 
2923 
2924 #if INCLUDE_JVMTI
2925 
2926 // When notifications are disabled then just update the VTMS transition bit and return.
2927 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
2928 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
2929   if (!DoJVMTIVirtualThreadTransitions) {
2930     return true;
2931   }
2932   Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
2933   IdealKit ideal(this);
2934 
2935   Node* ONE = ideal.ConI(1);
2936   Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
2937   Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
2938   Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
2939 
2940   ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
2941     sync_kit(ideal);
2942     // if notifyJvmti enabled then make a call to the given SharedRuntime function
2943     const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
2944     make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
2945     ideal.sync_kit(this);
2946   } ideal.else_(); {
2947     // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
2948     Node* thread = ideal.thread();
2949     Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
2950     Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
2951     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
2952 
2953     sync_kit(ideal);
2954     access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2955     access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2956 
2957     ideal.sync_kit(this);
2958   } ideal.end_if();
2959   final_sync(ideal);
2960 
2961   return true;
2962 }
2963 
2964 // Always update the temporary VTMS transition bit.
2965 bool LibraryCallKit::inline_native_notify_jvmti_hide() {
2966   if (!DoJVMTIVirtualThreadTransitions) {
2967     return true;
2968   }
2969   IdealKit ideal(this);
2970 
2971   {
2972     // unconditionally update the temporary VTMS transition bit in current JavaThread
2973     Node* thread = ideal.thread();
2974     Node* hide = _gvn.transform(argument(0)); // hide argument for temporary VTMS transition notification
2975     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset()));
2976     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
2977 
2978     sync_kit(ideal);
2979     access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2980     ideal.sync_kit(this);
2981   }
2982   final_sync(ideal);
2983 
2984   return true;
2985 }
2986 
2987 // Always update the is_disable_suspend bit.
2988 bool LibraryCallKit::inline_native_notify_jvmti_sync() {
2989   if (!DoJVMTIVirtualThreadTransitions) {
2990     return true;
2991   }
2992   IdealKit ideal(this);
2993 
2994   {
2995     // unconditionally update the is_disable_suspend bit in current JavaThread
2996     Node* thread = ideal.thread();
2997     Node* arg = _gvn.transform(argument(0)); // argument for notification
2998     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset()));
2999     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3000 
3001     sync_kit(ideal);
3002     access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3003     ideal.sync_kit(this);
3004   }
3005   final_sync(ideal);
3006 
3007   return true;
3008 }
3009 
3010 #endif // INCLUDE_JVMTI
3011 
3012 #ifdef JFR_HAVE_INTRINSICS
3013 
3014 /**
3015  * if oop->klass != null
3016  *   // normal class
3017  *   epoch = _epoch_state ? 2 : 1
3018  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
3019  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
3020  *   }
3021  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
3022  * else
3023  *   // primitive class
3024  *   if oop->array_klass != null
3025  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
3026  *   else
3027  *     id = LAST_TYPE_ID + 1 // void class path
3028  *   if (!signaled)
3029  *     signaled = true
3030  */
3031 bool LibraryCallKit::inline_native_classID() {
3032   Node* cls = argument(0);
3033 
3034   IdealKit ideal(this);
3035 #define __ ideal.
3036   IdealVariable result(ideal); __ declarations_done();
3037   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3038                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
3039                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3040 
3041 
3042   __ if_then(kls, BoolTest::ne, null()); {
3043     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3044     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3045 
3046     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
3047     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3048     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
3049     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
3050     mask = _gvn.transform(new OrLNode(mask, epoch));
3051     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
3052 
3053     float unlikely  = PROB_UNLIKELY(0.999);
3054     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
3055       sync_kit(ideal);
3056       make_runtime_call(RC_LEAF,
3057                         OptoRuntime::class_id_load_barrier_Type(),
3058                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3059                         "class id load barrier",
3060                         TypePtr::BOTTOM,
3061                         kls);
3062       ideal.sync_kit(this);
3063     } __ end_if();
3064 
3065     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3066   } __ else_(); {
3067     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3068                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3069                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3070     __ if_then(array_kls, BoolTest::ne, null()); {
3071       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3072       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3073       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3074       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3075     } __ else_(); {
3076       // void class case
3077       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3078     } __ end_if();
3079 
3080     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3081     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3082     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3083       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3084     } __ end_if();
3085   } __ end_if();
3086 
3087   final_sync(ideal);
3088   set_result(ideal.value(result));
3089 #undef __
3090   return true;
3091 }
3092 
3093 //------------------------inline_native_jvm_commit------------------
3094 bool LibraryCallKit::inline_native_jvm_commit() {
3095   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3096 
3097   // Save input memory and i_o state.
3098   Node* input_memory_state = reset_memory();
3099   set_all_memory(input_memory_state);
3100   Node* input_io_state = i_o();
3101 
3102   // TLS.
3103   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3104   // Jfr java buffer.
3105   Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3106   Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3107   Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3108 
3109   // Load the current value of the notified field in the JfrThreadLocal.
3110   Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3111   Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3112 
3113   // Test for notification.
3114   Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3115   Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3116   IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3117 
3118   // True branch, is notified.
3119   Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3120   set_control(is_notified);
3121 
3122   // Reset notified state.
3123   Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered);
3124 
3125   // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3126   Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3127   // Convert the machine-word to a long.
3128   Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3129 
3130   // False branch, not notified.
3131   Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3132   set_control(not_notified);
3133   set_all_memory(input_memory_state);
3134 
3135   // Arg is the next position as a long.
3136   Node* arg = argument(0);
3137   // Convert long to machine-word.
3138   Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3139 
3140   // Store the next_position to the underlying jfr java buffer.
3141   Node* commit_memory;
3142 #ifdef _LP64
3143   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release);
3144 #else
3145   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release);
3146 #endif
3147 
3148   // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3149   Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3150   Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3151   Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3152 
3153   // And flags with lease constant.
3154   Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3155 
3156   // Branch on lease to conditionalize returning the leased java buffer.
3157   Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3158   Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3159   IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3160 
3161   // False branch, not a lease.
3162   Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3163 
3164   // True branch, is lease.
3165   Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3166   set_control(is_lease);
3167 
3168   // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3169   Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3170                                               OptoRuntime::void_void_Type(),
3171                                               StubRoutines::jfr_return_lease(),
3172                                               "return_lease", TypePtr::BOTTOM);
3173   Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3174 
3175   RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3176   record_for_igvn(lease_compare_rgn);
3177   PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3178   record_for_igvn(lease_compare_mem);
3179   PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3180   record_for_igvn(lease_compare_io);
3181   PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3182   record_for_igvn(lease_result_value);
3183 
3184   // Update control and phi nodes.
3185   lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3186   lease_compare_rgn->init_req(_false_path, not_lease);
3187 
3188   lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3189   lease_compare_mem->init_req(_false_path, commit_memory);
3190 
3191   lease_compare_io->init_req(_true_path, i_o());
3192   lease_compare_io->init_req(_false_path, input_io_state);
3193 
3194   lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0.
3195   lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3196 
3197   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3198   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3199   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3200   PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3201 
3202   // Update control and phi nodes.
3203   result_rgn->init_req(_true_path, is_notified);
3204   result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3205 
3206   result_mem->init_req(_true_path, notified_reset_memory);
3207   result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3208 
3209   result_io->init_req(_true_path, input_io_state);
3210   result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3211 
3212   result_value->init_req(_true_path, current_pos);
3213   result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3214 
3215   // Set output state.
3216   set_control(_gvn.transform(result_rgn));
3217   set_all_memory(_gvn.transform(result_mem));
3218   set_i_o(_gvn.transform(result_io));
3219   set_result(result_rgn, result_value);
3220   return true;
3221 }
3222 
3223 /*
3224  * The intrinsic is a model of this pseudo-code:
3225  *
3226  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3227  * jobject h_event_writer = tl->java_event_writer();
3228  * if (h_event_writer == nullptr) {
3229  *   return nullptr;
3230  * }
3231  * oop threadObj = Thread::threadObj();
3232  * oop vthread = java_lang_Thread::vthread(threadObj);
3233  * traceid tid;
3234  * bool excluded;
3235  * if (vthread != threadObj) {  // i.e. current thread is virtual
3236  *   tid = java_lang_Thread::tid(vthread);
3237  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3238  *   excluded = vthread_epoch_raw & excluded_mask;
3239  *   if (!excluded) {
3240  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
3241  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3242  *     if (vthread_epoch != current_epoch) {
3243  *       write_checkpoint();
3244  *     }
3245  *   }
3246  * } else {
3247  *   tid = java_lang_Thread::tid(threadObj);
3248  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3249  *   excluded = thread_epoch_raw & excluded_mask;
3250  * }
3251  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3252  * traceid tid_in_event_writer = getField(event_writer, "threadID");
3253  * if (tid_in_event_writer != tid) {
3254  *   setField(event_writer, "threadID", tid);
3255  *   setField(event_writer, "excluded", excluded);
3256  * }
3257  * return event_writer
3258  */
3259 bool LibraryCallKit::inline_native_getEventWriter() {
3260   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3261 
3262   // Save input memory and i_o state.
3263   Node* input_memory_state = reset_memory();
3264   set_all_memory(input_memory_state);
3265   Node* input_io_state = i_o();
3266 
3267   Node* excluded_mask = _gvn.intcon(32768);
3268   Node* epoch_mask = _gvn.intcon(32767);
3269 
3270   // TLS
3271   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3272 
3273   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3274   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3275 
3276   // Load the eventwriter jobject handle.
3277   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3278 
3279   // Null check the jobject handle.
3280   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3281   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3282   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3283 
3284   // False path, jobj is null.
3285   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3286 
3287   // True path, jobj is not null.
3288   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3289 
3290   set_control(jobj_is_not_null);
3291 
3292   // Load the threadObj for the CarrierThread.
3293   Node* threadObj = generate_current_thread(tls_ptr);
3294 
3295   // Load the vthread.
3296   Node* vthread = generate_virtual_thread(tls_ptr);
3297 
3298   // If vthread != threadObj, this is a virtual thread.
3299   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3300   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3301   IfNode* iff_vthread_not_equal_threadObj =
3302     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3303 
3304   // False branch, fallback to threadObj.
3305   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3306   set_control(vthread_equal_threadObj);
3307 
3308   // Load the tid field from the vthread object.
3309   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3310 
3311   // Load the raw epoch value from the threadObj.
3312   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3313   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3314                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3315 
3316   // Mask off the excluded information from the epoch.
3317   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3318 
3319   // True branch, this is a virtual thread.
3320   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3321   set_control(vthread_not_equal_threadObj);
3322 
3323   // Load the tid field from the vthread object.
3324   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3325 
3326   // Load the raw epoch value from the vthread.
3327   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3328   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3329                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3330 
3331   // Mask off the excluded information from the epoch.
3332   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3333 
3334   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3335   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3336   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3337   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3338 
3339   // False branch, vthread is excluded, no need to write epoch info.
3340   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3341 
3342   // True branch, vthread is included, update epoch info.
3343   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3344   set_control(included);
3345 
3346   // Get epoch value.
3347   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3348 
3349   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3350   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3351   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3352 
3353   // Compare the epoch in the vthread to the current epoch generation.
3354   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3355   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3356   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3357 
3358   // False path, epoch is equal, checkpoint information is valid.
3359   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3360 
3361   // True path, epoch is not equal, write a checkpoint for the vthread.
3362   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3363 
3364   set_control(epoch_is_not_equal);
3365 
3366   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3367   // The call also updates the native thread local thread id and the vthread with the current epoch.
3368   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3369                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3370                                                   StubRoutines::jfr_write_checkpoint(),
3371                                                   "write_checkpoint", TypePtr::BOTTOM);
3372   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3373 
3374   // vthread epoch != current epoch
3375   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3376   record_for_igvn(epoch_compare_rgn);
3377   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3378   record_for_igvn(epoch_compare_mem);
3379   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3380   record_for_igvn(epoch_compare_io);
3381 
3382   // Update control and phi nodes.
3383   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3384   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3385   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3386   epoch_compare_mem->init_req(_false_path, input_memory_state);
3387   epoch_compare_io->init_req(_true_path, i_o());
3388   epoch_compare_io->init_req(_false_path, input_io_state);
3389 
3390   // excluded != true
3391   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3392   record_for_igvn(exclude_compare_rgn);
3393   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3394   record_for_igvn(exclude_compare_mem);
3395   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3396   record_for_igvn(exclude_compare_io);
3397 
3398   // Update control and phi nodes.
3399   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3400   exclude_compare_rgn->init_req(_false_path, excluded);
3401   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3402   exclude_compare_mem->init_req(_false_path, input_memory_state);
3403   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3404   exclude_compare_io->init_req(_false_path, input_io_state);
3405 
3406   // vthread != threadObj
3407   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3408   record_for_igvn(vthread_compare_rgn);
3409   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3410   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3411   record_for_igvn(vthread_compare_io);
3412   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3413   record_for_igvn(tid);
3414   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3415   record_for_igvn(exclusion);
3416 
3417   // Update control and phi nodes.
3418   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3419   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3420   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3421   vthread_compare_mem->init_req(_false_path, input_memory_state);
3422   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3423   vthread_compare_io->init_req(_false_path, input_io_state);
3424   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3425   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3426   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3427   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3428 
3429   // Update branch state.
3430   set_control(_gvn.transform(vthread_compare_rgn));
3431   set_all_memory(_gvn.transform(vthread_compare_mem));
3432   set_i_o(_gvn.transform(vthread_compare_io));
3433 
3434   // Load the event writer oop by dereferencing the jobject handle.
3435   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3436   assert(klass_EventWriter->is_loaded(), "invariant");
3437   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3438   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3439   const TypeOopPtr* const xtype = aklass->as_instance_type();
3440   Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3441   Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3442 
3443   // Load the current thread id from the event writer object.
3444   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3445   // Get the field offset to, conditionally, store an updated tid value later.
3446   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3447   const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr();
3448   // Get the field offset to, conditionally, store an updated exclusion value later.
3449   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3450   const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr();
3451 
3452   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3453   record_for_igvn(event_writer_tid_compare_rgn);
3454   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3455   record_for_igvn(event_writer_tid_compare_mem);
3456   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3457   record_for_igvn(event_writer_tid_compare_io);
3458 
3459   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3460   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3461   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3462   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3463 
3464   // False path, tids are the same.
3465   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3466 
3467   // True path, tid is not equal, need to update the tid in the event writer.
3468   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3469   record_for_igvn(tid_is_not_equal);
3470 
3471   // Store the exclusion state to the event writer.
3472   store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered);
3473 
3474   // Store the tid to the event writer.
3475   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered);
3476 
3477   // Update control and phi nodes.
3478   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3479   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3480   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3481   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3482   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3483   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3484 
3485   // Result of top level CFG, Memory, IO and Value.
3486   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3487   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3488   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3489   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3490 
3491   // Result control.
3492   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3493   result_rgn->init_req(_false_path, jobj_is_null);
3494 
3495   // Result memory.
3496   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3497   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3498 
3499   // Result IO.
3500   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3501   result_io->init_req(_false_path, _gvn.transform(input_io_state));
3502 
3503   // Result value.
3504   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3505   result_value->init_req(_false_path, null()); // return null
3506 
3507   // Set output state.
3508   set_control(_gvn.transform(result_rgn));
3509   set_all_memory(_gvn.transform(result_mem));
3510   set_i_o(_gvn.transform(result_io));
3511   set_result(result_rgn, result_value);
3512   return true;
3513 }
3514 
3515 /*
3516  * The intrinsic is a model of this pseudo-code:
3517  *
3518  * JfrThreadLocal* const tl = thread->jfr_thread_local();
3519  * if (carrierThread != thread) { // is virtual thread
3520  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3521  *   bool excluded = vthread_epoch_raw & excluded_mask;
3522  *   Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3523  *   Atomic::store(&tl->_contextual_thread_excluded, is_excluded);
3524  *   if (!excluded) {
3525  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3526  *     Atomic::store(&tl->_vthread_epoch, vthread_epoch);
3527  *   }
3528  *   Atomic::release_store(&tl->_vthread, true);
3529  *   return;
3530  * }
3531  * Atomic::release_store(&tl->_vthread, false);
3532  */
3533 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3534   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3535 
3536   Node* input_memory_state = reset_memory();
3537   set_all_memory(input_memory_state);
3538 
3539   Node* excluded_mask = _gvn.intcon(32768);
3540   Node* epoch_mask = _gvn.intcon(32767);
3541 
3542   Node* const carrierThread = generate_current_thread(jt);
3543   // If thread != carrierThread, this is a virtual thread.
3544   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3545   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
3546   IfNode* iff_thread_not_equal_carrierThread =
3547     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
3548 
3549   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
3550 
3551   // False branch, is carrierThread.
3552   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
3553   // Store release
3554   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3555 
3556   set_all_memory(input_memory_state);
3557 
3558   // True branch, is virtual thread.
3559   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
3560   set_control(thread_not_equal_carrierThread);
3561 
3562   // Load the raw epoch value from the vthread.
3563   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
3564   Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3565                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3566 
3567   // Mask off the excluded information from the epoch.
3568   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
3569 
3570   // Load the tid field from the thread.
3571   Node* tid = load_field_from_object(thread, "tid", "J");
3572 
3573   // Store the vthread tid to the jfr thread local.
3574   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
3575   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true);
3576 
3577   // Branch is_excluded to conditionalize updating the epoch .
3578   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
3579   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
3580   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
3581 
3582   // True branch, vthread is excluded, no need to write epoch info.
3583   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
3584   set_control(excluded);
3585   Node* vthread_is_excluded = _gvn.intcon(1);
3586 
3587   // False branch, vthread is included, update epoch info.
3588   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
3589   set_control(included);
3590   Node* vthread_is_included = _gvn.intcon(0);
3591 
3592   // Get epoch value.
3593   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
3594 
3595   // Store the vthread epoch to the jfr thread local.
3596   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
3597   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true);
3598 
3599   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
3600   record_for_igvn(excluded_rgn);
3601   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
3602   record_for_igvn(excluded_mem);
3603   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
3604   record_for_igvn(exclusion);
3605 
3606   // Merge the excluded control and memory.
3607   excluded_rgn->init_req(_true_path, excluded);
3608   excluded_rgn->init_req(_false_path, included);
3609   excluded_mem->init_req(_true_path, tid_memory);
3610   excluded_mem->init_req(_false_path, included_memory);
3611   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3612   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
3613 
3614   // Set intermediate state.
3615   set_control(_gvn.transform(excluded_rgn));
3616   set_all_memory(excluded_mem);
3617 
3618   // Store the vthread exclusion state to the jfr thread local.
3619   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
3620   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true);
3621 
3622   // Store release
3623   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3624 
3625   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
3626   record_for_igvn(thread_compare_rgn);
3627   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3628   record_for_igvn(thread_compare_mem);
3629   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
3630   record_for_igvn(vthread);
3631 
3632   // Merge the thread_compare control and memory.
3633   thread_compare_rgn->init_req(_true_path, control());
3634   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
3635   thread_compare_mem->init_req(_true_path, vthread_true_memory);
3636   thread_compare_mem->init_req(_false_path, vthread_false_memory);
3637 
3638   // Set output state.
3639   set_control(_gvn.transform(thread_compare_rgn));
3640   set_all_memory(_gvn.transform(thread_compare_mem));
3641 }
3642 
3643 #endif // JFR_HAVE_INTRINSICS
3644 
3645 //------------------------inline_native_currentCarrierThread------------------
3646 bool LibraryCallKit::inline_native_currentCarrierThread() {
3647   Node* junk = nullptr;
3648   set_result(generate_current_thread(junk));
3649   return true;
3650 }
3651 
3652 //------------------------inline_native_currentThread------------------
3653 bool LibraryCallKit::inline_native_currentThread() {
3654   Node* junk = nullptr;
3655   set_result(generate_virtual_thread(junk));
3656   return true;
3657 }
3658 
3659 //------------------------inline_native_setVthread------------------
3660 bool LibraryCallKit::inline_native_setCurrentThread() {
3661   assert(C->method()->changes_current_thread(),
3662          "method changes current Thread but is not annotated ChangesCurrentThread");
3663   Node* arr = argument(1);
3664   Node* thread = _gvn.transform(new ThreadLocalNode());
3665   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3666   Node* thread_obj_handle
3667     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3668   thread_obj_handle = _gvn.transform(thread_obj_handle);
3669   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3670   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3671 
3672   // Change the lock_id of the JavaThread
3673   Node* tid = load_field_from_object(arr, "tid", "J");
3674   Node* thread_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::lock_id_offset()));
3675   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true);
3676 
3677   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3678   return true;
3679 }
3680 
3681 bool LibraryCallKit::inline_native_setLockId() {
3682   Node* thread = _gvn.transform(new ThreadLocalNode());
3683   Node* thread_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::lock_id_offset()));
3684   Node* tid_memory = store_to_memory(control(), thread_id_offset, ConvL2X(argument(0)), T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true);
3685   return true;
3686 }
3687 
3688 const Type* LibraryCallKit::scopedValueCache_type() {
3689   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3690   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3691   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3692 
3693   // Because we create the scopedValue cache lazily we have to make the
3694   // type of the result BotPTR.
3695   bool xk = etype->klass_is_exact();
3696   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3697   return objects_type;
3698 }
3699 
3700 Node* LibraryCallKit::scopedValueCache_helper() {
3701   Node* thread = _gvn.transform(new ThreadLocalNode());
3702   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3703   // We cannot use immutable_memory() because we might flip onto a
3704   // different carrier thread, at which point we'll need to use that
3705   // carrier thread's cache.
3706   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3707   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3708   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3709 }
3710 
3711 //------------------------inline_native_scopedValueCache------------------
3712 bool LibraryCallKit::inline_native_scopedValueCache() {
3713   Node* cache_obj_handle = scopedValueCache_helper();
3714   const Type* objects_type = scopedValueCache_type();
3715   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3716 
3717   return true;
3718 }
3719 
3720 //------------------------inline_native_setScopedValueCache------------------
3721 bool LibraryCallKit::inline_native_setScopedValueCache() {
3722   Node* arr = argument(0);
3723   Node* cache_obj_handle = scopedValueCache_helper();
3724   const Type* objects_type = scopedValueCache_type();
3725 
3726   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3727   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3728 
3729   return true;
3730 }
3731 
3732 //---------------------------load_mirror_from_klass----------------------------
3733 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3734 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3735   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3736   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3737   // mirror = ((OopHandle)mirror)->resolve();
3738   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3739 }
3740 
3741 //-----------------------load_klass_from_mirror_common-------------------------
3742 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3743 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3744 // and branch to the given path on the region.
3745 // If never_see_null, take an uncommon trap on null, so we can optimistically
3746 // compile for the non-null case.
3747 // If the region is null, force never_see_null = true.
3748 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3749                                                     bool never_see_null,
3750                                                     RegionNode* region,
3751                                                     int null_path,
3752                                                     int offset) {
3753   if (region == nullptr)  never_see_null = true;
3754   Node* p = basic_plus_adr(mirror, offset);
3755   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3756   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3757   Node* null_ctl = top();
3758   kls = null_check_oop(kls, &null_ctl, never_see_null);
3759   if (region != nullptr) {
3760     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3761     region->init_req(null_path, null_ctl);
3762   } else {
3763     assert(null_ctl == top(), "no loose ends");
3764   }
3765   return kls;
3766 }
3767 
3768 //--------------------(inline_native_Class_query helpers)---------------------
3769 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3770 // Fall through if (mods & mask) == bits, take the guard otherwise.
3771 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3772   // Branch around if the given klass has the given modifier bit set.
3773   // Like generate_guard, adds a new path onto the region.
3774   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3775   Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered);
3776   Node* mask = intcon(modifier_mask);
3777   Node* bits = intcon(modifier_bits);
3778   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3779   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3780   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3781   return generate_fair_guard(bol, region);
3782 }
3783 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3784   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3785 }
3786 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3787   return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region);
3788 }
3789 
3790 //-------------------------inline_native_Class_query-------------------
3791 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3792   const Type* return_type = TypeInt::BOOL;
3793   Node* prim_return_value = top();  // what happens if it's a primitive class?
3794   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3795   bool expect_prim = false;     // most of these guys expect to work on refs
3796 
3797   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3798 
3799   Node* mirror = argument(0);
3800   Node* obj    = top();
3801 
3802   switch (id) {
3803   case vmIntrinsics::_isInstance:
3804     // nothing is an instance of a primitive type
3805     prim_return_value = intcon(0);
3806     obj = argument(1);
3807     break;
3808   case vmIntrinsics::_getModifiers:
3809     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3810     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3811     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3812     break;
3813   case vmIntrinsics::_isInterface:
3814     prim_return_value = intcon(0);
3815     break;
3816   case vmIntrinsics::_isArray:
3817     prim_return_value = intcon(0);
3818     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3819     break;
3820   case vmIntrinsics::_isPrimitive:
3821     prim_return_value = intcon(1);
3822     expect_prim = true;  // obviously
3823     break;
3824   case vmIntrinsics::_isHidden:
3825     prim_return_value = intcon(0);
3826     break;
3827   case vmIntrinsics::_getSuperclass:
3828     prim_return_value = null();
3829     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3830     break;
3831   case vmIntrinsics::_getClassAccessFlags:
3832     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3833     return_type = TypeInt::INT;  // not bool!  6297094
3834     break;
3835   default:
3836     fatal_unexpected_iid(id);
3837     break;
3838   }
3839 
3840   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3841   if (mirror_con == nullptr)  return false;  // cannot happen?
3842 
3843 #ifndef PRODUCT
3844   if (C->print_intrinsics() || C->print_inlining()) {
3845     ciType* k = mirror_con->java_mirror_type();
3846     if (k) {
3847       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3848       k->print_name();
3849       tty->cr();
3850     }
3851   }
3852 #endif
3853 
3854   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3855   RegionNode* region = new RegionNode(PATH_LIMIT);
3856   record_for_igvn(region);
3857   PhiNode* phi = new PhiNode(region, return_type);
3858 
3859   // The mirror will never be null of Reflection.getClassAccessFlags, however
3860   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3861   // if it is. See bug 4774291.
3862 
3863   // For Reflection.getClassAccessFlags(), the null check occurs in
3864   // the wrong place; see inline_unsafe_access(), above, for a similar
3865   // situation.
3866   mirror = null_check(mirror);
3867   // If mirror or obj is dead, only null-path is taken.
3868   if (stopped())  return true;
3869 
3870   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3871 
3872   // Now load the mirror's klass metaobject, and null-check it.
3873   // Side-effects region with the control path if the klass is null.
3874   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3875   // If kls is null, we have a primitive mirror.
3876   phi->init_req(_prim_path, prim_return_value);
3877   if (stopped()) { set_result(region, phi); return true; }
3878   bool safe_for_replace = (region->in(_prim_path) == top());
3879 
3880   Node* p;  // handy temp
3881   Node* null_ctl;
3882 
3883   // Now that we have the non-null klass, we can perform the real query.
3884   // For constant classes, the query will constant-fold in LoadNode::Value.
3885   Node* query_value = top();
3886   switch (id) {
3887   case vmIntrinsics::_isInstance:
3888     // nothing is an instance of a primitive type
3889     query_value = gen_instanceof(obj, kls, safe_for_replace);
3890     break;
3891 
3892   case vmIntrinsics::_getModifiers:
3893     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3894     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
3895     break;
3896 
3897   case vmIntrinsics::_isInterface:
3898     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3899     if (generate_interface_guard(kls, region) != nullptr)
3900       // A guard was added.  If the guard is taken, it was an interface.
3901       phi->add_req(intcon(1));
3902     // If we fall through, it's a plain class.
3903     query_value = intcon(0);
3904     break;
3905 
3906   case vmIntrinsics::_isArray:
3907     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3908     if (generate_array_guard(kls, region) != nullptr)
3909       // A guard was added.  If the guard is taken, it was an array.
3910       phi->add_req(intcon(1));
3911     // If we fall through, it's a plain class.
3912     query_value = intcon(0);
3913     break;
3914 
3915   case vmIntrinsics::_isPrimitive:
3916     query_value = intcon(0); // "normal" path produces false
3917     break;
3918 
3919   case vmIntrinsics::_isHidden:
3920     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
3921     if (generate_hidden_class_guard(kls, region) != nullptr)
3922       // A guard was added.  If the guard is taken, it was an hidden class.
3923       phi->add_req(intcon(1));
3924     // If we fall through, it's a plain class.
3925     query_value = intcon(0);
3926     break;
3927 
3928 
3929   case vmIntrinsics::_getSuperclass:
3930     // The rules here are somewhat unfortunate, but we can still do better
3931     // with random logic than with a JNI call.
3932     // Interfaces store null or Object as _super, but must report null.
3933     // Arrays store an intermediate super as _super, but must report Object.
3934     // Other types can report the actual _super.
3935     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3936     if (generate_interface_guard(kls, region) != nullptr)
3937       // A guard was added.  If the guard is taken, it was an interface.
3938       phi->add_req(null());
3939     if (generate_array_guard(kls, region) != nullptr)
3940       // A guard was added.  If the guard is taken, it was an array.
3941       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3942     // If we fall through, it's a plain class.  Get its _super.
3943     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3944     kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3945     null_ctl = top();
3946     kls = null_check_oop(kls, &null_ctl);
3947     if (null_ctl != top()) {
3948       // If the guard is taken, Object.superClass is null (both klass and mirror).
3949       region->add_req(null_ctl);
3950       phi   ->add_req(null());
3951     }
3952     if (!stopped()) {
3953       query_value = load_mirror_from_klass(kls);
3954     }
3955     break;
3956 
3957   case vmIntrinsics::_getClassAccessFlags:
3958     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3959     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
3960     break;
3961 
3962   default:
3963     fatal_unexpected_iid(id);
3964     break;
3965   }
3966 
3967   // Fall-through is the normal case of a query to a real class.
3968   phi->init_req(1, query_value);
3969   region->init_req(1, control());
3970 
3971   C->set_has_split_ifs(true); // Has chance for split-if optimization
3972   set_result(region, phi);
3973   return true;
3974 }
3975 
3976 //-------------------------inline_Class_cast-------------------
3977 bool LibraryCallKit::inline_Class_cast() {
3978   Node* mirror = argument(0); // Class
3979   Node* obj    = argument(1);
3980   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3981   if (mirror_con == nullptr) {
3982     return false;  // dead path (mirror->is_top()).
3983   }
3984   if (obj == nullptr || obj->is_top()) {
3985     return false;  // dead path
3986   }
3987   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3988 
3989   // First, see if Class.cast() can be folded statically.
3990   // java_mirror_type() returns non-null for compile-time Class constants.
3991   ciType* tm = mirror_con->java_mirror_type();
3992   if (tm != nullptr && tm->is_klass() &&
3993       tp != nullptr) {
3994     if (!tp->is_loaded()) {
3995       // Don't use intrinsic when class is not loaded.
3996       return false;
3997     } else {
3998       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());
3999       if (static_res == Compile::SSC_always_true) {
4000         // isInstance() is true - fold the code.
4001         set_result(obj);
4002         return true;
4003       } else if (static_res == Compile::SSC_always_false) {
4004         // Don't use intrinsic, have to throw ClassCastException.
4005         // If the reference is null, the non-intrinsic bytecode will
4006         // be optimized appropriately.
4007         return false;
4008       }
4009     }
4010   }
4011 
4012   // Bailout intrinsic and do normal inlining if exception path is frequent.
4013   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4014     return false;
4015   }
4016 
4017   // Generate dynamic checks.
4018   // Class.cast() is java implementation of _checkcast bytecode.
4019   // Do checkcast (Parse::do_checkcast()) optimizations here.
4020 
4021   mirror = null_check(mirror);
4022   // If mirror is dead, only null-path is taken.
4023   if (stopped()) {
4024     return true;
4025   }
4026 
4027   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4028   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4029   RegionNode* region = new RegionNode(PATH_LIMIT);
4030   record_for_igvn(region);
4031 
4032   // Now load the mirror's klass metaobject, and null-check it.
4033   // If kls is null, we have a primitive mirror and
4034   // nothing is an instance of a primitive type.
4035   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4036 
4037   Node* res = top();
4038   if (!stopped()) {
4039     Node* bad_type_ctrl = top();
4040     // Do checkcast optimizations.
4041     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4042     region->init_req(_bad_type_path, bad_type_ctrl);
4043   }
4044   if (region->in(_prim_path) != top() ||
4045       region->in(_bad_type_path) != top()) {
4046     // Let Interpreter throw ClassCastException.
4047     PreserveJVMState pjvms(this);
4048     set_control(_gvn.transform(region));
4049     uncommon_trap(Deoptimization::Reason_intrinsic,
4050                   Deoptimization::Action_maybe_recompile);
4051   }
4052   if (!stopped()) {
4053     set_result(res);
4054   }
4055   return true;
4056 }
4057 
4058 
4059 //--------------------------inline_native_subtype_check------------------------
4060 // This intrinsic takes the JNI calls out of the heart of
4061 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4062 bool LibraryCallKit::inline_native_subtype_check() {
4063   // Pull both arguments off the stack.
4064   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4065   args[0] = argument(0);
4066   args[1] = argument(1);
4067   Node* klasses[2];             // corresponding Klasses: superk, subk
4068   klasses[0] = klasses[1] = top();
4069 
4070   enum {
4071     // A full decision tree on {superc is prim, subc is prim}:
4072     _prim_0_path = 1,           // {P,N} => false
4073                                 // {P,P} & superc!=subc => false
4074     _prim_same_path,            // {P,P} & superc==subc => true
4075     _prim_1_path,               // {N,P} => false
4076     _ref_subtype_path,          // {N,N} & subtype check wins => true
4077     _both_ref_path,             // {N,N} & subtype check loses => false
4078     PATH_LIMIT
4079   };
4080 
4081   RegionNode* region = new RegionNode(PATH_LIMIT);
4082   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4083   record_for_igvn(region);
4084 
4085   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4086   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4087   int class_klass_offset = java_lang_Class::klass_offset();
4088 
4089   // First null-check both mirrors and load each mirror's klass metaobject.
4090   int which_arg;
4091   for (which_arg = 0; which_arg <= 1; which_arg++) {
4092     Node* arg = args[which_arg];
4093     arg = null_check(arg);
4094     if (stopped())  break;
4095     args[which_arg] = arg;
4096 
4097     Node* p = basic_plus_adr(arg, class_klass_offset);
4098     Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type);
4099     klasses[which_arg] = _gvn.transform(kls);
4100   }
4101 
4102   // Having loaded both klasses, test each for null.
4103   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4104   for (which_arg = 0; which_arg <= 1; which_arg++) {
4105     Node* kls = klasses[which_arg];
4106     Node* null_ctl = top();
4107     kls = null_check_oop(kls, &null_ctl, never_see_null);
4108     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4109     region->init_req(prim_path, null_ctl);
4110     if (stopped())  break;
4111     klasses[which_arg] = kls;
4112   }
4113 
4114   if (!stopped()) {
4115     // now we have two reference types, in klasses[0..1]
4116     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4117     Node* superk = klasses[0];  // the receiver
4118     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4119     // now we have a successful reference subtype check
4120     region->set_req(_ref_subtype_path, control());
4121   }
4122 
4123   // If both operands are primitive (both klasses null), then
4124   // we must return true when they are identical primitives.
4125   // It is convenient to test this after the first null klass check.
4126   set_control(region->in(_prim_0_path)); // go back to first null check
4127   if (!stopped()) {
4128     // Since superc is primitive, make a guard for the superc==subc case.
4129     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4130     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4131     generate_guard(bol_eq, region, PROB_FAIR);
4132     if (region->req() == PATH_LIMIT+1) {
4133       // A guard was added.  If the added guard is taken, superc==subc.
4134       region->swap_edges(PATH_LIMIT, _prim_same_path);
4135       region->del_req(PATH_LIMIT);
4136     }
4137     region->set_req(_prim_0_path, control()); // Not equal after all.
4138   }
4139 
4140   // these are the only paths that produce 'true':
4141   phi->set_req(_prim_same_path,   intcon(1));
4142   phi->set_req(_ref_subtype_path, intcon(1));
4143 
4144   // pull together the cases:
4145   assert(region->req() == PATH_LIMIT, "sane region");
4146   for (uint i = 1; i < region->req(); i++) {
4147     Node* ctl = region->in(i);
4148     if (ctl == nullptr || ctl == top()) {
4149       region->set_req(i, top());
4150       phi   ->set_req(i, top());
4151     } else if (phi->in(i) == nullptr) {
4152       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4153     }
4154   }
4155 
4156   set_control(_gvn.transform(region));
4157   set_result(_gvn.transform(phi));
4158   return true;
4159 }
4160 
4161 //---------------------generate_array_guard_common------------------------
4162 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4163                                                   bool obj_array, bool not_array) {
4164 
4165   if (stopped()) {
4166     return nullptr;
4167   }
4168 
4169   // If obj_array/non_array==false/false:
4170   // Branch around if the given klass is in fact an array (either obj or prim).
4171   // If obj_array/non_array==false/true:
4172   // Branch around if the given klass is not an array klass of any kind.
4173   // If obj_array/non_array==true/true:
4174   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4175   // If obj_array/non_array==true/false:
4176   // Branch around if the kls is an oop array (Object[] or subtype)
4177   //
4178   // Like generate_guard, adds a new path onto the region.
4179   jint  layout_con = 0;
4180   Node* layout_val = get_layout_helper(kls, layout_con);
4181   if (layout_val == nullptr) {
4182     bool query = (obj_array
4183                   ? Klass::layout_helper_is_objArray(layout_con)
4184                   : Klass::layout_helper_is_array(layout_con));
4185     if (query == not_array) {
4186       return nullptr;                       // never a branch
4187     } else {                             // always a branch
4188       Node* always_branch = control();
4189       if (region != nullptr)
4190         region->add_req(always_branch);
4191       set_control(top());
4192       return always_branch;
4193     }
4194   }
4195   // Now test the correct condition.
4196   jint  nval = (obj_array
4197                 ? (jint)(Klass::_lh_array_tag_type_value
4198                    <<    Klass::_lh_array_tag_shift)
4199                 : Klass::_lh_neutral_value);
4200   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4201   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4202   // invert the test if we are looking for a non-array
4203   if (not_array)  btest = BoolTest(btest).negate();
4204   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4205   return generate_fair_guard(bol, region);
4206 }
4207 
4208 
4209 //-----------------------inline_native_newArray--------------------------
4210 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4211 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4212 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4213   Node* mirror;
4214   Node* count_val;
4215   if (uninitialized) {
4216     null_check_receiver();
4217     mirror    = argument(1);
4218     count_val = argument(2);
4219   } else {
4220     mirror    = argument(0);
4221     count_val = argument(1);
4222   }
4223 
4224   mirror = null_check(mirror);
4225   // If mirror or obj is dead, only null-path is taken.
4226   if (stopped())  return true;
4227 
4228   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4229   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4230   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4231   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4232   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4233 
4234   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4235   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4236                                                   result_reg, _slow_path);
4237   Node* normal_ctl   = control();
4238   Node* no_array_ctl = result_reg->in(_slow_path);
4239 
4240   // Generate code for the slow case.  We make a call to newArray().
4241   set_control(no_array_ctl);
4242   if (!stopped()) {
4243     // Either the input type is void.class, or else the
4244     // array klass has not yet been cached.  Either the
4245     // ensuing call will throw an exception, or else it
4246     // will cache the array klass for next time.
4247     PreserveJVMState pjvms(this);
4248     CallJavaNode* slow_call = nullptr;
4249     if (uninitialized) {
4250       // Generate optimized virtual call (holder class 'Unsafe' is final)
4251       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4252     } else {
4253       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4254     }
4255     Node* slow_result = set_results_for_java_call(slow_call);
4256     // this->control() comes from set_results_for_java_call
4257     result_reg->set_req(_slow_path, control());
4258     result_val->set_req(_slow_path, slow_result);
4259     result_io ->set_req(_slow_path, i_o());
4260     result_mem->set_req(_slow_path, reset_memory());
4261   }
4262 
4263   set_control(normal_ctl);
4264   if (!stopped()) {
4265     // Normal case:  The array type has been cached in the java.lang.Class.
4266     // The following call works fine even if the array type is polymorphic.
4267     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4268     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4269     result_reg->init_req(_normal_path, control());
4270     result_val->init_req(_normal_path, obj);
4271     result_io ->init_req(_normal_path, i_o());
4272     result_mem->init_req(_normal_path, reset_memory());
4273 
4274     if (uninitialized) {
4275       // Mark the allocation so that zeroing is skipped
4276       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4277       alloc->maybe_set_complete(&_gvn);
4278     }
4279   }
4280 
4281   // Return the combined state.
4282   set_i_o(        _gvn.transform(result_io)  );
4283   set_all_memory( _gvn.transform(result_mem));
4284 
4285   C->set_has_split_ifs(true); // Has chance for split-if optimization
4286   set_result(result_reg, result_val);
4287   return true;
4288 }
4289 
4290 //----------------------inline_native_getLength--------------------------
4291 // public static native int java.lang.reflect.Array.getLength(Object array);
4292 bool LibraryCallKit::inline_native_getLength() {
4293   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4294 
4295   Node* array = null_check(argument(0));
4296   // If array is dead, only null-path is taken.
4297   if (stopped())  return true;
4298 
4299   // Deoptimize if it is a non-array.
4300   Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr);
4301 
4302   if (non_array != nullptr) {
4303     PreserveJVMState pjvms(this);
4304     set_control(non_array);
4305     uncommon_trap(Deoptimization::Reason_intrinsic,
4306                   Deoptimization::Action_maybe_recompile);
4307   }
4308 
4309   // If control is dead, only non-array-path is taken.
4310   if (stopped())  return true;
4311 
4312   // The works fine even if the array type is polymorphic.
4313   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4314   Node* result = load_array_length(array);
4315 
4316   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4317   set_result(result);
4318   return true;
4319 }
4320 
4321 //------------------------inline_array_copyOf----------------------------
4322 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4323 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4324 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4325   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4326 
4327   // Get the arguments.
4328   Node* original          = argument(0);
4329   Node* start             = is_copyOfRange? argument(1): intcon(0);
4330   Node* end               = is_copyOfRange? argument(2): argument(1);
4331   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4332 
4333   Node* newcopy = nullptr;
4334 
4335   // Set the original stack and the reexecute bit for the interpreter to reexecute
4336   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4337   { PreserveReexecuteState preexecs(this);
4338     jvms()->set_should_reexecute(true);
4339 
4340     array_type_mirror = null_check(array_type_mirror);
4341     original          = null_check(original);
4342 
4343     // Check if a null path was taken unconditionally.
4344     if (stopped())  return true;
4345 
4346     Node* orig_length = load_array_length(original);
4347 
4348     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4349     klass_node = null_check(klass_node);
4350 
4351     RegionNode* bailout = new RegionNode(1);
4352     record_for_igvn(bailout);
4353 
4354     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4355     // Bail out if that is so.
4356     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4357     if (not_objArray != nullptr) {
4358       // Improve the klass node's type from the new optimistic assumption:
4359       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4360       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4361       Node* cast = new CastPPNode(control(), klass_node, akls);
4362       klass_node = _gvn.transform(cast);
4363     }
4364 
4365     // Bail out if either start or end is negative.
4366     generate_negative_guard(start, bailout, &start);
4367     generate_negative_guard(end,   bailout, &end);
4368 
4369     Node* length = end;
4370     if (_gvn.type(start) != TypeInt::ZERO) {
4371       length = _gvn.transform(new SubINode(end, start));
4372     }
4373 
4374     // Bail out if length is negative (i.e., if start > end).
4375     // Without this the new_array would throw
4376     // NegativeArraySizeException but IllegalArgumentException is what
4377     // should be thrown
4378     generate_negative_guard(length, bailout, &length);
4379 
4380     // Bail out if start is larger than the original length
4381     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4382     generate_negative_guard(orig_tail, bailout, &orig_tail);
4383 
4384     if (bailout->req() > 1) {
4385       PreserveJVMState pjvms(this);
4386       set_control(_gvn.transform(bailout));
4387       uncommon_trap(Deoptimization::Reason_intrinsic,
4388                     Deoptimization::Action_maybe_recompile);
4389     }
4390 
4391     if (!stopped()) {
4392       // How many elements will we copy from the original?
4393       // The answer is MinI(orig_tail, length).
4394       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4395 
4396       // Generate a direct call to the right arraycopy function(s).
4397       // We know the copy is disjoint but we might not know if the
4398       // oop stores need checking.
4399       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4400       // This will fail a store-check if x contains any non-nulls.
4401 
4402       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4403       // loads/stores but it is legal only if we're sure the
4404       // Arrays.copyOf would succeed. So we need all input arguments
4405       // to the copyOf to be validated, including that the copy to the
4406       // new array won't trigger an ArrayStoreException. That subtype
4407       // check can be optimized if we know something on the type of
4408       // the input array from type speculation.
4409       if (_gvn.type(klass_node)->singleton()) {
4410         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4411         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4412 
4413         int test = C->static_subtype_check(superk, subk);
4414         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4415           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4416           if (t_original->speculative_type() != nullptr) {
4417             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4418           }
4419         }
4420       }
4421 
4422       bool validated = false;
4423       // Reason_class_check rather than Reason_intrinsic because we
4424       // want to intrinsify even if this traps.
4425       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4426         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4427 
4428         if (not_subtype_ctrl != top()) {
4429           PreserveJVMState pjvms(this);
4430           set_control(not_subtype_ctrl);
4431           uncommon_trap(Deoptimization::Reason_class_check,
4432                         Deoptimization::Action_make_not_entrant);
4433           assert(stopped(), "Should be stopped");
4434         }
4435         validated = true;
4436       }
4437 
4438       if (!stopped()) {
4439         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4440 
4441         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4442                                                 load_object_klass(original), klass_node);
4443         if (!is_copyOfRange) {
4444           ac->set_copyof(validated);
4445         } else {
4446           ac->set_copyofrange(validated);
4447         }
4448         Node* n = _gvn.transform(ac);
4449         if (n == ac) {
4450           ac->connect_outputs(this);
4451         } else {
4452           assert(validated, "shouldn't transform if all arguments not validated");
4453           set_all_memory(n);
4454         }
4455       }
4456     }
4457   } // original reexecute is set back here
4458 
4459   C->set_has_split_ifs(true); // Has chance for split-if optimization
4460   if (!stopped()) {
4461     set_result(newcopy);
4462   }
4463   return true;
4464 }
4465 
4466 
4467 //----------------------generate_virtual_guard---------------------------
4468 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4469 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4470                                              RegionNode* slow_region) {
4471   ciMethod* method = callee();
4472   int vtable_index = method->vtable_index();
4473   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4474          "bad index %d", vtable_index);
4475   // Get the Method* out of the appropriate vtable entry.
4476   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4477                      vtable_index*vtableEntry::size_in_bytes() +
4478                      in_bytes(vtableEntry::method_offset());
4479   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4480   Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4481 
4482   // Compare the target method with the expected method (e.g., Object.hashCode).
4483   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4484 
4485   Node* native_call = makecon(native_call_addr);
4486   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4487   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4488 
4489   return generate_slow_guard(test_native, slow_region);
4490 }
4491 
4492 //-----------------------generate_method_call----------------------------
4493 // Use generate_method_call to make a slow-call to the real
4494 // method if the fast path fails.  An alternative would be to
4495 // use a stub like OptoRuntime::slow_arraycopy_Java.
4496 // This only works for expanding the current library call,
4497 // not another intrinsic.  (E.g., don't use this for making an
4498 // arraycopy call inside of the copyOf intrinsic.)
4499 CallJavaNode*
4500 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4501   // When compiling the intrinsic method itself, do not use this technique.
4502   guarantee(callee() != C->method(), "cannot make slow-call to self");
4503 
4504   ciMethod* method = callee();
4505   // ensure the JVMS we have will be correct for this call
4506   guarantee(method_id == method->intrinsic_id(), "must match");
4507 
4508   const TypeFunc* tf = TypeFunc::make(method);
4509   if (res_not_null) {
4510     assert(tf->return_type() == T_OBJECT, "");
4511     const TypeTuple* range = tf->range();
4512     const Type** fields = TypeTuple::fields(range->cnt());
4513     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4514     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4515     tf = TypeFunc::make(tf->domain(), new_range);
4516   }
4517   CallJavaNode* slow_call;
4518   if (is_static) {
4519     assert(!is_virtual, "");
4520     slow_call = new CallStaticJavaNode(C, tf,
4521                            SharedRuntime::get_resolve_static_call_stub(), method);
4522   } else if (is_virtual) {
4523     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4524     int vtable_index = Method::invalid_vtable_index;
4525     if (UseInlineCaches) {
4526       // Suppress the vtable call
4527     } else {
4528       // hashCode and clone are not a miranda methods,
4529       // so the vtable index is fixed.
4530       // No need to use the linkResolver to get it.
4531        vtable_index = method->vtable_index();
4532        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4533               "bad index %d", vtable_index);
4534     }
4535     slow_call = new CallDynamicJavaNode(tf,
4536                           SharedRuntime::get_resolve_virtual_call_stub(),
4537                           method, vtable_index);
4538   } else {  // neither virtual nor static:  opt_virtual
4539     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4540     slow_call = new CallStaticJavaNode(C, tf,
4541                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
4542     slow_call->set_optimized_virtual(true);
4543   }
4544   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
4545     // To be able to issue a direct call (optimized virtual or virtual)
4546     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
4547     // about the method being invoked should be attached to the call site to
4548     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
4549     slow_call->set_override_symbolic_info(true);
4550   }
4551   set_arguments_for_java_call(slow_call);
4552   set_edges_for_java_call(slow_call);
4553   return slow_call;
4554 }
4555 
4556 
4557 /**
4558  * Build special case code for calls to hashCode on an object. This call may
4559  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4560  * slightly different code.
4561  */
4562 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4563   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4564   assert(!(is_virtual && is_static), "either virtual, special, or static");
4565 
4566   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4567 
4568   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4569   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4570   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4571   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4572   Node* obj = nullptr;
4573   if (!is_static) {
4574     // Check for hashing null object
4575     obj = null_check_receiver();
4576     if (stopped())  return true;        // unconditionally null
4577     result_reg->init_req(_null_path, top());
4578     result_val->init_req(_null_path, top());
4579   } else {
4580     // Do a null check, and return zero if null.
4581     // System.identityHashCode(null) == 0
4582     obj = argument(0);
4583     Node* null_ctl = top();
4584     obj = null_check_oop(obj, &null_ctl);
4585     result_reg->init_req(_null_path, null_ctl);
4586     result_val->init_req(_null_path, _gvn.intcon(0));
4587   }
4588 
4589   // Unconditionally null?  Then return right away.
4590   if (stopped()) {
4591     set_control( result_reg->in(_null_path));
4592     if (!stopped())
4593       set_result(result_val->in(_null_path));
4594     return true;
4595   }
4596 
4597   // We only go to the fast case code if we pass a number of guards.  The
4598   // paths which do not pass are accumulated in the slow_region.
4599   RegionNode* slow_region = new RegionNode(1);
4600   record_for_igvn(slow_region);
4601 
4602   // If this is a virtual call, we generate a funny guard.  We pull out
4603   // the vtable entry corresponding to hashCode() from the target object.
4604   // If the target method which we are calling happens to be the native
4605   // Object hashCode() method, we pass the guard.  We do not need this
4606   // guard for non-virtual calls -- the caller is known to be the native
4607   // Object hashCode().
4608   if (is_virtual) {
4609     // After null check, get the object's klass.
4610     Node* obj_klass = load_object_klass(obj);
4611     generate_virtual_guard(obj_klass, slow_region);
4612   }
4613 
4614   // Get the header out of the object, use LoadMarkNode when available
4615   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4616   // The control of the load must be null. Otherwise, the load can move before
4617   // the null check after castPP removal.
4618   Node* no_ctrl = nullptr;
4619   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4620 
4621   // Test the header to see if it is safe to read w.r.t. locking.
4622   Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
4623   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4624   if (LockingMode == LM_LIGHTWEIGHT) {
4625     Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4626     Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4627     Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4628 
4629     generate_slow_guard(test_monitor, slow_region);
4630   } else {
4631     Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4632     Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4633     Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4634 
4635     generate_slow_guard(test_not_unlocked, slow_region);
4636   }
4637 
4638   // Get the hash value and check to see that it has been properly assigned.
4639   // We depend on hash_mask being at most 32 bits and avoid the use of
4640   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4641   // vm: see markWord.hpp.
4642   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4643   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4644   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4645   // This hack lets the hash bits live anywhere in the mark object now, as long
4646   // as the shift drops the relevant bits into the low 32 bits.  Note that
4647   // Java spec says that HashCode is an int so there's no point in capturing
4648   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4649   hshifted_header      = ConvX2I(hshifted_header);
4650   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4651 
4652   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
4653   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4654   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4655 
4656   generate_slow_guard(test_assigned, slow_region);
4657 
4658   Node* init_mem = reset_memory();
4659   // fill in the rest of the null path:
4660   result_io ->init_req(_null_path, i_o());
4661   result_mem->init_req(_null_path, init_mem);
4662 
4663   result_val->init_req(_fast_path, hash_val);
4664   result_reg->init_req(_fast_path, control());
4665   result_io ->init_req(_fast_path, i_o());
4666   result_mem->init_req(_fast_path, init_mem);
4667 
4668   // Generate code for the slow case.  We make a call to hashCode().
4669   set_control(_gvn.transform(slow_region));
4670   if (!stopped()) {
4671     // No need for PreserveJVMState, because we're using up the present state.
4672     set_all_memory(init_mem);
4673     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4674     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
4675     Node* slow_result = set_results_for_java_call(slow_call);
4676     // this->control() comes from set_results_for_java_call
4677     result_reg->init_req(_slow_path, control());
4678     result_val->init_req(_slow_path, slow_result);
4679     result_io  ->set_req(_slow_path, i_o());
4680     result_mem ->set_req(_slow_path, reset_memory());
4681   }
4682 
4683   // Return the combined state.
4684   set_i_o(        _gvn.transform(result_io)  );
4685   set_all_memory( _gvn.transform(result_mem));
4686 
4687   set_result(result_reg, result_val);
4688   return true;
4689 }
4690 
4691 //---------------------------inline_native_getClass----------------------------
4692 // public final native Class<?> java.lang.Object.getClass();
4693 //
4694 // Build special case code for calls to getClass on an object.
4695 bool LibraryCallKit::inline_native_getClass() {
4696   Node* obj = null_check_receiver();
4697   if (stopped())  return true;
4698   set_result(load_mirror_from_klass(load_object_klass(obj)));
4699   return true;
4700 }
4701 
4702 //-----------------inline_native_Reflection_getCallerClass---------------------
4703 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4704 //
4705 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4706 //
4707 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4708 // in that it must skip particular security frames and checks for
4709 // caller sensitive methods.
4710 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4711 #ifndef PRODUCT
4712   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4713     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4714   }
4715 #endif
4716 
4717   if (!jvms()->has_method()) {
4718 #ifndef PRODUCT
4719     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4720       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4721     }
4722 #endif
4723     return false;
4724   }
4725 
4726   // Walk back up the JVM state to find the caller at the required
4727   // depth.
4728   JVMState* caller_jvms = jvms();
4729 
4730   // Cf. JVM_GetCallerClass
4731   // NOTE: Start the loop at depth 1 because the current JVM state does
4732   // not include the Reflection.getCallerClass() frame.
4733   for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
4734     ciMethod* m = caller_jvms->method();
4735     switch (n) {
4736     case 0:
4737       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4738       break;
4739     case 1:
4740       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4741       if (!m->caller_sensitive()) {
4742 #ifndef PRODUCT
4743         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4744           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4745         }
4746 #endif
4747         return false;  // bail-out; let JVM_GetCallerClass do the work
4748       }
4749       break;
4750     default:
4751       if (!m->is_ignored_by_security_stack_walk()) {
4752         // We have reached the desired frame; return the holder class.
4753         // Acquire method holder as java.lang.Class and push as constant.
4754         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4755         ciInstance* caller_mirror = caller_klass->java_mirror();
4756         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4757 
4758 #ifndef PRODUCT
4759         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4760           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4761           tty->print_cr("  JVM state at this point:");
4762           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4763             ciMethod* m = jvms()->of_depth(i)->method();
4764             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4765           }
4766         }
4767 #endif
4768         return true;
4769       }
4770       break;
4771     }
4772   }
4773 
4774 #ifndef PRODUCT
4775   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4776     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4777     tty->print_cr("  JVM state at this point:");
4778     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4779       ciMethod* m = jvms()->of_depth(i)->method();
4780       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4781     }
4782   }
4783 #endif
4784 
4785   return false;  // bail-out; let JVM_GetCallerClass do the work
4786 }
4787 
4788 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4789   Node* arg = argument(0);
4790   Node* result = nullptr;
4791 
4792   switch (id) {
4793   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4794   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4795   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4796   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4797   case vmIntrinsics::_floatToFloat16:       result = new ConvF2HFNode(arg); break;
4798   case vmIntrinsics::_float16ToFloat:       result = new ConvHF2FNode(arg); break;
4799 
4800   case vmIntrinsics::_doubleToLongBits: {
4801     // two paths (plus control) merge in a wood
4802     RegionNode *r = new RegionNode(3);
4803     Node *phi = new PhiNode(r, TypeLong::LONG);
4804 
4805     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4806     // Build the boolean node
4807     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4808 
4809     // Branch either way.
4810     // NaN case is less traveled, which makes all the difference.
4811     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4812     Node *opt_isnan = _gvn.transform(ifisnan);
4813     assert( opt_isnan->is_If(), "Expect an IfNode");
4814     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4815     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4816 
4817     set_control(iftrue);
4818 
4819     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4820     Node *slow_result = longcon(nan_bits); // return NaN
4821     phi->init_req(1, _gvn.transform( slow_result ));
4822     r->init_req(1, iftrue);
4823 
4824     // Else fall through
4825     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4826     set_control(iffalse);
4827 
4828     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4829     r->init_req(2, iffalse);
4830 
4831     // Post merge
4832     set_control(_gvn.transform(r));
4833     record_for_igvn(r);
4834 
4835     C->set_has_split_ifs(true); // Has chance for split-if optimization
4836     result = phi;
4837     assert(result->bottom_type()->isa_long(), "must be");
4838     break;
4839   }
4840 
4841   case vmIntrinsics::_floatToIntBits: {
4842     // two paths (plus control) merge in a wood
4843     RegionNode *r = new RegionNode(3);
4844     Node *phi = new PhiNode(r, TypeInt::INT);
4845 
4846     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4847     // Build the boolean node
4848     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4849 
4850     // Branch either way.
4851     // NaN case is less traveled, which makes all the difference.
4852     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4853     Node *opt_isnan = _gvn.transform(ifisnan);
4854     assert( opt_isnan->is_If(), "Expect an IfNode");
4855     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4856     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4857 
4858     set_control(iftrue);
4859 
4860     static const jint nan_bits = 0x7fc00000;
4861     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4862     phi->init_req(1, _gvn.transform( slow_result ));
4863     r->init_req(1, iftrue);
4864 
4865     // Else fall through
4866     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4867     set_control(iffalse);
4868 
4869     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4870     r->init_req(2, iffalse);
4871 
4872     // Post merge
4873     set_control(_gvn.transform(r));
4874     record_for_igvn(r);
4875 
4876     C->set_has_split_ifs(true); // Has chance for split-if optimization
4877     result = phi;
4878     assert(result->bottom_type()->isa_int(), "must be");
4879     break;
4880   }
4881 
4882   default:
4883     fatal_unexpected_iid(id);
4884     break;
4885   }
4886   set_result(_gvn.transform(result));
4887   return true;
4888 }
4889 
4890 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
4891   Node* arg = argument(0);
4892   Node* result = nullptr;
4893 
4894   switch (id) {
4895   case vmIntrinsics::_floatIsInfinite:
4896     result = new IsInfiniteFNode(arg);
4897     break;
4898   case vmIntrinsics::_floatIsFinite:
4899     result = new IsFiniteFNode(arg);
4900     break;
4901   case vmIntrinsics::_doubleIsInfinite:
4902     result = new IsInfiniteDNode(arg);
4903     break;
4904   case vmIntrinsics::_doubleIsFinite:
4905     result = new IsFiniteDNode(arg);
4906     break;
4907   default:
4908     fatal_unexpected_iid(id);
4909     break;
4910   }
4911   set_result(_gvn.transform(result));
4912   return true;
4913 }
4914 
4915 //----------------------inline_unsafe_copyMemory-------------------------
4916 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4917 
4918 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
4919   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
4920   const Type*       base_t = gvn.type(base);
4921 
4922   bool in_native = (base_t == TypePtr::NULL_PTR);
4923   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
4924   bool is_mixed  = !in_heap && !in_native;
4925 
4926   if (is_mixed) {
4927     return true; // mixed accesses can touch both on-heap and off-heap memory
4928   }
4929   if (in_heap) {
4930     bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
4931     if (!is_prim_array) {
4932       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
4933       // there's not enough type information available to determine proper memory slice for it.
4934       return true;
4935     }
4936   }
4937   return false;
4938 }
4939 
4940 bool LibraryCallKit::inline_unsafe_copyMemory() {
4941   if (callee()->is_static())  return false;  // caller must have the capability!
4942   null_check_receiver();  // null-check receiver
4943   if (stopped())  return true;
4944 
4945   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4946 
4947   Node* src_base =         argument(1);  // type: oop
4948   Node* src_off  = ConvL2X(argument(2)); // type: long
4949   Node* dst_base =         argument(4);  // type: oop
4950   Node* dst_off  = ConvL2X(argument(5)); // type: long
4951   Node* size     = ConvL2X(argument(7)); // type: long
4952 
4953   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4954          "fieldOffset must be byte-scaled");
4955 
4956   Node* src_addr = make_unsafe_address(src_base, src_off);
4957   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
4958 
4959   Node* thread = _gvn.transform(new ThreadLocalNode());
4960   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
4961   BasicType doing_unsafe_access_bt = T_BYTE;
4962   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
4963 
4964   // update volatile field
4965   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4966 
4967   int flags = RC_LEAF | RC_NO_FP;
4968 
4969   const TypePtr* dst_type = TypePtr::BOTTOM;
4970 
4971   // Adjust memory effects of the runtime call based on input values.
4972   if (!has_wide_mem(_gvn, src_addr, src_base) &&
4973       !has_wide_mem(_gvn, dst_addr, dst_base)) {
4974     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
4975 
4976     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
4977     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
4978       flags |= RC_NARROW_MEM; // narrow in memory
4979     }
4980   }
4981 
4982   // Call it.  Note that the length argument is not scaled.
4983   make_runtime_call(flags,
4984                     OptoRuntime::fast_arraycopy_Type(),
4985                     StubRoutines::unsafe_arraycopy(),
4986                     "unsafe_arraycopy",
4987                     dst_type,
4988                     src_addr, dst_addr, size XTOP);
4989 
4990   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4991 
4992   return true;
4993 }
4994 
4995 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value);
4996 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value'
4997 bool LibraryCallKit::inline_unsafe_setMemory() {
4998   if (callee()->is_static())  return false;  // caller must have the capability!
4999   null_check_receiver();  // null-check receiver
5000   if (stopped())  return true;
5001 
5002   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5003 
5004   Node* dst_base =         argument(1);  // type: oop
5005   Node* dst_off  = ConvL2X(argument(2)); // type: long
5006   Node* size     = ConvL2X(argument(4)); // type: long
5007   Node* byte     =         argument(6);  // type: byte
5008 
5009   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5010          "fieldOffset must be byte-scaled");
5011 
5012   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5013 
5014   Node* thread = _gvn.transform(new ThreadLocalNode());
5015   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5016   BasicType doing_unsafe_access_bt = T_BYTE;
5017   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5018 
5019   // update volatile field
5020   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5021 
5022   int flags = RC_LEAF | RC_NO_FP;
5023 
5024   const TypePtr* dst_type = TypePtr::BOTTOM;
5025 
5026   // Adjust memory effects of the runtime call based on input values.
5027   if (!has_wide_mem(_gvn, dst_addr, dst_base)) {
5028     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5029 
5030     flags |= RC_NARROW_MEM; // narrow in memory
5031   }
5032 
5033   // Call it.  Note that the length argument is not scaled.
5034   make_runtime_call(flags,
5035                     OptoRuntime::make_setmemory_Type(),
5036                     StubRoutines::unsafe_setmemory(),
5037                     "unsafe_setmemory",
5038                     dst_type,
5039                     dst_addr, size XTOP, byte);
5040 
5041   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5042 
5043   return true;
5044 }
5045 
5046 #undef XTOP
5047 
5048 //------------------------clone_coping-----------------------------------
5049 // Helper function for inline_native_clone.
5050 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5051   assert(obj_size != nullptr, "");
5052   Node* raw_obj = alloc_obj->in(1);
5053   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5054 
5055   AllocateNode* alloc = nullptr;
5056   if (ReduceBulkZeroing &&
5057       // If we are implementing an array clone without knowing its source type
5058       // (can happen when compiling the array-guarded branch of a reflective
5059       // Object.clone() invocation), initialize the array within the allocation.
5060       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5061       // to a runtime clone call that assumes fully initialized source arrays.
5062       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5063     // We will be completely responsible for initializing this object -
5064     // mark Initialize node as complete.
5065     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5066     // The object was just allocated - there should be no any stores!
5067     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5068     // Mark as complete_with_arraycopy so that on AllocateNode
5069     // expansion, we know this AllocateNode is initialized by an array
5070     // copy and a StoreStore barrier exists after the array copy.
5071     alloc->initialization()->set_complete_with_arraycopy();
5072   }
5073 
5074   Node* size = _gvn.transform(obj_size);
5075   access_clone(obj, alloc_obj, size, is_array);
5076 
5077   // Do not let reads from the cloned object float above the arraycopy.
5078   if (alloc != nullptr) {
5079     // Do not let stores that initialize this object be reordered with
5080     // a subsequent store that would make this object accessible by
5081     // other threads.
5082     // Record what AllocateNode this StoreStore protects so that
5083     // escape analysis can go from the MemBarStoreStoreNode to the
5084     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5085     // based on the escape status of the AllocateNode.
5086     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
5087   } else {
5088     insert_mem_bar(Op_MemBarCPUOrder);
5089   }
5090 }
5091 
5092 //------------------------inline_native_clone----------------------------
5093 // protected native Object java.lang.Object.clone();
5094 //
5095 // Here are the simple edge cases:
5096 //  null receiver => normal trap
5097 //  virtual and clone was overridden => slow path to out-of-line clone
5098 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5099 //
5100 // The general case has two steps, allocation and copying.
5101 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5102 //
5103 // Copying also has two cases, oop arrays and everything else.
5104 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5105 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5106 //
5107 // These steps fold up nicely if and when the cloned object's klass
5108 // can be sharply typed as an object array, a type array, or an instance.
5109 //
5110 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5111   PhiNode* result_val;
5112 
5113   // Set the reexecute bit for the interpreter to reexecute
5114   // the bytecode that invokes Object.clone if deoptimization happens.
5115   { PreserveReexecuteState preexecs(this);
5116     jvms()->set_should_reexecute(true);
5117 
5118     Node* obj = null_check_receiver();
5119     if (stopped())  return true;
5120 
5121     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5122 
5123     // If we are going to clone an instance, we need its exact type to
5124     // know the number and types of fields to convert the clone to
5125     // loads/stores. Maybe a speculative type can help us.
5126     if (!obj_type->klass_is_exact() &&
5127         obj_type->speculative_type() != nullptr &&
5128         obj_type->speculative_type()->is_instance_klass()) {
5129       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5130       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5131           !spec_ik->has_injected_fields()) {
5132         if (!obj_type->isa_instptr() ||
5133             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5134           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5135         }
5136       }
5137     }
5138 
5139     // Conservatively insert a memory barrier on all memory slices.
5140     // Do not let writes into the original float below the clone.
5141     insert_mem_bar(Op_MemBarCPUOrder);
5142 
5143     // paths into result_reg:
5144     enum {
5145       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5146       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5147       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5148       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5149       PATH_LIMIT
5150     };
5151     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5152     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5153     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5154     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5155     record_for_igvn(result_reg);
5156 
5157     Node* obj_klass = load_object_klass(obj);
5158     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr);
5159     if (array_ctl != nullptr) {
5160       // It's an array.
5161       PreserveJVMState pjvms(this);
5162       set_control(array_ctl);
5163       Node* obj_length = load_array_length(obj);
5164       Node* array_size = nullptr; // Size of the array without object alignment padding.
5165       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5166 
5167       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5168       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5169         // If it is an oop array, it requires very special treatment,
5170         // because gc barriers are required when accessing the array.
5171         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5172         if (is_obja != nullptr) {
5173           PreserveJVMState pjvms2(this);
5174           set_control(is_obja);
5175           // Generate a direct call to the right arraycopy function(s).
5176           // Clones are always tightly coupled.
5177           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5178           ac->set_clone_oop_array();
5179           Node* n = _gvn.transform(ac);
5180           assert(n == ac, "cannot disappear");
5181           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5182 
5183           result_reg->init_req(_objArray_path, control());
5184           result_val->init_req(_objArray_path, alloc_obj);
5185           result_i_o ->set_req(_objArray_path, i_o());
5186           result_mem ->set_req(_objArray_path, reset_memory());
5187         }
5188       }
5189       // Otherwise, there are no barriers to worry about.
5190       // (We can dispense with card marks if we know the allocation
5191       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5192       //  causes the non-eden paths to take compensating steps to
5193       //  simulate a fresh allocation, so that no further
5194       //  card marks are required in compiled code to initialize
5195       //  the object.)
5196 
5197       if (!stopped()) {
5198         copy_to_clone(obj, alloc_obj, array_size, true);
5199 
5200         // Present the results of the copy.
5201         result_reg->init_req(_array_path, control());
5202         result_val->init_req(_array_path, alloc_obj);
5203         result_i_o ->set_req(_array_path, i_o());
5204         result_mem ->set_req(_array_path, reset_memory());
5205       }
5206     }
5207 
5208     // We only go to the instance fast case code if we pass a number of guards.
5209     // The paths which do not pass are accumulated in the slow_region.
5210     RegionNode* slow_region = new RegionNode(1);
5211     record_for_igvn(slow_region);
5212     if (!stopped()) {
5213       // It's an instance (we did array above).  Make the slow-path tests.
5214       // If this is a virtual call, we generate a funny guard.  We grab
5215       // the vtable entry corresponding to clone() from the target object.
5216       // If the target method which we are calling happens to be the
5217       // Object clone() method, we pass the guard.  We do not need this
5218       // guard for non-virtual calls; the caller is known to be the native
5219       // Object clone().
5220       if (is_virtual) {
5221         generate_virtual_guard(obj_klass, slow_region);
5222       }
5223 
5224       // The object must be easily cloneable and must not have a finalizer.
5225       // Both of these conditions may be checked in a single test.
5226       // We could optimize the test further, but we don't care.
5227       generate_access_flags_guard(obj_klass,
5228                                   // Test both conditions:
5229                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
5230                                   // Must be cloneable but not finalizer:
5231                                   JVM_ACC_IS_CLONEABLE_FAST,
5232                                   slow_region);
5233     }
5234 
5235     if (!stopped()) {
5236       // It's an instance, and it passed the slow-path tests.
5237       PreserveJVMState pjvms(this);
5238       Node* obj_size = nullptr; // Total object size, including object alignment padding.
5239       // Need to deoptimize on exception from allocation since Object.clone intrinsic
5240       // is reexecuted if deoptimization occurs and there could be problems when merging
5241       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
5242       Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
5243 
5244       copy_to_clone(obj, alloc_obj, obj_size, false);
5245 
5246       // Present the results of the slow call.
5247       result_reg->init_req(_instance_path, control());
5248       result_val->init_req(_instance_path, alloc_obj);
5249       result_i_o ->set_req(_instance_path, i_o());
5250       result_mem ->set_req(_instance_path, reset_memory());
5251     }
5252 
5253     // Generate code for the slow case.  We make a call to clone().
5254     set_control(_gvn.transform(slow_region));
5255     if (!stopped()) {
5256       PreserveJVMState pjvms(this);
5257       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
5258       // We need to deoptimize on exception (see comment above)
5259       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
5260       // this->control() comes from set_results_for_java_call
5261       result_reg->init_req(_slow_path, control());
5262       result_val->init_req(_slow_path, slow_result);
5263       result_i_o ->set_req(_slow_path, i_o());
5264       result_mem ->set_req(_slow_path, reset_memory());
5265     }
5266 
5267     // Return the combined state.
5268     set_control(    _gvn.transform(result_reg));
5269     set_i_o(        _gvn.transform(result_i_o));
5270     set_all_memory( _gvn.transform(result_mem));
5271   } // original reexecute is set back here
5272 
5273   set_result(_gvn.transform(result_val));
5274   return true;
5275 }
5276 
5277 // If we have a tightly coupled allocation, the arraycopy may take care
5278 // of the array initialization. If one of the guards we insert between
5279 // the allocation and the arraycopy causes a deoptimization, an
5280 // uninitialized array will escape the compiled method. To prevent that
5281 // we set the JVM state for uncommon traps between the allocation and
5282 // the arraycopy to the state before the allocation so, in case of
5283 // deoptimization, we'll reexecute the allocation and the
5284 // initialization.
5285 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
5286   if (alloc != nullptr) {
5287     ciMethod* trap_method = alloc->jvms()->method();
5288     int trap_bci = alloc->jvms()->bci();
5289 
5290     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5291         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
5292       // Make sure there's no store between the allocation and the
5293       // arraycopy otherwise visible side effects could be rexecuted
5294       // in case of deoptimization and cause incorrect execution.
5295       bool no_interfering_store = true;
5296       Node* mem = alloc->in(TypeFunc::Memory);
5297       if (mem->is_MergeMem()) {
5298         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
5299           Node* n = mms.memory();
5300           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5301             assert(n->is_Store(), "what else?");
5302             no_interfering_store = false;
5303             break;
5304           }
5305         }
5306       } else {
5307         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
5308           Node* n = mms.memory();
5309           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5310             assert(n->is_Store(), "what else?");
5311             no_interfering_store = false;
5312             break;
5313           }
5314         }
5315       }
5316 
5317       if (no_interfering_store) {
5318         SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5319 
5320         JVMState* saved_jvms = jvms();
5321         saved_reexecute_sp = _reexecute_sp;
5322 
5323         set_jvms(sfpt->jvms());
5324         _reexecute_sp = jvms()->sp();
5325 
5326         return saved_jvms;
5327       }
5328     }
5329   }
5330   return nullptr;
5331 }
5332 
5333 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5334 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5335 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5336   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5337   uint size = alloc->req();
5338   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5339   old_jvms->set_map(sfpt);
5340   for (uint i = 0; i < size; i++) {
5341     sfpt->init_req(i, alloc->in(i));
5342   }
5343   // re-push array length for deoptimization
5344   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5345   old_jvms->set_sp(old_jvms->sp()+1);
5346   old_jvms->set_monoff(old_jvms->monoff()+1);
5347   old_jvms->set_scloff(old_jvms->scloff()+1);
5348   old_jvms->set_endoff(old_jvms->endoff()+1);
5349   old_jvms->set_should_reexecute(true);
5350 
5351   sfpt->set_i_o(map()->i_o());
5352   sfpt->set_memory(map()->memory());
5353   sfpt->set_control(map()->control());
5354   return sfpt;
5355 }
5356 
5357 // In case of a deoptimization, we restart execution at the
5358 // allocation, allocating a new array. We would leave an uninitialized
5359 // array in the heap that GCs wouldn't expect. Move the allocation
5360 // after the traps so we don't allocate the array if we
5361 // deoptimize. This is possible because tightly_coupled_allocation()
5362 // guarantees there's no observer of the allocated array at this point
5363 // and the control flow is simple enough.
5364 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5365                                                     int saved_reexecute_sp, uint new_idx) {
5366   if (saved_jvms_before_guards != nullptr && !stopped()) {
5367     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5368 
5369     assert(alloc != nullptr, "only with a tightly coupled allocation");
5370     // restore JVM state to the state at the arraycopy
5371     saved_jvms_before_guards->map()->set_control(map()->control());
5372     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5373     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5374     // If we've improved the types of some nodes (null check) while
5375     // emitting the guards, propagate them to the current state
5376     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5377     set_jvms(saved_jvms_before_guards);
5378     _reexecute_sp = saved_reexecute_sp;
5379 
5380     // Remove the allocation from above the guards
5381     CallProjections callprojs;
5382     alloc->extract_projections(&callprojs, true);
5383     InitializeNode* init = alloc->initialization();
5384     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5385     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5386     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5387 
5388     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5389     // the allocation (i.e. is only valid if the allocation succeeds):
5390     // 1) replace CastIINode with AllocateArrayNode's length here
5391     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5392     //
5393     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5394     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5395     Node* init_control = init->proj_out(TypeFunc::Control);
5396     Node* alloc_length = alloc->Ideal_length();
5397 #ifdef ASSERT
5398     Node* prev_cast = nullptr;
5399 #endif
5400     for (uint i = 0; i < init_control->outcnt(); i++) {
5401       Node* init_out = init_control->raw_out(i);
5402       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5403 #ifdef ASSERT
5404         if (prev_cast == nullptr) {
5405           prev_cast = init_out;
5406         } else {
5407           if (prev_cast->cmp(*init_out) == false) {
5408             prev_cast->dump();
5409             init_out->dump();
5410             assert(false, "not equal CastIINode");
5411           }
5412         }
5413 #endif
5414         C->gvn_replace_by(init_out, alloc_length);
5415       }
5416     }
5417     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5418 
5419     // move the allocation here (after the guards)
5420     _gvn.hash_delete(alloc);
5421     alloc->set_req(TypeFunc::Control, control());
5422     alloc->set_req(TypeFunc::I_O, i_o());
5423     Node *mem = reset_memory();
5424     set_all_memory(mem);
5425     alloc->set_req(TypeFunc::Memory, mem);
5426     set_control(init->proj_out_or_null(TypeFunc::Control));
5427     set_i_o(callprojs.fallthrough_ioproj);
5428 
5429     // Update memory as done in GraphKit::set_output_for_allocation()
5430     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5431     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5432     if (ary_type->isa_aryptr() && length_type != nullptr) {
5433       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5434     }
5435     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5436     int            elemidx  = C->get_alias_index(telemref);
5437     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5438     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5439 
5440     Node* allocx = _gvn.transform(alloc);
5441     assert(allocx == alloc, "where has the allocation gone?");
5442     assert(dest->is_CheckCastPP(), "not an allocation result?");
5443 
5444     _gvn.hash_delete(dest);
5445     dest->set_req(0, control());
5446     Node* destx = _gvn.transform(dest);
5447     assert(destx == dest, "where has the allocation result gone?");
5448 
5449     array_ideal_length(alloc, ary_type, true);
5450   }
5451 }
5452 
5453 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
5454 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
5455 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
5456 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
5457 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
5458 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
5459 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
5460                                                                        JVMState* saved_jvms_before_guards) {
5461   if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
5462     // There is at least one unrelated uncommon trap which needs to be replaced.
5463     SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5464 
5465     JVMState* saved_jvms = jvms();
5466     const int saved_reexecute_sp = _reexecute_sp;
5467     set_jvms(sfpt->jvms());
5468     _reexecute_sp = jvms()->sp();
5469 
5470     replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
5471 
5472     // Restore state
5473     set_jvms(saved_jvms);
5474     _reexecute_sp = saved_reexecute_sp;
5475   }
5476 }
5477 
5478 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
5479 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
5480 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
5481   Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
5482   while (if_proj->is_IfProj()) {
5483     CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
5484     if (uncommon_trap != nullptr) {
5485       create_new_uncommon_trap(uncommon_trap);
5486     }
5487     assert(if_proj->in(0)->is_If(), "must be If");
5488     if_proj = if_proj->in(0)->in(0);
5489   }
5490   assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
5491          "must have reached control projection of init node");
5492 }
5493 
5494 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
5495   const int trap_request = uncommon_trap_call->uncommon_trap_request();
5496   assert(trap_request != 0, "no valid UCT trap request");
5497   PreserveJVMState pjvms(this);
5498   set_control(uncommon_trap_call->in(0));
5499   uncommon_trap(Deoptimization::trap_request_reason(trap_request),
5500                 Deoptimization::trap_request_action(trap_request));
5501   assert(stopped(), "Should be stopped");
5502   _gvn.hash_delete(uncommon_trap_call);
5503   uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
5504 }
5505 
5506 // Common checks for array sorting intrinsics arguments.
5507 // Returns `true` if checks passed.
5508 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) {
5509   // check address of the class
5510   if (elementType == nullptr || elementType->is_top()) {
5511     return false;  // dead path
5512   }
5513   const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
5514   if (elem_klass == nullptr) {
5515     return false;  // dead path
5516   }
5517   // java_mirror_type() returns non-null for compile-time Class constants only
5518   ciType* elem_type = elem_klass->java_mirror_type();
5519   if (elem_type == nullptr) {
5520     return false;
5521   }
5522   bt = elem_type->basic_type();
5523   // Disable the intrinsic if the CPU does not support SIMD sort
5524   if (!Matcher::supports_simd_sort(bt)) {
5525     return false;
5526   }
5527   // check address of the array
5528   if (obj == nullptr || obj->is_top()) {
5529     return false;  // dead path
5530   }
5531   const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
5532   if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) {
5533     return false; // failed input validation
5534   }
5535   return true;
5536 }
5537 
5538 //------------------------------inline_array_partition-----------------------
5539 bool LibraryCallKit::inline_array_partition() {
5540   address stubAddr = StubRoutines::select_array_partition_function();
5541   if (stubAddr == nullptr) {
5542     return false; // Intrinsic's stub is not implemented on this platform
5543   }
5544   assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)");
5545 
5546   // no receiver because it is a static method
5547   Node* elementType     = argument(0);
5548   Node* obj             = argument(1);
5549   Node* offset          = argument(2); // long
5550   Node* fromIndex       = argument(4);
5551   Node* toIndex         = argument(5);
5552   Node* indexPivot1     = argument(6);
5553   Node* indexPivot2     = argument(7);
5554   // PartitionOperation:  argument(8) is ignored
5555 
5556   Node* pivotIndices = nullptr;
5557   BasicType bt = T_ILLEGAL;
5558 
5559   if (!check_array_sort_arguments(elementType, obj, bt)) {
5560     return false;
5561   }
5562   null_check(obj);
5563   // If obj is dead, only null-path is taken.
5564   if (stopped()) {
5565     return true;
5566   }
5567   // Set the original stack and the reexecute bit for the interpreter to reexecute
5568   // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
5569   { PreserveReexecuteState preexecs(this);
5570     jvms()->set_should_reexecute(true);
5571 
5572     Node* obj_adr = make_unsafe_address(obj, offset);
5573 
5574     // create the pivotIndices array of type int and size = 2
5575     Node* size = intcon(2);
5576     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
5577     pivotIndices = new_array(klass_node, size, 0);  // no arguments to push
5578     AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
5579     guarantee(alloc != nullptr, "created above");
5580     Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
5581 
5582     // pass the basic type enum to the stub
5583     Node* elemType = intcon(bt);
5584 
5585     // Call the stub
5586     const char *stubName = "array_partition_stub";
5587     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
5588                       stubAddr, stubName, TypePtr::BOTTOM,
5589                       obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
5590                       indexPivot1, indexPivot2);
5591 
5592   } // original reexecute is set back here
5593 
5594   if (!stopped()) {
5595     set_result(pivotIndices);
5596   }
5597 
5598   return true;
5599 }
5600 
5601 
5602 //------------------------------inline_array_sort-----------------------
5603 bool LibraryCallKit::inline_array_sort() {
5604   address stubAddr = StubRoutines::select_arraysort_function();
5605   if (stubAddr == nullptr) {
5606     return false; // Intrinsic's stub is not implemented on this platform
5607   }
5608   assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)");
5609 
5610   // no receiver because it is a static method
5611   Node* elementType     = argument(0);
5612   Node* obj             = argument(1);
5613   Node* offset          = argument(2); // long
5614   Node* fromIndex       = argument(4);
5615   Node* toIndex         = argument(5);
5616   // SortOperation:       argument(6) is ignored
5617 
5618   BasicType bt = T_ILLEGAL;
5619 
5620   if (!check_array_sort_arguments(elementType, obj, bt)) {
5621     return false;
5622   }
5623   null_check(obj);
5624   // If obj is dead, only null-path is taken.
5625   if (stopped()) {
5626     return true;
5627   }
5628   Node* obj_adr = make_unsafe_address(obj, offset);
5629 
5630   // pass the basic type enum to the stub
5631   Node* elemType = intcon(bt);
5632 
5633   // Call the stub.
5634   const char *stubName = "arraysort_stub";
5635   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
5636                     stubAddr, stubName, TypePtr::BOTTOM,
5637                     obj_adr, elemType, fromIndex, toIndex);
5638 
5639   return true;
5640 }
5641 
5642 
5643 //------------------------------inline_arraycopy-----------------------
5644 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5645 //                                                      Object dest, int destPos,
5646 //                                                      int length);
5647 bool LibraryCallKit::inline_arraycopy() {
5648   // Get the arguments.
5649   Node* src         = argument(0);  // type: oop
5650   Node* src_offset  = argument(1);  // type: int
5651   Node* dest        = argument(2);  // type: oop
5652   Node* dest_offset = argument(3);  // type: int
5653   Node* length      = argument(4);  // type: int
5654 
5655   uint new_idx = C->unique();
5656 
5657   // Check for allocation before we add nodes that would confuse
5658   // tightly_coupled_allocation()
5659   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
5660 
5661   int saved_reexecute_sp = -1;
5662   JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5663   // See arraycopy_restore_alloc_state() comment
5664   // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5665   // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
5666   // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
5667   bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
5668 
5669   // The following tests must be performed
5670   // (1) src and dest are arrays.
5671   // (2) src and dest arrays must have elements of the same BasicType
5672   // (3) src and dest must not be null.
5673   // (4) src_offset must not be negative.
5674   // (5) dest_offset must not be negative.
5675   // (6) length must not be negative.
5676   // (7) src_offset + length must not exceed length of src.
5677   // (8) dest_offset + length must not exceed length of dest.
5678   // (9) each element of an oop array must be assignable
5679 
5680   // (3) src and dest must not be null.
5681   // always do this here because we need the JVM state for uncommon traps
5682   Node* null_ctl = top();
5683   src  = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
5684   assert(null_ctl->is_top(), "no null control here");
5685   dest = null_check(dest, T_ARRAY);
5686 
5687   if (!can_emit_guards) {
5688     // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
5689     // guards but the arraycopy node could still take advantage of a
5690     // tightly allocated allocation. tightly_coupled_allocation() is
5691     // called again to make sure it takes the null check above into
5692     // account: the null check is mandatory and if it caused an
5693     // uncommon trap to be emitted then the allocation can't be
5694     // considered tightly coupled in this context.
5695     alloc = tightly_coupled_allocation(dest);
5696   }
5697 
5698   bool validated = false;
5699 
5700   const Type* src_type  = _gvn.type(src);
5701   const Type* dest_type = _gvn.type(dest);
5702   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5703   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5704 
5705   // Do we have the type of src?
5706   bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5707   // Do we have the type of dest?
5708   bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5709   // Is the type for src from speculation?
5710   bool src_spec = false;
5711   // Is the type for dest from speculation?
5712   bool dest_spec = false;
5713 
5714   if ((!has_src || !has_dest) && can_emit_guards) {
5715     // We don't have sufficient type information, let's see if
5716     // speculative types can help. We need to have types for both src
5717     // and dest so that it pays off.
5718 
5719     // Do we already have or could we have type information for src
5720     bool could_have_src = has_src;
5721     // Do we already have or could we have type information for dest
5722     bool could_have_dest = has_dest;
5723 
5724     ciKlass* src_k = nullptr;
5725     if (!has_src) {
5726       src_k = src_type->speculative_type_not_null();
5727       if (src_k != nullptr && src_k->is_array_klass()) {
5728         could_have_src = true;
5729       }
5730     }
5731 
5732     ciKlass* dest_k = nullptr;
5733     if (!has_dest) {
5734       dest_k = dest_type->speculative_type_not_null();
5735       if (dest_k != nullptr && dest_k->is_array_klass()) {
5736         could_have_dest = true;
5737       }
5738     }
5739 
5740     if (could_have_src && could_have_dest) {
5741       // This is going to pay off so emit the required guards
5742       if (!has_src) {
5743         src = maybe_cast_profiled_obj(src, src_k, true);
5744         src_type  = _gvn.type(src);
5745         top_src  = src_type->isa_aryptr();
5746         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5747         src_spec = true;
5748       }
5749       if (!has_dest) {
5750         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5751         dest_type  = _gvn.type(dest);
5752         top_dest  = dest_type->isa_aryptr();
5753         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5754         dest_spec = true;
5755       }
5756     }
5757   }
5758 
5759   if (has_src && has_dest && can_emit_guards) {
5760     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5761     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5762     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5763     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5764 
5765     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5766       // If both arrays are object arrays then having the exact types
5767       // for both will remove the need for a subtype check at runtime
5768       // before the call and may make it possible to pick a faster copy
5769       // routine (without a subtype check on every element)
5770       // Do we have the exact type of src?
5771       bool could_have_src = src_spec;
5772       // Do we have the exact type of dest?
5773       bool could_have_dest = dest_spec;
5774       ciKlass* src_k = nullptr;
5775       ciKlass* dest_k = nullptr;
5776       if (!src_spec) {
5777         src_k = src_type->speculative_type_not_null();
5778         if (src_k != nullptr && src_k->is_array_klass()) {
5779           could_have_src = true;
5780         }
5781       }
5782       if (!dest_spec) {
5783         dest_k = dest_type->speculative_type_not_null();
5784         if (dest_k != nullptr && dest_k->is_array_klass()) {
5785           could_have_dest = true;
5786         }
5787       }
5788       if (could_have_src && could_have_dest) {
5789         // If we can have both exact types, emit the missing guards
5790         if (could_have_src && !src_spec) {
5791           src = maybe_cast_profiled_obj(src, src_k, true);
5792         }
5793         if (could_have_dest && !dest_spec) {
5794           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5795         }
5796       }
5797     }
5798   }
5799 
5800   ciMethod* trap_method = method();
5801   int trap_bci = bci();
5802   if (saved_jvms_before_guards != nullptr) {
5803     trap_method = alloc->jvms()->method();
5804     trap_bci = alloc->jvms()->bci();
5805   }
5806 
5807   bool negative_length_guard_generated = false;
5808 
5809   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5810       can_emit_guards &&
5811       !src->is_top() && !dest->is_top()) {
5812     // validate arguments: enables transformation the ArrayCopyNode
5813     validated = true;
5814 
5815     RegionNode* slow_region = new RegionNode(1);
5816     record_for_igvn(slow_region);
5817 
5818     // (1) src and dest are arrays.
5819     generate_non_array_guard(load_object_klass(src), slow_region);
5820     generate_non_array_guard(load_object_klass(dest), slow_region);
5821 
5822     // (2) src and dest arrays must have elements of the same BasicType
5823     // done at macro expansion or at Ideal transformation time
5824 
5825     // (4) src_offset must not be negative.
5826     generate_negative_guard(src_offset, slow_region);
5827 
5828     // (5) dest_offset must not be negative.
5829     generate_negative_guard(dest_offset, slow_region);
5830 
5831     // (7) src_offset + length must not exceed length of src.
5832     generate_limit_guard(src_offset, length,
5833                          load_array_length(src),
5834                          slow_region);
5835 
5836     // (8) dest_offset + length must not exceed length of dest.
5837     generate_limit_guard(dest_offset, length,
5838                          load_array_length(dest),
5839                          slow_region);
5840 
5841     // (6) length must not be negative.
5842     // This is also checked in generate_arraycopy() during macro expansion, but
5843     // we also have to check it here for the case where the ArrayCopyNode will
5844     // be eliminated by Escape Analysis.
5845     if (EliminateAllocations) {
5846       generate_negative_guard(length, slow_region);
5847       negative_length_guard_generated = true;
5848     }
5849 
5850     // (9) each element of an oop array must be assignable
5851     Node* dest_klass = load_object_klass(dest);
5852     if (src != dest) {
5853       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
5854 
5855       if (not_subtype_ctrl != top()) {
5856         PreserveJVMState pjvms(this);
5857         set_control(not_subtype_ctrl);
5858         uncommon_trap(Deoptimization::Reason_intrinsic,
5859                       Deoptimization::Action_make_not_entrant);
5860         assert(stopped(), "Should be stopped");
5861       }
5862     }
5863     {
5864       PreserveJVMState pjvms(this);
5865       set_control(_gvn.transform(slow_region));
5866       uncommon_trap(Deoptimization::Reason_intrinsic,
5867                     Deoptimization::Action_make_not_entrant);
5868       assert(stopped(), "Should be stopped");
5869     }
5870 
5871     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5872     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5873     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5874     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
5875   }
5876 
5877   if (stopped()) {
5878     return true;
5879   }
5880 
5881   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
5882                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5883                                           // so the compiler has a chance to eliminate them: during macro expansion,
5884                                           // we have to set their control (CastPP nodes are eliminated).
5885                                           load_object_klass(src), load_object_klass(dest),
5886                                           load_array_length(src), load_array_length(dest));
5887 
5888   ac->set_arraycopy(validated);
5889 
5890   Node* n = _gvn.transform(ac);
5891   if (n == ac) {
5892     ac->connect_outputs(this);
5893   } else {
5894     assert(validated, "shouldn't transform if all arguments not validated");
5895     set_all_memory(n);
5896   }
5897   clear_upper_avx();
5898 
5899 
5900   return true;
5901 }
5902 
5903 
5904 // Helper function which determines if an arraycopy immediately follows
5905 // an allocation, with no intervening tests or other escapes for the object.
5906 AllocateArrayNode*
5907 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
5908   if (stopped())             return nullptr;  // no fast path
5909   if (!C->do_aliasing())     return nullptr;  // no MergeMems around
5910 
5911   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
5912   if (alloc == nullptr)  return nullptr;
5913 
5914   Node* rawmem = memory(Compile::AliasIdxRaw);
5915   // Is the allocation's memory state untouched?
5916   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5917     // Bail out if there have been raw-memory effects since the allocation.
5918     // (Example:  There might have been a call or safepoint.)
5919     return nullptr;
5920   }
5921   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5922   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5923     return nullptr;
5924   }
5925 
5926   // There must be no unexpected observers of this allocation.
5927   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5928     Node* obs = ptr->fast_out(i);
5929     if (obs != this->map()) {
5930       return nullptr;
5931     }
5932   }
5933 
5934   // This arraycopy must unconditionally follow the allocation of the ptr.
5935   Node* alloc_ctl = ptr->in(0);
5936   Node* ctl = control();
5937   while (ctl != alloc_ctl) {
5938     // There may be guards which feed into the slow_region.
5939     // Any other control flow means that we might not get a chance
5940     // to finish initializing the allocated object.
5941     // Various low-level checks bottom out in uncommon traps. These
5942     // are considered safe since we've already checked above that
5943     // there is no unexpected observer of this allocation.
5944     if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
5945       assert(ctl->in(0)->is_If(), "must be If");
5946       ctl = ctl->in(0)->in(0);
5947     } else {
5948       return nullptr;
5949     }
5950   }
5951 
5952   // If we get this far, we have an allocation which immediately
5953   // precedes the arraycopy, and we can take over zeroing the new object.
5954   // The arraycopy will finish the initialization, and provide
5955   // a new control state to which we will anchor the destination pointer.
5956 
5957   return alloc;
5958 }
5959 
5960 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
5961   if (node->is_IfProj()) {
5962     Node* other_proj = node->as_IfProj()->other_if_proj();
5963     for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
5964       Node* obs = other_proj->fast_out(j);
5965       if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
5966           (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5967         return obs->as_CallStaticJava();
5968       }
5969     }
5970   }
5971   return nullptr;
5972 }
5973 
5974 //-------------inline_encodeISOArray-----------------------------------
5975 // encode char[] to byte[] in ISO_8859_1 or ASCII
5976 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
5977   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5978   // no receiver since it is static method
5979   Node *src         = argument(0);
5980   Node *src_offset  = argument(1);
5981   Node *dst         = argument(2);
5982   Node *dst_offset  = argument(3);
5983   Node *length      = argument(4);
5984 
5985   src = must_be_not_null(src, true);
5986   dst = must_be_not_null(dst, true);
5987 
5988   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
5989   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
5990   if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
5991       dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
5992     // failed array check
5993     return false;
5994   }
5995 
5996   // Figure out the size and type of the elements we will be copying.
5997   BasicType src_elem = src_type->elem()->array_element_basic_type();
5998   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
5999   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
6000     return false;
6001   }
6002 
6003   Node* src_start = array_element_address(src, src_offset, T_CHAR);
6004   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
6005   // 'src_start' points to src array + scaled offset
6006   // 'dst_start' points to dst array + scaled offset
6007 
6008   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
6009   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
6010   enc = _gvn.transform(enc);
6011   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
6012   set_memory(res_mem, mtype);
6013   set_result(enc);
6014   clear_upper_avx();
6015 
6016   return true;
6017 }
6018 
6019 //-------------inline_multiplyToLen-----------------------------------
6020 bool LibraryCallKit::inline_multiplyToLen() {
6021   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
6022 
6023   address stubAddr = StubRoutines::multiplyToLen();
6024   if (stubAddr == nullptr) {
6025     return false; // Intrinsic's stub is not implemented on this platform
6026   }
6027   const char* stubName = "multiplyToLen";
6028 
6029   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
6030 
6031   // no receiver because it is a static method
6032   Node* x    = argument(0);
6033   Node* xlen = argument(1);
6034   Node* y    = argument(2);
6035   Node* ylen = argument(3);
6036   Node* z    = argument(4);
6037 
6038   x = must_be_not_null(x, true);
6039   y = must_be_not_null(y, true);
6040 
6041   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6042   const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
6043   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6044       y_type == nullptr || y_type->elem() == Type::BOTTOM) {
6045     // failed array check
6046     return false;
6047   }
6048 
6049   BasicType x_elem = x_type->elem()->array_element_basic_type();
6050   BasicType y_elem = y_type->elem()->array_element_basic_type();
6051   if (x_elem != T_INT || y_elem != T_INT) {
6052     return false;
6053   }
6054 
6055   Node* x_start = array_element_address(x, intcon(0), x_elem);
6056   Node* y_start = array_element_address(y, intcon(0), y_elem);
6057   // 'x_start' points to x array + scaled xlen
6058   // 'y_start' points to y array + scaled ylen
6059 
6060   Node* z_start = array_element_address(z, intcon(0), T_INT);
6061 
6062   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6063                                  OptoRuntime::multiplyToLen_Type(),
6064                                  stubAddr, stubName, TypePtr::BOTTOM,
6065                                  x_start, xlen, y_start, ylen, z_start);
6066 
6067   C->set_has_split_ifs(true); // Has chance for split-if optimization
6068   set_result(z);
6069   return true;
6070 }
6071 
6072 //-------------inline_squareToLen------------------------------------
6073 bool LibraryCallKit::inline_squareToLen() {
6074   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
6075 
6076   address stubAddr = StubRoutines::squareToLen();
6077   if (stubAddr == nullptr) {
6078     return false; // Intrinsic's stub is not implemented on this platform
6079   }
6080   const char* stubName = "squareToLen";
6081 
6082   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6083 
6084   Node* x    = argument(0);
6085   Node* len  = argument(1);
6086   Node* z    = argument(2);
6087   Node* zlen = argument(3);
6088 
6089   x = must_be_not_null(x, true);
6090   z = must_be_not_null(z, true);
6091 
6092   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6093   const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
6094   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6095       z_type == nullptr || z_type->elem() == Type::BOTTOM) {
6096     // failed array check
6097     return false;
6098   }
6099 
6100   BasicType x_elem = x_type->elem()->array_element_basic_type();
6101   BasicType z_elem = z_type->elem()->array_element_basic_type();
6102   if (x_elem != T_INT || z_elem != T_INT) {
6103     return false;
6104   }
6105 
6106 
6107   Node* x_start = array_element_address(x, intcon(0), x_elem);
6108   Node* z_start = array_element_address(z, intcon(0), z_elem);
6109 
6110   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6111                                   OptoRuntime::squareToLen_Type(),
6112                                   stubAddr, stubName, TypePtr::BOTTOM,
6113                                   x_start, len, z_start, zlen);
6114 
6115   set_result(z);
6116   return true;
6117 }
6118 
6119 //-------------inline_mulAdd------------------------------------------
6120 bool LibraryCallKit::inline_mulAdd() {
6121   assert(UseMulAddIntrinsic, "not implemented on this platform");
6122 
6123   address stubAddr = StubRoutines::mulAdd();
6124   if (stubAddr == nullptr) {
6125     return false; // Intrinsic's stub is not implemented on this platform
6126   }
6127   const char* stubName = "mulAdd";
6128 
6129   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6130 
6131   Node* out      = argument(0);
6132   Node* in       = argument(1);
6133   Node* offset   = argument(2);
6134   Node* len      = argument(3);
6135   Node* k        = argument(4);
6136 
6137   in = must_be_not_null(in, true);
6138   out = must_be_not_null(out, true);
6139 
6140   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6141   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6142   if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6143        in_type == nullptr ||  in_type->elem() == Type::BOTTOM) {
6144     // failed array check
6145     return false;
6146   }
6147 
6148   BasicType out_elem = out_type->elem()->array_element_basic_type();
6149   BasicType in_elem = in_type->elem()->array_element_basic_type();
6150   if (out_elem != T_INT || in_elem != T_INT) {
6151     return false;
6152   }
6153 
6154   Node* outlen = load_array_length(out);
6155   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
6156   Node* out_start = array_element_address(out, intcon(0), out_elem);
6157   Node* in_start = array_element_address(in, intcon(0), in_elem);
6158 
6159   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6160                                   OptoRuntime::mulAdd_Type(),
6161                                   stubAddr, stubName, TypePtr::BOTTOM,
6162                                   out_start,in_start, new_offset, len, k);
6163   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6164   set_result(result);
6165   return true;
6166 }
6167 
6168 //-------------inline_montgomeryMultiply-----------------------------------
6169 bool LibraryCallKit::inline_montgomeryMultiply() {
6170   address stubAddr = StubRoutines::montgomeryMultiply();
6171   if (stubAddr == nullptr) {
6172     return false; // Intrinsic's stub is not implemented on this platform
6173   }
6174 
6175   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6176   const char* stubName = "montgomery_multiply";
6177 
6178   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6179 
6180   Node* a    = argument(0);
6181   Node* b    = argument(1);
6182   Node* n    = argument(2);
6183   Node* len  = argument(3);
6184   Node* inv  = argument(4);
6185   Node* m    = argument(6);
6186 
6187   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6188   const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
6189   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6190   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6191   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6192       b_type == nullptr || b_type->elem() == Type::BOTTOM ||
6193       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6194       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6195     // failed array check
6196     return false;
6197   }
6198 
6199   BasicType a_elem = a_type->elem()->array_element_basic_type();
6200   BasicType b_elem = b_type->elem()->array_element_basic_type();
6201   BasicType n_elem = n_type->elem()->array_element_basic_type();
6202   BasicType m_elem = m_type->elem()->array_element_basic_type();
6203   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6204     return false;
6205   }
6206 
6207   // Make the call
6208   {
6209     Node* a_start = array_element_address(a, intcon(0), a_elem);
6210     Node* b_start = array_element_address(b, intcon(0), b_elem);
6211     Node* n_start = array_element_address(n, intcon(0), n_elem);
6212     Node* m_start = array_element_address(m, intcon(0), m_elem);
6213 
6214     Node* call = make_runtime_call(RC_LEAF,
6215                                    OptoRuntime::montgomeryMultiply_Type(),
6216                                    stubAddr, stubName, TypePtr::BOTTOM,
6217                                    a_start, b_start, n_start, len, inv, top(),
6218                                    m_start);
6219     set_result(m);
6220   }
6221 
6222   return true;
6223 }
6224 
6225 bool LibraryCallKit::inline_montgomerySquare() {
6226   address stubAddr = StubRoutines::montgomerySquare();
6227   if (stubAddr == nullptr) {
6228     return false; // Intrinsic's stub is not implemented on this platform
6229   }
6230 
6231   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6232   const char* stubName = "montgomery_square";
6233 
6234   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6235 
6236   Node* a    = argument(0);
6237   Node* n    = argument(1);
6238   Node* len  = argument(2);
6239   Node* inv  = argument(3);
6240   Node* m    = argument(5);
6241 
6242   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6243   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6244   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6245   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6246       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6247       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6248     // failed array check
6249     return false;
6250   }
6251 
6252   BasicType a_elem = a_type->elem()->array_element_basic_type();
6253   BasicType n_elem = n_type->elem()->array_element_basic_type();
6254   BasicType m_elem = m_type->elem()->array_element_basic_type();
6255   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6256     return false;
6257   }
6258 
6259   // Make the call
6260   {
6261     Node* a_start = array_element_address(a, intcon(0), a_elem);
6262     Node* n_start = array_element_address(n, intcon(0), n_elem);
6263     Node* m_start = array_element_address(m, intcon(0), m_elem);
6264 
6265     Node* call = make_runtime_call(RC_LEAF,
6266                                    OptoRuntime::montgomerySquare_Type(),
6267                                    stubAddr, stubName, TypePtr::BOTTOM,
6268                                    a_start, n_start, len, inv, top(),
6269                                    m_start);
6270     set_result(m);
6271   }
6272 
6273   return true;
6274 }
6275 
6276 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
6277   address stubAddr = nullptr;
6278   const char* stubName = nullptr;
6279 
6280   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
6281   if (stubAddr == nullptr) {
6282     return false; // Intrinsic's stub is not implemented on this platform
6283   }
6284 
6285   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
6286 
6287   assert(callee()->signature()->size() == 5, "expected 5 arguments");
6288 
6289   Node* newArr = argument(0);
6290   Node* oldArr = argument(1);
6291   Node* newIdx = argument(2);
6292   Node* shiftCount = argument(3);
6293   Node* numIter = argument(4);
6294 
6295   const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
6296   const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
6297   if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
6298       oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
6299     return false;
6300   }
6301 
6302   BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
6303   BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
6304   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
6305     return false;
6306   }
6307 
6308   // Make the call
6309   {
6310     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
6311     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
6312 
6313     Node* call = make_runtime_call(RC_LEAF,
6314                                    OptoRuntime::bigIntegerShift_Type(),
6315                                    stubAddr,
6316                                    stubName,
6317                                    TypePtr::BOTTOM,
6318                                    newArr_start,
6319                                    oldArr_start,
6320                                    newIdx,
6321                                    shiftCount,
6322                                    numIter);
6323   }
6324 
6325   return true;
6326 }
6327 
6328 //-------------inline_vectorizedMismatch------------------------------
6329 bool LibraryCallKit::inline_vectorizedMismatch() {
6330   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
6331 
6332   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
6333   Node* obja    = argument(0); // Object
6334   Node* aoffset = argument(1); // long
6335   Node* objb    = argument(3); // Object
6336   Node* boffset = argument(4); // long
6337   Node* length  = argument(6); // int
6338   Node* scale   = argument(7); // int
6339 
6340   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
6341   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
6342   if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
6343       objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
6344       scale == top()) {
6345     return false; // failed input validation
6346   }
6347 
6348   Node* obja_adr = make_unsafe_address(obja, aoffset);
6349   Node* objb_adr = make_unsafe_address(objb, boffset);
6350 
6351   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
6352   //
6353   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
6354   //    if (length <= inline_limit) {
6355   //      inline_path:
6356   //        vmask   = VectorMaskGen length
6357   //        vload1  = LoadVectorMasked obja, vmask
6358   //        vload2  = LoadVectorMasked objb, vmask
6359   //        result1 = VectorCmpMasked vload1, vload2, vmask
6360   //    } else {
6361   //      call_stub_path:
6362   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
6363   //    }
6364   //    exit_block:
6365   //      return Phi(result1, result2);
6366   //
6367   enum { inline_path = 1,  // input is small enough to process it all at once
6368          stub_path   = 2,  // input is too large; call into the VM
6369          PATH_LIMIT  = 3
6370   };
6371 
6372   Node* exit_block = new RegionNode(PATH_LIMIT);
6373   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
6374   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
6375 
6376   Node* call_stub_path = control();
6377 
6378   BasicType elem_bt = T_ILLEGAL;
6379 
6380   const TypeInt* scale_t = _gvn.type(scale)->is_int();
6381   if (scale_t->is_con()) {
6382     switch (scale_t->get_con()) {
6383       case 0: elem_bt = T_BYTE;  break;
6384       case 1: elem_bt = T_SHORT; break;
6385       case 2: elem_bt = T_INT;   break;
6386       case 3: elem_bt = T_LONG;  break;
6387 
6388       default: elem_bt = T_ILLEGAL; break; // not supported
6389     }
6390   }
6391 
6392   int inline_limit = 0;
6393   bool do_partial_inline = false;
6394 
6395   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
6396     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
6397     do_partial_inline = inline_limit >= 16;
6398   }
6399 
6400   if (do_partial_inline) {
6401     assert(elem_bt != T_ILLEGAL, "sanity");
6402 
6403     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
6404         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
6405         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
6406 
6407       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
6408       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
6409       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
6410 
6411       call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
6412 
6413       if (!stopped()) {
6414         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
6415 
6416         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
6417         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
6418         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
6419         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
6420 
6421         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
6422         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
6423         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
6424         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
6425 
6426         exit_block->init_req(inline_path, control());
6427         memory_phi->init_req(inline_path, map()->memory());
6428         result_phi->init_req(inline_path, result);
6429 
6430         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
6431         clear_upper_avx();
6432       }
6433     }
6434   }
6435 
6436   if (call_stub_path != nullptr) {
6437     set_control(call_stub_path);
6438 
6439     Node* call = make_runtime_call(RC_LEAF,
6440                                    OptoRuntime::vectorizedMismatch_Type(),
6441                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
6442                                    obja_adr, objb_adr, length, scale);
6443 
6444     exit_block->init_req(stub_path, control());
6445     memory_phi->init_req(stub_path, map()->memory());
6446     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
6447   }
6448 
6449   exit_block = _gvn.transform(exit_block);
6450   memory_phi = _gvn.transform(memory_phi);
6451   result_phi = _gvn.transform(result_phi);
6452 
6453   set_control(exit_block);
6454   set_all_memory(memory_phi);
6455   set_result(result_phi);
6456 
6457   return true;
6458 }
6459 
6460 //------------------------------inline_vectorizedHashcode----------------------------
6461 bool LibraryCallKit::inline_vectorizedHashCode() {
6462   assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
6463 
6464   assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
6465   Node* array          = argument(0);
6466   Node* offset         = argument(1);
6467   Node* length         = argument(2);
6468   Node* initialValue   = argument(3);
6469   Node* basic_type     = argument(4);
6470 
6471   if (basic_type == top()) {
6472     return false; // failed input validation
6473   }
6474 
6475   const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
6476   if (!basic_type_t->is_con()) {
6477     return false; // Only intrinsify if mode argument is constant
6478   }
6479 
6480   array = must_be_not_null(array, true);
6481 
6482   BasicType bt = (BasicType)basic_type_t->get_con();
6483 
6484   // Resolve address of first element
6485   Node* array_start = array_element_address(array, offset, bt);
6486 
6487   set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
6488     array_start, length, initialValue, basic_type)));
6489   clear_upper_avx();
6490 
6491   return true;
6492 }
6493 
6494 /**
6495  * Calculate CRC32 for byte.
6496  * int java.util.zip.CRC32.update(int crc, int b)
6497  */
6498 bool LibraryCallKit::inline_updateCRC32() {
6499   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6500   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6501   // no receiver since it is static method
6502   Node* crc  = argument(0); // type: int
6503   Node* b    = argument(1); // type: int
6504 
6505   /*
6506    *    int c = ~ crc;
6507    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6508    *    b = b ^ (c >>> 8);
6509    *    crc = ~b;
6510    */
6511 
6512   Node* M1 = intcon(-1);
6513   crc = _gvn.transform(new XorINode(crc, M1));
6514   Node* result = _gvn.transform(new XorINode(crc, b));
6515   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
6516 
6517   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6518   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
6519   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6520   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6521 
6522   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
6523   result = _gvn.transform(new XorINode(crc, result));
6524   result = _gvn.transform(new XorINode(result, M1));
6525   set_result(result);
6526   return true;
6527 }
6528 
6529 /**
6530  * Calculate CRC32 for byte[] array.
6531  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6532  */
6533 bool LibraryCallKit::inline_updateBytesCRC32() {
6534   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6535   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6536   // no receiver since it is static method
6537   Node* crc     = argument(0); // type: int
6538   Node* src     = argument(1); // type: oop
6539   Node* offset  = argument(2); // type: int
6540   Node* length  = argument(3); // type: int
6541 
6542   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6543   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6544     // failed array check
6545     return false;
6546   }
6547 
6548   // Figure out the size and type of the elements we will be copying.
6549   BasicType src_elem = src_type->elem()->array_element_basic_type();
6550   if (src_elem != T_BYTE) {
6551     return false;
6552   }
6553 
6554   // 'src_start' points to src array + scaled offset
6555   src = must_be_not_null(src, true);
6556   Node* src_start = array_element_address(src, offset, src_elem);
6557 
6558   // We assume that range check is done by caller.
6559   // TODO: generate range check (offset+length < src.length) in debug VM.
6560 
6561   // Call the stub.
6562   address stubAddr = StubRoutines::updateBytesCRC32();
6563   const char *stubName = "updateBytesCRC32";
6564 
6565   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6566                                  stubAddr, stubName, TypePtr::BOTTOM,
6567                                  crc, src_start, length);
6568   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6569   set_result(result);
6570   return true;
6571 }
6572 
6573 /**
6574  * Calculate CRC32 for ByteBuffer.
6575  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6576  */
6577 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6578   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6579   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6580   // no receiver since it is static method
6581   Node* crc     = argument(0); // type: int
6582   Node* src     = argument(1); // type: long
6583   Node* offset  = argument(3); // type: int
6584   Node* length  = argument(4); // type: int
6585 
6586   src = ConvL2X(src);  // adjust Java long to machine word
6587   Node* base = _gvn.transform(new CastX2PNode(src));
6588   offset = ConvI2X(offset);
6589 
6590   // 'src_start' points to src array + scaled offset
6591   Node* src_start = basic_plus_adr(top(), base, offset);
6592 
6593   // Call the stub.
6594   address stubAddr = StubRoutines::updateBytesCRC32();
6595   const char *stubName = "updateBytesCRC32";
6596 
6597   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6598                                  stubAddr, stubName, TypePtr::BOTTOM,
6599                                  crc, src_start, length);
6600   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6601   set_result(result);
6602   return true;
6603 }
6604 
6605 //------------------------------get_table_from_crc32c_class-----------------------
6606 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
6607   Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
6608   assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
6609 
6610   return table;
6611 }
6612 
6613 //------------------------------inline_updateBytesCRC32C-----------------------
6614 //
6615 // Calculate CRC32C for byte[] array.
6616 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
6617 //
6618 bool LibraryCallKit::inline_updateBytesCRC32C() {
6619   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6620   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6621   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6622   // no receiver since it is a static method
6623   Node* crc     = argument(0); // type: int
6624   Node* src     = argument(1); // type: oop
6625   Node* offset  = argument(2); // type: int
6626   Node* end     = argument(3); // type: int
6627 
6628   Node* length = _gvn.transform(new SubINode(end, offset));
6629 
6630   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6631   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6632     // failed array check
6633     return false;
6634   }
6635 
6636   // Figure out the size and type of the elements we will be copying.
6637   BasicType src_elem = src_type->elem()->array_element_basic_type();
6638   if (src_elem != T_BYTE) {
6639     return false;
6640   }
6641 
6642   // 'src_start' points to src array + scaled offset
6643   src = must_be_not_null(src, true);
6644   Node* src_start = array_element_address(src, offset, src_elem);
6645 
6646   // static final int[] byteTable in class CRC32C
6647   Node* table = get_table_from_crc32c_class(callee()->holder());
6648   table = must_be_not_null(table, true);
6649   Node* table_start = array_element_address(table, intcon(0), T_INT);
6650 
6651   // We assume that range check is done by caller.
6652   // TODO: generate range check (offset+length < src.length) in debug VM.
6653 
6654   // Call the stub.
6655   address stubAddr = StubRoutines::updateBytesCRC32C();
6656   const char *stubName = "updateBytesCRC32C";
6657 
6658   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6659                                  stubAddr, stubName, TypePtr::BOTTOM,
6660                                  crc, src_start, length, table_start);
6661   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6662   set_result(result);
6663   return true;
6664 }
6665 
6666 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
6667 //
6668 // Calculate CRC32C for DirectByteBuffer.
6669 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
6670 //
6671 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
6672   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6673   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
6674   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6675   // no receiver since it is a static method
6676   Node* crc     = argument(0); // type: int
6677   Node* src     = argument(1); // type: long
6678   Node* offset  = argument(3); // type: int
6679   Node* end     = argument(4); // type: int
6680 
6681   Node* length = _gvn.transform(new SubINode(end, offset));
6682 
6683   src = ConvL2X(src);  // adjust Java long to machine word
6684   Node* base = _gvn.transform(new CastX2PNode(src));
6685   offset = ConvI2X(offset);
6686 
6687   // 'src_start' points to src array + scaled offset
6688   Node* src_start = basic_plus_adr(top(), base, offset);
6689 
6690   // static final int[] byteTable in class CRC32C
6691   Node* table = get_table_from_crc32c_class(callee()->holder());
6692   table = must_be_not_null(table, true);
6693   Node* table_start = array_element_address(table, intcon(0), T_INT);
6694 
6695   // Call the stub.
6696   address stubAddr = StubRoutines::updateBytesCRC32C();
6697   const char *stubName = "updateBytesCRC32C";
6698 
6699   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6700                                  stubAddr, stubName, TypePtr::BOTTOM,
6701                                  crc, src_start, length, table_start);
6702   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6703   set_result(result);
6704   return true;
6705 }
6706 
6707 //------------------------------inline_updateBytesAdler32----------------------
6708 //
6709 // Calculate Adler32 checksum for byte[] array.
6710 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6711 //
6712 bool LibraryCallKit::inline_updateBytesAdler32() {
6713   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6714   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6715   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6716   // no receiver since it is static method
6717   Node* crc     = argument(0); // type: int
6718   Node* src     = argument(1); // type: oop
6719   Node* offset  = argument(2); // type: int
6720   Node* length  = argument(3); // type: int
6721 
6722   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6723   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6724     // failed array check
6725     return false;
6726   }
6727 
6728   // Figure out the size and type of the elements we will be copying.
6729   BasicType src_elem = src_type->elem()->array_element_basic_type();
6730   if (src_elem != T_BYTE) {
6731     return false;
6732   }
6733 
6734   // 'src_start' points to src array + scaled offset
6735   Node* src_start = array_element_address(src, offset, src_elem);
6736 
6737   // We assume that range check is done by caller.
6738   // TODO: generate range check (offset+length < src.length) in debug VM.
6739 
6740   // Call the stub.
6741   address stubAddr = StubRoutines::updateBytesAdler32();
6742   const char *stubName = "updateBytesAdler32";
6743 
6744   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6745                                  stubAddr, stubName, TypePtr::BOTTOM,
6746                                  crc, src_start, length);
6747   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6748   set_result(result);
6749   return true;
6750 }
6751 
6752 //------------------------------inline_updateByteBufferAdler32---------------
6753 //
6754 // Calculate Adler32 checksum for DirectByteBuffer.
6755 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6756 //
6757 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6758   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6759   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6760   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6761   // no receiver since it is static method
6762   Node* crc     = argument(0); // type: int
6763   Node* src     = argument(1); // type: long
6764   Node* offset  = argument(3); // type: int
6765   Node* length  = argument(4); // type: int
6766 
6767   src = ConvL2X(src);  // adjust Java long to machine word
6768   Node* base = _gvn.transform(new CastX2PNode(src));
6769   offset = ConvI2X(offset);
6770 
6771   // 'src_start' points to src array + scaled offset
6772   Node* src_start = basic_plus_adr(top(), base, offset);
6773 
6774   // Call the stub.
6775   address stubAddr = StubRoutines::updateBytesAdler32();
6776   const char *stubName = "updateBytesAdler32";
6777 
6778   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6779                                  stubAddr, stubName, TypePtr::BOTTOM,
6780                                  crc, src_start, length);
6781 
6782   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6783   set_result(result);
6784   return true;
6785 }
6786 
6787 //----------------------------inline_reference_get----------------------------
6788 // public T java.lang.ref.Reference.get();
6789 bool LibraryCallKit::inline_reference_get() {
6790   const int referent_offset = java_lang_ref_Reference::referent_offset();
6791 
6792   // Get the argument:
6793   Node* reference_obj = null_check_receiver();
6794   if (stopped()) return true;
6795 
6796   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
6797   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6798                                         decorators, /*is_static*/ false, nullptr);
6799   if (result == nullptr) return false;
6800 
6801   // Add memory barrier to prevent commoning reads from this field
6802   // across safepoint since GC can change its value.
6803   insert_mem_bar(Op_MemBarCPUOrder);
6804 
6805   set_result(result);
6806   return true;
6807 }
6808 
6809 //----------------------------inline_reference_refersTo0----------------------------
6810 // bool java.lang.ref.Reference.refersTo0();
6811 // bool java.lang.ref.PhantomReference.refersTo0();
6812 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
6813   // Get arguments:
6814   Node* reference_obj = null_check_receiver();
6815   Node* other_obj = argument(1);
6816   if (stopped()) return true;
6817 
6818   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6819   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6820   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6821                                           decorators, /*is_static*/ false, nullptr);
6822   if (referent == nullptr) return false;
6823 
6824   // Add memory barrier to prevent commoning reads from this field
6825   // across safepoint since GC can change its value.
6826   insert_mem_bar(Op_MemBarCPUOrder);
6827 
6828   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
6829   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6830   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
6831 
6832   RegionNode* region = new RegionNode(3);
6833   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
6834 
6835   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
6836   region->init_req(1, if_true);
6837   phi->init_req(1, intcon(1));
6838 
6839   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
6840   region->init_req(2, if_false);
6841   phi->init_req(2, intcon(0));
6842 
6843   set_control(_gvn.transform(region));
6844   record_for_igvn(region);
6845   set_result(_gvn.transform(phi));
6846   return true;
6847 }
6848 
6849 
6850 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
6851                                              DecoratorSet decorators, bool is_static,
6852                                              ciInstanceKlass* fromKls) {
6853   if (fromKls == nullptr) {
6854     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6855     assert(tinst != nullptr, "obj is null");
6856     assert(tinst->is_loaded(), "obj is not loaded");
6857     fromKls = tinst->instance_klass();
6858   } else {
6859     assert(is_static, "only for static field access");
6860   }
6861   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6862                                               ciSymbol::make(fieldTypeString),
6863                                               is_static);
6864 
6865   assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
6866   if (field == nullptr) return (Node *) nullptr;
6867 
6868   if (is_static) {
6869     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6870     fromObj = makecon(tip);
6871   }
6872 
6873   // Next code  copied from Parse::do_get_xxx():
6874 
6875   // Compute address and memory type.
6876   int offset  = field->offset_in_bytes();
6877   bool is_vol = field->is_volatile();
6878   ciType* field_klass = field->type();
6879   assert(field_klass->is_loaded(), "should be loaded");
6880   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6881   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6882   BasicType bt = field->layout_type();
6883 
6884   // Build the resultant type of the load
6885   const Type *type;
6886   if (bt == T_OBJECT) {
6887     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6888   } else {
6889     type = Type::get_const_basic_type(bt);
6890   }
6891 
6892   if (is_vol) {
6893     decorators |= MO_SEQ_CST;
6894   }
6895 
6896   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
6897 }
6898 
6899 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6900                                                  bool is_exact /* true */, bool is_static /* false */,
6901                                                  ciInstanceKlass * fromKls /* nullptr */) {
6902   if (fromKls == nullptr) {
6903     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6904     assert(tinst != nullptr, "obj is null");
6905     assert(tinst->is_loaded(), "obj is not loaded");
6906     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6907     fromKls = tinst->instance_klass();
6908   }
6909   else {
6910     assert(is_static, "only for static field access");
6911   }
6912   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6913     ciSymbol::make(fieldTypeString),
6914     is_static);
6915 
6916   assert(field != nullptr, "undefined field");
6917   assert(!field->is_volatile(), "not defined for volatile fields");
6918 
6919   if (is_static) {
6920     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6921     fromObj = makecon(tip);
6922   }
6923 
6924   // Next code  copied from Parse::do_get_xxx():
6925 
6926   // Compute address and memory type.
6927   int offset = field->offset_in_bytes();
6928   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6929 
6930   return adr;
6931 }
6932 
6933 //------------------------------inline_aescrypt_Block-----------------------
6934 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6935   address stubAddr = nullptr;
6936   const char *stubName;
6937   assert(UseAES, "need AES instruction support");
6938 
6939   switch(id) {
6940   case vmIntrinsics::_aescrypt_encryptBlock:
6941     stubAddr = StubRoutines::aescrypt_encryptBlock();
6942     stubName = "aescrypt_encryptBlock";
6943     break;
6944   case vmIntrinsics::_aescrypt_decryptBlock:
6945     stubAddr = StubRoutines::aescrypt_decryptBlock();
6946     stubName = "aescrypt_decryptBlock";
6947     break;
6948   default:
6949     break;
6950   }
6951   if (stubAddr == nullptr) return false;
6952 
6953   Node* aescrypt_object = argument(0);
6954   Node* src             = argument(1);
6955   Node* src_offset      = argument(2);
6956   Node* dest            = argument(3);
6957   Node* dest_offset     = argument(4);
6958 
6959   src = must_be_not_null(src, true);
6960   dest = must_be_not_null(dest, true);
6961 
6962   // (1) src and dest are arrays.
6963   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6964   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
6965   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
6966          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
6967 
6968   // for the quick and dirty code we will skip all the checks.
6969   // we are just trying to get the call to be generated.
6970   Node* src_start  = src;
6971   Node* dest_start = dest;
6972   if (src_offset != nullptr || dest_offset != nullptr) {
6973     assert(src_offset != nullptr && dest_offset != nullptr, "");
6974     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6975     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6976   }
6977 
6978   // now need to get the start of its expanded key array
6979   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6980   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6981   if (k_start == nullptr) return false;
6982 
6983   // Call the stub.
6984   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6985                     stubAddr, stubName, TypePtr::BOTTOM,
6986                     src_start, dest_start, k_start);
6987 
6988   return true;
6989 }
6990 
6991 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6992 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6993   address stubAddr = nullptr;
6994   const char *stubName = nullptr;
6995 
6996   assert(UseAES, "need AES instruction support");
6997 
6998   switch(id) {
6999   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
7000     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
7001     stubName = "cipherBlockChaining_encryptAESCrypt";
7002     break;
7003   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
7004     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
7005     stubName = "cipherBlockChaining_decryptAESCrypt";
7006     break;
7007   default:
7008     break;
7009   }
7010   if (stubAddr == nullptr) return false;
7011 
7012   Node* cipherBlockChaining_object = argument(0);
7013   Node* src                        = argument(1);
7014   Node* src_offset                 = argument(2);
7015   Node* len                        = argument(3);
7016   Node* dest                       = argument(4);
7017   Node* dest_offset                = argument(5);
7018 
7019   src = must_be_not_null(src, false);
7020   dest = must_be_not_null(dest, false);
7021 
7022   // (1) src and dest are arrays.
7023   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7024   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7025   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7026          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7027 
7028   // checks are the responsibility of the caller
7029   Node* src_start  = src;
7030   Node* dest_start = dest;
7031   if (src_offset != nullptr || dest_offset != nullptr) {
7032     assert(src_offset != nullptr && dest_offset != nullptr, "");
7033     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7034     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7035   }
7036 
7037   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7038   // (because of the predicated logic executed earlier).
7039   // so we cast it here safely.
7040   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7041 
7042   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7043   if (embeddedCipherObj == nullptr) return false;
7044 
7045   // cast it to what we know it will be at runtime
7046   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
7047   assert(tinst != nullptr, "CBC obj is null");
7048   assert(tinst->is_loaded(), "CBC obj is not loaded");
7049   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7050   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7051 
7052   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7053   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7054   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7055   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7056   aescrypt_object = _gvn.transform(aescrypt_object);
7057 
7058   // we need to get the start of the aescrypt_object's expanded key array
7059   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7060   if (k_start == nullptr) return false;
7061 
7062   // similarly, get the start address of the r vector
7063   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
7064   if (objRvec == nullptr) return false;
7065   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
7066 
7067   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7068   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7069                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
7070                                      stubAddr, stubName, TypePtr::BOTTOM,
7071                                      src_start, dest_start, k_start, r_start, len);
7072 
7073   // return cipher length (int)
7074   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
7075   set_result(retvalue);
7076   return true;
7077 }
7078 
7079 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
7080 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
7081   address stubAddr = nullptr;
7082   const char *stubName = nullptr;
7083 
7084   assert(UseAES, "need AES instruction support");
7085 
7086   switch (id) {
7087   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
7088     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
7089     stubName = "electronicCodeBook_encryptAESCrypt";
7090     break;
7091   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
7092     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
7093     stubName = "electronicCodeBook_decryptAESCrypt";
7094     break;
7095   default:
7096     break;
7097   }
7098 
7099   if (stubAddr == nullptr) return false;
7100 
7101   Node* electronicCodeBook_object = argument(0);
7102   Node* src                       = argument(1);
7103   Node* src_offset                = argument(2);
7104   Node* len                       = argument(3);
7105   Node* dest                      = argument(4);
7106   Node* dest_offset               = argument(5);
7107 
7108   // (1) src and dest are arrays.
7109   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7110   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7111   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7112          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7113 
7114   // checks are the responsibility of the caller
7115   Node* src_start = src;
7116   Node* dest_start = dest;
7117   if (src_offset != nullptr || dest_offset != nullptr) {
7118     assert(src_offset != nullptr && dest_offset != nullptr, "");
7119     src_start = array_element_address(src, src_offset, T_BYTE);
7120     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7121   }
7122 
7123   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7124   // (because of the predicated logic executed earlier).
7125   // so we cast it here safely.
7126   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7127 
7128   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7129   if (embeddedCipherObj == nullptr) return false;
7130 
7131   // cast it to what we know it will be at runtime
7132   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
7133   assert(tinst != nullptr, "ECB obj is null");
7134   assert(tinst->is_loaded(), "ECB obj is not loaded");
7135   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7136   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7137 
7138   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7139   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7140   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7141   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7142   aescrypt_object = _gvn.transform(aescrypt_object);
7143 
7144   // we need to get the start of the aescrypt_object's expanded key array
7145   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7146   if (k_start == nullptr) return false;
7147 
7148   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7149   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
7150                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
7151                                      stubAddr, stubName, TypePtr::BOTTOM,
7152                                      src_start, dest_start, k_start, len);
7153 
7154   // return cipher length (int)
7155   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
7156   set_result(retvalue);
7157   return true;
7158 }
7159 
7160 //------------------------------inline_counterMode_AESCrypt-----------------------
7161 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
7162   assert(UseAES, "need AES instruction support");
7163   if (!UseAESCTRIntrinsics) return false;
7164 
7165   address stubAddr = nullptr;
7166   const char *stubName = nullptr;
7167   if (id == vmIntrinsics::_counterMode_AESCrypt) {
7168     stubAddr = StubRoutines::counterMode_AESCrypt();
7169     stubName = "counterMode_AESCrypt";
7170   }
7171   if (stubAddr == nullptr) return false;
7172 
7173   Node* counterMode_object = argument(0);
7174   Node* src = argument(1);
7175   Node* src_offset = argument(2);
7176   Node* len = argument(3);
7177   Node* dest = argument(4);
7178   Node* dest_offset = argument(5);
7179 
7180   // (1) src and dest are arrays.
7181   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7182   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7183   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7184          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7185 
7186   // checks are the responsibility of the caller
7187   Node* src_start = src;
7188   Node* dest_start = dest;
7189   if (src_offset != nullptr || dest_offset != nullptr) {
7190     assert(src_offset != nullptr && dest_offset != nullptr, "");
7191     src_start = array_element_address(src, src_offset, T_BYTE);
7192     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7193   }
7194 
7195   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7196   // (because of the predicated logic executed earlier).
7197   // so we cast it here safely.
7198   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7199   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7200   if (embeddedCipherObj == nullptr) return false;
7201   // cast it to what we know it will be at runtime
7202   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
7203   assert(tinst != nullptr, "CTR obj is null");
7204   assert(tinst->is_loaded(), "CTR obj is not loaded");
7205   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7206   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7207   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7208   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7209   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7210   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7211   aescrypt_object = _gvn.transform(aescrypt_object);
7212   // we need to get the start of the aescrypt_object's expanded key array
7213   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7214   if (k_start == nullptr) return false;
7215   // similarly, get the start address of the r vector
7216   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
7217   if (obj_counter == nullptr) return false;
7218   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
7219 
7220   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
7221   if (saved_encCounter == nullptr) return false;
7222   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
7223   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
7224 
7225   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7226   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7227                                      OptoRuntime::counterMode_aescrypt_Type(),
7228                                      stubAddr, stubName, TypePtr::BOTTOM,
7229                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
7230 
7231   // return cipher length (int)
7232   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
7233   set_result(retvalue);
7234   return true;
7235 }
7236 
7237 //------------------------------get_key_start_from_aescrypt_object-----------------------
7238 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
7239 #if defined(PPC64) || defined(S390)
7240   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
7241   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
7242   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
7243   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
7244   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
7245   assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7246   if (objSessionK == nullptr) {
7247     return (Node *) nullptr;
7248   }
7249   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
7250 #else
7251   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
7252 #endif // PPC64
7253   assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7254   if (objAESCryptKey == nullptr) return (Node *) nullptr;
7255 
7256   // now have the array, need to get the start address of the K array
7257   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
7258   return k_start;
7259 }
7260 
7261 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
7262 // Return node representing slow path of predicate check.
7263 // the pseudo code we want to emulate with this predicate is:
7264 // for encryption:
7265 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7266 // for decryption:
7267 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7268 //    note cipher==plain is more conservative than the original java code but that's OK
7269 //
7270 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
7271   // The receiver was checked for null already.
7272   Node* objCBC = argument(0);
7273 
7274   Node* src = argument(1);
7275   Node* dest = argument(4);
7276 
7277   // Load embeddedCipher field of CipherBlockChaining object.
7278   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7279 
7280   // get AESCrypt klass for instanceOf check
7281   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7282   // will have same classloader as CipherBlockChaining object
7283   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
7284   assert(tinst != nullptr, "CBCobj is null");
7285   assert(tinst->is_loaded(), "CBCobj is not loaded");
7286 
7287   // we want to do an instanceof comparison against the AESCrypt class
7288   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7289   if (!klass_AESCrypt->is_loaded()) {
7290     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7291     Node* ctrl = control();
7292     set_control(top()); // no regular fast path
7293     return ctrl;
7294   }
7295 
7296   src = must_be_not_null(src, true);
7297   dest = must_be_not_null(dest, true);
7298 
7299   // Resolve oops to stable for CmpP below.
7300   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7301 
7302   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7303   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
7304   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7305 
7306   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7307 
7308   // for encryption, we are done
7309   if (!decrypting)
7310     return instof_false;  // even if it is null
7311 
7312   // for decryption, we need to add a further check to avoid
7313   // taking the intrinsic path when cipher and plain are the same
7314   // see the original java code for why.
7315   RegionNode* region = new RegionNode(3);
7316   region->init_req(1, instof_false);
7317 
7318   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7319   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7320   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7321   region->init_req(2, src_dest_conjoint);
7322 
7323   record_for_igvn(region);
7324   return _gvn.transform(region);
7325 }
7326 
7327 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
7328 // Return node representing slow path of predicate check.
7329 // the pseudo code we want to emulate with this predicate is:
7330 // for encryption:
7331 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7332 // for decryption:
7333 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7334 //    note cipher==plain is more conservative than the original java code but that's OK
7335 //
7336 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
7337   // The receiver was checked for null already.
7338   Node* objECB = argument(0);
7339 
7340   // Load embeddedCipher field of ElectronicCodeBook object.
7341   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7342 
7343   // get AESCrypt klass for instanceOf check
7344   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7345   // will have same classloader as ElectronicCodeBook object
7346   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
7347   assert(tinst != nullptr, "ECBobj is null");
7348   assert(tinst->is_loaded(), "ECBobj is not loaded");
7349 
7350   // we want to do an instanceof comparison against the AESCrypt class
7351   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7352   if (!klass_AESCrypt->is_loaded()) {
7353     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7354     Node* ctrl = control();
7355     set_control(top()); // no regular fast path
7356     return ctrl;
7357   }
7358   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7359 
7360   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7361   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7362   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7363 
7364   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7365 
7366   // for encryption, we are done
7367   if (!decrypting)
7368     return instof_false;  // even if it is null
7369 
7370   // for decryption, we need to add a further check to avoid
7371   // taking the intrinsic path when cipher and plain are the same
7372   // see the original java code for why.
7373   RegionNode* region = new RegionNode(3);
7374   region->init_req(1, instof_false);
7375   Node* src = argument(1);
7376   Node* dest = argument(4);
7377   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7378   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7379   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7380   region->init_req(2, src_dest_conjoint);
7381 
7382   record_for_igvn(region);
7383   return _gvn.transform(region);
7384 }
7385 
7386 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
7387 // Return node representing slow path of predicate check.
7388 // the pseudo code we want to emulate with this predicate is:
7389 // for encryption:
7390 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7391 // for decryption:
7392 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7393 //    note cipher==plain is more conservative than the original java code but that's OK
7394 //
7395 
7396 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
7397   // The receiver was checked for null already.
7398   Node* objCTR = argument(0);
7399 
7400   // Load embeddedCipher field of CipherBlockChaining object.
7401   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7402 
7403   // get AESCrypt klass for instanceOf check
7404   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7405   // will have same classloader as CipherBlockChaining object
7406   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
7407   assert(tinst != nullptr, "CTRobj is null");
7408   assert(tinst->is_loaded(), "CTRobj is not loaded");
7409 
7410   // we want to do an instanceof comparison against the AESCrypt class
7411   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7412   if (!klass_AESCrypt->is_loaded()) {
7413     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7414     Node* ctrl = control();
7415     set_control(top()); // no regular fast path
7416     return ctrl;
7417   }
7418 
7419   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7420   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7421   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7422   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7423   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7424 
7425   return instof_false; // even if it is null
7426 }
7427 
7428 //------------------------------inline_ghash_processBlocks
7429 bool LibraryCallKit::inline_ghash_processBlocks() {
7430   address stubAddr;
7431   const char *stubName;
7432   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
7433 
7434   stubAddr = StubRoutines::ghash_processBlocks();
7435   stubName = "ghash_processBlocks";
7436 
7437   Node* data           = argument(0);
7438   Node* offset         = argument(1);
7439   Node* len            = argument(2);
7440   Node* state          = argument(3);
7441   Node* subkeyH        = argument(4);
7442 
7443   state = must_be_not_null(state, true);
7444   subkeyH = must_be_not_null(subkeyH, true);
7445   data = must_be_not_null(data, true);
7446 
7447   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
7448   assert(state_start, "state is null");
7449   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
7450   assert(subkeyH_start, "subkeyH is null");
7451   Node* data_start  = array_element_address(data, offset, T_BYTE);
7452   assert(data_start, "data is null");
7453 
7454   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
7455                                   OptoRuntime::ghash_processBlocks_Type(),
7456                                   stubAddr, stubName, TypePtr::BOTTOM,
7457                                   state_start, subkeyH_start, data_start, len);
7458   return true;
7459 }
7460 
7461 //------------------------------inline_chacha20Block
7462 bool LibraryCallKit::inline_chacha20Block() {
7463   address stubAddr;
7464   const char *stubName;
7465   assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
7466 
7467   stubAddr = StubRoutines::chacha20Block();
7468   stubName = "chacha20Block";
7469 
7470   Node* state          = argument(0);
7471   Node* result         = argument(1);
7472 
7473   state = must_be_not_null(state, true);
7474   result = must_be_not_null(result, true);
7475 
7476   Node* state_start  = array_element_address(state, intcon(0), T_INT);
7477   assert(state_start, "state is null");
7478   Node* result_start  = array_element_address(result, intcon(0), T_BYTE);
7479   assert(result_start, "result is null");
7480 
7481   Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
7482                                   OptoRuntime::chacha20Block_Type(),
7483                                   stubAddr, stubName, TypePtr::BOTTOM,
7484                                   state_start, result_start);
7485   // return key stream length (int)
7486   Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
7487   set_result(retvalue);
7488   return true;
7489 }
7490 
7491 bool LibraryCallKit::inline_base64_encodeBlock() {
7492   address stubAddr;
7493   const char *stubName;
7494   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7495   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
7496   stubAddr = StubRoutines::base64_encodeBlock();
7497   stubName = "encodeBlock";
7498 
7499   if (!stubAddr) return false;
7500   Node* base64obj = argument(0);
7501   Node* src = argument(1);
7502   Node* offset = argument(2);
7503   Node* len = argument(3);
7504   Node* dest = argument(4);
7505   Node* dp = argument(5);
7506   Node* isURL = argument(6);
7507 
7508   src = must_be_not_null(src, true);
7509   dest = must_be_not_null(dest, true);
7510 
7511   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7512   assert(src_start, "source array is null");
7513   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7514   assert(dest_start, "destination array is null");
7515 
7516   Node* base64 = make_runtime_call(RC_LEAF,
7517                                    OptoRuntime::base64_encodeBlock_Type(),
7518                                    stubAddr, stubName, TypePtr::BOTTOM,
7519                                    src_start, offset, len, dest_start, dp, isURL);
7520   return true;
7521 }
7522 
7523 bool LibraryCallKit::inline_base64_decodeBlock() {
7524   address stubAddr;
7525   const char *stubName;
7526   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7527   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
7528   stubAddr = StubRoutines::base64_decodeBlock();
7529   stubName = "decodeBlock";
7530 
7531   if (!stubAddr) return false;
7532   Node* base64obj = argument(0);
7533   Node* src = argument(1);
7534   Node* src_offset = argument(2);
7535   Node* len = argument(3);
7536   Node* dest = argument(4);
7537   Node* dest_offset = argument(5);
7538   Node* isURL = argument(6);
7539   Node* isMIME = argument(7);
7540 
7541   src = must_be_not_null(src, true);
7542   dest = must_be_not_null(dest, true);
7543 
7544   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7545   assert(src_start, "source array is null");
7546   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7547   assert(dest_start, "destination array is null");
7548 
7549   Node* call = make_runtime_call(RC_LEAF,
7550                                  OptoRuntime::base64_decodeBlock_Type(),
7551                                  stubAddr, stubName, TypePtr::BOTTOM,
7552                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
7553   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7554   set_result(result);
7555   return true;
7556 }
7557 
7558 bool LibraryCallKit::inline_poly1305_processBlocks() {
7559   address stubAddr;
7560   const char *stubName;
7561   assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
7562   assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
7563   stubAddr = StubRoutines::poly1305_processBlocks();
7564   stubName = "poly1305_processBlocks";
7565 
7566   if (!stubAddr) return false;
7567   null_check_receiver();  // null-check receiver
7568   if (stopped())  return true;
7569 
7570   Node* input = argument(1);
7571   Node* input_offset = argument(2);
7572   Node* len = argument(3);
7573   Node* alimbs = argument(4);
7574   Node* rlimbs = argument(5);
7575 
7576   input = must_be_not_null(input, true);
7577   alimbs = must_be_not_null(alimbs, true);
7578   rlimbs = must_be_not_null(rlimbs, true);
7579 
7580   Node* input_start = array_element_address(input, input_offset, T_BYTE);
7581   assert(input_start, "input array is null");
7582   Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
7583   assert(acc_start, "acc array is null");
7584   Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
7585   assert(r_start, "r array is null");
7586 
7587   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7588                                  OptoRuntime::poly1305_processBlocks_Type(),
7589                                  stubAddr, stubName, TypePtr::BOTTOM,
7590                                  input_start, len, acc_start, r_start);
7591   return true;
7592 }
7593 
7594 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
7595   address stubAddr;
7596   const char *stubName;
7597   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7598   assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
7599   stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
7600   stubName = "intpoly_montgomeryMult_P256";
7601 
7602   if (!stubAddr) return false;
7603   null_check_receiver();  // null-check receiver
7604   if (stopped())  return true;
7605 
7606   Node* a = argument(1);
7607   Node* b = argument(2);
7608   Node* r = argument(3);
7609 
7610   a = must_be_not_null(a, true);
7611   b = must_be_not_null(b, true);
7612   r = must_be_not_null(r, true);
7613 
7614   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7615   assert(a_start, "a array is NULL");
7616   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7617   assert(b_start, "b array is NULL");
7618   Node* r_start = array_element_address(r, intcon(0), T_LONG);
7619   assert(r_start, "r array is NULL");
7620 
7621   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7622                                  OptoRuntime::intpoly_montgomeryMult_P256_Type(),
7623                                  stubAddr, stubName, TypePtr::BOTTOM,
7624                                  a_start, b_start, r_start);
7625   return true;
7626 }
7627 
7628 bool LibraryCallKit::inline_intpoly_assign() {
7629   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7630   assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
7631   const char *stubName = "intpoly_assign";
7632   address stubAddr = StubRoutines::intpoly_assign();
7633   if (!stubAddr) return false;
7634 
7635   Node* set = argument(0);
7636   Node* a = argument(1);
7637   Node* b = argument(2);
7638   Node* arr_length = load_array_length(a);
7639 
7640   a = must_be_not_null(a, true);
7641   b = must_be_not_null(b, true);
7642 
7643   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7644   assert(a_start, "a array is NULL");
7645   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7646   assert(b_start, "b array is NULL");
7647 
7648   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7649                                  OptoRuntime::intpoly_assign_Type(),
7650                                  stubAddr, stubName, TypePtr::BOTTOM,
7651                                  set, a_start, b_start, arr_length);
7652   return true;
7653 }
7654 
7655 //------------------------------inline_digestBase_implCompress-----------------------
7656 //
7657 // Calculate MD5 for single-block byte[] array.
7658 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
7659 //
7660 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
7661 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
7662 //
7663 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
7664 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
7665 //
7666 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
7667 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
7668 //
7669 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
7670 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
7671 //
7672 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
7673   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
7674 
7675   Node* digestBase_obj = argument(0);
7676   Node* src            = argument(1); // type oop
7677   Node* ofs            = argument(2); // type int
7678 
7679   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7680   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7681     // failed array check
7682     return false;
7683   }
7684   // Figure out the size and type of the elements we will be copying.
7685   BasicType src_elem = src_type->elem()->array_element_basic_type();
7686   if (src_elem != T_BYTE) {
7687     return false;
7688   }
7689   // 'src_start' points to src array + offset
7690   src = must_be_not_null(src, true);
7691   Node* src_start = array_element_address(src, ofs, src_elem);
7692   Node* state = nullptr;
7693   Node* block_size = nullptr;
7694   address stubAddr;
7695   const char *stubName;
7696 
7697   switch(id) {
7698   case vmIntrinsics::_md5_implCompress:
7699     assert(UseMD5Intrinsics, "need MD5 instruction support");
7700     state = get_state_from_digest_object(digestBase_obj, T_INT);
7701     stubAddr = StubRoutines::md5_implCompress();
7702     stubName = "md5_implCompress";
7703     break;
7704   case vmIntrinsics::_sha_implCompress:
7705     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
7706     state = get_state_from_digest_object(digestBase_obj, T_INT);
7707     stubAddr = StubRoutines::sha1_implCompress();
7708     stubName = "sha1_implCompress";
7709     break;
7710   case vmIntrinsics::_sha2_implCompress:
7711     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
7712     state = get_state_from_digest_object(digestBase_obj, T_INT);
7713     stubAddr = StubRoutines::sha256_implCompress();
7714     stubName = "sha256_implCompress";
7715     break;
7716   case vmIntrinsics::_sha5_implCompress:
7717     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
7718     state = get_state_from_digest_object(digestBase_obj, T_LONG);
7719     stubAddr = StubRoutines::sha512_implCompress();
7720     stubName = "sha512_implCompress";
7721     break;
7722   case vmIntrinsics::_sha3_implCompress:
7723     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
7724     state = get_state_from_digest_object(digestBase_obj, T_LONG);
7725     stubAddr = StubRoutines::sha3_implCompress();
7726     stubName = "sha3_implCompress";
7727     block_size = get_block_size_from_digest_object(digestBase_obj);
7728     if (block_size == nullptr) return false;
7729     break;
7730   default:
7731     fatal_unexpected_iid(id);
7732     return false;
7733   }
7734   if (state == nullptr) return false;
7735 
7736   assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
7737   if (stubAddr == nullptr) return false;
7738 
7739   // Call the stub.
7740   Node* call;
7741   if (block_size == nullptr) {
7742     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
7743                              stubAddr, stubName, TypePtr::BOTTOM,
7744                              src_start, state);
7745   } else {
7746     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
7747                              stubAddr, stubName, TypePtr::BOTTOM,
7748                              src_start, state, block_size);
7749   }
7750 
7751   return true;
7752 }
7753 
7754 //------------------------------inline_digestBase_implCompressMB-----------------------
7755 //
7756 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
7757 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
7758 //
7759 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
7760   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
7761          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
7762   assert((uint)predicate < 5, "sanity");
7763   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
7764 
7765   Node* digestBase_obj = argument(0); // The receiver was checked for null already.
7766   Node* src            = argument(1); // byte[] array
7767   Node* ofs            = argument(2); // type int
7768   Node* limit          = argument(3); // type int
7769 
7770   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7771   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7772     // failed array check
7773     return false;
7774   }
7775   // Figure out the size and type of the elements we will be copying.
7776   BasicType src_elem = src_type->elem()->array_element_basic_type();
7777   if (src_elem != T_BYTE) {
7778     return false;
7779   }
7780   // 'src_start' points to src array + offset
7781   src = must_be_not_null(src, false);
7782   Node* src_start = array_element_address(src, ofs, src_elem);
7783 
7784   const char* klass_digestBase_name = nullptr;
7785   const char* stub_name = nullptr;
7786   address     stub_addr = nullptr;
7787   BasicType elem_type = T_INT;
7788 
7789   switch (predicate) {
7790   case 0:
7791     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
7792       klass_digestBase_name = "sun/security/provider/MD5";
7793       stub_name = "md5_implCompressMB";
7794       stub_addr = StubRoutines::md5_implCompressMB();
7795     }
7796     break;
7797   case 1:
7798     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
7799       klass_digestBase_name = "sun/security/provider/SHA";
7800       stub_name = "sha1_implCompressMB";
7801       stub_addr = StubRoutines::sha1_implCompressMB();
7802     }
7803     break;
7804   case 2:
7805     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
7806       klass_digestBase_name = "sun/security/provider/SHA2";
7807       stub_name = "sha256_implCompressMB";
7808       stub_addr = StubRoutines::sha256_implCompressMB();
7809     }
7810     break;
7811   case 3:
7812     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
7813       klass_digestBase_name = "sun/security/provider/SHA5";
7814       stub_name = "sha512_implCompressMB";
7815       stub_addr = StubRoutines::sha512_implCompressMB();
7816       elem_type = T_LONG;
7817     }
7818     break;
7819   case 4:
7820     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
7821       klass_digestBase_name = "sun/security/provider/SHA3";
7822       stub_name = "sha3_implCompressMB";
7823       stub_addr = StubRoutines::sha3_implCompressMB();
7824       elem_type = T_LONG;
7825     }
7826     break;
7827   default:
7828     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
7829   }
7830   if (klass_digestBase_name != nullptr) {
7831     assert(stub_addr != nullptr, "Stub is generated");
7832     if (stub_addr == nullptr) return false;
7833 
7834     // get DigestBase klass to lookup for SHA klass
7835     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
7836     assert(tinst != nullptr, "digestBase_obj is not instance???");
7837     assert(tinst->is_loaded(), "DigestBase is not loaded");
7838 
7839     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
7840     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
7841     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
7842     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
7843   }
7844   return false;
7845 }
7846 
7847 //------------------------------inline_digestBase_implCompressMB-----------------------
7848 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
7849                                                       BasicType elem_type, address stubAddr, const char *stubName,
7850                                                       Node* src_start, Node* ofs, Node* limit) {
7851   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
7852   const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7853   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
7854   digest_obj = _gvn.transform(digest_obj);
7855 
7856   Node* state = get_state_from_digest_object(digest_obj, elem_type);
7857   if (state == nullptr) return false;
7858 
7859   Node* block_size = nullptr;
7860   if (strcmp("sha3_implCompressMB", stubName) == 0) {
7861     block_size = get_block_size_from_digest_object(digest_obj);
7862     if (block_size == nullptr) return false;
7863   }
7864 
7865   // Call the stub.
7866   Node* call;
7867   if (block_size == nullptr) {
7868     call = make_runtime_call(RC_LEAF|RC_NO_FP,
7869                              OptoRuntime::digestBase_implCompressMB_Type(false),
7870                              stubAddr, stubName, TypePtr::BOTTOM,
7871                              src_start, state, ofs, limit);
7872   } else {
7873      call = make_runtime_call(RC_LEAF|RC_NO_FP,
7874                              OptoRuntime::digestBase_implCompressMB_Type(true),
7875                              stubAddr, stubName, TypePtr::BOTTOM,
7876                              src_start, state, block_size, ofs, limit);
7877   }
7878 
7879   // return ofs (int)
7880   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7881   set_result(result);
7882 
7883   return true;
7884 }
7885 
7886 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
7887 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
7888   assert(UseAES, "need AES instruction support");
7889   address stubAddr = nullptr;
7890   const char *stubName = nullptr;
7891   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
7892   stubName = "galoisCounterMode_AESCrypt";
7893 
7894   if (stubAddr == nullptr) return false;
7895 
7896   Node* in      = argument(0);
7897   Node* inOfs   = argument(1);
7898   Node* len     = argument(2);
7899   Node* ct      = argument(3);
7900   Node* ctOfs   = argument(4);
7901   Node* out     = argument(5);
7902   Node* outOfs  = argument(6);
7903   Node* gctr_object = argument(7);
7904   Node* ghash_object = argument(8);
7905 
7906   // (1) in, ct and out are arrays.
7907   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
7908   const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
7909   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
7910   assert( in_type != nullptr &&  in_type->elem() != Type::BOTTOM &&
7911           ct_type != nullptr &&  ct_type->elem() != Type::BOTTOM &&
7912          out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
7913 
7914   // checks are the responsibility of the caller
7915   Node* in_start = in;
7916   Node* ct_start = ct;
7917   Node* out_start = out;
7918   if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
7919     assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
7920     in_start = array_element_address(in, inOfs, T_BYTE);
7921     ct_start = array_element_address(ct, ctOfs, T_BYTE);
7922     out_start = array_element_address(out, outOfs, T_BYTE);
7923   }
7924 
7925   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7926   // (because of the predicated logic executed earlier).
7927   // so we cast it here safely.
7928   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7929   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7930   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
7931   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
7932   Node* state = load_field_from_object(ghash_object, "state", "[J");
7933 
7934   if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
7935     return false;
7936   }
7937   // cast it to what we know it will be at runtime
7938   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
7939   assert(tinst != nullptr, "GCTR obj is null");
7940   assert(tinst->is_loaded(), "GCTR obj is not loaded");
7941   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7942   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7943   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7944   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7945   const TypeOopPtr* xtype = aklass->as_instance_type();
7946   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7947   aescrypt_object = _gvn.transform(aescrypt_object);
7948   // we need to get the start of the aescrypt_object's expanded key array
7949   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7950   if (k_start == nullptr) return false;
7951   // similarly, get the start address of the r vector
7952   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
7953   Node* state_start = array_element_address(state, intcon(0), T_LONG);
7954   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
7955 
7956 
7957   // Call the stub, passing params
7958   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7959                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
7960                                stubAddr, stubName, TypePtr::BOTTOM,
7961                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
7962 
7963   // return cipher length (int)
7964   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
7965   set_result(retvalue);
7966 
7967   return true;
7968 }
7969 
7970 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
7971 // Return node representing slow path of predicate check.
7972 // the pseudo code we want to emulate with this predicate is:
7973 // for encryption:
7974 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7975 // for decryption:
7976 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7977 //    note cipher==plain is more conservative than the original java code but that's OK
7978 //
7979 
7980 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
7981   // The receiver was checked for null already.
7982   Node* objGCTR = argument(7);
7983   // Load embeddedCipher field of GCTR object.
7984   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7985   assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
7986 
7987   // get AESCrypt klass for instanceOf check
7988   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7989   // will have same classloader as CipherBlockChaining object
7990   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
7991   assert(tinst != nullptr, "GCTR obj is null");
7992   assert(tinst->is_loaded(), "GCTR obj is not loaded");
7993 
7994   // we want to do an instanceof comparison against the AESCrypt class
7995   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7996   if (!klass_AESCrypt->is_loaded()) {
7997     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7998     Node* ctrl = control();
7999     set_control(top()); // no regular fast path
8000     return ctrl;
8001   }
8002 
8003   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8004   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8005   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8006   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8007   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8008 
8009   return instof_false; // even if it is null
8010 }
8011 
8012 //------------------------------get_state_from_digest_object-----------------------
8013 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
8014   const char* state_type;
8015   switch (elem_type) {
8016     case T_BYTE: state_type = "[B"; break;
8017     case T_INT:  state_type = "[I"; break;
8018     case T_LONG: state_type = "[J"; break;
8019     default: ShouldNotReachHere();
8020   }
8021   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
8022   assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
8023   if (digest_state == nullptr) return (Node *) nullptr;
8024 
8025   // now have the array, need to get the start address of the state array
8026   Node* state = array_element_address(digest_state, intcon(0), elem_type);
8027   return state;
8028 }
8029 
8030 //------------------------------get_block_size_from_sha3_object----------------------------------
8031 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
8032   Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
8033   assert (block_size != nullptr, "sanity");
8034   return block_size;
8035 }
8036 
8037 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
8038 // Return node representing slow path of predicate check.
8039 // the pseudo code we want to emulate with this predicate is:
8040 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
8041 //
8042 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
8043   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8044          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8045   assert((uint)predicate < 5, "sanity");
8046 
8047   // The receiver was checked for null already.
8048   Node* digestBaseObj = argument(0);
8049 
8050   // get DigestBase klass for instanceOf check
8051   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
8052   assert(tinst != nullptr, "digestBaseObj is null");
8053   assert(tinst->is_loaded(), "DigestBase is not loaded");
8054 
8055   const char* klass_name = nullptr;
8056   switch (predicate) {
8057   case 0:
8058     if (UseMD5Intrinsics) {
8059       // we want to do an instanceof comparison against the MD5 class
8060       klass_name = "sun/security/provider/MD5";
8061     }
8062     break;
8063   case 1:
8064     if (UseSHA1Intrinsics) {
8065       // we want to do an instanceof comparison against the SHA class
8066       klass_name = "sun/security/provider/SHA";
8067     }
8068     break;
8069   case 2:
8070     if (UseSHA256Intrinsics) {
8071       // we want to do an instanceof comparison against the SHA2 class
8072       klass_name = "sun/security/provider/SHA2";
8073     }
8074     break;
8075   case 3:
8076     if (UseSHA512Intrinsics) {
8077       // we want to do an instanceof comparison against the SHA5 class
8078       klass_name = "sun/security/provider/SHA5";
8079     }
8080     break;
8081   case 4:
8082     if (UseSHA3Intrinsics) {
8083       // we want to do an instanceof comparison against the SHA3 class
8084       klass_name = "sun/security/provider/SHA3";
8085     }
8086     break;
8087   default:
8088     fatal("unknown SHA intrinsic predicate: %d", predicate);
8089   }
8090 
8091   ciKlass* klass = nullptr;
8092   if (klass_name != nullptr) {
8093     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
8094   }
8095   if ((klass == nullptr) || !klass->is_loaded()) {
8096     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
8097     Node* ctrl = control();
8098     set_control(top()); // no intrinsic path
8099     return ctrl;
8100   }
8101   ciInstanceKlass* instklass = klass->as_instance_klass();
8102 
8103   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
8104   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8105   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8106   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8107 
8108   return instof_false;  // even if it is null
8109 }
8110 
8111 //-------------inline_fma-----------------------------------
8112 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
8113   Node *a = nullptr;
8114   Node *b = nullptr;
8115   Node *c = nullptr;
8116   Node* result = nullptr;
8117   switch (id) {
8118   case vmIntrinsics::_fmaD:
8119     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
8120     // no receiver since it is static method
8121     a = round_double_node(argument(0));
8122     b = round_double_node(argument(2));
8123     c = round_double_node(argument(4));
8124     result = _gvn.transform(new FmaDNode(control(), a, b, c));
8125     break;
8126   case vmIntrinsics::_fmaF:
8127     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
8128     a = argument(0);
8129     b = argument(1);
8130     c = argument(2);
8131     result = _gvn.transform(new FmaFNode(control(), a, b, c));
8132     break;
8133   default:
8134     fatal_unexpected_iid(id);  break;
8135   }
8136   set_result(result);
8137   return true;
8138 }
8139 
8140 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
8141   // argument(0) is receiver
8142   Node* codePoint = argument(1);
8143   Node* n = nullptr;
8144 
8145   switch (id) {
8146     case vmIntrinsics::_isDigit :
8147       n = new DigitNode(control(), codePoint);
8148       break;
8149     case vmIntrinsics::_isLowerCase :
8150       n = new LowerCaseNode(control(), codePoint);
8151       break;
8152     case vmIntrinsics::_isUpperCase :
8153       n = new UpperCaseNode(control(), codePoint);
8154       break;
8155     case vmIntrinsics::_isWhitespace :
8156       n = new WhitespaceNode(control(), codePoint);
8157       break;
8158     default:
8159       fatal_unexpected_iid(id);
8160   }
8161 
8162   set_result(_gvn.transform(n));
8163   return true;
8164 }
8165 
8166 //------------------------------inline_fp_min_max------------------------------
8167 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
8168 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
8169 
8170   // The intrinsic should be used only when the API branches aren't predictable,
8171   // the last one performing the most important comparison. The following heuristic
8172   // uses the branch statistics to eventually bail out if necessary.
8173 
8174   ciMethodData *md = callee()->method_data();
8175 
8176   if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) {
8177     ciCallProfile cp = caller()->call_profile_at_bci(bci());
8178 
8179     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
8180       // Bail out if the call-site didn't contribute enough to the statistics.
8181       return false;
8182     }
8183 
8184     uint taken = 0, not_taken = 0;
8185 
8186     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
8187       if (p->is_BranchData()) {
8188         taken = ((ciBranchData*)p)->taken();
8189         not_taken = ((ciBranchData*)p)->not_taken();
8190       }
8191     }
8192 
8193     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
8194     balance = balance < 0 ? -balance : balance;
8195     if ( balance > 0.2 ) {
8196       // Bail out if the most important branch is predictable enough.
8197       return false;
8198     }
8199   }
8200 */
8201 
8202   Node *a = nullptr;
8203   Node *b = nullptr;
8204   Node *n = nullptr;
8205   switch (id) {
8206   case vmIntrinsics::_maxF:
8207   case vmIntrinsics::_minF:
8208   case vmIntrinsics::_maxF_strict:
8209   case vmIntrinsics::_minF_strict:
8210     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
8211     a = argument(0);
8212     b = argument(1);
8213     break;
8214   case vmIntrinsics::_maxD:
8215   case vmIntrinsics::_minD:
8216   case vmIntrinsics::_maxD_strict:
8217   case vmIntrinsics::_minD_strict:
8218     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
8219     a = round_double_node(argument(0));
8220     b = round_double_node(argument(2));
8221     break;
8222   default:
8223     fatal_unexpected_iid(id);
8224     break;
8225   }
8226   switch (id) {
8227   case vmIntrinsics::_maxF:
8228   case vmIntrinsics::_maxF_strict:
8229     n = new MaxFNode(a, b);
8230     break;
8231   case vmIntrinsics::_minF:
8232   case vmIntrinsics::_minF_strict:
8233     n = new MinFNode(a, b);
8234     break;
8235   case vmIntrinsics::_maxD:
8236   case vmIntrinsics::_maxD_strict:
8237     n = new MaxDNode(a, b);
8238     break;
8239   case vmIntrinsics::_minD:
8240   case vmIntrinsics::_minD_strict:
8241     n = new MinDNode(a, b);
8242     break;
8243   default:
8244     fatal_unexpected_iid(id);
8245     break;
8246   }
8247   set_result(_gvn.transform(n));
8248   return true;
8249 }
8250 
8251 bool LibraryCallKit::inline_profileBoolean() {
8252   Node* counts = argument(1);
8253   const TypeAryPtr* ary = nullptr;
8254   ciArray* aobj = nullptr;
8255   if (counts->is_Con()
8256       && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
8257       && (aobj = ary->const_oop()->as_array()) != nullptr
8258       && (aobj->length() == 2)) {
8259     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
8260     jint false_cnt = aobj->element_value(0).as_int();
8261     jint  true_cnt = aobj->element_value(1).as_int();
8262 
8263     if (C->log() != nullptr) {
8264       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
8265                      false_cnt, true_cnt);
8266     }
8267 
8268     if (false_cnt + true_cnt == 0) {
8269       // According to profile, never executed.
8270       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8271                           Deoptimization::Action_reinterpret);
8272       return true;
8273     }
8274 
8275     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
8276     // is a number of each value occurrences.
8277     Node* result = argument(0);
8278     if (false_cnt == 0 || true_cnt == 0) {
8279       // According to profile, one value has been never seen.
8280       int expected_val = (false_cnt == 0) ? 1 : 0;
8281 
8282       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
8283       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
8284 
8285       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
8286       Node* fast_path = _gvn.transform(new IfTrueNode(check));
8287       Node* slow_path = _gvn.transform(new IfFalseNode(check));
8288 
8289       { // Slow path: uncommon trap for never seen value and then reexecute
8290         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
8291         // the value has been seen at least once.
8292         PreserveJVMState pjvms(this);
8293         PreserveReexecuteState preexecs(this);
8294         jvms()->set_should_reexecute(true);
8295 
8296         set_control(slow_path);
8297         set_i_o(i_o());
8298 
8299         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8300                             Deoptimization::Action_reinterpret);
8301       }
8302       // The guard for never seen value enables sharpening of the result and
8303       // returning a constant. It allows to eliminate branches on the same value
8304       // later on.
8305       set_control(fast_path);
8306       result = intcon(expected_val);
8307     }
8308     // Stop profiling.
8309     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
8310     // By replacing method body with profile data (represented as ProfileBooleanNode
8311     // on IR level) we effectively disable profiling.
8312     // It enables full speed execution once optimized code is generated.
8313     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
8314     C->record_for_igvn(profile);
8315     set_result(profile);
8316     return true;
8317   } else {
8318     // Continue profiling.
8319     // Profile data isn't available at the moment. So, execute method's bytecode version.
8320     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
8321     // is compiled and counters aren't available since corresponding MethodHandle
8322     // isn't a compile-time constant.
8323     return false;
8324   }
8325 }
8326 
8327 bool LibraryCallKit::inline_isCompileConstant() {
8328   Node* n = argument(0);
8329   set_result(n->is_Con() ? intcon(1) : intcon(0));
8330   return true;
8331 }
8332 
8333 //------------------------------- inline_getObjectSize --------------------------------------
8334 //
8335 // Calculate the runtime size of the object/array.
8336 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
8337 //
8338 bool LibraryCallKit::inline_getObjectSize() {
8339   Node* obj = argument(3);
8340   Node* klass_node = load_object_klass(obj);
8341 
8342   jint  layout_con = Klass::_lh_neutral_value;
8343   Node* layout_val = get_layout_helper(klass_node, layout_con);
8344   int   layout_is_con = (layout_val == nullptr);
8345 
8346   if (layout_is_con) {
8347     // Layout helper is constant, can figure out things at compile time.
8348 
8349     if (Klass::layout_helper_is_instance(layout_con)) {
8350       // Instance case:  layout_con contains the size itself.
8351       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
8352       set_result(size);
8353     } else {
8354       // Array case: size is round(header + element_size*arraylength).
8355       // Since arraylength is different for every array instance, we have to
8356       // compute the whole thing at runtime.
8357 
8358       Node* arr_length = load_array_length(obj);
8359 
8360       int round_mask = MinObjAlignmentInBytes - 1;
8361       int hsize  = Klass::layout_helper_header_size(layout_con);
8362       int eshift = Klass::layout_helper_log2_element_size(layout_con);
8363 
8364       if ((round_mask & ~right_n_bits(eshift)) == 0) {
8365         round_mask = 0;  // strength-reduce it if it goes away completely
8366       }
8367       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
8368       Node* header_size = intcon(hsize + round_mask);
8369 
8370       Node* lengthx = ConvI2X(arr_length);
8371       Node* headerx = ConvI2X(header_size);
8372 
8373       Node* abody = lengthx;
8374       if (eshift != 0) {
8375         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
8376       }
8377       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
8378       if (round_mask != 0) {
8379         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
8380       }
8381       size = ConvX2L(size);
8382       set_result(size);
8383     }
8384   } else {
8385     // Layout helper is not constant, need to test for array-ness at runtime.
8386 
8387     enum { _instance_path = 1, _array_path, PATH_LIMIT };
8388     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
8389     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
8390     record_for_igvn(result_reg);
8391 
8392     Node* array_ctl = generate_array_guard(klass_node, nullptr);
8393     if (array_ctl != nullptr) {
8394       // Array case: size is round(header + element_size*arraylength).
8395       // Since arraylength is different for every array instance, we have to
8396       // compute the whole thing at runtime.
8397 
8398       PreserveJVMState pjvms(this);
8399       set_control(array_ctl);
8400       Node* arr_length = load_array_length(obj);
8401 
8402       int round_mask = MinObjAlignmentInBytes - 1;
8403       Node* mask = intcon(round_mask);
8404 
8405       Node* hss = intcon(Klass::_lh_header_size_shift);
8406       Node* hsm = intcon(Klass::_lh_header_size_mask);
8407       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
8408       header_size = _gvn.transform(new AndINode(header_size, hsm));
8409       header_size = _gvn.transform(new AddINode(header_size, mask));
8410 
8411       // There is no need to mask or shift this value.
8412       // The semantics of LShiftINode include an implicit mask to 0x1F.
8413       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
8414       Node* elem_shift = layout_val;
8415 
8416       Node* lengthx = ConvI2X(arr_length);
8417       Node* headerx = ConvI2X(header_size);
8418 
8419       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
8420       Node* size = _gvn.transform(new AddXNode(headerx, abody));
8421       if (round_mask != 0) {
8422         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
8423       }
8424       size = ConvX2L(size);
8425 
8426       result_reg->init_req(_array_path, control());
8427       result_val->init_req(_array_path, size);
8428     }
8429 
8430     if (!stopped()) {
8431       // Instance case: the layout helper gives us instance size almost directly,
8432       // but we need to mask out the _lh_instance_slow_path_bit.
8433       Node* size = ConvI2X(layout_val);
8434       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
8435       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
8436       size = _gvn.transform(new AndXNode(size, mask));
8437       size = ConvX2L(size);
8438 
8439       result_reg->init_req(_instance_path, control());
8440       result_val->init_req(_instance_path, size);
8441     }
8442 
8443     set_result(result_reg, result_val);
8444   }
8445 
8446   return true;
8447 }
8448 
8449 //------------------------------- inline_blackhole --------------------------------------
8450 //
8451 // Make sure all arguments to this node are alive.
8452 // This matches methods that were requested to be blackholed through compile commands.
8453 //
8454 bool LibraryCallKit::inline_blackhole() {
8455   assert(callee()->is_static(), "Should have been checked before: only static methods here");
8456   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
8457   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
8458 
8459   // Blackhole node pinches only the control, not memory. This allows
8460   // the blackhole to be pinned in the loop that computes blackholed
8461   // values, but have no other side effects, like breaking the optimizations
8462   // across the blackhole.
8463 
8464   Node* bh = _gvn.transform(new BlackholeNode(control()));
8465   set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
8466 
8467   // Bind call arguments as blackhole arguments to keep them alive
8468   uint nargs = callee()->arg_size();
8469   for (uint i = 0; i < nargs; i++) {
8470     bh->add_req(argument(i));
8471   }
8472 
8473   return true;
8474 }