1 /* 2 * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "prims/unsafe.hpp" 54 #include "runtime/objectMonitor.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/macros.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 60 //---------------------------make_vm_intrinsic---------------------------- 61 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 62 vmIntrinsicID id = m->intrinsic_id(); 63 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 64 65 if (!m->is_loaded()) { 66 // Do not attempt to inline unloaded methods. 67 return NULL; 68 } 69 70 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 71 bool is_available = false; 72 73 { 74 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 75 // the compiler must transition to '_thread_in_vm' state because both 76 // methods access VM-internal data. 77 VM_ENTRY_MARK; 78 methodHandle mh(THREAD, m->get_Method()); 79 is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) && 80 !C->directive()->is_intrinsic_disabled(mh) && 81 !vmIntrinsics::is_disabled_by_flags(mh); 82 83 } 84 85 if (is_available) { 86 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 87 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 88 return new LibraryIntrinsic(m, is_virtual, 89 vmIntrinsics::predicates_needed(id), 90 vmIntrinsics::does_virtual_dispatch(id), 91 id); 92 } else { 93 return NULL; 94 } 95 } 96 97 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 98 LibraryCallKit kit(jvms, this); 99 Compile* C = kit.C; 100 int nodes = C->unique(); 101 #ifndef PRODUCT 102 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 103 char buf[1000]; 104 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 105 tty->print_cr("Intrinsic %s", str); 106 } 107 #endif 108 ciMethod* callee = kit.callee(); 109 const int bci = kit.bci(); 110 #ifdef ASSERT 111 Node* ctrl = kit.control(); 112 #endif 113 // Try to inline the intrinsic. 114 if (callee->check_intrinsic_candidate() && 115 kit.try_to_inline(_last_predicate)) { 116 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 117 : "(intrinsic)"; 118 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 119 if (C->print_intrinsics() || C->print_inlining()) { 120 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 121 } 122 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 123 if (C->log()) { 124 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 125 vmIntrinsics::name_at(intrinsic_id()), 126 (is_virtual() ? " virtual='1'" : ""), 127 C->unique() - nodes); 128 } 129 // Push the result from the inlined method onto the stack. 130 kit.push_result(); 131 C->print_inlining_update(this); 132 return kit.transfer_exceptions_into_jvms(); 133 } 134 135 // The intrinsic bailed out 136 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 137 if (jvms->has_method()) { 138 // Not a root compile. 139 const char* msg; 140 if (callee->intrinsic_candidate()) { 141 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 142 } else { 143 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 144 : "failed to inline (intrinsic), method not annotated"; 145 } 146 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); 147 if (C->print_intrinsics() || C->print_inlining()) { 148 C->print_inlining(callee, jvms->depth() - 1, bci, msg); 149 } 150 } else { 151 // Root compile 152 ResourceMark rm; 153 stringStream msg_stream; 154 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 155 vmIntrinsics::name_at(intrinsic_id()), 156 is_virtual() ? " (virtual)" : "", bci); 157 const char *msg = msg_stream.as_string(); 158 log_debug(jit, inlining)("%s", msg); 159 if (C->print_intrinsics() || C->print_inlining()) { 160 tty->print("%s", msg); 161 } 162 } 163 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 164 C->print_inlining_update(this); 165 166 return NULL; 167 } 168 169 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 170 LibraryCallKit kit(jvms, this); 171 Compile* C = kit.C; 172 int nodes = C->unique(); 173 _last_predicate = predicate; 174 #ifndef PRODUCT 175 assert(is_predicated() && predicate < predicates_count(), "sanity"); 176 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 177 char buf[1000]; 178 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 179 tty->print_cr("Predicate for intrinsic %s", str); 180 } 181 #endif 182 ciMethod* callee = kit.callee(); 183 const int bci = kit.bci(); 184 185 Node* slow_ctl = kit.try_to_predicate(predicate); 186 if (!kit.failing()) { 187 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 188 : "(intrinsic, predicate)"; 189 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 190 if (C->print_intrinsics() || C->print_inlining()) { 191 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 192 } 193 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 194 if (C->log()) { 195 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 196 vmIntrinsics::name_at(intrinsic_id()), 197 (is_virtual() ? " virtual='1'" : ""), 198 C->unique() - nodes); 199 } 200 return slow_ctl; // Could be NULL if the check folds. 201 } 202 203 // The intrinsic bailed out 204 if (jvms->has_method()) { 205 // Not a root compile. 206 const char* msg = "failed to generate predicate for intrinsic"; 207 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); 208 if (C->print_intrinsics() || C->print_inlining()) { 209 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); 210 } 211 } else { 212 // Root compile 213 ResourceMark rm; 214 stringStream msg_stream; 215 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 216 vmIntrinsics::name_at(intrinsic_id()), 217 is_virtual() ? " (virtual)" : "", bci); 218 const char *msg = msg_stream.as_string(); 219 log_debug(jit, inlining)("%s", msg); 220 if (C->print_intrinsics() || C->print_inlining()) { 221 C->print_inlining_stream()->print("%s", msg); 222 } 223 } 224 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 225 return NULL; 226 } 227 228 bool LibraryCallKit::try_to_inline(int predicate) { 229 // Handle symbolic names for otherwise undistinguished boolean switches: 230 const bool is_store = true; 231 const bool is_compress = true; 232 const bool is_static = true; 233 const bool is_volatile = true; 234 235 if (!jvms()->has_method()) { 236 // Root JVMState has a null method. 237 assert(map()->memory()->Opcode() == Op_Parm, ""); 238 // Insert the memory aliasing node 239 set_all_memory(reset_memory()); 240 } 241 assert(merged_memory(), ""); 242 243 switch (intrinsic_id()) { 244 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 245 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 246 case vmIntrinsics::_getClass: return inline_native_getClass(); 247 248 case vmIntrinsics::_ceil: 249 case vmIntrinsics::_floor: 250 case vmIntrinsics::_rint: 251 case vmIntrinsics::_dsin: 252 case vmIntrinsics::_dcos: 253 case vmIntrinsics::_dtan: 254 case vmIntrinsics::_dabs: 255 case vmIntrinsics::_fabs: 256 case vmIntrinsics::_iabs: 257 case vmIntrinsics::_labs: 258 case vmIntrinsics::_datan2: 259 case vmIntrinsics::_dsqrt: 260 case vmIntrinsics::_dsqrt_strict: 261 case vmIntrinsics::_dexp: 262 case vmIntrinsics::_dlog: 263 case vmIntrinsics::_dlog10: 264 case vmIntrinsics::_dpow: 265 case vmIntrinsics::_dcopySign: 266 case vmIntrinsics::_fcopySign: 267 case vmIntrinsics::_dsignum: 268 case vmIntrinsics::_roundF: 269 case vmIntrinsics::_roundD: 270 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 271 272 case vmIntrinsics::_notify: 273 case vmIntrinsics::_notifyAll: 274 return inline_notify(intrinsic_id()); 275 276 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 277 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 278 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 279 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 280 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 281 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 282 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 283 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 284 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 285 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 286 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 287 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 288 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 289 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 290 291 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 292 293 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 294 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 295 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 296 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 297 298 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 299 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 300 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 301 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 302 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 303 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 304 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 305 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 306 307 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 308 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 309 310 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 311 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 312 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 313 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 314 315 case vmIntrinsics::_compressStringC: 316 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 317 case vmIntrinsics::_inflateStringC: 318 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 319 320 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 321 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 322 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 323 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 324 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 325 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 326 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 327 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 328 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 329 330 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 331 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 332 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 333 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 334 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 335 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 336 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 337 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 338 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 339 340 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 341 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 342 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 343 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 344 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 345 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 346 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 347 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 348 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 349 350 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 351 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 352 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 353 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 354 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 355 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 356 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 357 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 358 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 359 360 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 361 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 362 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 363 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 364 365 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 366 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 367 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 368 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 369 370 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 371 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 372 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 373 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 374 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 375 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 376 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 377 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 378 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 379 380 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 381 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 382 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 383 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 384 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 385 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 386 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 387 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 388 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 389 390 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 391 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 392 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 393 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 394 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 395 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 396 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 397 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 398 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 399 400 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 401 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 402 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 403 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 404 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 405 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 406 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 407 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 408 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 409 410 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 411 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 412 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 413 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 414 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 415 416 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 417 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 418 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 419 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 420 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 421 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 422 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 423 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 424 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 425 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 426 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 427 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 428 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 429 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 430 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 431 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 432 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 433 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 434 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 435 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 436 437 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 438 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 439 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 440 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 441 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 442 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 443 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 444 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 445 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 446 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 447 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 448 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 449 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 450 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 451 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 452 453 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 454 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 455 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 456 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 457 458 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 459 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 460 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 461 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 462 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 463 464 case vmIntrinsics::_loadFence: 465 case vmIntrinsics::_storeFence: 466 case vmIntrinsics::_storeStoreFence: 467 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 468 469 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 470 471 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 472 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 473 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 474 475 case vmIntrinsics::_extentLocalCache: return inline_native_extentLocalCache(); 476 case vmIntrinsics::_setExtentLocalCache: return inline_native_setExtentLocalCache(); 477 478 #ifdef JFR_HAVE_INTRINSICS 479 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 480 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 481 #endif 482 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 483 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 484 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 485 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 486 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 487 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 488 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 489 case vmIntrinsics::_getLength: return inline_native_getLength(); 490 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 491 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 492 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 493 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 494 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 495 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 496 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 497 498 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 499 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 500 501 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 502 503 case vmIntrinsics::_isInstance: 504 case vmIntrinsics::_getModifiers: 505 case vmIntrinsics::_isInterface: 506 case vmIntrinsics::_isArray: 507 case vmIntrinsics::_isPrimitive: 508 case vmIntrinsics::_isHidden: 509 case vmIntrinsics::_getSuperclass: 510 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 511 512 case vmIntrinsics::_floatToRawIntBits: 513 case vmIntrinsics::_floatToIntBits: 514 case vmIntrinsics::_intBitsToFloat: 515 case vmIntrinsics::_doubleToRawLongBits: 516 case vmIntrinsics::_doubleToLongBits: 517 case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id()); 518 519 case vmIntrinsics::_floatIsInfinite: 520 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 521 522 case vmIntrinsics::_numberOfLeadingZeros_i: 523 case vmIntrinsics::_numberOfLeadingZeros_l: 524 case vmIntrinsics::_numberOfTrailingZeros_i: 525 case vmIntrinsics::_numberOfTrailingZeros_l: 526 case vmIntrinsics::_bitCount_i: 527 case vmIntrinsics::_bitCount_l: 528 case vmIntrinsics::_reverseBytes_i: 529 case vmIntrinsics::_reverseBytes_l: 530 case vmIntrinsics::_reverseBytes_s: 531 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 532 533 case vmIntrinsics::_compress_i: 534 case vmIntrinsics::_compress_l: 535 case vmIntrinsics::_expand_i: 536 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 537 538 case vmIntrinsics::_divideUnsigned_i: 539 case vmIntrinsics::_divideUnsigned_l: 540 case vmIntrinsics::_remainderUnsigned_i: 541 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 542 543 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 544 545 case vmIntrinsics::_Reference_get: return inline_reference_get(); 546 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 547 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 548 549 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 550 551 case vmIntrinsics::_aescrypt_encryptBlock: 552 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 553 554 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 555 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 556 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 557 558 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 559 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 560 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 561 562 case vmIntrinsics::_counterMode_AESCrypt: 563 return inline_counterMode_AESCrypt(intrinsic_id()); 564 565 case vmIntrinsics::_galoisCounterMode_AESCrypt: 566 return inline_galoisCounterMode_AESCrypt(); 567 568 case vmIntrinsics::_md5_implCompress: 569 case vmIntrinsics::_sha_implCompress: 570 case vmIntrinsics::_sha2_implCompress: 571 case vmIntrinsics::_sha5_implCompress: 572 case vmIntrinsics::_sha3_implCompress: 573 return inline_digestBase_implCompress(intrinsic_id()); 574 575 case vmIntrinsics::_digestBase_implCompressMB: 576 return inline_digestBase_implCompressMB(predicate); 577 578 case vmIntrinsics::_multiplyToLen: 579 return inline_multiplyToLen(); 580 581 case vmIntrinsics::_squareToLen: 582 return inline_squareToLen(); 583 584 case vmIntrinsics::_mulAdd: 585 return inline_mulAdd(); 586 587 case vmIntrinsics::_montgomeryMultiply: 588 return inline_montgomeryMultiply(); 589 case vmIntrinsics::_montgomerySquare: 590 return inline_montgomerySquare(); 591 592 case vmIntrinsics::_bigIntegerRightShiftWorker: 593 return inline_bigIntegerShift(true); 594 case vmIntrinsics::_bigIntegerLeftShiftWorker: 595 return inline_bigIntegerShift(false); 596 597 case vmIntrinsics::_vectorizedMismatch: 598 return inline_vectorizedMismatch(); 599 600 case vmIntrinsics::_ghash_processBlocks: 601 return inline_ghash_processBlocks(); 602 case vmIntrinsics::_base64_encodeBlock: 603 return inline_base64_encodeBlock(); 604 case vmIntrinsics::_base64_decodeBlock: 605 return inline_base64_decodeBlock(); 606 607 case vmIntrinsics::_encodeISOArray: 608 case vmIntrinsics::_encodeByteISOArray: 609 return inline_encodeISOArray(false); 610 case vmIntrinsics::_encodeAsciiArray: 611 return inline_encodeISOArray(true); 612 613 case vmIntrinsics::_updateCRC32: 614 return inline_updateCRC32(); 615 case vmIntrinsics::_updateBytesCRC32: 616 return inline_updateBytesCRC32(); 617 case vmIntrinsics::_updateByteBufferCRC32: 618 return inline_updateByteBufferCRC32(); 619 620 case vmIntrinsics::_updateBytesCRC32C: 621 return inline_updateBytesCRC32C(); 622 case vmIntrinsics::_updateDirectByteBufferCRC32C: 623 return inline_updateDirectByteBufferCRC32C(); 624 625 case vmIntrinsics::_updateBytesAdler32: 626 return inline_updateBytesAdler32(); 627 case vmIntrinsics::_updateByteBufferAdler32: 628 return inline_updateByteBufferAdler32(); 629 630 case vmIntrinsics::_profileBoolean: 631 return inline_profileBoolean(); 632 case vmIntrinsics::_isCompileConstant: 633 return inline_isCompileConstant(); 634 635 case vmIntrinsics::_countPositives: 636 return inline_countPositives(); 637 638 case vmIntrinsics::_fmaD: 639 case vmIntrinsics::_fmaF: 640 return inline_fma(intrinsic_id()); 641 642 case vmIntrinsics::_Continuation_doYield: 643 return inline_continuation_do_yield(); 644 645 case vmIntrinsics::_isDigit: 646 case vmIntrinsics::_isLowerCase: 647 case vmIntrinsics::_isUpperCase: 648 case vmIntrinsics::_isWhitespace: 649 return inline_character_compare(intrinsic_id()); 650 651 case vmIntrinsics::_min: 652 case vmIntrinsics::_max: 653 case vmIntrinsics::_min_strict: 654 case vmIntrinsics::_max_strict: 655 return inline_min_max(intrinsic_id()); 656 657 case vmIntrinsics::_maxF: 658 case vmIntrinsics::_minF: 659 case vmIntrinsics::_maxD: 660 case vmIntrinsics::_minD: 661 case vmIntrinsics::_maxF_strict: 662 case vmIntrinsics::_minF_strict: 663 case vmIntrinsics::_maxD_strict: 664 case vmIntrinsics::_minD_strict: 665 return inline_fp_min_max(intrinsic_id()); 666 667 case vmIntrinsics::_VectorUnaryOp: 668 return inline_vector_nary_operation(1); 669 case vmIntrinsics::_VectorBinaryOp: 670 return inline_vector_nary_operation(2); 671 case vmIntrinsics::_VectorTernaryOp: 672 return inline_vector_nary_operation(3); 673 case vmIntrinsics::_VectorFromBitsCoerced: 674 return inline_vector_frombits_coerced(); 675 case vmIntrinsics::_VectorShuffleIota: 676 return inline_vector_shuffle_iota(); 677 case vmIntrinsics::_VectorMaskOp: 678 return inline_vector_mask_operation(); 679 case vmIntrinsics::_VectorShuffleToVector: 680 return inline_vector_shuffle_to_vector(); 681 case vmIntrinsics::_VectorLoadOp: 682 return inline_vector_mem_operation(/*is_store=*/false); 683 case vmIntrinsics::_VectorLoadMaskedOp: 684 return inline_vector_mem_masked_operation(/*is_store*/false); 685 case vmIntrinsics::_VectorStoreOp: 686 return inline_vector_mem_operation(/*is_store=*/true); 687 case vmIntrinsics::_VectorStoreMaskedOp: 688 return inline_vector_mem_masked_operation(/*is_store=*/true); 689 case vmIntrinsics::_VectorGatherOp: 690 return inline_vector_gather_scatter(/*is_scatter*/ false); 691 case vmIntrinsics::_VectorScatterOp: 692 return inline_vector_gather_scatter(/*is_scatter*/ true); 693 case vmIntrinsics::_VectorReductionCoerced: 694 return inline_vector_reduction(); 695 case vmIntrinsics::_VectorTest: 696 return inline_vector_test(); 697 case vmIntrinsics::_VectorBlend: 698 return inline_vector_blend(); 699 case vmIntrinsics::_VectorRearrange: 700 return inline_vector_rearrange(); 701 case vmIntrinsics::_VectorCompare: 702 return inline_vector_compare(); 703 case vmIntrinsics::_VectorBroadcastInt: 704 return inline_vector_broadcast_int(); 705 case vmIntrinsics::_VectorConvert: 706 return inline_vector_convert(); 707 case vmIntrinsics::_VectorInsert: 708 return inline_vector_insert(); 709 case vmIntrinsics::_VectorExtract: 710 return inline_vector_extract(); 711 case vmIntrinsics::_VectorCompressExpand: 712 return inline_vector_compress_expand(); 713 714 case vmIntrinsics::_getObjectSize: 715 return inline_getObjectSize(); 716 717 case vmIntrinsics::_blackhole: 718 return inline_blackhole(); 719 720 default: 721 // If you get here, it may be that someone has added a new intrinsic 722 // to the list in vmIntrinsics.hpp without implementing it here. 723 #ifndef PRODUCT 724 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 725 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 726 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 727 } 728 #endif 729 return false; 730 } 731 } 732 733 Node* LibraryCallKit::try_to_predicate(int predicate) { 734 if (!jvms()->has_method()) { 735 // Root JVMState has a null method. 736 assert(map()->memory()->Opcode() == Op_Parm, ""); 737 // Insert the memory aliasing node 738 set_all_memory(reset_memory()); 739 } 740 assert(merged_memory(), ""); 741 742 switch (intrinsic_id()) { 743 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 744 return inline_cipherBlockChaining_AESCrypt_predicate(false); 745 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 746 return inline_cipherBlockChaining_AESCrypt_predicate(true); 747 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 748 return inline_electronicCodeBook_AESCrypt_predicate(false); 749 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 750 return inline_electronicCodeBook_AESCrypt_predicate(true); 751 case vmIntrinsics::_counterMode_AESCrypt: 752 return inline_counterMode_AESCrypt_predicate(); 753 case vmIntrinsics::_digestBase_implCompressMB: 754 return inline_digestBase_implCompressMB_predicate(predicate); 755 case vmIntrinsics::_galoisCounterMode_AESCrypt: 756 return inline_galoisCounterMode_AESCrypt_predicate(); 757 758 default: 759 // If you get here, it may be that someone has added a new intrinsic 760 // to the list in vmIntrinsics.hpp without implementing it here. 761 #ifndef PRODUCT 762 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 763 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 764 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 765 } 766 #endif 767 Node* slow_ctl = control(); 768 set_control(top()); // No fast path intrinsic 769 return slow_ctl; 770 } 771 } 772 773 //------------------------------set_result------------------------------- 774 // Helper function for finishing intrinsics. 775 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 776 record_for_igvn(region); 777 set_control(_gvn.transform(region)); 778 set_result( _gvn.transform(value)); 779 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 780 } 781 782 //------------------------------generate_guard--------------------------- 783 // Helper function for generating guarded fast-slow graph structures. 784 // The given 'test', if true, guards a slow path. If the test fails 785 // then a fast path can be taken. (We generally hope it fails.) 786 // In all cases, GraphKit::control() is updated to the fast path. 787 // The returned value represents the control for the slow path. 788 // The return value is never 'top'; it is either a valid control 789 // or NULL if it is obvious that the slow path can never be taken. 790 // Also, if region and the slow control are not NULL, the slow edge 791 // is appended to the region. 792 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 793 if (stopped()) { 794 // Already short circuited. 795 return NULL; 796 } 797 798 // Build an if node and its projections. 799 // If test is true we take the slow path, which we assume is uncommon. 800 if (_gvn.type(test) == TypeInt::ZERO) { 801 // The slow branch is never taken. No need to build this guard. 802 return NULL; 803 } 804 805 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 806 807 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 808 if (if_slow == top()) { 809 // The slow branch is never taken. No need to build this guard. 810 return NULL; 811 } 812 813 if (region != NULL) 814 region->add_req(if_slow); 815 816 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 817 set_control(if_fast); 818 819 return if_slow; 820 } 821 822 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 823 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 824 } 825 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 826 return generate_guard(test, region, PROB_FAIR); 827 } 828 829 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 830 Node* *pos_index) { 831 if (stopped()) 832 return NULL; // already stopped 833 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 834 return NULL; // index is already adequately typed 835 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 836 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 837 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 838 if (is_neg != NULL && pos_index != NULL) { 839 // Emulate effect of Parse::adjust_map_after_if. 840 Node* ccast = new CastIINode(index, TypeInt::POS); 841 ccast->set_req(0, control()); 842 (*pos_index) = _gvn.transform(ccast); 843 } 844 return is_neg; 845 } 846 847 // Make sure that 'position' is a valid limit index, in [0..length]. 848 // There are two equivalent plans for checking this: 849 // A. (offset + copyLength) unsigned<= arrayLength 850 // B. offset <= (arrayLength - copyLength) 851 // We require that all of the values above, except for the sum and 852 // difference, are already known to be non-negative. 853 // Plan A is robust in the face of overflow, if offset and copyLength 854 // are both hugely positive. 855 // 856 // Plan B is less direct and intuitive, but it does not overflow at 857 // all, since the difference of two non-negatives is always 858 // representable. Whenever Java methods must perform the equivalent 859 // check they generally use Plan B instead of Plan A. 860 // For the moment we use Plan A. 861 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 862 Node* subseq_length, 863 Node* array_length, 864 RegionNode* region) { 865 if (stopped()) 866 return NULL; // already stopped 867 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 868 if (zero_offset && subseq_length->eqv_uncast(array_length)) 869 return NULL; // common case of whole-array copy 870 Node* last = subseq_length; 871 if (!zero_offset) // last += offset 872 last = _gvn.transform(new AddINode(last, offset)); 873 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 874 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 875 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 876 return is_over; 877 } 878 879 // Emit range checks for the given String.value byte array 880 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 881 if (stopped()) { 882 return; // already stopped 883 } 884 RegionNode* bailout = new RegionNode(1); 885 record_for_igvn(bailout); 886 if (char_count) { 887 // Convert char count to byte count 888 count = _gvn.transform(new LShiftINode(count, intcon(1))); 889 } 890 891 // Offset and count must not be negative 892 generate_negative_guard(offset, bailout); 893 generate_negative_guard(count, bailout); 894 // Offset + count must not exceed length of array 895 generate_limit_guard(offset, count, load_array_length(array), bailout); 896 897 if (bailout->req() > 1) { 898 PreserveJVMState pjvms(this); 899 set_control(_gvn.transform(bailout)); 900 uncommon_trap(Deoptimization::Reason_intrinsic, 901 Deoptimization::Action_maybe_recompile); 902 } 903 } 904 905 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 906 bool is_immutable) { 907 ciKlass* thread_klass = env()->Thread_klass(); 908 const Type* thread_type 909 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 910 911 Node* thread = _gvn.transform(new ThreadLocalNode()); 912 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 913 tls_output = thread; 914 915 Node* thread_obj_handle 916 = (is_immutable 917 ? LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(), 918 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 919 : make_load(NULL, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 920 thread_obj_handle = _gvn.transform(thread_obj_handle); 921 922 DecoratorSet decorators = IN_NATIVE; 923 if (is_immutable) { 924 decorators |= C2_IMMUTABLE_MEMORY; 925 } 926 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 927 } 928 929 //--------------------------generate_current_thread-------------------- 930 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 931 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 932 /*is_immutable*/false); 933 } 934 935 //--------------------------generate_virtual_thread-------------------- 936 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 937 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 938 !C->method()->changes_current_thread()); 939 } 940 941 //------------------------------make_string_method_node------------------------ 942 // Helper method for String intrinsic functions. This version is called with 943 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 944 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 945 // containing the lengths of str1 and str2. 946 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 947 Node* result = NULL; 948 switch (opcode) { 949 case Op_StrIndexOf: 950 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 951 str1_start, cnt1, str2_start, cnt2, ae); 952 break; 953 case Op_StrComp: 954 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 955 str1_start, cnt1, str2_start, cnt2, ae); 956 break; 957 case Op_StrEquals: 958 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 959 // Use the constant length if there is one because optimized match rule may exist. 960 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 961 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 962 break; 963 default: 964 ShouldNotReachHere(); 965 return NULL; 966 } 967 968 // All these intrinsics have checks. 969 C->set_has_split_ifs(true); // Has chance for split-if optimization 970 clear_upper_avx(); 971 972 return _gvn.transform(result); 973 } 974 975 //------------------------------inline_string_compareTo------------------------ 976 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 977 Node* arg1 = argument(0); 978 Node* arg2 = argument(1); 979 980 arg1 = must_be_not_null(arg1, true); 981 arg2 = must_be_not_null(arg2, true); 982 983 // Get start addr and length of first argument 984 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 985 Node* arg1_cnt = load_array_length(arg1); 986 987 // Get start addr and length of second argument 988 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 989 Node* arg2_cnt = load_array_length(arg2); 990 991 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 992 set_result(result); 993 return true; 994 } 995 996 //------------------------------inline_string_equals------------------------ 997 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 998 Node* arg1 = argument(0); 999 Node* arg2 = argument(1); 1000 1001 // paths (plus control) merge 1002 RegionNode* region = new RegionNode(3); 1003 Node* phi = new PhiNode(region, TypeInt::BOOL); 1004 1005 if (!stopped()) { 1006 1007 arg1 = must_be_not_null(arg1, true); 1008 arg2 = must_be_not_null(arg2, true); 1009 1010 // Get start addr and length of first argument 1011 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1012 Node* arg1_cnt = load_array_length(arg1); 1013 1014 // Get start addr and length of second argument 1015 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1016 Node* arg2_cnt = load_array_length(arg2); 1017 1018 // Check for arg1_cnt != arg2_cnt 1019 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1020 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1021 Node* if_ne = generate_slow_guard(bol, NULL); 1022 if (if_ne != NULL) { 1023 phi->init_req(2, intcon(0)); 1024 region->init_req(2, if_ne); 1025 } 1026 1027 // Check for count == 0 is done by assembler code for StrEquals. 1028 1029 if (!stopped()) { 1030 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1031 phi->init_req(1, equals); 1032 region->init_req(1, control()); 1033 } 1034 } 1035 1036 // post merge 1037 set_control(_gvn.transform(region)); 1038 record_for_igvn(region); 1039 1040 set_result(_gvn.transform(phi)); 1041 return true; 1042 } 1043 1044 //------------------------------inline_array_equals---------------------------- 1045 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1046 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1047 Node* arg1 = argument(0); 1048 Node* arg2 = argument(1); 1049 1050 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1051 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1052 clear_upper_avx(); 1053 1054 return true; 1055 } 1056 1057 //------------------------------inline_countPositives------------------------------ 1058 bool LibraryCallKit::inline_countPositives() { 1059 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1060 return false; 1061 } 1062 1063 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1064 // no receiver since it is static method 1065 Node* ba = argument(0); 1066 Node* offset = argument(1); 1067 Node* len = argument(2); 1068 1069 ba = must_be_not_null(ba, true); 1070 1071 // Range checks 1072 generate_string_range_check(ba, offset, len, false); 1073 if (stopped()) { 1074 return true; 1075 } 1076 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1077 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1078 set_result(_gvn.transform(result)); 1079 return true; 1080 } 1081 1082 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1083 Node* index = argument(0); 1084 Node* length = bt == T_INT ? argument(1) : argument(2); 1085 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1086 return false; 1087 } 1088 1089 // check that length is positive 1090 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1091 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1092 1093 { 1094 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1095 uncommon_trap(Deoptimization::Reason_intrinsic, 1096 Deoptimization::Action_make_not_entrant); 1097 } 1098 1099 if (stopped()) { 1100 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1101 return true; 1102 } 1103 1104 // length is now known positive, add a cast node to make this explicit 1105 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1106 Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), bt); 1107 casted_length = _gvn.transform(casted_length); 1108 replace_in_map(length, casted_length); 1109 length = casted_length; 1110 1111 // Use an unsigned comparison for the range check itself 1112 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1113 BoolTest::mask btest = BoolTest::lt; 1114 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1115 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1116 _gvn.set_type(rc, rc->Value(&_gvn)); 1117 if (!rc_bool->is_Con()) { 1118 record_for_igvn(rc); 1119 } 1120 set_control(_gvn.transform(new IfTrueNode(rc))); 1121 { 1122 PreserveJVMState pjvms(this); 1123 set_control(_gvn.transform(new IfFalseNode(rc))); 1124 uncommon_trap(Deoptimization::Reason_range_check, 1125 Deoptimization::Action_make_not_entrant); 1126 } 1127 1128 if (stopped()) { 1129 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1130 return true; 1131 } 1132 1133 // index is now known to be >= 0 and < length, cast it 1134 Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), bt); 1135 result = _gvn.transform(result); 1136 set_result(result); 1137 replace_in_map(index, result); 1138 return true; 1139 } 1140 1141 //------------------------------inline_string_indexOf------------------------ 1142 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1143 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1144 return false; 1145 } 1146 Node* src = argument(0); 1147 Node* tgt = argument(1); 1148 1149 // Make the merge point 1150 RegionNode* result_rgn = new RegionNode(4); 1151 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1152 1153 src = must_be_not_null(src, true); 1154 tgt = must_be_not_null(tgt, true); 1155 1156 // Get start addr and length of source string 1157 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1158 Node* src_count = load_array_length(src); 1159 1160 // Get start addr and length of substring 1161 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1162 Node* tgt_count = load_array_length(tgt); 1163 1164 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1165 // Divide src size by 2 if String is UTF16 encoded 1166 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1167 } 1168 if (ae == StrIntrinsicNode::UU) { 1169 // Divide substring size by 2 if String is UTF16 encoded 1170 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1171 } 1172 1173 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1174 if (result != NULL) { 1175 result_phi->init_req(3, result); 1176 result_rgn->init_req(3, control()); 1177 } 1178 set_control(_gvn.transform(result_rgn)); 1179 record_for_igvn(result_rgn); 1180 set_result(_gvn.transform(result_phi)); 1181 1182 return true; 1183 } 1184 1185 //-----------------------------inline_string_indexOf----------------------- 1186 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1187 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1188 return false; 1189 } 1190 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1191 return false; 1192 } 1193 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1194 Node* src = argument(0); // byte[] 1195 Node* src_count = argument(1); // char count 1196 Node* tgt = argument(2); // byte[] 1197 Node* tgt_count = argument(3); // char count 1198 Node* from_index = argument(4); // char index 1199 1200 src = must_be_not_null(src, true); 1201 tgt = must_be_not_null(tgt, true); 1202 1203 // Multiply byte array index by 2 if String is UTF16 encoded 1204 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1205 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1206 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1207 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1208 1209 // Range checks 1210 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1211 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1212 if (stopped()) { 1213 return true; 1214 } 1215 1216 RegionNode* region = new RegionNode(5); 1217 Node* phi = new PhiNode(region, TypeInt::INT); 1218 1219 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1220 if (result != NULL) { 1221 // The result is index relative to from_index if substring was found, -1 otherwise. 1222 // Generate code which will fold into cmove. 1223 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1224 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1225 1226 Node* if_lt = generate_slow_guard(bol, NULL); 1227 if (if_lt != NULL) { 1228 // result == -1 1229 phi->init_req(3, result); 1230 region->init_req(3, if_lt); 1231 } 1232 if (!stopped()) { 1233 result = _gvn.transform(new AddINode(result, from_index)); 1234 phi->init_req(4, result); 1235 region->init_req(4, control()); 1236 } 1237 } 1238 1239 set_control(_gvn.transform(region)); 1240 record_for_igvn(region); 1241 set_result(_gvn.transform(phi)); 1242 clear_upper_avx(); 1243 1244 return true; 1245 } 1246 1247 // Create StrIndexOfNode with fast path checks 1248 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1249 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1250 // Check for substr count > string count 1251 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1252 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1253 Node* if_gt = generate_slow_guard(bol, NULL); 1254 if (if_gt != NULL) { 1255 phi->init_req(1, intcon(-1)); 1256 region->init_req(1, if_gt); 1257 } 1258 if (!stopped()) { 1259 // Check for substr count == 0 1260 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1261 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1262 Node* if_zero = generate_slow_guard(bol, NULL); 1263 if (if_zero != NULL) { 1264 phi->init_req(2, intcon(0)); 1265 region->init_req(2, if_zero); 1266 } 1267 } 1268 if (!stopped()) { 1269 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1270 } 1271 return NULL; 1272 } 1273 1274 //-----------------------------inline_string_indexOfChar----------------------- 1275 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1276 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1277 return false; 1278 } 1279 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1280 return false; 1281 } 1282 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1283 Node* src = argument(0); // byte[] 1284 Node* tgt = argument(1); // tgt is int ch 1285 Node* from_index = argument(2); 1286 Node* max = argument(3); 1287 1288 src = must_be_not_null(src, true); 1289 1290 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1291 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1292 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1293 1294 // Range checks 1295 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1296 if (stopped()) { 1297 return true; 1298 } 1299 1300 RegionNode* region = new RegionNode(3); 1301 Node* phi = new PhiNode(region, TypeInt::INT); 1302 1303 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, ae); 1304 C->set_has_split_ifs(true); // Has chance for split-if optimization 1305 _gvn.transform(result); 1306 1307 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1308 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1309 1310 Node* if_lt = generate_slow_guard(bol, NULL); 1311 if (if_lt != NULL) { 1312 // result == -1 1313 phi->init_req(2, result); 1314 region->init_req(2, if_lt); 1315 } 1316 if (!stopped()) { 1317 result = _gvn.transform(new AddINode(result, from_index)); 1318 phi->init_req(1, result); 1319 region->init_req(1, control()); 1320 } 1321 set_control(_gvn.transform(region)); 1322 record_for_igvn(region); 1323 set_result(_gvn.transform(phi)); 1324 1325 return true; 1326 } 1327 //---------------------------inline_string_copy--------------------- 1328 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1329 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1330 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1331 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1332 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1333 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1334 bool LibraryCallKit::inline_string_copy(bool compress) { 1335 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1336 return false; 1337 } 1338 int nargs = 5; // 2 oops, 3 ints 1339 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1340 1341 Node* src = argument(0); 1342 Node* src_offset = argument(1); 1343 Node* dst = argument(2); 1344 Node* dst_offset = argument(3); 1345 Node* length = argument(4); 1346 1347 // Check for allocation before we add nodes that would confuse 1348 // tightly_coupled_allocation() 1349 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1350 1351 // Figure out the size and type of the elements we will be copying. 1352 const Type* src_type = src->Value(&_gvn); 1353 const Type* dst_type = dst->Value(&_gvn); 1354 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type(); 1355 BasicType dst_elem = dst_type->isa_aryptr()->elem()->array_element_basic_type(); 1356 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1357 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1358 "Unsupported array types for inline_string_copy"); 1359 1360 src = must_be_not_null(src, true); 1361 dst = must_be_not_null(dst, true); 1362 1363 // Convert char[] offsets to byte[] offsets 1364 bool convert_src = (compress && src_elem == T_BYTE); 1365 bool convert_dst = (!compress && dst_elem == T_BYTE); 1366 if (convert_src) { 1367 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1368 } else if (convert_dst) { 1369 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1370 } 1371 1372 // Range checks 1373 generate_string_range_check(src, src_offset, length, convert_src); 1374 generate_string_range_check(dst, dst_offset, length, convert_dst); 1375 if (stopped()) { 1376 return true; 1377 } 1378 1379 Node* src_start = array_element_address(src, src_offset, src_elem); 1380 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1381 // 'src_start' points to src array + scaled offset 1382 // 'dst_start' points to dst array + scaled offset 1383 Node* count = NULL; 1384 if (compress) { 1385 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1386 } else { 1387 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1388 } 1389 1390 if (alloc != NULL) { 1391 if (alloc->maybe_set_complete(&_gvn)) { 1392 // "You break it, you buy it." 1393 InitializeNode* init = alloc->initialization(); 1394 assert(init->is_complete(), "we just did this"); 1395 init->set_complete_with_arraycopy(); 1396 assert(dst->is_CheckCastPP(), "sanity"); 1397 assert(dst->in(0)->in(0) == init, "dest pinned"); 1398 } 1399 // Do not let stores that initialize this object be reordered with 1400 // a subsequent store that would make this object accessible by 1401 // other threads. 1402 // Record what AllocateNode this StoreStore protects so that 1403 // escape analysis can go from the MemBarStoreStoreNode to the 1404 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1405 // based on the escape status of the AllocateNode. 1406 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1407 } 1408 if (compress) { 1409 set_result(_gvn.transform(count)); 1410 } 1411 clear_upper_avx(); 1412 1413 return true; 1414 } 1415 1416 #ifdef _LP64 1417 #define XTOP ,top() /*additional argument*/ 1418 #else //_LP64 1419 #define XTOP /*no additional argument*/ 1420 #endif //_LP64 1421 1422 //------------------------inline_string_toBytesU-------------------------- 1423 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1424 bool LibraryCallKit::inline_string_toBytesU() { 1425 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1426 return false; 1427 } 1428 // Get the arguments. 1429 Node* value = argument(0); 1430 Node* offset = argument(1); 1431 Node* length = argument(2); 1432 1433 Node* newcopy = NULL; 1434 1435 // Set the original stack and the reexecute bit for the interpreter to reexecute 1436 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1437 { PreserveReexecuteState preexecs(this); 1438 jvms()->set_should_reexecute(true); 1439 1440 // Check if a null path was taken unconditionally. 1441 value = null_check(value); 1442 1443 RegionNode* bailout = new RegionNode(1); 1444 record_for_igvn(bailout); 1445 1446 // Range checks 1447 generate_negative_guard(offset, bailout); 1448 generate_negative_guard(length, bailout); 1449 generate_limit_guard(offset, length, load_array_length(value), bailout); 1450 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1451 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1452 1453 if (bailout->req() > 1) { 1454 PreserveJVMState pjvms(this); 1455 set_control(_gvn.transform(bailout)); 1456 uncommon_trap(Deoptimization::Reason_intrinsic, 1457 Deoptimization::Action_maybe_recompile); 1458 } 1459 if (stopped()) { 1460 return true; 1461 } 1462 1463 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1464 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1465 newcopy = new_array(klass_node, size, 0); // no arguments to push 1466 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1467 guarantee(alloc != NULL, "created above"); 1468 1469 // Calculate starting addresses. 1470 Node* src_start = array_element_address(value, offset, T_CHAR); 1471 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1472 1473 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1474 const TypeInt* toffset = gvn().type(offset)->is_int(); 1475 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1476 1477 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1478 const char* copyfunc_name = "arraycopy"; 1479 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1480 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1481 OptoRuntime::fast_arraycopy_Type(), 1482 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1483 src_start, dst_start, ConvI2X(length) XTOP); 1484 // Do not let reads from the cloned object float above the arraycopy. 1485 if (alloc->maybe_set_complete(&_gvn)) { 1486 // "You break it, you buy it." 1487 InitializeNode* init = alloc->initialization(); 1488 assert(init->is_complete(), "we just did this"); 1489 init->set_complete_with_arraycopy(); 1490 assert(newcopy->is_CheckCastPP(), "sanity"); 1491 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1492 } 1493 // Do not let stores that initialize this object be reordered with 1494 // a subsequent store that would make this object accessible by 1495 // other threads. 1496 // Record what AllocateNode this StoreStore protects so that 1497 // escape analysis can go from the MemBarStoreStoreNode to the 1498 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1499 // based on the escape status of the AllocateNode. 1500 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1501 } // original reexecute is set back here 1502 1503 C->set_has_split_ifs(true); // Has chance for split-if optimization 1504 if (!stopped()) { 1505 set_result(newcopy); 1506 } 1507 clear_upper_avx(); 1508 1509 return true; 1510 } 1511 1512 //------------------------inline_string_getCharsU-------------------------- 1513 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1514 bool LibraryCallKit::inline_string_getCharsU() { 1515 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1516 return false; 1517 } 1518 1519 // Get the arguments. 1520 Node* src = argument(0); 1521 Node* src_begin = argument(1); 1522 Node* src_end = argument(2); // exclusive offset (i < src_end) 1523 Node* dst = argument(3); 1524 Node* dst_begin = argument(4); 1525 1526 // Check for allocation before we add nodes that would confuse 1527 // tightly_coupled_allocation() 1528 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1529 1530 // Check if a null path was taken unconditionally. 1531 src = null_check(src); 1532 dst = null_check(dst); 1533 if (stopped()) { 1534 return true; 1535 } 1536 1537 // Get length and convert char[] offset to byte[] offset 1538 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1539 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1540 1541 // Range checks 1542 generate_string_range_check(src, src_begin, length, true); 1543 generate_string_range_check(dst, dst_begin, length, false); 1544 if (stopped()) { 1545 return true; 1546 } 1547 1548 if (!stopped()) { 1549 // Calculate starting addresses. 1550 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1551 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1552 1553 // Check if array addresses are aligned to HeapWordSize 1554 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1555 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1556 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1557 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1558 1559 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1560 const char* copyfunc_name = "arraycopy"; 1561 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1562 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1563 OptoRuntime::fast_arraycopy_Type(), 1564 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1565 src_start, dst_start, ConvI2X(length) XTOP); 1566 // Do not let reads from the cloned object float above the arraycopy. 1567 if (alloc != NULL) { 1568 if (alloc->maybe_set_complete(&_gvn)) { 1569 // "You break it, you buy it." 1570 InitializeNode* init = alloc->initialization(); 1571 assert(init->is_complete(), "we just did this"); 1572 init->set_complete_with_arraycopy(); 1573 assert(dst->is_CheckCastPP(), "sanity"); 1574 assert(dst->in(0)->in(0) == init, "dest pinned"); 1575 } 1576 // Do not let stores that initialize this object be reordered with 1577 // a subsequent store that would make this object accessible by 1578 // other threads. 1579 // Record what AllocateNode this StoreStore protects so that 1580 // escape analysis can go from the MemBarStoreStoreNode to the 1581 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1582 // based on the escape status of the AllocateNode. 1583 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1584 } else { 1585 insert_mem_bar(Op_MemBarCPUOrder); 1586 } 1587 } 1588 1589 C->set_has_split_ifs(true); // Has chance for split-if optimization 1590 return true; 1591 } 1592 1593 //----------------------inline_string_char_access---------------------------- 1594 // Store/Load char to/from byte[] array. 1595 // static void StringUTF16.putChar(byte[] val, int index, int c) 1596 // static char StringUTF16.getChar(byte[] val, int index) 1597 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1598 Node* value = argument(0); 1599 Node* index = argument(1); 1600 Node* ch = is_store ? argument(2) : NULL; 1601 1602 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1603 // correctly requires matched array shapes. 1604 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1605 "sanity: byte[] and char[] bases agree"); 1606 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1607 "sanity: byte[] and char[] scales agree"); 1608 1609 // Bail when getChar over constants is requested: constant folding would 1610 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1611 // Java method would constant fold nicely instead. 1612 if (!is_store && value->is_Con() && index->is_Con()) { 1613 return false; 1614 } 1615 1616 value = must_be_not_null(value, true); 1617 1618 Node* adr = array_element_address(value, index, T_CHAR); 1619 if (adr->is_top()) { 1620 return false; 1621 } 1622 if (is_store) { 1623 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1624 } else { 1625 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1626 set_result(ch); 1627 } 1628 return true; 1629 } 1630 1631 //--------------------------round_double_node-------------------------------- 1632 // Round a double node if necessary. 1633 Node* LibraryCallKit::round_double_node(Node* n) { 1634 if (Matcher::strict_fp_requires_explicit_rounding) { 1635 #ifdef IA32 1636 if (UseSSE < 2) { 1637 n = _gvn.transform(new RoundDoubleNode(NULL, n)); 1638 } 1639 #else 1640 Unimplemented(); 1641 #endif // IA32 1642 } 1643 return n; 1644 } 1645 1646 //------------------------------inline_math----------------------------------- 1647 // public static double Math.abs(double) 1648 // public static double Math.sqrt(double) 1649 // public static double Math.log(double) 1650 // public static double Math.log10(double) 1651 // public static double Math.round(double) 1652 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1653 Node* arg = round_double_node(argument(0)); 1654 Node* n = NULL; 1655 switch (id) { 1656 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1657 case vmIntrinsics::_dsqrt: 1658 case vmIntrinsics::_dsqrt_strict: 1659 n = new SqrtDNode(C, control(), arg); break; 1660 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1661 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1662 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1663 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1664 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1665 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1666 default: fatal_unexpected_iid(id); break; 1667 } 1668 set_result(_gvn.transform(n)); 1669 return true; 1670 } 1671 1672 //------------------------------inline_math----------------------------------- 1673 // public static float Math.abs(float) 1674 // public static int Math.abs(int) 1675 // public static long Math.abs(long) 1676 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1677 Node* arg = argument(0); 1678 Node* n = NULL; 1679 switch (id) { 1680 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1681 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1682 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1683 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1684 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1685 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1686 default: fatal_unexpected_iid(id); break; 1687 } 1688 set_result(_gvn.transform(n)); 1689 return true; 1690 } 1691 1692 //------------------------------runtime_math----------------------------- 1693 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1694 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1695 "must be (DD)D or (D)D type"); 1696 1697 // Inputs 1698 Node* a = round_double_node(argument(0)); 1699 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL; 1700 1701 const TypePtr* no_memory_effects = NULL; 1702 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1703 no_memory_effects, 1704 a, top(), b, b ? top() : NULL); 1705 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1706 #ifdef ASSERT 1707 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1708 assert(value_top == top(), "second value must be top"); 1709 #endif 1710 1711 set_result(value); 1712 return true; 1713 } 1714 1715 //------------------------------inline_math_pow----------------------------- 1716 bool LibraryCallKit::inline_math_pow() { 1717 Node* exp = round_double_node(argument(2)); 1718 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1719 if (d != NULL) { 1720 if (d->getd() == 2.0) { 1721 // Special case: pow(x, 2.0) => x * x 1722 Node* base = round_double_node(argument(0)); 1723 set_result(_gvn.transform(new MulDNode(base, base))); 1724 return true; 1725 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1726 // Special case: pow(x, 0.5) => sqrt(x) 1727 Node* base = round_double_node(argument(0)); 1728 Node* zero = _gvn.zerocon(T_DOUBLE); 1729 1730 RegionNode* region = new RegionNode(3); 1731 Node* phi = new PhiNode(region, Type::DOUBLE); 1732 1733 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1734 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1735 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1736 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1737 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1738 1739 Node* if_pow = generate_slow_guard(test, NULL); 1740 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1741 phi->init_req(1, value_sqrt); 1742 region->init_req(1, control()); 1743 1744 if (if_pow != NULL) { 1745 set_control(if_pow); 1746 address target = StubRoutines::dpow() != NULL ? StubRoutines::dpow() : 1747 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1748 const TypePtr* no_memory_effects = NULL; 1749 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1750 no_memory_effects, base, top(), exp, top()); 1751 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1752 #ifdef ASSERT 1753 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1754 assert(value_top == top(), "second value must be top"); 1755 #endif 1756 phi->init_req(2, value_pow); 1757 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1758 } 1759 1760 C->set_has_split_ifs(true); // Has chance for split-if optimization 1761 set_control(_gvn.transform(region)); 1762 record_for_igvn(region); 1763 set_result(_gvn.transform(phi)); 1764 1765 return true; 1766 } 1767 } 1768 1769 return StubRoutines::dpow() != NULL ? 1770 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1771 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1772 } 1773 1774 //------------------------------inline_math_native----------------------------- 1775 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1776 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f) 1777 switch (id) { 1778 // These intrinsics are not properly supported on all hardware 1779 case vmIntrinsics::_dsin: 1780 return StubRoutines::dsin() != NULL ? 1781 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1782 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN"); 1783 case vmIntrinsics::_dcos: 1784 return StubRoutines::dcos() != NULL ? 1785 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1786 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS"); 1787 case vmIntrinsics::_dtan: 1788 return StubRoutines::dtan() != NULL ? 1789 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1790 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN"); 1791 case vmIntrinsics::_dlog: 1792 return StubRoutines::dlog() != NULL ? 1793 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1794 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG"); 1795 case vmIntrinsics::_dlog10: 1796 return StubRoutines::dlog10() != NULL ? 1797 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1798 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10"); 1799 1800 // These intrinsics are supported on all hardware 1801 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1802 case vmIntrinsics::_ceil: 1803 case vmIntrinsics::_floor: 1804 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1805 1806 case vmIntrinsics::_dsqrt: 1807 case vmIntrinsics::_dsqrt_strict: 1808 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1809 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1810 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1811 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1812 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1813 1814 case vmIntrinsics::_dexp: 1815 return StubRoutines::dexp() != NULL ? 1816 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1817 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP"); 1818 #undef FN_PTR 1819 1820 case vmIntrinsics::_dpow: return inline_math_pow(); 1821 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1822 case vmIntrinsics::_fcopySign: return inline_math(id); 1823 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1824 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1825 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1826 1827 // These intrinsics are not yet correctly implemented 1828 case vmIntrinsics::_datan2: 1829 return false; 1830 1831 default: 1832 fatal_unexpected_iid(id); 1833 return false; 1834 } 1835 } 1836 1837 static bool is_simple_name(Node* n) { 1838 return (n->req() == 1 // constant 1839 || (n->is_Type() && n->as_Type()->type()->singleton()) 1840 || n->is_Proj() // parameter or return value 1841 || n->is_Phi() // local of some sort 1842 ); 1843 } 1844 1845 //----------------------------inline_notify-----------------------------------* 1846 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1847 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1848 address func; 1849 if (id == vmIntrinsics::_notify) { 1850 func = OptoRuntime::monitor_notify_Java(); 1851 } else { 1852 func = OptoRuntime::monitor_notifyAll_Java(); 1853 } 1854 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0)); 1855 make_slow_call_ex(call, env()->Throwable_klass(), false); 1856 return true; 1857 } 1858 1859 1860 //----------------------------inline_min_max----------------------------------- 1861 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1862 set_result(generate_min_max(id, argument(0), argument(1))); 1863 return true; 1864 } 1865 1866 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1867 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1868 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1869 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1870 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1871 1872 { 1873 PreserveJVMState pjvms(this); 1874 PreserveReexecuteState preexecs(this); 1875 jvms()->set_should_reexecute(true); 1876 1877 set_control(slow_path); 1878 set_i_o(i_o()); 1879 1880 uncommon_trap(Deoptimization::Reason_intrinsic, 1881 Deoptimization::Action_none); 1882 } 1883 1884 set_control(fast_path); 1885 set_result(math); 1886 } 1887 1888 template <typename OverflowOp> 1889 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1890 typedef typename OverflowOp::MathOp MathOp; 1891 1892 MathOp* mathOp = new MathOp(arg1, arg2); 1893 Node* operation = _gvn.transform( mathOp ); 1894 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1895 inline_math_mathExact(operation, ofcheck); 1896 return true; 1897 } 1898 1899 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1900 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1901 } 1902 1903 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1904 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1905 } 1906 1907 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1908 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1909 } 1910 1911 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1912 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1913 } 1914 1915 bool LibraryCallKit::inline_math_negateExactI() { 1916 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 1917 } 1918 1919 bool LibraryCallKit::inline_math_negateExactL() { 1920 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 1921 } 1922 1923 bool LibraryCallKit::inline_math_multiplyExactI() { 1924 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 1925 } 1926 1927 bool LibraryCallKit::inline_math_multiplyExactL() { 1928 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 1929 } 1930 1931 bool LibraryCallKit::inline_math_multiplyHigh() { 1932 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 1933 return true; 1934 } 1935 1936 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 1937 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 1938 return true; 1939 } 1940 1941 Node* 1942 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 1943 // These are the candidate return value: 1944 Node* xvalue = x0; 1945 Node* yvalue = y0; 1946 1947 if (xvalue == yvalue) { 1948 return xvalue; 1949 } 1950 1951 bool want_max = (id == vmIntrinsics::_max || id == vmIntrinsics::_max_strict); 1952 1953 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int(); 1954 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int(); 1955 if (txvalue == NULL || tyvalue == NULL) return top(); 1956 // This is not really necessary, but it is consistent with a 1957 // hypothetical MaxINode::Value method: 1958 int widen = MAX2(txvalue->_widen, tyvalue->_widen); 1959 1960 // %%% This folding logic should (ideally) be in a different place. 1961 // Some should be inside IfNode, and there to be a more reliable 1962 // transformation of ?: style patterns into cmoves. We also want 1963 // more powerful optimizations around cmove and min/max. 1964 1965 // Try to find a dominating comparison of these guys. 1966 // It can simplify the index computation for Arrays.copyOf 1967 // and similar uses of System.arraycopy. 1968 // First, compute the normalized version of CmpI(x, y). 1969 int cmp_op = Op_CmpI; 1970 Node* xkey = xvalue; 1971 Node* ykey = yvalue; 1972 Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey)); 1973 if (ideal_cmpxy->is_Cmp()) { 1974 // E.g., if we have CmpI(length - offset, count), 1975 // it might idealize to CmpI(length, count + offset) 1976 cmp_op = ideal_cmpxy->Opcode(); 1977 xkey = ideal_cmpxy->in(1); 1978 ykey = ideal_cmpxy->in(2); 1979 } 1980 1981 // Start by locating any relevant comparisons. 1982 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey; 1983 Node* cmpxy = NULL; 1984 Node* cmpyx = NULL; 1985 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) { 1986 Node* cmp = start_from->fast_out(k); 1987 if (cmp->outcnt() > 0 && // must have prior uses 1988 cmp->in(0) == NULL && // must be context-independent 1989 cmp->Opcode() == cmp_op) { // right kind of compare 1990 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp; 1991 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp; 1992 } 1993 } 1994 1995 const int NCMPS = 2; 1996 Node* cmps[NCMPS] = { cmpxy, cmpyx }; 1997 int cmpn; 1998 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 1999 if (cmps[cmpn] != NULL) break; // find a result 2000 } 2001 if (cmpn < NCMPS) { 2002 // Look for a dominating test that tells us the min and max. 2003 int depth = 0; // Limit search depth for speed 2004 Node* dom = control(); 2005 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) { 2006 if (++depth >= 100) break; 2007 Node* ifproj = dom; 2008 if (!ifproj->is_Proj()) continue; 2009 Node* iff = ifproj->in(0); 2010 if (!iff->is_If()) continue; 2011 Node* bol = iff->in(1); 2012 if (!bol->is_Bool()) continue; 2013 Node* cmp = bol->in(1); 2014 if (cmp == NULL) continue; 2015 for (cmpn = 0; cmpn < NCMPS; cmpn++) 2016 if (cmps[cmpn] == cmp) break; 2017 if (cmpn == NCMPS) continue; 2018 BoolTest::mask btest = bol->as_Bool()->_test._test; 2019 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate(); 2020 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 2021 // At this point, we know that 'x btest y' is true. 2022 switch (btest) { 2023 case BoolTest::eq: 2024 // They are proven equal, so we can collapse the min/max. 2025 // Either value is the answer. Choose the simpler. 2026 if (is_simple_name(yvalue) && !is_simple_name(xvalue)) 2027 return yvalue; 2028 return xvalue; 2029 case BoolTest::lt: // x < y 2030 case BoolTest::le: // x <= y 2031 return (want_max ? yvalue : xvalue); 2032 case BoolTest::gt: // x > y 2033 case BoolTest::ge: // x >= y 2034 return (want_max ? xvalue : yvalue); 2035 default: 2036 break; 2037 } 2038 } 2039 } 2040 2041 // We failed to find a dominating test. 2042 // Let's pick a test that might GVN with prior tests. 2043 Node* best_bol = NULL; 2044 BoolTest::mask best_btest = BoolTest::illegal; 2045 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 2046 Node* cmp = cmps[cmpn]; 2047 if (cmp == NULL) continue; 2048 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) { 2049 Node* bol = cmp->fast_out(j); 2050 if (!bol->is_Bool()) continue; 2051 BoolTest::mask btest = bol->as_Bool()->_test._test; 2052 if (btest == BoolTest::eq || btest == BoolTest::ne) continue; 2053 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 2054 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) { 2055 best_bol = bol->as_Bool(); 2056 best_btest = btest; 2057 } 2058 } 2059 } 2060 2061 Node* answer_if_true = NULL; 2062 Node* answer_if_false = NULL; 2063 switch (best_btest) { 2064 default: 2065 if (cmpxy == NULL) 2066 cmpxy = ideal_cmpxy; 2067 best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt)); 2068 // and fall through: 2069 case BoolTest::lt: // x < y 2070 case BoolTest::le: // x <= y 2071 answer_if_true = (want_max ? yvalue : xvalue); 2072 answer_if_false = (want_max ? xvalue : yvalue); 2073 break; 2074 case BoolTest::gt: // x > y 2075 case BoolTest::ge: // x >= y 2076 answer_if_true = (want_max ? xvalue : yvalue); 2077 answer_if_false = (want_max ? yvalue : xvalue); 2078 break; 2079 } 2080 2081 jint hi, lo; 2082 if (want_max) { 2083 // We can sharpen the minimum. 2084 hi = MAX2(txvalue->_hi, tyvalue->_hi); 2085 lo = MAX2(txvalue->_lo, tyvalue->_lo); 2086 } else { 2087 // We can sharpen the maximum. 2088 hi = MIN2(txvalue->_hi, tyvalue->_hi); 2089 lo = MIN2(txvalue->_lo, tyvalue->_lo); 2090 } 2091 2092 // Use a flow-free graph structure, to avoid creating excess control edges 2093 // which could hinder other optimizations. 2094 // Since Math.min/max is often used with arraycopy, we want 2095 // tightly_coupled_allocation to be able to see beyond min/max expressions. 2096 Node* cmov = CMoveNode::make(NULL, best_bol, 2097 answer_if_false, answer_if_true, 2098 TypeInt::make(lo, hi, widen)); 2099 2100 return _gvn.transform(cmov); 2101 2102 /* 2103 // This is not as desirable as it may seem, since Min and Max 2104 // nodes do not have a full set of optimizations. 2105 // And they would interfere, anyway, with 'if' optimizations 2106 // and with CMoveI canonical forms. 2107 switch (id) { 2108 case vmIntrinsics::_min: 2109 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break; 2110 case vmIntrinsics::_max: 2111 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break; 2112 default: 2113 ShouldNotReachHere(); 2114 } 2115 */ 2116 } 2117 2118 inline int 2119 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2120 const TypePtr* base_type = TypePtr::NULL_PTR; 2121 if (base != NULL) base_type = _gvn.type(base)->isa_ptr(); 2122 if (base_type == NULL) { 2123 // Unknown type. 2124 return Type::AnyPtr; 2125 } else if (base_type == TypePtr::NULL_PTR) { 2126 // Since this is a NULL+long form, we have to switch to a rawptr. 2127 base = _gvn.transform(new CastX2PNode(offset)); 2128 offset = MakeConX(0); 2129 return Type::RawPtr; 2130 } else if (base_type->base() == Type::RawPtr) { 2131 return Type::RawPtr; 2132 } else if (base_type->isa_oopptr()) { 2133 // Base is never null => always a heap address. 2134 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2135 return Type::OopPtr; 2136 } 2137 // Offset is small => always a heap address. 2138 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2139 if (offset_type != NULL && 2140 base_type->offset() == 0 && // (should always be?) 2141 offset_type->_lo >= 0 && 2142 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2143 return Type::OopPtr; 2144 } else if (type == T_OBJECT) { 2145 // off heap access to an oop doesn't make any sense. Has to be on 2146 // heap. 2147 return Type::OopPtr; 2148 } 2149 // Otherwise, it might either be oop+off or NULL+addr. 2150 return Type::AnyPtr; 2151 } else { 2152 // No information: 2153 return Type::AnyPtr; 2154 } 2155 } 2156 2157 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2158 Node* uncasted_base = base; 2159 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2160 if (kind == Type::RawPtr) { 2161 return basic_plus_adr(top(), uncasted_base, offset); 2162 } else if (kind == Type::AnyPtr) { 2163 assert(base == uncasted_base, "unexpected base change"); 2164 if (can_cast) { 2165 if (!_gvn.type(base)->speculative_maybe_null() && 2166 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2167 // According to profiling, this access is always on 2168 // heap. Casting the base to not null and thus avoiding membars 2169 // around the access should allow better optimizations 2170 Node* null_ctl = top(); 2171 base = null_check_oop(base, &null_ctl, true, true, true); 2172 assert(null_ctl->is_top(), "no null control here"); 2173 return basic_plus_adr(base, offset); 2174 } else if (_gvn.type(base)->speculative_always_null() && 2175 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2176 // According to profiling, this access is always off 2177 // heap. 2178 base = null_assert(base); 2179 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2180 offset = MakeConX(0); 2181 return basic_plus_adr(top(), raw_base, offset); 2182 } 2183 } 2184 // We don't know if it's an on heap or off heap access. Fall back 2185 // to raw memory access. 2186 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2187 return basic_plus_adr(top(), raw, offset); 2188 } else { 2189 assert(base == uncasted_base, "unexpected base change"); 2190 // We know it's an on heap access so base can't be null 2191 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2192 base = must_be_not_null(base, true); 2193 } 2194 return basic_plus_adr(base, offset); 2195 } 2196 } 2197 2198 //--------------------------inline_number_methods----------------------------- 2199 // inline int Integer.numberOfLeadingZeros(int) 2200 // inline int Long.numberOfLeadingZeros(long) 2201 // 2202 // inline int Integer.numberOfTrailingZeros(int) 2203 // inline int Long.numberOfTrailingZeros(long) 2204 // 2205 // inline int Integer.bitCount(int) 2206 // inline int Long.bitCount(long) 2207 // 2208 // inline char Character.reverseBytes(char) 2209 // inline short Short.reverseBytes(short) 2210 // inline int Integer.reverseBytes(int) 2211 // inline long Long.reverseBytes(long) 2212 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2213 Node* arg = argument(0); 2214 Node* n = NULL; 2215 switch (id) { 2216 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2217 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2218 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2219 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2220 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2221 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2222 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2223 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2224 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2225 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2226 default: fatal_unexpected_iid(id); break; 2227 } 2228 set_result(_gvn.transform(n)); 2229 return true; 2230 } 2231 2232 //--------------------------inline_bitshuffle_methods----------------------------- 2233 // inline int Integer.compress(int, int) 2234 // inline int Integer.expand(int, int) 2235 // inline long Long.compress(long, long) 2236 // inline long Long.expand(long, long) 2237 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2238 Node* n = NULL; 2239 switch (id) { 2240 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2241 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2242 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2243 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2244 default: fatal_unexpected_iid(id); break; 2245 } 2246 set_result(_gvn.transform(n)); 2247 return true; 2248 } 2249 2250 //--------------------------inline_unsigned_divmod_methods----------------------------- 2251 // inline int Integer.divideUnsigned(int, int) 2252 // inline int Integer.remainderUnsigned(int, int) 2253 // inline long Long.divideUnsigned(long, long) 2254 // inline long Long.remainderUnsigned(long, long) 2255 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2256 Node* n = NULL; 2257 switch (id) { 2258 case vmIntrinsics::_divideUnsigned_i: { 2259 zero_check_int(argument(1)); 2260 // Compile-time detect of null-exception 2261 if (stopped()) { 2262 return true; // keep the graph constructed so far 2263 } 2264 n = new UDivINode(control(), argument(0), argument(1)); 2265 break; 2266 } 2267 case vmIntrinsics::_divideUnsigned_l: { 2268 zero_check_long(argument(2)); 2269 // Compile-time detect of null-exception 2270 if (stopped()) { 2271 return true; // keep the graph constructed so far 2272 } 2273 n = new UDivLNode(control(), argument(0), argument(2)); 2274 break; 2275 } 2276 case vmIntrinsics::_remainderUnsigned_i: { 2277 zero_check_int(argument(1)); 2278 // Compile-time detect of null-exception 2279 if (stopped()) { 2280 return true; // keep the graph constructed so far 2281 } 2282 n = new UModINode(control(), argument(0), argument(1)); 2283 break; 2284 } 2285 case vmIntrinsics::_remainderUnsigned_l: { 2286 zero_check_long(argument(2)); 2287 // Compile-time detect of null-exception 2288 if (stopped()) { 2289 return true; // keep the graph constructed so far 2290 } 2291 n = new UModLNode(control(), argument(0), argument(2)); 2292 break; 2293 } 2294 default: fatal_unexpected_iid(id); break; 2295 } 2296 set_result(_gvn.transform(n)); 2297 return true; 2298 } 2299 2300 //----------------------------inline_unsafe_access---------------------------- 2301 2302 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2303 // Attempt to infer a sharper value type from the offset and base type. 2304 ciKlass* sharpened_klass = NULL; 2305 2306 // See if it is an instance field, with an object type. 2307 if (alias_type->field() != NULL) { 2308 if (alias_type->field()->type()->is_klass()) { 2309 sharpened_klass = alias_type->field()->type()->as_klass(); 2310 } 2311 } 2312 2313 const TypeOopPtr* result = NULL; 2314 // See if it is a narrow oop array. 2315 if (adr_type->isa_aryptr()) { 2316 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2317 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2318 if (elem_type != NULL && elem_type->is_loaded()) { 2319 // Sharpen the value type. 2320 result = elem_type; 2321 } 2322 } 2323 } 2324 2325 // The sharpened class might be unloaded if there is no class loader 2326 // contraint in place. 2327 if (result == NULL && sharpened_klass != NULL && sharpened_klass->is_loaded()) { 2328 // Sharpen the value type. 2329 result = TypeOopPtr::make_from_klass(sharpened_klass); 2330 } 2331 if (result != NULL) { 2332 #ifndef PRODUCT 2333 if (C->print_intrinsics() || C->print_inlining()) { 2334 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2335 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2336 } 2337 #endif 2338 } 2339 return result; 2340 } 2341 2342 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2343 switch (kind) { 2344 case Relaxed: 2345 return MO_UNORDERED; 2346 case Opaque: 2347 return MO_RELAXED; 2348 case Acquire: 2349 return MO_ACQUIRE; 2350 case Release: 2351 return MO_RELEASE; 2352 case Volatile: 2353 return MO_SEQ_CST; 2354 default: 2355 ShouldNotReachHere(); 2356 return 0; 2357 } 2358 } 2359 2360 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2361 if (callee()->is_static()) return false; // caller must have the capability! 2362 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2363 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2364 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2365 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2366 2367 if (is_reference_type(type)) { 2368 decorators |= ON_UNKNOWN_OOP_REF; 2369 } 2370 2371 if (unaligned) { 2372 decorators |= C2_UNALIGNED; 2373 } 2374 2375 #ifndef PRODUCT 2376 { 2377 ResourceMark rm; 2378 // Check the signatures. 2379 ciSignature* sig = callee()->signature(); 2380 #ifdef ASSERT 2381 if (!is_store) { 2382 // Object getReference(Object base, int/long offset), etc. 2383 BasicType rtype = sig->return_type()->basic_type(); 2384 assert(rtype == type, "getter must return the expected value"); 2385 assert(sig->count() == 2, "oop getter has 2 arguments"); 2386 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2387 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2388 } else { 2389 // void putReference(Object base, int/long offset, Object x), etc. 2390 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2391 assert(sig->count() == 3, "oop putter has 3 arguments"); 2392 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2393 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2394 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2395 assert(vtype == type, "putter must accept the expected value"); 2396 } 2397 #endif // ASSERT 2398 } 2399 #endif //PRODUCT 2400 2401 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2402 2403 Node* receiver = argument(0); // type: oop 2404 2405 // Build address expression. 2406 Node* heap_base_oop = top(); 2407 2408 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2409 Node* base = argument(1); // type: oop 2410 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2411 Node* offset = argument(2); // type: long 2412 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2413 // to be plain byte offsets, which are also the same as those accepted 2414 // by oopDesc::field_addr. 2415 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2416 "fieldOffset must be byte-scaled"); 2417 // 32-bit machines ignore the high half! 2418 offset = ConvL2X(offset); 2419 2420 // Save state and restore on bailout 2421 uint old_sp = sp(); 2422 SafePointNode* old_map = clone_map(); 2423 2424 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2425 2426 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2427 if (type != T_OBJECT) { 2428 decorators |= IN_NATIVE; // off-heap primitive access 2429 } else { 2430 set_map(old_map); 2431 set_sp(old_sp); 2432 return false; // off-heap oop accesses are not supported 2433 } 2434 } else { 2435 heap_base_oop = base; // on-heap or mixed access 2436 } 2437 2438 // Can base be NULL? Otherwise, always on-heap access. 2439 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2440 2441 if (!can_access_non_heap) { 2442 decorators |= IN_HEAP; 2443 } 2444 2445 Node* val = is_store ? argument(4) : NULL; 2446 2447 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2448 if (adr_type == TypePtr::NULL_PTR) { 2449 set_map(old_map); 2450 set_sp(old_sp); 2451 return false; // off-heap access with zero address 2452 } 2453 2454 // Try to categorize the address. 2455 Compile::AliasType* alias_type = C->alias_type(adr_type); 2456 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2457 2458 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2459 alias_type->adr_type() == TypeAryPtr::RANGE) { 2460 set_map(old_map); 2461 set_sp(old_sp); 2462 return false; // not supported 2463 } 2464 2465 bool mismatched = false; 2466 BasicType bt = alias_type->basic_type(); 2467 if (bt != T_ILLEGAL) { 2468 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2469 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2470 // Alias type doesn't differentiate between byte[] and boolean[]). 2471 // Use address type to get the element type. 2472 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2473 } 2474 if (is_reference_type(bt, true)) { 2475 // accessing an array field with getReference is not a mismatch 2476 bt = T_OBJECT; 2477 } 2478 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2479 // Don't intrinsify mismatched object accesses 2480 set_map(old_map); 2481 set_sp(old_sp); 2482 return false; 2483 } 2484 mismatched = (bt != type); 2485 } else if (alias_type->adr_type()->isa_oopptr()) { 2486 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2487 } 2488 2489 old_map->destruct(&_gvn); 2490 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2491 2492 if (mismatched) { 2493 decorators |= C2_MISMATCHED; 2494 } 2495 2496 // First guess at the value type. 2497 const Type *value_type = Type::get_const_basic_type(type); 2498 2499 // Figure out the memory ordering. 2500 decorators |= mo_decorator_for_access_kind(kind); 2501 2502 if (!is_store && type == T_OBJECT) { 2503 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2504 if (tjp != NULL) { 2505 value_type = tjp; 2506 } 2507 } 2508 2509 receiver = null_check(receiver); 2510 if (stopped()) { 2511 return true; 2512 } 2513 // Heap pointers get a null-check from the interpreter, 2514 // as a courtesy. However, this is not guaranteed by Unsafe, 2515 // and it is not possible to fully distinguish unintended nulls 2516 // from intended ones in this API. 2517 2518 if (!is_store) { 2519 Node* p = NULL; 2520 // Try to constant fold a load from a constant field 2521 ciField* field = alias_type->field(); 2522 if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) { 2523 // final or stable field 2524 p = make_constant_from_field(field, heap_base_oop); 2525 } 2526 2527 if (p == NULL) { // Could not constant fold the load 2528 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2529 // Normalize the value returned by getBoolean in the following cases 2530 if (type == T_BOOLEAN && 2531 (mismatched || 2532 heap_base_oop == top() || // - heap_base_oop is NULL or 2533 (can_access_non_heap && field == NULL)) // - heap_base_oop is potentially NULL 2534 // and the unsafe access is made to large offset 2535 // (i.e., larger than the maximum offset necessary for any 2536 // field access) 2537 ) { 2538 IdealKit ideal = IdealKit(this); 2539 #define __ ideal. 2540 IdealVariable normalized_result(ideal); 2541 __ declarations_done(); 2542 __ set(normalized_result, p); 2543 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2544 __ set(normalized_result, ideal.ConI(1)); 2545 ideal.end_if(); 2546 final_sync(ideal); 2547 p = __ value(normalized_result); 2548 #undef __ 2549 } 2550 } 2551 if (type == T_ADDRESS) { 2552 p = gvn().transform(new CastP2XNode(NULL, p)); 2553 p = ConvX2UL(p); 2554 } 2555 // The load node has the control of the preceding MemBarCPUOrder. All 2556 // following nodes will have the control of the MemBarCPUOrder inserted at 2557 // the end of this method. So, pushing the load onto the stack at a later 2558 // point is fine. 2559 set_result(p); 2560 } else { 2561 if (bt == T_ADDRESS) { 2562 // Repackage the long as a pointer. 2563 val = ConvL2X(val); 2564 val = gvn().transform(new CastX2PNode(val)); 2565 } 2566 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2567 } 2568 2569 return true; 2570 } 2571 2572 //----------------------------inline_unsafe_load_store---------------------------- 2573 // This method serves a couple of different customers (depending on LoadStoreKind): 2574 // 2575 // LS_cmp_swap: 2576 // 2577 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2578 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2579 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2580 // 2581 // LS_cmp_swap_weak: 2582 // 2583 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2584 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2585 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2586 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2587 // 2588 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2589 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2590 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2591 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2592 // 2593 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2594 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2595 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2596 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2597 // 2598 // LS_cmp_exchange: 2599 // 2600 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2601 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2602 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2603 // 2604 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2605 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2606 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2607 // 2608 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2609 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2610 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2611 // 2612 // LS_get_add: 2613 // 2614 // int getAndAddInt( Object o, long offset, int delta) 2615 // long getAndAddLong(Object o, long offset, long delta) 2616 // 2617 // LS_get_set: 2618 // 2619 // int getAndSet(Object o, long offset, int newValue) 2620 // long getAndSet(Object o, long offset, long newValue) 2621 // Object getAndSet(Object o, long offset, Object newValue) 2622 // 2623 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2624 // This basic scheme here is the same as inline_unsafe_access, but 2625 // differs in enough details that combining them would make the code 2626 // overly confusing. (This is a true fact! I originally combined 2627 // them, but even I was confused by it!) As much code/comments as 2628 // possible are retained from inline_unsafe_access though to make 2629 // the correspondences clearer. - dl 2630 2631 if (callee()->is_static()) return false; // caller must have the capability! 2632 2633 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2634 decorators |= mo_decorator_for_access_kind(access_kind); 2635 2636 #ifndef PRODUCT 2637 BasicType rtype; 2638 { 2639 ResourceMark rm; 2640 // Check the signatures. 2641 ciSignature* sig = callee()->signature(); 2642 rtype = sig->return_type()->basic_type(); 2643 switch(kind) { 2644 case LS_get_add: 2645 case LS_get_set: { 2646 // Check the signatures. 2647 #ifdef ASSERT 2648 assert(rtype == type, "get and set must return the expected type"); 2649 assert(sig->count() == 3, "get and set has 3 arguments"); 2650 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2651 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2652 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2653 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2654 #endif // ASSERT 2655 break; 2656 } 2657 case LS_cmp_swap: 2658 case LS_cmp_swap_weak: { 2659 // Check the signatures. 2660 #ifdef ASSERT 2661 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2662 assert(sig->count() == 4, "CAS has 4 arguments"); 2663 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2664 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2665 #endif // ASSERT 2666 break; 2667 } 2668 case LS_cmp_exchange: { 2669 // Check the signatures. 2670 #ifdef ASSERT 2671 assert(rtype == type, "CAS must return the expected type"); 2672 assert(sig->count() == 4, "CAS has 4 arguments"); 2673 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2674 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2675 #endif // ASSERT 2676 break; 2677 } 2678 default: 2679 ShouldNotReachHere(); 2680 } 2681 } 2682 #endif //PRODUCT 2683 2684 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2685 2686 // Get arguments: 2687 Node* receiver = NULL; 2688 Node* base = NULL; 2689 Node* offset = NULL; 2690 Node* oldval = NULL; 2691 Node* newval = NULL; 2692 switch(kind) { 2693 case LS_cmp_swap: 2694 case LS_cmp_swap_weak: 2695 case LS_cmp_exchange: { 2696 const bool two_slot_type = type2size[type] == 2; 2697 receiver = argument(0); // type: oop 2698 base = argument(1); // type: oop 2699 offset = argument(2); // type: long 2700 oldval = argument(4); // type: oop, int, or long 2701 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2702 break; 2703 } 2704 case LS_get_add: 2705 case LS_get_set: { 2706 receiver = argument(0); // type: oop 2707 base = argument(1); // type: oop 2708 offset = argument(2); // type: long 2709 oldval = NULL; 2710 newval = argument(4); // type: oop, int, or long 2711 break; 2712 } 2713 default: 2714 ShouldNotReachHere(); 2715 } 2716 2717 // Build field offset expression. 2718 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2719 // to be plain byte offsets, which are also the same as those accepted 2720 // by oopDesc::field_addr. 2721 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2722 // 32-bit machines ignore the high half of long offsets 2723 offset = ConvL2X(offset); 2724 // Save state and restore on bailout 2725 uint old_sp = sp(); 2726 SafePointNode* old_map = clone_map(); 2727 Node* adr = make_unsafe_address(base, offset,type, false); 2728 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2729 2730 Compile::AliasType* alias_type = C->alias_type(adr_type); 2731 BasicType bt = alias_type->basic_type(); 2732 if (bt != T_ILLEGAL && 2733 (is_reference_type(bt) != (type == T_OBJECT))) { 2734 // Don't intrinsify mismatched object accesses. 2735 set_map(old_map); 2736 set_sp(old_sp); 2737 return false; 2738 } 2739 2740 old_map->destruct(&_gvn); 2741 2742 // For CAS, unlike inline_unsafe_access, there seems no point in 2743 // trying to refine types. Just use the coarse types here. 2744 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2745 const Type *value_type = Type::get_const_basic_type(type); 2746 2747 switch (kind) { 2748 case LS_get_set: 2749 case LS_cmp_exchange: { 2750 if (type == T_OBJECT) { 2751 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2752 if (tjp != NULL) { 2753 value_type = tjp; 2754 } 2755 } 2756 break; 2757 } 2758 case LS_cmp_swap: 2759 case LS_cmp_swap_weak: 2760 case LS_get_add: 2761 break; 2762 default: 2763 ShouldNotReachHere(); 2764 } 2765 2766 // Null check receiver. 2767 receiver = null_check(receiver); 2768 if (stopped()) { 2769 return true; 2770 } 2771 2772 int alias_idx = C->get_alias_index(adr_type); 2773 2774 if (is_reference_type(type)) { 2775 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2776 2777 // Transformation of a value which could be NULL pointer (CastPP #NULL) 2778 // could be delayed during Parse (for example, in adjust_map_after_if()). 2779 // Execute transformation here to avoid barrier generation in such case. 2780 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2781 newval = _gvn.makecon(TypePtr::NULL_PTR); 2782 2783 if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2784 // Refine the value to a null constant, when it is known to be null 2785 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2786 } 2787 } 2788 2789 Node* result = NULL; 2790 switch (kind) { 2791 case LS_cmp_exchange: { 2792 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2793 oldval, newval, value_type, type, decorators); 2794 break; 2795 } 2796 case LS_cmp_swap_weak: 2797 decorators |= C2_WEAK_CMPXCHG; 2798 case LS_cmp_swap: { 2799 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2800 oldval, newval, value_type, type, decorators); 2801 break; 2802 } 2803 case LS_get_set: { 2804 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2805 newval, value_type, type, decorators); 2806 break; 2807 } 2808 case LS_get_add: { 2809 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2810 newval, value_type, type, decorators); 2811 break; 2812 } 2813 default: 2814 ShouldNotReachHere(); 2815 } 2816 2817 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2818 set_result(result); 2819 return true; 2820 } 2821 2822 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2823 // Regardless of form, don't allow previous ld/st to move down, 2824 // then issue acquire, release, or volatile mem_bar. 2825 insert_mem_bar(Op_MemBarCPUOrder); 2826 switch(id) { 2827 case vmIntrinsics::_loadFence: 2828 insert_mem_bar(Op_LoadFence); 2829 return true; 2830 case vmIntrinsics::_storeFence: 2831 insert_mem_bar(Op_StoreFence); 2832 return true; 2833 case vmIntrinsics::_storeStoreFence: 2834 insert_mem_bar(Op_StoreStoreFence); 2835 return true; 2836 case vmIntrinsics::_fullFence: 2837 insert_mem_bar(Op_MemBarVolatile); 2838 return true; 2839 default: 2840 fatal_unexpected_iid(id); 2841 return false; 2842 } 2843 } 2844 2845 bool LibraryCallKit::inline_onspinwait() { 2846 insert_mem_bar(Op_OnSpinWait); 2847 return true; 2848 } 2849 2850 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2851 if (!kls->is_Con()) { 2852 return true; 2853 } 2854 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2855 if (klsptr == NULL) { 2856 return true; 2857 } 2858 ciInstanceKlass* ik = klsptr->instance_klass(); 2859 // don't need a guard for a klass that is already initialized 2860 return !ik->is_initialized(); 2861 } 2862 2863 //----------------------------inline_unsafe_writeback0------------------------- 2864 // public native void Unsafe.writeback0(long address) 2865 bool LibraryCallKit::inline_unsafe_writeback0() { 2866 if (!Matcher::has_match_rule(Op_CacheWB)) { 2867 return false; 2868 } 2869 #ifndef PRODUCT 2870 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2871 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2872 ciSignature* sig = callee()->signature(); 2873 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2874 #endif 2875 null_check_receiver(); // null-check, then ignore 2876 Node *addr = argument(1); 2877 addr = new CastX2PNode(addr); 2878 addr = _gvn.transform(addr); 2879 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2880 flush = _gvn.transform(flush); 2881 set_memory(flush, TypeRawPtr::BOTTOM); 2882 return true; 2883 } 2884 2885 //----------------------------inline_unsafe_writeback0------------------------- 2886 // public native void Unsafe.writeback0(long address) 2887 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2888 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2889 return false; 2890 } 2891 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2892 return false; 2893 } 2894 #ifndef PRODUCT 2895 assert(Matcher::has_match_rule(Op_CacheWB), 2896 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2897 : "found match rule for CacheWBPostSync but not CacheWB")); 2898 2899 #endif 2900 null_check_receiver(); // null-check, then ignore 2901 Node *sync; 2902 if (is_pre) { 2903 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2904 } else { 2905 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2906 } 2907 sync = _gvn.transform(sync); 2908 set_memory(sync, TypeRawPtr::BOTTOM); 2909 return true; 2910 } 2911 2912 //----------------------------inline_unsafe_allocate--------------------------- 2913 // public native Object Unsafe.allocateInstance(Class<?> cls); 2914 bool LibraryCallKit::inline_unsafe_allocate() { 2915 if (callee()->is_static()) return false; // caller must have the capability! 2916 2917 null_check_receiver(); // null-check, then ignore 2918 Node* cls = null_check(argument(1)); 2919 if (stopped()) return true; 2920 2921 Node* kls = load_klass_from_mirror(cls, false, NULL, 0); 2922 kls = null_check(kls); 2923 if (stopped()) return true; // argument was like int.class 2924 2925 Node* test = NULL; 2926 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2927 // Note: The argument might still be an illegal value like 2928 // Serializable.class or Object[].class. The runtime will handle it. 2929 // But we must make an explicit check for initialization. 2930 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2931 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2932 // can generate code to load it as unsigned byte. 2933 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2934 Node* bits = intcon(InstanceKlass::fully_initialized); 2935 test = _gvn.transform(new SubINode(inst, bits)); 2936 // The 'test' is non-zero if we need to take a slow path. 2937 } 2938 2939 Node* obj = new_instance(kls, test); 2940 set_result(obj); 2941 return true; 2942 } 2943 2944 //------------------------inline_native_time_funcs-------------- 2945 // inline code for System.currentTimeMillis() and System.nanoTime() 2946 // these have the same type and signature 2947 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2948 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2949 const TypePtr* no_memory_effects = NULL; 2950 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2951 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2952 #ifdef ASSERT 2953 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2954 assert(value_top == top(), "second value must be top"); 2955 #endif 2956 set_result(value); 2957 return true; 2958 } 2959 2960 #ifdef JFR_HAVE_INTRINSICS 2961 2962 /** 2963 * if oop->klass != null 2964 * // normal class 2965 * epoch = _epoch_state ? 2 : 1 2966 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 2967 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 2968 * } 2969 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 2970 * else 2971 * // primitive class 2972 * if oop->array_klass != null 2973 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 2974 * else 2975 * id = LAST_TYPE_ID + 1 // void class path 2976 * if (!signaled) 2977 * signaled = true 2978 */ 2979 bool LibraryCallKit::inline_native_classID() { 2980 Node* cls = argument(0); 2981 2982 IdealKit ideal(this); 2983 #define __ ideal. 2984 IdealVariable result(ideal); __ declarations_done(); 2985 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), 2986 basic_plus_adr(cls, java_lang_Class::klass_offset()), 2987 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 2988 2989 2990 __ if_then(kls, BoolTest::ne, null()); { 2991 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 2992 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 2993 2994 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 2995 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2996 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 2997 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 2998 mask = _gvn.transform(new OrLNode(mask, epoch)); 2999 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3000 3001 float unlikely = PROB_UNLIKELY(0.999); 3002 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3003 sync_kit(ideal); 3004 make_runtime_call(RC_LEAF, 3005 OptoRuntime::class_id_load_barrier_Type(), 3006 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3007 "class id load barrier", 3008 TypePtr::BOTTOM, 3009 kls); 3010 ideal.sync_kit(this); 3011 } __ end_if(); 3012 3013 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3014 } __ else_(); { 3015 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), 3016 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3017 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3018 __ if_then(array_kls, BoolTest::ne, null()); { 3019 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3020 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3021 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3022 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3023 } __ else_(); { 3024 // void class case 3025 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3026 } __ end_if(); 3027 3028 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3029 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3030 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3031 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3032 } __ end_if(); 3033 } __ end_if(); 3034 3035 final_sync(ideal); 3036 set_result(ideal.value(result)); 3037 #undef __ 3038 return true; 3039 } 3040 3041 /* 3042 * The intrinsic is a model of this pseudo-code: 3043 * 3044 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3045 * jobject h_event_writer = tl->java_event_writer(); 3046 * if (h_event_writer == NULL) { 3047 * return NULL; 3048 * } 3049 * oop threadObj = Thread::threadObj(); 3050 * oop vthread = java_lang_Thread::vthread(threadObj); 3051 * traceid tid; 3052 * bool excluded; 3053 * if (vthread != threadObj) { // i.e. current thread is virtual 3054 * tid = java_lang_Thread::tid(vthread); 3055 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3056 * excluded = vthread_epoch_raw & excluded_mask; 3057 * if (!excluded) { 3058 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3059 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3060 * if (vthread_epoch != current_epoch) { 3061 * write_checkpoint(); 3062 * } 3063 * } 3064 * } else { 3065 * tid = java_lang_Thread::tid(threadObj); 3066 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3067 * excluded = thread_epoch_raw & excluded_mask; 3068 * } 3069 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3070 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3071 * if (tid_in_event_writer != tid) { 3072 * setField(event_writer, "threadID", tid); 3073 * setField(event_writer, "excluded", excluded); 3074 * } 3075 * return event_writer 3076 */ 3077 bool LibraryCallKit::inline_native_getEventWriter() { 3078 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3079 3080 // Save input memory and i_o state. 3081 Node* input_memory_state = reset_memory(); 3082 set_all_memory(input_memory_state); 3083 Node* input_io_state = i_o(); 3084 3085 Node* excluded_mask = _gvn.intcon(32768); 3086 Node* epoch_mask = _gvn.intcon(32767); 3087 3088 // TLS 3089 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3090 3091 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3092 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3093 3094 // Load the eventwriter jobject handle. 3095 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3096 3097 // Null check the jobject handle. 3098 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3099 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3100 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3101 3102 // False path, jobj is null. 3103 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3104 3105 // True path, jobj is not null. 3106 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3107 3108 set_control(jobj_is_not_null); 3109 3110 // Load the threadObj for the CarrierThread. 3111 Node* threadObj = generate_current_thread(tls_ptr); 3112 3113 // Load the vthread. 3114 Node* vthread = generate_virtual_thread(tls_ptr); 3115 3116 // If vthread != threadObj, this is a virtual thread. 3117 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3118 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3119 IfNode* iff_vthread_not_equal_threadObj = 3120 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3121 3122 // False branch, fallback to threadObj. 3123 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3124 set_control(vthread_equal_threadObj); 3125 3126 // Load the tid field from the vthread object. 3127 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3128 3129 // Load the raw epoch value from the threadObj. 3130 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3131 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3132 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3133 3134 // Mask off the excluded information from the epoch. 3135 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3136 3137 // True branch, this is a virtual thread. 3138 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3139 set_control(vthread_not_equal_threadObj); 3140 3141 // Load the tid field from the vthread object. 3142 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3143 3144 // Load the raw epoch value from the vthread. 3145 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3146 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3147 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3148 3149 // Mask off the excluded information from the epoch. 3150 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3151 3152 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3153 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3154 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3155 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3156 3157 // False branch, vthread is excluded, no need to write epoch info. 3158 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3159 3160 // True branch, vthread is included, update epoch info. 3161 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3162 set_control(included); 3163 3164 // Get epoch value. 3165 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3166 3167 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3168 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3169 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3170 3171 // Compare the epoch in the vthread to the current epoch generation. 3172 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3173 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3174 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3175 3176 // False path, epoch is equal, checkpoint information is valid. 3177 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3178 3179 // True path, epoch is not equal, write a checkpoint for the vthread. 3180 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3181 3182 set_control(epoch_is_not_equal); 3183 3184 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3185 // The call also updates the native thread local thread id and the vthread with the current epoch. 3186 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3187 OptoRuntime::jfr_write_checkpoint_Type(), 3188 StubRoutines::jfr_write_checkpoint(), 3189 "write_checkpoint", TypePtr::BOTTOM); 3190 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3191 3192 // vthread epoch != current epoch 3193 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3194 record_for_igvn(epoch_compare_rgn); 3195 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3196 record_for_igvn(epoch_compare_mem); 3197 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3198 record_for_igvn(epoch_compare_io); 3199 3200 // Update control and phi nodes. 3201 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3202 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3203 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3204 epoch_compare_mem->init_req(_false_path, input_memory_state); 3205 epoch_compare_io->init_req(_true_path, i_o()); 3206 epoch_compare_io->init_req(_false_path, input_io_state); 3207 3208 // excluded != true 3209 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3210 record_for_igvn(exclude_compare_rgn); 3211 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3212 record_for_igvn(exclude_compare_mem); 3213 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3214 record_for_igvn(exclude_compare_io); 3215 3216 // Update control and phi nodes. 3217 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3218 exclude_compare_rgn->init_req(_false_path, excluded); 3219 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3220 exclude_compare_mem->init_req(_false_path, input_memory_state); 3221 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3222 exclude_compare_io->init_req(_false_path, input_io_state); 3223 3224 // vthread != threadObj 3225 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3226 record_for_igvn(vthread_compare_rgn); 3227 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3228 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3229 record_for_igvn(vthread_compare_io); 3230 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3231 record_for_igvn(tid); 3232 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3233 record_for_igvn(exclusion); 3234 3235 // Update control and phi nodes. 3236 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3237 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3238 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3239 vthread_compare_mem->init_req(_false_path, input_memory_state); 3240 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3241 vthread_compare_io->init_req(_false_path, input_io_state); 3242 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3243 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3244 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3245 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3246 3247 // Update branch state. 3248 set_control(_gvn.transform(vthread_compare_rgn)); 3249 set_all_memory(_gvn.transform(vthread_compare_mem)); 3250 set_i_o(_gvn.transform(vthread_compare_io)); 3251 3252 // Load the event writer oop by dereferencing the jobject handle. 3253 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3254 assert(klass_EventWriter->is_loaded(), "invariant"); 3255 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3256 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3257 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3258 Node* event_writer = access_load(jobj, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3259 3260 // Load the current thread id from the event writer object. 3261 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3262 // Get the field offset to, conditionally, store an updated tid value later. 3263 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3264 const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); 3265 // Get the field offset to, conditionally, store an updated exclusion value later. 3266 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3267 const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); 3268 3269 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3270 record_for_igvn(event_writer_tid_compare_rgn); 3271 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3272 record_for_igvn(event_writer_tid_compare_mem); 3273 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3274 record_for_igvn(event_writer_tid_compare_io); 3275 3276 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3277 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3278 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3279 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3280 3281 // False path, tids are the same. 3282 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3283 3284 // True path, tid is not equal, need to update the tid in the event writer. 3285 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3286 record_for_igvn(tid_is_not_equal); 3287 3288 // Store the exclusion state to the event writer. 3289 store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); 3290 3291 // Store the tid to the event writer. 3292 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); 3293 3294 // Update control and phi nodes. 3295 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3296 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3297 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3298 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3299 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3300 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3301 3302 // Result of top level CFG, Memory, IO and Value. 3303 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3304 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3305 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3306 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3307 3308 // Result control. 3309 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3310 result_rgn->init_req(_false_path, jobj_is_null); 3311 3312 // Result memory. 3313 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3314 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3315 3316 // Result IO. 3317 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3318 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3319 3320 // Result value. 3321 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3322 result_value->init_req(_false_path, null()); // return NULL 3323 3324 // Set output state. 3325 set_control(_gvn.transform(result_rgn)); 3326 set_all_memory(_gvn.transform(result_mem)); 3327 set_i_o(_gvn.transform(result_io)); 3328 set_result(result_rgn, result_value); 3329 return true; 3330 } 3331 3332 /* 3333 * The intrinsic is a model of this pseudo-code: 3334 * 3335 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3336 * if (carrierThread != thread) { // is virtual thread 3337 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3338 * bool excluded = vthread_epoch_raw & excluded_mask; 3339 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3340 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3341 * if (!excluded) { 3342 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3343 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3344 * } 3345 * Atomic::release_store(&tl->_vthread, true); 3346 * return; 3347 * } 3348 * Atomic::release_store(&tl->_vthread, false); 3349 */ 3350 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3351 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3352 3353 Node* input_memory_state = reset_memory(); 3354 set_all_memory(input_memory_state); 3355 3356 Node* excluded_mask = _gvn.intcon(32768); 3357 Node* epoch_mask = _gvn.intcon(32767); 3358 3359 Node* const carrierThread = generate_current_thread(jt); 3360 // If thread != carrierThread, this is a virtual thread. 3361 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3362 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3363 IfNode* iff_thread_not_equal_carrierThread = 3364 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3365 3366 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3367 3368 // False branch, is carrierThread. 3369 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3370 // Store release 3371 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3372 3373 set_all_memory(input_memory_state); 3374 3375 // True branch, is virtual thread. 3376 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3377 set_control(thread_not_equal_carrierThread); 3378 3379 // Load the raw epoch value from the vthread. 3380 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3381 Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3382 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3383 3384 // Mask off the excluded information from the epoch. 3385 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3386 3387 // Load the tid field from the thread. 3388 Node* tid = load_field_from_object(thread, "tid", "J"); 3389 3390 // Store the vthread tid to the jfr thread local. 3391 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3392 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); 3393 3394 // Branch is_excluded to conditionalize updating the epoch . 3395 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3396 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3397 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3398 3399 // True branch, vthread is excluded, no need to write epoch info. 3400 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3401 set_control(excluded); 3402 Node* vthread_is_excluded = _gvn.intcon(1); 3403 3404 // False branch, vthread is included, update epoch info. 3405 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3406 set_control(included); 3407 Node* vthread_is_included = _gvn.intcon(0); 3408 3409 // Get epoch value. 3410 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3411 3412 // Store the vthread epoch to the jfr thread local. 3413 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3414 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); 3415 3416 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3417 record_for_igvn(excluded_rgn); 3418 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3419 record_for_igvn(excluded_mem); 3420 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3421 record_for_igvn(exclusion); 3422 3423 // Merge the excluded control and memory. 3424 excluded_rgn->init_req(_true_path, excluded); 3425 excluded_rgn->init_req(_false_path, included); 3426 excluded_mem->init_req(_true_path, tid_memory); 3427 excluded_mem->init_req(_false_path, included_memory); 3428 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3429 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3430 3431 // Set intermediate state. 3432 set_control(_gvn.transform(excluded_rgn)); 3433 set_all_memory(excluded_mem); 3434 3435 // Store the vthread exclusion state to the jfr thread local. 3436 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3437 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); 3438 3439 // Store release 3440 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3441 3442 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3443 record_for_igvn(thread_compare_rgn); 3444 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3445 record_for_igvn(thread_compare_mem); 3446 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3447 record_for_igvn(vthread); 3448 3449 // Merge the thread_compare control and memory. 3450 thread_compare_rgn->init_req(_true_path, control()); 3451 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3452 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3453 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3454 3455 // Set output state. 3456 set_control(_gvn.transform(thread_compare_rgn)); 3457 set_all_memory(_gvn.transform(thread_compare_mem)); 3458 } 3459 3460 #endif // JFR_HAVE_INTRINSICS 3461 3462 //------------------------inline_native_currentCarrierThread------------------ 3463 bool LibraryCallKit::inline_native_currentCarrierThread() { 3464 Node* junk = NULL; 3465 set_result(generate_current_thread(junk)); 3466 return true; 3467 } 3468 3469 //------------------------inline_native_currentThread------------------ 3470 bool LibraryCallKit::inline_native_currentThread() { 3471 Node* junk = NULL; 3472 set_result(generate_virtual_thread(junk)); 3473 return true; 3474 } 3475 3476 //------------------------inline_native_setVthread------------------ 3477 bool LibraryCallKit::inline_native_setCurrentThread() { 3478 assert(C->method()->changes_current_thread(), 3479 "method changes current Thread but is not annotated ChangesCurrentThread"); 3480 Node* arr = argument(1); 3481 Node* thread = _gvn.transform(new ThreadLocalNode()); 3482 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3483 Node* thread_obj_handle 3484 = make_load(NULL, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3485 thread_obj_handle = _gvn.transform(thread_obj_handle); 3486 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3487 // Stores of oops to native memory not supported yet by BarrierSetC2::store_at_resolved 3488 // access_store_at(NULL, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3489 store_to_memory(control(), thread_obj_handle, arr, T_OBJECT, adr_type, MemNode::unordered); 3490 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3491 return true; 3492 } 3493 3494 Node* LibraryCallKit::extentLocalCache_helper() { 3495 ciKlass *objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3496 const TypeOopPtr *etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3497 3498 bool xk = etype->klass_is_exact(); 3499 3500 Node* thread = _gvn.transform(new ThreadLocalNode()); 3501 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::extentLocalCache_offset())); 3502 // We cannot use immutable_memory() because we might flip onto a 3503 // different carrier thread, at which point we'll need to use that 3504 // carrier thread's cache. 3505 // return _gvn.transform(LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(), 3506 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3507 return make_load(NULL, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3508 } 3509 3510 //------------------------inline_native_extentLocalCache------------------ 3511 bool LibraryCallKit::inline_native_extentLocalCache() { 3512 ciKlass *objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3513 const TypeOopPtr *etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3514 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3515 3516 // Because we create the extentLocal cache lazily we have to make the 3517 // type of the result BotPTR. 3518 bool xk = etype->klass_is_exact(); 3519 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3520 Node* cache_obj_handle = extentLocalCache_helper(); 3521 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3522 3523 return true; 3524 } 3525 3526 //------------------------inline_native_setExtentLocalCache------------------ 3527 bool LibraryCallKit::inline_native_setExtentLocalCache() { 3528 Node* arr = argument(0); 3529 Node* cache_obj_handle = extentLocalCache_helper(); 3530 3531 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3532 store_to_memory(control(), cache_obj_handle, arr, T_OBJECT, adr_type, 3533 MemNode::unordered); 3534 3535 return true; 3536 } 3537 3538 //---------------------------load_mirror_from_klass---------------------------- 3539 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3540 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3541 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3542 Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3543 // mirror = ((OopHandle)mirror)->resolve(); 3544 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3545 } 3546 3547 //-----------------------load_klass_from_mirror_common------------------------- 3548 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3549 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3550 // and branch to the given path on the region. 3551 // If never_see_null, take an uncommon trap on null, so we can optimistically 3552 // compile for the non-null case. 3553 // If the region is NULL, force never_see_null = true. 3554 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3555 bool never_see_null, 3556 RegionNode* region, 3557 int null_path, 3558 int offset) { 3559 if (region == NULL) never_see_null = true; 3560 Node* p = basic_plus_adr(mirror, offset); 3561 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3562 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3563 Node* null_ctl = top(); 3564 kls = null_check_oop(kls, &null_ctl, never_see_null); 3565 if (region != NULL) { 3566 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3567 region->init_req(null_path, null_ctl); 3568 } else { 3569 assert(null_ctl == top(), "no loose ends"); 3570 } 3571 return kls; 3572 } 3573 3574 //--------------------(inline_native_Class_query helpers)--------------------- 3575 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3576 // Fall through if (mods & mask) == bits, take the guard otherwise. 3577 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3578 // Branch around if the given klass has the given modifier bit set. 3579 // Like generate_guard, adds a new path onto the region. 3580 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3581 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered); 3582 Node* mask = intcon(modifier_mask); 3583 Node* bits = intcon(modifier_bits); 3584 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3585 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3586 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3587 return generate_fair_guard(bol, region); 3588 } 3589 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3590 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3591 } 3592 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3593 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3594 } 3595 3596 //-------------------------inline_native_Class_query------------------- 3597 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3598 const Type* return_type = TypeInt::BOOL; 3599 Node* prim_return_value = top(); // what happens if it's a primitive class? 3600 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3601 bool expect_prim = false; // most of these guys expect to work on refs 3602 3603 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3604 3605 Node* mirror = argument(0); 3606 Node* obj = top(); 3607 3608 switch (id) { 3609 case vmIntrinsics::_isInstance: 3610 // nothing is an instance of a primitive type 3611 prim_return_value = intcon(0); 3612 obj = argument(1); 3613 break; 3614 case vmIntrinsics::_getModifiers: 3615 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3616 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3617 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3618 break; 3619 case vmIntrinsics::_isInterface: 3620 prim_return_value = intcon(0); 3621 break; 3622 case vmIntrinsics::_isArray: 3623 prim_return_value = intcon(0); 3624 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3625 break; 3626 case vmIntrinsics::_isPrimitive: 3627 prim_return_value = intcon(1); 3628 expect_prim = true; // obviously 3629 break; 3630 case vmIntrinsics::_isHidden: 3631 prim_return_value = intcon(0); 3632 break; 3633 case vmIntrinsics::_getSuperclass: 3634 prim_return_value = null(); 3635 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3636 break; 3637 case vmIntrinsics::_getClassAccessFlags: 3638 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3639 return_type = TypeInt::INT; // not bool! 6297094 3640 break; 3641 default: 3642 fatal_unexpected_iid(id); 3643 break; 3644 } 3645 3646 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3647 if (mirror_con == NULL) return false; // cannot happen? 3648 3649 #ifndef PRODUCT 3650 if (C->print_intrinsics() || C->print_inlining()) { 3651 ciType* k = mirror_con->java_mirror_type(); 3652 if (k) { 3653 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3654 k->print_name(); 3655 tty->cr(); 3656 } 3657 } 3658 #endif 3659 3660 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3661 RegionNode* region = new RegionNode(PATH_LIMIT); 3662 record_for_igvn(region); 3663 PhiNode* phi = new PhiNode(region, return_type); 3664 3665 // The mirror will never be null of Reflection.getClassAccessFlags, however 3666 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3667 // if it is. See bug 4774291. 3668 3669 // For Reflection.getClassAccessFlags(), the null check occurs in 3670 // the wrong place; see inline_unsafe_access(), above, for a similar 3671 // situation. 3672 mirror = null_check(mirror); 3673 // If mirror or obj is dead, only null-path is taken. 3674 if (stopped()) return true; 3675 3676 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3677 3678 // Now load the mirror's klass metaobject, and null-check it. 3679 // Side-effects region with the control path if the klass is null. 3680 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3681 // If kls is null, we have a primitive mirror. 3682 phi->init_req(_prim_path, prim_return_value); 3683 if (stopped()) { set_result(region, phi); return true; } 3684 bool safe_for_replace = (region->in(_prim_path) == top()); 3685 3686 Node* p; // handy temp 3687 Node* null_ctl; 3688 3689 // Now that we have the non-null klass, we can perform the real query. 3690 // For constant classes, the query will constant-fold in LoadNode::Value. 3691 Node* query_value = top(); 3692 switch (id) { 3693 case vmIntrinsics::_isInstance: 3694 // nothing is an instance of a primitive type 3695 query_value = gen_instanceof(obj, kls, safe_for_replace); 3696 break; 3697 3698 case vmIntrinsics::_getModifiers: 3699 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3700 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3701 break; 3702 3703 case vmIntrinsics::_isInterface: 3704 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3705 if (generate_interface_guard(kls, region) != NULL) 3706 // A guard was added. If the guard is taken, it was an interface. 3707 phi->add_req(intcon(1)); 3708 // If we fall through, it's a plain class. 3709 query_value = intcon(0); 3710 break; 3711 3712 case vmIntrinsics::_isArray: 3713 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3714 if (generate_array_guard(kls, region) != NULL) 3715 // A guard was added. If the guard is taken, it was an array. 3716 phi->add_req(intcon(1)); 3717 // If we fall through, it's a plain class. 3718 query_value = intcon(0); 3719 break; 3720 3721 case vmIntrinsics::_isPrimitive: 3722 query_value = intcon(0); // "normal" path produces false 3723 break; 3724 3725 case vmIntrinsics::_isHidden: 3726 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 3727 if (generate_hidden_class_guard(kls, region) != NULL) 3728 // A guard was added. If the guard is taken, it was an hidden class. 3729 phi->add_req(intcon(1)); 3730 // If we fall through, it's a plain class. 3731 query_value = intcon(0); 3732 break; 3733 3734 3735 case vmIntrinsics::_getSuperclass: 3736 // The rules here are somewhat unfortunate, but we can still do better 3737 // with random logic than with a JNI call. 3738 // Interfaces store null or Object as _super, but must report null. 3739 // Arrays store an intermediate super as _super, but must report Object. 3740 // Other types can report the actual _super. 3741 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3742 if (generate_interface_guard(kls, region) != NULL) 3743 // A guard was added. If the guard is taken, it was an interface. 3744 phi->add_req(null()); 3745 if (generate_array_guard(kls, region) != NULL) 3746 // A guard was added. If the guard is taken, it was an array. 3747 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3748 // If we fall through, it's a plain class. Get its _super. 3749 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3750 kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3751 null_ctl = top(); 3752 kls = null_check_oop(kls, &null_ctl); 3753 if (null_ctl != top()) { 3754 // If the guard is taken, Object.superClass is null (both klass and mirror). 3755 region->add_req(null_ctl); 3756 phi ->add_req(null()); 3757 } 3758 if (!stopped()) { 3759 query_value = load_mirror_from_klass(kls); 3760 } 3761 break; 3762 3763 case vmIntrinsics::_getClassAccessFlags: 3764 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3765 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3766 break; 3767 3768 default: 3769 fatal_unexpected_iid(id); 3770 break; 3771 } 3772 3773 // Fall-through is the normal case of a query to a real class. 3774 phi->init_req(1, query_value); 3775 region->init_req(1, control()); 3776 3777 C->set_has_split_ifs(true); // Has chance for split-if optimization 3778 set_result(region, phi); 3779 return true; 3780 } 3781 3782 //-------------------------inline_Class_cast------------------- 3783 bool LibraryCallKit::inline_Class_cast() { 3784 Node* mirror = argument(0); // Class 3785 Node* obj = argument(1); 3786 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3787 if (mirror_con == NULL) { 3788 return false; // dead path (mirror->is_top()). 3789 } 3790 if (obj == NULL || obj->is_top()) { 3791 return false; // dead path 3792 } 3793 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3794 3795 // First, see if Class.cast() can be folded statically. 3796 // java_mirror_type() returns non-null for compile-time Class constants. 3797 ciType* tm = mirror_con->java_mirror_type(); 3798 if (tm != NULL && tm->is_klass() && 3799 tp != NULL) { 3800 if (!tp->is_loaded()) { 3801 // Don't use intrinsic when class is not loaded. 3802 return false; 3803 } else { 3804 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass()), tp->as_klass_type()); 3805 if (static_res == Compile::SSC_always_true) { 3806 // isInstance() is true - fold the code. 3807 set_result(obj); 3808 return true; 3809 } else if (static_res == Compile::SSC_always_false) { 3810 // Don't use intrinsic, have to throw ClassCastException. 3811 // If the reference is null, the non-intrinsic bytecode will 3812 // be optimized appropriately. 3813 return false; 3814 } 3815 } 3816 } 3817 3818 // Bailout intrinsic and do normal inlining if exception path is frequent. 3819 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3820 return false; 3821 } 3822 3823 // Generate dynamic checks. 3824 // Class.cast() is java implementation of _checkcast bytecode. 3825 // Do checkcast (Parse::do_checkcast()) optimizations here. 3826 3827 mirror = null_check(mirror); 3828 // If mirror is dead, only null-path is taken. 3829 if (stopped()) { 3830 return true; 3831 } 3832 3833 // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive). 3834 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3835 RegionNode* region = new RegionNode(PATH_LIMIT); 3836 record_for_igvn(region); 3837 3838 // Now load the mirror's klass metaobject, and null-check it. 3839 // If kls is null, we have a primitive mirror and 3840 // nothing is an instance of a primitive type. 3841 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3842 3843 Node* res = top(); 3844 if (!stopped()) { 3845 Node* bad_type_ctrl = top(); 3846 // Do checkcast optimizations. 3847 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3848 region->init_req(_bad_type_path, bad_type_ctrl); 3849 } 3850 if (region->in(_prim_path) != top() || 3851 region->in(_bad_type_path) != top()) { 3852 // Let Interpreter throw ClassCastException. 3853 PreserveJVMState pjvms(this); 3854 set_control(_gvn.transform(region)); 3855 uncommon_trap(Deoptimization::Reason_intrinsic, 3856 Deoptimization::Action_maybe_recompile); 3857 } 3858 if (!stopped()) { 3859 set_result(res); 3860 } 3861 return true; 3862 } 3863 3864 3865 //--------------------------inline_native_subtype_check------------------------ 3866 // This intrinsic takes the JNI calls out of the heart of 3867 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 3868 bool LibraryCallKit::inline_native_subtype_check() { 3869 // Pull both arguments off the stack. 3870 Node* args[2]; // two java.lang.Class mirrors: superc, subc 3871 args[0] = argument(0); 3872 args[1] = argument(1); 3873 Node* klasses[2]; // corresponding Klasses: superk, subk 3874 klasses[0] = klasses[1] = top(); 3875 3876 enum { 3877 // A full decision tree on {superc is prim, subc is prim}: 3878 _prim_0_path = 1, // {P,N} => false 3879 // {P,P} & superc!=subc => false 3880 _prim_same_path, // {P,P} & superc==subc => true 3881 _prim_1_path, // {N,P} => false 3882 _ref_subtype_path, // {N,N} & subtype check wins => true 3883 _both_ref_path, // {N,N} & subtype check loses => false 3884 PATH_LIMIT 3885 }; 3886 3887 RegionNode* region = new RegionNode(PATH_LIMIT); 3888 Node* phi = new PhiNode(region, TypeInt::BOOL); 3889 record_for_igvn(region); 3890 3891 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 3892 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3893 int class_klass_offset = java_lang_Class::klass_offset(); 3894 3895 // First null-check both mirrors and load each mirror's klass metaobject. 3896 int which_arg; 3897 for (which_arg = 0; which_arg <= 1; which_arg++) { 3898 Node* arg = args[which_arg]; 3899 arg = null_check(arg); 3900 if (stopped()) break; 3901 args[which_arg] = arg; 3902 3903 Node* p = basic_plus_adr(arg, class_klass_offset); 3904 Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type); 3905 klasses[which_arg] = _gvn.transform(kls); 3906 } 3907 3908 // Having loaded both klasses, test each for null. 3909 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3910 for (which_arg = 0; which_arg <= 1; which_arg++) { 3911 Node* kls = klasses[which_arg]; 3912 Node* null_ctl = top(); 3913 kls = null_check_oop(kls, &null_ctl, never_see_null); 3914 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 3915 region->init_req(prim_path, null_ctl); 3916 if (stopped()) break; 3917 klasses[which_arg] = kls; 3918 } 3919 3920 if (!stopped()) { 3921 // now we have two reference types, in klasses[0..1] 3922 Node* subk = klasses[1]; // the argument to isAssignableFrom 3923 Node* superk = klasses[0]; // the receiver 3924 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 3925 // now we have a successful reference subtype check 3926 region->set_req(_ref_subtype_path, control()); 3927 } 3928 3929 // If both operands are primitive (both klasses null), then 3930 // we must return true when they are identical primitives. 3931 // It is convenient to test this after the first null klass check. 3932 set_control(region->in(_prim_0_path)); // go back to first null check 3933 if (!stopped()) { 3934 // Since superc is primitive, make a guard for the superc==subc case. 3935 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 3936 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 3937 generate_guard(bol_eq, region, PROB_FAIR); 3938 if (region->req() == PATH_LIMIT+1) { 3939 // A guard was added. If the added guard is taken, superc==subc. 3940 region->swap_edges(PATH_LIMIT, _prim_same_path); 3941 region->del_req(PATH_LIMIT); 3942 } 3943 region->set_req(_prim_0_path, control()); // Not equal after all. 3944 } 3945 3946 // these are the only paths that produce 'true': 3947 phi->set_req(_prim_same_path, intcon(1)); 3948 phi->set_req(_ref_subtype_path, intcon(1)); 3949 3950 // pull together the cases: 3951 assert(region->req() == PATH_LIMIT, "sane region"); 3952 for (uint i = 1; i < region->req(); i++) { 3953 Node* ctl = region->in(i); 3954 if (ctl == NULL || ctl == top()) { 3955 region->set_req(i, top()); 3956 phi ->set_req(i, top()); 3957 } else if (phi->in(i) == NULL) { 3958 phi->set_req(i, intcon(0)); // all other paths produce 'false' 3959 } 3960 } 3961 3962 set_control(_gvn.transform(region)); 3963 set_result(_gvn.transform(phi)); 3964 return true; 3965 } 3966 3967 //---------------------generate_array_guard_common------------------------ 3968 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 3969 bool obj_array, bool not_array) { 3970 3971 if (stopped()) { 3972 return NULL; 3973 } 3974 3975 // If obj_array/non_array==false/false: 3976 // Branch around if the given klass is in fact an array (either obj or prim). 3977 // If obj_array/non_array==false/true: 3978 // Branch around if the given klass is not an array klass of any kind. 3979 // If obj_array/non_array==true/true: 3980 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 3981 // If obj_array/non_array==true/false: 3982 // Branch around if the kls is an oop array (Object[] or subtype) 3983 // 3984 // Like generate_guard, adds a new path onto the region. 3985 jint layout_con = 0; 3986 Node* layout_val = get_layout_helper(kls, layout_con); 3987 if (layout_val == NULL) { 3988 bool query = (obj_array 3989 ? Klass::layout_helper_is_objArray(layout_con) 3990 : Klass::layout_helper_is_array(layout_con)); 3991 if (query == not_array) { 3992 return NULL; // never a branch 3993 } else { // always a branch 3994 Node* always_branch = control(); 3995 if (region != NULL) 3996 region->add_req(always_branch); 3997 set_control(top()); 3998 return always_branch; 3999 } 4000 } 4001 // Now test the correct condition. 4002 jint nval = (obj_array 4003 ? (jint)(Klass::_lh_array_tag_type_value 4004 << Klass::_lh_array_tag_shift) 4005 : Klass::_lh_neutral_value); 4006 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4007 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4008 // invert the test if we are looking for a non-array 4009 if (not_array) btest = BoolTest(btest).negate(); 4010 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4011 return generate_fair_guard(bol, region); 4012 } 4013 4014 4015 //-----------------------inline_native_newArray-------------------------- 4016 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4017 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4018 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4019 Node* mirror; 4020 Node* count_val; 4021 if (uninitialized) { 4022 mirror = argument(1); 4023 count_val = argument(2); 4024 } else { 4025 mirror = argument(0); 4026 count_val = argument(1); 4027 } 4028 4029 mirror = null_check(mirror); 4030 // If mirror or obj is dead, only null-path is taken. 4031 if (stopped()) return true; 4032 4033 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4034 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4035 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4036 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4037 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4038 4039 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4040 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4041 result_reg, _slow_path); 4042 Node* normal_ctl = control(); 4043 Node* no_array_ctl = result_reg->in(_slow_path); 4044 4045 // Generate code for the slow case. We make a call to newArray(). 4046 set_control(no_array_ctl); 4047 if (!stopped()) { 4048 // Either the input type is void.class, or else the 4049 // array klass has not yet been cached. Either the 4050 // ensuing call will throw an exception, or else it 4051 // will cache the array klass for next time. 4052 PreserveJVMState pjvms(this); 4053 CallJavaNode* slow_call = NULL; 4054 if (uninitialized) { 4055 // Generate optimized virtual call (holder class 'Unsafe' is final) 4056 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false); 4057 } else { 4058 slow_call = generate_method_call_static(vmIntrinsics::_newArray); 4059 } 4060 Node* slow_result = set_results_for_java_call(slow_call); 4061 // this->control() comes from set_results_for_java_call 4062 result_reg->set_req(_slow_path, control()); 4063 result_val->set_req(_slow_path, slow_result); 4064 result_io ->set_req(_slow_path, i_o()); 4065 result_mem->set_req(_slow_path, reset_memory()); 4066 } 4067 4068 set_control(normal_ctl); 4069 if (!stopped()) { 4070 // Normal case: The array type has been cached in the java.lang.Class. 4071 // The following call works fine even if the array type is polymorphic. 4072 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4073 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4074 result_reg->init_req(_normal_path, control()); 4075 result_val->init_req(_normal_path, obj); 4076 result_io ->init_req(_normal_path, i_o()); 4077 result_mem->init_req(_normal_path, reset_memory()); 4078 4079 if (uninitialized) { 4080 // Mark the allocation so that zeroing is skipped 4081 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); 4082 alloc->maybe_set_complete(&_gvn); 4083 } 4084 } 4085 4086 // Return the combined state. 4087 set_i_o( _gvn.transform(result_io) ); 4088 set_all_memory( _gvn.transform(result_mem)); 4089 4090 C->set_has_split_ifs(true); // Has chance for split-if optimization 4091 set_result(result_reg, result_val); 4092 return true; 4093 } 4094 4095 //----------------------inline_native_getLength-------------------------- 4096 // public static native int java.lang.reflect.Array.getLength(Object array); 4097 bool LibraryCallKit::inline_native_getLength() { 4098 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4099 4100 Node* array = null_check(argument(0)); 4101 // If array is dead, only null-path is taken. 4102 if (stopped()) return true; 4103 4104 // Deoptimize if it is a non-array. 4105 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL); 4106 4107 if (non_array != NULL) { 4108 PreserveJVMState pjvms(this); 4109 set_control(non_array); 4110 uncommon_trap(Deoptimization::Reason_intrinsic, 4111 Deoptimization::Action_maybe_recompile); 4112 } 4113 4114 // If control is dead, only non-array-path is taken. 4115 if (stopped()) return true; 4116 4117 // The works fine even if the array type is polymorphic. 4118 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4119 Node* result = load_array_length(array); 4120 4121 C->set_has_split_ifs(true); // Has chance for split-if optimization 4122 set_result(result); 4123 return true; 4124 } 4125 4126 //------------------------inline_array_copyOf---------------------------- 4127 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4128 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4129 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4130 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4131 4132 // Get the arguments. 4133 Node* original = argument(0); 4134 Node* start = is_copyOfRange? argument(1): intcon(0); 4135 Node* end = is_copyOfRange? argument(2): argument(1); 4136 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4137 4138 Node* newcopy = NULL; 4139 4140 // Set the original stack and the reexecute bit for the interpreter to reexecute 4141 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4142 { PreserveReexecuteState preexecs(this); 4143 jvms()->set_should_reexecute(true); 4144 4145 array_type_mirror = null_check(array_type_mirror); 4146 original = null_check(original); 4147 4148 // Check if a null path was taken unconditionally. 4149 if (stopped()) return true; 4150 4151 Node* orig_length = load_array_length(original); 4152 4153 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0); 4154 klass_node = null_check(klass_node); 4155 4156 RegionNode* bailout = new RegionNode(1); 4157 record_for_igvn(bailout); 4158 4159 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4160 // Bail out if that is so. 4161 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4162 if (not_objArray != NULL) { 4163 // Improve the klass node's type from the new optimistic assumption: 4164 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4165 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4166 Node* cast = new CastPPNode(klass_node, akls); 4167 cast->init_req(0, control()); 4168 klass_node = _gvn.transform(cast); 4169 } 4170 4171 // Bail out if either start or end is negative. 4172 generate_negative_guard(start, bailout, &start); 4173 generate_negative_guard(end, bailout, &end); 4174 4175 Node* length = end; 4176 if (_gvn.type(start) != TypeInt::ZERO) { 4177 length = _gvn.transform(new SubINode(end, start)); 4178 } 4179 4180 // Bail out if length is negative. 4181 // Without this the new_array would throw 4182 // NegativeArraySizeException but IllegalArgumentException is what 4183 // should be thrown 4184 generate_negative_guard(length, bailout, &length); 4185 4186 if (bailout->req() > 1) { 4187 PreserveJVMState pjvms(this); 4188 set_control(_gvn.transform(bailout)); 4189 uncommon_trap(Deoptimization::Reason_intrinsic, 4190 Deoptimization::Action_maybe_recompile); 4191 } 4192 4193 if (!stopped()) { 4194 // How many elements will we copy from the original? 4195 // The answer is MinI(orig_length - start, length). 4196 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4197 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4198 4199 // Generate a direct call to the right arraycopy function(s). 4200 // We know the copy is disjoint but we might not know if the 4201 // oop stores need checking. 4202 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4203 // This will fail a store-check if x contains any non-nulls. 4204 4205 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4206 // loads/stores but it is legal only if we're sure the 4207 // Arrays.copyOf would succeed. So we need all input arguments 4208 // to the copyOf to be validated, including that the copy to the 4209 // new array won't trigger an ArrayStoreException. That subtype 4210 // check can be optimized if we know something on the type of 4211 // the input array from type speculation. 4212 if (_gvn.type(klass_node)->singleton()) { 4213 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4214 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4215 4216 int test = C->static_subtype_check(superk, subk); 4217 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4218 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4219 if (t_original->speculative_type() != NULL) { 4220 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4221 } 4222 } 4223 } 4224 4225 bool validated = false; 4226 // Reason_class_check rather than Reason_intrinsic because we 4227 // want to intrinsify even if this traps. 4228 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4229 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4230 4231 if (not_subtype_ctrl != top()) { 4232 PreserveJVMState pjvms(this); 4233 set_control(not_subtype_ctrl); 4234 uncommon_trap(Deoptimization::Reason_class_check, 4235 Deoptimization::Action_make_not_entrant); 4236 assert(stopped(), "Should be stopped"); 4237 } 4238 validated = true; 4239 } 4240 4241 if (!stopped()) { 4242 newcopy = new_array(klass_node, length, 0); // no arguments to push 4243 4244 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 4245 load_object_klass(original), klass_node); 4246 if (!is_copyOfRange) { 4247 ac->set_copyof(validated); 4248 } else { 4249 ac->set_copyofrange(validated); 4250 } 4251 Node* n = _gvn.transform(ac); 4252 if (n == ac) { 4253 ac->connect_outputs(this); 4254 } else { 4255 assert(validated, "shouldn't transform if all arguments not validated"); 4256 set_all_memory(n); 4257 } 4258 } 4259 } 4260 } // original reexecute is set back here 4261 4262 C->set_has_split_ifs(true); // Has chance for split-if optimization 4263 if (!stopped()) { 4264 set_result(newcopy); 4265 } 4266 return true; 4267 } 4268 4269 4270 //----------------------generate_virtual_guard--------------------------- 4271 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4272 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4273 RegionNode* slow_region) { 4274 ciMethod* method = callee(); 4275 int vtable_index = method->vtable_index(); 4276 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4277 "bad index %d", vtable_index); 4278 // Get the Method* out of the appropriate vtable entry. 4279 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4280 vtable_index*vtableEntry::size_in_bytes() + 4281 vtableEntry::method_offset_in_bytes(); 4282 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4283 Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4284 4285 // Compare the target method with the expected method (e.g., Object.hashCode). 4286 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4287 4288 Node* native_call = makecon(native_call_addr); 4289 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4290 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4291 4292 return generate_slow_guard(test_native, slow_region); 4293 } 4294 4295 //-----------------------generate_method_call---------------------------- 4296 // Use generate_method_call to make a slow-call to the real 4297 // method if the fast path fails. An alternative would be to 4298 // use a stub like OptoRuntime::slow_arraycopy_Java. 4299 // This only works for expanding the current library call, 4300 // not another intrinsic. (E.g., don't use this for making an 4301 // arraycopy call inside of the copyOf intrinsic.) 4302 CallJavaNode* 4303 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) { 4304 // When compiling the intrinsic method itself, do not use this technique. 4305 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4306 4307 ciMethod* method = callee(); 4308 // ensure the JVMS we have will be correct for this call 4309 guarantee(method_id == method->intrinsic_id(), "must match"); 4310 4311 const TypeFunc* tf = TypeFunc::make(method); 4312 CallJavaNode* slow_call; 4313 if (is_static) { 4314 assert(!is_virtual, ""); 4315 slow_call = new CallStaticJavaNode(C, tf, 4316 SharedRuntime::get_resolve_static_call_stub(), method); 4317 } else if (is_virtual) { 4318 null_check_receiver(); 4319 int vtable_index = Method::invalid_vtable_index; 4320 if (UseInlineCaches) { 4321 // Suppress the vtable call 4322 } else { 4323 // hashCode and clone are not a miranda methods, 4324 // so the vtable index is fixed. 4325 // No need to use the linkResolver to get it. 4326 vtable_index = method->vtable_index(); 4327 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4328 "bad index %d", vtable_index); 4329 } 4330 slow_call = new CallDynamicJavaNode(tf, 4331 SharedRuntime::get_resolve_virtual_call_stub(), 4332 method, vtable_index); 4333 } else { // neither virtual nor static: opt_virtual 4334 null_check_receiver(); 4335 slow_call = new CallStaticJavaNode(C, tf, 4336 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4337 slow_call->set_optimized_virtual(true); 4338 } 4339 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4340 // To be able to issue a direct call (optimized virtual or virtual) 4341 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4342 // about the method being invoked should be attached to the call site to 4343 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4344 slow_call->set_override_symbolic_info(true); 4345 } 4346 set_arguments_for_java_call(slow_call); 4347 set_edges_for_java_call(slow_call); 4348 return slow_call; 4349 } 4350 4351 4352 /** 4353 * Build special case code for calls to hashCode on an object. This call may 4354 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4355 * slightly different code. 4356 */ 4357 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4358 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4359 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4360 4361 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4362 4363 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4364 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4365 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4366 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4367 Node* obj = NULL; 4368 if (!is_static) { 4369 // Check for hashing null object 4370 obj = null_check_receiver(); 4371 if (stopped()) return true; // unconditionally null 4372 result_reg->init_req(_null_path, top()); 4373 result_val->init_req(_null_path, top()); 4374 } else { 4375 // Do a null check, and return zero if null. 4376 // System.identityHashCode(null) == 0 4377 obj = argument(0); 4378 Node* null_ctl = top(); 4379 obj = null_check_oop(obj, &null_ctl); 4380 result_reg->init_req(_null_path, null_ctl); 4381 result_val->init_req(_null_path, _gvn.intcon(0)); 4382 } 4383 4384 // Unconditionally null? Then return right away. 4385 if (stopped()) { 4386 set_control( result_reg->in(_null_path)); 4387 if (!stopped()) 4388 set_result(result_val->in(_null_path)); 4389 return true; 4390 } 4391 4392 // We only go to the fast case code if we pass a number of guards. The 4393 // paths which do not pass are accumulated in the slow_region. 4394 RegionNode* slow_region = new RegionNode(1); 4395 record_for_igvn(slow_region); 4396 4397 // If this is a virtual call, we generate a funny guard. We pull out 4398 // the vtable entry corresponding to hashCode() from the target object. 4399 // If the target method which we are calling happens to be the native 4400 // Object hashCode() method, we pass the guard. We do not need this 4401 // guard for non-virtual calls -- the caller is known to be the native 4402 // Object hashCode(). 4403 if (is_virtual) { 4404 // After null check, get the object's klass. 4405 Node* obj_klass = load_object_klass(obj); 4406 generate_virtual_guard(obj_klass, slow_region); 4407 } 4408 4409 // Get the header out of the object, use LoadMarkNode when available 4410 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4411 // The control of the load must be NULL. Otherwise, the load can move before 4412 // the null check after castPP removal. 4413 Node* no_ctrl = NULL; 4414 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4415 4416 // Test the header to see if it is unlocked. 4417 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4418 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4419 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4420 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 4421 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 4422 4423 generate_slow_guard(test_unlocked, slow_region); 4424 4425 // Get the hash value and check to see that it has been properly assigned. 4426 // We depend on hash_mask being at most 32 bits and avoid the use of 4427 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4428 // vm: see markWord.hpp. 4429 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4430 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4431 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4432 // This hack lets the hash bits live anywhere in the mark object now, as long 4433 // as the shift drops the relevant bits into the low 32 bits. Note that 4434 // Java spec says that HashCode is an int so there's no point in capturing 4435 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4436 hshifted_header = ConvX2I(hshifted_header); 4437 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4438 4439 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4440 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4441 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4442 4443 generate_slow_guard(test_assigned, slow_region); 4444 4445 Node* init_mem = reset_memory(); 4446 // fill in the rest of the null path: 4447 result_io ->init_req(_null_path, i_o()); 4448 result_mem->init_req(_null_path, init_mem); 4449 4450 result_val->init_req(_fast_path, hash_val); 4451 result_reg->init_req(_fast_path, control()); 4452 result_io ->init_req(_fast_path, i_o()); 4453 result_mem->init_req(_fast_path, init_mem); 4454 4455 // Generate code for the slow case. We make a call to hashCode(). 4456 set_control(_gvn.transform(slow_region)); 4457 if (!stopped()) { 4458 // No need for PreserveJVMState, because we're using up the present state. 4459 set_all_memory(init_mem); 4460 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4461 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static); 4462 Node* slow_result = set_results_for_java_call(slow_call); 4463 // this->control() comes from set_results_for_java_call 4464 result_reg->init_req(_slow_path, control()); 4465 result_val->init_req(_slow_path, slow_result); 4466 result_io ->set_req(_slow_path, i_o()); 4467 result_mem ->set_req(_slow_path, reset_memory()); 4468 } 4469 4470 // Return the combined state. 4471 set_i_o( _gvn.transform(result_io) ); 4472 set_all_memory( _gvn.transform(result_mem)); 4473 4474 set_result(result_reg, result_val); 4475 return true; 4476 } 4477 4478 //---------------------------inline_native_getClass---------------------------- 4479 // public final native Class<?> java.lang.Object.getClass(); 4480 // 4481 // Build special case code for calls to getClass on an object. 4482 bool LibraryCallKit::inline_native_getClass() { 4483 Node* obj = null_check_receiver(); 4484 if (stopped()) return true; 4485 set_result(load_mirror_from_klass(load_object_klass(obj))); 4486 return true; 4487 } 4488 4489 //-----------------inline_native_Reflection_getCallerClass--------------------- 4490 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4491 // 4492 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4493 // 4494 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4495 // in that it must skip particular security frames and checks for 4496 // caller sensitive methods. 4497 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4498 #ifndef PRODUCT 4499 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4500 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4501 } 4502 #endif 4503 4504 if (!jvms()->has_method()) { 4505 #ifndef PRODUCT 4506 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4507 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4508 } 4509 #endif 4510 return false; 4511 } 4512 4513 // Walk back up the JVM state to find the caller at the required 4514 // depth. 4515 JVMState* caller_jvms = jvms(); 4516 4517 // Cf. JVM_GetCallerClass 4518 // NOTE: Start the loop at depth 1 because the current JVM state does 4519 // not include the Reflection.getCallerClass() frame. 4520 for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) { 4521 ciMethod* m = caller_jvms->method(); 4522 switch (n) { 4523 case 0: 4524 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4525 break; 4526 case 1: 4527 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4528 if (!m->caller_sensitive()) { 4529 #ifndef PRODUCT 4530 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4531 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4532 } 4533 #endif 4534 return false; // bail-out; let JVM_GetCallerClass do the work 4535 } 4536 break; 4537 default: 4538 if (!m->is_ignored_by_security_stack_walk()) { 4539 // We have reached the desired frame; return the holder class. 4540 // Acquire method holder as java.lang.Class and push as constant. 4541 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4542 ciInstance* caller_mirror = caller_klass->java_mirror(); 4543 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4544 4545 #ifndef PRODUCT 4546 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4547 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4548 tty->print_cr(" JVM state at this point:"); 4549 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4550 ciMethod* m = jvms()->of_depth(i)->method(); 4551 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4552 } 4553 } 4554 #endif 4555 return true; 4556 } 4557 break; 4558 } 4559 } 4560 4561 #ifndef PRODUCT 4562 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4563 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4564 tty->print_cr(" JVM state at this point:"); 4565 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4566 ciMethod* m = jvms()->of_depth(i)->method(); 4567 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4568 } 4569 } 4570 #endif 4571 4572 return false; // bail-out; let JVM_GetCallerClass do the work 4573 } 4574 4575 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4576 Node* arg = argument(0); 4577 Node* result = NULL; 4578 4579 switch (id) { 4580 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4581 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4582 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4583 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4584 4585 case vmIntrinsics::_doubleToLongBits: { 4586 // two paths (plus control) merge in a wood 4587 RegionNode *r = new RegionNode(3); 4588 Node *phi = new PhiNode(r, TypeLong::LONG); 4589 4590 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4591 // Build the boolean node 4592 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4593 4594 // Branch either way. 4595 // NaN case is less traveled, which makes all the difference. 4596 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4597 Node *opt_isnan = _gvn.transform(ifisnan); 4598 assert( opt_isnan->is_If(), "Expect an IfNode"); 4599 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4600 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4601 4602 set_control(iftrue); 4603 4604 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4605 Node *slow_result = longcon(nan_bits); // return NaN 4606 phi->init_req(1, _gvn.transform( slow_result )); 4607 r->init_req(1, iftrue); 4608 4609 // Else fall through 4610 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4611 set_control(iffalse); 4612 4613 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4614 r->init_req(2, iffalse); 4615 4616 // Post merge 4617 set_control(_gvn.transform(r)); 4618 record_for_igvn(r); 4619 4620 C->set_has_split_ifs(true); // Has chance for split-if optimization 4621 result = phi; 4622 assert(result->bottom_type()->isa_long(), "must be"); 4623 break; 4624 } 4625 4626 case vmIntrinsics::_floatToIntBits: { 4627 // two paths (plus control) merge in a wood 4628 RegionNode *r = new RegionNode(3); 4629 Node *phi = new PhiNode(r, TypeInt::INT); 4630 4631 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4632 // Build the boolean node 4633 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4634 4635 // Branch either way. 4636 // NaN case is less traveled, which makes all the difference. 4637 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4638 Node *opt_isnan = _gvn.transform(ifisnan); 4639 assert( opt_isnan->is_If(), "Expect an IfNode"); 4640 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4641 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4642 4643 set_control(iftrue); 4644 4645 static const jint nan_bits = 0x7fc00000; 4646 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4647 phi->init_req(1, _gvn.transform( slow_result )); 4648 r->init_req(1, iftrue); 4649 4650 // Else fall through 4651 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4652 set_control(iffalse); 4653 4654 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4655 r->init_req(2, iffalse); 4656 4657 // Post merge 4658 set_control(_gvn.transform(r)); 4659 record_for_igvn(r); 4660 4661 C->set_has_split_ifs(true); // Has chance for split-if optimization 4662 result = phi; 4663 assert(result->bottom_type()->isa_int(), "must be"); 4664 break; 4665 } 4666 4667 default: 4668 fatal_unexpected_iid(id); 4669 break; 4670 } 4671 set_result(_gvn.transform(result)); 4672 return true; 4673 } 4674 4675 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 4676 Node* arg = argument(0); 4677 Node* result = NULL; 4678 4679 switch (id) { 4680 case vmIntrinsics::_floatIsInfinite: 4681 result = new IsInfiniteFNode(arg); 4682 break; 4683 case vmIntrinsics::_doubleIsInfinite: 4684 result = new IsInfiniteDNode(arg); 4685 break; 4686 default: 4687 fatal_unexpected_iid(id); 4688 break; 4689 } 4690 set_result(_gvn.transform(result)); 4691 return true; 4692 } 4693 4694 //----------------------inline_unsafe_copyMemory------------------------- 4695 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4696 4697 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 4698 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 4699 const Type* base_t = gvn.type(base); 4700 4701 bool in_native = (base_t == TypePtr::NULL_PTR); 4702 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 4703 bool is_mixed = !in_heap && !in_native; 4704 4705 if (is_mixed) { 4706 return true; // mixed accesses can touch both on-heap and off-heap memory 4707 } 4708 if (in_heap) { 4709 bool is_prim_array = (addr_t != NULL) && (addr_t->elem() != Type::BOTTOM); 4710 if (!is_prim_array) { 4711 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 4712 // there's not enough type information available to determine proper memory slice for it. 4713 return true; 4714 } 4715 } 4716 return false; 4717 } 4718 4719 bool LibraryCallKit::inline_unsafe_copyMemory() { 4720 if (callee()->is_static()) return false; // caller must have the capability! 4721 null_check_receiver(); // null-check receiver 4722 if (stopped()) return true; 4723 4724 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4725 4726 Node* src_base = argument(1); // type: oop 4727 Node* src_off = ConvL2X(argument(2)); // type: long 4728 Node* dst_base = argument(4); // type: oop 4729 Node* dst_off = ConvL2X(argument(5)); // type: long 4730 Node* size = ConvL2X(argument(7)); // type: long 4731 4732 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4733 "fieldOffset must be byte-scaled"); 4734 4735 Node* src_addr = make_unsafe_address(src_base, src_off); 4736 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 4737 4738 Node* thread = _gvn.transform(new ThreadLocalNode()); 4739 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 4740 BasicType doing_unsafe_access_bt = T_BYTE; 4741 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 4742 4743 // update volatile field 4744 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4745 4746 int flags = RC_LEAF | RC_NO_FP; 4747 4748 const TypePtr* dst_type = TypePtr::BOTTOM; 4749 4750 // Adjust memory effects of the runtime call based on input values. 4751 if (!has_wide_mem(_gvn, src_addr, src_base) && 4752 !has_wide_mem(_gvn, dst_addr, dst_base)) { 4753 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 4754 4755 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 4756 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 4757 flags |= RC_NARROW_MEM; // narrow in memory 4758 } 4759 } 4760 4761 // Call it. Note that the length argument is not scaled. 4762 make_runtime_call(flags, 4763 OptoRuntime::fast_arraycopy_Type(), 4764 StubRoutines::unsafe_arraycopy(), 4765 "unsafe_arraycopy", 4766 dst_type, 4767 src_addr, dst_addr, size XTOP); 4768 4769 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4770 4771 return true; 4772 } 4773 4774 #undef XTOP 4775 4776 //------------------------clone_coping----------------------------------- 4777 // Helper function for inline_native_clone. 4778 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4779 assert(obj_size != NULL, ""); 4780 Node* raw_obj = alloc_obj->in(1); 4781 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4782 4783 AllocateNode* alloc = NULL; 4784 if (ReduceBulkZeroing) { 4785 // We will be completely responsible for initializing this object - 4786 // mark Initialize node as complete. 4787 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); 4788 // The object was just allocated - there should be no any stores! 4789 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), ""); 4790 // Mark as complete_with_arraycopy so that on AllocateNode 4791 // expansion, we know this AllocateNode is initialized by an array 4792 // copy and a StoreStore barrier exists after the array copy. 4793 alloc->initialization()->set_complete_with_arraycopy(); 4794 } 4795 4796 Node* size = _gvn.transform(obj_size); 4797 access_clone(obj, alloc_obj, size, is_array); 4798 4799 // Do not let reads from the cloned object float above the arraycopy. 4800 if (alloc != NULL) { 4801 // Do not let stores that initialize this object be reordered with 4802 // a subsequent store that would make this object accessible by 4803 // other threads. 4804 // Record what AllocateNode this StoreStore protects so that 4805 // escape analysis can go from the MemBarStoreStoreNode to the 4806 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4807 // based on the escape status of the AllocateNode. 4808 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4809 } else { 4810 insert_mem_bar(Op_MemBarCPUOrder); 4811 } 4812 } 4813 4814 //------------------------inline_native_clone---------------------------- 4815 // protected native Object java.lang.Object.clone(); 4816 // 4817 // Here are the simple edge cases: 4818 // null receiver => normal trap 4819 // virtual and clone was overridden => slow path to out-of-line clone 4820 // not cloneable or finalizer => slow path to out-of-line Object.clone 4821 // 4822 // The general case has two steps, allocation and copying. 4823 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4824 // 4825 // Copying also has two cases, oop arrays and everything else. 4826 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4827 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4828 // 4829 // These steps fold up nicely if and when the cloned object's klass 4830 // can be sharply typed as an object array, a type array, or an instance. 4831 // 4832 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4833 PhiNode* result_val; 4834 4835 // Set the reexecute bit for the interpreter to reexecute 4836 // the bytecode that invokes Object.clone if deoptimization happens. 4837 { PreserveReexecuteState preexecs(this); 4838 jvms()->set_should_reexecute(true); 4839 4840 Node* obj = null_check_receiver(); 4841 if (stopped()) return true; 4842 4843 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4844 4845 // If we are going to clone an instance, we need its exact type to 4846 // know the number and types of fields to convert the clone to 4847 // loads/stores. Maybe a speculative type can help us. 4848 if (!obj_type->klass_is_exact() && 4849 obj_type->speculative_type() != NULL && 4850 obj_type->speculative_type()->is_instance_klass()) { 4851 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 4852 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 4853 !spec_ik->has_injected_fields()) { 4854 if (!obj_type->isa_instptr() || 4855 obj_type->is_instptr()->instance_klass()->has_subklass()) { 4856 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 4857 } 4858 } 4859 } 4860 4861 // Conservatively insert a memory barrier on all memory slices. 4862 // Do not let writes into the original float below the clone. 4863 insert_mem_bar(Op_MemBarCPUOrder); 4864 4865 // paths into result_reg: 4866 enum { 4867 _slow_path = 1, // out-of-line call to clone method (virtual or not) 4868 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 4869 _array_path, // plain array allocation, plus arrayof_long_arraycopy 4870 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 4871 PATH_LIMIT 4872 }; 4873 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4874 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4875 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 4876 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4877 record_for_igvn(result_reg); 4878 4879 Node* obj_klass = load_object_klass(obj); 4880 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL); 4881 if (array_ctl != NULL) { 4882 // It's an array. 4883 PreserveJVMState pjvms(this); 4884 set_control(array_ctl); 4885 Node* obj_length = load_array_length(obj); 4886 Node* obj_size = NULL; 4887 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size, /*deoptimize_on_exception=*/true); 4888 4889 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4890 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 4891 // If it is an oop array, it requires very special treatment, 4892 // because gc barriers are required when accessing the array. 4893 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL); 4894 if (is_obja != NULL) { 4895 PreserveJVMState pjvms2(this); 4896 set_control(is_obja); 4897 // Generate a direct call to the right arraycopy function(s). 4898 // Clones are always tightly coupled. 4899 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 4900 ac->set_clone_oop_array(); 4901 Node* n = _gvn.transform(ac); 4902 assert(n == ac, "cannot disappear"); 4903 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 4904 4905 result_reg->init_req(_objArray_path, control()); 4906 result_val->init_req(_objArray_path, alloc_obj); 4907 result_i_o ->set_req(_objArray_path, i_o()); 4908 result_mem ->set_req(_objArray_path, reset_memory()); 4909 } 4910 } 4911 // Otherwise, there are no barriers to worry about. 4912 // (We can dispense with card marks if we know the allocation 4913 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 4914 // causes the non-eden paths to take compensating steps to 4915 // simulate a fresh allocation, so that no further 4916 // card marks are required in compiled code to initialize 4917 // the object.) 4918 4919 if (!stopped()) { 4920 copy_to_clone(obj, alloc_obj, obj_size, true); 4921 4922 // Present the results of the copy. 4923 result_reg->init_req(_array_path, control()); 4924 result_val->init_req(_array_path, alloc_obj); 4925 result_i_o ->set_req(_array_path, i_o()); 4926 result_mem ->set_req(_array_path, reset_memory()); 4927 } 4928 } 4929 4930 // We only go to the instance fast case code if we pass a number of guards. 4931 // The paths which do not pass are accumulated in the slow_region. 4932 RegionNode* slow_region = new RegionNode(1); 4933 record_for_igvn(slow_region); 4934 if (!stopped()) { 4935 // It's an instance (we did array above). Make the slow-path tests. 4936 // If this is a virtual call, we generate a funny guard. We grab 4937 // the vtable entry corresponding to clone() from the target object. 4938 // If the target method which we are calling happens to be the 4939 // Object clone() method, we pass the guard. We do not need this 4940 // guard for non-virtual calls; the caller is known to be the native 4941 // Object clone(). 4942 if (is_virtual) { 4943 generate_virtual_guard(obj_klass, slow_region); 4944 } 4945 4946 // The object must be easily cloneable and must not have a finalizer. 4947 // Both of these conditions may be checked in a single test. 4948 // We could optimize the test further, but we don't care. 4949 generate_access_flags_guard(obj_klass, 4950 // Test both conditions: 4951 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 4952 // Must be cloneable but not finalizer: 4953 JVM_ACC_IS_CLONEABLE_FAST, 4954 slow_region); 4955 } 4956 4957 if (!stopped()) { 4958 // It's an instance, and it passed the slow-path tests. 4959 PreserveJVMState pjvms(this); 4960 Node* obj_size = NULL; 4961 // Need to deoptimize on exception from allocation since Object.clone intrinsic 4962 // is reexecuted if deoptimization occurs and there could be problems when merging 4963 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 4964 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true); 4965 4966 copy_to_clone(obj, alloc_obj, obj_size, false); 4967 4968 // Present the results of the slow call. 4969 result_reg->init_req(_instance_path, control()); 4970 result_val->init_req(_instance_path, alloc_obj); 4971 result_i_o ->set_req(_instance_path, i_o()); 4972 result_mem ->set_req(_instance_path, reset_memory()); 4973 } 4974 4975 // Generate code for the slow case. We make a call to clone(). 4976 set_control(_gvn.transform(slow_region)); 4977 if (!stopped()) { 4978 PreserveJVMState pjvms(this); 4979 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual); 4980 // We need to deoptimize on exception (see comment above) 4981 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 4982 // this->control() comes from set_results_for_java_call 4983 result_reg->init_req(_slow_path, control()); 4984 result_val->init_req(_slow_path, slow_result); 4985 result_i_o ->set_req(_slow_path, i_o()); 4986 result_mem ->set_req(_slow_path, reset_memory()); 4987 } 4988 4989 // Return the combined state. 4990 set_control( _gvn.transform(result_reg)); 4991 set_i_o( _gvn.transform(result_i_o)); 4992 set_all_memory( _gvn.transform(result_mem)); 4993 } // original reexecute is set back here 4994 4995 set_result(_gvn.transform(result_val)); 4996 return true; 4997 } 4998 4999 // If we have a tightly coupled allocation, the arraycopy may take care 5000 // of the array initialization. If one of the guards we insert between 5001 // the allocation and the arraycopy causes a deoptimization, an 5002 // uninitialized array will escape the compiled method. To prevent that 5003 // we set the JVM state for uncommon traps between the allocation and 5004 // the arraycopy to the state before the allocation so, in case of 5005 // deoptimization, we'll reexecute the allocation and the 5006 // initialization. 5007 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5008 if (alloc != NULL) { 5009 ciMethod* trap_method = alloc->jvms()->method(); 5010 int trap_bci = alloc->jvms()->bci(); 5011 5012 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5013 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5014 // Make sure there's no store between the allocation and the 5015 // arraycopy otherwise visible side effects could be rexecuted 5016 // in case of deoptimization and cause incorrect execution. 5017 bool no_interfering_store = true; 5018 Node* mem = alloc->in(TypeFunc::Memory); 5019 if (mem->is_MergeMem()) { 5020 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5021 Node* n = mms.memory(); 5022 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5023 assert(n->is_Store(), "what else?"); 5024 no_interfering_store = false; 5025 break; 5026 } 5027 } 5028 } else { 5029 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5030 Node* n = mms.memory(); 5031 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5032 assert(n->is_Store(), "what else?"); 5033 no_interfering_store = false; 5034 break; 5035 } 5036 } 5037 } 5038 5039 if (no_interfering_store) { 5040 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5041 uint size = alloc->req(); 5042 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5043 old_jvms->set_map(sfpt); 5044 for (uint i = 0; i < size; i++) { 5045 sfpt->init_req(i, alloc->in(i)); 5046 } 5047 // re-push array length for deoptimization 5048 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5049 old_jvms->set_sp(old_jvms->sp()+1); 5050 old_jvms->set_monoff(old_jvms->monoff()+1); 5051 old_jvms->set_scloff(old_jvms->scloff()+1); 5052 old_jvms->set_endoff(old_jvms->endoff()+1); 5053 old_jvms->set_should_reexecute(true); 5054 5055 sfpt->set_i_o(map()->i_o()); 5056 sfpt->set_memory(map()->memory()); 5057 sfpt->set_control(map()->control()); 5058 5059 JVMState* saved_jvms = jvms(); 5060 saved_reexecute_sp = _reexecute_sp; 5061 5062 set_jvms(sfpt->jvms()); 5063 _reexecute_sp = jvms()->sp(); 5064 5065 return saved_jvms; 5066 } 5067 } 5068 } 5069 return NULL; 5070 } 5071 5072 // In case of a deoptimization, we restart execution at the 5073 // allocation, allocating a new array. We would leave an uninitialized 5074 // array in the heap that GCs wouldn't expect. Move the allocation 5075 // after the traps so we don't allocate the array if we 5076 // deoptimize. This is possible because tightly_coupled_allocation() 5077 // guarantees there's no observer of the allocated array at this point 5078 // and the control flow is simple enough. 5079 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, 5080 int saved_reexecute_sp, uint new_idx) { 5081 if (saved_jvms != NULL && !stopped()) { 5082 assert(alloc != NULL, "only with a tightly coupled allocation"); 5083 // restore JVM state to the state at the arraycopy 5084 saved_jvms->map()->set_control(map()->control()); 5085 assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?"); 5086 assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?"); 5087 // If we've improved the types of some nodes (null check) while 5088 // emitting the guards, propagate them to the current state 5089 map()->replaced_nodes().apply(saved_jvms->map(), new_idx); 5090 set_jvms(saved_jvms); 5091 _reexecute_sp = saved_reexecute_sp; 5092 5093 // Remove the allocation from above the guards 5094 CallProjections callprojs; 5095 alloc->extract_projections(&callprojs, true); 5096 InitializeNode* init = alloc->initialization(); 5097 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5098 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5099 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5100 5101 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5102 // the allocation (i.e. is only valid if the allocation succeeds): 5103 // 1) replace CastIINode with AllocateArrayNode's length here 5104 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5105 // 5106 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5107 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5108 Node* init_control = init->proj_out(TypeFunc::Control); 5109 Node* alloc_length = alloc->Ideal_length(); 5110 #ifdef ASSERT 5111 Node* prev_cast = NULL; 5112 #endif 5113 for (uint i = 0; i < init_control->outcnt(); i++) { 5114 Node* init_out = init_control->raw_out(i); 5115 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5116 #ifdef ASSERT 5117 if (prev_cast == NULL) { 5118 prev_cast = init_out; 5119 } else { 5120 if (prev_cast->cmp(*init_out) == false) { 5121 prev_cast->dump(); 5122 init_out->dump(); 5123 assert(false, "not equal CastIINode"); 5124 } 5125 } 5126 #endif 5127 C->gvn_replace_by(init_out, alloc_length); 5128 } 5129 } 5130 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5131 5132 // move the allocation here (after the guards) 5133 _gvn.hash_delete(alloc); 5134 alloc->set_req(TypeFunc::Control, control()); 5135 alloc->set_req(TypeFunc::I_O, i_o()); 5136 Node *mem = reset_memory(); 5137 set_all_memory(mem); 5138 alloc->set_req(TypeFunc::Memory, mem); 5139 set_control(init->proj_out_or_null(TypeFunc::Control)); 5140 set_i_o(callprojs.fallthrough_ioproj); 5141 5142 // Update memory as done in GraphKit::set_output_for_allocation() 5143 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5144 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5145 if (ary_type->isa_aryptr() && length_type != NULL) { 5146 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5147 } 5148 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5149 int elemidx = C->get_alias_index(telemref); 5150 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5151 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5152 5153 Node* allocx = _gvn.transform(alloc); 5154 assert(allocx == alloc, "where has the allocation gone?"); 5155 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5156 5157 _gvn.hash_delete(dest); 5158 dest->set_req(0, control()); 5159 Node* destx = _gvn.transform(dest); 5160 assert(destx == dest, "where has the allocation result gone?"); 5161 5162 array_ideal_length(alloc, ary_type, true); 5163 } 5164 } 5165 5166 5167 //------------------------------inline_arraycopy----------------------- 5168 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5169 // Object dest, int destPos, 5170 // int length); 5171 bool LibraryCallKit::inline_arraycopy() { 5172 // Get the arguments. 5173 Node* src = argument(0); // type: oop 5174 Node* src_offset = argument(1); // type: int 5175 Node* dest = argument(2); // type: oop 5176 Node* dest_offset = argument(3); // type: int 5177 Node* length = argument(4); // type: int 5178 5179 uint new_idx = C->unique(); 5180 5181 // Check for allocation before we add nodes that would confuse 5182 // tightly_coupled_allocation() 5183 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5184 5185 int saved_reexecute_sp = -1; 5186 JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5187 // See arraycopy_restore_alloc_state() comment 5188 // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5189 // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation 5190 // if saved_jvms == NULL and alloc != NULL, we can't emit any guards 5191 bool can_emit_guards = (alloc == NULL || saved_jvms != NULL); 5192 5193 // The following tests must be performed 5194 // (1) src and dest are arrays. 5195 // (2) src and dest arrays must have elements of the same BasicType 5196 // (3) src and dest must not be null. 5197 // (4) src_offset must not be negative. 5198 // (5) dest_offset must not be negative. 5199 // (6) length must not be negative. 5200 // (7) src_offset + length must not exceed length of src. 5201 // (8) dest_offset + length must not exceed length of dest. 5202 // (9) each element of an oop array must be assignable 5203 5204 // (3) src and dest must not be null. 5205 // always do this here because we need the JVM state for uncommon traps 5206 Node* null_ctl = top(); 5207 src = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5208 assert(null_ctl->is_top(), "no null control here"); 5209 dest = null_check(dest, T_ARRAY); 5210 5211 if (!can_emit_guards) { 5212 // if saved_jvms == NULL and alloc != NULL, we don't emit any 5213 // guards but the arraycopy node could still take advantage of a 5214 // tightly allocated allocation. tightly_coupled_allocation() is 5215 // called again to make sure it takes the null check above into 5216 // account: the null check is mandatory and if it caused an 5217 // uncommon trap to be emitted then the allocation can't be 5218 // considered tightly coupled in this context. 5219 alloc = tightly_coupled_allocation(dest); 5220 } 5221 5222 bool validated = false; 5223 5224 const Type* src_type = _gvn.type(src); 5225 const Type* dest_type = _gvn.type(dest); 5226 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5227 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5228 5229 // Do we have the type of src? 5230 bool has_src = (top_src != NULL && top_src->elem() != Type::BOTTOM); 5231 // Do we have the type of dest? 5232 bool has_dest = (top_dest != NULL && top_dest->elem() != Type::BOTTOM); 5233 // Is the type for src from speculation? 5234 bool src_spec = false; 5235 // Is the type for dest from speculation? 5236 bool dest_spec = false; 5237 5238 if ((!has_src || !has_dest) && can_emit_guards) { 5239 // We don't have sufficient type information, let's see if 5240 // speculative types can help. We need to have types for both src 5241 // and dest so that it pays off. 5242 5243 // Do we already have or could we have type information for src 5244 bool could_have_src = has_src; 5245 // Do we already have or could we have type information for dest 5246 bool could_have_dest = has_dest; 5247 5248 ciKlass* src_k = NULL; 5249 if (!has_src) { 5250 src_k = src_type->speculative_type_not_null(); 5251 if (src_k != NULL && src_k->is_array_klass()) { 5252 could_have_src = true; 5253 } 5254 } 5255 5256 ciKlass* dest_k = NULL; 5257 if (!has_dest) { 5258 dest_k = dest_type->speculative_type_not_null(); 5259 if (dest_k != NULL && dest_k->is_array_klass()) { 5260 could_have_dest = true; 5261 } 5262 } 5263 5264 if (could_have_src && could_have_dest) { 5265 // This is going to pay off so emit the required guards 5266 if (!has_src) { 5267 src = maybe_cast_profiled_obj(src, src_k, true); 5268 src_type = _gvn.type(src); 5269 top_src = src_type->isa_aryptr(); 5270 has_src = (top_src != NULL && top_src->elem() != Type::BOTTOM); 5271 src_spec = true; 5272 } 5273 if (!has_dest) { 5274 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5275 dest_type = _gvn.type(dest); 5276 top_dest = dest_type->isa_aryptr(); 5277 has_dest = (top_dest != NULL && top_dest->elem() != Type::BOTTOM); 5278 dest_spec = true; 5279 } 5280 } 5281 } 5282 5283 if (has_src && has_dest && can_emit_guards) { 5284 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5285 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5286 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5287 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5288 5289 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5290 // If both arrays are object arrays then having the exact types 5291 // for both will remove the need for a subtype check at runtime 5292 // before the call and may make it possible to pick a faster copy 5293 // routine (without a subtype check on every element) 5294 // Do we have the exact type of src? 5295 bool could_have_src = src_spec; 5296 // Do we have the exact type of dest? 5297 bool could_have_dest = dest_spec; 5298 ciKlass* src_k = NULL; 5299 ciKlass* dest_k = NULL; 5300 if (!src_spec) { 5301 src_k = src_type->speculative_type_not_null(); 5302 if (src_k != NULL && src_k->is_array_klass()) { 5303 could_have_src = true; 5304 } 5305 } 5306 if (!dest_spec) { 5307 dest_k = dest_type->speculative_type_not_null(); 5308 if (dest_k != NULL && dest_k->is_array_klass()) { 5309 could_have_dest = true; 5310 } 5311 } 5312 if (could_have_src && could_have_dest) { 5313 // If we can have both exact types, emit the missing guards 5314 if (could_have_src && !src_spec) { 5315 src = maybe_cast_profiled_obj(src, src_k, true); 5316 } 5317 if (could_have_dest && !dest_spec) { 5318 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5319 } 5320 } 5321 } 5322 } 5323 5324 ciMethod* trap_method = method(); 5325 int trap_bci = bci(); 5326 if (saved_jvms != NULL) { 5327 trap_method = alloc->jvms()->method(); 5328 trap_bci = alloc->jvms()->bci(); 5329 } 5330 5331 bool negative_length_guard_generated = false; 5332 5333 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5334 can_emit_guards && 5335 !src->is_top() && !dest->is_top()) { 5336 // validate arguments: enables transformation the ArrayCopyNode 5337 validated = true; 5338 5339 RegionNode* slow_region = new RegionNode(1); 5340 record_for_igvn(slow_region); 5341 5342 // (1) src and dest are arrays. 5343 generate_non_array_guard(load_object_klass(src), slow_region); 5344 generate_non_array_guard(load_object_klass(dest), slow_region); 5345 5346 // (2) src and dest arrays must have elements of the same BasicType 5347 // done at macro expansion or at Ideal transformation time 5348 5349 // (4) src_offset must not be negative. 5350 generate_negative_guard(src_offset, slow_region); 5351 5352 // (5) dest_offset must not be negative. 5353 generate_negative_guard(dest_offset, slow_region); 5354 5355 // (7) src_offset + length must not exceed length of src. 5356 generate_limit_guard(src_offset, length, 5357 load_array_length(src), 5358 slow_region); 5359 5360 // (8) dest_offset + length must not exceed length of dest. 5361 generate_limit_guard(dest_offset, length, 5362 load_array_length(dest), 5363 slow_region); 5364 5365 // (6) length must not be negative. 5366 // This is also checked in generate_arraycopy() during macro expansion, but 5367 // we also have to check it here for the case where the ArrayCopyNode will 5368 // be eliminated by Escape Analysis. 5369 if (EliminateAllocations) { 5370 generate_negative_guard(length, slow_region); 5371 negative_length_guard_generated = true; 5372 } 5373 5374 // (9) each element of an oop array must be assignable 5375 Node* dest_klass = load_object_klass(dest); 5376 if (src != dest) { 5377 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5378 5379 if (not_subtype_ctrl != top()) { 5380 PreserveJVMState pjvms(this); 5381 set_control(not_subtype_ctrl); 5382 uncommon_trap(Deoptimization::Reason_intrinsic, 5383 Deoptimization::Action_make_not_entrant); 5384 assert(stopped(), "Should be stopped"); 5385 } 5386 } 5387 { 5388 PreserveJVMState pjvms(this); 5389 set_control(_gvn.transform(slow_region)); 5390 uncommon_trap(Deoptimization::Reason_intrinsic, 5391 Deoptimization::Action_make_not_entrant); 5392 assert(stopped(), "Should be stopped"); 5393 } 5394 5395 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5396 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5397 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5398 } 5399 5400 arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx); 5401 5402 if (stopped()) { 5403 return true; 5404 } 5405 5406 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated, 5407 // Create LoadRange and LoadKlass nodes for use during macro expansion here 5408 // so the compiler has a chance to eliminate them: during macro expansion, 5409 // we have to set their control (CastPP nodes are eliminated). 5410 load_object_klass(src), load_object_klass(dest), 5411 load_array_length(src), load_array_length(dest)); 5412 5413 ac->set_arraycopy(validated); 5414 5415 Node* n = _gvn.transform(ac); 5416 if (n == ac) { 5417 ac->connect_outputs(this); 5418 } else { 5419 assert(validated, "shouldn't transform if all arguments not validated"); 5420 set_all_memory(n); 5421 } 5422 clear_upper_avx(); 5423 5424 5425 return true; 5426 } 5427 5428 5429 // Helper function which determines if an arraycopy immediately follows 5430 // an allocation, with no intervening tests or other escapes for the object. 5431 AllocateArrayNode* 5432 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 5433 if (stopped()) return NULL; // no fast path 5434 if (C->AliasLevel() == 0) return NULL; // no MergeMems around 5435 5436 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); 5437 if (alloc == NULL) return NULL; 5438 5439 Node* rawmem = memory(Compile::AliasIdxRaw); 5440 // Is the allocation's memory state untouched? 5441 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 5442 // Bail out if there have been raw-memory effects since the allocation. 5443 // (Example: There might have been a call or safepoint.) 5444 return NULL; 5445 } 5446 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 5447 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 5448 return NULL; 5449 } 5450 5451 // There must be no unexpected observers of this allocation. 5452 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 5453 Node* obs = ptr->fast_out(i); 5454 if (obs != this->map()) { 5455 return NULL; 5456 } 5457 } 5458 5459 // This arraycopy must unconditionally follow the allocation of the ptr. 5460 Node* alloc_ctl = ptr->in(0); 5461 Node* ctl = control(); 5462 while (ctl != alloc_ctl) { 5463 // There may be guards which feed into the slow_region. 5464 // Any other control flow means that we might not get a chance 5465 // to finish initializing the allocated object. 5466 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) { 5467 IfNode* iff = ctl->in(0)->as_If(); 5468 Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con); 5469 assert(not_ctl != NULL && not_ctl != ctl, "found alternate"); 5470 // One more try: Various low-level checks bottom out in 5471 // uncommon traps. If the debug-info of the trap omits 5472 // any reference to the allocation, as we've already 5473 // observed, then there can be no objection to the trap. 5474 bool found_trap = false; 5475 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) { 5476 Node* obs = not_ctl->fast_out(j); 5477 if (obs->in(0) == not_ctl && obs->is_Call() && 5478 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 5479 found_trap = true; break; 5480 } 5481 } 5482 if (found_trap) { 5483 ctl = iff->in(0); // This test feeds a harmless uncommon trap. 5484 continue; 5485 } 5486 } 5487 return NULL; 5488 } 5489 5490 // If we get this far, we have an allocation which immediately 5491 // precedes the arraycopy, and we can take over zeroing the new object. 5492 // The arraycopy will finish the initialization, and provide 5493 // a new control state to which we will anchor the destination pointer. 5494 5495 return alloc; 5496 } 5497 5498 //-------------inline_encodeISOArray----------------------------------- 5499 // encode char[] to byte[] in ISO_8859_1 or ASCII 5500 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 5501 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 5502 // no receiver since it is static method 5503 Node *src = argument(0); 5504 Node *src_offset = argument(1); 5505 Node *dst = argument(2); 5506 Node *dst_offset = argument(3); 5507 Node *length = argument(4); 5508 5509 src = must_be_not_null(src, true); 5510 dst = must_be_not_null(dst, true); 5511 5512 const Type* src_type = src->Value(&_gvn); 5513 const Type* dst_type = dst->Value(&_gvn); 5514 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5515 const TypeAryPtr* top_dest = dst_type->isa_aryptr(); 5516 if (top_src == NULL || top_src->elem() == Type::BOTTOM || 5517 top_dest == NULL || top_dest->elem() == Type::BOTTOM) { 5518 // failed array check 5519 return false; 5520 } 5521 5522 // Figure out the size and type of the elements we will be copying. 5523 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type(); 5524 BasicType dst_elem = dst_type->isa_aryptr()->elem()->array_element_basic_type(); 5525 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 5526 return false; 5527 } 5528 5529 Node* src_start = array_element_address(src, src_offset, T_CHAR); 5530 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 5531 // 'src_start' points to src array + scaled offset 5532 // 'dst_start' points to dst array + scaled offset 5533 5534 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 5535 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 5536 enc = _gvn.transform(enc); 5537 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 5538 set_memory(res_mem, mtype); 5539 set_result(enc); 5540 clear_upper_avx(); 5541 5542 return true; 5543 } 5544 5545 //-------------inline_multiplyToLen----------------------------------- 5546 bool LibraryCallKit::inline_multiplyToLen() { 5547 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 5548 5549 address stubAddr = StubRoutines::multiplyToLen(); 5550 if (stubAddr == NULL) { 5551 return false; // Intrinsic's stub is not implemented on this platform 5552 } 5553 const char* stubName = "multiplyToLen"; 5554 5555 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 5556 5557 // no receiver because it is a static method 5558 Node* x = argument(0); 5559 Node* xlen = argument(1); 5560 Node* y = argument(2); 5561 Node* ylen = argument(3); 5562 Node* z = argument(4); 5563 5564 x = must_be_not_null(x, true); 5565 y = must_be_not_null(y, true); 5566 5567 const Type* x_type = x->Value(&_gvn); 5568 const Type* y_type = y->Value(&_gvn); 5569 const TypeAryPtr* top_x = x_type->isa_aryptr(); 5570 const TypeAryPtr* top_y = y_type->isa_aryptr(); 5571 if (top_x == NULL || top_x->elem() == Type::BOTTOM || 5572 top_y == NULL || top_y->elem() == Type::BOTTOM) { 5573 // failed array check 5574 return false; 5575 } 5576 5577 BasicType x_elem = x_type->isa_aryptr()->elem()->array_element_basic_type(); 5578 BasicType y_elem = y_type->isa_aryptr()->elem()->array_element_basic_type(); 5579 if (x_elem != T_INT || y_elem != T_INT) { 5580 return false; 5581 } 5582 5583 // Set the original stack and the reexecute bit for the interpreter to reexecute 5584 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5585 // on the return from z array allocation in runtime. 5586 { PreserveReexecuteState preexecs(this); 5587 jvms()->set_should_reexecute(true); 5588 5589 Node* x_start = array_element_address(x, intcon(0), x_elem); 5590 Node* y_start = array_element_address(y, intcon(0), y_elem); 5591 // 'x_start' points to x array + scaled xlen 5592 // 'y_start' points to y array + scaled ylen 5593 5594 // Allocate the result array 5595 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 5596 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 5597 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 5598 5599 IdealKit ideal(this); 5600 5601 #define __ ideal. 5602 Node* one = __ ConI(1); 5603 Node* zero = __ ConI(0); 5604 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 5605 __ set(need_alloc, zero); 5606 __ set(z_alloc, z); 5607 __ if_then(z, BoolTest::eq, null()); { 5608 __ increment (need_alloc, one); 5609 } __ else_(); { 5610 // Update graphKit memory and control from IdealKit. 5611 sync_kit(ideal); 5612 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 5613 cast->init_req(0, control()); 5614 _gvn.set_type(cast, cast->bottom_type()); 5615 C->record_for_igvn(cast); 5616 5617 Node* zlen_arg = load_array_length(cast); 5618 // Update IdealKit memory and control from graphKit. 5619 __ sync_kit(this); 5620 __ if_then(zlen_arg, BoolTest::lt, zlen); { 5621 __ increment (need_alloc, one); 5622 } __ end_if(); 5623 } __ end_if(); 5624 5625 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 5626 // Update graphKit memory and control from IdealKit. 5627 sync_kit(ideal); 5628 Node * narr = new_array(klass_node, zlen, 1); 5629 // Update IdealKit memory and control from graphKit. 5630 __ sync_kit(this); 5631 __ set(z_alloc, narr); 5632 } __ end_if(); 5633 5634 sync_kit(ideal); 5635 z = __ value(z_alloc); 5636 // Can't use TypeAryPtr::INTS which uses Bottom offset. 5637 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 5638 // Final sync IdealKit and GraphKit. 5639 final_sync(ideal); 5640 #undef __ 5641 5642 Node* z_start = array_element_address(z, intcon(0), T_INT); 5643 5644 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5645 OptoRuntime::multiplyToLen_Type(), 5646 stubAddr, stubName, TypePtr::BOTTOM, 5647 x_start, xlen, y_start, ylen, z_start, zlen); 5648 } // original reexecute is set back here 5649 5650 C->set_has_split_ifs(true); // Has chance for split-if optimization 5651 set_result(z); 5652 return true; 5653 } 5654 5655 //-------------inline_squareToLen------------------------------------ 5656 bool LibraryCallKit::inline_squareToLen() { 5657 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5658 5659 address stubAddr = StubRoutines::squareToLen(); 5660 if (stubAddr == NULL) { 5661 return false; // Intrinsic's stub is not implemented on this platform 5662 } 5663 const char* stubName = "squareToLen"; 5664 5665 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5666 5667 Node* x = argument(0); 5668 Node* len = argument(1); 5669 Node* z = argument(2); 5670 Node* zlen = argument(3); 5671 5672 x = must_be_not_null(x, true); 5673 z = must_be_not_null(z, true); 5674 5675 const Type* x_type = x->Value(&_gvn); 5676 const Type* z_type = z->Value(&_gvn); 5677 const TypeAryPtr* top_x = x_type->isa_aryptr(); 5678 const TypeAryPtr* top_z = z_type->isa_aryptr(); 5679 if (top_x == NULL || top_x->elem() == Type::BOTTOM || 5680 top_z == NULL || top_z->elem() == Type::BOTTOM) { 5681 // failed array check 5682 return false; 5683 } 5684 5685 BasicType x_elem = x_type->isa_aryptr()->elem()->array_element_basic_type(); 5686 BasicType z_elem = z_type->isa_aryptr()->elem()->array_element_basic_type(); 5687 if (x_elem != T_INT || z_elem != T_INT) { 5688 return false; 5689 } 5690 5691 5692 Node* x_start = array_element_address(x, intcon(0), x_elem); 5693 Node* z_start = array_element_address(z, intcon(0), z_elem); 5694 5695 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5696 OptoRuntime::squareToLen_Type(), 5697 stubAddr, stubName, TypePtr::BOTTOM, 5698 x_start, len, z_start, zlen); 5699 5700 set_result(z); 5701 return true; 5702 } 5703 5704 //-------------inline_mulAdd------------------------------------------ 5705 bool LibraryCallKit::inline_mulAdd() { 5706 assert(UseMulAddIntrinsic, "not implemented on this platform"); 5707 5708 address stubAddr = StubRoutines::mulAdd(); 5709 if (stubAddr == NULL) { 5710 return false; // Intrinsic's stub is not implemented on this platform 5711 } 5712 const char* stubName = "mulAdd"; 5713 5714 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 5715 5716 Node* out = argument(0); 5717 Node* in = argument(1); 5718 Node* offset = argument(2); 5719 Node* len = argument(3); 5720 Node* k = argument(4); 5721 5722 out = must_be_not_null(out, true); 5723 5724 const Type* out_type = out->Value(&_gvn); 5725 const Type* in_type = in->Value(&_gvn); 5726 const TypeAryPtr* top_out = out_type->isa_aryptr(); 5727 const TypeAryPtr* top_in = in_type->isa_aryptr(); 5728 if (top_out == NULL || top_out->elem() == Type::BOTTOM || 5729 top_in == NULL || top_in->elem() == Type::BOTTOM) { 5730 // failed array check 5731 return false; 5732 } 5733 5734 BasicType out_elem = out_type->isa_aryptr()->elem()->array_element_basic_type(); 5735 BasicType in_elem = in_type->isa_aryptr()->elem()->array_element_basic_type(); 5736 if (out_elem != T_INT || in_elem != T_INT) { 5737 return false; 5738 } 5739 5740 Node* outlen = load_array_length(out); 5741 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 5742 Node* out_start = array_element_address(out, intcon(0), out_elem); 5743 Node* in_start = array_element_address(in, intcon(0), in_elem); 5744 5745 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5746 OptoRuntime::mulAdd_Type(), 5747 stubAddr, stubName, TypePtr::BOTTOM, 5748 out_start,in_start, new_offset, len, k); 5749 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5750 set_result(result); 5751 return true; 5752 } 5753 5754 //-------------inline_montgomeryMultiply----------------------------------- 5755 bool LibraryCallKit::inline_montgomeryMultiply() { 5756 address stubAddr = StubRoutines::montgomeryMultiply(); 5757 if (stubAddr == NULL) { 5758 return false; // Intrinsic's stub is not implemented on this platform 5759 } 5760 5761 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 5762 const char* stubName = "montgomery_multiply"; 5763 5764 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 5765 5766 Node* a = argument(0); 5767 Node* b = argument(1); 5768 Node* n = argument(2); 5769 Node* len = argument(3); 5770 Node* inv = argument(4); 5771 Node* m = argument(6); 5772 5773 const Type* a_type = a->Value(&_gvn); 5774 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5775 const Type* b_type = b->Value(&_gvn); 5776 const TypeAryPtr* top_b = b_type->isa_aryptr(); 5777 const Type* n_type = a->Value(&_gvn); 5778 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5779 const Type* m_type = a->Value(&_gvn); 5780 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5781 if (top_a == NULL || top_a->elem() == Type::BOTTOM || 5782 top_b == NULL || top_b->elem() == Type::BOTTOM || 5783 top_n == NULL || top_n->elem() == Type::BOTTOM || 5784 top_m == NULL || top_m->elem() == Type::BOTTOM) { 5785 // failed array check 5786 return false; 5787 } 5788 5789 BasicType a_elem = a_type->isa_aryptr()->elem()->array_element_basic_type(); 5790 BasicType b_elem = b_type->isa_aryptr()->elem()->array_element_basic_type(); 5791 BasicType n_elem = n_type->isa_aryptr()->elem()->array_element_basic_type(); 5792 BasicType m_elem = m_type->isa_aryptr()->elem()->array_element_basic_type(); 5793 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5794 return false; 5795 } 5796 5797 // Make the call 5798 { 5799 Node* a_start = array_element_address(a, intcon(0), a_elem); 5800 Node* b_start = array_element_address(b, intcon(0), b_elem); 5801 Node* n_start = array_element_address(n, intcon(0), n_elem); 5802 Node* m_start = array_element_address(m, intcon(0), m_elem); 5803 5804 Node* call = make_runtime_call(RC_LEAF, 5805 OptoRuntime::montgomeryMultiply_Type(), 5806 stubAddr, stubName, TypePtr::BOTTOM, 5807 a_start, b_start, n_start, len, inv, top(), 5808 m_start); 5809 set_result(m); 5810 } 5811 5812 return true; 5813 } 5814 5815 bool LibraryCallKit::inline_montgomerySquare() { 5816 address stubAddr = StubRoutines::montgomerySquare(); 5817 if (stubAddr == NULL) { 5818 return false; // Intrinsic's stub is not implemented on this platform 5819 } 5820 5821 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 5822 const char* stubName = "montgomery_square"; 5823 5824 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 5825 5826 Node* a = argument(0); 5827 Node* n = argument(1); 5828 Node* len = argument(2); 5829 Node* inv = argument(3); 5830 Node* m = argument(5); 5831 5832 const Type* a_type = a->Value(&_gvn); 5833 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5834 const Type* n_type = a->Value(&_gvn); 5835 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5836 const Type* m_type = a->Value(&_gvn); 5837 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5838 if (top_a == NULL || top_a->elem() == Type::BOTTOM || 5839 top_n == NULL || top_n->elem() == Type::BOTTOM || 5840 top_m == NULL || top_m->elem() == Type::BOTTOM) { 5841 // failed array check 5842 return false; 5843 } 5844 5845 BasicType a_elem = a_type->isa_aryptr()->elem()->array_element_basic_type(); 5846 BasicType n_elem = n_type->isa_aryptr()->elem()->array_element_basic_type(); 5847 BasicType m_elem = m_type->isa_aryptr()->elem()->array_element_basic_type(); 5848 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5849 return false; 5850 } 5851 5852 // Make the call 5853 { 5854 Node* a_start = array_element_address(a, intcon(0), a_elem); 5855 Node* n_start = array_element_address(n, intcon(0), n_elem); 5856 Node* m_start = array_element_address(m, intcon(0), m_elem); 5857 5858 Node* call = make_runtime_call(RC_LEAF, 5859 OptoRuntime::montgomerySquare_Type(), 5860 stubAddr, stubName, TypePtr::BOTTOM, 5861 a_start, n_start, len, inv, top(), 5862 m_start); 5863 set_result(m); 5864 } 5865 5866 return true; 5867 } 5868 5869 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 5870 address stubAddr = NULL; 5871 const char* stubName = NULL; 5872 5873 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 5874 if (stubAddr == NULL) { 5875 return false; // Intrinsic's stub is not implemented on this platform 5876 } 5877 5878 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 5879 5880 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 5881 5882 Node* newArr = argument(0); 5883 Node* oldArr = argument(1); 5884 Node* newIdx = argument(2); 5885 Node* shiftCount = argument(3); 5886 Node* numIter = argument(4); 5887 5888 const Type* newArr_type = newArr->Value(&_gvn); 5889 const TypeAryPtr* top_newArr = newArr_type->isa_aryptr(); 5890 const Type* oldArr_type = oldArr->Value(&_gvn); 5891 const TypeAryPtr* top_oldArr = oldArr_type->isa_aryptr(); 5892 if (top_newArr == NULL || top_newArr->elem() == Type::BOTTOM || top_oldArr == NULL 5893 || top_oldArr->elem() == Type::BOTTOM) { 5894 return false; 5895 } 5896 5897 BasicType newArr_elem = newArr_type->isa_aryptr()->elem()->array_element_basic_type(); 5898 BasicType oldArr_elem = oldArr_type->isa_aryptr()->elem()->array_element_basic_type(); 5899 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 5900 return false; 5901 } 5902 5903 // Make the call 5904 { 5905 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 5906 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 5907 5908 Node* call = make_runtime_call(RC_LEAF, 5909 OptoRuntime::bigIntegerShift_Type(), 5910 stubAddr, 5911 stubName, 5912 TypePtr::BOTTOM, 5913 newArr_start, 5914 oldArr_start, 5915 newIdx, 5916 shiftCount, 5917 numIter); 5918 } 5919 5920 return true; 5921 } 5922 5923 //-------------inline_vectorizedMismatch------------------------------ 5924 bool LibraryCallKit::inline_vectorizedMismatch() { 5925 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 5926 5927 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 5928 Node* obja = argument(0); // Object 5929 Node* aoffset = argument(1); // long 5930 Node* objb = argument(3); // Object 5931 Node* boffset = argument(4); // long 5932 Node* length = argument(6); // int 5933 Node* scale = argument(7); // int 5934 5935 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 5936 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 5937 if (obja_t == NULL || obja_t->elem() == Type::BOTTOM || 5938 objb_t == NULL || objb_t->elem() == Type::BOTTOM || 5939 scale == top()) { 5940 return false; // failed input validation 5941 } 5942 5943 Node* obja_adr = make_unsafe_address(obja, aoffset); 5944 Node* objb_adr = make_unsafe_address(objb, boffset); 5945 5946 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 5947 // 5948 // inline_limit = ArrayOperationPartialInlineSize / element_size; 5949 // if (length <= inline_limit) { 5950 // inline_path: 5951 // vmask = VectorMaskGen length 5952 // vload1 = LoadVectorMasked obja, vmask 5953 // vload2 = LoadVectorMasked objb, vmask 5954 // result1 = VectorCmpMasked vload1, vload2, vmask 5955 // } else { 5956 // call_stub_path: 5957 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 5958 // } 5959 // exit_block: 5960 // return Phi(result1, result2); 5961 // 5962 enum { inline_path = 1, // input is small enough to process it all at once 5963 stub_path = 2, // input is too large; call into the VM 5964 PATH_LIMIT = 3 5965 }; 5966 5967 Node* exit_block = new RegionNode(PATH_LIMIT); 5968 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 5969 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 5970 5971 Node* call_stub_path = control(); 5972 5973 BasicType elem_bt = T_ILLEGAL; 5974 5975 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 5976 if (scale_t->is_con()) { 5977 switch (scale_t->get_con()) { 5978 case 0: elem_bt = T_BYTE; break; 5979 case 1: elem_bt = T_SHORT; break; 5980 case 2: elem_bt = T_INT; break; 5981 case 3: elem_bt = T_LONG; break; 5982 5983 default: elem_bt = T_ILLEGAL; break; // not supported 5984 } 5985 } 5986 5987 int inline_limit = 0; 5988 bool do_partial_inline = false; 5989 5990 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 5991 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 5992 do_partial_inline = inline_limit >= 16; 5993 } 5994 5995 if (do_partial_inline) { 5996 assert(elem_bt != T_ILLEGAL, "sanity"); 5997 5998 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 5999 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6000 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6001 6002 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6003 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6004 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6005 6006 call_stub_path = generate_guard(bol_gt, NULL, PROB_MIN); 6007 6008 if (!stopped()) { 6009 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6010 6011 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6012 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6013 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6014 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6015 6016 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6017 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6018 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6019 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6020 6021 exit_block->init_req(inline_path, control()); 6022 memory_phi->init_req(inline_path, map()->memory()); 6023 result_phi->init_req(inline_path, result); 6024 6025 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6026 clear_upper_avx(); 6027 } 6028 } 6029 } 6030 6031 if (call_stub_path != NULL) { 6032 set_control(call_stub_path); 6033 6034 Node* call = make_runtime_call(RC_LEAF, 6035 OptoRuntime::vectorizedMismatch_Type(), 6036 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6037 obja_adr, objb_adr, length, scale); 6038 6039 exit_block->init_req(stub_path, control()); 6040 memory_phi->init_req(stub_path, map()->memory()); 6041 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6042 } 6043 6044 exit_block = _gvn.transform(exit_block); 6045 memory_phi = _gvn.transform(memory_phi); 6046 result_phi = _gvn.transform(result_phi); 6047 6048 set_control(exit_block); 6049 set_all_memory(memory_phi); 6050 set_result(result_phi); 6051 6052 return true; 6053 } 6054 6055 /** 6056 * Calculate CRC32 for byte. 6057 * int java.util.zip.CRC32.update(int crc, int b) 6058 */ 6059 bool LibraryCallKit::inline_updateCRC32() { 6060 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6061 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6062 // no receiver since it is static method 6063 Node* crc = argument(0); // type: int 6064 Node* b = argument(1); // type: int 6065 6066 /* 6067 * int c = ~ crc; 6068 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6069 * b = b ^ (c >>> 8); 6070 * crc = ~b; 6071 */ 6072 6073 Node* M1 = intcon(-1); 6074 crc = _gvn.transform(new XorINode(crc, M1)); 6075 Node* result = _gvn.transform(new XorINode(crc, b)); 6076 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6077 6078 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6079 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6080 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6081 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6082 6083 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6084 result = _gvn.transform(new XorINode(crc, result)); 6085 result = _gvn.transform(new XorINode(result, M1)); 6086 set_result(result); 6087 return true; 6088 } 6089 6090 /** 6091 * Calculate CRC32 for byte[] array. 6092 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6093 */ 6094 bool LibraryCallKit::inline_updateBytesCRC32() { 6095 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6096 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6097 // no receiver since it is static method 6098 Node* crc = argument(0); // type: int 6099 Node* src = argument(1); // type: oop 6100 Node* offset = argument(2); // type: int 6101 Node* length = argument(3); // type: int 6102 6103 const Type* src_type = src->Value(&_gvn); 6104 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6105 if (top_src == NULL || top_src->elem() == Type::BOTTOM) { 6106 // failed array check 6107 return false; 6108 } 6109 6110 // Figure out the size and type of the elements we will be copying. 6111 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type(); 6112 if (src_elem != T_BYTE) { 6113 return false; 6114 } 6115 6116 // 'src_start' points to src array + scaled offset 6117 src = must_be_not_null(src, true); 6118 Node* src_start = array_element_address(src, offset, src_elem); 6119 6120 // We assume that range check is done by caller. 6121 // TODO: generate range check (offset+length < src.length) in debug VM. 6122 6123 // Call the stub. 6124 address stubAddr = StubRoutines::updateBytesCRC32(); 6125 const char *stubName = "updateBytesCRC32"; 6126 6127 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6128 stubAddr, stubName, TypePtr::BOTTOM, 6129 crc, src_start, length); 6130 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6131 set_result(result); 6132 return true; 6133 } 6134 6135 /** 6136 * Calculate CRC32 for ByteBuffer. 6137 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6138 */ 6139 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6140 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6141 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6142 // no receiver since it is static method 6143 Node* crc = argument(0); // type: int 6144 Node* src = argument(1); // type: long 6145 Node* offset = argument(3); // type: int 6146 Node* length = argument(4); // type: int 6147 6148 src = ConvL2X(src); // adjust Java long to machine word 6149 Node* base = _gvn.transform(new CastX2PNode(src)); 6150 offset = ConvI2X(offset); 6151 6152 // 'src_start' points to src array + scaled offset 6153 Node* src_start = basic_plus_adr(top(), base, offset); 6154 6155 // Call the stub. 6156 address stubAddr = StubRoutines::updateBytesCRC32(); 6157 const char *stubName = "updateBytesCRC32"; 6158 6159 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6160 stubAddr, stubName, TypePtr::BOTTOM, 6161 crc, src_start, length); 6162 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6163 set_result(result); 6164 return true; 6165 } 6166 6167 //------------------------------get_table_from_crc32c_class----------------------- 6168 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6169 Node* table = load_field_from_object(NULL, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6170 assert (table != NULL, "wrong version of java.util.zip.CRC32C"); 6171 6172 return table; 6173 } 6174 6175 //------------------------------inline_updateBytesCRC32C----------------------- 6176 // 6177 // Calculate CRC32C for byte[] array. 6178 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6179 // 6180 bool LibraryCallKit::inline_updateBytesCRC32C() { 6181 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6182 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6183 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6184 // no receiver since it is a static method 6185 Node* crc = argument(0); // type: int 6186 Node* src = argument(1); // type: oop 6187 Node* offset = argument(2); // type: int 6188 Node* end = argument(3); // type: int 6189 6190 Node* length = _gvn.transform(new SubINode(end, offset)); 6191 6192 const Type* src_type = src->Value(&_gvn); 6193 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6194 if (top_src == NULL || top_src->elem() == Type::BOTTOM) { 6195 // failed array check 6196 return false; 6197 } 6198 6199 // Figure out the size and type of the elements we will be copying. 6200 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type(); 6201 if (src_elem != T_BYTE) { 6202 return false; 6203 } 6204 6205 // 'src_start' points to src array + scaled offset 6206 src = must_be_not_null(src, true); 6207 Node* src_start = array_element_address(src, offset, src_elem); 6208 6209 // static final int[] byteTable in class CRC32C 6210 Node* table = get_table_from_crc32c_class(callee()->holder()); 6211 table = must_be_not_null(table, true); 6212 Node* table_start = array_element_address(table, intcon(0), T_INT); 6213 6214 // We assume that range check is done by caller. 6215 // TODO: generate range check (offset+length < src.length) in debug VM. 6216 6217 // Call the stub. 6218 address stubAddr = StubRoutines::updateBytesCRC32C(); 6219 const char *stubName = "updateBytesCRC32C"; 6220 6221 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6222 stubAddr, stubName, TypePtr::BOTTOM, 6223 crc, src_start, length, table_start); 6224 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6225 set_result(result); 6226 return true; 6227 } 6228 6229 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6230 // 6231 // Calculate CRC32C for DirectByteBuffer. 6232 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6233 // 6234 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6235 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6236 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6237 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6238 // no receiver since it is a static method 6239 Node* crc = argument(0); // type: int 6240 Node* src = argument(1); // type: long 6241 Node* offset = argument(3); // type: int 6242 Node* end = argument(4); // type: int 6243 6244 Node* length = _gvn.transform(new SubINode(end, offset)); 6245 6246 src = ConvL2X(src); // adjust Java long to machine word 6247 Node* base = _gvn.transform(new CastX2PNode(src)); 6248 offset = ConvI2X(offset); 6249 6250 // 'src_start' points to src array + scaled offset 6251 Node* src_start = basic_plus_adr(top(), base, offset); 6252 6253 // static final int[] byteTable in class CRC32C 6254 Node* table = get_table_from_crc32c_class(callee()->holder()); 6255 table = must_be_not_null(table, true); 6256 Node* table_start = array_element_address(table, intcon(0), T_INT); 6257 6258 // Call the stub. 6259 address stubAddr = StubRoutines::updateBytesCRC32C(); 6260 const char *stubName = "updateBytesCRC32C"; 6261 6262 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6263 stubAddr, stubName, TypePtr::BOTTOM, 6264 crc, src_start, length, table_start); 6265 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6266 set_result(result); 6267 return true; 6268 } 6269 6270 //------------------------------inline_updateBytesAdler32---------------------- 6271 // 6272 // Calculate Adler32 checksum for byte[] array. 6273 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6274 // 6275 bool LibraryCallKit::inline_updateBytesAdler32() { 6276 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6277 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6278 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6279 // no receiver since it is static method 6280 Node* crc = argument(0); // type: int 6281 Node* src = argument(1); // type: oop 6282 Node* offset = argument(2); // type: int 6283 Node* length = argument(3); // type: int 6284 6285 const Type* src_type = src->Value(&_gvn); 6286 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6287 if (top_src == NULL || top_src->elem() == Type::BOTTOM) { 6288 // failed array check 6289 return false; 6290 } 6291 6292 // Figure out the size and type of the elements we will be copying. 6293 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type(); 6294 if (src_elem != T_BYTE) { 6295 return false; 6296 } 6297 6298 // 'src_start' points to src array + scaled offset 6299 Node* src_start = array_element_address(src, offset, src_elem); 6300 6301 // We assume that range check is done by caller. 6302 // TODO: generate range check (offset+length < src.length) in debug VM. 6303 6304 // Call the stub. 6305 address stubAddr = StubRoutines::updateBytesAdler32(); 6306 const char *stubName = "updateBytesAdler32"; 6307 6308 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6309 stubAddr, stubName, TypePtr::BOTTOM, 6310 crc, src_start, length); 6311 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6312 set_result(result); 6313 return true; 6314 } 6315 6316 //------------------------------inline_updateByteBufferAdler32--------------- 6317 // 6318 // Calculate Adler32 checksum for DirectByteBuffer. 6319 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6320 // 6321 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6322 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6323 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6324 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6325 // no receiver since it is static method 6326 Node* crc = argument(0); // type: int 6327 Node* src = argument(1); // type: long 6328 Node* offset = argument(3); // type: int 6329 Node* length = argument(4); // type: int 6330 6331 src = ConvL2X(src); // adjust Java long to machine word 6332 Node* base = _gvn.transform(new CastX2PNode(src)); 6333 offset = ConvI2X(offset); 6334 6335 // 'src_start' points to src array + scaled offset 6336 Node* src_start = basic_plus_adr(top(), base, offset); 6337 6338 // Call the stub. 6339 address stubAddr = StubRoutines::updateBytesAdler32(); 6340 const char *stubName = "updateBytesAdler32"; 6341 6342 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6343 stubAddr, stubName, TypePtr::BOTTOM, 6344 crc, src_start, length); 6345 6346 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6347 set_result(result); 6348 return true; 6349 } 6350 6351 //----------------------------inline_reference_get---------------------------- 6352 // public T java.lang.ref.Reference.get(); 6353 bool LibraryCallKit::inline_reference_get() { 6354 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6355 6356 // Get the argument: 6357 Node* reference_obj = null_check_receiver(); 6358 if (stopped()) return true; 6359 6360 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6361 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6362 decorators, /*is_static*/ false, NULL); 6363 if (result == NULL) return false; 6364 6365 // Add memory barrier to prevent commoning reads from this field 6366 // across safepoint since GC can change its value. 6367 insert_mem_bar(Op_MemBarCPUOrder); 6368 6369 set_result(result); 6370 return true; 6371 } 6372 6373 //----------------------------inline_reference_refersTo0---------------------------- 6374 // bool java.lang.ref.Reference.refersTo0(); 6375 // bool java.lang.ref.PhantomReference.refersTo0(); 6376 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6377 // Get arguments: 6378 Node* reference_obj = null_check_receiver(); 6379 Node* other_obj = argument(1); 6380 if (stopped()) return true; 6381 6382 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6383 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6384 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6385 decorators, /*is_static*/ false, NULL); 6386 if (referent == NULL) return false; 6387 6388 // Add memory barrier to prevent commoning reads from this field 6389 // across safepoint since GC can change its value. 6390 insert_mem_bar(Op_MemBarCPUOrder); 6391 6392 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6393 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6394 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6395 6396 RegionNode* region = new RegionNode(3); 6397 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6398 6399 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6400 region->init_req(1, if_true); 6401 phi->init_req(1, intcon(1)); 6402 6403 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6404 region->init_req(2, if_false); 6405 phi->init_req(2, intcon(0)); 6406 6407 set_control(_gvn.transform(region)); 6408 record_for_igvn(region); 6409 set_result(_gvn.transform(phi)); 6410 return true; 6411 } 6412 6413 6414 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 6415 DecoratorSet decorators, bool is_static, 6416 ciInstanceKlass* fromKls) { 6417 if (fromKls == NULL) { 6418 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6419 assert(tinst != NULL, "obj is null"); 6420 assert(tinst->is_loaded(), "obj is not loaded"); 6421 fromKls = tinst->instance_klass(); 6422 } else { 6423 assert(is_static, "only for static field access"); 6424 } 6425 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6426 ciSymbol::make(fieldTypeString), 6427 is_static); 6428 6429 assert(field != NULL, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 6430 if (field == NULL) return (Node *) NULL; 6431 6432 if (is_static) { 6433 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6434 fromObj = makecon(tip); 6435 } 6436 6437 // Next code copied from Parse::do_get_xxx(): 6438 6439 // Compute address and memory type. 6440 int offset = field->offset_in_bytes(); 6441 bool is_vol = field->is_volatile(); 6442 ciType* field_klass = field->type(); 6443 assert(field_klass->is_loaded(), "should be loaded"); 6444 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 6445 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6446 BasicType bt = field->layout_type(); 6447 6448 // Build the resultant type of the load 6449 const Type *type; 6450 if (bt == T_OBJECT) { 6451 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 6452 } else { 6453 type = Type::get_const_basic_type(bt); 6454 } 6455 6456 if (is_vol) { 6457 decorators |= MO_SEQ_CST; 6458 } 6459 6460 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 6461 } 6462 6463 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 6464 bool is_exact /* true */, bool is_static /* false */, 6465 ciInstanceKlass * fromKls /* NULL */) { 6466 if (fromKls == NULL) { 6467 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6468 assert(tinst != NULL, "obj is null"); 6469 assert(tinst->is_loaded(), "obj is not loaded"); 6470 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 6471 fromKls = tinst->instance_klass(); 6472 } 6473 else { 6474 assert(is_static, "only for static field access"); 6475 } 6476 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6477 ciSymbol::make(fieldTypeString), 6478 is_static); 6479 6480 assert(field != NULL, "undefined field"); 6481 assert(!field->is_volatile(), "not defined for volatile fields"); 6482 6483 if (is_static) { 6484 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6485 fromObj = makecon(tip); 6486 } 6487 6488 // Next code copied from Parse::do_get_xxx(): 6489 6490 // Compute address and memory type. 6491 int offset = field->offset_in_bytes(); 6492 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6493 6494 return adr; 6495 } 6496 6497 //------------------------------inline_aescrypt_Block----------------------- 6498 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 6499 address stubAddr = NULL; 6500 const char *stubName; 6501 assert(UseAES, "need AES instruction support"); 6502 6503 switch(id) { 6504 case vmIntrinsics::_aescrypt_encryptBlock: 6505 stubAddr = StubRoutines::aescrypt_encryptBlock(); 6506 stubName = "aescrypt_encryptBlock"; 6507 break; 6508 case vmIntrinsics::_aescrypt_decryptBlock: 6509 stubAddr = StubRoutines::aescrypt_decryptBlock(); 6510 stubName = "aescrypt_decryptBlock"; 6511 break; 6512 default: 6513 break; 6514 } 6515 if (stubAddr == NULL) return false; 6516 6517 Node* aescrypt_object = argument(0); 6518 Node* src = argument(1); 6519 Node* src_offset = argument(2); 6520 Node* dest = argument(3); 6521 Node* dest_offset = argument(4); 6522 6523 src = must_be_not_null(src, true); 6524 dest = must_be_not_null(dest, true); 6525 6526 // (1) src and dest are arrays. 6527 const Type* src_type = src->Value(&_gvn); 6528 const Type* dest_type = dest->Value(&_gvn); 6529 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6530 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6531 assert (top_src != NULL && top_src->elem() != Type::BOTTOM && top_dest != NULL && top_dest->elem() != Type::BOTTOM, "args are strange"); 6532 6533 // for the quick and dirty code we will skip all the checks. 6534 // we are just trying to get the call to be generated. 6535 Node* src_start = src; 6536 Node* dest_start = dest; 6537 if (src_offset != NULL || dest_offset != NULL) { 6538 assert(src_offset != NULL && dest_offset != NULL, ""); 6539 src_start = array_element_address(src, src_offset, T_BYTE); 6540 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6541 } 6542 6543 // now need to get the start of its expanded key array 6544 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6545 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6546 if (k_start == NULL) return false; 6547 6548 // Call the stub. 6549 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 6550 stubAddr, stubName, TypePtr::BOTTOM, 6551 src_start, dest_start, k_start); 6552 6553 return true; 6554 } 6555 6556 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 6557 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 6558 address stubAddr = NULL; 6559 const char *stubName = NULL; 6560 6561 assert(UseAES, "need AES instruction support"); 6562 6563 switch(id) { 6564 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 6565 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 6566 stubName = "cipherBlockChaining_encryptAESCrypt"; 6567 break; 6568 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 6569 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 6570 stubName = "cipherBlockChaining_decryptAESCrypt"; 6571 break; 6572 default: 6573 break; 6574 } 6575 if (stubAddr == NULL) return false; 6576 6577 Node* cipherBlockChaining_object = argument(0); 6578 Node* src = argument(1); 6579 Node* src_offset = argument(2); 6580 Node* len = argument(3); 6581 Node* dest = argument(4); 6582 Node* dest_offset = argument(5); 6583 6584 src = must_be_not_null(src, false); 6585 dest = must_be_not_null(dest, false); 6586 6587 // (1) src and dest are arrays. 6588 const Type* src_type = src->Value(&_gvn); 6589 const Type* dest_type = dest->Value(&_gvn); 6590 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6591 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6592 assert (top_src != NULL && top_src->elem() != Type::BOTTOM 6593 && top_dest != NULL && top_dest->elem() != Type::BOTTOM, "args are strange"); 6594 6595 // checks are the responsibility of the caller 6596 Node* src_start = src; 6597 Node* dest_start = dest; 6598 if (src_offset != NULL || dest_offset != NULL) { 6599 assert(src_offset != NULL && dest_offset != NULL, ""); 6600 src_start = array_element_address(src, src_offset, T_BYTE); 6601 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6602 } 6603 6604 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6605 // (because of the predicated logic executed earlier). 6606 // so we cast it here safely. 6607 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6608 6609 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6610 if (embeddedCipherObj == NULL) return false; 6611 6612 // cast it to what we know it will be at runtime 6613 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 6614 assert(tinst != NULL, "CBC obj is null"); 6615 assert(tinst->is_loaded(), "CBC obj is not loaded"); 6616 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6617 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6618 6619 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6620 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6621 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6622 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6623 aescrypt_object = _gvn.transform(aescrypt_object); 6624 6625 // we need to get the start of the aescrypt_object's expanded key array 6626 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6627 if (k_start == NULL) return false; 6628 6629 // similarly, get the start address of the r vector 6630 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 6631 if (objRvec == NULL) return false; 6632 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 6633 6634 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6635 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6636 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 6637 stubAddr, stubName, TypePtr::BOTTOM, 6638 src_start, dest_start, k_start, r_start, len); 6639 6640 // return cipher length (int) 6641 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 6642 set_result(retvalue); 6643 return true; 6644 } 6645 6646 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 6647 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 6648 address stubAddr = NULL; 6649 const char *stubName = NULL; 6650 6651 assert(UseAES, "need AES instruction support"); 6652 6653 switch (id) { 6654 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 6655 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 6656 stubName = "electronicCodeBook_encryptAESCrypt"; 6657 break; 6658 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 6659 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 6660 stubName = "electronicCodeBook_decryptAESCrypt"; 6661 break; 6662 default: 6663 break; 6664 } 6665 6666 if (stubAddr == NULL) return false; 6667 6668 Node* electronicCodeBook_object = argument(0); 6669 Node* src = argument(1); 6670 Node* src_offset = argument(2); 6671 Node* len = argument(3); 6672 Node* dest = argument(4); 6673 Node* dest_offset = argument(5); 6674 6675 // (1) src and dest are arrays. 6676 const Type* src_type = src->Value(&_gvn); 6677 const Type* dest_type = dest->Value(&_gvn); 6678 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6679 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6680 assert(top_src != NULL && top_src->elem() != Type::BOTTOM 6681 && top_dest != NULL && top_dest->elem() != Type::BOTTOM, "args are strange"); 6682 6683 // checks are the responsibility of the caller 6684 Node* src_start = src; 6685 Node* dest_start = dest; 6686 if (src_offset != NULL || dest_offset != NULL) { 6687 assert(src_offset != NULL && dest_offset != NULL, ""); 6688 src_start = array_element_address(src, src_offset, T_BYTE); 6689 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6690 } 6691 6692 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6693 // (because of the predicated logic executed earlier). 6694 // so we cast it here safely. 6695 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6696 6697 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6698 if (embeddedCipherObj == NULL) return false; 6699 6700 // cast it to what we know it will be at runtime 6701 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 6702 assert(tinst != NULL, "ECB obj is null"); 6703 assert(tinst->is_loaded(), "ECB obj is not loaded"); 6704 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6705 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6706 6707 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6708 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6709 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6710 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6711 aescrypt_object = _gvn.transform(aescrypt_object); 6712 6713 // we need to get the start of the aescrypt_object's expanded key array 6714 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6715 if (k_start == NULL) return false; 6716 6717 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6718 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 6719 OptoRuntime::electronicCodeBook_aescrypt_Type(), 6720 stubAddr, stubName, TypePtr::BOTTOM, 6721 src_start, dest_start, k_start, len); 6722 6723 // return cipher length (int) 6724 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 6725 set_result(retvalue); 6726 return true; 6727 } 6728 6729 //------------------------------inline_counterMode_AESCrypt----------------------- 6730 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 6731 assert(UseAES, "need AES instruction support"); 6732 if (!UseAESCTRIntrinsics) return false; 6733 6734 address stubAddr = NULL; 6735 const char *stubName = NULL; 6736 if (id == vmIntrinsics::_counterMode_AESCrypt) { 6737 stubAddr = StubRoutines::counterMode_AESCrypt(); 6738 stubName = "counterMode_AESCrypt"; 6739 } 6740 if (stubAddr == NULL) return false; 6741 6742 Node* counterMode_object = argument(0); 6743 Node* src = argument(1); 6744 Node* src_offset = argument(2); 6745 Node* len = argument(3); 6746 Node* dest = argument(4); 6747 Node* dest_offset = argument(5); 6748 6749 // (1) src and dest are arrays. 6750 const Type* src_type = src->Value(&_gvn); 6751 const Type* dest_type = dest->Value(&_gvn); 6752 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6753 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6754 assert(top_src != NULL && top_src->elem() != Type::BOTTOM && 6755 top_dest != NULL && top_dest->elem() != Type::BOTTOM, "args are strange"); 6756 6757 // checks are the responsibility of the caller 6758 Node* src_start = src; 6759 Node* dest_start = dest; 6760 if (src_offset != NULL || dest_offset != NULL) { 6761 assert(src_offset != NULL && dest_offset != NULL, ""); 6762 src_start = array_element_address(src, src_offset, T_BYTE); 6763 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6764 } 6765 6766 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6767 // (because of the predicated logic executed earlier). 6768 // so we cast it here safely. 6769 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6770 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6771 if (embeddedCipherObj == NULL) return false; 6772 // cast it to what we know it will be at runtime 6773 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 6774 assert(tinst != NULL, "CTR obj is null"); 6775 assert(tinst->is_loaded(), "CTR obj is not loaded"); 6776 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6777 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6778 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6779 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6780 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6781 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6782 aescrypt_object = _gvn.transform(aescrypt_object); 6783 // we need to get the start of the aescrypt_object's expanded key array 6784 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6785 if (k_start == NULL) return false; 6786 // similarly, get the start address of the r vector 6787 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 6788 if (obj_counter == NULL) return false; 6789 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 6790 6791 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 6792 if (saved_encCounter == NULL) return false; 6793 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 6794 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 6795 6796 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6797 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6798 OptoRuntime::counterMode_aescrypt_Type(), 6799 stubAddr, stubName, TypePtr::BOTTOM, 6800 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 6801 6802 // return cipher length (int) 6803 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 6804 set_result(retvalue); 6805 return true; 6806 } 6807 6808 //------------------------------get_key_start_from_aescrypt_object----------------------- 6809 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 6810 #if defined(PPC64) || defined(S390) 6811 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 6812 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 6813 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 6814 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 6815 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 6816 assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6817 if (objSessionK == NULL) { 6818 return (Node *) NULL; 6819 } 6820 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 6821 #else 6822 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 6823 #endif // PPC64 6824 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6825 if (objAESCryptKey == NULL) return (Node *) NULL; 6826 6827 // now have the array, need to get the start address of the K array 6828 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 6829 return k_start; 6830 } 6831 6832 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 6833 // Return node representing slow path of predicate check. 6834 // the pseudo code we want to emulate with this predicate is: 6835 // for encryption: 6836 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6837 // for decryption: 6838 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6839 // note cipher==plain is more conservative than the original java code but that's OK 6840 // 6841 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 6842 // The receiver was checked for NULL already. 6843 Node* objCBC = argument(0); 6844 6845 Node* src = argument(1); 6846 Node* dest = argument(4); 6847 6848 // Load embeddedCipher field of CipherBlockChaining object. 6849 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6850 6851 // get AESCrypt klass for instanceOf check 6852 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6853 // will have same classloader as CipherBlockChaining object 6854 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 6855 assert(tinst != NULL, "CBCobj is null"); 6856 assert(tinst->is_loaded(), "CBCobj is not loaded"); 6857 6858 // we want to do an instanceof comparison against the AESCrypt class 6859 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6860 if (!klass_AESCrypt->is_loaded()) { 6861 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6862 Node* ctrl = control(); 6863 set_control(top()); // no regular fast path 6864 return ctrl; 6865 } 6866 6867 src = must_be_not_null(src, true); 6868 dest = must_be_not_null(dest, true); 6869 6870 // Resolve oops to stable for CmpP below. 6871 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6872 6873 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6874 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6875 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6876 6877 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6878 6879 // for encryption, we are done 6880 if (!decrypting) 6881 return instof_false; // even if it is NULL 6882 6883 // for decryption, we need to add a further check to avoid 6884 // taking the intrinsic path when cipher and plain are the same 6885 // see the original java code for why. 6886 RegionNode* region = new RegionNode(3); 6887 region->init_req(1, instof_false); 6888 6889 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6890 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6891 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6892 region->init_req(2, src_dest_conjoint); 6893 6894 record_for_igvn(region); 6895 return _gvn.transform(region); 6896 } 6897 6898 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 6899 // Return node representing slow path of predicate check. 6900 // the pseudo code we want to emulate with this predicate is: 6901 // for encryption: 6902 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6903 // for decryption: 6904 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6905 // note cipher==plain is more conservative than the original java code but that's OK 6906 // 6907 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 6908 // The receiver was checked for NULL already. 6909 Node* objECB = argument(0); 6910 6911 // Load embeddedCipher field of ElectronicCodeBook object. 6912 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6913 6914 // get AESCrypt klass for instanceOf check 6915 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6916 // will have same classloader as ElectronicCodeBook object 6917 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 6918 assert(tinst != NULL, "ECBobj is null"); 6919 assert(tinst->is_loaded(), "ECBobj is not loaded"); 6920 6921 // we want to do an instanceof comparison against the AESCrypt class 6922 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6923 if (!klass_AESCrypt->is_loaded()) { 6924 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6925 Node* ctrl = control(); 6926 set_control(top()); // no regular fast path 6927 return ctrl; 6928 } 6929 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6930 6931 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6932 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6933 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6934 6935 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6936 6937 // for encryption, we are done 6938 if (!decrypting) 6939 return instof_false; // even if it is NULL 6940 6941 // for decryption, we need to add a further check to avoid 6942 // taking the intrinsic path when cipher and plain are the same 6943 // see the original java code for why. 6944 RegionNode* region = new RegionNode(3); 6945 region->init_req(1, instof_false); 6946 Node* src = argument(1); 6947 Node* dest = argument(4); 6948 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6949 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6950 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6951 region->init_req(2, src_dest_conjoint); 6952 6953 record_for_igvn(region); 6954 return _gvn.transform(region); 6955 } 6956 6957 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 6958 // Return node representing slow path of predicate check. 6959 // the pseudo code we want to emulate with this predicate is: 6960 // for encryption: 6961 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6962 // for decryption: 6963 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6964 // note cipher==plain is more conservative than the original java code but that's OK 6965 // 6966 6967 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 6968 // The receiver was checked for NULL already. 6969 Node* objCTR = argument(0); 6970 6971 // Load embeddedCipher field of CipherBlockChaining object. 6972 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6973 6974 // get AESCrypt klass for instanceOf check 6975 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6976 // will have same classloader as CipherBlockChaining object 6977 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 6978 assert(tinst != NULL, "CTRobj is null"); 6979 assert(tinst->is_loaded(), "CTRobj is not loaded"); 6980 6981 // we want to do an instanceof comparison against the AESCrypt class 6982 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6983 if (!klass_AESCrypt->is_loaded()) { 6984 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6985 Node* ctrl = control(); 6986 set_control(top()); // no regular fast path 6987 return ctrl; 6988 } 6989 6990 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6991 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6992 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6993 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6994 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6995 6996 return instof_false; // even if it is NULL 6997 } 6998 6999 //------------------------------inline_ghash_processBlocks 7000 bool LibraryCallKit::inline_ghash_processBlocks() { 7001 address stubAddr; 7002 const char *stubName; 7003 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7004 7005 stubAddr = StubRoutines::ghash_processBlocks(); 7006 stubName = "ghash_processBlocks"; 7007 7008 Node* data = argument(0); 7009 Node* offset = argument(1); 7010 Node* len = argument(2); 7011 Node* state = argument(3); 7012 Node* subkeyH = argument(4); 7013 7014 state = must_be_not_null(state, true); 7015 subkeyH = must_be_not_null(subkeyH, true); 7016 data = must_be_not_null(data, true); 7017 7018 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7019 assert(state_start, "state is NULL"); 7020 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7021 assert(subkeyH_start, "subkeyH is NULL"); 7022 Node* data_start = array_element_address(data, offset, T_BYTE); 7023 assert(data_start, "data is NULL"); 7024 7025 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7026 OptoRuntime::ghash_processBlocks_Type(), 7027 stubAddr, stubName, TypePtr::BOTTOM, 7028 state_start, subkeyH_start, data_start, len); 7029 return true; 7030 } 7031 7032 bool LibraryCallKit::inline_base64_encodeBlock() { 7033 address stubAddr; 7034 const char *stubName; 7035 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7036 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7037 stubAddr = StubRoutines::base64_encodeBlock(); 7038 stubName = "encodeBlock"; 7039 7040 if (!stubAddr) return false; 7041 Node* base64obj = argument(0); 7042 Node* src = argument(1); 7043 Node* offset = argument(2); 7044 Node* len = argument(3); 7045 Node* dest = argument(4); 7046 Node* dp = argument(5); 7047 Node* isURL = argument(6); 7048 7049 src = must_be_not_null(src, true); 7050 dest = must_be_not_null(dest, true); 7051 7052 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7053 assert(src_start, "source array is NULL"); 7054 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7055 assert(dest_start, "destination array is NULL"); 7056 7057 Node* base64 = make_runtime_call(RC_LEAF, 7058 OptoRuntime::base64_encodeBlock_Type(), 7059 stubAddr, stubName, TypePtr::BOTTOM, 7060 src_start, offset, len, dest_start, dp, isURL); 7061 return true; 7062 } 7063 7064 bool LibraryCallKit::inline_base64_decodeBlock() { 7065 address stubAddr; 7066 const char *stubName; 7067 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7068 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7069 stubAddr = StubRoutines::base64_decodeBlock(); 7070 stubName = "decodeBlock"; 7071 7072 if (!stubAddr) return false; 7073 Node* base64obj = argument(0); 7074 Node* src = argument(1); 7075 Node* src_offset = argument(2); 7076 Node* len = argument(3); 7077 Node* dest = argument(4); 7078 Node* dest_offset = argument(5); 7079 Node* isURL = argument(6); 7080 Node* isMIME = argument(7); 7081 7082 src = must_be_not_null(src, true); 7083 dest = must_be_not_null(dest, true); 7084 7085 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7086 assert(src_start, "source array is NULL"); 7087 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7088 assert(dest_start, "destination array is NULL"); 7089 7090 Node* call = make_runtime_call(RC_LEAF, 7091 OptoRuntime::base64_decodeBlock_Type(), 7092 stubAddr, stubName, TypePtr::BOTTOM, 7093 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7094 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7095 set_result(result); 7096 return true; 7097 } 7098 7099 //------------------------------inline_digestBase_implCompress----------------------- 7100 // 7101 // Calculate MD5 for single-block byte[] array. 7102 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7103 // 7104 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7105 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7106 // 7107 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7108 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7109 // 7110 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7111 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7112 // 7113 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7114 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7115 // 7116 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7117 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7118 7119 Node* digestBase_obj = argument(0); 7120 Node* src = argument(1); // type oop 7121 Node* ofs = argument(2); // type int 7122 7123 const Type* src_type = src->Value(&_gvn); 7124 const TypeAryPtr* top_src = src_type->isa_aryptr(); 7125 if (top_src == NULL || top_src->elem() == Type::BOTTOM) { 7126 // failed array check 7127 return false; 7128 } 7129 // Figure out the size and type of the elements we will be copying. 7130 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type(); 7131 if (src_elem != T_BYTE) { 7132 return false; 7133 } 7134 // 'src_start' points to src array + offset 7135 src = must_be_not_null(src, true); 7136 Node* src_start = array_element_address(src, ofs, src_elem); 7137 Node* state = NULL; 7138 Node* digest_length = NULL; 7139 address stubAddr; 7140 const char *stubName; 7141 7142 switch(id) { 7143 case vmIntrinsics::_md5_implCompress: 7144 assert(UseMD5Intrinsics, "need MD5 instruction support"); 7145 state = get_state_from_digest_object(digestBase_obj, T_INT); 7146 stubAddr = StubRoutines::md5_implCompress(); 7147 stubName = "md5_implCompress"; 7148 break; 7149 case vmIntrinsics::_sha_implCompress: 7150 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 7151 state = get_state_from_digest_object(digestBase_obj, T_INT); 7152 stubAddr = StubRoutines::sha1_implCompress(); 7153 stubName = "sha1_implCompress"; 7154 break; 7155 case vmIntrinsics::_sha2_implCompress: 7156 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 7157 state = get_state_from_digest_object(digestBase_obj, T_INT); 7158 stubAddr = StubRoutines::sha256_implCompress(); 7159 stubName = "sha256_implCompress"; 7160 break; 7161 case vmIntrinsics::_sha5_implCompress: 7162 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 7163 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7164 stubAddr = StubRoutines::sha512_implCompress(); 7165 stubName = "sha512_implCompress"; 7166 break; 7167 case vmIntrinsics::_sha3_implCompress: 7168 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 7169 state = get_state_from_digest_object(digestBase_obj, T_BYTE); 7170 stubAddr = StubRoutines::sha3_implCompress(); 7171 stubName = "sha3_implCompress"; 7172 digest_length = get_digest_length_from_digest_object(digestBase_obj); 7173 if (digest_length == NULL) return false; 7174 break; 7175 default: 7176 fatal_unexpected_iid(id); 7177 return false; 7178 } 7179 if (state == NULL) return false; 7180 7181 assert(stubAddr != NULL, "Stub is generated"); 7182 if (stubAddr == NULL) return false; 7183 7184 // Call the stub. 7185 Node* call; 7186 if (digest_length == NULL) { 7187 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 7188 stubAddr, stubName, TypePtr::BOTTOM, 7189 src_start, state); 7190 } else { 7191 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 7192 stubAddr, stubName, TypePtr::BOTTOM, 7193 src_start, state, digest_length); 7194 } 7195 7196 return true; 7197 } 7198 7199 //------------------------------inline_digestBase_implCompressMB----------------------- 7200 // 7201 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 7202 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 7203 // 7204 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 7205 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7206 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7207 assert((uint)predicate < 5, "sanity"); 7208 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 7209 7210 Node* digestBase_obj = argument(0); // The receiver was checked for NULL already. 7211 Node* src = argument(1); // byte[] array 7212 Node* ofs = argument(2); // type int 7213 Node* limit = argument(3); // type int 7214 7215 const Type* src_type = src->Value(&_gvn); 7216 const TypeAryPtr* top_src = src_type->isa_aryptr(); 7217 if (top_src == NULL || top_src->elem() == Type::BOTTOM) { 7218 // failed array check 7219 return false; 7220 } 7221 // Figure out the size and type of the elements we will be copying. 7222 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type(); 7223 if (src_elem != T_BYTE) { 7224 return false; 7225 } 7226 // 'src_start' points to src array + offset 7227 src = must_be_not_null(src, false); 7228 Node* src_start = array_element_address(src, ofs, src_elem); 7229 7230 const char* klass_digestBase_name = NULL; 7231 const char* stub_name = NULL; 7232 address stub_addr = NULL; 7233 BasicType elem_type = T_INT; 7234 7235 switch (predicate) { 7236 case 0: 7237 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 7238 klass_digestBase_name = "sun/security/provider/MD5"; 7239 stub_name = "md5_implCompressMB"; 7240 stub_addr = StubRoutines::md5_implCompressMB(); 7241 } 7242 break; 7243 case 1: 7244 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 7245 klass_digestBase_name = "sun/security/provider/SHA"; 7246 stub_name = "sha1_implCompressMB"; 7247 stub_addr = StubRoutines::sha1_implCompressMB(); 7248 } 7249 break; 7250 case 2: 7251 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 7252 klass_digestBase_name = "sun/security/provider/SHA2"; 7253 stub_name = "sha256_implCompressMB"; 7254 stub_addr = StubRoutines::sha256_implCompressMB(); 7255 } 7256 break; 7257 case 3: 7258 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 7259 klass_digestBase_name = "sun/security/provider/SHA5"; 7260 stub_name = "sha512_implCompressMB"; 7261 stub_addr = StubRoutines::sha512_implCompressMB(); 7262 elem_type = T_LONG; 7263 } 7264 break; 7265 case 4: 7266 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 7267 klass_digestBase_name = "sun/security/provider/SHA3"; 7268 stub_name = "sha3_implCompressMB"; 7269 stub_addr = StubRoutines::sha3_implCompressMB(); 7270 elem_type = T_BYTE; 7271 } 7272 break; 7273 default: 7274 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 7275 } 7276 if (klass_digestBase_name != NULL) { 7277 assert(stub_addr != NULL, "Stub is generated"); 7278 if (stub_addr == NULL) return false; 7279 7280 // get DigestBase klass to lookup for SHA klass 7281 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 7282 assert(tinst != NULL, "digestBase_obj is not instance???"); 7283 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7284 7285 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 7286 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 7287 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 7288 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 7289 } 7290 return false; 7291 } 7292 7293 //------------------------------inline_digestBase_implCompressMB----------------------- 7294 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 7295 BasicType elem_type, address stubAddr, const char *stubName, 7296 Node* src_start, Node* ofs, Node* limit) { 7297 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 7298 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7299 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 7300 digest_obj = _gvn.transform(digest_obj); 7301 7302 Node* state = get_state_from_digest_object(digest_obj, elem_type); 7303 if (state == NULL) return false; 7304 7305 Node* digest_length = NULL; 7306 if (strcmp("sha3_implCompressMB", stubName) == 0) { 7307 digest_length = get_digest_length_from_digest_object(digest_obj); 7308 if (digest_length == NULL) return false; 7309 } 7310 7311 // Call the stub. 7312 Node* call; 7313 if (digest_length == NULL) { 7314 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7315 OptoRuntime::digestBase_implCompressMB_Type(false), 7316 stubAddr, stubName, TypePtr::BOTTOM, 7317 src_start, state, ofs, limit); 7318 } else { 7319 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7320 OptoRuntime::digestBase_implCompressMB_Type(true), 7321 stubAddr, stubName, TypePtr::BOTTOM, 7322 src_start, state, digest_length, ofs, limit); 7323 } 7324 7325 // return ofs (int) 7326 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7327 set_result(result); 7328 7329 return true; 7330 } 7331 7332 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 7333 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 7334 assert(UseAES, "need AES instruction support"); 7335 address stubAddr = NULL; 7336 const char *stubName = NULL; 7337 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 7338 stubName = "galoisCounterMode_AESCrypt"; 7339 7340 if (stubAddr == NULL) return false; 7341 7342 Node* in = argument(0); 7343 Node* inOfs = argument(1); 7344 Node* len = argument(2); 7345 Node* ct = argument(3); 7346 Node* ctOfs = argument(4); 7347 Node* out = argument(5); 7348 Node* outOfs = argument(6); 7349 Node* gctr_object = argument(7); 7350 Node* ghash_object = argument(8); 7351 7352 // (1) in, ct and out are arrays. 7353 const Type* in_type = in->Value(&_gvn); 7354 const Type* ct_type = ct->Value(&_gvn); 7355 const Type* out_type = out->Value(&_gvn); 7356 const TypeAryPtr* top_in = in_type->isa_aryptr(); 7357 const TypeAryPtr* top_ct = ct_type->isa_aryptr(); 7358 const TypeAryPtr* top_out = out_type->isa_aryptr(); 7359 assert(top_in != NULL && top_in->elem() != Type::BOTTOM && 7360 top_ct != NULL && top_ct->elem() != Type::BOTTOM && 7361 top_out != NULL && top_out->elem() != Type::BOTTOM, "args are strange"); 7362 7363 // checks are the responsibility of the caller 7364 Node* in_start = in; 7365 Node* ct_start = ct; 7366 Node* out_start = out; 7367 if (inOfs != NULL || ctOfs != NULL || outOfs != NULL) { 7368 assert(inOfs != NULL && ctOfs != NULL && outOfs != NULL, ""); 7369 in_start = array_element_address(in, inOfs, T_BYTE); 7370 ct_start = array_element_address(ct, ctOfs, T_BYTE); 7371 out_start = array_element_address(out, outOfs, T_BYTE); 7372 } 7373 7374 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7375 // (because of the predicated logic executed earlier). 7376 // so we cast it here safely. 7377 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7378 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7379 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 7380 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 7381 Node* state = load_field_from_object(ghash_object, "state", "[J"); 7382 7383 if (embeddedCipherObj == NULL || counter == NULL || subkeyHtbl == NULL || state == NULL) { 7384 return false; 7385 } 7386 // cast it to what we know it will be at runtime 7387 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 7388 assert(tinst != NULL, "GCTR obj is null"); 7389 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7390 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7391 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7392 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7393 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7394 const TypeOopPtr* xtype = aklass->as_instance_type(); 7395 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7396 aescrypt_object = _gvn.transform(aescrypt_object); 7397 // we need to get the start of the aescrypt_object's expanded key array 7398 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7399 if (k_start == NULL) return false; 7400 // similarly, get the start address of the r vector 7401 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 7402 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7403 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 7404 7405 7406 // Call the stub, passing params 7407 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7408 OptoRuntime::galoisCounterMode_aescrypt_Type(), 7409 stubAddr, stubName, TypePtr::BOTTOM, 7410 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 7411 7412 // return cipher length (int) 7413 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 7414 set_result(retvalue); 7415 7416 return true; 7417 } 7418 7419 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 7420 // Return node representing slow path of predicate check. 7421 // the pseudo code we want to emulate with this predicate is: 7422 // for encryption: 7423 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7424 // for decryption: 7425 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7426 // note cipher==plain is more conservative than the original java code but that's OK 7427 // 7428 7429 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 7430 // The receiver was checked for NULL already. 7431 Node* objGCTR = argument(7); 7432 // Load embeddedCipher field of GCTR object. 7433 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7434 assert(embeddedCipherObj != NULL, "embeddedCipherObj is null"); 7435 7436 // get AESCrypt klass for instanceOf check 7437 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7438 // will have same classloader as CipherBlockChaining object 7439 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 7440 assert(tinst != NULL, "GCTR obj is null"); 7441 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7442 7443 // we want to do an instanceof comparison against the AESCrypt class 7444 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7445 if (!klass_AESCrypt->is_loaded()) { 7446 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7447 Node* ctrl = control(); 7448 set_control(top()); // no regular fast path 7449 return ctrl; 7450 } 7451 7452 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7453 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7454 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7455 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7456 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 7457 7458 return instof_false; // even if it is NULL 7459 } 7460 7461 //------------------------------get_state_from_digest_object----------------------- 7462 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 7463 const char* state_type; 7464 switch (elem_type) { 7465 case T_BYTE: state_type = "[B"; break; 7466 case T_INT: state_type = "[I"; break; 7467 case T_LONG: state_type = "[J"; break; 7468 default: ShouldNotReachHere(); 7469 } 7470 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 7471 assert (digest_state != NULL, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 7472 if (digest_state == NULL) return (Node *) NULL; 7473 7474 // now have the array, need to get the start address of the state array 7475 Node* state = array_element_address(digest_state, intcon(0), elem_type); 7476 return state; 7477 } 7478 7479 //------------------------------get_digest_length_from_sha3_object---------------------------------- 7480 Node * LibraryCallKit::get_digest_length_from_digest_object(Node *digest_object) { 7481 Node* digest_length = load_field_from_object(digest_object, "digestLength", "I"); 7482 assert (digest_length != NULL, "sanity"); 7483 return digest_length; 7484 } 7485 7486 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 7487 // Return node representing slow path of predicate check. 7488 // the pseudo code we want to emulate with this predicate is: 7489 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 7490 // 7491 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 7492 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7493 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7494 assert((uint)predicate < 5, "sanity"); 7495 7496 // The receiver was checked for NULL already. 7497 Node* digestBaseObj = argument(0); 7498 7499 // get DigestBase klass for instanceOf check 7500 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 7501 assert(tinst != NULL, "digestBaseObj is null"); 7502 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7503 7504 const char* klass_name = NULL; 7505 switch (predicate) { 7506 case 0: 7507 if (UseMD5Intrinsics) { 7508 // we want to do an instanceof comparison against the MD5 class 7509 klass_name = "sun/security/provider/MD5"; 7510 } 7511 break; 7512 case 1: 7513 if (UseSHA1Intrinsics) { 7514 // we want to do an instanceof comparison against the SHA class 7515 klass_name = "sun/security/provider/SHA"; 7516 } 7517 break; 7518 case 2: 7519 if (UseSHA256Intrinsics) { 7520 // we want to do an instanceof comparison against the SHA2 class 7521 klass_name = "sun/security/provider/SHA2"; 7522 } 7523 break; 7524 case 3: 7525 if (UseSHA512Intrinsics) { 7526 // we want to do an instanceof comparison against the SHA5 class 7527 klass_name = "sun/security/provider/SHA5"; 7528 } 7529 break; 7530 case 4: 7531 if (UseSHA3Intrinsics) { 7532 // we want to do an instanceof comparison against the SHA3 class 7533 klass_name = "sun/security/provider/SHA3"; 7534 } 7535 break; 7536 default: 7537 fatal("unknown SHA intrinsic predicate: %d", predicate); 7538 } 7539 7540 ciKlass* klass = NULL; 7541 if (klass_name != NULL) { 7542 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 7543 } 7544 if ((klass == NULL) || !klass->is_loaded()) { 7545 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 7546 Node* ctrl = control(); 7547 set_control(top()); // no intrinsic path 7548 return ctrl; 7549 } 7550 ciInstanceKlass* instklass = klass->as_instance_klass(); 7551 7552 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 7553 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7554 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7555 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 7556 7557 return instof_false; // even if it is NULL 7558 } 7559 7560 bool LibraryCallKit::inline_continuation_do_yield() { 7561 address call_addr = StubRoutines::cont_doYield(); 7562 const TypeFunc* tf = OptoRuntime::continuation_doYield_Type(); 7563 Node* call = make_runtime_call(RC_NO_LEAF, tf, call_addr, "doYield", TypeRawPtr::BOTTOM); 7564 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7565 set_result(result); 7566 return true; 7567 } 7568 7569 //-------------inline_fma----------------------------------- 7570 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 7571 Node *a = NULL; 7572 Node *b = NULL; 7573 Node *c = NULL; 7574 Node* result = NULL; 7575 switch (id) { 7576 case vmIntrinsics::_fmaD: 7577 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 7578 // no receiver since it is static method 7579 a = round_double_node(argument(0)); 7580 b = round_double_node(argument(2)); 7581 c = round_double_node(argument(4)); 7582 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 7583 break; 7584 case vmIntrinsics::_fmaF: 7585 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 7586 a = argument(0); 7587 b = argument(1); 7588 c = argument(2); 7589 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 7590 break; 7591 default: 7592 fatal_unexpected_iid(id); break; 7593 } 7594 set_result(result); 7595 return true; 7596 } 7597 7598 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 7599 // argument(0) is receiver 7600 Node* codePoint = argument(1); 7601 Node* n = NULL; 7602 7603 switch (id) { 7604 case vmIntrinsics::_isDigit : 7605 n = new DigitNode(control(), codePoint); 7606 break; 7607 case vmIntrinsics::_isLowerCase : 7608 n = new LowerCaseNode(control(), codePoint); 7609 break; 7610 case vmIntrinsics::_isUpperCase : 7611 n = new UpperCaseNode(control(), codePoint); 7612 break; 7613 case vmIntrinsics::_isWhitespace : 7614 n = new WhitespaceNode(control(), codePoint); 7615 break; 7616 default: 7617 fatal_unexpected_iid(id); 7618 } 7619 7620 set_result(_gvn.transform(n)); 7621 return true; 7622 } 7623 7624 //------------------------------inline_fp_min_max------------------------------ 7625 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 7626 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 7627 7628 // The intrinsic should be used only when the API branches aren't predictable, 7629 // the last one performing the most important comparison. The following heuristic 7630 // uses the branch statistics to eventually bail out if necessary. 7631 7632 ciMethodData *md = callee()->method_data(); 7633 7634 if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) { 7635 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 7636 7637 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 7638 // Bail out if the call-site didn't contribute enough to the statistics. 7639 return false; 7640 } 7641 7642 uint taken = 0, not_taken = 0; 7643 7644 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 7645 if (p->is_BranchData()) { 7646 taken = ((ciBranchData*)p)->taken(); 7647 not_taken = ((ciBranchData*)p)->not_taken(); 7648 } 7649 } 7650 7651 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 7652 balance = balance < 0 ? -balance : balance; 7653 if ( balance > 0.2 ) { 7654 // Bail out if the most important branch is predictable enough. 7655 return false; 7656 } 7657 } 7658 */ 7659 7660 Node *a = NULL; 7661 Node *b = NULL; 7662 Node *n = NULL; 7663 switch (id) { 7664 case vmIntrinsics::_maxF: 7665 case vmIntrinsics::_minF: 7666 case vmIntrinsics::_maxF_strict: 7667 case vmIntrinsics::_minF_strict: 7668 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 7669 a = argument(0); 7670 b = argument(1); 7671 break; 7672 case vmIntrinsics::_maxD: 7673 case vmIntrinsics::_minD: 7674 case vmIntrinsics::_maxD_strict: 7675 case vmIntrinsics::_minD_strict: 7676 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 7677 a = round_double_node(argument(0)); 7678 b = round_double_node(argument(2)); 7679 break; 7680 default: 7681 fatal_unexpected_iid(id); 7682 break; 7683 } 7684 switch (id) { 7685 case vmIntrinsics::_maxF: 7686 case vmIntrinsics::_maxF_strict: 7687 n = new MaxFNode(a, b); 7688 break; 7689 case vmIntrinsics::_minF: 7690 case vmIntrinsics::_minF_strict: 7691 n = new MinFNode(a, b); 7692 break; 7693 case vmIntrinsics::_maxD: 7694 case vmIntrinsics::_maxD_strict: 7695 n = new MaxDNode(a, b); 7696 break; 7697 case vmIntrinsics::_minD: 7698 case vmIntrinsics::_minD_strict: 7699 n = new MinDNode(a, b); 7700 break; 7701 default: 7702 fatal_unexpected_iid(id); 7703 break; 7704 } 7705 set_result(_gvn.transform(n)); 7706 return true; 7707 } 7708 7709 bool LibraryCallKit::inline_profileBoolean() { 7710 Node* counts = argument(1); 7711 const TypeAryPtr* ary = NULL; 7712 ciArray* aobj = NULL; 7713 if (counts->is_Con() 7714 && (ary = counts->bottom_type()->isa_aryptr()) != NULL 7715 && (aobj = ary->const_oop()->as_array()) != NULL 7716 && (aobj->length() == 2)) { 7717 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 7718 jint false_cnt = aobj->element_value(0).as_int(); 7719 jint true_cnt = aobj->element_value(1).as_int(); 7720 7721 if (C->log() != NULL) { 7722 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 7723 false_cnt, true_cnt); 7724 } 7725 7726 if (false_cnt + true_cnt == 0) { 7727 // According to profile, never executed. 7728 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 7729 Deoptimization::Action_reinterpret); 7730 return true; 7731 } 7732 7733 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 7734 // is a number of each value occurrences. 7735 Node* result = argument(0); 7736 if (false_cnt == 0 || true_cnt == 0) { 7737 // According to profile, one value has been never seen. 7738 int expected_val = (false_cnt == 0) ? 1 : 0; 7739 7740 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 7741 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7742 7743 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 7744 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 7745 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 7746 7747 { // Slow path: uncommon trap for never seen value and then reexecute 7748 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 7749 // the value has been seen at least once. 7750 PreserveJVMState pjvms(this); 7751 PreserveReexecuteState preexecs(this); 7752 jvms()->set_should_reexecute(true); 7753 7754 set_control(slow_path); 7755 set_i_o(i_o()); 7756 7757 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 7758 Deoptimization::Action_reinterpret); 7759 } 7760 // The guard for never seen value enables sharpening of the result and 7761 // returning a constant. It allows to eliminate branches on the same value 7762 // later on. 7763 set_control(fast_path); 7764 result = intcon(expected_val); 7765 } 7766 // Stop profiling. 7767 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 7768 // By replacing method body with profile data (represented as ProfileBooleanNode 7769 // on IR level) we effectively disable profiling. 7770 // It enables full speed execution once optimized code is generated. 7771 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 7772 C->record_for_igvn(profile); 7773 set_result(profile); 7774 return true; 7775 } else { 7776 // Continue profiling. 7777 // Profile data isn't available at the moment. So, execute method's bytecode version. 7778 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 7779 // is compiled and counters aren't available since corresponding MethodHandle 7780 // isn't a compile-time constant. 7781 return false; 7782 } 7783 } 7784 7785 bool LibraryCallKit::inline_isCompileConstant() { 7786 Node* n = argument(0); 7787 set_result(n->is_Con() ? intcon(1) : intcon(0)); 7788 return true; 7789 } 7790 7791 //------------------------------- inline_getObjectSize -------------------------------------- 7792 // 7793 // Calculate the runtime size of the object/array. 7794 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 7795 // 7796 bool LibraryCallKit::inline_getObjectSize() { 7797 Node* obj = argument(3); 7798 Node* klass_node = load_object_klass(obj); 7799 7800 jint layout_con = Klass::_lh_neutral_value; 7801 Node* layout_val = get_layout_helper(klass_node, layout_con); 7802 int layout_is_con = (layout_val == NULL); 7803 7804 if (layout_is_con) { 7805 // Layout helper is constant, can figure out things at compile time. 7806 7807 if (Klass::layout_helper_is_instance(layout_con)) { 7808 // Instance case: layout_con contains the size itself. 7809 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 7810 set_result(size); 7811 } else { 7812 // Array case: size is round(header + element_size*arraylength). 7813 // Since arraylength is different for every array instance, we have to 7814 // compute the whole thing at runtime. 7815 7816 Node* arr_length = load_array_length(obj); 7817 7818 int round_mask = MinObjAlignmentInBytes - 1; 7819 int hsize = Klass::layout_helper_header_size(layout_con); 7820 int eshift = Klass::layout_helper_log2_element_size(layout_con); 7821 7822 if ((round_mask & ~right_n_bits(eshift)) == 0) { 7823 round_mask = 0; // strength-reduce it if it goes away completely 7824 } 7825 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 7826 Node* header_size = intcon(hsize + round_mask); 7827 7828 Node* lengthx = ConvI2X(arr_length); 7829 Node* headerx = ConvI2X(header_size); 7830 7831 Node* abody = lengthx; 7832 if (eshift != 0) { 7833 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 7834 } 7835 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 7836 if (round_mask != 0) { 7837 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 7838 } 7839 size = ConvX2L(size); 7840 set_result(size); 7841 } 7842 } else { 7843 // Layout helper is not constant, need to test for array-ness at runtime. 7844 7845 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 7846 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 7847 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 7848 record_for_igvn(result_reg); 7849 7850 Node* array_ctl = generate_array_guard(klass_node, NULL); 7851 if (array_ctl != NULL) { 7852 // Array case: size is round(header + element_size*arraylength). 7853 // Since arraylength is different for every array instance, we have to 7854 // compute the whole thing at runtime. 7855 7856 PreserveJVMState pjvms(this); 7857 set_control(array_ctl); 7858 Node* arr_length = load_array_length(obj); 7859 7860 int round_mask = MinObjAlignmentInBytes - 1; 7861 Node* mask = intcon(round_mask); 7862 7863 Node* hss = intcon(Klass::_lh_header_size_shift); 7864 Node* hsm = intcon(Klass::_lh_header_size_mask); 7865 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 7866 header_size = _gvn.transform(new AndINode(header_size, hsm)); 7867 header_size = _gvn.transform(new AddINode(header_size, mask)); 7868 7869 // There is no need to mask or shift this value. 7870 // The semantics of LShiftINode include an implicit mask to 0x1F. 7871 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 7872 Node* elem_shift = layout_val; 7873 7874 Node* lengthx = ConvI2X(arr_length); 7875 Node* headerx = ConvI2X(header_size); 7876 7877 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 7878 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 7879 if (round_mask != 0) { 7880 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 7881 } 7882 size = ConvX2L(size); 7883 7884 result_reg->init_req(_array_path, control()); 7885 result_val->init_req(_array_path, size); 7886 } 7887 7888 if (!stopped()) { 7889 // Instance case: the layout helper gives us instance size almost directly, 7890 // but we need to mask out the _lh_instance_slow_path_bit. 7891 Node* size = ConvI2X(layout_val); 7892 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 7893 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 7894 size = _gvn.transform(new AndXNode(size, mask)); 7895 size = ConvX2L(size); 7896 7897 result_reg->init_req(_instance_path, control()); 7898 result_val->init_req(_instance_path, size); 7899 } 7900 7901 set_result(result_reg, result_val); 7902 } 7903 7904 return true; 7905 } 7906 7907 //------------------------------- inline_blackhole -------------------------------------- 7908 // 7909 // Make sure all arguments to this node are alive. 7910 // This matches methods that were requested to be blackholed through compile commands. 7911 // 7912 bool LibraryCallKit::inline_blackhole() { 7913 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 7914 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 7915 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 7916 7917 // Bind call arguments as blackhole arguments to keep them alive 7918 Node* bh = insert_mem_bar(Op_Blackhole); 7919 uint nargs = callee()->arg_size(); 7920 for (uint i = 0; i < nargs; i++) { 7921 bh->add_req(argument(i)); 7922 } 7923 7924 return true; 7925 }