1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "cds/dynamicArchive.hpp" 27 #include "ci/ciEnv.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/javaThreadStatus.hpp" 30 #include "classfile/systemDictionary.hpp" 31 #include "classfile/vmClasses.hpp" 32 #include "classfile/vmSymbols.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "compiler/compileTask.hpp" 36 #include "compiler/compilerThread.hpp" 37 #include "gc/shared/oopStorage.hpp" 38 #include "gc/shared/oopStorageSet.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "jfr/jfrEvents.hpp" 41 #include "jvm.h" 42 #include "jvmtifiles/jvmtiEnv.hpp" 43 #include "logging/log.hpp" 44 #include "logging/logAsyncWriter.hpp" 45 #include "logging/logStream.hpp" 46 #include "memory/allocation.inline.hpp" 47 #include "memory/iterator.hpp" 48 #include "memory/universe.hpp" 49 #include "oops/access.inline.hpp" 50 #include "oops/instanceKlass.hpp" 51 #include "oops/klass.inline.hpp" 52 #include "oops/oop.inline.hpp" 53 #include "oops/oopHandle.inline.hpp" 54 #include "oops/verifyOopClosure.hpp" 55 #include "prims/jvm_misc.hpp" 56 #include "prims/jvmtiDeferredUpdates.hpp" 57 #include "prims/jvmtiExport.hpp" 58 #include "prims/jvmtiThreadState.inline.hpp" 59 #include "runtime/atomic.hpp" 60 #include "runtime/continuation.hpp" 61 #include "runtime/continuationEntry.inline.hpp" 62 #include "runtime/continuationHelper.inline.hpp" 63 #include "runtime/deoptimization.hpp" 64 #include "runtime/frame.inline.hpp" 65 #include "runtime/handles.inline.hpp" 66 #include "runtime/handshake.hpp" 67 #include "runtime/interfaceSupport.inline.hpp" 68 #include "runtime/java.hpp" 69 #include "runtime/javaCalls.hpp" 70 #include "runtime/javaThread.inline.hpp" 71 #include "runtime/jniHandles.inline.hpp" 72 #include "runtime/lockStack.inline.hpp" 73 #include "runtime/mutexLocker.hpp" 74 #include "runtime/orderAccess.hpp" 75 #include "runtime/os.inline.hpp" 76 #include "runtime/osThread.hpp" 77 #include "runtime/safepoint.hpp" 78 #include "runtime/safepointMechanism.inline.hpp" 79 #include "runtime/safepointVerifiers.hpp" 80 #include "runtime/serviceThread.hpp" 81 #include "runtime/stackFrameStream.inline.hpp" 82 #include "runtime/stackWatermarkSet.hpp" 83 #include "runtime/synchronizer.hpp" 84 #include "runtime/threadIdentifier.hpp" 85 #include "runtime/threadSMR.inline.hpp" 86 #include "runtime/threadStatisticalInfo.hpp" 87 #include "runtime/threadWXSetters.inline.hpp" 88 #include "runtime/timer.hpp" 89 #include "runtime/timerTrace.hpp" 90 #include "runtime/vframe.inline.hpp" 91 #include "runtime/vframeArray.hpp" 92 #include "runtime/vframe_hp.hpp" 93 #include "runtime/vmThread.hpp" 94 #include "runtime/vmOperations.hpp" 95 #include "services/threadService.hpp" 96 #include "utilities/copy.hpp" 97 #include "utilities/defaultStream.hpp" 98 #include "utilities/dtrace.hpp" 99 #include "utilities/events.hpp" 100 #include "utilities/macros.hpp" 101 #include "utilities/nativeStackPrinter.hpp" 102 #include "utilities/preserveException.hpp" 103 #include "utilities/spinYield.hpp" 104 #include "utilities/vmError.hpp" 105 #if INCLUDE_JVMCI 106 #include "jvmci/jvmci.hpp" 107 #include "jvmci/jvmciEnv.hpp" 108 #endif 109 #if INCLUDE_JFR 110 #include "jfr/jfr.hpp" 111 #endif 112 113 // Set by os layer. 114 size_t JavaThread::_stack_size_at_create = 0; 115 116 #ifdef DTRACE_ENABLED 117 118 // Only bother with this argument setup if dtrace is available 119 120 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START 121 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP 122 123 #define DTRACE_THREAD_PROBE(probe, javathread) \ 124 { \ 125 ResourceMark rm(this); \ 126 int len = 0; \ 127 const char* name = (javathread)->name(); \ 128 len = strlen(name); \ 129 HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */ \ 130 (char *) name, len, \ 131 java_lang_Thread::thread_id((javathread)->threadObj()), \ 132 (uintptr_t) (javathread)->osthread()->thread_id(), \ 133 java_lang_Thread::is_daemon((javathread)->threadObj())); \ 134 } 135 136 #else // ndef DTRACE_ENABLED 137 138 #define DTRACE_THREAD_PROBE(probe, javathread) 139 140 #endif // ndef DTRACE_ENABLED 141 142 void JavaThread::smr_delete() { 143 if (_on_thread_list) { 144 ThreadsSMRSupport::smr_delete(this); 145 } else { 146 delete this; 147 } 148 } 149 150 // Initialized by VMThread at vm_global_init 151 OopStorage* JavaThread::_thread_oop_storage = nullptr; 152 153 OopStorage* JavaThread::thread_oop_storage() { 154 assert(_thread_oop_storage != nullptr, "not yet initialized"); 155 return _thread_oop_storage; 156 } 157 158 void JavaThread::set_threadOopHandles(oop p) { 159 assert(_thread_oop_storage != nullptr, "not yet initialized"); 160 _threadObj = OopHandle(_thread_oop_storage, p); 161 _vthread = OopHandle(_thread_oop_storage, p); 162 _jvmti_vthread = OopHandle(_thread_oop_storage, p->is_a(vmClasses::BoundVirtualThread_klass()) ? p : nullptr); 163 _scopedValueCache = OopHandle(_thread_oop_storage, nullptr); 164 } 165 166 oop JavaThread::threadObj() const { 167 // Ideally we would verify the current thread is oop_safe when this is called, but as we can 168 // be called from a signal handler we would have to use Thread::current_or_null_safe(). That 169 // has overhead and also interacts poorly with GetLastError on Windows due to the use of TLS. 170 // Instead callers must verify oop safe access. 171 return _threadObj.resolve(); 172 } 173 174 oop JavaThread::vthread() const { 175 return _vthread.resolve(); 176 } 177 178 void JavaThread::set_vthread(oop p) { 179 assert(_thread_oop_storage != nullptr, "not yet initialized"); 180 _vthread.replace(p); 181 } 182 183 oop JavaThread::jvmti_vthread() const { 184 return _jvmti_vthread.resolve(); 185 } 186 187 void JavaThread::set_jvmti_vthread(oop p) { 188 assert(_thread_oop_storage != nullptr, "not yet initialized"); 189 _jvmti_vthread.replace(p); 190 } 191 192 // If there is a virtual thread mounted then return vthread() oop. 193 // Otherwise, return threadObj(). 194 oop JavaThread::vthread_or_thread() const { 195 oop result = vthread(); 196 if (result == nullptr) { 197 result = threadObj(); 198 } 199 return result; 200 } 201 202 oop JavaThread::scopedValueCache() const { 203 return _scopedValueCache.resolve(); 204 } 205 206 void JavaThread::set_scopedValueCache(oop p) { 207 if (!_scopedValueCache.is_empty()) { // i.e. if the OopHandle has been allocated 208 _scopedValueCache.replace(p); 209 } else { 210 assert(p == nullptr, "not yet initialized"); 211 } 212 } 213 214 void JavaThread::clear_scopedValueBindings() { 215 set_scopedValueCache(nullptr); 216 oop vthread_oop = vthread(); 217 // vthread may be null here if we get a VM error during startup, 218 // before the java.lang.Thread instance has been created. 219 if (vthread_oop != nullptr) { 220 java_lang_Thread::clear_scopedValueBindings(vthread_oop); 221 } 222 } 223 224 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name, 225 bool daemon, TRAPS) { 226 assert(thread_group.not_null(), "thread group should be specified"); 227 assert(threadObj() == nullptr, "should only create Java thread object once"); 228 229 InstanceKlass* ik = vmClasses::Thread_klass(); 230 assert(ik->is_initialized(), "must be"); 231 instanceHandle thread_oop = ik->allocate_instance_handle(CHECK); 232 233 // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon. 234 // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread 235 // constructor calls Thread.current(), which must be set here. 236 java_lang_Thread::set_thread(thread_oop(), this); 237 set_threadOopHandles(thread_oop()); 238 239 JavaValue result(T_VOID); 240 if (thread_name != nullptr) { 241 Handle name = java_lang_String::create_from_str(thread_name, CHECK); 242 // Thread gets assigned specified name and null target 243 JavaCalls::call_special(&result, 244 thread_oop, 245 ik, 246 vmSymbols::object_initializer_name(), 247 vmSymbols::threadgroup_string_void_signature(), 248 thread_group, 249 name, 250 CHECK); 251 } else { 252 // Thread gets assigned name "Thread-nnn" and null target 253 // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument) 254 JavaCalls::call_special(&result, 255 thread_oop, 256 ik, 257 vmSymbols::object_initializer_name(), 258 vmSymbols::threadgroup_runnable_void_signature(), 259 thread_group, 260 Handle(), 261 CHECK); 262 } 263 264 os::set_priority(this, NormPriority); 265 266 if (daemon) { 267 java_lang_Thread::set_daemon(thread_oop()); 268 } 269 } 270 271 // ======= JavaThread ======== 272 273 #if INCLUDE_JVMCI 274 275 jlong* JavaThread::_jvmci_old_thread_counters; 276 277 static bool jvmci_counters_include(JavaThread* thread) { 278 return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread(); 279 } 280 281 void JavaThread::collect_counters(jlong* array, int length) { 282 assert(length == JVMCICounterSize, "wrong value"); 283 for (int i = 0; i < length; i++) { 284 array[i] = _jvmci_old_thread_counters[i]; 285 } 286 for (JavaThread* tp : ThreadsListHandle()) { 287 if (jvmci_counters_include(tp)) { 288 for (int i = 0; i < length; i++) { 289 array[i] += tp->_jvmci_counters[i]; 290 } 291 } 292 } 293 } 294 295 // Attempt to enlarge the array for per thread counters. 296 static jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) { 297 jlong* new_counters = NEW_C_HEAP_ARRAY_RETURN_NULL(jlong, new_size, mtJVMCI); 298 if (new_counters == nullptr) { 299 return nullptr; 300 } 301 if (old_counters == nullptr) { 302 old_counters = new_counters; 303 memset(old_counters, 0, sizeof(jlong) * new_size); 304 } else { 305 for (int i = 0; i < MIN2((int) current_size, new_size); i++) { 306 new_counters[i] = old_counters[i]; 307 } 308 if (new_size > current_size) { 309 memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size)); 310 } 311 FREE_C_HEAP_ARRAY(jlong, old_counters); 312 } 313 return new_counters; 314 } 315 316 // Attempt to enlarge the array for per thread counters. 317 bool JavaThread::resize_counters(int current_size, int new_size) { 318 jlong* new_counters = resize_counters_array(_jvmci_counters, current_size, new_size); 319 if (new_counters == nullptr) { 320 return false; 321 } else { 322 _jvmci_counters = new_counters; 323 return true; 324 } 325 } 326 327 class VM_JVMCIResizeCounters : public VM_Operation { 328 private: 329 int _new_size; 330 bool _failed; 331 332 public: 333 VM_JVMCIResizeCounters(int new_size) : _new_size(new_size), _failed(false) { } 334 VMOp_Type type() const { return VMOp_JVMCIResizeCounters; } 335 bool allow_nested_vm_operations() const { return true; } 336 void doit() { 337 // Resize the old thread counters array 338 jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size); 339 if (new_counters == nullptr) { 340 _failed = true; 341 return; 342 } else { 343 JavaThread::_jvmci_old_thread_counters = new_counters; 344 } 345 346 // Now resize each threads array 347 for (JavaThread* tp : ThreadsListHandle()) { 348 if (!tp->resize_counters(JVMCICounterSize, _new_size)) { 349 _failed = true; 350 break; 351 } 352 } 353 if (!_failed) { 354 JVMCICounterSize = _new_size; 355 } 356 } 357 358 bool failed() { return _failed; } 359 }; 360 361 bool JavaThread::resize_all_jvmci_counters(int new_size) { 362 VM_JVMCIResizeCounters op(new_size); 363 VMThread::execute(&op); 364 return !op.failed(); 365 } 366 367 #endif // INCLUDE_JVMCI 368 369 #ifdef ASSERT 370 // Checks safepoint allowed and clears unhandled oops at potential safepoints. 371 void JavaThread::check_possible_safepoint() { 372 if (_no_safepoint_count > 0) { 373 print_owned_locks(); 374 assert(false, "Possible safepoint reached by thread that does not allow it"); 375 } 376 #ifdef CHECK_UNHANDLED_OOPS 377 // Clear unhandled oops in JavaThreads so we get a crash right away. 378 clear_unhandled_oops(); 379 #endif // CHECK_UNHANDLED_OOPS 380 381 // Macos/aarch64 should be in the right state for safepoint (e.g. 382 // deoptimization needs WXWrite). Crashes caused by the wrong state rarely 383 // happens in practice, making such issues hard to find and reproduce. 384 #if defined(__APPLE__) && defined(AARCH64) 385 if (AssertWXAtThreadSync) { 386 assert_wx_state(WXWrite); 387 } 388 #endif 389 } 390 391 void JavaThread::check_for_valid_safepoint_state() { 392 // Don't complain if running a debugging command. 393 if (DebuggingContext::is_enabled()) return; 394 395 // Check NoSafepointVerifier, which is implied by locks taken that can be 396 // shared with the VM thread. This makes sure that no locks with allow_vm_block 397 // are held. 398 check_possible_safepoint(); 399 400 if (thread_state() != _thread_in_vm) { 401 fatal("LEAF method calling lock?"); 402 } 403 404 if (GCALotAtAllSafepoints) { 405 // We could enter a safepoint here and thus have a gc 406 InterfaceSupport::check_gc_alot(); 407 } 408 } 409 #endif // ASSERT 410 411 // A JavaThread is a normal Java thread 412 413 JavaThread::JavaThread(MemTag mem_tag) : 414 Thread(mem_tag), 415 // Initialize fields 416 _on_thread_list(false), 417 DEBUG_ONLY(_java_call_counter(0) COMMA) 418 _entry_point(nullptr), 419 _deopt_mark(nullptr), 420 _deopt_nmethod(nullptr), 421 _vframe_array_head(nullptr), 422 _vframe_array_last(nullptr), 423 _jvmti_deferred_updates(nullptr), 424 _callee_target(nullptr), 425 _vm_result_oop(nullptr), 426 _vm_result_metadata(nullptr), 427 428 _current_pending_monitor(nullptr), 429 _current_pending_monitor_is_from_java(true), 430 _current_waiting_monitor(nullptr), 431 _active_handles(nullptr), 432 _free_handle_block(nullptr), 433 _monitor_owner_id(0), 434 435 _suspend_flags(0), 436 437 _thread_state(_thread_new), 438 _saved_exception_pc(nullptr), 439 #ifdef ASSERT 440 _no_safepoint_count(0), 441 _visited_for_critical_count(false), 442 #endif 443 444 _terminated(_not_terminated), 445 _in_deopt_handler(0), 446 _doing_unsafe_access(false), 447 _do_not_unlock_if_synchronized(false), 448 #if INCLUDE_JVMTI 449 _carrier_thread_suspended(false), 450 _is_in_VTMS_transition(false), 451 _is_disable_suspend(false), 452 _is_in_java_upcall(false), 453 _VTMS_transition_mark(false), 454 _on_monitor_waited_event(false), 455 _contended_entered_monitor(nullptr), 456 #ifdef ASSERT 457 _is_VTMS_transition_disabler(false), 458 #endif 459 #endif 460 _jni_attach_state(_not_attaching_via_jni), 461 _is_in_internal_oome_mark(false), 462 #if INCLUDE_JVMCI 463 _pending_deoptimization(-1), 464 _pending_monitorenter(false), 465 _pending_transfer_to_interpreter(false), 466 _pending_failed_speculation(0), 467 _jvmci{nullptr}, 468 _libjvmci_runtime(nullptr), 469 _jvmci_counters(nullptr), 470 _jvmci_reserved0(0), 471 _jvmci_reserved1(0), 472 _jvmci_reserved_oop0(nullptr), 473 _live_nmethod(nullptr), 474 #endif // INCLUDE_JVMCI 475 476 _exception_oop(oop()), 477 _exception_pc(nullptr), 478 _exception_handler_pc(nullptr), 479 _is_method_handle_return(0), 480 481 _jni_active_critical(0), 482 _pending_jni_exception_check_fn(nullptr), 483 _depth_first_number(0), 484 485 // JVMTI PopFrame support 486 _popframe_condition(popframe_inactive), 487 _frames_to_pop_failed_realloc(0), 488 489 _cont_entry(nullptr), 490 _cont_fastpath(nullptr), 491 _cont_fastpath_thread_state(1), 492 _held_monitor_count(0), 493 _jni_monitor_count(0), 494 _unlocked_inflated_monitor(nullptr), 495 496 _preempt_alternate_return(nullptr), 497 _preemption_cancelled(false), 498 _pending_interrupted_exception(false), 499 _at_preemptable_init(false), 500 DEBUG_ONLY(_preempt_init_klass(nullptr) COMMA) 501 502 _handshake(this), 503 504 _popframe_preserved_args(nullptr), 505 _popframe_preserved_args_size(0), 506 507 _jvmti_thread_state(nullptr), 508 _interp_only_mode(0), 509 _should_post_on_exceptions_flag(JNI_FALSE), 510 _thread_stat(new ThreadStatistics()), 511 512 _parker(), 513 514 _class_to_be_initialized(nullptr), 515 _class_being_initialized(nullptr), 516 517 _SleepEvent(ParkEvent::Allocate(this)), 518 519 #if INCLUDE_JFR 520 _last_freeze_fail_result(freeze_ok), 521 #endif 522 523 _lock_stack(this), 524 _om_cache(this) { 525 set_jni_functions(jni_functions()); 526 527 #if INCLUDE_JVMCI 528 assert(_jvmci._implicit_exception_pc == nullptr, "must be"); 529 if (JVMCICounterSize > 0) { 530 resize_counters(0, (int) JVMCICounterSize); 531 } 532 #endif // INCLUDE_JVMCI 533 534 // Setup safepoint state info for this thread 535 ThreadSafepointState::create(this); 536 537 SafepointMechanism::initialize_header(this); 538 539 set_requires_cross_modify_fence(false); 540 541 pd_initialize(); 542 assert(deferred_card_mark().is_empty(), "Default MemRegion ctor"); 543 } 544 545 JavaThread* JavaThread::create_attaching_thread() { 546 JavaThread* jt = new JavaThread(); 547 jt->_jni_attach_state = _attaching_via_jni; 548 return jt; 549 } 550 551 // interrupt support 552 553 void JavaThread::interrupt() { 554 // All callers should have 'this' thread protected by a 555 // ThreadsListHandle so that it cannot terminate and deallocate 556 // itself. 557 DEBUG_ONLY(check_for_dangling_thread_pointer(this);) 558 559 // For Windows _interrupt_event 560 WINDOWS_ONLY(osthread()->set_interrupted(true);) 561 562 // For Thread.sleep 563 _SleepEvent->unpark(); 564 565 // For JSR166 LockSupport.park 566 parker()->unpark(); 567 568 // For ObjectMonitor and JvmtiRawMonitor 569 _ParkEvent->unpark(); 570 } 571 572 bool JavaThread::is_interrupted(bool clear_interrupted) { 573 DEBUG_ONLY(check_for_dangling_thread_pointer(this);) 574 575 if (_threadObj.peek() == nullptr) { 576 // If there is no j.l.Thread then it is impossible to have 577 // been interrupted. We can find null during VM initialization 578 // or when a JNI thread is still in the process of attaching. 579 // In such cases this must be the current thread. 580 assert(this == Thread::current(), "invariant"); 581 return false; 582 } 583 584 bool interrupted = java_lang_Thread::interrupted(threadObj()); 585 586 // NOTE that since there is no "lock" around the interrupt and 587 // is_interrupted operations, there is the possibility that the 588 // interrupted flag will be "false" but that the 589 // low-level events will be in the signaled state. This is 590 // intentional. The effect of this is that Object.wait() and 591 // LockSupport.park() will appear to have a spurious wakeup, which 592 // is allowed and not harmful, and the possibility is so rare that 593 // it is not worth the added complexity to add yet another lock. 594 // For the sleep event an explicit reset is performed on entry 595 // to JavaThread::sleep, so there is no early return. It has also been 596 // recommended not to put the interrupted flag into the "event" 597 // structure because it hides the issue. 598 // Also, because there is no lock, we must only clear the interrupt 599 // state if we are going to report that we were interrupted; otherwise 600 // an interrupt that happens just after we read the field would be lost. 601 if (interrupted && clear_interrupted) { 602 assert(this == Thread::current(), "only the current thread can clear"); 603 java_lang_Thread::set_interrupted(threadObj(), false); 604 WINDOWS_ONLY(osthread()->set_interrupted(false);) 605 } 606 return interrupted; 607 } 608 609 // This is only for use by JVMTI RawMonitorWait. It emulates the actions of 610 // the Java code in Object::wait which are not present in RawMonitorWait. 611 bool JavaThread::get_and_clear_interrupted() { 612 if (!is_interrupted(false)) { 613 return false; 614 } 615 oop thread_oop = vthread_or_thread(); 616 bool is_virtual = java_lang_VirtualThread::is_instance(thread_oop); 617 618 if (!is_virtual) { 619 return is_interrupted(true); 620 } 621 // Virtual thread: clear interrupt status for both virtual and 622 // carrier threads under the interruptLock protection. 623 JavaThread* current = JavaThread::current(); 624 HandleMark hm(current); 625 Handle thread_h(current, thread_oop); 626 ObjectLocker lock(Handle(current, java_lang_Thread::interrupt_lock(thread_h())), current); 627 628 // re-check the interrupt status under the interruptLock protection 629 bool interrupted = java_lang_Thread::interrupted(thread_h()); 630 631 if (interrupted) { 632 assert(this == Thread::current(), "only the current thread can clear"); 633 java_lang_Thread::set_interrupted(thread_h(), false); // clear for virtual 634 java_lang_Thread::set_interrupted(threadObj(), false); // clear for carrier 635 WINDOWS_ONLY(osthread()->set_interrupted(false);) 636 } 637 return interrupted; 638 } 639 640 void JavaThread::block_if_vm_exited() { 641 if (_terminated == _vm_exited) { 642 // _vm_exited is set at safepoint, and Threads_lock is never released 643 // so we will block here forever. 644 // Here we can be doing a jump from a safe state to an unsafe state without 645 // proper transition, but it happens after the final safepoint has begun so 646 // this jump won't cause any safepoint problems. 647 set_thread_state(_thread_in_vm); 648 Threads_lock->lock(); 649 ShouldNotReachHere(); 650 } 651 } 652 653 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz, MemTag mem_tag) : JavaThread(mem_tag) { 654 set_entry_point(entry_point); 655 // Create the native thread itself. 656 // %note runtime_23 657 os::ThreadType thr_type = os::java_thread; 658 thr_type = entry_point == &CompilerThread::thread_entry ? os::compiler_thread : 659 os::java_thread; 660 os::create_thread(this, thr_type, stack_sz); 661 // The _osthread may be null here because we ran out of memory (too many threads active). 662 // We need to throw and OutOfMemoryError - however we cannot do this here because the caller 663 // may hold a lock and all locks must be unlocked before throwing the exception (throwing 664 // the exception consists of creating the exception object & initializing it, initialization 665 // will leave the VM via a JavaCall and then all locks must be unlocked). 666 // 667 // The thread is still suspended when we reach here. Thread must be explicit started 668 // by creator! Furthermore, the thread must also explicitly be added to the Threads list 669 // by calling Threads:add. The reason why this is not done here, is because the thread 670 // object must be fully initialized (take a look at JVM_Start) 671 } 672 673 JavaThread::~JavaThread() { 674 675 // Enqueue OopHandles for release by the service thread. 676 add_oop_handles_for_release(); 677 678 // Return the sleep event to the free list 679 ParkEvent::Release(_SleepEvent); 680 _SleepEvent = nullptr; 681 682 // Free any remaining previous UnrollBlock 683 vframeArray* old_array = vframe_array_last(); 684 685 if (old_array != nullptr) { 686 Deoptimization::UnrollBlock* old_info = old_array->unroll_block(); 687 old_array->set_unroll_block(nullptr); 688 delete old_info; 689 delete old_array; 690 } 691 692 JvmtiDeferredUpdates* updates = deferred_updates(); 693 if (updates != nullptr) { 694 // This can only happen if thread is destroyed before deoptimization occurs. 695 assert(updates->count() > 0, "Updates holder not deleted"); 696 // free deferred updates. 697 delete updates; 698 set_deferred_updates(nullptr); 699 } 700 701 // All Java related clean up happens in exit 702 ThreadSafepointState::destroy(this); 703 if (_thread_stat != nullptr) delete _thread_stat; 704 705 #if INCLUDE_JVMCI 706 if (JVMCICounterSize > 0) { 707 FREE_C_HEAP_ARRAY(jlong, _jvmci_counters); 708 } 709 #endif // INCLUDE_JVMCI 710 } 711 712 713 // First JavaThread specific code executed by a new Java thread. 714 void JavaThread::pre_run() { 715 // empty - see comments in run() 716 } 717 718 // The main routine called by a new Java thread. This isn't overridden 719 // by subclasses, instead different subclasses define a different "entry_point" 720 // which defines the actual logic for that kind of thread. 721 void JavaThread::run() { 722 // initialize thread-local alloc buffer related fields 723 initialize_tlab(); 724 725 _stack_overflow_state.create_stack_guard_pages(); 726 727 cache_global_variables(); 728 729 // Thread is now sufficiently initialized to be handled by the safepoint code as being 730 // in the VM. Change thread state from _thread_new to _thread_in_vm 731 assert(this->thread_state() == _thread_new, "wrong thread state"); 732 set_thread_state(_thread_in_vm); 733 734 // Before a thread is on the threads list it is always safe, so after leaving the 735 // _thread_new we should emit a instruction barrier. The distance to modified code 736 // from here is probably far enough, but this is consistent and safe. 737 OrderAccess::cross_modify_fence(); 738 739 assert(JavaThread::current() == this, "sanity check"); 740 assert(!Thread::current()->owns_locks(), "sanity check"); 741 742 DTRACE_THREAD_PROBE(start, this); 743 744 // This operation might block. We call that after all safepoint checks for a new thread has 745 // been completed. 746 set_active_handles(JNIHandleBlock::allocate_block()); 747 748 if (JvmtiExport::should_post_thread_life()) { 749 JvmtiExport::post_thread_start(this); 750 751 } 752 753 if (AlwaysPreTouchStacks) { 754 pretouch_stack(); 755 } 756 757 // We call another function to do the rest so we are sure that the stack addresses used 758 // from there will be lower than the stack base just computed. 759 thread_main_inner(); 760 } 761 762 void JavaThread::thread_main_inner() { 763 assert(JavaThread::current() == this, "sanity check"); 764 assert(_threadObj.peek() != nullptr, "just checking"); 765 766 // Execute thread entry point unless this thread has a pending exception. 767 // Note: Due to JVMTI StopThread we can have pending exceptions already! 768 if (!this->has_pending_exception()) { 769 { 770 ResourceMark rm(this); 771 this->set_native_thread_name(this->name()); 772 } 773 HandleMark hm(this); 774 this->entry_point()(this, this); 775 } 776 777 DTRACE_THREAD_PROBE(stop, this); 778 779 // Cleanup is handled in post_run() 780 } 781 782 // Shared teardown for all JavaThreads 783 void JavaThread::post_run() { 784 this->exit(false); 785 this->unregister_thread_stack_with_NMT(); 786 // Defer deletion to here to ensure 'this' is still referenceable in call_run 787 // for any shared tear-down. 788 this->smr_delete(); 789 } 790 791 static void ensure_join(JavaThread* thread) { 792 // We do not need to grab the Threads_lock, since we are operating on ourself. 793 Handle threadObj(thread, thread->threadObj()); 794 assert(threadObj.not_null(), "java thread object must exist"); 795 ObjectLocker lock(threadObj, thread); 796 // Thread is exiting. So set thread_status field in java.lang.Thread class to TERMINATED. 797 java_lang_Thread::set_thread_status(threadObj(), JavaThreadStatus::TERMINATED); 798 // Clear the native thread instance - this makes isAlive return false and allows the join() 799 // to complete once we've done the notify_all below. Needs a release() to obey Java Memory Model 800 // requirements. 801 assert(java_lang_Thread::thread(threadObj()) == thread, "must be alive"); 802 java_lang_Thread::release_set_thread(threadObj(), nullptr); 803 lock.notify_all(thread); 804 // Ignore pending exception, since we are exiting anyway 805 thread->clear_pending_exception(); 806 } 807 808 static bool is_daemon(oop threadObj) { 809 return (threadObj != nullptr && java_lang_Thread::is_daemon(threadObj)); 810 } 811 812 // For any new cleanup additions, please check to see if they need to be applied to 813 // cleanup_failed_attach_current_thread as well. 814 void JavaThread::exit(bool destroy_vm, ExitType exit_type) { 815 assert(this == JavaThread::current(), "thread consistency check"); 816 assert(!is_exiting(), "should not be exiting or terminated already"); 817 818 elapsedTimer _timer_exit_phase1; 819 elapsedTimer _timer_exit_phase2; 820 elapsedTimer _timer_exit_phase3; 821 elapsedTimer _timer_exit_phase4; 822 823 om_clear_monitor_cache(); 824 825 if (log_is_enabled(Debug, os, thread, timer)) { 826 _timer_exit_phase1.start(); 827 } 828 829 HandleMark hm(this); 830 Handle uncaught_exception(this, this->pending_exception()); 831 this->clear_pending_exception(); 832 Handle threadObj(this, this->threadObj()); 833 assert(threadObj.not_null(), "Java thread object should be created"); 834 835 if (!destroy_vm) { 836 if (uncaught_exception.not_null()) { 837 EXCEPTION_MARK; 838 // Call method Thread.dispatchUncaughtException(). 839 Klass* thread_klass = vmClasses::Thread_klass(); 840 JavaValue result(T_VOID); 841 JavaCalls::call_virtual(&result, 842 threadObj, thread_klass, 843 vmSymbols::dispatchUncaughtException_name(), 844 vmSymbols::throwable_void_signature(), 845 uncaught_exception, 846 THREAD); 847 if (HAS_PENDING_EXCEPTION) { 848 ResourceMark rm(this); 849 jio_fprintf(defaultStream::error_stream(), 850 "\nException: %s thrown from the UncaughtExceptionHandler" 851 " in thread \"%s\"\n", 852 pending_exception()->klass()->external_name(), 853 name()); 854 CLEAR_PENDING_EXCEPTION; 855 } 856 } 857 858 if (!is_Compiler_thread()) { 859 // We have finished executing user-defined Java code and now have to do the 860 // implementation specific clean-up by calling Thread.exit(). We prevent any 861 // asynchronous exceptions from being delivered while in Thread.exit() 862 // to ensure the clean-up is not corrupted. 863 NoAsyncExceptionDeliveryMark _no_async(this); 864 865 EXCEPTION_MARK; 866 JavaValue result(T_VOID); 867 Klass* thread_klass = vmClasses::Thread_klass(); 868 JavaCalls::call_virtual(&result, 869 threadObj, thread_klass, 870 vmSymbols::exit_method_name(), 871 vmSymbols::void_method_signature(), 872 THREAD); 873 CLEAR_PENDING_EXCEPTION; 874 } 875 876 // notify JVMTI 877 if (JvmtiExport::should_post_thread_life()) { 878 JvmtiExport::post_thread_end(this); 879 } 880 } else { 881 // before_exit() has already posted JVMTI THREAD_END events 882 } 883 884 // Cleanup any pending async exception now since we cannot access oops after 885 // BarrierSet::barrier_set()->on_thread_detach() has been executed. 886 if (has_async_exception_condition()) { 887 handshake_state()->clean_async_exception_operation(); 888 } 889 890 // The careful dance between thread suspension and exit is handled here. 891 // Since we are in thread_in_vm state and suspension is done with handshakes, 892 // we can just put in the exiting state and it will be correctly handled. 893 // Also, no more async exceptions will be added to the queue after this point. 894 set_terminated(_thread_exiting); 895 ThreadService::current_thread_exiting(this, is_daemon(threadObj())); 896 897 if (log_is_enabled(Debug, os, thread, timer)) { 898 _timer_exit_phase1.stop(); 899 _timer_exit_phase2.start(); 900 } 901 902 // Capture daemon status before the thread is marked as terminated. 903 bool daemon = is_daemon(threadObj()); 904 905 // Notify waiters on thread object. This has to be done after exit() is called 906 // on the thread (if the thread is the last thread in a daemon ThreadGroup the 907 // group should have the destroyed bit set before waiters are notified). 908 ensure_join(this); 909 assert(!this->has_pending_exception(), "ensure_join should have cleared"); 910 911 if (log_is_enabled(Debug, os, thread, timer)) { 912 _timer_exit_phase2.stop(); 913 _timer_exit_phase3.start(); 914 } 915 // 6282335 JNI DetachCurrentThread spec states that all Java monitors 916 // held by this thread must be released. The spec does not distinguish 917 // between JNI-acquired and regular Java monitors. We can only see 918 // regular Java monitors here if monitor enter-exit matching is broken. 919 // 920 // ensure_join() ignores IllegalThreadStateExceptions, and so does 921 // ObjectSynchronizer::release_monitors_owned_by_thread(). 922 if (exit_type == jni_detach) { 923 // Sanity check even though JNI DetachCurrentThread() would have 924 // returned JNI_ERR if there was a Java frame. JavaThread exit 925 // should be done executing Java code by the time we get here. 926 assert(!this->has_last_Java_frame(), 927 "should not have a Java frame when detaching or exiting"); 928 ObjectSynchronizer::release_monitors_owned_by_thread(this); 929 assert(!this->has_pending_exception(), "release_monitors should have cleared"); 930 // Check for monitor counts being out of sync. 931 assert(held_monitor_count() == jni_monitor_count(), 932 "held monitor count should be equal to jni: %zd != %zd", 933 held_monitor_count(), jni_monitor_count()); 934 // All in-use monitors, including JNI-locked ones, should have been released above. 935 assert(held_monitor_count() == 0, "Failed to unlock %zd object monitors", 936 held_monitor_count()); 937 } else { 938 // Check for monitor counts being out of sync. 939 assert(held_monitor_count() == jni_monitor_count(), 940 "held monitor count should be equal to jni: %zd != %zd", 941 held_monitor_count(), jni_monitor_count()); 942 // It is possible that a terminating thread failed to unlock monitors it locked 943 // via JNI so we don't assert the count is zero. 944 } 945 946 if (CheckJNICalls && jni_monitor_count() > 0) { 947 // We would like a fatal here, but due to we never checked this before there 948 // is a lot of tests which breaks, even with an error log. 949 log_debug(jni)("JavaThread %s (tid: %zu) with Objects still locked by JNI MonitorEnter.", 950 exit_type == JavaThread::normal_exit ? "exiting" : "detaching", os::current_thread_id()); 951 } 952 953 // These things needs to be done while we are still a Java Thread. Make sure that thread 954 // is in a consistent state, in case GC happens 955 JFR_ONLY(Jfr::on_thread_exit(this);) 956 957 if (active_handles() != nullptr) { 958 JNIHandleBlock* block = active_handles(); 959 set_active_handles(nullptr); 960 JNIHandleBlock::release_block(block); 961 } 962 963 if (free_handle_block() != nullptr) { 964 JNIHandleBlock* block = free_handle_block(); 965 set_free_handle_block(nullptr); 966 JNIHandleBlock::release_block(block); 967 } 968 969 // These have to be removed while this is still a valid thread. 970 _stack_overflow_state.remove_stack_guard_pages(); 971 972 if (UseTLAB) { 973 tlab().retire(); 974 } 975 976 if (JvmtiEnv::environments_might_exist()) { 977 JvmtiExport::cleanup_thread(this); 978 } 979 980 // We need to cache the thread name for logging purposes below as once 981 // we have called on_thread_detach this thread must not access any oops. 982 char* thread_name = nullptr; 983 if (log_is_enabled(Debug, os, thread, timer)) { 984 ResourceMark rm(this); 985 thread_name = os::strdup(name()); 986 } 987 988 if (log_is_enabled(Info, os, thread)) { 989 ResourceMark rm(this); 990 log_info(os, thread)("JavaThread %s (name: \"%s\", tid: %zu).", 991 exit_type == JavaThread::normal_exit ? "exiting" : "detaching", 992 name(), os::current_thread_id()); 993 } 994 995 if (log_is_enabled(Debug, os, thread, timer)) { 996 _timer_exit_phase3.stop(); 997 _timer_exit_phase4.start(); 998 } 999 1000 #if INCLUDE_JVMCI 1001 if (JVMCICounterSize > 0) { 1002 if (jvmci_counters_include(this)) { 1003 for (int i = 0; i < JVMCICounterSize; i++) { 1004 _jvmci_old_thread_counters[i] += _jvmci_counters[i]; 1005 } 1006 } 1007 } 1008 #endif // INCLUDE_JVMCI 1009 1010 // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread. 1011 // We call BarrierSet::barrier_set()->on_thread_detach() here so no touching of oops after this point. 1012 Threads::remove(this, daemon); 1013 1014 if (log_is_enabled(Debug, os, thread, timer)) { 1015 _timer_exit_phase4.stop(); 1016 log_debug(os, thread, timer)("name='%s'" 1017 ", exit-phase1=" JLONG_FORMAT 1018 ", exit-phase2=" JLONG_FORMAT 1019 ", exit-phase3=" JLONG_FORMAT 1020 ", exit-phase4=" JLONG_FORMAT, 1021 thread_name, 1022 _timer_exit_phase1.milliseconds(), 1023 _timer_exit_phase2.milliseconds(), 1024 _timer_exit_phase3.milliseconds(), 1025 _timer_exit_phase4.milliseconds()); 1026 os::free(thread_name); 1027 } 1028 } 1029 1030 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) { 1031 if (active_handles() != nullptr) { 1032 JNIHandleBlock* block = active_handles(); 1033 set_active_handles(nullptr); 1034 JNIHandleBlock::release_block(block); 1035 } 1036 1037 if (free_handle_block() != nullptr) { 1038 JNIHandleBlock* block = free_handle_block(); 1039 set_free_handle_block(nullptr); 1040 JNIHandleBlock::release_block(block); 1041 } 1042 1043 // These have to be removed while this is still a valid thread. 1044 _stack_overflow_state.remove_stack_guard_pages(); 1045 1046 if (UseTLAB) { 1047 tlab().retire(); 1048 } 1049 1050 Threads::remove(this, is_daemon); 1051 } 1052 1053 JavaThread* JavaThread::active() { 1054 Thread* thread = Thread::current(); 1055 if (thread->is_Java_thread()) { 1056 return JavaThread::cast(thread); 1057 } else { 1058 assert(thread->is_VM_thread(), "this must be a vm thread"); 1059 VM_Operation* op = ((VMThread*) thread)->vm_operation(); 1060 JavaThread *ret = op == nullptr ? nullptr : JavaThread::cast(op->calling_thread()); 1061 return ret; 1062 } 1063 } 1064 1065 bool JavaThread::is_lock_owned(address adr) const { 1066 assert(LockingMode != LM_LIGHTWEIGHT, "should not be called with new lightweight locking"); 1067 return is_in_full_stack(adr); 1068 } 1069 1070 oop JavaThread::exception_oop() const { 1071 return Atomic::load(&_exception_oop); 1072 } 1073 1074 void JavaThread::set_exception_oop(oop o) { 1075 Atomic::store(&_exception_oop, o); 1076 } 1077 1078 void JavaThread::handle_special_runtime_exit_condition() { 1079 if (is_obj_deopt_suspend()) { 1080 frame_anchor()->make_walkable(); 1081 wait_for_object_deoptimization(); 1082 } 1083 JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);) 1084 } 1085 1086 1087 // Asynchronous exceptions support 1088 // 1089 void JavaThread::handle_async_exception(oop java_throwable) { 1090 assert(java_throwable != nullptr, "should have an _async_exception to throw"); 1091 assert(!is_at_poll_safepoint(), "should have never called this method"); 1092 1093 if (has_last_Java_frame()) { 1094 frame f = last_frame(); 1095 if (f.is_runtime_frame()) { 1096 // If the topmost frame is a runtime stub, then we are calling into 1097 // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..) 1098 // must deoptimize the caller before continuing, as the compiled exception 1099 // handler table may not be valid. 1100 RegisterMap reg_map(this, 1101 RegisterMap::UpdateMap::skip, 1102 RegisterMap::ProcessFrames::include, 1103 RegisterMap::WalkContinuation::skip); 1104 frame compiled_frame = f.sender(®_map); 1105 if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) { 1106 Deoptimization::deoptimize(this, compiled_frame); 1107 } 1108 } 1109 } 1110 1111 // We cannot call Exceptions::_throw(...) here because we cannot block 1112 set_pending_exception(java_throwable, __FILE__, __LINE__); 1113 1114 clear_scopedValueBindings(); 1115 1116 LogTarget(Info, exceptions) lt; 1117 if (lt.is_enabled()) { 1118 ResourceMark rm; 1119 LogStream ls(lt); 1120 ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this)); 1121 if (has_last_Java_frame()) { 1122 frame f = last_frame(); 1123 ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp())); 1124 } 1125 ls.print_cr(" of type: %s", java_throwable->klass()->external_name()); 1126 } 1127 } 1128 1129 void JavaThread::install_async_exception(AsyncExceptionHandshake* aeh) { 1130 // Do not throw asynchronous exceptions against the compiler thread 1131 // or if the thread is already exiting. 1132 if (!can_call_java() || is_exiting()) { 1133 delete aeh; 1134 return; 1135 } 1136 1137 oop exception = aeh->exception(); 1138 Handshake::execute(aeh, this); // Install asynchronous handshake 1139 1140 ResourceMark rm; 1141 if (log_is_enabled(Info, exceptions)) { 1142 log_info(exceptions)("Pending Async. exception installed of type: %s", 1143 InstanceKlass::cast(exception->klass())->external_name()); 1144 } 1145 // for AbortVMOnException flag 1146 Exceptions::debug_check_abort(exception->klass()->external_name()); 1147 1148 oop vt_oop = vthread(); 1149 if (vt_oop == nullptr || !vt_oop->is_a(vmClasses::BaseVirtualThread_klass())) { 1150 // Interrupt thread so it will wake up from a potential wait()/sleep()/park() 1151 java_lang_Thread::set_interrupted(threadObj(), true); 1152 this->interrupt(); 1153 } 1154 } 1155 1156 class InstallAsyncExceptionHandshake : public HandshakeClosure { 1157 AsyncExceptionHandshake* _aeh; 1158 public: 1159 InstallAsyncExceptionHandshake(AsyncExceptionHandshake* aeh) : 1160 HandshakeClosure("InstallAsyncException"), _aeh(aeh) {} 1161 ~InstallAsyncExceptionHandshake() { 1162 // If InstallAsyncExceptionHandshake was never executed we need to clean up _aeh. 1163 delete _aeh; 1164 } 1165 void do_thread(Thread* thr) { 1166 JavaThread* target = JavaThread::cast(thr); 1167 target->install_async_exception(_aeh); 1168 _aeh = nullptr; 1169 } 1170 }; 1171 1172 void JavaThread::send_async_exception(JavaThread* target, oop java_throwable) { 1173 OopHandle e(Universe::vm_global(), java_throwable); 1174 InstallAsyncExceptionHandshake iaeh(new AsyncExceptionHandshake(e)); 1175 Handshake::execute(&iaeh, target); 1176 } 1177 1178 #if INCLUDE_JVMTI 1179 void JavaThread::set_is_in_VTMS_transition(bool val) { 1180 assert(is_in_VTMS_transition() != val, "already %s transition", val ? "inside" : "outside"); 1181 _is_in_VTMS_transition = val; 1182 } 1183 1184 #ifdef ASSERT 1185 void JavaThread::set_is_VTMS_transition_disabler(bool val) { 1186 _is_VTMS_transition_disabler = val; 1187 } 1188 #endif 1189 #endif 1190 1191 // External suspension mechanism. 1192 // 1193 // Guarantees on return (for a valid target thread): 1194 // - Target thread will not execute any new bytecode. 1195 // - Target thread will not enter any new monitors. 1196 // 1197 bool JavaThread::java_suspend(bool register_vthread_SR) { 1198 #if INCLUDE_JVMTI 1199 // Suspending a JavaThread in VTMS transition or disabling VTMS transitions can cause deadlocks. 1200 assert(!is_in_VTMS_transition(), "no suspend allowed in VTMS transition"); 1201 assert(!is_VTMS_transition_disabler(), "no suspend allowed for VTMS transition disablers"); 1202 #endif 1203 1204 guarantee(Thread::is_JavaThread_protected(/* target */ this), 1205 "target JavaThread is not protected in calling context."); 1206 return this->handshake_state()->suspend(register_vthread_SR); 1207 } 1208 1209 bool JavaThread::java_resume(bool register_vthread_SR) { 1210 guarantee(Thread::is_JavaThread_protected_by_TLH(/* target */ this), 1211 "missing ThreadsListHandle in calling context."); 1212 return this->handshake_state()->resume(register_vthread_SR); 1213 } 1214 1215 // Wait for another thread to perform object reallocation and relocking on behalf of 1216 // this thread. The current thread is required to change to _thread_blocked in order 1217 // to be seen to be safepoint/handshake safe whilst suspended and only after becoming 1218 // handshake safe, the other thread can complete the handshake used to synchronize 1219 // with this thread and then perform the reallocation and relocking. 1220 // See EscapeBarrier::sync_and_suspend_*() 1221 1222 void JavaThread::wait_for_object_deoptimization() { 1223 assert(!has_last_Java_frame() || frame_anchor()->walkable(), "should have walkable stack"); 1224 assert(this == Thread::current(), "invariant"); 1225 1226 bool spin_wait = os::is_MP(); 1227 do { 1228 ThreadBlockInVM tbivm(this, true /* allow_suspend */); 1229 // Wait for object deoptimization if requested. 1230 if (spin_wait) { 1231 // A single deoptimization is typically very short. Microbenchmarks 1232 // showed 5% better performance when spinning. 1233 const uint spin_limit = 10 * SpinYield::default_spin_limit; 1234 SpinYield spin(spin_limit); 1235 for (uint i = 0; is_obj_deopt_suspend() && i < spin_limit; i++) { 1236 spin.wait(); 1237 } 1238 // Spin just once 1239 spin_wait = false; 1240 } else { 1241 MonitorLocker ml(this, EscapeBarrier_lock, Monitor::_no_safepoint_check_flag); 1242 if (is_obj_deopt_suspend()) { 1243 ml.wait(); 1244 } 1245 } 1246 // A handshake for obj. deoptimization suspend could have been processed so 1247 // we must check after processing. 1248 } while (is_obj_deopt_suspend()); 1249 } 1250 1251 #ifdef ASSERT 1252 // Verify the JavaThread has not yet been published in the Threads::list, and 1253 // hence doesn't need protection from concurrent access at this stage. 1254 void JavaThread::verify_not_published() { 1255 // Cannot create a ThreadsListHandle here and check !tlh.includes(this) 1256 // since an unpublished JavaThread doesn't participate in the 1257 // Thread-SMR protocol for keeping a ThreadsList alive. 1258 assert(!on_thread_list(), "JavaThread shouldn't have been published yet!"); 1259 } 1260 #endif 1261 1262 // Slow path when the native==>Java barriers detect a safepoint/handshake is 1263 // pending, when _suspend_flags is non-zero or when we need to process a stack 1264 // watermark. Also check for pending async exceptions (except unsafe access error). 1265 // Note only the native==>Java barriers can call this function when thread state 1266 // is _thread_in_native_trans. 1267 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) { 1268 assert(thread->thread_state() == _thread_in_native_trans, "wrong state"); 1269 assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->Java transition"); 1270 1271 thread->set_thread_state(_thread_in_vm); 1272 1273 // Enable WXWrite: called directly from interpreter native wrapper. 1274 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, thread)); 1275 1276 SafepointMechanism::process_if_requested_with_exit_check(thread, true /* check asyncs */); 1277 1278 // After returning from native, it could be that the stack frames are not 1279 // yet safe to use. We catch such situations in the subsequent stack watermark 1280 // barrier, which will trap unsafe stack frames. 1281 StackWatermarkSet::before_unwind(thread); 1282 } 1283 1284 #ifndef PRODUCT 1285 // Deoptimization 1286 // Function for testing deoptimization 1287 void JavaThread::deoptimize() { 1288 StackFrameStream fst(this, false /* update */, true /* process_frames */); 1289 bool deopt = false; // Dump stack only if a deopt actually happens. 1290 bool only_at = strlen(DeoptimizeOnlyAt) > 0; 1291 // Iterate over all frames in the thread and deoptimize 1292 for (; !fst.is_done(); fst.next()) { 1293 if (fst.current()->can_be_deoptimized()) { 1294 1295 if (only_at) { 1296 // Deoptimize only at particular bcis. DeoptimizeOnlyAt 1297 // consists of comma or carriage return separated numbers so 1298 // search for the current bci in that string. 1299 address pc = fst.current()->pc(); 1300 nmethod* nm = fst.current()->cb()->as_nmethod(); 1301 ScopeDesc* sd = nm->scope_desc_at(pc); 1302 char buffer[8]; 1303 jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci()); 1304 size_t len = strlen(buffer); 1305 const char * found = strstr(DeoptimizeOnlyAt, buffer); 1306 while (found != nullptr) { 1307 if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') && 1308 (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) { 1309 // Check that the bci found is bracketed by terminators. 1310 break; 1311 } 1312 found = strstr(found + 1, buffer); 1313 } 1314 if (!found) { 1315 continue; 1316 } 1317 } 1318 1319 if (DebugDeoptimization && !deopt) { 1320 deopt = true; // One-time only print before deopt 1321 tty->print_cr("[BEFORE Deoptimization]"); 1322 trace_frames(); 1323 trace_stack(); 1324 } 1325 Deoptimization::deoptimize(this, *fst.current()); 1326 } 1327 } 1328 1329 if (DebugDeoptimization && deopt) { 1330 tty->print_cr("[AFTER Deoptimization]"); 1331 trace_frames(); 1332 } 1333 } 1334 1335 1336 // Make zombies 1337 void JavaThread::make_zombies() { 1338 for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) { 1339 if (fst.current()->can_be_deoptimized()) { 1340 // it is a Java nmethod 1341 nmethod* nm = CodeCache::find_nmethod(fst.current()->pc()); 1342 assert(nm != nullptr, "did not find nmethod"); 1343 nm->make_not_entrant("zombie"); 1344 } 1345 } 1346 } 1347 #endif // PRODUCT 1348 1349 1350 void JavaThread::deoptimize_marked_methods() { 1351 if (!has_last_Java_frame()) return; 1352 StackFrameStream fst(this, false /* update */, true /* process_frames */); 1353 for (; !fst.is_done(); fst.next()) { 1354 if (fst.current()->should_be_deoptimized()) { 1355 Deoptimization::deoptimize(this, *fst.current()); 1356 } 1357 } 1358 } 1359 1360 #ifdef ASSERT 1361 void JavaThread::verify_frame_info() { 1362 assert((!has_last_Java_frame() && java_call_counter() == 0) || 1363 (has_last_Java_frame() && java_call_counter() > 0), 1364 "unexpected frame info: has_last_frame=%s, java_call_counter=%d", 1365 has_last_Java_frame() ? "true" : "false", java_call_counter()); 1366 } 1367 #endif 1368 1369 // Push on a new block of JNI handles. 1370 void JavaThread::push_jni_handle_block() { 1371 // Allocate a new block for JNI handles. 1372 // Inlined code from jni_PushLocalFrame() 1373 JNIHandleBlock* old_handles = active_handles(); 1374 JNIHandleBlock* new_handles = JNIHandleBlock::allocate_block(this); 1375 assert(old_handles != nullptr && new_handles != nullptr, "should not be null"); 1376 new_handles->set_pop_frame_link(old_handles); // make sure java handles get gc'd. 1377 set_active_handles(new_handles); 1378 } 1379 1380 // Pop off the current block of JNI handles. 1381 void JavaThread::pop_jni_handle_block() { 1382 // Release our JNI handle block 1383 JNIHandleBlock* old_handles = active_handles(); 1384 JNIHandleBlock* new_handles = old_handles->pop_frame_link(); 1385 assert(new_handles != nullptr, "should never set active handles to null"); 1386 set_active_handles(new_handles); 1387 old_handles->set_pop_frame_link(nullptr); 1388 JNIHandleBlock::release_block(old_handles, this); 1389 } 1390 1391 void JavaThread::oops_do_no_frames(OopClosure* f, NMethodClosure* cf) { 1392 // Verify that the deferred card marks have been flushed. 1393 assert(deferred_card_mark().is_empty(), "Should be empty during GC"); 1394 1395 // Traverse the GCHandles 1396 Thread::oops_do_no_frames(f, cf); 1397 1398 if (active_handles() != nullptr) { 1399 active_handles()->oops_do(f); 1400 } 1401 1402 DEBUG_ONLY(verify_frame_info();) 1403 1404 assert(vframe_array_head() == nullptr, "deopt in progress at a safepoint!"); 1405 // If we have deferred set_locals there might be oops waiting to be 1406 // written 1407 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = JvmtiDeferredUpdates::deferred_locals(this); 1408 if (list != nullptr) { 1409 for (int i = 0; i < list->length(); i++) { 1410 list->at(i)->oops_do(f); 1411 } 1412 } 1413 1414 // Traverse instance variables at the end since the GC may be moving things 1415 // around using this function 1416 f->do_oop((oop*) &_vm_result_oop); 1417 f->do_oop((oop*) &_exception_oop); 1418 #if INCLUDE_JVMCI 1419 f->do_oop((oop*) &_jvmci_reserved_oop0); 1420 1421 if (_live_nmethod != nullptr && cf != nullptr) { 1422 cf->do_nmethod(_live_nmethod); 1423 } 1424 #endif 1425 1426 if (jvmti_thread_state() != nullptr) { 1427 jvmti_thread_state()->oops_do(f, cf); 1428 } 1429 1430 // The continuation oops are really on the stack. But there is typically at most 1431 // one of those per thread, so we handle them here in the oops_do_no_frames part 1432 // so that we don't have to sprinkle as many stack watermark checks where these 1433 // oops are used. We just need to make sure the thread has started processing. 1434 ContinuationEntry* entry = _cont_entry; 1435 while (entry != nullptr) { 1436 f->do_oop((oop*)entry->cont_addr()); 1437 f->do_oop((oop*)entry->chunk_addr()); 1438 entry = entry->parent(); 1439 } 1440 1441 if (LockingMode == LM_LIGHTWEIGHT) { 1442 lock_stack().oops_do(f); 1443 } 1444 } 1445 1446 void JavaThread::oops_do_frames(OopClosure* f, NMethodClosure* cf) { 1447 if (!has_last_Java_frame()) { 1448 return; 1449 } 1450 // Finish any pending lazy GC activity for the frames 1451 StackWatermarkSet::finish_processing(this, nullptr /* context */, StackWatermarkKind::gc); 1452 // Traverse the execution stack 1453 for (StackFrameStream fst(this, true /* update */, false /* process_frames */); !fst.is_done(); fst.next()) { 1454 fst.current()->oops_do(f, cf, fst.register_map()); 1455 } 1456 } 1457 1458 #ifdef ASSERT 1459 void JavaThread::verify_states_for_handshake() { 1460 // This checks that the thread has a correct frame state during a handshake. 1461 verify_frame_info(); 1462 } 1463 #endif 1464 1465 void JavaThread::nmethods_do(NMethodClosure* cf) { 1466 DEBUG_ONLY(verify_frame_info();) 1467 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, Thread::current());) 1468 1469 if (has_last_Java_frame()) { 1470 // Traverse the execution stack 1471 for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) { 1472 fst.current()->nmethod_do(cf); 1473 } 1474 } 1475 1476 if (jvmti_thread_state() != nullptr) { 1477 jvmti_thread_state()->nmethods_do(cf); 1478 } 1479 1480 #if INCLUDE_JVMCI 1481 if (_live_nmethod != nullptr) { 1482 cf->do_nmethod(_live_nmethod); 1483 } 1484 #endif 1485 } 1486 1487 void JavaThread::metadata_do(MetadataClosure* f) { 1488 if (has_last_Java_frame()) { 1489 // Traverse the execution stack to call f() on the methods in the stack 1490 for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) { 1491 fst.current()->metadata_do(f); 1492 } 1493 } else if (is_Compiler_thread()) { 1494 // need to walk ciMetadata in current compile tasks to keep alive. 1495 CompilerThread* ct = (CompilerThread*)this; 1496 if (ct->env() != nullptr) { 1497 ct->env()->metadata_do(f); 1498 } 1499 CompileTask* task = ct->task(); 1500 if (task != nullptr) { 1501 task->metadata_do(f); 1502 } 1503 } 1504 } 1505 1506 // Printing 1507 static const char* _get_thread_state_name(JavaThreadState _thread_state) { 1508 switch (_thread_state) { 1509 case _thread_uninitialized: return "_thread_uninitialized"; 1510 case _thread_new: return "_thread_new"; 1511 case _thread_new_trans: return "_thread_new_trans"; 1512 case _thread_in_native: return "_thread_in_native"; 1513 case _thread_in_native_trans: return "_thread_in_native_trans"; 1514 case _thread_in_vm: return "_thread_in_vm"; 1515 case _thread_in_vm_trans: return "_thread_in_vm_trans"; 1516 case _thread_in_Java: return "_thread_in_Java"; 1517 case _thread_in_Java_trans: return "_thread_in_Java_trans"; 1518 case _thread_blocked: return "_thread_blocked"; 1519 case _thread_blocked_trans: return "_thread_blocked_trans"; 1520 default: return "unknown thread state"; 1521 } 1522 } 1523 1524 void JavaThread::print_thread_state_on(outputStream *st) const { 1525 st->print_cr(" JavaThread state: %s", _get_thread_state_name(_thread_state)); 1526 } 1527 1528 // Called by Threads::print() for VM_PrintThreads operation 1529 void JavaThread::print_on(outputStream *st, bool print_extended_info) const { 1530 st->print_raw("\""); 1531 st->print_raw(name()); 1532 st->print_raw("\" "); 1533 oop thread_oop = threadObj(); 1534 if (thread_oop != nullptr) { 1535 st->print("#" INT64_FORMAT " [%ld] ", (int64_t)java_lang_Thread::thread_id(thread_oop), (long) osthread()->thread_id()); 1536 if (java_lang_Thread::is_daemon(thread_oop)) st->print("daemon "); 1537 st->print("prio=%d ", java_lang_Thread::priority(thread_oop)); 1538 } 1539 Thread::print_on(st, print_extended_info); 1540 // print guess for valid stack memory region (assume 4K pages); helps lock debugging 1541 st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12)); 1542 if (thread_oop != nullptr) { 1543 if (is_vthread_mounted()) { 1544 st->print_cr(" Carrying virtual thread #" INT64_FORMAT, java_lang_Thread::thread_id(vthread())); 1545 } else { 1546 st->print_cr(" java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop)); 1547 } 1548 } 1549 #ifndef PRODUCT 1550 _safepoint_state->print_on(st); 1551 #endif // PRODUCT 1552 if (is_Compiler_thread()) { 1553 CompileTask *task = ((CompilerThread*)this)->task(); 1554 if (task != nullptr) { 1555 st->print(" Compiling: "); 1556 task->print(st, nullptr, true, false); 1557 } else { 1558 st->print(" No compile task"); 1559 } 1560 st->cr(); 1561 } 1562 } 1563 1564 void JavaThread::print() const { print_on(tty); } 1565 1566 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const { 1567 st->print("%s", get_thread_name_string(buf, buflen)); 1568 } 1569 1570 // Called by fatal error handler. The difference between this and 1571 // JavaThread::print() is that we can't grab lock or allocate memory. 1572 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const { 1573 st->print("%s \"%s\"", type_name(), get_thread_name_string(buf, buflen)); 1574 Thread* current = Thread::current_or_null_safe(); 1575 assert(current != nullptr, "cannot be called by a detached thread"); 1576 st->fill_to(60); 1577 if (!current->is_Java_thread() || JavaThread::cast(current)->is_oop_safe()) { 1578 // Only access threadObj() if current thread is not a JavaThread 1579 // or if it is a JavaThread that can safely access oops. 1580 oop thread_obj = threadObj(); 1581 if (thread_obj != nullptr) { 1582 st->print(java_lang_Thread::is_daemon(thread_obj) ? " daemon" : " "); 1583 } 1584 } 1585 st->print(" ["); 1586 st->print("%s", _get_thread_state_name(_thread_state)); 1587 if (osthread()) { 1588 st->print(", id=%d", osthread()->thread_id()); 1589 } 1590 // Use raw field members for stack base/size as this could be 1591 // called before a thread has run enough to initialize them. 1592 st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ") (" PROPERFMT ")", 1593 p2i(_stack_base - _stack_size), p2i(_stack_base), 1594 PROPERFMTARGS(_stack_size)); 1595 st->print("]"); 1596 1597 ThreadsSMRSupport::print_info_on(this, st); 1598 return; 1599 } 1600 1601 1602 // Verification 1603 1604 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) { 1605 // ignore if there is no stack 1606 if (!has_last_Java_frame()) return; 1607 // traverse the stack frames. Starts from top frame. 1608 for (StackFrameStream fst(this, true /* update_map */, true /* process_frames */, false /* walk_cont */); !fst.is_done(); fst.next()) { 1609 frame* fr = fst.current(); 1610 f(fr, fst.register_map()); 1611 } 1612 } 1613 1614 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); } 1615 1616 void JavaThread::verify() { 1617 // Verify oops in the thread. 1618 oops_do(&VerifyOopClosure::verify_oop, nullptr); 1619 1620 // Verify the stack frames. 1621 frames_do(frame_verify); 1622 } 1623 1624 // CR 6300358 (sub-CR 2137150) 1625 // Most callers of this method assume that it can't return null but a 1626 // thread may not have a name whilst it is in the process of attaching to 1627 // the VM - see CR 6412693, and there are places where a JavaThread can be 1628 // seen prior to having its threadObj set (e.g., JNI attaching threads and 1629 // if vm exit occurs during initialization). These cases can all be accounted 1630 // for such that this method never returns null. 1631 const char* JavaThread::name() const { 1632 if (Thread::is_JavaThread_protected(/* target */ this)) { 1633 // The target JavaThread is protected so get_thread_name_string() is safe: 1634 return get_thread_name_string(); 1635 } 1636 1637 // The target JavaThread is not protected so we return the default: 1638 return Thread::name(); 1639 } 1640 1641 // Like name() but doesn't include the protection check. This must only be 1642 // called when it is known to be safe, even though the protection check can't tell 1643 // that e.g. when this thread is the init_thread() - see instanceKlass.cpp. 1644 const char* JavaThread::name_raw() const { 1645 return get_thread_name_string(); 1646 } 1647 1648 // Returns a non-null representation of this thread's name, or a suitable 1649 // descriptive string if there is no set name. 1650 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const { 1651 const char* name_str; 1652 #ifdef ASSERT 1653 Thread* current = Thread::current_or_null_safe(); 1654 assert(current != nullptr, "cannot be called by a detached thread"); 1655 if (!current->is_Java_thread() || JavaThread::cast(current)->is_oop_safe()) { 1656 // Only access threadObj() if current thread is not a JavaThread 1657 // or if it is a JavaThread that can safely access oops. 1658 #endif 1659 oop thread_obj = threadObj(); 1660 if (thread_obj != nullptr) { 1661 oop name = java_lang_Thread::name(thread_obj); 1662 if (name != nullptr) { 1663 if (buf == nullptr) { 1664 name_str = java_lang_String::as_utf8_string(name); 1665 } else { 1666 name_str = java_lang_String::as_utf8_string(name, buf, buflen); 1667 } 1668 } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306 1669 name_str = "<no-name - thread is attaching>"; 1670 } else { 1671 name_str = "<un-named>"; 1672 } 1673 } else { 1674 name_str = Thread::name(); 1675 } 1676 #ifdef ASSERT 1677 } else { 1678 // Current JavaThread has exited... 1679 if (current == this) { 1680 // ... and is asking about itself: 1681 name_str = "<no-name - current JavaThread has exited>"; 1682 } else { 1683 // ... and it can't safely determine this JavaThread's name so 1684 // use the default thread name. 1685 name_str = Thread::name(); 1686 } 1687 } 1688 #endif 1689 assert(name_str != nullptr, "unexpected null thread name"); 1690 return name_str; 1691 } 1692 1693 // Helper to extract the name from the thread oop for logging. 1694 const char* JavaThread::name_for(oop thread_obj) { 1695 assert(thread_obj != nullptr, "precondition"); 1696 oop name = java_lang_Thread::name(thread_obj); 1697 const char* name_str; 1698 if (name != nullptr) { 1699 name_str = java_lang_String::as_utf8_string(name); 1700 } else { 1701 name_str = "<un-named>"; 1702 } 1703 return name_str; 1704 } 1705 1706 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) { 1707 1708 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 1709 assert(NoPriority <= prio && prio <= MaxPriority, "sanity check"); 1710 // Link Java Thread object <-> C++ Thread 1711 1712 // Get the C++ thread object (an oop) from the JNI handle (a jthread) 1713 // and put it into a new Handle. The Handle "thread_oop" can then 1714 // be used to pass the C++ thread object to other methods. 1715 1716 // Set the Java level thread object (jthread) field of the 1717 // new thread (a JavaThread *) to C++ thread object using the 1718 // "thread_oop" handle. 1719 1720 // Set the thread field (a JavaThread *) of the 1721 // oop representing the java_lang_Thread to the new thread (a JavaThread *). 1722 1723 Handle thread_oop(Thread::current(), 1724 JNIHandles::resolve_non_null(jni_thread)); 1725 assert(InstanceKlass::cast(thread_oop->klass())->is_linked(), 1726 "must be initialized"); 1727 set_threadOopHandles(thread_oop()); 1728 set_monitor_owner_id(java_lang_Thread::thread_id(thread_oop())); 1729 1730 if (prio == NoPriority) { 1731 prio = java_lang_Thread::priority(thread_oop()); 1732 assert(prio != NoPriority, "A valid priority should be present"); 1733 } 1734 1735 // Push the Java priority down to the native thread; needs Threads_lock 1736 Thread::set_priority(this, prio); 1737 1738 // Add the new thread to the Threads list and set it in motion. 1739 // We must have threads lock in order to call Threads::add. 1740 // It is crucial that we do not block before the thread is 1741 // added to the Threads list for if a GC happens, then the java_thread oop 1742 // will not be visited by GC. 1743 Threads::add(this); 1744 // Publish the JavaThread* in java.lang.Thread after the JavaThread* is 1745 // on a ThreadsList. We don't want to wait for the release when the 1746 // Theads_lock is dropped somewhere in the caller since the JavaThread* 1747 // is already visible to JVM/TI via the ThreadsList. 1748 java_lang_Thread::release_set_thread(thread_oop(), this); 1749 } 1750 1751 oop JavaThread::current_park_blocker() { 1752 // Support for JSR-166 locks 1753 oop thread_oop = threadObj(); 1754 if (thread_oop != nullptr) { 1755 return java_lang_Thread::park_blocker(thread_oop); 1756 } 1757 return nullptr; 1758 } 1759 1760 // Print current stack trace for checked JNI warnings and JNI fatal errors. 1761 // This is the external format, selecting the platform or vthread 1762 // as applicable, and allowing for a native-only stack. 1763 void JavaThread::print_jni_stack() { 1764 assert(this == JavaThread::current(), "Can't print stack of other threads"); 1765 if (!has_last_Java_frame()) { 1766 ResourceMark rm(this); 1767 char* buf = NEW_RESOURCE_ARRAY_RETURN_NULL(char, O_BUFLEN); 1768 if (buf == nullptr) { 1769 tty->print_cr("Unable to print native stack - out of memory"); 1770 return; 1771 } 1772 NativeStackPrinter nsp(this); 1773 address lastpc = nullptr; 1774 nsp.print_stack(tty, buf, O_BUFLEN, lastpc, 1775 true /*print_source_info */, -1 /* max stack */ ); 1776 } else { 1777 print_active_stack_on(tty); 1778 } 1779 } 1780 1781 void JavaThread::print_stack_on(outputStream* st) { 1782 if (!has_last_Java_frame()) return; 1783 1784 Thread* current_thread = Thread::current(); 1785 ResourceMark rm(current_thread); 1786 HandleMark hm(current_thread); 1787 1788 RegisterMap reg_map(this, 1789 RegisterMap::UpdateMap::include, 1790 RegisterMap::ProcessFrames::include, 1791 RegisterMap::WalkContinuation::skip); 1792 vframe* start_vf = platform_thread_last_java_vframe(®_map); 1793 int count = 0; 1794 for (vframe* f = start_vf; f != nullptr; f = f->sender()) { 1795 if (f->is_java_frame()) { 1796 javaVFrame* jvf = javaVFrame::cast(f); 1797 java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci()); 1798 1799 // Print out lock information 1800 if (JavaMonitorsInStackTrace) { 1801 jvf->print_lock_info_on(st, count); 1802 } 1803 } else { 1804 // Ignore non-Java frames 1805 } 1806 1807 // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0 1808 count++; 1809 if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return; 1810 } 1811 } 1812 1813 void JavaThread::print_vthread_stack_on(outputStream* st) { 1814 assert(is_vthread_mounted(), "Caller should have checked this"); 1815 assert(has_last_Java_frame(), "must be"); 1816 1817 Thread* current_thread = Thread::current(); 1818 ResourceMark rm(current_thread); 1819 HandleMark hm(current_thread); 1820 1821 RegisterMap reg_map(this, 1822 RegisterMap::UpdateMap::include, 1823 RegisterMap::ProcessFrames::include, 1824 RegisterMap::WalkContinuation::include); 1825 ContinuationEntry* cont_entry = last_continuation(); 1826 vframe* start_vf = last_java_vframe(®_map); 1827 int count = 0; 1828 for (vframe* f = start_vf; f != nullptr; f = f->sender()) { 1829 // Watch for end of vthread stack 1830 if (Continuation::is_continuation_enterSpecial(f->fr())) { 1831 assert(cont_entry == Continuation::get_continuation_entry_for_entry_frame(this, f->fr()), ""); 1832 if (cont_entry->is_virtual_thread()) { 1833 break; 1834 } 1835 cont_entry = cont_entry->parent(); 1836 } 1837 if (f->is_java_frame()) { 1838 javaVFrame* jvf = javaVFrame::cast(f); 1839 java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci()); 1840 1841 // Print out lock information 1842 if (JavaMonitorsInStackTrace) { 1843 jvf->print_lock_info_on(st, count); 1844 } 1845 } else { 1846 // Ignore non-Java frames 1847 } 1848 1849 // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0 1850 count++; 1851 if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return; 1852 } 1853 } 1854 1855 void JavaThread::print_active_stack_on(outputStream* st) { 1856 if (is_vthread_mounted()) { 1857 print_vthread_stack_on(st); 1858 } else { 1859 print_stack_on(st); 1860 } 1861 } 1862 1863 #if INCLUDE_JVMTI 1864 // Rebind JVMTI thread state from carrier to virtual or from virtual to carrier. 1865 JvmtiThreadState* JavaThread::rebind_to_jvmti_thread_state_of(oop thread_oop) { 1866 set_jvmti_vthread(thread_oop); 1867 1868 // unbind current JvmtiThreadState from JavaThread 1869 JvmtiThreadState::unbind_from(jvmti_thread_state(), this); 1870 1871 // bind new JvmtiThreadState to JavaThread 1872 JvmtiThreadState::bind_to(java_lang_Thread::jvmti_thread_state(thread_oop), this); 1873 1874 // enable interp_only_mode for virtual or carrier thread if it has pending bit 1875 JvmtiThreadState::process_pending_interp_only(this); 1876 1877 return jvmti_thread_state(); 1878 } 1879 #endif 1880 1881 // JVMTI PopFrame support 1882 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) { 1883 assert(_popframe_preserved_args == nullptr, "should not wipe out old PopFrame preserved arguments"); 1884 if (in_bytes(size_in_bytes) != 0) { 1885 _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread); 1886 _popframe_preserved_args_size = in_bytes(size_in_bytes); 1887 Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size); 1888 } 1889 } 1890 1891 void* JavaThread::popframe_preserved_args() { 1892 return _popframe_preserved_args; 1893 } 1894 1895 ByteSize JavaThread::popframe_preserved_args_size() { 1896 return in_ByteSize(_popframe_preserved_args_size); 1897 } 1898 1899 WordSize JavaThread::popframe_preserved_args_size_in_words() { 1900 int sz = in_bytes(popframe_preserved_args_size()); 1901 assert(sz % wordSize == 0, "argument size must be multiple of wordSize"); 1902 return in_WordSize(sz / wordSize); 1903 } 1904 1905 void JavaThread::popframe_free_preserved_args() { 1906 assert(_popframe_preserved_args != nullptr, "should not free PopFrame preserved arguments twice"); 1907 FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args); 1908 _popframe_preserved_args = nullptr; 1909 _popframe_preserved_args_size = 0; 1910 } 1911 1912 #ifndef PRODUCT 1913 1914 void JavaThread::trace_frames() { 1915 tty->print_cr("[Describe stack]"); 1916 int frame_no = 1; 1917 for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) { 1918 tty->print(" %d. ", frame_no++); 1919 fst.current()->print_value_on(tty); 1920 tty->cr(); 1921 } 1922 } 1923 1924 class PrintAndVerifyOopClosure: public OopClosure { 1925 protected: 1926 template <class T> inline void do_oop_work(T* p) { 1927 oop obj = RawAccess<>::oop_load(p); 1928 if (obj == nullptr) return; 1929 tty->print(INTPTR_FORMAT ": ", p2i(p)); 1930 if (oopDesc::is_oop_or_null(obj)) { 1931 if (obj->is_objArray()) { 1932 tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj)); 1933 } else { 1934 obj->print(); 1935 } 1936 } else { 1937 tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj)); 1938 } 1939 tty->cr(); 1940 } 1941 public: 1942 virtual void do_oop(oop* p) { do_oop_work(p); } 1943 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 1944 }; 1945 1946 #ifdef ASSERT 1947 // Print or validate the layout of stack frames 1948 void JavaThread::print_frame_layout(int depth, bool validate_only) { 1949 ResourceMark rm; 1950 PreserveExceptionMark pm(this); 1951 FrameValues values; 1952 int frame_no = 0; 1953 for (StackFrameStream fst(this, true, true, true); !fst.is_done(); fst.next()) { 1954 fst.current()->describe(values, ++frame_no, fst.register_map()); 1955 if (depth == frame_no) break; 1956 } 1957 Continuation::describe(values); 1958 if (validate_only) { 1959 values.validate(); 1960 } else { 1961 tty->print_cr("[Describe stack layout]"); 1962 values.print(this); 1963 } 1964 } 1965 #endif 1966 1967 void JavaThread::trace_stack_from(vframe* start_vf) { 1968 ResourceMark rm; 1969 int vframe_no = 1; 1970 for (vframe* f = start_vf; f; f = f->sender()) { 1971 if (f->is_java_frame()) { 1972 javaVFrame::cast(f)->print_activation(vframe_no++); 1973 } else { 1974 f->print(); 1975 } 1976 if (vframe_no > StackPrintLimit) { 1977 tty->print_cr("...<more frames>..."); 1978 return; 1979 } 1980 } 1981 } 1982 1983 1984 void JavaThread::trace_stack() { 1985 if (!has_last_Java_frame()) return; 1986 Thread* current_thread = Thread::current(); 1987 ResourceMark rm(current_thread); 1988 HandleMark hm(current_thread); 1989 RegisterMap reg_map(this, 1990 RegisterMap::UpdateMap::include, 1991 RegisterMap::ProcessFrames::include, 1992 RegisterMap::WalkContinuation::skip); 1993 trace_stack_from(last_java_vframe(®_map)); 1994 } 1995 1996 1997 #endif // PRODUCT 1998 1999 // Slow-path increment of the held monitor counts. JNI locking is always 2000 // this slow-path. 2001 void JavaThread::inc_held_monitor_count(intx i, bool jni) { 2002 #ifdef SUPPORT_MONITOR_COUNT 2003 2004 if (LockingMode != LM_LEGACY) { 2005 // Nothing to do. Just do some sanity check. 2006 assert(_held_monitor_count == 0, "counter should not be used"); 2007 assert(_jni_monitor_count == 0, "counter should not be used"); 2008 return; 2009 } 2010 2011 assert(_held_monitor_count >= 0, "Must always be non-negative: %zd", _held_monitor_count); 2012 _held_monitor_count += i; 2013 if (jni) { 2014 assert(_jni_monitor_count >= 0, "Must always be non-negative: %zd", _jni_monitor_count); 2015 _jni_monitor_count += i; 2016 } 2017 assert(_held_monitor_count >= _jni_monitor_count, "Monitor count discrepancy detected - held count " 2018 "%zd is less than JNI count %zd", _held_monitor_count, _jni_monitor_count); 2019 #endif // SUPPORT_MONITOR_COUNT 2020 } 2021 2022 // Slow-path decrement of the held monitor counts. JNI unlocking is always 2023 // this slow-path. 2024 void JavaThread::dec_held_monitor_count(intx i, bool jni) { 2025 #ifdef SUPPORT_MONITOR_COUNT 2026 2027 if (LockingMode != LM_LEGACY) { 2028 // Nothing to do. Just do some sanity check. 2029 assert(_held_monitor_count == 0, "counter should not be used"); 2030 assert(_jni_monitor_count == 0, "counter should not be used"); 2031 return; 2032 } 2033 2034 _held_monitor_count -= i; 2035 assert(_held_monitor_count >= 0, "Must always be non-negative: %zd", _held_monitor_count); 2036 if (jni) { 2037 _jni_monitor_count -= i; 2038 assert(_jni_monitor_count >= 0, "Must always be non-negative: %zd", _jni_monitor_count); 2039 } 2040 // When a thread is detaching with still owned JNI monitors, the logic that releases 2041 // the monitors doesn't know to set the "jni" flag and so the counts can get out of sync. 2042 // So we skip this assert if the thread is exiting. Once all monitors are unlocked the 2043 // JNI count is directly set to zero. 2044 assert(_held_monitor_count >= _jni_monitor_count || is_exiting(), "Monitor count discrepancy detected - held count " 2045 "%zd is less than JNI count %zd", _held_monitor_count, _jni_monitor_count); 2046 #endif // SUPPORT_MONITOR_COUNT 2047 } 2048 2049 frame JavaThread::vthread_last_frame() { 2050 assert (is_vthread_mounted(), "Virtual thread not mounted"); 2051 return last_frame(); 2052 } 2053 2054 frame JavaThread::carrier_last_frame(RegisterMap* reg_map) { 2055 const ContinuationEntry* entry = vthread_continuation(); 2056 guarantee (entry != nullptr, "Not a carrier thread"); 2057 frame f = entry->to_frame(); 2058 if (reg_map->process_frames()) { 2059 entry->flush_stack_processing(this); 2060 } 2061 entry->update_register_map(reg_map); 2062 return f.sender(reg_map); 2063 } 2064 2065 frame JavaThread::platform_thread_last_frame(RegisterMap* reg_map) { 2066 return is_vthread_mounted() ? carrier_last_frame(reg_map) : last_frame(); 2067 } 2068 2069 javaVFrame* JavaThread::last_java_vframe(const frame f, RegisterMap *reg_map) { 2070 assert(reg_map != nullptr, "a map must be given"); 2071 for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) { 2072 if (vf->is_java_frame()) return javaVFrame::cast(vf); 2073 } 2074 return nullptr; 2075 } 2076 2077 Klass* JavaThread::security_get_caller_class(int depth) { 2078 ResetNoHandleMark rnhm; 2079 HandleMark hm(Thread::current()); 2080 2081 vframeStream vfst(this); 2082 vfst.security_get_caller_frame(depth); 2083 if (!vfst.at_end()) { 2084 return vfst.method()->method_holder(); 2085 } 2086 return nullptr; 2087 } 2088 2089 // Internal convenience function for millisecond resolution sleeps. 2090 bool JavaThread::sleep(jlong millis) { 2091 jlong nanos; 2092 if (millis > max_jlong / NANOUNITS_PER_MILLIUNIT) { 2093 // Conversion to nanos would overflow, saturate at max 2094 nanos = max_jlong; 2095 } else { 2096 nanos = millis * NANOUNITS_PER_MILLIUNIT; 2097 } 2098 return sleep_nanos(nanos); 2099 } 2100 2101 // java.lang.Thread.sleep support 2102 // Returns true if sleep time elapsed as expected, and false 2103 // if the thread was interrupted. 2104 bool JavaThread::sleep_nanos(jlong nanos) { 2105 assert(this == Thread::current(), "thread consistency check"); 2106 assert(nanos >= 0, "nanos are in range"); 2107 2108 ParkEvent * const slp = this->_SleepEvent; 2109 // Because there can be races with thread interruption sending an unpark() 2110 // to the event, we explicitly reset it here to avoid an immediate return. 2111 // The actual interrupt state will be checked before we park(). 2112 slp->reset(); 2113 // Thread interruption establishes a happens-before ordering in the 2114 // Java Memory Model, so we need to ensure we synchronize with the 2115 // interrupt state. 2116 OrderAccess::fence(); 2117 2118 jlong prevtime = os::javaTimeNanos(); 2119 2120 jlong nanos_remaining = nanos; 2121 2122 for (;;) { 2123 // interruption has precedence over timing out 2124 if (this->is_interrupted(true)) { 2125 return false; 2126 } 2127 2128 if (nanos_remaining <= 0) { 2129 return true; 2130 } 2131 2132 { 2133 ThreadBlockInVM tbivm(this); 2134 OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */); 2135 slp->park_nanos(nanos_remaining); 2136 } 2137 2138 // Update elapsed time tracking 2139 jlong newtime = os::javaTimeNanos(); 2140 if (newtime - prevtime < 0) { 2141 // time moving backwards, should only happen if no monotonic clock 2142 // not a guarantee() because JVM should not abort on kernel/glibc bugs 2143 assert(false, 2144 "unexpected time moving backwards detected in JavaThread::sleep()"); 2145 } else { 2146 nanos_remaining -= (newtime - prevtime); 2147 } 2148 prevtime = newtime; 2149 } 2150 } 2151 2152 // Last thread running calls java.lang.Shutdown.shutdown() 2153 void JavaThread::invoke_shutdown_hooks() { 2154 HandleMark hm(this); 2155 2156 // We could get here with a pending exception, if so clear it now. 2157 if (this->has_pending_exception()) { 2158 this->clear_pending_exception(); 2159 } 2160 2161 EXCEPTION_MARK; 2162 Klass* shutdown_klass = 2163 SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(), 2164 THREAD); 2165 if (shutdown_klass != nullptr) { 2166 // SystemDictionary::resolve_or_null will return null if there was 2167 // an exception. If we cannot load the Shutdown class, just don't 2168 // call Shutdown.shutdown() at all. This will mean the shutdown hooks 2169 // won't be run. Note that if a shutdown hook was registered, 2170 // the Shutdown class would have already been loaded 2171 // (Runtime.addShutdownHook will load it). 2172 JavaValue result(T_VOID); 2173 JavaCalls::call_static(&result, 2174 shutdown_klass, 2175 vmSymbols::shutdown_name(), 2176 vmSymbols::void_method_signature(), 2177 THREAD); 2178 } 2179 CLEAR_PENDING_EXCEPTION; 2180 } 2181 2182 #ifndef PRODUCT 2183 void JavaThread::verify_cross_modify_fence_failure(JavaThread *thread) { 2184 report_vm_error(__FILE__, __LINE__, "Cross modify fence failure", "%p", thread); 2185 } 2186 #endif 2187 2188 // Helper function to create the java.lang.Thread object for a 2189 // VM-internal thread. The thread will have the given name, and be 2190 // a member of the "system" ThreadGroup. 2191 Handle JavaThread::create_system_thread_object(const char* name, TRAPS) { 2192 Handle string = java_lang_String::create_from_str(name, CHECK_NH); 2193 2194 // Initialize thread_oop to put it into the system threadGroup. 2195 // This is done by calling the Thread(ThreadGroup group, String name) constructor. 2196 Handle thread_group(THREAD, Universe::system_thread_group()); 2197 Handle thread_oop = 2198 JavaCalls::construct_new_instance(vmClasses::Thread_klass(), 2199 vmSymbols::threadgroup_string_void_signature(), 2200 thread_group, 2201 string, 2202 CHECK_NH); 2203 2204 return thread_oop; 2205 } 2206 2207 // Starts the target JavaThread as a daemon of the given priority, and 2208 // bound to the given java.lang.Thread instance. 2209 // The Threads_lock is held for the duration. 2210 void JavaThread::start_internal_daemon(JavaThread* current, JavaThread* target, 2211 Handle thread_oop, ThreadPriority prio) { 2212 2213 assert(target->osthread() != nullptr, "target thread is not properly initialized"); 2214 2215 MutexLocker mu(current, Threads_lock); 2216 2217 // Initialize the fields of the thread_oop first. 2218 if (prio != NoPriority) { 2219 java_lang_Thread::set_priority(thread_oop(), prio); 2220 // Note: we don't call os::set_priority here. Possibly we should, 2221 // else all threads should call it themselves when they first run. 2222 } 2223 2224 java_lang_Thread::set_daemon(thread_oop()); 2225 2226 // Now bind the thread_oop to the target JavaThread. 2227 target->set_threadOopHandles(thread_oop()); 2228 target->set_monitor_owner_id(java_lang_Thread::thread_id(thread_oop())); 2229 2230 Threads::add(target); // target is now visible for safepoint/handshake 2231 // Publish the JavaThread* in java.lang.Thread after the JavaThread* is 2232 // on a ThreadsList. We don't want to wait for the release when the 2233 // Theads_lock is dropped when the 'mu' destructor is run since the 2234 // JavaThread* is already visible to JVM/TI via the ThreadsList. 2235 2236 assert(java_lang_Thread::thread(thread_oop()) == nullptr, "must not be alive"); 2237 java_lang_Thread::release_set_thread(thread_oop(), target); // isAlive == true now 2238 Thread::start(target); 2239 } 2240 2241 void JavaThread::vm_exit_on_osthread_failure(JavaThread* thread) { 2242 // At this point it may be possible that no osthread was created for the 2243 // JavaThread due to lack of resources. However, since this must work 2244 // for critical system threads just check and abort if this fails. 2245 if (thread->osthread() == nullptr) { 2246 // This isn't really an OOM condition, but historically this is what 2247 // we report. 2248 vm_exit_during_initialization("java.lang.OutOfMemoryError", 2249 os::native_thread_creation_failed_msg()); 2250 } 2251 } 2252 2253 void JavaThread::pretouch_stack() { 2254 // Given an established java thread stack with usable area followed by 2255 // shadow zone and reserved/yellow/red zone, pretouch the usable area ranging 2256 // from the current frame down to the start of the shadow zone. 2257 const address end = _stack_overflow_state.shadow_zone_safe_limit(); 2258 if (is_in_full_stack(end)) { 2259 char* p1 = (char*) alloca(1); 2260 address here = (address) &p1; 2261 if (is_in_full_stack(here) && here > end) { 2262 size_t to_alloc = here - end; 2263 char* p2 = (char*) alloca(to_alloc); 2264 log_trace(os, thread)("Pretouching thread stack for %zu: " RANGEFMT ".", 2265 (uintx) osthread()->thread_id(), RANGEFMTARGS(p2, to_alloc)); 2266 os::pretouch_memory(p2, p2 + to_alloc, 2267 NOT_AIX(os::vm_page_size()) AIX_ONLY(4096)); 2268 } 2269 } 2270 } 2271 2272 // Deferred OopHandle release support. 2273 2274 class OopHandleList : public CHeapObj<mtInternal> { 2275 static const int _count = 4; 2276 OopHandle _handles[_count]; 2277 OopHandleList* _next; 2278 int _index; 2279 public: 2280 OopHandleList(OopHandleList* next) : _next(next), _index(0) {} 2281 void add(OopHandle h) { 2282 assert(_index < _count, "too many additions"); 2283 _handles[_index++] = h; 2284 } 2285 ~OopHandleList() { 2286 assert(_index == _count, "usage error"); 2287 for (int i = 0; i < _index; i++) { 2288 _handles[i].release(JavaThread::thread_oop_storage()); 2289 } 2290 } 2291 OopHandleList* next() const { return _next; } 2292 }; 2293 2294 OopHandleList* JavaThread::_oop_handle_list = nullptr; 2295 2296 // Called by the ServiceThread to do the work of releasing 2297 // the OopHandles. 2298 void JavaThread::release_oop_handles() { 2299 OopHandleList* list; 2300 { 2301 MutexLocker ml(Service_lock, Mutex::_no_safepoint_check_flag); 2302 list = _oop_handle_list; 2303 _oop_handle_list = nullptr; 2304 } 2305 assert(!SafepointSynchronize::is_at_safepoint(), "cannot be called at a safepoint"); 2306 2307 while (list != nullptr) { 2308 OopHandleList* l = list; 2309 list = l->next(); 2310 delete l; 2311 } 2312 } 2313 2314 // Add our OopHandles for later release. 2315 void JavaThread::add_oop_handles_for_release() { 2316 MutexLocker ml(Service_lock, Mutex::_no_safepoint_check_flag); 2317 OopHandleList* new_head = new OopHandleList(_oop_handle_list); 2318 new_head->add(_threadObj); 2319 new_head->add(_vthread); 2320 new_head->add(_jvmti_vthread); 2321 new_head->add(_scopedValueCache); 2322 _oop_handle_list = new_head; 2323 Service_lock->notify_all(); 2324 } 2325 2326 #if INCLUDE_JFR 2327 void JavaThread::set_last_freeze_fail_result(freeze_result result) { 2328 assert(result != freeze_ok, "sanity check"); 2329 _last_freeze_fail_result = result; 2330 _last_freeze_fail_time = Ticks::now(); 2331 } 2332 2333 // Post jdk.VirtualThreadPinned event 2334 void JavaThread::post_vthread_pinned_event(EventVirtualThreadPinned* event, const char* op, freeze_result result) { 2335 assert(result != freeze_ok, "sanity check"); 2336 if (event->should_commit()) { 2337 char reason[256]; 2338 if (class_to_be_initialized() != nullptr) { 2339 ResourceMark rm(this); 2340 jio_snprintf(reason, sizeof reason, "Waited for initialization of %s by another thread", 2341 class_to_be_initialized()->external_name()); 2342 event->set_pinnedReason(reason); 2343 } else if (class_being_initialized() != nullptr) { 2344 ResourceMark rm(this); 2345 jio_snprintf(reason, sizeof(reason), "VM call to %s.<clinit> on stack", 2346 class_being_initialized()->external_name()); 2347 event->set_pinnedReason(reason); 2348 } else if (result == freeze_pinned_native) { 2349 event->set_pinnedReason("Native or VM frame on stack"); 2350 } else { 2351 jio_snprintf(reason, sizeof(reason), "Freeze or preempt failed (%d)", result); 2352 event->set_pinnedReason(reason); 2353 } 2354 event->set_blockingOperation(op); 2355 event->set_carrierThread(JFR_JVM_THREAD_ID(this)); 2356 event->commit(); 2357 } 2358 } 2359 #endif