1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmSymbols.hpp" 26 #include "gc/shared/oopStorage.hpp" 27 #include "gc/shared/oopStorageSet.hpp" 28 #include "jfr/jfrEvents.hpp" 29 #include "jfr/support/jfrThreadId.hpp" 30 #include "logging/log.hpp" 31 #include "logging/logStream.hpp" 32 #include "memory/allocation.inline.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/markWord.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "oops/oopHandle.inline.hpp" 37 #include "oops/weakHandle.inline.hpp" 38 #include "prims/jvmtiDeferredUpdates.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "runtime/atomic.hpp" 41 #include "runtime/continuationWrapper.inline.hpp" 42 #include "runtime/globals.hpp" 43 #include "runtime/handles.inline.hpp" 44 #include "runtime/interfaceSupport.inline.hpp" 45 #include "runtime/javaThread.inline.hpp" 46 #include "runtime/lightweightSynchronizer.hpp" 47 #include "runtime/mutexLocker.hpp" 48 #include "runtime/objectMonitor.hpp" 49 #include "runtime/objectMonitor.inline.hpp" 50 #include "runtime/orderAccess.hpp" 51 #include "runtime/osThread.hpp" 52 #include "runtime/safefetch.hpp" 53 #include "runtime/safepointMechanism.inline.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "runtime/threads.hpp" 56 #include "services/threadService.hpp" 57 #include "utilities/debug.hpp" 58 #include "utilities/dtrace.hpp" 59 #include "utilities/globalCounter.inline.hpp" 60 #include "utilities/globalDefinitions.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/preserveException.hpp" 63 #if INCLUDE_JFR 64 #include "jfr/support/jfrFlush.hpp" 65 #endif 66 67 #ifdef DTRACE_ENABLED 68 69 // Only bother with this argument setup if dtrace is available 70 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 71 72 73 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 74 char* bytes = nullptr; \ 75 int len = 0; \ 76 jlong jtid = SharedRuntime::get_java_tid(thread); \ 77 Symbol* klassname = obj->klass()->name(); \ 78 if (klassname != nullptr) { \ 79 bytes = (char*)klassname->bytes(); \ 80 len = klassname->utf8_length(); \ 81 } 82 83 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 84 { \ 85 if (DTraceMonitorProbes) { \ 86 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 87 HOTSPOT_MONITOR_WAIT(jtid, \ 88 (monitor), bytes, len, (millis)); \ 89 } \ 90 } 91 92 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER 93 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED 94 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT 95 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY 96 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL 97 98 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 99 { \ 100 if (DTraceMonitorProbes) { \ 101 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 102 HOTSPOT_MONITOR_##probe(jtid, \ 103 (uintptr_t)(monitor), bytes, len); \ 104 } \ 105 } 106 107 #else // ndef DTRACE_ENABLED 108 109 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 110 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 111 112 #endif // ndef DTRACE_ENABLED 113 114 DEBUG_ONLY(static volatile bool InitDone = false;) 115 116 OopStorage* ObjectMonitor::_oop_storage = nullptr; 117 118 OopHandle ObjectMonitor::_vthread_list_head; 119 ParkEvent* ObjectMonitor::_vthread_unparker_ParkEvent = nullptr; 120 121 // ----------------------------------------------------------------------------- 122 // Theory of operations -- Monitors lists, thread residency, etc: 123 // 124 // * A thread acquires ownership of a monitor by successfully 125 // CAS()ing the _owner field from NO_OWNER/DEFLATER_MARKER to 126 // its owner_id (return value from owner_id_from()). 127 // 128 // * Invariant: A thread appears on at most one monitor list -- 129 // entry_list or wait_set -- at any one time. 130 // 131 // * Contending threads "push" themselves onto the entry_list with CAS 132 // and then spin/park. 133 // If the thread is a virtual thread it will first attempt to 134 // unmount itself. The virtual thread will first try to freeze 135 // all frames in the heap. If the operation fails it will just 136 // follow the regular path for platform threads. If the operation 137 // succeeds, it will push itself onto the entry_list with CAS and then 138 // return back to Java to continue the unmount logic. 139 // 140 // * After a contending thread eventually acquires the lock it must 141 // dequeue itself from the entry_list. 142 // 143 // * The exiting thread identifies and unparks an "heir presumptive" 144 // tentative successor thread on the entry_list. In case the successor 145 // is an unmounted virtual thread, the exiting thread will first try 146 // to add it to the list of vthreads waiting to be unblocked, and on 147 // success it will unpark the special unblocker thread instead, which 148 // will be in charge of submitting the vthread back to the scheduler 149 // queue. Critically, the exiting thread doesn't unlink the successor 150 // thread from the entry_list. After having been unparked/re-scheduled, 151 // the wakee will recontend for ownership of the monitor. The successor 152 // (wakee) will either acquire the lock or re-park/unmount itself. 153 // 154 // Succession is provided for by a policy of competitive handoff. 155 // The exiting thread does _not_ grant or pass ownership to the 156 // successor thread. (This is also referred to as "handoff succession"). 157 // Instead the exiting thread releases ownership and possibly wakes 158 // a successor, so the successor can (re)compete for ownership of the lock. 159 // 160 // * The entry_list forms a queue of threads stalled trying to acquire 161 // the lock. Within the entry_list the next pointers always form a 162 // consistent singly linked list. At unlock-time when the unlocking 163 // thread notices that the tail of the entry_list is not known, we 164 // convert the singly linked entry_list into a doubly linked list by 165 // assigning the prev pointers and the entry_list_tail pointer. 166 // 167 // Example: 168 // 169 // The first contending thread that "pushed" itself onto entry_list, 170 // will be the last thread in the list. Each newly pushed thread in 171 // entry_list will be linked through its next pointer, and have its 172 // prev pointer set to null. Thus pushing six threads A-F (in that 173 // order) onto entry_list, will form a singly linked list, see 1) 174 // below. 175 // 176 // 1) entry_list ->F->E->D->C->B->A->null 177 // entry_list_tail ->null 178 // 179 // Since the successor is chosen in FIFO order, the exiting thread 180 // needs to find the tail of the entry_list. This is done by walking 181 // from the entry_list head. While walking the list we also assign 182 // the prev pointers of each thread, essentially forming a doubly 183 // linked list, see 2) below. 184 // 185 // 2) entry_list ->F<=>E<=>D<=>C<=>B<=>A->null 186 // entry_list_tail ----------------------^ 187 // 188 // Once we have formed a doubly linked list it's easy to find the 189 // successor (A), wake it up, have it remove itself, and update the 190 // tail pointer, as seen in and 3) below. 191 // 192 // 3) entry_list ->F<=>E<=>D<=>C<=>B->null 193 // entry_list_tail ------------------^ 194 // 195 // At any time new threads can add themselves to the entry_list, see 196 // 4) below. 197 // 198 // 4) entry_list ->I->H->G->F<=>E<=>D->null 199 // entry_list_tail -------------------^ 200 // 201 // At some point in time the thread (F) that wants to remove itself 202 // from the end of the list, will not have any prev pointer, see 5) 203 // below. 204 // 205 // 5) entry_list ->I->H->G->F->null 206 // entry_list_tail -----------^ 207 // 208 // To resolve this we just start walking from the entry_list head 209 // again, forming a new doubly linked list, before removing the 210 // thread (F), see 6) and 7) below. 211 // 212 // 6) entry_list ->I<=>H<=>G<=>F->null 213 // entry_list_tail --------------^ 214 // 215 // 7) entry_list ->I<=>H<=>G->null 216 // entry_list_tail ----------^ 217 // 218 // * The monitor itself protects all of the operations on the 219 // entry_list except for the CAS of a new arrival to the head. Only 220 // the monitor owner can read or write the prev links (e.g. to 221 // remove itself) or update the tail. 222 // 223 // * The monitor entry list operations avoid locks, but strictly speaking 224 // they're not lock-free. Enter is lock-free, exit is not. 225 // For a description of 'Methods and apparatus providing non-blocking access 226 // to a resource,' see U.S. Pat. No. 7844973. 227 // 228 // * The entry_list can have multiple concurrent "pushers" but only 229 // one concurrent detaching thread. There is no ABA-problem with 230 // this usage of CAS. 231 // 232 // * As long as the entry_list_tail is known the odds are good that we 233 // should be able to dequeue after acquisition (in the ::enter() 234 // epilogue) in constant-time. This is good since a key desideratum 235 // is to minimize queue & monitor metadata manipulation that occurs 236 // while holding the monitor lock -- that is, we want to minimize 237 // monitor lock holds times. Note that even a small amount of fixed 238 // spinning will greatly reduce the # of enqueue-dequeue operations 239 // on entry_list. That is, spinning relieves contention on the 240 // "inner" locks and monitor metadata. 241 // 242 // Insert and delete operations may not operate in constant-time if 243 // we have interference because some other thread is adding or 244 // removing the head element of entry_list or if we need to convert 245 // the singly linked entry_list into a doubly linked list to find the 246 // tail. 247 // 248 // * The monitor synchronization subsystem avoids the use of native 249 // synchronization primitives except for the narrow platform-specific 250 // park-unpark abstraction. See the comments in os_posix.cpp regarding 251 // the semantics of park-unpark. Put another way, this monitor implementation 252 // depends only on atomic operations and park-unpark. 253 // 254 // * Waiting threads reside on the wait_set list -- wait() puts 255 // the caller onto the wait_set. 256 // 257 // * notify() or notifyAll() simply transfers threads from the wait_set 258 // to the entry_list. Subsequent exit() operations will 259 // unpark/re-schedule the notifyee. Unparking/re-scheduling a 260 // notifyee in notify() is inefficient - it's likely the notifyee 261 // would simply impale itself on the lock held by the notifier. 262 263 // Check that object() and set_object() are called from the right context: 264 static void check_object_context() { 265 #ifdef ASSERT 266 Thread* self = Thread::current(); 267 if (self->is_Java_thread()) { 268 // Mostly called from JavaThreads so sanity check the thread state. 269 JavaThread* jt = JavaThread::cast(self); 270 switch (jt->thread_state()) { 271 case _thread_in_vm: // the usual case 272 case _thread_in_Java: // during deopt 273 break; 274 default: 275 fatal("called from an unsafe thread state"); 276 } 277 assert(jt->is_active_Java_thread(), "must be active JavaThread"); 278 } else { 279 // However, ThreadService::get_current_contended_monitor() 280 // can call here via the VMThread so sanity check it. 281 assert(self->is_VM_thread(), "must be"); 282 } 283 #endif // ASSERT 284 } 285 286 ObjectMonitor::ObjectMonitor(oop object) : 287 _metadata(0), 288 _object(_oop_storage, object), 289 _owner(NO_OWNER), 290 _previous_owner_tid(0), 291 _next_om(nullptr), 292 _recursions(0), 293 _entry_list(nullptr), 294 _entry_list_tail(nullptr), 295 _succ(NO_OWNER), 296 _SpinDuration(ObjectMonitor::Knob_SpinLimit), 297 _contentions(0), 298 _wait_set(nullptr), 299 _waiters(0), 300 _wait_set_lock(0), 301 _stack_locker(nullptr) 302 { } 303 304 ObjectMonitor::~ObjectMonitor() { 305 _object.release(_oop_storage); 306 } 307 308 oop ObjectMonitor::object() const { 309 check_object_context(); 310 return _object.resolve(); 311 } 312 313 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) { 314 if (current->is_suspended()) { 315 _om->_recursions = 0; 316 _om->clear_successor(); 317 // Don't need a full fence after clearing successor here because of the call to exit(). 318 _om->exit(current, false /* not_suspended */); 319 _om_exited = true; 320 321 current->set_current_pending_monitor(_om); 322 } 323 } 324 325 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) { 326 if (current->is_suspended()) { 327 if (_om->has_successor(current)) { 328 _om->clear_successor(); 329 OrderAccess::fence(); // always do a full fence when successor is cleared 330 } 331 } 332 } 333 334 #define assert_mark_word_consistency() \ 335 assert(UseObjectMonitorTable || object()->mark() == markWord::encode(this), \ 336 "object mark must match encoded this: mark=" INTPTR_FORMAT \ 337 ", encoded this=" INTPTR_FORMAT, object()->mark().value(), \ 338 markWord::encode(this).value()); 339 340 // ----------------------------------------------------------------------------- 341 // Enter support 342 343 bool ObjectMonitor::enter_is_async_deflating() { 344 if (is_being_async_deflated()) { 345 if (!UseObjectMonitorTable) { 346 const oop l_object = object(); 347 if (l_object != nullptr) { 348 // Attempt to restore the header/dmw to the object's header so that 349 // we only retry once if the deflater thread happens to be slow. 350 install_displaced_markword_in_object(l_object); 351 } 352 } 353 return true; 354 } 355 356 return false; 357 } 358 359 bool ObjectMonitor::try_lock_with_contention_mark(JavaThread* locking_thread, ObjectMonitorContentionMark& contention_mark) { 360 assert(contention_mark._monitor == this, "must be"); 361 assert(!is_being_async_deflated(), "must be"); 362 363 int64_t prev_owner = try_set_owner_from(NO_OWNER, locking_thread); 364 bool success = false; 365 366 if (prev_owner == NO_OWNER) { 367 assert(_recursions == 0, "invariant"); 368 success = true; 369 } else if (prev_owner == owner_id_from(locking_thread)) { 370 _recursions++; 371 success = true; 372 } else if (prev_owner == DEFLATER_MARKER) { 373 // Racing with deflation. 374 prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread); 375 if (prev_owner == DEFLATER_MARKER) { 376 // We successfully cancelled the in-progress async deflation by 377 // changing owner from DEFLATER_MARKER to current. We now extend 378 // the lifetime of the contention_mark (e.g. contentions++) here 379 // to prevent the deflater thread from winning the last part of 380 // the 2-part async deflation protocol after the regular 381 // decrement occurs when the contention_mark goes out of 382 // scope. ObjectMonitor::deflate_monitor() which is called by 383 // the deflater thread will decrement contentions after it 384 // recognizes that the async deflation was cancelled. 385 contention_mark.extend(); 386 success = true; 387 } else if (prev_owner == NO_OWNER) { 388 // At this point we cannot race with deflation as we have both incremented 389 // contentions, seen contention > 0 and seen a DEFLATER_MARKER. 390 // success will only be false if this races with something other than 391 // deflation. 392 prev_owner = try_set_owner_from(NO_OWNER, locking_thread); 393 success = prev_owner == NO_OWNER; 394 } 395 } 396 assert(!success || has_owner(locking_thread), "must be"); 397 398 return success; 399 } 400 401 void ObjectMonitor::enter_for_with_contention_mark(JavaThread* locking_thread, ObjectMonitorContentionMark& contention_mark) { 402 // Used by LightweightSynchronizer::inflate_and_enter in deoptimization path to enter for another thread. 403 // The monitor is private to or already owned by locking_thread which must be suspended. 404 // So this code may only contend with deflation. 405 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 406 bool success = try_lock_with_contention_mark(locking_thread, contention_mark); 407 408 assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT 409 ", this=" INTPTR_FORMAT "{owner=" INT64_FORMAT "}", 410 p2i(locking_thread), p2i(this), owner_raw()); 411 } 412 413 bool ObjectMonitor::enter_for(JavaThread* locking_thread) { 414 // Used by ObjectSynchronizer::enter_for() to enter for another thread. 415 // The monitor is private to or already owned by locking_thread which must be suspended. 416 // So this code may only contend with deflation. 417 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 418 419 // Block out deflation as soon as possible. 420 ObjectMonitorContentionMark contention_mark(this); 421 422 // Check for deflation. 423 if (enter_is_async_deflating()) { 424 return false; 425 } 426 427 bool success = try_lock_with_contention_mark(locking_thread, contention_mark); 428 429 assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT 430 ", this=" INTPTR_FORMAT "{owner=" INT64_FORMAT "}", 431 p2i(locking_thread), p2i(this), owner_raw()); 432 assert(has_owner(locking_thread), "must be"); 433 return true; 434 } 435 436 bool ObjectMonitor::try_enter(JavaThread* current, bool check_for_recursion) { 437 // TryLock avoids the CAS and handles deflation. 438 TryLockResult r = try_lock(current); 439 if (r == TryLockResult::Success) { 440 assert(_recursions == 0, "invariant"); 441 return true; 442 } 443 444 // If called from SharedRuntime::monitor_exit_helper(), we know that 445 // this thread doesn't already own the lock. 446 if (!check_for_recursion) { 447 return false; 448 } 449 450 if (r == TryLockResult::HasOwner && has_owner(current)) { 451 _recursions++; 452 return true; 453 } 454 455 return false; 456 } 457 458 bool ObjectMonitor::spin_enter(JavaThread* current) { 459 assert(current == JavaThread::current(), "must be"); 460 461 // Check for recursion. 462 if (try_enter(current)) { 463 return true; 464 } 465 466 // Check for deflation. 467 if (enter_is_async_deflating()) { 468 return false; 469 } 470 471 // We've encountered genuine contention. 472 473 // Do one round of spinning. 474 // Note that if we acquire the monitor from an initial spin 475 // we forgo posting JVMTI events and firing DTRACE probes. 476 if (try_spin(current)) { 477 assert(has_owner(current), "must be current: owner=" INT64_FORMAT, owner_raw()); 478 assert(_recursions == 0, "must be 0: recursions=%zd", _recursions); 479 assert_mark_word_consistency(); 480 return true; 481 } 482 483 return false; 484 } 485 486 bool ObjectMonitor::enter(JavaThread* current) { 487 assert(current == JavaThread::current(), "must be"); 488 489 if (spin_enter(current)) { 490 return true; 491 } 492 493 assert(!has_owner(current), "invariant"); 494 assert(!has_successor(current), "invariant"); 495 assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); 496 assert(current->thread_state() != _thread_blocked, "invariant"); 497 498 // Keep is_being_async_deflated stable across the rest of enter 499 ObjectMonitorContentionMark contention_mark(this); 500 501 // Check for deflation. 502 if (enter_is_async_deflating()) { 503 return false; 504 } 505 506 // At this point this ObjectMonitor cannot be deflated, finish contended enter 507 enter_with_contention_mark(current, contention_mark); 508 return true; 509 } 510 511 void ObjectMonitor::notify_contended_enter(JavaThread* current) { 512 current->set_current_pending_monitor(this); 513 514 DTRACE_MONITOR_PROBE(contended__enter, this, object(), current); 515 if (JvmtiExport::should_post_monitor_contended_enter()) { 516 JvmtiExport::post_monitor_contended_enter(current, this); 517 518 // The current thread does not yet own the monitor and does not 519 // yet appear on any queues that would get it made the successor. 520 // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event 521 // handler cannot accidentally consume an unpark() meant for the 522 // ParkEvent associated with this ObjectMonitor. 523 } 524 } 525 526 void ObjectMonitor::enter_with_contention_mark(JavaThread* current, ObjectMonitorContentionMark &cm) { 527 assert(current == JavaThread::current(), "must be"); 528 assert(!has_owner(current), "must be"); 529 assert(cm._monitor == this, "must be"); 530 assert(!is_being_async_deflated(), "must be"); 531 532 JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);) 533 EventJavaMonitorEnter enter_event; 534 if (enter_event.is_started()) { 535 enter_event.set_monitorClass(object()->klass()); 536 // Set an address that is 'unique enough', such that events close in 537 // time and with the same address are likely (but not guaranteed) to 538 // belong to the same object. 539 enter_event.set_address((uintptr_t)this); 540 } 541 EventVirtualThreadPinned vthread_pinned_event; 542 543 freeze_result result; 544 545 assert(current->current_pending_monitor() == nullptr, "invariant"); 546 547 ContinuationEntry* ce = current->last_continuation(); 548 bool is_virtual = ce != nullptr && ce->is_virtual_thread(); 549 if (is_virtual) { 550 notify_contended_enter(current); 551 result = Continuation::try_preempt(current, ce->cont_oop(current)); 552 if (result == freeze_ok) { 553 bool acquired = vthread_monitor_enter(current); 554 if (acquired) { 555 // We actually acquired the monitor while trying to add the vthread to the 556 // _entry_list so cancel preemption. We will still go through the preempt stub 557 // but instead of unmounting we will call thaw to continue execution. 558 current->set_preemption_cancelled(true); 559 if (JvmtiExport::should_post_monitor_contended_entered()) { 560 // We are going to call thaw again after this and finish the VMTS 561 // transition so no need to do it here. We will post the event there. 562 current->set_contended_entered_monitor(this); 563 } 564 } 565 current->set_current_pending_monitor(nullptr); 566 DEBUG_ONLY(int state = java_lang_VirtualThread::state(current->vthread())); 567 assert((acquired && current->preemption_cancelled() && state == java_lang_VirtualThread::RUNNING) || 568 (!acquired && !current->preemption_cancelled() && state == java_lang_VirtualThread::BLOCKING), "invariant"); 569 return; 570 } 571 } 572 573 { 574 // Change java thread status to indicate blocked on monitor enter. 575 JavaThreadBlockedOnMonitorEnterState jtbmes(current, this); 576 577 if (!is_virtual) { // already notified contended_enter for virtual 578 notify_contended_enter(current); 579 } 580 OSThreadContendState osts(current->osthread()); 581 582 assert(current->thread_state() == _thread_in_vm, "invariant"); 583 584 for (;;) { 585 ExitOnSuspend eos(this); 586 { 587 ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */); 588 enter_internal(current); 589 current->set_current_pending_monitor(nullptr); 590 // We can go to a safepoint at the end of this block. If we 591 // do a thread dump during that safepoint, then this thread will show 592 // as having "-locked" the monitor, but the OS and java.lang.Thread 593 // states will still report that the thread is blocked trying to 594 // acquire it. 595 // If there is a suspend request, ExitOnSuspend will exit the OM 596 // and set the OM as pending. 597 } 598 if (!eos.exited()) { 599 // ExitOnSuspend did not exit the OM 600 assert(has_owner(current), "invariant"); 601 break; 602 } 603 } 604 605 // We've just gotten past the enter-check-for-suspend dance and we now own 606 // the monitor free and clear. 607 } 608 609 assert(contentions() >= 0, "must not be negative: contentions=%d", contentions()); 610 611 // Must either set _recursions = 0 or ASSERT _recursions == 0. 612 assert(_recursions == 0, "invariant"); 613 assert(has_owner(current), "invariant"); 614 assert(!has_successor(current), "invariant"); 615 assert_mark_word_consistency(); 616 617 // The thread -- now the owner -- is back in vm mode. 618 // Report the glorious news via TI,DTrace and jvmstat. 619 // The probe effect is non-trivial. All the reportage occurs 620 // while we hold the monitor, increasing the length of the critical 621 // section. Amdahl's parallel speedup law comes vividly into play. 622 // 623 // Another option might be to aggregate the events (thread local or 624 // per-monitor aggregation) and defer reporting until a more opportune 625 // time -- such as next time some thread encounters contention but has 626 // yet to acquire the lock. While spinning that thread could 627 // spinning we could increment JVMStat counters, etc. 628 629 DTRACE_MONITOR_PROBE(contended__entered, this, object(), current); 630 if (JvmtiExport::should_post_monitor_contended_entered()) { 631 JvmtiExport::post_monitor_contended_entered(current, this); 632 633 // The current thread already owns the monitor and is not going to 634 // call park() for the remainder of the monitor enter protocol. So 635 // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED 636 // event handler consumed an unpark() issued by the thread that 637 // just exited the monitor. 638 } 639 if (enter_event.should_commit()) { 640 enter_event.set_previousOwner(_previous_owner_tid); 641 enter_event.commit(); 642 } 643 644 if (current->current_waiting_monitor() == nullptr) { 645 ContinuationEntry* ce = current->last_continuation(); 646 if (ce != nullptr && ce->is_virtual_thread()) { 647 current->post_vthread_pinned_event(&vthread_pinned_event, "Contended monitor enter", result); 648 } 649 } 650 } 651 652 // Caveat: try_lock() is not necessarily serializing if it returns failure. 653 // Callers must compensate as needed. 654 655 ObjectMonitor::TryLockResult ObjectMonitor::try_lock(JavaThread* current) { 656 int64_t own = owner_raw(); 657 int64_t first_own = own; 658 659 for (;;) { 660 if (own == DEFLATER_MARKER) { 661 // Block out deflation as soon as possible. 662 ObjectMonitorContentionMark contention_mark(this); 663 664 // Check for deflation. 665 if (enter_is_async_deflating()) { 666 // Treat deflation as interference. 667 return TryLockResult::Interference; 668 } 669 if (try_lock_with_contention_mark(current, contention_mark)) { 670 assert(_recursions == 0, "invariant"); 671 return TryLockResult::Success; 672 } else { 673 // Deflation won or change of owner; dont spin 674 break; 675 } 676 } else if (own == NO_OWNER) { 677 int64_t prev_own = try_set_owner_from(NO_OWNER, current); 678 if (prev_own == NO_OWNER) { 679 assert(_recursions == 0, "invariant"); 680 return TryLockResult::Success; 681 } else { 682 // The lock had been free momentarily, but we lost the race to the lock. 683 own = prev_own; 684 } 685 } else { 686 // Retry doesn't make as much sense because the lock was just acquired. 687 break; 688 } 689 } 690 return first_own == own ? TryLockResult::HasOwner : TryLockResult::Interference; 691 } 692 693 // Push "current" onto the head of the _entry_list. Once on _entry_list, 694 // current stays on-queue until it acquires the lock. 695 void ObjectMonitor::add_to_entry_list(JavaThread* current, ObjectWaiter* node) { 696 node->_prev = nullptr; 697 node->TState = ObjectWaiter::TS_ENTER; 698 699 for (;;) { 700 ObjectWaiter* head = Atomic::load(&_entry_list); 701 node->_next = head; 702 if (Atomic::cmpxchg(&_entry_list, head, node) == head) { 703 return; 704 } 705 } 706 } 707 708 // Push "current" onto the head of the entry_list. 709 // If the _entry_list was changed during our push operation, we try to 710 // lock the monitor. Returns true if we locked the monitor, and false 711 // if we added current to _entry_list. Once on _entry_list, current 712 // stays on-queue until it acquires the lock. 713 bool ObjectMonitor::try_lock_or_add_to_entry_list(JavaThread* current, ObjectWaiter* node) { 714 node->_prev = nullptr; 715 node->TState = ObjectWaiter::TS_ENTER; 716 717 for (;;) { 718 ObjectWaiter* head = Atomic::load(&_entry_list); 719 node->_next = head; 720 if (Atomic::cmpxchg(&_entry_list, head, node) == head) { 721 return false; 722 } 723 724 // Interference - the CAS failed because _entry_list changed. Before 725 // retrying the CAS retry taking the lock as it may now be free. 726 if (try_lock(current) == TryLockResult::Success) { 727 assert(!has_successor(current), "invariant"); 728 assert(has_owner(current), "invariant"); 729 return true; 730 } 731 } 732 } 733 734 static void post_monitor_deflate_event(EventJavaMonitorDeflate* event, 735 const oop obj) { 736 assert(event != nullptr, "invariant"); 737 if (obj == nullptr) { 738 // Accept the case when obj was already garbage-collected. 739 // Emit the event anyway, but without details. 740 event->set_monitorClass(nullptr); 741 event->set_address(0); 742 } else { 743 const Klass* monitor_klass = obj->klass(); 744 if (ObjectMonitor::is_jfr_excluded(monitor_klass)) { 745 return; 746 } 747 event->set_monitorClass(monitor_klass); 748 event->set_address((uintptr_t)(void*)obj); 749 } 750 event->commit(); 751 } 752 753 // Deflate the specified ObjectMonitor if not in-use. Returns true if it 754 // was deflated and false otherwise. 755 // 756 // The async deflation protocol sets owner to DEFLATER_MARKER and 757 // makes contentions negative as signals to contending threads that 758 // an async deflation is in progress. There are a number of checks 759 // as part of the protocol to make sure that the calling thread has 760 // not lost the race to a contending thread. 761 // 762 // The ObjectMonitor has been successfully async deflated when: 763 // (contentions < 0) 764 // Contending threads that see that condition know to retry their operation. 765 // 766 bool ObjectMonitor::deflate_monitor(Thread* current) { 767 if (is_busy()) { 768 // Easy checks are first - the ObjectMonitor is busy so no deflation. 769 return false; 770 } 771 772 EventJavaMonitorDeflate event; 773 774 const oop obj = object_peek(); 775 776 if (obj == nullptr) { 777 // If the object died, we can recycle the monitor without racing with 778 // Java threads. The GC already broke the association with the object. 779 set_owner_from_raw(NO_OWNER, DEFLATER_MARKER); 780 assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions()); 781 _contentions = INT_MIN; // minimum negative int 782 } else { 783 // Attempt async deflation protocol. 784 785 // Set a null owner to DEFLATER_MARKER to force any contending thread 786 // through the slow path. This is just the first part of the async 787 // deflation dance. 788 if (try_set_owner_from_raw(NO_OWNER, DEFLATER_MARKER) != NO_OWNER) { 789 // The owner field is no longer null so we lost the race since the 790 // ObjectMonitor is now busy. 791 return false; 792 } 793 794 if (contentions() > 0 || _waiters != 0) { 795 // Another thread has raced to enter the ObjectMonitor after 796 // is_busy() above or has already entered and waited on 797 // it which makes it busy so no deflation. Restore owner to 798 // null if it is still DEFLATER_MARKER. 799 if (try_set_owner_from_raw(DEFLATER_MARKER, NO_OWNER) != DEFLATER_MARKER) { 800 // Deferred decrement for the JT enter_internal() that cancelled the async deflation. 801 add_to_contentions(-1); 802 } 803 return false; 804 } 805 806 // Make a zero contentions field negative to force any contending threads 807 // to retry. This is the second part of the async deflation dance. 808 if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) { 809 // Contentions was no longer 0 so we lost the race since the 810 // ObjectMonitor is now busy. Restore owner to null if it is 811 // still DEFLATER_MARKER: 812 if (try_set_owner_from_raw(DEFLATER_MARKER, NO_OWNER) != DEFLATER_MARKER) { 813 // Deferred decrement for the JT enter_internal() that cancelled the async deflation. 814 add_to_contentions(-1); 815 } 816 return false; 817 } 818 } 819 820 // Sanity checks for the races: 821 guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker"); 822 guarantee(contentions() < 0, "must be negative: contentions=%d", 823 contentions()); 824 guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters); 825 ObjectWaiter* w = Atomic::load(&_entry_list); 826 guarantee(w == nullptr, 827 "must be no entering threads: entry_list=" INTPTR_FORMAT, 828 p2i(w)); 829 830 if (obj != nullptr) { 831 if (log_is_enabled(Trace, monitorinflation)) { 832 ResourceMark rm; 833 log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT 834 ", mark=" INTPTR_FORMAT ", type='%s'", 835 p2i(obj), obj->mark().value(), 836 obj->klass()->external_name()); 837 } 838 } 839 840 if (UseObjectMonitorTable) { 841 LightweightSynchronizer::deflate_monitor(current, obj, this); 842 } else if (obj != nullptr) { 843 // Install the old mark word if nobody else has already done it. 844 install_displaced_markword_in_object(obj); 845 } 846 847 if (event.should_commit()) { 848 post_monitor_deflate_event(&event, obj); 849 } 850 851 // We leave owner == DEFLATER_MARKER and contentions < 0 852 // to force any racing threads to retry. 853 return true; // Success, ObjectMonitor has been deflated. 854 } 855 856 // Install the displaced mark word (dmw) of a deflating ObjectMonitor 857 // into the header of the object associated with the monitor. This 858 // idempotent method is called by a thread that is deflating a 859 // monitor and by other threads that have detected a race with the 860 // deflation process. 861 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) { 862 assert(!UseObjectMonitorTable, "ObjectMonitorTable has no dmw"); 863 // This function must only be called when (owner == DEFLATER_MARKER 864 // && contentions <= 0), but we can't guarantee that here because 865 // those values could change when the ObjectMonitor gets moved from 866 // the global free list to a per-thread free list. 867 868 guarantee(obj != nullptr, "must be non-null"); 869 870 // Separate loads in is_being_async_deflated(), which is almost always 871 // called before this function, from the load of dmw/header below. 872 873 // _contentions and dmw/header may get written by different threads. 874 // Make sure to observe them in the same order when having several observers. 875 OrderAccess::loadload_for_IRIW(); 876 877 const oop l_object = object_peek(); 878 if (l_object == nullptr) { 879 // ObjectMonitor's object ref has already been cleared by async 880 // deflation or GC so we're done here. 881 return; 882 } 883 assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj=" 884 INTPTR_FORMAT, p2i(l_object), p2i(obj)); 885 886 markWord dmw = header(); 887 // The dmw has to be neutral (not null, not locked and not marked). 888 assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value()); 889 890 // Install displaced mark word if the object's header still points 891 // to this ObjectMonitor. More than one racing caller to this function 892 // can rarely reach this point, but only one can win. 893 markWord res = obj->cas_set_mark(dmw, markWord::encode(this)); 894 if (res != markWord::encode(this)) { 895 // This should be rare so log at the Info level when it happens. 896 log_info(monitorinflation)("install_displaced_markword_in_object: " 897 "failed cas_set_mark: new_mark=" INTPTR_FORMAT 898 ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT, 899 dmw.value(), markWord::encode(this).value(), 900 res.value()); 901 } 902 903 // Note: It does not matter which thread restored the header/dmw 904 // into the object's header. The thread deflating the monitor just 905 // wanted the object's header restored and it is. The threads that 906 // detected a race with the deflation process also wanted the 907 // object's header restored before they retry their operation and 908 // because it is restored they will only retry once. 909 } 910 911 // Convert the fields used by is_busy() to a string that can be 912 // used for diagnostic output. 913 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) { 914 ss->print("is_busy: waiters=%d" 915 ", contentions=%d" 916 ", owner=" INT64_FORMAT 917 ", entry_list=" PTR_FORMAT, 918 _waiters, 919 (contentions() > 0 ? contentions() : 0), 920 owner_is_DEFLATER_MARKER() 921 // We report null instead of DEFLATER_MARKER here because is_busy() 922 // ignores DEFLATER_MARKER values. 923 ? NO_OWNER 924 : owner_raw(), 925 p2i(_entry_list)); 926 return ss->base(); 927 } 928 929 void ObjectMonitor::enter_internal(JavaThread* current) { 930 assert(current->thread_state() == _thread_blocked, "invariant"); 931 932 // Try the lock - TATAS 933 if (try_lock(current) == TryLockResult::Success) { 934 assert(!has_successor(current), "invariant"); 935 assert(has_owner(current), "invariant"); 936 return; 937 } 938 939 assert(InitDone, "Unexpectedly not initialized"); 940 941 // We try one round of spinning *before* enqueueing current. 942 // 943 // If the _owner is ready but OFFPROC we could use a YieldTo() 944 // operation to donate the remainder of this thread's quantum 945 // to the owner. This has subtle but beneficial affinity 946 // effects. 947 948 if (try_spin(current)) { 949 assert(has_owner(current), "invariant"); 950 assert(!has_successor(current), "invariant"); 951 return; 952 } 953 954 // The Spin failed -- Enqueue and park the thread ... 955 assert(!has_successor(current), "invariant"); 956 assert(!has_owner(current), "invariant"); 957 958 // Enqueue "current" on ObjectMonitor's _entry_list. 959 // 960 // Node acts as a proxy for current. 961 // As an aside, if were to ever rewrite the synchronization code mostly 962 // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class 963 // Java objects. This would avoid awkward lifecycle and liveness issues, 964 // as well as eliminate a subset of ABA issues. 965 // TODO: eliminate ObjectWaiter and enqueue either Threads or Events. 966 967 ObjectWaiter node(current); 968 current->_ParkEvent->reset(); 969 970 if (try_lock_or_add_to_entry_list(current, &node)) { 971 return; // We got the lock. 972 } 973 // This thread is now added to the _entry_list. 974 975 // The lock might have been released while this thread was occupied queueing 976 // itself onto _entry_list. To close the race and avoid "stranding" and 977 // progress-liveness failure we must resample-retry _owner before parking. 978 // Note the Dekker/Lamport duality: ST _entry_list; MEMBAR; LD Owner. 979 // In this case the ST-MEMBAR is accomplished with CAS(). 980 // 981 // TODO: Defer all thread state transitions until park-time. 982 // Since state transitions are heavy and inefficient we'd like 983 // to defer the state transitions until absolutely necessary, 984 // and in doing so avoid some transitions ... 985 986 // For virtual threads that are pinned, do a timed-park instead to 987 // alleviate some deadlocks cases where the succesor is an unmounted 988 // virtual thread that cannot run. This can happen in particular when 989 // this virtual thread is currently loading/initializing a class, and 990 // all other carriers have a vthread pinned to it waiting for said class 991 // to be loaded/initialized. 992 static int MAX_RECHECK_INTERVAL = 1000; 993 int recheck_interval = 1; 994 bool do_timed_parked = false; 995 ContinuationEntry* ce = current->last_continuation(); 996 if (ce != nullptr && ce->is_virtual_thread()) { 997 do_timed_parked = true; 998 } 999 1000 for (;;) { 1001 1002 if (try_lock(current) == TryLockResult::Success) { 1003 break; 1004 } 1005 assert(!has_owner(current), "invariant"); 1006 1007 // park self 1008 if (do_timed_parked) { 1009 current->_ParkEvent->park((jlong) recheck_interval); 1010 // Increase the recheck_interval, but clamp the value. 1011 recheck_interval *= 8; 1012 if (recheck_interval > MAX_RECHECK_INTERVAL) { 1013 recheck_interval = MAX_RECHECK_INTERVAL; 1014 } 1015 } else { 1016 current->_ParkEvent->park(); 1017 } 1018 1019 if (try_lock(current) == TryLockResult::Success) { 1020 break; 1021 } 1022 1023 // The lock is still contested. 1024 1025 // Assuming this is not a spurious wakeup we'll normally find _succ == current. 1026 // We can defer clearing _succ until after the spin completes 1027 // try_spin() must tolerate being called with _succ == current. 1028 // Try yet another round of adaptive spinning. 1029 if (try_spin(current)) { 1030 break; 1031 } 1032 1033 // We can find that we were unpark()ed and redesignated _succ while 1034 // we were spinning. That's harmless. If we iterate and call park(), 1035 // park() will consume the event and return immediately and we'll 1036 // just spin again. This pattern can repeat, leaving _succ to simply 1037 // spin on a CPU. 1038 1039 if (has_successor(current)) clear_successor(); 1040 1041 // Invariant: after clearing _succ a thread *must* retry _owner before parking. 1042 OrderAccess::fence(); 1043 } 1044 1045 // Egress : 1046 // Current has acquired the lock -- Unlink current from the _entry_list. 1047 unlink_after_acquire(current, &node); 1048 if (has_successor(current)) { 1049 clear_successor(); 1050 // Note that we don't need to do OrderAccess::fence() after clearing 1051 // _succ here, since we own the lock. 1052 } 1053 1054 // We've acquired ownership with CAS(). 1055 // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics. 1056 // But since the CAS() this thread may have also stored into _succ 1057 // or entry_list. These meta-data updates must be visible __before 1058 // this thread subsequently drops the lock. 1059 // Consider what could occur if we didn't enforce this constraint -- 1060 // STs to monitor meta-data and user-data could reorder with (become 1061 // visible after) the ST in exit that drops ownership of the lock. 1062 // Some other thread could then acquire the lock, but observe inconsistent 1063 // or old monitor meta-data and heap data. That violates the JMM. 1064 // To that end, the exit() operation must have at least STST|LDST 1065 // "release" barrier semantics. Specifically, there must be at least a 1066 // STST|LDST barrier in exit() before the ST of null into _owner that drops 1067 // the lock. The barrier ensures that changes to monitor meta-data and data 1068 // protected by the lock will be visible before we release the lock, and 1069 // therefore before some other thread (CPU) has a chance to acquire the lock. 1070 // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html. 1071 // 1072 // Critically, any prior STs to _succ or entry_list must be visible before 1073 // the ST of null into _owner in the *subsequent* (following) corresponding 1074 // monitorexit. 1075 1076 return; 1077 } 1078 1079 // reenter_internal() is a specialized inline form of the latter half of the 1080 // contended slow-path from enter_internal(). We use reenter_internal() only for 1081 // monitor reentry in wait(). 1082 // 1083 // In the future we should reconcile enter_internal() and reenter_internal(). 1084 1085 void ObjectMonitor::reenter_internal(JavaThread* current, ObjectWaiter* currentNode) { 1086 assert(current != nullptr, "invariant"); 1087 assert(current->thread_state() != _thread_blocked, "invariant"); 1088 assert(currentNode != nullptr, "invariant"); 1089 assert(currentNode->_thread == current, "invariant"); 1090 assert(_waiters > 0, "invariant"); 1091 assert_mark_word_consistency(); 1092 1093 for (;;) { 1094 ObjectWaiter::TStates v = currentNode->TState; 1095 guarantee(v == ObjectWaiter::TS_ENTER, "invariant"); 1096 assert(!has_owner(current), "invariant"); 1097 1098 // This thread has been notified so try to reacquire the lock. 1099 if (try_lock(current) == TryLockResult::Success) { 1100 break; 1101 } 1102 1103 // If that fails, spin again. Note that spin count may be zero so the above TryLock 1104 // is necessary. 1105 if (try_spin(current)) { 1106 break; 1107 } 1108 1109 { 1110 OSThreadContendState osts(current->osthread()); 1111 1112 assert(current->thread_state() == _thread_in_vm, "invariant"); 1113 1114 { 1115 ClearSuccOnSuspend csos(this); 1116 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); 1117 current->_ParkEvent->park(); 1118 } 1119 } 1120 1121 // Try again, but just so we distinguish between futile wakeups and 1122 // successful wakeups. The following test isn't algorithmically 1123 // necessary, but it helps us maintain sensible statistics. 1124 if (try_lock(current) == TryLockResult::Success) { 1125 break; 1126 } 1127 1128 // The lock is still contested. 1129 1130 // Assuming this is not a spurious wakeup we'll normally 1131 // find that _succ == current. 1132 if (has_successor(current)) clear_successor(); 1133 1134 // Invariant: after clearing _succ a contending thread 1135 // *must* retry _owner before parking. 1136 OrderAccess::fence(); 1137 } 1138 1139 // Current has acquired the lock -- Unlink current from the _entry_list. 1140 assert(has_owner(current), "invariant"); 1141 assert_mark_word_consistency(); 1142 unlink_after_acquire(current, currentNode); 1143 if (has_successor(current)) clear_successor(); 1144 assert(!has_successor(current), "invariant"); 1145 currentNode->TState = ObjectWaiter::TS_RUN; 1146 OrderAccess::fence(); // see comments at the end of enter_internal() 1147 } 1148 1149 // This method is called from two places: 1150 // - On monitorenter contention with a null waiter. 1151 // - After Object.wait() times out or the target is interrupted to reenter the 1152 // monitor, with the existing waiter. 1153 // For the Object.wait() case we do not delete the ObjectWaiter in case we 1154 // succesfully acquire the monitor since we are going to need it on return. 1155 bool ObjectMonitor::vthread_monitor_enter(JavaThread* current, ObjectWaiter* waiter) { 1156 if (try_lock(current) == TryLockResult::Success) { 1157 assert(has_owner(current), "invariant"); 1158 assert(!has_successor(current), "invariant"); 1159 return true; 1160 } 1161 1162 oop vthread = current->vthread(); 1163 ObjectWaiter* node = waiter != nullptr ? waiter : new ObjectWaiter(vthread, this); 1164 if (try_lock_or_add_to_entry_list(current, node)) { 1165 // We got the lock. 1166 if (waiter == nullptr) delete node; // for Object.wait() don't delete yet 1167 return true; 1168 } 1169 // This thread is now added to the entry_list. 1170 1171 // We have to try once more since owner could have exited monitor and checked 1172 // _entry_list before we added the node to the queue. 1173 if (try_lock(current) == TryLockResult::Success) { 1174 assert(has_owner(current), "invariant"); 1175 unlink_after_acquire(current, node); 1176 if (has_successor(current)) clear_successor(); 1177 if (waiter == nullptr) delete node; // for Object.wait() don't delete yet 1178 return true; 1179 } 1180 1181 assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread"); 1182 java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING); 1183 1184 // We didn't succeed in acquiring the monitor so increment _contentions and 1185 // save ObjectWaiter* in the vthread since we will need it when resuming execution. 1186 add_to_contentions(1); 1187 java_lang_VirtualThread::set_objectWaiter(vthread, node); 1188 return false; 1189 } 1190 1191 // Called from thaw code to resume the monitor operation that caused the vthread 1192 // to be unmounted. Method returns true if the monitor is successfully acquired, 1193 // which marks the end of the monitor operation, otherwise it returns false. 1194 bool ObjectMonitor::resume_operation(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont) { 1195 assert(java_lang_VirtualThread::state(current->vthread()) == java_lang_VirtualThread::RUNNING, "wrong state for vthread"); 1196 assert(!has_owner(current), ""); 1197 1198 if (node->is_wait() && !node->at_reenter()) { 1199 bool acquired_monitor = vthread_wait_reenter(current, node, cont); 1200 if (acquired_monitor) return true; 1201 } 1202 1203 // Retry acquiring monitor... 1204 1205 int state = node->TState; 1206 guarantee(state == ObjectWaiter::TS_ENTER, "invariant"); 1207 1208 if (try_lock(current) == TryLockResult::Success) { 1209 vthread_epilog(current, node); 1210 return true; 1211 } 1212 1213 oop vthread = current->vthread(); 1214 if (has_successor(current)) clear_successor(); 1215 1216 // Invariant: after clearing _succ a thread *must* retry acquiring the monitor. 1217 OrderAccess::fence(); 1218 1219 if (try_lock(current) == TryLockResult::Success) { 1220 vthread_epilog(current, node); 1221 return true; 1222 } 1223 1224 // We will return to Continuation.run() and unmount so set the right state. 1225 java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING); 1226 1227 return false; 1228 } 1229 1230 void ObjectMonitor::vthread_epilog(JavaThread* current, ObjectWaiter* node) { 1231 assert(has_owner(current), "invariant"); 1232 add_to_contentions(-1); 1233 1234 if (has_successor(current)) clear_successor(); 1235 1236 guarantee(_recursions == 0, "invariant"); 1237 1238 if (node->is_wait()) { 1239 _recursions = node->_recursions; // restore the old recursion count 1240 _waiters--; // decrement the number of waiters 1241 1242 if (node->_interrupted) { 1243 // We will throw at thaw end after finishing the mount transition. 1244 current->set_pending_interrupted_exception(true); 1245 } 1246 } 1247 1248 unlink_after_acquire(current, node); 1249 delete node; 1250 1251 // Clear the ObjectWaiter* from the vthread. 1252 java_lang_VirtualThread::set_objectWaiter(current->vthread(), nullptr); 1253 1254 if (JvmtiExport::should_post_monitor_contended_entered()) { 1255 // We are going to call thaw again after this and finish the VMTS 1256 // transition so no need to do it here. We will post the event there. 1257 current->set_contended_entered_monitor(this); 1258 } 1259 } 1260 1261 // Convert entry_list into a doubly linked list by assigning the prev 1262 // pointers and the entry_list_tail pointer (if needed). Within the 1263 // entry_list the next pointers always form a consistent singly linked 1264 // list. When this function is called, the entry_list will be either 1265 // singly linked, or starting as singly linked (at the head), but 1266 // ending as doubly linked (at the tail). 1267 void ObjectMonitor::entry_list_build_dll(JavaThread* current) { 1268 assert(has_owner(current), "invariant"); 1269 ObjectWaiter* prev = nullptr; 1270 // Need acquire here to match the implicit release of the cmpxchg 1271 // that updated entry_list, so we can access w->prev(). 1272 ObjectWaiter* w = Atomic::load_acquire(&_entry_list); 1273 assert(w != nullptr, "should only be called when entry list is not empty"); 1274 while (w != nullptr) { 1275 assert(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1276 assert(w->prev() == nullptr || w->prev() == prev, "invariant"); 1277 if (w->prev() != nullptr) { 1278 break; 1279 } 1280 w->_prev = prev; 1281 prev = w; 1282 w = w->next(); 1283 } 1284 if (w == nullptr) { 1285 // We converted the entire entry_list from a singly linked list 1286 // into a doubly linked list. Now we just need to set the tail 1287 // pointer. 1288 assert(prev != nullptr && prev->next() == nullptr, "invariant"); 1289 assert(_entry_list_tail == nullptr || _entry_list_tail == prev, "invariant"); 1290 _entry_list_tail = prev; 1291 } else { 1292 #ifdef ASSERT 1293 // We stopped iterating through the _entry_list when we found a 1294 // node that had its prev pointer set. I.e. we converted the first 1295 // part of the entry_list from a singly linked list into a doubly 1296 // linked list. Now we just want to make sure the rest of the list 1297 // is doubly linked. But first we check that we have a tail 1298 // pointer, because if the end of the entry_list is doubly linked 1299 // and we don't have the tail pointer, something is broken. 1300 assert(_entry_list_tail != nullptr, "invariant"); 1301 while (w != nullptr) { 1302 assert(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1303 assert(w->prev() == prev, "invariant"); 1304 prev = w; 1305 w = w->next(); 1306 } 1307 assert(_entry_list_tail == prev, "invariant"); 1308 #endif 1309 } 1310 } 1311 1312 // Return the tail of the _entry_list. If the tail is currently not 1313 // known, it can be found by first calling entry_list_build_dll(). 1314 ObjectWaiter* ObjectMonitor::entry_list_tail(JavaThread* current) { 1315 assert(has_owner(current), "invariant"); 1316 ObjectWaiter* w = _entry_list_tail; 1317 if (w != nullptr) { 1318 return w; 1319 } 1320 entry_list_build_dll(current); 1321 w = _entry_list_tail; 1322 assert(w != nullptr, "invariant"); 1323 return w; 1324 } 1325 1326 // By convention we unlink a contending thread from _entry_list 1327 // immediately after the thread acquires the lock in ::enter(). 1328 // The head of _entry_list is volatile but the interior is stable. 1329 // In addition, current.TState is stable. 1330 1331 void ObjectMonitor::unlink_after_acquire(JavaThread* current, ObjectWaiter* currentNode) { 1332 assert(has_owner(current), "invariant"); 1333 assert((!currentNode->is_vthread() && currentNode->thread() == current) || 1334 (currentNode->is_vthread() && currentNode->vthread() == current->vthread()), "invariant"); 1335 1336 // Check if we are unlinking the last element in the _entry_list. 1337 // This is by far the most common case. 1338 if (currentNode->next() == nullptr) { 1339 assert(_entry_list_tail == nullptr || _entry_list_tail == currentNode, "invariant"); 1340 1341 ObjectWaiter* w = Atomic::load(&_entry_list); 1342 if (w == currentNode) { 1343 // The currentNode is the only element in _entry_list. 1344 if (Atomic::cmpxchg(&_entry_list, w, (ObjectWaiter*)nullptr) == w) { 1345 _entry_list_tail = nullptr; 1346 currentNode->set_bad_pointers(); 1347 return; 1348 } 1349 // The CAS above can fail from interference IFF a contending 1350 // thread "pushed" itself onto entry_list. So fall-through to 1351 // building the doubly linked list. 1352 assert(currentNode->prev() == nullptr, "invariant"); 1353 } 1354 if (currentNode->prev() == nullptr) { 1355 // Build the doubly linked list to get hold of 1356 // currentNode->prev(). 1357 entry_list_build_dll(current); 1358 assert(currentNode->prev() != nullptr, "must be"); 1359 assert(_entry_list_tail == currentNode, "must be"); 1360 } 1361 // The currentNode is the last element in _entry_list and we know 1362 // which element is the previous one. 1363 assert(_entry_list != currentNode, "invariant"); 1364 _entry_list_tail = currentNode->prev(); 1365 _entry_list_tail->_next = nullptr; 1366 currentNode->set_bad_pointers(); 1367 return; 1368 } 1369 1370 // If we get here it means the current thread enqueued itself on the 1371 // _entry_list but was then able to "steal" the lock before the 1372 // chosen successor was able to. Consequently currentNode must be an 1373 // interior node in the _entry_list, or the head. 1374 assert(currentNode->next() != nullptr, "invariant"); 1375 assert(currentNode != _entry_list_tail, "invariant"); 1376 1377 // Check if we are in the singly linked portion of the 1378 // _entry_list. If we are the head then we try to remove ourselves, 1379 // else we convert to the doubly linked list. 1380 if (currentNode->prev() == nullptr) { 1381 ObjectWaiter* w = Atomic::load(&_entry_list); 1382 1383 assert(w != nullptr, "invariant"); 1384 if (w == currentNode) { 1385 ObjectWaiter* next = currentNode->next(); 1386 // currentNode is at the head of _entry_list. 1387 if (Atomic::cmpxchg(&_entry_list, w, next) == w) { 1388 // The CAS above sucsessfully unlinked currentNode from the 1389 // head of the _entry_list. 1390 assert(_entry_list != w, "invariant"); 1391 next->_prev = nullptr; 1392 currentNode->set_bad_pointers(); 1393 return; 1394 } else { 1395 // The CAS above can fail from interference IFF a contending 1396 // thread "pushed" itself onto _entry_list, in which case 1397 // currentNode must now be in the interior of the 1398 // list. Fall-through to building the doubly linked list. 1399 assert(_entry_list != currentNode, "invariant"); 1400 } 1401 } 1402 // Build the doubly linked list to get hold of currentNode->prev(). 1403 entry_list_build_dll(current); 1404 assert(currentNode->prev() != nullptr, "must be"); 1405 } 1406 1407 // We now know we are unlinking currentNode from the interior of a 1408 // doubly linked list. 1409 assert(currentNode->next() != nullptr, ""); 1410 assert(currentNode->prev() != nullptr, ""); 1411 assert(currentNode != _entry_list, ""); 1412 assert(currentNode != _entry_list_tail, ""); 1413 1414 ObjectWaiter* nxt = currentNode->next(); 1415 ObjectWaiter* prv = currentNode->prev(); 1416 assert(nxt->TState == ObjectWaiter::TS_ENTER, "invariant"); 1417 assert(prv->TState == ObjectWaiter::TS_ENTER, "invariant"); 1418 1419 nxt->_prev = prv; 1420 prv->_next = nxt; 1421 currentNode->set_bad_pointers(); 1422 } 1423 1424 // ----------------------------------------------------------------------------- 1425 // Exit support 1426 // 1427 // exit() 1428 // ~~~~~~ 1429 // Note that the collector can't reclaim the objectMonitor or deflate 1430 // the object out from underneath the thread calling ::exit() as the 1431 // thread calling ::exit() never transitions to a stable state. 1432 // This inhibits GC, which in turn inhibits asynchronous (and 1433 // inopportune) reclamation of "this". 1434 // 1435 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ; 1436 // There's one exception to the claim above, however. enter_internal() can call 1437 // exit() to drop a lock if the acquirer has been externally suspended. 1438 // In that case exit() is called with _thread_state == _thread_blocked, 1439 // but the monitor's _contentions field is > 0, which inhibits reclamation. 1440 // 1441 // This is the exit part of the locking protocol, often implemented in 1442 // C2_MacroAssembler::fast_unlock() 1443 // 1444 // 1. A release barrier ensures that changes to monitor meta-data 1445 // (_succ, _entry_list) and data protected by the lock will be 1446 // visible before we release the lock. 1447 // 2. Release the lock by clearing the owner. 1448 // 3. A storeload MEMBAR is needed between releasing the owner and 1449 // subsequently reading meta-data to safely determine if the lock is 1450 // contended (step 4) without an elected successor (step 5). 1451 // 4. If _entry_list is null, we are done, since there is no 1452 // other thread waiting on the lock to wake up. I.e. there is no 1453 // contention. 1454 // 5. If there is a successor (_succ is non-null), we are done. The 1455 // responsibility for guaranteeing progress-liveness has now implicitly 1456 // been moved from the exiting thread to the successor. 1457 // 6. There are waiters in the entry list (_entry_list is non-null), 1458 // but there is no successor (_succ is null), so we need to 1459 // wake up (unpark) a waiting thread to avoid stranding. 1460 // 1461 // Note that since only the current lock owner can manipulate the 1462 // _entry_list (except for pushing new threads to the head), we need to 1463 // reacquire the lock before we can wake up (unpark) a waiting thread. 1464 // 1465 // The CAS() in enter provides for safety and exclusion, while the 1466 // MEMBAR in exit provides for progress and avoids stranding. 1467 // 1468 // There is also the risk of a futile wake-up. If we drop the lock 1469 // another thread can reacquire the lock immediately, and we can 1470 // then wake a thread unnecessarily. This is benign, and we've 1471 // structured the code so the windows are short and the frequency 1472 // of such futile wakups is low. 1473 1474 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) { 1475 if (!has_owner(current)) { 1476 // Apparent unbalanced locking ... 1477 // Naively we'd like to throw IllegalMonitorStateException. 1478 // As a practical matter we can neither allocate nor throw an 1479 // exception as ::exit() can be called from leaf routines. 1480 // see x86_32.ad Fast_Unlock() and the I1 and I2 properties. 1481 // Upon deeper reflection, however, in a properly run JVM the only 1482 // way we should encounter this situation is in the presence of 1483 // unbalanced JNI locking. TODO: CheckJNICalls. 1484 // See also: CR4414101 1485 #ifdef ASSERT 1486 LogStreamHandle(Error, monitorinflation) lsh; 1487 lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT 1488 " is exiting an ObjectMonitor it does not own.", p2i(current)); 1489 lsh.print_cr("The imbalance is possibly caused by JNI locking."); 1490 print_debug_style_on(&lsh); 1491 assert(false, "Non-balanced monitor enter/exit!"); 1492 #endif 1493 return; 1494 } 1495 1496 if (_recursions != 0) { 1497 _recursions--; // this is simple recursive enter 1498 return; 1499 } 1500 1501 #if INCLUDE_JFR 1502 // get the owner's thread id for the MonitorEnter event 1503 // if it is enabled and the thread isn't suspended 1504 if (not_suspended && EventJavaMonitorEnter::is_enabled()) { 1505 _previous_owner_tid = JFR_THREAD_ID(current); 1506 } 1507 #endif 1508 1509 for (;;) { 1510 // If there is a successor we should release the lock as soon as 1511 // possible, so that the successor can acquire the lock. If there is 1512 // no successor, we might need to wake up a waiting thread. 1513 if (!has_successor()) { 1514 ObjectWaiter* w = Atomic::load(&_entry_list); 1515 if (w != nullptr) { 1516 // Other threads are blocked trying to acquire the lock and 1517 // there is no successor, so it appears that an heir- 1518 // presumptive (successor) must be made ready. Since threads 1519 // are woken up in FIFO order, we need to find the tail of the 1520 // entry_list. 1521 w = entry_list_tail(current); 1522 // I'd like to write: guarantee (w->_thread != current). 1523 // But in practice an exiting thread may find itself on the entry_list. 1524 // Let's say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and 1525 // then calls exit(). Exit release the lock by setting O._owner to null. 1526 // Let's say T1 then stalls. T2 acquires O and calls O.notify(). The 1527 // notify() operation moves T1 from O's waitset to O's entry_list. T2 then 1528 // release the lock "O". T1 resumes immediately after the ST of null into 1529 // _owner, above. T1 notices that the entry_list is populated, so it 1530 // reacquires the lock and then finds itself on the entry_list. 1531 // Given all that, we have to tolerate the circumstance where "w" is 1532 // associated with current. 1533 assert(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1534 exit_epilog(current, w); 1535 return; 1536 } 1537 } 1538 1539 // Drop the lock. 1540 // release semantics: prior loads and stores from within the critical section 1541 // must not float (reorder) past the following store that drops the lock. 1542 // Uses a storeload to separate release_store(owner) from the 1543 // successor check. The try_set_owner_from() below uses cmpxchg() so 1544 // we get the fence down there. 1545 release_clear_owner(current); 1546 OrderAccess::storeload(); 1547 1548 // Normally the exiting thread is responsible for ensuring succession, 1549 // but if this thread observes other successors are ready or other 1550 // entering threads are spinning after it has stored null into _owner 1551 // then it can exit without waking a successor. The existence of 1552 // spinners or ready successors guarantees proper succession (liveness). 1553 // Responsibility passes to the ready or running successors. The exiting 1554 // thread delegates the duty. More precisely, if a successor already 1555 // exists this thread is absolved of the responsibility of waking 1556 // (unparking) one. 1557 1558 // The _succ variable is critical to reducing futile wakeup frequency. 1559 // _succ identifies the "heir presumptive" thread that has been made 1560 // ready (unparked) but that has not yet run. We need only one such 1561 // successor thread to guarantee progress. 1562 // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf 1563 // section 3.3 "Futile Wakeup Throttling" for details. 1564 // 1565 // Note that spinners in Enter() also set _succ non-null. 1566 // In the current implementation spinners opportunistically set 1567 // _succ so that exiting threads might avoid waking a successor. 1568 // Which means that the exiting thread could exit immediately without 1569 // waking a successor, if it observes a successor after it has dropped 1570 // the lock. Note that the dropped lock needs to become visible to the 1571 // spinner. 1572 1573 if (_entry_list == nullptr || has_successor()) { 1574 return; 1575 } 1576 1577 // Only the current lock owner can manipulate the entry_list 1578 // (except for pushing new threads to the head), therefore we need 1579 // to reacquire the lock. If we fail to reacquire the lock the 1580 // responsibility for ensuring succession falls to the new owner. 1581 1582 if (try_lock(current) != TryLockResult::Success) { 1583 // Some other thread acquired the lock (or the monitor was 1584 // deflated). Either way we are done. 1585 return; 1586 } 1587 1588 guarantee(has_owner(current), "invariant"); 1589 } 1590 } 1591 1592 void ObjectMonitor::exit_epilog(JavaThread* current, ObjectWaiter* Wakee) { 1593 assert(has_owner(current), "invariant"); 1594 1595 // Exit protocol: 1596 // 1. ST _succ = wakee 1597 // 2. membar #loadstore|#storestore; 1598 // 2. ST _owner = nullptr 1599 // 3. unpark(wakee) 1600 1601 oop vthread = nullptr; 1602 ParkEvent * Trigger; 1603 if (!Wakee->is_vthread()) { 1604 JavaThread* t = Wakee->thread(); 1605 assert(t != nullptr, ""); 1606 Trigger = t->_ParkEvent; 1607 set_successor(t); 1608 } else { 1609 vthread = Wakee->vthread(); 1610 assert(vthread != nullptr, ""); 1611 Trigger = ObjectMonitor::vthread_unparker_ParkEvent(); 1612 set_successor(vthread); 1613 } 1614 1615 // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again. 1616 // The thread associated with Wakee may have grabbed the lock and "Wakee" may be 1617 // out-of-scope (non-extant). 1618 Wakee = nullptr; 1619 1620 // Drop the lock. 1621 // Uses a fence to separate release_store(owner) from the LD in unpark(). 1622 release_clear_owner(current); 1623 OrderAccess::fence(); 1624 1625 DTRACE_MONITOR_PROBE(contended__exit, this, object(), current); 1626 1627 if (vthread == nullptr) { 1628 // Platform thread case. 1629 Trigger->unpark(); 1630 } else if (java_lang_VirtualThread::set_onWaitingList(vthread, vthread_list_head())) { 1631 // Virtual thread case. 1632 Trigger->unpark(); 1633 } 1634 } 1635 1636 // Exits the monitor returning recursion count. _owner should 1637 // be set to current's owner_id, i.e. no ANONYMOUS_OWNER allowed. 1638 intx ObjectMonitor::complete_exit(JavaThread* current) { 1639 assert(InitDone, "Unexpectedly not initialized"); 1640 guarantee(has_owner(current), "complete_exit not owner"); 1641 1642 intx save = _recursions; // record the old recursion count 1643 _recursions = 0; // set the recursion level to be 0 1644 exit(current); // exit the monitor 1645 guarantee(!has_owner(current), "invariant"); 1646 return save; 1647 } 1648 1649 // Checks that the current THREAD owns this monitor and causes an 1650 // immediate return if it doesn't. We don't use the CHECK macro 1651 // because we want the IMSE to be the only exception that is thrown 1652 // from the call site when false is returned. Any other pending 1653 // exception is ignored. 1654 #define CHECK_OWNER() \ 1655 do { \ 1656 if (!check_owner(THREAD)) { \ 1657 assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \ 1658 return; \ 1659 } \ 1660 } while (false) 1661 1662 // Returns true if the specified thread owns the ObjectMonitor. 1663 // Otherwise returns false and throws IllegalMonitorStateException 1664 // (IMSE). If there is a pending exception and the specified thread 1665 // is not the owner, that exception will be replaced by the IMSE. 1666 bool ObjectMonitor::check_owner(TRAPS) { 1667 JavaThread* current = THREAD; 1668 int64_t cur = owner_raw(); 1669 if (cur == owner_id_from(current)) { 1670 return true; 1671 } 1672 THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(), 1673 "current thread is not owner", false); 1674 } 1675 1676 static void post_monitor_wait_event(EventJavaMonitorWait* event, 1677 ObjectMonitor* monitor, 1678 uint64_t notifier_tid, 1679 jlong timeout, 1680 bool timedout) { 1681 assert(event != nullptr, "invariant"); 1682 assert(monitor != nullptr, "invariant"); 1683 const Klass* monitor_klass = monitor->object()->klass(); 1684 if (ObjectMonitor::is_jfr_excluded(monitor_klass)) { 1685 return; 1686 } 1687 event->set_monitorClass(monitor_klass); 1688 event->set_timeout(timeout); 1689 // Set an address that is 'unique enough', such that events close in 1690 // time and with the same address are likely (but not guaranteed) to 1691 // belong to the same object. 1692 event->set_address((uintptr_t)monitor); 1693 event->set_notifier(notifier_tid); 1694 event->set_timedOut(timedout); 1695 event->commit(); 1696 } 1697 1698 static void vthread_monitor_waited_event(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont, EventJavaMonitorWait* event, jboolean timed_out) { 1699 // Since we might safepoint set the anchor so that the stack can we walked. 1700 assert(current->last_continuation() != nullptr, ""); 1701 JavaFrameAnchor* anchor = current->frame_anchor(); 1702 anchor->set_last_Java_sp(current->last_continuation()->entry_sp()); 1703 anchor->set_last_Java_pc(current->last_continuation()->entry_pc()); 1704 1705 ContinuationWrapper::SafepointOp so(current, cont); 1706 1707 JRT_BLOCK 1708 if (event->should_commit()) { 1709 long timeout = java_lang_VirtualThread::timeout(current->vthread()); 1710 post_monitor_wait_event(event, node->_monitor, node->_notifier_tid, timeout, timed_out); 1711 } 1712 if (JvmtiExport::should_post_monitor_waited()) { 1713 // We mark this call in case of an upcall to Java while posting the event. 1714 // If somebody walks the stack in that case, processing the enterSpecial 1715 // frame should not include processing callee arguments since there is no 1716 // actual callee (see nmethod::preserve_callee_argument_oops()). 1717 ThreadOnMonitorWaitedEvent tmwe(current); 1718 JvmtiExport::vthread_post_monitor_waited(current, node->_monitor, timed_out); 1719 } 1720 JRT_BLOCK_END 1721 current->frame_anchor()->clear(); 1722 } 1723 1724 // ----------------------------------------------------------------------------- 1725 // Wait/Notify/NotifyAll 1726 // 1727 // Note: a subset of changes to ObjectMonitor::wait() 1728 // will need to be replicated in complete_exit 1729 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) { 1730 JavaThread* current = THREAD; 1731 1732 assert(InitDone, "Unexpectedly not initialized"); 1733 1734 CHECK_OWNER(); // Throws IMSE if not owner. 1735 1736 EventJavaMonitorWait wait_event; 1737 EventVirtualThreadPinned vthread_pinned_event; 1738 1739 // check for a pending interrupt 1740 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1741 JavaThreadInObjectWaitState jtiows(current, millis != 0, interruptible); 1742 1743 if (JvmtiExport::should_post_monitor_wait()) { 1744 JvmtiExport::post_monitor_wait(current, object(), millis); 1745 } 1746 // post monitor waited event. Note that this is past-tense, we are done waiting. 1747 if (JvmtiExport::should_post_monitor_waited()) { 1748 // Note: 'false' parameter is passed here because the 1749 // wait was not timed out due to thread interrupt. 1750 JvmtiExport::post_monitor_waited(current, this, false); 1751 1752 // In this short circuit of the monitor wait protocol, the 1753 // current thread never drops ownership of the monitor and 1754 // never gets added to the wait queue so the current thread 1755 // cannot be made the successor. This means that the 1756 // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally 1757 // consume an unpark() meant for the ParkEvent associated with 1758 // this ObjectMonitor. 1759 } 1760 if (wait_event.should_commit()) { 1761 post_monitor_wait_event(&wait_event, this, 0, millis, false); 1762 } 1763 THROW(vmSymbols::java_lang_InterruptedException()); 1764 return; 1765 } 1766 1767 freeze_result result; 1768 ContinuationEntry* ce = current->last_continuation(); 1769 bool is_virtual = ce != nullptr && ce->is_virtual_thread(); 1770 if (is_virtual) { 1771 if (interruptible && JvmtiExport::should_post_monitor_wait()) { 1772 JvmtiExport::post_monitor_wait(current, object(), millis); 1773 } 1774 current->set_current_waiting_monitor(this); 1775 result = Continuation::try_preempt(current, ce->cont_oop(current)); 1776 if (result == freeze_ok) { 1777 vthread_wait(current, millis); 1778 current->set_current_waiting_monitor(nullptr); 1779 return; 1780 } 1781 } 1782 // The jtiows does nothing for non-interruptible. 1783 JavaThreadInObjectWaitState jtiows(current, millis != 0, interruptible); 1784 1785 if (!is_virtual) { // it was already set for virtual thread 1786 if (interruptible && JvmtiExport::should_post_monitor_wait()) { 1787 JvmtiExport::post_monitor_wait(current, object(), millis); 1788 1789 // The current thread already owns the monitor and it has not yet 1790 // been added to the wait queue so the current thread cannot be 1791 // made the successor. This means that the JVMTI_EVENT_MONITOR_WAIT 1792 // event handler cannot accidentally consume an unpark() meant for 1793 // the ParkEvent associated with this ObjectMonitor. 1794 } 1795 current->set_current_waiting_monitor(this); 1796 } 1797 // create a node to be put into the queue 1798 // Critically, after we reset() the event but prior to park(), we must check 1799 // for a pending interrupt. 1800 ObjectWaiter node(current); 1801 node.TState = ObjectWaiter::TS_WAIT; 1802 current->_ParkEvent->reset(); 1803 OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag 1804 1805 // Enter the waiting queue, which is a circular doubly linked list in this case 1806 // but it could be a priority queue or any data structure. 1807 // _wait_set_lock protects the wait queue. Normally the wait queue is accessed only 1808 // by the owner of the monitor *except* in the case where park() 1809 // returns because of a timeout of interrupt. Contention is exceptionally rare 1810 // so we use a simple spin-lock instead of a heavier-weight blocking lock. 1811 1812 Thread::SpinAcquire(&_wait_set_lock); 1813 add_waiter(&node); 1814 Thread::SpinRelease(&_wait_set_lock); 1815 1816 intx save = _recursions; // record the old recursion count 1817 _waiters++; // increment the number of waiters 1818 _recursions = 0; // set the recursion level to be 1 1819 exit(current); // exit the monitor 1820 guarantee(!has_owner(current), "invariant"); 1821 1822 // The thread is on the wait_set list - now park() it. 1823 // On MP systems it's conceivable that a brief spin before we park 1824 // could be profitable. 1825 // 1826 // TODO-FIXME: change the following logic to a loop of the form 1827 // while (!timeout && !interrupted && _notified == 0) park() 1828 1829 int ret = OS_OK; 1830 int WasNotified = 0; 1831 1832 // Need to check interrupt state whilst still _thread_in_vm 1833 bool interrupted = interruptible && current->is_interrupted(false); 1834 1835 { // State transition wrappers 1836 OSThread* osthread = current->osthread(); 1837 OSThreadWaitState osts(osthread, true); 1838 1839 assert(current->thread_state() == _thread_in_vm, "invariant"); 1840 1841 { 1842 ClearSuccOnSuspend csos(this); 1843 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); 1844 if (interrupted || HAS_PENDING_EXCEPTION) { 1845 // Intentionally empty 1846 } else if (!node._notified) { 1847 if (millis <= 0) { 1848 current->_ParkEvent->park(); 1849 } else { 1850 ret = current->_ParkEvent->park(millis); 1851 } 1852 } 1853 } 1854 1855 // Node may be on the wait_set, or on the entry_list, or in transition 1856 // from the wait_set to the entry_list. 1857 // See if we need to remove Node from the wait_set. 1858 // We use double-checked locking to avoid grabbing _wait_set_lock 1859 // if the thread is not on the wait queue. 1860 // 1861 // Note that we don't need a fence before the fetch of TState. 1862 // In the worst case we'll fetch a old-stale value of TS_WAIT previously 1863 // written by the is thread. (perhaps the fetch might even be satisfied 1864 // by a look-aside into the processor's own store buffer, although given 1865 // the length of the code path between the prior ST and this load that's 1866 // highly unlikely). If the following LD fetches a stale TS_WAIT value 1867 // then we'll acquire the lock and then re-fetch a fresh TState value. 1868 // That is, we fail toward safety. 1869 1870 if (node.TState == ObjectWaiter::TS_WAIT) { 1871 Thread::SpinAcquire(&_wait_set_lock); 1872 if (node.TState == ObjectWaiter::TS_WAIT) { 1873 dequeue_specific_waiter(&node); // unlink from wait_set 1874 assert(!node._notified, "invariant"); 1875 node.TState = ObjectWaiter::TS_RUN; 1876 } 1877 Thread::SpinRelease(&_wait_set_lock); 1878 } 1879 1880 // The thread is now either on off-list (TS_RUN), 1881 // or on the entry_list (TS_ENTER). 1882 // The Node's TState variable is stable from the perspective of this thread. 1883 // No other threads will asynchronously modify TState. 1884 guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant"); 1885 OrderAccess::loadload(); 1886 if (has_successor(current)) clear_successor(); 1887 WasNotified = node._notified; 1888 1889 // Reentry phase -- reacquire the monitor. 1890 // re-enter contended monitor after object.wait(). 1891 // retain OBJECT_WAIT state until re-enter successfully completes 1892 // Thread state is thread_in_vm and oop access is again safe, 1893 // although the raw address of the object may have changed. 1894 // (Don't cache naked oops over safepoints, of course). 1895 1896 // post monitor waited event. Note that this is past-tense, we are done waiting. 1897 if (JvmtiExport::should_post_monitor_waited()) { 1898 JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT); 1899 1900 if (node._notified && has_successor(current)) { 1901 // In this part of the monitor wait-notify-reenter protocol it 1902 // is possible (and normal) for another thread to do a fastpath 1903 // monitor enter-exit while this thread is still trying to get 1904 // to the reenter portion of the protocol. 1905 // 1906 // The ObjectMonitor was notified and the current thread is 1907 // the successor which also means that an unpark() has already 1908 // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can 1909 // consume the unpark() that was done when the successor was 1910 // set because the same ParkEvent is shared between Java 1911 // monitors and JVM/TI RawMonitors (for now). 1912 // 1913 // We redo the unpark() to ensure forward progress, i.e., we 1914 // don't want all pending threads hanging (parked) with none 1915 // entering the unlocked monitor. 1916 current->_ParkEvent->unpark(); 1917 } 1918 } 1919 1920 if (wait_event.should_commit()) { 1921 post_monitor_wait_event(&wait_event, this, node._notifier_tid, millis, ret == OS_TIMEOUT); 1922 } 1923 1924 OrderAccess::fence(); 1925 1926 assert(!has_owner(current), "invariant"); 1927 ObjectWaiter::TStates v = node.TState; 1928 if (v == ObjectWaiter::TS_RUN) { 1929 // We use the NoPreemptMark for the very rare case where the previous 1930 // preempt attempt failed due to OOM. The preempt on monitor contention 1931 // could succeed but we can't unmount now. 1932 NoPreemptMark npm(current); 1933 enter(current); 1934 } else { 1935 guarantee(v == ObjectWaiter::TS_ENTER, "invariant"); 1936 reenter_internal(current, &node); 1937 node.wait_reenter_end(this); 1938 } 1939 1940 // current has reacquired the lock. 1941 // Lifecycle - the node representing current must not appear on any queues. 1942 // Node is about to go out-of-scope, but even if it were immortal we wouldn't 1943 // want residual elements associated with this thread left on any lists. 1944 guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant"); 1945 assert(has_owner(current), "invariant"); 1946 assert(!has_successor(current), "invariant"); 1947 } // OSThreadWaitState() 1948 1949 current->set_current_waiting_monitor(nullptr); 1950 1951 guarantee(_recursions == 0, "invariant"); 1952 int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current); 1953 _recursions = save // restore the old recursion count 1954 + relock_count; // increased by the deferred relock count 1955 current->inc_held_monitor_count(relock_count); // Deopt never entered these counts. 1956 _waiters--; // decrement the number of waiters 1957 1958 // Verify a few postconditions 1959 assert(has_owner(current), "invariant"); 1960 assert(!has_successor(current), "invariant"); 1961 assert_mark_word_consistency(); 1962 1963 if (ce != nullptr && ce->is_virtual_thread()) { 1964 current->post_vthread_pinned_event(&vthread_pinned_event, "Object.wait", result); 1965 } 1966 1967 // check if the notification happened 1968 if (!WasNotified) { 1969 // no, it could be timeout or Thread.interrupt() or both 1970 // check for interrupt event, otherwise it is timeout 1971 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1972 THROW(vmSymbols::java_lang_InterruptedException()); 1973 } 1974 } 1975 1976 // NOTE: Spurious wake up will be consider as timeout. 1977 // Monitor notify has precedence over thread interrupt. 1978 } 1979 1980 // Consider: 1981 // If the lock is cool (entry_list == null && succ == null) and we're on an MP system 1982 // then instead of transferring a thread from the wait_set to the entry_list 1983 // we might just dequeue a thread from the wait_set and directly unpark() it. 1984 1985 bool ObjectMonitor::notify_internal(JavaThread* current) { 1986 bool did_notify = false; 1987 Thread::SpinAcquire(&_wait_set_lock); 1988 ObjectWaiter* iterator = dequeue_waiter(); 1989 if (iterator != nullptr) { 1990 guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant"); 1991 guarantee(!iterator->_notified, "invariant"); 1992 1993 if (iterator->is_vthread()) { 1994 oop vthread = iterator->vthread(); 1995 java_lang_VirtualThread::set_notified(vthread, true); 1996 int old_state = java_lang_VirtualThread::state(vthread); 1997 // If state is not WAIT/TIMED_WAIT then target could still be on 1998 // unmount transition, or wait could have already timed-out or target 1999 // could have been interrupted. In the first case, the target itself 2000 // will set the state to BLOCKED at the end of the unmount transition. 2001 // In the other cases the target would have been already unblocked so 2002 // there is nothing to do. 2003 if (old_state == java_lang_VirtualThread::WAIT || 2004 old_state == java_lang_VirtualThread::TIMED_WAIT) { 2005 java_lang_VirtualThread::cmpxchg_state(vthread, old_state, java_lang_VirtualThread::BLOCKED); 2006 } 2007 } 2008 2009 iterator->_notified = true; 2010 iterator->_notifier_tid = JFR_THREAD_ID(current); 2011 did_notify = true; 2012 add_to_entry_list(current, iterator); 2013 2014 // _wait_set_lock protects the wait queue, not the entry_list. We could 2015 // move the add-to-entry_list operation, above, outside the critical section 2016 // protected by _wait_set_lock. In practice that's not useful. With the 2017 // exception of wait() timeouts and interrupts the monitor owner 2018 // is the only thread that grabs _wait_set_lock. There's almost no contention 2019 // on _wait_set_lock so it's not profitable to reduce the length of the 2020 // critical section. 2021 2022 if (!iterator->is_vthread()) { 2023 iterator->wait_reenter_begin(this); 2024 } 2025 } 2026 Thread::SpinRelease(&_wait_set_lock); 2027 return did_notify; 2028 } 2029 2030 static void post_monitor_notify_event(EventJavaMonitorNotify* event, 2031 ObjectMonitor* monitor, 2032 int notified_count) { 2033 assert(event != nullptr, "invariant"); 2034 assert(monitor != nullptr, "invariant"); 2035 const Klass* monitor_klass = monitor->object()->klass(); 2036 if (ObjectMonitor::is_jfr_excluded(monitor_klass)) { 2037 return; 2038 } 2039 event->set_monitorClass(monitor_klass); 2040 // Set an address that is 'unique enough', such that events close in 2041 // time and with the same address are likely (but not guaranteed) to 2042 // belong to the same object. 2043 event->set_address((uintptr_t)monitor); 2044 event->set_notifiedCount(notified_count); 2045 event->commit(); 2046 } 2047 2048 // Consider: a not-uncommon synchronization bug is to use notify() when 2049 // notifyAll() is more appropriate, potentially resulting in stranded 2050 // threads; this is one example of a lost wakeup. A useful diagnostic 2051 // option is to force all notify() operations to behave as notifyAll(). 2052 // 2053 // Note: We can also detect many such problems with a "minimum wait". 2054 // When the "minimum wait" is set to a small non-zero timeout value 2055 // and the program does not hang whereas it did absent "minimum wait", 2056 // that suggests a lost wakeup bug. 2057 2058 void ObjectMonitor::notify(TRAPS) { 2059 JavaThread* current = THREAD; 2060 CHECK_OWNER(); // Throws IMSE if not owner. 2061 if (_wait_set == nullptr) { 2062 return; 2063 } 2064 2065 quick_notify(current); 2066 } 2067 2068 void ObjectMonitor::quick_notify(JavaThread* current) { 2069 assert(has_owner(current), "Precondition"); 2070 2071 EventJavaMonitorNotify event; 2072 DTRACE_MONITOR_PROBE(notify, this, object(), current); 2073 int tally = notify_internal(current) ? 1 : 0; 2074 2075 if ((tally > 0) && event.should_commit()) { 2076 post_monitor_notify_event(&event, this, /* notified_count = */ tally); 2077 } 2078 } 2079 2080 // notifyAll() transfers the waiters one-at-a-time from the waitset to 2081 // the entry_list. If the waitset is "ABCD" (where A was added first 2082 // and D last) and the entry_list is ->X->Y->Z. After a notifyAll() 2083 // the waitset will be empty and the entry_list will be 2084 // ->D->C->B->A->X->Y->Z, and the next choosen successor will be Z. 2085 2086 void ObjectMonitor::notifyAll(TRAPS) { 2087 JavaThread* current = THREAD; 2088 CHECK_OWNER(); // Throws IMSE if not owner. 2089 if (_wait_set == nullptr) { 2090 return; 2091 } 2092 2093 quick_notifyAll(current); 2094 } 2095 2096 void ObjectMonitor::quick_notifyAll(JavaThread* current) { 2097 assert(has_owner(current), "Precondition"); 2098 2099 EventJavaMonitorNotify event; 2100 DTRACE_MONITOR_PROBE(notifyAll, this, object(), current); 2101 int tally = 0; 2102 while (_wait_set != nullptr) { 2103 if (notify_internal(current)) { 2104 tally++; 2105 } 2106 } 2107 2108 if ((tally > 0) && event.should_commit()) { 2109 post_monitor_notify_event(&event, this, /* notified_count = */ tally); 2110 } 2111 } 2112 2113 void ObjectMonitor::vthread_wait(JavaThread* current, jlong millis) { 2114 oop vthread = current->vthread(); 2115 ObjectWaiter* node = new ObjectWaiter(vthread, this); 2116 node->_is_wait = true; 2117 node->TState = ObjectWaiter::TS_WAIT; 2118 java_lang_VirtualThread::set_notified(vthread, false); // Reset notified flag 2119 2120 // Enter the waiting queue, which is a circular doubly linked list in this case 2121 // but it could be a priority queue or any data structure. 2122 // _wait_set_lock protects the wait queue. Normally the wait queue is accessed only 2123 // by the owner of the monitor *except* in the case where park() 2124 // returns because of a timeout or interrupt. Contention is exceptionally rare 2125 // so we use a simple spin-lock instead of a heavier-weight blocking lock. 2126 2127 Thread::SpinAcquire(&_wait_set_lock); 2128 add_waiter(node); 2129 Thread::SpinRelease(&_wait_set_lock); 2130 2131 node->_recursions = _recursions; // record the old recursion count 2132 _recursions = 0; // set the recursion level to be 0 2133 _waiters++; // increment the number of waiters 2134 exit(current); // exit the monitor 2135 guarantee(!has_owner(current), "invariant"); 2136 2137 assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread"); 2138 java_lang_VirtualThread::set_state(vthread, millis == 0 ? java_lang_VirtualThread::WAITING : java_lang_VirtualThread::TIMED_WAITING); 2139 java_lang_VirtualThread::set_timeout(vthread, millis); 2140 2141 // Save the ObjectWaiter* in the vthread since we will need it when resuming execution. 2142 java_lang_VirtualThread::set_objectWaiter(vthread, node); 2143 } 2144 2145 bool ObjectMonitor::vthread_wait_reenter(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont) { 2146 // The first time we run after being preempted on Object.wait() we 2147 // need to check if we were interrupted or the wait timed-out, and 2148 // in that case remove ourselves from the _wait_set queue. 2149 if (node->TState == ObjectWaiter::TS_WAIT) { 2150 Thread::SpinAcquire(&_wait_set_lock); 2151 if (node->TState == ObjectWaiter::TS_WAIT) { 2152 dequeue_specific_waiter(node); // unlink from wait_set 2153 assert(!node->_notified, "invariant"); 2154 node->TState = ObjectWaiter::TS_RUN; 2155 } 2156 Thread::SpinRelease(&_wait_set_lock); 2157 } 2158 2159 // If this was an interrupted case, set the _interrupted boolean so that 2160 // once we re-acquire the monitor we know if we need to throw IE or not. 2161 ObjectWaiter::TStates state = node->TState; 2162 bool was_notified = state == ObjectWaiter::TS_ENTER; 2163 assert(was_notified || state == ObjectWaiter::TS_RUN, ""); 2164 node->_interrupted = !was_notified && current->is_interrupted(false); 2165 2166 // Post JFR and JVMTI events. 2167 EventJavaMonitorWait wait_event; 2168 if (wait_event.should_commit() || JvmtiExport::should_post_monitor_waited()) { 2169 vthread_monitor_waited_event(current, node, cont, &wait_event, !was_notified && !node->_interrupted); 2170 } 2171 2172 // Mark that we are at reenter so that we don't call this method again. 2173 node->_at_reenter = true; 2174 2175 if (!was_notified) { 2176 bool acquired = vthread_monitor_enter(current, node); 2177 if (acquired) { 2178 guarantee(_recursions == 0, "invariant"); 2179 _recursions = node->_recursions; // restore the old recursion count 2180 _waiters--; // decrement the number of waiters 2181 2182 if (node->_interrupted) { 2183 // We will throw at thaw end after finishing the mount transition. 2184 current->set_pending_interrupted_exception(true); 2185 } 2186 2187 delete node; 2188 // Clear the ObjectWaiter* from the vthread. 2189 java_lang_VirtualThread::set_objectWaiter(current->vthread(), nullptr); 2190 return true; 2191 } 2192 } else { 2193 // Already moved to _entry_list by notifier, so just add to contentions. 2194 add_to_contentions(1); 2195 } 2196 return false; 2197 } 2198 2199 // ----------------------------------------------------------------------------- 2200 // Adaptive Spinning Support 2201 // 2202 // Adaptive spin-then-block - rational spinning 2203 // 2204 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS 2205 // algorithm. 2206 // 2207 // Broadly, we can fix the spin frequency -- that is, the % of contended lock 2208 // acquisition attempts where we opt to spin -- at 100% and vary the spin count 2209 // (duration) or we can fix the count at approximately the duration of 2210 // a context switch and vary the frequency. Of course we could also 2211 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor. 2212 // For a description of 'Adaptive spin-then-block mutual exclusion in 2213 // multi-threaded processing,' see U.S. Pat. No. 8046758. 2214 // 2215 // This implementation varies the duration "D", where D varies with 2216 // the success rate of recent spin attempts. (D is capped at approximately 2217 // length of a round-trip context switch). The success rate for recent 2218 // spin attempts is a good predictor of the success rate of future spin 2219 // attempts. The mechanism adapts automatically to varying critical 2220 // section length (lock modality), system load and degree of parallelism. 2221 // D is maintained per-monitor in _SpinDuration and is initialized 2222 // optimistically. Spin frequency is fixed at 100%. 2223 // 2224 // Note that _SpinDuration is volatile, but we update it without locks 2225 // or atomics. The code is designed so that _SpinDuration stays within 2226 // a reasonable range even in the presence of races. The arithmetic 2227 // operations on _SpinDuration are closed over the domain of legal values, 2228 // so at worst a race will install and older but still legal value. 2229 // At the very worst this introduces some apparent non-determinism. 2230 // We might spin when we shouldn't or vice-versa, but since the spin 2231 // count are relatively short, even in the worst case, the effect is harmless. 2232 // 2233 // Care must be taken that a low "D" value does not become an 2234 // an absorbing state. Transient spinning failures -- when spinning 2235 // is overall profitable -- should not cause the system to converge 2236 // on low "D" values. We want spinning to be stable and predictable 2237 // and fairly responsive to change and at the same time we don't want 2238 // it to oscillate, become metastable, be "too" non-deterministic, 2239 // or converge on or enter undesirable stable absorbing states. 2240 // 2241 // We implement a feedback-based control system -- using past behavior 2242 // to predict future behavior. We face two issues: (a) if the 2243 // input signal is random then the spin predictor won't provide optimal 2244 // results, and (b) if the signal frequency is too high then the control 2245 // system, which has some natural response lag, will "chase" the signal. 2246 // (b) can arise from multimodal lock hold times. Transient preemption 2247 // can also result in apparent bimodal lock hold times. 2248 // Although sub-optimal, neither condition is particularly harmful, as 2249 // in the worst-case we'll spin when we shouldn't or vice-versa. 2250 // The maximum spin duration is rather short so the failure modes aren't bad. 2251 // To be conservative, I've tuned the gain in system to bias toward 2252 // _not spinning. Relatedly, the system can sometimes enter a mode where it 2253 // "rings" or oscillates between spinning and not spinning. This happens 2254 // when spinning is just on the cusp of profitability, however, so the 2255 // situation is not dire. The state is benign -- there's no need to add 2256 // hysteresis control to damp the transition rate between spinning and 2257 // not spinning. 2258 2259 int ObjectMonitor::Knob_SpinLimit = 5000; // derived by an external tool 2260 2261 static int Knob_Bonus = 100; // spin success bonus 2262 static int Knob_Penalty = 200; // spin failure penalty 2263 static int Knob_Poverty = 1000; 2264 static int Knob_FixedSpin = 0; 2265 static int Knob_PreSpin = 10; // 20-100 likely better, but it's not better in my testing. 2266 2267 inline static int adjust_up(int spin_duration) { 2268 int x = spin_duration; 2269 if (x < ObjectMonitor::Knob_SpinLimit) { 2270 if (x < Knob_Poverty) { 2271 x = Knob_Poverty; 2272 } 2273 return x + Knob_Bonus; 2274 } else { 2275 return spin_duration; 2276 } 2277 } 2278 2279 inline static int adjust_down(int spin_duration) { 2280 // TODO: Use an AIMD-like policy to adjust _SpinDuration. 2281 // AIMD is globally stable. 2282 int x = spin_duration; 2283 if (x > 0) { 2284 // Consider an AIMD scheme like: x -= (x >> 3) + 100 2285 // This is globally sample and tends to damp the response. 2286 x -= Knob_Penalty; 2287 if (x < 0) { x = 0; } 2288 return x; 2289 } else { 2290 return spin_duration; 2291 } 2292 } 2293 2294 bool ObjectMonitor::short_fixed_spin(JavaThread* current, int spin_count, bool adapt) { 2295 for (int ctr = 0; ctr < spin_count; ctr++) { 2296 TryLockResult status = try_lock(current); 2297 if (status == TryLockResult::Success) { 2298 if (adapt) { 2299 _SpinDuration = adjust_up(_SpinDuration); 2300 } 2301 return true; 2302 } else if (status == TryLockResult::Interference) { 2303 break; 2304 } 2305 SpinPause(); 2306 } 2307 return false; 2308 } 2309 2310 // Spinning: Fixed frequency (100%), vary duration 2311 bool ObjectMonitor::try_spin(JavaThread* current) { 2312 2313 // Dumb, brutal spin. Good for comparative measurements against adaptive spinning. 2314 int knob_fixed_spin = Knob_FixedSpin; // 0 (don't spin: default), 2000 good test 2315 if (knob_fixed_spin > 0) { 2316 return short_fixed_spin(current, knob_fixed_spin, false); 2317 } 2318 2319 // Admission control - verify preconditions for spinning 2320 // 2321 // We always spin a little bit, just to prevent _SpinDuration == 0 from 2322 // becoming an absorbing state. Put another way, we spin briefly to 2323 // sample, just in case the system load, parallelism, contention, or lock 2324 // modality changed. 2325 2326 int knob_pre_spin = Knob_PreSpin; // 10 (default), 100, 1000 or 2000 2327 if (short_fixed_spin(current, knob_pre_spin, true)) { 2328 return true; 2329 } 2330 2331 // 2332 // Consider the following alternative: 2333 // Periodically set _SpinDuration = _SpinLimit and try a long/full 2334 // spin attempt. "Periodically" might mean after a tally of 2335 // the # of failed spin attempts (or iterations) reaches some threshold. 2336 // This takes us into the realm of 1-out-of-N spinning, where we 2337 // hold the duration constant but vary the frequency. 2338 2339 int ctr = _SpinDuration; 2340 if (ctr <= 0) return false; 2341 2342 // We're good to spin ... spin ingress. 2343 // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades 2344 // when preparing to LD...CAS _owner, etc and the CAS is likely 2345 // to succeed. 2346 if (!has_successor()) { 2347 set_successor(current); 2348 } 2349 int64_t prv = NO_OWNER; 2350 2351 // There are three ways to exit the following loop: 2352 // 1. A successful spin where this thread has acquired the lock. 2353 // 2. Spin failure with prejudice 2354 // 3. Spin failure without prejudice 2355 2356 while (--ctr >= 0) { 2357 2358 // Periodic polling -- Check for pending GC 2359 // Threads may spin while they're unsafe. 2360 // We don't want spinning threads to delay the JVM from reaching 2361 // a stop-the-world safepoint or to steal cycles from GC. 2362 // If we detect a pending safepoint we abort in order that 2363 // (a) this thread, if unsafe, doesn't delay the safepoint, and (b) 2364 // this thread, if safe, doesn't steal cycles from GC. 2365 // This is in keeping with the "no loitering in runtime" rule. 2366 // We periodically check to see if there's a safepoint pending. 2367 if ((ctr & 0xFF) == 0) { 2368 // Can't call SafepointMechanism::should_process() since that 2369 // might update the poll values and we could be in a thread_blocked 2370 // state here which is not allowed so just check the poll. 2371 if (SafepointMechanism::local_poll_armed(current)) { 2372 break; 2373 } 2374 SpinPause(); 2375 } 2376 2377 // Probe _owner with TATAS 2378 // If this thread observes the monitor transition or flicker 2379 // from locked to unlocked to locked, then the odds that this 2380 // thread will acquire the lock in this spin attempt go down 2381 // considerably. The same argument applies if the CAS fails 2382 // or if we observe _owner change from one non-null value to 2383 // another non-null value. In such cases we might abort 2384 // the spin without prejudice or apply a "penalty" to the 2385 // spin count-down variable "ctr", reducing it by 100, say. 2386 2387 int64_t ox = owner_raw(); 2388 if (ox == NO_OWNER) { 2389 ox = try_set_owner_from(NO_OWNER, current); 2390 if (ox == NO_OWNER) { 2391 // The CAS succeeded -- this thread acquired ownership 2392 // Take care of some bookkeeping to exit spin state. 2393 if (has_successor(current)) { 2394 clear_successor(); 2395 } 2396 2397 // Increase _SpinDuration : 2398 // The spin was successful (profitable) so we tend toward 2399 // longer spin attempts in the future. 2400 // CONSIDER: factor "ctr" into the _SpinDuration adjustment. 2401 // If we acquired the lock early in the spin cycle it 2402 // makes sense to increase _SpinDuration proportionally. 2403 // Note that we don't clamp SpinDuration precisely at SpinLimit. 2404 _SpinDuration = adjust_up(_SpinDuration); 2405 return true; 2406 } 2407 2408 // The CAS failed ... we can take any of the following actions: 2409 // * penalize: ctr -= CASPenalty 2410 // * exit spin with prejudice -- abort without adapting spinner 2411 // * exit spin without prejudice. 2412 // * Since CAS is high-latency, retry again immediately. 2413 break; 2414 } 2415 2416 // Did lock ownership change hands ? 2417 if (ox != prv && prv != NO_OWNER) { 2418 break; 2419 } 2420 prv = ox; 2421 2422 if (!has_successor()) { 2423 set_successor(current); 2424 } 2425 } 2426 2427 // Spin failed with prejudice -- reduce _SpinDuration. 2428 if (ctr < 0) { 2429 _SpinDuration = adjust_down(_SpinDuration); 2430 } 2431 2432 if (has_successor(current)) { 2433 clear_successor(); 2434 // Invariant: after setting succ=null a contending thread 2435 // must recheck-retry _owner before parking. This usually happens 2436 // in the normal usage of try_spin(), but it's safest 2437 // to make try_spin() as foolproof as possible. 2438 OrderAccess::fence(); 2439 if (try_lock(current) == TryLockResult::Success) { 2440 return true; 2441 } 2442 } 2443 2444 return false; 2445 } 2446 2447 2448 // ----------------------------------------------------------------------------- 2449 // wait_set management ... 2450 2451 ObjectWaiter::ObjectWaiter(JavaThread* current) { 2452 _next = nullptr; 2453 _prev = nullptr; 2454 _thread = current; 2455 _monitor = nullptr; 2456 _notifier_tid = 0; 2457 _recursions = 0; 2458 TState = TS_RUN; 2459 _notified = false; 2460 _is_wait = false; 2461 _at_reenter = false; 2462 _interrupted = false; 2463 _active = false; 2464 } 2465 2466 ObjectWaiter::ObjectWaiter(oop vthread, ObjectMonitor* mon) : ObjectWaiter(nullptr) { 2467 assert(oopDesc::is_oop(vthread), ""); 2468 _vthread = OopHandle(JavaThread::thread_oop_storage(), vthread); 2469 _monitor = mon; 2470 } 2471 2472 ObjectWaiter::~ObjectWaiter() { 2473 if (is_vthread()) { 2474 assert(vthread() != nullptr, ""); 2475 _vthread.release(JavaThread::thread_oop_storage()); 2476 } 2477 } 2478 2479 oop ObjectWaiter::vthread() const { 2480 return _vthread.resolve(); 2481 } 2482 2483 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) { 2484 _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon); 2485 } 2486 2487 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) { 2488 JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active); 2489 } 2490 2491 inline void ObjectMonitor::add_waiter(ObjectWaiter* node) { 2492 assert(node != nullptr, "should not add null node"); 2493 assert(node->_prev == nullptr, "node already in list"); 2494 assert(node->_next == nullptr, "node already in list"); 2495 // put node at end of queue (circular doubly linked list) 2496 if (_wait_set == nullptr) { 2497 _wait_set = node; 2498 node->_prev = node; 2499 node->_next = node; 2500 } else { 2501 ObjectWaiter* head = _wait_set; 2502 ObjectWaiter* tail = head->_prev; 2503 assert(tail->_next == head, "invariant check"); 2504 tail->_next = node; 2505 head->_prev = node; 2506 node->_next = head; 2507 node->_prev = tail; 2508 } 2509 } 2510 2511 inline ObjectWaiter* ObjectMonitor::dequeue_waiter() { 2512 // dequeue the very first waiter 2513 ObjectWaiter* waiter = _wait_set; 2514 if (waiter) { 2515 dequeue_specific_waiter(waiter); 2516 } 2517 return waiter; 2518 } 2519 2520 inline void ObjectMonitor::dequeue_specific_waiter(ObjectWaiter* node) { 2521 assert(node != nullptr, "should not dequeue nullptr node"); 2522 assert(node->_prev != nullptr, "node already removed from list"); 2523 assert(node->_next != nullptr, "node already removed from list"); 2524 // when the waiter has woken up because of interrupt, 2525 // timeout or other spurious wake-up, dequeue the 2526 // waiter from waiting list 2527 ObjectWaiter* next = node->_next; 2528 if (next == node) { 2529 assert(node->_prev == node, "invariant check"); 2530 _wait_set = nullptr; 2531 } else { 2532 ObjectWaiter* prev = node->_prev; 2533 assert(prev->_next == node, "invariant check"); 2534 assert(next->_prev == node, "invariant check"); 2535 next->_prev = prev; 2536 prev->_next = next; 2537 if (_wait_set == node) { 2538 _wait_set = next; 2539 } 2540 } 2541 node->_next = nullptr; 2542 node->_prev = nullptr; 2543 } 2544 2545 // ----------------------------------------------------------------------------- 2546 2547 // One-shot global initialization for the sync subsystem. 2548 // We could also defer initialization and initialize on-demand 2549 // the first time we call ObjectSynchronizer::inflate(). 2550 // Initialization would be protected - like so many things - by 2551 // the MonitorCache_lock. 2552 2553 void ObjectMonitor::Initialize() { 2554 assert(!InitDone, "invariant"); 2555 2556 if (!os::is_MP()) { 2557 Knob_SpinLimit = 0; 2558 Knob_PreSpin = 0; 2559 Knob_FixedSpin = -1; 2560 } 2561 2562 _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer); 2563 2564 DEBUG_ONLY(InitDone = true;) 2565 } 2566 2567 // We can't call this during Initialize() because BarrierSet needs to be set. 2568 void ObjectMonitor::Initialize2() { 2569 _vthread_list_head = OopHandle(JavaThread::thread_oop_storage(), nullptr); 2570 _vthread_unparker_ParkEvent = ParkEvent::Allocate(nullptr); 2571 } 2572 2573 void ObjectMonitor::print_on(outputStream* st) const { 2574 // The minimal things to print for markWord printing, more can be added for debugging and logging. 2575 st->print("{contentions=0x%08x,waiters=0x%08x" 2576 ",recursions=%zd,owner=" INT64_FORMAT "}", 2577 contentions(), waiters(), recursions(), 2578 owner_raw()); 2579 } 2580 void ObjectMonitor::print() const { print_on(tty); } 2581 2582 #ifdef ASSERT 2583 // Print the ObjectMonitor like a debugger would: 2584 // 2585 // (ObjectMonitor) 0x00007fdfb6012e40 = { 2586 // _metadata = 0x0000000000000001 2587 // _object = 0x000000070ff45fd0 2588 // _pad_buf0 = { 2589 // [0] = '\0' 2590 // ... 2591 // [43] = '\0' 2592 // } 2593 // _owner = 0x0000000000000000 2594 // _previous_owner_tid = 0 2595 // _pad_buf1 = { 2596 // [0] = '\0' 2597 // ... 2598 // [47] = '\0' 2599 // } 2600 // _next_om = 0x0000000000000000 2601 // _recursions = 0 2602 // _entry_list = 0x0000000000000000 2603 // _entry_list_tail = 0x0000000000000000 2604 // _succ = 0x0000000000000000 2605 // _SpinDuration = 5000 2606 // _contentions = 0 2607 // _wait_set = 0x0000700009756248 2608 // _waiters = 1 2609 // _wait_set_lock = 0 2610 // } 2611 // 2612 void ObjectMonitor::print_debug_style_on(outputStream* st) const { 2613 st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this)); 2614 st->print_cr(" _metadata = " INTPTR_FORMAT, _metadata); 2615 st->print_cr(" _object = " INTPTR_FORMAT, p2i(object_peek())); 2616 st->print_cr(" _pad_buf0 = {"); 2617 st->print_cr(" [0] = '\\0'"); 2618 st->print_cr(" ..."); 2619 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1); 2620 st->print_cr(" }"); 2621 st->print_cr(" _owner = " INT64_FORMAT, owner_raw()); 2622 st->print_cr(" _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid); 2623 st->print_cr(" _pad_buf1 = {"); 2624 st->print_cr(" [0] = '\\0'"); 2625 st->print_cr(" ..."); 2626 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1); 2627 st->print_cr(" }"); 2628 st->print_cr(" _next_om = " INTPTR_FORMAT, p2i(next_om())); 2629 st->print_cr(" _recursions = %zd", _recursions); 2630 st->print_cr(" _entry_list = " INTPTR_FORMAT, p2i(_entry_list)); 2631 st->print_cr(" _entry_list_tail = " INTPTR_FORMAT, p2i(_entry_list_tail)); 2632 st->print_cr(" _succ = " INT64_FORMAT, successor()); 2633 st->print_cr(" _SpinDuration = %d", _SpinDuration); 2634 st->print_cr(" _contentions = %d", contentions()); 2635 st->print_cr(" _wait_set = " INTPTR_FORMAT, p2i(_wait_set)); 2636 st->print_cr(" _waiters = %d", _waiters); 2637 st->print_cr(" _wait_set_lock = %d", _wait_set_lock); 2638 st->print_cr("}"); 2639 } 2640 #endif