1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmSymbols.hpp"
  26 #include "gc/shared/oopStorage.hpp"
  27 #include "gc/shared/oopStorageSet.hpp"
  28 #include "jfr/jfrEvents.hpp"
  29 #include "jfr/support/jfrThreadId.hpp"
  30 #include "logging/log.hpp"
  31 #include "logging/logStream.hpp"
  32 #include "memory/allocation.inline.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/markWord.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "oops/oopHandle.inline.hpp"
  37 #include "oops/weakHandle.inline.hpp"
  38 #include "prims/jvmtiDeferredUpdates.hpp"
  39 #include "prims/jvmtiExport.hpp"
  40 #include "runtime/atomic.hpp"
  41 #include "runtime/continuationWrapper.inline.hpp"
  42 #include "runtime/globals.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/interfaceSupport.inline.hpp"
  45 #include "runtime/javaThread.inline.hpp"
  46 #include "runtime/lightweightSynchronizer.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/objectMonitor.hpp"
  49 #include "runtime/objectMonitor.inline.hpp"
  50 #include "runtime/orderAccess.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/safefetch.hpp"
  53 #include "runtime/safepointMechanism.inline.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/threads.hpp"
  56 #include "services/threadService.hpp"
  57 #include "utilities/debug.hpp"
  58 #include "utilities/dtrace.hpp"
  59 #include "utilities/globalCounter.inline.hpp"
  60 #include "utilities/globalDefinitions.hpp"
  61 #include "utilities/macros.hpp"
  62 #include "utilities/preserveException.hpp"
  63 #if INCLUDE_JFR
  64 #include "jfr/support/jfrFlush.hpp"
  65 #endif
  66 
  67 #ifdef DTRACE_ENABLED
  68 
  69 // Only bother with this argument setup if dtrace is available
  70 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  71 
  72 
  73 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  74   char* bytes = nullptr;                                                   \
  75   int len = 0;                                                             \
  76   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  77   Symbol* klassname = obj->klass()->name();                                \
  78   if (klassname != nullptr) {                                              \
  79     bytes = (char*)klassname->bytes();                                     \
  80     len = klassname->utf8_length();                                        \
  81   }
  82 
  83 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  84   {                                                                        \
  85     if (DTraceMonitorProbes) {                                             \
  86       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  87       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  88                            (monitor), bytes, len, (millis));               \
  89     }                                                                      \
  90   }
  91 
  92 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  93 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  94 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  95 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  96 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  97 
  98 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  99   {                                                                        \
 100     if (DTraceMonitorProbes) {                                             \
 101       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 102       HOTSPOT_MONITOR_##probe(jtid,                                        \
 103                               (uintptr_t)(monitor), bytes, len);           \
 104     }                                                                      \
 105   }
 106 
 107 #else //  ndef DTRACE_ENABLED
 108 
 109 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 110 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 111 
 112 #endif // ndef DTRACE_ENABLED
 113 
 114 DEBUG_ONLY(static volatile bool InitDone = false;)
 115 
 116 OopStorage* ObjectMonitor::_oop_storage = nullptr;
 117 
 118 OopHandle ObjectMonitor::_vthread_list_head;
 119 ParkEvent* ObjectMonitor::_vthread_unparker_ParkEvent = nullptr;
 120 
 121 // -----------------------------------------------------------------------------
 122 // Theory of operations -- Monitors lists, thread residency, etc:
 123 //
 124 // * A thread acquires ownership of a monitor by successfully
 125 //   CAS()ing the _owner field from NO_OWNER/DEFLATER_MARKER to
 126 //   its owner_id (return value from owner_id_from()).
 127 //
 128 // * Invariant: A thread appears on at most one monitor list --
 129 //   entry_list or wait_set -- at any one time.
 130 //
 131 // * Contending threads "push" themselves onto the entry_list with CAS
 132 //   and then spin/park.
 133 //   If the thread is a virtual thread it will first attempt to
 134 //   unmount itself. The virtual thread will first try to freeze
 135 //   all frames in the heap. If the operation fails it will just
 136 //   follow the regular path for platform threads. If the operation
 137 //   succeeds, it will push itself onto the entry_list with CAS and then
 138 //   return back to Java to continue the unmount logic.
 139 //
 140 // * After a contending thread eventually acquires the lock it must
 141 //   dequeue itself from the entry_list.
 142 //
 143 // * The exiting thread identifies and unparks an "heir presumptive"
 144 //   tentative successor thread on the entry_list. In case the successor
 145 //   is an unmounted virtual thread, the exiting thread will first try
 146 //   to add it to the list of vthreads waiting to be unblocked, and on
 147 //   success it will unpark the special unblocker thread instead, which
 148 //   will be in charge of submitting the vthread back to the scheduler
 149 //   queue. Critically, the exiting thread doesn't unlink the successor
 150 //   thread from the entry_list. After having been unparked/re-scheduled,
 151 //   the wakee will recontend for ownership of the monitor. The successor
 152 //   (wakee) will either acquire the lock or re-park/unmount itself.
 153 //
 154 //   Succession is provided for by a policy of competitive handoff.
 155 //   The exiting thread does _not_ grant or pass ownership to the
 156 //   successor thread.  (This is also referred to as "handoff succession").
 157 //   Instead the exiting thread releases ownership and possibly wakes
 158 //   a successor, so the successor can (re)compete for ownership of the lock.
 159 //
 160 // * The entry_list forms a queue of threads stalled trying to acquire
 161 //   the lock. Within the entry_list the next pointers always form a
 162 //   consistent singly linked list. At unlock-time when the unlocking
 163 //   thread notices that the tail of the entry_list is not known, we
 164 //   convert the singly linked entry_list into a doubly linked list by
 165 //   assigning the prev pointers and the entry_list_tail pointer.
 166 //
 167 //   Example:
 168 //
 169 //   The first contending thread that "pushed" itself onto entry_list,
 170 //   will be the last thread in the list. Each newly pushed thread in
 171 //   entry_list will be linked through its next pointer, and have its
 172 //   prev pointer set to null. Thus pushing six threads A-F (in that
 173 //   order) onto entry_list, will form a singly linked list, see 1)
 174 //   below.
 175 //
 176 //      1)  entry_list       ->F->E->D->C->B->A->null
 177 //          entry_list_tail  ->null
 178 //
 179 //   Since the successor is chosen in FIFO order, the exiting thread
 180 //   needs to find the tail of the entry_list. This is done by walking
 181 //   from the entry_list head. While walking the list we also assign
 182 //   the prev pointers of each thread, essentially forming a doubly
 183 //   linked list, see 2) below.
 184 //
 185 //      2)  entry_list       ->F<=>E<=>D<=>C<=>B<=>A->null
 186 //          entry_list_tail  ----------------------^
 187 //
 188 //   Once we have formed a doubly linked list it's easy to find the
 189 //   successor (A), wake it up, have it remove itself, and update the
 190 //   tail pointer, as seen in and 3) below.
 191 //
 192 //      3)  entry_list       ->F<=>E<=>D<=>C<=>B->null
 193 //          entry_list_tail  ------------------^
 194 //
 195 //   At any time new threads can add themselves to the entry_list, see
 196 //   4) below.
 197 //
 198 //      4)  entry_list       ->I->H->G->F<=>E<=>D->null
 199 //          entry_list_tail  -------------------^
 200 //
 201 //   At some point in time the thread (F) that wants to remove itself
 202 //   from the end of the list, will not have any prev pointer, see 5)
 203 //   below.
 204 //
 205 //      5)  entry_list       ->I->H->G->F->null
 206 //          entry_list_tail  -----------^
 207 //
 208 //   To resolve this we just start walking from the entry_list head
 209 //   again, forming a new doubly linked list, before removing the
 210 //   thread (F), see 6) and 7) below.
 211 //
 212 //      6)  entry_list       ->I<=>H<=>G<=>F->null
 213 //          entry_list_tail  --------------^
 214 //
 215 //      7)  entry_list       ->I<=>H<=>G->null
 216 //          entry_list_tail  ----------^
 217 //
 218 // * The monitor itself protects all of the operations on the
 219 //   entry_list except for the CAS of a new arrival to the head. Only
 220 //   the monitor owner can read or write the prev links (e.g. to
 221 //   remove itself) or update the tail.
 222 //
 223 // * The monitor entry list operations avoid locks, but strictly speaking
 224 //   they're not lock-free.  Enter is lock-free, exit is not.
 225 //   For a description of 'Methods and apparatus providing non-blocking access
 226 //   to a resource,' see U.S. Pat. No. 7844973.
 227 //
 228 // * The entry_list can have multiple concurrent "pushers" but only
 229 //   one concurrent detaching thread. There is no ABA-problem with
 230 //   this usage of CAS.
 231 //
 232 // * As long as the entry_list_tail is known the odds are good that we
 233 //   should be able to dequeue after acquisition (in the ::enter()
 234 //   epilogue) in constant-time. This is good since a key desideratum
 235 //   is to minimize queue & monitor metadata manipulation that occurs
 236 //   while holding the monitor lock -- that is, we want to minimize
 237 //   monitor lock holds times. Note that even a small amount of fixed
 238 //   spinning will greatly reduce the # of enqueue-dequeue operations
 239 //   on entry_list. That is, spinning relieves contention on the
 240 //   "inner" locks and monitor metadata.
 241 //
 242 //   Insert and delete operations may not operate in constant-time if
 243 //   we have interference because some other thread is adding or
 244 //   removing the head element of entry_list or if we need to convert
 245 //   the singly linked entry_list into a doubly linked list to find the
 246 //   tail.
 247 //
 248 // * The monitor synchronization subsystem avoids the use of native
 249 //   synchronization primitives except for the narrow platform-specific
 250 //   park-unpark abstraction. See the comments in os_posix.cpp regarding
 251 //   the semantics of park-unpark. Put another way, this monitor implementation
 252 //   depends only on atomic operations and park-unpark.
 253 //
 254 // * Waiting threads reside on the wait_set list -- wait() puts
 255 //   the caller onto the wait_set.
 256 //
 257 // * notify() or notifyAll() simply transfers threads from the wait_set
 258 //   to the entry_list. Subsequent exit() operations will
 259 //   unpark/re-schedule the notifyee. Unparking/re-scheduling a
 260 //   notifyee in notify() is inefficient - it's likely the notifyee
 261 //   would simply impale itself on the lock held by the notifier.
 262 
 263 // Check that object() and set_object() are called from the right context:
 264 static void check_object_context() {
 265 #ifdef ASSERT
 266   Thread* self = Thread::current();
 267   if (self->is_Java_thread()) {
 268     // Mostly called from JavaThreads so sanity check the thread state.
 269     JavaThread* jt = JavaThread::cast(self);
 270     switch (jt->thread_state()) {
 271     case _thread_in_vm:    // the usual case
 272     case _thread_in_Java:  // during deopt
 273       break;
 274     default:
 275       fatal("called from an unsafe thread state");
 276     }
 277     assert(jt->is_active_Java_thread(), "must be active JavaThread");
 278   } else {
 279     // However, ThreadService::get_current_contended_monitor()
 280     // can call here via the VMThread so sanity check it.
 281     assert(self->is_VM_thread(), "must be");
 282   }
 283 #endif // ASSERT
 284 }
 285 
 286 ObjectMonitor::ObjectMonitor(oop object) :
 287   _metadata(0),
 288   _object(_oop_storage, object),
 289   _owner(NO_OWNER),
 290   _previous_owner_tid(0),
 291   _next_om(nullptr),
 292   _recursions(0),
 293   _entry_list(nullptr),
 294   _entry_list_tail(nullptr),
 295   _succ(NO_OWNER),
 296   _SpinDuration(ObjectMonitor::Knob_SpinLimit),
 297   _contentions(0),
 298   _wait_set(nullptr),
 299   _waiters(0),
 300   _wait_set_lock(0),
 301   _stack_locker(nullptr)
 302 { }
 303 
 304 ObjectMonitor::~ObjectMonitor() {
 305   _object.release(_oop_storage);
 306 }
 307 
 308 oop ObjectMonitor::object() const {
 309   check_object_context();
 310   return _object.resolve();
 311 }
 312 
 313 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) {
 314   if (current->is_suspended()) {
 315     _om->_recursions = 0;
 316     _om->clear_successor();
 317     // Don't need a full fence after clearing successor here because of the call to exit().
 318     _om->exit(current, false /* not_suspended */);
 319     _om_exited = true;
 320 
 321     current->set_current_pending_monitor(_om);
 322   }
 323 }
 324 
 325 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) {
 326   if (current->is_suspended()) {
 327     if (_om->has_successor(current)) {
 328       _om->clear_successor();
 329       OrderAccess::fence(); // always do a full fence when successor is cleared
 330     }
 331   }
 332 }
 333 
 334 #define assert_mark_word_consistency()                                         \
 335   assert(UseObjectMonitorTable || object()->mark() == markWord::encode(this),  \
 336          "object mark must match encoded this: mark=" INTPTR_FORMAT            \
 337          ", encoded this=" INTPTR_FORMAT, object()->mark().value(),            \
 338          markWord::encode(this).value());
 339 
 340 // -----------------------------------------------------------------------------
 341 // Enter support
 342 
 343 bool ObjectMonitor::enter_is_async_deflating() {
 344   if (is_being_async_deflated()) {
 345     if (!UseObjectMonitorTable) {
 346       const oop l_object = object();
 347       if (l_object != nullptr) {
 348         // Attempt to restore the header/dmw to the object's header so that
 349         // we only retry once if the deflater thread happens to be slow.
 350         install_displaced_markword_in_object(l_object);
 351       }
 352     }
 353     return true;
 354   }
 355 
 356   return false;
 357 }
 358 
 359 bool ObjectMonitor::try_lock_with_contention_mark(JavaThread* locking_thread, ObjectMonitorContentionMark& contention_mark) {
 360   assert(contention_mark._monitor == this, "must be");
 361   assert(!is_being_async_deflated(), "must be");
 362 
 363   int64_t prev_owner = try_set_owner_from(NO_OWNER, locking_thread);
 364   bool success = false;
 365 
 366   if (prev_owner == NO_OWNER) {
 367     assert(_recursions == 0, "invariant");
 368     success = true;
 369   } else if (prev_owner == owner_id_from(locking_thread)) {
 370     _recursions++;
 371     success = true;
 372   } else if (prev_owner == DEFLATER_MARKER) {
 373     // Racing with deflation.
 374     prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread);
 375     if (prev_owner == DEFLATER_MARKER) {
 376       // We successfully cancelled the in-progress async deflation by
 377       // changing owner from DEFLATER_MARKER to current.  We now extend
 378       // the lifetime of the contention_mark (e.g. contentions++) here
 379       // to prevent the deflater thread from winning the last part of
 380       // the 2-part async deflation protocol after the regular
 381       // decrement occurs when the contention_mark goes out of
 382       // scope. ObjectMonitor::deflate_monitor() which is called by
 383       // the deflater thread will decrement contentions after it
 384       // recognizes that the async deflation was cancelled.
 385       contention_mark.extend();
 386       success = true;
 387     } else if (prev_owner == NO_OWNER) {
 388       // At this point we cannot race with deflation as we have both incremented
 389       // contentions, seen contention > 0 and seen a DEFLATER_MARKER.
 390       // success will only be false if this races with something other than
 391       // deflation.
 392       prev_owner = try_set_owner_from(NO_OWNER, locking_thread);
 393       success = prev_owner == NO_OWNER;
 394     }
 395   }
 396   assert(!success || has_owner(locking_thread), "must be");
 397 
 398   return success;
 399 }
 400 
 401 void ObjectMonitor::enter_for_with_contention_mark(JavaThread* locking_thread, ObjectMonitorContentionMark& contention_mark) {
 402   // Used by LightweightSynchronizer::inflate_and_enter in deoptimization path to enter for another thread.
 403   // The monitor is private to or already owned by locking_thread which must be suspended.
 404   // So this code may only contend with deflation.
 405   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 406   bool success = try_lock_with_contention_mark(locking_thread, contention_mark);
 407 
 408   assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT
 409          ", this=" INTPTR_FORMAT "{owner=" INT64_FORMAT "}",
 410          p2i(locking_thread), p2i(this), owner_raw());
 411 }
 412 
 413 bool ObjectMonitor::enter_for(JavaThread* locking_thread) {
 414   // Used by ObjectSynchronizer::enter_for() to enter for another thread.
 415   // The monitor is private to or already owned by locking_thread which must be suspended.
 416   // So this code may only contend with deflation.
 417   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 418 
 419   // Block out deflation as soon as possible.
 420   ObjectMonitorContentionMark contention_mark(this);
 421 
 422   // Check for deflation.
 423   if (enter_is_async_deflating()) {
 424     return false;
 425   }
 426 
 427   bool success = try_lock_with_contention_mark(locking_thread, contention_mark);
 428 
 429   assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT
 430          ", this=" INTPTR_FORMAT "{owner=" INT64_FORMAT "}",
 431          p2i(locking_thread), p2i(this), owner_raw());
 432   assert(has_owner(locking_thread), "must be");
 433   return true;
 434 }
 435 
 436 bool ObjectMonitor::try_enter(JavaThread* current, bool check_for_recursion) {
 437   // TryLock avoids the CAS and handles deflation.
 438   TryLockResult r = try_lock(current);
 439   if (r == TryLockResult::Success) {
 440     assert(_recursions == 0, "invariant");
 441     return true;
 442   }
 443 
 444   // If called from SharedRuntime::monitor_exit_helper(), we know that
 445   // this thread doesn't already own the lock.
 446   if (!check_for_recursion) {
 447     return false;
 448   }
 449 
 450   if (r == TryLockResult::HasOwner && has_owner(current)) {
 451     _recursions++;
 452     return true;
 453   }
 454 
 455   return false;
 456 }
 457 
 458 bool ObjectMonitor::spin_enter(JavaThread* current) {
 459   assert(current == JavaThread::current(), "must be");
 460 
 461   // Check for recursion.
 462   if (try_enter(current)) {
 463     return true;
 464   }
 465 
 466   // Check for deflation.
 467   if (enter_is_async_deflating()) {
 468     return false;
 469   }
 470 
 471   // We've encountered genuine contention.
 472 
 473   // Do one round of spinning.
 474   // Note that if we acquire the monitor from an initial spin
 475   // we forgo posting JVMTI events and firing DTRACE probes.
 476   if (try_spin(current)) {
 477     assert(has_owner(current), "must be current: owner=" INT64_FORMAT, owner_raw());
 478     assert(_recursions == 0, "must be 0: recursions=%zd", _recursions);
 479     assert_mark_word_consistency();
 480     return true;
 481   }
 482 
 483   return false;
 484 }
 485 
 486 bool ObjectMonitor::enter(JavaThread* current) {
 487   assert(current == JavaThread::current(), "must be");
 488 
 489   if (spin_enter(current)) {
 490     return true;
 491   }
 492 
 493   assert(!has_owner(current), "invariant");
 494   assert(!has_successor(current), "invariant");
 495   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 496   assert(current->thread_state() != _thread_blocked, "invariant");
 497 
 498   // Keep is_being_async_deflated stable across the rest of enter
 499   ObjectMonitorContentionMark contention_mark(this);
 500 
 501   // Check for deflation.
 502   if (enter_is_async_deflating()) {
 503     return false;
 504   }
 505 
 506   // At this point this ObjectMonitor cannot be deflated, finish contended enter
 507   enter_with_contention_mark(current, contention_mark);
 508   return true;
 509 }
 510 
 511 void ObjectMonitor::notify_contended_enter(JavaThread* current) {
 512   current->set_current_pending_monitor(this);
 513 
 514   DTRACE_MONITOR_PROBE(contended__enter, this, object(), current);
 515   if (JvmtiExport::should_post_monitor_contended_enter()) {
 516     JvmtiExport::post_monitor_contended_enter(current, this);
 517 
 518     // The current thread does not yet own the monitor and does not
 519     // yet appear on any queues that would get it made the successor.
 520     // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 521     // handler cannot accidentally consume an unpark() meant for the
 522     // ParkEvent associated with this ObjectMonitor.
 523   }
 524 }
 525 
 526 void ObjectMonitor::enter_with_contention_mark(JavaThread* current, ObjectMonitorContentionMark &cm) {
 527   assert(current == JavaThread::current(), "must be");
 528   assert(!has_owner(current), "must be");
 529   assert(cm._monitor == this, "must be");
 530   assert(!is_being_async_deflated(), "must be");
 531 
 532   JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);)
 533   EventJavaMonitorEnter enter_event;
 534   if (enter_event.is_started()) {
 535     enter_event.set_monitorClass(object()->klass());
 536     // Set an address that is 'unique enough', such that events close in
 537     // time and with the same address are likely (but not guaranteed) to
 538     // belong to the same object.
 539     enter_event.set_address((uintptr_t)this);
 540   }
 541   EventVirtualThreadPinned vthread_pinned_event;
 542 
 543   freeze_result result;
 544 
 545   assert(current->current_pending_monitor() == nullptr, "invariant");
 546 
 547   ContinuationEntry* ce = current->last_continuation();
 548   bool is_virtual = ce != nullptr && ce->is_virtual_thread();
 549   if (is_virtual) {
 550     notify_contended_enter(current);
 551     result = Continuation::try_preempt(current, ce->cont_oop(current));
 552     if (result == freeze_ok) {
 553       bool acquired = vthread_monitor_enter(current);
 554       if (acquired) {
 555         // We actually acquired the monitor while trying to add the vthread to the
 556         // _entry_list so cancel preemption. We will still go through the preempt stub
 557         // but instead of unmounting we will call thaw to continue execution.
 558         current->set_preemption_cancelled(true);
 559         if (JvmtiExport::should_post_monitor_contended_entered()) {
 560           // We are going to call thaw again after this and finish the VMTS
 561           // transition so no need to do it here. We will post the event there.
 562           current->set_contended_entered_monitor(this);
 563         }
 564       }
 565       current->set_current_pending_monitor(nullptr);
 566       DEBUG_ONLY(int state = java_lang_VirtualThread::state(current->vthread()));
 567       assert((acquired && current->preemption_cancelled() && state == java_lang_VirtualThread::RUNNING) ||
 568              (!acquired && !current->preemption_cancelled() && state == java_lang_VirtualThread::BLOCKING), "invariant");
 569       return;
 570     }
 571   }
 572 
 573   {
 574     // Change java thread status to indicate blocked on monitor enter.
 575     JavaThreadBlockedOnMonitorEnterState jtbmes(current, this);
 576 
 577     if (!is_virtual) { // already notified contended_enter for virtual
 578       notify_contended_enter(current);
 579     }
 580     OSThreadContendState osts(current->osthread());
 581 
 582     assert(current->thread_state() == _thread_in_vm, "invariant");
 583 
 584     for (;;) {
 585       ExitOnSuspend eos(this);
 586       {
 587         ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */);
 588         enter_internal(current);
 589         current->set_current_pending_monitor(nullptr);
 590         // We can go to a safepoint at the end of this block. If we
 591         // do a thread dump during that safepoint, then this thread will show
 592         // as having "-locked" the monitor, but the OS and java.lang.Thread
 593         // states will still report that the thread is blocked trying to
 594         // acquire it.
 595         // If there is a suspend request, ExitOnSuspend will exit the OM
 596         // and set the OM as pending.
 597       }
 598       if (!eos.exited()) {
 599         // ExitOnSuspend did not exit the OM
 600         assert(has_owner(current), "invariant");
 601         break;
 602       }
 603     }
 604 
 605     // We've just gotten past the enter-check-for-suspend dance and we now own
 606     // the monitor free and clear.
 607   }
 608 
 609   assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
 610 
 611   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 612   assert(_recursions == 0, "invariant");
 613   assert(has_owner(current), "invariant");
 614   assert(!has_successor(current), "invariant");
 615   assert_mark_word_consistency();
 616 
 617   // The thread -- now the owner -- is back in vm mode.
 618   // Report the glorious news via TI,DTrace and jvmstat.
 619   // The probe effect is non-trivial.  All the reportage occurs
 620   // while we hold the monitor, increasing the length of the critical
 621   // section.  Amdahl's parallel speedup law comes vividly into play.
 622   //
 623   // Another option might be to aggregate the events (thread local or
 624   // per-monitor aggregation) and defer reporting until a more opportune
 625   // time -- such as next time some thread encounters contention but has
 626   // yet to acquire the lock.  While spinning that thread could
 627   // spinning we could increment JVMStat counters, etc.
 628 
 629   DTRACE_MONITOR_PROBE(contended__entered, this, object(), current);
 630   if (JvmtiExport::should_post_monitor_contended_entered()) {
 631     JvmtiExport::post_monitor_contended_entered(current, this);
 632 
 633     // The current thread already owns the monitor and is not going to
 634     // call park() for the remainder of the monitor enter protocol. So
 635     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 636     // event handler consumed an unpark() issued by the thread that
 637     // just exited the monitor.
 638   }
 639   if (enter_event.should_commit()) {
 640     enter_event.set_previousOwner(_previous_owner_tid);
 641     enter_event.commit();
 642   }
 643 
 644   if (current->current_waiting_monitor() == nullptr) {
 645     ContinuationEntry* ce = current->last_continuation();
 646     if (ce != nullptr && ce->is_virtual_thread()) {
 647       current->post_vthread_pinned_event(&vthread_pinned_event, "Contended monitor enter", result);
 648     }
 649   }
 650 }
 651 
 652 // Caveat: try_lock() is not necessarily serializing if it returns failure.
 653 // Callers must compensate as needed.
 654 
 655 ObjectMonitor::TryLockResult ObjectMonitor::try_lock(JavaThread* current) {
 656   int64_t own = owner_raw();
 657   int64_t first_own = own;
 658 
 659   for (;;) {
 660     if (own == DEFLATER_MARKER) {
 661       // Block out deflation as soon as possible.
 662       ObjectMonitorContentionMark contention_mark(this);
 663 
 664       // Check for deflation.
 665       if (enter_is_async_deflating()) {
 666         // Treat deflation as interference.
 667         return TryLockResult::Interference;
 668       }
 669       if (try_lock_with_contention_mark(current, contention_mark)) {
 670         assert(_recursions == 0, "invariant");
 671         return TryLockResult::Success;
 672       } else {
 673         // Deflation won or change of owner; dont spin
 674         break;
 675       }
 676     } else if (own == NO_OWNER) {
 677       int64_t prev_own = try_set_owner_from(NO_OWNER, current);
 678       if (prev_own == NO_OWNER) {
 679         assert(_recursions == 0, "invariant");
 680         return TryLockResult::Success;
 681       } else {
 682         // The lock had been free momentarily, but we lost the race to the lock.
 683         own = prev_own;
 684       }
 685     } else {
 686       // Retry doesn't make as much sense because the lock was just acquired.
 687       break;
 688     }
 689   }
 690   return first_own == own ? TryLockResult::HasOwner : TryLockResult::Interference;
 691 }
 692 
 693 // Push "current" onto the head of the _entry_list. Once on _entry_list,
 694 // current stays on-queue until it acquires the lock.
 695 void ObjectMonitor::add_to_entry_list(JavaThread* current, ObjectWaiter* node) {
 696   node->_prev   = nullptr;
 697   node->TState  = ObjectWaiter::TS_ENTER;
 698 
 699   for (;;) {
 700     ObjectWaiter* head = Atomic::load(&_entry_list);
 701     node->_next = head;
 702     if (Atomic::cmpxchg(&_entry_list, head, node) == head) {
 703       return;
 704     }
 705   }
 706 }
 707 
 708 // Push "current" onto the head of the entry_list.
 709 // If the _entry_list was changed during our push operation, we try to
 710 // lock the monitor. Returns true if we locked the monitor, and false
 711 // if we added current to _entry_list. Once on _entry_list, current
 712 // stays on-queue until it acquires the lock.
 713 bool ObjectMonitor::try_lock_or_add_to_entry_list(JavaThread* current, ObjectWaiter* node) {
 714   assert(node->TState == ObjectWaiter::TS_RUN, "");
 715   node->_prev   = nullptr;
 716   node->TState  = ObjectWaiter::TS_ENTER;
 717 
 718   for (;;) {
 719     ObjectWaiter* head = Atomic::load(&_entry_list);
 720     node->_next = head;
 721     if (Atomic::cmpxchg(&_entry_list, head, node) == head) {
 722       return false;
 723     }
 724 
 725     // Interference - the CAS failed because _entry_list changed.  Before
 726     // retrying the CAS retry taking the lock as it may now be free.
 727     if (try_lock(current) == TryLockResult::Success) {
 728       assert(!has_successor(current), "invariant");
 729       assert(has_owner(current), "invariant");
 730       node->TState = ObjectWaiter::TS_RUN;
 731       return true;
 732     }
 733   }
 734 }
 735 
 736 static void post_monitor_deflate_event(EventJavaMonitorDeflate* event,
 737                                        const oop obj) {
 738   assert(event != nullptr, "invariant");
 739   if (obj == nullptr) {
 740     // Accept the case when obj was already garbage-collected.
 741     // Emit the event anyway, but without details.
 742     event->set_monitorClass(nullptr);
 743     event->set_address(0);
 744   } else {
 745     const Klass* monitor_klass = obj->klass();
 746     if (ObjectMonitor::is_jfr_excluded(monitor_klass)) {
 747       return;
 748     }
 749     event->set_monitorClass(monitor_klass);
 750     event->set_address((uintptr_t)(void*)obj);
 751   }
 752   event->commit();
 753 }
 754 
 755 // Deflate the specified ObjectMonitor if not in-use. Returns true if it
 756 // was deflated and false otherwise.
 757 //
 758 // The async deflation protocol sets owner to DEFLATER_MARKER and
 759 // makes contentions negative as signals to contending threads that
 760 // an async deflation is in progress. There are a number of checks
 761 // as part of the protocol to make sure that the calling thread has
 762 // not lost the race to a contending thread.
 763 //
 764 // The ObjectMonitor has been successfully async deflated when:
 765 //   (contentions < 0)
 766 // Contending threads that see that condition know to retry their operation.
 767 //
 768 bool ObjectMonitor::deflate_monitor(Thread* current) {
 769   if (is_busy()) {
 770     // Easy checks are first - the ObjectMonitor is busy so no deflation.
 771     return false;
 772   }
 773 
 774   EventJavaMonitorDeflate event;
 775 
 776   const oop obj = object_peek();
 777 
 778   if (obj == nullptr) {
 779     // If the object died, we can recycle the monitor without racing with
 780     // Java threads. The GC already broke the association with the object.
 781     set_owner_from_raw(NO_OWNER, DEFLATER_MARKER);
 782     assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions());
 783     _contentions = INT_MIN; // minimum negative int
 784   } else {
 785     // Attempt async deflation protocol.
 786 
 787     // Set a null owner to DEFLATER_MARKER to force any contending thread
 788     // through the slow path. This is just the first part of the async
 789     // deflation dance.
 790     if (try_set_owner_from_raw(NO_OWNER, DEFLATER_MARKER) != NO_OWNER) {
 791       // The owner field is no longer null so we lost the race since the
 792       // ObjectMonitor is now busy.
 793       return false;
 794     }
 795 
 796     if (contentions() > 0 || _waiters != 0) {
 797       // Another thread has raced to enter the ObjectMonitor after
 798       // is_busy() above or has already entered and waited on
 799       // it which makes it busy so no deflation. Restore owner to
 800       // null if it is still DEFLATER_MARKER.
 801       if (try_set_owner_from_raw(DEFLATER_MARKER, NO_OWNER) != DEFLATER_MARKER) {
 802         // Deferred decrement for the JT enter_internal() that cancelled the async deflation.
 803         add_to_contentions(-1);
 804       }
 805       return false;
 806     }
 807 
 808     // Make a zero contentions field negative to force any contending threads
 809     // to retry. This is the second part of the async deflation dance.
 810     if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) {
 811       // Contentions was no longer 0 so we lost the race since the
 812       // ObjectMonitor is now busy. Restore owner to null if it is
 813       // still DEFLATER_MARKER:
 814       if (try_set_owner_from_raw(DEFLATER_MARKER, NO_OWNER) != DEFLATER_MARKER) {
 815         // Deferred decrement for the JT enter_internal() that cancelled the async deflation.
 816         add_to_contentions(-1);
 817       }
 818       return false;
 819     }
 820   }
 821 
 822   // Sanity checks for the races:
 823   guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker");
 824   guarantee(contentions() < 0, "must be negative: contentions=%d",
 825             contentions());
 826   guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters);
 827   ObjectWaiter* w = Atomic::load(&_entry_list);
 828   guarantee(w == nullptr,
 829             "must be no entering threads: entry_list=" INTPTR_FORMAT,
 830             p2i(w));
 831 
 832   if (obj != nullptr) {
 833     if (log_is_enabled(Trace, monitorinflation)) {
 834       ResourceMark rm;
 835       log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT
 836                                   ", mark=" INTPTR_FORMAT ", type='%s'",
 837                                   p2i(obj), obj->mark().value(),
 838                                   obj->klass()->external_name());
 839     }
 840   }
 841 
 842   if (UseObjectMonitorTable) {
 843     LightweightSynchronizer::deflate_monitor(current, obj, this);
 844   } else if (obj != nullptr) {
 845     // Install the old mark word if nobody else has already done it.
 846     install_displaced_markword_in_object(obj);
 847   }
 848 
 849   if (event.should_commit()) {
 850     post_monitor_deflate_event(&event, obj);
 851   }
 852 
 853   // We leave owner == DEFLATER_MARKER and contentions < 0
 854   // to force any racing threads to retry.
 855   return true;  // Success, ObjectMonitor has been deflated.
 856 }
 857 
 858 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 859 // into the header of the object associated with the monitor. This
 860 // idempotent method is called by a thread that is deflating a
 861 // monitor and by other threads that have detected a race with the
 862 // deflation process.
 863 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 864   assert(!UseObjectMonitorTable, "ObjectMonitorTable has no dmw");
 865   // This function must only be called when (owner == DEFLATER_MARKER
 866   // && contentions <= 0), but we can't guarantee that here because
 867   // those values could change when the ObjectMonitor gets moved from
 868   // the global free list to a per-thread free list.
 869 
 870   guarantee(obj != nullptr, "must be non-null");
 871 
 872   // Separate loads in is_being_async_deflated(), which is almost always
 873   // called before this function, from the load of dmw/header below.
 874 
 875   // _contentions and dmw/header may get written by different threads.
 876   // Make sure to observe them in the same order when having several observers.
 877   OrderAccess::loadload_for_IRIW();
 878 
 879   const oop l_object = object_peek();
 880   if (l_object == nullptr) {
 881     // ObjectMonitor's object ref has already been cleared by async
 882     // deflation or GC so we're done here.
 883     return;
 884   }
 885   assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj="
 886          INTPTR_FORMAT, p2i(l_object), p2i(obj));
 887 
 888   markWord dmw = header();
 889   // The dmw has to be neutral (not null, not locked and not marked).
 890   assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 891 
 892   // Install displaced mark word if the object's header still points
 893   // to this ObjectMonitor. More than one racing caller to this function
 894   // can rarely reach this point, but only one can win.
 895   markWord res = obj->cas_set_mark(dmw, markWord::encode(this));
 896   if (res != markWord::encode(this)) {
 897     // This should be rare so log at the Info level when it happens.
 898     log_info(monitorinflation)("install_displaced_markword_in_object: "
 899                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 900                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 901                                dmw.value(), markWord::encode(this).value(),
 902                                res.value());
 903   }
 904 
 905   // Note: It does not matter which thread restored the header/dmw
 906   // into the object's header. The thread deflating the monitor just
 907   // wanted the object's header restored and it is. The threads that
 908   // detected a race with the deflation process also wanted the
 909   // object's header restored before they retry their operation and
 910   // because it is restored they will only retry once.
 911 }
 912 
 913 // Convert the fields used by is_busy() to a string that can be
 914 // used for diagnostic output.
 915 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 916   ss->print("is_busy: waiters=%d"
 917             ", contentions=%d"
 918             ", owner=" INT64_FORMAT
 919             ", entry_list=" PTR_FORMAT,
 920             _waiters,
 921             (contentions() > 0 ? contentions() : 0),
 922             owner_is_DEFLATER_MARKER()
 923                 // We report null instead of DEFLATER_MARKER here because is_busy()
 924                 // ignores DEFLATER_MARKER values.
 925                 ? NO_OWNER
 926                 : owner_raw(),
 927             p2i(_entry_list));
 928   return ss->base();
 929 }
 930 
 931 void ObjectMonitor::enter_internal(JavaThread* current) {
 932   assert(current->thread_state() == _thread_blocked, "invariant");
 933 
 934   // Try the lock - TATAS
 935   if (try_lock(current) == TryLockResult::Success) {
 936     assert(!has_successor(current), "invariant");
 937     assert(has_owner(current), "invariant");
 938     return;
 939   }
 940 
 941   assert(InitDone, "Unexpectedly not initialized");
 942 
 943   // We try one round of spinning *before* enqueueing current.
 944   //
 945   // If the _owner is ready but OFFPROC we could use a YieldTo()
 946   // operation to donate the remainder of this thread's quantum
 947   // to the owner.  This has subtle but beneficial affinity
 948   // effects.
 949 
 950   if (try_spin(current)) {
 951     assert(has_owner(current), "invariant");
 952     assert(!has_successor(current), "invariant");
 953     return;
 954   }
 955 
 956   // The Spin failed -- Enqueue and park the thread ...
 957   assert(!has_successor(current), "invariant");
 958   assert(!has_owner(current), "invariant");
 959 
 960   // Enqueue "current" on ObjectMonitor's _entry_list.
 961   //
 962   // Node acts as a proxy for current.
 963   // As an aside, if were to ever rewrite the synchronization code mostly
 964   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 965   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 966   // as well as eliminate a subset of ABA issues.
 967   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 968 
 969   ObjectWaiter node(current);
 970   current->_ParkEvent->reset();
 971 
 972   if (try_lock_or_add_to_entry_list(current, &node)) {
 973     return; // We got the lock.
 974   }
 975   // This thread is now added to the _entry_list.
 976 
 977   // The lock might have been released while this thread was occupied queueing
 978   // itself onto _entry_list.  To close the race and avoid "stranding" and
 979   // progress-liveness failure we must resample-retry _owner before parking.
 980   // Note the Dekker/Lamport duality: ST _entry_list; MEMBAR; LD Owner.
 981   // In this case the ST-MEMBAR is accomplished with CAS().
 982   //
 983   // TODO: Defer all thread state transitions until park-time.
 984   // Since state transitions are heavy and inefficient we'd like
 985   // to defer the state transitions until absolutely necessary,
 986   // and in doing so avoid some transitions ...
 987 
 988   // For virtual threads that are pinned, do a timed-park instead to
 989   // alleviate some deadlocks cases where the succesor is an unmounted
 990   // virtual thread that cannot run. This can happen in particular when
 991   // this virtual thread is currently loading/initializing a class, and
 992   // all other carriers have a vthread pinned to it waiting for said class
 993   // to be loaded/initialized.
 994   static int MAX_RECHECK_INTERVAL = 1000;
 995   int recheck_interval = 1;
 996   bool do_timed_parked = false;
 997   ContinuationEntry* ce = current->last_continuation();
 998   if (ce != nullptr && ce->is_virtual_thread()) {
 999     do_timed_parked = true;
1000   }
1001 
1002   for (;;) {
1003 
1004     if (try_lock(current) == TryLockResult::Success) {
1005       break;
1006     }
1007     assert(!has_owner(current), "invariant");
1008 
1009     // park self
1010     if (do_timed_parked) {
1011       current->_ParkEvent->park((jlong) recheck_interval);
1012       // Increase the recheck_interval, but clamp the value.
1013       recheck_interval *= 8;
1014       if (recheck_interval > MAX_RECHECK_INTERVAL) {
1015         recheck_interval = MAX_RECHECK_INTERVAL;
1016       }
1017     } else {
1018       current->_ParkEvent->park();
1019     }
1020 
1021     if (try_lock(current) == TryLockResult::Success) {
1022       break;
1023     }
1024 
1025     // The lock is still contested.
1026 
1027     // Assuming this is not a spurious wakeup we'll normally find _succ == current.
1028     // We can defer clearing _succ until after the spin completes
1029     // try_spin() must tolerate being called with _succ == current.
1030     // Try yet another round of adaptive spinning.
1031     if (try_spin(current)) {
1032       break;
1033     }
1034 
1035     // We can find that we were unpark()ed and redesignated _succ while
1036     // we were spinning.  That's harmless.  If we iterate and call park(),
1037     // park() will consume the event and return immediately and we'll
1038     // just spin again.  This pattern can repeat, leaving _succ to simply
1039     // spin on a CPU.
1040 
1041     if (has_successor(current)) clear_successor();
1042 
1043     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
1044     OrderAccess::fence();
1045   }
1046 
1047   // Egress :
1048   // Current has acquired the lock -- Unlink current from the _entry_list.
1049   unlink_after_acquire(current, &node);
1050   if (has_successor(current)) {
1051     clear_successor();
1052     // Note that we don't need to do OrderAccess::fence() after clearing
1053     // _succ here, since we own the lock.
1054   }
1055 
1056   // We've acquired ownership with CAS().
1057   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
1058   // But since the CAS() this thread may have also stored into _succ
1059   // or entry_list.  These meta-data updates must be visible __before
1060   // this thread subsequently drops the lock.
1061   // Consider what could occur if we didn't enforce this constraint --
1062   // STs to monitor meta-data and user-data could reorder with (become
1063   // visible after) the ST in exit that drops ownership of the lock.
1064   // Some other thread could then acquire the lock, but observe inconsistent
1065   // or old monitor meta-data and heap data.  That violates the JMM.
1066   // To that end, the exit() operation must have at least STST|LDST
1067   // "release" barrier semantics.  Specifically, there must be at least a
1068   // STST|LDST barrier in exit() before the ST of null into _owner that drops
1069   // the lock.   The barrier ensures that changes to monitor meta-data and data
1070   // protected by the lock will be visible before we release the lock, and
1071   // therefore before some other thread (CPU) has a chance to acquire the lock.
1072   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
1073   //
1074   // Critically, any prior STs to _succ or entry_list must be visible before
1075   // the ST of null into _owner in the *subsequent* (following) corresponding
1076   // monitorexit.
1077 
1078   return;
1079 }
1080 
1081 // reenter_internal() is a specialized inline form of the latter half of the
1082 // contended slow-path from enter_internal().  We use reenter_internal() only for
1083 // monitor reentry in wait().
1084 //
1085 // In the future we should reconcile enter_internal() and reenter_internal().
1086 
1087 void ObjectMonitor::reenter_internal(JavaThread* current, ObjectWaiter* currentNode) {
1088   assert(current != nullptr, "invariant");
1089   assert(current->thread_state() != _thread_blocked, "invariant");
1090   assert(currentNode != nullptr, "invariant");
1091   assert(currentNode->_thread == current, "invariant");
1092   assert(_waiters > 0, "invariant");
1093   assert_mark_word_consistency();
1094 
1095   for (;;) {
1096     ObjectWaiter::TStates v = currentNode->TState;
1097     guarantee(v == ObjectWaiter::TS_ENTER, "invariant");
1098     assert(!has_owner(current), "invariant");
1099 
1100     // This thread has been notified so try to reacquire the lock.
1101     if (try_lock(current) == TryLockResult::Success) {
1102       break;
1103     }
1104 
1105     // If that fails, spin again.  Note that spin count may be zero so the above TryLock
1106     // is necessary.
1107     if (try_spin(current)) {
1108         break;
1109     }
1110 
1111     {
1112       OSThreadContendState osts(current->osthread());
1113 
1114       assert(current->thread_state() == _thread_in_vm, "invariant");
1115 
1116       {
1117         ClearSuccOnSuspend csos(this);
1118         ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1119         current->_ParkEvent->park();
1120       }
1121     }
1122 
1123     // Try again, but just so we distinguish between futile wakeups and
1124     // successful wakeups.  The following test isn't algorithmically
1125     // necessary, but it helps us maintain sensible statistics.
1126     if (try_lock(current) == TryLockResult::Success) {
1127       break;
1128     }
1129 
1130     // The lock is still contested.
1131 
1132     // Assuming this is not a spurious wakeup we'll normally
1133     // find that _succ == current.
1134     if (has_successor(current)) clear_successor();
1135 
1136     // Invariant: after clearing _succ a contending thread
1137     // *must* retry  _owner before parking.
1138     OrderAccess::fence();
1139   }
1140 
1141   // Current has acquired the lock -- Unlink current from the _entry_list.
1142   assert(has_owner(current), "invariant");
1143   assert_mark_word_consistency();
1144   unlink_after_acquire(current, currentNode);
1145   if (has_successor(current)) clear_successor();
1146   assert(!has_successor(current), "invariant");
1147   currentNode->TState = ObjectWaiter::TS_RUN;
1148   OrderAccess::fence();      // see comments at the end of enter_internal()
1149 }
1150 
1151 // This method is called from two places:
1152 // - On monitorenter contention with a null waiter.
1153 // - After Object.wait() times out or the target is interrupted to reenter the
1154 //   monitor, with the existing waiter.
1155 // For the Object.wait() case we do not delete the ObjectWaiter in case we
1156 // succesfully acquire the monitor since we are going to need it on return.
1157 bool ObjectMonitor::vthread_monitor_enter(JavaThread* current, ObjectWaiter* waiter) {
1158   if (try_lock(current) == TryLockResult::Success) {
1159     assert(has_owner(current), "invariant");
1160     assert(!has_successor(current), "invariant");
1161     return true;
1162   }
1163 
1164   oop vthread = current->vthread();
1165   ObjectWaiter* node = waiter != nullptr ? waiter : new ObjectWaiter(vthread, this);
1166   if (try_lock_or_add_to_entry_list(current, node)) {
1167     // We got the lock.
1168     if (waiter == nullptr) delete node;  // for Object.wait() don't delete yet
1169     return true;
1170   }
1171   // This thread is now added to the entry_list.
1172 
1173   // We have to try once more since owner could have exited monitor and checked
1174   // _entry_list before we added the node to the queue.
1175   if (try_lock(current) == TryLockResult::Success) {
1176     assert(has_owner(current), "invariant");
1177     unlink_after_acquire(current, node);
1178     if (has_successor(current)) clear_successor();
1179     if (waiter == nullptr) delete node;  // for Object.wait() don't delete yet
1180     return true;
1181   }
1182 
1183   assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
1184   java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING);
1185 
1186   // We didn't succeed in acquiring the monitor so increment _contentions and
1187   // save ObjectWaiter* in the vthread since we will need it when resuming execution.
1188   add_to_contentions(1);
1189   java_lang_VirtualThread::set_objectWaiter(vthread, node);
1190   return false;
1191 }
1192 
1193 // Called from thaw code to resume the monitor operation that caused the vthread
1194 // to be unmounted. Method returns true if the monitor is successfully acquired,
1195 // which marks the end of the monitor operation, otherwise it returns false.
1196 bool ObjectMonitor::resume_operation(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont) {
1197   assert(java_lang_VirtualThread::state(current->vthread()) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
1198   assert(!has_owner(current), "");
1199 
1200   if (node->is_wait() && !node->at_reenter()) {
1201     bool acquired_monitor = vthread_wait_reenter(current, node, cont);
1202     if (acquired_monitor) return true;
1203   }
1204 
1205   // Retry acquiring monitor...
1206 
1207   int state = node->TState;
1208   guarantee(state == ObjectWaiter::TS_ENTER, "invariant");
1209 
1210   if (try_lock(current) == TryLockResult::Success) {
1211     vthread_epilog(current, node);
1212     return true;
1213   }
1214 
1215   oop vthread = current->vthread();
1216   if (has_successor(current)) clear_successor();
1217 
1218   // Invariant: after clearing _succ a thread *must* retry acquiring the monitor.
1219   OrderAccess::fence();
1220 
1221   if (try_lock(current) == TryLockResult::Success) {
1222     vthread_epilog(current, node);
1223     return true;
1224   }
1225 
1226   // We will return to Continuation.run() and unmount so set the right state.
1227   java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING);
1228 
1229   return false;
1230 }
1231 
1232 void ObjectMonitor::vthread_epilog(JavaThread* current, ObjectWaiter* node) {
1233   assert(has_owner(current), "invariant");
1234   add_to_contentions(-1);
1235 
1236   if (has_successor(current)) clear_successor();
1237 
1238   guarantee(_recursions == 0, "invariant");
1239 
1240   if (node->is_wait()) {
1241     _recursions = node->_recursions;   // restore the old recursion count
1242     _waiters--;                        // decrement the number of waiters
1243 
1244     if (node->_interrupted) {
1245       // We will throw at thaw end after finishing the mount transition.
1246       current->set_pending_interrupted_exception(true);
1247     }
1248   }
1249 
1250   unlink_after_acquire(current, node);
1251   delete node;
1252 
1253   // Clear the ObjectWaiter* from the vthread.
1254   java_lang_VirtualThread::set_objectWaiter(current->vthread(), nullptr);
1255 
1256   if (JvmtiExport::should_post_monitor_contended_entered()) {
1257     // We are going to call thaw again after this and finish the VMTS
1258     // transition so no need to do it here. We will post the event there.
1259     current->set_contended_entered_monitor(this);
1260   }
1261 }
1262 
1263 // Convert entry_list into a doubly linked list by assigning the prev
1264 // pointers and the entry_list_tail pointer (if needed). Within the
1265 // entry_list the next pointers always form a consistent singly linked
1266 // list. When this function is called, the entry_list will be either
1267 // singly linked, or starting as singly linked (at the head), but
1268 // ending as doubly linked (at the tail).
1269 void ObjectMonitor::entry_list_build_dll(JavaThread* current) {
1270   assert(has_owner(current), "invariant");
1271   ObjectWaiter* prev = nullptr;
1272   // Need acquire here to match the implicit release of the cmpxchg
1273   // that updated entry_list, so we can access w->prev().
1274   ObjectWaiter* w = Atomic::load_acquire(&_entry_list);
1275   assert(w != nullptr, "should only be called when entry list is not empty");
1276   while (w != nullptr) {
1277     assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1278     assert(w->prev() == nullptr || w->prev() == prev, "invariant");
1279     if (w->prev() != nullptr) {
1280       break;
1281     }
1282     w->_prev = prev;
1283     prev = w;
1284     w = w->next();
1285   }
1286   if (w == nullptr) {
1287     // We converted the entire entry_list from a singly linked list
1288     // into a doubly linked list. Now we just need to set the tail
1289     // pointer.
1290     assert(prev != nullptr && prev->next() == nullptr, "invariant");
1291     assert(_entry_list_tail == nullptr || _entry_list_tail == prev, "invariant");
1292     _entry_list_tail = prev;
1293   } else {
1294 #ifdef ASSERT
1295     // We stopped iterating through the _entry_list when we found a
1296     // node that had its prev pointer set. I.e. we converted the first
1297     // part of the entry_list from a singly linked list into a doubly
1298     // linked list. Now we just want to make sure the rest of the list
1299     // is doubly linked. But first we check that we have a tail
1300     // pointer, because if the end of the entry_list is doubly linked
1301     // and we don't have the tail pointer, something is broken.
1302     assert(_entry_list_tail != nullptr, "invariant");
1303     while (w != nullptr) {
1304       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1305       assert(w->prev() == prev, "invariant");
1306       prev = w;
1307       w = w->next();
1308     }
1309     assert(_entry_list_tail == prev, "invariant");
1310 #endif
1311   }
1312 }
1313 
1314 // Return the tail of the _entry_list. If the tail is currently not
1315 // known, it can be found by first calling entry_list_build_dll().
1316 ObjectWaiter* ObjectMonitor::entry_list_tail(JavaThread* current) {
1317   assert(has_owner(current), "invariant");
1318   ObjectWaiter* w = _entry_list_tail;
1319   if (w != nullptr) {
1320     return w;
1321   }
1322   entry_list_build_dll(current);
1323   w = _entry_list_tail;
1324   assert(w != nullptr, "invariant");
1325   return w;
1326 }
1327 
1328 // By convention we unlink a contending thread from _entry_list
1329 // immediately after the thread acquires the lock in ::enter().
1330 // The head of _entry_list is volatile but the interior is stable.
1331 // In addition, current.TState is stable.
1332 
1333 void ObjectMonitor::unlink_after_acquire(JavaThread* current, ObjectWaiter* currentNode) {
1334   assert(has_owner(current), "invariant");
1335   assert((!currentNode->is_vthread() && currentNode->thread() == current) ||
1336          (currentNode->is_vthread() && currentNode->vthread() == current->vthread()), "invariant");
1337 
1338   // Check if we are unlinking the last element in the _entry_list.
1339   // This is by far the most common case.
1340   if (currentNode->next() == nullptr) {
1341     assert(_entry_list_tail == nullptr || _entry_list_tail == currentNode, "invariant");
1342 
1343     ObjectWaiter* w = Atomic::load(&_entry_list);
1344     if (w == currentNode) {
1345       // The currentNode is the only element in _entry_list.
1346       if (Atomic::cmpxchg(&_entry_list, w, (ObjectWaiter*)nullptr) == w) {
1347         _entry_list_tail = nullptr;
1348         currentNode->set_bad_pointers();
1349         return;
1350       }
1351       // The CAS above can fail from interference IFF a contending
1352       // thread "pushed" itself onto entry_list. So fall-through to
1353       // building the doubly linked list.
1354       assert(currentNode->prev() == nullptr, "invariant");
1355     }
1356     if (currentNode->prev() == nullptr) {
1357       // Build the doubly linked list to get hold of
1358       // currentNode->prev().
1359       entry_list_build_dll(current);
1360       assert(currentNode->prev() != nullptr, "must be");
1361       assert(_entry_list_tail == currentNode, "must be");
1362     }
1363     // The currentNode is the last element in _entry_list and we know
1364     // which element is the previous one.
1365     assert(_entry_list != currentNode, "invariant");
1366     _entry_list_tail = currentNode->prev();
1367     _entry_list_tail->_next = nullptr;
1368     currentNode->set_bad_pointers();
1369     return;
1370   }
1371 
1372   // If we get here it means the current thread enqueued itself on the
1373   // _entry_list but was then able to "steal" the lock before the
1374   // chosen successor was able to. Consequently currentNode must be an
1375   // interior node in the _entry_list, or the head.
1376   assert(currentNode->next() != nullptr, "invariant");
1377   assert(currentNode != _entry_list_tail, "invariant");
1378 
1379   // Check if we are in the singly linked portion of the
1380   // _entry_list. If we are the head then we try to remove ourselves,
1381   // else we convert to the doubly linked list.
1382   if (currentNode->prev() == nullptr) {
1383     ObjectWaiter* w = Atomic::load(&_entry_list);
1384 
1385     assert(w != nullptr, "invariant");
1386     if (w == currentNode) {
1387       ObjectWaiter* next = currentNode->next();
1388       // currentNode is at the head of _entry_list.
1389       if (Atomic::cmpxchg(&_entry_list, w, next) == w) {
1390         // The CAS above sucsessfully unlinked currentNode from the
1391         // head of the _entry_list.
1392         assert(_entry_list != w, "invariant");
1393         next->_prev = nullptr;
1394         currentNode->set_bad_pointers();
1395         return;
1396       } else {
1397         // The CAS above can fail from interference IFF a contending
1398         // thread "pushed" itself onto _entry_list, in which case
1399         // currentNode must now be in the interior of the
1400         // list. Fall-through to building the doubly linked list.
1401         assert(_entry_list != currentNode, "invariant");
1402       }
1403     }
1404     // Build the doubly linked list to get hold of currentNode->prev().
1405     entry_list_build_dll(current);
1406     assert(currentNode->prev() != nullptr, "must be");
1407   }
1408 
1409   // We now know we are unlinking currentNode from the interior of a
1410   // doubly linked list.
1411   assert(currentNode->next() != nullptr, "");
1412   assert(currentNode->prev() != nullptr, "");
1413   assert(currentNode != _entry_list, "");
1414   assert(currentNode != _entry_list_tail, "");
1415 
1416   ObjectWaiter* nxt = currentNode->next();
1417   ObjectWaiter* prv = currentNode->prev();
1418   assert(nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
1419   assert(prv->TState == ObjectWaiter::TS_ENTER, "invariant");
1420 
1421   nxt->_prev = prv;
1422   prv->_next = nxt;
1423   currentNode->set_bad_pointers();
1424 }
1425 
1426 // -----------------------------------------------------------------------------
1427 // Exit support
1428 //
1429 // exit()
1430 // ~~~~~~
1431 // Note that the collector can't reclaim the objectMonitor or deflate
1432 // the object out from underneath the thread calling ::exit() as the
1433 // thread calling ::exit() never transitions to a stable state.
1434 // This inhibits GC, which in turn inhibits asynchronous (and
1435 // inopportune) reclamation of "this".
1436 //
1437 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
1438 // There's one exception to the claim above, however.  enter_internal() can call
1439 // exit() to drop a lock if the acquirer has been externally suspended.
1440 // In that case exit() is called with _thread_state == _thread_blocked,
1441 // but the monitor's _contentions field is > 0, which inhibits reclamation.
1442 //
1443 // This is the exit part of the locking protocol, often implemented in
1444 // C2_MacroAssembler::fast_unlock()
1445 //
1446 //   1. A release barrier ensures that changes to monitor meta-data
1447 //      (_succ, _entry_list) and data protected by the lock will be
1448 //      visible before we release the lock.
1449 //   2. Release the lock by clearing the owner.
1450 //   3. A storeload MEMBAR is needed between releasing the owner and
1451 //      subsequently reading meta-data to safely determine if the lock is
1452 //      contended (step 4) without an elected successor (step 5).
1453 //   4. If _entry_list is null, we are done, since there is no
1454 //      other thread waiting on the lock to wake up. I.e. there is no
1455 //      contention.
1456 //   5. If there is a successor (_succ is non-null), we are done. The
1457 //      responsibility for guaranteeing progress-liveness has now implicitly
1458 //      been moved from the exiting thread to the successor.
1459 //   6. There are waiters in the entry list (_entry_list is non-null),
1460 //      but there is no successor (_succ is null), so we need to
1461 //      wake up (unpark) a waiting thread to avoid stranding.
1462 //
1463 // Note that since only the current lock owner can manipulate the
1464 // _entry_list (except for pushing new threads to the head), we need to
1465 // reacquire the lock before we can wake up (unpark) a waiting thread.
1466 //
1467 // The CAS() in enter provides for safety and exclusion, while the
1468 // MEMBAR in exit provides for progress and avoids stranding.
1469 //
1470 // There is also the risk of a futile wake-up. If we drop the lock
1471 // another thread can reacquire the lock immediately, and we can
1472 // then wake a thread unnecessarily. This is benign, and we've
1473 // structured the code so the windows are short and the frequency
1474 // of such futile wakups is low.
1475 
1476 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) {
1477   if (!has_owner(current)) {
1478     // Apparent unbalanced locking ...
1479     // Naively we'd like to throw IllegalMonitorStateException.
1480     // As a practical matter we can neither allocate nor throw an
1481     // exception as ::exit() can be called from leaf routines.
1482     // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1483     // Upon deeper reflection, however, in a properly run JVM the only
1484     // way we should encounter this situation is in the presence of
1485     // unbalanced JNI locking. TODO: CheckJNICalls.
1486     // See also: CR4414101
1487 #ifdef ASSERT
1488     LogStreamHandle(Error, monitorinflation) lsh;
1489     lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
1490                   " is exiting an ObjectMonitor it does not own.", p2i(current));
1491     lsh.print_cr("The imbalance is possibly caused by JNI locking.");
1492     print_debug_style_on(&lsh);
1493     assert(false, "Non-balanced monitor enter/exit!");
1494 #endif
1495     return;
1496   }
1497 
1498   if (_recursions != 0) {
1499     _recursions--;        // this is simple recursive enter
1500     return;
1501   }
1502 
1503 #if INCLUDE_JFR
1504   // get the owner's thread id for the MonitorEnter event
1505   // if it is enabled and the thread isn't suspended
1506   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1507     _previous_owner_tid = JFR_THREAD_ID(current);
1508   }
1509 #endif
1510 
1511   for (;;) {
1512     // If there is a successor we should release the lock as soon as
1513     // possible, so that the successor can acquire the lock. If there is
1514     // no successor, we might need to wake up a waiting thread.
1515     if (!has_successor()) {
1516       ObjectWaiter* w = Atomic::load(&_entry_list);
1517       if (w != nullptr) {
1518         // Other threads are blocked trying to acquire the lock and
1519         // there is no successor, so it appears that an heir-
1520         // presumptive (successor) must be made ready. Since threads
1521         // are woken up in FIFO order, we need to find the tail of the
1522         // entry_list.
1523         w = entry_list_tail(current);
1524         // I'd like to write: guarantee (w->_thread != current).
1525         // But in practice an exiting thread may find itself on the entry_list.
1526         // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1527         // then calls exit().  Exit release the lock by setting O._owner to null.
1528         // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1529         // notify() operation moves T1 from O's waitset to O's entry_list. T2 then
1530         // release the lock "O".  T1 resumes immediately after the ST of null into
1531         // _owner, above.  T1 notices that the entry_list is populated, so it
1532         // reacquires the lock and then finds itself on the entry_list.
1533         // Given all that, we have to tolerate the circumstance where "w" is
1534         // associated with current.
1535         assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1536         exit_epilog(current, w);
1537         return;
1538       }
1539     }
1540 
1541     // Drop the lock.
1542     // release semantics: prior loads and stores from within the critical section
1543     // must not float (reorder) past the following store that drops the lock.
1544     // Uses a storeload to separate release_store(owner) from the
1545     // successor check. The try_set_owner_from() below uses cmpxchg() so
1546     // we get the fence down there.
1547     release_clear_owner(current);
1548     OrderAccess::storeload();
1549 
1550     // Normally the exiting thread is responsible for ensuring succession,
1551     // but if this thread observes other successors are ready or other
1552     // entering threads are spinning after it has stored null into _owner
1553     // then it can exit without waking a successor.  The existence of
1554     // spinners or ready successors guarantees proper succession (liveness).
1555     // Responsibility passes to the ready or running successors.  The exiting
1556     // thread delegates the duty.  More precisely, if a successor already
1557     // exists this thread is absolved of the responsibility of waking
1558     // (unparking) one.
1559 
1560     // The _succ variable is critical to reducing futile wakeup frequency.
1561     // _succ identifies the "heir presumptive" thread that has been made
1562     // ready (unparked) but that has not yet run.  We need only one such
1563     // successor thread to guarantee progress.
1564     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1565     // section 3.3 "Futile Wakeup Throttling" for details.
1566     //
1567     // Note that spinners in Enter() also set _succ non-null.
1568     // In the current implementation spinners opportunistically set
1569     // _succ so that exiting threads might avoid waking a successor.
1570     // Which means that the exiting thread could exit immediately without
1571     // waking a successor, if it observes a successor after it has dropped
1572     // the lock.  Note that the dropped lock needs to become visible to the
1573     // spinner.
1574 
1575     if (_entry_list == nullptr || has_successor()) {
1576       return;
1577     }
1578 
1579     // Only the current lock owner can manipulate the entry_list
1580     // (except for pushing new threads to the head), therefore we need
1581     // to reacquire the lock. If we fail to reacquire the lock the
1582     // responsibility for ensuring succession falls to the new owner.
1583 
1584     if (try_lock(current) != TryLockResult::Success) {
1585       // Some other thread acquired the lock (or the monitor was
1586       // deflated). Either way we are done.
1587       return;
1588     }
1589 
1590     guarantee(has_owner(current), "invariant");
1591   }
1592 }
1593 
1594 void ObjectMonitor::exit_epilog(JavaThread* current, ObjectWaiter* Wakee) {
1595   assert(has_owner(current), "invariant");
1596 
1597   // Exit protocol:
1598   // 1. ST _succ = wakee
1599   // 2. membar #loadstore|#storestore;
1600   // 2. ST _owner = nullptr
1601   // 3. unpark(wakee)
1602 
1603   oop vthread = nullptr;
1604   ParkEvent * Trigger;
1605   if (!Wakee->is_vthread()) {
1606     JavaThread* t = Wakee->thread();
1607     assert(t != nullptr, "");
1608     Trigger = t->_ParkEvent;
1609     set_successor(t);
1610   } else {
1611     vthread = Wakee->vthread();
1612     assert(vthread != nullptr, "");
1613     Trigger = ObjectMonitor::vthread_unparker_ParkEvent();
1614     set_successor(vthread);
1615   }
1616 
1617   // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again.
1618   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1619   // out-of-scope (non-extant).
1620   Wakee  = nullptr;
1621 
1622   // Drop the lock.
1623   // Uses a fence to separate release_store(owner) from the LD in unpark().
1624   release_clear_owner(current);
1625   OrderAccess::fence();
1626 
1627   DTRACE_MONITOR_PROBE(contended__exit, this, object(), current);
1628 
1629   if (vthread == nullptr) {
1630     // Platform thread case.
1631     Trigger->unpark();
1632   } else if (java_lang_VirtualThread::set_onWaitingList(vthread, vthread_list_head())) {
1633     // Virtual thread case.
1634     Trigger->unpark();
1635   }
1636 }
1637 
1638 // Exits the monitor returning recursion count. _owner should
1639 // be set to current's owner_id, i.e. no ANONYMOUS_OWNER allowed.
1640 intx ObjectMonitor::complete_exit(JavaThread* current) {
1641   assert(InitDone, "Unexpectedly not initialized");
1642   guarantee(has_owner(current), "complete_exit not owner");
1643 
1644   intx save = _recursions; // record the old recursion count
1645   _recursions = 0;         // set the recursion level to be 0
1646   exit(current);           // exit the monitor
1647   guarantee(!has_owner(current), "invariant");
1648   return save;
1649 }
1650 
1651 // Checks that the current THREAD owns this monitor and causes an
1652 // immediate return if it doesn't. We don't use the CHECK macro
1653 // because we want the IMSE to be the only exception that is thrown
1654 // from the call site when false is returned. Any other pending
1655 // exception is ignored.
1656 #define CHECK_OWNER()                                                  \
1657   do {                                                                 \
1658     if (!check_owner(THREAD)) {                                        \
1659        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1660        return;                                                         \
1661      }                                                                 \
1662   } while (false)
1663 
1664 // Returns true if the specified thread owns the ObjectMonitor.
1665 // Otherwise returns false and throws IllegalMonitorStateException
1666 // (IMSE). If there is a pending exception and the specified thread
1667 // is not the owner, that exception will be replaced by the IMSE.
1668 bool ObjectMonitor::check_owner(TRAPS) {
1669   JavaThread* current = THREAD;
1670   int64_t cur = owner_raw();
1671   if (cur == owner_id_from(current)) {
1672     return true;
1673   }
1674   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1675              "current thread is not owner", false);
1676 }
1677 
1678 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1679                                     ObjectMonitor* monitor,
1680                                     uint64_t notifier_tid,
1681                                     jlong timeout,
1682                                     bool timedout) {
1683   assert(event != nullptr, "invariant");
1684   assert(monitor != nullptr, "invariant");
1685   const Klass* monitor_klass = monitor->object()->klass();
1686   if (ObjectMonitor::is_jfr_excluded(monitor_klass)) {
1687     return;
1688   }
1689   event->set_monitorClass(monitor_klass);
1690   event->set_timeout(timeout);
1691   // Set an address that is 'unique enough', such that events close in
1692   // time and with the same address are likely (but not guaranteed) to
1693   // belong to the same object.
1694   event->set_address((uintptr_t)monitor);
1695   event->set_notifier(notifier_tid);
1696   event->set_timedOut(timedout);
1697   event->commit();
1698 }
1699 
1700 static void vthread_monitor_waited_event(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont, EventJavaMonitorWait* event, jboolean timed_out) {
1701   // Since we might safepoint set the anchor so that the stack can we walked.
1702   assert(current->last_continuation() != nullptr, "");
1703   JavaFrameAnchor* anchor = current->frame_anchor();
1704   anchor->set_last_Java_sp(current->last_continuation()->entry_sp());
1705   anchor->set_last_Java_pc(current->last_continuation()->entry_pc());
1706 
1707   ContinuationWrapper::SafepointOp so(current, cont);
1708 
1709   JRT_BLOCK
1710     if (event->should_commit()) {
1711       long timeout = java_lang_VirtualThread::timeout(current->vthread());
1712       post_monitor_wait_event(event, node->_monitor, node->_notifier_tid, timeout, timed_out);
1713     }
1714     if (JvmtiExport::should_post_monitor_waited()) {
1715       // We mark this call in case of an upcall to Java while posting the event.
1716       // If somebody walks the stack in that case, processing the enterSpecial
1717       // frame should not include processing callee arguments since there is no
1718       // actual callee (see nmethod::preserve_callee_argument_oops()).
1719       ThreadOnMonitorWaitedEvent tmwe(current);
1720       JvmtiExport::vthread_post_monitor_waited(current, node->_monitor, timed_out);
1721     }
1722   JRT_BLOCK_END
1723   current->frame_anchor()->clear();
1724 }
1725 
1726 // -----------------------------------------------------------------------------
1727 // Wait/Notify/NotifyAll
1728 //
1729 // Note: a subset of changes to ObjectMonitor::wait()
1730 // will need to be replicated in complete_exit
1731 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1732   JavaThread* current = THREAD;
1733 
1734   assert(InitDone, "Unexpectedly not initialized");
1735 
1736   CHECK_OWNER();  // Throws IMSE if not owner.
1737 
1738   EventJavaMonitorWait wait_event;
1739   EventVirtualThreadPinned vthread_pinned_event;
1740 
1741   // check for a pending interrupt
1742   if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1743     JavaThreadInObjectWaitState jtiows(current, millis != 0, interruptible);
1744 
1745     if (JvmtiExport::should_post_monitor_wait()) {
1746       JvmtiExport::post_monitor_wait(current, object(), millis);
1747     }
1748     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1749     if (JvmtiExport::should_post_monitor_waited()) {
1750       // Note: 'false' parameter is passed here because the
1751       // wait was not timed out due to thread interrupt.
1752       JvmtiExport::post_monitor_waited(current, this, false);
1753 
1754       // In this short circuit of the monitor wait protocol, the
1755       // current thread never drops ownership of the monitor and
1756       // never gets added to the wait queue so the current thread
1757       // cannot be made the successor. This means that the
1758       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1759       // consume an unpark() meant for the ParkEvent associated with
1760       // this ObjectMonitor.
1761     }
1762     if (wait_event.should_commit()) {
1763       post_monitor_wait_event(&wait_event, this, 0, millis, false);
1764     }
1765     THROW(vmSymbols::java_lang_InterruptedException());
1766     return;
1767   }
1768 
1769   freeze_result result;
1770   ContinuationEntry* ce = current->last_continuation();
1771   bool is_virtual = ce != nullptr && ce->is_virtual_thread();
1772   if (is_virtual) {
1773     if (interruptible && JvmtiExport::should_post_monitor_wait()) {
1774       JvmtiExport::post_monitor_wait(current, object(), millis);
1775     }
1776     current->set_current_waiting_monitor(this);
1777     result = Continuation::try_preempt(current, ce->cont_oop(current));
1778     if (result == freeze_ok) {
1779       vthread_wait(current, millis);
1780       current->set_current_waiting_monitor(nullptr);
1781       return;
1782     }
1783   }
1784   // The jtiows does nothing for non-interruptible.
1785   JavaThreadInObjectWaitState jtiows(current, millis != 0, interruptible);
1786 
1787   if (!is_virtual) { // it was already set for virtual thread
1788     if (interruptible && JvmtiExport::should_post_monitor_wait()) {
1789       JvmtiExport::post_monitor_wait(current, object(), millis);
1790 
1791       // The current thread already owns the monitor and it has not yet
1792       // been added to the wait queue so the current thread cannot be
1793       // made the successor. This means that the JVMTI_EVENT_MONITOR_WAIT
1794       // event handler cannot accidentally consume an unpark() meant for
1795       // the ParkEvent associated with this ObjectMonitor.
1796     }
1797     current->set_current_waiting_monitor(this);
1798   }
1799   // create a node to be put into the queue
1800   // Critically, after we reset() the event but prior to park(), we must check
1801   // for a pending interrupt.
1802   ObjectWaiter node(current);
1803   node.TState = ObjectWaiter::TS_WAIT;
1804   current->_ParkEvent->reset();
1805   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1806 
1807   // Enter the waiting queue, which is a circular doubly linked list in this case
1808   // but it could be a priority queue or any data structure.
1809   // _wait_set_lock protects the wait queue.  Normally the wait queue is accessed only
1810   // by the owner of the monitor *except* in the case where park()
1811   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1812   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1813 
1814   Thread::SpinAcquire(&_wait_set_lock);
1815   add_waiter(&node);
1816   Thread::SpinRelease(&_wait_set_lock);
1817 
1818   intx save = _recursions;     // record the old recursion count
1819   _waiters++;                  // increment the number of waiters
1820   _recursions = 0;             // set the recursion level to be 1
1821   exit(current);               // exit the monitor
1822   guarantee(!has_owner(current), "invariant");
1823 
1824   // The thread is on the wait_set list - now park() it.
1825   // On MP systems it's conceivable that a brief spin before we park
1826   // could be profitable.
1827   //
1828   // TODO-FIXME: change the following logic to a loop of the form
1829   //   while (!timeout && !interrupted && _notified == 0) park()
1830 
1831   int ret = OS_OK;
1832   int WasNotified = 0;
1833 
1834   // Need to check interrupt state whilst still _thread_in_vm
1835   bool interrupted = interruptible && current->is_interrupted(false);
1836 
1837   { // State transition wrappers
1838     OSThread* osthread = current->osthread();
1839     OSThreadWaitState osts(osthread, true);
1840 
1841     assert(current->thread_state() == _thread_in_vm, "invariant");
1842 
1843     {
1844       ClearSuccOnSuspend csos(this);
1845       ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1846       if (interrupted || HAS_PENDING_EXCEPTION) {
1847         // Intentionally empty
1848       } else if (!node._notified) {
1849         if (millis <= 0) {
1850           current->_ParkEvent->park();
1851         } else {
1852           ret = current->_ParkEvent->park(millis);
1853         }
1854       }
1855     }
1856 
1857     // Node may be on the wait_set, or on the entry_list, or in transition
1858     // from the wait_set to the entry_list.
1859     // See if we need to remove Node from the wait_set.
1860     // We use double-checked locking to avoid grabbing _wait_set_lock
1861     // if the thread is not on the wait queue.
1862     //
1863     // Note that we don't need a fence before the fetch of TState.
1864     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1865     // written by the is thread. (perhaps the fetch might even be satisfied
1866     // by a look-aside into the processor's own store buffer, although given
1867     // the length of the code path between the prior ST and this load that's
1868     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1869     // then we'll acquire the lock and then re-fetch a fresh TState value.
1870     // That is, we fail toward safety.
1871 
1872     if (node.TState == ObjectWaiter::TS_WAIT) {
1873       Thread::SpinAcquire(&_wait_set_lock);
1874       if (node.TState == ObjectWaiter::TS_WAIT) {
1875         dequeue_specific_waiter(&node);       // unlink from wait_set
1876         assert(!node._notified, "invariant");
1877         node.TState = ObjectWaiter::TS_RUN;
1878       }
1879       Thread::SpinRelease(&_wait_set_lock);
1880     }
1881 
1882     // The thread is now either on off-list (TS_RUN),
1883     // or on the entry_list (TS_ENTER).
1884     // The Node's TState variable is stable from the perspective of this thread.
1885     // No other threads will asynchronously modify TState.
1886     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1887     OrderAccess::loadload();
1888     if (has_successor(current)) clear_successor();
1889     WasNotified = node._notified;
1890 
1891     // Reentry phase -- reacquire the monitor.
1892     // re-enter contended monitor after object.wait().
1893     // retain OBJECT_WAIT state until re-enter successfully completes
1894     // Thread state is thread_in_vm and oop access is again safe,
1895     // although the raw address of the object may have changed.
1896     // (Don't cache naked oops over safepoints, of course).
1897 
1898     // post monitor waited event. Note that this is past-tense, we are done waiting.
1899     if (JvmtiExport::should_post_monitor_waited()) {
1900       JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT);
1901 
1902       if (node._notified && has_successor(current)) {
1903         // In this part of the monitor wait-notify-reenter protocol it
1904         // is possible (and normal) for another thread to do a fastpath
1905         // monitor enter-exit while this thread is still trying to get
1906         // to the reenter portion of the protocol.
1907         //
1908         // The ObjectMonitor was notified and the current thread is
1909         // the successor which also means that an unpark() has already
1910         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1911         // consume the unpark() that was done when the successor was
1912         // set because the same ParkEvent is shared between Java
1913         // monitors and JVM/TI RawMonitors (for now).
1914         //
1915         // We redo the unpark() to ensure forward progress, i.e., we
1916         // don't want all pending threads hanging (parked) with none
1917         // entering the unlocked monitor.
1918         current->_ParkEvent->unpark();
1919       }
1920     }
1921 
1922     if (wait_event.should_commit()) {
1923       post_monitor_wait_event(&wait_event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1924     }
1925 
1926     OrderAccess::fence();
1927 
1928     assert(!has_owner(current), "invariant");
1929     ObjectWaiter::TStates v = node.TState;
1930     if (v == ObjectWaiter::TS_RUN) {
1931       // We use the NoPreemptMark for the very rare case where the previous
1932       // preempt attempt failed due to OOM. The preempt on monitor contention
1933       // could succeed but we can't unmount now.
1934       NoPreemptMark npm(current);
1935       enter(current);
1936     } else {
1937       guarantee(v == ObjectWaiter::TS_ENTER, "invariant");
1938       reenter_internal(current, &node);
1939       node.wait_reenter_end(this);
1940     }
1941 
1942     // current has reacquired the lock.
1943     // Lifecycle - the node representing current must not appear on any queues.
1944     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1945     // want residual elements associated with this thread left on any lists.
1946     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1947     assert(has_owner(current), "invariant");
1948     assert(!has_successor(current), "invariant");
1949   } // OSThreadWaitState()
1950 
1951   current->set_current_waiting_monitor(nullptr);
1952 
1953   guarantee(_recursions == 0, "invariant");
1954   int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current);
1955   _recursions =   save          // restore the old recursion count
1956                 + relock_count; //  increased by the deferred relock count
1957   current->inc_held_monitor_count(relock_count); // Deopt never entered these counts.
1958   _waiters--;             // decrement the number of waiters
1959 
1960   // Verify a few postconditions
1961   assert(has_owner(current), "invariant");
1962   assert(!has_successor(current), "invariant");
1963   assert_mark_word_consistency();
1964 
1965   if (ce != nullptr && ce->is_virtual_thread()) {
1966     current->post_vthread_pinned_event(&vthread_pinned_event, "Object.wait", result);
1967   }
1968 
1969   // check if the notification happened
1970   if (!WasNotified) {
1971     // no, it could be timeout or Thread.interrupt() or both
1972     // check for interrupt event, otherwise it is timeout
1973     if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1974       THROW(vmSymbols::java_lang_InterruptedException());
1975     }
1976   }
1977 
1978   // NOTE: Spurious wake up will be consider as timeout.
1979   // Monitor notify has precedence over thread interrupt.
1980 }
1981 
1982 // Consider:
1983 // If the lock is cool (entry_list == null && succ == null) and we're on an MP system
1984 // then instead of transferring a thread from the wait_set to the entry_list
1985 // we might just dequeue a thread from the wait_set and directly unpark() it.
1986 
1987 bool ObjectMonitor::notify_internal(JavaThread* current) {
1988   bool did_notify = false;
1989   Thread::SpinAcquire(&_wait_set_lock);
1990   ObjectWaiter* iterator = dequeue_waiter();
1991   if (iterator != nullptr) {
1992     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1993     guarantee(!iterator->_notified, "invariant");
1994 
1995     if (iterator->is_vthread()) {
1996       oop vthread = iterator->vthread();
1997       java_lang_VirtualThread::set_notified(vthread, true);
1998       int old_state = java_lang_VirtualThread::state(vthread);
1999       // If state is not WAIT/TIMED_WAIT then target could still be on
2000       // unmount transition, or wait could have already timed-out or target
2001       // could have been interrupted. In the first case, the target itself
2002       // will set the state to BLOCKED at the end of the unmount transition.
2003       // In the other cases the target would have been already unblocked so
2004       // there is nothing to do.
2005       if (old_state == java_lang_VirtualThread::WAIT ||
2006           old_state == java_lang_VirtualThread::TIMED_WAIT) {
2007         java_lang_VirtualThread::cmpxchg_state(vthread, old_state, java_lang_VirtualThread::BLOCKED);
2008       }
2009     }
2010 
2011     iterator->_notified = true;
2012     iterator->_notifier_tid = JFR_THREAD_ID(current);
2013     did_notify = true;
2014     add_to_entry_list(current, iterator);
2015 
2016     // _wait_set_lock protects the wait queue, not the entry_list.  We could
2017     // move the add-to-entry_list operation, above, outside the critical section
2018     // protected by _wait_set_lock.  In practice that's not useful.  With the
2019     // exception of  wait() timeouts and interrupts the monitor owner
2020     // is the only thread that grabs _wait_set_lock.  There's almost no contention
2021     // on _wait_set_lock so it's not profitable to reduce the length of the
2022     // critical section.
2023 
2024     if (!iterator->is_vthread()) {
2025       iterator->wait_reenter_begin(this);
2026     }
2027   }
2028   Thread::SpinRelease(&_wait_set_lock);
2029   return did_notify;
2030 }
2031 
2032 static void post_monitor_notify_event(EventJavaMonitorNotify* event,
2033                                       ObjectMonitor* monitor,
2034                                       int notified_count) {
2035   assert(event != nullptr, "invariant");
2036   assert(monitor != nullptr, "invariant");
2037   const Klass* monitor_klass = monitor->object()->klass();
2038   if (ObjectMonitor::is_jfr_excluded(monitor_klass)) {
2039     return;
2040   }
2041   event->set_monitorClass(monitor_klass);
2042   // Set an address that is 'unique enough', such that events close in
2043   // time and with the same address are likely (but not guaranteed) to
2044   // belong to the same object.
2045   event->set_address((uintptr_t)monitor);
2046   event->set_notifiedCount(notified_count);
2047   event->commit();
2048 }
2049 
2050 // Consider: a not-uncommon synchronization bug is to use notify() when
2051 // notifyAll() is more appropriate, potentially resulting in stranded
2052 // threads; this is one example of a lost wakeup. A useful diagnostic
2053 // option is to force all notify() operations to behave as notifyAll().
2054 //
2055 // Note: We can also detect many such problems with a "minimum wait".
2056 // When the "minimum wait" is set to a small non-zero timeout value
2057 // and the program does not hang whereas it did absent "minimum wait",
2058 // that suggests a lost wakeup bug.
2059 
2060 void ObjectMonitor::notify(TRAPS) {
2061   JavaThread* current = THREAD;
2062   CHECK_OWNER();  // Throws IMSE if not owner.
2063   if (_wait_set == nullptr) {
2064     return;
2065   }
2066 
2067   quick_notify(current);
2068 }
2069 
2070 void ObjectMonitor::quick_notify(JavaThread* current) {
2071   assert(has_owner(current), "Precondition");
2072 
2073   EventJavaMonitorNotify event;
2074   DTRACE_MONITOR_PROBE(notify, this, object(), current);
2075   int tally = notify_internal(current) ? 1 : 0;
2076 
2077   if ((tally > 0) && event.should_commit()) {
2078     post_monitor_notify_event(&event, this, /* notified_count = */ tally);
2079   }
2080 }
2081 
2082 // notifyAll() transfers the waiters one-at-a-time from the waitset to
2083 // the entry_list. If the waitset is "ABCD" (where A was added first
2084 // and D last) and the entry_list is ->X->Y->Z. After a notifyAll()
2085 // the waitset will be empty and the entry_list will be
2086 // ->D->C->B->A->X->Y->Z, and the next choosen successor will be Z.
2087 
2088 void ObjectMonitor::notifyAll(TRAPS) {
2089   JavaThread* current = THREAD;
2090   CHECK_OWNER();  // Throws IMSE if not owner.
2091   if (_wait_set == nullptr) {
2092     return;
2093   }
2094 
2095   quick_notifyAll(current);
2096 }
2097 
2098 void ObjectMonitor::quick_notifyAll(JavaThread* current) {
2099   assert(has_owner(current), "Precondition");
2100 
2101   EventJavaMonitorNotify event;
2102   DTRACE_MONITOR_PROBE(notifyAll, this, object(), current);
2103   int tally = 0;
2104   while (_wait_set != nullptr) {
2105     if (notify_internal(current)) {
2106       tally++;
2107     }
2108   }
2109 
2110   if ((tally > 0) && event.should_commit()) {
2111     post_monitor_notify_event(&event, this, /* notified_count = */ tally);
2112   }
2113 }
2114 
2115 void ObjectMonitor::vthread_wait(JavaThread* current, jlong millis) {
2116   oop vthread = current->vthread();
2117   ObjectWaiter* node = new ObjectWaiter(vthread, this);
2118   node->_is_wait = true;
2119   node->TState = ObjectWaiter::TS_WAIT;
2120   java_lang_VirtualThread::set_notified(vthread, false);  // Reset notified flag
2121 
2122   // Enter the waiting queue, which is a circular doubly linked list in this case
2123   // but it could be a priority queue or any data structure.
2124   // _wait_set_lock protects the wait queue.  Normally the wait queue is accessed only
2125   // by the owner of the monitor *except* in the case where park()
2126   // returns because of a timeout or interrupt.  Contention is exceptionally rare
2127   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
2128 
2129   Thread::SpinAcquire(&_wait_set_lock);
2130   add_waiter(node);
2131   Thread::SpinRelease(&_wait_set_lock);
2132 
2133   node->_recursions = _recursions;   // record the old recursion count
2134   _recursions = 0;                   // set the recursion level to be 0
2135   _waiters++;                        // increment the number of waiters
2136   exit(current);                     // exit the monitor
2137   guarantee(!has_owner(current), "invariant");
2138 
2139   assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
2140   java_lang_VirtualThread::set_state(vthread, millis == 0 ? java_lang_VirtualThread::WAITING : java_lang_VirtualThread::TIMED_WAITING);
2141   java_lang_VirtualThread::set_timeout(vthread, millis);
2142 
2143   // Save the ObjectWaiter* in the vthread since we will need it when resuming execution.
2144   java_lang_VirtualThread::set_objectWaiter(vthread, node);
2145 }
2146 
2147 bool ObjectMonitor::vthread_wait_reenter(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont) {
2148   // The first time we run after being preempted on Object.wait() we
2149   // need to check if we were interrupted or the wait timed-out, and
2150   // in that case remove ourselves from the _wait_set queue.
2151   if (node->TState == ObjectWaiter::TS_WAIT) {
2152     Thread::SpinAcquire(&_wait_set_lock);
2153     if (node->TState == ObjectWaiter::TS_WAIT) {
2154       dequeue_specific_waiter(node);       // unlink from wait_set
2155       assert(!node->_notified, "invariant");
2156       node->TState = ObjectWaiter::TS_RUN;
2157     }
2158     Thread::SpinRelease(&_wait_set_lock);
2159   }
2160 
2161   // If this was an interrupted case, set the _interrupted boolean so that
2162   // once we re-acquire the monitor we know if we need to throw IE or not.
2163   ObjectWaiter::TStates state = node->TState;
2164   bool was_notified = state == ObjectWaiter::TS_ENTER;
2165   assert(was_notified || state == ObjectWaiter::TS_RUN, "");
2166   node->_interrupted = !was_notified && current->is_interrupted(false);
2167 
2168   // Post JFR and JVMTI events.
2169   EventJavaMonitorWait wait_event;
2170   if (wait_event.should_commit() || JvmtiExport::should_post_monitor_waited()) {
2171     vthread_monitor_waited_event(current, node, cont, &wait_event, !was_notified && !node->_interrupted);
2172   }
2173 
2174   // Mark that we are at reenter so that we don't call this method again.
2175   node->_at_reenter = true;
2176 
2177   if (!was_notified) {
2178     bool acquired = vthread_monitor_enter(current, node);
2179     if (acquired) {
2180       guarantee(_recursions == 0, "invariant");
2181       _recursions = node->_recursions;   // restore the old recursion count
2182       _waiters--;                        // decrement the number of waiters
2183 
2184       if (node->_interrupted) {
2185         // We will throw at thaw end after finishing the mount transition.
2186         current->set_pending_interrupted_exception(true);
2187       }
2188 
2189       delete node;
2190       // Clear the ObjectWaiter* from the vthread.
2191       java_lang_VirtualThread::set_objectWaiter(current->vthread(), nullptr);
2192       return true;
2193     }
2194   } else {
2195     // Already moved to _entry_list by notifier, so just add to contentions.
2196     add_to_contentions(1);
2197   }
2198   return false;
2199 }
2200 
2201 // -----------------------------------------------------------------------------
2202 // Adaptive Spinning Support
2203 //
2204 // Adaptive spin-then-block - rational spinning
2205 //
2206 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
2207 // algorithm.
2208 //
2209 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
2210 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
2211 // (duration) or we can fix the count at approximately the duration of
2212 // a context switch and vary the frequency.   Of course we could also
2213 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
2214 // For a description of 'Adaptive spin-then-block mutual exclusion in
2215 // multi-threaded processing,' see U.S. Pat. No. 8046758.
2216 //
2217 // This implementation varies the duration "D", where D varies with
2218 // the success rate of recent spin attempts. (D is capped at approximately
2219 // length of a round-trip context switch).  The success rate for recent
2220 // spin attempts is a good predictor of the success rate of future spin
2221 // attempts.  The mechanism adapts automatically to varying critical
2222 // section length (lock modality), system load and degree of parallelism.
2223 // D is maintained per-monitor in _SpinDuration and is initialized
2224 // optimistically.  Spin frequency is fixed at 100%.
2225 //
2226 // Note that _SpinDuration is volatile, but we update it without locks
2227 // or atomics.  The code is designed so that _SpinDuration stays within
2228 // a reasonable range even in the presence of races.  The arithmetic
2229 // operations on _SpinDuration are closed over the domain of legal values,
2230 // so at worst a race will install and older but still legal value.
2231 // At the very worst this introduces some apparent non-determinism.
2232 // We might spin when we shouldn't or vice-versa, but since the spin
2233 // count are relatively short, even in the worst case, the effect is harmless.
2234 //
2235 // Care must be taken that a low "D" value does not become an
2236 // an absorbing state.  Transient spinning failures -- when spinning
2237 // is overall profitable -- should not cause the system to converge
2238 // on low "D" values.  We want spinning to be stable and predictable
2239 // and fairly responsive to change and at the same time we don't want
2240 // it to oscillate, become metastable, be "too" non-deterministic,
2241 // or converge on or enter undesirable stable absorbing states.
2242 //
2243 // We implement a feedback-based control system -- using past behavior
2244 // to predict future behavior.  We face two issues: (a) if the
2245 // input signal is random then the spin predictor won't provide optimal
2246 // results, and (b) if the signal frequency is too high then the control
2247 // system, which has some natural response lag, will "chase" the signal.
2248 // (b) can arise from multimodal lock hold times.  Transient preemption
2249 // can also result in apparent bimodal lock hold times.
2250 // Although sub-optimal, neither condition is particularly harmful, as
2251 // in the worst-case we'll spin when we shouldn't or vice-versa.
2252 // The maximum spin duration is rather short so the failure modes aren't bad.
2253 // To be conservative, I've tuned the gain in system to bias toward
2254 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
2255 // "rings" or oscillates between spinning and not spinning.  This happens
2256 // when spinning is just on the cusp of profitability, however, so the
2257 // situation is not dire.  The state is benign -- there's no need to add
2258 // hysteresis control to damp the transition rate between spinning and
2259 // not spinning.
2260 
2261 int ObjectMonitor::Knob_SpinLimit    = 5000;   // derived by an external tool
2262 
2263 static int Knob_Bonus               = 100;     // spin success bonus
2264 static int Knob_Penalty             = 200;     // spin failure penalty
2265 static int Knob_Poverty             = 1000;
2266 static int Knob_FixedSpin           = 0;
2267 static int Knob_PreSpin             = 10;      // 20-100 likely better, but it's not better in my testing.
2268 
2269 inline static int adjust_up(int spin_duration) {
2270   int x = spin_duration;
2271   if (x < ObjectMonitor::Knob_SpinLimit) {
2272     if (x < Knob_Poverty) {
2273       x = Knob_Poverty;
2274     }
2275     return x + Knob_Bonus;
2276   } else {
2277     return spin_duration;
2278   }
2279 }
2280 
2281 inline static int adjust_down(int spin_duration) {
2282   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2283   // AIMD is globally stable.
2284   int x = spin_duration;
2285   if (x > 0) {
2286     // Consider an AIMD scheme like: x -= (x >> 3) + 100
2287     // This is globally sample and tends to damp the response.
2288     x -= Knob_Penalty;
2289     if (x < 0) { x = 0; }
2290     return x;
2291   } else {
2292     return spin_duration;
2293   }
2294 }
2295 
2296 bool ObjectMonitor::short_fixed_spin(JavaThread* current, int spin_count, bool adapt) {
2297   for (int ctr = 0; ctr < spin_count; ctr++) {
2298     TryLockResult status = try_lock(current);
2299     if (status == TryLockResult::Success) {
2300       if (adapt) {
2301         _SpinDuration = adjust_up(_SpinDuration);
2302       }
2303       return true;
2304     } else if (status == TryLockResult::Interference) {
2305       break;
2306     }
2307     SpinPause();
2308   }
2309   return false;
2310 }
2311 
2312 // Spinning: Fixed frequency (100%), vary duration
2313 bool ObjectMonitor::try_spin(JavaThread* current) {
2314 
2315   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
2316   int knob_fixed_spin = Knob_FixedSpin;  // 0 (don't spin: default), 2000 good test
2317   if (knob_fixed_spin > 0) {
2318     return short_fixed_spin(current, knob_fixed_spin, false);
2319   }
2320 
2321   // Admission control - verify preconditions for spinning
2322   //
2323   // We always spin a little bit, just to prevent _SpinDuration == 0 from
2324   // becoming an absorbing state.  Put another way, we spin briefly to
2325   // sample, just in case the system load, parallelism, contention, or lock
2326   // modality changed.
2327 
2328   int knob_pre_spin = Knob_PreSpin; // 10 (default), 100, 1000 or 2000
2329   if (short_fixed_spin(current, knob_pre_spin, true)) {
2330     return true;
2331   }
2332 
2333   //
2334   // Consider the following alternative:
2335   // Periodically set _SpinDuration = _SpinLimit and try a long/full
2336   // spin attempt.  "Periodically" might mean after a tally of
2337   // the # of failed spin attempts (or iterations) reaches some threshold.
2338   // This takes us into the realm of 1-out-of-N spinning, where we
2339   // hold the duration constant but vary the frequency.
2340 
2341   int ctr = _SpinDuration;
2342   if (ctr <= 0) return false;
2343 
2344   // We're good to spin ... spin ingress.
2345   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2346   // when preparing to LD...CAS _owner, etc and the CAS is likely
2347   // to succeed.
2348   if (!has_successor()) {
2349     set_successor(current);
2350   }
2351   int64_t prv = NO_OWNER;
2352 
2353   // There are three ways to exit the following loop:
2354   // 1.  A successful spin where this thread has acquired the lock.
2355   // 2.  Spin failure with prejudice
2356   // 3.  Spin failure without prejudice
2357 
2358   while (--ctr >= 0) {
2359 
2360     // Periodic polling -- Check for pending GC
2361     // Threads may spin while they're unsafe.
2362     // We don't want spinning threads to delay the JVM from reaching
2363     // a stop-the-world safepoint or to steal cycles from GC.
2364     // If we detect a pending safepoint we abort in order that
2365     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2366     // this thread, if safe, doesn't steal cycles from GC.
2367     // This is in keeping with the "no loitering in runtime" rule.
2368     // We periodically check to see if there's a safepoint pending.
2369     if ((ctr & 0xFF) == 0) {
2370       // Can't call SafepointMechanism::should_process() since that
2371       // might update the poll values and we could be in a thread_blocked
2372       // state here which is not allowed so just check the poll.
2373       if (SafepointMechanism::local_poll_armed(current)) {
2374         break;
2375       }
2376       SpinPause();
2377     }
2378 
2379     // Probe _owner with TATAS
2380     // If this thread observes the monitor transition or flicker
2381     // from locked to unlocked to locked, then the odds that this
2382     // thread will acquire the lock in this spin attempt go down
2383     // considerably.  The same argument applies if the CAS fails
2384     // or if we observe _owner change from one non-null value to
2385     // another non-null value.   In such cases we might abort
2386     // the spin without prejudice or apply a "penalty" to the
2387     // spin count-down variable "ctr", reducing it by 100, say.
2388 
2389     int64_t ox = owner_raw();
2390     if (ox == NO_OWNER) {
2391       ox = try_set_owner_from(NO_OWNER, current);
2392       if (ox == NO_OWNER) {
2393         // The CAS succeeded -- this thread acquired ownership
2394         // Take care of some bookkeeping to exit spin state.
2395         if (has_successor(current)) {
2396           clear_successor();
2397         }
2398 
2399         // Increase _SpinDuration :
2400         // The spin was successful (profitable) so we tend toward
2401         // longer spin attempts in the future.
2402         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2403         // If we acquired the lock early in the spin cycle it
2404         // makes sense to increase _SpinDuration proportionally.
2405         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2406         _SpinDuration = adjust_up(_SpinDuration);
2407         return true;
2408       }
2409 
2410       // The CAS failed ... we can take any of the following actions:
2411       // * penalize: ctr -= CASPenalty
2412       // * exit spin with prejudice -- abort without adapting spinner
2413       // * exit spin without prejudice.
2414       // * Since CAS is high-latency, retry again immediately.
2415       break;
2416     }
2417 
2418     // Did lock ownership change hands ?
2419     if (ox != prv && prv != NO_OWNER) {
2420       break;
2421     }
2422     prv = ox;
2423 
2424     if (!has_successor()) {
2425       set_successor(current);
2426     }
2427   }
2428 
2429   // Spin failed with prejudice -- reduce _SpinDuration.
2430   if (ctr < 0) {
2431     _SpinDuration = adjust_down(_SpinDuration);
2432   }
2433 
2434   if (has_successor(current)) {
2435     clear_successor();
2436     // Invariant: after setting succ=null a contending thread
2437     // must recheck-retry _owner before parking.  This usually happens
2438     // in the normal usage of try_spin(), but it's safest
2439     // to make try_spin() as foolproof as possible.
2440     OrderAccess::fence();
2441     if (try_lock(current) == TryLockResult::Success) {
2442       return true;
2443     }
2444   }
2445 
2446   return false;
2447 }
2448 
2449 
2450 // -----------------------------------------------------------------------------
2451 // wait_set management ...
2452 
2453 ObjectWaiter::ObjectWaiter(JavaThread* current) {
2454   _next     = nullptr;
2455   _prev     = nullptr;
2456   _thread   = current;
2457   _monitor  = nullptr;
2458   _notifier_tid = 0;
2459   _recursions = 0;
2460   TState    = TS_RUN;
2461   _notified = false;
2462   _is_wait  = false;
2463   _at_reenter = false;
2464   _interrupted = false;
2465   _active   = false;
2466 }
2467 
2468 ObjectWaiter::ObjectWaiter(oop vthread, ObjectMonitor* mon) : ObjectWaiter(nullptr) {
2469   assert(oopDesc::is_oop(vthread), "");
2470   _vthread = OopHandle(JavaThread::thread_oop_storage(), vthread);
2471   _monitor = mon;
2472 }
2473 
2474 ObjectWaiter::~ObjectWaiter() {
2475   if (is_vthread()) {
2476     assert(vthread() != nullptr, "");
2477     _vthread.release(JavaThread::thread_oop_storage());
2478   }
2479 }
2480 
2481 oop ObjectWaiter::vthread() const {
2482   return _vthread.resolve();
2483 }
2484 
2485 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2486   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon);
2487 }
2488 
2489 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2490   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active);
2491 }
2492 
2493 inline void ObjectMonitor::add_waiter(ObjectWaiter* node) {
2494   assert(node != nullptr, "should not add null node");
2495   assert(node->_prev == nullptr, "node already in list");
2496   assert(node->_next == nullptr, "node already in list");
2497   // put node at end of queue (circular doubly linked list)
2498   if (_wait_set == nullptr) {
2499     _wait_set = node;
2500     node->_prev = node;
2501     node->_next = node;
2502   } else {
2503     ObjectWaiter* head = _wait_set;
2504     ObjectWaiter* tail = head->_prev;
2505     assert(tail->_next == head, "invariant check");
2506     tail->_next = node;
2507     head->_prev = node;
2508     node->_next = head;
2509     node->_prev = tail;
2510   }
2511 }
2512 
2513 inline ObjectWaiter* ObjectMonitor::dequeue_waiter() {
2514   // dequeue the very first waiter
2515   ObjectWaiter* waiter = _wait_set;
2516   if (waiter) {
2517     dequeue_specific_waiter(waiter);
2518   }
2519   return waiter;
2520 }
2521 
2522 inline void ObjectMonitor::dequeue_specific_waiter(ObjectWaiter* node) {
2523   assert(node != nullptr, "should not dequeue nullptr node");
2524   assert(node->_prev != nullptr, "node already removed from list");
2525   assert(node->_next != nullptr, "node already removed from list");
2526   // when the waiter has woken up because of interrupt,
2527   // timeout or other spurious wake-up, dequeue the
2528   // waiter from waiting list
2529   ObjectWaiter* next = node->_next;
2530   if (next == node) {
2531     assert(node->_prev == node, "invariant check");
2532     _wait_set = nullptr;
2533   } else {
2534     ObjectWaiter* prev = node->_prev;
2535     assert(prev->_next == node, "invariant check");
2536     assert(next->_prev == node, "invariant check");
2537     next->_prev = prev;
2538     prev->_next = next;
2539     if (_wait_set == node) {
2540       _wait_set = next;
2541     }
2542   }
2543   node->_next = nullptr;
2544   node->_prev = nullptr;
2545 }
2546 
2547 // -----------------------------------------------------------------------------
2548 
2549 // One-shot global initialization for the sync subsystem.
2550 // We could also defer initialization and initialize on-demand
2551 // the first time we call ObjectSynchronizer::inflate().
2552 // Initialization would be protected - like so many things - by
2553 // the MonitorCache_lock.
2554 
2555 void ObjectMonitor::Initialize() {
2556   assert(!InitDone, "invariant");
2557 
2558   if (!os::is_MP()) {
2559     Knob_SpinLimit = 0;
2560     Knob_PreSpin   = 0;
2561     Knob_FixedSpin = -1;
2562   }
2563 
2564   _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer);
2565 
2566   DEBUG_ONLY(InitDone = true;)
2567 }
2568 
2569 // We can't call this during Initialize() because BarrierSet needs to be set.
2570 void ObjectMonitor::Initialize2() {
2571   _vthread_list_head = OopHandle(JavaThread::thread_oop_storage(), nullptr);
2572   _vthread_unparker_ParkEvent = ParkEvent::Allocate(nullptr);
2573 }
2574 
2575 void ObjectMonitor::print_on(outputStream* st) const {
2576   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2577   st->print("{contentions=0x%08x,waiters=0x%08x"
2578             ",recursions=%zd,owner=" INT64_FORMAT "}",
2579             contentions(), waiters(), recursions(),
2580             owner_raw());
2581 }
2582 void ObjectMonitor::print() const { print_on(tty); }
2583 
2584 #ifdef ASSERT
2585 // Print the ObjectMonitor like a debugger would:
2586 //
2587 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2588 //   _metadata = 0x0000000000000001
2589 //   _object = 0x000000070ff45fd0
2590 //   _pad_buf0 = {
2591 //     [0] = '\0'
2592 //     ...
2593 //     [43] = '\0'
2594 //   }
2595 //   _owner = 0x0000000000000000
2596 //   _previous_owner_tid = 0
2597 //   _pad_buf1 = {
2598 //     [0] = '\0'
2599 //     ...
2600 //     [47] = '\0'
2601 //   }
2602 //   _next_om = 0x0000000000000000
2603 //   _recursions = 0
2604 //   _entry_list = 0x0000000000000000
2605 //   _entry_list_tail = 0x0000000000000000
2606 //   _succ = 0x0000000000000000
2607 //   _SpinDuration = 5000
2608 //   _contentions = 0
2609 //   _wait_set = 0x0000700009756248
2610 //   _waiters = 1
2611 //   _wait_set_lock = 0
2612 // }
2613 //
2614 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2615   st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
2616   st->print_cr("  _metadata = " INTPTR_FORMAT, _metadata);
2617   st->print_cr("  _object = " INTPTR_FORMAT, p2i(object_peek()));
2618   st->print_cr("  _pad_buf0 = {");
2619   st->print_cr("    [0] = '\\0'");
2620   st->print_cr("    ...");
2621   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2622   st->print_cr("  }");
2623   st->print_cr("  _owner = " INT64_FORMAT, owner_raw());
2624   st->print_cr("  _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid);
2625   st->print_cr("  _pad_buf1 = {");
2626   st->print_cr("    [0] = '\\0'");
2627   st->print_cr("    ...");
2628   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2629   st->print_cr("  }");
2630   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(next_om()));
2631   st->print_cr("  _recursions = %zd", _recursions);
2632   st->print_cr("  _entry_list = " INTPTR_FORMAT, p2i(_entry_list));
2633   st->print_cr("  _entry_list_tail = " INTPTR_FORMAT, p2i(_entry_list_tail));
2634   st->print_cr("  _succ = " INT64_FORMAT, successor());
2635   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2636   st->print_cr("  _contentions = %d", contentions());
2637   st->print_cr("  _wait_set = " INTPTR_FORMAT, p2i(_wait_set));
2638   st->print_cr("  _waiters = %d", _waiters);
2639   st->print_cr("  _wait_set_lock = %d", _wait_set_lock);
2640   st->print_cr("}");
2641 }
2642 #endif