1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/oopStorage.hpp" 28 #include "gc/shared/oopStorageSet.hpp" 29 #include "jfr/jfrEvents.hpp" 30 #include "jfr/support/jfrThreadId.hpp" 31 #include "logging/log.hpp" 32 #include "logging/logStream.hpp" 33 #include "memory/allocation.inline.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/oopHandle.inline.hpp" 38 #include "oops/weakHandle.inline.hpp" 39 #include "prims/jvmtiDeferredUpdates.hpp" 40 #include "prims/jvmtiExport.hpp" 41 #include "runtime/atomic.hpp" 42 #include "runtime/continuationWrapper.inline.hpp" 43 #include "runtime/globals.hpp" 44 #include "runtime/handles.inline.hpp" 45 #include "runtime/interfaceSupport.inline.hpp" 46 #include "runtime/javaThread.inline.hpp" 47 #include "runtime/lightweightSynchronizer.hpp" 48 #include "runtime/mutexLocker.hpp" 49 #include "runtime/objectMonitor.hpp" 50 #include "runtime/objectMonitor.inline.hpp" 51 #include "runtime/orderAccess.hpp" 52 #include "runtime/osThread.hpp" 53 #include "runtime/perfData.hpp" 54 #include "runtime/safefetch.hpp" 55 #include "runtime/safepointMechanism.inline.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "runtime/threads.hpp" 58 #include "services/threadService.hpp" 59 #include "utilities/debug.hpp" 60 #include "utilities/dtrace.hpp" 61 #include "utilities/globalDefinitions.hpp" 62 #include "utilities/macros.hpp" 63 #include "utilities/preserveException.hpp" 64 #if INCLUDE_JFR 65 #include "jfr/support/jfrFlush.hpp" 66 #endif 67 68 #ifdef DTRACE_ENABLED 69 70 // Only bother with this argument setup if dtrace is available 71 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 72 73 74 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 75 char* bytes = nullptr; \ 76 int len = 0; \ 77 jlong jtid = SharedRuntime::get_java_tid(thread); \ 78 Symbol* klassname = obj->klass()->name(); \ 79 if (klassname != nullptr) { \ 80 bytes = (char*)klassname->bytes(); \ 81 len = klassname->utf8_length(); \ 82 } 83 84 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 85 { \ 86 if (DTraceMonitorProbes) { \ 87 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 88 HOTSPOT_MONITOR_WAIT(jtid, \ 89 (monitor), bytes, len, (millis)); \ 90 } \ 91 } 92 93 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER 94 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED 95 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT 96 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY 97 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL 98 99 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 100 { \ 101 if (DTraceMonitorProbes) { \ 102 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 103 HOTSPOT_MONITOR_##probe(jtid, \ 104 (uintptr_t)(monitor), bytes, len); \ 105 } \ 106 } 107 108 #else // ndef DTRACE_ENABLED 109 110 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 111 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 112 113 #endif // ndef DTRACE_ENABLED 114 115 DEBUG_ONLY(static volatile bool InitDone = false;) 116 117 OopStorage* ObjectMonitor::_oop_storage = nullptr; 118 119 OopHandle ObjectMonitor::_vthread_cxq_head; 120 ParkEvent* ObjectMonitor::_vthread_unparker_ParkEvent = nullptr; 121 122 static void post_virtual_thread_pinned_event(JavaThread* current, const char* reason) { 123 EventVirtualThreadPinned e; 124 if (e.should_commit()) { 125 e.set_pinnedReason(reason); 126 e.set_carrierThread(JFR_JVM_THREAD_ID(current)); 127 e.commit(); 128 } 129 } 130 131 // ----------------------------------------------------------------------------- 132 // Theory of operations -- Monitors lists, thread residency, etc: 133 // 134 // * A thread acquires ownership of a monitor by successfully 135 // CAS()ing the _owner field from null to non-null. 136 // 137 // * Invariant: A thread appears on at most one monitor list -- 138 // cxq, EntryList or WaitSet -- at any one time. 139 // 140 // * Contending threads "push" themselves onto the cxq with CAS 141 // and then spin/park. 142 // 143 // * After a contending thread eventually acquires the lock it must 144 // dequeue itself from either the EntryList or the cxq. 145 // 146 // * The exiting thread identifies and unparks an "heir presumptive" 147 // tentative successor thread on the EntryList. Critically, the 148 // exiting thread doesn't unlink the successor thread from the EntryList. 149 // After having been unparked, the wakee will recontend for ownership of 150 // the monitor. The successor (wakee) will either acquire the lock or 151 // re-park itself. 152 // 153 // Succession is provided for by a policy of competitive handoff. 154 // The exiting thread does _not_ grant or pass ownership to the 155 // successor thread. (This is also referred to as "handoff" succession"). 156 // Instead the exiting thread releases ownership and possibly wakes 157 // a successor, so the successor can (re)compete for ownership of the lock. 158 // If the EntryList is empty but the cxq is populated the exiting 159 // thread will drain the cxq into the EntryList. It does so by 160 // by detaching the cxq (installing null with CAS) and folding 161 // the threads from the cxq into the EntryList. The EntryList is 162 // doubly linked, while the cxq is singly linked because of the 163 // CAS-based "push" used to enqueue recently arrived threads (RATs). 164 // 165 // * Concurrency invariants: 166 // 167 // -- only the monitor owner may access or mutate the EntryList. 168 // The mutex property of the monitor itself protects the EntryList 169 // from concurrent interference. 170 // -- Only the monitor owner may detach the cxq. 171 // 172 // * The monitor entry list operations avoid locks, but strictly speaking 173 // they're not lock-free. Enter is lock-free, exit is not. 174 // For a description of 'Methods and apparatus providing non-blocking access 175 // to a resource,' see U.S. Pat. No. 7844973. 176 // 177 // * The cxq can have multiple concurrent "pushers" but only one concurrent 178 // detaching thread. This mechanism is immune from the ABA corruption. 179 // More precisely, the CAS-based "push" onto cxq is ABA-oblivious. 180 // 181 // * Taken together, the cxq and the EntryList constitute or form a 182 // single logical queue of threads stalled trying to acquire the lock. 183 // We use two distinct lists to improve the odds of a constant-time 184 // dequeue operation after acquisition (in the ::enter() epilogue) and 185 // to reduce heat on the list ends. (c.f. Michael Scott's "2Q" algorithm). 186 // A key desideratum is to minimize queue & monitor metadata manipulation 187 // that occurs while holding the monitor lock -- that is, we want to 188 // minimize monitor lock holds times. Note that even a small amount of 189 // fixed spinning will greatly reduce the # of enqueue-dequeue operations 190 // on EntryList|cxq. That is, spinning relieves contention on the "inner" 191 // locks and monitor metadata. 192 // 193 // Cxq points to the set of Recently Arrived Threads attempting entry. 194 // Because we push threads onto _cxq with CAS, the RATs must take the form of 195 // a singly-linked LIFO. We drain _cxq into EntryList at unlock-time when 196 // the unlocking thread notices that EntryList is null but _cxq is != null. 197 // 198 // The EntryList is ordered by the prevailing queue discipline and 199 // can be organized in any convenient fashion, such as a doubly-linked list or 200 // a circular doubly-linked list. Critically, we want insert and delete operations 201 // to operate in constant-time. If we need a priority queue then something akin 202 // to Solaris' sleepq would work nicely. Viz., 203 // http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c. 204 // Queue discipline is enforced at ::exit() time, when the unlocking thread 205 // drains the cxq into the EntryList, and orders or reorders the threads on the 206 // EntryList accordingly. 207 // 208 // Barring "lock barging", this mechanism provides fair cyclic ordering, 209 // somewhat similar to an elevator-scan. 210 // 211 // * The monitor synchronization subsystem avoids the use of native 212 // synchronization primitives except for the narrow platform-specific 213 // park-unpark abstraction. See the comments in os_solaris.cpp regarding 214 // the semantics of park-unpark. Put another way, this monitor implementation 215 // depends only on atomic operations and park-unpark. The monitor subsystem 216 // manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the 217 // underlying OS manages the READY<->RUN transitions. 218 // 219 // * Waiting threads reside on the WaitSet list -- wait() puts 220 // the caller onto the WaitSet. 221 // 222 // * notify() or notifyAll() simply transfers threads from the WaitSet to 223 // either the EntryList or cxq. Subsequent exit() operations will 224 // unpark the notifyee. Unparking a notifee in notify() is inefficient - 225 // it's likely the notifyee would simply impale itself on the lock held 226 // by the notifier. 227 228 // Check that object() and set_object() are called from the right context: 229 static void check_object_context() { 230 #ifdef ASSERT 231 Thread* self = Thread::current(); 232 if (self->is_Java_thread()) { 233 // Mostly called from JavaThreads so sanity check the thread state. 234 JavaThread* jt = JavaThread::cast(self); 235 switch (jt->thread_state()) { 236 case _thread_in_vm: // the usual case 237 case _thread_in_Java: // during deopt 238 break; 239 default: 240 fatal("called from an unsafe thread state"); 241 } 242 assert(jt->is_active_Java_thread(), "must be active JavaThread"); 243 } else { 244 // However, ThreadService::get_current_contended_monitor() 245 // can call here via the VMThread so sanity check it. 246 assert(self->is_VM_thread(), "must be"); 247 } 248 #endif // ASSERT 249 } 250 251 ObjectMonitor::ObjectMonitor(oop object) : 252 _metadata(0), 253 _object(_oop_storage, object), 254 _owner(nullptr), 255 _previous_owner_tid(0), 256 _next_om(nullptr), 257 _recursions(0), 258 _EntryList(nullptr), 259 _cxq(nullptr), 260 _succ(nullptr), 261 _SpinDuration(ObjectMonitor::Knob_SpinLimit), 262 _contentions(0), 263 _WaitSet(nullptr), 264 _waiters(0), 265 _WaitSetLock(0), 266 _stack_locker(nullptr) 267 { } 268 269 ObjectMonitor::~ObjectMonitor() { 270 _object.release(_oop_storage); 271 } 272 273 oop ObjectMonitor::object() const { 274 check_object_context(); 275 return _object.resolve(); 276 } 277 278 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) { 279 if (current->is_suspended()) { 280 _om->_recursions = 0; 281 _om->_succ = nullptr; 282 // Don't need a full fence after clearing successor here because of the call to exit(). 283 _om->exit(current, false /* not_suspended */); 284 _om_exited = true; 285 286 current->set_current_pending_monitor(_om); 287 } 288 } 289 290 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) { 291 if (current->is_suspended()) { 292 if (_om->_succ == current) { 293 _om->_succ = nullptr; 294 OrderAccess::fence(); // always do a full fence when successor is cleared 295 } 296 } 297 } 298 299 #define assert_mark_word_consistency() \ 300 assert(UseObjectMonitorTable || object()->mark() == markWord::encode(this), \ 301 "object mark must match encoded this: mark=" INTPTR_FORMAT \ 302 ", encoded this=" INTPTR_FORMAT, object()->mark().value(), \ 303 markWord::encode(this).value()); 304 305 // ----------------------------------------------------------------------------- 306 // Enter support 307 308 bool ObjectMonitor::enter_is_async_deflating() { 309 if (is_being_async_deflated()) { 310 if (!UseObjectMonitorTable) { 311 const oop l_object = object(); 312 if (l_object != nullptr) { 313 // Attempt to restore the header/dmw to the object's header so that 314 // we only retry once if the deflater thread happens to be slow. 315 install_displaced_markword_in_object(l_object); 316 } 317 } 318 return true; 319 } 320 321 return false; 322 } 323 324 bool ObjectMonitor::TryLockWithContentionMark(JavaThread* locking_thread, ObjectMonitorContentionMark& contention_mark) { 325 assert(contention_mark._monitor == this, "must be"); 326 assert(!is_being_async_deflated(), "must be"); 327 328 void* prev_owner = try_set_owner_from(nullptr, locking_thread); 329 bool success = false; 330 331 if (prev_owner == nullptr) { 332 assert(_recursions == 0, "invariant"); 333 success = true; 334 } else if (prev_owner == owner_for(locking_thread)) { 335 _recursions++; 336 success = true; 337 } else if (prev_owner == DEFLATER_MARKER) { 338 // Racing with deflation. 339 prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread); 340 if (prev_owner == DEFLATER_MARKER) { 341 // We successfully cancelled the in-progress async deflation by 342 // changing owner from DEFLATER_MARKER to current. We now extend 343 // the lifetime of the contention_mark (e.g. contentions++) here 344 // to prevent the deflater thread from winning the last part of 345 // the 2-part async deflation protocol after the regular 346 // decrement occurs when the contention_mark goes out of 347 // scope. ObjectMonitor::deflate_monitor() which is called by 348 // the deflater thread will decrement contentions after it 349 // recognizes that the async deflation was cancelled. 350 contention_mark.extend(); 351 success = true; 352 } else if (prev_owner == nullptr) { 353 // At this point we cannot race with deflation as we have both incremented 354 // contentions, seen contention > 0 and seen a DEFLATER_MARKER. 355 // success will only be false if this races with something other than 356 // deflation. 357 prev_owner = try_set_owner_from(nullptr, locking_thread); 358 success = prev_owner == nullptr; 359 } 360 } 361 assert(!success || owner_raw() == owner_for(locking_thread), "must be"); 362 363 return success; 364 } 365 366 void ObjectMonitor::enter_for_with_contention_mark(JavaThread* locking_thread, ObjectMonitorContentionMark& contention_mark) { 367 // Used by LightweightSynchronizer::inflate_and_enter in deoptimization path to enter for another thread. 368 // The monitor is private to or already owned by locking_thread which must be suspended. 369 // So this code may only contend with deflation. 370 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 371 bool success = TryLockWithContentionMark(locking_thread, contention_mark); 372 373 assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT 374 ", this=" INTPTR_FORMAT "{owner=" INTPTR_FORMAT "}", 375 p2i(locking_thread), p2i(this), p2i(owner_raw())); 376 } 377 378 bool ObjectMonitor::enter_for(JavaThread* locking_thread) { 379 // Used by ObjectSynchronizer::enter_for() to enter for another thread. 380 // The monitor is private to or already owned by locking_thread which must be suspended. 381 // So this code may only contend with deflation. 382 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 383 384 // Block out deflation as soon as possible. 385 ObjectMonitorContentionMark contention_mark(this); 386 387 // Check for deflation. 388 if (enter_is_async_deflating()) { 389 return false; 390 } 391 392 bool success = TryLockWithContentionMark(locking_thread, contention_mark); 393 394 assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT 395 ", this=" INTPTR_FORMAT "{owner=" INTPTR_FORMAT "}", 396 p2i(locking_thread), p2i(this), p2i(owner_raw())); 397 assert(owner_raw() == owner_for(locking_thread), "must be"); 398 return true; 399 } 400 401 bool ObjectMonitor::try_enter(JavaThread* current, bool check_for_recursion) { 402 // TryLock avoids the CAS and handles deflation. 403 TryLockResult r = TryLock(current); 404 if (r == TryLockResult::Success) { 405 assert(_recursions == 0, "invariant"); 406 return true; 407 } 408 409 // If called from SharedRuntime::monitor_exit_helper(), we know that 410 // this thread doesn't already own the lock. 411 if (!check_for_recursion) { 412 return false; 413 } 414 415 if (r == TryLockResult::HasOwner && owner() == owner_for(current)) { 416 _recursions++; 417 return true; 418 } 419 420 return false; 421 } 422 423 bool ObjectMonitor::spin_enter(JavaThread* current) { 424 assert(current == JavaThread::current(), "must be"); 425 426 // Check for recursion. 427 if (try_enter(current)) { 428 return true; 429 } 430 431 // Check for deflation. 432 if (enter_is_async_deflating()) { 433 return false; 434 } 435 436 // We've encountered genuine contention. 437 438 // Do one round of spinning. 439 // Note that if we acquire the monitor from an initial spin 440 // we forgo posting JVMTI events and firing DTRACE probes. 441 if (TrySpin(current)) { 442 assert(owner_raw() == owner_for(current), "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw())); 443 assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions); 444 assert_mark_word_consistency(); 445 return true; 446 } 447 448 return false; 449 } 450 451 bool ObjectMonitor::enter(JavaThread* current) { 452 assert(current == JavaThread::current(), "must be"); 453 454 if (spin_enter(current)) { 455 return true; 456 } 457 458 assert(owner_raw() != owner_for(current), "invariant"); 459 assert(_succ != current, "invariant"); 460 assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); 461 assert(current->thread_state() != _thread_blocked, "invariant"); 462 463 // Keep is_being_async_deflated stable across the rest of enter 464 ObjectMonitorContentionMark contention_mark(this); 465 466 // Check for deflation. 467 if (enter_is_async_deflating()) { 468 return false; 469 } 470 471 // At this point this ObjectMonitor cannot be deflated, finish contended enter 472 enter_with_contention_mark(current, contention_mark); 473 return true; 474 } 475 476 void ObjectMonitor::enter_with_contention_mark(JavaThread *current, ObjectMonitorContentionMark &cm) { 477 assert(current == JavaThread::current(), "must be"); 478 assert(owner_raw() != current, "must be"); 479 assert(cm._monitor == this, "must be"); 480 assert(!is_being_async_deflated(), "must be"); 481 482 JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);) 483 EventJavaMonitorEnter event; 484 if (event.is_started()) { 485 event.set_monitorClass(object()->klass()); 486 // Set an address that is 'unique enough', such that events close in 487 // time and with the same address are likely (but not guaranteed) to 488 // belong to the same object. 489 event.set_address((uintptr_t)this); 490 } 491 492 { // Change java thread status to indicate blocked on monitor enter. 493 JavaThreadBlockedOnMonitorEnterState jtbmes(current, this); 494 495 assert(current->current_pending_monitor() == nullptr, "invariant"); 496 current->set_current_pending_monitor(this); 497 498 DTRACE_MONITOR_PROBE(contended__enter, this, object(), current); 499 if (JvmtiExport::should_post_monitor_contended_enter()) { 500 JvmtiExport::post_monitor_contended_enter(current, this); 501 502 // The current thread does not yet own the monitor and does not 503 // yet appear on any queues that would get it made the successor. 504 // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event 505 // handler cannot accidentally consume an unpark() meant for the 506 // ParkEvent associated with this ObjectMonitor. 507 } 508 509 ContinuationEntry* ce = current->last_continuation(); 510 if (ce != nullptr && ce->is_virtual_thread()) { 511 int result = Continuation::try_preempt(current, ce->cont_oop(current), Continuation::freeze_on_monitorenter); 512 if (result == freeze_ok) { 513 bool acquired = VThreadMonitorEnter(current); 514 if (acquired) { 515 current->set_preemption_cancelled(true); 516 if (JvmtiExport::should_post_monitor_contended_entered()) { 517 // We are going to call thaw again after this and finish the VMTS 518 // transition so no need to do it here. We will post the event there. 519 current->set_contended_entered_monitor(this); 520 } 521 } 522 current->set_current_pending_monitor(nullptr); 523 DEBUG_ONLY(int state = java_lang_VirtualThread::state(current->vthread())); 524 assert((acquired && current->preemption_cancelled() && state == java_lang_VirtualThread::RUNNING) || 525 (!acquired && !current->preemption_cancelled() && state == java_lang_VirtualThread::BLOCKING), "invariant"); 526 return; 527 } 528 if (result == freeze_pinned_native) { 529 post_virtual_thread_pinned_event(current, "Native frame or <clinit> on stack"); 530 } else if (result == freeze_unsupported) { 531 post_virtual_thread_pinned_event(current, "Native frame or <clinit> or monitors on stack"); 532 } 533 } 534 535 OSThreadContendState osts(current->osthread()); 536 537 assert(current->thread_state() == _thread_in_vm, "invariant"); 538 539 for (;;) { 540 ExitOnSuspend eos(this); 541 { 542 ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */); 543 EnterI(current); 544 current->set_current_pending_monitor(nullptr); 545 // We can go to a safepoint at the end of this block. If we 546 // do a thread dump during that safepoint, then this thread will show 547 // as having "-locked" the monitor, but the OS and java.lang.Thread 548 // states will still report that the thread is blocked trying to 549 // acquire it. 550 // If there is a suspend request, ExitOnSuspend will exit the OM 551 // and set the OM as pending. 552 } 553 if (!eos.exited()) { 554 // ExitOnSuspend did not exit the OM 555 assert(owner_raw() == owner_for(current), "invariant"); 556 break; 557 } 558 } 559 560 // We've just gotten past the enter-check-for-suspend dance and we now own 561 // the monitor free and clear. 562 } 563 564 assert(contentions() >= 0, "must not be negative: contentions=%d", contentions()); 565 566 // Must either set _recursions = 0 or ASSERT _recursions == 0. 567 assert(_recursions == 0, "invariant"); 568 assert(owner_raw() == owner_for(current), "invariant"); 569 assert(_succ != current, "invariant"); 570 assert_mark_word_consistency(); 571 572 // The thread -- now the owner -- is back in vm mode. 573 // Report the glorious news via TI,DTrace and jvmstat. 574 // The probe effect is non-trivial. All the reportage occurs 575 // while we hold the monitor, increasing the length of the critical 576 // section. Amdahl's parallel speedup law comes vividly into play. 577 // 578 // Another option might be to aggregate the events (thread local or 579 // per-monitor aggregation) and defer reporting until a more opportune 580 // time -- such as next time some thread encounters contention but has 581 // yet to acquire the lock. While spinning that thread could 582 // spinning we could increment JVMStat counters, etc. 583 584 DTRACE_MONITOR_PROBE(contended__entered, this, object(), current); 585 if (JvmtiExport::should_post_monitor_contended_entered()) { 586 JvmtiExport::post_monitor_contended_entered(current, this); 587 588 // The current thread already owns the monitor and is not going to 589 // call park() for the remainder of the monitor enter protocol. So 590 // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED 591 // event handler consumed an unpark() issued by the thread that 592 // just exited the monitor. 593 } 594 if (event.should_commit()) { 595 event.set_previousOwner(_previous_owner_tid); 596 event.commit(); 597 } 598 OM_PERFDATA_OP(ContendedLockAttempts, inc()); 599 } 600 601 // Caveat: TryLock() is not necessarily serializing if it returns failure. 602 // Callers must compensate as needed. 603 604 ObjectMonitor::TryLockResult ObjectMonitor::TryLock(JavaThread* current) { 605 void* own = owner_raw(); 606 void* first_own = own; 607 608 for (;;) { 609 if (own == DEFLATER_MARKER) { 610 // Block out deflation as soon as possible. 611 ObjectMonitorContentionMark contention_mark(this); 612 613 // Check for deflation. 614 if (enter_is_async_deflating()) { 615 // Treat deflation as interference. 616 return TryLockResult::Interference; 617 } 618 if (TryLockWithContentionMark(current, contention_mark)) { 619 assert(_recursions == 0, "invariant"); 620 return TryLockResult::Success; 621 } else { 622 // Deflation won or change of owner; dont spin 623 break; 624 } 625 } else if (own == nullptr) { 626 void* prev_own = try_set_owner_from(nullptr, current); 627 if (prev_own == nullptr) { 628 assert(_recursions == 0, "invariant"); 629 return TryLockResult::Success; 630 } else { 631 // The lock had been free momentarily, but we lost the race to the lock. 632 own = prev_own; 633 } 634 } else { 635 // Retry doesn't make as much sense because the lock was just acquired. 636 break; 637 } 638 } 639 return first_own == own ? TryLockResult::HasOwner : TryLockResult::Interference; 640 } 641 642 // Deflate the specified ObjectMonitor if not in-use. Returns true if it 643 // was deflated and false otherwise. 644 // 645 // The async deflation protocol sets owner to DEFLATER_MARKER and 646 // makes contentions negative as signals to contending threads that 647 // an async deflation is in progress. There are a number of checks 648 // as part of the protocol to make sure that the calling thread has 649 // not lost the race to a contending thread. 650 // 651 // The ObjectMonitor has been successfully async deflated when: 652 // (contentions < 0) 653 // Contending threads that see that condition know to retry their operation. 654 // 655 bool ObjectMonitor::deflate_monitor(Thread* current) { 656 if (is_busy()) { 657 // Easy checks are first - the ObjectMonitor is busy so no deflation. 658 return false; 659 } 660 661 const oop obj = object_peek(); 662 663 if (obj == nullptr) { 664 // If the object died, we can recycle the monitor without racing with 665 // Java threads. The GC already broke the association with the object. 666 set_owner_from_raw(nullptr, DEFLATER_MARKER); 667 assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions()); 668 _contentions = INT_MIN; // minimum negative int 669 } else { 670 // Attempt async deflation protocol. 671 672 // Set a null owner to DEFLATER_MARKER to force any contending thread 673 // through the slow path. This is just the first part of the async 674 // deflation dance. 675 if (try_set_owner_from_raw(nullptr, DEFLATER_MARKER) != nullptr) { 676 // The owner field is no longer null so we lost the race since the 677 // ObjectMonitor is now busy. 678 return false; 679 } 680 681 if (contentions() > 0 || _waiters != 0) { 682 // Another thread has raced to enter the ObjectMonitor after 683 // is_busy() above or has already entered and waited on 684 // it which makes it busy so no deflation. Restore owner to 685 // null if it is still DEFLATER_MARKER. 686 if (try_set_owner_from_raw(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) { 687 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 688 add_to_contentions(-1); 689 } 690 return false; 691 } 692 693 // Make a zero contentions field negative to force any contending threads 694 // to retry. This is the second part of the async deflation dance. 695 if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) { 696 // Contentions was no longer 0 so we lost the race since the 697 // ObjectMonitor is now busy. Restore owner to null if it is 698 // still DEFLATER_MARKER: 699 if (try_set_owner_from_raw(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) { 700 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 701 add_to_contentions(-1); 702 } 703 return false; 704 } 705 } 706 707 // Sanity checks for the races: 708 guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker"); 709 guarantee(contentions() < 0, "must be negative: contentions=%d", 710 contentions()); 711 guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters); 712 guarantee(_cxq == nullptr, "must be no contending threads: cxq=" 713 INTPTR_FORMAT, p2i(_cxq)); 714 guarantee(_EntryList == nullptr, 715 "must be no entering threads: EntryList=" INTPTR_FORMAT, 716 p2i(_EntryList)); 717 718 if (obj != nullptr) { 719 if (log_is_enabled(Trace, monitorinflation)) { 720 ResourceMark rm; 721 log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT 722 ", mark=" INTPTR_FORMAT ", type='%s'", 723 p2i(obj), obj->mark().value(), 724 obj->klass()->external_name()); 725 } 726 } 727 728 if (UseObjectMonitorTable) { 729 LightweightSynchronizer::deflate_monitor(current, obj, this); 730 } else if (obj != nullptr) { 731 // Install the old mark word if nobody else has already done it. 732 install_displaced_markword_in_object(obj); 733 } 734 735 // We leave owner == DEFLATER_MARKER and contentions < 0 736 // to force any racing threads to retry. 737 return true; // Success, ObjectMonitor has been deflated. 738 } 739 740 // Install the displaced mark word (dmw) of a deflating ObjectMonitor 741 // into the header of the object associated with the monitor. This 742 // idempotent method is called by a thread that is deflating a 743 // monitor and by other threads that have detected a race with the 744 // deflation process. 745 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) { 746 assert(!UseObjectMonitorTable, "ObjectMonitorTable has no dmw"); 747 // This function must only be called when (owner == DEFLATER_MARKER 748 // && contentions <= 0), but we can't guarantee that here because 749 // those values could change when the ObjectMonitor gets moved from 750 // the global free list to a per-thread free list. 751 752 guarantee(obj != nullptr, "must be non-null"); 753 754 // Separate loads in is_being_async_deflated(), which is almost always 755 // called before this function, from the load of dmw/header below. 756 757 // _contentions and dmw/header may get written by different threads. 758 // Make sure to observe them in the same order when having several observers. 759 OrderAccess::loadload_for_IRIW(); 760 761 const oop l_object = object_peek(); 762 if (l_object == nullptr) { 763 // ObjectMonitor's object ref has already been cleared by async 764 // deflation or GC so we're done here. 765 return; 766 } 767 assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj=" 768 INTPTR_FORMAT, p2i(l_object), p2i(obj)); 769 770 markWord dmw = header(); 771 // The dmw has to be neutral (not null, not locked and not marked). 772 assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value()); 773 774 // Install displaced mark word if the object's header still points 775 // to this ObjectMonitor. More than one racing caller to this function 776 // can rarely reach this point, but only one can win. 777 markWord res = obj->cas_set_mark(dmw, markWord::encode(this)); 778 if (res != markWord::encode(this)) { 779 // This should be rare so log at the Info level when it happens. 780 log_info(monitorinflation)("install_displaced_markword_in_object: " 781 "failed cas_set_mark: new_mark=" INTPTR_FORMAT 782 ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT, 783 dmw.value(), markWord::encode(this).value(), 784 res.value()); 785 } 786 787 // Note: It does not matter which thread restored the header/dmw 788 // into the object's header. The thread deflating the monitor just 789 // wanted the object's header restored and it is. The threads that 790 // detected a race with the deflation process also wanted the 791 // object's header restored before they retry their operation and 792 // because it is restored they will only retry once. 793 } 794 795 // Convert the fields used by is_busy() to a string that can be 796 // used for diagnostic output. 797 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) { 798 ss->print("is_busy: waiters=%d" 799 ", contentions=%d" 800 ", owner=" INTPTR_FORMAT 801 ", cxq=" PTR_FORMAT 802 ", EntryList=" PTR_FORMAT, 803 _waiters, 804 (contentions() > 0 ? contentions() : 0), 805 owner_is_DEFLATER_MARKER() 806 // We report null instead of DEFLATER_MARKER here because is_busy() 807 // ignores DEFLATER_MARKER values. 808 ? p2i(nullptr) 809 : p2i(owner_raw()), 810 p2i(_cxq), 811 p2i(_EntryList)); 812 return ss->base(); 813 } 814 815 void ObjectMonitor::EnterI(JavaThread* current) { 816 assert(current->thread_state() == _thread_blocked, "invariant"); 817 818 // Try the lock - TATAS 819 if (TryLock(current) == TryLockResult::Success) { 820 assert(_succ != current, "invariant"); 821 assert(owner_raw() == owner_for(current), "invariant"); 822 return; 823 } 824 825 assert(InitDone, "Unexpectedly not initialized"); 826 827 // We try one round of spinning *before* enqueueing current. 828 // 829 // If the _owner is ready but OFFPROC we could use a YieldTo() 830 // operation to donate the remainder of this thread's quantum 831 // to the owner. This has subtle but beneficial affinity 832 // effects. 833 834 if (TrySpin(current)) { 835 assert(owner_raw() == owner_for(current), "invariant"); 836 assert(_succ != current, "invariant"); 837 return; 838 } 839 840 // The Spin failed -- Enqueue and park the thread ... 841 assert(_succ != current, "invariant"); 842 assert(owner_raw() != owner_for(current), "invariant"); 843 844 // Enqueue "current" on ObjectMonitor's _cxq. 845 // 846 // Node acts as a proxy for current. 847 // As an aside, if were to ever rewrite the synchronization code mostly 848 // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class 849 // Java objects. This would avoid awkward lifecycle and liveness issues, 850 // as well as eliminate a subset of ABA issues. 851 // TODO: eliminate ObjectWaiter and enqueue either Threads or Events. 852 853 ObjectWaiter node(current); 854 current->_ParkEvent->reset(); 855 node._prev = (ObjectWaiter*) 0xBAD; 856 node.TState = ObjectWaiter::TS_CXQ; 857 858 // Push "current" onto the front of the _cxq. 859 // Once on cxq/EntryList, current stays on-queue until it acquires the lock. 860 // Note that spinning tends to reduce the rate at which threads 861 // enqueue and dequeue on EntryList|cxq. 862 ObjectWaiter* nxt; 863 for (;;) { 864 node._next = nxt = _cxq; 865 if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break; 866 867 // Interference - the CAS failed because _cxq changed. Just retry. 868 // As an optional optimization we retry the lock. 869 if (TryLock(current) == TryLockResult::Success) { 870 assert(_succ != current, "invariant"); 871 assert(owner_raw() == owner_for(current), "invariant"); 872 return; 873 } 874 } 875 876 // The lock might have been released while this thread was occupied queueing 877 // itself onto _cxq. To close the race and avoid "stranding" and 878 // progress-liveness failure we must resample-retry _owner before parking. 879 // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner. 880 // In this case the ST-MEMBAR is accomplished with CAS(). 881 // 882 // TODO: Defer all thread state transitions until park-time. 883 // Since state transitions are heavy and inefficient we'd like 884 // to defer the state transitions until absolutely necessary, 885 // and in doing so avoid some transitions ... 886 887 // For virtual threads that are pinned, do a timed-park instead to 888 // alleviate some deadlocks cases where succesor cannot run. 889 static int MAX_RECHECK_INTERVAL = 1000; 890 int recheck_interval = 1; 891 bool do_timed_parked = false; 892 ContinuationEntry* ce = current->last_continuation(); 893 if (ce != nullptr && ce->is_virtual_thread()) { 894 do_timed_parked = true; 895 } 896 897 for (;;) { 898 899 if (TryLock(current) == TryLockResult::Success) { 900 break; 901 } 902 assert(owner_raw() != owner_for(current), "invariant"); 903 904 // park self 905 if (do_timed_parked) { 906 current->_ParkEvent->park((jlong) recheck_interval); 907 // Increase the recheck_interval, but clamp the value. 908 recheck_interval *= 8; 909 if (recheck_interval > MAX_RECHECK_INTERVAL) { 910 recheck_interval = MAX_RECHECK_INTERVAL; 911 } 912 } else { 913 current->_ParkEvent->park(); 914 } 915 916 if (TryLock(current) == TryLockResult::Success) { 917 break; 918 } 919 920 // The lock is still contested. 921 922 // Keep a tally of the # of futile wakeups. 923 // Note that the counter is not protected by a lock or updated by atomics. 924 // That is by design - we trade "lossy" counters which are exposed to 925 // races during updates for a lower probe effect. 926 // This PerfData object can be used in parallel with a safepoint. 927 // See the work around in PerfDataManager::destroy(). 928 OM_PERFDATA_OP(FutileWakeups, inc()); 929 930 // Assuming this is not a spurious wakeup we'll normally find _succ == current. 931 // We can defer clearing _succ until after the spin completes 932 // TrySpin() must tolerate being called with _succ == current. 933 // Try yet another round of adaptive spinning. 934 if (TrySpin(current)) { 935 break; 936 } 937 938 // We can find that we were unpark()ed and redesignated _succ while 939 // we were spinning. That's harmless. If we iterate and call park(), 940 // park() will consume the event and return immediately and we'll 941 // just spin again. This pattern can repeat, leaving _succ to simply 942 // spin on a CPU. 943 944 if (_succ == current) _succ = nullptr; 945 946 // Invariant: after clearing _succ a thread *must* retry _owner before parking. 947 OrderAccess::fence(); 948 } 949 950 // Egress : 951 // current has acquired the lock -- Unlink current from the cxq or EntryList. 952 // Normally we'll find current on the EntryList . 953 // From the perspective of the lock owner (this thread), the 954 // EntryList is stable and cxq is prepend-only. 955 // The head of cxq is volatile but the interior is stable. 956 // In addition, current.TState is stable. 957 958 assert(owner_raw() == owner_for(current), "invariant"); 959 960 UnlinkAfterAcquire(current, &node); 961 if (_succ == current) { 962 _succ = nullptr; 963 // Note that we don't need to do OrderAccess::fence() after clearing 964 // _succ here, since we own the lock. 965 } 966 967 // We've acquired ownership with CAS(). 968 // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics. 969 // But since the CAS() this thread may have also stored into _succ, 970 // EntryList or cxq. These meta-data updates must be 971 // visible __before this thread subsequently drops the lock. 972 // Consider what could occur if we didn't enforce this constraint -- 973 // STs to monitor meta-data and user-data could reorder with (become 974 // visible after) the ST in exit that drops ownership of the lock. 975 // Some other thread could then acquire the lock, but observe inconsistent 976 // or old monitor meta-data and heap data. That violates the JMM. 977 // To that end, the exit() operation must have at least STST|LDST 978 // "release" barrier semantics. Specifically, there must be at least a 979 // STST|LDST barrier in exit() before the ST of null into _owner that drops 980 // the lock. The barrier ensures that changes to monitor meta-data and data 981 // protected by the lock will be visible before we release the lock, and 982 // therefore before some other thread (CPU) has a chance to acquire the lock. 983 // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html. 984 // 985 // Critically, any prior STs to _succ or EntryList must be visible before 986 // the ST of null into _owner in the *subsequent* (following) corresponding 987 // monitorexit. 988 989 return; 990 } 991 992 // ReenterI() is a specialized inline form of the latter half of the 993 // contended slow-path from EnterI(). We use ReenterI() only for 994 // monitor reentry in wait(). 995 // 996 // In the future we should reconcile EnterI() and ReenterI(). 997 998 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) { 999 assert(current != nullptr, "invariant"); 1000 assert(current->thread_state() != _thread_blocked, "invariant"); 1001 assert(currentNode != nullptr, "invariant"); 1002 assert(currentNode->_thread == current, "invariant"); 1003 assert(_waiters > 0, "invariant"); 1004 assert_mark_word_consistency(); 1005 1006 for (;;) { 1007 uint8_t v = currentNode->TState; 1008 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 1009 assert(owner_raw() != owner_for(current), "invariant"); 1010 1011 // This thread has been notified so try to reacquire the lock. 1012 if (TryLock(current) == TryLockResult::Success) { 1013 break; 1014 } 1015 1016 // If that fails, spin again. Note that spin count may be zero so the above TryLock 1017 // is necessary. 1018 if (TrySpin(current)) { 1019 break; 1020 } 1021 1022 { 1023 OSThreadContendState osts(current->osthread()); 1024 1025 assert(current->thread_state() == _thread_in_vm, "invariant"); 1026 1027 { 1028 ClearSuccOnSuspend csos(this); 1029 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); 1030 current->_ParkEvent->park(); 1031 } 1032 } 1033 1034 // Try again, but just so we distinguish between futile wakeups and 1035 // successful wakeups. The following test isn't algorithmically 1036 // necessary, but it helps us maintain sensible statistics. 1037 if (TryLock(current) == TryLockResult::Success) { 1038 break; 1039 } 1040 1041 // The lock is still contested. 1042 1043 // Assuming this is not a spurious wakeup we'll normally 1044 // find that _succ == current. 1045 if (_succ == current) _succ = nullptr; 1046 1047 // Invariant: after clearing _succ a contending thread 1048 // *must* retry _owner before parking. 1049 OrderAccess::fence(); 1050 1051 // Keep a tally of the # of futile wakeups. 1052 // Note that the counter is not protected by a lock or updated by atomics. 1053 // That is by design - we trade "lossy" counters which are exposed to 1054 // races during updates for a lower probe effect. 1055 // This PerfData object can be used in parallel with a safepoint. 1056 // See the work around in PerfDataManager::destroy(). 1057 OM_PERFDATA_OP(FutileWakeups, inc()); 1058 } 1059 1060 // current has acquired the lock -- Unlink current from the cxq or EntryList . 1061 // Normally we'll find current on the EntryList. 1062 // Unlinking from the EntryList is constant-time and atomic-free. 1063 // From the perspective of the lock owner (this thread), the 1064 // EntryList is stable and cxq is prepend-only. 1065 // The head of cxq is volatile but the interior is stable. 1066 // In addition, current.TState is stable. 1067 1068 assert(owner_raw() == owner_for(current), "invariant"); 1069 assert_mark_word_consistency(); 1070 UnlinkAfterAcquire(current, currentNode); 1071 if (_succ == current) _succ = nullptr; 1072 assert(_succ != current, "invariant"); 1073 currentNode->TState = ObjectWaiter::TS_RUN; 1074 OrderAccess::fence(); // see comments at the end of EnterI() 1075 } 1076 1077 // This method is called from two places: 1078 // - On monitorenter contention with a null waiter. 1079 // - After Object.wait() times out or the target is interrupted to reenter the 1080 // monitor, with the existing waiter. 1081 // For the Object.wait() case we do not delete the ObjectWaiter in case we 1082 // succesfully acquire the monitor since we are going to need it on return. 1083 bool ObjectMonitor::VThreadMonitorEnter(JavaThread* current, ObjectWaiter* waiter) { 1084 if (TryLock(current) == TryLockResult::Success) { 1085 assert(owner_raw() == owner_for(current), "invariant"); 1086 assert(_succ != current, "invariant"); 1087 return true; 1088 } 1089 1090 oop vthread = current->vthread(); 1091 ObjectWaiter* node = waiter != nullptr ? waiter : new ObjectWaiter(vthread, this); 1092 node->_prev = (ObjectWaiter*) 0xBAD; 1093 node->TState = ObjectWaiter::TS_CXQ; 1094 1095 // Push node associated with vthread onto the front of the _cxq. 1096 ObjectWaiter* nxt; 1097 for (;;) { 1098 node->_next = nxt = _cxq; 1099 if (Atomic::cmpxchg(&_cxq, nxt, node) == nxt) break; 1100 1101 // Interference - the CAS failed because _cxq changed. Just retry. 1102 // As an optional optimization we retry the lock. 1103 if (TryLock(current) == TryLockResult::Success) { 1104 assert(owner_raw() == owner_for(current), "invariant"); 1105 assert(_succ != current, "invariant"); 1106 if (waiter == nullptr) delete node; // for Object.wait() don't delete yet 1107 return true; 1108 } 1109 } 1110 1111 // We have to try once more since owner could have exited monitor and checked 1112 // _cxq before we added the node to the queue. 1113 if (TryLock(current) == TryLockResult::Success) { 1114 assert(owner_raw() == owner_for(current), "invariant"); 1115 UnlinkAfterAcquire(current, node); 1116 if (_succ == (JavaThread*)java_lang_Thread::thread_id(vthread)) _succ = nullptr; 1117 if (waiter == nullptr) delete node; // for Object.wait() don't delete yet 1118 return true; 1119 } 1120 1121 assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread"); 1122 java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING); 1123 1124 // We didn't succeed in acquiring the monitor so increment _contentions and 1125 // save ObjectWaiter* in the chunk since we will need it when resuming execution. 1126 add_to_contentions(1); 1127 oop cont = java_lang_VirtualThread::continuation(vthread); 1128 stackChunkOop chunk = jdk_internal_vm_Continuation::tail(cont); 1129 chunk->set_object_waiter(node); 1130 return false; 1131 } 1132 1133 bool ObjectMonitor::resume_operation(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont) { 1134 assert(java_lang_VirtualThread::state(current->vthread()) == java_lang_VirtualThread::RUNNING, "wrong state for vthread"); 1135 1136 if (node->is_wait() && !node->at_reenter()) { 1137 bool acquired_monitor = VThreadWaitReenter(current, node, cont); 1138 if (acquired_monitor) return true; 1139 } 1140 1141 // Retry acquiring monitor... 1142 1143 int state = node->TState; 1144 guarantee(state == ObjectWaiter::TS_ENTER || state == ObjectWaiter::TS_CXQ, "invariant"); 1145 1146 if (TryLock(current) == TryLockResult::Success) { 1147 VThreadEpilog(current, node); 1148 return true; 1149 } 1150 1151 oop vthread = current->vthread(); 1152 if (_succ == (JavaThread*)java_lang_Thread::thread_id(vthread)) _succ = nullptr; 1153 1154 // Invariant: after clearing _succ a thread *must* retry _owner before parking. 1155 OrderAccess::fence(); 1156 1157 if (TryLock(current) == TryLockResult::Success) { 1158 VThreadEpilog(current, node); 1159 return true; 1160 } 1161 1162 // The JT will read this variable on return to the resume_monitor_operation stub 1163 // and will unmount (enterSpecial frame removed and return to Continuation.run()). 1164 java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING); 1165 1166 return false; 1167 } 1168 1169 void ObjectMonitor::VThreadEpilog(JavaThread* current, ObjectWaiter* node) { 1170 assert(owner_raw() == owner_for(current), "invariant"); 1171 add_to_contentions(-1); 1172 1173 oop vthread = current->vthread(); 1174 int64_t threadid = java_lang_Thread::thread_id(vthread); 1175 if (_succ == (JavaThread*)threadid) _succ = nullptr; 1176 1177 guarantee(_recursions == 0, "invariant"); 1178 1179 if (node->is_wait()) { 1180 _recursions = node->_recursions; // restore the old recursion count 1181 _waiters--; // decrement the number of waiters 1182 1183 if (node->_interrupted) { 1184 // We will throw at thaw end after finishing the mount transition. 1185 current->set_pending_interrupted_exception(true); 1186 } 1187 } 1188 1189 assert(node->TState == ObjectWaiter::TS_ENTER || node->TState == ObjectWaiter::TS_CXQ, ""); 1190 UnlinkAfterAcquire(current, node); 1191 delete node; 1192 1193 oop cont = java_lang_VirtualThread::continuation(vthread); 1194 stackChunkOop chunk = jdk_internal_vm_Continuation::tail(cont); 1195 chunk->set_object_waiter(nullptr); 1196 1197 if (JvmtiExport::should_post_monitor_contended_entered()) { 1198 // We are going to call thaw again after this and finish the VMTS 1199 // transition so no need to do it here. We will post the event there. 1200 current->set_contended_entered_monitor(this); 1201 } 1202 } 1203 1204 // By convention we unlink a contending thread from EntryList|cxq immediately 1205 // after the thread acquires the lock in ::enter(). Equally, we could defer 1206 // unlinking the thread until ::exit()-time. 1207 1208 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) { 1209 assert(owner_raw() == owner_for(current), "invariant"); 1210 assert((!currentNode->is_vthread() && currentNode->thread() == current) || 1211 (currentNode->is_vthread() && currentNode->vthread() == current->vthread()), "invariant"); 1212 1213 if (currentNode->TState == ObjectWaiter::TS_ENTER) { 1214 // Normal case: remove current from the DLL EntryList . 1215 // This is a constant-time operation. 1216 ObjectWaiter* nxt = currentNode->_next; 1217 ObjectWaiter* prv = currentNode->_prev; 1218 if (nxt != nullptr) nxt->_prev = prv; 1219 if (prv != nullptr) prv->_next = nxt; 1220 if (currentNode == _EntryList) _EntryList = nxt; 1221 assert(nxt == nullptr || nxt->TState == ObjectWaiter::TS_ENTER, "invariant"); 1222 assert(prv == nullptr || prv->TState == ObjectWaiter::TS_ENTER, "invariant"); 1223 } else { 1224 assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant"); 1225 // Inopportune interleaving -- current is still on the cxq. 1226 // This usually means the enqueue of self raced an exiting thread. 1227 // Normally we'll find current near the front of the cxq, so 1228 // dequeueing is typically fast. If needbe we can accelerate 1229 // this with some MCS/CHL-like bidirectional list hints and advisory 1230 // back-links so dequeueing from the interior will normally operate 1231 // in constant-time. 1232 // Dequeue current from either the head (with CAS) or from the interior 1233 // with a linear-time scan and normal non-atomic memory operations. 1234 // CONSIDER: if current is on the cxq then simply drain cxq into EntryList 1235 // and then unlink current from EntryList. We have to drain eventually, 1236 // so it might as well be now. 1237 1238 ObjectWaiter* v = _cxq; 1239 assert(v != nullptr, "invariant"); 1240 if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) { 1241 // The CAS above can fail from interference IFF a "RAT" arrived. 1242 // In that case current must be in the interior and can no longer be 1243 // at the head of cxq. 1244 if (v == currentNode) { 1245 assert(_cxq != v, "invariant"); 1246 v = _cxq; // CAS above failed - start scan at head of list 1247 } 1248 ObjectWaiter* p; 1249 ObjectWaiter* q = nullptr; 1250 for (p = v; p != nullptr && p != currentNode; p = p->_next) { 1251 q = p; 1252 assert(p->TState == ObjectWaiter::TS_CXQ, "invariant"); 1253 } 1254 assert(v != currentNode, "invariant"); 1255 assert(p == currentNode, "Node not found on cxq"); 1256 assert(p != _cxq, "invariant"); 1257 assert(q != nullptr, "invariant"); 1258 assert(q->_next == p, "invariant"); 1259 q->_next = p->_next; 1260 } 1261 } 1262 1263 #ifdef ASSERT 1264 // Diagnostic hygiene ... 1265 currentNode->_prev = (ObjectWaiter*) 0xBAD; 1266 currentNode->_next = (ObjectWaiter*) 0xBAD; 1267 currentNode->TState = ObjectWaiter::TS_RUN; 1268 #endif 1269 } 1270 1271 // ----------------------------------------------------------------------------- 1272 // Exit support 1273 // 1274 // exit() 1275 // ~~~~~~ 1276 // Note that the collector can't reclaim the objectMonitor or deflate 1277 // the object out from underneath the thread calling ::exit() as the 1278 // thread calling ::exit() never transitions to a stable state. 1279 // This inhibits GC, which in turn inhibits asynchronous (and 1280 // inopportune) reclamation of "this". 1281 // 1282 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ; 1283 // There's one exception to the claim above, however. EnterI() can call 1284 // exit() to drop a lock if the acquirer has been externally suspended. 1285 // In that case exit() is called with _thread_state == _thread_blocked, 1286 // but the monitor's _contentions field is > 0, which inhibits reclamation. 1287 // 1288 // This is the exit part of the locking protocol, often implemented in 1289 // C2_MacroAssembler::fast_unlock() 1290 // 1291 // 1. A release barrier ensures that changes to monitor meta-data 1292 // (_succ, _EntryList, _cxq) and data protected by the lock will be 1293 // visible before we release the lock. 1294 // 2. Release the lock by clearing the owner. 1295 // 3. A storeload MEMBAR is needed between releasing the owner and 1296 // subsequently reading meta-data to safely determine if the lock is 1297 // contended (step 4) without an elected successor (step 5). 1298 // 4. If both _EntryList and _cxq are null, we are done, since there is no 1299 // other thread waiting on the lock to wake up. I.e. there is no 1300 // contention. 1301 // 5. If there is a successor (_succ is non-null), we are done. The 1302 // responsibility for guaranteeing progress-liveness has now implicitly 1303 // been moved from the exiting thread to the successor. 1304 // 6. There are waiters in the entry list (_EntryList and/or cxq are 1305 // non-null), but there is no successor (_succ is null), so we need to 1306 // wake up (unpark) a waiting thread to avoid stranding. 1307 // 1308 // Note that since only the current lock owner can manipulate the _EntryList 1309 // or drain _cxq, we need to reacquire the lock before we can wake up 1310 // (unpark) a waiting thread. 1311 // 1312 // The CAS() in enter provides for safety and exclusion, while the 1313 // MEMBAR in exit provides for progress and avoids stranding. 1314 // 1315 // There is also the risk of a futile wake-up. If we drop the lock 1316 // another thread can reacquire the lock immediately, and we can 1317 // then wake a thread unnecessarily. This is benign, and we've 1318 // structured the code so the windows are short and the frequency 1319 // of such futile wakups is low. 1320 1321 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) { 1322 void* cur = owner_raw(); 1323 if (owner_for(current) != cur) { 1324 // Apparent unbalanced locking ... 1325 // Naively we'd like to throw IllegalMonitorStateException. 1326 // As a practical matter we can neither allocate nor throw an 1327 // exception as ::exit() can be called from leaf routines. 1328 // see x86_32.ad Fast_Unlock() and the I1 and I2 properties. 1329 // Upon deeper reflection, however, in a properly run JVM the only 1330 // way we should encounter this situation is in the presence of 1331 // unbalanced JNI locking. TODO: CheckJNICalls. 1332 // See also: CR4414101 1333 #ifdef ASSERT 1334 LogStreamHandle(Error, monitorinflation) lsh; 1335 lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT 1336 " is exiting an ObjectMonitor it does not own.", p2i(current)); 1337 lsh.print_cr("The imbalance is possibly caused by JNI locking."); 1338 print_debug_style_on(&lsh); 1339 assert(false, "Non-balanced monitor enter/exit!"); 1340 #endif 1341 return; 1342 } 1343 1344 if (_recursions != 0) { 1345 _recursions--; // this is simple recursive enter 1346 return; 1347 } 1348 1349 #if INCLUDE_JFR 1350 // get the owner's thread id for the MonitorEnter event 1351 // if it is enabled and the thread isn't suspended 1352 if (not_suspended && EventJavaMonitorEnter::is_enabled()) { 1353 _previous_owner_tid = JFR_THREAD_ID(current); 1354 } 1355 #endif 1356 1357 for (;;) { 1358 assert(owner_for(current) == owner_raw(), "invariant"); 1359 1360 // Drop the lock. 1361 // release semantics: prior loads and stores from within the critical section 1362 // must not float (reorder) past the following store that drops the lock. 1363 // Uses a storeload to separate release_store(owner) from the 1364 // successor check. The try_set_owner_from() below uses cmpxchg() so 1365 // we get the fence down there. 1366 release_clear_owner(current); 1367 OrderAccess::storeload(); 1368 1369 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != nullptr) { 1370 return; 1371 } 1372 // Other threads are blocked trying to acquire the lock. 1373 1374 // Normally the exiting thread is responsible for ensuring succession, 1375 // but if this thread observes other successors are ready or other 1376 // entering threads are spinning after it has stored null into _owner 1377 // then it can exit without waking a successor. The existence of 1378 // spinners or ready successors guarantees proper succession (liveness). 1379 // Responsibility passes to the ready or running successors. The exiting 1380 // thread delegates the duty. More precisely, if a successor already 1381 // exists this thread is absolved of the responsibility of waking 1382 // (unparking) one. 1383 1384 // The _succ variable is critical to reducing futile wakeup frequency. 1385 // _succ identifies the "heir presumptive" thread that has been made 1386 // ready (unparked) but that has not yet run. We need only one such 1387 // successor thread to guarantee progress. 1388 // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf 1389 // section 3.3 "Futile Wakeup Throttling" for details. 1390 // 1391 // Note that spinners in Enter() also set _succ non-null. 1392 // In the current implementation spinners opportunistically set 1393 // _succ so that exiting threads might avoid waking a successor. 1394 // Which means that the exiting thread could exit immediately without 1395 // waking a successor, if it observes a successor after it has dropped 1396 // the lock. Note that the dropped lock needs to become visible to the 1397 // spinner. 1398 1399 // It appears that an heir-presumptive (successor) must be made ready. 1400 // Only the current lock owner can manipulate the EntryList or 1401 // drain _cxq, so we need to reacquire the lock. If we fail 1402 // to reacquire the lock the responsibility for ensuring succession 1403 // falls to the new owner. 1404 1405 if (TryLock(current) != TryLockResult::Success) { 1406 // Some other thread acquired the lock (or the monitor was 1407 // deflated). Either way we are done. 1408 return; 1409 } 1410 1411 guarantee(owner_raw() == owner_for(current), "invariant"); 1412 1413 ObjectWaiter* w = nullptr; 1414 1415 w = _EntryList; 1416 if (w != nullptr) { 1417 // I'd like to write: guarantee (w->_thread != current). 1418 // But in practice an exiting thread may find itself on the EntryList. 1419 // Let's say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and 1420 // then calls exit(). Exit release the lock by setting O._owner to null. 1421 // Let's say T1 then stalls. T2 acquires O and calls O.notify(). The 1422 // notify() operation moves T1 from O's waitset to O's EntryList. T2 then 1423 // release the lock "O". T2 resumes immediately after the ST of null into 1424 // _owner, above. T2 notices that the EntryList is populated, so it 1425 // reacquires the lock and then finds itself on the EntryList. 1426 // Given all that, we have to tolerate the circumstance where "w" is 1427 // associated with current. 1428 assert(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1429 ExitEpilog(current, w); 1430 return; 1431 } 1432 1433 // If we find that both _cxq and EntryList are null then just 1434 // re-run the exit protocol from the top. 1435 w = _cxq; 1436 if (w == nullptr) continue; 1437 1438 // Drain _cxq into EntryList - bulk transfer. 1439 // First, detach _cxq. 1440 // The following loop is tantamount to: w = swap(&cxq, nullptr) 1441 for (;;) { 1442 assert(w != nullptr, "Invariant"); 1443 ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)nullptr); 1444 if (u == w) break; 1445 w = u; 1446 } 1447 1448 assert(w != nullptr, "invariant"); 1449 assert(_EntryList == nullptr, "invariant"); 1450 1451 // Convert the LIFO SLL anchored by _cxq into a DLL. 1452 // The list reorganization step operates in O(LENGTH(w)) time. 1453 // It's critical that this step operate quickly as 1454 // "current" still holds the outer-lock, restricting parallelism 1455 // and effectively lengthening the critical section. 1456 // Invariant: s chases t chases u. 1457 // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so 1458 // we have faster access to the tail. 1459 1460 _EntryList = w; 1461 ObjectWaiter* q = nullptr; 1462 ObjectWaiter* p; 1463 for (p = w; p != nullptr; p = p->_next) { 1464 guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant"); 1465 p->TState = ObjectWaiter::TS_ENTER; 1466 p->_prev = q; 1467 q = p; 1468 } 1469 1470 // We need to: ST EntryList; MEMBAR #storestore; ST _owner = nullptr 1471 // The MEMBAR is satisfied by the release_store() operation in ExitEpilog(). 1472 1473 // See if we can abdicate to a spinner instead of waking a thread. 1474 // A primary goal of the implementation is to reduce the 1475 // context-switch rate. 1476 if (_succ != nullptr) continue; 1477 1478 w = _EntryList; 1479 if (w != nullptr) { 1480 guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1481 ExitEpilog(current, w); 1482 return; 1483 } 1484 } 1485 } 1486 1487 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) { 1488 assert(owner_raw() == owner_for(current), "invariant"); 1489 1490 // Exit protocol: 1491 // 1. ST _succ = wakee 1492 // 2. membar #loadstore|#storestore; 1493 // 2. ST _owner = nullptr 1494 // 3. unpark(wakee) 1495 1496 oop vthread = nullptr; 1497 ParkEvent * Trigger; 1498 if (!Wakee->is_vthread()) { 1499 JavaThread* t = Wakee->thread(); 1500 assert(t != nullptr, ""); 1501 Trigger = t->_ParkEvent; 1502 _succ = t; 1503 } else { 1504 vthread = Wakee->vthread(); 1505 assert(vthread != nullptr, ""); 1506 Trigger = ObjectMonitor::vthread_unparker_ParkEvent(); 1507 _succ = (JavaThread*)java_lang_Thread::thread_id(vthread); 1508 } 1509 1510 // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again. 1511 // The thread associated with Wakee may have grabbed the lock and "Wakee" may be 1512 // out-of-scope (non-extant). 1513 Wakee = nullptr; 1514 1515 // Drop the lock. 1516 // Uses a fence to separate release_store(owner) from the LD in unpark(). 1517 release_clear_owner(current); 1518 OrderAccess::fence(); 1519 1520 DTRACE_MONITOR_PROBE(contended__exit, this, object(), current); 1521 1522 if (vthread == nullptr) { 1523 // Platform thread case 1524 Trigger->unpark(); 1525 } else if (java_lang_VirtualThread::set_onWaitingList(vthread, _vthread_cxq_head)) { 1526 Trigger->unpark(); 1527 } 1528 1529 // Maintain stats and report events to JVMTI 1530 OM_PERFDATA_OP(Parks, inc()); 1531 } 1532 1533 // complete_exit exits a lock returning recursion count 1534 // complete_exit requires an inflated monitor 1535 // The _owner field is not always the Thread addr even with an 1536 // inflated monitor, e.g. the monitor can be inflated by a non-owning 1537 // thread due to contention. 1538 intx ObjectMonitor::complete_exit(JavaThread* current) { 1539 assert(InitDone, "Unexpectedly not initialized"); 1540 1541 void* cur = owner_raw(); 1542 if (owner_for(current) != cur) { 1543 if (LockingMode == LM_LEGACY && is_stack_locker(current)) { 1544 assert(_recursions == 0, "internal state error"); 1545 set_owner_from_BasicLock(current); // Convert from BasicLock* to Thread*. 1546 _recursions = 0; 1547 } 1548 } 1549 1550 guarantee(owner_for(current) == owner_raw(), "complete_exit not owner"); 1551 intx save = _recursions; // record the old recursion count 1552 _recursions = 0; // set the recursion level to be 0 1553 exit(current); // exit the monitor 1554 guarantee(owner_raw() != owner_for(current), "invariant"); 1555 return save; 1556 } 1557 1558 // Checks that the current THREAD owns this monitor and causes an 1559 // immediate return if it doesn't. We don't use the CHECK macro 1560 // because we want the IMSE to be the only exception that is thrown 1561 // from the call site when false is returned. Any other pending 1562 // exception is ignored. 1563 #define CHECK_OWNER() \ 1564 do { \ 1565 if (!check_owner(THREAD)) { \ 1566 assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \ 1567 return; \ 1568 } \ 1569 } while (false) 1570 1571 // Returns true if the specified thread owns the ObjectMonitor. 1572 // Otherwise returns false and throws IllegalMonitorStateException 1573 // (IMSE). If there is a pending exception and the specified thread 1574 // is not the owner, that exception will be replaced by the IMSE. 1575 bool ObjectMonitor::check_owner(TRAPS) { 1576 JavaThread* current = THREAD; 1577 void* cur = owner_raw(); 1578 if (cur == owner_for(current)) { 1579 return true; 1580 } 1581 THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(), 1582 "current thread is not owner", false); 1583 } 1584 1585 static inline bool is_excluded(const Klass* monitor_klass) { 1586 assert(monitor_klass != nullptr, "invariant"); 1587 NOT_JFR_RETURN_(false); 1588 JFR_ONLY(return vmSymbols::jdk_jfr_internal_management_HiddenWait() == monitor_klass->name();) 1589 } 1590 1591 static void post_monitor_wait_event(EventJavaMonitorWait* event, 1592 ObjectMonitor* monitor, 1593 uint64_t notifier_tid, 1594 jlong timeout, 1595 bool timedout) { 1596 assert(event != nullptr, "invariant"); 1597 assert(monitor != nullptr, "invariant"); 1598 const Klass* monitor_klass = monitor->object()->klass(); 1599 if (is_excluded(monitor_klass)) { 1600 return; 1601 } 1602 event->set_monitorClass(monitor_klass); 1603 event->set_timeout(timeout); 1604 // Set an address that is 'unique enough', such that events close in 1605 // time and with the same address are likely (but not guaranteed) to 1606 // belong to the same object. 1607 event->set_address((uintptr_t)monitor); 1608 event->set_notifier(notifier_tid); 1609 event->set_timedOut(timedout); 1610 event->commit(); 1611 } 1612 1613 static void vthread_monitor_waited_event(JavaThread *current, ObjectWaiter* node, ContinuationWrapper& cont, EventJavaMonitorWait* event, jboolean timed_out) { 1614 // Since we might safepoint set the anchor so that the stack can we walked. 1615 assert(current->last_continuation() != nullptr, ""); 1616 JavaFrameAnchor* anchor = current->frame_anchor(); 1617 anchor->set_last_Java_sp(current->last_continuation()->entry_sp()); 1618 anchor->set_last_Java_pc(current->last_continuation()->entry_pc()); 1619 1620 ContinuationWrapper::SafepointOp so(current, cont); 1621 1622 JRT_BLOCK 1623 if (event->should_commit()) { 1624 long timeout = java_lang_VirtualThread::waitTimeout(current->vthread()); 1625 post_monitor_wait_event(event, node->_monitor, node->_notifier_tid, timeout, timed_out); 1626 } 1627 if (JvmtiExport::should_post_monitor_waited()) { 1628 ThreadOnMonitorWaitedEvent tmwe(current); 1629 JvmtiExport::vthread_post_monitor_waited(current, node->_monitor, timed_out); 1630 } 1631 JRT_BLOCK_END 1632 current->frame_anchor()->clear(); 1633 } 1634 1635 // ----------------------------------------------------------------------------- 1636 // Wait/Notify/NotifyAll 1637 // 1638 // Note: a subset of changes to ObjectMonitor::wait() 1639 // will need to be replicated in complete_exit 1640 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) { 1641 JavaThread* current = THREAD; 1642 1643 assert(InitDone, "Unexpectedly not initialized"); 1644 1645 CHECK_OWNER(); // Throws IMSE if not owner. 1646 1647 EventJavaMonitorWait event; 1648 1649 // check for a pending interrupt 1650 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1651 // post monitor waited event. Note that this is past-tense, we are done waiting. 1652 if (JvmtiExport::should_post_monitor_waited()) { 1653 // Note: 'false' parameter is passed here because the 1654 // wait was not timed out due to thread interrupt. 1655 JvmtiExport::post_monitor_waited(current, this, false); 1656 1657 // In this short circuit of the monitor wait protocol, the 1658 // current thread never drops ownership of the monitor and 1659 // never gets added to the wait queue so the current thread 1660 // cannot be made the successor. This means that the 1661 // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally 1662 // consume an unpark() meant for the ParkEvent associated with 1663 // this ObjectMonitor. 1664 } 1665 if (event.should_commit()) { 1666 post_monitor_wait_event(&event, this, 0, millis, false); 1667 } 1668 THROW(vmSymbols::java_lang_InterruptedException()); 1669 return; 1670 } 1671 1672 current->set_current_waiting_monitor(this); 1673 1674 ContinuationEntry* ce = current->last_continuation(); 1675 if (interruptible && ce != nullptr && ce->is_virtual_thread()) { 1676 int result = Continuation::try_preempt(current, ce->cont_oop(current), Continuation::freeze_on_wait); 1677 if (result == freeze_ok) { 1678 VThreadWait(current, millis); 1679 current->set_current_waiting_monitor(nullptr); 1680 return; 1681 } 1682 if (result == freeze_pinned_native || result == freeze_unsupported) { 1683 const Klass* monitor_klass = object()->klass(); 1684 if (!is_excluded(monitor_klass)) { 1685 if (result == freeze_pinned_native) { 1686 post_virtual_thread_pinned_event(current,"Native frame or <clinit> on stack"); 1687 } else if (result == freeze_unsupported) { 1688 post_virtual_thread_pinned_event(current, "Native frame or <clinit> or monitors on stack"); 1689 } 1690 } 1691 } 1692 } 1693 1694 // create a node to be put into the queue 1695 // Critically, after we reset() the event but prior to park(), we must check 1696 // for a pending interrupt. 1697 ObjectWaiter node(current); 1698 node.TState = ObjectWaiter::TS_WAIT; 1699 current->_ParkEvent->reset(); 1700 OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag 1701 1702 // Enter the waiting queue, which is a circular doubly linked list in this case 1703 // but it could be a priority queue or any data structure. 1704 // _WaitSetLock protects the wait queue. Normally the wait queue is accessed only 1705 // by the owner of the monitor *except* in the case where park() 1706 // returns because of a timeout of interrupt. Contention is exceptionally rare 1707 // so we use a simple spin-lock instead of a heavier-weight blocking lock. 1708 1709 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add"); 1710 AddWaiter(&node); 1711 Thread::SpinRelease(&_WaitSetLock); 1712 1713 intx save = _recursions; // record the old recursion count 1714 _waiters++; // increment the number of waiters 1715 _recursions = 0; // set the recursion level to be 1 1716 exit(current); // exit the monitor 1717 guarantee(owner_raw() != owner_for(current), "invariant"); 1718 1719 // The thread is on the WaitSet list - now park() it. 1720 // On MP systems it's conceivable that a brief spin before we park 1721 // could be profitable. 1722 // 1723 // TODO-FIXME: change the following logic to a loop of the form 1724 // while (!timeout && !interrupted && _notified == 0) park() 1725 1726 int ret = OS_OK; 1727 int WasNotified = 0; 1728 1729 // Need to check interrupt state whilst still _thread_in_vm 1730 bool interrupted = interruptible && current->is_interrupted(false); 1731 1732 { // State transition wrappers 1733 OSThread* osthread = current->osthread(); 1734 OSThreadWaitState osts(osthread, true); 1735 1736 assert(current->thread_state() == _thread_in_vm, "invariant"); 1737 1738 { 1739 ClearSuccOnSuspend csos(this); 1740 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); 1741 if (interrupted || HAS_PENDING_EXCEPTION) { 1742 // Intentionally empty 1743 } else if (!node._notified) { 1744 if (millis <= 0) { 1745 current->_ParkEvent->park(); 1746 } else { 1747 ret = current->_ParkEvent->park(millis); 1748 } 1749 } 1750 } 1751 1752 // Node may be on the WaitSet, the EntryList (or cxq), or in transition 1753 // from the WaitSet to the EntryList. 1754 // See if we need to remove Node from the WaitSet. 1755 // We use double-checked locking to avoid grabbing _WaitSetLock 1756 // if the thread is not on the wait queue. 1757 // 1758 // Note that we don't need a fence before the fetch of TState. 1759 // In the worst case we'll fetch a old-stale value of TS_WAIT previously 1760 // written by the is thread. (perhaps the fetch might even be satisfied 1761 // by a look-aside into the processor's own store buffer, although given 1762 // the length of the code path between the prior ST and this load that's 1763 // highly unlikely). If the following LD fetches a stale TS_WAIT value 1764 // then we'll acquire the lock and then re-fetch a fresh TState value. 1765 // That is, we fail toward safety. 1766 1767 if (node.TState == ObjectWaiter::TS_WAIT) { 1768 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink"); 1769 if (node.TState == ObjectWaiter::TS_WAIT) { 1770 DequeueSpecificWaiter(&node); // unlink from WaitSet 1771 assert(!node._notified, "invariant"); 1772 node.TState = ObjectWaiter::TS_RUN; 1773 } 1774 Thread::SpinRelease(&_WaitSetLock); 1775 } 1776 1777 // The thread is now either on off-list (TS_RUN), 1778 // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ). 1779 // The Node's TState variable is stable from the perspective of this thread. 1780 // No other threads will asynchronously modify TState. 1781 guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant"); 1782 OrderAccess::loadload(); 1783 if (_succ == current) _succ = nullptr; 1784 WasNotified = node._notified; 1785 1786 // Reentry phase -- reacquire the monitor. 1787 // re-enter contended monitor after object.wait(). 1788 // retain OBJECT_WAIT state until re-enter successfully completes 1789 // Thread state is thread_in_vm and oop access is again safe, 1790 // although the raw address of the object may have changed. 1791 // (Don't cache naked oops over safepoints, of course). 1792 1793 // post monitor waited event. Note that this is past-tense, we are done waiting. 1794 if (JvmtiExport::should_post_monitor_waited()) { 1795 JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT); 1796 1797 if (node._notified && _succ == current) { 1798 // In this part of the monitor wait-notify-reenter protocol it 1799 // is possible (and normal) for another thread to do a fastpath 1800 // monitor enter-exit while this thread is still trying to get 1801 // to the reenter portion of the protocol. 1802 // 1803 // The ObjectMonitor was notified and the current thread is 1804 // the successor which also means that an unpark() has already 1805 // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can 1806 // consume the unpark() that was done when the successor was 1807 // set because the same ParkEvent is shared between Java 1808 // monitors and JVM/TI RawMonitors (for now). 1809 // 1810 // We redo the unpark() to ensure forward progress, i.e., we 1811 // don't want all pending threads hanging (parked) with none 1812 // entering the unlocked monitor. 1813 current->_ParkEvent->unpark(); 1814 } 1815 } 1816 1817 if (event.should_commit()) { 1818 post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT); 1819 } 1820 1821 OrderAccess::fence(); 1822 1823 assert(owner_raw() != owner_for(current), "invariant"); 1824 ObjectWaiter::TStates v = node.TState; 1825 if (v == ObjectWaiter::TS_RUN) { 1826 enter(current); 1827 } else { 1828 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 1829 ReenterI(current, &node); 1830 node.wait_reenter_end(this); 1831 } 1832 1833 // current has reacquired the lock. 1834 // Lifecycle - the node representing current must not appear on any queues. 1835 // Node is about to go out-of-scope, but even if it were immortal we wouldn't 1836 // want residual elements associated with this thread left on any lists. 1837 guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant"); 1838 assert(owner_raw() == owner_for(current), "invariant"); 1839 assert(_succ != current, "invariant"); 1840 } // OSThreadWaitState() 1841 1842 current->set_current_waiting_monitor(nullptr); 1843 1844 guarantee(_recursions == 0, "invariant"); 1845 int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current); 1846 _recursions = save // restore the old recursion count 1847 + relock_count; // increased by the deferred relock count 1848 current->inc_held_monitor_count(relock_count); // Deopt never entered these counts. 1849 _waiters--; // decrement the number of waiters 1850 1851 // Verify a few postconditions 1852 assert(owner_raw() == owner_for(current), "invariant"); 1853 assert(_succ != current, "invariant"); 1854 assert_mark_word_consistency(); 1855 1856 // check if the notification happened 1857 if (!WasNotified) { 1858 // no, it could be timeout or Thread.interrupt() or both 1859 // check for interrupt event, otherwise it is timeout 1860 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1861 THROW(vmSymbols::java_lang_InterruptedException()); 1862 } 1863 } 1864 1865 // NOTE: Spurious wake up will be consider as timeout. 1866 // Monitor notify has precedence over thread interrupt. 1867 } 1868 1869 // Consider: 1870 // If the lock is cool (cxq == null && succ == null) and we're on an MP system 1871 // then instead of transferring a thread from the WaitSet to the EntryList 1872 // we might just dequeue a thread from the WaitSet and directly unpark() it. 1873 1874 void ObjectMonitor::INotify(JavaThread* current) { 1875 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify"); 1876 ObjectWaiter* iterator = DequeueWaiter(); 1877 if (iterator != nullptr) { 1878 guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant"); 1879 guarantee(!iterator->_notified, "invariant"); 1880 // Disposition - what might we do with iterator ? 1881 // a. add it directly to the EntryList - either tail (policy == 1) 1882 // or head (policy == 0). 1883 // b. push it onto the front of the _cxq (policy == 2). 1884 // For now we use (b). 1885 1886 if (iterator->is_vthread()) { 1887 oop vthread = iterator->vthread(); 1888 java_lang_VirtualThread::set_notified(vthread, true); 1889 int old_state = java_lang_VirtualThread::state(vthread); 1890 // If state is not WAIT/TIMED_WAIT then target could still be on 1891 // unmount transition, or wait could have already timed-out or target 1892 // could have been interrupted. In the first case, the target itself 1893 // will set the state to BLOCKED at the end of the unmount transition. 1894 // In the other cases the target would have been already unblocked so 1895 // there is nothing to do. 1896 if (old_state == java_lang_VirtualThread::WAIT || 1897 old_state == java_lang_VirtualThread::TIMED_WAIT) { 1898 java_lang_VirtualThread::cmpxchg_state(vthread, old_state, java_lang_VirtualThread::BLOCKED); 1899 } 1900 } 1901 1902 iterator->TState = ObjectWaiter::TS_ENTER; 1903 1904 iterator->_notified = true; 1905 iterator->_notifier_tid = JFR_THREAD_ID(current); 1906 1907 ObjectWaiter* list = _EntryList; 1908 if (list != nullptr) { 1909 assert(list->_prev == nullptr, "invariant"); 1910 assert(list->TState == ObjectWaiter::TS_ENTER, "invariant"); 1911 assert(list != iterator, "invariant"); 1912 } 1913 1914 // prepend to cxq 1915 if (list == nullptr) { 1916 iterator->_next = iterator->_prev = nullptr; 1917 _EntryList = iterator; 1918 } else { 1919 iterator->TState = ObjectWaiter::TS_CXQ; 1920 for (;;) { 1921 ObjectWaiter* front = _cxq; 1922 iterator->_next = front; 1923 if (Atomic::cmpxchg(&_cxq, front, iterator) == front) { 1924 break; 1925 } 1926 } 1927 } 1928 1929 // _WaitSetLock protects the wait queue, not the EntryList. We could 1930 // move the add-to-EntryList operation, above, outside the critical section 1931 // protected by _WaitSetLock. In practice that's not useful. With the 1932 // exception of wait() timeouts and interrupts the monitor owner 1933 // is the only thread that grabs _WaitSetLock. There's almost no contention 1934 // on _WaitSetLock so it's not profitable to reduce the length of the 1935 // critical section. 1936 if (!iterator->is_vthread()) { 1937 iterator->wait_reenter_begin(this); 1938 } 1939 } 1940 Thread::SpinRelease(&_WaitSetLock); 1941 } 1942 1943 // Consider: a not-uncommon synchronization bug is to use notify() when 1944 // notifyAll() is more appropriate, potentially resulting in stranded 1945 // threads; this is one example of a lost wakeup. A useful diagnostic 1946 // option is to force all notify() operations to behave as notifyAll(). 1947 // 1948 // Note: We can also detect many such problems with a "minimum wait". 1949 // When the "minimum wait" is set to a small non-zero timeout value 1950 // and the program does not hang whereas it did absent "minimum wait", 1951 // that suggests a lost wakeup bug. 1952 1953 void ObjectMonitor::notify(TRAPS) { 1954 JavaThread* current = THREAD; 1955 CHECK_OWNER(); // Throws IMSE if not owner. 1956 if (_WaitSet == nullptr) { 1957 return; 1958 } 1959 DTRACE_MONITOR_PROBE(notify, this, object(), current); 1960 INotify(current); 1961 OM_PERFDATA_OP(Notifications, inc(1)); 1962 } 1963 1964 1965 // The current implementation of notifyAll() transfers the waiters one-at-a-time 1966 // from the waitset to the EntryList. This could be done more efficiently with a 1967 // single bulk transfer but in practice it's not time-critical. Beware too, 1968 // that in prepend-mode we invert the order of the waiters. Let's say that the 1969 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend 1970 // mode the waitset will be empty and the EntryList will be "DCBAXYZ". 1971 1972 void ObjectMonitor::notifyAll(TRAPS) { 1973 JavaThread* current = THREAD; 1974 CHECK_OWNER(); // Throws IMSE if not owner. 1975 if (_WaitSet == nullptr) { 1976 return; 1977 } 1978 1979 DTRACE_MONITOR_PROBE(notifyAll, this, object(), current); 1980 int tally = 0; 1981 while (_WaitSet != nullptr) { 1982 tally++; 1983 INotify(current); 1984 } 1985 1986 OM_PERFDATA_OP(Notifications, inc(tally)); 1987 } 1988 1989 void ObjectMonitor::VThreadWait(JavaThread* current, jlong millis) { 1990 oop vthread = current->vthread(); 1991 ObjectWaiter* node = new ObjectWaiter(vthread, this); 1992 node->_is_wait = true; 1993 node->TState = ObjectWaiter::TS_WAIT; 1994 java_lang_VirtualThread::set_notified(vthread, false); // Reset notified flag 1995 1996 // Enter the waiting queue, which is a circular doubly linked list in this case 1997 // but it could be a priority queue or any data structure. 1998 // _WaitSetLock protects the wait queue. Normally the wait queue is accessed only 1999 // by the owner of the monitor *except* in the case where park() 2000 // returns because of a timeout or interrupt. Contention is exceptionally rare 2001 // so we use a simple spin-lock instead of a heavier-weight blocking lock. 2002 2003 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add"); 2004 AddWaiter(node); 2005 Thread::SpinRelease(&_WaitSetLock); 2006 2007 node->_recursions = _recursions; // record the old recursion count 2008 _recursions = 0; // set the recursion level to be 1 2009 _waiters++; // increment the number of waiters 2010 exit(current); // exit the monitor 2011 guarantee(owner_raw() != owner_for(current), "invariant"); 2012 2013 assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread"); 2014 java_lang_VirtualThread::set_state(vthread, millis == 0 ? java_lang_VirtualThread::WAITING : java_lang_VirtualThread::TIMED_WAITING); 2015 java_lang_VirtualThread::set_waitTimeout(vthread, millis); 2016 2017 // Save the ObjectWaiter* in the chunk since we will need it 2018 // when resuming execution. 2019 oop cont = java_lang_VirtualThread::continuation(vthread); 2020 stackChunkOop chunk = jdk_internal_vm_Continuation::tail(cont); 2021 chunk->set_object_waiter(node); 2022 } 2023 2024 bool ObjectMonitor::VThreadWaitReenter(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont) { 2025 // First time we run after being preempted on Object.wait(). 2026 // We need to check if we were interrupted or wait() timed-out 2027 // and in that case remove ourselves from the _WaitSet queue. 2028 if (node->TState == ObjectWaiter::TS_WAIT) { 2029 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink"); 2030 if (node->TState == ObjectWaiter::TS_WAIT) { 2031 DequeueSpecificWaiter(node); // unlink from WaitSet 2032 assert(!node->_notified, "invariant"); 2033 node->TState = ObjectWaiter::TS_RUN; 2034 } 2035 Thread::SpinRelease(&_WaitSetLock); 2036 } 2037 2038 ObjectWaiter::TStates state = node->TState; 2039 bool was_notified = state == ObjectWaiter::TS_ENTER || state == ObjectWaiter::TS_CXQ; 2040 assert(was_notified || state == ObjectWaiter::TS_RUN, ""); 2041 2042 // save it so that once we re-acquire the monitor we know if we need to throw IE. 2043 node->_interrupted = !was_notified && current->is_interrupted(false); 2044 2045 EventJavaMonitorWait event; 2046 if (event.should_commit() || JvmtiExport::should_post_monitor_waited()) { 2047 vthread_monitor_waited_event(current, node, cont, &event, !was_notified && !node->_interrupted); 2048 } 2049 2050 node->_at_reenter = true; 2051 assert(owner_raw() != owner_for(current), "invariant"); 2052 2053 if (!was_notified) { 2054 bool acquired = VThreadMonitorEnter(current, node); 2055 if (acquired) { 2056 guarantee(_recursions == 0, "invariant"); 2057 _recursions = node->_recursions; // restore the old recursion count 2058 _waiters--; // decrement the number of waiters 2059 2060 if (node->_interrupted) { 2061 // We will throw at thaw end after finishing the mount transition. 2062 current->set_pending_interrupted_exception(true); 2063 } 2064 2065 delete node; 2066 stackChunkOop chunk = cont.tail(); 2067 chunk->set_object_waiter(nullptr); 2068 return true; 2069 } 2070 } else { 2071 // Already moved to _cxq or _EntryList by notifier, so just add to contentions. 2072 add_to_contentions(1); 2073 } 2074 return false; 2075 } 2076 2077 // ----------------------------------------------------------------------------- 2078 // Adaptive Spinning Support 2079 // 2080 // Adaptive spin-then-block - rational spinning 2081 // 2082 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS 2083 // algorithm. On high order SMP systems it would be better to start with 2084 // a brief global spin and then revert to spinning locally. In the spirit of MCS/CLH, 2085 // a contending thread could enqueue itself on the cxq and then spin locally 2086 // on a thread-specific variable such as its ParkEvent._Event flag. 2087 // That's left as an exercise for the reader. Note that global spinning is 2088 // not problematic on Niagara, as the L2 cache serves the interconnect and 2089 // has both low latency and massive bandwidth. 2090 // 2091 // Broadly, we can fix the spin frequency -- that is, the % of contended lock 2092 // acquisition attempts where we opt to spin -- at 100% and vary the spin count 2093 // (duration) or we can fix the count at approximately the duration of 2094 // a context switch and vary the frequency. Of course we could also 2095 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor. 2096 // For a description of 'Adaptive spin-then-block mutual exclusion in 2097 // multi-threaded processing,' see U.S. Pat. No. 8046758. 2098 // 2099 // This implementation varies the duration "D", where D varies with 2100 // the success rate of recent spin attempts. (D is capped at approximately 2101 // length of a round-trip context switch). The success rate for recent 2102 // spin attempts is a good predictor of the success rate of future spin 2103 // attempts. The mechanism adapts automatically to varying critical 2104 // section length (lock modality), system load and degree of parallelism. 2105 // D is maintained per-monitor in _SpinDuration and is initialized 2106 // optimistically. Spin frequency is fixed at 100%. 2107 // 2108 // Note that _SpinDuration is volatile, but we update it without locks 2109 // or atomics. The code is designed so that _SpinDuration stays within 2110 // a reasonable range even in the presence of races. The arithmetic 2111 // operations on _SpinDuration are closed over the domain of legal values, 2112 // so at worst a race will install and older but still legal value. 2113 // At the very worst this introduces some apparent non-determinism. 2114 // We might spin when we shouldn't or vice-versa, but since the spin 2115 // count are relatively short, even in the worst case, the effect is harmless. 2116 // 2117 // Care must be taken that a low "D" value does not become an 2118 // an absorbing state. Transient spinning failures -- when spinning 2119 // is overall profitable -- should not cause the system to converge 2120 // on low "D" values. We want spinning to be stable and predictable 2121 // and fairly responsive to change and at the same time we don't want 2122 // it to oscillate, become metastable, be "too" non-deterministic, 2123 // or converge on or enter undesirable stable absorbing states. 2124 // 2125 // We implement a feedback-based control system -- using past behavior 2126 // to predict future behavior. We face two issues: (a) if the 2127 // input signal is random then the spin predictor won't provide optimal 2128 // results, and (b) if the signal frequency is too high then the control 2129 // system, which has some natural response lag, will "chase" the signal. 2130 // (b) can arise from multimodal lock hold times. Transient preemption 2131 // can also result in apparent bimodal lock hold times. 2132 // Although sub-optimal, neither condition is particularly harmful, as 2133 // in the worst-case we'll spin when we shouldn't or vice-versa. 2134 // The maximum spin duration is rather short so the failure modes aren't bad. 2135 // To be conservative, I've tuned the gain in system to bias toward 2136 // _not spinning. Relatedly, the system can sometimes enter a mode where it 2137 // "rings" or oscillates between spinning and not spinning. This happens 2138 // when spinning is just on the cusp of profitability, however, so the 2139 // situation is not dire. The state is benign -- there's no need to add 2140 // hysteresis control to damp the transition rate between spinning and 2141 // not spinning. 2142 2143 int ObjectMonitor::Knob_SpinLimit = 5000; // derived by an external tool 2144 2145 static int Knob_Bonus = 100; // spin success bonus 2146 static int Knob_Penalty = 200; // spin failure penalty 2147 static int Knob_Poverty = 1000; 2148 static int Knob_FixedSpin = 0; 2149 static int Knob_PreSpin = 10; // 20-100 likely better, but it's not better in my testing. 2150 2151 inline static int adjust_up(int spin_duration) { 2152 int x = spin_duration; 2153 if (x < ObjectMonitor::Knob_SpinLimit) { 2154 if (x < Knob_Poverty) { 2155 x = Knob_Poverty; 2156 } 2157 return x + Knob_Bonus; 2158 } else { 2159 return spin_duration; 2160 } 2161 } 2162 2163 inline static int adjust_down(int spin_duration) { 2164 // TODO: Use an AIMD-like policy to adjust _SpinDuration. 2165 // AIMD is globally stable. 2166 int x = spin_duration; 2167 if (x > 0) { 2168 // Consider an AIMD scheme like: x -= (x >> 3) + 100 2169 // This is globally sample and tends to damp the response. 2170 x -= Knob_Penalty; 2171 if (x < 0) { x = 0; } 2172 return x; 2173 } else { 2174 return spin_duration; 2175 } 2176 } 2177 2178 bool ObjectMonitor::short_fixed_spin(JavaThread* current, int spin_count, bool adapt) { 2179 for (int ctr = 0; ctr < spin_count; ctr++) { 2180 TryLockResult status = TryLock(current); 2181 if (status == TryLockResult::Success) { 2182 if (adapt) { 2183 _SpinDuration = adjust_up(_SpinDuration); 2184 } 2185 return true; 2186 } else if (status == TryLockResult::Interference) { 2187 break; 2188 } 2189 SpinPause(); 2190 } 2191 return false; 2192 } 2193 2194 // Spinning: Fixed frequency (100%), vary duration 2195 bool ObjectMonitor::TrySpin(JavaThread* current) { 2196 2197 // Dumb, brutal spin. Good for comparative measurements against adaptive spinning. 2198 int knob_fixed_spin = Knob_FixedSpin; // 0 (don't spin: default), 2000 good test 2199 if (knob_fixed_spin > 0) { 2200 return short_fixed_spin(current, knob_fixed_spin, false); 2201 } 2202 2203 // Admission control - verify preconditions for spinning 2204 // 2205 // We always spin a little bit, just to prevent _SpinDuration == 0 from 2206 // becoming an absorbing state. Put another way, we spin briefly to 2207 // sample, just in case the system load, parallelism, contention, or lock 2208 // modality changed. 2209 2210 int knob_pre_spin = Knob_PreSpin; // 10 (default), 100, 1000 or 2000 2211 if (short_fixed_spin(current, knob_pre_spin, true)) { 2212 return true; 2213 } 2214 2215 // 2216 // Consider the following alternative: 2217 // Periodically set _SpinDuration = _SpinLimit and try a long/full 2218 // spin attempt. "Periodically" might mean after a tally of 2219 // the # of failed spin attempts (or iterations) reaches some threshold. 2220 // This takes us into the realm of 1-out-of-N spinning, where we 2221 // hold the duration constant but vary the frequency. 2222 2223 int ctr = _SpinDuration; 2224 if (ctr <= 0) return false; 2225 2226 // We're good to spin ... spin ingress. 2227 // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades 2228 // when preparing to LD...CAS _owner, etc and the CAS is likely 2229 // to succeed. 2230 if (_succ == nullptr) { 2231 _succ = current; 2232 } 2233 void* prv = nullptr; 2234 2235 // There are three ways to exit the following loop: 2236 // 1. A successful spin where this thread has acquired the lock. 2237 // 2. Spin failure with prejudice 2238 // 3. Spin failure without prejudice 2239 2240 while (--ctr >= 0) { 2241 2242 // Periodic polling -- Check for pending GC 2243 // Threads may spin while they're unsafe. 2244 // We don't want spinning threads to delay the JVM from reaching 2245 // a stop-the-world safepoint or to steal cycles from GC. 2246 // If we detect a pending safepoint we abort in order that 2247 // (a) this thread, if unsafe, doesn't delay the safepoint, and (b) 2248 // this thread, if safe, doesn't steal cycles from GC. 2249 // This is in keeping with the "no loitering in runtime" rule. 2250 // We periodically check to see if there's a safepoint pending. 2251 if ((ctr & 0xFF) == 0) { 2252 // Can't call SafepointMechanism::should_process() since that 2253 // might update the poll values and we could be in a thread_blocked 2254 // state here which is not allowed so just check the poll. 2255 if (SafepointMechanism::local_poll_armed(current)) { 2256 break; 2257 } 2258 SpinPause(); 2259 } 2260 2261 // Probe _owner with TATAS 2262 // If this thread observes the monitor transition or flicker 2263 // from locked to unlocked to locked, then the odds that this 2264 // thread will acquire the lock in this spin attempt go down 2265 // considerably. The same argument applies if the CAS fails 2266 // or if we observe _owner change from one non-null value to 2267 // another non-null value. In such cases we might abort 2268 // the spin without prejudice or apply a "penalty" to the 2269 // spin count-down variable "ctr", reducing it by 100, say. 2270 2271 void* ox = owner_raw(); 2272 if (ox == nullptr) { 2273 ox = try_set_owner_from(nullptr, current); 2274 if (ox == nullptr) { 2275 // The CAS succeeded -- this thread acquired ownership 2276 // Take care of some bookkeeping to exit spin state. 2277 if (_succ == current) { 2278 _succ = nullptr; 2279 } 2280 2281 // Increase _SpinDuration : 2282 // The spin was successful (profitable) so we tend toward 2283 // longer spin attempts in the future. 2284 // CONSIDER: factor "ctr" into the _SpinDuration adjustment. 2285 // If we acquired the lock early in the spin cycle it 2286 // makes sense to increase _SpinDuration proportionally. 2287 // Note that we don't clamp SpinDuration precisely at SpinLimit. 2288 _SpinDuration = adjust_up(_SpinDuration); 2289 return true; 2290 } 2291 2292 // The CAS failed ... we can take any of the following actions: 2293 // * penalize: ctr -= CASPenalty 2294 // * exit spin with prejudice -- abort without adapting spinner 2295 // * exit spin without prejudice. 2296 // * Since CAS is high-latency, retry again immediately. 2297 break; 2298 } 2299 2300 // Did lock ownership change hands ? 2301 if (ox != prv && prv != nullptr) { 2302 break; 2303 } 2304 prv = ox; 2305 2306 if (_succ == nullptr) { 2307 _succ = current; 2308 } 2309 } 2310 2311 // Spin failed with prejudice -- reduce _SpinDuration. 2312 if (ctr < 0) { 2313 _SpinDuration = adjust_down(_SpinDuration); 2314 } 2315 2316 if (_succ == current) { 2317 _succ = nullptr; 2318 // Invariant: after setting succ=null a contending thread 2319 // must recheck-retry _owner before parking. This usually happens 2320 // in the normal usage of TrySpin(), but it's safest 2321 // to make TrySpin() as foolproof as possible. 2322 OrderAccess::fence(); 2323 if (TryLock(current) == TryLockResult::Success) { 2324 return true; 2325 } 2326 } 2327 2328 return false; 2329 } 2330 2331 2332 // ----------------------------------------------------------------------------- 2333 // WaitSet management ... 2334 2335 ObjectWaiter::ObjectWaiter(JavaThread* current) { 2336 _next = nullptr; 2337 _prev = nullptr; 2338 _thread = current; 2339 _monitor = nullptr; 2340 _notifier_tid = 0; 2341 _recursions = 0; 2342 TState = TS_RUN; 2343 _notified = false; 2344 _is_wait = false; 2345 _at_reenter = false; 2346 _interrupted = false; 2347 _active = false; 2348 } 2349 2350 ObjectWaiter::ObjectWaiter(oop vthread, ObjectMonitor* mon) : ObjectWaiter(nullptr) { 2351 assert(oopDesc::is_oop(vthread), ""); 2352 _vthread = OopHandle(JavaThread::thread_oop_storage(), vthread); 2353 _monitor = mon; 2354 } 2355 2356 ObjectWaiter::~ObjectWaiter() { 2357 if (is_vthread()) { 2358 assert(vthread() != nullptr, ""); 2359 _vthread.release(JavaThread::thread_oop_storage()); 2360 } 2361 } 2362 2363 oop ObjectWaiter::vthread() { 2364 return _vthread.resolve(); 2365 } 2366 2367 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) { 2368 _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon); 2369 } 2370 2371 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) { 2372 JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active); 2373 } 2374 2375 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) { 2376 assert(node != nullptr, "should not add null node"); 2377 assert(node->_prev == nullptr, "node already in list"); 2378 assert(node->_next == nullptr, "node already in list"); 2379 // put node at end of queue (circular doubly linked list) 2380 if (_WaitSet == nullptr) { 2381 _WaitSet = node; 2382 node->_prev = node; 2383 node->_next = node; 2384 } else { 2385 ObjectWaiter* head = _WaitSet; 2386 ObjectWaiter* tail = head->_prev; 2387 assert(tail->_next == head, "invariant check"); 2388 tail->_next = node; 2389 head->_prev = node; 2390 node->_next = head; 2391 node->_prev = tail; 2392 } 2393 } 2394 2395 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() { 2396 // dequeue the very first waiter 2397 ObjectWaiter* waiter = _WaitSet; 2398 if (waiter) { 2399 DequeueSpecificWaiter(waiter); 2400 } 2401 return waiter; 2402 } 2403 2404 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) { 2405 assert(node != nullptr, "should not dequeue nullptr node"); 2406 assert(node->_prev != nullptr, "node already removed from list"); 2407 assert(node->_next != nullptr, "node already removed from list"); 2408 // when the waiter has woken up because of interrupt, 2409 // timeout or other spurious wake-up, dequeue the 2410 // waiter from waiting list 2411 ObjectWaiter* next = node->_next; 2412 if (next == node) { 2413 assert(node->_prev == node, "invariant check"); 2414 _WaitSet = nullptr; 2415 } else { 2416 ObjectWaiter* prev = node->_prev; 2417 assert(prev->_next == node, "invariant check"); 2418 assert(next->_prev == node, "invariant check"); 2419 next->_prev = prev; 2420 prev->_next = next; 2421 if (_WaitSet == node) { 2422 _WaitSet = next; 2423 } 2424 } 2425 node->_next = nullptr; 2426 node->_prev = nullptr; 2427 } 2428 2429 // ----------------------------------------------------------------------------- 2430 // PerfData support 2431 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts = nullptr; 2432 PerfCounter * ObjectMonitor::_sync_FutileWakeups = nullptr; 2433 PerfCounter * ObjectMonitor::_sync_Parks = nullptr; 2434 PerfCounter * ObjectMonitor::_sync_Notifications = nullptr; 2435 PerfCounter * ObjectMonitor::_sync_Inflations = nullptr; 2436 PerfCounter * ObjectMonitor::_sync_Deflations = nullptr; 2437 PerfLongVariable * ObjectMonitor::_sync_MonExtant = nullptr; 2438 2439 // One-shot global initialization for the sync subsystem. 2440 // We could also defer initialization and initialize on-demand 2441 // the first time we call ObjectSynchronizer::inflate(). 2442 // Initialization would be protected - like so many things - by 2443 // the MonitorCache_lock. 2444 2445 void ObjectMonitor::Initialize() { 2446 assert(!InitDone, "invariant"); 2447 2448 if (!os::is_MP()) { 2449 Knob_SpinLimit = 0; 2450 Knob_PreSpin = 0; 2451 Knob_FixedSpin = -1; 2452 } 2453 2454 if (UsePerfData) { 2455 EXCEPTION_MARK; 2456 #define NEWPERFCOUNTER(n) \ 2457 { \ 2458 n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events, \ 2459 CHECK); \ 2460 } 2461 #define NEWPERFVARIABLE(n) \ 2462 { \ 2463 n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events, \ 2464 CHECK); \ 2465 } 2466 NEWPERFCOUNTER(_sync_Inflations); 2467 NEWPERFCOUNTER(_sync_Deflations); 2468 NEWPERFCOUNTER(_sync_ContendedLockAttempts); 2469 NEWPERFCOUNTER(_sync_FutileWakeups); 2470 NEWPERFCOUNTER(_sync_Parks); 2471 NEWPERFCOUNTER(_sync_Notifications); 2472 NEWPERFVARIABLE(_sync_MonExtant); 2473 #undef NEWPERFCOUNTER 2474 #undef NEWPERFVARIABLE 2475 } 2476 2477 _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer); 2478 2479 DEBUG_ONLY(InitDone = true;) 2480 } 2481 2482 void ObjectMonitor::Initialize2() { 2483 _vthread_cxq_head = OopHandle(JavaThread::thread_oop_storage(), nullptr); 2484 _vthread_unparker_ParkEvent = ParkEvent::Allocate(nullptr); 2485 } 2486 2487 void ObjectMonitor::print_on(outputStream* st) const { 2488 // The minimal things to print for markWord printing, more can be added for debugging and logging. 2489 st->print("{contentions=0x%08x,waiters=0x%08x" 2490 ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}", 2491 contentions(), waiters(), recursions(), 2492 p2i(owner())); 2493 } 2494 void ObjectMonitor::print() const { print_on(tty); } 2495 2496 #ifdef ASSERT 2497 // Print the ObjectMonitor like a debugger would: 2498 // 2499 // (ObjectMonitor) 0x00007fdfb6012e40 = { 2500 // _metadata = 0x0000000000000001 2501 // _object = 0x000000070ff45fd0 2502 // _pad_buf0 = { 2503 // [0] = '\0' 2504 // ... 2505 // [43] = '\0' 2506 // } 2507 // _owner = 0x0000000000000000 2508 // _previous_owner_tid = 0 2509 // _pad_buf1 = { 2510 // [0] = '\0' 2511 // ... 2512 // [47] = '\0' 2513 // } 2514 // _next_om = 0x0000000000000000 2515 // _recursions = 0 2516 // _EntryList = 0x0000000000000000 2517 // _cxq = 0x0000000000000000 2518 // _succ = 0x0000000000000000 2519 // _SpinDuration = 5000 2520 // _contentions = 0 2521 // _WaitSet = 0x0000700009756248 2522 // _waiters = 1 2523 // _WaitSetLock = 0 2524 // } 2525 // 2526 void ObjectMonitor::print_debug_style_on(outputStream* st) const { 2527 st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this)); 2528 st->print_cr(" _metadata = " INTPTR_FORMAT, _metadata); 2529 st->print_cr(" _object = " INTPTR_FORMAT, p2i(object_peek())); 2530 st->print_cr(" _pad_buf0 = {"); 2531 st->print_cr(" [0] = '\\0'"); 2532 st->print_cr(" ..."); 2533 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1); 2534 st->print_cr(" }"); 2535 st->print_cr(" _owner = " INTPTR_FORMAT, p2i(owner_raw())); 2536 st->print_cr(" _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid); 2537 st->print_cr(" _pad_buf1 = {"); 2538 st->print_cr(" [0] = '\\0'"); 2539 st->print_cr(" ..."); 2540 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1); 2541 st->print_cr(" }"); 2542 st->print_cr(" _next_om = " INTPTR_FORMAT, p2i(next_om())); 2543 st->print_cr(" _recursions = " INTX_FORMAT, _recursions); 2544 st->print_cr(" _EntryList = " INTPTR_FORMAT, p2i(_EntryList)); 2545 st->print_cr(" _cxq = " INTPTR_FORMAT, p2i(_cxq)); 2546 st->print_cr(" _succ = " INTPTR_FORMAT, p2i(_succ)); 2547 st->print_cr(" _SpinDuration = %d", _SpinDuration); 2548 st->print_cr(" _contentions = %d", contentions()); 2549 st->print_cr(" _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet)); 2550 st->print_cr(" _waiters = %d", _waiters); 2551 st->print_cr(" _WaitSetLock = %d", _WaitSetLock); 2552 st->print_cr("}"); 2553 } 2554 #endif