1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmSymbols.hpp"
  26 #include "gc/shared/oopStorage.hpp"
  27 #include "gc/shared/oopStorageSet.hpp"
  28 #include "jfr/jfrEvents.hpp"
  29 #include "jfr/support/jfrThreadId.hpp"
  30 #include "logging/log.hpp"
  31 #include "logging/logStream.hpp"
  32 #include "memory/allocation.inline.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/markWord.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "oops/oopHandle.inline.hpp"
  37 #include "oops/weakHandle.inline.hpp"
  38 #include "prims/jvmtiDeferredUpdates.hpp"
  39 #include "prims/jvmtiExport.hpp"
  40 #include "runtime/atomic.hpp"
  41 #include "runtime/continuationWrapper.inline.hpp"
  42 #include "runtime/globals.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/interfaceSupport.inline.hpp"
  45 #include "runtime/javaThread.inline.hpp"
  46 #include "runtime/lightweightSynchronizer.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/objectMonitor.hpp"
  49 #include "runtime/objectMonitor.inline.hpp"
  50 #include "runtime/orderAccess.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/safefetch.hpp"
  53 #include "runtime/safepointMechanism.inline.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/threads.hpp"
  56 #include "services/threadService.hpp"
  57 #include "utilities/debug.hpp"
  58 #include "utilities/dtrace.hpp"
  59 #include "utilities/globalCounter.inline.hpp"
  60 #include "utilities/globalDefinitions.hpp"
  61 #include "utilities/macros.hpp"
  62 #include "utilities/preserveException.hpp"
  63 #if INCLUDE_JFR
  64 #include "jfr/support/jfrFlush.hpp"
  65 #endif
  66 
  67 #ifdef DTRACE_ENABLED
  68 
  69 // Only bother with this argument setup if dtrace is available
  70 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  71 
  72 
  73 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  74   char* bytes = nullptr;                                                   \
  75   int len = 0;                                                             \
  76   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  77   Symbol* klassname = obj->klass()->name();                                \
  78   if (klassname != nullptr) {                                              \
  79     bytes = (char*)klassname->bytes();                                     \
  80     len = klassname->utf8_length();                                        \
  81   }
  82 
  83 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  84   {                                                                        \
  85     if (DTraceMonitorProbes) {                                             \
  86       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  87       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  88                            (monitor), bytes, len, (millis));               \
  89     }                                                                      \
  90   }
  91 
  92 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  93 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  94 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  95 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  96 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  97 
  98 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  99   {                                                                        \
 100     if (DTraceMonitorProbes) {                                             \
 101       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 102       HOTSPOT_MONITOR_##probe(jtid,                                        \
 103                               (uintptr_t)(monitor), bytes, len);           \
 104     }                                                                      \
 105   }
 106 
 107 #else //  ndef DTRACE_ENABLED
 108 
 109 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 110 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 111 
 112 #endif // ndef DTRACE_ENABLED
 113 
 114 DEBUG_ONLY(static volatile bool InitDone = false;)
 115 
 116 OopStorage* ObjectMonitor::_oop_storage = nullptr;
 117 
 118 OopHandle ObjectMonitor::_vthread_list_head;
 119 ParkEvent* ObjectMonitor::_vthread_unparker_ParkEvent = nullptr;
 120 
 121 // -----------------------------------------------------------------------------
 122 // Theory of operations -- Monitors lists, thread residency, etc:
 123 //
 124 // * A thread acquires ownership of a monitor by successfully
 125 //   CAS()ing the _owner field from NO_OWNER/DEFLATER_MARKER to
 126 //   its owner_id (return value from owner_id_from()).
 127 //
 128 // * Invariant: A thread appears on at most one monitor list --
 129 //   entry_list or wait_set -- at any one time.
 130 //
 131 // * Contending threads "push" themselves onto the entry_list with CAS
 132 //   and then spin/park.
 133 //   If the thread is a virtual thread it will first attempt to
 134 //   unmount itself. The virtual thread will first try to freeze
 135 //   all frames in the heap. If the operation fails it will just
 136 //   follow the regular path for platform threads. If the operation
 137 //   succeeds, it will push itself onto the entry_list with CAS and then
 138 //   return back to Java to continue the unmount logic.
 139 //
 140 // * After a contending thread eventually acquires the lock it must
 141 //   dequeue itself from the entry_list.
 142 //
 143 // * The exiting thread identifies and unparks an "heir presumptive"
 144 //   tentative successor thread on the entry_list. In case the successor
 145 //   is an unmounted virtual thread, the exiting thread will first try
 146 //   to add it to the list of vthreads waiting to be unblocked, and on
 147 //   success it will unpark the special unblocker thread instead, which
 148 //   will be in charge of submitting the vthread back to the scheduler
 149 //   queue. Critically, the exiting thread doesn't unlink the successor
 150 //   thread from the entry_list. After having been unparked/re-scheduled,
 151 //   the wakee will recontend for ownership of the monitor. The successor
 152 //   (wakee) will either acquire the lock or re-park/unmount itself.
 153 //
 154 //   Succession is provided for by a policy of competitive handoff.
 155 //   The exiting thread does _not_ grant or pass ownership to the
 156 //   successor thread.  (This is also referred to as "handoff succession").
 157 //   Instead the exiting thread releases ownership and possibly wakes
 158 //   a successor, so the successor can (re)compete for ownership of the lock.
 159 //
 160 // * The entry_list forms a queue of threads stalled trying to acquire
 161 //   the lock. Within the entry_list the next pointers always form a
 162 //   consistent singly linked list. At unlock-time when the unlocking
 163 //   thread notices that the tail of the entry_list is not known, we
 164 //   convert the singly linked entry_list into a doubly linked list by
 165 //   assigning the prev pointers and the entry_list_tail pointer.
 166 //
 167 //   Example:
 168 //
 169 //   The first contending thread that "pushed" itself onto entry_list,
 170 //   will be the last thread in the list. Each newly pushed thread in
 171 //   entry_list will be linked through its next pointer, and have its
 172 //   prev pointer set to null. Thus pushing six threads A-F (in that
 173 //   order) onto entry_list, will form a singly linked list, see 1)
 174 //   below.
 175 //
 176 //      1)  entry_list       ->F->E->D->C->B->A->null
 177 //          entry_list_tail  ->null
 178 //
 179 //   Since the successor is chosen in FIFO order, the exiting thread
 180 //   needs to find the tail of the entry_list. This is done by walking
 181 //   from the entry_list head. While walking the list we also assign
 182 //   the prev pointers of each thread, essentially forming a doubly
 183 //   linked list, see 2) below.
 184 //
 185 //      2)  entry_list       ->F<=>E<=>D<=>C<=>B<=>A->null
 186 //          entry_list_tail  ----------------------^
 187 //
 188 //   Once we have formed a doubly linked list it's easy to find the
 189 //   successor (A), wake it up, have it remove itself, and update the
 190 //   tail pointer, as seen in and 3) below.
 191 //
 192 //      3)  entry_list       ->F<=>E<=>D<=>C<=>B->null
 193 //          entry_list_tail  ------------------^
 194 //
 195 //   At any time new threads can add themselves to the entry_list, see
 196 //   4) below.
 197 //
 198 //      4)  entry_list       ->I->H->G->F<=>E<=>D->null
 199 //          entry_list_tail  -------------------^
 200 //
 201 //   At some point in time the thread (F) that wants to remove itself
 202 //   from the end of the list, will not have any prev pointer, see 5)
 203 //   below.
 204 //
 205 //      5)  entry_list       ->I->H->G->F->null
 206 //          entry_list_tail  -----------^
 207 //
 208 //   To resolve this we just start walking from the entry_list head
 209 //   again, forming a new doubly linked list, before removing the
 210 //   thread (F), see 6) and 7) below.
 211 //
 212 //      6)  entry_list       ->I<=>H<=>G<=>F->null
 213 //          entry_list_tail  --------------^
 214 //
 215 //      7)  entry_list       ->I<=>H<=>G->null
 216 //          entry_list_tail  ----------^
 217 //
 218 // * The monitor itself protects all of the operations on the
 219 //   entry_list except for the CAS of a new arrival to the head. Only
 220 //   the monitor owner can read or write the prev links (e.g. to
 221 //   remove itself) or update the tail.
 222 //
 223 // * The monitor entry list operations avoid locks, but strictly speaking
 224 //   they're not lock-free.  Enter is lock-free, exit is not.
 225 //   For a description of 'Methods and apparatus providing non-blocking access
 226 //   to a resource,' see U.S. Pat. No. 7844973.
 227 //
 228 // * The entry_list can have multiple concurrent "pushers" but only
 229 //   one concurrent detaching thread. There is no ABA-problem with
 230 //   this usage of CAS.
 231 //
 232 // * As long as the entry_list_tail is known the odds are good that we
 233 //   should be able to dequeue after acquisition (in the ::enter()
 234 //   epilogue) in constant-time. This is good since a key desideratum
 235 //   is to minimize queue & monitor metadata manipulation that occurs
 236 //   while holding the monitor lock -- that is, we want to minimize
 237 //   monitor lock holds times. Note that even a small amount of fixed
 238 //   spinning will greatly reduce the # of enqueue-dequeue operations
 239 //   on entry_list. That is, spinning relieves contention on the
 240 //   "inner" locks and monitor metadata.
 241 //
 242 //   Insert and delete operations may not operate in constant-time if
 243 //   we have interference because some other thread is adding or
 244 //   removing the head element of entry_list or if we need to convert
 245 //   the singly linked entry_list into a doubly linked list to find the
 246 //   tail.
 247 //
 248 // * The monitor synchronization subsystem avoids the use of native
 249 //   synchronization primitives except for the narrow platform-specific
 250 //   park-unpark abstraction. See the comments in os_posix.cpp regarding
 251 //   the semantics of park-unpark. Put another way, this monitor implementation
 252 //   depends only on atomic operations and park-unpark.
 253 //
 254 // * Waiting threads reside on the wait_set list -- wait() puts
 255 //   the caller onto the wait_set.
 256 //
 257 // * notify() or notifyAll() simply transfers threads from the wait_set
 258 //   to the entry_list. Subsequent exit() operations will
 259 //   unpark/re-schedule the notifyee. Unparking/re-scheduling a
 260 //   notifyee in notify() is inefficient - it's likely the notifyee
 261 //   would simply impale itself on the lock held by the notifier.
 262 
 263 // Check that object() and set_object() are called from the right context:
 264 static void check_object_context() {
 265 #ifdef ASSERT
 266   Thread* self = Thread::current();
 267   if (self->is_Java_thread()) {
 268     // Mostly called from JavaThreads so sanity check the thread state.
 269     JavaThread* jt = JavaThread::cast(self);
 270     switch (jt->thread_state()) {
 271     case _thread_in_vm:    // the usual case
 272     case _thread_in_Java:  // during deopt
 273       break;
 274     default:
 275       fatal("called from an unsafe thread state");
 276     }
 277     assert(jt->is_active_Java_thread(), "must be active JavaThread");
 278   } else {
 279     // However, ThreadService::get_current_contended_monitor()
 280     // can call here via the VMThread so sanity check it.
 281     assert(self->is_VM_thread(), "must be");
 282   }
 283 #endif // ASSERT
 284 }
 285 
 286 ObjectMonitor::ObjectMonitor(oop object) :
 287   _metadata(0),
 288   _object(_oop_storage, object),
 289   _owner(NO_OWNER),
 290   _previous_owner_tid(0),
 291   _next_om(nullptr),
 292   _recursions(0),
 293   _entry_list(nullptr),
 294   _entry_list_tail(nullptr),
 295   _succ(NO_OWNER),
 296   _SpinDuration(ObjectMonitor::Knob_SpinLimit),
 297   _contentions(0),
 298   _unmounted_vthreads(0),
 299   _wait_set(nullptr),
 300   _waiters(0),
 301   _wait_set_lock(0),
 302   _stack_locker(nullptr)
 303 { }
 304 
 305 ObjectMonitor::~ObjectMonitor() {
 306   _object.release(_oop_storage);
 307 }
 308 
 309 oop ObjectMonitor::object() const {
 310   check_object_context();
 311   return _object.resolve();
 312 }
 313 
 314 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) {
 315   if (current->is_suspended()) {
 316     _om->_recursions = 0;
 317     _om->clear_successor();
 318     // Don't need a full fence after clearing successor here because of the call to exit().
 319     _om->exit(current, false /* not_suspended */);
 320     _om_exited = true;
 321 
 322     current->set_current_pending_monitor(_om);
 323   }
 324 }
 325 
 326 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) {
 327   if (current->is_suspended()) {
 328     if (_om->has_successor(current)) {
 329       _om->clear_successor();
 330       OrderAccess::fence(); // always do a full fence when successor is cleared
 331     }
 332   }
 333 }
 334 
 335 #define assert_mark_word_consistency()                                         \
 336   assert(UseObjectMonitorTable || object()->mark() == markWord::encode(this),  \
 337          "object mark must match encoded this: mark=" INTPTR_FORMAT            \
 338          ", encoded this=" INTPTR_FORMAT, object()->mark().value(),            \
 339          markWord::encode(this).value());
 340 
 341 // -----------------------------------------------------------------------------
 342 // Enter support
 343 
 344 bool ObjectMonitor::enter_is_async_deflating() {
 345   if (is_being_async_deflated()) {
 346     if (!UseObjectMonitorTable) {
 347       const oop l_object = object();
 348       if (l_object != nullptr) {
 349         // Attempt to restore the header/dmw to the object's header so that
 350         // we only retry once if the deflater thread happens to be slow.
 351         install_displaced_markword_in_object(l_object);
 352       }
 353     }
 354     return true;
 355   }
 356 
 357   return false;
 358 }
 359 
 360 bool ObjectMonitor::try_lock_with_contention_mark(JavaThread* locking_thread, ObjectMonitorContentionMark& contention_mark) {
 361   assert(contention_mark._monitor == this, "must be");
 362   assert(!is_being_async_deflated(), "must be");
 363 
 364   int64_t prev_owner = try_set_owner_from(NO_OWNER, locking_thread);
 365   bool success = false;
 366 
 367   if (prev_owner == NO_OWNER) {
 368     assert(_recursions == 0, "invariant");
 369     success = true;
 370   } else if (prev_owner == owner_id_from(locking_thread)) {
 371     _recursions++;
 372     success = true;
 373   } else if (prev_owner == DEFLATER_MARKER) {
 374     // Racing with deflation.
 375     prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread);
 376     if (prev_owner == DEFLATER_MARKER) {
 377       // We successfully cancelled the in-progress async deflation by
 378       // changing owner from DEFLATER_MARKER to current.  We now extend
 379       // the lifetime of the contention_mark (e.g. contentions++) here
 380       // to prevent the deflater thread from winning the last part of
 381       // the 2-part async deflation protocol after the regular
 382       // decrement occurs when the contention_mark goes out of
 383       // scope. ObjectMonitor::deflate_monitor() which is called by
 384       // the deflater thread will decrement contentions after it
 385       // recognizes that the async deflation was cancelled.
 386       contention_mark.extend();
 387       success = true;
 388     } else if (prev_owner == NO_OWNER) {
 389       // At this point we cannot race with deflation as we have both incremented
 390       // contentions, seen contention > 0 and seen a DEFLATER_MARKER.
 391       // success will only be false if this races with something other than
 392       // deflation.
 393       prev_owner = try_set_owner_from(NO_OWNER, locking_thread);
 394       success = prev_owner == NO_OWNER;
 395     }
 396   }
 397   assert(!success || has_owner(locking_thread), "must be");
 398 
 399   return success;
 400 }
 401 
 402 void ObjectMonitor::enter_for_with_contention_mark(JavaThread* locking_thread, ObjectMonitorContentionMark& contention_mark) {
 403   // Used by LightweightSynchronizer::inflate_and_enter in deoptimization path to enter for another thread.
 404   // The monitor is private to or already owned by locking_thread which must be suspended.
 405   // So this code may only contend with deflation.
 406   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 407   bool success = try_lock_with_contention_mark(locking_thread, contention_mark);
 408 
 409   assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT
 410          ", this=" INTPTR_FORMAT "{owner=" INT64_FORMAT "}",
 411          p2i(locking_thread), p2i(this), owner_raw());
 412 }
 413 
 414 bool ObjectMonitor::enter_for(JavaThread* locking_thread) {
 415   // Used by ObjectSynchronizer::enter_for() to enter for another thread.
 416   // The monitor is private to or already owned by locking_thread which must be suspended.
 417   // So this code may only contend with deflation.
 418   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 419 
 420   // Block out deflation as soon as possible.
 421   ObjectMonitorContentionMark contention_mark(this);
 422 
 423   // Check for deflation.
 424   if (enter_is_async_deflating()) {
 425     return false;
 426   }
 427 
 428   bool success = try_lock_with_contention_mark(locking_thread, contention_mark);
 429 
 430   assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT
 431          ", this=" INTPTR_FORMAT "{owner=" INT64_FORMAT "}",
 432          p2i(locking_thread), p2i(this), owner_raw());
 433   assert(has_owner(locking_thread), "must be");
 434   return true;
 435 }
 436 
 437 bool ObjectMonitor::try_enter(JavaThread* current, bool check_for_recursion) {
 438   // TryLock avoids the CAS and handles deflation.
 439   TryLockResult r = try_lock(current);
 440   if (r == TryLockResult::Success) {
 441     assert(_recursions == 0, "invariant");
 442     return true;
 443   }
 444 
 445   // If called from SharedRuntime::monitor_exit_helper(), we know that
 446   // this thread doesn't already own the lock.
 447   if (!check_for_recursion) {
 448     return false;
 449   }
 450 
 451   if (r == TryLockResult::HasOwner && has_owner(current)) {
 452     _recursions++;
 453     return true;
 454   }
 455 
 456   return false;
 457 }
 458 
 459 bool ObjectMonitor::spin_enter(JavaThread* current) {
 460   assert(current == JavaThread::current(), "must be");
 461 
 462   // Check for recursion.
 463   if (try_enter(current)) {
 464     return true;
 465   }
 466 
 467   // Check for deflation.
 468   if (enter_is_async_deflating()) {
 469     return false;
 470   }
 471 
 472   // We've encountered genuine contention.
 473 
 474   // Do one round of spinning.
 475   // Note that if we acquire the monitor from an initial spin
 476   // we forgo posting JVMTI events and firing DTRACE probes.
 477   if (try_spin(current)) {
 478     assert(has_owner(current), "must be current: owner=" INT64_FORMAT, owner_raw());
 479     assert(_recursions == 0, "must be 0: recursions=%zd", _recursions);
 480     assert_mark_word_consistency();
 481     return true;
 482   }
 483 
 484   return false;
 485 }
 486 
 487 bool ObjectMonitor::enter(JavaThread* current) {
 488   assert(current == JavaThread::current(), "must be");
 489 
 490   if (spin_enter(current)) {
 491     return true;
 492   }
 493 
 494   assert(!has_owner(current), "invariant");
 495   assert(!has_successor(current), "invariant");
 496   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 497   assert(current->thread_state() != _thread_blocked, "invariant");
 498 
 499   // Keep is_being_async_deflated stable across the rest of enter
 500   ObjectMonitorContentionMark contention_mark(this);
 501 
 502   // Check for deflation.
 503   if (enter_is_async_deflating()) {
 504     return false;
 505   }
 506 
 507   // At this point this ObjectMonitor cannot be deflated, finish contended enter
 508   enter_with_contention_mark(current, contention_mark);
 509   return true;
 510 }
 511 
 512 void ObjectMonitor::notify_contended_enter(JavaThread* current) {
 513   current->set_current_pending_monitor(this);
 514 
 515   DTRACE_MONITOR_PROBE(contended__enter, this, object(), current);
 516   if (JvmtiExport::should_post_monitor_contended_enter()) {
 517     JvmtiExport::post_monitor_contended_enter(current, this);
 518 
 519     // The current thread does not yet own the monitor and does not
 520     // yet appear on any queues that would get it made the successor.
 521     // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 522     // handler cannot accidentally consume an unpark() meant for the
 523     // ParkEvent associated with this ObjectMonitor.
 524   }
 525 }
 526 
 527 void ObjectMonitor::enter_with_contention_mark(JavaThread* current, ObjectMonitorContentionMark &cm) {
 528   assert(current == JavaThread::current(), "must be");
 529   assert(!has_owner(current), "must be");
 530   assert(cm._monitor == this, "must be");
 531   assert(!is_being_async_deflated(), "must be");
 532 
 533   JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);)
 534   EventJavaMonitorEnter enter_event;
 535   if (enter_event.is_started()) {
 536     enter_event.set_monitorClass(object()->klass());
 537     // Set an address that is 'unique enough', such that events close in
 538     // time and with the same address are likely (but not guaranteed) to
 539     // belong to the same object.
 540     enter_event.set_address((uintptr_t)this);
 541   }
 542   EventVirtualThreadPinned vthread_pinned_event;
 543 
 544   freeze_result result;
 545 
 546   assert(current->current_pending_monitor() == nullptr, "invariant");
 547 
 548   ContinuationEntry* ce = current->last_continuation();
 549   bool is_virtual = ce != nullptr && ce->is_virtual_thread();
 550   if (is_virtual) {
 551     notify_contended_enter(current);
 552     result = Continuation::try_preempt(current, ce->cont_oop(current));
 553     if (result == freeze_ok) {
 554       bool acquired = vthread_monitor_enter(current);
 555       if (acquired) {
 556         // We actually acquired the monitor while trying to add the vthread to the
 557         // _entry_list so cancel preemption. We will still go through the preempt stub
 558         // but instead of unmounting we will call thaw to continue execution.
 559         current->set_preemption_cancelled(true);
 560         if (JvmtiExport::should_post_monitor_contended_entered()) {
 561           // We are going to call thaw again after this and finish the VMTS
 562           // transition so no need to do it here. We will post the event there.
 563           current->set_contended_entered_monitor(this);
 564         }
 565       }
 566       current->set_current_pending_monitor(nullptr);
 567       DEBUG_ONLY(int state = java_lang_VirtualThread::state(current->vthread()));
 568       assert((acquired && current->preemption_cancelled() && state == java_lang_VirtualThread::RUNNING) ||
 569              (!acquired && !current->preemption_cancelled() && state == java_lang_VirtualThread::BLOCKING), "invariant");
 570       return;
 571     }
 572   }
 573 
 574   {
 575     // Change java thread status to indicate blocked on monitor enter.
 576     JavaThreadBlockedOnMonitorEnterState jtbmes(current, this);
 577 
 578     if (!is_virtual) { // already notified contended_enter for virtual
 579       notify_contended_enter(current);
 580     }
 581     OSThreadContendState osts(current->osthread());
 582 
 583     assert(current->thread_state() == _thread_in_vm, "invariant");
 584 
 585     for (;;) {
 586       ExitOnSuspend eos(this);
 587       {
 588         ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */);
 589         enter_internal(current);
 590         current->set_current_pending_monitor(nullptr);
 591         // We can go to a safepoint at the end of this block. If we
 592         // do a thread dump during that safepoint, then this thread will show
 593         // as having "-locked" the monitor, but the OS and java.lang.Thread
 594         // states will still report that the thread is blocked trying to
 595         // acquire it.
 596         // If there is a suspend request, ExitOnSuspend will exit the OM
 597         // and set the OM as pending.
 598       }
 599       if (!eos.exited()) {
 600         // ExitOnSuspend did not exit the OM
 601         assert(has_owner(current), "invariant");
 602         break;
 603       }
 604     }
 605 
 606     // We've just gotten past the enter-check-for-suspend dance and we now own
 607     // the monitor free and clear.
 608   }
 609 
 610   assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
 611 
 612   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 613   assert(_recursions == 0, "invariant");
 614   assert(has_owner(current), "invariant");
 615   assert(!has_successor(current), "invariant");
 616   assert_mark_word_consistency();
 617 
 618   // The thread -- now the owner -- is back in vm mode.
 619   // Report the glorious news via TI,DTrace and jvmstat.
 620   // The probe effect is non-trivial.  All the reportage occurs
 621   // while we hold the monitor, increasing the length of the critical
 622   // section.  Amdahl's parallel speedup law comes vividly into play.
 623   //
 624   // Another option might be to aggregate the events (thread local or
 625   // per-monitor aggregation) and defer reporting until a more opportune
 626   // time -- such as next time some thread encounters contention but has
 627   // yet to acquire the lock.  While spinning that thread could
 628   // spinning we could increment JVMStat counters, etc.
 629 
 630   DTRACE_MONITOR_PROBE(contended__entered, this, object(), current);
 631   if (JvmtiExport::should_post_monitor_contended_entered()) {
 632     JvmtiExport::post_monitor_contended_entered(current, this);
 633 
 634     // The current thread already owns the monitor and is not going to
 635     // call park() for the remainder of the monitor enter protocol. So
 636     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 637     // event handler consumed an unpark() issued by the thread that
 638     // just exited the monitor.
 639   }
 640   if (enter_event.should_commit()) {
 641     enter_event.set_previousOwner(_previous_owner_tid);
 642     enter_event.commit();
 643   }
 644 
 645   if (current->current_waiting_monitor() == nullptr) {
 646     ContinuationEntry* ce = current->last_continuation();
 647     if (ce != nullptr && ce->is_virtual_thread()) {
 648       current->post_vthread_pinned_event(&vthread_pinned_event, "Contended monitor enter", result);
 649     }
 650   }
 651 }
 652 
 653 // Caveat: try_lock() is not necessarily serializing if it returns failure.
 654 // Callers must compensate as needed.
 655 
 656 ObjectMonitor::TryLockResult ObjectMonitor::try_lock(JavaThread* current) {
 657   int64_t own = owner_raw();
 658   int64_t first_own = own;
 659 
 660   for (;;) {
 661     if (own == DEFLATER_MARKER) {
 662       // Block out deflation as soon as possible.
 663       ObjectMonitorContentionMark contention_mark(this);
 664 
 665       // Check for deflation.
 666       if (enter_is_async_deflating()) {
 667         // Treat deflation as interference.
 668         return TryLockResult::Interference;
 669       }
 670       if (try_lock_with_contention_mark(current, contention_mark)) {
 671         assert(_recursions == 0, "invariant");
 672         return TryLockResult::Success;
 673       } else {
 674         // Deflation won or change of owner; dont spin
 675         break;
 676       }
 677     } else if (own == NO_OWNER) {
 678       int64_t prev_own = try_set_owner_from(NO_OWNER, current);
 679       if (prev_own == NO_OWNER) {
 680         assert(_recursions == 0, "invariant");
 681         return TryLockResult::Success;
 682       } else {
 683         // The lock had been free momentarily, but we lost the race to the lock.
 684         own = prev_own;
 685       }
 686     } else {
 687       // Retry doesn't make as much sense because the lock was just acquired.
 688       break;
 689     }
 690   }
 691   return first_own == own ? TryLockResult::HasOwner : TryLockResult::Interference;
 692 }
 693 
 694 // Push "current" onto the head of the _entry_list. Once on _entry_list,
 695 // current stays on-queue until it acquires the lock.
 696 void ObjectMonitor::add_to_entry_list(JavaThread* current, ObjectWaiter* node) {
 697   node->_prev   = nullptr;
 698   node->TState  = ObjectWaiter::TS_ENTER;
 699 
 700   for (;;) {
 701     ObjectWaiter* head = Atomic::load(&_entry_list);
 702     node->_next = head;
 703     if (Atomic::cmpxchg(&_entry_list, head, node) == head) {
 704       return;
 705     }
 706   }
 707 }
 708 
 709 // Push "current" onto the head of the entry_list.
 710 // If the _entry_list was changed during our push operation, we try to
 711 // lock the monitor. Returns true if we locked the monitor, and false
 712 // if we added current to _entry_list. Once on _entry_list, current
 713 // stays on-queue until it acquires the lock.
 714 bool ObjectMonitor::try_lock_or_add_to_entry_list(JavaThread* current, ObjectWaiter* node) {
 715   node->_prev   = nullptr;
 716   node->TState  = ObjectWaiter::TS_ENTER;
 717 
 718   for (;;) {
 719     ObjectWaiter* head = Atomic::load(&_entry_list);
 720     node->_next = head;
 721     if (Atomic::cmpxchg(&_entry_list, head, node) == head) {
 722       return false;
 723     }
 724 
 725     // Interference - the CAS failed because _entry_list changed.  Before
 726     // retrying the CAS retry taking the lock as it may now be free.
 727     if (try_lock(current) == TryLockResult::Success) {
 728       assert(!has_successor(current), "invariant");
 729       assert(has_owner(current), "invariant");
 730       return true;
 731     }
 732   }
 733 }
 734 
 735 static void post_monitor_deflate_event(EventJavaMonitorDeflate* event,
 736                                        const oop obj) {
 737   assert(event != nullptr, "invariant");
 738   if (obj == nullptr) {
 739     // Accept the case when obj was already garbage-collected.
 740     // Emit the event anyway, but without details.
 741     event->set_monitorClass(nullptr);
 742     event->set_address(0);
 743   } else {
 744     const Klass* monitor_klass = obj->klass();
 745     if (ObjectMonitor::is_jfr_excluded(monitor_klass)) {
 746       return;
 747     }
 748     event->set_monitorClass(monitor_klass);
 749     event->set_address((uintptr_t)(void*)obj);
 750   }
 751   event->commit();
 752 }
 753 
 754 // Deflate the specified ObjectMonitor if not in-use. Returns true if it
 755 // was deflated and false otherwise.
 756 //
 757 // The async deflation protocol sets owner to DEFLATER_MARKER and
 758 // makes contentions negative as signals to contending threads that
 759 // an async deflation is in progress. There are a number of checks
 760 // as part of the protocol to make sure that the calling thread has
 761 // not lost the race to a contending thread.
 762 //
 763 // The ObjectMonitor has been successfully async deflated when:
 764 //   (contentions < 0)
 765 // Contending threads that see that condition know to retry their operation.
 766 //
 767 bool ObjectMonitor::deflate_monitor(Thread* current) {
 768   if (is_busy()) {
 769     // Easy checks are first - the ObjectMonitor is busy so no deflation.
 770     return false;
 771   }
 772 
 773   EventJavaMonitorDeflate event;
 774 
 775   const oop obj = object_peek();
 776 
 777   if (obj == nullptr) {
 778     // If the object died, we can recycle the monitor without racing with
 779     // Java threads. The GC already broke the association with the object.
 780     set_owner_from_raw(NO_OWNER, DEFLATER_MARKER);
 781     assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions());
 782     _contentions = INT_MIN; // minimum negative int
 783   } else {
 784     // Attempt async deflation protocol.
 785 
 786     // Set a null owner to DEFLATER_MARKER to force any contending thread
 787     // through the slow path. This is just the first part of the async
 788     // deflation dance.
 789     if (try_set_owner_from_raw(NO_OWNER, DEFLATER_MARKER) != NO_OWNER) {
 790       // The owner field is no longer null so we lost the race since the
 791       // ObjectMonitor is now busy.
 792       return false;
 793     }
 794 
 795     if (contentions() > 0 || _waiters != 0) {
 796       // Another thread has raced to enter the ObjectMonitor after
 797       // is_busy() above or has already entered and waited on
 798       // it which makes it busy so no deflation. Restore owner to
 799       // null if it is still DEFLATER_MARKER.
 800       if (try_set_owner_from_raw(DEFLATER_MARKER, NO_OWNER) != DEFLATER_MARKER) {
 801         // Deferred decrement for the JT enter_internal() that cancelled the async deflation.
 802         add_to_contentions(-1);
 803       }
 804       return false;
 805     }
 806 
 807     // Make a zero contentions field negative to force any contending threads
 808     // to retry. This is the second part of the async deflation dance.
 809     if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) {
 810       // Contentions was no longer 0 so we lost the race since the
 811       // ObjectMonitor is now busy. Restore owner to null if it is
 812       // still DEFLATER_MARKER:
 813       if (try_set_owner_from_raw(DEFLATER_MARKER, NO_OWNER) != DEFLATER_MARKER) {
 814         // Deferred decrement for the JT enter_internal() that cancelled the async deflation.
 815         add_to_contentions(-1);
 816       }
 817       return false;
 818     }
 819   }
 820 
 821   // Sanity checks for the races:
 822   guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker");
 823   guarantee(contentions() < 0, "must be negative: contentions=%d",
 824             contentions());
 825   guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters);
 826   ObjectWaiter* w = Atomic::load(&_entry_list);
 827   guarantee(w == nullptr,
 828             "must be no entering threads: entry_list=" INTPTR_FORMAT,
 829             p2i(w));
 830 
 831   if (obj != nullptr) {
 832     if (log_is_enabled(Trace, monitorinflation)) {
 833       ResourceMark rm;
 834       log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT
 835                                   ", mark=" INTPTR_FORMAT ", type='%s'",
 836                                   p2i(obj), obj->mark().value(),
 837                                   obj->klass()->external_name());
 838     }
 839   }
 840 
 841   if (UseObjectMonitorTable) {
 842     LightweightSynchronizer::deflate_monitor(current, obj, this);
 843   } else if (obj != nullptr) {
 844     // Install the old mark word if nobody else has already done it.
 845     install_displaced_markword_in_object(obj);
 846   }
 847 
 848   if (event.should_commit()) {
 849     post_monitor_deflate_event(&event, obj);
 850   }
 851 
 852   // We leave owner == DEFLATER_MARKER and contentions < 0
 853   // to force any racing threads to retry.
 854   return true;  // Success, ObjectMonitor has been deflated.
 855 }
 856 
 857 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 858 // into the header of the object associated with the monitor. This
 859 // idempotent method is called by a thread that is deflating a
 860 // monitor and by other threads that have detected a race with the
 861 // deflation process.
 862 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 863   assert(!UseObjectMonitorTable, "ObjectMonitorTable has no dmw");
 864   // This function must only be called when (owner == DEFLATER_MARKER
 865   // && contentions <= 0), but we can't guarantee that here because
 866   // those values could change when the ObjectMonitor gets moved from
 867   // the global free list to a per-thread free list.
 868 
 869   guarantee(obj != nullptr, "must be non-null");
 870 
 871   // Separate loads in is_being_async_deflated(), which is almost always
 872   // called before this function, from the load of dmw/header below.
 873 
 874   // _contentions and dmw/header may get written by different threads.
 875   // Make sure to observe them in the same order when having several observers.
 876   OrderAccess::loadload_for_IRIW();
 877 
 878   const oop l_object = object_peek();
 879   if (l_object == nullptr) {
 880     // ObjectMonitor's object ref has already been cleared by async
 881     // deflation or GC so we're done here.
 882     return;
 883   }
 884   assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj="
 885          INTPTR_FORMAT, p2i(l_object), p2i(obj));
 886 
 887   markWord dmw = header();
 888   // The dmw has to be neutral (not null, not locked and not marked).
 889   assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 890 
 891   // Install displaced mark word if the object's header still points
 892   // to this ObjectMonitor. More than one racing caller to this function
 893   // can rarely reach this point, but only one can win.
 894   markWord res = obj->cas_set_mark(dmw, markWord::encode(this));
 895   if (res != markWord::encode(this)) {
 896     // This should be rare so log at the Info level when it happens.
 897     log_info(monitorinflation)("install_displaced_markword_in_object: "
 898                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 899                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 900                                dmw.value(), markWord::encode(this).value(),
 901                                res.value());
 902   }
 903 
 904   // Note: It does not matter which thread restored the header/dmw
 905   // into the object's header. The thread deflating the monitor just
 906   // wanted the object's header restored and it is. The threads that
 907   // detected a race with the deflation process also wanted the
 908   // object's header restored before they retry their operation and
 909   // because it is restored they will only retry once.
 910 }
 911 
 912 // Convert the fields used by is_busy() to a string that can be
 913 // used for diagnostic output.
 914 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 915   ss->print("is_busy: waiters=%d"
 916             ", contentions=%d"
 917             ", owner=" INT64_FORMAT
 918             ", entry_list=" PTR_FORMAT,
 919             _waiters,
 920             (contentions() > 0 ? contentions() : 0),
 921             owner_is_DEFLATER_MARKER()
 922                 // We report null instead of DEFLATER_MARKER here because is_busy()
 923                 // ignores DEFLATER_MARKER values.
 924                 ? NO_OWNER
 925                 : owner_raw(),
 926             p2i(_entry_list));
 927   return ss->base();
 928 }
 929 
 930 void ObjectMonitor::enter_internal(JavaThread* current) {
 931   assert(current->thread_state() == _thread_blocked, "invariant");
 932 
 933   // Try the lock - TATAS
 934   if (try_lock(current) == TryLockResult::Success) {
 935     assert(!has_successor(current), "invariant");
 936     assert(has_owner(current), "invariant");
 937     return;
 938   }
 939 
 940   assert(InitDone, "Unexpectedly not initialized");
 941 
 942   // We try one round of spinning *before* enqueueing current.
 943   //
 944   // If the _owner is ready but OFFPROC we could use a YieldTo()
 945   // operation to donate the remainder of this thread's quantum
 946   // to the owner.  This has subtle but beneficial affinity
 947   // effects.
 948 
 949   if (try_spin(current)) {
 950     assert(has_owner(current), "invariant");
 951     assert(!has_successor(current), "invariant");
 952     return;
 953   }
 954 
 955   // The Spin failed -- Enqueue and park the thread ...
 956   assert(!has_successor(current), "invariant");
 957   assert(!has_owner(current), "invariant");
 958 
 959   // Enqueue "current" on ObjectMonitor's _entry_list.
 960   //
 961   // Node acts as a proxy for current.
 962   // As an aside, if were to ever rewrite the synchronization code mostly
 963   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 964   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 965   // as well as eliminate a subset of ABA issues.
 966   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 967 
 968   ObjectWaiter node(current);
 969   current->_ParkEvent->reset();
 970 
 971   if (try_lock_or_add_to_entry_list(current, &node)) {
 972     return; // We got the lock.
 973   }
 974   // This thread is now added to the _entry_list.
 975 
 976   // The lock might have been released while this thread was occupied queueing
 977   // itself onto _entry_list.  To close the race and avoid "stranding" and
 978   // progress-liveness failure we must resample-retry _owner before parking.
 979   // Note the Dekker/Lamport duality: ST _entry_list; MEMBAR; LD Owner.
 980   // In this case the ST-MEMBAR is accomplished with CAS().
 981   //
 982   // TODO: Defer all thread state transitions until park-time.
 983   // Since state transitions are heavy and inefficient we'd like
 984   // to defer the state transitions until absolutely necessary,
 985   // and in doing so avoid some transitions ...
 986 
 987   // If there are unmounted virtual threads in the _entry_list do a timed-park
 988   // instead to alleviate some deadlocks cases where one of them is picked as
 989   // the successor but cannot run due to having run out of carriers. This can
 990   // happen, for example, if this is a pinned virtual thread currently loading
 991   // or initializining a class, and all other carriers have a pinned vthread
 992   // waiting for said class to be loaded/initialized.
 993   // Read counter *after* adding this thread to the _entry_list.
 994   // Adding to _entry_list uses Atomic::cmpxchg() which already provides
 995   // a fence that prevents this load from floating up previous store.
 996   bool do_timed_parked = has_unmounted_vthreads();
 997   static int MAX_RECHECK_INTERVAL = 1000;
 998   int recheck_interval = 1;
 999 
1000   for (;;) {
1001 
1002     if (try_lock(current) == TryLockResult::Success) {
1003       break;
1004     }
1005     assert(!has_owner(current), "invariant");
1006 
1007     // park self
1008     if (do_timed_parked) {
1009       current->_ParkEvent->park((jlong) recheck_interval);
1010       // Increase the recheck_interval, but clamp the value.
1011       recheck_interval *= 8;
1012       if (recheck_interval > MAX_RECHECK_INTERVAL) {
1013         recheck_interval = MAX_RECHECK_INTERVAL;
1014       }
1015     } else {
1016       current->_ParkEvent->park();
1017     }
1018 
1019     if (try_lock(current) == TryLockResult::Success) {
1020       break;
1021     }
1022 
1023     // The lock is still contested.
1024 
1025     // Assuming this is not a spurious wakeup we'll normally find _succ == current.
1026     // We can defer clearing _succ until after the spin completes
1027     // try_spin() must tolerate being called with _succ == current.
1028     // Try yet another round of adaptive spinning.
1029     if (try_spin(current)) {
1030       break;
1031     }
1032 
1033     // We can find that we were unpark()ed and redesignated _succ while
1034     // we were spinning.  That's harmless.  If we iterate and call park(),
1035     // park() will consume the event and return immediately and we'll
1036     // just spin again.  This pattern can repeat, leaving _succ to simply
1037     // spin on a CPU.
1038 
1039     if (has_successor(current)) clear_successor();
1040 
1041     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
1042     OrderAccess::fence();
1043   }
1044 
1045   // Egress :
1046   // Current has acquired the lock -- Unlink current from the _entry_list.
1047   unlink_after_acquire(current, &node);
1048   if (has_successor(current)) {
1049     clear_successor();
1050     // Note that we don't need to do OrderAccess::fence() after clearing
1051     // _succ here, since we own the lock.
1052   }
1053 
1054   // We've acquired ownership with CAS().
1055   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
1056   // But since the CAS() this thread may have also stored into _succ
1057   // or entry_list.  These meta-data updates must be visible __before
1058   // this thread subsequently drops the lock.
1059   // Consider what could occur if we didn't enforce this constraint --
1060   // STs to monitor meta-data and user-data could reorder with (become
1061   // visible after) the ST in exit that drops ownership of the lock.
1062   // Some other thread could then acquire the lock, but observe inconsistent
1063   // or old monitor meta-data and heap data.  That violates the JMM.
1064   // To that end, the exit() operation must have at least STST|LDST
1065   // "release" barrier semantics.  Specifically, there must be at least a
1066   // STST|LDST barrier in exit() before the ST of null into _owner that drops
1067   // the lock.   The barrier ensures that changes to monitor meta-data and data
1068   // protected by the lock will be visible before we release the lock, and
1069   // therefore before some other thread (CPU) has a chance to acquire the lock.
1070   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
1071   //
1072   // Critically, any prior STs to _succ or entry_list must be visible before
1073   // the ST of null into _owner in the *subsequent* (following) corresponding
1074   // monitorexit.
1075 
1076   return;
1077 }
1078 
1079 // reenter_internal() is a specialized inline form of the latter half of the
1080 // contended slow-path from enter_internal().  We use reenter_internal() only for
1081 // monitor reentry in wait().
1082 //
1083 // In the future we should reconcile enter_internal() and reenter_internal().
1084 
1085 void ObjectMonitor::reenter_internal(JavaThread* current, ObjectWaiter* currentNode) {
1086   assert(current != nullptr, "invariant");
1087   assert(current->thread_state() != _thread_blocked, "invariant");
1088   assert(currentNode != nullptr, "invariant");
1089   assert(currentNode->_thread == current, "invariant");
1090   assert(_waiters > 0, "invariant");
1091   assert_mark_word_consistency();
1092 
1093   // If there are unmounted virtual threads in the _entry_list do a timed-park
1094   // instead to alleviate some deadlocks cases where one of them is picked as
1095   // the successor but cannot run due to having run out of carriers. This can
1096   // happen, for example, if this is a pinned virtual thread (or plain carrier)
1097   // waiting for a class to be initialized.
1098   // In theory we only get here in the "notification" case where the thread has
1099   // already been added to the _entry_list. But if the thread happened to be interrupted
1100   // at the same time it was being notified, we could have read a state of TS_ENTER
1101   // that led us here but the thread hasn't been added yet to the queue. In that
1102   // case getting a false value from has_unmounted_vthreads() is not a guarantee
1103   // that vthreads weren't added before this thread to the _entry_list. We will live
1104   // with this corner case not only because it would be very rare, but also because
1105   // if there are several carriers blocked in this same situation, this would only
1106   // happen for the first one notified.
1107   bool do_timed_parked = has_unmounted_vthreads();
1108   static int MAX_RECHECK_INTERVAL = 1000;
1109   int recheck_interval = 1;
1110 
1111   for (;;) {
1112     ObjectWaiter::TStates v = currentNode->TState;
1113     guarantee(v == ObjectWaiter::TS_ENTER, "invariant");
1114     assert(!has_owner(current), "invariant");
1115 
1116     // This thread has been notified so try to reacquire the lock.
1117     if (try_lock(current) == TryLockResult::Success) {
1118       break;
1119     }
1120 
1121     // If that fails, spin again.  Note that spin count may be zero so the above TryLock
1122     // is necessary.
1123     if (try_spin(current)) {
1124         break;
1125     }
1126 
1127     {
1128       OSThreadContendState osts(current->osthread());
1129 
1130       assert(current->thread_state() == _thread_in_vm, "invariant");
1131 
1132       {
1133         ClearSuccOnSuspend csos(this);
1134         ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1135         if (do_timed_parked) {
1136           current->_ParkEvent->park((jlong) recheck_interval);
1137           // Increase the recheck_interval, but clamp the value.
1138           recheck_interval *= 8;
1139           if (recheck_interval > MAX_RECHECK_INTERVAL) {
1140             recheck_interval = MAX_RECHECK_INTERVAL;
1141           }
1142         } else {
1143           current->_ParkEvent->park();
1144         }
1145       }
1146     }
1147 
1148     // Try again, but just so we distinguish between futile wakeups and
1149     // successful wakeups.  The following test isn't algorithmically
1150     // necessary, but it helps us maintain sensible statistics.
1151     if (try_lock(current) == TryLockResult::Success) {
1152       break;
1153     }
1154 
1155     // The lock is still contested.
1156 
1157     // Assuming this is not a spurious wakeup we'll normally
1158     // find that _succ == current.
1159     if (has_successor(current)) clear_successor();
1160 
1161     // Invariant: after clearing _succ a contending thread
1162     // *must* retry  _owner before parking.
1163     OrderAccess::fence();
1164   }
1165 
1166   // Current has acquired the lock -- Unlink current from the _entry_list.
1167   assert(has_owner(current), "invariant");
1168   assert_mark_word_consistency();
1169   unlink_after_acquire(current, currentNode);
1170   if (has_successor(current)) clear_successor();
1171   assert(!has_successor(current), "invariant");
1172   currentNode->TState = ObjectWaiter::TS_RUN;
1173   OrderAccess::fence();      // see comments at the end of enter_internal()
1174 }
1175 
1176 // This method is called from two places:
1177 // - On monitorenter contention with a null waiter.
1178 // - After Object.wait() times out or the target is interrupted to reenter the
1179 //   monitor, with the existing waiter.
1180 // For the Object.wait() case we do not delete the ObjectWaiter in case we
1181 // succesfully acquire the monitor since we are going to need it on return.
1182 bool ObjectMonitor::vthread_monitor_enter(JavaThread* current, ObjectWaiter* waiter) {
1183   if (try_lock(current) == TryLockResult::Success) {
1184     assert(has_owner(current), "invariant");
1185     assert(!has_successor(current), "invariant");
1186     return true;
1187   }
1188 
1189   oop vthread = current->vthread();
1190   ObjectWaiter* node = waiter != nullptr ? waiter : new ObjectWaiter(vthread, this);
1191 
1192   // Increment counter *before* adding the vthread to the _entry_list.
1193   // Adding to _entry_list uses Atomic::cmpxchg() which already provides
1194   // a fence that prevents reordering of the stores.
1195   inc_unmounted_vthreads();
1196 
1197   if (try_lock_or_add_to_entry_list(current, node)) {
1198     // We got the lock.
1199     if (waiter == nullptr) delete node;  // for Object.wait() don't delete yet
1200     dec_unmounted_vthreads();
1201     return true;
1202   }
1203   // This thread is now added to the entry_list.
1204 
1205   // We have to try once more since owner could have exited monitor and checked
1206   // _entry_list before we added the node to the queue.
1207   if (try_lock(current) == TryLockResult::Success) {
1208     assert(has_owner(current), "invariant");
1209     unlink_after_acquire(current, node);
1210     if (has_successor(current)) clear_successor();
1211     if (waiter == nullptr) delete node;  // for Object.wait() don't delete yet
1212     dec_unmounted_vthreads();
1213     return true;
1214   }
1215 
1216   assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
1217   java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING);
1218 
1219   // We didn't succeed in acquiring the monitor so increment _contentions and
1220   // save ObjectWaiter* in the vthread since we will need it when resuming execution.
1221   add_to_contentions(1);
1222   java_lang_VirtualThread::set_objectWaiter(vthread, node);
1223   return false;
1224 }
1225 
1226 // Called from thaw code to resume the monitor operation that caused the vthread
1227 // to be unmounted. Method returns true if the monitor is successfully acquired,
1228 // which marks the end of the monitor operation, otherwise it returns false.
1229 bool ObjectMonitor::resume_operation(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont) {
1230   assert(java_lang_VirtualThread::state(current->vthread()) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
1231   assert(!has_owner(current), "");
1232 
1233   if (node->is_wait() && !node->at_reenter()) {
1234     bool acquired_monitor = vthread_wait_reenter(current, node, cont);
1235     if (acquired_monitor) return true;
1236   }
1237 
1238   // Retry acquiring monitor...
1239 
1240   int state = node->TState;
1241   guarantee(state == ObjectWaiter::TS_ENTER, "invariant");
1242 
1243   if (try_lock(current) == TryLockResult::Success) {
1244     vthread_epilog(current, node);
1245     return true;
1246   }
1247 
1248   oop vthread = current->vthread();
1249   if (has_successor(current)) clear_successor();
1250 
1251   // Invariant: after clearing _succ a thread *must* retry acquiring the monitor.
1252   OrderAccess::fence();
1253 
1254   if (try_lock(current) == TryLockResult::Success) {
1255     vthread_epilog(current, node);
1256     return true;
1257   }
1258 
1259   // We will return to Continuation.run() and unmount so set the right state.
1260   java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING);
1261 
1262   return false;
1263 }
1264 
1265 void ObjectMonitor::vthread_epilog(JavaThread* current, ObjectWaiter* node) {
1266   assert(has_owner(current), "invariant");
1267   add_to_contentions(-1);
1268   dec_unmounted_vthreads();
1269 
1270   if (has_successor(current)) clear_successor();
1271 
1272   guarantee(_recursions == 0, "invariant");
1273 
1274   if (node->is_wait()) {
1275     _recursions = node->_recursions;   // restore the old recursion count
1276     _waiters--;                        // decrement the number of waiters
1277 
1278     if (node->_interrupted) {
1279       // We will throw at thaw end after finishing the mount transition.
1280       current->set_pending_interrupted_exception(true);
1281     }
1282   }
1283 
1284   unlink_after_acquire(current, node);
1285   delete node;
1286 
1287   // Clear the ObjectWaiter* from the vthread.
1288   java_lang_VirtualThread::set_objectWaiter(current->vthread(), nullptr);
1289 
1290   if (JvmtiExport::should_post_monitor_contended_entered()) {
1291     // We are going to call thaw again after this and finish the VMTS
1292     // transition so no need to do it here. We will post the event there.
1293     current->set_contended_entered_monitor(this);
1294   }
1295 }
1296 
1297 // Convert entry_list into a doubly linked list by assigning the prev
1298 // pointers and the entry_list_tail pointer (if needed). Within the
1299 // entry_list the next pointers always form a consistent singly linked
1300 // list. When this function is called, the entry_list will be either
1301 // singly linked, or starting as singly linked (at the head), but
1302 // ending as doubly linked (at the tail).
1303 void ObjectMonitor::entry_list_build_dll(JavaThread* current) {
1304   assert(has_owner(current), "invariant");
1305   ObjectWaiter* prev = nullptr;
1306   // Need acquire here to match the implicit release of the cmpxchg
1307   // that updated entry_list, so we can access w->prev().
1308   ObjectWaiter* w = Atomic::load_acquire(&_entry_list);
1309   assert(w != nullptr, "should only be called when entry list is not empty");
1310   while (w != nullptr) {
1311     assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1312     assert(w->prev() == nullptr || w->prev() == prev, "invariant");
1313     if (w->prev() != nullptr) {
1314       break;
1315     }
1316     w->_prev = prev;
1317     prev = w;
1318     w = w->next();
1319   }
1320   if (w == nullptr) {
1321     // We converted the entire entry_list from a singly linked list
1322     // into a doubly linked list. Now we just need to set the tail
1323     // pointer.
1324     assert(prev != nullptr && prev->next() == nullptr, "invariant");
1325     assert(_entry_list_tail == nullptr || _entry_list_tail == prev, "invariant");
1326     _entry_list_tail = prev;
1327   } else {
1328 #ifdef ASSERT
1329     // We stopped iterating through the _entry_list when we found a
1330     // node that had its prev pointer set. I.e. we converted the first
1331     // part of the entry_list from a singly linked list into a doubly
1332     // linked list. Now we just want to make sure the rest of the list
1333     // is doubly linked. But first we check that we have a tail
1334     // pointer, because if the end of the entry_list is doubly linked
1335     // and we don't have the tail pointer, something is broken.
1336     assert(_entry_list_tail != nullptr, "invariant");
1337     while (w != nullptr) {
1338       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1339       assert(w->prev() == prev, "invariant");
1340       prev = w;
1341       w = w->next();
1342     }
1343     assert(_entry_list_tail == prev, "invariant");
1344 #endif
1345   }
1346 }
1347 
1348 // Return the tail of the _entry_list. If the tail is currently not
1349 // known, it can be found by first calling entry_list_build_dll().
1350 ObjectWaiter* ObjectMonitor::entry_list_tail(JavaThread* current) {
1351   assert(has_owner(current), "invariant");
1352   ObjectWaiter* w = _entry_list_tail;
1353   if (w != nullptr) {
1354     return w;
1355   }
1356   entry_list_build_dll(current);
1357   w = _entry_list_tail;
1358   assert(w != nullptr, "invariant");
1359   return w;
1360 }
1361 
1362 // By convention we unlink a contending thread from _entry_list
1363 // immediately after the thread acquires the lock in ::enter().
1364 // The head of _entry_list is volatile but the interior is stable.
1365 // In addition, current.TState is stable.
1366 
1367 void ObjectMonitor::unlink_after_acquire(JavaThread* current, ObjectWaiter* currentNode) {
1368   assert(has_owner(current), "invariant");
1369   assert((!currentNode->is_vthread() && currentNode->thread() == current) ||
1370          (currentNode->is_vthread() && currentNode->vthread() == current->vthread()), "invariant");
1371 
1372   // Check if we are unlinking the last element in the _entry_list.
1373   // This is by far the most common case.
1374   if (currentNode->next() == nullptr) {
1375     assert(_entry_list_tail == nullptr || _entry_list_tail == currentNode, "invariant");
1376 
1377     ObjectWaiter* w = Atomic::load(&_entry_list);
1378     if (w == currentNode) {
1379       // The currentNode is the only element in _entry_list.
1380       if (Atomic::cmpxchg(&_entry_list, w, (ObjectWaiter*)nullptr) == w) {
1381         _entry_list_tail = nullptr;
1382         currentNode->set_bad_pointers();
1383         return;
1384       }
1385       // The CAS above can fail from interference IFF a contending
1386       // thread "pushed" itself onto entry_list. So fall-through to
1387       // building the doubly linked list.
1388       assert(currentNode->prev() == nullptr, "invariant");
1389     }
1390     if (currentNode->prev() == nullptr) {
1391       // Build the doubly linked list to get hold of
1392       // currentNode->prev().
1393       entry_list_build_dll(current);
1394       assert(currentNode->prev() != nullptr, "must be");
1395       assert(_entry_list_tail == currentNode, "must be");
1396     }
1397     // The currentNode is the last element in _entry_list and we know
1398     // which element is the previous one.
1399     assert(_entry_list != currentNode, "invariant");
1400     _entry_list_tail = currentNode->prev();
1401     _entry_list_tail->_next = nullptr;
1402     currentNode->set_bad_pointers();
1403     return;
1404   }
1405 
1406   // If we get here it means the current thread enqueued itself on the
1407   // _entry_list but was then able to "steal" the lock before the
1408   // chosen successor was able to. Consequently currentNode must be an
1409   // interior node in the _entry_list, or the head.
1410   assert(currentNode->next() != nullptr, "invariant");
1411   assert(currentNode != _entry_list_tail, "invariant");
1412 
1413   // Check if we are in the singly linked portion of the
1414   // _entry_list. If we are the head then we try to remove ourselves,
1415   // else we convert to the doubly linked list.
1416   if (currentNode->prev() == nullptr) {
1417     ObjectWaiter* w = Atomic::load(&_entry_list);
1418 
1419     assert(w != nullptr, "invariant");
1420     if (w == currentNode) {
1421       ObjectWaiter* next = currentNode->next();
1422       // currentNode is at the head of _entry_list.
1423       if (Atomic::cmpxchg(&_entry_list, w, next) == w) {
1424         // The CAS above sucsessfully unlinked currentNode from the
1425         // head of the _entry_list.
1426         assert(_entry_list != w, "invariant");
1427         next->_prev = nullptr;
1428         currentNode->set_bad_pointers();
1429         return;
1430       } else {
1431         // The CAS above can fail from interference IFF a contending
1432         // thread "pushed" itself onto _entry_list, in which case
1433         // currentNode must now be in the interior of the
1434         // list. Fall-through to building the doubly linked list.
1435         assert(_entry_list != currentNode, "invariant");
1436       }
1437     }
1438     // Build the doubly linked list to get hold of currentNode->prev().
1439     entry_list_build_dll(current);
1440     assert(currentNode->prev() != nullptr, "must be");
1441   }
1442 
1443   // We now know we are unlinking currentNode from the interior of a
1444   // doubly linked list.
1445   assert(currentNode->next() != nullptr, "");
1446   assert(currentNode->prev() != nullptr, "");
1447   assert(currentNode != _entry_list, "");
1448   assert(currentNode != _entry_list_tail, "");
1449 
1450   ObjectWaiter* nxt = currentNode->next();
1451   ObjectWaiter* prv = currentNode->prev();
1452   assert(nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
1453   assert(prv->TState == ObjectWaiter::TS_ENTER, "invariant");
1454 
1455   nxt->_prev = prv;
1456   prv->_next = nxt;
1457   currentNode->set_bad_pointers();
1458 }
1459 
1460 // -----------------------------------------------------------------------------
1461 // Exit support
1462 //
1463 // exit()
1464 // ~~~~~~
1465 // Note that the collector can't reclaim the objectMonitor or deflate
1466 // the object out from underneath the thread calling ::exit() as the
1467 // thread calling ::exit() never transitions to a stable state.
1468 // This inhibits GC, which in turn inhibits asynchronous (and
1469 // inopportune) reclamation of "this".
1470 //
1471 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
1472 // There's one exception to the claim above, however.  enter_internal() can call
1473 // exit() to drop a lock if the acquirer has been externally suspended.
1474 // In that case exit() is called with _thread_state == _thread_blocked,
1475 // but the monitor's _contentions field is > 0, which inhibits reclamation.
1476 //
1477 // This is the exit part of the locking protocol, often implemented in
1478 // C2_MacroAssembler::fast_unlock()
1479 //
1480 //   1. A release barrier ensures that changes to monitor meta-data
1481 //      (_succ, _entry_list) and data protected by the lock will be
1482 //      visible before we release the lock.
1483 //   2. Release the lock by clearing the owner.
1484 //   3. A storeload MEMBAR is needed between releasing the owner and
1485 //      subsequently reading meta-data to safely determine if the lock is
1486 //      contended (step 4) without an elected successor (step 5).
1487 //   4. If _entry_list is null, we are done, since there is no
1488 //      other thread waiting on the lock to wake up. I.e. there is no
1489 //      contention.
1490 //   5. If there is a successor (_succ is non-null), we are done. The
1491 //      responsibility for guaranteeing progress-liveness has now implicitly
1492 //      been moved from the exiting thread to the successor.
1493 //   6. There are waiters in the entry list (_entry_list is non-null),
1494 //      but there is no successor (_succ is null), so we need to
1495 //      wake up (unpark) a waiting thread to avoid stranding.
1496 //
1497 // Note that since only the current lock owner can manipulate the
1498 // _entry_list (except for pushing new threads to the head), we need to
1499 // reacquire the lock before we can wake up (unpark) a waiting thread.
1500 //
1501 // The CAS() in enter provides for safety and exclusion, while the
1502 // MEMBAR in exit provides for progress and avoids stranding.
1503 //
1504 // There is also the risk of a futile wake-up. If we drop the lock
1505 // another thread can reacquire the lock immediately, and we can
1506 // then wake a thread unnecessarily. This is benign, and we've
1507 // structured the code so the windows are short and the frequency
1508 // of such futile wakups is low.
1509 
1510 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) {
1511   if (!has_owner(current)) {
1512     // Apparent unbalanced locking ...
1513     // Naively we'd like to throw IllegalMonitorStateException.
1514     // As a practical matter we can neither allocate nor throw an
1515     // exception as ::exit() can be called from leaf routines.
1516     // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1517     // Upon deeper reflection, however, in a properly run JVM the only
1518     // way we should encounter this situation is in the presence of
1519     // unbalanced JNI locking. TODO: CheckJNICalls.
1520     // See also: CR4414101
1521 #ifdef ASSERT
1522     LogStreamHandle(Error, monitorinflation) lsh;
1523     lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
1524                   " is exiting an ObjectMonitor it does not own.", p2i(current));
1525     lsh.print_cr("The imbalance is possibly caused by JNI locking.");
1526     print_debug_style_on(&lsh);
1527     assert(false, "Non-balanced monitor enter/exit!");
1528 #endif
1529     return;
1530   }
1531 
1532   if (_recursions != 0) {
1533     _recursions--;        // this is simple recursive enter
1534     return;
1535   }
1536 
1537 #if INCLUDE_JFR
1538   // get the owner's thread id for the MonitorEnter event
1539   // if it is enabled and the thread isn't suspended
1540   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1541     _previous_owner_tid = JFR_THREAD_ID(current);
1542   }
1543 #endif
1544 
1545   for (;;) {
1546     assert(has_owner(current), "invariant");
1547 
1548     // Drop the lock.
1549     // release semantics: prior loads and stores from within the critical section
1550     // must not float (reorder) past the following store that drops the lock.
1551     // Uses a storeload to separate release_store(owner) from the
1552     // successor check. The try_set_owner_from() below uses cmpxchg() so
1553     // we get the fence down there.
1554     release_clear_owner(current);
1555     OrderAccess::storeload();
1556 
1557     // Normally the exiting thread is responsible for ensuring succession,
1558     // but if this thread observes other successors are ready or other
1559     // entering threads are spinning after it has stored null into _owner
1560     // then it can exit without waking a successor.  The existence of
1561     // spinners or ready successors guarantees proper succession (liveness).
1562     // Responsibility passes to the ready or running successors.  The exiting
1563     // thread delegates the duty.  More precisely, if a successor already
1564     // exists this thread is absolved of the responsibility of waking
1565     // (unparking) one.
1566 
1567     // The _succ variable is critical to reducing futile wakeup frequency.
1568     // _succ identifies the "heir presumptive" thread that has been made
1569     // ready (unparked) but that has not yet run.  We need only one such
1570     // successor thread to guarantee progress.
1571     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1572     // section 3.3 "Futile Wakeup Throttling" for details.
1573     //
1574     // Note that spinners in Enter() also set _succ non-null.
1575     // In the current implementation spinners opportunistically set
1576     // _succ so that exiting threads might avoid waking a successor.
1577     // Which means that the exiting thread could exit immediately without
1578     // waking a successor, if it observes a successor after it has dropped
1579     // the lock.  Note that the dropped lock needs to become visible to the
1580     // spinner.
1581 
1582     if (_entry_list == nullptr || has_successor()) {
1583       return;
1584     }
1585 
1586     // Other threads are blocked trying to acquire the lock and there
1587     // is no successor, so it appears that an heir-presumptive
1588     // (successor) must be made ready. Only the current lock owner can
1589     // detach threads from the entry_list, therefore we need to
1590     // reacquire the lock. If we fail to reacquire the lock the
1591     // responsibility for ensuring succession falls to the new owner.
1592 
1593     if (try_lock(current) != TryLockResult::Success) {
1594       // Some other thread acquired the lock (or the monitor was
1595       // deflated). Either way we are done.
1596       return;
1597     }
1598 
1599     guarantee(has_owner(current), "invariant");
1600 
1601     ObjectWaiter* w = nullptr;
1602 
1603     w = Atomic::load(&_entry_list);
1604     if (w != nullptr) {
1605       w = entry_list_tail(current);
1606       // I'd like to write: guarantee (w->_thread != current).
1607       // But in practice an exiting thread may find itself on the entry_list.
1608       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1609       // then calls exit().  Exit release the lock by setting O._owner to null.
1610       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1611       // notify() operation moves T1 from O's waitset to O's entry_list. T2 then
1612       // release the lock "O".  T1 resumes immediately after the ST of null into
1613       // _owner, above.  T1 notices that the entry_list is populated, so it
1614       // reacquires the lock and then finds itself on the entry_list.
1615       // Given all that, we have to tolerate the circumstance where "w" is
1616       // associated with current.
1617       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1618       exit_epilog(current, w);
1619       return;
1620     }
1621   }
1622 }
1623 
1624 void ObjectMonitor::exit_epilog(JavaThread* current, ObjectWaiter* Wakee) {
1625   assert(has_owner(current), "invariant");
1626 
1627   // Exit protocol:
1628   // 1. ST _succ = wakee
1629   // 2. membar #loadstore|#storestore;
1630   // 2. ST _owner = nullptr
1631   // 3. unpark(wakee)
1632 
1633   oop vthread = nullptr;
1634   ParkEvent * Trigger;
1635   if (!Wakee->is_vthread()) {
1636     JavaThread* t = Wakee->thread();
1637     assert(t != nullptr, "");
1638     Trigger = t->_ParkEvent;
1639     set_successor(t);
1640   } else {
1641     vthread = Wakee->vthread();
1642     assert(vthread != nullptr, "");
1643     Trigger = ObjectMonitor::vthread_unparker_ParkEvent();
1644     set_successor(vthread);
1645   }
1646 
1647   // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again.
1648   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1649   // out-of-scope (non-extant).
1650   Wakee  = nullptr;
1651 
1652   // Drop the lock.
1653   // Uses a fence to separate release_store(owner) from the LD in unpark().
1654   release_clear_owner(current);
1655   OrderAccess::fence();
1656 
1657   DTRACE_MONITOR_PROBE(contended__exit, this, object(), current);
1658 
1659   if (vthread == nullptr) {
1660     // Platform thread case.
1661     Trigger->unpark();
1662   } else if (java_lang_VirtualThread::set_onWaitingList(vthread, vthread_list_head())) {
1663     // Virtual thread case.
1664     Trigger->unpark();
1665   }
1666 }
1667 
1668 // Exits the monitor returning recursion count. _owner should
1669 // be set to current's owner_id, i.e. no ANONYMOUS_OWNER allowed.
1670 intx ObjectMonitor::complete_exit(JavaThread* current) {
1671   assert(InitDone, "Unexpectedly not initialized");
1672   guarantee(has_owner(current), "complete_exit not owner");
1673 
1674   intx save = _recursions; // record the old recursion count
1675   _recursions = 0;         // set the recursion level to be 0
1676   exit(current);           // exit the monitor
1677   guarantee(!has_owner(current), "invariant");
1678   return save;
1679 }
1680 
1681 // Checks that the current THREAD owns this monitor and causes an
1682 // immediate return if it doesn't. We don't use the CHECK macro
1683 // because we want the IMSE to be the only exception that is thrown
1684 // from the call site when false is returned. Any other pending
1685 // exception is ignored.
1686 #define CHECK_OWNER()                                                  \
1687   do {                                                                 \
1688     if (!check_owner(THREAD)) {                                        \
1689        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1690        return;                                                         \
1691      }                                                                 \
1692   } while (false)
1693 
1694 // Returns true if the specified thread owns the ObjectMonitor.
1695 // Otherwise returns false and throws IllegalMonitorStateException
1696 // (IMSE). If there is a pending exception and the specified thread
1697 // is not the owner, that exception will be replaced by the IMSE.
1698 bool ObjectMonitor::check_owner(TRAPS) {
1699   JavaThread* current = THREAD;
1700   int64_t cur = owner_raw();
1701   if (cur == owner_id_from(current)) {
1702     return true;
1703   }
1704   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1705              "current thread is not owner", false);
1706 }
1707 
1708 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1709                                     ObjectMonitor* monitor,
1710                                     uint64_t notifier_tid,
1711                                     jlong timeout,
1712                                     bool timedout) {
1713   assert(event != nullptr, "invariant");
1714   assert(monitor != nullptr, "invariant");
1715   const Klass* monitor_klass = monitor->object()->klass();
1716   if (ObjectMonitor::is_jfr_excluded(monitor_klass)) {
1717     return;
1718   }
1719   event->set_monitorClass(monitor_klass);
1720   event->set_timeout(timeout);
1721   // Set an address that is 'unique enough', such that events close in
1722   // time and with the same address are likely (but not guaranteed) to
1723   // belong to the same object.
1724   event->set_address((uintptr_t)monitor);
1725   event->set_notifier(notifier_tid);
1726   event->set_timedOut(timedout);
1727   event->commit();
1728 }
1729 
1730 static void vthread_monitor_waited_event(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont, EventJavaMonitorWait* event, jboolean timed_out) {
1731   // Since we might safepoint set the anchor so that the stack can we walked.
1732   assert(current->last_continuation() != nullptr, "");
1733   JavaFrameAnchor* anchor = current->frame_anchor();
1734   anchor->set_last_Java_sp(current->last_continuation()->entry_sp());
1735   anchor->set_last_Java_pc(current->last_continuation()->entry_pc());
1736 
1737   ContinuationWrapper::SafepointOp so(current, cont);
1738 
1739   JRT_BLOCK
1740     if (event->should_commit()) {
1741       long timeout = java_lang_VirtualThread::timeout(current->vthread());
1742       post_monitor_wait_event(event, node->_monitor, node->_notifier_tid, timeout, timed_out);
1743     }
1744     if (JvmtiExport::should_post_monitor_waited()) {
1745       // We mark this call in case of an upcall to Java while posting the event.
1746       // If somebody walks the stack in that case, processing the enterSpecial
1747       // frame should not include processing callee arguments since there is no
1748       // actual callee (see nmethod::preserve_callee_argument_oops()).
1749       ThreadOnMonitorWaitedEvent tmwe(current);
1750       JvmtiExport::vthread_post_monitor_waited(current, node->_monitor, timed_out);
1751     }
1752   JRT_BLOCK_END
1753   current->frame_anchor()->clear();
1754 }
1755 
1756 // -----------------------------------------------------------------------------
1757 // Wait/Notify/NotifyAll
1758 //
1759 // Note: a subset of changes to ObjectMonitor::wait()
1760 // will need to be replicated in complete_exit
1761 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1762   JavaThread* current = THREAD;
1763 
1764   assert(InitDone, "Unexpectedly not initialized");
1765 
1766   CHECK_OWNER();  // Throws IMSE if not owner.
1767 
1768   EventJavaMonitorWait wait_event;
1769   EventVirtualThreadPinned vthread_pinned_event;
1770 
1771   // check for a pending interrupt
1772   if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1773     JavaThreadInObjectWaitState jtiows(current, millis != 0, interruptible);
1774 
1775     if (JvmtiExport::should_post_monitor_wait()) {
1776       JvmtiExport::post_monitor_wait(current, object(), millis);
1777     }
1778     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1779     if (JvmtiExport::should_post_monitor_waited()) {
1780       // Note: 'false' parameter is passed here because the
1781       // wait was not timed out due to thread interrupt.
1782       JvmtiExport::post_monitor_waited(current, this, false);
1783 
1784       // In this short circuit of the monitor wait protocol, the
1785       // current thread never drops ownership of the monitor and
1786       // never gets added to the wait queue so the current thread
1787       // cannot be made the successor. This means that the
1788       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1789       // consume an unpark() meant for the ParkEvent associated with
1790       // this ObjectMonitor.
1791     }
1792     if (wait_event.should_commit()) {
1793       post_monitor_wait_event(&wait_event, this, 0, millis, false);
1794     }
1795     THROW(vmSymbols::java_lang_InterruptedException());
1796     return;
1797   }
1798 
1799   freeze_result result;
1800   ContinuationEntry* ce = current->last_continuation();
1801   bool is_virtual = ce != nullptr && ce->is_virtual_thread();
1802   if (is_virtual) {
1803     if (interruptible && JvmtiExport::should_post_monitor_wait()) {
1804       JvmtiExport::post_monitor_wait(current, object(), millis);
1805     }
1806     current->set_current_waiting_monitor(this);
1807     result = Continuation::try_preempt(current, ce->cont_oop(current));
1808     if (result == freeze_ok) {
1809       vthread_wait(current, millis, interruptible);
1810       current->set_current_waiting_monitor(nullptr);
1811       return;
1812     }
1813   }
1814   // The jtiows does nothing for non-interruptible.
1815   JavaThreadInObjectWaitState jtiows(current, millis != 0, interruptible);
1816 
1817   if (!is_virtual) { // it was already set for virtual thread
1818     if (interruptible && JvmtiExport::should_post_monitor_wait()) {
1819       JvmtiExport::post_monitor_wait(current, object(), millis);
1820 
1821       // The current thread already owns the monitor and it has not yet
1822       // been added to the wait queue so the current thread cannot be
1823       // made the successor. This means that the JVMTI_EVENT_MONITOR_WAIT
1824       // event handler cannot accidentally consume an unpark() meant for
1825       // the ParkEvent associated with this ObjectMonitor.
1826     }
1827     current->set_current_waiting_monitor(this);
1828   }
1829   // create a node to be put into the queue
1830   // Critically, after we reset() the event but prior to park(), we must check
1831   // for a pending interrupt.
1832   ObjectWaiter node(current);
1833   node.TState = ObjectWaiter::TS_WAIT;
1834   current->_ParkEvent->reset();
1835   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1836 
1837   // Enter the waiting queue, which is a circular doubly linked list in this case
1838   // but it could be a priority queue or any data structure.
1839   // _wait_set_lock protects the wait queue.  Normally the wait queue is accessed only
1840   // by the owner of the monitor *except* in the case where park()
1841   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1842   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1843 
1844   Thread::SpinAcquire(&_wait_set_lock, "wait_set - add");
1845   add_waiter(&node);
1846   Thread::SpinRelease(&_wait_set_lock);
1847 
1848   intx save = _recursions;     // record the old recursion count
1849   _waiters++;                  // increment the number of waiters
1850   _recursions = 0;             // set the recursion level to be 1
1851   exit(current);               // exit the monitor
1852   guarantee(!has_owner(current), "invariant");
1853 
1854   // The thread is on the wait_set list - now park() it.
1855   // On MP systems it's conceivable that a brief spin before we park
1856   // could be profitable.
1857   //
1858   // TODO-FIXME: change the following logic to a loop of the form
1859   //   while (!timeout && !interrupted && _notified == 0) park()
1860 
1861   int ret = OS_OK;
1862   int WasNotified = 0;
1863 
1864   // Need to check interrupt state whilst still _thread_in_vm
1865   bool interrupted = interruptible && current->is_interrupted(false);
1866 
1867   { // State transition wrappers
1868     OSThread* osthread = current->osthread();
1869     OSThreadWaitState osts(osthread, true);
1870 
1871     assert(current->thread_state() == _thread_in_vm, "invariant");
1872 
1873     {
1874       ClearSuccOnSuspend csos(this);
1875       ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1876       if (interrupted || HAS_PENDING_EXCEPTION) {
1877         // Intentionally empty
1878       } else if (!node._notified) {
1879         if (millis <= 0) {
1880           current->_ParkEvent->park();
1881         } else {
1882           ret = current->_ParkEvent->park(millis);
1883         }
1884       }
1885     }
1886 
1887     // Node may be on the wait_set, or on the entry_list, or in transition
1888     // from the wait_set to the entry_list.
1889     // See if we need to remove Node from the wait_set.
1890     // We use double-checked locking to avoid grabbing _wait_set_lock
1891     // if the thread is not on the wait queue.
1892     //
1893     // Note that we don't need a fence before the fetch of TState.
1894     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1895     // written by the is thread. (perhaps the fetch might even be satisfied
1896     // by a look-aside into the processor's own store buffer, although given
1897     // the length of the code path between the prior ST and this load that's
1898     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1899     // then we'll acquire the lock and then re-fetch a fresh TState value.
1900     // That is, we fail toward safety.
1901 
1902     if (node.TState == ObjectWaiter::TS_WAIT) {
1903       Thread::SpinAcquire(&_wait_set_lock, "wait_set - unlink");
1904       if (node.TState == ObjectWaiter::TS_WAIT) {
1905         dequeue_specific_waiter(&node);       // unlink from wait_set
1906         assert(!node._notified, "invariant");
1907         node.TState = ObjectWaiter::TS_RUN;
1908       }
1909       Thread::SpinRelease(&_wait_set_lock);
1910     }
1911 
1912     // The thread is now either on off-list (TS_RUN),
1913     // or on the entry_list (TS_ENTER).
1914     // The Node's TState variable is stable from the perspective of this thread.
1915     // No other threads will asynchronously modify TState.
1916     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1917     OrderAccess::loadload();
1918     if (has_successor(current)) clear_successor();
1919     WasNotified = node._notified;
1920 
1921     // Reentry phase -- reacquire the monitor.
1922     // re-enter contended monitor after object.wait().
1923     // retain OBJECT_WAIT state until re-enter successfully completes
1924     // Thread state is thread_in_vm and oop access is again safe,
1925     // although the raw address of the object may have changed.
1926     // (Don't cache naked oops over safepoints, of course).
1927 
1928     // post monitor waited event. Note that this is past-tense, we are done waiting.
1929     if (JvmtiExport::should_post_monitor_waited()) {
1930       JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT);
1931 
1932       if (node._notified && has_successor(current)) {
1933         // In this part of the monitor wait-notify-reenter protocol it
1934         // is possible (and normal) for another thread to do a fastpath
1935         // monitor enter-exit while this thread is still trying to get
1936         // to the reenter portion of the protocol.
1937         //
1938         // The ObjectMonitor was notified and the current thread is
1939         // the successor which also means that an unpark() has already
1940         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1941         // consume the unpark() that was done when the successor was
1942         // set because the same ParkEvent is shared between Java
1943         // monitors and JVM/TI RawMonitors (for now).
1944         //
1945         // We redo the unpark() to ensure forward progress, i.e., we
1946         // don't want all pending threads hanging (parked) with none
1947         // entering the unlocked monitor.
1948         current->_ParkEvent->unpark();
1949       }
1950     }
1951 
1952     if (wait_event.should_commit()) {
1953       post_monitor_wait_event(&wait_event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1954     }
1955 
1956     OrderAccess::fence();
1957 
1958     assert(!has_owner(current), "invariant");
1959     ObjectWaiter::TStates v = node.TState;
1960     if (v == ObjectWaiter::TS_RUN) {
1961       // We use the NoPreemptMark for the very rare case where the previous
1962       // preempt attempt failed due to OOM. The preempt on monitor contention
1963       // could succeed but we can't unmount now.
1964       NoPreemptMark npm(current);
1965       enter(current);
1966     } else {
1967       guarantee(v == ObjectWaiter::TS_ENTER, "invariant");
1968       reenter_internal(current, &node);
1969       node.wait_reenter_end(this);
1970     }
1971 
1972     // current has reacquired the lock.
1973     // Lifecycle - the node representing current must not appear on any queues.
1974     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1975     // want residual elements associated with this thread left on any lists.
1976     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1977     assert(has_owner(current), "invariant");
1978     assert(!has_successor(current), "invariant");
1979   } // OSThreadWaitState()
1980 
1981   current->set_current_waiting_monitor(nullptr);
1982 
1983   guarantee(_recursions == 0, "invariant");
1984   int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current);
1985   _recursions =   save          // restore the old recursion count
1986                 + relock_count; //  increased by the deferred relock count
1987   current->inc_held_monitor_count(relock_count); // Deopt never entered these counts.
1988   _waiters--;             // decrement the number of waiters
1989 
1990   // Verify a few postconditions
1991   assert(has_owner(current), "invariant");
1992   assert(!has_successor(current), "invariant");
1993   assert_mark_word_consistency();
1994 
1995   if (ce != nullptr && ce->is_virtual_thread()) {
1996     current->post_vthread_pinned_event(&vthread_pinned_event, "Object.wait", result);
1997   }
1998 
1999   // check if the notification happened
2000   if (!WasNotified) {
2001     // no, it could be timeout or Thread.interrupt() or both
2002     // check for interrupt event, otherwise it is timeout
2003     if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
2004       THROW(vmSymbols::java_lang_InterruptedException());
2005     }
2006   }
2007 
2008   // NOTE: Spurious wake up will be consider as timeout.
2009   // Monitor notify has precedence over thread interrupt.
2010 }
2011 
2012 // Consider:
2013 // If the lock is cool (entry_list == null && succ == null) and we're on an MP system
2014 // then instead of transferring a thread from the wait_set to the entry_list
2015 // we might just dequeue a thread from the wait_set and directly unpark() it.
2016 
2017 bool ObjectMonitor::notify_internal(JavaThread* current) {
2018   bool did_notify = false;
2019   Thread::SpinAcquire(&_wait_set_lock, "wait_set - notify");
2020   ObjectWaiter* iterator = dequeue_waiter();
2021   if (iterator != nullptr) {
2022     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
2023     guarantee(!iterator->_notified, "invariant");
2024 
2025     if (iterator->is_vthread()) {
2026       oop vthread = iterator->vthread();
2027       java_lang_VirtualThread::set_notified(vthread, true);
2028       int old_state = java_lang_VirtualThread::state(vthread);
2029       // If state is not WAIT/TIMED_WAIT then target could still be on
2030       // unmount transition, or wait could have already timed-out or target
2031       // could have been interrupted. In the first case, the target itself
2032       // will set the state to BLOCKED at the end of the unmount transition.
2033       // In the other cases the target would have been already unblocked so
2034       // there is nothing to do.
2035       if (old_state == java_lang_VirtualThread::WAIT ||
2036           old_state == java_lang_VirtualThread::TIMED_WAIT) {
2037         java_lang_VirtualThread::cmpxchg_state(vthread, old_state, java_lang_VirtualThread::BLOCKED);
2038       }
2039       // Increment counter *before* adding the vthread to the _entry_list.
2040       // Adding to _entry_list uses Atomic::cmpxchg() which already provides
2041       // a fence that prevents reordering of the stores.
2042       inc_unmounted_vthreads();
2043     }
2044 
2045     iterator->_notified = true;
2046     iterator->_notifier_tid = JFR_THREAD_ID(current);
2047     did_notify = true;
2048     add_to_entry_list(current, iterator);
2049 
2050     // _wait_set_lock protects the wait queue, not the entry_list.  We could
2051     // move the add-to-entry_list operation, above, outside the critical section
2052     // protected by _wait_set_lock.  In practice that's not useful.  With the
2053     // exception of  wait() timeouts and interrupts the monitor owner
2054     // is the only thread that grabs _wait_set_lock.  There's almost no contention
2055     // on _wait_set_lock so it's not profitable to reduce the length of the
2056     // critical section.
2057 
2058     if (!iterator->is_vthread()) {
2059       iterator->wait_reenter_begin(this);
2060 
2061       // Read counter *after* adding the thread to the _entry_list.
2062       // Adding to _entry_list uses Atomic::cmpxchg() which already provides
2063       // a fence that prevents this load from floating up previous store.
2064       if (has_unmounted_vthreads()) {
2065         // Wake up the thread to alleviate some deadlocks cases where the successor
2066         // that will be picked up when this thread releases the monitor is an unmounted
2067         // virtual thread that cannot run due to having run out of carriers. Upon waking
2068         // up, the thread will call reenter_internal() which will use time-park in case
2069         // there is contention and there are still vthreads in the _entry_list.
2070         JavaThread* t = iterator->thread();
2071         t->_ParkEvent->unpark();
2072       }
2073     }
2074   }
2075   Thread::SpinRelease(&_wait_set_lock);
2076   return did_notify;
2077 }
2078 
2079 static void post_monitor_notify_event(EventJavaMonitorNotify* event,
2080                                       ObjectMonitor* monitor,
2081                                       int notified_count) {
2082   assert(event != nullptr, "invariant");
2083   assert(monitor != nullptr, "invariant");
2084   const Klass* monitor_klass = monitor->object()->klass();
2085   if (ObjectMonitor::is_jfr_excluded(monitor_klass)) {
2086     return;
2087   }
2088   event->set_monitorClass(monitor_klass);
2089   // Set an address that is 'unique enough', such that events close in
2090   // time and with the same address are likely (but not guaranteed) to
2091   // belong to the same object.
2092   event->set_address((uintptr_t)monitor);
2093   event->set_notifiedCount(notified_count);
2094   event->commit();
2095 }
2096 
2097 // Consider: a not-uncommon synchronization bug is to use notify() when
2098 // notifyAll() is more appropriate, potentially resulting in stranded
2099 // threads; this is one example of a lost wakeup. A useful diagnostic
2100 // option is to force all notify() operations to behave as notifyAll().
2101 //
2102 // Note: We can also detect many such problems with a "minimum wait".
2103 // When the "minimum wait" is set to a small non-zero timeout value
2104 // and the program does not hang whereas it did absent "minimum wait",
2105 // that suggests a lost wakeup bug.
2106 
2107 void ObjectMonitor::notify(TRAPS) {
2108   JavaThread* current = THREAD;
2109   CHECK_OWNER();  // Throws IMSE if not owner.
2110   if (_wait_set == nullptr) {
2111     return;
2112   }
2113 
2114   quick_notify(current);
2115 }
2116 
2117 void ObjectMonitor::quick_notify(JavaThread* current) {
2118   assert(has_owner(current), "Precondition");
2119 
2120   EventJavaMonitorNotify event;
2121   DTRACE_MONITOR_PROBE(notify, this, object(), current);
2122   int tally = notify_internal(current) ? 1 : 0;
2123 
2124   if ((tally > 0) && event.should_commit()) {
2125     post_monitor_notify_event(&event, this, /* notified_count = */ tally);
2126   }
2127 }
2128 
2129 // notifyAll() transfers the waiters one-at-a-time from the waitset to
2130 // the entry_list. If the waitset is "ABCD" (where A was added first
2131 // and D last) and the entry_list is ->X->Y->Z. After a notifyAll()
2132 // the waitset will be empty and the entry_list will be
2133 // ->D->C->B->A->X->Y->Z, and the next choosen successor will be Z.
2134 
2135 void ObjectMonitor::notifyAll(TRAPS) {
2136   JavaThread* current = THREAD;
2137   CHECK_OWNER();  // Throws IMSE if not owner.
2138   if (_wait_set == nullptr) {
2139     return;
2140   }
2141 
2142   quick_notifyAll(current);
2143 }
2144 
2145 void ObjectMonitor::quick_notifyAll(JavaThread* current) {
2146   assert(has_owner(current), "Precondition");
2147 
2148   EventJavaMonitorNotify event;
2149   DTRACE_MONITOR_PROBE(notifyAll, this, object(), current);
2150   int tally = 0;
2151   while (_wait_set != nullptr) {
2152     if (notify_internal(current)) {
2153       tally++;
2154     }
2155   }
2156 
2157   if ((tally > 0) && event.should_commit()) {
2158     post_monitor_notify_event(&event, this, /* notified_count = */ tally);
2159   }
2160 }
2161 
2162 void ObjectMonitor::vthread_wait(JavaThread* current, jlong millis, bool interruptible) {
2163   oop vthread = current->vthread();
2164   ObjectWaiter* node = new ObjectWaiter(vthread, this);
2165   node->_is_wait = true;
2166   node->_interruptible = interruptible;
2167   node->TState = ObjectWaiter::TS_WAIT;
2168   java_lang_VirtualThread::set_notified(vthread, false);  // Reset notified flag
2169   java_lang_VirtualThread::set_interruptible_wait(vthread, interruptible);
2170 
2171   // Enter the waiting queue, which is a circular doubly linked list in this case
2172   // but it could be a priority queue or any data structure.
2173   // _wait_set_lock protects the wait queue.  Normally the wait queue is accessed only
2174   // by the owner of the monitor *except* in the case where park()
2175   // returns because of a timeout or interrupt.  Contention is exceptionally rare
2176   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
2177 
2178   Thread::SpinAcquire(&_wait_set_lock, "wait_set - add");
2179   add_waiter(node);
2180   Thread::SpinRelease(&_wait_set_lock);
2181 
2182   node->_recursions = _recursions;   // record the old recursion count
2183   _recursions = 0;                   // set the recursion level to be 0
2184   _waiters++;                        // increment the number of waiters
2185   exit(current);                     // exit the monitor
2186   guarantee(!has_owner(current), "invariant");
2187 
2188   assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
2189   java_lang_VirtualThread::set_state(vthread, millis == 0 ? java_lang_VirtualThread::WAITING : java_lang_VirtualThread::TIMED_WAITING);
2190   java_lang_VirtualThread::set_timeout(vthread, millis);
2191 
2192   // Save the ObjectWaiter* in the vthread since we will need it when resuming execution.
2193   java_lang_VirtualThread::set_objectWaiter(vthread, node);
2194 }
2195 
2196 bool ObjectMonitor::vthread_wait_reenter(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont) {
2197   // The first time we run after being preempted on Object.wait() we
2198   // need to check if we were interrupted or the wait timed-out, and
2199   // in that case remove ourselves from the _wait_set queue.
2200   if (node->TState == ObjectWaiter::TS_WAIT) {
2201     Thread::SpinAcquire(&_wait_set_lock, "wait_set - unlink");
2202     if (node->TState == ObjectWaiter::TS_WAIT) {
2203       dequeue_specific_waiter(node);       // unlink from wait_set
2204       assert(!node->_notified, "invariant");
2205       node->TState = ObjectWaiter::TS_RUN;
2206     }
2207     Thread::SpinRelease(&_wait_set_lock);
2208   }
2209 
2210   // If this was an interrupted case, set the _interrupted boolean so that
2211   // once we re-acquire the monitor we know if we need to throw IE or not.
2212   ObjectWaiter::TStates state = node->TState;
2213   bool was_notified = state == ObjectWaiter::TS_ENTER;
2214   assert(was_notified || state == ObjectWaiter::TS_RUN, "");
2215   node->_interrupted = node->_interruptible && !was_notified && current->is_interrupted(false);
2216 
2217   // Post JFR and JVMTI events. If non-interruptible we are in
2218   // ObjectLocker case so we don't post anything.
2219   EventJavaMonitorWait wait_event;
2220   if (node->_interruptible && (wait_event.should_commit() || JvmtiExport::should_post_monitor_waited())) {
2221     vthread_monitor_waited_event(current, node, cont, &wait_event, !was_notified && !node->_interrupted);
2222   }
2223 
2224   // Mark that we are at reenter so that we don't call this method again.
2225   node->_at_reenter = true;
2226 
2227   if (!was_notified) {
2228     bool acquired = vthread_monitor_enter(current, node);
2229     if (acquired) {
2230       guarantee(_recursions == 0, "invariant");
2231       _recursions = node->_recursions;   // restore the old recursion count
2232       _waiters--;                        // decrement the number of waiters
2233 
2234       if (node->_interrupted) {
2235         // We will throw at thaw end after finishing the mount transition.
2236         current->set_pending_interrupted_exception(true);
2237       }
2238 
2239       delete node;
2240       // Clear the ObjectWaiter* from the vthread.
2241       java_lang_VirtualThread::set_objectWaiter(current->vthread(), nullptr);
2242       return true;
2243     }
2244   } else {
2245     // Already moved to _entry_list by notifier, so just add to contentions.
2246     add_to_contentions(1);
2247   }
2248   return false;
2249 }
2250 
2251 // -----------------------------------------------------------------------------
2252 // Adaptive Spinning Support
2253 //
2254 // Adaptive spin-then-block - rational spinning
2255 //
2256 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
2257 // algorithm.
2258 //
2259 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
2260 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
2261 // (duration) or we can fix the count at approximately the duration of
2262 // a context switch and vary the frequency.   Of course we could also
2263 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
2264 // For a description of 'Adaptive spin-then-block mutual exclusion in
2265 // multi-threaded processing,' see U.S. Pat. No. 8046758.
2266 //
2267 // This implementation varies the duration "D", where D varies with
2268 // the success rate of recent spin attempts. (D is capped at approximately
2269 // length of a round-trip context switch).  The success rate for recent
2270 // spin attempts is a good predictor of the success rate of future spin
2271 // attempts.  The mechanism adapts automatically to varying critical
2272 // section length (lock modality), system load and degree of parallelism.
2273 // D is maintained per-monitor in _SpinDuration and is initialized
2274 // optimistically.  Spin frequency is fixed at 100%.
2275 //
2276 // Note that _SpinDuration is volatile, but we update it without locks
2277 // or atomics.  The code is designed so that _SpinDuration stays within
2278 // a reasonable range even in the presence of races.  The arithmetic
2279 // operations on _SpinDuration are closed over the domain of legal values,
2280 // so at worst a race will install and older but still legal value.
2281 // At the very worst this introduces some apparent non-determinism.
2282 // We might spin when we shouldn't or vice-versa, but since the spin
2283 // count are relatively short, even in the worst case, the effect is harmless.
2284 //
2285 // Care must be taken that a low "D" value does not become an
2286 // an absorbing state.  Transient spinning failures -- when spinning
2287 // is overall profitable -- should not cause the system to converge
2288 // on low "D" values.  We want spinning to be stable and predictable
2289 // and fairly responsive to change and at the same time we don't want
2290 // it to oscillate, become metastable, be "too" non-deterministic,
2291 // or converge on or enter undesirable stable absorbing states.
2292 //
2293 // We implement a feedback-based control system -- using past behavior
2294 // to predict future behavior.  We face two issues: (a) if the
2295 // input signal is random then the spin predictor won't provide optimal
2296 // results, and (b) if the signal frequency is too high then the control
2297 // system, which has some natural response lag, will "chase" the signal.
2298 // (b) can arise from multimodal lock hold times.  Transient preemption
2299 // can also result in apparent bimodal lock hold times.
2300 // Although sub-optimal, neither condition is particularly harmful, as
2301 // in the worst-case we'll spin when we shouldn't or vice-versa.
2302 // The maximum spin duration is rather short so the failure modes aren't bad.
2303 // To be conservative, I've tuned the gain in system to bias toward
2304 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
2305 // "rings" or oscillates between spinning and not spinning.  This happens
2306 // when spinning is just on the cusp of profitability, however, so the
2307 // situation is not dire.  The state is benign -- there's no need to add
2308 // hysteresis control to damp the transition rate between spinning and
2309 // not spinning.
2310 
2311 int ObjectMonitor::Knob_SpinLimit    = 5000;   // derived by an external tool
2312 
2313 static int Knob_Bonus               = 100;     // spin success bonus
2314 static int Knob_Penalty             = 200;     // spin failure penalty
2315 static int Knob_Poverty             = 1000;
2316 static int Knob_FixedSpin           = 0;
2317 static int Knob_PreSpin             = 10;      // 20-100 likely better, but it's not better in my testing.
2318 
2319 inline static int adjust_up(int spin_duration) {
2320   int x = spin_duration;
2321   if (x < ObjectMonitor::Knob_SpinLimit) {
2322     if (x < Knob_Poverty) {
2323       x = Knob_Poverty;
2324     }
2325     return x + Knob_Bonus;
2326   } else {
2327     return spin_duration;
2328   }
2329 }
2330 
2331 inline static int adjust_down(int spin_duration) {
2332   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2333   // AIMD is globally stable.
2334   int x = spin_duration;
2335   if (x > 0) {
2336     // Consider an AIMD scheme like: x -= (x >> 3) + 100
2337     // This is globally sample and tends to damp the response.
2338     x -= Knob_Penalty;
2339     if (x < 0) { x = 0; }
2340     return x;
2341   } else {
2342     return spin_duration;
2343   }
2344 }
2345 
2346 bool ObjectMonitor::short_fixed_spin(JavaThread* current, int spin_count, bool adapt) {
2347   for (int ctr = 0; ctr < spin_count; ctr++) {
2348     TryLockResult status = try_lock(current);
2349     if (status == TryLockResult::Success) {
2350       if (adapt) {
2351         _SpinDuration = adjust_up(_SpinDuration);
2352       }
2353       return true;
2354     } else if (status == TryLockResult::Interference) {
2355       break;
2356     }
2357     SpinPause();
2358   }
2359   return false;
2360 }
2361 
2362 // Spinning: Fixed frequency (100%), vary duration
2363 bool ObjectMonitor::try_spin(JavaThread* current) {
2364 
2365   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
2366   int knob_fixed_spin = Knob_FixedSpin;  // 0 (don't spin: default), 2000 good test
2367   if (knob_fixed_spin > 0) {
2368     return short_fixed_spin(current, knob_fixed_spin, false);
2369   }
2370 
2371   // Admission control - verify preconditions for spinning
2372   //
2373   // We always spin a little bit, just to prevent _SpinDuration == 0 from
2374   // becoming an absorbing state.  Put another way, we spin briefly to
2375   // sample, just in case the system load, parallelism, contention, or lock
2376   // modality changed.
2377 
2378   int knob_pre_spin = Knob_PreSpin; // 10 (default), 100, 1000 or 2000
2379   if (short_fixed_spin(current, knob_pre_spin, true)) {
2380     return true;
2381   }
2382 
2383   //
2384   // Consider the following alternative:
2385   // Periodically set _SpinDuration = _SpinLimit and try a long/full
2386   // spin attempt.  "Periodically" might mean after a tally of
2387   // the # of failed spin attempts (or iterations) reaches some threshold.
2388   // This takes us into the realm of 1-out-of-N spinning, where we
2389   // hold the duration constant but vary the frequency.
2390 
2391   int ctr = _SpinDuration;
2392   if (ctr <= 0) return false;
2393 
2394   // We're good to spin ... spin ingress.
2395   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2396   // when preparing to LD...CAS _owner, etc and the CAS is likely
2397   // to succeed.
2398   if (!has_successor()) {
2399     set_successor(current);
2400   }
2401   int64_t prv = NO_OWNER;
2402 
2403   // There are three ways to exit the following loop:
2404   // 1.  A successful spin where this thread has acquired the lock.
2405   // 2.  Spin failure with prejudice
2406   // 3.  Spin failure without prejudice
2407 
2408   while (--ctr >= 0) {
2409 
2410     // Periodic polling -- Check for pending GC
2411     // Threads may spin while they're unsafe.
2412     // We don't want spinning threads to delay the JVM from reaching
2413     // a stop-the-world safepoint or to steal cycles from GC.
2414     // If we detect a pending safepoint we abort in order that
2415     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2416     // this thread, if safe, doesn't steal cycles from GC.
2417     // This is in keeping with the "no loitering in runtime" rule.
2418     // We periodically check to see if there's a safepoint pending.
2419     if ((ctr & 0xFF) == 0) {
2420       // Can't call SafepointMechanism::should_process() since that
2421       // might update the poll values and we could be in a thread_blocked
2422       // state here which is not allowed so just check the poll.
2423       if (SafepointMechanism::local_poll_armed(current)) {
2424         break;
2425       }
2426       SpinPause();
2427     }
2428 
2429     // Probe _owner with TATAS
2430     // If this thread observes the monitor transition or flicker
2431     // from locked to unlocked to locked, then the odds that this
2432     // thread will acquire the lock in this spin attempt go down
2433     // considerably.  The same argument applies if the CAS fails
2434     // or if we observe _owner change from one non-null value to
2435     // another non-null value.   In such cases we might abort
2436     // the spin without prejudice or apply a "penalty" to the
2437     // spin count-down variable "ctr", reducing it by 100, say.
2438 
2439     int64_t ox = owner_raw();
2440     if (ox == NO_OWNER) {
2441       ox = try_set_owner_from(NO_OWNER, current);
2442       if (ox == NO_OWNER) {
2443         // The CAS succeeded -- this thread acquired ownership
2444         // Take care of some bookkeeping to exit spin state.
2445         if (has_successor(current)) {
2446           clear_successor();
2447         }
2448 
2449         // Increase _SpinDuration :
2450         // The spin was successful (profitable) so we tend toward
2451         // longer spin attempts in the future.
2452         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2453         // If we acquired the lock early in the spin cycle it
2454         // makes sense to increase _SpinDuration proportionally.
2455         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2456         _SpinDuration = adjust_up(_SpinDuration);
2457         return true;
2458       }
2459 
2460       // The CAS failed ... we can take any of the following actions:
2461       // * penalize: ctr -= CASPenalty
2462       // * exit spin with prejudice -- abort without adapting spinner
2463       // * exit spin without prejudice.
2464       // * Since CAS is high-latency, retry again immediately.
2465       break;
2466     }
2467 
2468     // Did lock ownership change hands ?
2469     if (ox != prv && prv != NO_OWNER) {
2470       break;
2471     }
2472     prv = ox;
2473 
2474     if (!has_successor()) {
2475       set_successor(current);
2476     }
2477   }
2478 
2479   // Spin failed with prejudice -- reduce _SpinDuration.
2480   if (ctr < 0) {
2481     _SpinDuration = adjust_down(_SpinDuration);
2482   }
2483 
2484   if (has_successor(current)) {
2485     clear_successor();
2486     // Invariant: after setting succ=null a contending thread
2487     // must recheck-retry _owner before parking.  This usually happens
2488     // in the normal usage of try_spin(), but it's safest
2489     // to make try_spin() as foolproof as possible.
2490     OrderAccess::fence();
2491     if (try_lock(current) == TryLockResult::Success) {
2492       return true;
2493     }
2494   }
2495 
2496   return false;
2497 }
2498 
2499 
2500 // -----------------------------------------------------------------------------
2501 // wait_set management ...
2502 
2503 ObjectWaiter::ObjectWaiter(JavaThread* current) {
2504   _next     = nullptr;
2505   _prev     = nullptr;
2506   _thread   = current;
2507   _monitor  = nullptr;
2508   _notifier_tid = 0;
2509   _recursions = 0;
2510   TState    = TS_RUN;
2511   _notified = false;
2512   _is_wait  = false;
2513   _at_reenter = false;
2514   _interrupted = false;
2515   _active   = false;
2516 }
2517 
2518 ObjectWaiter::ObjectWaiter(oop vthread, ObjectMonitor* mon) : ObjectWaiter(nullptr) {
2519   assert(oopDesc::is_oop(vthread), "");
2520   _vthread = OopHandle(JavaThread::thread_oop_storage(), vthread);
2521   _monitor = mon;
2522 }
2523 
2524 ObjectWaiter::~ObjectWaiter() {
2525   if (is_vthread()) {
2526     assert(vthread() != nullptr, "");
2527     _vthread.release(JavaThread::thread_oop_storage());
2528   }
2529 }
2530 
2531 oop ObjectWaiter::vthread() const {
2532   return _vthread.resolve();
2533 }
2534 
2535 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2536   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon);
2537 }
2538 
2539 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2540   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active);
2541 }
2542 
2543 inline void ObjectMonitor::add_waiter(ObjectWaiter* node) {
2544   assert(node != nullptr, "should not add null node");
2545   assert(node->_prev == nullptr, "node already in list");
2546   assert(node->_next == nullptr, "node already in list");
2547   // put node at end of queue (circular doubly linked list)
2548   if (_wait_set == nullptr) {
2549     _wait_set = node;
2550     node->_prev = node;
2551     node->_next = node;
2552   } else {
2553     ObjectWaiter* head = _wait_set;
2554     ObjectWaiter* tail = head->_prev;
2555     assert(tail->_next == head, "invariant check");
2556     tail->_next = node;
2557     head->_prev = node;
2558     node->_next = head;
2559     node->_prev = tail;
2560   }
2561 }
2562 
2563 inline ObjectWaiter* ObjectMonitor::dequeue_waiter() {
2564   // dequeue the very first waiter
2565   ObjectWaiter* waiter = _wait_set;
2566   if (waiter) {
2567     dequeue_specific_waiter(waiter);
2568   }
2569   return waiter;
2570 }
2571 
2572 inline void ObjectMonitor::dequeue_specific_waiter(ObjectWaiter* node) {
2573   assert(node != nullptr, "should not dequeue nullptr node");
2574   assert(node->_prev != nullptr, "node already removed from list");
2575   assert(node->_next != nullptr, "node already removed from list");
2576   // when the waiter has woken up because of interrupt,
2577   // timeout or other spurious wake-up, dequeue the
2578   // waiter from waiting list
2579   ObjectWaiter* next = node->_next;
2580   if (next == node) {
2581     assert(node->_prev == node, "invariant check");
2582     _wait_set = nullptr;
2583   } else {
2584     ObjectWaiter* prev = node->_prev;
2585     assert(prev->_next == node, "invariant check");
2586     assert(next->_prev == node, "invariant check");
2587     next->_prev = prev;
2588     prev->_next = next;
2589     if (_wait_set == node) {
2590       _wait_set = next;
2591     }
2592   }
2593   node->_next = nullptr;
2594   node->_prev = nullptr;
2595 }
2596 
2597 // -----------------------------------------------------------------------------
2598 
2599 // One-shot global initialization for the sync subsystem.
2600 // We could also defer initialization and initialize on-demand
2601 // the first time we call ObjectSynchronizer::inflate().
2602 // Initialization would be protected - like so many things - by
2603 // the MonitorCache_lock.
2604 
2605 void ObjectMonitor::Initialize() {
2606   assert(!InitDone, "invariant");
2607 
2608   if (!os::is_MP()) {
2609     Knob_SpinLimit = 0;
2610     Knob_PreSpin   = 0;
2611     Knob_FixedSpin = -1;
2612   }
2613 
2614   _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer);
2615 
2616   DEBUG_ONLY(InitDone = true;)
2617 }
2618 
2619 // We can't call this during Initialize() because BarrierSet needs to be set.
2620 void ObjectMonitor::Initialize2() {
2621   _vthread_list_head = OopHandle(JavaThread::thread_oop_storage(), nullptr);
2622   _vthread_unparker_ParkEvent = ParkEvent::Allocate(nullptr);
2623 }
2624 
2625 void ObjectMonitor::print_on(outputStream* st) const {
2626   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2627   st->print("{contentions=0x%08x,waiters=0x%08x"
2628             ",recursions=%zd,owner=" INT64_FORMAT "}",
2629             contentions(), waiters(), recursions(),
2630             owner_raw());
2631 }
2632 void ObjectMonitor::print() const { print_on(tty); }
2633 
2634 #ifdef ASSERT
2635 // Print the ObjectMonitor like a debugger would:
2636 //
2637 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2638 //   _metadata = 0x0000000000000001
2639 //   _object = 0x000000070ff45fd0
2640 //   _pad_buf0 = {
2641 //     [0] = '\0'
2642 //     ...
2643 //     [43] = '\0'
2644 //   }
2645 //   _owner = 0x0000000000000000
2646 //   _previous_owner_tid = 0
2647 //   _pad_buf1 = {
2648 //     [0] = '\0'
2649 //     ...
2650 //     [47] = '\0'
2651 //   }
2652 //   _next_om = 0x0000000000000000
2653 //   _recursions = 0
2654 //   _entry_list = 0x0000000000000000
2655 //   _entry_list_tail = 0x0000000000000000
2656 //   _succ = 0x0000000000000000
2657 //   _SpinDuration = 5000
2658 //   _contentions = 0
2659 //   _wait_set = 0x0000700009756248
2660 //   _waiters = 1
2661 //   _wait_set_lock = 0
2662 // }
2663 //
2664 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2665   st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
2666   st->print_cr("  _metadata = " INTPTR_FORMAT, _metadata);
2667   st->print_cr("  _object = " INTPTR_FORMAT, p2i(object_peek()));
2668   st->print_cr("  _pad_buf0 = {");
2669   st->print_cr("    [0] = '\\0'");
2670   st->print_cr("    ...");
2671   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2672   st->print_cr("  }");
2673   st->print_cr("  _owner = " INT64_FORMAT, owner_raw());
2674   st->print_cr("  _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid);
2675   st->print_cr("  _pad_buf1 = {");
2676   st->print_cr("    [0] = '\\0'");
2677   st->print_cr("    ...");
2678   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2679   st->print_cr("  }");
2680   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(next_om()));
2681   st->print_cr("  _recursions = %zd", _recursions);
2682   st->print_cr("  _entry_list = " INTPTR_FORMAT, p2i(_entry_list));
2683   st->print_cr("  _entry_list_tail = " INTPTR_FORMAT, p2i(_entry_list_tail));
2684   st->print_cr("  _succ = " INT64_FORMAT, successor());
2685   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2686   st->print_cr("  _contentions = %d", contentions());
2687   st->print_cr("  _unmounted_vthreads = " INT64_FORMAT, _unmounted_vthreads);
2688   st->print_cr("  _wait_set = " INTPTR_FORMAT, p2i(_wait_set));
2689   st->print_cr("  _waiters = %d", _waiters);
2690   st->print_cr("  _wait_set_lock = %d", _wait_set_lock);
2691   st->print_cr("}");
2692 }
2693 #endif