1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/oopStorage.hpp"
  28 #include "gc/shared/oopStorageSet.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "jfr/support/jfrThreadId.hpp"
  31 #include "logging/log.hpp"
  32 #include "logging/logStream.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/oopHandle.inline.hpp"
  38 #include "oops/weakHandle.inline.hpp"
  39 #include "prims/jvmtiDeferredUpdates.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/globals.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/interfaceSupport.inline.hpp"
  45 #include "runtime/javaThread.inline.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/objectMonitor.hpp"
  48 #include "runtime/objectMonitor.inline.hpp"
  49 #include "runtime/orderAccess.hpp"
  50 #include "runtime/osThread.hpp"
  51 #include "runtime/perfData.hpp"
  52 #include "runtime/safefetch.hpp"
  53 #include "runtime/safepointMechanism.inline.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/threads.hpp"
  56 #include "services/threadService.hpp"
  57 #include "utilities/dtrace.hpp"
  58 #include "utilities/globalDefinitions.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/preserveException.hpp"
  61 #if INCLUDE_JFR
  62 #include "jfr/support/jfrFlush.hpp"
  63 #endif
  64 
  65 #ifdef DTRACE_ENABLED
  66 
  67 // Only bother with this argument setup if dtrace is available
  68 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  69 
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = nullptr;                                                   \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = obj->klass()->name();                                \
  76   if (klassname != nullptr) {                                              \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  82   {                                                                        \
  83     if (DTraceMonitorProbes) {                                             \
  84       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  85       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  86                            (monitor), bytes, len, (millis));               \
  87     }                                                                      \
  88   }
  89 
  90 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  91 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  92 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  93 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  94 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  95 
  96 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  97   {                                                                        \
  98     if (DTraceMonitorProbes) {                                             \
  99       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 100       HOTSPOT_MONITOR_##probe(jtid,                                        \
 101                               (uintptr_t)(monitor), bytes, len);           \
 102     }                                                                      \
 103   }
 104 
 105 #else //  ndef DTRACE_ENABLED
 106 
 107 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 108 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 109 
 110 #endif // ndef DTRACE_ENABLED
 111 
 112 DEBUG_ONLY(static volatile bool InitDone = false;)
 113 
 114 OopStorage* ObjectMonitor::_oop_storage = nullptr;
 115 
 116 OopHandle ObjectMonitor::_vthread_cxq_head;
 117 ParkEvent* ObjectMonitor::_vthread_unparker_ParkEvent = nullptr;
 118 
 119 static void post_virtual_thread_pinned_event(JavaThread* current, const char* reason) {
 120   EventVirtualThreadPinned e;
 121   if (e.should_commit()) {
 122     e.set_pinnedReason(reason);
 123     e.set_carrierThread(JFR_JVM_THREAD_ID(current));
 124     e.commit();
 125   }
 126 }
 127 
 128 // -----------------------------------------------------------------------------
 129 // Theory of operations -- Monitors lists, thread residency, etc:
 130 //
 131 // * A thread acquires ownership of a monitor by successfully
 132 //   CAS()ing the _owner field from null to non-null.
 133 //
 134 // * Invariant: A thread appears on at most one monitor list --
 135 //   cxq, EntryList or WaitSet -- at any one time.
 136 //
 137 // * Contending threads "push" themselves onto the cxq with CAS
 138 //   and then spin/park.
 139 //
 140 // * After a contending thread eventually acquires the lock it must
 141 //   dequeue itself from either the EntryList or the cxq.
 142 //
 143 // * The exiting thread identifies and unparks an "heir presumptive"
 144 //   tentative successor thread on the EntryList.  Critically, the
 145 //   exiting thread doesn't unlink the successor thread from the EntryList.
 146 //   After having been unparked, the wakee will recontend for ownership of
 147 //   the monitor.   The successor (wakee) will either acquire the lock or
 148 //   re-park itself.
 149 //
 150 //   Succession is provided for by a policy of competitive handoff.
 151 //   The exiting thread does _not_ grant or pass ownership to the
 152 //   successor thread.  (This is also referred to as "handoff" succession").
 153 //   Instead the exiting thread releases ownership and possibly wakes
 154 //   a successor, so the successor can (re)compete for ownership of the lock.
 155 //   If the EntryList is empty but the cxq is populated the exiting
 156 //   thread will drain the cxq into the EntryList.  It does so by
 157 //   by detaching the cxq (installing null with CAS) and folding
 158 //   the threads from the cxq into the EntryList.  The EntryList is
 159 //   doubly linked, while the cxq is singly linked because of the
 160 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 161 //
 162 // * Concurrency invariants:
 163 //
 164 //   -- only the monitor owner may access or mutate the EntryList.
 165 //      The mutex property of the monitor itself protects the EntryList
 166 //      from concurrent interference.
 167 //   -- Only the monitor owner may detach the cxq.
 168 //
 169 // * The monitor entry list operations avoid locks, but strictly speaking
 170 //   they're not lock-free.  Enter is lock-free, exit is not.
 171 //   For a description of 'Methods and apparatus providing non-blocking access
 172 //   to a resource,' see U.S. Pat. No. 7844973.
 173 //
 174 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 175 //   detaching thread.  This mechanism is immune from the ABA corruption.
 176 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 177 //
 178 // * Taken together, the cxq and the EntryList constitute or form a
 179 //   single logical queue of threads stalled trying to acquire the lock.
 180 //   We use two distinct lists to improve the odds of a constant-time
 181 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 182 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 183 //   A key desideratum is to minimize queue & monitor metadata manipulation
 184 //   that occurs while holding the monitor lock -- that is, we want to
 185 //   minimize monitor lock holds times.  Note that even a small amount of
 186 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 187 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 188 //   locks and monitor metadata.
 189 //
 190 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 191 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 192 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 193 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 194 //
 195 //   The EntryList is ordered by the prevailing queue discipline and
 196 //   can be organized in any convenient fashion, such as a doubly-linked list or
 197 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 198 //   to operate in constant-time.  If we need a priority queue then something akin
 199 //   to Solaris' sleepq would work nicely.  Viz.,
 200 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 201 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 202 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 203 //   EntryList accordingly.
 204 //
 205 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 206 //   somewhat similar to an elevator-scan.
 207 //
 208 // * The monitor synchronization subsystem avoids the use of native
 209 //   synchronization primitives except for the narrow platform-specific
 210 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 211 //   the semantics of park-unpark.  Put another way, this monitor implementation
 212 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 213 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 214 //   underlying OS manages the READY<->RUN transitions.
 215 //
 216 // * Waiting threads reside on the WaitSet list -- wait() puts
 217 //   the caller onto the WaitSet.
 218 //
 219 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 220 //   either the EntryList or cxq.  Subsequent exit() operations will
 221 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 222 //   it's likely the notifyee would simply impale itself on the lock held
 223 //   by the notifier.
 224 //
 225 // * An interesting alternative is to encode cxq as (List,LockByte) where
 226 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 227 //   variable, like _recursions, in the scheme.  The threads or Events that form
 228 //   the list would have to be aligned in 256-byte addresses.  A thread would
 229 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 230 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 231 //   Note that is is *not* word-tearing, but it does presume that full-word
 232 //   CAS operations are coherent with intermix with STB operations.  That's true
 233 //   on most common processors.
 234 //
 235 // * See also http://blogs.sun.com/dave
 236 
 237 
 238 // Check that object() and set_object() are called from the right context:
 239 static void check_object_context() {
 240 #ifdef ASSERT
 241   Thread* self = Thread::current();
 242   if (self->is_Java_thread()) {
 243     // Mostly called from JavaThreads so sanity check the thread state.
 244     JavaThread* jt = JavaThread::cast(self);
 245     switch (jt->thread_state()) {
 246     case _thread_in_vm:    // the usual case
 247     case _thread_in_Java:  // during deopt
 248       break;
 249     default:
 250       fatal("called from an unsafe thread state");
 251     }
 252     assert(jt->is_active_Java_thread(), "must be active JavaThread");
 253   } else {
 254     // However, ThreadService::get_current_contended_monitor()
 255     // can call here via the VMThread so sanity check it.
 256     assert(self->is_VM_thread(), "must be");
 257   }
 258 #endif // ASSERT
 259 }
 260 
 261 ObjectMonitor::ObjectMonitor(oop object) :
 262   _header(markWord::zero()),
 263   _object(_oop_storage, object),
 264   _owner(nullptr),
 265   _stack_locker(nullptr),
 266   _previous_owner_tid(0),
 267   _next_om(nullptr),
 268   _recursions(0),
 269   _EntryList(nullptr),
 270   _cxq(nullptr),
 271   _succ(nullptr),
 272   _Responsible(nullptr),
 273   _SpinDuration(ObjectMonitor::Knob_SpinLimit),
 274   _contentions(0),
 275   _WaitSet(nullptr),
 276   _waiters(0),
 277   _WaitSetLock(0)
 278 { }
 279 
 280 ObjectMonitor::~ObjectMonitor() {
 281   _object.release(_oop_storage);
 282 }
 283 
 284 oop ObjectMonitor::object() const {
 285   check_object_context();
 286   return _object.resolve();
 287 }
 288 
 289 oop ObjectMonitor::object_peek() const {
 290   return _object.peek();
 291 }
 292 
 293 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) {
 294   if (current->is_suspended()) {
 295     _om->_recursions = 0;
 296     _om->_succ = nullptr;
 297     // Don't need a full fence after clearing successor here because of the call to exit().
 298     _om->exit(current, false /* not_suspended */);
 299     _om_exited = true;
 300 
 301     current->set_current_pending_monitor(_om);
 302   }
 303 }
 304 
 305 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) {
 306   if (current->is_suspended()) {
 307     if (_om->_succ == current) {
 308       _om->_succ = nullptr;
 309       OrderAccess::fence(); // always do a full fence when successor is cleared
 310     }
 311   }
 312 }
 313 
 314 // -----------------------------------------------------------------------------
 315 // Enter support
 316 
 317 bool ObjectMonitor::enter_for(JavaThread* locking_thread) {
 318   // Used by ObjectSynchronizer::enter_for to enter for another thread.
 319   // The monitor is private to or already owned by locking_thread which must be suspended.
 320   // So this code may only contend with deflation.
 321   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 322 
 323   // Block out deflation as soon as possible.
 324   add_to_contentions(1);
 325 
 326   bool success = false;
 327   if (!is_being_async_deflated()) {
 328     void* prev_owner = try_set_owner_from(nullptr, locking_thread);
 329 
 330     if (prev_owner == nullptr) {
 331       assert(_recursions == 0, "invariant");
 332       success = true;
 333     } else if (prev_owner == owner_for(locking_thread)) {
 334       _recursions++;
 335       success = true;
 336     } else if (prev_owner == DEFLATER_MARKER) {
 337       // Racing with deflation.
 338       prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread);
 339       if (prev_owner == DEFLATER_MARKER) {
 340         // Cancelled deflation. Increment contentions as part of the deflation protocol.
 341         add_to_contentions(1);
 342         success = true;
 343       } else if (prev_owner == nullptr) {
 344         // At this point we cannot race with deflation as we have both incremented
 345         // contentions, seen contention > 0 and seen a DEFLATER_MARKER.
 346         // success will only be false if this races with something other than
 347         // deflation.
 348         prev_owner = try_set_owner_from(nullptr, locking_thread);
 349         success = prev_owner == nullptr;
 350       }
 351     }
 352     assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT
 353            ", this=" INTPTR_FORMAT "{owner=" INTPTR_FORMAT "}, observed owner: " INTPTR_FORMAT,
 354            p2i(locking_thread), p2i(this), p2i(owner_raw()), p2i(prev_owner));
 355   } else {
 356     // Async deflation is in progress and our contentions increment
 357     // above lost the race to async deflation. Undo the work and
 358     // force the caller to retry.
 359     const oop l_object = object();
 360     if (l_object != nullptr) {
 361       // Attempt to restore the header/dmw to the object's header so that
 362       // we only retry once if the deflater thread happens to be slow.
 363       install_displaced_markword_in_object(l_object);
 364     }
 365   }
 366 
 367   add_to_contentions(-1);
 368 
 369   assert(!success || is_owner(locking_thread), "must be");
 370 
 371   return success;
 372 }
 373 
 374 bool ObjectMonitor::enter(JavaThread* current) {
 375   assert(current == JavaThread::current(), "must be");
 376   // The following code is ordered to check the most common cases first
 377   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 378 
 379   void* cur = try_set_owner_from(nullptr, current);
 380   if (cur == nullptr) {
 381     assert(_recursions == 0, "invariant");
 382     return true;
 383   }
 384 
 385   if (cur == owner_for(current)) {
 386     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 387     _recursions++;
 388     return true;
 389   }
 390 
 391   // We've encountered genuine contention.
 392 
 393   // Try one round of spinning *before* enqueueing current
 394   // and before going through the awkward and expensive state
 395   // transitions.  The following spin is strictly optional ...
 396   // Note that if we acquire the monitor from an initial spin
 397   // we forgo posting JVMTI events and firing DTRACE probes.
 398   if (TrySpin(current)) {
 399     assert(owner_raw() == owner_for(current), "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw()));
 400     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 401     assert(object()->mark() == markWord::encode(this),
 402            "object mark must match encoded this: mark=" INTPTR_FORMAT
 403            ", encoded this=" INTPTR_FORMAT, object()->mark().value(),
 404            markWord::encode(this).value());
 405     return true;
 406   }
 407 
 408   assert(owner_raw() != owner_for(current), "invariant");
 409   assert(_succ != current, "invariant");
 410   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 411   assert(current->thread_state() != _thread_blocked, "invariant");
 412 
 413   // Keep track of contention for JVM/TI and M&M queries.
 414   add_to_contentions(1);
 415   if (is_being_async_deflated()) {
 416     // Async deflation is in progress and our contentions increment
 417     // above lost the race to async deflation. Undo the work and
 418     // force the caller to retry.
 419     const oop l_object = object();
 420     if (l_object != nullptr) {
 421       // Attempt to restore the header/dmw to the object's header so that
 422       // we only retry once if the deflater thread happens to be slow.
 423       install_displaced_markword_in_object(l_object);
 424     }
 425     add_to_contentions(-1);
 426     return false;
 427   }
 428 
 429   JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);)
 430   EventJavaMonitorEnter event;
 431   if (event.is_started()) {
 432     event.set_monitorClass(object()->klass());
 433     // Set an address that is 'unique enough', such that events close in
 434     // time and with the same address are likely (but not guaranteed) to
 435     // belong to the same object.
 436     event.set_address((uintptr_t)this);
 437   }
 438 
 439   { // Change java thread status to indicate blocked on monitor enter.
 440     JavaThreadBlockedOnMonitorEnterState jtbmes(current, this);
 441 
 442     assert(current->current_pending_monitor() == nullptr, "invariant");
 443     current->set_current_pending_monitor(this);
 444 
 445     DTRACE_MONITOR_PROBE(contended__enter, this, object(), current);
 446     if (JvmtiExport::should_post_monitor_contended_enter()) {
 447       JvmtiExport::post_monitor_contended_enter(current, this);
 448 
 449       // The current thread does not yet own the monitor and does not
 450       // yet appear on any queues that would get it made the successor.
 451       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 452       // handler cannot accidentally consume an unpark() meant for the
 453       // ParkEvent associated with this ObjectMonitor.
 454     }
 455 
 456 #ifdef LOOM_MONITOR_SUPPORT
 457     ContinuationEntry* ce = current->last_continuation();
 458     if (ce != nullptr && ce->is_virtual_thread() && current->is_on_monitorenter()) {
 459       int result = Continuation::try_preempt(current, ce->cont_oop(current));
 460       if (result == freeze_ok) {
 461         bool acquired = HandlePreemptedVThread(current);
 462         DEBUG_ONLY(int state = java_lang_VirtualThread::state(current->vthread()));
 463         assert((acquired && current->preemption_cancelled() && state == java_lang_VirtualThread::RUNNING) ||
 464                (!acquired && !current->preemption_cancelled() && state == java_lang_VirtualThread::BLOCKING), "invariant");
 465         return true;
 466       }
 467       if (result == freeze_pinned_native) {
 468         post_virtual_thread_pinned_event(current, "Native frame or <clinit> on stack");
 469       }
 470     }
 471 #endif
 472 
 473     OSThreadContendState osts(current->osthread());
 474 
 475     assert(current->thread_state() == _thread_in_vm, "invariant");
 476 
 477     for (;;) {
 478       ExitOnSuspend eos(this);
 479       {
 480         ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */);
 481         EnterI(current);
 482         current->set_current_pending_monitor(nullptr);
 483         // We can go to a safepoint at the end of this block. If we
 484         // do a thread dump during that safepoint, then this thread will show
 485         // as having "-locked" the monitor, but the OS and java.lang.Thread
 486         // states will still report that the thread is blocked trying to
 487         // acquire it.
 488         // If there is a suspend request, ExitOnSuspend will exit the OM
 489         // and set the OM as pending.
 490       }
 491       if (!eos.exited()) {
 492         // ExitOnSuspend did not exit the OM
 493         assert(owner_raw() == owner_for(current), "invariant");
 494         break;
 495       }
 496     }
 497 
 498     // We've just gotten past the enter-check-for-suspend dance and we now own
 499     // the monitor free and clear.
 500   }
 501 
 502   add_to_contentions(-1);
 503   assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
 504 
 505   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 506   assert(_recursions == 0, "invariant");
 507   assert(owner_raw() == owner_for(current), "invariant");
 508   assert(_succ != current, "invariant");
 509   assert(object()->mark() == markWord::encode(this), "invariant");
 510 
 511   // The thread -- now the owner -- is back in vm mode.
 512   // Report the glorious news via TI,DTrace and jvmstat.
 513   // The probe effect is non-trivial.  All the reportage occurs
 514   // while we hold the monitor, increasing the length of the critical
 515   // section.  Amdahl's parallel speedup law comes vividly into play.
 516   //
 517   // Another option might be to aggregate the events (thread local or
 518   // per-monitor aggregation) and defer reporting until a more opportune
 519   // time -- such as next time some thread encounters contention but has
 520   // yet to acquire the lock.  While spinning that thread could
 521   // spinning we could increment JVMStat counters, etc.
 522 
 523   DTRACE_MONITOR_PROBE(contended__entered, this, object(), current);
 524   if (JvmtiExport::should_post_monitor_contended_entered()) {
 525     JvmtiExport::post_monitor_contended_entered(current, this);
 526 
 527     // The current thread already owns the monitor and is not going to
 528     // call park() for the remainder of the monitor enter protocol. So
 529     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 530     // event handler consumed an unpark() issued by the thread that
 531     // just exited the monitor.
 532   }
 533   if (event.should_commit()) {
 534     event.set_previousOwner(_previous_owner_tid);
 535     event.commit();
 536   }
 537   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 538   return true;
 539 }
 540 
 541 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 542 // Callers must compensate as needed.
 543 
 544 ObjectMonitor::TryLockResult ObjectMonitor::TryLock(JavaThread* current) {
 545   void* own = owner_raw();
 546   if (own != nullptr) return TryLockResult::HasOwner;
 547   if (try_set_owner_from(nullptr, current) == nullptr) {
 548     assert(_recursions == 0, "invariant");
 549     return TryLockResult::Success;
 550   }
 551   // The lock had been free momentarily, but we lost the race to the lock.
 552   // Interference -- the CAS failed.
 553   // We can either return -1 or retry.
 554   // Retry doesn't make as much sense because the lock was just acquired.
 555   return TryLockResult::Interference;
 556 }
 557 
 558 // Deflate the specified ObjectMonitor if not in-use. Returns true if it
 559 // was deflated and false otherwise.
 560 //
 561 // The async deflation protocol sets owner to DEFLATER_MARKER and
 562 // makes contentions negative as signals to contending threads that
 563 // an async deflation is in progress. There are a number of checks
 564 // as part of the protocol to make sure that the calling thread has
 565 // not lost the race to a contending thread.
 566 //
 567 // The ObjectMonitor has been successfully async deflated when:
 568 //   (contentions < 0)
 569 // Contending threads that see that condition know to retry their operation.
 570 //
 571 bool ObjectMonitor::deflate_monitor() {
 572   if (is_busy()) {
 573     // Easy checks are first - the ObjectMonitor is busy so no deflation.
 574     return false;
 575   }
 576 
 577   const oop obj = object_peek();
 578 
 579   if (obj == nullptr) {
 580     // If the object died, we can recycle the monitor without racing with
 581     // Java threads. The GC already broke the association with the object.
 582     set_owner_from_raw(nullptr, DEFLATER_MARKER);
 583     assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions());
 584     _contentions = INT_MIN; // minimum negative int
 585   } else {
 586     // Attempt async deflation protocol.
 587 
 588     // Set a null owner to DEFLATER_MARKER to force any contending thread
 589     // through the slow path. This is just the first part of the async
 590     // deflation dance.
 591     if (try_set_owner_from_raw(nullptr, DEFLATER_MARKER) != nullptr) {
 592       // The owner field is no longer null so we lost the race since the
 593       // ObjectMonitor is now busy.
 594       return false;
 595     }
 596 
 597     if (contentions() > 0 || _waiters != 0) {
 598       // Another thread has raced to enter the ObjectMonitor after
 599       // is_busy() above or has already entered and waited on
 600       // it which makes it busy so no deflation. Restore owner to
 601       // null if it is still DEFLATER_MARKER.
 602       if (try_set_owner_from_raw(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 603         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 604         add_to_contentions(-1);
 605       }
 606       return false;
 607     }
 608 
 609     // Make a zero contentions field negative to force any contending threads
 610     // to retry. This is the second part of the async deflation dance.
 611     if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) {
 612       // Contentions was no longer 0 so we lost the race since the
 613       // ObjectMonitor is now busy. Restore owner to null if it is
 614       // still DEFLATER_MARKER:
 615       if (try_set_owner_from_raw(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 616         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 617         add_to_contentions(-1);
 618       }
 619       return false;
 620     }
 621   }
 622 
 623   // Sanity checks for the races:
 624   guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker");
 625   guarantee(contentions() < 0, "must be negative: contentions=%d",
 626             contentions());
 627   guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters);
 628   guarantee(_cxq == nullptr, "must be no contending threads: cxq="
 629             INTPTR_FORMAT, p2i(_cxq));
 630   guarantee(_EntryList == nullptr,
 631             "must be no entering threads: EntryList=" INTPTR_FORMAT,
 632             p2i(_EntryList));
 633 
 634   if (obj != nullptr) {
 635     if (log_is_enabled(Trace, monitorinflation)) {
 636       ResourceMark rm;
 637       log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT
 638                                   ", mark=" INTPTR_FORMAT ", type='%s'",
 639                                   p2i(obj), obj->mark().value(),
 640                                   obj->klass()->external_name());
 641     }
 642 
 643     // Install the old mark word if nobody else has already done it.
 644     install_displaced_markword_in_object(obj);
 645   }
 646 
 647   // We leave owner == DEFLATER_MARKER and contentions < 0
 648   // to force any racing threads to retry.
 649   return true;  // Success, ObjectMonitor has been deflated.
 650 }
 651 
 652 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 653 // into the header of the object associated with the monitor. This
 654 // idempotent method is called by a thread that is deflating a
 655 // monitor and by other threads that have detected a race with the
 656 // deflation process.
 657 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 658   // This function must only be called when (owner == DEFLATER_MARKER
 659   // && contentions <= 0), but we can't guarantee that here because
 660   // those values could change when the ObjectMonitor gets moved from
 661   // the global free list to a per-thread free list.
 662 
 663   guarantee(obj != nullptr, "must be non-null");
 664 
 665   // Separate loads in is_being_async_deflated(), which is almost always
 666   // called before this function, from the load of dmw/header below.
 667 
 668   // _contentions and dmw/header may get written by different threads.
 669   // Make sure to observe them in the same order when having several observers.
 670   OrderAccess::loadload_for_IRIW();
 671 
 672   const oop l_object = object_peek();
 673   if (l_object == nullptr) {
 674     // ObjectMonitor's object ref has already been cleared by async
 675     // deflation or GC so we're done here.
 676     return;
 677   }
 678   assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj="
 679          INTPTR_FORMAT, p2i(l_object), p2i(obj));
 680 
 681   markWord dmw = header();
 682   // The dmw has to be neutral (not null, not locked and not marked).
 683   assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 684 
 685   // Install displaced mark word if the object's header still points
 686   // to this ObjectMonitor. More than one racing caller to this function
 687   // can rarely reach this point, but only one can win.
 688   markWord res = obj->cas_set_mark(dmw, markWord::encode(this));
 689   if (res != markWord::encode(this)) {
 690     // This should be rare so log at the Info level when it happens.
 691     log_info(monitorinflation)("install_displaced_markword_in_object: "
 692                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 693                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 694                                dmw.value(), markWord::encode(this).value(),
 695                                res.value());
 696   }
 697 
 698   // Note: It does not matter which thread restored the header/dmw
 699   // into the object's header. The thread deflating the monitor just
 700   // wanted the object's header restored and it is. The threads that
 701   // detected a race with the deflation process also wanted the
 702   // object's header restored before they retry their operation and
 703   // because it is restored they will only retry once.
 704 }
 705 
 706 // Convert the fields used by is_busy() to a string that can be
 707 // used for diagnostic output.
 708 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 709   ss->print("is_busy: waiters=%d"
 710             ", contentions=%d"
 711             ", owner=" INTPTR_FORMAT
 712             ", cxq=" PTR_FORMAT
 713             ", EntryList=" PTR_FORMAT,
 714             _waiters,
 715             (contentions() > 0 ? contentions() : 0),
 716             owner_is_DEFLATER_MARKER()
 717                 // We report null instead of DEFLATER_MARKER here because is_busy()
 718                 // ignores DEFLATER_MARKER values.
 719                 ? p2i(nullptr)
 720                 : p2i(owner_raw()),
 721             p2i(_cxq),
 722             p2i(_EntryList));
 723   return ss->base();
 724 }
 725 
 726 #define MAX_RECHECK_INTERVAL 1000
 727 
 728 void ObjectMonitor::EnterI(JavaThread* current) {
 729   assert(current->thread_state() == _thread_blocked, "invariant");
 730 
 731   // Try the lock - TATAS
 732   if (TryLock(current) == TryLockResult::Success) {
 733     assert(_succ != current, "invariant");
 734     assert(owner_raw() == owner_for(current), "invariant");
 735     assert(_Responsible != current, "invariant");
 736     return;
 737   }
 738 
 739   if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 740     // Cancelled the in-progress async deflation by changing owner from
 741     // DEFLATER_MARKER to current. As part of the contended enter protocol,
 742     // contentions was incremented to a positive value before EnterI()
 743     // was called and that prevents the deflater thread from winning the
 744     // last part of the 2-part async deflation protocol. After EnterI()
 745     // returns to enter(), contentions is decremented because the caller
 746     // now owns the monitor. We bump contentions an extra time here to
 747     // prevent the deflater thread from winning the last part of the
 748     // 2-part async deflation protocol after the regular decrement
 749     // occurs in enter(). The deflater thread will decrement contentions
 750     // after it recognizes that the async deflation was cancelled.
 751     add_to_contentions(1);
 752     assert(_succ != current, "invariant");
 753     assert(_Responsible != current, "invariant");
 754     return;
 755   }
 756 
 757   assert(InitDone, "Unexpectedly not initialized");
 758 
 759   // We try one round of spinning *before* enqueueing current.
 760   //
 761   // If the _owner is ready but OFFPROC we could use a YieldTo()
 762   // operation to donate the remainder of this thread's quantum
 763   // to the owner.  This has subtle but beneficial affinity
 764   // effects.
 765 
 766   if (TrySpin(current)) {
 767     assert(owner_raw() == owner_for(current), "invariant");
 768     assert(_succ != current, "invariant");
 769     assert(_Responsible != current, "invariant");
 770     return;
 771   }
 772 
 773   // The Spin failed -- Enqueue and park the thread ...
 774   assert(_succ != current, "invariant");
 775   assert(owner_raw() != owner_for(current), "invariant");
 776   assert(_Responsible != current, "invariant");
 777 
 778   // Enqueue "current" on ObjectMonitor's _cxq.
 779   //
 780   // Node acts as a proxy for current.
 781   // As an aside, if were to ever rewrite the synchronization code mostly
 782   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 783   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 784   // as well as eliminate a subset of ABA issues.
 785   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 786 
 787   ObjectWaiter node(current);
 788   current->_ParkEvent->reset();
 789   node._prev   = (ObjectWaiter*) 0xBAD;
 790   node.TState  = ObjectWaiter::TS_CXQ;
 791 
 792   // Push "current" onto the front of the _cxq.
 793   // Once on cxq/EntryList, current stays on-queue until it acquires the lock.
 794   // Note that spinning tends to reduce the rate at which threads
 795   // enqueue and dequeue on EntryList|cxq.
 796   ObjectWaiter* nxt;
 797   for (;;) {
 798     node._next = nxt = _cxq;
 799     if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break;
 800 
 801     // Interference - the CAS failed because _cxq changed.  Just retry.
 802     // As an optional optimization we retry the lock.
 803     if (TryLock(current) == TryLockResult::Success) {
 804       assert(_succ != current, "invariant");
 805       assert(owner_raw() == owner_for(current), "invariant");
 806       assert(_Responsible != current, "invariant");
 807       return;
 808     }
 809   }
 810 
 811   // Check for cxq|EntryList edge transition to non-null.  This indicates
 812   // the onset of contention.  While contention persists exiting threads
 813   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 814   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 815   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 816   // arrange for one of the contending thread to use a timed park() operations
 817   // to detect and recover from the race.  (Stranding is form of progress failure
 818   // where the monitor is unlocked but all the contending threads remain parked).
 819   // That is, at least one of the contended threads will periodically poll _owner.
 820   // One of the contending threads will become the designated "Responsible" thread.
 821   // The Responsible thread uses a timed park instead of a normal indefinite park
 822   // operation -- it periodically wakes and checks for and recovers from potential
 823   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 824   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 825   // be responsible for a monitor.
 826   //
 827   // Currently, one of the contended threads takes on the added role of "Responsible".
 828   // A viable alternative would be to use a dedicated "stranding checker" thread
 829   // that periodically iterated over all the threads (or active monitors) and unparked
 830   // successors where there was risk of stranding.  This would help eliminate the
 831   // timer scalability issues we see on some platforms as we'd only have one thread
 832   // -- the checker -- parked on a timer.
 833 
 834   if (nxt == nullptr && _EntryList == nullptr) {
 835     // Try to assume the role of responsible thread for the monitor.
 836     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=current }
 837     Atomic::replace_if_null(&_Responsible, current);
 838   }
 839 
 840   // The lock might have been released while this thread was occupied queueing
 841   // itself onto _cxq.  To close the race and avoid "stranding" and
 842   // progress-liveness failure we must resample-retry _owner before parking.
 843   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 844   // In this case the ST-MEMBAR is accomplished with CAS().
 845   //
 846   // TODO: Defer all thread state transitions until park-time.
 847   // Since state transitions are heavy and inefficient we'd like
 848   // to defer the state transitions until absolutely necessary,
 849   // and in doing so avoid some transitions ...
 850 
 851   int nWakeups = 0;
 852   int recheckInterval = 1;
 853   bool do_timed_parked = false;
 854 
 855   ContinuationEntry* ce = current->last_continuation();
 856   if (ce != nullptr && ce->is_virtual_thread()) {
 857     do_timed_parked = true;
 858   }
 859 
 860   for (;;) {
 861 
 862     if (TryLock(current) == TryLockResult::Success) {
 863       break;
 864     }
 865     assert(owner_raw() != owner_for(current), "invariant");
 866 
 867     // park self
 868     if (_Responsible == current || do_timed_parked) {
 869       current->_ParkEvent->park((jlong) recheckInterval);
 870       // Increase the recheckInterval, but clamp the value.
 871       recheckInterval *= 8;
 872       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 873         recheckInterval = MAX_RECHECK_INTERVAL;
 874       }
 875     } else {
 876       current->_ParkEvent->park();
 877     }
 878 
 879     if (TryLock(current) == TryLockResult::Success) {
 880       break;
 881     }
 882 
 883     if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 884       // Cancelled the in-progress async deflation by changing owner from
 885       // DEFLATER_MARKER to current. As part of the contended enter protocol,
 886       // contentions was incremented to a positive value before EnterI()
 887       // was called and that prevents the deflater thread from winning the
 888       // last part of the 2-part async deflation protocol. After EnterI()
 889       // returns to enter(), contentions is decremented because the caller
 890       // now owns the monitor. We bump contentions an extra time here to
 891       // prevent the deflater thread from winning the last part of the
 892       // 2-part async deflation protocol after the regular decrement
 893       // occurs in enter(). The deflater thread will decrement contentions
 894       // after it recognizes that the async deflation was cancelled.
 895       add_to_contentions(1);
 896       break;
 897     }
 898 
 899     // The lock is still contested.
 900     // Keep a tally of the # of futile wakeups.
 901     // Note that the counter is not protected by a lock or updated by atomics.
 902     // That is by design - we trade "lossy" counters which are exposed to
 903     // races during updates for a lower probe effect.
 904 
 905     // This PerfData object can be used in parallel with a safepoint.
 906     // See the work around in PerfDataManager::destroy().
 907     OM_PERFDATA_OP(FutileWakeups, inc());
 908     ++nWakeups;
 909 
 910     // Assuming this is not a spurious wakeup we'll normally find _succ == current.
 911     // We can defer clearing _succ until after the spin completes
 912     // TrySpin() must tolerate being called with _succ == current.
 913     // Try yet another round of adaptive spinning.
 914     if (TrySpin(current)) {
 915       break;
 916     }
 917 
 918     // We can find that we were unpark()ed and redesignated _succ while
 919     // we were spinning.  That's harmless.  If we iterate and call park(),
 920     // park() will consume the event and return immediately and we'll
 921     // just spin again.  This pattern can repeat, leaving _succ to simply
 922     // spin on a CPU.
 923 
 924     if (_succ == current) _succ = nullptr;
 925 
 926     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 927     OrderAccess::fence();
 928   }
 929 
 930   // Egress :
 931   // current has acquired the lock -- Unlink current from the cxq or EntryList.
 932   // Normally we'll find current on the EntryList .
 933   // From the perspective of the lock owner (this thread), the
 934   // EntryList is stable and cxq is prepend-only.
 935   // The head of cxq is volatile but the interior is stable.
 936   // In addition, current.TState is stable.
 937 
 938   assert(owner_raw() == owner_for(current), "invariant");
 939 
 940   UnlinkAfterAcquire(current, &node);
 941   if (_succ == current) _succ = nullptr;
 942 
 943   assert(_succ != current, "invariant");
 944   if (_Responsible == current) {
 945     _Responsible = nullptr;
 946     OrderAccess::fence(); // Dekker pivot-point
 947 
 948     // We may leave threads on cxq|EntryList without a designated
 949     // "Responsible" thread.  This is benign.  When this thread subsequently
 950     // exits the monitor it can "see" such preexisting "old" threads --
 951     // threads that arrived on the cxq|EntryList before the fence, above --
 952     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 953     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 954     // non-null and elect a new "Responsible" timer thread.
 955     //
 956     // This thread executes:
 957     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 958     //    LD cxq|EntryList               (in subsequent exit)
 959     //
 960     // Entering threads in the slow/contended path execute:
 961     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 962     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 963     //
 964     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 965     // exit operation from floating above the ST Responsible=null.
 966   }
 967 
 968   // We've acquired ownership with CAS().
 969   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 970   // But since the CAS() this thread may have also stored into _succ,
 971   // EntryList, cxq or Responsible.  These meta-data updates must be
 972   // visible __before this thread subsequently drops the lock.
 973   // Consider what could occur if we didn't enforce this constraint --
 974   // STs to monitor meta-data and user-data could reorder with (become
 975   // visible after) the ST in exit that drops ownership of the lock.
 976   // Some other thread could then acquire the lock, but observe inconsistent
 977   // or old monitor meta-data and heap data.  That violates the JMM.
 978   // To that end, the 1-0 exit() operation must have at least STST|LDST
 979   // "release" barrier semantics.  Specifically, there must be at least a
 980   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 981   // the lock.   The barrier ensures that changes to monitor meta-data and data
 982   // protected by the lock will be visible before we release the lock, and
 983   // therefore before some other thread (CPU) has a chance to acquire the lock.
 984   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 985   //
 986   // Critically, any prior STs to _succ or EntryList must be visible before
 987   // the ST of null into _owner in the *subsequent* (following) corresponding
 988   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 989   // execute a serializing instruction.
 990 
 991   return;
 992 }
 993 
 994 bool ObjectMonitor::HandlePreemptedVThread(JavaThread* current) {
 995   // Either because we acquire the lock below or because we will preempt the
 996   // vthread clear the _current_pending_monitor field from the current JavaThread.
 997   current->set_current_pending_monitor(nullptr);
 998 
 999   // Try once more after freezing the continuation.
1000   if (TryLock(current) == TryLockResult::Success) {
1001     assert(owner_raw() == owner_for(current), "invariant");
1002     assert(_succ != current, "invariant");
1003     assert(_Responsible != current, "invariant");
1004     current->set_preemption_cancelled(true);
1005     add_to_contentions(-1);
1006     return true;
1007   }
1008 
1009   if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
1010     // Cancelled the in-progress async deflation by changing owner from
1011     // DEFLATER_MARKER to current. As part of the contended enter protocol,
1012     // contentions was incremented to a positive value before this call to
1013     // HandlePreemptedVThread(). We avoid decrementing contentions to
1014     // prevent the deflater thread from winning the last part of the
1015     // 2-part async deflation protocol. The deflater thread will decrement
1016     // contentions after it recognizes that the async deflation was cancelled.
1017     assert(_succ != current, "invariant");
1018     assert(_Responsible != current, "invariant");
1019     current->set_preemption_cancelled(true);
1020     return true;
1021   }
1022 
1023   oop vthread = current->vthread();
1024   assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
1025   java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING);
1026 
1027   ObjectWaiter* node = new ObjectWaiter(vthread);
1028   node->_prev   = (ObjectWaiter*) 0xBAD;
1029   node->TState  = ObjectWaiter::TS_CXQ;
1030 
1031   // Push node associated with vthread onto the front of the _cxq.
1032   ObjectWaiter* nxt;
1033   for (;;) {
1034     node->_next = nxt = _cxq;
1035     if (Atomic::cmpxchg(&_cxq, nxt, node) == nxt) break;
1036 
1037     // Interference - the CAS failed because _cxq changed.  Just retry.
1038     // As an optional optimization we retry the lock.
1039     if (TryLock(current) == TryLockResult::Success) {
1040       assert(owner_raw() == owner_for(current), "invariant");
1041       assert(_succ != current, "invariant");
1042       assert(_Responsible != current, "invariant");
1043       current->set_preemption_cancelled(true);
1044       java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::RUNNING);
1045       add_to_contentions(-1);
1046       delete node;
1047       return true;
1048     }
1049   }
1050 
1051   // We have to try once more since owner could have exited monitor and checked
1052   // _cxq before we added the node to the queue.
1053   if (TryLock(current) == TryLockResult::Success) {
1054     assert(owner_raw() == owner_for(current), "invariant");
1055     assert(_Responsible != current, "invariant");
1056     current->set_preemption_cancelled(true);
1057     java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::RUNNING);
1058     UnlinkAfterAcquire(current, node, vthread);
1059     delete node;
1060     if (_succ == (JavaThread*)java_lang_Thread::thread_id(vthread)) _succ = nullptr;
1061     add_to_contentions(-1);
1062     return true;
1063   }
1064 
1065   if (nxt == nullptr && _EntryList == nullptr) {
1066     // The C2 unlock() fast path first checks if _cxq and _EntryList are empty and
1067     // if they are it just clears the _owner field. Since we always run the risk of
1068     // having that check happening before we added the node to _cxq and the release
1069     // of the monitor happening after the last TryLock attempt we need to do something
1070     // to avoid stranding. We set the _Responsible field which results in a timed-wait.
1071     if (Atomic::replace_if_null(&_Responsible, (JavaThread*)java_lang_Thread::thread_id(vthread))) {
1072       java_lang_VirtualThread::set_recheckInterval(vthread, 1);
1073     }
1074   }
1075 
1076   return false;
1077 }
1078 
1079 // ReenterI() is a specialized inline form of the latter half of the
1080 // contended slow-path from EnterI().  We use ReenterI() only for
1081 // monitor reentry in wait().
1082 //
1083 // In the future we should reconcile EnterI() and ReenterI().
1084 
1085 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) {
1086   assert(current != nullptr, "invariant");
1087   assert(currentNode != nullptr, "invariant");
1088   assert(currentNode->_thread == current, "invariant");
1089   assert(_waiters > 0, "invariant");
1090   assert(object()->mark() == markWord::encode(this), "invariant");
1091 
1092   assert(current->thread_state() != _thread_blocked, "invariant");
1093 
1094   int nWakeups = 0;
1095   for (;;) {
1096     ObjectWaiter::TStates v = currentNode->TState;
1097     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1098     assert(owner_raw() != owner_for(current), "invariant");
1099 
1100     if (TrySpin(current)) {
1101         break;
1102     }
1103 
1104     {
1105       OSThreadContendState osts(current->osthread());
1106 
1107       assert(current->thread_state() == _thread_in_vm, "invariant");
1108 
1109       {
1110         ClearSuccOnSuspend csos(this);
1111         ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1112         current->_ParkEvent->park();
1113       }
1114     }
1115 
1116     // Try again, but just so we distinguish between futile wakeups and
1117     // successful wakeups.  The following test isn't algorithmically
1118     // necessary, but it helps us maintain sensible statistics.
1119     if (TryLock(current) == TryLockResult::Success) {
1120       break;
1121     }
1122 
1123     // The lock is still contested.
1124     // Keep a tally of the # of futile wakeups.
1125     // Note that the counter is not protected by a lock or updated by atomics.
1126     // That is by design - we trade "lossy" counters which are exposed to
1127     // races during updates for a lower probe effect.
1128     ++nWakeups;
1129 
1130     // Assuming this is not a spurious wakeup we'll normally
1131     // find that _succ == current.
1132     if (_succ == current) _succ = nullptr;
1133 
1134     // Invariant: after clearing _succ a contending thread
1135     // *must* retry  _owner before parking.
1136     OrderAccess::fence();
1137 
1138     // This PerfData object can be used in parallel with a safepoint.
1139     // See the work around in PerfDataManager::destroy().
1140     OM_PERFDATA_OP(FutileWakeups, inc());
1141   }
1142 
1143   // current has acquired the lock -- Unlink current from the cxq or EntryList .
1144   // Normally we'll find current on the EntryList.
1145   // Unlinking from the EntryList is constant-time and atomic-free.
1146   // From the perspective of the lock owner (this thread), the
1147   // EntryList is stable and cxq is prepend-only.
1148   // The head of cxq is volatile but the interior is stable.
1149   // In addition, current.TState is stable.
1150 
1151   assert(owner_raw() == owner_for(current), "invariant");
1152   assert(object()->mark() == markWord::encode(this), "invariant");
1153   UnlinkAfterAcquire(current, currentNode);
1154   if (_succ == current) _succ = nullptr;
1155   assert(_succ != current, "invariant");
1156   currentNode->TState = ObjectWaiter::TS_RUN;
1157   OrderAccess::fence();      // see comments at the end of EnterI()
1158 }
1159 
1160 void ObjectMonitor::redo_enter(JavaThread* current) {
1161   assert(java_lang_VirtualThread::state(current->vthread()) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
1162   assert(current->is_in_VTMS_transition(), "must be");
1163 
1164   if (TryLock(current) == TryLockResult::Success) {
1165     VThreadEpilog(current);
1166     return;
1167   }
1168 
1169   oop vthread = current->vthread();
1170   if (_succ == (JavaThread*)java_lang_Thread::thread_id(vthread)) _succ = nullptr;
1171 
1172   // Invariant: after clearing _succ a thread *must* retry _owner before parking.
1173   OrderAccess::fence();
1174 
1175   if (TryLock(current) == TryLockResult::Success) {
1176     assert(owner_raw() == owner_for(current), "invariant");
1177     VThreadEpilog(current);
1178     return;
1179   }
1180 
1181   // Fast preemption. The JT will read this variable on return to the
1182   // monitorenter_redo stub and will just remove enterSpecial frame
1183   // from the stack and return to Continuation.run()
1184   current->set_preempting(true);
1185 
1186   java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING);
1187   if (_Responsible == (JavaThread*)java_lang_Thread::thread_id(vthread)) {
1188     int recheckInterval = java_lang_VirtualThread::recheckInterval(vthread);
1189     assert(recheckInterval >= 1 && recheckInterval <= 6, "invariant");
1190     if (recheckInterval < 6) {
1191       recheckInterval++;
1192       java_lang_VirtualThread::set_recheckInterval(vthread, recheckInterval);
1193     }
1194   } else if (java_lang_VirtualThread::recheckInterval(vthread) > 0) {
1195     // No need to do timed park anymore
1196     java_lang_VirtualThread::set_recheckInterval(vthread, 0);
1197   }
1198 }
1199 
1200 void ObjectMonitor::VThreadEpilog(JavaThread* current) {
1201   assert(owner_raw() == owner_for(current), "invariant");
1202   add_to_contentions(-1);
1203 
1204   oop vthread = current->vthread();
1205   if (java_lang_VirtualThread::recheckInterval(vthread) > 0) {
1206     java_lang_VirtualThread::set_recheckInterval(vthread, 0);
1207   }
1208   int64_t threadid = java_lang_Thread::thread_id(vthread);
1209   if (_succ == (JavaThread*)threadid) _succ = nullptr;
1210   if (_Responsible == (JavaThread*)threadid) {
1211     _Responsible = nullptr;
1212     OrderAccess::fence(); // Dekker pivot-point
1213   }
1214   ObjectWaiter* node = LookupWaiter(threadid);
1215   UnlinkAfterAcquire(current, node, vthread);
1216   delete node;
1217 }
1218 
1219 // By convention we unlink a contending thread from EntryList|cxq immediately
1220 // after the thread acquires the lock in ::enter().  Equally, we could defer
1221 // unlinking the thread until ::exit()-time.
1222 
1223 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode, oop vthread) {
1224   assert(owner_raw() == owner_for(current), "invariant");
1225   assert((currentNode->_thread == current) || (currentNode->_thread == nullptr && currentNode->vthread() == vthread), "invariant");
1226 
1227   if (currentNode->TState == ObjectWaiter::TS_ENTER) {
1228     // Normal case: remove current from the DLL EntryList .
1229     // This is a constant-time operation.
1230     ObjectWaiter* nxt = currentNode->_next;
1231     ObjectWaiter* prv = currentNode->_prev;
1232     if (nxt != nullptr) nxt->_prev = prv;
1233     if (prv != nullptr) prv->_next = nxt;
1234     if (currentNode == _EntryList) _EntryList = nxt;
1235     assert(nxt == nullptr || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
1236     assert(prv == nullptr || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
1237   } else {
1238     assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant");
1239     // Inopportune interleaving -- current is still on the cxq.
1240     // This usually means the enqueue of self raced an exiting thread.
1241     // Normally we'll find current near the front of the cxq, so
1242     // dequeueing is typically fast.  If needbe we can accelerate
1243     // this with some MCS/CHL-like bidirectional list hints and advisory
1244     // back-links so dequeueing from the interior will normally operate
1245     // in constant-time.
1246     // Dequeue current from either the head (with CAS) or from the interior
1247     // with a linear-time scan and normal non-atomic memory operations.
1248     // CONSIDER: if current is on the cxq then simply drain cxq into EntryList
1249     // and then unlink current from EntryList.  We have to drain eventually,
1250     // so it might as well be now.
1251 
1252     ObjectWaiter* v = _cxq;
1253     assert(v != nullptr, "invariant");
1254     if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) {
1255       // The CAS above can fail from interference IFF a "RAT" arrived.
1256       // In that case current must be in the interior and can no longer be
1257       // at the head of cxq.
1258       if (v == currentNode) {
1259         assert(_cxq != v, "invariant");
1260         v = _cxq;          // CAS above failed - start scan at head of list
1261       }
1262       ObjectWaiter* p;
1263       ObjectWaiter* q = nullptr;
1264       for (p = v; p != nullptr && p != currentNode; p = p->_next) {
1265         q = p;
1266         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
1267       }
1268       assert(v != currentNode, "invariant");
1269       assert(p == currentNode, "Node not found on cxq");
1270       assert(p != _cxq, "invariant");
1271       assert(q != nullptr, "invariant");
1272       assert(q->_next == p, "invariant");
1273       q->_next = p->_next;
1274     }
1275   }
1276 
1277 #ifdef ASSERT
1278   // Diagnostic hygiene ...
1279   currentNode->_prev  = (ObjectWaiter*) 0xBAD;
1280   currentNode->_next  = (ObjectWaiter*) 0xBAD;
1281   currentNode->TState = ObjectWaiter::TS_RUN;
1282 #endif
1283 }
1284 
1285 // Fix this. Save ObjectWaiter* when freezing. Or use hashtable.
1286 ObjectWaiter* ObjectMonitor::LookupWaiter(int64_t threadid) {
1287   ObjectWaiter* p;
1288   for (p = _EntryList; p != nullptr && (!p->is_vthread() || java_lang_Thread::thread_id(p->vthread()) != threadid); p = p->_next) {}
1289   if (p != nullptr) return p;
1290   for (p = _cxq; p != nullptr && (!p->is_vthread() || java_lang_Thread::thread_id(p->vthread()) != threadid); p = p->_next) {}
1291   assert(p != nullptr, "should be on either _cxq or _EntryList");
1292   return p;
1293 }
1294 
1295 // -----------------------------------------------------------------------------
1296 // Exit support
1297 //
1298 // exit()
1299 // ~~~~~~
1300 // Note that the collector can't reclaim the objectMonitor or deflate
1301 // the object out from underneath the thread calling ::exit() as the
1302 // thread calling ::exit() never transitions to a stable state.
1303 // This inhibits GC, which in turn inhibits asynchronous (and
1304 // inopportune) reclamation of "this".
1305 //
1306 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
1307 // There's one exception to the claim above, however.  EnterI() can call
1308 // exit() to drop a lock if the acquirer has been externally suspended.
1309 // In that case exit() is called with _thread_state == _thread_blocked,
1310 // but the monitor's _contentions field is > 0, which inhibits reclamation.
1311 //
1312 // 1-0 exit
1313 // ~~~~~~~~
1314 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
1315 // the fast-path operators have been optimized so the common ::exit()
1316 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
1317 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
1318 // greatly improves latency -- MEMBAR and CAS having considerable local
1319 // latency on modern processors -- but at the cost of "stranding".  Absent the
1320 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
1321 // ::enter() path, resulting in the entering thread being stranding
1322 // and a progress-liveness failure.   Stranding is extremely rare.
1323 // We use timers (timed park operations) & periodic polling to detect
1324 // and recover from stranding.  Potentially stranded threads periodically
1325 // wake up and poll the lock.  See the usage of the _Responsible variable.
1326 //
1327 // The CAS() in enter provides for safety and exclusion, while the CAS or
1328 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
1329 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
1330 // We detect and recover from stranding with timers.
1331 //
1332 // If a thread transiently strands it'll park until (a) another
1333 // thread acquires the lock and then drops the lock, at which time the
1334 // exiting thread will notice and unpark the stranded thread, or, (b)
1335 // the timer expires.  If the lock is high traffic then the stranding latency
1336 // will be low due to (a).  If the lock is low traffic then the odds of
1337 // stranding are lower, although the worst-case stranding latency
1338 // is longer.  Critically, we don't want to put excessive load in the
1339 // platform's timer subsystem.  We want to minimize both the timer injection
1340 // rate (timers created/sec) as well as the number of timers active at
1341 // any one time.  (more precisely, we want to minimize timer-seconds, which is
1342 // the integral of the # of active timers at any instant over time).
1343 // Both impinge on OS scalability.  Given that, at most one thread parked on
1344 // a monitor will use a timer.
1345 //
1346 // There is also the risk of a futile wake-up. If we drop the lock
1347 // another thread can reacquire the lock immediately, and we can
1348 // then wake a thread unnecessarily. This is benign, and we've
1349 // structured the code so the windows are short and the frequency
1350 // of such futile wakups is low.
1351 
1352 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) {
1353   void* cur = owner_raw();
1354   if (owner_for(current) != cur) {
1355     // Apparent unbalanced locking ...
1356     // Naively we'd like to throw IllegalMonitorStateException.
1357     // As a practical matter we can neither allocate nor throw an
1358     // exception as ::exit() can be called from leaf routines.
1359     // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1360     // Upon deeper reflection, however, in a properly run JVM the only
1361     // way we should encounter this situation is in the presence of
1362     // unbalanced JNI locking. TODO: CheckJNICalls.
1363     // See also: CR4414101
1364 #ifdef ASSERT
1365     LogStreamHandle(Error, monitorinflation) lsh;
1366     lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
1367                   " is exiting an ObjectMonitor it does not own.", p2i(current));
1368     lsh.print_cr("The imbalance is possibly caused by JNI locking.");
1369     print_debug_style_on(&lsh);
1370     assert(false, "Non-balanced monitor enter/exit!");
1371 #endif
1372     return;
1373   }
1374 
1375   if (_recursions != 0) {
1376     _recursions--;        // this is simple recursive enter
1377     return;
1378   }
1379 
1380   // Invariant: after setting Responsible=null an thread must execute
1381   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1382   _Responsible = nullptr;
1383 
1384 #if INCLUDE_JFR
1385   // get the owner's thread id for the MonitorEnter event
1386   // if it is enabled and the thread isn't suspended
1387   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1388     _previous_owner_tid = JFR_THREAD_ID(current);
1389   }
1390 #endif
1391 
1392   for (;;) {
1393     assert(owner_for(current) == owner_raw(), "invariant");
1394 
1395     // Drop the lock.
1396     // release semantics: prior loads and stores from within the critical section
1397     // must not float (reorder) past the following store that drops the lock.
1398     // Uses a storeload to separate release_store(owner) from the
1399     // successor check. The try_set_owner_from() below uses cmpxchg() so
1400     // we get the fence down there.
1401     release_clear_owner(current);
1402     OrderAccess::storeload();
1403 
1404     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != nullptr) {
1405       return;
1406     }
1407     // Other threads are blocked trying to acquire the lock.
1408 
1409     // Normally the exiting thread is responsible for ensuring succession,
1410     // but if other successors are ready or other entering threads are spinning
1411     // then this thread can simply store null into _owner and exit without
1412     // waking a successor.  The existence of spinners or ready successors
1413     // guarantees proper succession (liveness).  Responsibility passes to the
1414     // ready or running successors.  The exiting thread delegates the duty.
1415     // More precisely, if a successor already exists this thread is absolved
1416     // of the responsibility of waking (unparking) one.
1417     //
1418     // The _succ variable is critical to reducing futile wakeup frequency.
1419     // _succ identifies the "heir presumptive" thread that has been made
1420     // ready (unparked) but that has not yet run.  We need only one such
1421     // successor thread to guarantee progress.
1422     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1423     // section 3.3 "Futile Wakeup Throttling" for details.
1424     //
1425     // Note that spinners in Enter() also set _succ non-null.
1426     // In the current implementation spinners opportunistically set
1427     // _succ so that exiting threads might avoid waking a successor.
1428     // Another less appealing alternative would be for the exiting thread
1429     // to drop the lock and then spin briefly to see if a spinner managed
1430     // to acquire the lock.  If so, the exiting thread could exit
1431     // immediately without waking a successor, otherwise the exiting
1432     // thread would need to dequeue and wake a successor.
1433     // (Note that we'd need to make the post-drop spin short, but no
1434     // shorter than the worst-case round-trip cache-line migration time.
1435     // The dropped lock needs to become visible to the spinner, and then
1436     // the acquisition of the lock by the spinner must become visible to
1437     // the exiting thread).
1438 
1439     // It appears that an heir-presumptive (successor) must be made ready.
1440     // Only the current lock owner can manipulate the EntryList or
1441     // drain _cxq, so we need to reacquire the lock.  If we fail
1442     // to reacquire the lock the responsibility for ensuring succession
1443     // falls to the new owner.
1444     //
1445     if (try_set_owner_from(nullptr, current) != nullptr) {
1446       return;
1447     }
1448 
1449     guarantee(owner_raw() == owner_for(current), "invariant");
1450 
1451     ObjectWaiter* w = nullptr;
1452 
1453     w = _EntryList;
1454     if (w != nullptr) {
1455       // I'd like to write: guarantee (w->_thread != current).
1456       // But in practice an exiting thread may find itself on the EntryList.
1457       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1458       // then calls exit().  Exit release the lock by setting O._owner to null.
1459       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1460       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1461       // release the lock "O".  T2 resumes immediately after the ST of null into
1462       // _owner, above.  T2 notices that the EntryList is populated, so it
1463       // reacquires the lock and then finds itself on the EntryList.
1464       // Given all that, we have to tolerate the circumstance where "w" is
1465       // associated with current.
1466       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1467       ExitEpilog(current, w);
1468       return;
1469     }
1470 
1471     // If we find that both _cxq and EntryList are null then just
1472     // re-run the exit protocol from the top.
1473     w = _cxq;
1474     if (w == nullptr) continue;
1475 
1476     // Drain _cxq into EntryList - bulk transfer.
1477     // First, detach _cxq.
1478     // The following loop is tantamount to: w = swap(&cxq, nullptr)
1479     for (;;) {
1480       assert(w != nullptr, "Invariant");
1481       ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)nullptr);
1482       if (u == w) break;
1483       w = u;
1484     }
1485 
1486     assert(w != nullptr, "invariant");
1487     assert(_EntryList == nullptr, "invariant");
1488 
1489     // Convert the LIFO SLL anchored by _cxq into a DLL.
1490     // The list reorganization step operates in O(LENGTH(w)) time.
1491     // It's critical that this step operate quickly as
1492     // "current" still holds the outer-lock, restricting parallelism
1493     // and effectively lengthening the critical section.
1494     // Invariant: s chases t chases u.
1495     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1496     // we have faster access to the tail.
1497 
1498     _EntryList = w;
1499     ObjectWaiter* q = nullptr;
1500     ObjectWaiter* p;
1501     for (p = w; p != nullptr; p = p->_next) {
1502       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1503       p->TState = ObjectWaiter::TS_ENTER;
1504       p->_prev = q;
1505       q = p;
1506     }
1507 
1508     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = nullptr
1509     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1510 
1511     // See if we can abdicate to a spinner instead of waking a thread.
1512     // A primary goal of the implementation is to reduce the
1513     // context-switch rate.
1514     if (_succ != nullptr) continue;
1515 
1516     w = _EntryList;
1517     if (w != nullptr) {
1518       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1519       ExitEpilog(current, w);
1520       return;
1521     }
1522   }
1523 }
1524 
1525 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) {
1526   assert(owner_raw() == owner_for(current), "invariant");
1527 
1528   // Exit protocol:
1529   // 1. ST _succ = wakee
1530   // 2. membar #loadstore|#storestore;
1531   // 2. ST _owner = nullptr
1532   // 3. unpark(wakee)
1533 
1534   oop vthread = nullptr;
1535   if (Wakee->_thread != nullptr) {
1536     // Platform thread case
1537     _succ = Wakee->_thread;
1538   } else {
1539     assert(Wakee->vthread() != nullptr, "invariant");
1540     vthread = Wakee->vthread();
1541     _succ = (JavaThread*)java_lang_Thread::thread_id(vthread);
1542   }
1543   ParkEvent * Trigger = Wakee->_event;
1544 
1545   // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again.
1546   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1547   // out-of-scope (non-extant).
1548   Wakee  = nullptr;
1549 
1550   // Drop the lock.
1551   // Uses a fence to separate release_store(owner) from the LD in unpark().
1552   release_clear_owner(current);
1553   OrderAccess::fence();
1554 
1555   DTRACE_MONITOR_PROBE(contended__exit, this, object(), current);
1556 
1557   if (vthread == nullptr) {
1558     // Platform thread case
1559     Trigger->unpark();
1560   } else if (java_lang_VirtualThread::set_onWaitingList(vthread, _vthread_cxq_head)) {
1561     Trigger->unpark();
1562   }
1563 
1564   // Maintain stats and report events to JVMTI
1565   OM_PERFDATA_OP(Parks, inc());
1566 }
1567 
1568 // complete_exit exits a lock returning recursion count
1569 // complete_exit requires an inflated monitor
1570 // The _owner field is not always the Thread addr even with an
1571 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1572 // thread due to contention.
1573 intx ObjectMonitor::complete_exit(JavaThread* current) {
1574   assert(InitDone, "Unexpectedly not initialized");
1575 
1576   void* cur = owner_raw();
1577   if (owner_for(current) != cur) {
1578     if (LockingMode == LM_LEGACY && is_stack_locker(current)) {
1579       assert(_recursions == 0, "internal state error");
1580       set_owner_from_BasicLock(current);  // Convert from BasicLock* to Thread*.
1581       _recursions = 0;
1582     }
1583   }
1584 
1585   guarantee(owner_for(current) == owner_raw(), "complete_exit not owner");
1586   intx save = _recursions; // record the old recursion count
1587   _recursions = 0;         // set the recursion level to be 0
1588   exit(current);           // exit the monitor
1589   guarantee(owner_raw() != owner_for(current), "invariant");
1590   return save;
1591 }
1592 
1593 // Checks that the current THREAD owns this monitor and causes an
1594 // immediate return if it doesn't. We don't use the CHECK macro
1595 // because we want the IMSE to be the only exception that is thrown
1596 // from the call site when false is returned. Any other pending
1597 // exception is ignored.
1598 #define CHECK_OWNER()                                                  \
1599   do {                                                                 \
1600     if (!check_owner(THREAD)) {                                        \
1601        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1602        return;                                                         \
1603      }                                                                 \
1604   } while (false)
1605 
1606 // Returns true if the specified thread owns the ObjectMonitor.
1607 // Otherwise returns false and throws IllegalMonitorStateException
1608 // (IMSE). If there is a pending exception and the specified thread
1609 // is not the owner, that exception will be replaced by the IMSE.
1610 bool ObjectMonitor::check_owner(TRAPS) {
1611   JavaThread* current = THREAD;
1612   void* cur = owner_raw();
1613   if (cur == owner_for(current)) {
1614     return true;
1615   }
1616   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1617              "current thread is not owner", false);
1618 }
1619 
1620 static inline bool is_excluded(const Klass* monitor_klass) {
1621   assert(monitor_klass != nullptr, "invariant");
1622   NOT_JFR_RETURN_(false);
1623   JFR_ONLY(return vmSymbols::jfr_chunk_rotation_monitor() == monitor_klass->name();)
1624 }
1625 
1626 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1627                                     ObjectMonitor* monitor,
1628                                     uint64_t notifier_tid,
1629                                     jlong timeout,
1630                                     bool timedout) {
1631   assert(event != nullptr, "invariant");
1632   assert(monitor != nullptr, "invariant");
1633   const Klass* monitor_klass = monitor->object()->klass();
1634   if (is_excluded(monitor_klass)) {
1635     return;
1636   }
1637   event->set_monitorClass(monitor_klass);
1638   event->set_timeout(timeout);
1639   // Set an address that is 'unique enough', such that events close in
1640   // time and with the same address are likely (but not guaranteed) to
1641   // belong to the same object.
1642   event->set_address((uintptr_t)monitor);
1643   event->set_notifier(notifier_tid);
1644   event->set_timedOut(timedout);
1645   event->commit();
1646 }
1647 
1648 // -----------------------------------------------------------------------------
1649 // Wait/Notify/NotifyAll
1650 //
1651 // Note: a subset of changes to ObjectMonitor::wait()
1652 // will need to be replicated in complete_exit
1653 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1654   JavaThread* current = THREAD;
1655 
1656   assert(InitDone, "Unexpectedly not initialized");
1657 
1658   CHECK_OWNER();  // Throws IMSE if not owner.
1659 
1660   EventJavaMonitorWait event;
1661 
1662   // check for a pending interrupt
1663   if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1664     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1665     if (JvmtiExport::should_post_monitor_waited()) {
1666       // Note: 'false' parameter is passed here because the
1667       // wait was not timed out due to thread interrupt.
1668       JvmtiExport::post_monitor_waited(current, this, false);
1669 
1670       // In this short circuit of the monitor wait protocol, the
1671       // current thread never drops ownership of the monitor and
1672       // never gets added to the wait queue so the current thread
1673       // cannot be made the successor. This means that the
1674       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1675       // consume an unpark() meant for the ParkEvent associated with
1676       // this ObjectMonitor.
1677     }
1678     if (event.should_commit()) {
1679       post_monitor_wait_event(&event, this, 0, millis, false);
1680     }
1681     THROW(vmSymbols::java_lang_InterruptedException());
1682     return;
1683   }
1684 
1685   ContinuationEntry* ce = current->last_continuation();
1686   if (ce != nullptr && ce->is_virtual_thread()) {
1687     const Klass* monitor_klass = object()->klass();
1688     if (!is_excluded(monitor_klass)) {
1689       ResourceMark rm;
1690       char reason[256];
1691       jio_snprintf(reason, sizeof reason, "Object.wait on object of klass %s", monitor_klass->external_name());
1692       post_virtual_thread_pinned_event(current, reason);
1693     }
1694   }
1695 
1696   current->set_current_waiting_monitor(this);
1697 
1698   // create a node to be put into the queue
1699   // Critically, after we reset() the event but prior to park(), we must check
1700   // for a pending interrupt.
1701   ObjectWaiter node(current);
1702   node.TState = ObjectWaiter::TS_WAIT;
1703   current->_ParkEvent->reset();
1704   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1705 
1706   // Enter the waiting queue, which is a circular doubly linked list in this case
1707   // but it could be a priority queue or any data structure.
1708   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1709   // by the owner of the monitor *except* in the case where park()
1710   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1711   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1712 
1713   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1714   AddWaiter(&node);
1715   Thread::SpinRelease(&_WaitSetLock);
1716 
1717   _Responsible = nullptr;
1718 
1719   intx save = _recursions;     // record the old recursion count
1720   _waiters++;                  // increment the number of waiters
1721   _recursions = 0;             // set the recursion level to be 1
1722   exit(current);               // exit the monitor
1723   guarantee(owner_raw() != owner_for(current), "invariant");
1724 
1725   // The thread is on the WaitSet list - now park() it.
1726   // On MP systems it's conceivable that a brief spin before we park
1727   // could be profitable.
1728   //
1729   // TODO-FIXME: change the following logic to a loop of the form
1730   //   while (!timeout && !interrupted && _notified == 0) park()
1731 
1732   int ret = OS_OK;
1733   int WasNotified = 0;
1734 
1735   // Need to check interrupt state whilst still _thread_in_vm
1736   bool interrupted = interruptible && current->is_interrupted(false);
1737 
1738   { // State transition wrappers
1739     OSThread* osthread = current->osthread();
1740     OSThreadWaitState osts(osthread, true);
1741 
1742     assert(current->thread_state() == _thread_in_vm, "invariant");
1743 
1744     {
1745       ClearSuccOnSuspend csos(this);
1746       ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1747       if (interrupted || HAS_PENDING_EXCEPTION) {
1748         // Intentionally empty
1749       } else if (node._notified == 0) {
1750         if (millis <= 0) {
1751           current->_ParkEvent->park();
1752         } else {
1753           ret = current->_ParkEvent->park(millis);
1754         }
1755       }
1756     }
1757 
1758     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1759     // from the WaitSet to the EntryList.
1760     // See if we need to remove Node from the WaitSet.
1761     // We use double-checked locking to avoid grabbing _WaitSetLock
1762     // if the thread is not on the wait queue.
1763     //
1764     // Note that we don't need a fence before the fetch of TState.
1765     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1766     // written by the is thread. (perhaps the fetch might even be satisfied
1767     // by a look-aside into the processor's own store buffer, although given
1768     // the length of the code path between the prior ST and this load that's
1769     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1770     // then we'll acquire the lock and then re-fetch a fresh TState value.
1771     // That is, we fail toward safety.
1772 
1773     if (node.TState == ObjectWaiter::TS_WAIT) {
1774       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1775       if (node.TState == ObjectWaiter::TS_WAIT) {
1776         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1777         assert(node._notified == 0, "invariant");
1778         node.TState = ObjectWaiter::TS_RUN;
1779       }
1780       Thread::SpinRelease(&_WaitSetLock);
1781     }
1782 
1783     // The thread is now either on off-list (TS_RUN),
1784     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1785     // The Node's TState variable is stable from the perspective of this thread.
1786     // No other threads will asynchronously modify TState.
1787     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1788     OrderAccess::loadload();
1789     if (_succ == current) _succ = nullptr;
1790     WasNotified = node._notified;
1791 
1792     // Reentry phase -- reacquire the monitor.
1793     // re-enter contended monitor after object.wait().
1794     // retain OBJECT_WAIT state until re-enter successfully completes
1795     // Thread state is thread_in_vm and oop access is again safe,
1796     // although the raw address of the object may have changed.
1797     // (Don't cache naked oops over safepoints, of course).
1798 
1799     // post monitor waited event. Note that this is past-tense, we are done waiting.
1800     if (JvmtiExport::should_post_monitor_waited()) {
1801       JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT);
1802 
1803       if (node._notified != 0 && _succ == current) {
1804         // In this part of the monitor wait-notify-reenter protocol it
1805         // is possible (and normal) for another thread to do a fastpath
1806         // monitor enter-exit while this thread is still trying to get
1807         // to the reenter portion of the protocol.
1808         //
1809         // The ObjectMonitor was notified and the current thread is
1810         // the successor which also means that an unpark() has already
1811         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1812         // consume the unpark() that was done when the successor was
1813         // set because the same ParkEvent is shared between Java
1814         // monitors and JVM/TI RawMonitors (for now).
1815         //
1816         // We redo the unpark() to ensure forward progress, i.e., we
1817         // don't want all pending threads hanging (parked) with none
1818         // entering the unlocked monitor.
1819         node._event->unpark();
1820       }
1821     }
1822 
1823     if (event.should_commit()) {
1824       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1825     }
1826 
1827     OrderAccess::fence();
1828 
1829     assert(owner_raw() != owner_for(current), "invariant");
1830     ObjectWaiter::TStates v = node.TState;
1831     if (v == ObjectWaiter::TS_RUN) {
1832       enter(current);
1833     } else {
1834       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1835       ReenterI(current, &node);
1836       node.wait_reenter_end(this);
1837     }
1838 
1839     // current has reacquired the lock.
1840     // Lifecycle - the node representing current must not appear on any queues.
1841     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1842     // want residual elements associated with this thread left on any lists.
1843     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1844     assert(owner_raw() == owner_for(current), "invariant");
1845     assert(_succ != current, "invariant");
1846   } // OSThreadWaitState()
1847 
1848   current->set_current_waiting_monitor(nullptr);
1849 
1850   guarantee(_recursions == 0, "invariant");
1851   int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current);
1852   _recursions =   save          // restore the old recursion count
1853                 + relock_count; //  increased by the deferred relock count
1854   NOT_LOOM_MONITOR_SUPPORT(current->inc_held_monitor_count(relock_count);) // Deopt never entered these counts.
1855   _waiters--;             // decrement the number of waiters
1856 
1857   // Verify a few postconditions
1858   assert(owner_raw() == owner_for(current), "invariant");
1859   assert(_succ != current, "invariant");
1860   assert(object()->mark() == markWord::encode(this), "invariant");
1861 
1862   // check if the notification happened
1863   if (!WasNotified) {
1864     // no, it could be timeout or Thread.interrupt() or both
1865     // check for interrupt event, otherwise it is timeout
1866     if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1867       THROW(vmSymbols::java_lang_InterruptedException());
1868     }
1869   }
1870 
1871   // NOTE: Spurious wake up will be consider as timeout.
1872   // Monitor notify has precedence over thread interrupt.
1873 }
1874 
1875 
1876 // Consider:
1877 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1878 // then instead of transferring a thread from the WaitSet to the EntryList
1879 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1880 
1881 void ObjectMonitor::INotify(JavaThread* current) {
1882   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1883   ObjectWaiter* iterator = DequeueWaiter();
1884   if (iterator != nullptr) {
1885     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1886     guarantee(iterator->_notified == 0, "invariant");
1887     // Disposition - what might we do with iterator ?
1888     // a.  add it directly to the EntryList - either tail (policy == 1)
1889     //     or head (policy == 0).
1890     // b.  push it onto the front of the _cxq (policy == 2).
1891     // For now we use (b).
1892 
1893     iterator->TState = ObjectWaiter::TS_ENTER;
1894 
1895     iterator->_notified = 1;
1896     iterator->_notifier_tid = JFR_THREAD_ID(current);
1897 
1898     ObjectWaiter* list = _EntryList;
1899     if (list != nullptr) {
1900       assert(list->_prev == nullptr, "invariant");
1901       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1902       assert(list != iterator, "invariant");
1903     }
1904 
1905     // prepend to cxq
1906     if (list == nullptr) {
1907       iterator->_next = iterator->_prev = nullptr;
1908       _EntryList = iterator;
1909     } else {
1910       iterator->TState = ObjectWaiter::TS_CXQ;
1911       for (;;) {
1912         ObjectWaiter* front = _cxq;
1913         iterator->_next = front;
1914         if (Atomic::cmpxchg(&_cxq, front, iterator) == front) {
1915           break;
1916         }
1917       }
1918     }
1919 
1920     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1921     // move the add-to-EntryList operation, above, outside the critical section
1922     // protected by _WaitSetLock.  In practice that's not useful.  With the
1923     // exception of  wait() timeouts and interrupts the monitor owner
1924     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1925     // on _WaitSetLock so it's not profitable to reduce the length of the
1926     // critical section.
1927 
1928     iterator->wait_reenter_begin(this);
1929   }
1930   Thread::SpinRelease(&_WaitSetLock);
1931 }
1932 
1933 // Consider: a not-uncommon synchronization bug is to use notify() when
1934 // notifyAll() is more appropriate, potentially resulting in stranded
1935 // threads; this is one example of a lost wakeup. A useful diagnostic
1936 // option is to force all notify() operations to behave as notifyAll().
1937 //
1938 // Note: We can also detect many such problems with a "minimum wait".
1939 // When the "minimum wait" is set to a small non-zero timeout value
1940 // and the program does not hang whereas it did absent "minimum wait",
1941 // that suggests a lost wakeup bug.
1942 
1943 void ObjectMonitor::notify(TRAPS) {
1944   JavaThread* current = THREAD;
1945   CHECK_OWNER();  // Throws IMSE if not owner.
1946   if (_WaitSet == nullptr) {
1947     return;
1948   }
1949   DTRACE_MONITOR_PROBE(notify, this, object(), current);
1950   INotify(current);
1951   OM_PERFDATA_OP(Notifications, inc(1));
1952 }
1953 
1954 
1955 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1956 // from the waitset to the EntryList. This could be done more efficiently with a
1957 // single bulk transfer but in practice it's not time-critical. Beware too,
1958 // that in prepend-mode we invert the order of the waiters. Let's say that the
1959 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1960 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1961 
1962 void ObjectMonitor::notifyAll(TRAPS) {
1963   JavaThread* current = THREAD;
1964   CHECK_OWNER();  // Throws IMSE if not owner.
1965   if (_WaitSet == nullptr) {
1966     return;
1967   }
1968 
1969   DTRACE_MONITOR_PROBE(notifyAll, this, object(), current);
1970   int tally = 0;
1971   while (_WaitSet != nullptr) {
1972     tally++;
1973     INotify(current);
1974   }
1975 
1976   OM_PERFDATA_OP(Notifications, inc(tally));
1977 }
1978 
1979 // -----------------------------------------------------------------------------
1980 // Adaptive Spinning Support
1981 //
1982 // Adaptive spin-then-block - rational spinning
1983 //
1984 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1985 // algorithm.  On high order SMP systems it would be better to start with
1986 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1987 // a contending thread could enqueue itself on the cxq and then spin locally
1988 // on a thread-specific variable such as its ParkEvent._Event flag.
1989 // That's left as an exercise for the reader.  Note that global spinning is
1990 // not problematic on Niagara, as the L2 cache serves the interconnect and
1991 // has both low latency and massive bandwidth.
1992 //
1993 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1994 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1995 // (duration) or we can fix the count at approximately the duration of
1996 // a context switch and vary the frequency.   Of course we could also
1997 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1998 // For a description of 'Adaptive spin-then-block mutual exclusion in
1999 // multi-threaded processing,' see U.S. Pat. No. 8046758.
2000 //
2001 // This implementation varies the duration "D", where D varies with
2002 // the success rate of recent spin attempts. (D is capped at approximately
2003 // length of a round-trip context switch).  The success rate for recent
2004 // spin attempts is a good predictor of the success rate of future spin
2005 // attempts.  The mechanism adapts automatically to varying critical
2006 // section length (lock modality), system load and degree of parallelism.
2007 // D is maintained per-monitor in _SpinDuration and is initialized
2008 // optimistically.  Spin frequency is fixed at 100%.
2009 //
2010 // Note that _SpinDuration is volatile, but we update it without locks
2011 // or atomics.  The code is designed so that _SpinDuration stays within
2012 // a reasonable range even in the presence of races.  The arithmetic
2013 // operations on _SpinDuration are closed over the domain of legal values,
2014 // so at worst a race will install and older but still legal value.
2015 // At the very worst this introduces some apparent non-determinism.
2016 // We might spin when we shouldn't or vice-versa, but since the spin
2017 // count are relatively short, even in the worst case, the effect is harmless.
2018 //
2019 // Care must be taken that a low "D" value does not become an
2020 // an absorbing state.  Transient spinning failures -- when spinning
2021 // is overall profitable -- should not cause the system to converge
2022 // on low "D" values.  We want spinning to be stable and predictable
2023 // and fairly responsive to change and at the same time we don't want
2024 // it to oscillate, become metastable, be "too" non-deterministic,
2025 // or converge on or enter undesirable stable absorbing states.
2026 //
2027 // We implement a feedback-based control system -- using past behavior
2028 // to predict future behavior.  We face two issues: (a) if the
2029 // input signal is random then the spin predictor won't provide optimal
2030 // results, and (b) if the signal frequency is too high then the control
2031 // system, which has some natural response lag, will "chase" the signal.
2032 // (b) can arise from multimodal lock hold times.  Transient preemption
2033 // can also result in apparent bimodal lock hold times.
2034 // Although sub-optimal, neither condition is particularly harmful, as
2035 // in the worst-case we'll spin when we shouldn't or vice-versa.
2036 // The maximum spin duration is rather short so the failure modes aren't bad.
2037 // To be conservative, I've tuned the gain in system to bias toward
2038 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
2039 // "rings" or oscillates between spinning and not spinning.  This happens
2040 // when spinning is just on the cusp of profitability, however, so the
2041 // situation is not dire.  The state is benign -- there's no need to add
2042 // hysteresis control to damp the transition rate between spinning and
2043 // not spinning.
2044 
2045 int ObjectMonitor::Knob_SpinLimit    = 5000;   // derived by an external tool
2046 
2047 static int Knob_Bonus               = 100;     // spin success bonus
2048 static int Knob_Penalty             = 200;     // spin failure penalty
2049 static int Knob_Poverty             = 1000;
2050 static int Knob_FixedSpin           = 0;
2051 static int Knob_PreSpin             = 10;      // 20-100 likely better, but it's not better in my testing.
2052 
2053 inline static int adjust_up(int spin_duration) {
2054   int x = spin_duration;
2055   if (x < ObjectMonitor::Knob_SpinLimit) {
2056     if (x < Knob_Poverty) {
2057       x = Knob_Poverty;
2058     }
2059     return x + Knob_Bonus;
2060   } else {
2061     return spin_duration;
2062   }
2063 }
2064 
2065 inline static int adjust_down(int spin_duration) {
2066   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2067   // AIMD is globally stable.
2068   int x = spin_duration;
2069   if (x > 0) {
2070     // Consider an AIMD scheme like: x -= (x >> 3) + 100
2071     // This is globally sample and tends to damp the response.
2072     x -= Knob_Penalty;
2073     if (x < 0) { x = 0; }
2074     return x;
2075   } else {
2076     return spin_duration;
2077   }
2078 }
2079 
2080 bool ObjectMonitor::short_fixed_spin(JavaThread* current, int spin_count, bool adapt) {
2081   for (int ctr = 0; ctr < spin_count; ctr++) {
2082     TryLockResult status = TryLock(current);
2083     if (status == TryLockResult::Success) {
2084       if (adapt) {
2085         _SpinDuration = adjust_up(_SpinDuration);
2086       }
2087       return true;
2088     } else if (status == TryLockResult::Interference) {
2089       break;
2090     }
2091     SpinPause();
2092   }
2093   return false;
2094 }
2095 
2096 // Spinning: Fixed frequency (100%), vary duration
2097 bool ObjectMonitor::TrySpin(JavaThread* current) {
2098 
2099   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
2100   int knob_fixed_spin = Knob_FixedSpin;  // 0 (don't spin: default), 2000 good test
2101   if (knob_fixed_spin > 0) {
2102     return short_fixed_spin(current, knob_fixed_spin, false);
2103   }
2104 
2105   // Admission control - verify preconditions for spinning
2106   //
2107   // We always spin a little bit, just to prevent _SpinDuration == 0 from
2108   // becoming an absorbing state.  Put another way, we spin briefly to
2109   // sample, just in case the system load, parallelism, contention, or lock
2110   // modality changed.
2111 
2112   int knob_pre_spin = Knob_PreSpin; // 10 (default), 100, 1000 or 2000
2113   if (short_fixed_spin(current, knob_pre_spin, true)) {
2114     return true;
2115   }
2116 
2117   //
2118   // Consider the following alternative:
2119   // Periodically set _SpinDuration = _SpinLimit and try a long/full
2120   // spin attempt.  "Periodically" might mean after a tally of
2121   // the # of failed spin attempts (or iterations) reaches some threshold.
2122   // This takes us into the realm of 1-out-of-N spinning, where we
2123   // hold the duration constant but vary the frequency.
2124 
2125   int ctr = _SpinDuration;
2126   if (ctr <= 0) return false;
2127 
2128   // We're good to spin ... spin ingress.
2129   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2130   // when preparing to LD...CAS _owner, etc and the CAS is likely
2131   // to succeed.
2132   if (_succ == nullptr) {
2133     _succ = current;
2134   }
2135   void* prv = nullptr;
2136 
2137   // There are three ways to exit the following loop:
2138   // 1.  A successful spin where this thread has acquired the lock.
2139   // 2.  Spin failure with prejudice
2140   // 3.  Spin failure without prejudice
2141 
2142   while (--ctr >= 0) {
2143 
2144     // Periodic polling -- Check for pending GC
2145     // Threads may spin while they're unsafe.
2146     // We don't want spinning threads to delay the JVM from reaching
2147     // a stop-the-world safepoint or to steal cycles from GC.
2148     // If we detect a pending safepoint we abort in order that
2149     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2150     // this thread, if safe, doesn't steal cycles from GC.
2151     // This is in keeping with the "no loitering in runtime" rule.
2152     // We periodically check to see if there's a safepoint pending.
2153     if ((ctr & 0xFF) == 0) {
2154       // Can't call SafepointMechanism::should_process() since that
2155       // might update the poll values and we could be in a thread_blocked
2156       // state here which is not allowed so just check the poll.
2157       if (SafepointMechanism::local_poll_armed(current)) {
2158         break;
2159       }
2160       SpinPause();
2161     }
2162 
2163     // Probe _owner with TATAS
2164     // If this thread observes the monitor transition or flicker
2165     // from locked to unlocked to locked, then the odds that this
2166     // thread will acquire the lock in this spin attempt go down
2167     // considerably.  The same argument applies if the CAS fails
2168     // or if we observe _owner change from one non-null value to
2169     // another non-null value.   In such cases we might abort
2170     // the spin without prejudice or apply a "penalty" to the
2171     // spin count-down variable "ctr", reducing it by 100, say.
2172 
2173     void* ox = owner_raw();
2174     if (ox == nullptr) {
2175       ox = try_set_owner_from(nullptr, current);
2176       if (ox == nullptr) {
2177         // The CAS succeeded -- this thread acquired ownership
2178         // Take care of some bookkeeping to exit spin state.
2179         if (_succ == current) {
2180           _succ = nullptr;
2181         }
2182 
2183         // Increase _SpinDuration :
2184         // The spin was successful (profitable) so we tend toward
2185         // longer spin attempts in the future.
2186         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2187         // If we acquired the lock early in the spin cycle it
2188         // makes sense to increase _SpinDuration proportionally.
2189         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2190         _SpinDuration = adjust_up(_SpinDuration);
2191         return true;
2192       }
2193 
2194       // The CAS failed ... we can take any of the following actions:
2195       // * penalize: ctr -= CASPenalty
2196       // * exit spin with prejudice -- abort without adapting spinner
2197       // * exit spin without prejudice.
2198       // * Since CAS is high-latency, retry again immediately.
2199       break;
2200     }
2201 
2202     // Did lock ownership change hands ?
2203     if (ox != prv && prv != nullptr) {
2204       break;
2205     }
2206     prv = ox;
2207 
2208     if (_succ == nullptr) {
2209       _succ = current;
2210     }
2211   }
2212 
2213   // Spin failed with prejudice -- reduce _SpinDuration.
2214   if (ctr < 0) {
2215     _SpinDuration = adjust_down(_SpinDuration);
2216   }
2217 
2218   if (_succ == current) {
2219     _succ = nullptr;
2220     // Invariant: after setting succ=null a contending thread
2221     // must recheck-retry _owner before parking.  This usually happens
2222     // in the normal usage of TrySpin(), but it's safest
2223     // to make TrySpin() as foolproof as possible.
2224     OrderAccess::fence();
2225     if (TryLock(current) == TryLockResult::Success) {
2226       return true;
2227     }
2228   }
2229 
2230   return false;
2231 }
2232 
2233 
2234 // -----------------------------------------------------------------------------
2235 // WaitSet management ...
2236 
2237 ObjectWaiter::ObjectWaiter(JavaThread* current) {
2238   _next     = nullptr;
2239   _prev     = nullptr;
2240   _notified = 0;
2241   _notifier_tid = 0;
2242   TState    = TS_RUN;
2243   _thread   = current;
2244   _event    = _thread != nullptr ? _thread->_ParkEvent : ObjectMonitor::vthread_unparker_ParkEvent();
2245   _active   = false;
2246   assert(_event != nullptr, "invariant");
2247 }
2248 
2249 ObjectWaiter::ObjectWaiter(oop vthread) : ObjectWaiter((JavaThread*)nullptr) {
2250   _vthread = OopHandle(JavaThread::thread_oop_storage(), vthread);
2251 }
2252 
2253 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2254   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon);
2255 }
2256 
2257 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2258   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active);
2259 }
2260 
2261 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2262   assert(node != nullptr, "should not add null node");
2263   assert(node->_prev == nullptr, "node already in list");
2264   assert(node->_next == nullptr, "node already in list");
2265   // put node at end of queue (circular doubly linked list)
2266   if (_WaitSet == nullptr) {
2267     _WaitSet = node;
2268     node->_prev = node;
2269     node->_next = node;
2270   } else {
2271     ObjectWaiter* head = _WaitSet;
2272     ObjectWaiter* tail = head->_prev;
2273     assert(tail->_next == head, "invariant check");
2274     tail->_next = node;
2275     head->_prev = node;
2276     node->_next = head;
2277     node->_prev = tail;
2278   }
2279 }
2280 
2281 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2282   // dequeue the very first waiter
2283   ObjectWaiter* waiter = _WaitSet;
2284   if (waiter) {
2285     DequeueSpecificWaiter(waiter);
2286   }
2287   return waiter;
2288 }
2289 
2290 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2291   assert(node != nullptr, "should not dequeue nullptr node");
2292   assert(node->_prev != nullptr, "node already removed from list");
2293   assert(node->_next != nullptr, "node already removed from list");
2294   // when the waiter has woken up because of interrupt,
2295   // timeout or other spurious wake-up, dequeue the
2296   // waiter from waiting list
2297   ObjectWaiter* next = node->_next;
2298   if (next == node) {
2299     assert(node->_prev == node, "invariant check");
2300     _WaitSet = nullptr;
2301   } else {
2302     ObjectWaiter* prev = node->_prev;
2303     assert(prev->_next == node, "invariant check");
2304     assert(next->_prev == node, "invariant check");
2305     next->_prev = prev;
2306     prev->_next = next;
2307     if (_WaitSet == node) {
2308       _WaitSet = next;
2309     }
2310   }
2311   node->_next = nullptr;
2312   node->_prev = nullptr;
2313 }
2314 
2315 // -----------------------------------------------------------------------------
2316 // PerfData support
2317 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = nullptr;
2318 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = nullptr;
2319 PerfCounter * ObjectMonitor::_sync_Parks                       = nullptr;
2320 PerfCounter * ObjectMonitor::_sync_Notifications               = nullptr;
2321 PerfCounter * ObjectMonitor::_sync_Inflations                  = nullptr;
2322 PerfCounter * ObjectMonitor::_sync_Deflations                  = nullptr;
2323 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = nullptr;
2324 
2325 // One-shot global initialization for the sync subsystem.
2326 // We could also defer initialization and initialize on-demand
2327 // the first time we call ObjectSynchronizer::inflate().
2328 // Initialization would be protected - like so many things - by
2329 // the MonitorCache_lock.
2330 
2331 void ObjectMonitor::Initialize() {
2332   assert(!InitDone, "invariant");
2333 
2334   if (!os::is_MP()) {
2335     Knob_SpinLimit = 0;
2336     Knob_PreSpin   = 0;
2337     Knob_FixedSpin = -1;
2338   }
2339 
2340   if (UsePerfData) {
2341     EXCEPTION_MARK;
2342 #define NEWPERFCOUNTER(n)                                                \
2343   {                                                                      \
2344     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2345                                         CHECK);                          \
2346   }
2347 #define NEWPERFVARIABLE(n)                                                \
2348   {                                                                       \
2349     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2350                                          CHECK);                          \
2351   }
2352     NEWPERFCOUNTER(_sync_Inflations);
2353     NEWPERFCOUNTER(_sync_Deflations);
2354     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2355     NEWPERFCOUNTER(_sync_FutileWakeups);
2356     NEWPERFCOUNTER(_sync_Parks);
2357     NEWPERFCOUNTER(_sync_Notifications);
2358     NEWPERFVARIABLE(_sync_MonExtant);
2359 #undef NEWPERFCOUNTER
2360 #undef NEWPERFVARIABLE
2361   }
2362 
2363   _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer);
2364 
2365   DEBUG_ONLY(InitDone = true;)
2366 }
2367 
2368 void ObjectMonitor::Initialize2() {
2369   _vthread_cxq_head = OopHandle(JavaThread::thread_oop_storage(), nullptr);
2370   _vthread_unparker_ParkEvent = ParkEvent::Allocate(nullptr);
2371 }
2372 
2373 void ObjectMonitor::print_on(outputStream* st) const {
2374   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2375   st->print("{contentions=0x%08x,waiters=0x%08x"
2376             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2377             contentions(), waiters(), recursions(),
2378             p2i(owner()));
2379 }
2380 void ObjectMonitor::print() const { print_on(tty); }
2381 
2382 #ifdef ASSERT
2383 // Print the ObjectMonitor like a debugger would:
2384 //
2385 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2386 //   _header = 0x0000000000000001
2387 //   _object = 0x000000070ff45fd0
2388 //   _pad_buf0 = {
2389 //     [0] = '\0'
2390 //     ...
2391 //     [43] = '\0'
2392 //   }
2393 //   _owner = 0x0000000000000000
2394 //   _previous_owner_tid = 0
2395 //   _pad_buf1 = {
2396 //     [0] = '\0'
2397 //     ...
2398 //     [47] = '\0'
2399 //   }
2400 //   _next_om = 0x0000000000000000
2401 //   _recursions = 0
2402 //   _EntryList = 0x0000000000000000
2403 //   _cxq = 0x0000000000000000
2404 //   _succ = 0x0000000000000000
2405 //   _Responsible = 0x0000000000000000
2406 //   _SpinDuration = 5000
2407 //   _contentions = 0
2408 //   _WaitSet = 0x0000700009756248
2409 //   _waiters = 1
2410 //   _WaitSetLock = 0
2411 // }
2412 //
2413 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2414   st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
2415   st->print_cr("  _header = " INTPTR_FORMAT, header().value());
2416   st->print_cr("  _object = " INTPTR_FORMAT, p2i(object_peek()));
2417   st->print_cr("  _pad_buf0 = {");
2418   st->print_cr("    [0] = '\\0'");
2419   st->print_cr("    ...");
2420   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2421   st->print_cr("  }");
2422   st->print_cr("  _owner = " INTPTR_FORMAT, p2i(owner_raw()));
2423   st->print_cr("  _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid);
2424   st->print_cr("  _pad_buf1 = {");
2425   st->print_cr("    [0] = '\\0'");
2426   st->print_cr("    ...");
2427   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2428   st->print_cr("  }");
2429   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(next_om()));
2430   st->print_cr("  _recursions = " INTX_FORMAT, _recursions);
2431   st->print_cr("  _EntryList = " INTPTR_FORMAT, p2i(_EntryList));
2432   st->print_cr("  _cxq = " INTPTR_FORMAT, p2i(_cxq));
2433   st->print_cr("  _succ = " INTPTR_FORMAT, p2i(_succ));
2434   st->print_cr("  _Responsible = " INTPTR_FORMAT, p2i(_Responsible));
2435   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2436   st->print_cr("  _contentions = %d", contentions());
2437   st->print_cr("  _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet));
2438   st->print_cr("  _waiters = %d", _waiters);
2439   st->print_cr("  _WaitSetLock = %d", _WaitSetLock);
2440   st->print_cr("}");
2441 }
2442 #endif