1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/oopStorage.hpp"
  28 #include "gc/shared/oopStorageSet.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "jfr/support/jfrThreadId.hpp"
  31 #include "logging/log.hpp"
  32 #include "logging/logStream.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/oopHandle.inline.hpp"
  38 #include "oops/weakHandle.inline.hpp"
  39 #include "prims/jvmtiDeferredUpdates.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/globals.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/interfaceSupport.inline.hpp"
  45 #include "runtime/javaThread.inline.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/objectMonitor.hpp"
  48 #include "runtime/objectMonitor.inline.hpp"
  49 #include "runtime/orderAccess.hpp"
  50 #include "runtime/osThread.hpp"
  51 #include "runtime/perfData.hpp"
  52 #include "runtime/safefetch.hpp"
  53 #include "runtime/safepointMechanism.inline.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/threads.hpp"
  56 #include "services/threadService.hpp"
  57 #include "utilities/dtrace.hpp"
  58 #include "utilities/globalDefinitions.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/preserveException.hpp"
  61 #if INCLUDE_JFR
  62 #include "jfr/support/jfrFlush.hpp"
  63 #endif
  64 
  65 #ifdef DTRACE_ENABLED
  66 
  67 // Only bother with this argument setup if dtrace is available
  68 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  69 
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = nullptr;                                                   \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = obj->klass()->name();                                \
  76   if (klassname != nullptr) {                                              \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  82   {                                                                        \
  83     if (DTraceMonitorProbes) {                                             \
  84       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  85       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  86                            (monitor), bytes, len, (millis));               \
  87     }                                                                      \
  88   }
  89 
  90 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  91 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  92 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  93 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  94 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  95 
  96 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  97   {                                                                        \
  98     if (DTraceMonitorProbes) {                                             \
  99       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 100       HOTSPOT_MONITOR_##probe(jtid,                                        \
 101                               (uintptr_t)(monitor), bytes, len);           \
 102     }                                                                      \
 103   }
 104 
 105 #else //  ndef DTRACE_ENABLED
 106 
 107 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 108 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 109 
 110 #endif // ndef DTRACE_ENABLED
 111 
 112 DEBUG_ONLY(static volatile bool InitDone = false;)
 113 
 114 OopStorage* ObjectMonitor::_oop_storage = nullptr;
 115 
 116 OopHandle ObjectMonitor::_vthread_cxq_head;
 117 ParkEvent* ObjectMonitor::_vthread_unparker_ParkEvent = nullptr;
 118 
 119 static void post_virtual_thread_pinned_event(JavaThread* current, const char* reason) {
 120   EventVirtualThreadPinned e;
 121   if (e.should_commit()) {
 122     e.set_pinnedReason(reason);
 123     e.set_carrierThread(JFR_JVM_THREAD_ID(current));
 124     e.commit();
 125   }
 126 }
 127 
 128 // -----------------------------------------------------------------------------
 129 // Theory of operations -- Monitors lists, thread residency, etc:
 130 //
 131 // * A thread acquires ownership of a monitor by successfully
 132 //   CAS()ing the _owner field from null to non-null.
 133 //
 134 // * Invariant: A thread appears on at most one monitor list --
 135 //   cxq, EntryList or WaitSet -- at any one time.
 136 //
 137 // * Contending threads "push" themselves onto the cxq with CAS
 138 //   and then spin/park.
 139 //
 140 // * After a contending thread eventually acquires the lock it must
 141 //   dequeue itself from either the EntryList or the cxq.
 142 //
 143 // * The exiting thread identifies and unparks an "heir presumptive"
 144 //   tentative successor thread on the EntryList.  Critically, the
 145 //   exiting thread doesn't unlink the successor thread from the EntryList.
 146 //   After having been unparked, the wakee will recontend for ownership of
 147 //   the monitor.   The successor (wakee) will either acquire the lock or
 148 //   re-park itself.
 149 //
 150 //   Succession is provided for by a policy of competitive handoff.
 151 //   The exiting thread does _not_ grant or pass ownership to the
 152 //   successor thread.  (This is also referred to as "handoff" succession").
 153 //   Instead the exiting thread releases ownership and possibly wakes
 154 //   a successor, so the successor can (re)compete for ownership of the lock.
 155 //   If the EntryList is empty but the cxq is populated the exiting
 156 //   thread will drain the cxq into the EntryList.  It does so by
 157 //   by detaching the cxq (installing null with CAS) and folding
 158 //   the threads from the cxq into the EntryList.  The EntryList is
 159 //   doubly linked, while the cxq is singly linked because of the
 160 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 161 //
 162 // * Concurrency invariants:
 163 //
 164 //   -- only the monitor owner may access or mutate the EntryList.
 165 //      The mutex property of the monitor itself protects the EntryList
 166 //      from concurrent interference.
 167 //   -- Only the monitor owner may detach the cxq.
 168 //
 169 // * The monitor entry list operations avoid locks, but strictly speaking
 170 //   they're not lock-free.  Enter is lock-free, exit is not.
 171 //   For a description of 'Methods and apparatus providing non-blocking access
 172 //   to a resource,' see U.S. Pat. No. 7844973.
 173 //
 174 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 175 //   detaching thread.  This mechanism is immune from the ABA corruption.
 176 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 177 //
 178 // * Taken together, the cxq and the EntryList constitute or form a
 179 //   single logical queue of threads stalled trying to acquire the lock.
 180 //   We use two distinct lists to improve the odds of a constant-time
 181 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 182 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 183 //   A key desideratum is to minimize queue & monitor metadata manipulation
 184 //   that occurs while holding the monitor lock -- that is, we want to
 185 //   minimize monitor lock holds times.  Note that even a small amount of
 186 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 187 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 188 //   locks and monitor metadata.
 189 //
 190 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 191 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 192 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 193 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 194 //
 195 //   The EntryList is ordered by the prevailing queue discipline and
 196 //   can be organized in any convenient fashion, such as a doubly-linked list or
 197 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 198 //   to operate in constant-time.  If we need a priority queue then something akin
 199 //   to Solaris' sleepq would work nicely.  Viz.,
 200 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 201 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 202 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 203 //   EntryList accordingly.
 204 //
 205 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 206 //   somewhat similar to an elevator-scan.
 207 //
 208 // * The monitor synchronization subsystem avoids the use of native
 209 //   synchronization primitives except for the narrow platform-specific
 210 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 211 //   the semantics of park-unpark.  Put another way, this monitor implementation
 212 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 213 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 214 //   underlying OS manages the READY<->RUN transitions.
 215 //
 216 // * Waiting threads reside on the WaitSet list -- wait() puts
 217 //   the caller onto the WaitSet.
 218 //
 219 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 220 //   either the EntryList or cxq.  Subsequent exit() operations will
 221 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 222 //   it's likely the notifyee would simply impale itself on the lock held
 223 //   by the notifier.
 224 //
 225 // * An interesting alternative is to encode cxq as (List,LockByte) where
 226 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 227 //   variable, like _recursions, in the scheme.  The threads or Events that form
 228 //   the list would have to be aligned in 256-byte addresses.  A thread would
 229 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 230 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 231 //   Note that is is *not* word-tearing, but it does presume that full-word
 232 //   CAS operations are coherent with intermix with STB operations.  That's true
 233 //   on most common processors.
 234 //
 235 // * See also http://blogs.sun.com/dave
 236 
 237 
 238 // Check that object() and set_object() are called from the right context:
 239 static void check_object_context() {
 240 #ifdef ASSERT
 241   Thread* self = Thread::current();
 242   if (self->is_Java_thread()) {
 243     // Mostly called from JavaThreads so sanity check the thread state.
 244     JavaThread* jt = JavaThread::cast(self);
 245     switch (jt->thread_state()) {
 246     case _thread_in_vm:    // the usual case
 247     case _thread_in_Java:  // during deopt
 248       break;
 249     default:
 250       fatal("called from an unsafe thread state");
 251     }
 252     assert(jt->is_active_Java_thread(), "must be active JavaThread");
 253   } else {
 254     // However, ThreadService::get_current_contended_monitor()
 255     // can call here via the VMThread so sanity check it.
 256     assert(self->is_VM_thread(), "must be");
 257   }
 258 #endif // ASSERT
 259 }
 260 
 261 ObjectMonitor::ObjectMonitor(oop object) :
 262   _header(markWord::zero()),
 263   _object(_oop_storage, object),
 264   _owner(nullptr),
 265   _stack_locker(nullptr),
 266   _previous_owner_tid(0),
 267   _next_om(nullptr),
 268   _recursions(0),
 269   _EntryList(nullptr),
 270   _cxq(nullptr),
 271   _succ(nullptr),
 272   _Responsible(nullptr),
 273   _SpinDuration(ObjectMonitor::Knob_SpinLimit),
 274   _contentions(0),
 275   _WaitSet(nullptr),
 276   _waiters(0),
 277   _WaitSetLock(0)
 278 { }
 279 
 280 ObjectMonitor::~ObjectMonitor() {
 281   _object.release(_oop_storage);
 282 }
 283 
 284 oop ObjectMonitor::object() const {
 285   check_object_context();
 286   return _object.resolve();
 287 }
 288 
 289 oop ObjectMonitor::object_peek() const {
 290   return _object.peek();
 291 }
 292 
 293 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) {
 294   if (current->is_suspended()) {
 295     _om->_recursions = 0;
 296     _om->_succ = nullptr;
 297     // Don't need a full fence after clearing successor here because of the call to exit().
 298     _om->exit(current, false /* not_suspended */);
 299     _om_exited = true;
 300 
 301     current->set_current_pending_monitor(_om);
 302   }
 303 }
 304 
 305 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) {
 306   if (current->is_suspended()) {
 307     if (_om->_succ == current) {
 308       _om->_succ = nullptr;
 309       OrderAccess::fence(); // always do a full fence when successor is cleared
 310     }
 311   }
 312 }
 313 
 314 // -----------------------------------------------------------------------------
 315 // Enter support
 316 
 317 bool ObjectMonitor::enter_for(JavaThread* locking_thread) {
 318   // Used by ObjectSynchronizer::enter_for to enter for another thread.
 319   // The monitor is private to or already owned by locking_thread which must be suspended.
 320   // So this code may only contend with deflation.
 321   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 322 
 323   // Block out deflation as soon as possible.
 324   add_to_contentions(1);
 325 
 326   bool success = false;
 327   if (!is_being_async_deflated()) {
 328     void* prev_owner = try_set_owner_from(nullptr, locking_thread);
 329 
 330     if (prev_owner == nullptr) {
 331       assert(_recursions == 0, "invariant");
 332       success = true;
 333     } else if (prev_owner == owner_for(locking_thread)) {
 334       _recursions++;
 335       success = true;
 336     } else if (prev_owner == DEFLATER_MARKER) {
 337       // Racing with deflation.
 338       prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread);
 339       if (prev_owner == DEFLATER_MARKER) {
 340         // Cancelled deflation. Increment contentions as part of the deflation protocol.
 341         add_to_contentions(1);
 342         success = true;
 343       } else if (prev_owner == nullptr) {
 344         // At this point we cannot race with deflation as we have both incremented
 345         // contentions, seen contention > 0 and seen a DEFLATER_MARKER.
 346         // success will only be false if this races with something other than
 347         // deflation.
 348         prev_owner = try_set_owner_from(nullptr, locking_thread);
 349         success = prev_owner == nullptr;
 350       }
 351     }
 352     assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT
 353            ", this=" INTPTR_FORMAT "{owner=" INTPTR_FORMAT "}, observed owner: " INTPTR_FORMAT,
 354            p2i(locking_thread), p2i(this), p2i(owner_raw()), p2i(prev_owner));
 355   } else {
 356     // Async deflation is in progress and our contentions increment
 357     // above lost the race to async deflation. Undo the work and
 358     // force the caller to retry.
 359     const oop l_object = object();
 360     if (l_object != nullptr) {
 361       // Attempt to restore the header/dmw to the object's header so that
 362       // we only retry once if the deflater thread happens to be slow.
 363       install_displaced_markword_in_object(l_object);
 364     }
 365   }
 366 
 367   add_to_contentions(-1);
 368 
 369   assert(!success || is_owner(locking_thread), "must be");
 370 
 371   return success;
 372 }
 373 
 374 bool ObjectMonitor::enter(JavaThread* current) {
 375   assert(current == JavaThread::current(), "must be");
 376   // The following code is ordered to check the most common cases first
 377   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 378 
 379   void* cur = try_set_owner_from(nullptr, current);
 380   if (cur == nullptr) {
 381     assert(_recursions == 0, "invariant");
 382     return true;
 383   }
 384 
 385   if (cur == owner_for(current)) {
 386     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 387     _recursions++;
 388     return true;
 389   }
 390 
 391   // We've encountered genuine contention.
 392 
 393   // Try one round of spinning *before* enqueueing current
 394   // and before going through the awkward and expensive state
 395   // transitions.  The following spin is strictly optional ...
 396   // Note that if we acquire the monitor from an initial spin
 397   // we forgo posting JVMTI events and firing DTRACE probes.
 398   if (TrySpin(current)) {
 399     assert(owner_raw() == owner_for(current), "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw()));
 400     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 401     assert(object()->mark() == markWord::encode(this),
 402            "object mark must match encoded this: mark=" INTPTR_FORMAT
 403            ", encoded this=" INTPTR_FORMAT, object()->mark().value(),
 404            markWord::encode(this).value());
 405     return true;
 406   }
 407 
 408   assert(owner_raw() != owner_for(current), "invariant");
 409   assert(_succ != current, "invariant");
 410   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 411   assert(current->thread_state() != _thread_blocked, "invariant");
 412 
 413   // Keep track of contention for JVM/TI and M&M queries.
 414   add_to_contentions(1);
 415   if (is_being_async_deflated()) {
 416     // Async deflation is in progress and our contentions increment
 417     // above lost the race to async deflation. Undo the work and
 418     // force the caller to retry.
 419     const oop l_object = object();
 420     if (l_object != nullptr) {
 421       // Attempt to restore the header/dmw to the object's header so that
 422       // we only retry once if the deflater thread happens to be slow.
 423       install_displaced_markword_in_object(l_object);
 424     }
 425     add_to_contentions(-1);
 426     return false;
 427   }
 428 
 429   JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);)
 430   EventJavaMonitorEnter event;
 431   if (event.is_started()) {
 432     event.set_monitorClass(object()->klass());
 433     // Set an address that is 'unique enough', such that events close in
 434     // time and with the same address are likely (but not guaranteed) to
 435     // belong to the same object.
 436     event.set_address((uintptr_t)this);
 437   }
 438 
 439   { // Change java thread status to indicate blocked on monitor enter.
 440     JavaThreadBlockedOnMonitorEnterState jtbmes(current, this);
 441 
 442     assert(current->current_pending_monitor() == nullptr, "invariant");
 443     current->set_current_pending_monitor(this);
 444 
 445     DTRACE_MONITOR_PROBE(contended__enter, this, object(), current);
 446     if (JvmtiExport::should_post_monitor_contended_enter()) {
 447       JvmtiExport::post_monitor_contended_enter(current, this);
 448 
 449       // The current thread does not yet own the monitor and does not
 450       // yet appear on any queues that would get it made the successor.
 451       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 452       // handler cannot accidentally consume an unpark() meant for the
 453       // ParkEvent associated with this ObjectMonitor.
 454     }
 455 
 456 #ifdef LOOM_MONITOR_SUPPORT
 457     ContinuationEntry* ce = current->last_continuation();
 458     if (ce != nullptr && ce->is_virtual_thread() && current->is_on_monitorenter()) {
 459       int result = Continuation::try_preempt(current, ce->cont_oop(current), freeze_on_monitorenter);
 460       if (result == freeze_ok) {
 461         bool acquired = VThreadMonitorEnter(current);
 462         if (acquired) {
 463           current->set_preemption_cancelled(true);
 464           if (JvmtiExport::should_post_monitor_contended_entered()) {
 465             // We are going to call thaw again after this and finish the VMTS
 466             // transition so no need to do it here. We will post the event there.
 467             current->set_contended_entered_monitor(this);
 468           }
 469         }
 470         current->set_current_pending_monitor(nullptr);
 471         DEBUG_ONLY(int state = java_lang_VirtualThread::state(current->vthread()));
 472         assert((acquired && current->preemption_cancelled() && state == java_lang_VirtualThread::RUNNING) ||
 473                (!acquired && !current->preemption_cancelled() && state == java_lang_VirtualThread::BLOCKING), "invariant");
 474         return true;
 475       }
 476       if (result == freeze_pinned_native) {
 477         post_virtual_thread_pinned_event(current, "Native frame or <clinit> on stack");
 478       }
 479     }
 480 #endif
 481 
 482     OSThreadContendState osts(current->osthread());
 483 
 484     assert(current->thread_state() == _thread_in_vm, "invariant");
 485 
 486     for (;;) {
 487       ExitOnSuspend eos(this);
 488       {
 489         ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */);
 490         EnterI(current);
 491         current->set_current_pending_monitor(nullptr);
 492         // We can go to a safepoint at the end of this block. If we
 493         // do a thread dump during that safepoint, then this thread will show
 494         // as having "-locked" the monitor, but the OS and java.lang.Thread
 495         // states will still report that the thread is blocked trying to
 496         // acquire it.
 497         // If there is a suspend request, ExitOnSuspend will exit the OM
 498         // and set the OM as pending.
 499       }
 500       if (!eos.exited()) {
 501         // ExitOnSuspend did not exit the OM
 502         assert(owner_raw() == owner_for(current), "invariant");
 503         break;
 504       }
 505     }
 506 
 507     // We've just gotten past the enter-check-for-suspend dance and we now own
 508     // the monitor free and clear.
 509   }
 510 
 511   add_to_contentions(-1);
 512   assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
 513 
 514   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 515   assert(_recursions == 0, "invariant");
 516   assert(owner_raw() == owner_for(current), "invariant");
 517   assert(_succ != current, "invariant");
 518   assert(object()->mark() == markWord::encode(this), "invariant");
 519 
 520   // The thread -- now the owner -- is back in vm mode.
 521   // Report the glorious news via TI,DTrace and jvmstat.
 522   // The probe effect is non-trivial.  All the reportage occurs
 523   // while we hold the monitor, increasing the length of the critical
 524   // section.  Amdahl's parallel speedup law comes vividly into play.
 525   //
 526   // Another option might be to aggregate the events (thread local or
 527   // per-monitor aggregation) and defer reporting until a more opportune
 528   // time -- such as next time some thread encounters contention but has
 529   // yet to acquire the lock.  While spinning that thread could
 530   // spinning we could increment JVMStat counters, etc.
 531 
 532   DTRACE_MONITOR_PROBE(contended__entered, this, object(), current);
 533   if (JvmtiExport::should_post_monitor_contended_entered()) {
 534     JvmtiExport::post_monitor_contended_entered(current, this);
 535 
 536     // The current thread already owns the monitor and is not going to
 537     // call park() for the remainder of the monitor enter protocol. So
 538     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 539     // event handler consumed an unpark() issued by the thread that
 540     // just exited the monitor.
 541   }
 542   if (event.should_commit()) {
 543     event.set_previousOwner(_previous_owner_tid);
 544     event.commit();
 545   }
 546   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 547   return true;
 548 }
 549 
 550 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 551 // Callers must compensate as needed.
 552 
 553 ObjectMonitor::TryLockResult ObjectMonitor::TryLock(JavaThread* current) {
 554   void* own = owner_raw();
 555   if (own != nullptr) return TryLockResult::HasOwner;
 556   if (try_set_owner_from(nullptr, current) == nullptr) {
 557     assert(_recursions == 0, "invariant");
 558     return TryLockResult::Success;
 559   }
 560   // The lock had been free momentarily, but we lost the race to the lock.
 561   // Interference -- the CAS failed.
 562   // We can either return -1 or retry.
 563   // Retry doesn't make as much sense because the lock was just acquired.
 564   return TryLockResult::Interference;
 565 }
 566 
 567 // Deflate the specified ObjectMonitor if not in-use. Returns true if it
 568 // was deflated and false otherwise.
 569 //
 570 // The async deflation protocol sets owner to DEFLATER_MARKER and
 571 // makes contentions negative as signals to contending threads that
 572 // an async deflation is in progress. There are a number of checks
 573 // as part of the protocol to make sure that the calling thread has
 574 // not lost the race to a contending thread.
 575 //
 576 // The ObjectMonitor has been successfully async deflated when:
 577 //   (contentions < 0)
 578 // Contending threads that see that condition know to retry their operation.
 579 //
 580 bool ObjectMonitor::deflate_monitor() {
 581   if (is_busy()) {
 582     // Easy checks are first - the ObjectMonitor is busy so no deflation.
 583     return false;
 584   }
 585 
 586   const oop obj = object_peek();
 587 
 588   if (obj == nullptr) {
 589     // If the object died, we can recycle the monitor without racing with
 590     // Java threads. The GC already broke the association with the object.
 591     set_owner_from_raw(nullptr, DEFLATER_MARKER);
 592     assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions());
 593     _contentions = INT_MIN; // minimum negative int
 594   } else {
 595     // Attempt async deflation protocol.
 596 
 597     // Set a null owner to DEFLATER_MARKER to force any contending thread
 598     // through the slow path. This is just the first part of the async
 599     // deflation dance.
 600     if (try_set_owner_from_raw(nullptr, DEFLATER_MARKER) != nullptr) {
 601       // The owner field is no longer null so we lost the race since the
 602       // ObjectMonitor is now busy.
 603       return false;
 604     }
 605 
 606     if (contentions() > 0 || _waiters != 0) {
 607       // Another thread has raced to enter the ObjectMonitor after
 608       // is_busy() above or has already entered and waited on
 609       // it which makes it busy so no deflation. Restore owner to
 610       // null if it is still DEFLATER_MARKER.
 611       if (try_set_owner_from_raw(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 612         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 613         add_to_contentions(-1);
 614       }
 615       return false;
 616     }
 617 
 618     // Make a zero contentions field negative to force any contending threads
 619     // to retry. This is the second part of the async deflation dance.
 620     if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) {
 621       // Contentions was no longer 0 so we lost the race since the
 622       // ObjectMonitor is now busy. Restore owner to null if it is
 623       // still DEFLATER_MARKER:
 624       if (try_set_owner_from_raw(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 625         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 626         add_to_contentions(-1);
 627       }
 628       return false;
 629     }
 630   }
 631 
 632   // Sanity checks for the races:
 633   guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker");
 634   guarantee(contentions() < 0, "must be negative: contentions=%d",
 635             contentions());
 636   guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters);
 637   guarantee(_cxq == nullptr, "must be no contending threads: cxq="
 638             INTPTR_FORMAT, p2i(_cxq));
 639   guarantee(_EntryList == nullptr,
 640             "must be no entering threads: EntryList=" INTPTR_FORMAT,
 641             p2i(_EntryList));
 642 
 643   if (obj != nullptr) {
 644     if (log_is_enabled(Trace, monitorinflation)) {
 645       ResourceMark rm;
 646       log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT
 647                                   ", mark=" INTPTR_FORMAT ", type='%s'",
 648                                   p2i(obj), obj->mark().value(),
 649                                   obj->klass()->external_name());
 650     }
 651 
 652     // Install the old mark word if nobody else has already done it.
 653     install_displaced_markword_in_object(obj);
 654   }
 655 
 656   // We leave owner == DEFLATER_MARKER and contentions < 0
 657   // to force any racing threads to retry.
 658   return true;  // Success, ObjectMonitor has been deflated.
 659 }
 660 
 661 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 662 // into the header of the object associated with the monitor. This
 663 // idempotent method is called by a thread that is deflating a
 664 // monitor and by other threads that have detected a race with the
 665 // deflation process.
 666 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 667   // This function must only be called when (owner == DEFLATER_MARKER
 668   // && contentions <= 0), but we can't guarantee that here because
 669   // those values could change when the ObjectMonitor gets moved from
 670   // the global free list to a per-thread free list.
 671 
 672   guarantee(obj != nullptr, "must be non-null");
 673 
 674   // Separate loads in is_being_async_deflated(), which is almost always
 675   // called before this function, from the load of dmw/header below.
 676 
 677   // _contentions and dmw/header may get written by different threads.
 678   // Make sure to observe them in the same order when having several observers.
 679   OrderAccess::loadload_for_IRIW();
 680 
 681   const oop l_object = object_peek();
 682   if (l_object == nullptr) {
 683     // ObjectMonitor's object ref has already been cleared by async
 684     // deflation or GC so we're done here.
 685     return;
 686   }
 687   assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj="
 688          INTPTR_FORMAT, p2i(l_object), p2i(obj));
 689 
 690   markWord dmw = header();
 691   // The dmw has to be neutral (not null, not locked and not marked).
 692   assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 693 
 694   // Install displaced mark word if the object's header still points
 695   // to this ObjectMonitor. More than one racing caller to this function
 696   // can rarely reach this point, but only one can win.
 697   markWord res = obj->cas_set_mark(dmw, markWord::encode(this));
 698   if (res != markWord::encode(this)) {
 699     // This should be rare so log at the Info level when it happens.
 700     log_info(monitorinflation)("install_displaced_markword_in_object: "
 701                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 702                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 703                                dmw.value(), markWord::encode(this).value(),
 704                                res.value());
 705   }
 706 
 707   // Note: It does not matter which thread restored the header/dmw
 708   // into the object's header. The thread deflating the monitor just
 709   // wanted the object's header restored and it is. The threads that
 710   // detected a race with the deflation process also wanted the
 711   // object's header restored before they retry their operation and
 712   // because it is restored they will only retry once.
 713 }
 714 
 715 // Convert the fields used by is_busy() to a string that can be
 716 // used for diagnostic output.
 717 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 718   ss->print("is_busy: waiters=%d"
 719             ", contentions=%d"
 720             ", owner=" INTPTR_FORMAT
 721             ", cxq=" PTR_FORMAT
 722             ", EntryList=" PTR_FORMAT,
 723             _waiters,
 724             (contentions() > 0 ? contentions() : 0),
 725             owner_is_DEFLATER_MARKER()
 726                 // We report null instead of DEFLATER_MARKER here because is_busy()
 727                 // ignores DEFLATER_MARKER values.
 728                 ? p2i(nullptr)
 729                 : p2i(owner_raw()),
 730             p2i(_cxq),
 731             p2i(_EntryList));
 732   return ss->base();
 733 }
 734 
 735 #define MAX_RECHECK_INTERVAL 1000
 736 
 737 void ObjectMonitor::EnterI(JavaThread* current) {
 738   assert(current->thread_state() == _thread_blocked, "invariant");
 739 
 740   // Try the lock - TATAS
 741   if (TryLock(current) == TryLockResult::Success) {
 742     assert(_succ != current, "invariant");
 743     assert(owner_raw() == owner_for(current), "invariant");
 744     assert(_Responsible != current, "invariant");
 745     return;
 746   }
 747 
 748   if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 749     // Cancelled the in-progress async deflation by changing owner from
 750     // DEFLATER_MARKER to current. As part of the contended enter protocol,
 751     // contentions was incremented to a positive value before EnterI()
 752     // was called and that prevents the deflater thread from winning the
 753     // last part of the 2-part async deflation protocol. After EnterI()
 754     // returns to enter(), contentions is decremented because the caller
 755     // now owns the monitor. We bump contentions an extra time here to
 756     // prevent the deflater thread from winning the last part of the
 757     // 2-part async deflation protocol after the regular decrement
 758     // occurs in enter(). The deflater thread will decrement contentions
 759     // after it recognizes that the async deflation was cancelled.
 760     add_to_contentions(1);
 761     assert(_succ != current, "invariant");
 762     assert(_Responsible != current, "invariant");
 763     return;
 764   }
 765 
 766   assert(InitDone, "Unexpectedly not initialized");
 767 
 768   // We try one round of spinning *before* enqueueing current.
 769   //
 770   // If the _owner is ready but OFFPROC we could use a YieldTo()
 771   // operation to donate the remainder of this thread's quantum
 772   // to the owner.  This has subtle but beneficial affinity
 773   // effects.
 774 
 775   if (TrySpin(current)) {
 776     assert(owner_raw() == owner_for(current), "invariant");
 777     assert(_succ != current, "invariant");
 778     assert(_Responsible != current, "invariant");
 779     return;
 780   }
 781 
 782   // The Spin failed -- Enqueue and park the thread ...
 783   assert(_succ != current, "invariant");
 784   assert(owner_raw() != owner_for(current), "invariant");
 785   assert(_Responsible != current, "invariant");
 786 
 787   // Enqueue "current" on ObjectMonitor's _cxq.
 788   //
 789   // Node acts as a proxy for current.
 790   // As an aside, if were to ever rewrite the synchronization code mostly
 791   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 792   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 793   // as well as eliminate a subset of ABA issues.
 794   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 795 
 796   ObjectWaiter node(current);
 797   current->_ParkEvent->reset();
 798   node._prev   = (ObjectWaiter*) 0xBAD;
 799   node.TState  = ObjectWaiter::TS_CXQ;
 800 
 801   // Push "current" onto the front of the _cxq.
 802   // Once on cxq/EntryList, current stays on-queue until it acquires the lock.
 803   // Note that spinning tends to reduce the rate at which threads
 804   // enqueue and dequeue on EntryList|cxq.
 805   ObjectWaiter* nxt;
 806   for (;;) {
 807     node._next = nxt = _cxq;
 808     if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break;
 809 
 810     // Interference - the CAS failed because _cxq changed.  Just retry.
 811     // As an optional optimization we retry the lock.
 812     if (TryLock(current) == TryLockResult::Success) {
 813       assert(_succ != current, "invariant");
 814       assert(owner_raw() == owner_for(current), "invariant");
 815       assert(_Responsible != current, "invariant");
 816       return;
 817     }
 818   }
 819 
 820   // Check for cxq|EntryList edge transition to non-null.  This indicates
 821   // the onset of contention.  While contention persists exiting threads
 822   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 823   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 824   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 825   // arrange for one of the contending thread to use a timed park() operations
 826   // to detect and recover from the race.  (Stranding is form of progress failure
 827   // where the monitor is unlocked but all the contending threads remain parked).
 828   // That is, at least one of the contended threads will periodically poll _owner.
 829   // One of the contending threads will become the designated "Responsible" thread.
 830   // The Responsible thread uses a timed park instead of a normal indefinite park
 831   // operation -- it periodically wakes and checks for and recovers from potential
 832   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 833   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 834   // be responsible for a monitor.
 835   //
 836   // Currently, one of the contended threads takes on the added role of "Responsible".
 837   // A viable alternative would be to use a dedicated "stranding checker" thread
 838   // that periodically iterated over all the threads (or active monitors) and unparked
 839   // successors where there was risk of stranding.  This would help eliminate the
 840   // timer scalability issues we see on some platforms as we'd only have one thread
 841   // -- the checker -- parked on a timer.
 842 
 843   if (nxt == nullptr && _EntryList == nullptr) {
 844     // Try to assume the role of responsible thread for the monitor.
 845     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=current }
 846     Atomic::replace_if_null(&_Responsible, current);
 847   }
 848 
 849   // The lock might have been released while this thread was occupied queueing
 850   // itself onto _cxq.  To close the race and avoid "stranding" and
 851   // progress-liveness failure we must resample-retry _owner before parking.
 852   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 853   // In this case the ST-MEMBAR is accomplished with CAS().
 854   //
 855   // TODO: Defer all thread state transitions until park-time.
 856   // Since state transitions are heavy and inefficient we'd like
 857   // to defer the state transitions until absolutely necessary,
 858   // and in doing so avoid some transitions ...
 859 
 860   int recheckInterval = 1;
 861   bool do_timed_parked = false;
 862 
 863   ContinuationEntry* ce = current->last_continuation();
 864   if (ce != nullptr && ce->is_virtual_thread()) {
 865     do_timed_parked = true;
 866   }
 867 
 868   for (;;) {
 869 
 870     if (TryLock(current) == TryLockResult::Success) {
 871       break;
 872     }
 873     assert(owner_raw() != owner_for(current), "invariant");
 874 
 875     // park self
 876     if (_Responsible == current || do_timed_parked) {
 877       current->_ParkEvent->park((jlong) recheckInterval);
 878       // Increase the recheckInterval, but clamp the value.
 879       recheckInterval *= 8;
 880       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 881         recheckInterval = MAX_RECHECK_INTERVAL;
 882       }
 883     } else {
 884       current->_ParkEvent->park();
 885     }
 886 
 887     if (TryLock(current) == TryLockResult::Success) {
 888       break;
 889     }
 890 
 891     if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 892       // Cancelled the in-progress async deflation by changing owner from
 893       // DEFLATER_MARKER to current. As part of the contended enter protocol,
 894       // contentions was incremented to a positive value before EnterI()
 895       // was called and that prevents the deflater thread from winning the
 896       // last part of the 2-part async deflation protocol. After EnterI()
 897       // returns to enter(), contentions is decremented because the caller
 898       // now owns the monitor. We bump contentions an extra time here to
 899       // prevent the deflater thread from winning the last part of the
 900       // 2-part async deflation protocol after the regular decrement
 901       // occurs in enter(). The deflater thread will decrement contentions
 902       // after it recognizes that the async deflation was cancelled.
 903       add_to_contentions(1);
 904       break;
 905     }
 906 
 907     // The lock is still contested.
 908 
 909     // Keep a tally of the # of futile wakeups.
 910     // Note that the counter is not protected by a lock or updated by atomics.
 911     // That is by design - we trade "lossy" counters which are exposed to
 912     // races during updates for a lower probe effect.
 913     // This PerfData object can be used in parallel with a safepoint.
 914     // See the work around in PerfDataManager::destroy().
 915     OM_PERFDATA_OP(FutileWakeups, inc());
 916 
 917     // Assuming this is not a spurious wakeup we'll normally find _succ == current.
 918     // We can defer clearing _succ until after the spin completes
 919     // TrySpin() must tolerate being called with _succ == current.
 920     // Try yet another round of adaptive spinning.
 921     if (TrySpin(current)) {
 922       break;
 923     }
 924 
 925     // We can find that we were unpark()ed and redesignated _succ while
 926     // we were spinning.  That's harmless.  If we iterate and call park(),
 927     // park() will consume the event and return immediately and we'll
 928     // just spin again.  This pattern can repeat, leaving _succ to simply
 929     // spin on a CPU.
 930 
 931     if (_succ == current) _succ = nullptr;
 932 
 933     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 934     OrderAccess::fence();
 935   }
 936 
 937   // Egress :
 938   // current has acquired the lock -- Unlink current from the cxq or EntryList.
 939   // Normally we'll find current on the EntryList .
 940   // From the perspective of the lock owner (this thread), the
 941   // EntryList is stable and cxq is prepend-only.
 942   // The head of cxq is volatile but the interior is stable.
 943   // In addition, current.TState is stable.
 944 
 945   assert(owner_raw() == owner_for(current), "invariant");
 946 
 947   UnlinkAfterAcquire(current, &node);
 948   if (_succ == current) _succ = nullptr;
 949 
 950   assert(_succ != current, "invariant");
 951   if (_Responsible == current) {
 952     _Responsible = nullptr;
 953     OrderAccess::fence(); // Dekker pivot-point
 954 
 955     // We may leave threads on cxq|EntryList without a designated
 956     // "Responsible" thread.  This is benign.  When this thread subsequently
 957     // exits the monitor it can "see" such preexisting "old" threads --
 958     // threads that arrived on the cxq|EntryList before the fence, above --
 959     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 960     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 961     // non-null and elect a new "Responsible" timer thread.
 962     //
 963     // This thread executes:
 964     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 965     //    LD cxq|EntryList               (in subsequent exit)
 966     //
 967     // Entering threads in the slow/contended path execute:
 968     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 969     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 970     //
 971     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 972     // exit operation from floating above the ST Responsible=null.
 973   }
 974 
 975   // We've acquired ownership with CAS().
 976   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 977   // But since the CAS() this thread may have also stored into _succ,
 978   // EntryList, cxq or Responsible.  These meta-data updates must be
 979   // visible __before this thread subsequently drops the lock.
 980   // Consider what could occur if we didn't enforce this constraint --
 981   // STs to monitor meta-data and user-data could reorder with (become
 982   // visible after) the ST in exit that drops ownership of the lock.
 983   // Some other thread could then acquire the lock, but observe inconsistent
 984   // or old monitor meta-data and heap data.  That violates the JMM.
 985   // To that end, the 1-0 exit() operation must have at least STST|LDST
 986   // "release" barrier semantics.  Specifically, there must be at least a
 987   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 988   // the lock.   The barrier ensures that changes to monitor meta-data and data
 989   // protected by the lock will be visible before we release the lock, and
 990   // therefore before some other thread (CPU) has a chance to acquire the lock.
 991   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 992   //
 993   // Critically, any prior STs to _succ or EntryList must be visible before
 994   // the ST of null into _owner in the *subsequent* (following) corresponding
 995   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 996   // execute a serializing instruction.
 997 
 998   return;
 999 }
1000 
1001 // ReenterI() is a specialized inline form of the latter half of the
1002 // contended slow-path from EnterI().  We use ReenterI() only for
1003 // monitor reentry in wait().
1004 //
1005 // In the future we should reconcile EnterI() and ReenterI().
1006 
1007 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) {
1008   assert(current != nullptr, "invariant");
1009   assert(currentNode != nullptr, "invariant");
1010   assert(currentNode->_thread == current, "invariant");
1011   assert(_waiters > 0, "invariant");
1012   assert(object()->mark() == markWord::encode(this), "invariant");
1013 
1014   assert(current->thread_state() != _thread_blocked, "invariant");
1015 
1016   for (;;) {
1017     uint8_t v = currentNode->TState;
1018     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1019     assert(owner_raw() != owner_for(current), "invariant");
1020 
1021     // This thread has been notified so try to reacquire the lock.
1022     if (TryLock(current) == TryLockResult::Success) {
1023       break;
1024     }
1025 
1026     // If that fails, spin again.  Note that spin count may be zero so the above TryLock
1027     // is necessary.
1028     if (TrySpin(current)) {
1029         break;
1030     }
1031 
1032     {
1033       OSThreadContendState osts(current->osthread());
1034 
1035       assert(current->thread_state() == _thread_in_vm, "invariant");
1036 
1037       {
1038         ClearSuccOnSuspend csos(this);
1039         ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1040         current->_ParkEvent->park();
1041       }
1042     }
1043 
1044     // Try again, but just so we distinguish between futile wakeups and
1045     // successful wakeups.  The following test isn't algorithmically
1046     // necessary, but it helps us maintain sensible statistics.
1047     if (TryLock(current) == TryLockResult::Success) {
1048       break;
1049     }
1050 
1051     // The lock is still contested.
1052 
1053     // Assuming this is not a spurious wakeup we'll normally
1054     // find that _succ == current.
1055     if (_succ == current) _succ = nullptr;
1056 
1057     // Invariant: after clearing _succ a contending thread
1058     // *must* retry  _owner before parking.
1059     OrderAccess::fence();
1060 
1061     // Keep a tally of the # of futile wakeups.
1062     // Note that the counter is not protected by a lock or updated by atomics.
1063     // That is by design - we trade "lossy" counters which are exposed to
1064     // races during updates for a lower probe effect.
1065     // This PerfData object can be used in parallel with a safepoint.
1066     // See the work around in PerfDataManager::destroy().
1067     OM_PERFDATA_OP(FutileWakeups, inc());
1068   }
1069 
1070   // current has acquired the lock -- Unlink current from the cxq or EntryList .
1071   // Normally we'll find current on the EntryList.
1072   // Unlinking from the EntryList is constant-time and atomic-free.
1073   // From the perspective of the lock owner (this thread), the
1074   // EntryList is stable and cxq is prepend-only.
1075   // The head of cxq is volatile but the interior is stable.
1076   // In addition, current.TState is stable.
1077 
1078   assert(owner_raw() == owner_for(current), "invariant");
1079   assert(object()->mark() == markWord::encode(this), "invariant");
1080   UnlinkAfterAcquire(current, currentNode);
1081   if (_succ == current) _succ = nullptr;
1082   assert(_succ != current, "invariant");
1083   currentNode->TState = ObjectWaiter::TS_RUN;
1084   OrderAccess::fence();      // see comments at the end of EnterI()
1085 }
1086 
1087 // This method is called from two places:
1088 // - On monitorenter contention with a null waiter.
1089 // - After Object.wait() times out or the target is interrupted to reenter the
1090 //   monitor, with the existing waiter.
1091 // For the Object.wait() case we do not delete the ObjectWaiter in case we
1092 // succesfully acquire the monitor since we are going to need it on return.
1093 bool ObjectMonitor::VThreadMonitorEnter(JavaThread* current, ObjectWaiter* waiter) {
1094   if (TryLock(current) == TryLockResult::Success) {
1095     assert(owner_raw() == owner_for(current), "invariant");
1096     assert(_succ != current, "invariant");
1097     assert(_Responsible != current, "invariant");
1098     add_to_contentions(-1);
1099     return true;
1100   }
1101 
1102   if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
1103     // Cancelled the in-progress async deflation by changing owner from
1104     // DEFLATER_MARKER to current. As part of the contended enter protocol,
1105     // contentions was incremented to a positive value before this call to
1106     // VThreadMonitorEnter(). We avoid decrementing contentions to prevent
1107     // the deflater thread from winning the last part of the 2-part async
1108     // deflation protocol. The deflater thread will decrement contentions
1109     // after it recognizes that the async deflation was cancelled.
1110     assert(_succ != current, "invariant");
1111     assert(_Responsible != current, "invariant");
1112     assert(waiter != nullptr, "monitor currently in used marked for deflation??");
1113     return true;
1114   }
1115 
1116   oop vthread = current->vthread();
1117   ObjectWaiter* node = waiter != nullptr ? waiter : new ObjectWaiter(vthread, this);
1118   node->_prev   = (ObjectWaiter*) 0xBAD;
1119   node->TState  = ObjectWaiter::TS_CXQ;
1120 
1121   // Push node associated with vthread onto the front of the _cxq.
1122   ObjectWaiter* nxt;
1123   for (;;) {
1124     node->_next = nxt = _cxq;
1125     if (Atomic::cmpxchg(&_cxq, nxt, node) == nxt) break;
1126 
1127     // Interference - the CAS failed because _cxq changed.  Just retry.
1128     // As an optional optimization we retry the lock.
1129     if (TryLock(current) == TryLockResult::Success) {
1130       assert(owner_raw() == owner_for(current), "invariant");
1131       assert(_succ != current, "invariant");
1132       assert(_Responsible != current, "invariant");
1133       add_to_contentions(-1);
1134       if (waiter == nullptr) delete node;  // for Object.wait() don't delete yet
1135       return true;
1136     }
1137   }
1138 
1139   // We have to try once more since owner could have exited monitor and checked
1140   // _cxq before we added the node to the queue.
1141   if (TryLock(current) == TryLockResult::Success) {
1142     assert(owner_raw() == owner_for(current), "invariant");
1143     assert(_Responsible != current, "invariant");
1144     UnlinkAfterAcquire(current, node);
1145     if (_succ == (JavaThread*)java_lang_Thread::thread_id(vthread)) _succ = nullptr;
1146     add_to_contentions(-1);
1147     if (waiter == nullptr) delete node;  // for Object.wait() don't delete yet
1148     return true;
1149   }
1150 
1151   if (nxt == nullptr && _EntryList == nullptr) {
1152     // The C2 unlock() fast path first checks if _cxq and _EntryList are empty and
1153     // if they are it just clears the _owner field. Since we always run the risk of
1154     // having that check happening before we added the node to _cxq and the release
1155     // of the monitor happening after the last TryLock attempt we need to do something
1156     // to avoid stranding. We set the _Responsible field which results in a timed-wait.
1157     if (Atomic::replace_if_null(&_Responsible, (JavaThread*)java_lang_Thread::thread_id(vthread))) {
1158       java_lang_VirtualThread::set_recheckInterval(vthread, 1);
1159     }
1160   }
1161 
1162   assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
1163   java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING);
1164 
1165   // We didn't succeed in acquiring the monitor so save ObjectWaiter*
1166   // in the chunk since we will need it when resuming execution.
1167   oop cont = java_lang_VirtualThread::continuation(vthread);
1168   stackChunkOop chunk  = jdk_internal_vm_Continuation::tail(cont);
1169   chunk->set_object_waiter(node);
1170   return false;
1171 }
1172 
1173 void ObjectMonitor::resume_operation(JavaThread* current, ObjectWaiter* node) {
1174   assert(java_lang_VirtualThread::state(current->vthread()) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
1175   assert(current->is_in_VTMS_transition(), "must be");
1176 
1177   if (node->is_wait() && !node->at_reenter()) {
1178     bool notified = VThreadWaitReenter(current, node);
1179     if (!notified) return;
1180     // Notified case. We were already added to CXQ or TS_ENTER
1181     // by the notifier so just try to reenter the monitor.
1182   }
1183 
1184   // Retry acquiring monitor...
1185 
1186   int state = node->TState;
1187   guarantee(state == ObjectWaiter::TS_ENTER || state == ObjectWaiter::TS_CXQ, "invariant");
1188 
1189   if (TryLock(current) == TryLockResult::Success) {
1190     VThreadEpilog(current, node);
1191     return;
1192   }
1193 
1194   oop vthread = current->vthread();
1195   if (_succ == (JavaThread*)java_lang_Thread::thread_id(vthread)) _succ = nullptr;
1196 
1197   // Invariant: after clearing _succ a thread *must* retry _owner before parking.
1198   OrderAccess::fence();
1199 
1200   if (TryLock(current) == TryLockResult::Success) {
1201     VThreadEpilog(current, node);
1202     return;
1203   }
1204 
1205   // Update recheck interval in case we are the _Responsible.
1206   if (_Responsible == (JavaThread*)java_lang_Thread::thread_id(vthread)) {
1207     int recheckInterval = java_lang_VirtualThread::recheckInterval(vthread);
1208     assert(recheckInterval >= 1 && recheckInterval <= 6, "invariant");
1209     if (recheckInterval < 6) {
1210       recheckInterval++;
1211       java_lang_VirtualThread::set_recheckInterval(vthread, recheckInterval);
1212     }
1213   } else if (java_lang_VirtualThread::recheckInterval(vthread) > 0) {
1214     // No need to do timed park anymore
1215     java_lang_VirtualThread::set_recheckInterval(vthread, 0);
1216   }
1217 
1218   // The JT will read this variable on return to the resume_monitor_operation stub
1219   // and will unmount (enterSpecial frame removed and return to Continuation.run()).
1220   current->set_preempting(true);
1221   java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING);
1222 }
1223 
1224 void ObjectMonitor::VThreadEpilog(JavaThread* current, ObjectWaiter* node) {
1225   assert(owner_raw() == owner_for(current), "invariant");
1226   add_to_contentions(-1);
1227 
1228   oop vthread = current->vthread();
1229   if (java_lang_VirtualThread::recheckInterval(vthread) > 0) {
1230     java_lang_VirtualThread::set_recheckInterval(vthread, 0);
1231   }
1232   int64_t threadid = java_lang_Thread::thread_id(vthread);
1233   if (_succ == (JavaThread*)threadid) _succ = nullptr;
1234   if (_Responsible == (JavaThread*)threadid) {
1235     _Responsible = nullptr;
1236     OrderAccess::fence(); // Dekker pivot-point
1237   }
1238 
1239   guarantee(_recursions == 0, "invariant");
1240 
1241   if (node->is_wait()) {
1242     _recursions = node->_recursions;   // restore the old recursion count
1243     _waiters--;                        // decrement the number of waiters
1244 
1245     if (node->_interrupted) {
1246       // We will throw at thaw end after finishing the mount transition.
1247       current->set_pending_interrupted_exception(true);
1248     }
1249   }
1250 
1251   assert(node->TState == ObjectWaiter::TS_ENTER || node->TState == ObjectWaiter::TS_CXQ, "");
1252   UnlinkAfterAcquire(current, node);
1253   delete node;
1254 
1255   oop cont = java_lang_VirtualThread::continuation(vthread);
1256   stackChunkOop chunk  = jdk_internal_vm_Continuation::tail(cont);
1257   chunk->set_object_waiter(nullptr);
1258 
1259   if (JvmtiExport::should_post_monitor_contended_entered()) {
1260     // We are going to call thaw again after this and finish the VMTS
1261     // transition so no need to do it here. We will post the event there.
1262     current->set_contended_entered_monitor(this);
1263   }
1264 }
1265 
1266 // By convention we unlink a contending thread from EntryList|cxq immediately
1267 // after the thread acquires the lock in ::enter().  Equally, we could defer
1268 // unlinking the thread until ::exit()-time.
1269 
1270 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) {
1271   assert(owner_raw() == owner_for(current), "invariant");
1272   assert((!currentNode->is_vthread() && currentNode->thread() == current) ||
1273          (currentNode->is_vthread() && currentNode->vthread() == current->vthread()), "invariant");
1274 
1275   if (currentNode->TState == ObjectWaiter::TS_ENTER) {
1276     // Normal case: remove current from the DLL EntryList .
1277     // This is a constant-time operation.
1278     ObjectWaiter* nxt = currentNode->_next;
1279     ObjectWaiter* prv = currentNode->_prev;
1280     if (nxt != nullptr) nxt->_prev = prv;
1281     if (prv != nullptr) prv->_next = nxt;
1282     if (currentNode == _EntryList) _EntryList = nxt;
1283     assert(nxt == nullptr || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
1284     assert(prv == nullptr || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
1285   } else {
1286     assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant");
1287     // Inopportune interleaving -- current is still on the cxq.
1288     // This usually means the enqueue of self raced an exiting thread.
1289     // Normally we'll find current near the front of the cxq, so
1290     // dequeueing is typically fast.  If needbe we can accelerate
1291     // this with some MCS/CHL-like bidirectional list hints and advisory
1292     // back-links so dequeueing from the interior will normally operate
1293     // in constant-time.
1294     // Dequeue current from either the head (with CAS) or from the interior
1295     // with a linear-time scan and normal non-atomic memory operations.
1296     // CONSIDER: if current is on the cxq then simply drain cxq into EntryList
1297     // and then unlink current from EntryList.  We have to drain eventually,
1298     // so it might as well be now.
1299 
1300     ObjectWaiter* v = _cxq;
1301     assert(v != nullptr, "invariant");
1302     if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) {
1303       // The CAS above can fail from interference IFF a "RAT" arrived.
1304       // In that case current must be in the interior and can no longer be
1305       // at the head of cxq.
1306       if (v == currentNode) {
1307         assert(_cxq != v, "invariant");
1308         v = _cxq;          // CAS above failed - start scan at head of list
1309       }
1310       ObjectWaiter* p;
1311       ObjectWaiter* q = nullptr;
1312       for (p = v; p != nullptr && p != currentNode; p = p->_next) {
1313         q = p;
1314         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
1315       }
1316       assert(v != currentNode, "invariant");
1317       assert(p == currentNode, "Node not found on cxq");
1318       assert(p != _cxq, "invariant");
1319       assert(q != nullptr, "invariant");
1320       assert(q->_next == p, "invariant");
1321       q->_next = p->_next;
1322     }
1323   }
1324 
1325 #ifdef ASSERT
1326   // Diagnostic hygiene ...
1327   currentNode->_prev  = (ObjectWaiter*) 0xBAD;
1328   currentNode->_next  = (ObjectWaiter*) 0xBAD;
1329   currentNode->TState = ObjectWaiter::TS_RUN;
1330 #endif
1331 }
1332 
1333 // -----------------------------------------------------------------------------
1334 // Exit support
1335 //
1336 // exit()
1337 // ~~~~~~
1338 // Note that the collector can't reclaim the objectMonitor or deflate
1339 // the object out from underneath the thread calling ::exit() as the
1340 // thread calling ::exit() never transitions to a stable state.
1341 // This inhibits GC, which in turn inhibits asynchronous (and
1342 // inopportune) reclamation of "this".
1343 //
1344 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
1345 // There's one exception to the claim above, however.  EnterI() can call
1346 // exit() to drop a lock if the acquirer has been externally suspended.
1347 // In that case exit() is called with _thread_state == _thread_blocked,
1348 // but the monitor's _contentions field is > 0, which inhibits reclamation.
1349 //
1350 // 1-0 exit
1351 // ~~~~~~~~
1352 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
1353 // the fast-path operators have been optimized so the common ::exit()
1354 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
1355 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
1356 // greatly improves latency -- MEMBAR and CAS having considerable local
1357 // latency on modern processors -- but at the cost of "stranding".  Absent the
1358 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
1359 // ::enter() path, resulting in the entering thread being stranding
1360 // and a progress-liveness failure.   Stranding is extremely rare.
1361 // We use timers (timed park operations) & periodic polling to detect
1362 // and recover from stranding.  Potentially stranded threads periodically
1363 // wake up and poll the lock.  See the usage of the _Responsible variable.
1364 //
1365 // The CAS() in enter provides for safety and exclusion, while the CAS or
1366 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
1367 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
1368 // We detect and recover from stranding with timers.
1369 //
1370 // If a thread transiently strands it'll park until (a) another
1371 // thread acquires the lock and then drops the lock, at which time the
1372 // exiting thread will notice and unpark the stranded thread, or, (b)
1373 // the timer expires.  If the lock is high traffic then the stranding latency
1374 // will be low due to (a).  If the lock is low traffic then the odds of
1375 // stranding are lower, although the worst-case stranding latency
1376 // is longer.  Critically, we don't want to put excessive load in the
1377 // platform's timer subsystem.  We want to minimize both the timer injection
1378 // rate (timers created/sec) as well as the number of timers active at
1379 // any one time.  (more precisely, we want to minimize timer-seconds, which is
1380 // the integral of the # of active timers at any instant over time).
1381 // Both impinge on OS scalability.  Given that, at most one thread parked on
1382 // a monitor will use a timer.
1383 //
1384 // There is also the risk of a futile wake-up. If we drop the lock
1385 // another thread can reacquire the lock immediately, and we can
1386 // then wake a thread unnecessarily. This is benign, and we've
1387 // structured the code so the windows are short and the frequency
1388 // of such futile wakups is low.
1389 
1390 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) {
1391   void* cur = owner_raw();
1392   if (owner_for(current) != cur) {
1393     // Apparent unbalanced locking ...
1394     // Naively we'd like to throw IllegalMonitorStateException.
1395     // As a practical matter we can neither allocate nor throw an
1396     // exception as ::exit() can be called from leaf routines.
1397     // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1398     // Upon deeper reflection, however, in a properly run JVM the only
1399     // way we should encounter this situation is in the presence of
1400     // unbalanced JNI locking. TODO: CheckJNICalls.
1401     // See also: CR4414101
1402 #ifdef ASSERT
1403     LogStreamHandle(Error, monitorinflation) lsh;
1404     lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
1405                   " is exiting an ObjectMonitor it does not own.", p2i(current));
1406     lsh.print_cr("The imbalance is possibly caused by JNI locking.");
1407     print_debug_style_on(&lsh);
1408     assert(false, "Non-balanced monitor enter/exit!");
1409 #endif
1410     return;
1411   }
1412 
1413   if (_recursions != 0) {
1414     _recursions--;        // this is simple recursive enter
1415     return;
1416   }
1417 
1418   // Invariant: after setting Responsible=null an thread must execute
1419   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1420   _Responsible = nullptr;
1421 
1422 #if INCLUDE_JFR
1423   // get the owner's thread id for the MonitorEnter event
1424   // if it is enabled and the thread isn't suspended
1425   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1426     _previous_owner_tid = JFR_THREAD_ID(current);
1427   }
1428 #endif
1429 
1430   for (;;) {
1431     assert(owner_for(current) == owner_raw(), "invariant");
1432 
1433     // Drop the lock.
1434     // release semantics: prior loads and stores from within the critical section
1435     // must not float (reorder) past the following store that drops the lock.
1436     // Uses a storeload to separate release_store(owner) from the
1437     // successor check. The try_set_owner_from() below uses cmpxchg() so
1438     // we get the fence down there.
1439     release_clear_owner(current);
1440     OrderAccess::storeload();
1441 
1442     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != nullptr) {
1443       return;
1444     }
1445     // Other threads are blocked trying to acquire the lock.
1446 
1447     // Normally the exiting thread is responsible for ensuring succession,
1448     // but if other successors are ready or other entering threads are spinning
1449     // then this thread can simply store null into _owner and exit without
1450     // waking a successor.  The existence of spinners or ready successors
1451     // guarantees proper succession (liveness).  Responsibility passes to the
1452     // ready or running successors.  The exiting thread delegates the duty.
1453     // More precisely, if a successor already exists this thread is absolved
1454     // of the responsibility of waking (unparking) one.
1455     //
1456     // The _succ variable is critical to reducing futile wakeup frequency.
1457     // _succ identifies the "heir presumptive" thread that has been made
1458     // ready (unparked) but that has not yet run.  We need only one such
1459     // successor thread to guarantee progress.
1460     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1461     // section 3.3 "Futile Wakeup Throttling" for details.
1462     //
1463     // Note that spinners in Enter() also set _succ non-null.
1464     // In the current implementation spinners opportunistically set
1465     // _succ so that exiting threads might avoid waking a successor.
1466     // Another less appealing alternative would be for the exiting thread
1467     // to drop the lock and then spin briefly to see if a spinner managed
1468     // to acquire the lock.  If so, the exiting thread could exit
1469     // immediately without waking a successor, otherwise the exiting
1470     // thread would need to dequeue and wake a successor.
1471     // (Note that we'd need to make the post-drop spin short, but no
1472     // shorter than the worst-case round-trip cache-line migration time.
1473     // The dropped lock needs to become visible to the spinner, and then
1474     // the acquisition of the lock by the spinner must become visible to
1475     // the exiting thread).
1476 
1477     // It appears that an heir-presumptive (successor) must be made ready.
1478     // Only the current lock owner can manipulate the EntryList or
1479     // drain _cxq, so we need to reacquire the lock.  If we fail
1480     // to reacquire the lock the responsibility for ensuring succession
1481     // falls to the new owner.
1482     //
1483     if (try_set_owner_from(nullptr, current) != nullptr) {
1484       return;
1485     }
1486 
1487     guarantee(owner_raw() == owner_for(current), "invariant");
1488 
1489     ObjectWaiter* w = nullptr;
1490 
1491     w = _EntryList;
1492     if (w != nullptr) {
1493       // I'd like to write: guarantee (w->_thread != current).
1494       // But in practice an exiting thread may find itself on the EntryList.
1495       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1496       // then calls exit().  Exit release the lock by setting O._owner to null.
1497       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1498       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1499       // release the lock "O".  T2 resumes immediately after the ST of null into
1500       // _owner, above.  T2 notices that the EntryList is populated, so it
1501       // reacquires the lock and then finds itself on the EntryList.
1502       // Given all that, we have to tolerate the circumstance where "w" is
1503       // associated with current.
1504       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1505       ExitEpilog(current, w);
1506       return;
1507     }
1508 
1509     // If we find that both _cxq and EntryList are null then just
1510     // re-run the exit protocol from the top.
1511     w = _cxq;
1512     if (w == nullptr) continue;
1513 
1514     // Drain _cxq into EntryList - bulk transfer.
1515     // First, detach _cxq.
1516     // The following loop is tantamount to: w = swap(&cxq, nullptr)
1517     for (;;) {
1518       assert(w != nullptr, "Invariant");
1519       ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)nullptr);
1520       if (u == w) break;
1521       w = u;
1522     }
1523 
1524     assert(w != nullptr, "invariant");
1525     assert(_EntryList == nullptr, "invariant");
1526 
1527     // Convert the LIFO SLL anchored by _cxq into a DLL.
1528     // The list reorganization step operates in O(LENGTH(w)) time.
1529     // It's critical that this step operate quickly as
1530     // "current" still holds the outer-lock, restricting parallelism
1531     // and effectively lengthening the critical section.
1532     // Invariant: s chases t chases u.
1533     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1534     // we have faster access to the tail.
1535 
1536     _EntryList = w;
1537     ObjectWaiter* q = nullptr;
1538     ObjectWaiter* p;
1539     for (p = w; p != nullptr; p = p->_next) {
1540       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1541       p->TState = ObjectWaiter::TS_ENTER;
1542       p->_prev = q;
1543       q = p;
1544     }
1545 
1546     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = nullptr
1547     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1548 
1549     // See if we can abdicate to a spinner instead of waking a thread.
1550     // A primary goal of the implementation is to reduce the
1551     // context-switch rate.
1552     if (_succ != nullptr) continue;
1553 
1554     w = _EntryList;
1555     if (w != nullptr) {
1556       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1557       ExitEpilog(current, w);
1558       return;
1559     }
1560   }
1561 }
1562 
1563 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) {
1564   assert(owner_raw() == owner_for(current), "invariant");
1565 
1566   // Exit protocol:
1567   // 1. ST _succ = wakee
1568   // 2. membar #loadstore|#storestore;
1569   // 2. ST _owner = nullptr
1570   // 3. unpark(wakee)
1571 
1572   oop vthread = nullptr;
1573   ParkEvent * Trigger;
1574   if (!Wakee->is_vthread()) {
1575     JavaThread* t = Wakee->thread();
1576     assert(t != nullptr, "");
1577     Trigger = t->_ParkEvent;
1578     _succ = t;
1579   } else {
1580     vthread = Wakee->vthread();
1581     assert(vthread != nullptr, "");
1582     Trigger = ObjectMonitor::vthread_unparker_ParkEvent();
1583     _succ = (JavaThread*)java_lang_Thread::thread_id(vthread);
1584   }
1585 
1586   // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again.
1587   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1588   // out-of-scope (non-extant).
1589   Wakee  = nullptr;
1590 
1591   // Drop the lock.
1592   // Uses a fence to separate release_store(owner) from the LD in unpark().
1593   release_clear_owner(current);
1594   OrderAccess::fence();
1595 
1596   DTRACE_MONITOR_PROBE(contended__exit, this, object(), current);
1597 
1598   if (vthread == nullptr) {
1599     // Platform thread case
1600     Trigger->unpark();
1601   } else if (java_lang_VirtualThread::set_onWaitingList(vthread, _vthread_cxq_head)) {
1602     Trigger->unpark();
1603   }
1604 
1605   // Maintain stats and report events to JVMTI
1606   OM_PERFDATA_OP(Parks, inc());
1607 }
1608 
1609 // complete_exit exits a lock returning recursion count
1610 // complete_exit requires an inflated monitor
1611 // The _owner field is not always the Thread addr even with an
1612 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1613 // thread due to contention.
1614 intx ObjectMonitor::complete_exit(JavaThread* current) {
1615   assert(InitDone, "Unexpectedly not initialized");
1616 
1617   void* cur = owner_raw();
1618   if (owner_for(current) != cur) {
1619     if (LockingMode == LM_LEGACY && is_stack_locker(current)) {
1620       assert(_recursions == 0, "internal state error");
1621       set_owner_from_BasicLock(current);  // Convert from BasicLock* to Thread*.
1622       _recursions = 0;
1623     }
1624   }
1625 
1626   guarantee(owner_for(current) == owner_raw(), "complete_exit not owner");
1627   intx save = _recursions; // record the old recursion count
1628   _recursions = 0;         // set the recursion level to be 0
1629   exit(current);           // exit the monitor
1630   guarantee(owner_raw() != owner_for(current), "invariant");
1631   return save;
1632 }
1633 
1634 // Checks that the current THREAD owns this monitor and causes an
1635 // immediate return if it doesn't. We don't use the CHECK macro
1636 // because we want the IMSE to be the only exception that is thrown
1637 // from the call site when false is returned. Any other pending
1638 // exception is ignored.
1639 #define CHECK_OWNER()                                                  \
1640   do {                                                                 \
1641     if (!check_owner(THREAD)) {                                        \
1642        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1643        return;                                                         \
1644      }                                                                 \
1645   } while (false)
1646 
1647 // Returns true if the specified thread owns the ObjectMonitor.
1648 // Otherwise returns false and throws IllegalMonitorStateException
1649 // (IMSE). If there is a pending exception and the specified thread
1650 // is not the owner, that exception will be replaced by the IMSE.
1651 bool ObjectMonitor::check_owner(TRAPS) {
1652   JavaThread* current = THREAD;
1653   void* cur = owner_raw();
1654   if (cur == owner_for(current)) {
1655     return true;
1656   }
1657   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1658              "current thread is not owner", false);
1659 }
1660 
1661 static inline bool is_excluded(const Klass* monitor_klass) {
1662   assert(monitor_klass != nullptr, "invariant");
1663   NOT_JFR_RETURN_(false);
1664   JFR_ONLY(return vmSymbols::jdk_jfr_internal_management_HiddenWait() == monitor_klass->name();)
1665 }
1666 
1667 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1668                                     ObjectMonitor* monitor,
1669                                     uint64_t notifier_tid,
1670                                     jlong timeout,
1671                                     bool timedout) {
1672   assert(event != nullptr, "invariant");
1673   assert(monitor != nullptr, "invariant");
1674   const Klass* monitor_klass = monitor->object()->klass();
1675   if (is_excluded(monitor_klass)) {
1676     return;
1677   }
1678   event->set_monitorClass(monitor_klass);
1679   event->set_timeout(timeout);
1680   // Set an address that is 'unique enough', such that events close in
1681   // time and with the same address are likely (but not guaranteed) to
1682   // belong to the same object.
1683   event->set_address((uintptr_t)monitor);
1684   event->set_notifier(notifier_tid);
1685   event->set_timedOut(timedout);
1686   event->commit();
1687 }
1688 
1689 static void vthread_monitor_waited_event(JavaThread *current, ObjectWaiter* node, EventJavaMonitorWait* event, jboolean timed_out) {
1690   // Since we might safepoint set the anchor so that the stack can we walked.
1691   assert(current->last_continuation() != nullptr, "");
1692   JavaFrameAnchor* anchor = current->frame_anchor();
1693   anchor->set_last_Java_sp(current->last_continuation()->entry_sp());
1694   anchor->set_last_Java_pc(current->last_continuation()->entry_pc());
1695 
1696   JRT_BLOCK
1697     if (event->should_commit()) {
1698       long timeout = java_lang_VirtualThread::waitTimeout(current->vthread());
1699       post_monitor_wait_event(event, node->_monitor, node->_notifier_tid, timeout, timed_out);
1700     }
1701     if (JvmtiExport::should_post_monitor_waited()) {
1702       JvmtiExport::vthread_post_monitor_waited(current, node->_monitor, timed_out);
1703     }
1704   JRT_BLOCK_END
1705   current->frame_anchor()->clear();
1706 }
1707 
1708 // -----------------------------------------------------------------------------
1709 // Wait/Notify/NotifyAll
1710 //
1711 // Note: a subset of changes to ObjectMonitor::wait()
1712 // will need to be replicated in complete_exit
1713 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1714   JavaThread* current = THREAD;
1715 
1716   assert(InitDone, "Unexpectedly not initialized");
1717 
1718   CHECK_OWNER();  // Throws IMSE if not owner.
1719 
1720   EventJavaMonitorWait event;
1721 
1722   // check for a pending interrupt
1723   if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1724     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1725     if (JvmtiExport::should_post_monitor_waited()) {
1726       // Note: 'false' parameter is passed here because the
1727       // wait was not timed out due to thread interrupt.
1728       JvmtiExport::post_monitor_waited(current, this, false);
1729 
1730       // In this short circuit of the monitor wait protocol, the
1731       // current thread never drops ownership of the monitor and
1732       // never gets added to the wait queue so the current thread
1733       // cannot be made the successor. This means that the
1734       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1735       // consume an unpark() meant for the ParkEvent associated with
1736       // this ObjectMonitor.
1737     }
1738     if (event.should_commit()) {
1739       post_monitor_wait_event(&event, this, 0, millis, false);
1740     }
1741     THROW(vmSymbols::java_lang_InterruptedException());
1742     return;
1743   }
1744 
1745   current->set_current_waiting_monitor(this);
1746 
1747 #ifdef LOOM_MONITOR_SUPPORT
1748   ContinuationEntry* ce = current->last_continuation();
1749   if (interruptible && ce != nullptr && ce->is_virtual_thread()) {
1750     int result = Continuation::try_preempt(current, ce->cont_oop(current), freeze_on_wait);
1751     if (result == freeze_ok) {
1752       VThreadWait(current, millis);
1753       current->set_current_waiting_monitor(nullptr);
1754       return;
1755     }
1756     if (result == freeze_pinned_native) {
1757       const Klass* monitor_klass = object()->klass();
1758       if (!is_excluded(monitor_klass)) {
1759         post_virtual_thread_pinned_event(current, "Native frame or <clinit> on stack");
1760       }
1761     }
1762   }
1763 #endif
1764 
1765   // create a node to be put into the queue
1766   // Critically, after we reset() the event but prior to park(), we must check
1767   // for a pending interrupt.
1768   ObjectWaiter node(current);
1769   node.TState = ObjectWaiter::TS_WAIT;
1770   current->_ParkEvent->reset();
1771   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1772 
1773   // Enter the waiting queue, which is a circular doubly linked list in this case
1774   // but it could be a priority queue or any data structure.
1775   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1776   // by the owner of the monitor *except* in the case where park()
1777   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1778   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1779 
1780   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1781   AddWaiter(&node);
1782   Thread::SpinRelease(&_WaitSetLock);
1783 
1784   _Responsible = nullptr;
1785 
1786   intx save = _recursions;     // record the old recursion count
1787   _waiters++;                  // increment the number of waiters
1788   _recursions = 0;             // set the recursion level to be 1
1789   exit(current);               // exit the monitor
1790   guarantee(owner_raw() != owner_for(current), "invariant");
1791 
1792   // The thread is on the WaitSet list - now park() it.
1793   // On MP systems it's conceivable that a brief spin before we park
1794   // could be profitable.
1795   //
1796   // TODO-FIXME: change the following logic to a loop of the form
1797   //   while (!timeout && !interrupted && _notified == 0) park()
1798 
1799   int ret = OS_OK;
1800   int WasNotified = 0;
1801 
1802   // Need to check interrupt state whilst still _thread_in_vm
1803   bool interrupted = interruptible && current->is_interrupted(false);
1804 
1805   { // State transition wrappers
1806     OSThread* osthread = current->osthread();
1807     OSThreadWaitState osts(osthread, true);
1808 
1809     assert(current->thread_state() == _thread_in_vm, "invariant");
1810 
1811     {
1812       ClearSuccOnSuspend csos(this);
1813       ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1814       if (interrupted || HAS_PENDING_EXCEPTION) {
1815         // Intentionally empty
1816       } else if (!node._notified) {
1817         if (millis <= 0) {
1818           current->_ParkEvent->park();
1819         } else {
1820           ret = current->_ParkEvent->park(millis);
1821         }
1822       }
1823     }
1824 
1825     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1826     // from the WaitSet to the EntryList.
1827     // See if we need to remove Node from the WaitSet.
1828     // We use double-checked locking to avoid grabbing _WaitSetLock
1829     // if the thread is not on the wait queue.
1830     //
1831     // Note that we don't need a fence before the fetch of TState.
1832     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1833     // written by the is thread. (perhaps the fetch might even be satisfied
1834     // by a look-aside into the processor's own store buffer, although given
1835     // the length of the code path between the prior ST and this load that's
1836     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1837     // then we'll acquire the lock and then re-fetch a fresh TState value.
1838     // That is, we fail toward safety.
1839 
1840     if (node.TState == ObjectWaiter::TS_WAIT) {
1841       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1842       if (node.TState == ObjectWaiter::TS_WAIT) {
1843         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1844         assert(!node._notified, "invariant");
1845         node.TState = ObjectWaiter::TS_RUN;
1846       }
1847       Thread::SpinRelease(&_WaitSetLock);
1848     }
1849 
1850     // The thread is now either on off-list (TS_RUN),
1851     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1852     // The Node's TState variable is stable from the perspective of this thread.
1853     // No other threads will asynchronously modify TState.
1854     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1855     OrderAccess::loadload();
1856     if (_succ == current) _succ = nullptr;
1857     WasNotified = node._notified;
1858 
1859     // Reentry phase -- reacquire the monitor.
1860     // re-enter contended monitor after object.wait().
1861     // retain OBJECT_WAIT state until re-enter successfully completes
1862     // Thread state is thread_in_vm and oop access is again safe,
1863     // although the raw address of the object may have changed.
1864     // (Don't cache naked oops over safepoints, of course).
1865 
1866     // post monitor waited event. Note that this is past-tense, we are done waiting.
1867     if (JvmtiExport::should_post_monitor_waited()) {
1868       JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT);
1869 
1870       if (node._notified && _succ == current) {
1871         // In this part of the monitor wait-notify-reenter protocol it
1872         // is possible (and normal) for another thread to do a fastpath
1873         // monitor enter-exit while this thread is still trying to get
1874         // to the reenter portion of the protocol.
1875         //
1876         // The ObjectMonitor was notified and the current thread is
1877         // the successor which also means that an unpark() has already
1878         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1879         // consume the unpark() that was done when the successor was
1880         // set because the same ParkEvent is shared between Java
1881         // monitors and JVM/TI RawMonitors (for now).
1882         //
1883         // We redo the unpark() to ensure forward progress, i.e., we
1884         // don't want all pending threads hanging (parked) with none
1885         // entering the unlocked monitor.
1886         current->_ParkEvent->unpark();
1887       }
1888     }
1889 
1890     if (event.should_commit()) {
1891       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1892     }
1893 
1894     OrderAccess::fence();
1895 
1896     assert(owner_raw() != owner_for(current), "invariant");
1897     ObjectWaiter::TStates v = node.TState;
1898     if (v == ObjectWaiter::TS_RUN) {
1899       enter(current);
1900     } else {
1901       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1902       ReenterI(current, &node);
1903       node.wait_reenter_end(this);
1904     }
1905 
1906     // current has reacquired the lock.
1907     // Lifecycle - the node representing current must not appear on any queues.
1908     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1909     // want residual elements associated with this thread left on any lists.
1910     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1911     assert(owner_raw() == owner_for(current), "invariant");
1912     assert(_succ != current, "invariant");
1913   } // OSThreadWaitState()
1914 
1915   current->set_current_waiting_monitor(nullptr);
1916 
1917   guarantee(_recursions == 0, "invariant");
1918   int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current);
1919   _recursions =   save          // restore the old recursion count
1920                 + relock_count; //  increased by the deferred relock count
1921   NOT_LOOM_MONITOR_SUPPORT(current->inc_held_monitor_count(relock_count);) // Deopt never entered these counts.
1922   _waiters--;             // decrement the number of waiters
1923 
1924   // Verify a few postconditions
1925   assert(owner_raw() == owner_for(current), "invariant");
1926   assert(_succ != current, "invariant");
1927   assert(object()->mark() == markWord::encode(this), "invariant");
1928 
1929   // check if the notification happened
1930   if (!WasNotified) {
1931     // no, it could be timeout or Thread.interrupt() or both
1932     // check for interrupt event, otherwise it is timeout
1933     if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1934       THROW(vmSymbols::java_lang_InterruptedException());
1935     }
1936   }
1937 
1938   // NOTE: Spurious wake up will be consider as timeout.
1939   // Monitor notify has precedence over thread interrupt.
1940 }
1941 
1942 // Consider:
1943 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1944 // then instead of transferring a thread from the WaitSet to the EntryList
1945 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1946 
1947 void ObjectMonitor::INotify(JavaThread* current) {
1948   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1949   ObjectWaiter* iterator = DequeueWaiter();
1950   if (iterator != nullptr) {
1951     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1952     guarantee(!iterator->_notified, "invariant");
1953     // Disposition - what might we do with iterator ?
1954     // a.  add it directly to the EntryList - either tail (policy == 1)
1955     //     or head (policy == 0).
1956     // b.  push it onto the front of the _cxq (policy == 2).
1957     // For now we use (b).
1958 
1959     if (iterator->is_vthread()) {
1960       oop vthread = iterator->vthread();
1961       java_lang_VirtualThread::set_notified(vthread, true);
1962       int old_state = java_lang_VirtualThread::state(vthread);
1963       // If state is not WAIT/TIMED_WAIT then target could still be on
1964       // unmount transition, or wait could have already timed-out or target
1965       // could have been interrupted. In the first case, the target itself
1966       // will set the state to BLOCKED at the end of the unmount transition.
1967       // In the other cases the target would have been already unblocked so
1968       // there is nothing to do.
1969       if (old_state == java_lang_VirtualThread::WAIT ||
1970           old_state == java_lang_VirtualThread::TIMED_WAIT) {
1971         java_lang_VirtualThread::cmpxchg_state(vthread, old_state, java_lang_VirtualThread::BLOCKED);
1972       }
1973     }
1974 
1975     iterator->TState = ObjectWaiter::TS_ENTER;
1976 
1977     iterator->_notified = true;
1978     iterator->_notifier_tid = JFR_THREAD_ID(current);
1979 
1980     ObjectWaiter* list = _EntryList;
1981     if (list != nullptr) {
1982       assert(list->_prev == nullptr, "invariant");
1983       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1984       assert(list != iterator, "invariant");
1985     }
1986 
1987     // prepend to cxq
1988     if (list == nullptr) {
1989       iterator->_next = iterator->_prev = nullptr;
1990       _EntryList = iterator;
1991     } else {
1992       iterator->TState = ObjectWaiter::TS_CXQ;
1993       for (;;) {
1994         ObjectWaiter* front = _cxq;
1995         iterator->_next = front;
1996         if (Atomic::cmpxchg(&_cxq, front, iterator) == front) {
1997           break;
1998         }
1999       }
2000     }
2001 
2002     // _WaitSetLock protects the wait queue, not the EntryList.  We could
2003     // move the add-to-EntryList operation, above, outside the critical section
2004     // protected by _WaitSetLock.  In practice that's not useful.  With the
2005     // exception of  wait() timeouts and interrupts the monitor owner
2006     // is the only thread that grabs _WaitSetLock.  There's almost no contention
2007     // on _WaitSetLock so it's not profitable to reduce the length of the
2008     // critical section.
2009     if (!iterator->is_vthread()) {
2010       iterator->wait_reenter_begin(this);
2011     }
2012   }
2013   Thread::SpinRelease(&_WaitSetLock);
2014 }
2015 
2016 // Consider: a not-uncommon synchronization bug is to use notify() when
2017 // notifyAll() is more appropriate, potentially resulting in stranded
2018 // threads; this is one example of a lost wakeup. A useful diagnostic
2019 // option is to force all notify() operations to behave as notifyAll().
2020 //
2021 // Note: We can also detect many such problems with a "minimum wait".
2022 // When the "minimum wait" is set to a small non-zero timeout value
2023 // and the program does not hang whereas it did absent "minimum wait",
2024 // that suggests a lost wakeup bug.
2025 
2026 void ObjectMonitor::notify(TRAPS) {
2027   JavaThread* current = THREAD;
2028   CHECK_OWNER();  // Throws IMSE if not owner.
2029   if (_WaitSet == nullptr) {
2030     return;
2031   }
2032   DTRACE_MONITOR_PROBE(notify, this, object(), current);
2033   INotify(current);
2034   OM_PERFDATA_OP(Notifications, inc(1));
2035 }
2036 
2037 
2038 // The current implementation of notifyAll() transfers the waiters one-at-a-time
2039 // from the waitset to the EntryList. This could be done more efficiently with a
2040 // single bulk transfer but in practice it's not time-critical. Beware too,
2041 // that in prepend-mode we invert the order of the waiters. Let's say that the
2042 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
2043 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
2044 
2045 void ObjectMonitor::notifyAll(TRAPS) {
2046   JavaThread* current = THREAD;
2047   CHECK_OWNER();  // Throws IMSE if not owner.
2048   if (_WaitSet == nullptr) {
2049     return;
2050   }
2051 
2052   DTRACE_MONITOR_PROBE(notifyAll, this, object(), current);
2053   int tally = 0;
2054   while (_WaitSet != nullptr) {
2055     tally++;
2056     INotify(current);
2057   }
2058 
2059   OM_PERFDATA_OP(Notifications, inc(tally));
2060 }
2061 
2062 void ObjectMonitor::VThreadWait(JavaThread* current, jlong millis) {
2063   oop vthread = current->vthread();
2064   ObjectWaiter* node = new ObjectWaiter(vthread, this);
2065   node->_is_wait = true;
2066   node->TState = ObjectWaiter::TS_WAIT;
2067   java_lang_VirtualThread::set_notified(vthread, false);  // Reset notified flag
2068 
2069   // Enter the waiting queue, which is a circular doubly linked list in this case
2070   // but it could be a priority queue or any data structure.
2071   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
2072   // by the owner of the monitor *except* in the case where park()
2073   // returns because of a timeout or interrupt.  Contention is exceptionally rare
2074   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
2075 
2076   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
2077   AddWaiter(node);
2078   Thread::SpinRelease(&_WaitSetLock);
2079 
2080   _Responsible = nullptr;
2081 
2082   node->_recursions = _recursions;   // record the old recursion count
2083   _recursions = 0;                   // set the recursion level to be 1
2084   _waiters++;                        // increment the number of waiters
2085   exit(current);                     // exit the monitor
2086   guarantee(owner_raw() != owner_for(current), "invariant");
2087 
2088   assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
2089   java_lang_VirtualThread::set_state(vthread, millis == 0 ? java_lang_VirtualThread::WAITING : java_lang_VirtualThread::TIMED_WAITING);
2090   java_lang_VirtualThread::set_waitTimeout(vthread, millis);
2091 
2092   // Save the ObjectWaiter* in the chunk since we will need it
2093   // when resuming execution.
2094   oop cont = java_lang_VirtualThread::continuation(vthread);
2095   stackChunkOop chunk  = jdk_internal_vm_Continuation::tail(cont);
2096   chunk->set_object_waiter(node);
2097 }
2098 
2099 bool ObjectMonitor::VThreadWaitReenter(JavaThread* current, ObjectWaiter* node) {
2100   // First time we run after being preempted on Object.wait().
2101   // We need to check if we were interrupted or wait() timed-out
2102   // and in that case remove ourselves from the _WaitSet queue.
2103   if (node->TState == ObjectWaiter::TS_WAIT) {
2104     Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
2105     if (node->TState == ObjectWaiter::TS_WAIT) {
2106       DequeueSpecificWaiter(node);       // unlink from WaitSet
2107       assert(!node->_notified, "invariant");
2108       node->TState = ObjectWaiter::TS_RUN;
2109     }
2110     Thread::SpinRelease(&_WaitSetLock);
2111   }
2112 
2113   ObjectWaiter::TStates state = node->TState;
2114   bool was_notified = state == ObjectWaiter::TS_ENTER || state == ObjectWaiter::TS_CXQ;
2115   assert(was_notified || state == ObjectWaiter::TS_RUN, "");
2116 
2117   // save it so that once we re-acquire the monitor we know if we need to throw IE.
2118   node->_interrupted = !was_notified && current->is_interrupted(false);
2119 
2120   EventJavaMonitorWait event;
2121   if (event.should_commit() || JvmtiExport::should_post_monitor_waited()) {
2122     vthread_monitor_waited_event(current, node, &event, !was_notified && !node->_interrupted);
2123   }
2124 
2125   node->_at_reenter = true;
2126   add_to_contentions(1);
2127   assert(owner_raw() != owner_for(current), "invariant");
2128 
2129   if (!was_notified) {
2130     bool acquired = VThreadMonitorEnter(current, node);
2131     if (acquired) {
2132       guarantee(_recursions == 0, "invariant");
2133       _recursions = node->_recursions;   // restore the old recursion count
2134       _waiters--;                        // decrement the number of waiters
2135 
2136       if (node->_interrupted) {
2137         // We will throw at thaw end after finishing the mount transition.
2138         current->set_pending_interrupted_exception(true);
2139       }
2140 
2141       delete node;
2142       oop cont = java_lang_VirtualThread::continuation(current->vthread());
2143       stackChunkOop chunk  = jdk_internal_vm_Continuation::tail(cont);
2144       chunk->set_object_waiter(nullptr);
2145     } else {
2146       // The JT will read this variable on return to the resume_monitor_operation stub
2147       // and will unmount (enterSpecial frame removed and return to Continuation.run()).
2148       current->set_preempting(true);
2149     }
2150   }
2151   return was_notified;
2152 }
2153 
2154 // -----------------------------------------------------------------------------
2155 // Adaptive Spinning Support
2156 //
2157 // Adaptive spin-then-block - rational spinning
2158 //
2159 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
2160 // algorithm.  On high order SMP systems it would be better to start with
2161 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
2162 // a contending thread could enqueue itself on the cxq and then spin locally
2163 // on a thread-specific variable such as its ParkEvent._Event flag.
2164 // That's left as an exercise for the reader.  Note that global spinning is
2165 // not problematic on Niagara, as the L2 cache serves the interconnect and
2166 // has both low latency and massive bandwidth.
2167 //
2168 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
2169 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
2170 // (duration) or we can fix the count at approximately the duration of
2171 // a context switch and vary the frequency.   Of course we could also
2172 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
2173 // For a description of 'Adaptive spin-then-block mutual exclusion in
2174 // multi-threaded processing,' see U.S. Pat. No. 8046758.
2175 //
2176 // This implementation varies the duration "D", where D varies with
2177 // the success rate of recent spin attempts. (D is capped at approximately
2178 // length of a round-trip context switch).  The success rate for recent
2179 // spin attempts is a good predictor of the success rate of future spin
2180 // attempts.  The mechanism adapts automatically to varying critical
2181 // section length (lock modality), system load and degree of parallelism.
2182 // D is maintained per-monitor in _SpinDuration and is initialized
2183 // optimistically.  Spin frequency is fixed at 100%.
2184 //
2185 // Note that _SpinDuration is volatile, but we update it without locks
2186 // or atomics.  The code is designed so that _SpinDuration stays within
2187 // a reasonable range even in the presence of races.  The arithmetic
2188 // operations on _SpinDuration are closed over the domain of legal values,
2189 // so at worst a race will install and older but still legal value.
2190 // At the very worst this introduces some apparent non-determinism.
2191 // We might spin when we shouldn't or vice-versa, but since the spin
2192 // count are relatively short, even in the worst case, the effect is harmless.
2193 //
2194 // Care must be taken that a low "D" value does not become an
2195 // an absorbing state.  Transient spinning failures -- when spinning
2196 // is overall profitable -- should not cause the system to converge
2197 // on low "D" values.  We want spinning to be stable and predictable
2198 // and fairly responsive to change and at the same time we don't want
2199 // it to oscillate, become metastable, be "too" non-deterministic,
2200 // or converge on or enter undesirable stable absorbing states.
2201 //
2202 // We implement a feedback-based control system -- using past behavior
2203 // to predict future behavior.  We face two issues: (a) if the
2204 // input signal is random then the spin predictor won't provide optimal
2205 // results, and (b) if the signal frequency is too high then the control
2206 // system, which has some natural response lag, will "chase" the signal.
2207 // (b) can arise from multimodal lock hold times.  Transient preemption
2208 // can also result in apparent bimodal lock hold times.
2209 // Although sub-optimal, neither condition is particularly harmful, as
2210 // in the worst-case we'll spin when we shouldn't or vice-versa.
2211 // The maximum spin duration is rather short so the failure modes aren't bad.
2212 // To be conservative, I've tuned the gain in system to bias toward
2213 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
2214 // "rings" or oscillates between spinning and not spinning.  This happens
2215 // when spinning is just on the cusp of profitability, however, so the
2216 // situation is not dire.  The state is benign -- there's no need to add
2217 // hysteresis control to damp the transition rate between spinning and
2218 // not spinning.
2219 
2220 int ObjectMonitor::Knob_SpinLimit    = 5000;   // derived by an external tool
2221 
2222 static int Knob_Bonus               = 100;     // spin success bonus
2223 static int Knob_Penalty             = 200;     // spin failure penalty
2224 static int Knob_Poverty             = 1000;
2225 static int Knob_FixedSpin           = 0;
2226 static int Knob_PreSpin             = 10;      // 20-100 likely better, but it's not better in my testing.
2227 
2228 inline static int adjust_up(int spin_duration) {
2229   int x = spin_duration;
2230   if (x < ObjectMonitor::Knob_SpinLimit) {
2231     if (x < Knob_Poverty) {
2232       x = Knob_Poverty;
2233     }
2234     return x + Knob_Bonus;
2235   } else {
2236     return spin_duration;
2237   }
2238 }
2239 
2240 inline static int adjust_down(int spin_duration) {
2241   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2242   // AIMD is globally stable.
2243   int x = spin_duration;
2244   if (x > 0) {
2245     // Consider an AIMD scheme like: x -= (x >> 3) + 100
2246     // This is globally sample and tends to damp the response.
2247     x -= Knob_Penalty;
2248     if (x < 0) { x = 0; }
2249     return x;
2250   } else {
2251     return spin_duration;
2252   }
2253 }
2254 
2255 bool ObjectMonitor::short_fixed_spin(JavaThread* current, int spin_count, bool adapt) {
2256   for (int ctr = 0; ctr < spin_count; ctr++) {
2257     TryLockResult status = TryLock(current);
2258     if (status == TryLockResult::Success) {
2259       if (adapt) {
2260         _SpinDuration = adjust_up(_SpinDuration);
2261       }
2262       return true;
2263     } else if (status == TryLockResult::Interference) {
2264       break;
2265     }
2266     SpinPause();
2267   }
2268   return false;
2269 }
2270 
2271 // Spinning: Fixed frequency (100%), vary duration
2272 bool ObjectMonitor::TrySpin(JavaThread* current) {
2273 
2274   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
2275   int knob_fixed_spin = Knob_FixedSpin;  // 0 (don't spin: default), 2000 good test
2276   if (knob_fixed_spin > 0) {
2277     return short_fixed_spin(current, knob_fixed_spin, false);
2278   }
2279 
2280   // Admission control - verify preconditions for spinning
2281   //
2282   // We always spin a little bit, just to prevent _SpinDuration == 0 from
2283   // becoming an absorbing state.  Put another way, we spin briefly to
2284   // sample, just in case the system load, parallelism, contention, or lock
2285   // modality changed.
2286 
2287   int knob_pre_spin = Knob_PreSpin; // 10 (default), 100, 1000 or 2000
2288   if (short_fixed_spin(current, knob_pre_spin, true)) {
2289     return true;
2290   }
2291 
2292   //
2293   // Consider the following alternative:
2294   // Periodically set _SpinDuration = _SpinLimit and try a long/full
2295   // spin attempt.  "Periodically" might mean after a tally of
2296   // the # of failed spin attempts (or iterations) reaches some threshold.
2297   // This takes us into the realm of 1-out-of-N spinning, where we
2298   // hold the duration constant but vary the frequency.
2299 
2300   int ctr = _SpinDuration;
2301   if (ctr <= 0) return false;
2302 
2303   // We're good to spin ... spin ingress.
2304   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2305   // when preparing to LD...CAS _owner, etc and the CAS is likely
2306   // to succeed.
2307   if (_succ == nullptr) {
2308     _succ = current;
2309   }
2310   void* prv = nullptr;
2311 
2312   // There are three ways to exit the following loop:
2313   // 1.  A successful spin where this thread has acquired the lock.
2314   // 2.  Spin failure with prejudice
2315   // 3.  Spin failure without prejudice
2316 
2317   while (--ctr >= 0) {
2318 
2319     // Periodic polling -- Check for pending GC
2320     // Threads may spin while they're unsafe.
2321     // We don't want spinning threads to delay the JVM from reaching
2322     // a stop-the-world safepoint or to steal cycles from GC.
2323     // If we detect a pending safepoint we abort in order that
2324     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2325     // this thread, if safe, doesn't steal cycles from GC.
2326     // This is in keeping with the "no loitering in runtime" rule.
2327     // We periodically check to see if there's a safepoint pending.
2328     if ((ctr & 0xFF) == 0) {
2329       // Can't call SafepointMechanism::should_process() since that
2330       // might update the poll values and we could be in a thread_blocked
2331       // state here which is not allowed so just check the poll.
2332       if (SafepointMechanism::local_poll_armed(current)) {
2333         break;
2334       }
2335       SpinPause();
2336     }
2337 
2338     // Probe _owner with TATAS
2339     // If this thread observes the monitor transition or flicker
2340     // from locked to unlocked to locked, then the odds that this
2341     // thread will acquire the lock in this spin attempt go down
2342     // considerably.  The same argument applies if the CAS fails
2343     // or if we observe _owner change from one non-null value to
2344     // another non-null value.   In such cases we might abort
2345     // the spin without prejudice or apply a "penalty" to the
2346     // spin count-down variable "ctr", reducing it by 100, say.
2347 
2348     void* ox = owner_raw();
2349     if (ox == nullptr) {
2350       ox = try_set_owner_from(nullptr, current);
2351       if (ox == nullptr) {
2352         // The CAS succeeded -- this thread acquired ownership
2353         // Take care of some bookkeeping to exit spin state.
2354         if (_succ == current) {
2355           _succ = nullptr;
2356         }
2357 
2358         // Increase _SpinDuration :
2359         // The spin was successful (profitable) so we tend toward
2360         // longer spin attempts in the future.
2361         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2362         // If we acquired the lock early in the spin cycle it
2363         // makes sense to increase _SpinDuration proportionally.
2364         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2365         _SpinDuration = adjust_up(_SpinDuration);
2366         return true;
2367       }
2368 
2369       // The CAS failed ... we can take any of the following actions:
2370       // * penalize: ctr -= CASPenalty
2371       // * exit spin with prejudice -- abort without adapting spinner
2372       // * exit spin without prejudice.
2373       // * Since CAS is high-latency, retry again immediately.
2374       break;
2375     }
2376 
2377     // Did lock ownership change hands ?
2378     if (ox != prv && prv != nullptr) {
2379       break;
2380     }
2381     prv = ox;
2382 
2383     if (_succ == nullptr) {
2384       _succ = current;
2385     }
2386   }
2387 
2388   // Spin failed with prejudice -- reduce _SpinDuration.
2389   if (ctr < 0) {
2390     _SpinDuration = adjust_down(_SpinDuration);
2391   }
2392 
2393   if (_succ == current) {
2394     _succ = nullptr;
2395     // Invariant: after setting succ=null a contending thread
2396     // must recheck-retry _owner before parking.  This usually happens
2397     // in the normal usage of TrySpin(), but it's safest
2398     // to make TrySpin() as foolproof as possible.
2399     OrderAccess::fence();
2400     if (TryLock(current) == TryLockResult::Success) {
2401       return true;
2402     }
2403   }
2404 
2405   return false;
2406 }
2407 
2408 
2409 // -----------------------------------------------------------------------------
2410 // WaitSet management ...
2411 
2412 ObjectWaiter::ObjectWaiter(JavaThread* current) {
2413   _next     = nullptr;
2414   _prev     = nullptr;
2415   _thread   = current;
2416   _monitor  = nullptr;
2417   _notifier_tid = 0;
2418   _recursions = 0;
2419   TState    = TS_RUN;
2420   _notified = false;
2421   _is_wait  = false;
2422   _at_reenter = false;
2423   _interrupted = false;
2424   _active   = false;
2425 }
2426 
2427 ObjectWaiter::ObjectWaiter(oop vthread, ObjectMonitor* mon) : ObjectWaiter(nullptr) {
2428   assert(oopDesc::is_oop(vthread), "");
2429   _vthread = OopHandle(JavaThread::thread_oop_storage(), vthread);
2430   _monitor = mon;
2431 }
2432 
2433 ObjectWaiter::~ObjectWaiter() {
2434   if (is_vthread()) {
2435     assert(vthread() != nullptr, "");
2436     _vthread.release(JavaThread::thread_oop_storage());
2437   }
2438 }
2439 
2440 oop ObjectWaiter::vthread() {
2441   return _vthread.resolve();
2442 }
2443 
2444 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2445   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon);
2446 }
2447 
2448 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2449   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active);
2450 }
2451 
2452 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2453   assert(node != nullptr, "should not add null node");
2454   assert(node->_prev == nullptr, "node already in list");
2455   assert(node->_next == nullptr, "node already in list");
2456   // put node at end of queue (circular doubly linked list)
2457   if (_WaitSet == nullptr) {
2458     _WaitSet = node;
2459     node->_prev = node;
2460     node->_next = node;
2461   } else {
2462     ObjectWaiter* head = _WaitSet;
2463     ObjectWaiter* tail = head->_prev;
2464     assert(tail->_next == head, "invariant check");
2465     tail->_next = node;
2466     head->_prev = node;
2467     node->_next = head;
2468     node->_prev = tail;
2469   }
2470 }
2471 
2472 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2473   // dequeue the very first waiter
2474   ObjectWaiter* waiter = _WaitSet;
2475   if (waiter) {
2476     DequeueSpecificWaiter(waiter);
2477   }
2478   return waiter;
2479 }
2480 
2481 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2482   assert(node != nullptr, "should not dequeue nullptr node");
2483   assert(node->_prev != nullptr, "node already removed from list");
2484   assert(node->_next != nullptr, "node already removed from list");
2485   // when the waiter has woken up because of interrupt,
2486   // timeout or other spurious wake-up, dequeue the
2487   // waiter from waiting list
2488   ObjectWaiter* next = node->_next;
2489   if (next == node) {
2490     assert(node->_prev == node, "invariant check");
2491     _WaitSet = nullptr;
2492   } else {
2493     ObjectWaiter* prev = node->_prev;
2494     assert(prev->_next == node, "invariant check");
2495     assert(next->_prev == node, "invariant check");
2496     next->_prev = prev;
2497     prev->_next = next;
2498     if (_WaitSet == node) {
2499       _WaitSet = next;
2500     }
2501   }
2502   node->_next = nullptr;
2503   node->_prev = nullptr;
2504 }
2505 
2506 // -----------------------------------------------------------------------------
2507 // PerfData support
2508 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = nullptr;
2509 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = nullptr;
2510 PerfCounter * ObjectMonitor::_sync_Parks                       = nullptr;
2511 PerfCounter * ObjectMonitor::_sync_Notifications               = nullptr;
2512 PerfCounter * ObjectMonitor::_sync_Inflations                  = nullptr;
2513 PerfCounter * ObjectMonitor::_sync_Deflations                  = nullptr;
2514 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = nullptr;
2515 
2516 // One-shot global initialization for the sync subsystem.
2517 // We could also defer initialization and initialize on-demand
2518 // the first time we call ObjectSynchronizer::inflate().
2519 // Initialization would be protected - like so many things - by
2520 // the MonitorCache_lock.
2521 
2522 void ObjectMonitor::Initialize() {
2523   assert(!InitDone, "invariant");
2524 
2525   if (!os::is_MP()) {
2526     Knob_SpinLimit = 0;
2527     Knob_PreSpin   = 0;
2528     Knob_FixedSpin = -1;
2529   }
2530 
2531   if (UsePerfData) {
2532     EXCEPTION_MARK;
2533 #define NEWPERFCOUNTER(n)                                                \
2534   {                                                                      \
2535     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2536                                         CHECK);                          \
2537   }
2538 #define NEWPERFVARIABLE(n)                                                \
2539   {                                                                       \
2540     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2541                                          CHECK);                          \
2542   }
2543     NEWPERFCOUNTER(_sync_Inflations);
2544     NEWPERFCOUNTER(_sync_Deflations);
2545     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2546     NEWPERFCOUNTER(_sync_FutileWakeups);
2547     NEWPERFCOUNTER(_sync_Parks);
2548     NEWPERFCOUNTER(_sync_Notifications);
2549     NEWPERFVARIABLE(_sync_MonExtant);
2550 #undef NEWPERFCOUNTER
2551 #undef NEWPERFVARIABLE
2552   }
2553 
2554   _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer);
2555 
2556   DEBUG_ONLY(InitDone = true;)
2557 }
2558 
2559 void ObjectMonitor::Initialize2() {
2560   _vthread_cxq_head = OopHandle(JavaThread::thread_oop_storage(), nullptr);
2561   _vthread_unparker_ParkEvent = ParkEvent::Allocate(nullptr);
2562 }
2563 
2564 void ObjectMonitor::print_on(outputStream* st) const {
2565   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2566   st->print("{contentions=0x%08x,waiters=0x%08x"
2567             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2568             contentions(), waiters(), recursions(),
2569             p2i(owner()));
2570 }
2571 void ObjectMonitor::print() const { print_on(tty); }
2572 
2573 #ifdef ASSERT
2574 // Print the ObjectMonitor like a debugger would:
2575 //
2576 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2577 //   _header = 0x0000000000000001
2578 //   _object = 0x000000070ff45fd0
2579 //   _pad_buf0 = {
2580 //     [0] = '\0'
2581 //     ...
2582 //     [43] = '\0'
2583 //   }
2584 //   _owner = 0x0000000000000000
2585 //   _previous_owner_tid = 0
2586 //   _pad_buf1 = {
2587 //     [0] = '\0'
2588 //     ...
2589 //     [47] = '\0'
2590 //   }
2591 //   _next_om = 0x0000000000000000
2592 //   _recursions = 0
2593 //   _EntryList = 0x0000000000000000
2594 //   _cxq = 0x0000000000000000
2595 //   _succ = 0x0000000000000000
2596 //   _Responsible = 0x0000000000000000
2597 //   _SpinDuration = 5000
2598 //   _contentions = 0
2599 //   _WaitSet = 0x0000700009756248
2600 //   _waiters = 1
2601 //   _WaitSetLock = 0
2602 // }
2603 //
2604 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2605   st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
2606   st->print_cr("  _header = " INTPTR_FORMAT, header().value());
2607   st->print_cr("  _object = " INTPTR_FORMAT, p2i(object_peek()));
2608   st->print_cr("  _pad_buf0 = {");
2609   st->print_cr("    [0] = '\\0'");
2610   st->print_cr("    ...");
2611   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2612   st->print_cr("  }");
2613   st->print_cr("  _owner = " INTPTR_FORMAT, p2i(owner_raw()));
2614   st->print_cr("  _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid);
2615   st->print_cr("  _pad_buf1 = {");
2616   st->print_cr("    [0] = '\\0'");
2617   st->print_cr("    ...");
2618   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2619   st->print_cr("  }");
2620   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(next_om()));
2621   st->print_cr("  _recursions = " INTX_FORMAT, _recursions);
2622   st->print_cr("  _EntryList = " INTPTR_FORMAT, p2i(_EntryList));
2623   st->print_cr("  _cxq = " INTPTR_FORMAT, p2i(_cxq));
2624   st->print_cr("  _succ = " INTPTR_FORMAT, p2i(_succ));
2625   st->print_cr("  _Responsible = " INTPTR_FORMAT, p2i(_Responsible));
2626   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2627   st->print_cr("  _contentions = %d", contentions());
2628   st->print_cr("  _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet));
2629   st->print_cr("  _waiters = %d", _waiters);
2630   st->print_cr("  _WaitSetLock = %d", _WaitSetLock);
2631   st->print_cr("}");
2632 }
2633 #endif