1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/oopStorage.hpp" 28 #include "gc/shared/oopStorageSet.hpp" 29 #include "jfr/jfrEvents.hpp" 30 #include "jfr/support/jfrThreadId.hpp" 31 #include "logging/log.hpp" 32 #include "logging/logStream.hpp" 33 #include "memory/allocation.inline.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/oopHandle.inline.hpp" 38 #include "oops/weakHandle.inline.hpp" 39 #include "prims/jvmtiDeferredUpdates.hpp" 40 #include "prims/jvmtiExport.hpp" 41 #include "runtime/atomic.hpp" 42 #include "runtime/globals.hpp" 43 #include "runtime/handles.inline.hpp" 44 #include "runtime/interfaceSupport.inline.hpp" 45 #include "runtime/javaThread.inline.hpp" 46 #include "runtime/lightweightSynchronizer.hpp" 47 #include "runtime/mutexLocker.hpp" 48 #include "runtime/objectMonitor.hpp" 49 #include "runtime/objectMonitor.inline.hpp" 50 #include "runtime/orderAccess.hpp" 51 #include "runtime/osThread.hpp" 52 #include "runtime/perfData.hpp" 53 #include "runtime/safefetch.hpp" 54 #include "runtime/safepointMechanism.inline.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "services/threadService.hpp" 57 #include "utilities/debug.hpp" 58 #include "utilities/dtrace.hpp" 59 #include "utilities/globalDefinitions.hpp" 60 #include "utilities/macros.hpp" 61 #include "utilities/preserveException.hpp" 62 #if INCLUDE_JFR 63 #include "jfr/support/jfrFlush.hpp" 64 #endif 65 66 #ifdef DTRACE_ENABLED 67 68 // Only bother with this argument setup if dtrace is available 69 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 70 71 72 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 73 char* bytes = nullptr; \ 74 int len = 0; \ 75 jlong jtid = SharedRuntime::get_java_tid(thread); \ 76 Symbol* klassname = obj->klass()->name(); \ 77 if (klassname != nullptr) { \ 78 bytes = (char*)klassname->bytes(); \ 79 len = klassname->utf8_length(); \ 80 } 81 82 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 83 { \ 84 if (DTraceMonitorProbes) { \ 85 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 86 HOTSPOT_MONITOR_WAIT(jtid, \ 87 (monitor), bytes, len, (millis)); \ 88 } \ 89 } 90 91 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER 92 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED 93 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT 94 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY 95 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL 96 97 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 98 { \ 99 if (DTraceMonitorProbes) { \ 100 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 101 HOTSPOT_MONITOR_##probe(jtid, \ 102 (uintptr_t)(monitor), bytes, len); \ 103 } \ 104 } 105 106 #else // ndef DTRACE_ENABLED 107 108 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 109 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 110 111 #endif // ndef DTRACE_ENABLED 112 113 DEBUG_ONLY(static volatile bool InitDone = false;) 114 115 OopStorage* ObjectMonitor::_oop_storage = nullptr; 116 117 // ----------------------------------------------------------------------------- 118 // Theory of operations -- Monitors lists, thread residency, etc: 119 // 120 // * A thread acquires ownership of a monitor by successfully 121 // CAS()ing the _owner field from null to non-null. 122 // 123 // * Invariant: A thread appears on at most one monitor list -- 124 // cxq, EntryList or WaitSet -- at any one time. 125 // 126 // * Contending threads "push" themselves onto the cxq with CAS 127 // and then spin/park. 128 // 129 // * After a contending thread eventually acquires the lock it must 130 // dequeue itself from either the EntryList or the cxq. 131 // 132 // * The exiting thread identifies and unparks an "heir presumptive" 133 // tentative successor thread on the EntryList. Critically, the 134 // exiting thread doesn't unlink the successor thread from the EntryList. 135 // After having been unparked, the wakee will recontend for ownership of 136 // the monitor. The successor (wakee) will either acquire the lock or 137 // re-park itself. 138 // 139 // Succession is provided for by a policy of competitive handoff. 140 // The exiting thread does _not_ grant or pass ownership to the 141 // successor thread. (This is also referred to as "handoff" succession"). 142 // Instead the exiting thread releases ownership and possibly wakes 143 // a successor, so the successor can (re)compete for ownership of the lock. 144 // If the EntryList is empty but the cxq is populated the exiting 145 // thread will drain the cxq into the EntryList. It does so by 146 // by detaching the cxq (installing null with CAS) and folding 147 // the threads from the cxq into the EntryList. The EntryList is 148 // doubly linked, while the cxq is singly linked because of the 149 // CAS-based "push" used to enqueue recently arrived threads (RATs). 150 // 151 // * Concurrency invariants: 152 // 153 // -- only the monitor owner may access or mutate the EntryList. 154 // The mutex property of the monitor itself protects the EntryList 155 // from concurrent interference. 156 // -- Only the monitor owner may detach the cxq. 157 // 158 // * The monitor entry list operations avoid locks, but strictly speaking 159 // they're not lock-free. Enter is lock-free, exit is not. 160 // For a description of 'Methods and apparatus providing non-blocking access 161 // to a resource,' see U.S. Pat. No. 7844973. 162 // 163 // * The cxq can have multiple concurrent "pushers" but only one concurrent 164 // detaching thread. This mechanism is immune from the ABA corruption. 165 // More precisely, the CAS-based "push" onto cxq is ABA-oblivious. 166 // 167 // * Taken together, the cxq and the EntryList constitute or form a 168 // single logical queue of threads stalled trying to acquire the lock. 169 // We use two distinct lists to improve the odds of a constant-time 170 // dequeue operation after acquisition (in the ::enter() epilogue) and 171 // to reduce heat on the list ends. (c.f. Michael Scott's "2Q" algorithm). 172 // A key desideratum is to minimize queue & monitor metadata manipulation 173 // that occurs while holding the monitor lock -- that is, we want to 174 // minimize monitor lock holds times. Note that even a small amount of 175 // fixed spinning will greatly reduce the # of enqueue-dequeue operations 176 // on EntryList|cxq. That is, spinning relieves contention on the "inner" 177 // locks and monitor metadata. 178 // 179 // Cxq points to the set of Recently Arrived Threads attempting entry. 180 // Because we push threads onto _cxq with CAS, the RATs must take the form of 181 // a singly-linked LIFO. We drain _cxq into EntryList at unlock-time when 182 // the unlocking thread notices that EntryList is null but _cxq is != null. 183 // 184 // The EntryList is ordered by the prevailing queue discipline and 185 // can be organized in any convenient fashion, such as a doubly-linked list or 186 // a circular doubly-linked list. Critically, we want insert and delete operations 187 // to operate in constant-time. If we need a priority queue then something akin 188 // to Solaris' sleepq would work nicely. Viz., 189 // http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c. 190 // Queue discipline is enforced at ::exit() time, when the unlocking thread 191 // drains the cxq into the EntryList, and orders or reorders the threads on the 192 // EntryList accordingly. 193 // 194 // Barring "lock barging", this mechanism provides fair cyclic ordering, 195 // somewhat similar to an elevator-scan. 196 // 197 // * The monitor synchronization subsystem avoids the use of native 198 // synchronization primitives except for the narrow platform-specific 199 // park-unpark abstraction. See the comments in os_solaris.cpp regarding 200 // the semantics of park-unpark. Put another way, this monitor implementation 201 // depends only on atomic operations and park-unpark. The monitor subsystem 202 // manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the 203 // underlying OS manages the READY<->RUN transitions. 204 // 205 // * Waiting threads reside on the WaitSet list -- wait() puts 206 // the caller onto the WaitSet. 207 // 208 // * notify() or notifyAll() simply transfers threads from the WaitSet to 209 // either the EntryList or cxq. Subsequent exit() operations will 210 // unpark the notifyee. Unparking a notifee in notify() is inefficient - 211 // it's likely the notifyee would simply impale itself on the lock held 212 // by the notifier. 213 // 214 // * An interesting alternative is to encode cxq as (List,LockByte) where 215 // the LockByte is 0 iff the monitor is owned. _owner is simply an auxiliary 216 // variable, like _recursions, in the scheme. The threads or Events that form 217 // the list would have to be aligned in 256-byte addresses. A thread would 218 // try to acquire the lock or enqueue itself with CAS, but exiting threads 219 // could use a 1-0 protocol and simply STB to set the LockByte to 0. 220 // Note that is is *not* word-tearing, but it does presume that full-word 221 // CAS operations are coherent with intermix with STB operations. That's true 222 // on most common processors. 223 // 224 // * See also http://blogs.sun.com/dave 225 226 227 // Check that object() and set_object() are called from the right context: 228 static void check_object_context() { 229 #ifdef ASSERT 230 Thread* self = Thread::current(); 231 if (self->is_Java_thread()) { 232 // Mostly called from JavaThreads so sanity check the thread state. 233 JavaThread* jt = JavaThread::cast(self); 234 switch (jt->thread_state()) { 235 case _thread_in_vm: // the usual case 236 case _thread_in_Java: // during deopt 237 break; 238 default: 239 fatal("called from an unsafe thread state"); 240 } 241 assert(jt->is_active_Java_thread(), "must be active JavaThread"); 242 } else { 243 // However, ThreadService::get_current_contended_monitor() 244 // can call here via the VMThread so sanity check it. 245 assert(self->is_VM_thread(), "must be"); 246 } 247 #endif // ASSERT 248 } 249 250 ObjectMonitor::ObjectMonitor(oop object) : 251 _metadata(0), 252 _object(_oop_storage, object), 253 _owner(nullptr), 254 _previous_owner_tid(0), 255 _next_om(nullptr), 256 _recursions(0), 257 _EntryList(nullptr), 258 _cxq(nullptr), 259 _succ(nullptr), 260 _Responsible(nullptr), 261 _SpinDuration(ObjectMonitor::Knob_SpinLimit), 262 _contentions(0), 263 _WaitSet(nullptr), 264 _waiters(0), 265 _WaitSetLock(0) 266 { } 267 268 ObjectMonitor::~ObjectMonitor() { 269 _object.release(_oop_storage); 270 } 271 272 oop ObjectMonitor::object() const { 273 check_object_context(); 274 return _object.resolve(); 275 } 276 277 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) { 278 if (current->is_suspended()) { 279 _om->_recursions = 0; 280 _om->_succ = nullptr; 281 // Don't need a full fence after clearing successor here because of the call to exit(). 282 _om->exit(current, false /* not_suspended */); 283 _om_exited = true; 284 285 current->set_current_pending_monitor(_om); 286 } 287 } 288 289 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) { 290 if (current->is_suspended()) { 291 if (_om->_succ == current) { 292 _om->_succ = nullptr; 293 OrderAccess::fence(); // always do a full fence when successor is cleared 294 } 295 } 296 } 297 298 #define assert_mark_word_consistency() \ 299 assert(UseObjectMonitorTable || object()->mark() == markWord::encode(this), \ 300 "object mark must match encoded this: mark=" INTPTR_FORMAT \ 301 ", encoded this=" INTPTR_FORMAT, object()->mark().value(), \ 302 markWord::encode(this).value()); 303 304 // ----------------------------------------------------------------------------- 305 // Enter support 306 307 bool ObjectMonitor::enter_is_async_deflating() { 308 if (is_being_async_deflated()) { 309 if (!UseObjectMonitorTable) { 310 const oop l_object = object(); 311 if (l_object != nullptr) { 312 // Attempt to restore the header/dmw to the object's header so that 313 // we only retry once if the deflater thread happens to be slow. 314 install_displaced_markword_in_object(l_object); 315 } 316 } 317 return true; 318 } 319 320 return false; 321 } 322 323 void ObjectMonitor::enter_for_with_contention_mark(JavaThread* locking_thread, ObjectMonitorContentionMark& contention_mark) { 324 // Used by ObjectSynchronizer::enter_for to enter for another thread. 325 // The monitor is private to or already owned by locking_thread which must be suspended. 326 // So this code may only contend with deflation. 327 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 328 assert(contention_mark._monitor == this, "must be"); 329 assert(!is_being_async_deflated(), "must be"); 330 331 332 void* prev_owner = try_set_owner_from(nullptr, locking_thread); 333 334 bool success = false; 335 336 if (prev_owner == nullptr) { 337 assert(_recursions == 0, "invariant"); 338 success = true; 339 } else if (prev_owner == locking_thread) { 340 _recursions++; 341 success = true; 342 } else if (prev_owner == DEFLATER_MARKER) { 343 // Racing with deflation. 344 prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread); 345 if (prev_owner == DEFLATER_MARKER) { 346 // Cancelled deflation. Increment contentions as part of the deflation protocol. 347 add_to_contentions(1); 348 success = true; 349 } else if (prev_owner == nullptr) { 350 // At this point we cannot race with deflation as we have both incremented 351 // contentions, seen contention > 0 and seen a DEFLATER_MARKER. 352 // success will only be false if this races with something other than 353 // deflation. 354 prev_owner = try_set_owner_from(nullptr, locking_thread); 355 success = prev_owner == nullptr; 356 } 357 } else if (LockingMode == LM_LEGACY && locking_thread->is_lock_owned((address)prev_owner)) { 358 assert(_recursions == 0, "must be"); 359 _recursions = 1; 360 set_owner_from_BasicLock(prev_owner, locking_thread); 361 success = true; 362 } 363 assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT 364 ", this=" INTPTR_FORMAT "{owner=" INTPTR_FORMAT "}, observed owner: " INTPTR_FORMAT, 365 p2i(locking_thread), p2i(this), p2i(owner_raw()), p2i(prev_owner)); 366 } 367 368 bool ObjectMonitor::enter_for(JavaThread* locking_thread) { 369 370 // Block out deflation as soon as possible. 371 ObjectMonitorContentionMark contention_mark(this); 372 373 // Check for deflation. 374 if (enter_is_async_deflating()) { 375 return false; 376 } 377 378 enter_for_with_contention_mark(locking_thread, contention_mark); 379 assert(owner_raw() == locking_thread, "must be"); 380 return true; 381 } 382 383 bool ObjectMonitor::try_enter(JavaThread* current) { 384 // TryLock avoids the CAS 385 TryLockResult r = TryLock(current); 386 if (r == TryLockResult::Success) { 387 assert(_recursions == 0, "invariant"); 388 return true; 389 } 390 391 if (r == TryLockResult::HasOwner && owner() == current) { 392 _recursions++; 393 return true; 394 } 395 396 void* cur = owner_raw(); 397 if (LockingMode == LM_LEGACY && current->is_lock_owned((address)cur)) { 398 assert(_recursions == 0, "internal state error"); 399 _recursions = 1; 400 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 401 return true; 402 } 403 404 return false; 405 } 406 407 bool ObjectMonitor::spin_enter(JavaThread* current) { 408 assert(current == JavaThread::current(), "must be"); 409 410 // Check for recursion. 411 if (try_enter(current)) { 412 return true; 413 } 414 415 // Check for deflation. 416 if (enter_is_async_deflating()) { 417 return false; 418 } 419 420 // We've encountered genuine contention. 421 422 // Do one round of spinning. 423 // Note that if we acquire the monitor from an initial spin 424 // we forgo posting JVMTI events and firing DTRACE probes. 425 if (TrySpin(current)) { 426 assert(owner_raw() == current, "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw())); 427 assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions); 428 assert_mark_word_consistency(); 429 return true; 430 } 431 432 return false; 433 } 434 435 bool ObjectMonitor::enter(JavaThread* current) { 436 assert(current == JavaThread::current(), "must be"); 437 438 if (spin_enter(current)) { 439 return true; 440 } 441 442 assert(owner_raw() != current, "invariant"); 443 assert(_succ != current, "invariant"); 444 assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); 445 assert(current->thread_state() != _thread_blocked, "invariant"); 446 447 // Keep is_being_async_deflated stable across the rest of enter 448 ObjectMonitorContentionMark contention_mark(this); 449 450 // Check for deflation. 451 if (enter_is_async_deflating()) { 452 return false; 453 } 454 455 // At this point this ObjectMonitor cannot be deflated, finish contended enter 456 enter_with_contention_mark(current, contention_mark); 457 return true; 458 } 459 460 void ObjectMonitor::enter_with_contention_mark(JavaThread *current, ObjectMonitorContentionMark &cm) { 461 assert(current == JavaThread::current(), "must be"); 462 assert(owner_raw() != current, "must be"); 463 assert(cm._monitor == this, "must be"); 464 assert(!is_being_async_deflated(), "must be"); 465 466 JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);) 467 EventJavaMonitorEnter event; 468 if (event.is_started()) { 469 event.set_monitorClass(object()->klass()); 470 // Set an address that is 'unique enough', such that events close in 471 // time and with the same address are likely (but not guaranteed) to 472 // belong to the same object. 473 event.set_address((uintptr_t)this); 474 } 475 476 { // Change java thread status to indicate blocked on monitor enter. 477 JavaThreadBlockedOnMonitorEnterState jtbmes(current, this); 478 479 assert(current->current_pending_monitor() == nullptr, "invariant"); 480 current->set_current_pending_monitor(this); 481 482 DTRACE_MONITOR_PROBE(contended__enter, this, object(), current); 483 if (JvmtiExport::should_post_monitor_contended_enter()) { 484 JvmtiExport::post_monitor_contended_enter(current, this); 485 486 // The current thread does not yet own the monitor and does not 487 // yet appear on any queues that would get it made the successor. 488 // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event 489 // handler cannot accidentally consume an unpark() meant for the 490 // ParkEvent associated with this ObjectMonitor. 491 } 492 493 OSThreadContendState osts(current->osthread()); 494 495 assert(current->thread_state() == _thread_in_vm, "invariant"); 496 497 for (;;) { 498 ExitOnSuspend eos(this); 499 { 500 ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */); 501 EnterI(current); 502 current->set_current_pending_monitor(nullptr); 503 // We can go to a safepoint at the end of this block. If we 504 // do a thread dump during that safepoint, then this thread will show 505 // as having "-locked" the monitor, but the OS and java.lang.Thread 506 // states will still report that the thread is blocked trying to 507 // acquire it. 508 // If there is a suspend request, ExitOnSuspend will exit the OM 509 // and set the OM as pending. 510 } 511 if (!eos.exited()) { 512 // ExitOnSuspend did not exit the OM 513 assert(owner_raw() == current, "invariant"); 514 break; 515 } 516 } 517 518 // We've just gotten past the enter-check-for-suspend dance and we now own 519 // the monitor free and clear. 520 } 521 522 assert(contentions() >= 0, "must not be negative: contentions=%d", contentions()); 523 524 // Must either set _recursions = 0 or ASSERT _recursions == 0. 525 assert(_recursions == 0, "invariant"); 526 assert(owner_raw() == current, "invariant"); 527 assert(_succ != current, "invariant"); 528 assert_mark_word_consistency(); 529 530 // The thread -- now the owner -- is back in vm mode. 531 // Report the glorious news via TI,DTrace and jvmstat. 532 // The probe effect is non-trivial. All the reportage occurs 533 // while we hold the monitor, increasing the length of the critical 534 // section. Amdahl's parallel speedup law comes vividly into play. 535 // 536 // Another option might be to aggregate the events (thread local or 537 // per-monitor aggregation) and defer reporting until a more opportune 538 // time -- such as next time some thread encounters contention but has 539 // yet to acquire the lock. While spinning that thread could 540 // spinning we could increment JVMStat counters, etc. 541 542 DTRACE_MONITOR_PROBE(contended__entered, this, object(), current); 543 if (JvmtiExport::should_post_monitor_contended_entered()) { 544 JvmtiExport::post_monitor_contended_entered(current, this); 545 546 // The current thread already owns the monitor and is not going to 547 // call park() for the remainder of the monitor enter protocol. So 548 // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED 549 // event handler consumed an unpark() issued by the thread that 550 // just exited the monitor. 551 } 552 if (event.should_commit()) { 553 event.set_previousOwner(_previous_owner_tid); 554 event.commit(); 555 } 556 OM_PERFDATA_OP(ContendedLockAttempts, inc()); 557 } 558 559 // Caveat: TryLock() is not necessarily serializing if it returns failure. 560 // Callers must compensate as needed. 561 562 ObjectMonitor::TryLockResult ObjectMonitor::TryLock(JavaThread* current) { 563 void* own = owner_raw(); 564 if (own != nullptr) return TryLockResult::HasOwner; 565 if (try_set_owner_from(nullptr, current) == nullptr) { 566 assert(_recursions == 0, "invariant"); 567 return TryLockResult::Success; 568 } 569 // The lock had been free momentarily, but we lost the race to the lock. 570 // Interference -- the CAS failed. 571 // We can either return -1 or retry. 572 // Retry doesn't make as much sense because the lock was just acquired. 573 return TryLockResult::Interference; 574 } 575 576 // Deflate the specified ObjectMonitor if not in-use. Returns true if it 577 // was deflated and false otherwise. 578 // 579 // The async deflation protocol sets owner to DEFLATER_MARKER and 580 // makes contentions negative as signals to contending threads that 581 // an async deflation is in progress. There are a number of checks 582 // as part of the protocol to make sure that the calling thread has 583 // not lost the race to a contending thread. 584 // 585 // The ObjectMonitor has been successfully async deflated when: 586 // (contentions < 0) 587 // Contending threads that see that condition know to retry their operation. 588 // 589 bool ObjectMonitor::deflate_monitor(Thread* current) { 590 if (is_busy()) { 591 // Easy checks are first - the ObjectMonitor is busy so no deflation. 592 return false; 593 } 594 595 const oop obj = object_peek(); 596 597 if (obj == nullptr) { 598 // If the object died, we can recycle the monitor without racing with 599 // Java threads. The GC already broke the association with the object. 600 set_owner_from(nullptr, DEFLATER_MARKER); 601 assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions()); 602 _contentions = INT_MIN; // minimum negative int 603 } else { 604 // Attempt async deflation protocol. 605 606 // Set a null owner to DEFLATER_MARKER to force any contending thread 607 // through the slow path. This is just the first part of the async 608 // deflation dance. 609 if (try_set_owner_from(nullptr, DEFLATER_MARKER) != nullptr) { 610 // The owner field is no longer null so we lost the race since the 611 // ObjectMonitor is now busy. 612 return false; 613 } 614 615 if (contentions() > 0 || _waiters != 0) { 616 // Another thread has raced to enter the ObjectMonitor after 617 // is_busy() above or has already entered and waited on 618 // it which makes it busy so no deflation. Restore owner to 619 // null if it is still DEFLATER_MARKER. 620 if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) { 621 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 622 add_to_contentions(-1); 623 } 624 return false; 625 } 626 627 // Make a zero contentions field negative to force any contending threads 628 // to retry. This is the second part of the async deflation dance. 629 if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) { 630 // Contentions was no longer 0 so we lost the race since the 631 // ObjectMonitor is now busy. Restore owner to null if it is 632 // still DEFLATER_MARKER: 633 if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) { 634 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 635 add_to_contentions(-1); 636 } 637 return false; 638 } 639 } 640 641 // Sanity checks for the races: 642 guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker"); 643 guarantee(contentions() < 0, "must be negative: contentions=%d", 644 contentions()); 645 guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters); 646 guarantee(_cxq == nullptr, "must be no contending threads: cxq=" 647 INTPTR_FORMAT, p2i(_cxq)); 648 guarantee(_EntryList == nullptr, 649 "must be no entering threads: EntryList=" INTPTR_FORMAT, 650 p2i(_EntryList)); 651 652 if (obj != nullptr) { 653 if (log_is_enabled(Trace, monitorinflation)) { 654 ResourceMark rm; 655 log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT 656 ", mark=" INTPTR_FORMAT ", type='%s'", 657 p2i(obj), obj->mark().value(), 658 obj->klass()->external_name()); 659 } 660 } 661 662 if (UseObjectMonitorTable) { 663 LightweightSynchronizer::deflate_monitor(current, obj, this); 664 } else if (obj != nullptr) { 665 // Install the old mark word if nobody else has already done it. 666 install_displaced_markword_in_object(obj); 667 } 668 669 // We leave owner == DEFLATER_MARKER and contentions < 0 670 // to force any racing threads to retry. 671 return true; // Success, ObjectMonitor has been deflated. 672 } 673 674 // Install the displaced mark word (dmw) of a deflating ObjectMonitor 675 // into the header of the object associated with the monitor. This 676 // idempotent method is called by a thread that is deflating a 677 // monitor and by other threads that have detected a race with the 678 // deflation process. 679 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) { 680 assert(!UseObjectMonitorTable, "ObjectMonitorTable has no dmw"); 681 // This function must only be called when (owner == DEFLATER_MARKER 682 // && contentions <= 0), but we can't guarantee that here because 683 // those values could change when the ObjectMonitor gets moved from 684 // the global free list to a per-thread free list. 685 686 guarantee(obj != nullptr, "must be non-null"); 687 688 // Separate loads in is_being_async_deflated(), which is almost always 689 // called before this function, from the load of dmw/header below. 690 691 // _contentions and dmw/header may get written by different threads. 692 // Make sure to observe them in the same order when having several observers. 693 OrderAccess::loadload_for_IRIW(); 694 695 const oop l_object = object_peek(); 696 if (l_object == nullptr) { 697 // ObjectMonitor's object ref has already been cleared by async 698 // deflation or GC so we're done here. 699 return; 700 } 701 assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj=" 702 INTPTR_FORMAT, p2i(l_object), p2i(obj)); 703 704 markWord dmw = header(); 705 // The dmw has to be neutral (not null, not locked and not marked). 706 assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value()); 707 708 // Install displaced mark word if the object's header still points 709 // to this ObjectMonitor. More than one racing caller to this function 710 // can rarely reach this point, but only one can win. 711 markWord res = obj->cas_set_mark(dmw, markWord::encode(this)); 712 if (res != markWord::encode(this)) { 713 // This should be rare so log at the Info level when it happens. 714 log_info(monitorinflation)("install_displaced_markword_in_object: " 715 "failed cas_set_mark: new_mark=" INTPTR_FORMAT 716 ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT, 717 dmw.value(), markWord::encode(this).value(), 718 res.value()); 719 } 720 721 // Note: It does not matter which thread restored the header/dmw 722 // into the object's header. The thread deflating the monitor just 723 // wanted the object's header restored and it is. The threads that 724 // detected a race with the deflation process also wanted the 725 // object's header restored before they retry their operation and 726 // because it is restored they will only retry once. 727 } 728 729 // Convert the fields used by is_busy() to a string that can be 730 // used for diagnostic output. 731 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) { 732 ss->print("is_busy: waiters=%d" 733 ", contentions=%d" 734 ", owner=" PTR_FORMAT 735 ", cxq=" PTR_FORMAT 736 ", EntryList=" PTR_FORMAT, 737 _waiters, 738 (contentions() > 0 ? contentions() : 0), 739 owner_is_DEFLATER_MARKER() 740 // We report null instead of DEFLATER_MARKER here because is_busy() 741 // ignores DEFLATER_MARKER values. 742 ? p2i(nullptr) 743 : p2i(owner_raw()), 744 p2i(_cxq), 745 p2i(_EntryList)); 746 return ss->base(); 747 } 748 749 #define MAX_RECHECK_INTERVAL 1000 750 751 void ObjectMonitor::EnterI(JavaThread* current) { 752 assert(current->thread_state() == _thread_blocked, "invariant"); 753 754 // Try the lock - TATAS 755 if (TryLock(current) == TryLockResult::Success) { 756 assert(_succ != current, "invariant"); 757 assert(owner_raw() == current, "invariant"); 758 assert(_Responsible != current, "invariant"); 759 return; 760 } 761 762 if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) { 763 // Cancelled the in-progress async deflation by changing owner from 764 // DEFLATER_MARKER to current. As part of the contended enter protocol, 765 // contentions was incremented to a positive value before EnterI() 766 // was called and that prevents the deflater thread from winning the 767 // last part of the 2-part async deflation protocol. After EnterI() 768 // returns to enter(), contentions is decremented because the caller 769 // now owns the monitor. We bump contentions an extra time here to 770 // prevent the deflater thread from winning the last part of the 771 // 2-part async deflation protocol after the regular decrement 772 // occurs in enter(). The deflater thread will decrement contentions 773 // after it recognizes that the async deflation was cancelled. 774 add_to_contentions(1); 775 assert(_succ != current, "invariant"); 776 assert(_Responsible != current, "invariant"); 777 return; 778 } 779 780 assert(InitDone, "Unexpectedly not initialized"); 781 782 // We try one round of spinning *before* enqueueing current. 783 // 784 // If the _owner is ready but OFFPROC we could use a YieldTo() 785 // operation to donate the remainder of this thread's quantum 786 // to the owner. This has subtle but beneficial affinity 787 // effects. 788 789 if (TrySpin(current)) { 790 assert(owner_raw() == current, "invariant"); 791 assert(_succ != current, "invariant"); 792 assert(_Responsible != current, "invariant"); 793 return; 794 } 795 796 // The Spin failed -- Enqueue and park the thread ... 797 assert(_succ != current, "invariant"); 798 assert(owner_raw() != current, "invariant"); 799 assert(_Responsible != current, "invariant"); 800 801 // Enqueue "current" on ObjectMonitor's _cxq. 802 // 803 // Node acts as a proxy for current. 804 // As an aside, if were to ever rewrite the synchronization code mostly 805 // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class 806 // Java objects. This would avoid awkward lifecycle and liveness issues, 807 // as well as eliminate a subset of ABA issues. 808 // TODO: eliminate ObjectWaiter and enqueue either Threads or Events. 809 810 ObjectWaiter node(current); 811 current->_ParkEvent->reset(); 812 node._prev = (ObjectWaiter*) 0xBAD; 813 node.TState = ObjectWaiter::TS_CXQ; 814 815 // Push "current" onto the front of the _cxq. 816 // Once on cxq/EntryList, current stays on-queue until it acquires the lock. 817 // Note that spinning tends to reduce the rate at which threads 818 // enqueue and dequeue on EntryList|cxq. 819 ObjectWaiter* nxt; 820 for (;;) { 821 node._next = nxt = _cxq; 822 if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break; 823 824 // Interference - the CAS failed because _cxq changed. Just retry. 825 // As an optional optimization we retry the lock. 826 if (TryLock(current) == TryLockResult::Success) { 827 assert(_succ != current, "invariant"); 828 assert(owner_raw() == current, "invariant"); 829 assert(_Responsible != current, "invariant"); 830 return; 831 } 832 } 833 834 // Check for cxq|EntryList edge transition to non-null. This indicates 835 // the onset of contention. While contention persists exiting threads 836 // will use a ST:MEMBAR:LD 1-1 exit protocol. When contention abates exit 837 // operations revert to the faster 1-0 mode. This enter operation may interleave 838 // (race) a concurrent 1-0 exit operation, resulting in stranding, so we 839 // arrange for one of the contending thread to use a timed park() operations 840 // to detect and recover from the race. (Stranding is form of progress failure 841 // where the monitor is unlocked but all the contending threads remain parked). 842 // That is, at least one of the contended threads will periodically poll _owner. 843 // One of the contending threads will become the designated "Responsible" thread. 844 // The Responsible thread uses a timed park instead of a normal indefinite park 845 // operation -- it periodically wakes and checks for and recovers from potential 846 // strandings admitted by 1-0 exit operations. We need at most one Responsible 847 // thread per-monitor at any given moment. Only threads on cxq|EntryList may 848 // be responsible for a monitor. 849 // 850 // Currently, one of the contended threads takes on the added role of "Responsible". 851 // A viable alternative would be to use a dedicated "stranding checker" thread 852 // that periodically iterated over all the threads (or active monitors) and unparked 853 // successors where there was risk of stranding. This would help eliminate the 854 // timer scalability issues we see on some platforms as we'd only have one thread 855 // -- the checker -- parked on a timer. 856 857 if (nxt == nullptr && _EntryList == nullptr) { 858 // Try to assume the role of responsible thread for the monitor. 859 // CONSIDER: ST vs CAS vs { if (Responsible==null) Responsible=current } 860 Atomic::replace_if_null(&_Responsible, current); 861 } 862 863 // The lock might have been released while this thread was occupied queueing 864 // itself onto _cxq. To close the race and avoid "stranding" and 865 // progress-liveness failure we must resample-retry _owner before parking. 866 // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner. 867 // In this case the ST-MEMBAR is accomplished with CAS(). 868 // 869 // TODO: Defer all thread state transitions until park-time. 870 // Since state transitions are heavy and inefficient we'd like 871 // to defer the state transitions until absolutely necessary, 872 // and in doing so avoid some transitions ... 873 874 int recheckInterval = 1; 875 876 for (;;) { 877 878 if (TryLock(current) == TryLockResult::Success) { 879 break; 880 } 881 assert(owner_raw() != current, "invariant"); 882 883 // park self 884 if (_Responsible == current) { 885 current->_ParkEvent->park((jlong) recheckInterval); 886 // Increase the recheckInterval, but clamp the value. 887 recheckInterval *= 8; 888 if (recheckInterval > MAX_RECHECK_INTERVAL) { 889 recheckInterval = MAX_RECHECK_INTERVAL; 890 } 891 } else { 892 current->_ParkEvent->park(); 893 } 894 895 if (TryLock(current) == TryLockResult::Success) { 896 break; 897 } 898 899 if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) { 900 // Cancelled the in-progress async deflation by changing owner from 901 // DEFLATER_MARKER to current. As part of the contended enter protocol, 902 // contentions was incremented to a positive value before EnterI() 903 // was called and that prevents the deflater thread from winning the 904 // last part of the 2-part async deflation protocol. After EnterI() 905 // returns to enter(), contentions is decremented because the caller 906 // now owns the monitor. We bump contentions an extra time here to 907 // prevent the deflater thread from winning the last part of the 908 // 2-part async deflation protocol after the regular decrement 909 // occurs in enter(). The deflater thread will decrement contentions 910 // after it recognizes that the async deflation was cancelled. 911 add_to_contentions(1); 912 break; 913 } 914 915 // The lock is still contested. 916 917 // Keep a tally of the # of futile wakeups. 918 // Note that the counter is not protected by a lock or updated by atomics. 919 // That is by design - we trade "lossy" counters which are exposed to 920 // races during updates for a lower probe effect. 921 // This PerfData object can be used in parallel with a safepoint. 922 // See the work around in PerfDataManager::destroy(). 923 OM_PERFDATA_OP(FutileWakeups, inc()); 924 925 // Assuming this is not a spurious wakeup we'll normally find _succ == current. 926 // We can defer clearing _succ until after the spin completes 927 // TrySpin() must tolerate being called with _succ == current. 928 // Try yet another round of adaptive spinning. 929 if (TrySpin(current)) { 930 break; 931 } 932 933 // We can find that we were unpark()ed and redesignated _succ while 934 // we were spinning. That's harmless. If we iterate and call park(), 935 // park() will consume the event and return immediately and we'll 936 // just spin again. This pattern can repeat, leaving _succ to simply 937 // spin on a CPU. 938 939 if (_succ == current) _succ = nullptr; 940 941 // Invariant: after clearing _succ a thread *must* retry _owner before parking. 942 OrderAccess::fence(); 943 } 944 945 // Egress : 946 // current has acquired the lock -- Unlink current from the cxq or EntryList. 947 // Normally we'll find current on the EntryList . 948 // From the perspective of the lock owner (this thread), the 949 // EntryList is stable and cxq is prepend-only. 950 // The head of cxq is volatile but the interior is stable. 951 // In addition, current.TState is stable. 952 953 assert(owner_raw() == current, "invariant"); 954 955 UnlinkAfterAcquire(current, &node); 956 if (_succ == current) _succ = nullptr; 957 958 assert(_succ != current, "invariant"); 959 if (_Responsible == current) { 960 _Responsible = nullptr; 961 OrderAccess::fence(); // Dekker pivot-point 962 963 // We may leave threads on cxq|EntryList without a designated 964 // "Responsible" thread. This is benign. When this thread subsequently 965 // exits the monitor it can "see" such preexisting "old" threads -- 966 // threads that arrived on the cxq|EntryList before the fence, above -- 967 // by LDing cxq|EntryList. Newly arrived threads -- that is, threads 968 // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible 969 // non-null and elect a new "Responsible" timer thread. 970 // 971 // This thread executes: 972 // ST Responsible=null; MEMBAR (in enter epilogue - here) 973 // LD cxq|EntryList (in subsequent exit) 974 // 975 // Entering threads in the slow/contended path execute: 976 // ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog) 977 // The (ST cxq; MEMBAR) is accomplished with CAS(). 978 // 979 // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent 980 // exit operation from floating above the ST Responsible=null. 981 } 982 983 // We've acquired ownership with CAS(). 984 // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics. 985 // But since the CAS() this thread may have also stored into _succ, 986 // EntryList, cxq or Responsible. These meta-data updates must be 987 // visible __before this thread subsequently drops the lock. 988 // Consider what could occur if we didn't enforce this constraint -- 989 // STs to monitor meta-data and user-data could reorder with (become 990 // visible after) the ST in exit that drops ownership of the lock. 991 // Some other thread could then acquire the lock, but observe inconsistent 992 // or old monitor meta-data and heap data. That violates the JMM. 993 // To that end, the 1-0 exit() operation must have at least STST|LDST 994 // "release" barrier semantics. Specifically, there must be at least a 995 // STST|LDST barrier in exit() before the ST of null into _owner that drops 996 // the lock. The barrier ensures that changes to monitor meta-data and data 997 // protected by the lock will be visible before we release the lock, and 998 // therefore before some other thread (CPU) has a chance to acquire the lock. 999 // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html. 1000 // 1001 // Critically, any prior STs to _succ or EntryList must be visible before 1002 // the ST of null into _owner in the *subsequent* (following) corresponding 1003 // monitorexit. Recall too, that in 1-0 mode monitorexit does not necessarily 1004 // execute a serializing instruction. 1005 1006 return; 1007 } 1008 1009 // ReenterI() is a specialized inline form of the latter half of the 1010 // contended slow-path from EnterI(). We use ReenterI() only for 1011 // monitor reentry in wait(). 1012 // 1013 // In the future we should reconcile EnterI() and ReenterI(). 1014 1015 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) { 1016 assert(current != nullptr, "invariant"); 1017 assert(current->thread_state() != _thread_blocked, "invariant"); 1018 assert(currentNode != nullptr, "invariant"); 1019 assert(currentNode->_thread == current, "invariant"); 1020 assert(_waiters > 0, "invariant"); 1021 assert_mark_word_consistency(); 1022 1023 for (;;) { 1024 ObjectWaiter::TStates v = currentNode->TState; 1025 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 1026 assert(owner_raw() != current, "invariant"); 1027 1028 // This thread has been notified so try to reacquire the lock. 1029 if (TryLock(current) == TryLockResult::Success) { 1030 break; 1031 } 1032 1033 // If that fails, spin again. Note that spin count may be zero so the above TryLock 1034 // is necessary. 1035 if (TrySpin(current)) { 1036 break; 1037 } 1038 1039 { 1040 OSThreadContendState osts(current->osthread()); 1041 1042 assert(current->thread_state() == _thread_in_vm, "invariant"); 1043 1044 { 1045 ClearSuccOnSuspend csos(this); 1046 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); 1047 current->_ParkEvent->park(); 1048 } 1049 } 1050 1051 // Try again, but just so we distinguish between futile wakeups and 1052 // successful wakeups. The following test isn't algorithmically 1053 // necessary, but it helps us maintain sensible statistics. 1054 if (TryLock(current) == TryLockResult::Success) { 1055 break; 1056 } 1057 1058 // The lock is still contested. 1059 1060 // Assuming this is not a spurious wakeup we'll normally 1061 // find that _succ == current. 1062 if (_succ == current) _succ = nullptr; 1063 1064 // Invariant: after clearing _succ a contending thread 1065 // *must* retry _owner before parking. 1066 OrderAccess::fence(); 1067 1068 // Keep a tally of the # of futile wakeups. 1069 // Note that the counter is not protected by a lock or updated by atomics. 1070 // That is by design - we trade "lossy" counters which are exposed to 1071 // races during updates for a lower probe effect. 1072 // This PerfData object can be used in parallel with a safepoint. 1073 // See the work around in PerfDataManager::destroy(). 1074 OM_PERFDATA_OP(FutileWakeups, inc()); 1075 } 1076 1077 // current has acquired the lock -- Unlink current from the cxq or EntryList . 1078 // Normally we'll find current on the EntryList. 1079 // Unlinking from the EntryList is constant-time and atomic-free. 1080 // From the perspective of the lock owner (this thread), the 1081 // EntryList is stable and cxq is prepend-only. 1082 // The head of cxq is volatile but the interior is stable. 1083 // In addition, current.TState is stable. 1084 1085 assert(owner_raw() == current, "invariant"); 1086 assert_mark_word_consistency(); 1087 UnlinkAfterAcquire(current, currentNode); 1088 if (_succ == current) _succ = nullptr; 1089 assert(_succ != current, "invariant"); 1090 currentNode->TState = ObjectWaiter::TS_RUN; 1091 OrderAccess::fence(); // see comments at the end of EnterI() 1092 } 1093 1094 // By convention we unlink a contending thread from EntryList|cxq immediately 1095 // after the thread acquires the lock in ::enter(). Equally, we could defer 1096 // unlinking the thread until ::exit()-time. 1097 1098 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) { 1099 assert(owner_raw() == current, "invariant"); 1100 assert(currentNode->_thread == current, "invariant"); 1101 1102 if (currentNode->TState == ObjectWaiter::TS_ENTER) { 1103 // Normal case: remove current from the DLL EntryList . 1104 // This is a constant-time operation. 1105 ObjectWaiter* nxt = currentNode->_next; 1106 ObjectWaiter* prv = currentNode->_prev; 1107 if (nxt != nullptr) nxt->_prev = prv; 1108 if (prv != nullptr) prv->_next = nxt; 1109 if (currentNode == _EntryList) _EntryList = nxt; 1110 assert(nxt == nullptr || nxt->TState == ObjectWaiter::TS_ENTER, "invariant"); 1111 assert(prv == nullptr || prv->TState == ObjectWaiter::TS_ENTER, "invariant"); 1112 } else { 1113 assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant"); 1114 // Inopportune interleaving -- current is still on the cxq. 1115 // This usually means the enqueue of self raced an exiting thread. 1116 // Normally we'll find current near the front of the cxq, so 1117 // dequeueing is typically fast. If needbe we can accelerate 1118 // this with some MCS/CHL-like bidirectional list hints and advisory 1119 // back-links so dequeueing from the interior will normally operate 1120 // in constant-time. 1121 // Dequeue current from either the head (with CAS) or from the interior 1122 // with a linear-time scan and normal non-atomic memory operations. 1123 // CONSIDER: if current is on the cxq then simply drain cxq into EntryList 1124 // and then unlink current from EntryList. We have to drain eventually, 1125 // so it might as well be now. 1126 1127 ObjectWaiter* v = _cxq; 1128 assert(v != nullptr, "invariant"); 1129 if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) { 1130 // The CAS above can fail from interference IFF a "RAT" arrived. 1131 // In that case current must be in the interior and can no longer be 1132 // at the head of cxq. 1133 if (v == currentNode) { 1134 assert(_cxq != v, "invariant"); 1135 v = _cxq; // CAS above failed - start scan at head of list 1136 } 1137 ObjectWaiter* p; 1138 ObjectWaiter* q = nullptr; 1139 for (p = v; p != nullptr && p != currentNode; p = p->_next) { 1140 q = p; 1141 assert(p->TState == ObjectWaiter::TS_CXQ, "invariant"); 1142 } 1143 assert(v != currentNode, "invariant"); 1144 assert(p == currentNode, "Node not found on cxq"); 1145 assert(p != _cxq, "invariant"); 1146 assert(q != nullptr, "invariant"); 1147 assert(q->_next == p, "invariant"); 1148 q->_next = p->_next; 1149 } 1150 } 1151 1152 #ifdef ASSERT 1153 // Diagnostic hygiene ... 1154 currentNode->_prev = (ObjectWaiter*) 0xBAD; 1155 currentNode->_next = (ObjectWaiter*) 0xBAD; 1156 currentNode->TState = ObjectWaiter::TS_RUN; 1157 #endif 1158 } 1159 1160 // ----------------------------------------------------------------------------- 1161 // Exit support 1162 // 1163 // exit() 1164 // ~~~~~~ 1165 // Note that the collector can't reclaim the objectMonitor or deflate 1166 // the object out from underneath the thread calling ::exit() as the 1167 // thread calling ::exit() never transitions to a stable state. 1168 // This inhibits GC, which in turn inhibits asynchronous (and 1169 // inopportune) reclamation of "this". 1170 // 1171 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ; 1172 // There's one exception to the claim above, however. EnterI() can call 1173 // exit() to drop a lock if the acquirer has been externally suspended. 1174 // In that case exit() is called with _thread_state == _thread_blocked, 1175 // but the monitor's _contentions field is > 0, which inhibits reclamation. 1176 // 1177 // 1-0 exit 1178 // ~~~~~~~~ 1179 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of 1180 // the fast-path operators have been optimized so the common ::exit() 1181 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock(). 1182 // The code emitted by fast_unlock() elides the usual MEMBAR. This 1183 // greatly improves latency -- MEMBAR and CAS having considerable local 1184 // latency on modern processors -- but at the cost of "stranding". Absent the 1185 // MEMBAR, a thread in fast_unlock() can race a thread in the slow 1186 // ::enter() path, resulting in the entering thread being stranding 1187 // and a progress-liveness failure. Stranding is extremely rare. 1188 // We use timers (timed park operations) & periodic polling to detect 1189 // and recover from stranding. Potentially stranded threads periodically 1190 // wake up and poll the lock. See the usage of the _Responsible variable. 1191 // 1192 // The CAS() in enter provides for safety and exclusion, while the CAS or 1193 // MEMBAR in exit provides for progress and avoids stranding. 1-0 locking 1194 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding. 1195 // We detect and recover from stranding with timers. 1196 // 1197 // If a thread transiently strands it'll park until (a) another 1198 // thread acquires the lock and then drops the lock, at which time the 1199 // exiting thread will notice and unpark the stranded thread, or, (b) 1200 // the timer expires. If the lock is high traffic then the stranding latency 1201 // will be low due to (a). If the lock is low traffic then the odds of 1202 // stranding are lower, although the worst-case stranding latency 1203 // is longer. Critically, we don't want to put excessive load in the 1204 // platform's timer subsystem. We want to minimize both the timer injection 1205 // rate (timers created/sec) as well as the number of timers active at 1206 // any one time. (more precisely, we want to minimize timer-seconds, which is 1207 // the integral of the # of active timers at any instant over time). 1208 // Both impinge on OS scalability. Given that, at most one thread parked on 1209 // a monitor will use a timer. 1210 // 1211 // There is also the risk of a futile wake-up. If we drop the lock 1212 // another thread can reacquire the lock immediately, and we can 1213 // then wake a thread unnecessarily. This is benign, and we've 1214 // structured the code so the windows are short and the frequency 1215 // of such futile wakups is low. 1216 1217 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) { 1218 void* cur = owner_raw(); 1219 if (current != cur) { 1220 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1221 assert(_recursions == 0, "invariant"); 1222 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1223 _recursions = 0; 1224 } else { 1225 // Apparent unbalanced locking ... 1226 // Naively we'd like to throw IllegalMonitorStateException. 1227 // As a practical matter we can neither allocate nor throw an 1228 // exception as ::exit() can be called from leaf routines. 1229 // see x86_32.ad Fast_Unlock() and the I1 and I2 properties. 1230 // Upon deeper reflection, however, in a properly run JVM the only 1231 // way we should encounter this situation is in the presence of 1232 // unbalanced JNI locking. TODO: CheckJNICalls. 1233 // See also: CR4414101 1234 #ifdef ASSERT 1235 LogStreamHandle(Error, monitorinflation) lsh; 1236 lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT 1237 " is exiting an ObjectMonitor it does not own.", p2i(current)); 1238 lsh.print_cr("The imbalance is possibly caused by JNI locking."); 1239 print_debug_style_on(&lsh); 1240 assert(false, "Non-balanced monitor enter/exit!"); 1241 #endif 1242 return; 1243 } 1244 } 1245 1246 if (_recursions != 0) { 1247 _recursions--; // this is simple recursive enter 1248 return; 1249 } 1250 1251 // Invariant: after setting Responsible=null an thread must execute 1252 // a MEMBAR or other serializing instruction before fetching EntryList|cxq. 1253 _Responsible = nullptr; 1254 1255 #if INCLUDE_JFR 1256 // get the owner's thread id for the MonitorEnter event 1257 // if it is enabled and the thread isn't suspended 1258 if (not_suspended && EventJavaMonitorEnter::is_enabled()) { 1259 _previous_owner_tid = JFR_THREAD_ID(current); 1260 } 1261 #endif 1262 1263 for (;;) { 1264 assert(current == owner_raw(), "invariant"); 1265 1266 // Drop the lock. 1267 // release semantics: prior loads and stores from within the critical section 1268 // must not float (reorder) past the following store that drops the lock. 1269 // Uses a storeload to separate release_store(owner) from the 1270 // successor check. The try_set_owner() below uses cmpxchg() so 1271 // we get the fence down there. 1272 release_clear_owner(current); 1273 OrderAccess::storeload(); 1274 1275 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != nullptr) { 1276 return; 1277 } 1278 // Other threads are blocked trying to acquire the lock. 1279 1280 // Normally the exiting thread is responsible for ensuring succession, 1281 // but if other successors are ready or other entering threads are spinning 1282 // then this thread can simply store null into _owner and exit without 1283 // waking a successor. The existence of spinners or ready successors 1284 // guarantees proper succession (liveness). Responsibility passes to the 1285 // ready or running successors. The exiting thread delegates the duty. 1286 // More precisely, if a successor already exists this thread is absolved 1287 // of the responsibility of waking (unparking) one. 1288 // 1289 // The _succ variable is critical to reducing futile wakeup frequency. 1290 // _succ identifies the "heir presumptive" thread that has been made 1291 // ready (unparked) but that has not yet run. We need only one such 1292 // successor thread to guarantee progress. 1293 // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf 1294 // section 3.3 "Futile Wakeup Throttling" for details. 1295 // 1296 // Note that spinners in Enter() also set _succ non-null. 1297 // In the current implementation spinners opportunistically set 1298 // _succ so that exiting threads might avoid waking a successor. 1299 // Another less appealing alternative would be for the exiting thread 1300 // to drop the lock and then spin briefly to see if a spinner managed 1301 // to acquire the lock. If so, the exiting thread could exit 1302 // immediately without waking a successor, otherwise the exiting 1303 // thread would need to dequeue and wake a successor. 1304 // (Note that we'd need to make the post-drop spin short, but no 1305 // shorter than the worst-case round-trip cache-line migration time. 1306 // The dropped lock needs to become visible to the spinner, and then 1307 // the acquisition of the lock by the spinner must become visible to 1308 // the exiting thread). 1309 1310 // It appears that an heir-presumptive (successor) must be made ready. 1311 // Only the current lock owner can manipulate the EntryList or 1312 // drain _cxq, so we need to reacquire the lock. If we fail 1313 // to reacquire the lock the responsibility for ensuring succession 1314 // falls to the new owner. 1315 // 1316 if (try_set_owner_from(nullptr, current) != nullptr) { 1317 return; 1318 } 1319 1320 guarantee(owner_raw() == current, "invariant"); 1321 1322 ObjectWaiter* w = nullptr; 1323 1324 w = _EntryList; 1325 if (w != nullptr) { 1326 // I'd like to write: guarantee (w->_thread != current). 1327 // But in practice an exiting thread may find itself on the EntryList. 1328 // Let's say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and 1329 // then calls exit(). Exit release the lock by setting O._owner to null. 1330 // Let's say T1 then stalls. T2 acquires O and calls O.notify(). The 1331 // notify() operation moves T1 from O's waitset to O's EntryList. T2 then 1332 // release the lock "O". T2 resumes immediately after the ST of null into 1333 // _owner, above. T2 notices that the EntryList is populated, so it 1334 // reacquires the lock and then finds itself on the EntryList. 1335 // Given all that, we have to tolerate the circumstance where "w" is 1336 // associated with current. 1337 assert(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1338 ExitEpilog(current, w); 1339 return; 1340 } 1341 1342 // If we find that both _cxq and EntryList are null then just 1343 // re-run the exit protocol from the top. 1344 w = _cxq; 1345 if (w == nullptr) continue; 1346 1347 // Drain _cxq into EntryList - bulk transfer. 1348 // First, detach _cxq. 1349 // The following loop is tantamount to: w = swap(&cxq, nullptr) 1350 for (;;) { 1351 assert(w != nullptr, "Invariant"); 1352 ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)nullptr); 1353 if (u == w) break; 1354 w = u; 1355 } 1356 1357 assert(w != nullptr, "invariant"); 1358 assert(_EntryList == nullptr, "invariant"); 1359 1360 // Convert the LIFO SLL anchored by _cxq into a DLL. 1361 // The list reorganization step operates in O(LENGTH(w)) time. 1362 // It's critical that this step operate quickly as 1363 // "current" still holds the outer-lock, restricting parallelism 1364 // and effectively lengthening the critical section. 1365 // Invariant: s chases t chases u. 1366 // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so 1367 // we have faster access to the tail. 1368 1369 _EntryList = w; 1370 ObjectWaiter* q = nullptr; 1371 ObjectWaiter* p; 1372 for (p = w; p != nullptr; p = p->_next) { 1373 guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant"); 1374 p->TState = ObjectWaiter::TS_ENTER; 1375 p->_prev = q; 1376 q = p; 1377 } 1378 1379 // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = nullptr 1380 // The MEMBAR is satisfied by the release_store() operation in ExitEpilog(). 1381 1382 // See if we can abdicate to a spinner instead of waking a thread. 1383 // A primary goal of the implementation is to reduce the 1384 // context-switch rate. 1385 if (_succ != nullptr) continue; 1386 1387 w = _EntryList; 1388 if (w != nullptr) { 1389 guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1390 ExitEpilog(current, w); 1391 return; 1392 } 1393 } 1394 } 1395 1396 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) { 1397 assert(owner_raw() == current, "invariant"); 1398 1399 // Exit protocol: 1400 // 1. ST _succ = wakee 1401 // 2. membar #loadstore|#storestore; 1402 // 2. ST _owner = nullptr 1403 // 3. unpark(wakee) 1404 1405 _succ = Wakee->_thread; 1406 ParkEvent * Trigger = Wakee->_event; 1407 1408 // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again. 1409 // The thread associated with Wakee may have grabbed the lock and "Wakee" may be 1410 // out-of-scope (non-extant). 1411 Wakee = nullptr; 1412 1413 // Drop the lock. 1414 // Uses a fence to separate release_store(owner) from the LD in unpark(). 1415 release_clear_owner(current); 1416 OrderAccess::fence(); 1417 1418 DTRACE_MONITOR_PROBE(contended__exit, this, object(), current); 1419 Trigger->unpark(); 1420 1421 // Maintain stats and report events to JVMTI 1422 OM_PERFDATA_OP(Parks, inc()); 1423 } 1424 1425 // complete_exit exits a lock returning recursion count 1426 // complete_exit requires an inflated monitor 1427 // The _owner field is not always the Thread addr even with an 1428 // inflated monitor, e.g. the monitor can be inflated by a non-owning 1429 // thread due to contention. 1430 intx ObjectMonitor::complete_exit(JavaThread* current) { 1431 assert(InitDone, "Unexpectedly not initialized"); 1432 1433 void* cur = owner_raw(); 1434 if (current != cur) { 1435 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1436 assert(_recursions == 0, "internal state error"); 1437 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1438 _recursions = 0; 1439 } 1440 } 1441 1442 guarantee(current == owner_raw(), "complete_exit not owner"); 1443 intx save = _recursions; // record the old recursion count 1444 _recursions = 0; // set the recursion level to be 0 1445 exit(current); // exit the monitor 1446 guarantee(owner_raw() != current, "invariant"); 1447 return save; 1448 } 1449 1450 // Checks that the current THREAD owns this monitor and causes an 1451 // immediate return if it doesn't. We don't use the CHECK macro 1452 // because we want the IMSE to be the only exception that is thrown 1453 // from the call site when false is returned. Any other pending 1454 // exception is ignored. 1455 #define CHECK_OWNER() \ 1456 do { \ 1457 if (!check_owner(THREAD)) { \ 1458 assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \ 1459 return; \ 1460 } \ 1461 } while (false) 1462 1463 // Returns true if the specified thread owns the ObjectMonitor. 1464 // Otherwise returns false and throws IllegalMonitorStateException 1465 // (IMSE). If there is a pending exception and the specified thread 1466 // is not the owner, that exception will be replaced by the IMSE. 1467 bool ObjectMonitor::check_owner(TRAPS) { 1468 JavaThread* current = THREAD; 1469 void* cur = owner_raw(); 1470 assert(cur != anon_owner_ptr(), "no anon owner here"); 1471 if (cur == current) { 1472 return true; 1473 } 1474 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1475 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1476 _recursions = 0; 1477 return true; 1478 } 1479 THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(), 1480 "current thread is not owner", false); 1481 } 1482 1483 static inline bool is_excluded(const Klass* monitor_klass) { 1484 assert(monitor_klass != nullptr, "invariant"); 1485 NOT_JFR_RETURN_(false); 1486 JFR_ONLY(return vmSymbols::jdk_jfr_internal_management_HiddenWait() == monitor_klass->name();) 1487 } 1488 1489 static void post_monitor_wait_event(EventJavaMonitorWait* event, 1490 ObjectMonitor* monitor, 1491 uint64_t notifier_tid, 1492 jlong timeout, 1493 bool timedout) { 1494 assert(event != nullptr, "invariant"); 1495 assert(monitor != nullptr, "invariant"); 1496 const Klass* monitor_klass = monitor->object()->klass(); 1497 if (is_excluded(monitor_klass)) { 1498 return; 1499 } 1500 event->set_monitorClass(monitor_klass); 1501 event->set_timeout(timeout); 1502 // Set an address that is 'unique enough', such that events close in 1503 // time and with the same address are likely (but not guaranteed) to 1504 // belong to the same object. 1505 event->set_address((uintptr_t)monitor); 1506 event->set_notifier(notifier_tid); 1507 event->set_timedOut(timedout); 1508 event->commit(); 1509 } 1510 1511 // ----------------------------------------------------------------------------- 1512 // Wait/Notify/NotifyAll 1513 // 1514 // Note: a subset of changes to ObjectMonitor::wait() 1515 // will need to be replicated in complete_exit 1516 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) { 1517 JavaThread* current = THREAD; 1518 1519 assert(InitDone, "Unexpectedly not initialized"); 1520 1521 CHECK_OWNER(); // Throws IMSE if not owner. 1522 1523 EventJavaMonitorWait event; 1524 1525 // check for a pending interrupt 1526 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1527 // post monitor waited event. Note that this is past-tense, we are done waiting. 1528 if (JvmtiExport::should_post_monitor_waited()) { 1529 // Note: 'false' parameter is passed here because the 1530 // wait was not timed out due to thread interrupt. 1531 JvmtiExport::post_monitor_waited(current, this, false); 1532 1533 // In this short circuit of the monitor wait protocol, the 1534 // current thread never drops ownership of the monitor and 1535 // never gets added to the wait queue so the current thread 1536 // cannot be made the successor. This means that the 1537 // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally 1538 // consume an unpark() meant for the ParkEvent associated with 1539 // this ObjectMonitor. 1540 } 1541 if (event.should_commit()) { 1542 post_monitor_wait_event(&event, this, 0, millis, false); 1543 } 1544 THROW(vmSymbols::java_lang_InterruptedException()); 1545 return; 1546 } 1547 1548 current->set_current_waiting_monitor(this); 1549 1550 // create a node to be put into the queue 1551 // Critically, after we reset() the event but prior to park(), we must check 1552 // for a pending interrupt. 1553 ObjectWaiter node(current); 1554 node.TState = ObjectWaiter::TS_WAIT; 1555 current->_ParkEvent->reset(); 1556 OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag 1557 1558 // Enter the waiting queue, which is a circular doubly linked list in this case 1559 // but it could be a priority queue or any data structure. 1560 // _WaitSetLock protects the wait queue. Normally the wait queue is accessed only 1561 // by the owner of the monitor *except* in the case where park() 1562 // returns because of a timeout of interrupt. Contention is exceptionally rare 1563 // so we use a simple spin-lock instead of a heavier-weight blocking lock. 1564 1565 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add"); 1566 AddWaiter(&node); 1567 Thread::SpinRelease(&_WaitSetLock); 1568 1569 _Responsible = nullptr; 1570 1571 intx save = _recursions; // record the old recursion count 1572 _waiters++; // increment the number of waiters 1573 _recursions = 0; // set the recursion level to be 1 1574 exit(current); // exit the monitor 1575 guarantee(owner_raw() != current, "invariant"); 1576 1577 // The thread is on the WaitSet list - now park() it. 1578 // On MP systems it's conceivable that a brief spin before we park 1579 // could be profitable. 1580 // 1581 // TODO-FIXME: change the following logic to a loop of the form 1582 // while (!timeout && !interrupted && _notified == 0) park() 1583 1584 int ret = OS_OK; 1585 int WasNotified = 0; 1586 1587 // Need to check interrupt state whilst still _thread_in_vm 1588 bool interrupted = interruptible && current->is_interrupted(false); 1589 1590 { // State transition wrappers 1591 OSThread* osthread = current->osthread(); 1592 OSThreadWaitState osts(osthread, true); 1593 1594 assert(current->thread_state() == _thread_in_vm, "invariant"); 1595 1596 { 1597 ClearSuccOnSuspend csos(this); 1598 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); 1599 if (interrupted || HAS_PENDING_EXCEPTION) { 1600 // Intentionally empty 1601 } else if (node._notified == 0) { 1602 if (millis <= 0) { 1603 current->_ParkEvent->park(); 1604 } else { 1605 ret = current->_ParkEvent->park(millis); 1606 } 1607 } 1608 } 1609 1610 // Node may be on the WaitSet, the EntryList (or cxq), or in transition 1611 // from the WaitSet to the EntryList. 1612 // See if we need to remove Node from the WaitSet. 1613 // We use double-checked locking to avoid grabbing _WaitSetLock 1614 // if the thread is not on the wait queue. 1615 // 1616 // Note that we don't need a fence before the fetch of TState. 1617 // In the worst case we'll fetch a old-stale value of TS_WAIT previously 1618 // written by the is thread. (perhaps the fetch might even be satisfied 1619 // by a look-aside into the processor's own store buffer, although given 1620 // the length of the code path between the prior ST and this load that's 1621 // highly unlikely). If the following LD fetches a stale TS_WAIT value 1622 // then we'll acquire the lock and then re-fetch a fresh TState value. 1623 // That is, we fail toward safety. 1624 1625 if (node.TState == ObjectWaiter::TS_WAIT) { 1626 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink"); 1627 if (node.TState == ObjectWaiter::TS_WAIT) { 1628 DequeueSpecificWaiter(&node); // unlink from WaitSet 1629 assert(node._notified == 0, "invariant"); 1630 node.TState = ObjectWaiter::TS_RUN; 1631 } 1632 Thread::SpinRelease(&_WaitSetLock); 1633 } 1634 1635 // The thread is now either on off-list (TS_RUN), 1636 // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ). 1637 // The Node's TState variable is stable from the perspective of this thread. 1638 // No other threads will asynchronously modify TState. 1639 guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant"); 1640 OrderAccess::loadload(); 1641 if (_succ == current) _succ = nullptr; 1642 WasNotified = node._notified; 1643 1644 // Reentry phase -- reacquire the monitor. 1645 // re-enter contended monitor after object.wait(). 1646 // retain OBJECT_WAIT state until re-enter successfully completes 1647 // Thread state is thread_in_vm and oop access is again safe, 1648 // although the raw address of the object may have changed. 1649 // (Don't cache naked oops over safepoints, of course). 1650 1651 // post monitor waited event. Note that this is past-tense, we are done waiting. 1652 if (JvmtiExport::should_post_monitor_waited()) { 1653 JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT); 1654 1655 if (node._notified != 0 && _succ == current) { 1656 // In this part of the monitor wait-notify-reenter protocol it 1657 // is possible (and normal) for another thread to do a fastpath 1658 // monitor enter-exit while this thread is still trying to get 1659 // to the reenter portion of the protocol. 1660 // 1661 // The ObjectMonitor was notified and the current thread is 1662 // the successor which also means that an unpark() has already 1663 // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can 1664 // consume the unpark() that was done when the successor was 1665 // set because the same ParkEvent is shared between Java 1666 // monitors and JVM/TI RawMonitors (for now). 1667 // 1668 // We redo the unpark() to ensure forward progress, i.e., we 1669 // don't want all pending threads hanging (parked) with none 1670 // entering the unlocked monitor. 1671 node._event->unpark(); 1672 } 1673 } 1674 1675 if (event.should_commit()) { 1676 post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT); 1677 } 1678 1679 OrderAccess::fence(); 1680 1681 assert(owner_raw() != current, "invariant"); 1682 ObjectWaiter::TStates v = node.TState; 1683 if (v == ObjectWaiter::TS_RUN) { 1684 enter(current); 1685 } else { 1686 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 1687 ReenterI(current, &node); 1688 node.wait_reenter_end(this); 1689 } 1690 1691 // current has reacquired the lock. 1692 // Lifecycle - the node representing current must not appear on any queues. 1693 // Node is about to go out-of-scope, but even if it were immortal we wouldn't 1694 // want residual elements associated with this thread left on any lists. 1695 guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant"); 1696 assert(owner_raw() == current, "invariant"); 1697 assert(_succ != current, "invariant"); 1698 } // OSThreadWaitState() 1699 1700 current->set_current_waiting_monitor(nullptr); 1701 1702 guarantee(_recursions == 0, "invariant"); 1703 int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current); 1704 _recursions = save // restore the old recursion count 1705 + relock_count; // increased by the deferred relock count 1706 current->inc_held_monitor_count(relock_count); // Deopt never entered these counts. 1707 _waiters--; // decrement the number of waiters 1708 1709 // Verify a few postconditions 1710 assert(owner_raw() == current, "invariant"); 1711 assert(_succ != current, "invariant"); 1712 assert_mark_word_consistency(); 1713 1714 // check if the notification happened 1715 if (!WasNotified) { 1716 // no, it could be timeout or Thread.interrupt() or both 1717 // check for interrupt event, otherwise it is timeout 1718 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1719 THROW(vmSymbols::java_lang_InterruptedException()); 1720 } 1721 } 1722 1723 // NOTE: Spurious wake up will be consider as timeout. 1724 // Monitor notify has precedence over thread interrupt. 1725 } 1726 1727 1728 // Consider: 1729 // If the lock is cool (cxq == null && succ == null) and we're on an MP system 1730 // then instead of transferring a thread from the WaitSet to the EntryList 1731 // we might just dequeue a thread from the WaitSet and directly unpark() it. 1732 1733 void ObjectMonitor::INotify(JavaThread* current) { 1734 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify"); 1735 ObjectWaiter* iterator = DequeueWaiter(); 1736 if (iterator != nullptr) { 1737 guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant"); 1738 guarantee(iterator->_notified == 0, "invariant"); 1739 // Disposition - what might we do with iterator ? 1740 // a. add it directly to the EntryList - either tail (policy == 1) 1741 // or head (policy == 0). 1742 // b. push it onto the front of the _cxq (policy == 2). 1743 // For now we use (b). 1744 1745 iterator->TState = ObjectWaiter::TS_ENTER; 1746 1747 iterator->_notified = 1; 1748 iterator->_notifier_tid = JFR_THREAD_ID(current); 1749 1750 ObjectWaiter* list = _EntryList; 1751 if (list != nullptr) { 1752 assert(list->_prev == nullptr, "invariant"); 1753 assert(list->TState == ObjectWaiter::TS_ENTER, "invariant"); 1754 assert(list != iterator, "invariant"); 1755 } 1756 1757 // prepend to cxq 1758 if (list == nullptr) { 1759 iterator->_next = iterator->_prev = nullptr; 1760 _EntryList = iterator; 1761 } else { 1762 iterator->TState = ObjectWaiter::TS_CXQ; 1763 for (;;) { 1764 ObjectWaiter* front = _cxq; 1765 iterator->_next = front; 1766 if (Atomic::cmpxchg(&_cxq, front, iterator) == front) { 1767 break; 1768 } 1769 } 1770 } 1771 1772 // _WaitSetLock protects the wait queue, not the EntryList. We could 1773 // move the add-to-EntryList operation, above, outside the critical section 1774 // protected by _WaitSetLock. In practice that's not useful. With the 1775 // exception of wait() timeouts and interrupts the monitor owner 1776 // is the only thread that grabs _WaitSetLock. There's almost no contention 1777 // on _WaitSetLock so it's not profitable to reduce the length of the 1778 // critical section. 1779 1780 iterator->wait_reenter_begin(this); 1781 } 1782 Thread::SpinRelease(&_WaitSetLock); 1783 } 1784 1785 // Consider: a not-uncommon synchronization bug is to use notify() when 1786 // notifyAll() is more appropriate, potentially resulting in stranded 1787 // threads; this is one example of a lost wakeup. A useful diagnostic 1788 // option is to force all notify() operations to behave as notifyAll(). 1789 // 1790 // Note: We can also detect many such problems with a "minimum wait". 1791 // When the "minimum wait" is set to a small non-zero timeout value 1792 // and the program does not hang whereas it did absent "minimum wait", 1793 // that suggests a lost wakeup bug. 1794 1795 void ObjectMonitor::notify(TRAPS) { 1796 JavaThread* current = THREAD; 1797 CHECK_OWNER(); // Throws IMSE if not owner. 1798 if (_WaitSet == nullptr) { 1799 return; 1800 } 1801 DTRACE_MONITOR_PROBE(notify, this, object(), current); 1802 INotify(current); 1803 OM_PERFDATA_OP(Notifications, inc(1)); 1804 } 1805 1806 1807 // The current implementation of notifyAll() transfers the waiters one-at-a-time 1808 // from the waitset to the EntryList. This could be done more efficiently with a 1809 // single bulk transfer but in practice it's not time-critical. Beware too, 1810 // that in prepend-mode we invert the order of the waiters. Let's say that the 1811 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend 1812 // mode the waitset will be empty and the EntryList will be "DCBAXYZ". 1813 1814 void ObjectMonitor::notifyAll(TRAPS) { 1815 JavaThread* current = THREAD; 1816 CHECK_OWNER(); // Throws IMSE if not owner. 1817 if (_WaitSet == nullptr) { 1818 return; 1819 } 1820 1821 DTRACE_MONITOR_PROBE(notifyAll, this, object(), current); 1822 int tally = 0; 1823 while (_WaitSet != nullptr) { 1824 tally++; 1825 INotify(current); 1826 } 1827 1828 OM_PERFDATA_OP(Notifications, inc(tally)); 1829 } 1830 1831 // ----------------------------------------------------------------------------- 1832 // Adaptive Spinning Support 1833 // 1834 // Adaptive spin-then-block - rational spinning 1835 // 1836 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS 1837 // algorithm. On high order SMP systems it would be better to start with 1838 // a brief global spin and then revert to spinning locally. In the spirit of MCS/CLH, 1839 // a contending thread could enqueue itself on the cxq and then spin locally 1840 // on a thread-specific variable such as its ParkEvent._Event flag. 1841 // That's left as an exercise for the reader. Note that global spinning is 1842 // not problematic on Niagara, as the L2 cache serves the interconnect and 1843 // has both low latency and massive bandwidth. 1844 // 1845 // Broadly, we can fix the spin frequency -- that is, the % of contended lock 1846 // acquisition attempts where we opt to spin -- at 100% and vary the spin count 1847 // (duration) or we can fix the count at approximately the duration of 1848 // a context switch and vary the frequency. Of course we could also 1849 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor. 1850 // For a description of 'Adaptive spin-then-block mutual exclusion in 1851 // multi-threaded processing,' see U.S. Pat. No. 8046758. 1852 // 1853 // This implementation varies the duration "D", where D varies with 1854 // the success rate of recent spin attempts. (D is capped at approximately 1855 // length of a round-trip context switch). The success rate for recent 1856 // spin attempts is a good predictor of the success rate of future spin 1857 // attempts. The mechanism adapts automatically to varying critical 1858 // section length (lock modality), system load and degree of parallelism. 1859 // D is maintained per-monitor in _SpinDuration and is initialized 1860 // optimistically. Spin frequency is fixed at 100%. 1861 // 1862 // Note that _SpinDuration is volatile, but we update it without locks 1863 // or atomics. The code is designed so that _SpinDuration stays within 1864 // a reasonable range even in the presence of races. The arithmetic 1865 // operations on _SpinDuration are closed over the domain of legal values, 1866 // so at worst a race will install and older but still legal value. 1867 // At the very worst this introduces some apparent non-determinism. 1868 // We might spin when we shouldn't or vice-versa, but since the spin 1869 // count are relatively short, even in the worst case, the effect is harmless. 1870 // 1871 // Care must be taken that a low "D" value does not become an 1872 // an absorbing state. Transient spinning failures -- when spinning 1873 // is overall profitable -- should not cause the system to converge 1874 // on low "D" values. We want spinning to be stable and predictable 1875 // and fairly responsive to change and at the same time we don't want 1876 // it to oscillate, become metastable, be "too" non-deterministic, 1877 // or converge on or enter undesirable stable absorbing states. 1878 // 1879 // We implement a feedback-based control system -- using past behavior 1880 // to predict future behavior. We face two issues: (a) if the 1881 // input signal is random then the spin predictor won't provide optimal 1882 // results, and (b) if the signal frequency is too high then the control 1883 // system, which has some natural response lag, will "chase" the signal. 1884 // (b) can arise from multimodal lock hold times. Transient preemption 1885 // can also result in apparent bimodal lock hold times. 1886 // Although sub-optimal, neither condition is particularly harmful, as 1887 // in the worst-case we'll spin when we shouldn't or vice-versa. 1888 // The maximum spin duration is rather short so the failure modes aren't bad. 1889 // To be conservative, I've tuned the gain in system to bias toward 1890 // _not spinning. Relatedly, the system can sometimes enter a mode where it 1891 // "rings" or oscillates between spinning and not spinning. This happens 1892 // when spinning is just on the cusp of profitability, however, so the 1893 // situation is not dire. The state is benign -- there's no need to add 1894 // hysteresis control to damp the transition rate between spinning and 1895 // not spinning. 1896 1897 int ObjectMonitor::Knob_SpinLimit = 5000; // derived by an external tool 1898 1899 static int Knob_Bonus = 100; // spin success bonus 1900 static int Knob_Penalty = 200; // spin failure penalty 1901 static int Knob_Poverty = 1000; 1902 static int Knob_FixedSpin = 0; 1903 static int Knob_PreSpin = 10; // 20-100 likely better, but it's not better in my testing. 1904 1905 inline static int adjust_up(int spin_duration) { 1906 int x = spin_duration; 1907 if (x < ObjectMonitor::Knob_SpinLimit) { 1908 if (x < Knob_Poverty) { 1909 x = Knob_Poverty; 1910 } 1911 return x + Knob_Bonus; 1912 } else { 1913 return spin_duration; 1914 } 1915 } 1916 1917 inline static int adjust_down(int spin_duration) { 1918 // TODO: Use an AIMD-like policy to adjust _SpinDuration. 1919 // AIMD is globally stable. 1920 int x = spin_duration; 1921 if (x > 0) { 1922 // Consider an AIMD scheme like: x -= (x >> 3) + 100 1923 // This is globally sample and tends to damp the response. 1924 x -= Knob_Penalty; 1925 if (x < 0) { x = 0; } 1926 return x; 1927 } else { 1928 return spin_duration; 1929 } 1930 } 1931 1932 bool ObjectMonitor::short_fixed_spin(JavaThread* current, int spin_count, bool adapt) { 1933 for (int ctr = 0; ctr < spin_count; ctr++) { 1934 TryLockResult status = TryLock(current); 1935 if (status == TryLockResult::Success) { 1936 if (adapt) { 1937 _SpinDuration = adjust_up(_SpinDuration); 1938 } 1939 return true; 1940 } else if (status == TryLockResult::Interference) { 1941 break; 1942 } 1943 SpinPause(); 1944 } 1945 return false; 1946 } 1947 1948 // Spinning: Fixed frequency (100%), vary duration 1949 bool ObjectMonitor::TrySpin(JavaThread* current) { 1950 1951 // Dumb, brutal spin. Good for comparative measurements against adaptive spinning. 1952 int knob_fixed_spin = Knob_FixedSpin; // 0 (don't spin: default), 2000 good test 1953 if (knob_fixed_spin > 0) { 1954 return short_fixed_spin(current, knob_fixed_spin, false); 1955 } 1956 1957 // Admission control - verify preconditions for spinning 1958 // 1959 // We always spin a little bit, just to prevent _SpinDuration == 0 from 1960 // becoming an absorbing state. Put another way, we spin briefly to 1961 // sample, just in case the system load, parallelism, contention, or lock 1962 // modality changed. 1963 1964 int knob_pre_spin = Knob_PreSpin; // 10 (default), 100, 1000 or 2000 1965 if (short_fixed_spin(current, knob_pre_spin, true)) { 1966 return true; 1967 } 1968 1969 // 1970 // Consider the following alternative: 1971 // Periodically set _SpinDuration = _SpinLimit and try a long/full 1972 // spin attempt. "Periodically" might mean after a tally of 1973 // the # of failed spin attempts (or iterations) reaches some threshold. 1974 // This takes us into the realm of 1-out-of-N spinning, where we 1975 // hold the duration constant but vary the frequency. 1976 1977 int ctr = _SpinDuration; 1978 if (ctr <= 0) return false; 1979 1980 // We're good to spin ... spin ingress. 1981 // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades 1982 // when preparing to LD...CAS _owner, etc and the CAS is likely 1983 // to succeed. 1984 if (_succ == nullptr) { 1985 _succ = current; 1986 } 1987 Thread* prv = nullptr; 1988 1989 // There are three ways to exit the following loop: 1990 // 1. A successful spin where this thread has acquired the lock. 1991 // 2. Spin failure with prejudice 1992 // 3. Spin failure without prejudice 1993 1994 while (--ctr >= 0) { 1995 1996 // Periodic polling -- Check for pending GC 1997 // Threads may spin while they're unsafe. 1998 // We don't want spinning threads to delay the JVM from reaching 1999 // a stop-the-world safepoint or to steal cycles from GC. 2000 // If we detect a pending safepoint we abort in order that 2001 // (a) this thread, if unsafe, doesn't delay the safepoint, and (b) 2002 // this thread, if safe, doesn't steal cycles from GC. 2003 // This is in keeping with the "no loitering in runtime" rule. 2004 // We periodically check to see if there's a safepoint pending. 2005 if ((ctr & 0xFF) == 0) { 2006 // Can't call SafepointMechanism::should_process() since that 2007 // might update the poll values and we could be in a thread_blocked 2008 // state here which is not allowed so just check the poll. 2009 if (SafepointMechanism::local_poll_armed(current)) { 2010 break; 2011 } 2012 SpinPause(); 2013 } 2014 2015 // Probe _owner with TATAS 2016 // If this thread observes the monitor transition or flicker 2017 // from locked to unlocked to locked, then the odds that this 2018 // thread will acquire the lock in this spin attempt go down 2019 // considerably. The same argument applies if the CAS fails 2020 // or if we observe _owner change from one non-null value to 2021 // another non-null value. In such cases we might abort 2022 // the spin without prejudice or apply a "penalty" to the 2023 // spin count-down variable "ctr", reducing it by 100, say. 2024 2025 JavaThread* ox = static_cast<JavaThread*>(owner_raw()); 2026 if (ox == nullptr) { 2027 ox = static_cast<JavaThread*>(try_set_owner_from(nullptr, current)); 2028 if (ox == nullptr) { 2029 // The CAS succeeded -- this thread acquired ownership 2030 // Take care of some bookkeeping to exit spin state. 2031 if (_succ == current) { 2032 _succ = nullptr; 2033 } 2034 2035 // Increase _SpinDuration : 2036 // The spin was successful (profitable) so we tend toward 2037 // longer spin attempts in the future. 2038 // CONSIDER: factor "ctr" into the _SpinDuration adjustment. 2039 // If we acquired the lock early in the spin cycle it 2040 // makes sense to increase _SpinDuration proportionally. 2041 // Note that we don't clamp SpinDuration precisely at SpinLimit. 2042 _SpinDuration = adjust_up(_SpinDuration); 2043 return true; 2044 } 2045 2046 // The CAS failed ... we can take any of the following actions: 2047 // * penalize: ctr -= CASPenalty 2048 // * exit spin with prejudice -- abort without adapting spinner 2049 // * exit spin without prejudice. 2050 // * Since CAS is high-latency, retry again immediately. 2051 break; 2052 } 2053 2054 // Did lock ownership change hands ? 2055 if (ox != prv && prv != nullptr) { 2056 break; 2057 } 2058 prv = ox; 2059 2060 if (_succ == nullptr) { 2061 _succ = current; 2062 } 2063 } 2064 2065 // Spin failed with prejudice -- reduce _SpinDuration. 2066 if (ctr < 0) { 2067 _SpinDuration = adjust_down(_SpinDuration); 2068 } 2069 2070 if (_succ == current) { 2071 _succ = nullptr; 2072 // Invariant: after setting succ=null a contending thread 2073 // must recheck-retry _owner before parking. This usually happens 2074 // in the normal usage of TrySpin(), but it's safest 2075 // to make TrySpin() as foolproof as possible. 2076 OrderAccess::fence(); 2077 if (TryLock(current) == TryLockResult::Success) { 2078 return true; 2079 } 2080 } 2081 2082 return false; 2083 } 2084 2085 2086 // ----------------------------------------------------------------------------- 2087 // WaitSet management ... 2088 2089 ObjectWaiter::ObjectWaiter(JavaThread* current) { 2090 _next = nullptr; 2091 _prev = nullptr; 2092 _notified = 0; 2093 _notifier_tid = 0; 2094 TState = TS_RUN; 2095 _thread = current; 2096 _event = _thread->_ParkEvent; 2097 _active = false; 2098 assert(_event != nullptr, "invariant"); 2099 } 2100 2101 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) { 2102 _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon); 2103 } 2104 2105 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) { 2106 JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active); 2107 } 2108 2109 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) { 2110 assert(node != nullptr, "should not add null node"); 2111 assert(node->_prev == nullptr, "node already in list"); 2112 assert(node->_next == nullptr, "node already in list"); 2113 // put node at end of queue (circular doubly linked list) 2114 if (_WaitSet == nullptr) { 2115 _WaitSet = node; 2116 node->_prev = node; 2117 node->_next = node; 2118 } else { 2119 ObjectWaiter* head = _WaitSet; 2120 ObjectWaiter* tail = head->_prev; 2121 assert(tail->_next == head, "invariant check"); 2122 tail->_next = node; 2123 head->_prev = node; 2124 node->_next = head; 2125 node->_prev = tail; 2126 } 2127 } 2128 2129 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() { 2130 // dequeue the very first waiter 2131 ObjectWaiter* waiter = _WaitSet; 2132 if (waiter) { 2133 DequeueSpecificWaiter(waiter); 2134 } 2135 return waiter; 2136 } 2137 2138 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) { 2139 assert(node != nullptr, "should not dequeue nullptr node"); 2140 assert(node->_prev != nullptr, "node already removed from list"); 2141 assert(node->_next != nullptr, "node already removed from list"); 2142 // when the waiter has woken up because of interrupt, 2143 // timeout or other spurious wake-up, dequeue the 2144 // waiter from waiting list 2145 ObjectWaiter* next = node->_next; 2146 if (next == node) { 2147 assert(node->_prev == node, "invariant check"); 2148 _WaitSet = nullptr; 2149 } else { 2150 ObjectWaiter* prev = node->_prev; 2151 assert(prev->_next == node, "invariant check"); 2152 assert(next->_prev == node, "invariant check"); 2153 next->_prev = prev; 2154 prev->_next = next; 2155 if (_WaitSet == node) { 2156 _WaitSet = next; 2157 } 2158 } 2159 node->_next = nullptr; 2160 node->_prev = nullptr; 2161 } 2162 2163 // ----------------------------------------------------------------------------- 2164 // PerfData support 2165 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts = nullptr; 2166 PerfCounter * ObjectMonitor::_sync_FutileWakeups = nullptr; 2167 PerfCounter * ObjectMonitor::_sync_Parks = nullptr; 2168 PerfCounter * ObjectMonitor::_sync_Notifications = nullptr; 2169 PerfCounter * ObjectMonitor::_sync_Inflations = nullptr; 2170 PerfCounter * ObjectMonitor::_sync_Deflations = nullptr; 2171 PerfLongVariable * ObjectMonitor::_sync_MonExtant = nullptr; 2172 2173 // One-shot global initialization for the sync subsystem. 2174 // We could also defer initialization and initialize on-demand 2175 // the first time we call ObjectSynchronizer::inflate(). 2176 // Initialization would be protected - like so many things - by 2177 // the MonitorCache_lock. 2178 2179 void ObjectMonitor::Initialize() { 2180 assert(!InitDone, "invariant"); 2181 2182 if (!os::is_MP()) { 2183 Knob_SpinLimit = 0; 2184 Knob_PreSpin = 0; 2185 Knob_FixedSpin = -1; 2186 } 2187 2188 if (UsePerfData) { 2189 EXCEPTION_MARK; 2190 #define NEWPERFCOUNTER(n) \ 2191 { \ 2192 n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events, \ 2193 CHECK); \ 2194 } 2195 #define NEWPERFVARIABLE(n) \ 2196 { \ 2197 n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events, \ 2198 CHECK); \ 2199 } 2200 NEWPERFCOUNTER(_sync_Inflations); 2201 NEWPERFCOUNTER(_sync_Deflations); 2202 NEWPERFCOUNTER(_sync_ContendedLockAttempts); 2203 NEWPERFCOUNTER(_sync_FutileWakeups); 2204 NEWPERFCOUNTER(_sync_Parks); 2205 NEWPERFCOUNTER(_sync_Notifications); 2206 NEWPERFVARIABLE(_sync_MonExtant); 2207 #undef NEWPERFCOUNTER 2208 #undef NEWPERFVARIABLE 2209 } 2210 2211 _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer); 2212 2213 DEBUG_ONLY(InitDone = true;) 2214 } 2215 2216 void ObjectMonitor::print_on(outputStream* st) const { 2217 // The minimal things to print for markWord printing, more can be added for debugging and logging. 2218 st->print("{contentions=0x%08x,waiters=0x%08x" 2219 ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}", 2220 contentions(), waiters(), recursions(), 2221 p2i(owner())); 2222 } 2223 void ObjectMonitor::print() const { print_on(tty); } 2224 2225 #ifdef ASSERT 2226 // Print the ObjectMonitor like a debugger would: 2227 // 2228 // (ObjectMonitor) 0x00007fdfb6012e40 = { 2229 // _metadata = 0x0000000000000001 2230 // _object = 0x000000070ff45fd0 2231 // _pad_buf0 = { 2232 // [0] = '\0' 2233 // ... 2234 // [43] = '\0' 2235 // } 2236 // _owner = 0x0000000000000000 2237 // _previous_owner_tid = 0 2238 // _pad_buf1 = { 2239 // [0] = '\0' 2240 // ... 2241 // [47] = '\0' 2242 // } 2243 // _next_om = 0x0000000000000000 2244 // _recursions = 0 2245 // _EntryList = 0x0000000000000000 2246 // _cxq = 0x0000000000000000 2247 // _succ = 0x0000000000000000 2248 // _Responsible = 0x0000000000000000 2249 // _SpinDuration = 5000 2250 // _contentions = 0 2251 // _WaitSet = 0x0000700009756248 2252 // _waiters = 1 2253 // _WaitSetLock = 0 2254 // } 2255 // 2256 void ObjectMonitor::print_debug_style_on(outputStream* st) const { 2257 st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this)); 2258 st->print_cr(" _metadata = " INTPTR_FORMAT, _metadata); 2259 st->print_cr(" _object = " INTPTR_FORMAT, p2i(object_peek())); 2260 st->print_cr(" _pad_buf0 = {"); 2261 st->print_cr(" [0] = '\\0'"); 2262 st->print_cr(" ..."); 2263 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1); 2264 st->print_cr(" }"); 2265 st->print_cr(" _owner = " INTPTR_FORMAT, p2i(owner_raw())); 2266 st->print_cr(" _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid); 2267 st->print_cr(" _pad_buf1 = {"); 2268 st->print_cr(" [0] = '\\0'"); 2269 st->print_cr(" ..."); 2270 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1); 2271 st->print_cr(" }"); 2272 st->print_cr(" _next_om = " INTPTR_FORMAT, p2i(next_om())); 2273 st->print_cr(" _recursions = " INTX_FORMAT, _recursions); 2274 st->print_cr(" _EntryList = " INTPTR_FORMAT, p2i(_EntryList)); 2275 st->print_cr(" _cxq = " INTPTR_FORMAT, p2i(_cxq)); 2276 st->print_cr(" _succ = " INTPTR_FORMAT, p2i(_succ)); 2277 st->print_cr(" _Responsible = " INTPTR_FORMAT, p2i(_Responsible)); 2278 st->print_cr(" _SpinDuration = %d", _SpinDuration); 2279 st->print_cr(" _contentions = %d", contentions()); 2280 st->print_cr(" _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet)); 2281 st->print_cr(" _waiters = %d", _waiters); 2282 st->print_cr(" _WaitSetLock = %d", _WaitSetLock); 2283 st->print_cr("}"); 2284 } 2285 #endif --- EOF ---