1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jvm.h" 46 #include "jfr/jfrEvents.hpp" 47 #include "logging/log.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "metaprogramming/primitiveConversions.hpp" 51 #include "oops/klass.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/forte.hpp" 56 #include "prims/jvmtiExport.hpp" 57 #include "prims/jvmtiThreadState.hpp" 58 #include "prims/methodHandles.hpp" 59 #include "prims/nativeLookup.hpp" 60 #include "runtime/arguments.hpp" 61 #include "runtime/atomic.hpp" 62 #include "runtime/basicLock.inline.hpp" 63 #include "runtime/frame.inline.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/init.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/java.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/jniHandles.inline.hpp" 70 #include "runtime/perfData.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/stackWatermarkSet.hpp" 73 #include "runtime/stubRoutines.hpp" 74 #include "runtime/synchronizer.inline.hpp" 75 #include "runtime/timerTrace.hpp" 76 #include "runtime/vframe.inline.hpp" 77 #include "runtime/vframeArray.hpp" 78 #include "runtime/vm_version.hpp" 79 #include "utilities/copy.hpp" 80 #include "utilities/dtrace.hpp" 81 #include "utilities/events.hpp" 82 #include "utilities/globalDefinitions.hpp" 83 #include "utilities/resourceHash.hpp" 84 #include "utilities/macros.hpp" 85 #include "utilities/xmlstream.hpp" 86 #ifdef COMPILER1 87 #include "c1/c1_Runtime1.hpp" 88 #endif 89 #if INCLUDE_JFR 90 #include "jfr/jfr.inline.hpp" 91 #endif 92 93 // Shared runtime stub routines reside in their own unique blob with a 94 // single entry point 95 96 97 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 98 type SharedRuntime::BLOB_FIELD_NAME(name); 99 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 100 #undef SHARED_STUB_FIELD_DEFINE 101 102 nmethod* SharedRuntime::_cont_doYield_stub; 103 104 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 105 const char *SharedRuntime::_stub_names[] = { 106 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 107 }; 108 109 //----------------------------generate_stubs----------------------------------- 110 void SharedRuntime::generate_initial_stubs() { 111 // Build this early so it's available for the interpreter. 112 _throw_StackOverflowError_blob = 113 generate_throw_exception(SharedStubId::throw_StackOverflowError_id, 114 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 115 } 116 117 void SharedRuntime::generate_stubs() { 118 _wrong_method_blob = 119 generate_resolve_blob(SharedStubId::wrong_method_id, 120 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 121 _wrong_method_abstract_blob = 122 generate_resolve_blob(SharedStubId::wrong_method_abstract_id, 123 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 124 _ic_miss_blob = 125 generate_resolve_blob(SharedStubId::ic_miss_id, 126 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 127 _resolve_opt_virtual_call_blob = 128 generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id, 129 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 130 _resolve_virtual_call_blob = 131 generate_resolve_blob(SharedStubId::resolve_virtual_call_id, 132 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 133 _resolve_static_call_blob = 134 generate_resolve_blob(SharedStubId::resolve_static_call_id, 135 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 136 137 _throw_delayed_StackOverflowError_blob = 138 generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id, 139 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 140 141 _throw_AbstractMethodError_blob = 142 generate_throw_exception(SharedStubId::throw_AbstractMethodError_id, 143 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 144 145 _throw_IncompatibleClassChangeError_blob = 146 generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id, 147 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 148 149 _throw_NullPointerException_at_call_blob = 150 generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id, 151 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 152 153 #if COMPILER2_OR_JVMCI 154 // Vectors are generated only by C2 and JVMCI. 155 bool support_wide = is_wide_vector(MaxVectorSize); 156 if (support_wide) { 157 _polling_page_vectors_safepoint_handler_blob = 158 generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id, 159 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 160 } 161 #endif // COMPILER2_OR_JVMCI 162 _polling_page_safepoint_handler_blob = 163 generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id, 164 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 165 _polling_page_return_handler_blob = 166 generate_handler_blob(SharedStubId::polling_page_return_handler_id, 167 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 168 169 generate_deopt_blob(); 170 } 171 172 void SharedRuntime::init_adapter_library() { 173 AdapterHandlerLibrary::initialize(); 174 } 175 176 #if INCLUDE_JFR 177 //------------------------------generate jfr runtime stubs ------ 178 void SharedRuntime::generate_jfr_stubs() { 179 ResourceMark rm; 180 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 181 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 182 183 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 184 _jfr_return_lease_blob = generate_jfr_return_lease(); 185 } 186 187 #endif // INCLUDE_JFR 188 189 #include <math.h> 190 191 // Implementation of SharedRuntime 192 193 #ifndef PRODUCT 194 // For statistics 195 uint SharedRuntime::_ic_miss_ctr = 0; 196 uint SharedRuntime::_wrong_method_ctr = 0; 197 uint SharedRuntime::_resolve_static_ctr = 0; 198 uint SharedRuntime::_resolve_virtual_ctr = 0; 199 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 200 uint SharedRuntime::_implicit_null_throws = 0; 201 uint SharedRuntime::_implicit_div0_throws = 0; 202 203 int64_t SharedRuntime::_nof_normal_calls = 0; 204 int64_t SharedRuntime::_nof_inlined_calls = 0; 205 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 206 int64_t SharedRuntime::_nof_static_calls = 0; 207 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 208 int64_t SharedRuntime::_nof_interface_calls = 0; 209 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 210 211 uint SharedRuntime::_new_instance_ctr=0; 212 uint SharedRuntime::_new_array_ctr=0; 213 uint SharedRuntime::_multi2_ctr=0; 214 uint SharedRuntime::_multi3_ctr=0; 215 uint SharedRuntime::_multi4_ctr=0; 216 uint SharedRuntime::_multi5_ctr=0; 217 uint SharedRuntime::_mon_enter_stub_ctr=0; 218 uint SharedRuntime::_mon_exit_stub_ctr=0; 219 uint SharedRuntime::_mon_enter_ctr=0; 220 uint SharedRuntime::_mon_exit_ctr=0; 221 uint SharedRuntime::_partial_subtype_ctr=0; 222 uint SharedRuntime::_jbyte_array_copy_ctr=0; 223 uint SharedRuntime::_jshort_array_copy_ctr=0; 224 uint SharedRuntime::_jint_array_copy_ctr=0; 225 uint SharedRuntime::_jlong_array_copy_ctr=0; 226 uint SharedRuntime::_oop_array_copy_ctr=0; 227 uint SharedRuntime::_checkcast_array_copy_ctr=0; 228 uint SharedRuntime::_unsafe_array_copy_ctr=0; 229 uint SharedRuntime::_generic_array_copy_ctr=0; 230 uint SharedRuntime::_slow_array_copy_ctr=0; 231 uint SharedRuntime::_find_handler_ctr=0; 232 uint SharedRuntime::_rethrow_ctr=0; 233 uint SharedRuntime::_unsafe_set_memory_ctr=0; 234 235 int SharedRuntime::_ICmiss_index = 0; 236 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 237 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 238 239 240 void SharedRuntime::trace_ic_miss(address at) { 241 for (int i = 0; i < _ICmiss_index; i++) { 242 if (_ICmiss_at[i] == at) { 243 _ICmiss_count[i]++; 244 return; 245 } 246 } 247 int index = _ICmiss_index++; 248 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 249 _ICmiss_at[index] = at; 250 _ICmiss_count[index] = 1; 251 } 252 253 void SharedRuntime::print_ic_miss_histogram() { 254 if (ICMissHistogram) { 255 tty->print_cr("IC Miss Histogram:"); 256 int tot_misses = 0; 257 for (int i = 0; i < _ICmiss_index; i++) { 258 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 259 tot_misses += _ICmiss_count[i]; 260 } 261 tty->print_cr("Total IC misses: %7d", tot_misses); 262 } 263 } 264 #endif // PRODUCT 265 266 267 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 268 return x * y; 269 JRT_END 270 271 272 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 273 if (x == min_jlong && y == CONST64(-1)) { 274 return x; 275 } else { 276 return x / y; 277 } 278 JRT_END 279 280 281 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 282 if (x == min_jlong && y == CONST64(-1)) { 283 return 0; 284 } else { 285 return x % y; 286 } 287 JRT_END 288 289 290 #ifdef _WIN64 291 const juint float_sign_mask = 0x7FFFFFFF; 292 const juint float_infinity = 0x7F800000; 293 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 294 const julong double_infinity = CONST64(0x7FF0000000000000); 295 #endif 296 297 #if !defined(X86) 298 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 299 #ifdef _WIN64 300 // 64-bit Windows on amd64 returns the wrong values for 301 // infinity operands. 302 juint xbits = PrimitiveConversions::cast<juint>(x); 303 juint ybits = PrimitiveConversions::cast<juint>(y); 304 // x Mod Infinity == x unless x is infinity 305 if (((xbits & float_sign_mask) != float_infinity) && 306 ((ybits & float_sign_mask) == float_infinity) ) { 307 return x; 308 } 309 return ((jfloat)fmod_winx64((double)x, (double)y)); 310 #else 311 return ((jfloat)fmod((double)x,(double)y)); 312 #endif 313 JRT_END 314 315 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 316 #ifdef _WIN64 317 julong xbits = PrimitiveConversions::cast<julong>(x); 318 julong ybits = PrimitiveConversions::cast<julong>(y); 319 // x Mod Infinity == x unless x is infinity 320 if (((xbits & double_sign_mask) != double_infinity) && 321 ((ybits & double_sign_mask) == double_infinity) ) { 322 return x; 323 } 324 return ((jdouble)fmod_winx64((double)x, (double)y)); 325 #else 326 return ((jdouble)fmod((double)x,(double)y)); 327 #endif 328 JRT_END 329 #endif // !X86 330 331 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 332 return (jfloat)x; 333 JRT_END 334 335 #ifdef __SOFTFP__ 336 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 337 return x + y; 338 JRT_END 339 340 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 341 return x - y; 342 JRT_END 343 344 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 345 return x * y; 346 JRT_END 347 348 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 349 return x / y; 350 JRT_END 351 352 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 353 return x + y; 354 JRT_END 355 356 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 357 return x - y; 358 JRT_END 359 360 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 361 return x * y; 362 JRT_END 363 364 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 365 return x / y; 366 JRT_END 367 368 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 369 return (jdouble)x; 370 JRT_END 371 372 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 373 return (jdouble)x; 374 JRT_END 375 376 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 377 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 378 JRT_END 379 380 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 381 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 382 JRT_END 383 384 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 385 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 386 JRT_END 387 388 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 389 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 390 JRT_END 391 392 // Functions to return the opposite of the aeabi functions for nan. 393 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 394 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 395 JRT_END 396 397 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 398 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 399 JRT_END 400 401 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 402 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 403 JRT_END 404 405 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 406 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 407 JRT_END 408 409 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 410 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 411 JRT_END 412 413 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 414 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 415 JRT_END 416 417 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 418 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 419 JRT_END 420 421 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 422 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 423 JRT_END 424 425 // Intrinsics make gcc generate code for these. 426 float SharedRuntime::fneg(float f) { 427 return -f; 428 } 429 430 double SharedRuntime::dneg(double f) { 431 return -f; 432 } 433 434 #endif // __SOFTFP__ 435 436 #if defined(__SOFTFP__) || defined(E500V2) 437 // Intrinsics make gcc generate code for these. 438 double SharedRuntime::dabs(double f) { 439 return (f <= (double)0.0) ? (double)0.0 - f : f; 440 } 441 442 #endif 443 444 #if defined(__SOFTFP__) 445 double SharedRuntime::dsqrt(double f) { 446 return sqrt(f); 447 } 448 #endif 449 450 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 451 if (g_isnan(x)) 452 return 0; 453 if (x >= (jfloat) max_jint) 454 return max_jint; 455 if (x <= (jfloat) min_jint) 456 return min_jint; 457 return (jint) x; 458 JRT_END 459 460 461 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 462 if (g_isnan(x)) 463 return 0; 464 if (x >= (jfloat) max_jlong) 465 return max_jlong; 466 if (x <= (jfloat) min_jlong) 467 return min_jlong; 468 return (jlong) x; 469 JRT_END 470 471 472 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 473 if (g_isnan(x)) 474 return 0; 475 if (x >= (jdouble) max_jint) 476 return max_jint; 477 if (x <= (jdouble) min_jint) 478 return min_jint; 479 return (jint) x; 480 JRT_END 481 482 483 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 484 if (g_isnan(x)) 485 return 0; 486 if (x >= (jdouble) max_jlong) 487 return max_jlong; 488 if (x <= (jdouble) min_jlong) 489 return min_jlong; 490 return (jlong) x; 491 JRT_END 492 493 494 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 495 return (jfloat)x; 496 JRT_END 497 498 499 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 500 return (jfloat)x; 501 JRT_END 502 503 504 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 505 return (jdouble)x; 506 JRT_END 507 508 509 // Exception handling across interpreter/compiler boundaries 510 // 511 // exception_handler_for_return_address(...) returns the continuation address. 512 // The continuation address is the entry point of the exception handler of the 513 // previous frame depending on the return address. 514 515 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 516 // Note: This is called when we have unwound the frame of the callee that did 517 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 518 // Notably, the stack is not walkable at this point, and hence the check must 519 // be deferred until later. Specifically, any of the handlers returned here in 520 // this function, will get dispatched to, and call deferred checks to 521 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 522 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 523 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 524 525 // Reset method handle flag. 526 current->set_is_method_handle_return(false); 527 528 #if INCLUDE_JVMCI 529 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 530 // and other exception handler continuations do not read it 531 current->set_exception_pc(nullptr); 532 #endif // INCLUDE_JVMCI 533 534 if (Continuation::is_return_barrier_entry(return_address)) { 535 return StubRoutines::cont_returnBarrierExc(); 536 } 537 538 // The fastest case first 539 CodeBlob* blob = CodeCache::find_blob(return_address); 540 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 541 if (nm != nullptr) { 542 // Set flag if return address is a method handle call site. 543 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 544 // native nmethods don't have exception handlers 545 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 546 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 547 if (nm->is_deopt_pc(return_address)) { 548 // If we come here because of a stack overflow, the stack may be 549 // unguarded. Reguard the stack otherwise if we return to the 550 // deopt blob and the stack bang causes a stack overflow we 551 // crash. 552 StackOverflow* overflow_state = current->stack_overflow_state(); 553 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 554 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 555 overflow_state->set_reserved_stack_activation(current->stack_base()); 556 } 557 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 558 // The deferred StackWatermarkSet::after_unwind check will be performed in 559 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 560 return SharedRuntime::deopt_blob()->unpack_with_exception(); 561 } else { 562 // The deferred StackWatermarkSet::after_unwind check will be performed in 563 // * OptoRuntime::handle_exception_C_helper for C2 code 564 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 565 return nm->exception_begin(); 566 } 567 } 568 569 // Entry code 570 if (StubRoutines::returns_to_call_stub(return_address)) { 571 // The deferred StackWatermarkSet::after_unwind check will be performed in 572 // JavaCallWrapper::~JavaCallWrapper 573 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before"); 574 return StubRoutines::catch_exception_entry(); 575 } 576 if (blob != nullptr && blob->is_upcall_stub()) { 577 return StubRoutines::upcall_stub_exception_handler(); 578 } 579 // Interpreted code 580 if (Interpreter::contains(return_address)) { 581 // The deferred StackWatermarkSet::after_unwind check will be performed in 582 // InterpreterRuntime::exception_handler_for_exception 583 return Interpreter::rethrow_exception_entry(); 584 } 585 586 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 587 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 588 589 #ifndef PRODUCT 590 { ResourceMark rm; 591 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 592 os::print_location(tty, (intptr_t)return_address); 593 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 594 tty->print_cr("b) other problem"); 595 } 596 #endif // PRODUCT 597 ShouldNotReachHere(); 598 return nullptr; 599 } 600 601 602 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 603 return raw_exception_handler_for_return_address(current, return_address); 604 JRT_END 605 606 607 address SharedRuntime::get_poll_stub(address pc) { 608 address stub; 609 // Look up the code blob 610 CodeBlob *cb = CodeCache::find_blob(pc); 611 612 // Should be an nmethod 613 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 614 615 // Look up the relocation information 616 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 617 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 618 619 #ifdef ASSERT 620 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 621 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 622 Disassembler::decode(cb); 623 fatal("Only polling locations are used for safepoint"); 624 } 625 #endif 626 627 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 628 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 629 if (at_poll_return) { 630 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 631 "polling page return stub not created yet"); 632 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 633 } else if (has_wide_vectors) { 634 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 635 "polling page vectors safepoint stub not created yet"); 636 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 637 } else { 638 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 639 "polling page safepoint stub not created yet"); 640 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 641 } 642 log_debug(safepoint)("... found polling page %s exception at pc = " 643 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 644 at_poll_return ? "return" : "loop", 645 (intptr_t)pc, (intptr_t)stub); 646 return stub; 647 } 648 649 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 650 if (JvmtiExport::can_post_on_exceptions()) { 651 vframeStream vfst(current, true); 652 methodHandle method = methodHandle(current, vfst.method()); 653 address bcp = method()->bcp_from(vfst.bci()); 654 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 655 } 656 657 #if INCLUDE_JVMCI 658 if (EnableJVMCI) { 659 vframeStream vfst(current, true); 660 methodHandle method = methodHandle(current, vfst.method()); 661 int bci = vfst.bci(); 662 MethodData* trap_mdo = method->method_data(); 663 if (trap_mdo != nullptr) { 664 // Set exception_seen if the exceptional bytecode is an invoke 665 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 666 if (call.is_valid()) { 667 ResourceMark rm(current); 668 669 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 670 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 671 672 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 673 if (pdata != nullptr && pdata->is_BitData()) { 674 BitData* bit_data = (BitData*) pdata; 675 bit_data->set_exception_seen(); 676 } 677 } 678 } 679 } 680 #endif 681 682 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 683 } 684 685 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 686 Handle h_exception = Exceptions::new_exception(current, name, message); 687 throw_and_post_jvmti_exception(current, h_exception); 688 } 689 690 #if INCLUDE_JVMTI 691 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 692 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 693 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 694 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 695 JNIHandles::destroy_local(vthread); 696 JRT_END 697 698 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 699 assert(hide == JNI_TRUE, "must be VTMS transition start"); 700 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 701 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 702 JNIHandles::destroy_local(vthread); 703 JRT_END 704 705 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 706 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 707 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 708 JNIHandles::destroy_local(vthread); 709 JRT_END 710 711 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 712 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 713 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 714 JNIHandles::destroy_local(vthread); 715 JRT_END 716 #endif // INCLUDE_JVMTI 717 718 // The interpreter code to call this tracing function is only 719 // called/generated when UL is on for redefine, class and has the right level 720 // and tags. Since obsolete methods are never compiled, we don't have 721 // to modify the compilers to generate calls to this function. 722 // 723 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 724 JavaThread* thread, Method* method)) 725 if (method->is_obsolete()) { 726 // We are calling an obsolete method, but this is not necessarily 727 // an error. Our method could have been redefined just after we 728 // fetched the Method* from the constant pool. 729 ResourceMark rm; 730 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 731 } 732 return 0; 733 JRT_END 734 735 // ret_pc points into caller; we are returning caller's exception handler 736 // for given exception 737 // Note that the implementation of this method assumes it's only called when an exception has actually occured 738 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 739 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 740 assert(nm != nullptr, "must exist"); 741 ResourceMark rm; 742 743 #if INCLUDE_JVMCI 744 if (nm->is_compiled_by_jvmci()) { 745 // lookup exception handler for this pc 746 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 747 ExceptionHandlerTable table(nm); 748 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 749 if (t != nullptr) { 750 return nm->code_begin() + t->pco(); 751 } else { 752 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 753 } 754 } 755 #endif // INCLUDE_JVMCI 756 757 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 758 // determine handler bci, if any 759 EXCEPTION_MARK; 760 761 int handler_bci = -1; 762 int scope_depth = 0; 763 if (!force_unwind) { 764 int bci = sd->bci(); 765 bool recursive_exception = false; 766 do { 767 bool skip_scope_increment = false; 768 // exception handler lookup 769 Klass* ek = exception->klass(); 770 methodHandle mh(THREAD, sd->method()); 771 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 772 if (HAS_PENDING_EXCEPTION) { 773 recursive_exception = true; 774 // We threw an exception while trying to find the exception handler. 775 // Transfer the new exception to the exception handle which will 776 // be set into thread local storage, and do another lookup for an 777 // exception handler for this exception, this time starting at the 778 // BCI of the exception handler which caused the exception to be 779 // thrown (bugs 4307310 and 4546590). Set "exception" reference 780 // argument to ensure that the correct exception is thrown (4870175). 781 recursive_exception_occurred = true; 782 exception = Handle(THREAD, PENDING_EXCEPTION); 783 CLEAR_PENDING_EXCEPTION; 784 if (handler_bci >= 0) { 785 bci = handler_bci; 786 handler_bci = -1; 787 skip_scope_increment = true; 788 } 789 } 790 else { 791 recursive_exception = false; 792 } 793 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 794 sd = sd->sender(); 795 if (sd != nullptr) { 796 bci = sd->bci(); 797 } 798 ++scope_depth; 799 } 800 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 801 } 802 803 // found handling method => lookup exception handler 804 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 805 806 ExceptionHandlerTable table(nm); 807 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 808 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 809 // Allow abbreviated catch tables. The idea is to allow a method 810 // to materialize its exceptions without committing to the exact 811 // routing of exceptions. In particular this is needed for adding 812 // a synthetic handler to unlock monitors when inlining 813 // synchronized methods since the unlock path isn't represented in 814 // the bytecodes. 815 t = table.entry_for(catch_pco, -1, 0); 816 } 817 818 #ifdef COMPILER1 819 if (t == nullptr && nm->is_compiled_by_c1()) { 820 assert(nm->unwind_handler_begin() != nullptr, ""); 821 return nm->unwind_handler_begin(); 822 } 823 #endif 824 825 if (t == nullptr) { 826 ttyLocker ttyl; 827 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 828 tty->print_cr(" Exception:"); 829 exception->print(); 830 tty->cr(); 831 tty->print_cr(" Compiled exception table :"); 832 table.print(); 833 nm->print(); 834 nm->print_code(); 835 guarantee(false, "missing exception handler"); 836 return nullptr; 837 } 838 839 if (handler_bci != -1) { // did we find a handler in this method? 840 sd->method()->set_exception_handler_entered(handler_bci); // profile 841 } 842 return nm->code_begin() + t->pco(); 843 } 844 845 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 846 // These errors occur only at call sites 847 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 848 JRT_END 849 850 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 851 // These errors occur only at call sites 852 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 853 JRT_END 854 855 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 856 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 857 JRT_END 858 859 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 860 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 861 JRT_END 862 863 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 864 // This entry point is effectively only used for NullPointerExceptions which occur at inline 865 // cache sites (when the callee activation is not yet set up) so we are at a call site 866 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 867 JRT_END 868 869 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 870 throw_StackOverflowError_common(current, false); 871 JRT_END 872 873 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 874 throw_StackOverflowError_common(current, true); 875 JRT_END 876 877 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 878 // We avoid using the normal exception construction in this case because 879 // it performs an upcall to Java, and we're already out of stack space. 880 JavaThread* THREAD = current; // For exception macros. 881 Klass* k = vmClasses::StackOverflowError_klass(); 882 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 883 if (delayed) { 884 java_lang_Throwable::set_message(exception_oop, 885 Universe::delayed_stack_overflow_error_message()); 886 } 887 Handle exception (current, exception_oop); 888 if (StackTraceInThrowable) { 889 java_lang_Throwable::fill_in_stack_trace(exception); 890 } 891 // Remove the ScopedValue bindings in case we got a 892 // StackOverflowError while we were trying to remove ScopedValue 893 // bindings. 894 current->clear_scopedValueBindings(); 895 // Increment counter for hs_err file reporting 896 Atomic::inc(&Exceptions::_stack_overflow_errors); 897 throw_and_post_jvmti_exception(current, exception); 898 } 899 900 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 901 address pc, 902 ImplicitExceptionKind exception_kind) 903 { 904 address target_pc = nullptr; 905 906 if (Interpreter::contains(pc)) { 907 switch (exception_kind) { 908 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 909 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 910 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 911 default: ShouldNotReachHere(); 912 } 913 } else { 914 switch (exception_kind) { 915 case STACK_OVERFLOW: { 916 // Stack overflow only occurs upon frame setup; the callee is 917 // going to be unwound. Dispatch to a shared runtime stub 918 // which will cause the StackOverflowError to be fabricated 919 // and processed. 920 // Stack overflow should never occur during deoptimization: 921 // the compiled method bangs the stack by as much as the 922 // interpreter would need in case of a deoptimization. The 923 // deoptimization blob and uncommon trap blob bang the stack 924 // in a debug VM to verify the correctness of the compiled 925 // method stack banging. 926 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 927 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 928 return SharedRuntime::throw_StackOverflowError_entry(); 929 } 930 931 case IMPLICIT_NULL: { 932 if (VtableStubs::contains(pc)) { 933 // We haven't yet entered the callee frame. Fabricate an 934 // exception and begin dispatching it in the caller. Since 935 // the caller was at a call site, it's safe to destroy all 936 // caller-saved registers, as these entry points do. 937 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 938 939 // If vt_stub is null, then return null to signal handler to report the SEGV error. 940 if (vt_stub == nullptr) return nullptr; 941 942 if (vt_stub->is_abstract_method_error(pc)) { 943 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 944 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 945 // Instead of throwing the abstract method error here directly, we re-resolve 946 // and will throw the AbstractMethodError during resolve. As a result, we'll 947 // get a more detailed error message. 948 return SharedRuntime::get_handle_wrong_method_stub(); 949 } else { 950 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 951 // Assert that the signal comes from the expected location in stub code. 952 assert(vt_stub->is_null_pointer_exception(pc), 953 "obtained signal from unexpected location in stub code"); 954 return SharedRuntime::throw_NullPointerException_at_call_entry(); 955 } 956 } else { 957 CodeBlob* cb = CodeCache::find_blob(pc); 958 959 // If code blob is null, then return null to signal handler to report the SEGV error. 960 if (cb == nullptr) return nullptr; 961 962 // Exception happened in CodeCache. Must be either: 963 // 1. Inline-cache check in C2I handler blob, 964 // 2. Inline-cache check in nmethod, or 965 // 3. Implicit null exception in nmethod 966 967 if (!cb->is_nmethod()) { 968 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 969 if (!is_in_blob) { 970 // Allow normal crash reporting to handle this 971 return nullptr; 972 } 973 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 974 // There is no handler here, so we will simply unwind. 975 return SharedRuntime::throw_NullPointerException_at_call_entry(); 976 } 977 978 // Otherwise, it's a compiled method. Consult its exception handlers. 979 nmethod* nm = cb->as_nmethod(); 980 if (nm->inlinecache_check_contains(pc)) { 981 // exception happened inside inline-cache check code 982 // => the nmethod is not yet active (i.e., the frame 983 // is not set up yet) => use return address pushed by 984 // caller => don't push another return address 985 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 986 return SharedRuntime::throw_NullPointerException_at_call_entry(); 987 } 988 989 if (nm->method()->is_method_handle_intrinsic()) { 990 // exception happened inside MH dispatch code, similar to a vtable stub 991 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 992 return SharedRuntime::throw_NullPointerException_at_call_entry(); 993 } 994 995 #ifndef PRODUCT 996 _implicit_null_throws++; 997 #endif 998 target_pc = nm->continuation_for_implicit_null_exception(pc); 999 // If there's an unexpected fault, target_pc might be null, 1000 // in which case we want to fall through into the normal 1001 // error handling code. 1002 } 1003 1004 break; // fall through 1005 } 1006 1007 1008 case IMPLICIT_DIVIDE_BY_ZERO: { 1009 nmethod* nm = CodeCache::find_nmethod(pc); 1010 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1011 #ifndef PRODUCT 1012 _implicit_div0_throws++; 1013 #endif 1014 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1015 // If there's an unexpected fault, target_pc might be null, 1016 // in which case we want to fall through into the normal 1017 // error handling code. 1018 break; // fall through 1019 } 1020 1021 default: ShouldNotReachHere(); 1022 } 1023 1024 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1025 1026 if (exception_kind == IMPLICIT_NULL) { 1027 #ifndef PRODUCT 1028 // for AbortVMOnException flag 1029 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1030 #endif //PRODUCT 1031 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1032 } else { 1033 #ifndef PRODUCT 1034 // for AbortVMOnException flag 1035 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1036 #endif //PRODUCT 1037 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1038 } 1039 return target_pc; 1040 } 1041 1042 ShouldNotReachHere(); 1043 return nullptr; 1044 } 1045 1046 1047 /** 1048 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1049 * installed in the native function entry of all native Java methods before 1050 * they get linked to their actual native methods. 1051 * 1052 * \note 1053 * This method actually never gets called! The reason is because 1054 * the interpreter's native entries call NativeLookup::lookup() which 1055 * throws the exception when the lookup fails. The exception is then 1056 * caught and forwarded on the return from NativeLookup::lookup() call 1057 * before the call to the native function. This might change in the future. 1058 */ 1059 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1060 { 1061 // We return a bad value here to make sure that the exception is 1062 // forwarded before we look at the return value. 1063 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1064 } 1065 JNI_END 1066 1067 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1068 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1069 } 1070 1071 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1072 #if INCLUDE_JVMCI 1073 if (!obj->klass()->has_finalizer()) { 1074 return; 1075 } 1076 #endif // INCLUDE_JVMCI 1077 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1078 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1079 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1080 JRT_END 1081 1082 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1083 assert(thread != nullptr, "No thread"); 1084 if (thread == nullptr) { 1085 return 0; 1086 } 1087 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1088 "current cannot touch oops after its GC barrier is detached."); 1089 oop obj = thread->threadObj(); 1090 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1091 } 1092 1093 /** 1094 * This function ought to be a void function, but cannot be because 1095 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1096 * 6254741. Once that is fixed we can remove the dummy return value. 1097 */ 1098 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1099 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1100 } 1101 1102 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1103 return dtrace_object_alloc(thread, o, o->size()); 1104 } 1105 1106 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1107 assert(DTraceAllocProbes, "wrong call"); 1108 Klass* klass = o->klass(); 1109 Symbol* name = klass->name(); 1110 HOTSPOT_OBJECT_ALLOC( 1111 get_java_tid(thread), 1112 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1113 return 0; 1114 } 1115 1116 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1117 JavaThread* current, Method* method)) 1118 assert(current == JavaThread::current(), "pre-condition"); 1119 1120 assert(DTraceMethodProbes, "wrong call"); 1121 Symbol* kname = method->klass_name(); 1122 Symbol* name = method->name(); 1123 Symbol* sig = method->signature(); 1124 HOTSPOT_METHOD_ENTRY( 1125 get_java_tid(current), 1126 (char *) kname->bytes(), kname->utf8_length(), 1127 (char *) name->bytes(), name->utf8_length(), 1128 (char *) sig->bytes(), sig->utf8_length()); 1129 return 0; 1130 JRT_END 1131 1132 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1133 JavaThread* current, Method* method)) 1134 assert(current == JavaThread::current(), "pre-condition"); 1135 assert(DTraceMethodProbes, "wrong call"); 1136 Symbol* kname = method->klass_name(); 1137 Symbol* name = method->name(); 1138 Symbol* sig = method->signature(); 1139 HOTSPOT_METHOD_RETURN( 1140 get_java_tid(current), 1141 (char *) kname->bytes(), kname->utf8_length(), 1142 (char *) name->bytes(), name->utf8_length(), 1143 (char *) sig->bytes(), sig->utf8_length()); 1144 return 0; 1145 JRT_END 1146 1147 1148 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1149 // for a call current in progress, i.e., arguments has been pushed on stack 1150 // put callee has not been invoked yet. Used by: resolve virtual/static, 1151 // vtable updates, etc. Caller frame must be compiled. 1152 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1153 JavaThread* current = THREAD; 1154 ResourceMark rm(current); 1155 1156 // last java frame on stack (which includes native call frames) 1157 vframeStream vfst(current, true); // Do not skip and javaCalls 1158 1159 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1160 } 1161 1162 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1163 nmethod* caller = vfst.nm(); 1164 1165 address pc = vfst.frame_pc(); 1166 { // Get call instruction under lock because another thread may be busy patching it. 1167 CompiledICLocker ic_locker(caller); 1168 return caller->attached_method_before_pc(pc); 1169 } 1170 return nullptr; 1171 } 1172 1173 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1174 // for a call current in progress, i.e., arguments has been pushed on stack 1175 // but callee has not been invoked yet. Caller frame must be compiled. 1176 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1177 CallInfo& callinfo, TRAPS) { 1178 Handle receiver; 1179 Handle nullHandle; // create a handy null handle for exception returns 1180 JavaThread* current = THREAD; 1181 1182 assert(!vfst.at_end(), "Java frame must exist"); 1183 1184 // Find caller and bci from vframe 1185 methodHandle caller(current, vfst.method()); 1186 int bci = vfst.bci(); 1187 1188 if (caller->is_continuation_enter_intrinsic()) { 1189 bc = Bytecodes::_invokestatic; 1190 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1191 return receiver; 1192 } 1193 1194 Bytecode_invoke bytecode(caller, bci); 1195 int bytecode_index = bytecode.index(); 1196 bc = bytecode.invoke_code(); 1197 1198 methodHandle attached_method(current, extract_attached_method(vfst)); 1199 if (attached_method.not_null()) { 1200 Method* callee = bytecode.static_target(CHECK_NH); 1201 vmIntrinsics::ID id = callee->intrinsic_id(); 1202 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1203 // it attaches statically resolved method to the call site. 1204 if (MethodHandles::is_signature_polymorphic(id) && 1205 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1206 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1207 1208 // Adjust invocation mode according to the attached method. 1209 switch (bc) { 1210 case Bytecodes::_invokevirtual: 1211 if (attached_method->method_holder()->is_interface()) { 1212 bc = Bytecodes::_invokeinterface; 1213 } 1214 break; 1215 case Bytecodes::_invokeinterface: 1216 if (!attached_method->method_holder()->is_interface()) { 1217 bc = Bytecodes::_invokevirtual; 1218 } 1219 break; 1220 case Bytecodes::_invokehandle: 1221 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1222 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1223 : Bytecodes::_invokevirtual; 1224 } 1225 break; 1226 default: 1227 break; 1228 } 1229 } 1230 } 1231 1232 assert(bc != Bytecodes::_illegal, "not initialized"); 1233 1234 bool has_receiver = bc != Bytecodes::_invokestatic && 1235 bc != Bytecodes::_invokedynamic && 1236 bc != Bytecodes::_invokehandle; 1237 1238 // Find receiver for non-static call 1239 if (has_receiver) { 1240 // This register map must be update since we need to find the receiver for 1241 // compiled frames. The receiver might be in a register. 1242 RegisterMap reg_map2(current, 1243 RegisterMap::UpdateMap::include, 1244 RegisterMap::ProcessFrames::include, 1245 RegisterMap::WalkContinuation::skip); 1246 frame stubFrame = current->last_frame(); 1247 // Caller-frame is a compiled frame 1248 frame callerFrame = stubFrame.sender(®_map2); 1249 1250 if (attached_method.is_null()) { 1251 Method* callee = bytecode.static_target(CHECK_NH); 1252 if (callee == nullptr) { 1253 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1254 } 1255 } 1256 1257 // Retrieve from a compiled argument list 1258 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1259 assert(oopDesc::is_oop_or_null(receiver()), ""); 1260 1261 if (receiver.is_null()) { 1262 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1263 } 1264 } 1265 1266 // Resolve method 1267 if (attached_method.not_null()) { 1268 // Parameterized by attached method. 1269 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1270 } else { 1271 // Parameterized by bytecode. 1272 constantPoolHandle constants(current, caller->constants()); 1273 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1274 } 1275 1276 #ifdef ASSERT 1277 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1278 if (has_receiver) { 1279 assert(receiver.not_null(), "should have thrown exception"); 1280 Klass* receiver_klass = receiver->klass(); 1281 Klass* rk = nullptr; 1282 if (attached_method.not_null()) { 1283 // In case there's resolved method attached, use its holder during the check. 1284 rk = attached_method->method_holder(); 1285 } else { 1286 // Klass is already loaded. 1287 constantPoolHandle constants(current, caller->constants()); 1288 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1289 } 1290 Klass* static_receiver_klass = rk; 1291 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1292 "actual receiver must be subclass of static receiver klass"); 1293 if (receiver_klass->is_instance_klass()) { 1294 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1295 tty->print_cr("ERROR: Klass not yet initialized!!"); 1296 receiver_klass->print(); 1297 } 1298 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1299 } 1300 } 1301 #endif 1302 1303 return receiver; 1304 } 1305 1306 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1307 JavaThread* current = THREAD; 1308 ResourceMark rm(current); 1309 // We need first to check if any Java activations (compiled, interpreted) 1310 // exist on the stack since last JavaCall. If not, we need 1311 // to get the target method from the JavaCall wrapper. 1312 vframeStream vfst(current, true); // Do not skip any javaCalls 1313 methodHandle callee_method; 1314 if (vfst.at_end()) { 1315 // No Java frames were found on stack since we did the JavaCall. 1316 // Hence the stack can only contain an entry_frame. We need to 1317 // find the target method from the stub frame. 1318 RegisterMap reg_map(current, 1319 RegisterMap::UpdateMap::skip, 1320 RegisterMap::ProcessFrames::include, 1321 RegisterMap::WalkContinuation::skip); 1322 frame fr = current->last_frame(); 1323 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1324 fr = fr.sender(®_map); 1325 assert(fr.is_entry_frame(), "must be"); 1326 // fr is now pointing to the entry frame. 1327 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1328 } else { 1329 Bytecodes::Code bc; 1330 CallInfo callinfo; 1331 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1332 callee_method = methodHandle(current, callinfo.selected_method()); 1333 } 1334 assert(callee_method()->is_method(), "must be"); 1335 return callee_method; 1336 } 1337 1338 // Resolves a call. 1339 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1340 JavaThread* current = THREAD; 1341 ResourceMark rm(current); 1342 RegisterMap cbl_map(current, 1343 RegisterMap::UpdateMap::skip, 1344 RegisterMap::ProcessFrames::include, 1345 RegisterMap::WalkContinuation::skip); 1346 frame caller_frame = current->last_frame().sender(&cbl_map); 1347 1348 CodeBlob* caller_cb = caller_frame.cb(); 1349 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1350 nmethod* caller_nm = caller_cb->as_nmethod(); 1351 1352 // determine call info & receiver 1353 // note: a) receiver is null for static calls 1354 // b) an exception is thrown if receiver is null for non-static calls 1355 CallInfo call_info; 1356 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1357 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1358 1359 NoSafepointVerifier nsv; 1360 1361 methodHandle callee_method(current, call_info.selected_method()); 1362 1363 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1364 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1365 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1366 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1367 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1368 1369 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1370 1371 #ifndef PRODUCT 1372 // tracing/debugging/statistics 1373 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1374 (is_virtual) ? (&_resolve_virtual_ctr) : 1375 (&_resolve_static_ctr); 1376 Atomic::inc(addr); 1377 1378 if (TraceCallFixup) { 1379 ResourceMark rm(current); 1380 tty->print("resolving %s%s (%s) call to", 1381 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1382 Bytecodes::name(invoke_code)); 1383 callee_method->print_short_name(tty); 1384 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1385 p2i(caller_frame.pc()), p2i(callee_method->code())); 1386 } 1387 #endif 1388 1389 if (invoke_code == Bytecodes::_invokestatic) { 1390 assert(callee_method->method_holder()->is_initialized() || 1391 callee_method->method_holder()->is_reentrant_initialization(current), 1392 "invalid class initialization state for invoke_static"); 1393 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1394 // In order to keep class initialization check, do not patch call 1395 // site for static call when the class is not fully initialized. 1396 // Proper check is enforced by call site re-resolution on every invocation. 1397 // 1398 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1399 // explicit class initialization check is put in nmethod entry (VEP). 1400 assert(callee_method->method_holder()->is_linked(), "must be"); 1401 return callee_method; 1402 } 1403 } 1404 1405 1406 // JSR 292 key invariant: 1407 // If the resolved method is a MethodHandle invoke target, the call 1408 // site must be a MethodHandle call site, because the lambda form might tail-call 1409 // leaving the stack in a state unknown to either caller or callee 1410 1411 // Compute entry points. The computation of the entry points is independent of 1412 // patching the call. 1413 1414 // Make sure the callee nmethod does not get deoptimized and removed before 1415 // we are done patching the code. 1416 1417 1418 CompiledICLocker ml(caller_nm); 1419 if (is_virtual && !is_optimized) { 1420 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1421 inline_cache->update(&call_info, receiver->klass()); 1422 } else { 1423 // Callsite is a direct call - set it to the destination method 1424 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1425 callsite->set(callee_method); 1426 } 1427 1428 return callee_method; 1429 } 1430 1431 // Inline caches exist only in compiled code 1432 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1433 #ifdef ASSERT 1434 RegisterMap reg_map(current, 1435 RegisterMap::UpdateMap::skip, 1436 RegisterMap::ProcessFrames::include, 1437 RegisterMap::WalkContinuation::skip); 1438 frame stub_frame = current->last_frame(); 1439 assert(stub_frame.is_runtime_frame(), "sanity check"); 1440 frame caller_frame = stub_frame.sender(®_map); 1441 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1442 #endif /* ASSERT */ 1443 1444 methodHandle callee_method; 1445 JRT_BLOCK 1446 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1447 // Return Method* through TLS 1448 current->set_vm_result_metadata(callee_method()); 1449 JRT_BLOCK_END 1450 // return compiled code entry point after potential safepoints 1451 return get_resolved_entry(current, callee_method); 1452 JRT_END 1453 1454 1455 // Handle call site that has been made non-entrant 1456 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1457 // 6243940 We might end up in here if the callee is deoptimized 1458 // as we race to call it. We don't want to take a safepoint if 1459 // the caller was interpreted because the caller frame will look 1460 // interpreted to the stack walkers and arguments are now 1461 // "compiled" so it is much better to make this transition 1462 // invisible to the stack walking code. The i2c path will 1463 // place the callee method in the callee_target. It is stashed 1464 // there because if we try and find the callee by normal means a 1465 // safepoint is possible and have trouble gc'ing the compiled args. 1466 RegisterMap reg_map(current, 1467 RegisterMap::UpdateMap::skip, 1468 RegisterMap::ProcessFrames::include, 1469 RegisterMap::WalkContinuation::skip); 1470 frame stub_frame = current->last_frame(); 1471 assert(stub_frame.is_runtime_frame(), "sanity check"); 1472 frame caller_frame = stub_frame.sender(®_map); 1473 1474 if (caller_frame.is_interpreted_frame() || 1475 caller_frame.is_entry_frame() || 1476 caller_frame.is_upcall_stub_frame()) { 1477 Method* callee = current->callee_target(); 1478 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1479 current->set_vm_result_metadata(callee); 1480 current->set_callee_target(nullptr); 1481 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1482 // Bypass class initialization checks in c2i when caller is in native. 1483 // JNI calls to static methods don't have class initialization checks. 1484 // Fast class initialization checks are present in c2i adapters and call into 1485 // SharedRuntime::handle_wrong_method() on the slow path. 1486 // 1487 // JVM upcalls may land here as well, but there's a proper check present in 1488 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1489 // so bypassing it in c2i adapter is benign. 1490 return callee->get_c2i_no_clinit_check_entry(); 1491 } else { 1492 return callee->get_c2i_entry(); 1493 } 1494 } 1495 1496 // Must be compiled to compiled path which is safe to stackwalk 1497 methodHandle callee_method; 1498 JRT_BLOCK 1499 // Force resolving of caller (if we called from compiled frame) 1500 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1501 current->set_vm_result_metadata(callee_method()); 1502 JRT_BLOCK_END 1503 // return compiled code entry point after potential safepoints 1504 return get_resolved_entry(current, callee_method); 1505 JRT_END 1506 1507 // Handle abstract method call 1508 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1509 // Verbose error message for AbstractMethodError. 1510 // Get the called method from the invoke bytecode. 1511 vframeStream vfst(current, true); 1512 assert(!vfst.at_end(), "Java frame must exist"); 1513 methodHandle caller(current, vfst.method()); 1514 Bytecode_invoke invoke(caller, vfst.bci()); 1515 DEBUG_ONLY( invoke.verify(); ) 1516 1517 // Find the compiled caller frame. 1518 RegisterMap reg_map(current, 1519 RegisterMap::UpdateMap::include, 1520 RegisterMap::ProcessFrames::include, 1521 RegisterMap::WalkContinuation::skip); 1522 frame stubFrame = current->last_frame(); 1523 assert(stubFrame.is_runtime_frame(), "must be"); 1524 frame callerFrame = stubFrame.sender(®_map); 1525 assert(callerFrame.is_compiled_frame(), "must be"); 1526 1527 // Install exception and return forward entry. 1528 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1529 JRT_BLOCK 1530 methodHandle callee(current, invoke.static_target(current)); 1531 if (!callee.is_null()) { 1532 oop recv = callerFrame.retrieve_receiver(®_map); 1533 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1534 res = StubRoutines::forward_exception_entry(); 1535 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1536 } 1537 JRT_BLOCK_END 1538 return res; 1539 JRT_END 1540 1541 // return verified_code_entry if interp_only_mode is not set for the current thread; 1542 // otherwise return c2i entry. 1543 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1544 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1545 // In interp_only_mode we need to go to the interpreted entry 1546 // The c2i won't patch in this mode -- see fixup_callers_callsite 1547 return callee_method->get_c2i_entry(); 1548 } 1549 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1550 return callee_method->verified_code_entry(); 1551 } 1552 1553 // resolve a static call and patch code 1554 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1555 methodHandle callee_method; 1556 bool enter_special = false; 1557 JRT_BLOCK 1558 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1559 current->set_vm_result_metadata(callee_method()); 1560 JRT_BLOCK_END 1561 // return compiled code entry point after potential safepoints 1562 return get_resolved_entry(current, callee_method); 1563 JRT_END 1564 1565 // resolve virtual call and update inline cache to monomorphic 1566 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1567 methodHandle callee_method; 1568 JRT_BLOCK 1569 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1570 current->set_vm_result_metadata(callee_method()); 1571 JRT_BLOCK_END 1572 // return compiled code entry point after potential safepoints 1573 return get_resolved_entry(current, callee_method); 1574 JRT_END 1575 1576 1577 // Resolve a virtual call that can be statically bound (e.g., always 1578 // monomorphic, so it has no inline cache). Patch code to resolved target. 1579 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1580 methodHandle callee_method; 1581 JRT_BLOCK 1582 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1583 current->set_vm_result_metadata(callee_method()); 1584 JRT_BLOCK_END 1585 // return compiled code entry point after potential safepoints 1586 return get_resolved_entry(current, callee_method); 1587 JRT_END 1588 1589 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1590 JavaThread* current = THREAD; 1591 ResourceMark rm(current); 1592 CallInfo call_info; 1593 Bytecodes::Code bc; 1594 1595 // receiver is null for static calls. An exception is thrown for null 1596 // receivers for non-static calls 1597 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1598 1599 methodHandle callee_method(current, call_info.selected_method()); 1600 1601 #ifndef PRODUCT 1602 Atomic::inc(&_ic_miss_ctr); 1603 1604 // Statistics & Tracing 1605 if (TraceCallFixup) { 1606 ResourceMark rm(current); 1607 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1608 callee_method->print_short_name(tty); 1609 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1610 } 1611 1612 if (ICMissHistogram) { 1613 MutexLocker m(VMStatistic_lock); 1614 RegisterMap reg_map(current, 1615 RegisterMap::UpdateMap::skip, 1616 RegisterMap::ProcessFrames::include, 1617 RegisterMap::WalkContinuation::skip); 1618 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1619 // produce statistics under the lock 1620 trace_ic_miss(f.pc()); 1621 } 1622 #endif 1623 1624 // install an event collector so that when a vtable stub is created the 1625 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1626 // event can't be posted when the stub is created as locks are held 1627 // - instead the event will be deferred until the event collector goes 1628 // out of scope. 1629 JvmtiDynamicCodeEventCollector event_collector; 1630 1631 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1632 RegisterMap reg_map(current, 1633 RegisterMap::UpdateMap::skip, 1634 RegisterMap::ProcessFrames::include, 1635 RegisterMap::WalkContinuation::skip); 1636 frame caller_frame = current->last_frame().sender(®_map); 1637 CodeBlob* cb = caller_frame.cb(); 1638 nmethod* caller_nm = cb->as_nmethod(); 1639 1640 CompiledICLocker ml(caller_nm); 1641 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1642 inline_cache->update(&call_info, receiver()->klass()); 1643 1644 return callee_method; 1645 } 1646 1647 // 1648 // Resets a call-site in compiled code so it will get resolved again. 1649 // This routines handles both virtual call sites, optimized virtual call 1650 // sites, and static call sites. Typically used to change a call sites 1651 // destination from compiled to interpreted. 1652 // 1653 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1654 JavaThread* current = THREAD; 1655 ResourceMark rm(current); 1656 RegisterMap reg_map(current, 1657 RegisterMap::UpdateMap::skip, 1658 RegisterMap::ProcessFrames::include, 1659 RegisterMap::WalkContinuation::skip); 1660 frame stub_frame = current->last_frame(); 1661 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1662 frame caller = stub_frame.sender(®_map); 1663 1664 // Do nothing if the frame isn't a live compiled frame. 1665 // nmethod could be deoptimized by the time we get here 1666 // so no update to the caller is needed. 1667 1668 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1669 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1670 1671 address pc = caller.pc(); 1672 1673 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1674 assert(caller_nm != nullptr, "did not find caller nmethod"); 1675 1676 // Default call_addr is the location of the "basic" call. 1677 // Determine the address of the call we a reresolving. With 1678 // Inline Caches we will always find a recognizable call. 1679 // With Inline Caches disabled we may or may not find a 1680 // recognizable call. We will always find a call for static 1681 // calls and for optimized virtual calls. For vanilla virtual 1682 // calls it depends on the state of the UseInlineCaches switch. 1683 // 1684 // With Inline Caches disabled we can get here for a virtual call 1685 // for two reasons: 1686 // 1 - calling an abstract method. The vtable for abstract methods 1687 // will run us thru handle_wrong_method and we will eventually 1688 // end up in the interpreter to throw the ame. 1689 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1690 // call and between the time we fetch the entry address and 1691 // we jump to it the target gets deoptimized. Similar to 1 1692 // we will wind up in the interprter (thru a c2i with c2). 1693 // 1694 CompiledICLocker ml(caller_nm); 1695 address call_addr = caller_nm->call_instruction_address(pc); 1696 1697 if (call_addr != nullptr) { 1698 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1699 // bytes back in the instruction stream so we must also check for reloc info. 1700 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1701 bool ret = iter.next(); // Get item 1702 if (ret) { 1703 switch (iter.type()) { 1704 case relocInfo::static_call_type: 1705 case relocInfo::opt_virtual_call_type: { 1706 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1707 cdc->set_to_clean(); 1708 break; 1709 } 1710 1711 case relocInfo::virtual_call_type: { 1712 // compiled, dispatched call (which used to call an interpreted method) 1713 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1714 inline_cache->set_to_clean(); 1715 break; 1716 } 1717 default: 1718 break; 1719 } 1720 } 1721 } 1722 } 1723 1724 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1725 1726 1727 #ifndef PRODUCT 1728 Atomic::inc(&_wrong_method_ctr); 1729 1730 if (TraceCallFixup) { 1731 ResourceMark rm(current); 1732 tty->print("handle_wrong_method reresolving call to"); 1733 callee_method->print_short_name(tty); 1734 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1735 } 1736 #endif 1737 1738 return callee_method; 1739 } 1740 1741 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1742 // The faulting unsafe accesses should be changed to throw the error 1743 // synchronously instead. Meanwhile the faulting instruction will be 1744 // skipped over (effectively turning it into a no-op) and an 1745 // asynchronous exception will be raised which the thread will 1746 // handle at a later point. If the instruction is a load it will 1747 // return garbage. 1748 1749 // Request an async exception. 1750 thread->set_pending_unsafe_access_error(); 1751 1752 // Return address of next instruction to execute. 1753 return next_pc; 1754 } 1755 1756 #ifdef ASSERT 1757 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1758 const BasicType* sig_bt, 1759 const VMRegPair* regs) { 1760 ResourceMark rm; 1761 const int total_args_passed = method->size_of_parameters(); 1762 const VMRegPair* regs_with_member_name = regs; 1763 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1764 1765 const int member_arg_pos = total_args_passed - 1; 1766 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1767 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1768 1769 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1770 1771 for (int i = 0; i < member_arg_pos; i++) { 1772 VMReg a = regs_with_member_name[i].first(); 1773 VMReg b = regs_without_member_name[i].first(); 1774 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1775 } 1776 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1777 } 1778 #endif 1779 1780 // --------------------------------------------------------------------------- 1781 // We are calling the interpreter via a c2i. Normally this would mean that 1782 // we were called by a compiled method. However we could have lost a race 1783 // where we went int -> i2c -> c2i and so the caller could in fact be 1784 // interpreted. If the caller is compiled we attempt to patch the caller 1785 // so he no longer calls into the interpreter. 1786 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1787 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1788 1789 // It's possible that deoptimization can occur at a call site which hasn't 1790 // been resolved yet, in which case this function will be called from 1791 // an nmethod that has been patched for deopt and we can ignore the 1792 // request for a fixup. 1793 // Also it is possible that we lost a race in that from_compiled_entry 1794 // is now back to the i2c in that case we don't need to patch and if 1795 // we did we'd leap into space because the callsite needs to use 1796 // "to interpreter" stub in order to load up the Method*. Don't 1797 // ask me how I know this... 1798 1799 // Result from nmethod::is_unloading is not stable across safepoints. 1800 NoSafepointVerifier nsv; 1801 1802 nmethod* callee = method->code(); 1803 if (callee == nullptr) { 1804 return; 1805 } 1806 1807 // write lock needed because we might patch call site by set_to_clean() 1808 // and is_unloading() can modify nmethod's state 1809 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1810 1811 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1812 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1813 return; 1814 } 1815 1816 // The check above makes sure this is an nmethod. 1817 nmethod* caller = cb->as_nmethod(); 1818 1819 // Get the return PC for the passed caller PC. 1820 address return_pc = caller_pc + frame::pc_return_offset; 1821 1822 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1823 return; 1824 } 1825 1826 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1827 CompiledICLocker ic_locker(caller); 1828 ResourceMark rm; 1829 1830 // If we got here through a static call or opt_virtual call, then we know where the 1831 // call address would be; let's peek at it 1832 address callsite_addr = (address)nativeCall_before(return_pc); 1833 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1834 if (!iter.next()) { 1835 // No reloc entry found; not a static or optimized virtual call 1836 return; 1837 } 1838 1839 relocInfo::relocType type = iter.reloc()->type(); 1840 if (type != relocInfo::static_call_type && 1841 type != relocInfo::opt_virtual_call_type) { 1842 return; 1843 } 1844 1845 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1846 callsite->set_to_clean(); 1847 JRT_END 1848 1849 1850 // same as JVM_Arraycopy, but called directly from compiled code 1851 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1852 oopDesc* dest, jint dest_pos, 1853 jint length, 1854 JavaThread* current)) { 1855 #ifndef PRODUCT 1856 _slow_array_copy_ctr++; 1857 #endif 1858 // Check if we have null pointers 1859 if (src == nullptr || dest == nullptr) { 1860 THROW(vmSymbols::java_lang_NullPointerException()); 1861 } 1862 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1863 // even though the copy_array API also performs dynamic checks to ensure 1864 // that src and dest are truly arrays (and are conformable). 1865 // The copy_array mechanism is awkward and could be removed, but 1866 // the compilers don't call this function except as a last resort, 1867 // so it probably doesn't matter. 1868 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1869 (arrayOopDesc*)dest, dest_pos, 1870 length, current); 1871 } 1872 JRT_END 1873 1874 // The caller of generate_class_cast_message() (or one of its callers) 1875 // must use a ResourceMark in order to correctly free the result. 1876 char* SharedRuntime::generate_class_cast_message( 1877 JavaThread* thread, Klass* caster_klass) { 1878 1879 // Get target class name from the checkcast instruction 1880 vframeStream vfst(thread, true); 1881 assert(!vfst.at_end(), "Java frame must exist"); 1882 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1883 constantPoolHandle cpool(thread, vfst.method()->constants()); 1884 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1885 Symbol* target_klass_name = nullptr; 1886 if (target_klass == nullptr) { 1887 // This klass should be resolved, but just in case, get the name in the klass slot. 1888 target_klass_name = cpool->klass_name_at(cc.index()); 1889 } 1890 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1891 } 1892 1893 1894 // The caller of generate_class_cast_message() (or one of its callers) 1895 // must use a ResourceMark in order to correctly free the result. 1896 char* SharedRuntime::generate_class_cast_message( 1897 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1898 const char* caster_name = caster_klass->external_name(); 1899 1900 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1901 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1902 target_klass->external_name(); 1903 1904 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1905 1906 const char* caster_klass_description = ""; 1907 const char* target_klass_description = ""; 1908 const char* klass_separator = ""; 1909 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1910 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1911 } else { 1912 caster_klass_description = caster_klass->class_in_module_of_loader(); 1913 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1914 klass_separator = (target_klass != nullptr) ? "; " : ""; 1915 } 1916 1917 // add 3 for parenthesis and preceding space 1918 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1919 1920 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1921 if (message == nullptr) { 1922 // Shouldn't happen, but don't cause even more problems if it does 1923 message = const_cast<char*>(caster_klass->external_name()); 1924 } else { 1925 jio_snprintf(message, 1926 msglen, 1927 "class %s cannot be cast to class %s (%s%s%s)", 1928 caster_name, 1929 target_name, 1930 caster_klass_description, 1931 klass_separator, 1932 target_klass_description 1933 ); 1934 } 1935 return message; 1936 } 1937 1938 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1939 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 1940 JRT_END 1941 1942 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1943 if (!SafepointSynchronize::is_synchronizing()) { 1944 // Only try quick_enter() if we're not trying to reach a safepoint 1945 // so that the calling thread reaches the safepoint more quickly. 1946 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 1947 return; 1948 } 1949 } 1950 // NO_ASYNC required because an async exception on the state transition destructor 1951 // would leave you with the lock held and it would never be released. 1952 // The normal monitorenter NullPointerException is thrown without acquiring a lock 1953 // and the model is that an exception implies the method failed. 1954 JRT_BLOCK_NO_ASYNC 1955 Handle h_obj(THREAD, obj); 1956 ObjectSynchronizer::enter(h_obj, lock, current); 1957 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1958 JRT_BLOCK_END 1959 } 1960 1961 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1962 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1963 SharedRuntime::monitor_enter_helper(obj, lock, current); 1964 JRT_END 1965 1966 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1967 assert(JavaThread::current() == current, "invariant"); 1968 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1969 ExceptionMark em(current); 1970 1971 // Check if C2_MacroAssembler::fast_unlock() or 1972 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 1973 // monitor before going slow path. Since there is no safepoint 1974 // polling when calling into the VM, we can be sure that the monitor 1975 // hasn't been deallocated. 1976 ObjectMonitor* m = current->unlocked_inflated_monitor(); 1977 if (m != nullptr) { 1978 assert(!m->has_owner(current), "must be"); 1979 current->clear_unlocked_inflated_monitor(); 1980 1981 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 1982 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 1983 // Some other thread acquired the lock (or the monitor was 1984 // deflated). Either way we are done. 1985 current->dec_held_monitor_count(); 1986 return; 1987 } 1988 } 1989 1990 // The object could become unlocked through a JNI call, which we have no other checks for. 1991 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 1992 if (obj->is_unlocked()) { 1993 if (CheckJNICalls) { 1994 fatal("Object has been unlocked by JNI"); 1995 } 1996 return; 1997 } 1998 ObjectSynchronizer::exit(obj, lock, current); 1999 } 2000 2001 // Handles the uncommon cases of monitor unlocking in compiled code 2002 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2003 assert(current == JavaThread::current(), "pre-condition"); 2004 SharedRuntime::monitor_exit_helper(obj, lock, current); 2005 JRT_END 2006 2007 // This is only called when CheckJNICalls is true, and only 2008 // for virtual thread termination. 2009 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2010 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2011 if (log_is_enabled(Debug, jni)) { 2012 JavaThread* current = JavaThread::current(); 2013 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2014 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2015 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2016 ") exiting with Objects still locked by JNI MonitorEnter.", 2017 vthread_id, carrier_id); 2018 } 2019 JRT_END 2020 2021 #ifndef PRODUCT 2022 2023 void SharedRuntime::print_statistics() { 2024 ttyLocker ttyl; 2025 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2026 2027 SharedRuntime::print_ic_miss_histogram(); 2028 2029 // Dump the JRT_ENTRY counters 2030 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2031 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2032 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2033 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2034 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2035 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2036 2037 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2038 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2039 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2040 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2041 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2042 2043 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2044 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2045 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2046 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2047 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2048 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2049 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2050 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2051 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2052 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2053 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2054 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2055 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2056 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2057 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2058 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2059 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2060 2061 AdapterHandlerLibrary::print_statistics(); 2062 2063 if (xtty != nullptr) xtty->tail("statistics"); 2064 } 2065 2066 inline double percent(int64_t x, int64_t y) { 2067 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2068 } 2069 2070 class MethodArityHistogram { 2071 public: 2072 enum { MAX_ARITY = 256 }; 2073 private: 2074 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2075 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2076 static uint64_t _total_compiled_calls; 2077 static uint64_t _max_compiled_calls_per_method; 2078 static int _max_arity; // max. arity seen 2079 static int _max_size; // max. arg size seen 2080 2081 static void add_method_to_histogram(nmethod* nm) { 2082 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2083 if (method != nullptr) { 2084 ArgumentCount args(method->signature()); 2085 int arity = args.size() + (method->is_static() ? 0 : 1); 2086 int argsize = method->size_of_parameters(); 2087 arity = MIN2(arity, MAX_ARITY-1); 2088 argsize = MIN2(argsize, MAX_ARITY-1); 2089 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2090 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2091 _total_compiled_calls += count; 2092 _arity_histogram[arity] += count; 2093 _size_histogram[argsize] += count; 2094 _max_arity = MAX2(_max_arity, arity); 2095 _max_size = MAX2(_max_size, argsize); 2096 } 2097 } 2098 2099 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2100 const int N = MIN2(9, n); 2101 double sum = 0; 2102 double weighted_sum = 0; 2103 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2104 if (sum >= 1) { // prevent divide by zero or divide overflow 2105 double rest = sum; 2106 double percent = sum / 100; 2107 for (int i = 0; i <= N; i++) { 2108 rest -= (double)histo[i]; 2109 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2110 } 2111 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2112 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2113 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2114 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2115 } else { 2116 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2117 } 2118 } 2119 2120 void print_histogram() { 2121 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2122 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2123 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2124 print_histogram_helper(_max_size, _size_histogram, "size"); 2125 tty->cr(); 2126 } 2127 2128 public: 2129 MethodArityHistogram() { 2130 // Take the Compile_lock to protect against changes in the CodeBlob structures 2131 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2132 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2133 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2134 _max_arity = _max_size = 0; 2135 _total_compiled_calls = 0; 2136 _max_compiled_calls_per_method = 0; 2137 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2138 CodeCache::nmethods_do(add_method_to_histogram); 2139 print_histogram(); 2140 } 2141 }; 2142 2143 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2144 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2145 uint64_t MethodArityHistogram::_total_compiled_calls; 2146 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2147 int MethodArityHistogram::_max_arity; 2148 int MethodArityHistogram::_max_size; 2149 2150 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2151 tty->print_cr("Calls from compiled code:"); 2152 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2153 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2154 int64_t mono_i = _nof_interface_calls; 2155 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2156 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2157 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2158 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2159 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2160 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2161 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2162 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2163 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2164 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2165 tty->cr(); 2166 tty->print_cr("Note 1: counter updates are not MT-safe."); 2167 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2168 tty->print_cr(" %% in nested categories are relative to their category"); 2169 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2170 tty->cr(); 2171 2172 MethodArityHistogram h; 2173 } 2174 #endif 2175 2176 #ifndef PRODUCT 2177 static int _lookups; // number of calls to lookup 2178 static int _equals; // number of buckets checked with matching hash 2179 static int _archived_hits; // number of successful lookups in archived table 2180 static int _runtime_hits; // number of successful lookups in runtime table 2181 #endif 2182 2183 // A simple wrapper class around the calling convention information 2184 // that allows sharing of adapters for the same calling convention. 2185 class AdapterFingerPrint : public MetaspaceObj { 2186 private: 2187 enum { 2188 _basic_type_bits = 4, 2189 _basic_type_mask = right_n_bits(_basic_type_bits), 2190 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2191 }; 2192 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2193 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2194 2195 int _length; 2196 2197 static int data_offset() { return sizeof(AdapterFingerPrint); } 2198 int* data_pointer() { 2199 return (int*)((address)this + data_offset()); 2200 } 2201 2202 // Private construtor. Use allocate() to get an instance. 2203 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) { 2204 int* data = data_pointer(); 2205 // Pack the BasicTypes with 8 per int 2206 assert(len == length(total_args_passed), "sanity"); 2207 _length = len; 2208 int sig_index = 0; 2209 for (int index = 0; index < _length; index++) { 2210 int value = 0; 2211 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2212 int bt = adapter_encoding(sig_bt[sig_index++]); 2213 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2214 value = (value << _basic_type_bits) | bt; 2215 } 2216 data[index] = value; 2217 } 2218 } 2219 2220 // Call deallocate instead 2221 ~AdapterFingerPrint() { 2222 ShouldNotCallThis(); 2223 } 2224 2225 static int length(int total_args) { 2226 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int; 2227 } 2228 2229 static int compute_size_in_words(int len) { 2230 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int))); 2231 } 2232 2233 // Remap BasicTypes that are handled equivalently by the adapters. 2234 // These are correct for the current system but someday it might be 2235 // necessary to make this mapping platform dependent. 2236 static int adapter_encoding(BasicType in) { 2237 switch (in) { 2238 case T_BOOLEAN: 2239 case T_BYTE: 2240 case T_SHORT: 2241 case T_CHAR: 2242 // There are all promoted to T_INT in the calling convention 2243 return T_INT; 2244 2245 case T_OBJECT: 2246 case T_ARRAY: 2247 // In other words, we assume that any register good enough for 2248 // an int or long is good enough for a managed pointer. 2249 #ifdef _LP64 2250 return T_LONG; 2251 #else 2252 return T_INT; 2253 #endif 2254 2255 case T_INT: 2256 case T_LONG: 2257 case T_FLOAT: 2258 case T_DOUBLE: 2259 case T_VOID: 2260 return in; 2261 2262 default: 2263 ShouldNotReachHere(); 2264 return T_CONFLICT; 2265 } 2266 } 2267 2268 void* operator new(size_t size, size_t fp_size) throw() { 2269 assert(fp_size >= size, "sanity check"); 2270 void* p = AllocateHeap(fp_size, mtCode); 2271 memset(p, 0, fp_size); 2272 return p; 2273 } 2274 2275 template<typename Function> 2276 void iterate_args(Function function) { 2277 for (int i = 0; i < length(); i++) { 2278 unsigned val = (unsigned)value(i); 2279 // args are packed so that first/lower arguments are in the highest 2280 // bits of each int value, so iterate from highest to the lowest 2281 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2282 unsigned v = (val >> j) & _basic_type_mask; 2283 if (v == 0) { 2284 continue; 2285 } 2286 function(v); 2287 } 2288 } 2289 } 2290 2291 public: 2292 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) { 2293 int len = length(total_args_passed); 2294 int size_in_bytes = BytesPerWord * compute_size_in_words(len); 2295 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len); 2296 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match"); 2297 return afp; 2298 } 2299 2300 static void deallocate(AdapterFingerPrint* fp) { 2301 FreeHeap(fp); 2302 } 2303 2304 int value(int index) { 2305 int* data = data_pointer(); 2306 return data[index]; 2307 } 2308 2309 int length() { 2310 return _length; 2311 } 2312 2313 unsigned int compute_hash() { 2314 int hash = 0; 2315 for (int i = 0; i < length(); i++) { 2316 int v = value(i); 2317 //Add arithmetic operation to the hash, like +3 to improve hashing 2318 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2319 } 2320 return (unsigned int)hash; 2321 } 2322 2323 const char* as_string() { 2324 stringStream st; 2325 st.print("0x"); 2326 for (int i = 0; i < length(); i++) { 2327 st.print("%x", value(i)); 2328 } 2329 return st.as_string(); 2330 } 2331 2332 const char* as_basic_args_string() { 2333 stringStream st; 2334 bool long_prev = false; 2335 iterate_args([&] (int arg) { 2336 if (long_prev) { 2337 long_prev = false; 2338 if (arg == T_VOID) { 2339 st.print("J"); 2340 } else { 2341 st.print("L"); 2342 } 2343 } 2344 switch (arg) { 2345 case T_INT: st.print("I"); break; 2346 case T_LONG: long_prev = true; break; 2347 case T_FLOAT: st.print("F"); break; 2348 case T_DOUBLE: st.print("D"); break; 2349 case T_VOID: break; 2350 default: ShouldNotReachHere(); 2351 } 2352 }); 2353 if (long_prev) { 2354 st.print("L"); 2355 } 2356 return st.as_string(); 2357 } 2358 2359 BasicType* as_basic_type(int& nargs) { 2360 nargs = 0; 2361 GrowableArray<BasicType> btarray; 2362 bool long_prev = false; 2363 2364 iterate_args([&] (int arg) { 2365 if (long_prev) { 2366 long_prev = false; 2367 if (arg == T_VOID) { 2368 btarray.append(T_LONG); 2369 } else { 2370 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter 2371 } 2372 } 2373 switch (arg) { 2374 case T_INT: // fallthrough 2375 case T_FLOAT: // fallthrough 2376 case T_DOUBLE: 2377 case T_VOID: 2378 btarray.append((BasicType)arg); 2379 break; 2380 case T_LONG: 2381 long_prev = true; 2382 break; 2383 default: ShouldNotReachHere(); 2384 } 2385 }); 2386 2387 if (long_prev) { 2388 btarray.append(T_OBJECT); 2389 } 2390 2391 nargs = btarray.length(); 2392 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs); 2393 int index = 0; 2394 GrowableArrayIterator<BasicType> iter = btarray.begin(); 2395 while (iter != btarray.end()) { 2396 sig_bt[index++] = *iter; 2397 ++iter; 2398 } 2399 assert(index == btarray.length(), "sanity check"); 2400 #ifdef ASSERT 2401 { 2402 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt); 2403 assert(this->equals(compare_fp), "sanity check"); 2404 AdapterFingerPrint::deallocate(compare_fp); 2405 } 2406 #endif 2407 return sig_bt; 2408 } 2409 2410 bool equals(AdapterFingerPrint* other) { 2411 if (other->_length != _length) { 2412 return false; 2413 } else { 2414 for (int i = 0; i < _length; i++) { 2415 if (value(i) != other->value(i)) { 2416 return false; 2417 } 2418 } 2419 } 2420 return true; 2421 } 2422 2423 // methods required by virtue of being a MetaspaceObj 2424 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2425 int size() const { return compute_size_in_words(_length); } 2426 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2427 2428 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2429 NOT_PRODUCT(_equals++); 2430 return fp1->equals(fp2); 2431 } 2432 2433 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2434 return fp->compute_hash(); 2435 } 2436 }; 2437 2438 #if INCLUDE_CDS 2439 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2440 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2441 } 2442 2443 class ArchivedAdapterTable : public OffsetCompactHashtable< 2444 AdapterFingerPrint*, 2445 AdapterHandlerEntry*, 2446 adapter_fp_equals_compact_hashtable_entry> {}; 2447 #endif // INCLUDE_CDS 2448 2449 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2450 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2451 AnyObj::C_HEAP, mtCode, 2452 AdapterFingerPrint::compute_hash, 2453 AdapterFingerPrint::equals>; 2454 static AdapterHandlerTable* _adapter_handler_table; 2455 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2456 2457 // Find a entry with the same fingerprint if it exists 2458 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) { 2459 NOT_PRODUCT(_lookups++); 2460 assert_lock_strong(AdapterHandlerLibrary_lock); 2461 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2462 AdapterHandlerEntry* entry = nullptr; 2463 #if INCLUDE_CDS 2464 // if we are building the archive then the archived adapter table is 2465 // not valid and we need to use the ones added to the runtime table 2466 if (AOTCodeCache::is_using_adapter()) { 2467 // Search archived table first. It is read-only table so can be searched without lock 2468 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2469 #ifndef PRODUCT 2470 if (entry != nullptr) { 2471 _archived_hits++; 2472 } 2473 #endif 2474 } 2475 #endif // INCLUDE_CDS 2476 if (entry == nullptr) { 2477 assert_lock_strong(AdapterHandlerLibrary_lock); 2478 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2479 if (entry_p != nullptr) { 2480 entry = *entry_p; 2481 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2482 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2483 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2484 #ifndef PRODUCT 2485 _runtime_hits++; 2486 #endif 2487 } 2488 } 2489 AdapterFingerPrint::deallocate(fp); 2490 return entry; 2491 } 2492 2493 #ifndef PRODUCT 2494 static void print_table_statistics() { 2495 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2496 return sizeof(*key) + sizeof(*a); 2497 }; 2498 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2499 ts.print(tty, "AdapterHandlerTable"); 2500 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2501 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2502 int total_hits = _archived_hits + _runtime_hits; 2503 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)", 2504 _lookups, _equals, total_hits, _archived_hits, _runtime_hits); 2505 } 2506 #endif 2507 2508 // --------------------------------------------------------------------------- 2509 // Implementation of AdapterHandlerLibrary 2510 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2511 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2512 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2513 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2514 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2515 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2516 #if INCLUDE_CDS 2517 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2518 #endif // INCLUDE_CDS 2519 static const int AdapterHandlerLibrary_size = 16*K; 2520 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2521 2522 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2523 assert(_buffer != nullptr, "should be initialized"); 2524 return _buffer; 2525 } 2526 2527 static void post_adapter_creation(const AdapterBlob* new_adapter, 2528 const AdapterHandlerEntry* entry) { 2529 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2530 char blob_id[256]; 2531 jio_snprintf(blob_id, 2532 sizeof(blob_id), 2533 "%s(%s)", 2534 new_adapter->name(), 2535 entry->fingerprint()->as_string()); 2536 if (Forte::is_enabled()) { 2537 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2538 } 2539 2540 if (JvmtiExport::should_post_dynamic_code_generated()) { 2541 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2542 } 2543 } 2544 } 2545 2546 void AdapterHandlerLibrary::create_abstract_method_handler() { 2547 assert_lock_strong(AdapterHandlerLibrary_lock); 2548 // Create a special handler for abstract methods. Abstract methods 2549 // are never compiled so an i2c entry is somewhat meaningless, but 2550 // throw AbstractMethodError just in case. 2551 // Pass wrong_method_abstract for the c2i transitions to return 2552 // AbstractMethodError for invalid invocations. 2553 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2554 _abstract_method_handler = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(0, nullptr)); 2555 _abstract_method_handler->set_entry_points(SharedRuntime::throw_AbstractMethodError_entry(), 2556 wrong_method_abstract, 2557 wrong_method_abstract, 2558 nullptr); 2559 } 2560 2561 void AdapterHandlerLibrary::initialize() { 2562 { 2563 ResourceMark rm; 2564 MutexLocker mu(AdapterHandlerLibrary_lock); 2565 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2566 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2567 create_abstract_method_handler(); 2568 } 2569 2570 #if INCLUDE_CDS 2571 // Link adapters in AOT Cache to their code in AOT Code Cache 2572 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) { 2573 link_aot_adapters(); 2574 lookup_simple_adapters(); 2575 return; 2576 } 2577 #endif // INCLUDE_CDS 2578 2579 ResourceMark rm; 2580 AdapterBlob* no_arg_blob = nullptr; 2581 AdapterBlob* int_arg_blob = nullptr; 2582 AdapterBlob* obj_arg_blob = nullptr; 2583 AdapterBlob* obj_int_arg_blob = nullptr; 2584 AdapterBlob* obj_obj_arg_blob = nullptr; 2585 { 2586 MutexLocker mu(AdapterHandlerLibrary_lock); 2587 2588 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr); 2589 2590 BasicType obj_args[] = { T_OBJECT }; 2591 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args); 2592 2593 BasicType int_args[] = { T_INT }; 2594 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args); 2595 2596 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2597 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args); 2598 2599 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2600 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args); 2601 2602 assert(no_arg_blob != nullptr && 2603 obj_arg_blob != nullptr && 2604 int_arg_blob != nullptr && 2605 obj_int_arg_blob != nullptr && 2606 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2607 } 2608 2609 // Outside of the lock 2610 post_adapter_creation(no_arg_blob, _no_arg_handler); 2611 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2612 post_adapter_creation(int_arg_blob, _int_arg_handler); 2613 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2614 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2615 } 2616 2617 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2618 return AdapterHandlerEntry::allocate(fingerprint); 2619 } 2620 2621 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2622 if (method->is_abstract()) { 2623 return _abstract_method_handler; 2624 } 2625 int total_args_passed = method->size_of_parameters(); // All args on stack 2626 if (total_args_passed == 0) { 2627 return _no_arg_handler; 2628 } else if (total_args_passed == 1) { 2629 if (!method->is_static()) { 2630 return _obj_arg_handler; 2631 } 2632 switch (method->signature()->char_at(1)) { 2633 case JVM_SIGNATURE_CLASS: 2634 case JVM_SIGNATURE_ARRAY: 2635 return _obj_arg_handler; 2636 case JVM_SIGNATURE_INT: 2637 case JVM_SIGNATURE_BOOLEAN: 2638 case JVM_SIGNATURE_CHAR: 2639 case JVM_SIGNATURE_BYTE: 2640 case JVM_SIGNATURE_SHORT: 2641 return _int_arg_handler; 2642 } 2643 } else if (total_args_passed == 2 && 2644 !method->is_static()) { 2645 switch (method->signature()->char_at(1)) { 2646 case JVM_SIGNATURE_CLASS: 2647 case JVM_SIGNATURE_ARRAY: 2648 return _obj_obj_arg_handler; 2649 case JVM_SIGNATURE_INT: 2650 case JVM_SIGNATURE_BOOLEAN: 2651 case JVM_SIGNATURE_CHAR: 2652 case JVM_SIGNATURE_BYTE: 2653 case JVM_SIGNATURE_SHORT: 2654 return _obj_int_arg_handler; 2655 } 2656 } 2657 return nullptr; 2658 } 2659 2660 class AdapterSignatureIterator : public SignatureIterator { 2661 private: 2662 BasicType stack_sig_bt[16]; 2663 BasicType* sig_bt; 2664 int index; 2665 2666 public: 2667 AdapterSignatureIterator(Symbol* signature, 2668 fingerprint_t fingerprint, 2669 bool is_static, 2670 int total_args_passed) : 2671 SignatureIterator(signature, fingerprint), 2672 index(0) 2673 { 2674 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2675 if (!is_static) { // Pass in receiver first 2676 sig_bt[index++] = T_OBJECT; 2677 } 2678 do_parameters_on(this); 2679 } 2680 2681 BasicType* basic_types() { 2682 return sig_bt; 2683 } 2684 2685 #ifdef ASSERT 2686 int slots() { 2687 return index; 2688 } 2689 #endif 2690 2691 private: 2692 2693 friend class SignatureIterator; // so do_parameters_on can call do_type 2694 void do_type(BasicType type) { 2695 sig_bt[index++] = type; 2696 if (type == T_LONG || type == T_DOUBLE) { 2697 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2698 } 2699 } 2700 }; 2701 2702 2703 const char* AdapterHandlerEntry::_entry_names[] = { 2704 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 2705 }; 2706 2707 #ifdef ASSERT 2708 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) { 2709 AdapterBlob* comparison_blob = nullptr; 2710 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, true); 2711 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2712 assert(comparison_entry->compare_code(cached_entry), "code must match"); 2713 // Release the one just created 2714 AdapterHandlerEntry::deallocate(comparison_entry); 2715 } 2716 #endif /* ASSERT*/ 2717 2718 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2719 // Use customized signature handler. Need to lock around updates to 2720 // the _adapter_handler_table (it is not safe for concurrent readers 2721 // and a single writer: this could be fixed if it becomes a 2722 // problem). 2723 2724 // Fast-path for trivial adapters 2725 AdapterHandlerEntry* entry = get_simple_adapter(method); 2726 if (entry != nullptr) { 2727 return entry; 2728 } 2729 2730 ResourceMark rm; 2731 AdapterBlob* adapter_blob = nullptr; 2732 2733 // Fill in the signature array, for the calling-convention call. 2734 int total_args_passed = method->size_of_parameters(); // All args on stack 2735 2736 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2737 method->is_static(), total_args_passed); 2738 assert(si.slots() == total_args_passed, ""); 2739 BasicType* sig_bt = si.basic_types(); 2740 { 2741 MutexLocker mu(AdapterHandlerLibrary_lock); 2742 2743 // Lookup method signature's fingerprint 2744 entry = lookup(total_args_passed, sig_bt); 2745 2746 if (entry != nullptr) { 2747 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 2748 #ifdef ASSERT 2749 if (!entry->is_shared() && VerifyAdapterSharing) { 2750 verify_adapter_sharing(total_args_passed, sig_bt, entry); 2751 } 2752 #endif 2753 } else { 2754 entry = create_adapter(adapter_blob, total_args_passed, sig_bt); 2755 } 2756 } 2757 2758 // Outside of the lock 2759 if (adapter_blob != nullptr) { 2760 post_adapter_creation(adapter_blob, entry); 2761 } 2762 return entry; 2763 } 2764 2765 AdapterBlob* AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 2766 ResourceMark rm; 2767 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2768 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2769 int offsets[AdapterHandlerEntry::ENTRIES_COUNT]; 2770 2771 AdapterBlob* adapter_blob = nullptr; 2772 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, offsets); 2773 if (blob != nullptr) { 2774 adapter_blob = blob->as_adapter_blob(); 2775 address i2c_entry = adapter_blob->content_begin(); 2776 assert(offsets[0] == 0, "sanity check"); 2777 handler->set_entry_points(i2c_entry, i2c_entry + offsets[1], i2c_entry + offsets[2], i2c_entry + offsets[3]); 2778 } 2779 return adapter_blob; 2780 } 2781 2782 #ifndef PRODUCT 2783 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) { 2784 ttyLocker ttyl; 2785 ResourceMark rm; 2786 int insts_size = adapter_blob->code_size(); 2787 handler->print_adapter_on(tty); 2788 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 2789 handler->fingerprint()->as_basic_args_string(), 2790 handler->fingerprint()->as_string(), insts_size); 2791 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 2792 if (Verbose || PrintStubCode) { 2793 address first_pc = handler->base_address(); 2794 if (first_pc != nullptr) { 2795 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 2796 st->cr(); 2797 } 2798 } 2799 } 2800 #endif // PRODUCT 2801 2802 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob, 2803 AdapterHandlerEntry* handler, 2804 int total_args_passed, 2805 BasicType* sig_bt, 2806 bool is_transient) { 2807 if (log_is_enabled(Info, perf, class, link)) { 2808 ClassLoader::perf_method_adapters_count()->inc(); 2809 } 2810 2811 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2812 CodeBuffer buffer(buf); 2813 short buffer_locs[20]; 2814 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2815 sizeof(buffer_locs)/sizeof(relocInfo)); 2816 MacroAssembler masm(&buffer); 2817 VMRegPair stack_regs[16]; 2818 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2819 2820 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2821 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2822 SharedRuntime::generate_i2c2i_adapters(&masm, 2823 total_args_passed, 2824 comp_args_on_stack, 2825 sig_bt, 2826 regs, 2827 handler); 2828 #ifdef ASSERT 2829 if (VerifyAdapterSharing) { 2830 handler->save_code(buf->code_begin(), buffer.insts_size()); 2831 if (is_transient) { 2832 return true; 2833 } 2834 } 2835 #endif 2836 2837 adapter_blob = AdapterBlob::create(&buffer); 2838 if (adapter_blob == nullptr) { 2839 // CodeCache is full, disable compilation 2840 // Ought to log this but compile log is only per compile thread 2841 // and we're some non descript Java thread. 2842 return false; 2843 } 2844 if (!is_transient && AOTCodeCache::is_dumping_adapter()) { 2845 // try to save generated code 2846 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2847 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2848 int entry_offset[AdapterHandlerEntry::ENTRIES_COUNT]; 2849 assert(AdapterHandlerEntry::ENTRIES_COUNT == 4, "sanity"); 2850 address i2c_entry = handler->get_i2c_entry(); 2851 entry_offset[0] = 0; // i2c_entry offset 2852 entry_offset[1] = handler->get_c2i_entry() - i2c_entry; 2853 entry_offset[2] = handler->get_c2i_unverified_entry() - i2c_entry; 2854 entry_offset[3] = handler->get_c2i_no_clinit_check_entry() - i2c_entry; 2855 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, entry_offset); 2856 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled"); 2857 } 2858 handler->relocate(adapter_blob->content_begin()); 2859 #ifndef PRODUCT 2860 // debugging support 2861 if (PrintAdapterHandlers || PrintStubCode) { 2862 print_adapter_handler_info(tty, handler, adapter_blob); 2863 } 2864 #endif 2865 return true; 2866 } 2867 2868 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob, 2869 int total_args_passed, 2870 BasicType* sig_bt, 2871 bool is_transient) { 2872 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2873 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 2874 if (!generate_adapter_code(adapter_blob, handler, total_args_passed, sig_bt, is_transient)) { 2875 AdapterHandlerEntry::deallocate(handler); 2876 return nullptr; 2877 } 2878 if (!is_transient) { 2879 assert_lock_strong(AdapterHandlerLibrary_lock); 2880 _adapter_handler_table->put(fp, handler); 2881 } 2882 return handler; 2883 } 2884 2885 #if INCLUDE_CDS 2886 void AdapterHandlerEntry::remove_unshareable_info() { 2887 #ifdef ASSERT 2888 _saved_code = nullptr; 2889 _saved_code_length = 0; 2890 #endif // ASSERT 2891 set_entry_points(nullptr, nullptr, nullptr, nullptr, false); 2892 } 2893 2894 class CopyAdapterTableToArchive : StackObj { 2895 private: 2896 CompactHashtableWriter* _writer; 2897 ArchiveBuilder* _builder; 2898 public: 2899 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 2900 _builder(ArchiveBuilder::current()) 2901 {} 2902 2903 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 2904 LogStreamHandle(Trace, aot) lsh; 2905 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 2906 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 2907 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 2908 assert(buffered_fp != nullptr,"sanity check"); 2909 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 2910 assert(buffered_entry != nullptr,"sanity check"); 2911 2912 uint hash = fp->compute_hash(); 2913 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 2914 _writer->add(hash, delta); 2915 if (lsh.is_enabled()) { 2916 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 2917 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 2918 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 2919 } 2920 } else { 2921 if (lsh.is_enabled()) { 2922 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 2923 } 2924 } 2925 return true; 2926 } 2927 }; 2928 2929 void AdapterHandlerLibrary::dump_aot_adapter_table() { 2930 CompactHashtableStats stats; 2931 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 2932 CopyAdapterTableToArchive copy(&writer); 2933 _adapter_handler_table->iterate(©); 2934 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 2935 } 2936 2937 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 2938 _aot_adapter_handler_table.serialize_header(soc); 2939 } 2940 2941 AdapterBlob* AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 2942 #ifdef ASSERT 2943 if (TestAOTAdapterLinkFailure) { 2944 return nullptr; 2945 } 2946 #endif 2947 AdapterBlob* blob = lookup_aot_cache(handler); 2948 #ifndef PRODUCT 2949 // debugging support 2950 if ((blob != nullptr) && (PrintAdapterHandlers || PrintStubCode)) { 2951 print_adapter_handler_info(tty, handler, blob); 2952 } 2953 #endif 2954 return blob; 2955 } 2956 2957 // This method is used during production run to link archived adapters (stored in AOT Cache) 2958 // to their code in AOT Code Cache 2959 void AdapterHandlerEntry::link() { 2960 AdapterBlob* adapter_blob = nullptr; 2961 ResourceMark rm; 2962 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 2963 bool generate_code = false; 2964 // Generate code only if AOTCodeCache is not available, or 2965 // caching adapters is disabled, or we fail to link 2966 // the AdapterHandlerEntry to its code in the AOTCodeCache 2967 if (AOTCodeCache::is_using_adapter()) { 2968 adapter_blob = AdapterHandlerLibrary::link_aot_adapter_handler(this); 2969 if (adapter_blob == nullptr) { 2970 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 2971 generate_code = true; 2972 } 2973 } else { 2974 generate_code = true; 2975 } 2976 if (generate_code) { 2977 int nargs; 2978 BasicType* bt = _fingerprint->as_basic_type(nargs); 2979 if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, nargs, bt, /* is_transient */ false)) { 2980 // Don't throw exceptions during VM initialization because java.lang.* classes 2981 // might not have been initialized, causing problems when constructing the 2982 // Java exception object. 2983 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 2984 } 2985 } 2986 // Outside of the lock 2987 if (adapter_blob != nullptr) { 2988 post_adapter_creation(adapter_blob, this); 2989 } 2990 assert(_linked, "AdapterHandlerEntry must now be linked"); 2991 } 2992 2993 void AdapterHandlerLibrary::link_aot_adapters() { 2994 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available"); 2995 _aot_adapter_handler_table.iterate([](AdapterHandlerEntry* entry) { 2996 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 2997 entry->link(); 2998 }); 2999 } 3000 3001 // This method is called during production run to lookup simple adapters 3002 // in the archived adapter handler table 3003 void AdapterHandlerLibrary::lookup_simple_adapters() { 3004 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 3005 3006 MutexLocker mu(AdapterHandlerLibrary_lock); 3007 _no_arg_handler = lookup(0, nullptr); 3008 3009 BasicType obj_args[] = { T_OBJECT }; 3010 _obj_arg_handler = lookup(1, obj_args); 3011 3012 BasicType int_args[] = { T_INT }; 3013 _int_arg_handler = lookup(1, int_args); 3014 3015 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 3016 _obj_int_arg_handler = lookup(2, obj_int_args); 3017 3018 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 3019 _obj_obj_arg_handler = lookup(2, obj_obj_args); 3020 3021 assert(_no_arg_handler != nullptr && 3022 _obj_arg_handler != nullptr && 3023 _int_arg_handler != nullptr && 3024 _obj_int_arg_handler != nullptr && 3025 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3026 assert(_no_arg_handler->is_linked() && 3027 _obj_arg_handler->is_linked() && 3028 _int_arg_handler->is_linked() && 3029 _obj_int_arg_handler->is_linked() && 3030 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3031 } 3032 #endif // INCLUDE_CDS 3033 3034 address AdapterHandlerEntry::base_address() { 3035 address base = _i2c_entry; 3036 if (base == nullptr) base = _c2i_entry; 3037 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3038 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3039 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3040 return base; 3041 } 3042 3043 void AdapterHandlerEntry::relocate(address new_base) { 3044 address old_base = base_address(); 3045 assert(old_base != nullptr, ""); 3046 ptrdiff_t delta = new_base - old_base; 3047 if (_i2c_entry != nullptr) 3048 _i2c_entry += delta; 3049 if (_c2i_entry != nullptr) 3050 _c2i_entry += delta; 3051 if (_c2i_unverified_entry != nullptr) 3052 _c2i_unverified_entry += delta; 3053 if (_c2i_no_clinit_check_entry != nullptr) 3054 _c2i_no_clinit_check_entry += delta; 3055 assert(base_address() == new_base, ""); 3056 } 3057 3058 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3059 LogStreamHandle(Trace, aot) lsh; 3060 if (lsh.is_enabled()) { 3061 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3062 lsh.cr(); 3063 } 3064 it->push(&_fingerprint); 3065 } 3066 3067 AdapterHandlerEntry::~AdapterHandlerEntry() { 3068 if (_fingerprint != nullptr) { 3069 AdapterFingerPrint::deallocate(_fingerprint); 3070 _fingerprint = nullptr; 3071 } 3072 #ifdef ASSERT 3073 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3074 #endif 3075 FreeHeap(this); 3076 } 3077 3078 3079 #ifdef ASSERT 3080 // Capture the code before relocation so that it can be compared 3081 // against other versions. If the code is captured after relocation 3082 // then relative instructions won't be equivalent. 3083 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3084 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3085 _saved_code_length = length; 3086 memcpy(_saved_code, buffer, length); 3087 } 3088 3089 3090 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3091 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3092 3093 if (other->_saved_code_length != _saved_code_length) { 3094 return false; 3095 } 3096 3097 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3098 } 3099 #endif 3100 3101 3102 /** 3103 * Create a native wrapper for this native method. The wrapper converts the 3104 * Java-compiled calling convention to the native convention, handles 3105 * arguments, and transitions to native. On return from the native we transition 3106 * back to java blocking if a safepoint is in progress. 3107 */ 3108 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3109 ResourceMark rm; 3110 nmethod* nm = nullptr; 3111 3112 // Check if memory should be freed before allocation 3113 CodeCache::gc_on_allocation(); 3114 3115 assert(method->is_native(), "must be native"); 3116 assert(method->is_special_native_intrinsic() || 3117 method->has_native_function(), "must have something valid to call!"); 3118 3119 { 3120 // Perform the work while holding the lock, but perform any printing outside the lock 3121 MutexLocker mu(AdapterHandlerLibrary_lock); 3122 // See if somebody beat us to it 3123 if (method->code() != nullptr) { 3124 return; 3125 } 3126 3127 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3128 assert(compile_id > 0, "Must generate native wrapper"); 3129 3130 3131 ResourceMark rm; 3132 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3133 if (buf != nullptr) { 3134 CodeBuffer buffer(buf); 3135 3136 if (method->is_continuation_enter_intrinsic()) { 3137 buffer.initialize_stubs_size(192); 3138 } 3139 3140 struct { double data[20]; } locs_buf; 3141 struct { double data[20]; } stubs_locs_buf; 3142 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3143 #if defined(AARCH64) || defined(PPC64) 3144 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3145 // in the constant pool to ensure ordering between the barrier and oops 3146 // accesses. For native_wrappers we need a constant. 3147 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3148 // static java call that is resolved in the runtime. 3149 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3150 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3151 } 3152 #endif 3153 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3154 MacroAssembler _masm(&buffer); 3155 3156 // Fill in the signature array, for the calling-convention call. 3157 const int total_args_passed = method->size_of_parameters(); 3158 3159 VMRegPair stack_regs[16]; 3160 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3161 3162 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3163 method->is_static(), total_args_passed); 3164 BasicType* sig_bt = si.basic_types(); 3165 assert(si.slots() == total_args_passed, ""); 3166 BasicType ret_type = si.return_type(); 3167 3168 // Now get the compiled-Java arguments layout. 3169 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3170 3171 // Generate the compiled-to-native wrapper code 3172 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3173 3174 if (nm != nullptr) { 3175 { 3176 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3177 if (nm->make_in_use()) { 3178 method->set_code(method, nm); 3179 } 3180 } 3181 3182 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3183 if (directive->PrintAssemblyOption) { 3184 nm->print_code(); 3185 } 3186 DirectivesStack::release(directive); 3187 } 3188 } 3189 } // Unlock AdapterHandlerLibrary_lock 3190 3191 3192 // Install the generated code. 3193 if (nm != nullptr) { 3194 const char *msg = method->is_static() ? "(static)" : ""; 3195 CompileTask::print_ul(nm, msg); 3196 if (PrintCompilation) { 3197 ttyLocker ttyl; 3198 CompileTask::print(tty, nm, msg); 3199 } 3200 nm->post_compiled_method_load_event(); 3201 } 3202 } 3203 3204 // ------------------------------------------------------------------------- 3205 // Java-Java calling convention 3206 // (what you use when Java calls Java) 3207 3208 //------------------------------name_for_receiver---------------------------------- 3209 // For a given signature, return the VMReg for parameter 0. 3210 VMReg SharedRuntime::name_for_receiver() { 3211 VMRegPair regs; 3212 BasicType sig_bt = T_OBJECT; 3213 (void) java_calling_convention(&sig_bt, ®s, 1); 3214 // Return argument 0 register. In the LP64 build pointers 3215 // take 2 registers, but the VM wants only the 'main' name. 3216 return regs.first(); 3217 } 3218 3219 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3220 // This method is returning a data structure allocating as a 3221 // ResourceObject, so do not put any ResourceMarks in here. 3222 3223 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3224 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3225 int cnt = 0; 3226 if (has_receiver) { 3227 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3228 } 3229 3230 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3231 BasicType type = ss.type(); 3232 sig_bt[cnt++] = type; 3233 if (is_double_word_type(type)) 3234 sig_bt[cnt++] = T_VOID; 3235 } 3236 3237 if (has_appendix) { 3238 sig_bt[cnt++] = T_OBJECT; 3239 } 3240 3241 assert(cnt < 256, "grow table size"); 3242 3243 int comp_args_on_stack; 3244 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3245 3246 // the calling convention doesn't count out_preserve_stack_slots so 3247 // we must add that in to get "true" stack offsets. 3248 3249 if (comp_args_on_stack) { 3250 for (int i = 0; i < cnt; i++) { 3251 VMReg reg1 = regs[i].first(); 3252 if (reg1->is_stack()) { 3253 // Yuck 3254 reg1 = reg1->bias(out_preserve_stack_slots()); 3255 } 3256 VMReg reg2 = regs[i].second(); 3257 if (reg2->is_stack()) { 3258 // Yuck 3259 reg2 = reg2->bias(out_preserve_stack_slots()); 3260 } 3261 regs[i].set_pair(reg2, reg1); 3262 } 3263 } 3264 3265 // results 3266 *arg_size = cnt; 3267 return regs; 3268 } 3269 3270 // OSR Migration Code 3271 // 3272 // This code is used convert interpreter frames into compiled frames. It is 3273 // called from very start of a compiled OSR nmethod. A temp array is 3274 // allocated to hold the interesting bits of the interpreter frame. All 3275 // active locks are inflated to allow them to move. The displaced headers and 3276 // active interpreter locals are copied into the temp buffer. Then we return 3277 // back to the compiled code. The compiled code then pops the current 3278 // interpreter frame off the stack and pushes a new compiled frame. Then it 3279 // copies the interpreter locals and displaced headers where it wants. 3280 // Finally it calls back to free the temp buffer. 3281 // 3282 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3283 3284 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3285 assert(current == JavaThread::current(), "pre-condition"); 3286 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 3287 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3288 // frame. The stack watermark code below ensures that the interpreted frame is processed 3289 // before it gets unwound. This is helpful as the size of the compiled frame could be 3290 // larger than the interpreted frame, which could result in the new frame not being 3291 // processed correctly. 3292 StackWatermarkSet::before_unwind(current); 3293 3294 // 3295 // This code is dependent on the memory layout of the interpreter local 3296 // array and the monitors. On all of our platforms the layout is identical 3297 // so this code is shared. If some platform lays the their arrays out 3298 // differently then this code could move to platform specific code or 3299 // the code here could be modified to copy items one at a time using 3300 // frame accessor methods and be platform independent. 3301 3302 frame fr = current->last_frame(); 3303 assert(fr.is_interpreted_frame(), ""); 3304 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3305 3306 // Figure out how many monitors are active. 3307 int active_monitor_count = 0; 3308 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3309 kptr < fr.interpreter_frame_monitor_begin(); 3310 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3311 if (kptr->obj() != nullptr) active_monitor_count++; 3312 } 3313 3314 // QQQ we could place number of active monitors in the array so that compiled code 3315 // could double check it. 3316 3317 Method* moop = fr.interpreter_frame_method(); 3318 int max_locals = moop->max_locals(); 3319 // Allocate temp buffer, 1 word per local & 2 per active monitor 3320 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3321 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3322 3323 // Copy the locals. Order is preserved so that loading of longs works. 3324 // Since there's no GC I can copy the oops blindly. 3325 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3326 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3327 (HeapWord*)&buf[0], 3328 max_locals); 3329 3330 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3331 int i = max_locals; 3332 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3333 kptr2 < fr.interpreter_frame_monitor_begin(); 3334 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3335 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3336 BasicLock *lock = kptr2->lock(); 3337 if (LockingMode == LM_LEGACY) { 3338 // Inflate so the object's header no longer refers to the BasicLock. 3339 if (lock->displaced_header().is_unlocked()) { 3340 // The object is locked and the resulting ObjectMonitor* will also be 3341 // locked so it can't be async deflated until ownership is dropped. 3342 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3343 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3344 } 3345 // Now the displaced header is free to move because the 3346 // object's header no longer refers to it. 3347 buf[i] = (intptr_t)lock->displaced_header().value(); 3348 } else if (UseObjectMonitorTable) { 3349 buf[i] = (intptr_t)lock->object_monitor_cache(); 3350 } 3351 #ifdef ASSERT 3352 else { 3353 buf[i] = badDispHeaderOSR; 3354 } 3355 #endif 3356 i++; 3357 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3358 } 3359 } 3360 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3361 3362 RegisterMap map(current, 3363 RegisterMap::UpdateMap::skip, 3364 RegisterMap::ProcessFrames::include, 3365 RegisterMap::WalkContinuation::skip); 3366 frame sender = fr.sender(&map); 3367 if (sender.is_interpreted_frame()) { 3368 current->push_cont_fastpath(sender.sp()); 3369 } 3370 3371 return buf; 3372 JRT_END 3373 3374 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3375 FREE_C_HEAP_ARRAY(intptr_t, buf); 3376 JRT_END 3377 3378 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3379 bool found = false; 3380 #if INCLUDE_CDS 3381 if (AOTCodeCache::is_using_adapter()) { 3382 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3383 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); 3384 }; 3385 _aot_adapter_handler_table.iterate(findblob_archived_table); 3386 } 3387 #endif // INCLUDE_CDS 3388 if (!found) { 3389 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3390 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3391 }; 3392 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3393 _adapter_handler_table->iterate(findblob_runtime_table); 3394 } 3395 return found; 3396 } 3397 3398 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) { 3399 return fingerprint->as_basic_args_string(); 3400 } 3401 3402 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) { 3403 unsigned int hash = fingerprint->compute_hash(); 3404 return hash; 3405 } 3406 3407 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3408 bool found = false; 3409 #if INCLUDE_CDS 3410 if (AOTCodeCache::is_using_adapter()) { 3411 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3412 if (b == CodeCache::find_blob(handler->get_i2c_entry())) { 3413 found = true; 3414 st->print("Adapter for signature: "); 3415 handler->print_adapter_on(st); 3416 return true; 3417 } else { 3418 return false; // keep looking 3419 } 3420 }; 3421 _aot_adapter_handler_table.iterate(findblob_archived_table); 3422 } 3423 #endif // INCLUDE_CDS 3424 if (!found) { 3425 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3426 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3427 found = true; 3428 st->print("Adapter for signature: "); 3429 a->print_adapter_on(st); 3430 return true; 3431 } else { 3432 return false; // keep looking 3433 } 3434 }; 3435 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3436 _adapter_handler_table->iterate(findblob_runtime_table); 3437 } 3438 assert(found, "Should have found handler"); 3439 } 3440 3441 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3442 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3443 if (get_i2c_entry() != nullptr) { 3444 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3445 } 3446 if (get_c2i_entry() != nullptr) { 3447 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3448 } 3449 if (get_c2i_unverified_entry() != nullptr) { 3450 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3451 } 3452 if (get_c2i_no_clinit_check_entry() != nullptr) { 3453 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3454 } 3455 st->cr(); 3456 } 3457 3458 #ifndef PRODUCT 3459 3460 void AdapterHandlerLibrary::print_statistics() { 3461 print_table_statistics(); 3462 } 3463 3464 #endif /* PRODUCT */ 3465 3466 bool AdapterHandlerLibrary::is_abstract_method_adapter(AdapterHandlerEntry* entry) { 3467 if (entry == _abstract_method_handler) { 3468 return true; 3469 } 3470 return false; 3471 } 3472 3473 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3474 assert(current == JavaThread::current(), "pre-condition"); 3475 StackOverflow* overflow_state = current->stack_overflow_state(); 3476 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3477 overflow_state->set_reserved_stack_activation(current->stack_base()); 3478 JRT_END 3479 3480 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3481 ResourceMark rm(current); 3482 frame activation; 3483 nmethod* nm = nullptr; 3484 int count = 1; 3485 3486 assert(fr.is_java_frame(), "Must start on Java frame"); 3487 3488 RegisterMap map(JavaThread::current(), 3489 RegisterMap::UpdateMap::skip, 3490 RegisterMap::ProcessFrames::skip, 3491 RegisterMap::WalkContinuation::skip); // don't walk continuations 3492 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3493 if (!fr.is_java_frame()) { 3494 continue; 3495 } 3496 3497 Method* method = nullptr; 3498 bool found = false; 3499 if (fr.is_interpreted_frame()) { 3500 method = fr.interpreter_frame_method(); 3501 if (method != nullptr && method->has_reserved_stack_access()) { 3502 found = true; 3503 } 3504 } else { 3505 CodeBlob* cb = fr.cb(); 3506 if (cb != nullptr && cb->is_nmethod()) { 3507 nm = cb->as_nmethod(); 3508 method = nm->method(); 3509 // scope_desc_near() must be used, instead of scope_desc_at() because on 3510 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3511 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3512 method = sd->method(); 3513 if (method != nullptr && method->has_reserved_stack_access()) { 3514 found = true; 3515 } 3516 } 3517 } 3518 } 3519 if (found) { 3520 activation = fr; 3521 warning("Potentially dangerous stack overflow in " 3522 "ReservedStackAccess annotated method %s [%d]", 3523 method->name_and_sig_as_C_string(), count++); 3524 EventReservedStackActivation event; 3525 if (event.should_commit()) { 3526 event.set_method(method); 3527 event.commit(); 3528 } 3529 } 3530 } 3531 return activation; 3532 } 3533 3534 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3535 // After any safepoint, just before going back to compiled code, 3536 // we inform the GC that we will be doing initializing writes to 3537 // this object in the future without emitting card-marks, so 3538 // GC may take any compensating steps. 3539 3540 oop new_obj = current->vm_result_oop(); 3541 if (new_obj == nullptr) return; 3542 3543 BarrierSet *bs = BarrierSet::barrier_set(); 3544 bs->on_slowpath_allocation_exit(current, new_obj); 3545 }