1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jvm.h" 46 #include "jfr/jfrEvents.hpp" 47 #include "logging/log.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "metaprogramming/primitiveConversions.hpp" 51 #include "oops/klass.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/forte.hpp" 56 #include "prims/jvmtiExport.hpp" 57 #include "prims/jvmtiThreadState.hpp" 58 #include "prims/methodHandles.hpp" 59 #include "prims/nativeLookup.hpp" 60 #include "runtime/arguments.hpp" 61 #include "runtime/atomic.hpp" 62 #include "runtime/basicLock.inline.hpp" 63 #include "runtime/frame.inline.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/init.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/java.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/jniHandles.inline.hpp" 70 #include "runtime/perfData.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/stackWatermarkSet.hpp" 73 #include "runtime/stubRoutines.hpp" 74 #include "runtime/synchronizer.inline.hpp" 75 #include "runtime/timerTrace.hpp" 76 #include "runtime/vframe.inline.hpp" 77 #include "runtime/vframeArray.hpp" 78 #include "runtime/vm_version.hpp" 79 #include "utilities/copy.hpp" 80 #include "utilities/dtrace.hpp" 81 #include "utilities/events.hpp" 82 #include "utilities/globalDefinitions.hpp" 83 #include "utilities/resourceHash.hpp" 84 #include "utilities/macros.hpp" 85 #include "utilities/xmlstream.hpp" 86 #ifdef COMPILER1 87 #include "c1/c1_Runtime1.hpp" 88 #endif 89 #if INCLUDE_JFR 90 #include "jfr/jfr.hpp" 91 #endif 92 93 // Shared runtime stub routines reside in their own unique blob with a 94 // single entry point 95 96 97 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 98 type SharedRuntime::BLOB_FIELD_NAME(name); 99 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 100 #undef SHARED_STUB_FIELD_DEFINE 101 102 nmethod* SharedRuntime::_cont_doYield_stub; 103 104 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 105 const char *SharedRuntime::_stub_names[] = { 106 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 107 }; 108 109 //----------------------------generate_stubs----------------------------------- 110 void SharedRuntime::generate_initial_stubs() { 111 // Build this early so it's available for the interpreter. 112 _throw_StackOverflowError_blob = 113 generate_throw_exception(SharedStubId::throw_StackOverflowError_id, 114 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 115 } 116 117 void SharedRuntime::generate_stubs() { 118 _wrong_method_blob = 119 generate_resolve_blob(SharedStubId::wrong_method_id, 120 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 121 _wrong_method_abstract_blob = 122 generate_resolve_blob(SharedStubId::wrong_method_abstract_id, 123 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 124 _ic_miss_blob = 125 generate_resolve_blob(SharedStubId::ic_miss_id, 126 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 127 _resolve_opt_virtual_call_blob = 128 generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id, 129 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 130 _resolve_virtual_call_blob = 131 generate_resolve_blob(SharedStubId::resolve_virtual_call_id, 132 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 133 _resolve_static_call_blob = 134 generate_resolve_blob(SharedStubId::resolve_static_call_id, 135 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 136 137 _throw_delayed_StackOverflowError_blob = 138 generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id, 139 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 140 141 _throw_AbstractMethodError_blob = 142 generate_throw_exception(SharedStubId::throw_AbstractMethodError_id, 143 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 144 145 _throw_IncompatibleClassChangeError_blob = 146 generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id, 147 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 148 149 _throw_NullPointerException_at_call_blob = 150 generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id, 151 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 152 153 #if COMPILER2_OR_JVMCI 154 // Vectors are generated only by C2 and JVMCI. 155 bool support_wide = is_wide_vector(MaxVectorSize); 156 if (support_wide) { 157 _polling_page_vectors_safepoint_handler_blob = 158 generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id, 159 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 160 } 161 #endif // COMPILER2_OR_JVMCI 162 _polling_page_safepoint_handler_blob = 163 generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id, 164 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 165 _polling_page_return_handler_blob = 166 generate_handler_blob(SharedStubId::polling_page_return_handler_id, 167 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 168 169 generate_deopt_blob(); 170 } 171 172 void SharedRuntime::init_adapter_library() { 173 AdapterHandlerLibrary::initialize(); 174 } 175 176 #if INCLUDE_JFR 177 //------------------------------generate jfr runtime stubs ------ 178 void SharedRuntime::generate_jfr_stubs() { 179 ResourceMark rm; 180 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 181 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 182 183 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 184 _jfr_return_lease_blob = generate_jfr_return_lease(); 185 } 186 187 #endif // INCLUDE_JFR 188 189 #include <math.h> 190 191 // Implementation of SharedRuntime 192 193 #ifndef PRODUCT 194 // For statistics 195 uint SharedRuntime::_ic_miss_ctr = 0; 196 uint SharedRuntime::_wrong_method_ctr = 0; 197 uint SharedRuntime::_resolve_static_ctr = 0; 198 uint SharedRuntime::_resolve_virtual_ctr = 0; 199 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 200 uint SharedRuntime::_implicit_null_throws = 0; 201 uint SharedRuntime::_implicit_div0_throws = 0; 202 203 int64_t SharedRuntime::_nof_normal_calls = 0; 204 int64_t SharedRuntime::_nof_inlined_calls = 0; 205 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 206 int64_t SharedRuntime::_nof_static_calls = 0; 207 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 208 int64_t SharedRuntime::_nof_interface_calls = 0; 209 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 210 211 uint SharedRuntime::_new_instance_ctr=0; 212 uint SharedRuntime::_new_array_ctr=0; 213 uint SharedRuntime::_multi2_ctr=0; 214 uint SharedRuntime::_multi3_ctr=0; 215 uint SharedRuntime::_multi4_ctr=0; 216 uint SharedRuntime::_multi5_ctr=0; 217 uint SharedRuntime::_mon_enter_stub_ctr=0; 218 uint SharedRuntime::_mon_exit_stub_ctr=0; 219 uint SharedRuntime::_mon_enter_ctr=0; 220 uint SharedRuntime::_mon_exit_ctr=0; 221 uint SharedRuntime::_partial_subtype_ctr=0; 222 uint SharedRuntime::_jbyte_array_copy_ctr=0; 223 uint SharedRuntime::_jshort_array_copy_ctr=0; 224 uint SharedRuntime::_jint_array_copy_ctr=0; 225 uint SharedRuntime::_jlong_array_copy_ctr=0; 226 uint SharedRuntime::_oop_array_copy_ctr=0; 227 uint SharedRuntime::_checkcast_array_copy_ctr=0; 228 uint SharedRuntime::_unsafe_array_copy_ctr=0; 229 uint SharedRuntime::_generic_array_copy_ctr=0; 230 uint SharedRuntime::_slow_array_copy_ctr=0; 231 uint SharedRuntime::_find_handler_ctr=0; 232 uint SharedRuntime::_rethrow_ctr=0; 233 uint SharedRuntime::_unsafe_set_memory_ctr=0; 234 235 int SharedRuntime::_ICmiss_index = 0; 236 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 237 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 238 239 240 void SharedRuntime::trace_ic_miss(address at) { 241 for (int i = 0; i < _ICmiss_index; i++) { 242 if (_ICmiss_at[i] == at) { 243 _ICmiss_count[i]++; 244 return; 245 } 246 } 247 int index = _ICmiss_index++; 248 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 249 _ICmiss_at[index] = at; 250 _ICmiss_count[index] = 1; 251 } 252 253 void SharedRuntime::print_ic_miss_histogram() { 254 if (ICMissHistogram) { 255 tty->print_cr("IC Miss Histogram:"); 256 int tot_misses = 0; 257 for (int i = 0; i < _ICmiss_index; i++) { 258 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 259 tot_misses += _ICmiss_count[i]; 260 } 261 tty->print_cr("Total IC misses: %7d", tot_misses); 262 } 263 } 264 #endif // PRODUCT 265 266 267 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 268 return x * y; 269 JRT_END 270 271 272 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 273 if (x == min_jlong && y == CONST64(-1)) { 274 return x; 275 } else { 276 return x / y; 277 } 278 JRT_END 279 280 281 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 282 if (x == min_jlong && y == CONST64(-1)) { 283 return 0; 284 } else { 285 return x % y; 286 } 287 JRT_END 288 289 290 #ifdef _WIN64 291 const juint float_sign_mask = 0x7FFFFFFF; 292 const juint float_infinity = 0x7F800000; 293 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 294 const julong double_infinity = CONST64(0x7FF0000000000000); 295 #endif 296 297 #if !defined(X86) 298 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 299 #ifdef _WIN64 300 // 64-bit Windows on amd64 returns the wrong values for 301 // infinity operands. 302 juint xbits = PrimitiveConversions::cast<juint>(x); 303 juint ybits = PrimitiveConversions::cast<juint>(y); 304 // x Mod Infinity == x unless x is infinity 305 if (((xbits & float_sign_mask) != float_infinity) && 306 ((ybits & float_sign_mask) == float_infinity) ) { 307 return x; 308 } 309 return ((jfloat)fmod_winx64((double)x, (double)y)); 310 #else 311 return ((jfloat)fmod((double)x,(double)y)); 312 #endif 313 JRT_END 314 315 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 316 #ifdef _WIN64 317 julong xbits = PrimitiveConversions::cast<julong>(x); 318 julong ybits = PrimitiveConversions::cast<julong>(y); 319 // x Mod Infinity == x unless x is infinity 320 if (((xbits & double_sign_mask) != double_infinity) && 321 ((ybits & double_sign_mask) == double_infinity) ) { 322 return x; 323 } 324 return ((jdouble)fmod_winx64((double)x, (double)y)); 325 #else 326 return ((jdouble)fmod((double)x,(double)y)); 327 #endif 328 JRT_END 329 #endif // !X86 330 331 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 332 return (jfloat)x; 333 JRT_END 334 335 #ifdef __SOFTFP__ 336 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 337 return x + y; 338 JRT_END 339 340 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 341 return x - y; 342 JRT_END 343 344 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 345 return x * y; 346 JRT_END 347 348 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 349 return x / y; 350 JRT_END 351 352 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 353 return x + y; 354 JRT_END 355 356 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 357 return x - y; 358 JRT_END 359 360 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 361 return x * y; 362 JRT_END 363 364 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 365 return x / y; 366 JRT_END 367 368 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 369 return (jdouble)x; 370 JRT_END 371 372 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 373 return (jdouble)x; 374 JRT_END 375 376 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 377 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 378 JRT_END 379 380 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 381 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 382 JRT_END 383 384 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 385 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 386 JRT_END 387 388 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 389 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 390 JRT_END 391 392 // Functions to return the opposite of the aeabi functions for nan. 393 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 394 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 395 JRT_END 396 397 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 398 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 399 JRT_END 400 401 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 402 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 403 JRT_END 404 405 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 406 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 407 JRT_END 408 409 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 410 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 411 JRT_END 412 413 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 414 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 415 JRT_END 416 417 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 418 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 419 JRT_END 420 421 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 422 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 423 JRT_END 424 425 // Intrinsics make gcc generate code for these. 426 float SharedRuntime::fneg(float f) { 427 return -f; 428 } 429 430 double SharedRuntime::dneg(double f) { 431 return -f; 432 } 433 434 #endif // __SOFTFP__ 435 436 #if defined(__SOFTFP__) || defined(E500V2) 437 // Intrinsics make gcc generate code for these. 438 double SharedRuntime::dabs(double f) { 439 return (f <= (double)0.0) ? (double)0.0 - f : f; 440 } 441 442 #endif 443 444 #if defined(__SOFTFP__) || defined(PPC) 445 double SharedRuntime::dsqrt(double f) { 446 return sqrt(f); 447 } 448 #endif 449 450 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 451 if (g_isnan(x)) 452 return 0; 453 if (x >= (jfloat) max_jint) 454 return max_jint; 455 if (x <= (jfloat) min_jint) 456 return min_jint; 457 return (jint) x; 458 JRT_END 459 460 461 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 462 if (g_isnan(x)) 463 return 0; 464 if (x >= (jfloat) max_jlong) 465 return max_jlong; 466 if (x <= (jfloat) min_jlong) 467 return min_jlong; 468 return (jlong) x; 469 JRT_END 470 471 472 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 473 if (g_isnan(x)) 474 return 0; 475 if (x >= (jdouble) max_jint) 476 return max_jint; 477 if (x <= (jdouble) min_jint) 478 return min_jint; 479 return (jint) x; 480 JRT_END 481 482 483 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 484 if (g_isnan(x)) 485 return 0; 486 if (x >= (jdouble) max_jlong) 487 return max_jlong; 488 if (x <= (jdouble) min_jlong) 489 return min_jlong; 490 return (jlong) x; 491 JRT_END 492 493 494 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 495 return (jfloat)x; 496 JRT_END 497 498 499 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 500 return (jfloat)x; 501 JRT_END 502 503 504 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 505 return (jdouble)x; 506 JRT_END 507 508 509 // Exception handling across interpreter/compiler boundaries 510 // 511 // exception_handler_for_return_address(...) returns the continuation address. 512 // The continuation address is the entry point of the exception handler of the 513 // previous frame depending on the return address. 514 515 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 516 // Note: This is called when we have unwound the frame of the callee that did 517 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 518 // Notably, the stack is not walkable at this point, and hence the check must 519 // be deferred until later. Specifically, any of the handlers returned here in 520 // this function, will get dispatched to, and call deferred checks to 521 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 522 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 523 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 524 525 // Reset method handle flag. 526 current->set_is_method_handle_return(false); 527 528 #if INCLUDE_JVMCI 529 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 530 // and other exception handler continuations do not read it 531 current->set_exception_pc(nullptr); 532 #endif // INCLUDE_JVMCI 533 534 if (Continuation::is_return_barrier_entry(return_address)) { 535 return StubRoutines::cont_returnBarrierExc(); 536 } 537 538 // The fastest case first 539 CodeBlob* blob = CodeCache::find_blob(return_address); 540 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 541 if (nm != nullptr) { 542 // Set flag if return address is a method handle call site. 543 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 544 // native nmethods don't have exception handlers 545 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 546 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 547 if (nm->is_deopt_pc(return_address)) { 548 // If we come here because of a stack overflow, the stack may be 549 // unguarded. Reguard the stack otherwise if we return to the 550 // deopt blob and the stack bang causes a stack overflow we 551 // crash. 552 StackOverflow* overflow_state = current->stack_overflow_state(); 553 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 554 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 555 overflow_state->set_reserved_stack_activation(current->stack_base()); 556 } 557 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 558 // The deferred StackWatermarkSet::after_unwind check will be performed in 559 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 560 return SharedRuntime::deopt_blob()->unpack_with_exception(); 561 } else { 562 // The deferred StackWatermarkSet::after_unwind check will be performed in 563 // * OptoRuntime::handle_exception_C_helper for C2 code 564 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 565 return nm->exception_begin(); 566 } 567 } 568 569 // Entry code 570 if (StubRoutines::returns_to_call_stub(return_address)) { 571 // The deferred StackWatermarkSet::after_unwind check will be performed in 572 // JavaCallWrapper::~JavaCallWrapper 573 return StubRoutines::catch_exception_entry(); 574 } 575 if (blob != nullptr && blob->is_upcall_stub()) { 576 return StubRoutines::upcall_stub_exception_handler(); 577 } 578 // Interpreted code 579 if (Interpreter::contains(return_address)) { 580 // The deferred StackWatermarkSet::after_unwind check will be performed in 581 // InterpreterRuntime::exception_handler_for_exception 582 return Interpreter::rethrow_exception_entry(); 583 } 584 585 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 586 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 587 588 #ifndef PRODUCT 589 { ResourceMark rm; 590 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 591 os::print_location(tty, (intptr_t)return_address); 592 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 593 tty->print_cr("b) other problem"); 594 } 595 #endif // PRODUCT 596 ShouldNotReachHere(); 597 return nullptr; 598 } 599 600 601 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 602 return raw_exception_handler_for_return_address(current, return_address); 603 JRT_END 604 605 606 address SharedRuntime::get_poll_stub(address pc) { 607 address stub; 608 // Look up the code blob 609 CodeBlob *cb = CodeCache::find_blob(pc); 610 611 // Should be an nmethod 612 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 613 614 // Look up the relocation information 615 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 616 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 617 618 #ifdef ASSERT 619 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 620 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 621 Disassembler::decode(cb); 622 fatal("Only polling locations are used for safepoint"); 623 } 624 #endif 625 626 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 627 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 628 if (at_poll_return) { 629 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 630 "polling page return stub not created yet"); 631 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 632 } else if (has_wide_vectors) { 633 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 634 "polling page vectors safepoint stub not created yet"); 635 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 636 } else { 637 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 638 "polling page safepoint stub not created yet"); 639 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 640 } 641 log_debug(safepoint)("... found polling page %s exception at pc = " 642 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 643 at_poll_return ? "return" : "loop", 644 (intptr_t)pc, (intptr_t)stub); 645 return stub; 646 } 647 648 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 649 if (JvmtiExport::can_post_on_exceptions()) { 650 vframeStream vfst(current, true); 651 methodHandle method = methodHandle(current, vfst.method()); 652 address bcp = method()->bcp_from(vfst.bci()); 653 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 654 } 655 656 #if INCLUDE_JVMCI 657 if (EnableJVMCI) { 658 vframeStream vfst(current, true); 659 methodHandle method = methodHandle(current, vfst.method()); 660 int bci = vfst.bci(); 661 MethodData* trap_mdo = method->method_data(); 662 if (trap_mdo != nullptr) { 663 // Set exception_seen if the exceptional bytecode is an invoke 664 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 665 if (call.is_valid()) { 666 ResourceMark rm(current); 667 668 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 669 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 670 671 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 672 if (pdata != nullptr && pdata->is_BitData()) { 673 BitData* bit_data = (BitData*) pdata; 674 bit_data->set_exception_seen(); 675 } 676 } 677 } 678 } 679 #endif 680 681 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 682 } 683 684 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 685 Handle h_exception = Exceptions::new_exception(current, name, message); 686 throw_and_post_jvmti_exception(current, h_exception); 687 } 688 689 #if INCLUDE_JVMTI 690 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 691 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 692 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 693 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 694 JNIHandles::destroy_local(vthread); 695 JRT_END 696 697 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 698 assert(hide == JNI_TRUE, "must be VTMS transition start"); 699 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 700 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 701 JNIHandles::destroy_local(vthread); 702 JRT_END 703 704 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 705 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 706 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 707 JNIHandles::destroy_local(vthread); 708 JRT_END 709 710 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 711 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 712 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 713 JNIHandles::destroy_local(vthread); 714 JRT_END 715 #endif // INCLUDE_JVMTI 716 717 // The interpreter code to call this tracing function is only 718 // called/generated when UL is on for redefine, class and has the right level 719 // and tags. Since obsolete methods are never compiled, we don't have 720 // to modify the compilers to generate calls to this function. 721 // 722 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 723 JavaThread* thread, Method* method)) 724 if (method->is_obsolete()) { 725 // We are calling an obsolete method, but this is not necessarily 726 // an error. Our method could have been redefined just after we 727 // fetched the Method* from the constant pool. 728 ResourceMark rm; 729 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 730 } 731 return 0; 732 JRT_END 733 734 // ret_pc points into caller; we are returning caller's exception handler 735 // for given exception 736 // Note that the implementation of this method assumes it's only called when an exception has actually occured 737 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 738 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 739 assert(nm != nullptr, "must exist"); 740 ResourceMark rm; 741 742 #if INCLUDE_JVMCI 743 if (nm->is_compiled_by_jvmci()) { 744 // lookup exception handler for this pc 745 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 746 ExceptionHandlerTable table(nm); 747 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 748 if (t != nullptr) { 749 return nm->code_begin() + t->pco(); 750 } else { 751 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 752 } 753 } 754 #endif // INCLUDE_JVMCI 755 756 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 757 // determine handler bci, if any 758 EXCEPTION_MARK; 759 760 int handler_bci = -1; 761 int scope_depth = 0; 762 if (!force_unwind) { 763 int bci = sd->bci(); 764 bool recursive_exception = false; 765 do { 766 bool skip_scope_increment = false; 767 // exception handler lookup 768 Klass* ek = exception->klass(); 769 methodHandle mh(THREAD, sd->method()); 770 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 771 if (HAS_PENDING_EXCEPTION) { 772 recursive_exception = true; 773 // We threw an exception while trying to find the exception handler. 774 // Transfer the new exception to the exception handle which will 775 // be set into thread local storage, and do another lookup for an 776 // exception handler for this exception, this time starting at the 777 // BCI of the exception handler which caused the exception to be 778 // thrown (bugs 4307310 and 4546590). Set "exception" reference 779 // argument to ensure that the correct exception is thrown (4870175). 780 recursive_exception_occurred = true; 781 exception = Handle(THREAD, PENDING_EXCEPTION); 782 CLEAR_PENDING_EXCEPTION; 783 if (handler_bci >= 0) { 784 bci = handler_bci; 785 handler_bci = -1; 786 skip_scope_increment = true; 787 } 788 } 789 else { 790 recursive_exception = false; 791 } 792 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 793 sd = sd->sender(); 794 if (sd != nullptr) { 795 bci = sd->bci(); 796 } 797 ++scope_depth; 798 } 799 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 800 } 801 802 // found handling method => lookup exception handler 803 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 804 805 ExceptionHandlerTable table(nm); 806 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 807 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 808 // Allow abbreviated catch tables. The idea is to allow a method 809 // to materialize its exceptions without committing to the exact 810 // routing of exceptions. In particular this is needed for adding 811 // a synthetic handler to unlock monitors when inlining 812 // synchronized methods since the unlock path isn't represented in 813 // the bytecodes. 814 t = table.entry_for(catch_pco, -1, 0); 815 } 816 817 #ifdef COMPILER1 818 if (t == nullptr && nm->is_compiled_by_c1()) { 819 assert(nm->unwind_handler_begin() != nullptr, ""); 820 return nm->unwind_handler_begin(); 821 } 822 #endif 823 824 if (t == nullptr) { 825 ttyLocker ttyl; 826 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 827 tty->print_cr(" Exception:"); 828 exception->print(); 829 tty->cr(); 830 tty->print_cr(" Compiled exception table :"); 831 table.print(); 832 nm->print(); 833 nm->print_code(); 834 guarantee(false, "missing exception handler"); 835 return nullptr; 836 } 837 838 if (handler_bci != -1) { // did we find a handler in this method? 839 sd->method()->set_exception_handler_entered(handler_bci); // profile 840 } 841 return nm->code_begin() + t->pco(); 842 } 843 844 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 845 // These errors occur only at call sites 846 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 847 JRT_END 848 849 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 850 // These errors occur only at call sites 851 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 852 JRT_END 853 854 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 855 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 856 JRT_END 857 858 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 859 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 860 JRT_END 861 862 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 863 // This entry point is effectively only used for NullPointerExceptions which occur at inline 864 // cache sites (when the callee activation is not yet set up) so we are at a call site 865 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 866 JRT_END 867 868 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 869 throw_StackOverflowError_common(current, false); 870 JRT_END 871 872 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 873 throw_StackOverflowError_common(current, true); 874 JRT_END 875 876 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 877 // We avoid using the normal exception construction in this case because 878 // it performs an upcall to Java, and we're already out of stack space. 879 JavaThread* THREAD = current; // For exception macros. 880 Klass* k = vmClasses::StackOverflowError_klass(); 881 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 882 if (delayed) { 883 java_lang_Throwable::set_message(exception_oop, 884 Universe::delayed_stack_overflow_error_message()); 885 } 886 Handle exception (current, exception_oop); 887 if (StackTraceInThrowable) { 888 java_lang_Throwable::fill_in_stack_trace(exception); 889 } 890 // Remove the ScopedValue bindings in case we got a 891 // StackOverflowError while we were trying to remove ScopedValue 892 // bindings. 893 current->clear_scopedValueBindings(); 894 // Increment counter for hs_err file reporting 895 Atomic::inc(&Exceptions::_stack_overflow_errors); 896 throw_and_post_jvmti_exception(current, exception); 897 } 898 899 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 900 address pc, 901 ImplicitExceptionKind exception_kind) 902 { 903 address target_pc = nullptr; 904 905 if (Interpreter::contains(pc)) { 906 switch (exception_kind) { 907 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 908 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 909 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 910 default: ShouldNotReachHere(); 911 } 912 } else { 913 switch (exception_kind) { 914 case STACK_OVERFLOW: { 915 // Stack overflow only occurs upon frame setup; the callee is 916 // going to be unwound. Dispatch to a shared runtime stub 917 // which will cause the StackOverflowError to be fabricated 918 // and processed. 919 // Stack overflow should never occur during deoptimization: 920 // the compiled method bangs the stack by as much as the 921 // interpreter would need in case of a deoptimization. The 922 // deoptimization blob and uncommon trap blob bang the stack 923 // in a debug VM to verify the correctness of the compiled 924 // method stack banging. 925 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 926 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 927 return SharedRuntime::throw_StackOverflowError_entry(); 928 } 929 930 case IMPLICIT_NULL: { 931 if (VtableStubs::contains(pc)) { 932 // We haven't yet entered the callee frame. Fabricate an 933 // exception and begin dispatching it in the caller. Since 934 // the caller was at a call site, it's safe to destroy all 935 // caller-saved registers, as these entry points do. 936 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 937 938 // If vt_stub is null, then return null to signal handler to report the SEGV error. 939 if (vt_stub == nullptr) return nullptr; 940 941 if (vt_stub->is_abstract_method_error(pc)) { 942 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 943 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 944 // Instead of throwing the abstract method error here directly, we re-resolve 945 // and will throw the AbstractMethodError during resolve. As a result, we'll 946 // get a more detailed error message. 947 return SharedRuntime::get_handle_wrong_method_stub(); 948 } else { 949 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 950 // Assert that the signal comes from the expected location in stub code. 951 assert(vt_stub->is_null_pointer_exception(pc), 952 "obtained signal from unexpected location in stub code"); 953 return SharedRuntime::throw_NullPointerException_at_call_entry(); 954 } 955 } else { 956 CodeBlob* cb = CodeCache::find_blob(pc); 957 958 // If code blob is null, then return null to signal handler to report the SEGV error. 959 if (cb == nullptr) return nullptr; 960 961 // Exception happened in CodeCache. Must be either: 962 // 1. Inline-cache check in C2I handler blob, 963 // 2. Inline-cache check in nmethod, or 964 // 3. Implicit null exception in nmethod 965 966 if (!cb->is_nmethod()) { 967 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 968 if (!is_in_blob) { 969 // Allow normal crash reporting to handle this 970 return nullptr; 971 } 972 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 973 // There is no handler here, so we will simply unwind. 974 return SharedRuntime::throw_NullPointerException_at_call_entry(); 975 } 976 977 // Otherwise, it's a compiled method. Consult its exception handlers. 978 nmethod* nm = cb->as_nmethod(); 979 if (nm->inlinecache_check_contains(pc)) { 980 // exception happened inside inline-cache check code 981 // => the nmethod is not yet active (i.e., the frame 982 // is not set up yet) => use return address pushed by 983 // caller => don't push another return address 984 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 985 return SharedRuntime::throw_NullPointerException_at_call_entry(); 986 } 987 988 if (nm->method()->is_method_handle_intrinsic()) { 989 // exception happened inside MH dispatch code, similar to a vtable stub 990 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 991 return SharedRuntime::throw_NullPointerException_at_call_entry(); 992 } 993 994 #ifndef PRODUCT 995 _implicit_null_throws++; 996 #endif 997 target_pc = nm->continuation_for_implicit_null_exception(pc); 998 // If there's an unexpected fault, target_pc might be null, 999 // in which case we want to fall through into the normal 1000 // error handling code. 1001 } 1002 1003 break; // fall through 1004 } 1005 1006 1007 case IMPLICIT_DIVIDE_BY_ZERO: { 1008 nmethod* nm = CodeCache::find_nmethod(pc); 1009 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1010 #ifndef PRODUCT 1011 _implicit_div0_throws++; 1012 #endif 1013 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1014 // If there's an unexpected fault, target_pc might be null, 1015 // in which case we want to fall through into the normal 1016 // error handling code. 1017 break; // fall through 1018 } 1019 1020 default: ShouldNotReachHere(); 1021 } 1022 1023 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1024 1025 if (exception_kind == IMPLICIT_NULL) { 1026 #ifndef PRODUCT 1027 // for AbortVMOnException flag 1028 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1029 #endif //PRODUCT 1030 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1031 } else { 1032 #ifndef PRODUCT 1033 // for AbortVMOnException flag 1034 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1035 #endif //PRODUCT 1036 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1037 } 1038 return target_pc; 1039 } 1040 1041 ShouldNotReachHere(); 1042 return nullptr; 1043 } 1044 1045 1046 /** 1047 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1048 * installed in the native function entry of all native Java methods before 1049 * they get linked to their actual native methods. 1050 * 1051 * \note 1052 * This method actually never gets called! The reason is because 1053 * the interpreter's native entries call NativeLookup::lookup() which 1054 * throws the exception when the lookup fails. The exception is then 1055 * caught and forwarded on the return from NativeLookup::lookup() call 1056 * before the call to the native function. This might change in the future. 1057 */ 1058 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1059 { 1060 // We return a bad value here to make sure that the exception is 1061 // forwarded before we look at the return value. 1062 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1063 } 1064 JNI_END 1065 1066 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1067 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1068 } 1069 1070 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1071 #if INCLUDE_JVMCI 1072 if (!obj->klass()->has_finalizer()) { 1073 return; 1074 } 1075 #endif // INCLUDE_JVMCI 1076 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1077 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1078 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1079 JRT_END 1080 1081 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1082 assert(thread != nullptr, "No thread"); 1083 if (thread == nullptr) { 1084 return 0; 1085 } 1086 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1087 "current cannot touch oops after its GC barrier is detached."); 1088 oop obj = thread->threadObj(); 1089 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1090 } 1091 1092 /** 1093 * This function ought to be a void function, but cannot be because 1094 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1095 * 6254741. Once that is fixed we can remove the dummy return value. 1096 */ 1097 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1098 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1099 } 1100 1101 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1102 return dtrace_object_alloc(thread, o, o->size()); 1103 } 1104 1105 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1106 assert(DTraceAllocProbes, "wrong call"); 1107 Klass* klass = o->klass(); 1108 Symbol* name = klass->name(); 1109 HOTSPOT_OBJECT_ALLOC( 1110 get_java_tid(thread), 1111 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1112 return 0; 1113 } 1114 1115 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1116 JavaThread* current, Method* method)) 1117 assert(current == JavaThread::current(), "pre-condition"); 1118 1119 assert(DTraceMethodProbes, "wrong call"); 1120 Symbol* kname = method->klass_name(); 1121 Symbol* name = method->name(); 1122 Symbol* sig = method->signature(); 1123 HOTSPOT_METHOD_ENTRY( 1124 get_java_tid(current), 1125 (char *) kname->bytes(), kname->utf8_length(), 1126 (char *) name->bytes(), name->utf8_length(), 1127 (char *) sig->bytes(), sig->utf8_length()); 1128 return 0; 1129 JRT_END 1130 1131 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1132 JavaThread* current, Method* method)) 1133 assert(current == JavaThread::current(), "pre-condition"); 1134 assert(DTraceMethodProbes, "wrong call"); 1135 Symbol* kname = method->klass_name(); 1136 Symbol* name = method->name(); 1137 Symbol* sig = method->signature(); 1138 HOTSPOT_METHOD_RETURN( 1139 get_java_tid(current), 1140 (char *) kname->bytes(), kname->utf8_length(), 1141 (char *) name->bytes(), name->utf8_length(), 1142 (char *) sig->bytes(), sig->utf8_length()); 1143 return 0; 1144 JRT_END 1145 1146 1147 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1148 // for a call current in progress, i.e., arguments has been pushed on stack 1149 // put callee has not been invoked yet. Used by: resolve virtual/static, 1150 // vtable updates, etc. Caller frame must be compiled. 1151 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1152 JavaThread* current = THREAD; 1153 ResourceMark rm(current); 1154 1155 // last java frame on stack (which includes native call frames) 1156 vframeStream vfst(current, true); // Do not skip and javaCalls 1157 1158 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1159 } 1160 1161 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1162 nmethod* caller = vfst.nm(); 1163 1164 address pc = vfst.frame_pc(); 1165 { // Get call instruction under lock because another thread may be busy patching it. 1166 CompiledICLocker ic_locker(caller); 1167 return caller->attached_method_before_pc(pc); 1168 } 1169 return nullptr; 1170 } 1171 1172 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1173 // for a call current in progress, i.e., arguments has been pushed on stack 1174 // but callee has not been invoked yet. Caller frame must be compiled. 1175 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1176 CallInfo& callinfo, TRAPS) { 1177 Handle receiver; 1178 Handle nullHandle; // create a handy null handle for exception returns 1179 JavaThread* current = THREAD; 1180 1181 assert(!vfst.at_end(), "Java frame must exist"); 1182 1183 // Find caller and bci from vframe 1184 methodHandle caller(current, vfst.method()); 1185 int bci = vfst.bci(); 1186 1187 if (caller->is_continuation_enter_intrinsic()) { 1188 bc = Bytecodes::_invokestatic; 1189 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1190 return receiver; 1191 } 1192 1193 Bytecode_invoke bytecode(caller, bci); 1194 int bytecode_index = bytecode.index(); 1195 bc = bytecode.invoke_code(); 1196 1197 methodHandle attached_method(current, extract_attached_method(vfst)); 1198 if (attached_method.not_null()) { 1199 Method* callee = bytecode.static_target(CHECK_NH); 1200 vmIntrinsics::ID id = callee->intrinsic_id(); 1201 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1202 // it attaches statically resolved method to the call site. 1203 if (MethodHandles::is_signature_polymorphic(id) && 1204 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1205 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1206 1207 // Adjust invocation mode according to the attached method. 1208 switch (bc) { 1209 case Bytecodes::_invokevirtual: 1210 if (attached_method->method_holder()->is_interface()) { 1211 bc = Bytecodes::_invokeinterface; 1212 } 1213 break; 1214 case Bytecodes::_invokeinterface: 1215 if (!attached_method->method_holder()->is_interface()) { 1216 bc = Bytecodes::_invokevirtual; 1217 } 1218 break; 1219 case Bytecodes::_invokehandle: 1220 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1221 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1222 : Bytecodes::_invokevirtual; 1223 } 1224 break; 1225 default: 1226 break; 1227 } 1228 } 1229 } 1230 1231 assert(bc != Bytecodes::_illegal, "not initialized"); 1232 1233 bool has_receiver = bc != Bytecodes::_invokestatic && 1234 bc != Bytecodes::_invokedynamic && 1235 bc != Bytecodes::_invokehandle; 1236 1237 // Find receiver for non-static call 1238 if (has_receiver) { 1239 // This register map must be update since we need to find the receiver for 1240 // compiled frames. The receiver might be in a register. 1241 RegisterMap reg_map2(current, 1242 RegisterMap::UpdateMap::include, 1243 RegisterMap::ProcessFrames::include, 1244 RegisterMap::WalkContinuation::skip); 1245 frame stubFrame = current->last_frame(); 1246 // Caller-frame is a compiled frame 1247 frame callerFrame = stubFrame.sender(®_map2); 1248 1249 if (attached_method.is_null()) { 1250 Method* callee = bytecode.static_target(CHECK_NH); 1251 if (callee == nullptr) { 1252 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1253 } 1254 } 1255 1256 // Retrieve from a compiled argument list 1257 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1258 assert(oopDesc::is_oop_or_null(receiver()), ""); 1259 1260 if (receiver.is_null()) { 1261 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1262 } 1263 } 1264 1265 // Resolve method 1266 if (attached_method.not_null()) { 1267 // Parameterized by attached method. 1268 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1269 } else { 1270 // Parameterized by bytecode. 1271 constantPoolHandle constants(current, caller->constants()); 1272 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1273 } 1274 1275 #ifdef ASSERT 1276 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1277 if (has_receiver) { 1278 assert(receiver.not_null(), "should have thrown exception"); 1279 Klass* receiver_klass = receiver->klass(); 1280 Klass* rk = nullptr; 1281 if (attached_method.not_null()) { 1282 // In case there's resolved method attached, use its holder during the check. 1283 rk = attached_method->method_holder(); 1284 } else { 1285 // Klass is already loaded. 1286 constantPoolHandle constants(current, caller->constants()); 1287 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1288 } 1289 Klass* static_receiver_klass = rk; 1290 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1291 "actual receiver must be subclass of static receiver klass"); 1292 if (receiver_klass->is_instance_klass()) { 1293 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1294 tty->print_cr("ERROR: Klass not yet initialized!!"); 1295 receiver_klass->print(); 1296 } 1297 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1298 } 1299 } 1300 #endif 1301 1302 return receiver; 1303 } 1304 1305 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1306 JavaThread* current = THREAD; 1307 ResourceMark rm(current); 1308 // We need first to check if any Java activations (compiled, interpreted) 1309 // exist on the stack since last JavaCall. If not, we need 1310 // to get the target method from the JavaCall wrapper. 1311 vframeStream vfst(current, true); // Do not skip any javaCalls 1312 methodHandle callee_method; 1313 if (vfst.at_end()) { 1314 // No Java frames were found on stack since we did the JavaCall. 1315 // Hence the stack can only contain an entry_frame. We need to 1316 // find the target method from the stub frame. 1317 RegisterMap reg_map(current, 1318 RegisterMap::UpdateMap::skip, 1319 RegisterMap::ProcessFrames::include, 1320 RegisterMap::WalkContinuation::skip); 1321 frame fr = current->last_frame(); 1322 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1323 fr = fr.sender(®_map); 1324 assert(fr.is_entry_frame(), "must be"); 1325 // fr is now pointing to the entry frame. 1326 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1327 } else { 1328 Bytecodes::Code bc; 1329 CallInfo callinfo; 1330 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1331 callee_method = methodHandle(current, callinfo.selected_method()); 1332 } 1333 assert(callee_method()->is_method(), "must be"); 1334 return callee_method; 1335 } 1336 1337 // Resolves a call. 1338 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1339 JavaThread* current = THREAD; 1340 ResourceMark rm(current); 1341 RegisterMap cbl_map(current, 1342 RegisterMap::UpdateMap::skip, 1343 RegisterMap::ProcessFrames::include, 1344 RegisterMap::WalkContinuation::skip); 1345 frame caller_frame = current->last_frame().sender(&cbl_map); 1346 1347 CodeBlob* caller_cb = caller_frame.cb(); 1348 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1349 nmethod* caller_nm = caller_cb->as_nmethod(); 1350 1351 // determine call info & receiver 1352 // note: a) receiver is null for static calls 1353 // b) an exception is thrown if receiver is null for non-static calls 1354 CallInfo call_info; 1355 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1356 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1357 1358 NoSafepointVerifier nsv; 1359 1360 methodHandle callee_method(current, call_info.selected_method()); 1361 1362 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1363 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1364 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1365 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1366 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1367 1368 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1369 1370 #ifndef PRODUCT 1371 // tracing/debugging/statistics 1372 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1373 (is_virtual) ? (&_resolve_virtual_ctr) : 1374 (&_resolve_static_ctr); 1375 Atomic::inc(addr); 1376 1377 if (TraceCallFixup) { 1378 ResourceMark rm(current); 1379 tty->print("resolving %s%s (%s) call to", 1380 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1381 Bytecodes::name(invoke_code)); 1382 callee_method->print_short_name(tty); 1383 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1384 p2i(caller_frame.pc()), p2i(callee_method->code())); 1385 } 1386 #endif 1387 1388 if (invoke_code == Bytecodes::_invokestatic) { 1389 assert(callee_method->method_holder()->is_initialized() || 1390 callee_method->method_holder()->is_reentrant_initialization(current), 1391 "invalid class initialization state for invoke_static"); 1392 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1393 // In order to keep class initialization check, do not patch call 1394 // site for static call when the class is not fully initialized. 1395 // Proper check is enforced by call site re-resolution on every invocation. 1396 // 1397 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1398 // explicit class initialization check is put in nmethod entry (VEP). 1399 assert(callee_method->method_holder()->is_linked(), "must be"); 1400 return callee_method; 1401 } 1402 } 1403 1404 1405 // JSR 292 key invariant: 1406 // If the resolved method is a MethodHandle invoke target, the call 1407 // site must be a MethodHandle call site, because the lambda form might tail-call 1408 // leaving the stack in a state unknown to either caller or callee 1409 1410 // Compute entry points. The computation of the entry points is independent of 1411 // patching the call. 1412 1413 // Make sure the callee nmethod does not get deoptimized and removed before 1414 // we are done patching the code. 1415 1416 1417 CompiledICLocker ml(caller_nm); 1418 if (is_virtual && !is_optimized) { 1419 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1420 inline_cache->update(&call_info, receiver->klass()); 1421 } else { 1422 // Callsite is a direct call - set it to the destination method 1423 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1424 callsite->set(callee_method); 1425 } 1426 1427 return callee_method; 1428 } 1429 1430 // Inline caches exist only in compiled code 1431 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1432 #ifdef ASSERT 1433 RegisterMap reg_map(current, 1434 RegisterMap::UpdateMap::skip, 1435 RegisterMap::ProcessFrames::include, 1436 RegisterMap::WalkContinuation::skip); 1437 frame stub_frame = current->last_frame(); 1438 assert(stub_frame.is_runtime_frame(), "sanity check"); 1439 frame caller_frame = stub_frame.sender(®_map); 1440 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1441 #endif /* ASSERT */ 1442 1443 methodHandle callee_method; 1444 JRT_BLOCK 1445 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1446 // Return Method* through TLS 1447 current->set_vm_result_metadata(callee_method()); 1448 JRT_BLOCK_END 1449 // return compiled code entry point after potential safepoints 1450 return get_resolved_entry(current, callee_method); 1451 JRT_END 1452 1453 1454 // Handle call site that has been made non-entrant 1455 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1456 // 6243940 We might end up in here if the callee is deoptimized 1457 // as we race to call it. We don't want to take a safepoint if 1458 // the caller was interpreted because the caller frame will look 1459 // interpreted to the stack walkers and arguments are now 1460 // "compiled" so it is much better to make this transition 1461 // invisible to the stack walking code. The i2c path will 1462 // place the callee method in the callee_target. It is stashed 1463 // there because if we try and find the callee by normal means a 1464 // safepoint is possible and have trouble gc'ing the compiled args. 1465 RegisterMap reg_map(current, 1466 RegisterMap::UpdateMap::skip, 1467 RegisterMap::ProcessFrames::include, 1468 RegisterMap::WalkContinuation::skip); 1469 frame stub_frame = current->last_frame(); 1470 assert(stub_frame.is_runtime_frame(), "sanity check"); 1471 frame caller_frame = stub_frame.sender(®_map); 1472 1473 if (caller_frame.is_interpreted_frame() || 1474 caller_frame.is_entry_frame() || 1475 caller_frame.is_upcall_stub_frame()) { 1476 Method* callee = current->callee_target(); 1477 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1478 current->set_vm_result_metadata(callee); 1479 current->set_callee_target(nullptr); 1480 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1481 // Bypass class initialization checks in c2i when caller is in native. 1482 // JNI calls to static methods don't have class initialization checks. 1483 // Fast class initialization checks are present in c2i adapters and call into 1484 // SharedRuntime::handle_wrong_method() on the slow path. 1485 // 1486 // JVM upcalls may land here as well, but there's a proper check present in 1487 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1488 // so bypassing it in c2i adapter is benign. 1489 return callee->get_c2i_no_clinit_check_entry(); 1490 } else { 1491 return callee->get_c2i_entry(); 1492 } 1493 } 1494 1495 // Must be compiled to compiled path which is safe to stackwalk 1496 methodHandle callee_method; 1497 JRT_BLOCK 1498 // Force resolving of caller (if we called from compiled frame) 1499 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1500 current->set_vm_result_metadata(callee_method()); 1501 JRT_BLOCK_END 1502 // return compiled code entry point after potential safepoints 1503 return get_resolved_entry(current, callee_method); 1504 JRT_END 1505 1506 // Handle abstract method call 1507 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1508 // Verbose error message for AbstractMethodError. 1509 // Get the called method from the invoke bytecode. 1510 vframeStream vfst(current, true); 1511 assert(!vfst.at_end(), "Java frame must exist"); 1512 methodHandle caller(current, vfst.method()); 1513 Bytecode_invoke invoke(caller, vfst.bci()); 1514 DEBUG_ONLY( invoke.verify(); ) 1515 1516 // Find the compiled caller frame. 1517 RegisterMap reg_map(current, 1518 RegisterMap::UpdateMap::include, 1519 RegisterMap::ProcessFrames::include, 1520 RegisterMap::WalkContinuation::skip); 1521 frame stubFrame = current->last_frame(); 1522 assert(stubFrame.is_runtime_frame(), "must be"); 1523 frame callerFrame = stubFrame.sender(®_map); 1524 assert(callerFrame.is_compiled_frame(), "must be"); 1525 1526 // Install exception and return forward entry. 1527 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1528 JRT_BLOCK 1529 methodHandle callee(current, invoke.static_target(current)); 1530 if (!callee.is_null()) { 1531 oop recv = callerFrame.retrieve_receiver(®_map); 1532 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1533 res = StubRoutines::forward_exception_entry(); 1534 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1535 } 1536 JRT_BLOCK_END 1537 return res; 1538 JRT_END 1539 1540 // return verified_code_entry if interp_only_mode is not set for the current thread; 1541 // otherwise return c2i entry. 1542 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1543 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1544 // In interp_only_mode we need to go to the interpreted entry 1545 // The c2i won't patch in this mode -- see fixup_callers_callsite 1546 return callee_method->get_c2i_entry(); 1547 } 1548 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1549 return callee_method->verified_code_entry(); 1550 } 1551 1552 // resolve a static call and patch code 1553 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1554 methodHandle callee_method; 1555 bool enter_special = false; 1556 JRT_BLOCK 1557 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1558 current->set_vm_result_metadata(callee_method()); 1559 JRT_BLOCK_END 1560 // return compiled code entry point after potential safepoints 1561 return get_resolved_entry(current, callee_method); 1562 JRT_END 1563 1564 // resolve virtual call and update inline cache to monomorphic 1565 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1566 methodHandle callee_method; 1567 JRT_BLOCK 1568 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1569 current->set_vm_result_metadata(callee_method()); 1570 JRT_BLOCK_END 1571 // return compiled code entry point after potential safepoints 1572 return get_resolved_entry(current, callee_method); 1573 JRT_END 1574 1575 1576 // Resolve a virtual call that can be statically bound (e.g., always 1577 // monomorphic, so it has no inline cache). Patch code to resolved target. 1578 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1579 methodHandle callee_method; 1580 JRT_BLOCK 1581 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1582 current->set_vm_result_metadata(callee_method()); 1583 JRT_BLOCK_END 1584 // return compiled code entry point after potential safepoints 1585 return get_resolved_entry(current, callee_method); 1586 JRT_END 1587 1588 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1589 JavaThread* current = THREAD; 1590 ResourceMark rm(current); 1591 CallInfo call_info; 1592 Bytecodes::Code bc; 1593 1594 // receiver is null for static calls. An exception is thrown for null 1595 // receivers for non-static calls 1596 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1597 1598 methodHandle callee_method(current, call_info.selected_method()); 1599 1600 #ifndef PRODUCT 1601 Atomic::inc(&_ic_miss_ctr); 1602 1603 // Statistics & Tracing 1604 if (TraceCallFixup) { 1605 ResourceMark rm(current); 1606 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1607 callee_method->print_short_name(tty); 1608 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1609 } 1610 1611 if (ICMissHistogram) { 1612 MutexLocker m(VMStatistic_lock); 1613 RegisterMap reg_map(current, 1614 RegisterMap::UpdateMap::skip, 1615 RegisterMap::ProcessFrames::include, 1616 RegisterMap::WalkContinuation::skip); 1617 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1618 // produce statistics under the lock 1619 trace_ic_miss(f.pc()); 1620 } 1621 #endif 1622 1623 // install an event collector so that when a vtable stub is created the 1624 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1625 // event can't be posted when the stub is created as locks are held 1626 // - instead the event will be deferred until the event collector goes 1627 // out of scope. 1628 JvmtiDynamicCodeEventCollector event_collector; 1629 1630 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1631 RegisterMap reg_map(current, 1632 RegisterMap::UpdateMap::skip, 1633 RegisterMap::ProcessFrames::include, 1634 RegisterMap::WalkContinuation::skip); 1635 frame caller_frame = current->last_frame().sender(®_map); 1636 CodeBlob* cb = caller_frame.cb(); 1637 nmethod* caller_nm = cb->as_nmethod(); 1638 1639 CompiledICLocker ml(caller_nm); 1640 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1641 inline_cache->update(&call_info, receiver()->klass()); 1642 1643 return callee_method; 1644 } 1645 1646 // 1647 // Resets a call-site in compiled code so it will get resolved again. 1648 // This routines handles both virtual call sites, optimized virtual call 1649 // sites, and static call sites. Typically used to change a call sites 1650 // destination from compiled to interpreted. 1651 // 1652 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1653 JavaThread* current = THREAD; 1654 ResourceMark rm(current); 1655 RegisterMap reg_map(current, 1656 RegisterMap::UpdateMap::skip, 1657 RegisterMap::ProcessFrames::include, 1658 RegisterMap::WalkContinuation::skip); 1659 frame stub_frame = current->last_frame(); 1660 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1661 frame caller = stub_frame.sender(®_map); 1662 1663 // Do nothing if the frame isn't a live compiled frame. 1664 // nmethod could be deoptimized by the time we get here 1665 // so no update to the caller is needed. 1666 1667 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1668 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1669 1670 address pc = caller.pc(); 1671 1672 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1673 assert(caller_nm != nullptr, "did not find caller nmethod"); 1674 1675 // Default call_addr is the location of the "basic" call. 1676 // Determine the address of the call we a reresolving. With 1677 // Inline Caches we will always find a recognizable call. 1678 // With Inline Caches disabled we may or may not find a 1679 // recognizable call. We will always find a call for static 1680 // calls and for optimized virtual calls. For vanilla virtual 1681 // calls it depends on the state of the UseInlineCaches switch. 1682 // 1683 // With Inline Caches disabled we can get here for a virtual call 1684 // for two reasons: 1685 // 1 - calling an abstract method. The vtable for abstract methods 1686 // will run us thru handle_wrong_method and we will eventually 1687 // end up in the interpreter to throw the ame. 1688 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1689 // call and between the time we fetch the entry address and 1690 // we jump to it the target gets deoptimized. Similar to 1 1691 // we will wind up in the interprter (thru a c2i with c2). 1692 // 1693 CompiledICLocker ml(caller_nm); 1694 address call_addr = caller_nm->call_instruction_address(pc); 1695 1696 if (call_addr != nullptr) { 1697 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1698 // bytes back in the instruction stream so we must also check for reloc info. 1699 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1700 bool ret = iter.next(); // Get item 1701 if (ret) { 1702 switch (iter.type()) { 1703 case relocInfo::static_call_type: 1704 case relocInfo::opt_virtual_call_type: { 1705 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1706 cdc->set_to_clean(); 1707 break; 1708 } 1709 1710 case relocInfo::virtual_call_type: { 1711 // compiled, dispatched call (which used to call an interpreted method) 1712 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1713 inline_cache->set_to_clean(); 1714 break; 1715 } 1716 default: 1717 break; 1718 } 1719 } 1720 } 1721 } 1722 1723 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1724 1725 1726 #ifndef PRODUCT 1727 Atomic::inc(&_wrong_method_ctr); 1728 1729 if (TraceCallFixup) { 1730 ResourceMark rm(current); 1731 tty->print("handle_wrong_method reresolving call to"); 1732 callee_method->print_short_name(tty); 1733 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1734 } 1735 #endif 1736 1737 return callee_method; 1738 } 1739 1740 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1741 // The faulting unsafe accesses should be changed to throw the error 1742 // synchronously instead. Meanwhile the faulting instruction will be 1743 // skipped over (effectively turning it into a no-op) and an 1744 // asynchronous exception will be raised which the thread will 1745 // handle at a later point. If the instruction is a load it will 1746 // return garbage. 1747 1748 // Request an async exception. 1749 thread->set_pending_unsafe_access_error(); 1750 1751 // Return address of next instruction to execute. 1752 return next_pc; 1753 } 1754 1755 #ifdef ASSERT 1756 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1757 const BasicType* sig_bt, 1758 const VMRegPair* regs) { 1759 ResourceMark rm; 1760 const int total_args_passed = method->size_of_parameters(); 1761 const VMRegPair* regs_with_member_name = regs; 1762 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1763 1764 const int member_arg_pos = total_args_passed - 1; 1765 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1766 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1767 1768 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1769 1770 for (int i = 0; i < member_arg_pos; i++) { 1771 VMReg a = regs_with_member_name[i].first(); 1772 VMReg b = regs_without_member_name[i].first(); 1773 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1774 } 1775 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1776 } 1777 #endif 1778 1779 // --------------------------------------------------------------------------- 1780 // We are calling the interpreter via a c2i. Normally this would mean that 1781 // we were called by a compiled method. However we could have lost a race 1782 // where we went int -> i2c -> c2i and so the caller could in fact be 1783 // interpreted. If the caller is compiled we attempt to patch the caller 1784 // so he no longer calls into the interpreter. 1785 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1786 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1787 1788 // It's possible that deoptimization can occur at a call site which hasn't 1789 // been resolved yet, in which case this function will be called from 1790 // an nmethod that has been patched for deopt and we can ignore the 1791 // request for a fixup. 1792 // Also it is possible that we lost a race in that from_compiled_entry 1793 // is now back to the i2c in that case we don't need to patch and if 1794 // we did we'd leap into space because the callsite needs to use 1795 // "to interpreter" stub in order to load up the Method*. Don't 1796 // ask me how I know this... 1797 1798 // Result from nmethod::is_unloading is not stable across safepoints. 1799 NoSafepointVerifier nsv; 1800 1801 nmethod* callee = method->code(); 1802 if (callee == nullptr) { 1803 return; 1804 } 1805 1806 // write lock needed because we might patch call site by set_to_clean() 1807 // and is_unloading() can modify nmethod's state 1808 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1809 1810 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1811 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1812 return; 1813 } 1814 1815 // The check above makes sure this is an nmethod. 1816 nmethod* caller = cb->as_nmethod(); 1817 1818 // Get the return PC for the passed caller PC. 1819 address return_pc = caller_pc + frame::pc_return_offset; 1820 1821 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1822 return; 1823 } 1824 1825 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1826 CompiledICLocker ic_locker(caller); 1827 ResourceMark rm; 1828 1829 // If we got here through a static call or opt_virtual call, then we know where the 1830 // call address would be; let's peek at it 1831 address callsite_addr = (address)nativeCall_before(return_pc); 1832 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1833 if (!iter.next()) { 1834 // No reloc entry found; not a static or optimized virtual call 1835 return; 1836 } 1837 1838 relocInfo::relocType type = iter.reloc()->type(); 1839 if (type != relocInfo::static_call_type && 1840 type != relocInfo::opt_virtual_call_type) { 1841 return; 1842 } 1843 1844 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1845 callsite->set_to_clean(); 1846 JRT_END 1847 1848 1849 // same as JVM_Arraycopy, but called directly from compiled code 1850 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1851 oopDesc* dest, jint dest_pos, 1852 jint length, 1853 JavaThread* current)) { 1854 #ifndef PRODUCT 1855 _slow_array_copy_ctr++; 1856 #endif 1857 // Check if we have null pointers 1858 if (src == nullptr || dest == nullptr) { 1859 THROW(vmSymbols::java_lang_NullPointerException()); 1860 } 1861 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1862 // even though the copy_array API also performs dynamic checks to ensure 1863 // that src and dest are truly arrays (and are conformable). 1864 // The copy_array mechanism is awkward and could be removed, but 1865 // the compilers don't call this function except as a last resort, 1866 // so it probably doesn't matter. 1867 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1868 (arrayOopDesc*)dest, dest_pos, 1869 length, current); 1870 } 1871 JRT_END 1872 1873 // The caller of generate_class_cast_message() (or one of its callers) 1874 // must use a ResourceMark in order to correctly free the result. 1875 char* SharedRuntime::generate_class_cast_message( 1876 JavaThread* thread, Klass* caster_klass) { 1877 1878 // Get target class name from the checkcast instruction 1879 vframeStream vfst(thread, true); 1880 assert(!vfst.at_end(), "Java frame must exist"); 1881 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1882 constantPoolHandle cpool(thread, vfst.method()->constants()); 1883 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1884 Symbol* target_klass_name = nullptr; 1885 if (target_klass == nullptr) { 1886 // This klass should be resolved, but just in case, get the name in the klass slot. 1887 target_klass_name = cpool->klass_name_at(cc.index()); 1888 } 1889 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1890 } 1891 1892 1893 // The caller of generate_class_cast_message() (or one of its callers) 1894 // must use a ResourceMark in order to correctly free the result. 1895 char* SharedRuntime::generate_class_cast_message( 1896 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1897 const char* caster_name = caster_klass->external_name(); 1898 1899 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1900 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1901 target_klass->external_name(); 1902 1903 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1904 1905 const char* caster_klass_description = ""; 1906 const char* target_klass_description = ""; 1907 const char* klass_separator = ""; 1908 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1909 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1910 } else { 1911 caster_klass_description = caster_klass->class_in_module_of_loader(); 1912 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1913 klass_separator = (target_klass != nullptr) ? "; " : ""; 1914 } 1915 1916 // add 3 for parenthesis and preceding space 1917 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1918 1919 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1920 if (message == nullptr) { 1921 // Shouldn't happen, but don't cause even more problems if it does 1922 message = const_cast<char*>(caster_klass->external_name()); 1923 } else { 1924 jio_snprintf(message, 1925 msglen, 1926 "class %s cannot be cast to class %s (%s%s%s)", 1927 caster_name, 1928 target_name, 1929 caster_klass_description, 1930 klass_separator, 1931 target_klass_description 1932 ); 1933 } 1934 return message; 1935 } 1936 1937 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1938 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 1939 JRT_END 1940 1941 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1942 if (!SafepointSynchronize::is_synchronizing()) { 1943 // Only try quick_enter() if we're not trying to reach a safepoint 1944 // so that the calling thread reaches the safepoint more quickly. 1945 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 1946 return; 1947 } 1948 } 1949 // NO_ASYNC required because an async exception on the state transition destructor 1950 // would leave you with the lock held and it would never be released. 1951 // The normal monitorenter NullPointerException is thrown without acquiring a lock 1952 // and the model is that an exception implies the method failed. 1953 JRT_BLOCK_NO_ASYNC 1954 Handle h_obj(THREAD, obj); 1955 ObjectSynchronizer::enter(h_obj, lock, current); 1956 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1957 JRT_BLOCK_END 1958 } 1959 1960 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1961 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1962 SharedRuntime::monitor_enter_helper(obj, lock, current); 1963 JRT_END 1964 1965 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1966 assert(JavaThread::current() == current, "invariant"); 1967 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1968 ExceptionMark em(current); 1969 1970 // Check if C2_MacroAssembler::fast_unlock() or 1971 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 1972 // monitor before going slow path. Since there is no safepoint 1973 // polling when calling into the VM, we can be sure that the monitor 1974 // hasn't been deallocated. 1975 ObjectMonitor* m = current->unlocked_inflated_monitor(); 1976 if (m != nullptr) { 1977 assert(!m->has_owner(current), "must be"); 1978 current->clear_unlocked_inflated_monitor(); 1979 1980 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 1981 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 1982 // Some other thread acquired the lock (or the monitor was 1983 // deflated). Either way we are done. 1984 current->dec_held_monitor_count(); 1985 return; 1986 } 1987 } 1988 1989 // The object could become unlocked through a JNI call, which we have no other checks for. 1990 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 1991 if (obj->is_unlocked()) { 1992 if (CheckJNICalls) { 1993 fatal("Object has been unlocked by JNI"); 1994 } 1995 return; 1996 } 1997 ObjectSynchronizer::exit(obj, lock, current); 1998 } 1999 2000 // Handles the uncommon cases of monitor unlocking in compiled code 2001 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2002 assert(current == JavaThread::current(), "pre-condition"); 2003 SharedRuntime::monitor_exit_helper(obj, lock, current); 2004 JRT_END 2005 2006 // This is only called when CheckJNICalls is true, and only 2007 // for virtual thread termination. 2008 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2009 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2010 if (log_is_enabled(Debug, jni)) { 2011 JavaThread* current = JavaThread::current(); 2012 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2013 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2014 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2015 ") exiting with Objects still locked by JNI MonitorEnter.", 2016 vthread_id, carrier_id); 2017 } 2018 JRT_END 2019 2020 #ifndef PRODUCT 2021 2022 void SharedRuntime::print_statistics() { 2023 ttyLocker ttyl; 2024 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2025 2026 SharedRuntime::print_ic_miss_histogram(); 2027 2028 // Dump the JRT_ENTRY counters 2029 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2030 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2031 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2032 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2033 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2034 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2035 2036 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2037 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2038 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2039 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2040 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2041 2042 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2043 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2044 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2045 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2046 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2047 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2048 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2049 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2050 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2051 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2052 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2053 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2054 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2055 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2056 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2057 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2058 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2059 2060 AdapterHandlerLibrary::print_statistics(); 2061 2062 if (xtty != nullptr) xtty->tail("statistics"); 2063 } 2064 2065 inline double percent(int64_t x, int64_t y) { 2066 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2067 } 2068 2069 class MethodArityHistogram { 2070 public: 2071 enum { MAX_ARITY = 256 }; 2072 private: 2073 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2074 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2075 static uint64_t _total_compiled_calls; 2076 static uint64_t _max_compiled_calls_per_method; 2077 static int _max_arity; // max. arity seen 2078 static int _max_size; // max. arg size seen 2079 2080 static void add_method_to_histogram(nmethod* nm) { 2081 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2082 if (method != nullptr) { 2083 ArgumentCount args(method->signature()); 2084 int arity = args.size() + (method->is_static() ? 0 : 1); 2085 int argsize = method->size_of_parameters(); 2086 arity = MIN2(arity, MAX_ARITY-1); 2087 argsize = MIN2(argsize, MAX_ARITY-1); 2088 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2089 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2090 _total_compiled_calls += count; 2091 _arity_histogram[arity] += count; 2092 _size_histogram[argsize] += count; 2093 _max_arity = MAX2(_max_arity, arity); 2094 _max_size = MAX2(_max_size, argsize); 2095 } 2096 } 2097 2098 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2099 const int N = MIN2(9, n); 2100 double sum = 0; 2101 double weighted_sum = 0; 2102 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2103 if (sum >= 1) { // prevent divide by zero or divide overflow 2104 double rest = sum; 2105 double percent = sum / 100; 2106 for (int i = 0; i <= N; i++) { 2107 rest -= (double)histo[i]; 2108 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2109 } 2110 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2111 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2112 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2113 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2114 } else { 2115 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2116 } 2117 } 2118 2119 void print_histogram() { 2120 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2121 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2122 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2123 print_histogram_helper(_max_size, _size_histogram, "size"); 2124 tty->cr(); 2125 } 2126 2127 public: 2128 MethodArityHistogram() { 2129 // Take the Compile_lock to protect against changes in the CodeBlob structures 2130 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2131 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2132 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2133 _max_arity = _max_size = 0; 2134 _total_compiled_calls = 0; 2135 _max_compiled_calls_per_method = 0; 2136 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2137 CodeCache::nmethods_do(add_method_to_histogram); 2138 print_histogram(); 2139 } 2140 }; 2141 2142 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2143 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2144 uint64_t MethodArityHistogram::_total_compiled_calls; 2145 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2146 int MethodArityHistogram::_max_arity; 2147 int MethodArityHistogram::_max_size; 2148 2149 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2150 tty->print_cr("Calls from compiled code:"); 2151 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2152 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2153 int64_t mono_i = _nof_interface_calls; 2154 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2155 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2156 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2157 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2158 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2159 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2160 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2161 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2162 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2163 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2164 tty->cr(); 2165 tty->print_cr("Note 1: counter updates are not MT-safe."); 2166 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2167 tty->print_cr(" %% in nested categories are relative to their category"); 2168 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2169 tty->cr(); 2170 2171 MethodArityHistogram h; 2172 } 2173 #endif 2174 2175 #ifndef PRODUCT 2176 static int _lookups; // number of calls to lookup 2177 static int _equals; // number of buckets checked with matching hash 2178 static int _archived_hits; // number of successful lookups in archived table 2179 static int _runtime_hits; // number of successful lookups in runtime table 2180 static int _compact; // number of equals calls with compact signature 2181 #endif 2182 2183 // A simple wrapper class around the calling convention information 2184 // that allows sharing of adapters for the same calling convention. 2185 class AdapterFingerPrint : public MetaspaceObj { 2186 private: 2187 enum { 2188 _basic_type_bits = 4, 2189 _basic_type_mask = right_n_bits(_basic_type_bits), 2190 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2191 _compact_int_count = 3 2192 }; 2193 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2194 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2195 2196 int _length; 2197 int _value[_compact_int_count]; 2198 2199 // Private construtor. Use allocate() to get an instance. 2200 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2201 // Pack the BasicTypes with 8 per int 2202 _length = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2203 int sig_index = 0; 2204 for (int index = 0; index < _length; index++) { 2205 int value = 0; 2206 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2207 int bt = adapter_encoding(sig_bt[sig_index++]); 2208 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2209 value = (value << _basic_type_bits) | bt; 2210 } 2211 _value[index] = value; 2212 } 2213 } 2214 2215 // Call deallocate instead 2216 ~AdapterFingerPrint() { 2217 FreeHeap(this); 2218 } 2219 2220 // Remap BasicTypes that are handled equivalently by the adapters. 2221 // These are correct for the current system but someday it might be 2222 // necessary to make this mapping platform dependent. 2223 static int adapter_encoding(BasicType in) { 2224 switch (in) { 2225 case T_BOOLEAN: 2226 case T_BYTE: 2227 case T_SHORT: 2228 case T_CHAR: 2229 // There are all promoted to T_INT in the calling convention 2230 return T_INT; 2231 2232 case T_OBJECT: 2233 case T_ARRAY: 2234 // In other words, we assume that any register good enough for 2235 // an int or long is good enough for a managed pointer. 2236 #ifdef _LP64 2237 return T_LONG; 2238 #else 2239 return T_INT; 2240 #endif 2241 2242 case T_INT: 2243 case T_LONG: 2244 case T_FLOAT: 2245 case T_DOUBLE: 2246 case T_VOID: 2247 return in; 2248 2249 default: 2250 ShouldNotReachHere(); 2251 return T_CONFLICT; 2252 } 2253 } 2254 2255 void* operator new(size_t size, size_t fp_size) throw() { 2256 assert(fp_size >= size, "sanity check"); 2257 void* p = AllocateHeap(fp_size, mtCode); 2258 memset(p, 0, fp_size); 2259 return p; 2260 } 2261 2262 template<typename Function> 2263 void iterate_args(Function function) { 2264 for (int i = 0; i < length(); i++) { 2265 unsigned val = (unsigned)value(i); 2266 // args are packed so that first/lower arguments are in the highest 2267 // bits of each int value, so iterate from highest to the lowest 2268 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2269 unsigned v = (val >> j) & _basic_type_mask; 2270 if (v == 0) { 2271 continue; 2272 } 2273 function(v); 2274 } 2275 } 2276 } 2277 2278 public: 2279 static int allocation_size(int total_args_passed, BasicType* sig_bt) { 2280 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2281 return sizeof(AdapterFingerPrint) + (len > _compact_int_count ? (len - _compact_int_count) * sizeof(int) : 0); 2282 } 2283 2284 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) { 2285 int size_in_bytes = allocation_size(total_args_passed, sig_bt); 2286 return new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt); 2287 } 2288 2289 static void deallocate(AdapterFingerPrint* fp) { 2290 fp->~AdapterFingerPrint(); 2291 } 2292 2293 int value(int index) { 2294 return _value[index]; 2295 } 2296 2297 int length() { 2298 if (_length < 0) return -_length; 2299 return _length; 2300 } 2301 2302 bool is_compact() { 2303 return _length <= _compact_int_count; 2304 } 2305 2306 unsigned int compute_hash() { 2307 int hash = 0; 2308 for (int i = 0; i < length(); i++) { 2309 int v = value(i); 2310 //Add arithmetic operation to the hash, like +3 to improve hashing 2311 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2312 } 2313 return (unsigned int)hash; 2314 } 2315 2316 const char* as_string() { 2317 stringStream st; 2318 st.print("0x"); 2319 for (int i = 0; i < length(); i++) { 2320 st.print("%x", value(i)); 2321 } 2322 return st.as_string(); 2323 } 2324 2325 const char* as_basic_args_string() { 2326 stringStream st; 2327 bool long_prev = false; 2328 iterate_args([&] (int arg) { 2329 if (long_prev) { 2330 long_prev = false; 2331 if (arg == T_VOID) { 2332 st.print("J"); 2333 } else { 2334 st.print("L"); 2335 } 2336 } 2337 switch (arg) { 2338 case T_INT: st.print("I"); break; 2339 case T_LONG: long_prev = true; break; 2340 case T_FLOAT: st.print("F"); break; 2341 case T_DOUBLE: st.print("D"); break; 2342 case T_VOID: break; 2343 default: ShouldNotReachHere(); 2344 } 2345 }); 2346 if (long_prev) { 2347 st.print("L"); 2348 } 2349 return st.as_string(); 2350 } 2351 2352 BasicType* as_basic_type(int& nargs) { 2353 nargs = 0; 2354 GrowableArray<BasicType> btarray; 2355 bool long_prev = false; 2356 2357 iterate_args([&] (int arg) { 2358 if (long_prev) { 2359 long_prev = false; 2360 if (arg == T_VOID) { 2361 btarray.append(T_LONG); 2362 } else { 2363 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter 2364 } 2365 } 2366 switch (arg) { 2367 case T_INT: // fallthrough 2368 case T_FLOAT: // fallthrough 2369 case T_DOUBLE: 2370 case T_VOID: 2371 btarray.append((BasicType)arg); 2372 break; 2373 case T_LONG: 2374 long_prev = true; 2375 break; 2376 default: ShouldNotReachHere(); 2377 } 2378 }); 2379 2380 if (long_prev) { 2381 btarray.append(T_OBJECT); 2382 } 2383 2384 nargs = btarray.length(); 2385 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs); 2386 int index = 0; 2387 GrowableArrayIterator<BasicType> iter = btarray.begin(); 2388 while (iter != btarray.end()) { 2389 sig_bt[index++] = *iter; 2390 ++iter; 2391 } 2392 assert(index == btarray.length(), "sanity check"); 2393 #ifdef ASSERT 2394 { 2395 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt); 2396 assert(this->equals(compare_fp), "sanity check"); 2397 AdapterFingerPrint::deallocate(compare_fp); 2398 } 2399 #endif 2400 return sig_bt; 2401 } 2402 2403 bool equals(AdapterFingerPrint* other) { 2404 if (other->_length != _length) { 2405 return false; 2406 } else { 2407 for (int i = 0; i < _length; i++) { 2408 if (_value[i] != other->_value[i]) { 2409 return false; 2410 } 2411 } 2412 } 2413 return true; 2414 } 2415 2416 // methods required by virtue of being a MetaspaceObj 2417 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2418 int size() const { return (int)heap_word_size(sizeof(AdapterFingerPrint) + (_length > _compact_int_count ? (_length - _compact_int_count) * sizeof(int) : 0)); } 2419 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2420 2421 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2422 NOT_PRODUCT(_equals++); 2423 return fp1->equals(fp2); 2424 } 2425 2426 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2427 return fp->compute_hash(); 2428 } 2429 }; 2430 2431 #if INCLUDE_CDS 2432 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2433 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2434 } 2435 2436 class ArchivedAdapterTable : public OffsetCompactHashtable< 2437 AdapterFingerPrint*, 2438 AdapterHandlerEntry*, 2439 adapter_fp_equals_compact_hashtable_entry> {}; 2440 #endif // INCLUDE_CDS 2441 2442 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2443 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2444 AnyObj::C_HEAP, mtCode, 2445 AdapterFingerPrint::compute_hash, 2446 AdapterFingerPrint::equals>; 2447 static AdapterHandlerTable* _adapter_handler_table; 2448 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2449 2450 // Find a entry with the same fingerprint if it exists 2451 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) { 2452 NOT_PRODUCT(_lookups++); 2453 assert_lock_strong(AdapterHandlerLibrary_lock); 2454 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2455 AdapterHandlerEntry* entry = nullptr; 2456 #if INCLUDE_CDS 2457 // if we are building the archive then the archived adapter table is 2458 // not valid and we need to use the ones added to the runtime table 2459 if (!AOTCodeCache::is_dumping_adapters()) { 2460 // Search archived table first. It is read-only table so can be searched without lock 2461 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2462 if (entry != nullptr) { 2463 #ifndef PRODUCT 2464 if (fp->is_compact()) { 2465 _compact++; 2466 } 2467 _archived_hits++; 2468 #endif 2469 } 2470 } 2471 #endif // INCLUDE_CDS 2472 if (entry == nullptr) { 2473 assert_lock_strong(AdapterHandlerLibrary_lock); 2474 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2475 if (entry_p != nullptr) { 2476 entry = *entry_p; 2477 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2478 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2479 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2480 #ifndef PRODUCT 2481 if (fp->is_compact()) _compact++; 2482 _runtime_hits++; 2483 #endif 2484 } 2485 } 2486 AdapterFingerPrint::deallocate(fp); 2487 return entry; 2488 } 2489 2490 #ifndef PRODUCT 2491 static void print_table_statistics() { 2492 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2493 return sizeof(*key) + sizeof(*a); 2494 }; 2495 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2496 ts.print(tty, "AdapterHandlerTable"); 2497 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2498 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2499 int total_hits = _archived_hits + _runtime_hits; 2500 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d) compact %d", 2501 _lookups, _equals, total_hits, _archived_hits, _runtime_hits, _compact); 2502 } 2503 #endif 2504 2505 // --------------------------------------------------------------------------- 2506 // Implementation of AdapterHandlerLibrary 2507 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2508 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2509 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2510 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2511 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2512 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2513 #if INCLUDE_CDS 2514 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2515 #endif // INCLUDE_CDS 2516 static const int AdapterHandlerLibrary_size = 16*K; 2517 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2518 2519 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2520 assert(_buffer != nullptr, "should be initialized"); 2521 return _buffer; 2522 } 2523 2524 static void post_adapter_creation(const AdapterBlob* new_adapter, 2525 const AdapterHandlerEntry* entry) { 2526 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2527 char blob_id[256]; 2528 jio_snprintf(blob_id, 2529 sizeof(blob_id), 2530 "%s(%s)", 2531 new_adapter->name(), 2532 entry->fingerprint()->as_string()); 2533 if (Forte::is_enabled()) { 2534 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2535 } 2536 2537 if (JvmtiExport::should_post_dynamic_code_generated()) { 2538 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2539 } 2540 } 2541 } 2542 2543 void AdapterHandlerLibrary::create_abstract_method_handler() { 2544 assert_lock_strong(AdapterHandlerLibrary_lock); 2545 // Create a special handler for abstract methods. Abstract methods 2546 // are never compiled so an i2c entry is somewhat meaningless, but 2547 // throw AbstractMethodError just in case. 2548 // Pass wrong_method_abstract for the c2i transitions to return 2549 // AbstractMethodError for invalid invocations. 2550 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2551 _abstract_method_handler = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(0, nullptr)); 2552 _abstract_method_handler->set_entry_points(SharedRuntime::throw_AbstractMethodError_entry(), 2553 wrong_method_abstract, 2554 wrong_method_abstract, 2555 nullptr); 2556 } 2557 2558 void AdapterHandlerLibrary::initialize() { 2559 { 2560 ResourceMark rm; 2561 MutexLocker mu(AdapterHandlerLibrary_lock); 2562 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2563 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2564 create_abstract_method_handler(); 2565 } 2566 2567 #if INCLUDE_CDS 2568 // Link adapters in AOT Cache to their code in AOT Code Cache 2569 if (!_aot_adapter_handler_table.empty()) { 2570 link_aot_adapters(); 2571 lookup_simple_adapters(); 2572 return; 2573 } 2574 #endif // INCLUDE_CDS 2575 2576 ResourceMark rm; 2577 AdapterBlob* no_arg_blob = nullptr; 2578 AdapterBlob* int_arg_blob = nullptr; 2579 AdapterBlob* obj_arg_blob = nullptr; 2580 AdapterBlob* obj_int_arg_blob = nullptr; 2581 AdapterBlob* obj_obj_arg_blob = nullptr; 2582 { 2583 MutexLocker mu(AdapterHandlerLibrary_lock); 2584 2585 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr); 2586 2587 BasicType obj_args[] = { T_OBJECT }; 2588 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args); 2589 2590 BasicType int_args[] = { T_INT }; 2591 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args); 2592 2593 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2594 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args); 2595 2596 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2597 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args); 2598 2599 assert(no_arg_blob != nullptr && 2600 obj_arg_blob != nullptr && 2601 int_arg_blob != nullptr && 2602 obj_int_arg_blob != nullptr && 2603 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2604 } 2605 2606 // Outside of the lock 2607 post_adapter_creation(no_arg_blob, _no_arg_handler); 2608 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2609 post_adapter_creation(int_arg_blob, _int_arg_handler); 2610 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2611 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2612 } 2613 2614 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2615 return AdapterHandlerEntry::allocate(fingerprint); 2616 } 2617 2618 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2619 if (method->is_abstract()) { 2620 return _abstract_method_handler; 2621 } 2622 int total_args_passed = method->size_of_parameters(); // All args on stack 2623 if (total_args_passed == 0) { 2624 return _no_arg_handler; 2625 } else if (total_args_passed == 1) { 2626 if (!method->is_static()) { 2627 return _obj_arg_handler; 2628 } 2629 switch (method->signature()->char_at(1)) { 2630 case JVM_SIGNATURE_CLASS: 2631 case JVM_SIGNATURE_ARRAY: 2632 return _obj_arg_handler; 2633 case JVM_SIGNATURE_INT: 2634 case JVM_SIGNATURE_BOOLEAN: 2635 case JVM_SIGNATURE_CHAR: 2636 case JVM_SIGNATURE_BYTE: 2637 case JVM_SIGNATURE_SHORT: 2638 return _int_arg_handler; 2639 } 2640 } else if (total_args_passed == 2 && 2641 !method->is_static()) { 2642 switch (method->signature()->char_at(1)) { 2643 case JVM_SIGNATURE_CLASS: 2644 case JVM_SIGNATURE_ARRAY: 2645 return _obj_obj_arg_handler; 2646 case JVM_SIGNATURE_INT: 2647 case JVM_SIGNATURE_BOOLEAN: 2648 case JVM_SIGNATURE_CHAR: 2649 case JVM_SIGNATURE_BYTE: 2650 case JVM_SIGNATURE_SHORT: 2651 return _obj_int_arg_handler; 2652 } 2653 } 2654 return nullptr; 2655 } 2656 2657 class AdapterSignatureIterator : public SignatureIterator { 2658 private: 2659 BasicType stack_sig_bt[16]; 2660 BasicType* sig_bt; 2661 int index; 2662 2663 public: 2664 AdapterSignatureIterator(Symbol* signature, 2665 fingerprint_t fingerprint, 2666 bool is_static, 2667 int total_args_passed) : 2668 SignatureIterator(signature, fingerprint), 2669 index(0) 2670 { 2671 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2672 if (!is_static) { // Pass in receiver first 2673 sig_bt[index++] = T_OBJECT; 2674 } 2675 do_parameters_on(this); 2676 } 2677 2678 BasicType* basic_types() { 2679 return sig_bt; 2680 } 2681 2682 #ifdef ASSERT 2683 int slots() { 2684 return index; 2685 } 2686 #endif 2687 2688 private: 2689 2690 friend class SignatureIterator; // so do_parameters_on can call do_type 2691 void do_type(BasicType type) { 2692 sig_bt[index++] = type; 2693 if (type == T_LONG || type == T_DOUBLE) { 2694 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2695 } 2696 } 2697 }; 2698 2699 2700 const char* AdapterHandlerEntry::_entry_names[] = { 2701 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 2702 }; 2703 2704 #ifdef ASSERT 2705 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) { 2706 AdapterBlob* comparison_blob = nullptr; 2707 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, true); 2708 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2709 assert(comparison_entry->compare_code(cached_entry), "code must match"); 2710 // Release the one just created 2711 AdapterHandlerEntry::deallocate(comparison_entry); 2712 } 2713 #endif /* ASSERT*/ 2714 2715 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2716 // Use customized signature handler. Need to lock around updates to 2717 // the _adapter_handler_table (it is not safe for concurrent readers 2718 // and a single writer: this could be fixed if it becomes a 2719 // problem). 2720 2721 // Fast-path for trivial adapters 2722 AdapterHandlerEntry* entry = get_simple_adapter(method); 2723 if (entry != nullptr) { 2724 return entry; 2725 } 2726 2727 ResourceMark rm; 2728 AdapterBlob* adapter_blob = nullptr; 2729 2730 // Fill in the signature array, for the calling-convention call. 2731 int total_args_passed = method->size_of_parameters(); // All args on stack 2732 2733 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2734 method->is_static(), total_args_passed); 2735 assert(si.slots() == total_args_passed, ""); 2736 BasicType* sig_bt = si.basic_types(); 2737 { 2738 MutexLocker mu(AdapterHandlerLibrary_lock); 2739 2740 // Lookup method signature's fingerprint 2741 entry = lookup(total_args_passed, sig_bt); 2742 2743 if (entry != nullptr) { 2744 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 2745 #ifdef ASSERT 2746 if (!entry->is_shared() && VerifyAdapterSharing) { 2747 verify_adapter_sharing(total_args_passed, sig_bt, entry); 2748 } 2749 #endif 2750 } else { 2751 entry = create_adapter(adapter_blob, total_args_passed, sig_bt); 2752 } 2753 } 2754 2755 // Outside of the lock 2756 if (adapter_blob != nullptr) { 2757 post_adapter_creation(adapter_blob, entry); 2758 } 2759 return entry; 2760 } 2761 2762 AdapterBlob* AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 2763 ResourceMark rm; 2764 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2765 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2766 int offsets[AdapterHandlerEntry::ENTRIES_COUNT]; 2767 2768 AdapterBlob* adapter_blob = nullptr; 2769 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, offsets); 2770 if (blob != nullptr) { 2771 adapter_blob = blob->as_adapter_blob(); 2772 address i2c_entry = adapter_blob->content_begin(); 2773 assert(offsets[0] == 0, "sanity check"); 2774 handler->set_entry_points(i2c_entry, i2c_entry + offsets[1], i2c_entry + offsets[2], i2c_entry + offsets[3]); 2775 } 2776 return adapter_blob; 2777 } 2778 2779 #ifndef PRODUCT 2780 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) { 2781 ttyLocker ttyl; 2782 ResourceMark rm; 2783 int insts_size = adapter_blob->code_size(); 2784 handler->print_adapter_on(tty); 2785 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 2786 handler->fingerprint()->as_basic_args_string(), 2787 handler->fingerprint()->as_string(), insts_size); 2788 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 2789 if (Verbose || PrintStubCode) { 2790 address first_pc = handler->base_address(); 2791 if (first_pc != nullptr) { 2792 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 2793 st->cr(); 2794 } 2795 } 2796 } 2797 #endif // PRODUCT 2798 2799 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob, 2800 AdapterHandlerEntry* handler, 2801 int total_args_passed, 2802 BasicType* sig_bt, 2803 bool is_transient) { 2804 if (log_is_enabled(Info, perf, class, link)) { 2805 ClassLoader::perf_method_adapters_count()->inc(); 2806 } 2807 2808 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2809 CodeBuffer buffer(buf); 2810 short buffer_locs[20]; 2811 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2812 sizeof(buffer_locs)/sizeof(relocInfo)); 2813 MacroAssembler masm(&buffer); 2814 VMRegPair stack_regs[16]; 2815 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2816 2817 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2818 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2819 SharedRuntime::generate_i2c2i_adapters(&masm, 2820 total_args_passed, 2821 comp_args_on_stack, 2822 sig_bt, 2823 regs, 2824 handler); 2825 #ifdef ASSERT 2826 if (VerifyAdapterSharing) { 2827 handler->save_code(buf->code_begin(), buffer.insts_size()); 2828 if (is_transient) { 2829 return true; 2830 } 2831 } 2832 #endif 2833 2834 adapter_blob = AdapterBlob::create(&buffer); 2835 if (adapter_blob == nullptr) { 2836 // CodeCache is full, disable compilation 2837 // Ought to log this but compile log is only per compile thread 2838 // and we're some non descript Java thread. 2839 return false; 2840 } 2841 if (!is_transient && AOTCodeCache::is_dumping_adapters()) { 2842 // try to save generated code 2843 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2844 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2845 int entry_offset[AdapterHandlerEntry::ENTRIES_COUNT]; 2846 assert(AdapterHandlerEntry::ENTRIES_COUNT == 4, "sanity"); 2847 address i2c_entry = handler->get_i2c_entry(); 2848 entry_offset[0] = 0; // i2c_entry offset 2849 entry_offset[1] = handler->get_c2i_entry() - i2c_entry; 2850 entry_offset[2] = handler->get_c2i_unverified_entry() - i2c_entry; 2851 entry_offset[3] = handler->get_c2i_no_clinit_check_entry() - i2c_entry; 2852 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, entry_offset); 2853 assert(success || !AOTCodeCache::is_dumping_adapters(), "caching of adapter must be disabled"); 2854 } 2855 handler->relocate(adapter_blob->content_begin()); 2856 #ifndef PRODUCT 2857 // debugging support 2858 if (PrintAdapterHandlers || PrintStubCode) { 2859 print_adapter_handler_info(tty, handler, adapter_blob); 2860 } 2861 #endif 2862 return true; 2863 } 2864 2865 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob, 2866 int total_args_passed, 2867 BasicType* sig_bt, 2868 bool is_transient) { 2869 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2870 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 2871 if (!generate_adapter_code(adapter_blob, handler, total_args_passed, sig_bt, is_transient)) { 2872 AdapterHandlerEntry::deallocate(handler); 2873 return nullptr; 2874 } 2875 if (!is_transient) { 2876 assert_lock_strong(AdapterHandlerLibrary_lock); 2877 _adapter_handler_table->put(fp, handler); 2878 } 2879 return handler; 2880 } 2881 2882 #if INCLUDE_CDS 2883 void AdapterHandlerEntry::remove_unshareable_info() { 2884 #ifdef ASSERT 2885 _saved_code = nullptr; 2886 _saved_code_length = 0; 2887 #endif // ASSERT 2888 set_entry_points(nullptr, nullptr, nullptr, nullptr, false); 2889 } 2890 2891 class CopyAdapterTableToArchive : StackObj { 2892 private: 2893 CompactHashtableWriter* _writer; 2894 ArchiveBuilder* _builder; 2895 public: 2896 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 2897 _builder(ArchiveBuilder::current()) 2898 {} 2899 2900 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 2901 LogStreamHandle(Trace, cds) lsh; 2902 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 2903 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 2904 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 2905 assert(buffered_fp != nullptr,"sanity check"); 2906 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 2907 assert(buffered_entry != nullptr,"sanity check"); 2908 2909 uint hash = fp->compute_hash(); 2910 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 2911 _writer->add(hash, delta); 2912 if (lsh.is_enabled()) { 2913 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 2914 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 2915 log_trace(cds)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 2916 } 2917 } else { 2918 if (lsh.is_enabled()) { 2919 log_trace(cds)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 2920 } 2921 } 2922 return true; 2923 } 2924 }; 2925 2926 void AdapterHandlerLibrary::dump_aot_adapter_table() { 2927 CompactHashtableStats stats; 2928 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 2929 CopyAdapterTableToArchive copy(&writer); 2930 _adapter_handler_table->iterate(©); 2931 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 2932 } 2933 2934 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 2935 _aot_adapter_handler_table.serialize_header(soc); 2936 } 2937 2938 AdapterBlob* AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 2939 #ifdef ASSERT 2940 if (TestAOTAdapterLinkFailure) { 2941 return nullptr; 2942 } 2943 #endif 2944 AdapterBlob* blob = lookup_aot_cache(handler); 2945 #ifndef PRODUCT 2946 // debugging support 2947 if ((blob != nullptr) && (PrintAdapterHandlers || PrintStubCode)) { 2948 print_adapter_handler_info(tty, handler, blob); 2949 } 2950 #endif 2951 return blob; 2952 } 2953 2954 // This method is used during production run to link archived adapters (stored in AOT Cache) 2955 // to their code in AOT Code Cache 2956 void AdapterHandlerEntry::link() { 2957 AdapterBlob* adapter_blob = nullptr; 2958 ResourceMark rm; 2959 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 2960 bool generate_code = false; 2961 // Generate code only if AOTCodeCache is not available, or 2962 // caching adapters is disabled, or we fail to link 2963 // the AdapterHandlerEntry to its code in the AOTCodeCache 2964 if (AOTCodeCache::is_using_adapters()) { 2965 adapter_blob = AdapterHandlerLibrary::link_aot_adapter_handler(this); 2966 if (adapter_blob == nullptr) { 2967 log_warning(cds)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 2968 generate_code = true; 2969 } 2970 } else { 2971 generate_code = true; 2972 } 2973 if (generate_code) { 2974 int nargs; 2975 BasicType* bt = _fingerprint->as_basic_type(nargs); 2976 if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, nargs, bt, /* is_transient */ false)) { 2977 // Don't throw exceptions during VM initialization because java.lang.* classes 2978 // might not have been initialized, causing problems when constructing the 2979 // Java exception object. 2980 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 2981 } 2982 } 2983 // Outside of the lock 2984 if (adapter_blob != nullptr) { 2985 post_adapter_creation(adapter_blob, this); 2986 } 2987 assert(_linked, "AdapterHandlerEntry must now be linked"); 2988 } 2989 2990 void AdapterHandlerLibrary::link_aot_adapters() { 2991 _aot_adapter_handler_table.iterate([](AdapterHandlerEntry* entry) { 2992 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 2993 entry->link(); 2994 }); 2995 } 2996 2997 // This method is called during production run to lookup simple adapters 2998 // in the archived adapter handler table 2999 void AdapterHandlerLibrary::lookup_simple_adapters() { 3000 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 3001 3002 MutexLocker mu(AdapterHandlerLibrary_lock); 3003 _no_arg_handler = lookup(0, nullptr); 3004 3005 BasicType obj_args[] = { T_OBJECT }; 3006 _obj_arg_handler = lookup(1, obj_args); 3007 3008 BasicType int_args[] = { T_INT }; 3009 _int_arg_handler = lookup(1, int_args); 3010 3011 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 3012 _obj_int_arg_handler = lookup(2, obj_int_args); 3013 3014 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 3015 _obj_obj_arg_handler = lookup(2, obj_obj_args); 3016 3017 assert(_no_arg_handler != nullptr && 3018 _obj_arg_handler != nullptr && 3019 _int_arg_handler != nullptr && 3020 _obj_int_arg_handler != nullptr && 3021 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3022 assert(_no_arg_handler->is_linked() && 3023 _obj_arg_handler->is_linked() && 3024 _int_arg_handler->is_linked() && 3025 _obj_int_arg_handler->is_linked() && 3026 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3027 } 3028 #endif // INCLUDE_CDS 3029 3030 address AdapterHandlerEntry::base_address() { 3031 address base = _i2c_entry; 3032 if (base == nullptr) base = _c2i_entry; 3033 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3034 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3035 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3036 return base; 3037 } 3038 3039 void AdapterHandlerEntry::relocate(address new_base) { 3040 address old_base = base_address(); 3041 assert(old_base != nullptr, ""); 3042 ptrdiff_t delta = new_base - old_base; 3043 if (_i2c_entry != nullptr) 3044 _i2c_entry += delta; 3045 if (_c2i_entry != nullptr) 3046 _c2i_entry += delta; 3047 if (_c2i_unverified_entry != nullptr) 3048 _c2i_unverified_entry += delta; 3049 if (_c2i_no_clinit_check_entry != nullptr) 3050 _c2i_no_clinit_check_entry += delta; 3051 assert(base_address() == new_base, ""); 3052 } 3053 3054 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3055 LogStreamHandle(Trace, cds) lsh; 3056 if (lsh.is_enabled()) { 3057 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3058 lsh.cr(); 3059 } 3060 it->push(&_fingerprint); 3061 } 3062 3063 AdapterHandlerEntry::~AdapterHandlerEntry() { 3064 if (_fingerprint != nullptr) { 3065 AdapterFingerPrint::deallocate(_fingerprint); 3066 _fingerprint = nullptr; 3067 } 3068 #ifdef ASSERT 3069 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3070 #endif 3071 FreeHeap(this); 3072 } 3073 3074 3075 #ifdef ASSERT 3076 // Capture the code before relocation so that it can be compared 3077 // against other versions. If the code is captured after relocation 3078 // then relative instructions won't be equivalent. 3079 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3080 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3081 _saved_code_length = length; 3082 memcpy(_saved_code, buffer, length); 3083 } 3084 3085 3086 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3087 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3088 3089 if (other->_saved_code_length != _saved_code_length) { 3090 return false; 3091 } 3092 3093 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3094 } 3095 #endif 3096 3097 3098 /** 3099 * Create a native wrapper for this native method. The wrapper converts the 3100 * Java-compiled calling convention to the native convention, handles 3101 * arguments, and transitions to native. On return from the native we transition 3102 * back to java blocking if a safepoint is in progress. 3103 */ 3104 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3105 ResourceMark rm; 3106 nmethod* nm = nullptr; 3107 3108 // Check if memory should be freed before allocation 3109 CodeCache::gc_on_allocation(); 3110 3111 assert(method->is_native(), "must be native"); 3112 assert(method->is_special_native_intrinsic() || 3113 method->has_native_function(), "must have something valid to call!"); 3114 3115 { 3116 // Perform the work while holding the lock, but perform any printing outside the lock 3117 MutexLocker mu(AdapterHandlerLibrary_lock); 3118 // See if somebody beat us to it 3119 if (method->code() != nullptr) { 3120 return; 3121 } 3122 3123 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3124 assert(compile_id > 0, "Must generate native wrapper"); 3125 3126 3127 ResourceMark rm; 3128 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3129 if (buf != nullptr) { 3130 CodeBuffer buffer(buf); 3131 3132 if (method->is_continuation_enter_intrinsic()) { 3133 buffer.initialize_stubs_size(192); 3134 } 3135 3136 struct { double data[20]; } locs_buf; 3137 struct { double data[20]; } stubs_locs_buf; 3138 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3139 #if defined(AARCH64) || defined(PPC64) 3140 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3141 // in the constant pool to ensure ordering between the barrier and oops 3142 // accesses. For native_wrappers we need a constant. 3143 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3144 // static java call that is resolved in the runtime. 3145 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3146 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3147 } 3148 #endif 3149 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3150 MacroAssembler _masm(&buffer); 3151 3152 // Fill in the signature array, for the calling-convention call. 3153 const int total_args_passed = method->size_of_parameters(); 3154 3155 VMRegPair stack_regs[16]; 3156 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3157 3158 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3159 method->is_static(), total_args_passed); 3160 BasicType* sig_bt = si.basic_types(); 3161 assert(si.slots() == total_args_passed, ""); 3162 BasicType ret_type = si.return_type(); 3163 3164 // Now get the compiled-Java arguments layout. 3165 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3166 3167 // Generate the compiled-to-native wrapper code 3168 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3169 3170 if (nm != nullptr) { 3171 { 3172 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3173 if (nm->make_in_use()) { 3174 method->set_code(method, nm); 3175 } 3176 } 3177 3178 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3179 if (directive->PrintAssemblyOption) { 3180 nm->print_code(); 3181 } 3182 DirectivesStack::release(directive); 3183 } 3184 } 3185 } // Unlock AdapterHandlerLibrary_lock 3186 3187 3188 // Install the generated code. 3189 if (nm != nullptr) { 3190 const char *msg = method->is_static() ? "(static)" : ""; 3191 CompileTask::print_ul(nm, msg); 3192 if (PrintCompilation) { 3193 ttyLocker ttyl; 3194 CompileTask::print(tty, nm, msg); 3195 } 3196 nm->post_compiled_method_load_event(); 3197 } 3198 } 3199 3200 // ------------------------------------------------------------------------- 3201 // Java-Java calling convention 3202 // (what you use when Java calls Java) 3203 3204 //------------------------------name_for_receiver---------------------------------- 3205 // For a given signature, return the VMReg for parameter 0. 3206 VMReg SharedRuntime::name_for_receiver() { 3207 VMRegPair regs; 3208 BasicType sig_bt = T_OBJECT; 3209 (void) java_calling_convention(&sig_bt, ®s, 1); 3210 // Return argument 0 register. In the LP64 build pointers 3211 // take 2 registers, but the VM wants only the 'main' name. 3212 return regs.first(); 3213 } 3214 3215 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3216 // This method is returning a data structure allocating as a 3217 // ResourceObject, so do not put any ResourceMarks in here. 3218 3219 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3220 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3221 int cnt = 0; 3222 if (has_receiver) { 3223 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3224 } 3225 3226 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3227 BasicType type = ss.type(); 3228 sig_bt[cnt++] = type; 3229 if (is_double_word_type(type)) 3230 sig_bt[cnt++] = T_VOID; 3231 } 3232 3233 if (has_appendix) { 3234 sig_bt[cnt++] = T_OBJECT; 3235 } 3236 3237 assert(cnt < 256, "grow table size"); 3238 3239 int comp_args_on_stack; 3240 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3241 3242 // the calling convention doesn't count out_preserve_stack_slots so 3243 // we must add that in to get "true" stack offsets. 3244 3245 if (comp_args_on_stack) { 3246 for (int i = 0; i < cnt; i++) { 3247 VMReg reg1 = regs[i].first(); 3248 if (reg1->is_stack()) { 3249 // Yuck 3250 reg1 = reg1->bias(out_preserve_stack_slots()); 3251 } 3252 VMReg reg2 = regs[i].second(); 3253 if (reg2->is_stack()) { 3254 // Yuck 3255 reg2 = reg2->bias(out_preserve_stack_slots()); 3256 } 3257 regs[i].set_pair(reg2, reg1); 3258 } 3259 } 3260 3261 // results 3262 *arg_size = cnt; 3263 return regs; 3264 } 3265 3266 // OSR Migration Code 3267 // 3268 // This code is used convert interpreter frames into compiled frames. It is 3269 // called from very start of a compiled OSR nmethod. A temp array is 3270 // allocated to hold the interesting bits of the interpreter frame. All 3271 // active locks are inflated to allow them to move. The displaced headers and 3272 // active interpreter locals are copied into the temp buffer. Then we return 3273 // back to the compiled code. The compiled code then pops the current 3274 // interpreter frame off the stack and pushes a new compiled frame. Then it 3275 // copies the interpreter locals and displaced headers where it wants. 3276 // Finally it calls back to free the temp buffer. 3277 // 3278 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3279 3280 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3281 assert(current == JavaThread::current(), "pre-condition"); 3282 3283 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3284 // frame. The stack watermark code below ensures that the interpreted frame is processed 3285 // before it gets unwound. This is helpful as the size of the compiled frame could be 3286 // larger than the interpreted frame, which could result in the new frame not being 3287 // processed correctly. 3288 StackWatermarkSet::before_unwind(current); 3289 3290 // 3291 // This code is dependent on the memory layout of the interpreter local 3292 // array and the monitors. On all of our platforms the layout is identical 3293 // so this code is shared. If some platform lays the their arrays out 3294 // differently then this code could move to platform specific code or 3295 // the code here could be modified to copy items one at a time using 3296 // frame accessor methods and be platform independent. 3297 3298 frame fr = current->last_frame(); 3299 assert(fr.is_interpreted_frame(), ""); 3300 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3301 3302 // Figure out how many monitors are active. 3303 int active_monitor_count = 0; 3304 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3305 kptr < fr.interpreter_frame_monitor_begin(); 3306 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3307 if (kptr->obj() != nullptr) active_monitor_count++; 3308 } 3309 3310 // QQQ we could place number of active monitors in the array so that compiled code 3311 // could double check it. 3312 3313 Method* moop = fr.interpreter_frame_method(); 3314 int max_locals = moop->max_locals(); 3315 // Allocate temp buffer, 1 word per local & 2 per active monitor 3316 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3317 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3318 3319 // Copy the locals. Order is preserved so that loading of longs works. 3320 // Since there's no GC I can copy the oops blindly. 3321 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3322 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3323 (HeapWord*)&buf[0], 3324 max_locals); 3325 3326 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3327 int i = max_locals; 3328 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3329 kptr2 < fr.interpreter_frame_monitor_begin(); 3330 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3331 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3332 BasicLock *lock = kptr2->lock(); 3333 if (LockingMode == LM_LEGACY) { 3334 // Inflate so the object's header no longer refers to the BasicLock. 3335 if (lock->displaced_header().is_unlocked()) { 3336 // The object is locked and the resulting ObjectMonitor* will also be 3337 // locked so it can't be async deflated until ownership is dropped. 3338 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3339 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3340 } 3341 // Now the displaced header is free to move because the 3342 // object's header no longer refers to it. 3343 buf[i] = (intptr_t)lock->displaced_header().value(); 3344 } else if (UseObjectMonitorTable) { 3345 buf[i] = (intptr_t)lock->object_monitor_cache(); 3346 } 3347 #ifdef ASSERT 3348 else { 3349 buf[i] = badDispHeaderOSR; 3350 } 3351 #endif 3352 i++; 3353 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3354 } 3355 } 3356 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3357 3358 RegisterMap map(current, 3359 RegisterMap::UpdateMap::skip, 3360 RegisterMap::ProcessFrames::include, 3361 RegisterMap::WalkContinuation::skip); 3362 frame sender = fr.sender(&map); 3363 if (sender.is_interpreted_frame()) { 3364 current->push_cont_fastpath(sender.sp()); 3365 } 3366 3367 return buf; 3368 JRT_END 3369 3370 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3371 FREE_C_HEAP_ARRAY(intptr_t, buf); 3372 JRT_END 3373 3374 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3375 bool found = false; 3376 #if INCLUDE_CDS 3377 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3378 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); 3379 }; 3380 _aot_adapter_handler_table.iterate(findblob_archived_table); 3381 #endif // INCLUDE_CDS 3382 if (!found) { 3383 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3384 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3385 }; 3386 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3387 _adapter_handler_table->iterate(findblob_runtime_table); 3388 } 3389 return found; 3390 } 3391 3392 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) { 3393 return fingerprint->as_basic_args_string(); 3394 } 3395 3396 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) { 3397 unsigned int hash = fingerprint->compute_hash(); 3398 return hash; 3399 } 3400 3401 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3402 bool found = false; 3403 #if INCLUDE_CDS 3404 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3405 if (b == CodeCache::find_blob(handler->get_i2c_entry())) { 3406 found = true; 3407 st->print("Adapter for signature: "); 3408 handler->print_adapter_on(st); 3409 return true; 3410 } else { 3411 return false; // keep looking 3412 3413 } 3414 }; 3415 _aot_adapter_handler_table.iterate(findblob_archived_table); 3416 #endif // INCLUDE_CDS 3417 if (!found) { 3418 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3419 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3420 found = true; 3421 st->print("Adapter for signature: "); 3422 a->print_adapter_on(st); 3423 return true; 3424 } else { 3425 return false; // keep looking 3426 } 3427 }; 3428 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3429 _adapter_handler_table->iterate(findblob_runtime_table); 3430 } 3431 assert(found, "Should have found handler"); 3432 } 3433 3434 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3435 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3436 if (get_i2c_entry() != nullptr) { 3437 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3438 } 3439 if (get_c2i_entry() != nullptr) { 3440 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3441 } 3442 if (get_c2i_unverified_entry() != nullptr) { 3443 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3444 } 3445 if (get_c2i_no_clinit_check_entry() != nullptr) { 3446 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3447 } 3448 st->cr(); 3449 } 3450 3451 #ifndef PRODUCT 3452 3453 void AdapterHandlerLibrary::print_statistics() { 3454 print_table_statistics(); 3455 } 3456 3457 #endif /* PRODUCT */ 3458 3459 bool AdapterHandlerLibrary::is_abstract_method_adapter(AdapterHandlerEntry* entry) { 3460 if (entry == _abstract_method_handler) { 3461 return true; 3462 } 3463 return false; 3464 } 3465 3466 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3467 assert(current == JavaThread::current(), "pre-condition"); 3468 StackOverflow* overflow_state = current->stack_overflow_state(); 3469 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3470 overflow_state->set_reserved_stack_activation(current->stack_base()); 3471 JRT_END 3472 3473 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3474 ResourceMark rm(current); 3475 frame activation; 3476 nmethod* nm = nullptr; 3477 int count = 1; 3478 3479 assert(fr.is_java_frame(), "Must start on Java frame"); 3480 3481 RegisterMap map(JavaThread::current(), 3482 RegisterMap::UpdateMap::skip, 3483 RegisterMap::ProcessFrames::skip, 3484 RegisterMap::WalkContinuation::skip); // don't walk continuations 3485 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3486 if (!fr.is_java_frame()) { 3487 continue; 3488 } 3489 3490 Method* method = nullptr; 3491 bool found = false; 3492 if (fr.is_interpreted_frame()) { 3493 method = fr.interpreter_frame_method(); 3494 if (method != nullptr && method->has_reserved_stack_access()) { 3495 found = true; 3496 } 3497 } else { 3498 CodeBlob* cb = fr.cb(); 3499 if (cb != nullptr && cb->is_nmethod()) { 3500 nm = cb->as_nmethod(); 3501 method = nm->method(); 3502 // scope_desc_near() must be used, instead of scope_desc_at() because on 3503 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3504 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3505 method = sd->method(); 3506 if (method != nullptr && method->has_reserved_stack_access()) { 3507 found = true; 3508 } 3509 } 3510 } 3511 } 3512 if (found) { 3513 activation = fr; 3514 warning("Potentially dangerous stack overflow in " 3515 "ReservedStackAccess annotated method %s [%d]", 3516 method->name_and_sig_as_C_string(), count++); 3517 EventReservedStackActivation event; 3518 if (event.should_commit()) { 3519 event.set_method(method); 3520 event.commit(); 3521 } 3522 } 3523 } 3524 return activation; 3525 } 3526 3527 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3528 // After any safepoint, just before going back to compiled code, 3529 // we inform the GC that we will be doing initializing writes to 3530 // this object in the future without emitting card-marks, so 3531 // GC may take any compensating steps. 3532 3533 oop new_obj = current->vm_result_oop(); 3534 if (new_obj == nullptr) return; 3535 3536 BarrierSet *bs = BarrierSet::barrier_set(); 3537 bs->on_slowpath_allocation_exit(current, new_obj); 3538 }