1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jfr/jfrEvents.hpp" 46 #include "jvm.h" 47 #include "logging/log.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "metaprogramming/primitiveConversions.hpp" 51 #include "oops/klass.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/forte.hpp" 56 #include "prims/jvmtiExport.hpp" 57 #include "prims/jvmtiThreadState.hpp" 58 #include "prims/methodHandles.hpp" 59 #include "prims/nativeLookup.hpp" 60 #include "runtime/arguments.hpp" 61 #include "runtime/atomic.hpp" 62 #include "runtime/basicLock.inline.hpp" 63 #include "runtime/frame.inline.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/init.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/java.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/jniHandles.inline.hpp" 70 #include "runtime/perfData.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/stackWatermarkSet.hpp" 73 #include "runtime/stubRoutines.hpp" 74 #include "runtime/synchronizer.inline.hpp" 75 #include "runtime/timerTrace.hpp" 76 #include "runtime/vframe.inline.hpp" 77 #include "runtime/vframeArray.hpp" 78 #include "runtime/vm_version.hpp" 79 #include "utilities/copy.hpp" 80 #include "utilities/dtrace.hpp" 81 #include "utilities/events.hpp" 82 #include "utilities/globalDefinitions.hpp" 83 #include "utilities/hashTable.hpp" 84 #include "utilities/macros.hpp" 85 #include "utilities/xmlstream.hpp" 86 #ifdef COMPILER1 87 #include "c1/c1_Runtime1.hpp" 88 #endif 89 #if INCLUDE_JFR 90 #include "jfr/jfr.inline.hpp" 91 #endif 92 93 // Shared runtime stub routines reside in their own unique blob with a 94 // single entry point 95 96 97 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 98 type* SharedRuntime::BLOB_FIELD_NAME(name); 99 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 100 #undef SHARED_STUB_FIELD_DEFINE 101 102 nmethod* SharedRuntime::_cont_doYield_stub; 103 104 #if 0 105 // TODO tweak global stub name generation to match this 106 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 107 const char *SharedRuntime::_stub_names[] = { 108 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 109 }; 110 #endif 111 112 //----------------------------generate_stubs----------------------------------- 113 void SharedRuntime::generate_initial_stubs() { 114 // Build this early so it's available for the interpreter. 115 _throw_StackOverflowError_blob = 116 generate_throw_exception(StubId::shared_throw_StackOverflowError_id, 117 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 118 } 119 120 void SharedRuntime::generate_stubs() { 121 _wrong_method_blob = 122 generate_resolve_blob(StubId::shared_wrong_method_id, 123 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 124 _wrong_method_abstract_blob = 125 generate_resolve_blob(StubId::shared_wrong_method_abstract_id, 126 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 127 _ic_miss_blob = 128 generate_resolve_blob(StubId::shared_ic_miss_id, 129 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 130 _resolve_opt_virtual_call_blob = 131 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id, 132 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 133 _resolve_virtual_call_blob = 134 generate_resolve_blob(StubId::shared_resolve_virtual_call_id, 135 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 136 _resolve_static_call_blob = 137 generate_resolve_blob(StubId::shared_resolve_static_call_id, 138 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 139 140 _throw_delayed_StackOverflowError_blob = 141 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id, 142 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 143 144 _throw_AbstractMethodError_blob = 145 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id, 146 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 147 148 _throw_IncompatibleClassChangeError_blob = 149 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id, 150 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 151 152 _throw_NullPointerException_at_call_blob = 153 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id, 154 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 155 156 #if COMPILER2_OR_JVMCI 157 // Vectors are generated only by C2 and JVMCI. 158 bool support_wide = is_wide_vector(MaxVectorSize); 159 if (support_wide) { 160 _polling_page_vectors_safepoint_handler_blob = 161 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id, 162 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 163 } 164 #endif // COMPILER2_OR_JVMCI 165 _polling_page_safepoint_handler_blob = 166 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id, 167 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 168 _polling_page_return_handler_blob = 169 generate_handler_blob(StubId::shared_polling_page_return_handler_id, 170 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 171 172 generate_deopt_blob(); 173 } 174 175 void SharedRuntime::init_adapter_library() { 176 AdapterHandlerLibrary::initialize(); 177 } 178 179 #if INCLUDE_JFR 180 //------------------------------generate jfr runtime stubs ------ 181 void SharedRuntime::generate_jfr_stubs() { 182 ResourceMark rm; 183 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 184 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 185 186 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 187 _jfr_return_lease_blob = generate_jfr_return_lease(); 188 } 189 190 #endif // INCLUDE_JFR 191 192 #include <math.h> 193 194 // Implementation of SharedRuntime 195 196 #ifndef PRODUCT 197 // For statistics 198 uint SharedRuntime::_ic_miss_ctr = 0; 199 uint SharedRuntime::_wrong_method_ctr = 0; 200 uint SharedRuntime::_resolve_static_ctr = 0; 201 uint SharedRuntime::_resolve_virtual_ctr = 0; 202 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 203 uint SharedRuntime::_implicit_null_throws = 0; 204 uint SharedRuntime::_implicit_div0_throws = 0; 205 206 int64_t SharedRuntime::_nof_normal_calls = 0; 207 int64_t SharedRuntime::_nof_inlined_calls = 0; 208 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 209 int64_t SharedRuntime::_nof_static_calls = 0; 210 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 211 int64_t SharedRuntime::_nof_interface_calls = 0; 212 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 213 214 uint SharedRuntime::_new_instance_ctr=0; 215 uint SharedRuntime::_new_array_ctr=0; 216 uint SharedRuntime::_multi2_ctr=0; 217 uint SharedRuntime::_multi3_ctr=0; 218 uint SharedRuntime::_multi4_ctr=0; 219 uint SharedRuntime::_multi5_ctr=0; 220 uint SharedRuntime::_mon_enter_stub_ctr=0; 221 uint SharedRuntime::_mon_exit_stub_ctr=0; 222 uint SharedRuntime::_mon_enter_ctr=0; 223 uint SharedRuntime::_mon_exit_ctr=0; 224 uint SharedRuntime::_partial_subtype_ctr=0; 225 uint SharedRuntime::_jbyte_array_copy_ctr=0; 226 uint SharedRuntime::_jshort_array_copy_ctr=0; 227 uint SharedRuntime::_jint_array_copy_ctr=0; 228 uint SharedRuntime::_jlong_array_copy_ctr=0; 229 uint SharedRuntime::_oop_array_copy_ctr=0; 230 uint SharedRuntime::_checkcast_array_copy_ctr=0; 231 uint SharedRuntime::_unsafe_array_copy_ctr=0; 232 uint SharedRuntime::_generic_array_copy_ctr=0; 233 uint SharedRuntime::_slow_array_copy_ctr=0; 234 uint SharedRuntime::_find_handler_ctr=0; 235 uint SharedRuntime::_rethrow_ctr=0; 236 uint SharedRuntime::_unsafe_set_memory_ctr=0; 237 238 int SharedRuntime::_ICmiss_index = 0; 239 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 240 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 241 242 243 void SharedRuntime::trace_ic_miss(address at) { 244 for (int i = 0; i < _ICmiss_index; i++) { 245 if (_ICmiss_at[i] == at) { 246 _ICmiss_count[i]++; 247 return; 248 } 249 } 250 int index = _ICmiss_index++; 251 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 252 _ICmiss_at[index] = at; 253 _ICmiss_count[index] = 1; 254 } 255 256 void SharedRuntime::print_ic_miss_histogram() { 257 if (ICMissHistogram) { 258 tty->print_cr("IC Miss Histogram:"); 259 int tot_misses = 0; 260 for (int i = 0; i < _ICmiss_index; i++) { 261 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 262 tot_misses += _ICmiss_count[i]; 263 } 264 tty->print_cr("Total IC misses: %7d", tot_misses); 265 } 266 } 267 #endif // PRODUCT 268 269 270 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 271 return x * y; 272 JRT_END 273 274 275 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 276 if (x == min_jlong && y == CONST64(-1)) { 277 return x; 278 } else { 279 return x / y; 280 } 281 JRT_END 282 283 284 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 285 if (x == min_jlong && y == CONST64(-1)) { 286 return 0; 287 } else { 288 return x % y; 289 } 290 JRT_END 291 292 293 #ifdef _WIN64 294 const juint float_sign_mask = 0x7FFFFFFF; 295 const juint float_infinity = 0x7F800000; 296 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 297 const julong double_infinity = CONST64(0x7FF0000000000000); 298 #endif 299 300 #if !defined(X86) 301 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 302 #ifdef _WIN64 303 // 64-bit Windows on amd64 returns the wrong values for 304 // infinity operands. 305 juint xbits = PrimitiveConversions::cast<juint>(x); 306 juint ybits = PrimitiveConversions::cast<juint>(y); 307 // x Mod Infinity == x unless x is infinity 308 if (((xbits & float_sign_mask) != float_infinity) && 309 ((ybits & float_sign_mask) == float_infinity) ) { 310 return x; 311 } 312 return ((jfloat)fmod_winx64((double)x, (double)y)); 313 #else 314 return ((jfloat)fmod((double)x,(double)y)); 315 #endif 316 JRT_END 317 318 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 319 #ifdef _WIN64 320 julong xbits = PrimitiveConversions::cast<julong>(x); 321 julong ybits = PrimitiveConversions::cast<julong>(y); 322 // x Mod Infinity == x unless x is infinity 323 if (((xbits & double_sign_mask) != double_infinity) && 324 ((ybits & double_sign_mask) == double_infinity) ) { 325 return x; 326 } 327 return ((jdouble)fmod_winx64((double)x, (double)y)); 328 #else 329 return ((jdouble)fmod((double)x,(double)y)); 330 #endif 331 JRT_END 332 #endif // !X86 333 334 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 335 return (jfloat)x; 336 JRT_END 337 338 #ifdef __SOFTFP__ 339 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 340 return x + y; 341 JRT_END 342 343 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 344 return x - y; 345 JRT_END 346 347 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 348 return x * y; 349 JRT_END 350 351 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 352 return x / y; 353 JRT_END 354 355 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 356 return x + y; 357 JRT_END 358 359 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 360 return x - y; 361 JRT_END 362 363 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 364 return x * y; 365 JRT_END 366 367 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 368 return x / y; 369 JRT_END 370 371 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 372 return (jdouble)x; 373 JRT_END 374 375 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 376 return (jdouble)x; 377 JRT_END 378 379 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 380 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 381 JRT_END 382 383 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 384 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 385 JRT_END 386 387 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 388 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 389 JRT_END 390 391 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 392 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 393 JRT_END 394 395 // Functions to return the opposite of the aeabi functions for nan. 396 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 397 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 398 JRT_END 399 400 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 401 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 402 JRT_END 403 404 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 405 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 406 JRT_END 407 408 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 409 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 410 JRT_END 411 412 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 413 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 414 JRT_END 415 416 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 417 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 418 JRT_END 419 420 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 421 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 422 JRT_END 423 424 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 425 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 426 JRT_END 427 428 // Intrinsics make gcc generate code for these. 429 float SharedRuntime::fneg(float f) { 430 return -f; 431 } 432 433 double SharedRuntime::dneg(double f) { 434 return -f; 435 } 436 437 #endif // __SOFTFP__ 438 439 #if defined(__SOFTFP__) || defined(E500V2) 440 // Intrinsics make gcc generate code for these. 441 double SharedRuntime::dabs(double f) { 442 return (f <= (double)0.0) ? (double)0.0 - f : f; 443 } 444 445 #endif 446 447 #if defined(__SOFTFP__) 448 double SharedRuntime::dsqrt(double f) { 449 return sqrt(f); 450 } 451 #endif 452 453 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 454 if (g_isnan(x)) 455 return 0; 456 if (x >= (jfloat) max_jint) 457 return max_jint; 458 if (x <= (jfloat) min_jint) 459 return min_jint; 460 return (jint) x; 461 JRT_END 462 463 464 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 465 if (g_isnan(x)) 466 return 0; 467 if (x >= (jfloat) max_jlong) 468 return max_jlong; 469 if (x <= (jfloat) min_jlong) 470 return min_jlong; 471 return (jlong) x; 472 JRT_END 473 474 475 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 476 if (g_isnan(x)) 477 return 0; 478 if (x >= (jdouble) max_jint) 479 return max_jint; 480 if (x <= (jdouble) min_jint) 481 return min_jint; 482 return (jint) x; 483 JRT_END 484 485 486 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 487 if (g_isnan(x)) 488 return 0; 489 if (x >= (jdouble) max_jlong) 490 return max_jlong; 491 if (x <= (jdouble) min_jlong) 492 return min_jlong; 493 return (jlong) x; 494 JRT_END 495 496 497 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 498 return (jfloat)x; 499 JRT_END 500 501 502 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 503 return (jfloat)x; 504 JRT_END 505 506 507 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 508 return (jdouble)x; 509 JRT_END 510 511 512 // Exception handling across interpreter/compiler boundaries 513 // 514 // exception_handler_for_return_address(...) returns the continuation address. 515 // The continuation address is the entry point of the exception handler of the 516 // previous frame depending on the return address. 517 518 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 519 // Note: This is called when we have unwound the frame of the callee that did 520 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 521 // Notably, the stack is not walkable at this point, and hence the check must 522 // be deferred until later. Specifically, any of the handlers returned here in 523 // this function, will get dispatched to, and call deferred checks to 524 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 525 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 526 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 527 528 // Reset method handle flag. 529 current->set_is_method_handle_return(false); 530 531 #if INCLUDE_JVMCI 532 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 533 // and other exception handler continuations do not read it 534 current->set_exception_pc(nullptr); 535 #endif // INCLUDE_JVMCI 536 537 if (Continuation::is_return_barrier_entry(return_address)) { 538 return StubRoutines::cont_returnBarrierExc(); 539 } 540 541 // The fastest case first 542 CodeBlob* blob = CodeCache::find_blob(return_address); 543 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 544 if (nm != nullptr) { 545 // Set flag if return address is a method handle call site. 546 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 547 // native nmethods don't have exception handlers 548 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 549 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 550 if (nm->is_deopt_pc(return_address)) { 551 // If we come here because of a stack overflow, the stack may be 552 // unguarded. Reguard the stack otherwise if we return to the 553 // deopt blob and the stack bang causes a stack overflow we 554 // crash. 555 StackOverflow* overflow_state = current->stack_overflow_state(); 556 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 557 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 558 overflow_state->set_reserved_stack_activation(current->stack_base()); 559 } 560 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 561 // The deferred StackWatermarkSet::after_unwind check will be performed in 562 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 563 return SharedRuntime::deopt_blob()->unpack_with_exception(); 564 } else { 565 // The deferred StackWatermarkSet::after_unwind check will be performed in 566 // * OptoRuntime::handle_exception_C_helper for C2 code 567 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 568 return nm->exception_begin(); 569 } 570 } 571 572 // Entry code 573 if (StubRoutines::returns_to_call_stub(return_address)) { 574 // The deferred StackWatermarkSet::after_unwind check will be performed in 575 // JavaCallWrapper::~JavaCallWrapper 576 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before"); 577 return StubRoutines::catch_exception_entry(); 578 } 579 if (blob != nullptr && blob->is_upcall_stub()) { 580 return StubRoutines::upcall_stub_exception_handler(); 581 } 582 // Interpreted code 583 if (Interpreter::contains(return_address)) { 584 // The deferred StackWatermarkSet::after_unwind check will be performed in 585 // InterpreterRuntime::exception_handler_for_exception 586 return Interpreter::rethrow_exception_entry(); 587 } 588 589 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 590 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 591 592 #ifndef PRODUCT 593 { ResourceMark rm; 594 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 595 os::print_location(tty, (intptr_t)return_address); 596 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 597 tty->print_cr("b) other problem"); 598 } 599 #endif // PRODUCT 600 ShouldNotReachHere(); 601 return nullptr; 602 } 603 604 605 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 606 return raw_exception_handler_for_return_address(current, return_address); 607 JRT_END 608 609 610 address SharedRuntime::get_poll_stub(address pc) { 611 address stub; 612 // Look up the code blob 613 CodeBlob *cb = CodeCache::find_blob(pc); 614 615 // Should be an nmethod 616 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 617 618 // Look up the relocation information 619 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 620 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 621 622 #ifdef ASSERT 623 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 624 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 625 Disassembler::decode(cb); 626 fatal("Only polling locations are used for safepoint"); 627 } 628 #endif 629 630 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 631 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 632 if (at_poll_return) { 633 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 634 "polling page return stub not created yet"); 635 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 636 } else if (has_wide_vectors) { 637 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 638 "polling page vectors safepoint stub not created yet"); 639 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 640 } else { 641 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 642 "polling page safepoint stub not created yet"); 643 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 644 } 645 log_debug(safepoint)("... found polling page %s exception at pc = " 646 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 647 at_poll_return ? "return" : "loop", 648 (intptr_t)pc, (intptr_t)stub); 649 return stub; 650 } 651 652 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 653 if (JvmtiExport::can_post_on_exceptions()) { 654 vframeStream vfst(current, true); 655 methodHandle method = methodHandle(current, vfst.method()); 656 address bcp = method()->bcp_from(vfst.bci()); 657 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 658 } 659 660 #if INCLUDE_JVMCI 661 if (EnableJVMCI) { 662 vframeStream vfst(current, true); 663 methodHandle method = methodHandle(current, vfst.method()); 664 int bci = vfst.bci(); 665 MethodData* trap_mdo = method->method_data(); 666 if (trap_mdo != nullptr) { 667 // Set exception_seen if the exceptional bytecode is an invoke 668 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 669 if (call.is_valid()) { 670 ResourceMark rm(current); 671 672 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 673 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 674 675 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 676 if (pdata != nullptr && pdata->is_BitData()) { 677 BitData* bit_data = (BitData*) pdata; 678 bit_data->set_exception_seen(); 679 } 680 } 681 } 682 } 683 #endif 684 685 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 686 } 687 688 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 689 Handle h_exception = Exceptions::new_exception(current, name, message); 690 throw_and_post_jvmti_exception(current, h_exception); 691 } 692 693 #if INCLUDE_JVMTI 694 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 695 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 696 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 697 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 698 JNIHandles::destroy_local(vthread); 699 JRT_END 700 701 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 702 assert(hide == JNI_TRUE, "must be VTMS transition start"); 703 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 704 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 705 JNIHandles::destroy_local(vthread); 706 JRT_END 707 708 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 709 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 710 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 711 JNIHandles::destroy_local(vthread); 712 JRT_END 713 714 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 715 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 716 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 717 JNIHandles::destroy_local(vthread); 718 JRT_END 719 #endif // INCLUDE_JVMTI 720 721 // The interpreter code to call this tracing function is only 722 // called/generated when UL is on for redefine, class and has the right level 723 // and tags. Since obsolete methods are never compiled, we don't have 724 // to modify the compilers to generate calls to this function. 725 // 726 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 727 JavaThread* thread, Method* method)) 728 if (method->is_obsolete()) { 729 // We are calling an obsolete method, but this is not necessarily 730 // an error. Our method could have been redefined just after we 731 // fetched the Method* from the constant pool. 732 ResourceMark rm; 733 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 734 } 735 return 0; 736 JRT_END 737 738 // ret_pc points into caller; we are returning caller's exception handler 739 // for given exception 740 // Note that the implementation of this method assumes it's only called when an exception has actually occured 741 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 742 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 743 assert(nm != nullptr, "must exist"); 744 ResourceMark rm; 745 746 #if INCLUDE_JVMCI 747 if (nm->is_compiled_by_jvmci()) { 748 // lookup exception handler for this pc 749 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 750 ExceptionHandlerTable table(nm); 751 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 752 if (t != nullptr) { 753 return nm->code_begin() + t->pco(); 754 } else { 755 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 756 } 757 } 758 #endif // INCLUDE_JVMCI 759 760 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 761 // determine handler bci, if any 762 EXCEPTION_MARK; 763 764 int handler_bci = -1; 765 int scope_depth = 0; 766 if (!force_unwind) { 767 int bci = sd->bci(); 768 bool recursive_exception = false; 769 do { 770 bool skip_scope_increment = false; 771 // exception handler lookup 772 Klass* ek = exception->klass(); 773 methodHandle mh(THREAD, sd->method()); 774 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 775 if (HAS_PENDING_EXCEPTION) { 776 recursive_exception = true; 777 // We threw an exception while trying to find the exception handler. 778 // Transfer the new exception to the exception handle which will 779 // be set into thread local storage, and do another lookup for an 780 // exception handler for this exception, this time starting at the 781 // BCI of the exception handler which caused the exception to be 782 // thrown (bugs 4307310 and 4546590). Set "exception" reference 783 // argument to ensure that the correct exception is thrown (4870175). 784 recursive_exception_occurred = true; 785 exception = Handle(THREAD, PENDING_EXCEPTION); 786 CLEAR_PENDING_EXCEPTION; 787 if (handler_bci >= 0) { 788 bci = handler_bci; 789 handler_bci = -1; 790 skip_scope_increment = true; 791 } 792 } 793 else { 794 recursive_exception = false; 795 } 796 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 797 sd = sd->sender(); 798 if (sd != nullptr) { 799 bci = sd->bci(); 800 } 801 ++scope_depth; 802 } 803 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 804 } 805 806 // found handling method => lookup exception handler 807 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 808 809 ExceptionHandlerTable table(nm); 810 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 811 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 812 // Allow abbreviated catch tables. The idea is to allow a method 813 // to materialize its exceptions without committing to the exact 814 // routing of exceptions. In particular this is needed for adding 815 // a synthetic handler to unlock monitors when inlining 816 // synchronized methods since the unlock path isn't represented in 817 // the bytecodes. 818 t = table.entry_for(catch_pco, -1, 0); 819 } 820 821 #ifdef COMPILER1 822 if (t == nullptr && nm->is_compiled_by_c1()) { 823 assert(nm->unwind_handler_begin() != nullptr, ""); 824 return nm->unwind_handler_begin(); 825 } 826 #endif 827 828 if (t == nullptr) { 829 ttyLocker ttyl; 830 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 831 tty->print_cr(" Exception:"); 832 exception->print(); 833 tty->cr(); 834 tty->print_cr(" Compiled exception table :"); 835 table.print(); 836 nm->print(); 837 nm->print_code(); 838 guarantee(false, "missing exception handler"); 839 return nullptr; 840 } 841 842 if (handler_bci != -1) { // did we find a handler in this method? 843 sd->method()->set_exception_handler_entered(handler_bci); // profile 844 } 845 return nm->code_begin() + t->pco(); 846 } 847 848 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 849 // These errors occur only at call sites 850 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 851 JRT_END 852 853 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 854 // These errors occur only at call sites 855 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 856 JRT_END 857 858 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 859 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 860 JRT_END 861 862 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 863 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 864 JRT_END 865 866 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 867 // This entry point is effectively only used for NullPointerExceptions which occur at inline 868 // cache sites (when the callee activation is not yet set up) so we are at a call site 869 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 870 JRT_END 871 872 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 873 throw_StackOverflowError_common(current, false); 874 JRT_END 875 876 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 877 throw_StackOverflowError_common(current, true); 878 JRT_END 879 880 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 881 // We avoid using the normal exception construction in this case because 882 // it performs an upcall to Java, and we're already out of stack space. 883 JavaThread* THREAD = current; // For exception macros. 884 Klass* k = vmClasses::StackOverflowError_klass(); 885 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 886 if (delayed) { 887 java_lang_Throwable::set_message(exception_oop, 888 Universe::delayed_stack_overflow_error_message()); 889 } 890 Handle exception (current, exception_oop); 891 if (StackTraceInThrowable) { 892 java_lang_Throwable::fill_in_stack_trace(exception); 893 } 894 // Remove the ScopedValue bindings in case we got a 895 // StackOverflowError while we were trying to remove ScopedValue 896 // bindings. 897 current->clear_scopedValueBindings(); 898 // Increment counter for hs_err file reporting 899 Atomic::inc(&Exceptions::_stack_overflow_errors); 900 throw_and_post_jvmti_exception(current, exception); 901 } 902 903 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 904 address pc, 905 ImplicitExceptionKind exception_kind) 906 { 907 address target_pc = nullptr; 908 909 if (Interpreter::contains(pc)) { 910 switch (exception_kind) { 911 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 912 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 913 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 914 default: ShouldNotReachHere(); 915 } 916 } else { 917 switch (exception_kind) { 918 case STACK_OVERFLOW: { 919 // Stack overflow only occurs upon frame setup; the callee is 920 // going to be unwound. Dispatch to a shared runtime stub 921 // which will cause the StackOverflowError to be fabricated 922 // and processed. 923 // Stack overflow should never occur during deoptimization: 924 // the compiled method bangs the stack by as much as the 925 // interpreter would need in case of a deoptimization. The 926 // deoptimization blob and uncommon trap blob bang the stack 927 // in a debug VM to verify the correctness of the compiled 928 // method stack banging. 929 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 930 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 931 return SharedRuntime::throw_StackOverflowError_entry(); 932 } 933 934 case IMPLICIT_NULL: { 935 if (VtableStubs::contains(pc)) { 936 // We haven't yet entered the callee frame. Fabricate an 937 // exception and begin dispatching it in the caller. Since 938 // the caller was at a call site, it's safe to destroy all 939 // caller-saved registers, as these entry points do. 940 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 941 942 // If vt_stub is null, then return null to signal handler to report the SEGV error. 943 if (vt_stub == nullptr) return nullptr; 944 945 if (vt_stub->is_abstract_method_error(pc)) { 946 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 947 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 948 // Instead of throwing the abstract method error here directly, we re-resolve 949 // and will throw the AbstractMethodError during resolve. As a result, we'll 950 // get a more detailed error message. 951 return SharedRuntime::get_handle_wrong_method_stub(); 952 } else { 953 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 954 // Assert that the signal comes from the expected location in stub code. 955 assert(vt_stub->is_null_pointer_exception(pc), 956 "obtained signal from unexpected location in stub code"); 957 return SharedRuntime::throw_NullPointerException_at_call_entry(); 958 } 959 } else { 960 CodeBlob* cb = CodeCache::find_blob(pc); 961 962 // If code blob is null, then return null to signal handler to report the SEGV error. 963 if (cb == nullptr) return nullptr; 964 965 // Exception happened in CodeCache. Must be either: 966 // 1. Inline-cache check in C2I handler blob, 967 // 2. Inline-cache check in nmethod, or 968 // 3. Implicit null exception in nmethod 969 970 if (!cb->is_nmethod()) { 971 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 972 if (!is_in_blob) { 973 // Allow normal crash reporting to handle this 974 return nullptr; 975 } 976 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 977 // There is no handler here, so we will simply unwind. 978 return SharedRuntime::throw_NullPointerException_at_call_entry(); 979 } 980 981 // Otherwise, it's a compiled method. Consult its exception handlers. 982 nmethod* nm = cb->as_nmethod(); 983 if (nm->inlinecache_check_contains(pc)) { 984 // exception happened inside inline-cache check code 985 // => the nmethod is not yet active (i.e., the frame 986 // is not set up yet) => use return address pushed by 987 // caller => don't push another return address 988 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 989 return SharedRuntime::throw_NullPointerException_at_call_entry(); 990 } 991 992 if (nm->method()->is_method_handle_intrinsic()) { 993 // exception happened inside MH dispatch code, similar to a vtable stub 994 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 995 return SharedRuntime::throw_NullPointerException_at_call_entry(); 996 } 997 998 #ifndef PRODUCT 999 _implicit_null_throws++; 1000 #endif 1001 target_pc = nm->continuation_for_implicit_null_exception(pc); 1002 // If there's an unexpected fault, target_pc might be null, 1003 // in which case we want to fall through into the normal 1004 // error handling code. 1005 } 1006 1007 break; // fall through 1008 } 1009 1010 1011 case IMPLICIT_DIVIDE_BY_ZERO: { 1012 nmethod* nm = CodeCache::find_nmethod(pc); 1013 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1014 #ifndef PRODUCT 1015 _implicit_div0_throws++; 1016 #endif 1017 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1018 // If there's an unexpected fault, target_pc might be null, 1019 // in which case we want to fall through into the normal 1020 // error handling code. 1021 break; // fall through 1022 } 1023 1024 default: ShouldNotReachHere(); 1025 } 1026 1027 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1028 1029 if (exception_kind == IMPLICIT_NULL) { 1030 #ifndef PRODUCT 1031 // for AbortVMOnException flag 1032 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1033 #endif //PRODUCT 1034 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1035 } else { 1036 #ifndef PRODUCT 1037 // for AbortVMOnException flag 1038 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1039 #endif //PRODUCT 1040 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1041 } 1042 return target_pc; 1043 } 1044 1045 ShouldNotReachHere(); 1046 return nullptr; 1047 } 1048 1049 1050 /** 1051 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1052 * installed in the native function entry of all native Java methods before 1053 * they get linked to their actual native methods. 1054 * 1055 * \note 1056 * This method actually never gets called! The reason is because 1057 * the interpreter's native entries call NativeLookup::lookup() which 1058 * throws the exception when the lookup fails. The exception is then 1059 * caught and forwarded on the return from NativeLookup::lookup() call 1060 * before the call to the native function. This might change in the future. 1061 */ 1062 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1063 { 1064 // We return a bad value here to make sure that the exception is 1065 // forwarded before we look at the return value. 1066 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1067 } 1068 JNI_END 1069 1070 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1071 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1072 } 1073 1074 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1075 #if INCLUDE_JVMCI 1076 if (!obj->klass()->has_finalizer()) { 1077 return; 1078 } 1079 #endif // INCLUDE_JVMCI 1080 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1081 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1082 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1083 JRT_END 1084 1085 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1086 assert(thread != nullptr, "No thread"); 1087 if (thread == nullptr) { 1088 return 0; 1089 } 1090 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1091 "current cannot touch oops after its GC barrier is detached."); 1092 oop obj = thread->threadObj(); 1093 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1094 } 1095 1096 /** 1097 * This function ought to be a void function, but cannot be because 1098 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1099 * 6254741. Once that is fixed we can remove the dummy return value. 1100 */ 1101 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1102 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1103 } 1104 1105 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1106 return dtrace_object_alloc(thread, o, o->size()); 1107 } 1108 1109 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1110 assert(DTraceAllocProbes, "wrong call"); 1111 Klass* klass = o->klass(); 1112 Symbol* name = klass->name(); 1113 HOTSPOT_OBJECT_ALLOC( 1114 get_java_tid(thread), 1115 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1116 return 0; 1117 } 1118 1119 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1120 JavaThread* current, Method* method)) 1121 assert(current == JavaThread::current(), "pre-condition"); 1122 1123 assert(DTraceMethodProbes, "wrong call"); 1124 Symbol* kname = method->klass_name(); 1125 Symbol* name = method->name(); 1126 Symbol* sig = method->signature(); 1127 HOTSPOT_METHOD_ENTRY( 1128 get_java_tid(current), 1129 (char *) kname->bytes(), kname->utf8_length(), 1130 (char *) name->bytes(), name->utf8_length(), 1131 (char *) sig->bytes(), sig->utf8_length()); 1132 return 0; 1133 JRT_END 1134 1135 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1136 JavaThread* current, Method* method)) 1137 assert(current == JavaThread::current(), "pre-condition"); 1138 assert(DTraceMethodProbes, "wrong call"); 1139 Symbol* kname = method->klass_name(); 1140 Symbol* name = method->name(); 1141 Symbol* sig = method->signature(); 1142 HOTSPOT_METHOD_RETURN( 1143 get_java_tid(current), 1144 (char *) kname->bytes(), kname->utf8_length(), 1145 (char *) name->bytes(), name->utf8_length(), 1146 (char *) sig->bytes(), sig->utf8_length()); 1147 return 0; 1148 JRT_END 1149 1150 1151 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1152 // for a call current in progress, i.e., arguments has been pushed on stack 1153 // put callee has not been invoked yet. Used by: resolve virtual/static, 1154 // vtable updates, etc. Caller frame must be compiled. 1155 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1156 JavaThread* current = THREAD; 1157 ResourceMark rm(current); 1158 1159 // last java frame on stack (which includes native call frames) 1160 vframeStream vfst(current, true); // Do not skip and javaCalls 1161 1162 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1163 } 1164 1165 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1166 nmethod* caller = vfst.nm(); 1167 1168 address pc = vfst.frame_pc(); 1169 { // Get call instruction under lock because another thread may be busy patching it. 1170 CompiledICLocker ic_locker(caller); 1171 return caller->attached_method_before_pc(pc); 1172 } 1173 return nullptr; 1174 } 1175 1176 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1177 // for a call current in progress, i.e., arguments has been pushed on stack 1178 // but callee has not been invoked yet. Caller frame must be compiled. 1179 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1180 CallInfo& callinfo, TRAPS) { 1181 Handle receiver; 1182 Handle nullHandle; // create a handy null handle for exception returns 1183 JavaThread* current = THREAD; 1184 1185 assert(!vfst.at_end(), "Java frame must exist"); 1186 1187 // Find caller and bci from vframe 1188 methodHandle caller(current, vfst.method()); 1189 int bci = vfst.bci(); 1190 1191 if (caller->is_continuation_enter_intrinsic()) { 1192 bc = Bytecodes::_invokestatic; 1193 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1194 return receiver; 1195 } 1196 1197 Bytecode_invoke bytecode(caller, bci); 1198 int bytecode_index = bytecode.index(); 1199 bc = bytecode.invoke_code(); 1200 1201 methodHandle attached_method(current, extract_attached_method(vfst)); 1202 if (attached_method.not_null()) { 1203 Method* callee = bytecode.static_target(CHECK_NH); 1204 vmIntrinsics::ID id = callee->intrinsic_id(); 1205 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1206 // it attaches statically resolved method to the call site. 1207 if (MethodHandles::is_signature_polymorphic(id) && 1208 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1209 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1210 1211 // Adjust invocation mode according to the attached method. 1212 switch (bc) { 1213 case Bytecodes::_invokevirtual: 1214 if (attached_method->method_holder()->is_interface()) { 1215 bc = Bytecodes::_invokeinterface; 1216 } 1217 break; 1218 case Bytecodes::_invokeinterface: 1219 if (!attached_method->method_holder()->is_interface()) { 1220 bc = Bytecodes::_invokevirtual; 1221 } 1222 break; 1223 case Bytecodes::_invokehandle: 1224 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1225 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1226 : Bytecodes::_invokevirtual; 1227 } 1228 break; 1229 default: 1230 break; 1231 } 1232 } 1233 } 1234 1235 assert(bc != Bytecodes::_illegal, "not initialized"); 1236 1237 bool has_receiver = bc != Bytecodes::_invokestatic && 1238 bc != Bytecodes::_invokedynamic && 1239 bc != Bytecodes::_invokehandle; 1240 1241 // Find receiver for non-static call 1242 if (has_receiver) { 1243 // This register map must be update since we need to find the receiver for 1244 // compiled frames. The receiver might be in a register. 1245 RegisterMap reg_map2(current, 1246 RegisterMap::UpdateMap::include, 1247 RegisterMap::ProcessFrames::include, 1248 RegisterMap::WalkContinuation::skip); 1249 frame stubFrame = current->last_frame(); 1250 // Caller-frame is a compiled frame 1251 frame callerFrame = stubFrame.sender(®_map2); 1252 1253 if (attached_method.is_null()) { 1254 Method* callee = bytecode.static_target(CHECK_NH); 1255 if (callee == nullptr) { 1256 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1257 } 1258 } 1259 1260 // Retrieve from a compiled argument list 1261 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1262 assert(oopDesc::is_oop_or_null(receiver()), ""); 1263 1264 if (receiver.is_null()) { 1265 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1266 } 1267 } 1268 1269 // Resolve method 1270 if (attached_method.not_null()) { 1271 // Parameterized by attached method. 1272 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1273 } else { 1274 // Parameterized by bytecode. 1275 constantPoolHandle constants(current, caller->constants()); 1276 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1277 } 1278 1279 #ifdef ASSERT 1280 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1281 if (has_receiver) { 1282 assert(receiver.not_null(), "should have thrown exception"); 1283 Klass* receiver_klass = receiver->klass(); 1284 Klass* rk = nullptr; 1285 if (attached_method.not_null()) { 1286 // In case there's resolved method attached, use its holder during the check. 1287 rk = attached_method->method_holder(); 1288 } else { 1289 // Klass is already loaded. 1290 constantPoolHandle constants(current, caller->constants()); 1291 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1292 } 1293 Klass* static_receiver_klass = rk; 1294 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1295 "actual receiver must be subclass of static receiver klass"); 1296 if (receiver_klass->is_instance_klass()) { 1297 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1298 tty->print_cr("ERROR: Klass not yet initialized!!"); 1299 receiver_klass->print(); 1300 } 1301 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1302 } 1303 } 1304 #endif 1305 1306 return receiver; 1307 } 1308 1309 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1310 JavaThread* current = THREAD; 1311 ResourceMark rm(current); 1312 // We need first to check if any Java activations (compiled, interpreted) 1313 // exist on the stack since last JavaCall. If not, we need 1314 // to get the target method from the JavaCall wrapper. 1315 vframeStream vfst(current, true); // Do not skip any javaCalls 1316 methodHandle callee_method; 1317 if (vfst.at_end()) { 1318 // No Java frames were found on stack since we did the JavaCall. 1319 // Hence the stack can only contain an entry_frame. We need to 1320 // find the target method from the stub frame. 1321 RegisterMap reg_map(current, 1322 RegisterMap::UpdateMap::skip, 1323 RegisterMap::ProcessFrames::include, 1324 RegisterMap::WalkContinuation::skip); 1325 frame fr = current->last_frame(); 1326 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1327 fr = fr.sender(®_map); 1328 assert(fr.is_entry_frame(), "must be"); 1329 // fr is now pointing to the entry frame. 1330 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1331 } else { 1332 Bytecodes::Code bc; 1333 CallInfo callinfo; 1334 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1335 callee_method = methodHandle(current, callinfo.selected_method()); 1336 } 1337 assert(callee_method()->is_method(), "must be"); 1338 return callee_method; 1339 } 1340 1341 // Resolves a call. 1342 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1343 JavaThread* current = THREAD; 1344 ResourceMark rm(current); 1345 RegisterMap cbl_map(current, 1346 RegisterMap::UpdateMap::skip, 1347 RegisterMap::ProcessFrames::include, 1348 RegisterMap::WalkContinuation::skip); 1349 frame caller_frame = current->last_frame().sender(&cbl_map); 1350 1351 CodeBlob* caller_cb = caller_frame.cb(); 1352 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1353 nmethod* caller_nm = caller_cb->as_nmethod(); 1354 1355 // determine call info & receiver 1356 // note: a) receiver is null for static calls 1357 // b) an exception is thrown if receiver is null for non-static calls 1358 CallInfo call_info; 1359 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1360 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1361 1362 NoSafepointVerifier nsv; 1363 1364 methodHandle callee_method(current, call_info.selected_method()); 1365 1366 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1367 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1368 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1369 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1370 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1371 1372 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1373 1374 #ifndef PRODUCT 1375 // tracing/debugging/statistics 1376 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1377 (is_virtual) ? (&_resolve_virtual_ctr) : 1378 (&_resolve_static_ctr); 1379 Atomic::inc(addr); 1380 1381 if (TraceCallFixup) { 1382 ResourceMark rm(current); 1383 tty->print("resolving %s%s (%s) call to", 1384 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1385 Bytecodes::name(invoke_code)); 1386 callee_method->print_short_name(tty); 1387 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1388 p2i(caller_frame.pc()), p2i(callee_method->code())); 1389 } 1390 #endif 1391 1392 if (invoke_code == Bytecodes::_invokestatic) { 1393 assert(callee_method->method_holder()->is_initialized() || 1394 callee_method->method_holder()->is_reentrant_initialization(current), 1395 "invalid class initialization state for invoke_static"); 1396 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1397 // In order to keep class initialization check, do not patch call 1398 // site for static call when the class is not fully initialized. 1399 // Proper check is enforced by call site re-resolution on every invocation. 1400 // 1401 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1402 // explicit class initialization check is put in nmethod entry (VEP). 1403 assert(callee_method->method_holder()->is_linked(), "must be"); 1404 return callee_method; 1405 } 1406 } 1407 1408 1409 // JSR 292 key invariant: 1410 // If the resolved method is a MethodHandle invoke target, the call 1411 // site must be a MethodHandle call site, because the lambda form might tail-call 1412 // leaving the stack in a state unknown to either caller or callee 1413 1414 // Compute entry points. The computation of the entry points is independent of 1415 // patching the call. 1416 1417 // Make sure the callee nmethod does not get deoptimized and removed before 1418 // we are done patching the code. 1419 1420 1421 CompiledICLocker ml(caller_nm); 1422 if (is_virtual && !is_optimized) { 1423 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1424 inline_cache->update(&call_info, receiver->klass()); 1425 } else { 1426 // Callsite is a direct call - set it to the destination method 1427 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1428 callsite->set(callee_method); 1429 } 1430 1431 return callee_method; 1432 } 1433 1434 // Inline caches exist only in compiled code 1435 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1436 #ifdef ASSERT 1437 RegisterMap reg_map(current, 1438 RegisterMap::UpdateMap::skip, 1439 RegisterMap::ProcessFrames::include, 1440 RegisterMap::WalkContinuation::skip); 1441 frame stub_frame = current->last_frame(); 1442 assert(stub_frame.is_runtime_frame(), "sanity check"); 1443 frame caller_frame = stub_frame.sender(®_map); 1444 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1445 #endif /* ASSERT */ 1446 1447 methodHandle callee_method; 1448 JRT_BLOCK 1449 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1450 // Return Method* through TLS 1451 current->set_vm_result_metadata(callee_method()); 1452 JRT_BLOCK_END 1453 // return compiled code entry point after potential safepoints 1454 return get_resolved_entry(current, callee_method); 1455 JRT_END 1456 1457 1458 // Handle call site that has been made non-entrant 1459 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1460 // 6243940 We might end up in here if the callee is deoptimized 1461 // as we race to call it. We don't want to take a safepoint if 1462 // the caller was interpreted because the caller frame will look 1463 // interpreted to the stack walkers and arguments are now 1464 // "compiled" so it is much better to make this transition 1465 // invisible to the stack walking code. The i2c path will 1466 // place the callee method in the callee_target. It is stashed 1467 // there because if we try and find the callee by normal means a 1468 // safepoint is possible and have trouble gc'ing the compiled args. 1469 RegisterMap reg_map(current, 1470 RegisterMap::UpdateMap::skip, 1471 RegisterMap::ProcessFrames::include, 1472 RegisterMap::WalkContinuation::skip); 1473 frame stub_frame = current->last_frame(); 1474 assert(stub_frame.is_runtime_frame(), "sanity check"); 1475 frame caller_frame = stub_frame.sender(®_map); 1476 1477 if (caller_frame.is_interpreted_frame() || 1478 caller_frame.is_entry_frame() || 1479 caller_frame.is_upcall_stub_frame()) { 1480 Method* callee = current->callee_target(); 1481 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1482 current->set_vm_result_metadata(callee); 1483 current->set_callee_target(nullptr); 1484 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1485 // Bypass class initialization checks in c2i when caller is in native. 1486 // JNI calls to static methods don't have class initialization checks. 1487 // Fast class initialization checks are present in c2i adapters and call into 1488 // SharedRuntime::handle_wrong_method() on the slow path. 1489 // 1490 // JVM upcalls may land here as well, but there's a proper check present in 1491 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1492 // so bypassing it in c2i adapter is benign. 1493 return callee->get_c2i_no_clinit_check_entry(); 1494 } else { 1495 return callee->get_c2i_entry(); 1496 } 1497 } 1498 1499 // Must be compiled to compiled path which is safe to stackwalk 1500 methodHandle callee_method; 1501 JRT_BLOCK 1502 // Force resolving of caller (if we called from compiled frame) 1503 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1504 current->set_vm_result_metadata(callee_method()); 1505 JRT_BLOCK_END 1506 // return compiled code entry point after potential safepoints 1507 return get_resolved_entry(current, callee_method); 1508 JRT_END 1509 1510 // Handle abstract method call 1511 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1512 // Verbose error message for AbstractMethodError. 1513 // Get the called method from the invoke bytecode. 1514 vframeStream vfst(current, true); 1515 assert(!vfst.at_end(), "Java frame must exist"); 1516 methodHandle caller(current, vfst.method()); 1517 Bytecode_invoke invoke(caller, vfst.bci()); 1518 DEBUG_ONLY( invoke.verify(); ) 1519 1520 // Find the compiled caller frame. 1521 RegisterMap reg_map(current, 1522 RegisterMap::UpdateMap::include, 1523 RegisterMap::ProcessFrames::include, 1524 RegisterMap::WalkContinuation::skip); 1525 frame stubFrame = current->last_frame(); 1526 assert(stubFrame.is_runtime_frame(), "must be"); 1527 frame callerFrame = stubFrame.sender(®_map); 1528 assert(callerFrame.is_compiled_frame(), "must be"); 1529 1530 // Install exception and return forward entry. 1531 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1532 JRT_BLOCK 1533 methodHandle callee(current, invoke.static_target(current)); 1534 if (!callee.is_null()) { 1535 oop recv = callerFrame.retrieve_receiver(®_map); 1536 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1537 res = StubRoutines::forward_exception_entry(); 1538 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1539 } 1540 JRT_BLOCK_END 1541 return res; 1542 JRT_END 1543 1544 // return verified_code_entry if interp_only_mode is not set for the current thread; 1545 // otherwise return c2i entry. 1546 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1547 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1548 // In interp_only_mode we need to go to the interpreted entry 1549 // The c2i won't patch in this mode -- see fixup_callers_callsite 1550 return callee_method->get_c2i_entry(); 1551 } 1552 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1553 return callee_method->verified_code_entry(); 1554 } 1555 1556 // resolve a static call and patch code 1557 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1558 methodHandle callee_method; 1559 bool enter_special = false; 1560 JRT_BLOCK 1561 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1562 current->set_vm_result_metadata(callee_method()); 1563 JRT_BLOCK_END 1564 // return compiled code entry point after potential safepoints 1565 return get_resolved_entry(current, callee_method); 1566 JRT_END 1567 1568 // resolve virtual call and update inline cache to monomorphic 1569 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1570 methodHandle callee_method; 1571 JRT_BLOCK 1572 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1573 current->set_vm_result_metadata(callee_method()); 1574 JRT_BLOCK_END 1575 // return compiled code entry point after potential safepoints 1576 return get_resolved_entry(current, callee_method); 1577 JRT_END 1578 1579 1580 // Resolve a virtual call that can be statically bound (e.g., always 1581 // monomorphic, so it has no inline cache). Patch code to resolved target. 1582 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1583 methodHandle callee_method; 1584 JRT_BLOCK 1585 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1586 current->set_vm_result_metadata(callee_method()); 1587 JRT_BLOCK_END 1588 // return compiled code entry point after potential safepoints 1589 return get_resolved_entry(current, callee_method); 1590 JRT_END 1591 1592 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1593 JavaThread* current = THREAD; 1594 ResourceMark rm(current); 1595 CallInfo call_info; 1596 Bytecodes::Code bc; 1597 1598 // receiver is null for static calls. An exception is thrown for null 1599 // receivers for non-static calls 1600 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1601 1602 methodHandle callee_method(current, call_info.selected_method()); 1603 1604 #ifndef PRODUCT 1605 Atomic::inc(&_ic_miss_ctr); 1606 1607 // Statistics & Tracing 1608 if (TraceCallFixup) { 1609 ResourceMark rm(current); 1610 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1611 callee_method->print_short_name(tty); 1612 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1613 } 1614 1615 if (ICMissHistogram) { 1616 MutexLocker m(VMStatistic_lock); 1617 RegisterMap reg_map(current, 1618 RegisterMap::UpdateMap::skip, 1619 RegisterMap::ProcessFrames::include, 1620 RegisterMap::WalkContinuation::skip); 1621 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1622 // produce statistics under the lock 1623 trace_ic_miss(f.pc()); 1624 } 1625 #endif 1626 1627 // install an event collector so that when a vtable stub is created the 1628 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1629 // event can't be posted when the stub is created as locks are held 1630 // - instead the event will be deferred until the event collector goes 1631 // out of scope. 1632 JvmtiDynamicCodeEventCollector event_collector; 1633 1634 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1635 RegisterMap reg_map(current, 1636 RegisterMap::UpdateMap::skip, 1637 RegisterMap::ProcessFrames::include, 1638 RegisterMap::WalkContinuation::skip); 1639 frame caller_frame = current->last_frame().sender(®_map); 1640 CodeBlob* cb = caller_frame.cb(); 1641 nmethod* caller_nm = cb->as_nmethod(); 1642 1643 CompiledICLocker ml(caller_nm); 1644 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1645 inline_cache->update(&call_info, receiver()->klass()); 1646 1647 return callee_method; 1648 } 1649 1650 // 1651 // Resets a call-site in compiled code so it will get resolved again. 1652 // This routines handles both virtual call sites, optimized virtual call 1653 // sites, and static call sites. Typically used to change a call sites 1654 // destination from compiled to interpreted. 1655 // 1656 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1657 JavaThread* current = THREAD; 1658 ResourceMark rm(current); 1659 RegisterMap reg_map(current, 1660 RegisterMap::UpdateMap::skip, 1661 RegisterMap::ProcessFrames::include, 1662 RegisterMap::WalkContinuation::skip); 1663 frame stub_frame = current->last_frame(); 1664 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1665 frame caller = stub_frame.sender(®_map); 1666 1667 // Do nothing if the frame isn't a live compiled frame. 1668 // nmethod could be deoptimized by the time we get here 1669 // so no update to the caller is needed. 1670 1671 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1672 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1673 1674 address pc = caller.pc(); 1675 1676 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1677 assert(caller_nm != nullptr, "did not find caller nmethod"); 1678 1679 // Default call_addr is the location of the "basic" call. 1680 // Determine the address of the call we a reresolving. With 1681 // Inline Caches we will always find a recognizable call. 1682 // With Inline Caches disabled we may or may not find a 1683 // recognizable call. We will always find a call for static 1684 // calls and for optimized virtual calls. For vanilla virtual 1685 // calls it depends on the state of the UseInlineCaches switch. 1686 // 1687 // With Inline Caches disabled we can get here for a virtual call 1688 // for two reasons: 1689 // 1 - calling an abstract method. The vtable for abstract methods 1690 // will run us thru handle_wrong_method and we will eventually 1691 // end up in the interpreter to throw the ame. 1692 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1693 // call and between the time we fetch the entry address and 1694 // we jump to it the target gets deoptimized. Similar to 1 1695 // we will wind up in the interprter (thru a c2i with c2). 1696 // 1697 CompiledICLocker ml(caller_nm); 1698 address call_addr = caller_nm->call_instruction_address(pc); 1699 1700 if (call_addr != nullptr) { 1701 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1702 // bytes back in the instruction stream so we must also check for reloc info. 1703 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1704 bool ret = iter.next(); // Get item 1705 if (ret) { 1706 switch (iter.type()) { 1707 case relocInfo::static_call_type: 1708 case relocInfo::opt_virtual_call_type: { 1709 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1710 cdc->set_to_clean(); 1711 break; 1712 } 1713 1714 case relocInfo::virtual_call_type: { 1715 // compiled, dispatched call (which used to call an interpreted method) 1716 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1717 inline_cache->set_to_clean(); 1718 break; 1719 } 1720 default: 1721 break; 1722 } 1723 } 1724 } 1725 } 1726 1727 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1728 1729 1730 #ifndef PRODUCT 1731 Atomic::inc(&_wrong_method_ctr); 1732 1733 if (TraceCallFixup) { 1734 ResourceMark rm(current); 1735 tty->print("handle_wrong_method reresolving call to"); 1736 callee_method->print_short_name(tty); 1737 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1738 } 1739 #endif 1740 1741 return callee_method; 1742 } 1743 1744 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1745 // The faulting unsafe accesses should be changed to throw the error 1746 // synchronously instead. Meanwhile the faulting instruction will be 1747 // skipped over (effectively turning it into a no-op) and an 1748 // asynchronous exception will be raised which the thread will 1749 // handle at a later point. If the instruction is a load it will 1750 // return garbage. 1751 1752 // Request an async exception. 1753 thread->set_pending_unsafe_access_error(); 1754 1755 // Return address of next instruction to execute. 1756 return next_pc; 1757 } 1758 1759 #ifdef ASSERT 1760 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1761 const BasicType* sig_bt, 1762 const VMRegPair* regs) { 1763 ResourceMark rm; 1764 const int total_args_passed = method->size_of_parameters(); 1765 const VMRegPair* regs_with_member_name = regs; 1766 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1767 1768 const int member_arg_pos = total_args_passed - 1; 1769 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1770 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1771 1772 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1773 1774 for (int i = 0; i < member_arg_pos; i++) { 1775 VMReg a = regs_with_member_name[i].first(); 1776 VMReg b = regs_without_member_name[i].first(); 1777 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1778 } 1779 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1780 } 1781 #endif 1782 1783 // --------------------------------------------------------------------------- 1784 // We are calling the interpreter via a c2i. Normally this would mean that 1785 // we were called by a compiled method. However we could have lost a race 1786 // where we went int -> i2c -> c2i and so the caller could in fact be 1787 // interpreted. If the caller is compiled we attempt to patch the caller 1788 // so he no longer calls into the interpreter. 1789 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1790 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1791 1792 // It's possible that deoptimization can occur at a call site which hasn't 1793 // been resolved yet, in which case this function will be called from 1794 // an nmethod that has been patched for deopt and we can ignore the 1795 // request for a fixup. 1796 // Also it is possible that we lost a race in that from_compiled_entry 1797 // is now back to the i2c in that case we don't need to patch and if 1798 // we did we'd leap into space because the callsite needs to use 1799 // "to interpreter" stub in order to load up the Method*. Don't 1800 // ask me how I know this... 1801 1802 // Result from nmethod::is_unloading is not stable across safepoints. 1803 NoSafepointVerifier nsv; 1804 1805 nmethod* callee = method->code(); 1806 if (callee == nullptr) { 1807 return; 1808 } 1809 1810 // write lock needed because we might patch call site by set_to_clean() 1811 // and is_unloading() can modify nmethod's state 1812 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1813 1814 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1815 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1816 return; 1817 } 1818 1819 // The check above makes sure this is an nmethod. 1820 nmethod* caller = cb->as_nmethod(); 1821 1822 // Get the return PC for the passed caller PC. 1823 address return_pc = caller_pc + frame::pc_return_offset; 1824 1825 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1826 return; 1827 } 1828 1829 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1830 CompiledICLocker ic_locker(caller); 1831 ResourceMark rm; 1832 1833 // If we got here through a static call or opt_virtual call, then we know where the 1834 // call address would be; let's peek at it 1835 address callsite_addr = (address)nativeCall_before(return_pc); 1836 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1837 if (!iter.next()) { 1838 // No reloc entry found; not a static or optimized virtual call 1839 return; 1840 } 1841 1842 relocInfo::relocType type = iter.reloc()->type(); 1843 if (type != relocInfo::static_call_type && 1844 type != relocInfo::opt_virtual_call_type) { 1845 return; 1846 } 1847 1848 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1849 callsite->set_to_clean(); 1850 JRT_END 1851 1852 1853 // same as JVM_Arraycopy, but called directly from compiled code 1854 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1855 oopDesc* dest, jint dest_pos, 1856 jint length, 1857 JavaThread* current)) { 1858 #ifndef PRODUCT 1859 _slow_array_copy_ctr++; 1860 #endif 1861 // Check if we have null pointers 1862 if (src == nullptr || dest == nullptr) { 1863 THROW(vmSymbols::java_lang_NullPointerException()); 1864 } 1865 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1866 // even though the copy_array API also performs dynamic checks to ensure 1867 // that src and dest are truly arrays (and are conformable). 1868 // The copy_array mechanism is awkward and could be removed, but 1869 // the compilers don't call this function except as a last resort, 1870 // so it probably doesn't matter. 1871 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1872 (arrayOopDesc*)dest, dest_pos, 1873 length, current); 1874 } 1875 JRT_END 1876 1877 // The caller of generate_class_cast_message() (or one of its callers) 1878 // must use a ResourceMark in order to correctly free the result. 1879 char* SharedRuntime::generate_class_cast_message( 1880 JavaThread* thread, Klass* caster_klass) { 1881 1882 // Get target class name from the checkcast instruction 1883 vframeStream vfst(thread, true); 1884 assert(!vfst.at_end(), "Java frame must exist"); 1885 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1886 constantPoolHandle cpool(thread, vfst.method()->constants()); 1887 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1888 Symbol* target_klass_name = nullptr; 1889 if (target_klass == nullptr) { 1890 // This klass should be resolved, but just in case, get the name in the klass slot. 1891 target_klass_name = cpool->klass_name_at(cc.index()); 1892 } 1893 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1894 } 1895 1896 1897 // The caller of generate_class_cast_message() (or one of its callers) 1898 // must use a ResourceMark in order to correctly free the result. 1899 char* SharedRuntime::generate_class_cast_message( 1900 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1901 const char* caster_name = caster_klass->external_name(); 1902 1903 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1904 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1905 target_klass->external_name(); 1906 1907 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1908 1909 const char* caster_klass_description = ""; 1910 const char* target_klass_description = ""; 1911 const char* klass_separator = ""; 1912 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1913 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1914 } else { 1915 caster_klass_description = caster_klass->class_in_module_of_loader(); 1916 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1917 klass_separator = (target_klass != nullptr) ? "; " : ""; 1918 } 1919 1920 // add 3 for parenthesis and preceding space 1921 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1922 1923 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1924 if (message == nullptr) { 1925 // Shouldn't happen, but don't cause even more problems if it does 1926 message = const_cast<char*>(caster_klass->external_name()); 1927 } else { 1928 jio_snprintf(message, 1929 msglen, 1930 "class %s cannot be cast to class %s (%s%s%s)", 1931 caster_name, 1932 target_name, 1933 caster_klass_description, 1934 klass_separator, 1935 target_klass_description 1936 ); 1937 } 1938 return message; 1939 } 1940 1941 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1942 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 1943 JRT_END 1944 1945 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1946 if (!SafepointSynchronize::is_synchronizing()) { 1947 // Only try quick_enter() if we're not trying to reach a safepoint 1948 // so that the calling thread reaches the safepoint more quickly. 1949 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 1950 return; 1951 } 1952 } 1953 // NO_ASYNC required because an async exception on the state transition destructor 1954 // would leave you with the lock held and it would never be released. 1955 // The normal monitorenter NullPointerException is thrown without acquiring a lock 1956 // and the model is that an exception implies the method failed. 1957 JRT_BLOCK_NO_ASYNC 1958 Handle h_obj(THREAD, obj); 1959 ObjectSynchronizer::enter(h_obj, lock, current); 1960 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1961 JRT_BLOCK_END 1962 } 1963 1964 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1965 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1966 SharedRuntime::monitor_enter_helper(obj, lock, current); 1967 JRT_END 1968 1969 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1970 assert(JavaThread::current() == current, "invariant"); 1971 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1972 ExceptionMark em(current); 1973 1974 // Check if C2_MacroAssembler::fast_unlock() or 1975 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 1976 // monitor before going slow path. Since there is no safepoint 1977 // polling when calling into the VM, we can be sure that the monitor 1978 // hasn't been deallocated. 1979 ObjectMonitor* m = current->unlocked_inflated_monitor(); 1980 if (m != nullptr) { 1981 assert(!m->has_owner(current), "must be"); 1982 current->clear_unlocked_inflated_monitor(); 1983 1984 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 1985 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 1986 // Some other thread acquired the lock (or the monitor was 1987 // deflated). Either way we are done. 1988 current->dec_held_monitor_count(); 1989 return; 1990 } 1991 } 1992 1993 // The object could become unlocked through a JNI call, which we have no other checks for. 1994 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 1995 if (obj->is_unlocked()) { 1996 if (CheckJNICalls) { 1997 fatal("Object has been unlocked by JNI"); 1998 } 1999 return; 2000 } 2001 ObjectSynchronizer::exit(obj, lock, current); 2002 } 2003 2004 // Handles the uncommon cases of monitor unlocking in compiled code 2005 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2006 assert(current == JavaThread::current(), "pre-condition"); 2007 SharedRuntime::monitor_exit_helper(obj, lock, current); 2008 JRT_END 2009 2010 // This is only called when CheckJNICalls is true, and only 2011 // for virtual thread termination. 2012 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2013 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2014 if (log_is_enabled(Debug, jni)) { 2015 JavaThread* current = JavaThread::current(); 2016 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2017 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2018 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2019 ") exiting with Objects still locked by JNI MonitorEnter.", 2020 vthread_id, carrier_id); 2021 } 2022 JRT_END 2023 2024 #ifndef PRODUCT 2025 2026 void SharedRuntime::print_statistics() { 2027 ttyLocker ttyl; 2028 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2029 2030 SharedRuntime::print_ic_miss_histogram(); 2031 2032 // Dump the JRT_ENTRY counters 2033 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2034 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2035 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2036 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2037 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2038 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2039 2040 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2041 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2042 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2043 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2044 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2045 2046 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2047 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2048 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2049 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2050 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2051 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2052 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2053 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2054 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2055 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2056 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2057 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2058 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2059 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2060 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2061 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2062 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2063 2064 AdapterHandlerLibrary::print_statistics(); 2065 2066 if (xtty != nullptr) xtty->tail("statistics"); 2067 } 2068 2069 inline double percent(int64_t x, int64_t y) { 2070 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2071 } 2072 2073 class MethodArityHistogram { 2074 public: 2075 enum { MAX_ARITY = 256 }; 2076 private: 2077 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2078 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2079 static uint64_t _total_compiled_calls; 2080 static uint64_t _max_compiled_calls_per_method; 2081 static int _max_arity; // max. arity seen 2082 static int _max_size; // max. arg size seen 2083 2084 static void add_method_to_histogram(nmethod* nm) { 2085 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2086 if (method != nullptr) { 2087 ArgumentCount args(method->signature()); 2088 int arity = args.size() + (method->is_static() ? 0 : 1); 2089 int argsize = method->size_of_parameters(); 2090 arity = MIN2(arity, MAX_ARITY-1); 2091 argsize = MIN2(argsize, MAX_ARITY-1); 2092 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2093 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2094 _total_compiled_calls += count; 2095 _arity_histogram[arity] += count; 2096 _size_histogram[argsize] += count; 2097 _max_arity = MAX2(_max_arity, arity); 2098 _max_size = MAX2(_max_size, argsize); 2099 } 2100 } 2101 2102 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2103 const int N = MIN2(9, n); 2104 double sum = 0; 2105 double weighted_sum = 0; 2106 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2107 if (sum >= 1) { // prevent divide by zero or divide overflow 2108 double rest = sum; 2109 double percent = sum / 100; 2110 for (int i = 0; i <= N; i++) { 2111 rest -= (double)histo[i]; 2112 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2113 } 2114 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2115 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2116 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2117 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2118 } else { 2119 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2120 } 2121 } 2122 2123 void print_histogram() { 2124 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2125 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2126 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2127 print_histogram_helper(_max_size, _size_histogram, "size"); 2128 tty->cr(); 2129 } 2130 2131 public: 2132 MethodArityHistogram() { 2133 // Take the Compile_lock to protect against changes in the CodeBlob structures 2134 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2135 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2136 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2137 _max_arity = _max_size = 0; 2138 _total_compiled_calls = 0; 2139 _max_compiled_calls_per_method = 0; 2140 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2141 CodeCache::nmethods_do(add_method_to_histogram); 2142 print_histogram(); 2143 } 2144 }; 2145 2146 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2147 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2148 uint64_t MethodArityHistogram::_total_compiled_calls; 2149 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2150 int MethodArityHistogram::_max_arity; 2151 int MethodArityHistogram::_max_size; 2152 2153 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2154 tty->print_cr("Calls from compiled code:"); 2155 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2156 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2157 int64_t mono_i = _nof_interface_calls; 2158 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2159 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2160 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2161 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2162 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2163 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2164 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2165 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2166 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2167 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2168 tty->cr(); 2169 tty->print_cr("Note 1: counter updates are not MT-safe."); 2170 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2171 tty->print_cr(" %% in nested categories are relative to their category"); 2172 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2173 tty->cr(); 2174 2175 MethodArityHistogram h; 2176 } 2177 #endif 2178 2179 #ifndef PRODUCT 2180 static int _lookups; // number of calls to lookup 2181 static int _equals; // number of buckets checked with matching hash 2182 static int _archived_hits; // number of successful lookups in archived table 2183 static int _runtime_hits; // number of successful lookups in runtime table 2184 #endif 2185 2186 // A simple wrapper class around the calling convention information 2187 // that allows sharing of adapters for the same calling convention. 2188 class AdapterFingerPrint : public MetaspaceObj { 2189 private: 2190 enum { 2191 _basic_type_bits = 4, 2192 _basic_type_mask = right_n_bits(_basic_type_bits), 2193 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2194 }; 2195 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2196 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2197 2198 int _length; 2199 2200 static int data_offset() { return sizeof(AdapterFingerPrint); } 2201 int* data_pointer() { 2202 return (int*)((address)this + data_offset()); 2203 } 2204 2205 // Private construtor. Use allocate() to get an instance. 2206 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) { 2207 int* data = data_pointer(); 2208 // Pack the BasicTypes with 8 per int 2209 assert(len == length(total_args_passed), "sanity"); 2210 _length = len; 2211 int sig_index = 0; 2212 for (int index = 0; index < _length; index++) { 2213 int value = 0; 2214 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2215 int bt = adapter_encoding(sig_bt[sig_index++]); 2216 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2217 value = (value << _basic_type_bits) | bt; 2218 } 2219 data[index] = value; 2220 } 2221 } 2222 2223 // Call deallocate instead 2224 ~AdapterFingerPrint() { 2225 ShouldNotCallThis(); 2226 } 2227 2228 static int length(int total_args) { 2229 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int; 2230 } 2231 2232 static int compute_size_in_words(int len) { 2233 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int))); 2234 } 2235 2236 // Remap BasicTypes that are handled equivalently by the adapters. 2237 // These are correct for the current system but someday it might be 2238 // necessary to make this mapping platform dependent. 2239 static int adapter_encoding(BasicType in) { 2240 switch (in) { 2241 case T_BOOLEAN: 2242 case T_BYTE: 2243 case T_SHORT: 2244 case T_CHAR: 2245 // There are all promoted to T_INT in the calling convention 2246 return T_INT; 2247 2248 case T_OBJECT: 2249 case T_ARRAY: 2250 // In other words, we assume that any register good enough for 2251 // an int or long is good enough for a managed pointer. 2252 #ifdef _LP64 2253 return T_LONG; 2254 #else 2255 return T_INT; 2256 #endif 2257 2258 case T_INT: 2259 case T_LONG: 2260 case T_FLOAT: 2261 case T_DOUBLE: 2262 case T_VOID: 2263 return in; 2264 2265 default: 2266 ShouldNotReachHere(); 2267 return T_CONFLICT; 2268 } 2269 } 2270 2271 void* operator new(size_t size, size_t fp_size) throw() { 2272 assert(fp_size >= size, "sanity check"); 2273 void* p = AllocateHeap(fp_size, mtCode); 2274 memset(p, 0, fp_size); 2275 return p; 2276 } 2277 2278 template<typename Function> 2279 void iterate_args(Function function) { 2280 for (int i = 0; i < length(); i++) { 2281 unsigned val = (unsigned)value(i); 2282 // args are packed so that first/lower arguments are in the highest 2283 // bits of each int value, so iterate from highest to the lowest 2284 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2285 unsigned v = (val >> j) & _basic_type_mask; 2286 if (v == 0) { 2287 continue; 2288 } 2289 function(v); 2290 } 2291 } 2292 } 2293 2294 public: 2295 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) { 2296 int len = length(total_args_passed); 2297 int size_in_bytes = BytesPerWord * compute_size_in_words(len); 2298 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len); 2299 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match"); 2300 return afp; 2301 } 2302 2303 static void deallocate(AdapterFingerPrint* fp) { 2304 FreeHeap(fp); 2305 } 2306 2307 int value(int index) { 2308 int* data = data_pointer(); 2309 return data[index]; 2310 } 2311 2312 int length() { 2313 return _length; 2314 } 2315 2316 unsigned int compute_hash() { 2317 int hash = 0; 2318 for (int i = 0; i < length(); i++) { 2319 int v = value(i); 2320 //Add arithmetic operation to the hash, like +3 to improve hashing 2321 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2322 } 2323 return (unsigned int)hash; 2324 } 2325 2326 const char* as_string() { 2327 stringStream st; 2328 st.print("0x"); 2329 for (int i = 0; i < length(); i++) { 2330 st.print("%x", value(i)); 2331 } 2332 return st.as_string(); 2333 } 2334 2335 const char* as_basic_args_string() { 2336 stringStream st; 2337 bool long_prev = false; 2338 iterate_args([&] (int arg) { 2339 if (long_prev) { 2340 long_prev = false; 2341 if (arg == T_VOID) { 2342 st.print("J"); 2343 } else { 2344 st.print("L"); 2345 } 2346 } 2347 switch (arg) { 2348 case T_INT: st.print("I"); break; 2349 case T_LONG: long_prev = true; break; 2350 case T_FLOAT: st.print("F"); break; 2351 case T_DOUBLE: st.print("D"); break; 2352 case T_VOID: break; 2353 default: ShouldNotReachHere(); 2354 } 2355 }); 2356 if (long_prev) { 2357 st.print("L"); 2358 } 2359 return st.as_string(); 2360 } 2361 2362 BasicType* as_basic_type(int& nargs) { 2363 nargs = 0; 2364 GrowableArray<BasicType> btarray; 2365 bool long_prev = false; 2366 2367 iterate_args([&] (int arg) { 2368 if (long_prev) { 2369 long_prev = false; 2370 if (arg == T_VOID) { 2371 btarray.append(T_LONG); 2372 } else { 2373 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter 2374 } 2375 } 2376 switch (arg) { 2377 case T_INT: // fallthrough 2378 case T_FLOAT: // fallthrough 2379 case T_DOUBLE: 2380 case T_VOID: 2381 btarray.append((BasicType)arg); 2382 break; 2383 case T_LONG: 2384 long_prev = true; 2385 break; 2386 default: ShouldNotReachHere(); 2387 } 2388 }); 2389 2390 if (long_prev) { 2391 btarray.append(T_OBJECT); 2392 } 2393 2394 nargs = btarray.length(); 2395 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs); 2396 int index = 0; 2397 GrowableArrayIterator<BasicType> iter = btarray.begin(); 2398 while (iter != btarray.end()) { 2399 sig_bt[index++] = *iter; 2400 ++iter; 2401 } 2402 assert(index == btarray.length(), "sanity check"); 2403 #ifdef ASSERT 2404 { 2405 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt); 2406 assert(this->equals(compare_fp), "sanity check"); 2407 AdapterFingerPrint::deallocate(compare_fp); 2408 } 2409 #endif 2410 return sig_bt; 2411 } 2412 2413 bool equals(AdapterFingerPrint* other) { 2414 if (other->_length != _length) { 2415 return false; 2416 } else { 2417 for (int i = 0; i < _length; i++) { 2418 if (value(i) != other->value(i)) { 2419 return false; 2420 } 2421 } 2422 } 2423 return true; 2424 } 2425 2426 // methods required by virtue of being a MetaspaceObj 2427 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2428 int size() const { return compute_size_in_words(_length); } 2429 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2430 2431 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2432 NOT_PRODUCT(_equals++); 2433 return fp1->equals(fp2); 2434 } 2435 2436 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2437 return fp->compute_hash(); 2438 } 2439 }; 2440 2441 #if INCLUDE_CDS 2442 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2443 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2444 } 2445 2446 class ArchivedAdapterTable : public OffsetCompactHashtable< 2447 AdapterFingerPrint*, 2448 AdapterHandlerEntry*, 2449 adapter_fp_equals_compact_hashtable_entry> {}; 2450 #endif // INCLUDE_CDS 2451 2452 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2453 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2454 AnyObj::C_HEAP, mtCode, 2455 AdapterFingerPrint::compute_hash, 2456 AdapterFingerPrint::equals>; 2457 static AdapterHandlerTable* _adapter_handler_table; 2458 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2459 2460 // Find a entry with the same fingerprint if it exists 2461 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) { 2462 NOT_PRODUCT(_lookups++); 2463 assert_lock_strong(AdapterHandlerLibrary_lock); 2464 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2465 AdapterHandlerEntry* entry = nullptr; 2466 #if INCLUDE_CDS 2467 // if we are building the archive then the archived adapter table is 2468 // not valid and we need to use the ones added to the runtime table 2469 if (AOTCodeCache::is_using_adapter()) { 2470 // Search archived table first. It is read-only table so can be searched without lock 2471 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2472 #ifndef PRODUCT 2473 if (entry != nullptr) { 2474 _archived_hits++; 2475 } 2476 #endif 2477 } 2478 #endif // INCLUDE_CDS 2479 if (entry == nullptr) { 2480 assert_lock_strong(AdapterHandlerLibrary_lock); 2481 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2482 if (entry_p != nullptr) { 2483 entry = *entry_p; 2484 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2485 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2486 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2487 #ifndef PRODUCT 2488 _runtime_hits++; 2489 #endif 2490 } 2491 } 2492 AdapterFingerPrint::deallocate(fp); 2493 return entry; 2494 } 2495 2496 #ifndef PRODUCT 2497 static void print_table_statistics() { 2498 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2499 return sizeof(*key) + sizeof(*a); 2500 }; 2501 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2502 ts.print(tty, "AdapterHandlerTable"); 2503 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2504 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2505 int total_hits = _archived_hits + _runtime_hits; 2506 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)", 2507 _lookups, _equals, total_hits, _archived_hits, _runtime_hits); 2508 } 2509 #endif 2510 2511 // --------------------------------------------------------------------------- 2512 // Implementation of AdapterHandlerLibrary 2513 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2514 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2515 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2516 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2517 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2518 #if INCLUDE_CDS 2519 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2520 #endif // INCLUDE_CDS 2521 static const int AdapterHandlerLibrary_size = 16*K; 2522 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2523 2524 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2525 assert(_buffer != nullptr, "should be initialized"); 2526 return _buffer; 2527 } 2528 2529 static void post_adapter_creation(const AdapterBlob* new_adapter, 2530 const AdapterHandlerEntry* entry) { 2531 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2532 char blob_id[256]; 2533 jio_snprintf(blob_id, 2534 sizeof(blob_id), 2535 "%s(%s)", 2536 new_adapter->name(), 2537 entry->fingerprint()->as_string()); 2538 if (Forte::is_enabled()) { 2539 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2540 } 2541 2542 if (JvmtiExport::should_post_dynamic_code_generated()) { 2543 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2544 } 2545 } 2546 } 2547 2548 void AdapterHandlerLibrary::initialize() { 2549 { 2550 ResourceMark rm; 2551 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2552 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2553 } 2554 2555 #if INCLUDE_CDS 2556 // Link adapters in AOT Cache to their code in AOT Code Cache 2557 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) { 2558 link_aot_adapters(); 2559 lookup_simple_adapters(); 2560 return; 2561 } 2562 #endif // INCLUDE_CDS 2563 2564 ResourceMark rm; 2565 AdapterBlob* no_arg_blob = nullptr; 2566 AdapterBlob* int_arg_blob = nullptr; 2567 AdapterBlob* obj_arg_blob = nullptr; 2568 AdapterBlob* obj_int_arg_blob = nullptr; 2569 AdapterBlob* obj_obj_arg_blob = nullptr; 2570 { 2571 MutexLocker mu(AdapterHandlerLibrary_lock); 2572 2573 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr); 2574 2575 BasicType obj_args[] = { T_OBJECT }; 2576 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args); 2577 2578 BasicType int_args[] = { T_INT }; 2579 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args); 2580 2581 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2582 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args); 2583 2584 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2585 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args); 2586 2587 // we should always get an entry back but we don't have any 2588 // associated blob on Zero 2589 assert(_no_arg_handler != nullptr && 2590 _obj_arg_handler != nullptr && 2591 _int_arg_handler != nullptr && 2592 _obj_int_arg_handler != nullptr && 2593 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created"); 2594 } 2595 2596 // Outside of the lock 2597 #ifndef ZERO 2598 // no blobs to register when we are on Zero 2599 post_adapter_creation(no_arg_blob, _no_arg_handler); 2600 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2601 post_adapter_creation(int_arg_blob, _int_arg_handler); 2602 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2603 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2604 #endif // ZERO 2605 } 2606 2607 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2608 return AdapterHandlerEntry::allocate(fingerprint); 2609 } 2610 2611 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2612 int total_args_passed = method->size_of_parameters(); // All args on stack 2613 if (total_args_passed == 0) { 2614 return _no_arg_handler; 2615 } else if (total_args_passed == 1) { 2616 if (!method->is_static()) { 2617 return _obj_arg_handler; 2618 } 2619 switch (method->signature()->char_at(1)) { 2620 case JVM_SIGNATURE_CLASS: 2621 case JVM_SIGNATURE_ARRAY: 2622 return _obj_arg_handler; 2623 case JVM_SIGNATURE_INT: 2624 case JVM_SIGNATURE_BOOLEAN: 2625 case JVM_SIGNATURE_CHAR: 2626 case JVM_SIGNATURE_BYTE: 2627 case JVM_SIGNATURE_SHORT: 2628 return _int_arg_handler; 2629 } 2630 } else if (total_args_passed == 2 && 2631 !method->is_static()) { 2632 switch (method->signature()->char_at(1)) { 2633 case JVM_SIGNATURE_CLASS: 2634 case JVM_SIGNATURE_ARRAY: 2635 return _obj_obj_arg_handler; 2636 case JVM_SIGNATURE_INT: 2637 case JVM_SIGNATURE_BOOLEAN: 2638 case JVM_SIGNATURE_CHAR: 2639 case JVM_SIGNATURE_BYTE: 2640 case JVM_SIGNATURE_SHORT: 2641 return _obj_int_arg_handler; 2642 } 2643 } 2644 return nullptr; 2645 } 2646 2647 class AdapterSignatureIterator : public SignatureIterator { 2648 private: 2649 BasicType stack_sig_bt[16]; 2650 BasicType* sig_bt; 2651 int index; 2652 2653 public: 2654 AdapterSignatureIterator(Symbol* signature, 2655 fingerprint_t fingerprint, 2656 bool is_static, 2657 int total_args_passed) : 2658 SignatureIterator(signature, fingerprint), 2659 index(0) 2660 { 2661 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2662 if (!is_static) { // Pass in receiver first 2663 sig_bt[index++] = T_OBJECT; 2664 } 2665 do_parameters_on(this); 2666 } 2667 2668 BasicType* basic_types() { 2669 return sig_bt; 2670 } 2671 2672 #ifdef ASSERT 2673 int slots() { 2674 return index; 2675 } 2676 #endif 2677 2678 private: 2679 2680 friend class SignatureIterator; // so do_parameters_on can call do_type 2681 void do_type(BasicType type) { 2682 sig_bt[index++] = type; 2683 if (type == T_LONG || type == T_DOUBLE) { 2684 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2685 } 2686 } 2687 }; 2688 2689 2690 const char* AdapterHandlerEntry::_entry_names[] = { 2691 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 2692 }; 2693 2694 #ifdef ASSERT 2695 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) { 2696 // we can only check for the same code if there is any 2697 #ifndef ZERO 2698 AdapterBlob* comparison_blob = nullptr; 2699 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, true); 2700 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2701 assert(comparison_entry->compare_code(cached_entry), "code must match"); 2702 // Release the one just created 2703 AdapterHandlerEntry::deallocate(comparison_entry); 2704 # endif // ZERO 2705 } 2706 #endif /* ASSERT*/ 2707 2708 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2709 assert(!method->is_abstract(), "abstract methods do not have adapters"); 2710 // Use customized signature handler. Need to lock around updates to 2711 // the _adapter_handler_table (it is not safe for concurrent readers 2712 // and a single writer: this could be fixed if it becomes a 2713 // problem). 2714 2715 // Fast-path for trivial adapters 2716 AdapterHandlerEntry* entry = get_simple_adapter(method); 2717 if (entry != nullptr) { 2718 return entry; 2719 } 2720 2721 ResourceMark rm; 2722 AdapterBlob* adapter_blob = nullptr; 2723 2724 // Fill in the signature array, for the calling-convention call. 2725 int total_args_passed = method->size_of_parameters(); // All args on stack 2726 2727 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2728 method->is_static(), total_args_passed); 2729 assert(si.slots() == total_args_passed, ""); 2730 BasicType* sig_bt = si.basic_types(); 2731 { 2732 MutexLocker mu(AdapterHandlerLibrary_lock); 2733 2734 // Lookup method signature's fingerprint 2735 entry = lookup(total_args_passed, sig_bt); 2736 2737 if (entry != nullptr) { 2738 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 2739 #ifdef ASSERT 2740 if (!entry->in_aot_cache() && VerifyAdapterSharing) { 2741 verify_adapter_sharing(total_args_passed, sig_bt, entry); 2742 } 2743 #endif 2744 } else { 2745 entry = create_adapter(adapter_blob, total_args_passed, sig_bt); 2746 } 2747 } 2748 2749 // Outside of the lock 2750 if (adapter_blob != nullptr) { 2751 post_adapter_creation(adapter_blob, entry); 2752 } 2753 return entry; 2754 } 2755 2756 AdapterBlob* AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 2757 ResourceMark rm; 2758 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2759 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2760 int offsets[AdapterBlob::ENTRY_COUNT]; 2761 2762 AdapterBlob* adapter_blob = nullptr; 2763 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name); 2764 if (blob != nullptr) { 2765 adapter_blob = blob->as_adapter_blob(); 2766 adapter_blob->get_offsets(offsets); 2767 address i2c_entry = adapter_blob->content_begin(); 2768 assert(offsets[0] == 0, "sanity check"); 2769 handler->set_entry_points( 2770 i2c_entry, 2771 (offsets[1] != -1) ? (i2c_entry + offsets[1]) : nullptr, 2772 (offsets[2] != -1) ? (i2c_entry + offsets[2]) : nullptr, 2773 (offsets[3] != -1) ? (i2c_entry + offsets[3]) : nullptr 2774 ); 2775 } 2776 return adapter_blob; 2777 } 2778 2779 #ifndef PRODUCT 2780 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) { 2781 ttyLocker ttyl; 2782 ResourceMark rm; 2783 int insts_size; 2784 // on Zero the blob may be null 2785 handler->print_adapter_on(tty); 2786 if (adapter_blob == nullptr) { 2787 return; 2788 } 2789 insts_size = adapter_blob->code_size(); 2790 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 2791 handler->fingerprint()->as_basic_args_string(), 2792 handler->fingerprint()->as_string(), insts_size); 2793 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 2794 if (Verbose || PrintStubCode) { 2795 address first_pc = handler->base_address(); 2796 if (first_pc != nullptr) { 2797 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 2798 st->cr(); 2799 } 2800 } 2801 } 2802 #endif // PRODUCT 2803 2804 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob, 2805 AdapterHandlerEntry* handler, 2806 int total_args_passed, 2807 BasicType* sig_bt, 2808 bool is_transient) { 2809 if (log_is_enabled(Info, perf, class, link)) { 2810 ClassLoader::perf_method_adapters_count()->inc(); 2811 } 2812 2813 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2814 CodeBuffer buffer(buf); 2815 short buffer_locs[20]; 2816 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2817 sizeof(buffer_locs)/sizeof(relocInfo)); 2818 MacroAssembler masm(&buffer); 2819 VMRegPair stack_regs[16]; 2820 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2821 2822 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2823 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2824 SharedRuntime::generate_i2c2i_adapters(&masm, 2825 total_args_passed, 2826 comp_args_on_stack, 2827 sig_bt, 2828 regs, 2829 handler); 2830 #ifdef ZERO 2831 // On zero there is no code to save and no need to create a blob and 2832 // or relocate the handler. 2833 adapter_blob = nullptr; 2834 #else 2835 #ifdef ASSERT 2836 if (VerifyAdapterSharing) { 2837 handler->save_code(buf->code_begin(), buffer.insts_size()); 2838 if (is_transient) { 2839 return true; 2840 } 2841 } 2842 #endif 2843 2844 int entry_offset[AdapterBlob::ENTRY_COUNT]; 2845 assert(AdapterBlob::ENTRY_COUNT == 4, "sanity"); 2846 address i2c_entry = handler->get_i2c_entry(); 2847 entry_offset[0] = 0; // i2c_entry offset 2848 entry_offset[1] = (handler->get_c2i_entry() != nullptr) ? 2849 (handler->get_c2i_entry() - i2c_entry) : -1; 2850 entry_offset[2] = (handler->get_c2i_unverified_entry() != nullptr) ? 2851 (handler->get_c2i_unverified_entry() - i2c_entry) : -1; 2852 entry_offset[3] = (handler->get_c2i_no_clinit_check_entry() != nullptr) ? 2853 (handler->get_c2i_no_clinit_check_entry() - i2c_entry) : -1; 2854 2855 adapter_blob = AdapterBlob::create(&buffer, entry_offset); 2856 if (adapter_blob == nullptr) { 2857 // CodeCache is full, disable compilation 2858 // Ought to log this but compile log is only per compile thread 2859 // and we're some non descript Java thread. 2860 return false; 2861 } 2862 if (!is_transient && AOTCodeCache::is_dumping_adapter()) { 2863 // try to save generated code 2864 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2865 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2866 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name); 2867 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled"); 2868 } 2869 handler->relocate(adapter_blob->content_begin()); 2870 #endif // ZERO 2871 2872 #ifndef PRODUCT 2873 // debugging support 2874 if (PrintAdapterHandlers || PrintStubCode) { 2875 print_adapter_handler_info(tty, handler, adapter_blob); 2876 } 2877 #endif 2878 2879 return true; 2880 } 2881 2882 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob, 2883 int total_args_passed, 2884 BasicType* sig_bt, 2885 bool is_transient) { 2886 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2887 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 2888 if (!generate_adapter_code(adapter_blob, handler, total_args_passed, sig_bt, is_transient)) { 2889 AdapterHandlerEntry::deallocate(handler); 2890 return nullptr; 2891 } 2892 if (!is_transient) { 2893 assert_lock_strong(AdapterHandlerLibrary_lock); 2894 _adapter_handler_table->put(fp, handler); 2895 } 2896 return handler; 2897 } 2898 2899 #if INCLUDE_CDS 2900 void AdapterHandlerEntry::remove_unshareable_info() { 2901 #ifdef ASSERT 2902 _saved_code = nullptr; 2903 _saved_code_length = 0; 2904 #endif // ASSERT 2905 set_entry_points(nullptr, nullptr, nullptr, nullptr, false); 2906 } 2907 2908 class CopyAdapterTableToArchive : StackObj { 2909 private: 2910 CompactHashtableWriter* _writer; 2911 ArchiveBuilder* _builder; 2912 public: 2913 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 2914 _builder(ArchiveBuilder::current()) 2915 {} 2916 2917 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 2918 LogStreamHandle(Trace, aot) lsh; 2919 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 2920 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 2921 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 2922 assert(buffered_fp != nullptr,"sanity check"); 2923 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 2924 assert(buffered_entry != nullptr,"sanity check"); 2925 2926 uint hash = fp->compute_hash(); 2927 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 2928 _writer->add(hash, delta); 2929 if (lsh.is_enabled()) { 2930 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 2931 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 2932 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 2933 } 2934 } else { 2935 if (lsh.is_enabled()) { 2936 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 2937 } 2938 } 2939 return true; 2940 } 2941 }; 2942 2943 void AdapterHandlerLibrary::dump_aot_adapter_table() { 2944 CompactHashtableStats stats; 2945 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 2946 CopyAdapterTableToArchive copy(&writer); 2947 _adapter_handler_table->iterate(©); 2948 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 2949 } 2950 2951 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 2952 _aot_adapter_handler_table.serialize_header(soc); 2953 } 2954 2955 AdapterBlob* AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 2956 #ifdef ASSERT 2957 if (TestAOTAdapterLinkFailure) { 2958 return nullptr; 2959 } 2960 #endif 2961 AdapterBlob* blob = lookup_aot_cache(handler); 2962 #ifndef PRODUCT 2963 // debugging support 2964 if ((blob != nullptr) && (PrintAdapterHandlers || PrintStubCode)) { 2965 print_adapter_handler_info(tty, handler, blob); 2966 } 2967 #endif 2968 return blob; 2969 } 2970 2971 // This method is used during production run to link archived adapters (stored in AOT Cache) 2972 // to their code in AOT Code Cache 2973 void AdapterHandlerEntry::link() { 2974 AdapterBlob* adapter_blob = nullptr; 2975 ResourceMark rm; 2976 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 2977 bool generate_code = false; 2978 // Generate code only if AOTCodeCache is not available, or 2979 // caching adapters is disabled, or we fail to link 2980 // the AdapterHandlerEntry to its code in the AOTCodeCache 2981 if (AOTCodeCache::is_using_adapter()) { 2982 adapter_blob = AdapterHandlerLibrary::link_aot_adapter_handler(this); 2983 if (adapter_blob == nullptr) { 2984 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 2985 generate_code = true; 2986 } 2987 } else { 2988 generate_code = true; 2989 } 2990 if (generate_code) { 2991 int nargs; 2992 BasicType* bt = _fingerprint->as_basic_type(nargs); 2993 if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, nargs, bt, /* is_transient */ false)) { 2994 // Don't throw exceptions during VM initialization because java.lang.* classes 2995 // might not have been initialized, causing problems when constructing the 2996 // Java exception object. 2997 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 2998 } 2999 } 3000 // Outside of the lock 3001 if (adapter_blob != nullptr) { 3002 post_adapter_creation(adapter_blob, this); 3003 } 3004 assert(_linked, "AdapterHandlerEntry must now be linked"); 3005 } 3006 3007 void AdapterHandlerLibrary::link_aot_adapters() { 3008 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available"); 3009 _aot_adapter_handler_table.iterate([](AdapterHandlerEntry* entry) { 3010 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 3011 entry->link(); 3012 }); 3013 } 3014 3015 // This method is called during production run to lookup simple adapters 3016 // in the archived adapter handler table 3017 void AdapterHandlerLibrary::lookup_simple_adapters() { 3018 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 3019 3020 MutexLocker mu(AdapterHandlerLibrary_lock); 3021 _no_arg_handler = lookup(0, nullptr); 3022 3023 BasicType obj_args[] = { T_OBJECT }; 3024 _obj_arg_handler = lookup(1, obj_args); 3025 3026 BasicType int_args[] = { T_INT }; 3027 _int_arg_handler = lookup(1, int_args); 3028 3029 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 3030 _obj_int_arg_handler = lookup(2, obj_int_args); 3031 3032 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 3033 _obj_obj_arg_handler = lookup(2, obj_obj_args); 3034 3035 assert(_no_arg_handler != nullptr && 3036 _obj_arg_handler != nullptr && 3037 _int_arg_handler != nullptr && 3038 _obj_int_arg_handler != nullptr && 3039 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3040 assert(_no_arg_handler->is_linked() && 3041 _obj_arg_handler->is_linked() && 3042 _int_arg_handler->is_linked() && 3043 _obj_int_arg_handler->is_linked() && 3044 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3045 } 3046 #endif // INCLUDE_CDS 3047 3048 address AdapterHandlerEntry::base_address() { 3049 address base = _i2c_entry; 3050 if (base == nullptr) base = _c2i_entry; 3051 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3052 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3053 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3054 return base; 3055 } 3056 3057 void AdapterHandlerEntry::relocate(address new_base) { 3058 address old_base = base_address(); 3059 assert(old_base != nullptr, ""); 3060 ptrdiff_t delta = new_base - old_base; 3061 if (_i2c_entry != nullptr) 3062 _i2c_entry += delta; 3063 if (_c2i_entry != nullptr) 3064 _c2i_entry += delta; 3065 if (_c2i_unverified_entry != nullptr) 3066 _c2i_unverified_entry += delta; 3067 if (_c2i_no_clinit_check_entry != nullptr) 3068 _c2i_no_clinit_check_entry += delta; 3069 assert(base_address() == new_base, ""); 3070 } 3071 3072 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3073 LogStreamHandle(Trace, aot) lsh; 3074 if (lsh.is_enabled()) { 3075 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3076 lsh.cr(); 3077 } 3078 it->push(&_fingerprint); 3079 } 3080 3081 AdapterHandlerEntry::~AdapterHandlerEntry() { 3082 if (_fingerprint != nullptr) { 3083 AdapterFingerPrint::deallocate(_fingerprint); 3084 _fingerprint = nullptr; 3085 } 3086 #ifdef ASSERT 3087 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3088 #endif 3089 FreeHeap(this); 3090 } 3091 3092 3093 #ifdef ASSERT 3094 // Capture the code before relocation so that it can be compared 3095 // against other versions. If the code is captured after relocation 3096 // then relative instructions won't be equivalent. 3097 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3098 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3099 _saved_code_length = length; 3100 memcpy(_saved_code, buffer, length); 3101 } 3102 3103 3104 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3105 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3106 3107 if (other->_saved_code_length != _saved_code_length) { 3108 return false; 3109 } 3110 3111 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3112 } 3113 #endif 3114 3115 3116 /** 3117 * Create a native wrapper for this native method. The wrapper converts the 3118 * Java-compiled calling convention to the native convention, handles 3119 * arguments, and transitions to native. On return from the native we transition 3120 * back to java blocking if a safepoint is in progress. 3121 */ 3122 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3123 ResourceMark rm; 3124 nmethod* nm = nullptr; 3125 3126 // Check if memory should be freed before allocation 3127 CodeCache::gc_on_allocation(); 3128 3129 assert(method->is_native(), "must be native"); 3130 assert(method->is_special_native_intrinsic() || 3131 method->has_native_function(), "must have something valid to call!"); 3132 3133 { 3134 // Perform the work while holding the lock, but perform any printing outside the lock 3135 MutexLocker mu(AdapterHandlerLibrary_lock); 3136 // See if somebody beat us to it 3137 if (method->code() != nullptr) { 3138 return; 3139 } 3140 3141 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3142 assert(compile_id > 0, "Must generate native wrapper"); 3143 3144 3145 ResourceMark rm; 3146 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3147 if (buf != nullptr) { 3148 CodeBuffer buffer(buf); 3149 3150 if (method->is_continuation_enter_intrinsic()) { 3151 buffer.initialize_stubs_size(192); 3152 } 3153 3154 struct { double data[20]; } locs_buf; 3155 struct { double data[20]; } stubs_locs_buf; 3156 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3157 #if defined(AARCH64) || defined(PPC64) 3158 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3159 // in the constant pool to ensure ordering between the barrier and oops 3160 // accesses. For native_wrappers we need a constant. 3161 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3162 // static java call that is resolved in the runtime. 3163 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3164 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3165 } 3166 #endif 3167 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3168 MacroAssembler _masm(&buffer); 3169 3170 // Fill in the signature array, for the calling-convention call. 3171 const int total_args_passed = method->size_of_parameters(); 3172 3173 VMRegPair stack_regs[16]; 3174 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3175 3176 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3177 method->is_static(), total_args_passed); 3178 BasicType* sig_bt = si.basic_types(); 3179 assert(si.slots() == total_args_passed, ""); 3180 BasicType ret_type = si.return_type(); 3181 3182 // Now get the compiled-Java arguments layout. 3183 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3184 3185 // Generate the compiled-to-native wrapper code 3186 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3187 3188 if (nm != nullptr) { 3189 { 3190 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3191 if (nm->make_in_use()) { 3192 method->set_code(method, nm); 3193 } 3194 } 3195 3196 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3197 if (directive->PrintAssemblyOption) { 3198 nm->print_code(); 3199 } 3200 DirectivesStack::release(directive); 3201 } 3202 } 3203 } // Unlock AdapterHandlerLibrary_lock 3204 3205 3206 // Install the generated code. 3207 if (nm != nullptr) { 3208 const char *msg = method->is_static() ? "(static)" : ""; 3209 CompileTask::print_ul(nm, msg); 3210 if (PrintCompilation) { 3211 ttyLocker ttyl; 3212 CompileTask::print(tty, nm, msg); 3213 } 3214 nm->post_compiled_method_load_event(); 3215 } 3216 } 3217 3218 // ------------------------------------------------------------------------- 3219 // Java-Java calling convention 3220 // (what you use when Java calls Java) 3221 3222 //------------------------------name_for_receiver---------------------------------- 3223 // For a given signature, return the VMReg for parameter 0. 3224 VMReg SharedRuntime::name_for_receiver() { 3225 VMRegPair regs; 3226 BasicType sig_bt = T_OBJECT; 3227 (void) java_calling_convention(&sig_bt, ®s, 1); 3228 // Return argument 0 register. In the LP64 build pointers 3229 // take 2 registers, but the VM wants only the 'main' name. 3230 return regs.first(); 3231 } 3232 3233 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3234 // This method is returning a data structure allocating as a 3235 // ResourceObject, so do not put any ResourceMarks in here. 3236 3237 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3238 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3239 int cnt = 0; 3240 if (has_receiver) { 3241 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3242 } 3243 3244 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3245 BasicType type = ss.type(); 3246 sig_bt[cnt++] = type; 3247 if (is_double_word_type(type)) 3248 sig_bt[cnt++] = T_VOID; 3249 } 3250 3251 if (has_appendix) { 3252 sig_bt[cnt++] = T_OBJECT; 3253 } 3254 3255 assert(cnt < 256, "grow table size"); 3256 3257 int comp_args_on_stack; 3258 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3259 3260 // the calling convention doesn't count out_preserve_stack_slots so 3261 // we must add that in to get "true" stack offsets. 3262 3263 if (comp_args_on_stack) { 3264 for (int i = 0; i < cnt; i++) { 3265 VMReg reg1 = regs[i].first(); 3266 if (reg1->is_stack()) { 3267 // Yuck 3268 reg1 = reg1->bias(out_preserve_stack_slots()); 3269 } 3270 VMReg reg2 = regs[i].second(); 3271 if (reg2->is_stack()) { 3272 // Yuck 3273 reg2 = reg2->bias(out_preserve_stack_slots()); 3274 } 3275 regs[i].set_pair(reg2, reg1); 3276 } 3277 } 3278 3279 // results 3280 *arg_size = cnt; 3281 return regs; 3282 } 3283 3284 // OSR Migration Code 3285 // 3286 // This code is used convert interpreter frames into compiled frames. It is 3287 // called from very start of a compiled OSR nmethod. A temp array is 3288 // allocated to hold the interesting bits of the interpreter frame. All 3289 // active locks are inflated to allow them to move. The displaced headers and 3290 // active interpreter locals are copied into the temp buffer. Then we return 3291 // back to the compiled code. The compiled code then pops the current 3292 // interpreter frame off the stack and pushes a new compiled frame. Then it 3293 // copies the interpreter locals and displaced headers where it wants. 3294 // Finally it calls back to free the temp buffer. 3295 // 3296 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3297 3298 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3299 assert(current == JavaThread::current(), "pre-condition"); 3300 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 3301 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3302 // frame. The stack watermark code below ensures that the interpreted frame is processed 3303 // before it gets unwound. This is helpful as the size of the compiled frame could be 3304 // larger than the interpreted frame, which could result in the new frame not being 3305 // processed correctly. 3306 StackWatermarkSet::before_unwind(current); 3307 3308 // 3309 // This code is dependent on the memory layout of the interpreter local 3310 // array and the monitors. On all of our platforms the layout is identical 3311 // so this code is shared. If some platform lays the their arrays out 3312 // differently then this code could move to platform specific code or 3313 // the code here could be modified to copy items one at a time using 3314 // frame accessor methods and be platform independent. 3315 3316 frame fr = current->last_frame(); 3317 assert(fr.is_interpreted_frame(), ""); 3318 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3319 3320 // Figure out how many monitors are active. 3321 int active_monitor_count = 0; 3322 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3323 kptr < fr.interpreter_frame_monitor_begin(); 3324 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3325 if (kptr->obj() != nullptr) active_monitor_count++; 3326 } 3327 3328 // QQQ we could place number of active monitors in the array so that compiled code 3329 // could double check it. 3330 3331 Method* moop = fr.interpreter_frame_method(); 3332 int max_locals = moop->max_locals(); 3333 // Allocate temp buffer, 1 word per local & 2 per active monitor 3334 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3335 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3336 3337 // Copy the locals. Order is preserved so that loading of longs works. 3338 // Since there's no GC I can copy the oops blindly. 3339 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3340 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3341 (HeapWord*)&buf[0], 3342 max_locals); 3343 3344 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3345 int i = max_locals; 3346 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3347 kptr2 < fr.interpreter_frame_monitor_begin(); 3348 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3349 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3350 BasicLock *lock = kptr2->lock(); 3351 if (LockingMode == LM_LEGACY) { 3352 // Inflate so the object's header no longer refers to the BasicLock. 3353 if (lock->displaced_header().is_unlocked()) { 3354 // The object is locked and the resulting ObjectMonitor* will also be 3355 // locked so it can't be async deflated until ownership is dropped. 3356 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3357 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3358 } 3359 // Now the displaced header is free to move because the 3360 // object's header no longer refers to it. 3361 buf[i] = (intptr_t)lock->displaced_header().value(); 3362 } else if (UseObjectMonitorTable) { 3363 buf[i] = (intptr_t)lock->object_monitor_cache(); 3364 } 3365 #ifdef ASSERT 3366 else { 3367 buf[i] = badDispHeaderOSR; 3368 } 3369 #endif 3370 i++; 3371 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3372 } 3373 } 3374 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3375 3376 RegisterMap map(current, 3377 RegisterMap::UpdateMap::skip, 3378 RegisterMap::ProcessFrames::include, 3379 RegisterMap::WalkContinuation::skip); 3380 frame sender = fr.sender(&map); 3381 if (sender.is_interpreted_frame()) { 3382 current->push_cont_fastpath(sender.sp()); 3383 } 3384 3385 return buf; 3386 JRT_END 3387 3388 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3389 FREE_C_HEAP_ARRAY(intptr_t, buf); 3390 JRT_END 3391 3392 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3393 bool found = false; 3394 #if INCLUDE_CDS 3395 if (AOTCodeCache::is_using_adapter()) { 3396 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3397 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); 3398 }; 3399 _aot_adapter_handler_table.iterate(findblob_archived_table); 3400 } 3401 #endif // INCLUDE_CDS 3402 if (!found) { 3403 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3404 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3405 }; 3406 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3407 _adapter_handler_table->iterate(findblob_runtime_table); 3408 } 3409 return found; 3410 } 3411 3412 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) { 3413 return fingerprint->as_basic_args_string(); 3414 } 3415 3416 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) { 3417 unsigned int hash = fingerprint->compute_hash(); 3418 return hash; 3419 } 3420 3421 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3422 bool found = false; 3423 #if INCLUDE_CDS 3424 if (AOTCodeCache::is_using_adapter()) { 3425 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3426 if (b == CodeCache::find_blob(handler->get_i2c_entry())) { 3427 found = true; 3428 st->print("Adapter for signature: "); 3429 handler->print_adapter_on(st); 3430 return true; 3431 } else { 3432 return false; // keep looking 3433 } 3434 }; 3435 _aot_adapter_handler_table.iterate(findblob_archived_table); 3436 } 3437 #endif // INCLUDE_CDS 3438 if (!found) { 3439 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3440 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3441 found = true; 3442 st->print("Adapter for signature: "); 3443 a->print_adapter_on(st); 3444 return true; 3445 } else { 3446 return false; // keep looking 3447 } 3448 }; 3449 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3450 _adapter_handler_table->iterate(findblob_runtime_table); 3451 } 3452 assert(found, "Should have found handler"); 3453 } 3454 3455 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3456 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3457 if (get_i2c_entry() != nullptr) { 3458 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3459 } 3460 if (get_c2i_entry() != nullptr) { 3461 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3462 } 3463 if (get_c2i_unverified_entry() != nullptr) { 3464 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3465 } 3466 if (get_c2i_no_clinit_check_entry() != nullptr) { 3467 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3468 } 3469 st->cr(); 3470 } 3471 3472 #ifndef PRODUCT 3473 3474 void AdapterHandlerLibrary::print_statistics() { 3475 print_table_statistics(); 3476 } 3477 3478 #endif /* PRODUCT */ 3479 3480 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3481 assert(current == JavaThread::current(), "pre-condition"); 3482 StackOverflow* overflow_state = current->stack_overflow_state(); 3483 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3484 overflow_state->set_reserved_stack_activation(current->stack_base()); 3485 JRT_END 3486 3487 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3488 ResourceMark rm(current); 3489 frame activation; 3490 nmethod* nm = nullptr; 3491 int count = 1; 3492 3493 assert(fr.is_java_frame(), "Must start on Java frame"); 3494 3495 RegisterMap map(JavaThread::current(), 3496 RegisterMap::UpdateMap::skip, 3497 RegisterMap::ProcessFrames::skip, 3498 RegisterMap::WalkContinuation::skip); // don't walk continuations 3499 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3500 if (!fr.is_java_frame()) { 3501 continue; 3502 } 3503 3504 Method* method = nullptr; 3505 bool found = false; 3506 if (fr.is_interpreted_frame()) { 3507 method = fr.interpreter_frame_method(); 3508 if (method != nullptr && method->has_reserved_stack_access()) { 3509 found = true; 3510 } 3511 } else { 3512 CodeBlob* cb = fr.cb(); 3513 if (cb != nullptr && cb->is_nmethod()) { 3514 nm = cb->as_nmethod(); 3515 method = nm->method(); 3516 // scope_desc_near() must be used, instead of scope_desc_at() because on 3517 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3518 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3519 method = sd->method(); 3520 if (method != nullptr && method->has_reserved_stack_access()) { 3521 found = true; 3522 } 3523 } 3524 } 3525 } 3526 if (found) { 3527 activation = fr; 3528 warning("Potentially dangerous stack overflow in " 3529 "ReservedStackAccess annotated method %s [%d]", 3530 method->name_and_sig_as_C_string(), count++); 3531 EventReservedStackActivation event; 3532 if (event.should_commit()) { 3533 event.set_method(method); 3534 event.commit(); 3535 } 3536 } 3537 } 3538 return activation; 3539 } 3540 3541 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3542 // After any safepoint, just before going back to compiled code, 3543 // we inform the GC that we will be doing initializing writes to 3544 // this object in the future without emitting card-marks, so 3545 // GC may take any compensating steps. 3546 3547 oop new_obj = current->vm_result_oop(); 3548 if (new_obj == nullptr) return; 3549 3550 BarrierSet *bs = BarrierSet::barrier_set(); 3551 bs->on_slowpath_allocation_exit(current, new_obj); 3552 }