1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/compilationPolicy.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/vframe.inline.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/dtrace.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/hashtable.inline.hpp"
  75 #include "utilities/macros.hpp"
  76 #include "utilities/xmlstream.hpp"
  77 #ifdef COMPILER1
  78 #include "c1/c1_Runtime1.hpp"
  79 #endif
  80 
  81 // Shared stub locations
  82 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  83 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  84 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  88 address             SharedRuntime::_resolve_static_call_entry;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  94 
  95 #ifdef COMPILER2
  96 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  97 #endif // COMPILER2
  98 
  99 
 100 //----------------------------generate_stubs-----------------------------------
 101 void SharedRuntime::generate_stubs() {
 102   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 103   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 108   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 109 
 110 #if COMPILER2_OR_JVMCI
 111   // Vectors are generated only by C2 and JVMCI.
 112   bool support_wide = is_wide_vector(MaxVectorSize);
 113   if (support_wide) {
 114     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 115   }
 116 #endif // COMPILER2_OR_JVMCI
 117   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 118   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 119 
 120   generate_deopt_blob();
 121 
 122 #ifdef COMPILER2
 123   generate_uncommon_trap_blob();
 124 #endif // COMPILER2
 125 }
 126 
 127 #include <math.h>
 128 
 129 // Implementation of SharedRuntime
 130 
 131 #ifndef PRODUCT
 132 // For statistics
 133 int SharedRuntime::_ic_miss_ctr = 0;
 134 int SharedRuntime::_wrong_method_ctr = 0;
 135 int SharedRuntime::_resolve_static_ctr = 0;
 136 int SharedRuntime::_resolve_virtual_ctr = 0;
 137 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 138 int SharedRuntime::_implicit_null_throws = 0;
 139 int SharedRuntime::_implicit_div0_throws = 0;
 140 int SharedRuntime::_throw_null_ctr = 0;
 141 
 142 int SharedRuntime::_nof_normal_calls = 0;
 143 int SharedRuntime::_nof_optimized_calls = 0;
 144 int SharedRuntime::_nof_inlined_calls = 0;
 145 int SharedRuntime::_nof_megamorphic_calls = 0;
 146 int SharedRuntime::_nof_static_calls = 0;
 147 int SharedRuntime::_nof_inlined_static_calls = 0;
 148 int SharedRuntime::_nof_interface_calls = 0;
 149 int SharedRuntime::_nof_optimized_interface_calls = 0;
 150 int SharedRuntime::_nof_inlined_interface_calls = 0;
 151 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 152 int SharedRuntime::_nof_removable_exceptions = 0;
 153 
 154 int SharedRuntime::_new_instance_ctr=0;
 155 int SharedRuntime::_new_array_ctr=0;
 156 int SharedRuntime::_multi1_ctr=0;
 157 int SharedRuntime::_multi2_ctr=0;
 158 int SharedRuntime::_multi3_ctr=0;
 159 int SharedRuntime::_multi4_ctr=0;
 160 int SharedRuntime::_multi5_ctr=0;
 161 int SharedRuntime::_mon_enter_stub_ctr=0;
 162 int SharedRuntime::_mon_exit_stub_ctr=0;
 163 int SharedRuntime::_mon_enter_ctr=0;
 164 int SharedRuntime::_mon_exit_ctr=0;
 165 int SharedRuntime::_partial_subtype_ctr=0;
 166 int SharedRuntime::_jbyte_array_copy_ctr=0;
 167 int SharedRuntime::_jshort_array_copy_ctr=0;
 168 int SharedRuntime::_jint_array_copy_ctr=0;
 169 int SharedRuntime::_jlong_array_copy_ctr=0;
 170 int SharedRuntime::_oop_array_copy_ctr=0;
 171 int SharedRuntime::_checkcast_array_copy_ctr=0;
 172 int SharedRuntime::_unsafe_array_copy_ctr=0;
 173 int SharedRuntime::_generic_array_copy_ctr=0;
 174 int SharedRuntime::_slow_array_copy_ctr=0;
 175 int SharedRuntime::_find_handler_ctr=0;
 176 int SharedRuntime::_rethrow_ctr=0;
 177 
 178 int     SharedRuntime::_ICmiss_index                    = 0;
 179 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 180 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 181 
 182 
 183 void SharedRuntime::trace_ic_miss(address at) {
 184   for (int i = 0; i < _ICmiss_index; i++) {
 185     if (_ICmiss_at[i] == at) {
 186       _ICmiss_count[i]++;
 187       return;
 188     }
 189   }
 190   int index = _ICmiss_index++;
 191   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 192   _ICmiss_at[index] = at;
 193   _ICmiss_count[index] = 1;
 194 }
 195 
 196 void SharedRuntime::print_ic_miss_histogram() {
 197   if (ICMissHistogram) {
 198     tty->print_cr("IC Miss Histogram:");
 199     int tot_misses = 0;
 200     for (int i = 0; i < _ICmiss_index; i++) {
 201       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 202       tot_misses += _ICmiss_count[i];
 203     }
 204     tty->print_cr("Total IC misses: %7d", tot_misses);
 205   }
 206 }
 207 #endif // PRODUCT
 208 
 209 
 210 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 211   return x * y;
 212 JRT_END
 213 
 214 
 215 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 216   if (x == min_jlong && y == CONST64(-1)) {
 217     return x;
 218   } else {
 219     return x / y;
 220   }
 221 JRT_END
 222 
 223 
 224 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 225   if (x == min_jlong && y == CONST64(-1)) {
 226     return 0;
 227   } else {
 228     return x % y;
 229   }
 230 JRT_END
 231 
 232 
 233 const juint  float_sign_mask  = 0x7FFFFFFF;
 234 const juint  float_infinity   = 0x7F800000;
 235 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 236 const julong double_infinity  = CONST64(0x7FF0000000000000);
 237 
 238 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 239 #ifdef _WIN64
 240   // 64-bit Windows on amd64 returns the wrong values for
 241   // infinity operands.
 242   union { jfloat f; juint i; } xbits, ybits;
 243   xbits.f = x;
 244   ybits.f = y;
 245   // x Mod Infinity == x unless x is infinity
 246   if (((xbits.i & float_sign_mask) != float_infinity) &&
 247        ((ybits.i & float_sign_mask) == float_infinity) ) {
 248     return x;
 249   }
 250   return ((jfloat)fmod_winx64((double)x, (double)y));
 251 #else
 252   return ((jfloat)fmod((double)x,(double)y));
 253 #endif
 254 JRT_END
 255 
 256 
 257 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 258 #ifdef _WIN64
 259   union { jdouble d; julong l; } xbits, ybits;
 260   xbits.d = x;
 261   ybits.d = y;
 262   // x Mod Infinity == x unless x is infinity
 263   if (((xbits.l & double_sign_mask) != double_infinity) &&
 264        ((ybits.l & double_sign_mask) == double_infinity) ) {
 265     return x;
 266   }
 267   return ((jdouble)fmod_winx64((double)x, (double)y));
 268 #else
 269   return ((jdouble)fmod((double)x,(double)y));
 270 #endif
 271 JRT_END
 272 
 273 #ifdef __SOFTFP__
 274 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 275   return x + y;
 276 JRT_END
 277 
 278 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 279   return x - y;
 280 JRT_END
 281 
 282 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 283   return x * y;
 284 JRT_END
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 287   return x / y;
 288 JRT_END
 289 
 290 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 291   return x + y;
 292 JRT_END
 293 
 294 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 295   return x - y;
 296 JRT_END
 297 
 298 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 299   return x * y;
 300 JRT_END
 301 
 302 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 303   return x / y;
 304 JRT_END
 305 
 306 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 307   return (jfloat)x;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 311   return (jdouble)x;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 315   return (jdouble)x;
 316 JRT_END
 317 
 318 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 319   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 320 JRT_END
 321 
 322 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 323   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 324 JRT_END
 325 
 326 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 327   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 328 JRT_END
 329 
 330 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 331   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 332 JRT_END
 333 
 334 // Functions to return the opposite of the aeabi functions for nan.
 335 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 336   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 337 JRT_END
 338 
 339 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 340   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 341 JRT_END
 342 
 343 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 344   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 345 JRT_END
 346 
 347 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 348   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 349 JRT_END
 350 
 351 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 352   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 353 JRT_END
 354 
 355 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 356   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 360   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 364   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 // Intrinsics make gcc generate code for these.
 368 float  SharedRuntime::fneg(float f)   {
 369   return -f;
 370 }
 371 
 372 double SharedRuntime::dneg(double f)  {
 373   return -f;
 374 }
 375 
 376 #endif // __SOFTFP__
 377 
 378 #if defined(__SOFTFP__) || defined(E500V2)
 379 // Intrinsics make gcc generate code for these.
 380 double SharedRuntime::dabs(double f)  {
 381   return (f <= (double)0.0) ? (double)0.0 - f : f;
 382 }
 383 
 384 #endif
 385 
 386 #if defined(__SOFTFP__) || defined(PPC)
 387 double SharedRuntime::dsqrt(double f) {
 388   return sqrt(f);
 389 }
 390 #endif
 391 
 392 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 393   if (g_isnan(x))
 394     return 0;
 395   if (x >= (jfloat) max_jint)
 396     return max_jint;
 397   if (x <= (jfloat) min_jint)
 398     return min_jint;
 399   return (jint) x;
 400 JRT_END
 401 
 402 
 403 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 404   if (g_isnan(x))
 405     return 0;
 406   if (x >= (jfloat) max_jlong)
 407     return max_jlong;
 408   if (x <= (jfloat) min_jlong)
 409     return min_jlong;
 410   return (jlong) x;
 411 JRT_END
 412 
 413 
 414 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 415   if (g_isnan(x))
 416     return 0;
 417   if (x >= (jdouble) max_jint)
 418     return max_jint;
 419   if (x <= (jdouble) min_jint)
 420     return min_jint;
 421   return (jint) x;
 422 JRT_END
 423 
 424 
 425 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 426   if (g_isnan(x))
 427     return 0;
 428   if (x >= (jdouble) max_jlong)
 429     return max_jlong;
 430   if (x <= (jdouble) min_jlong)
 431     return min_jlong;
 432   return (jlong) x;
 433 JRT_END
 434 
 435 
 436 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 437   return (jfloat)x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 442   return (jfloat)x;
 443 JRT_END
 444 
 445 
 446 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 447   return (jdouble)x;
 448 JRT_END
 449 
 450 // Exception handling across interpreter/compiler boundaries
 451 //
 452 // exception_handler_for_return_address(...) returns the continuation address.
 453 // The continuation address is the entry point of the exception handler of the
 454 // previous frame depending on the return address.
 455 
 456 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 457   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 458   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 459 
 460   // Reset method handle flag.
 461   thread->set_is_method_handle_return(false);
 462 
 463 #if INCLUDE_JVMCI
 464   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 465   // and other exception handler continuations do not read it
 466   thread->set_exception_pc(NULL);
 467 #endif // INCLUDE_JVMCI
 468 
 469   // The fastest case first
 470   CodeBlob* blob = CodeCache::find_blob(return_address);
 471   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 472   if (nm != NULL) {
 473     // Set flag if return address is a method handle call site.
 474     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 475     // native nmethods don't have exception handlers
 476     assert(!nm->is_native_method(), "no exception handler");
 477     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 478     if (nm->is_deopt_pc(return_address)) {
 479       // If we come here because of a stack overflow, the stack may be
 480       // unguarded. Reguard the stack otherwise if we return to the
 481       // deopt blob and the stack bang causes a stack overflow we
 482       // crash.
 483       bool guard_pages_enabled = thread->stack_guards_enabled();
 484       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 485       if (thread->reserved_stack_activation() != thread->stack_base()) {
 486         thread->set_reserved_stack_activation(thread->stack_base());
 487       }
 488       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 489       return SharedRuntime::deopt_blob()->unpack_with_exception();
 490     } else {
 491       return nm->exception_begin();
 492     }
 493   }
 494 
 495   // Entry code
 496   if (StubRoutines::returns_to_call_stub(return_address)) {
 497     return StubRoutines::catch_exception_entry();
 498   }
 499   // Interpreted code
 500   if (Interpreter::contains(return_address)) {
 501     return Interpreter::rethrow_exception_entry();
 502   }
 503 
 504   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 505   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 506 
 507 #ifndef PRODUCT
 508   { ResourceMark rm;
 509     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 510     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 511     tty->print_cr("b) other problem");
 512   }
 513 #endif // PRODUCT
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 
 520 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 521   return raw_exception_handler_for_return_address(thread, return_address);
 522 JRT_END
 523 
 524 
 525 address SharedRuntime::get_poll_stub(address pc) {
 526   address stub;
 527   // Look up the code blob
 528   CodeBlob *cb = CodeCache::find_blob(pc);
 529 
 530   // Should be an nmethod
 531   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 532 
 533   // Look up the relocation information
 534   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 535     "safepoint polling: type must be poll");
 536 
 537 #ifdef ASSERT
 538   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 539     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 540     Disassembler::decode(cb);
 541     fatal("Only polling locations are used for safepoint");
 542   }
 543 #endif
 544 
 545   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 546   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 547   if (at_poll_return) {
 548     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 549            "polling page return stub not created yet");
 550     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 551   } else if (has_wide_vectors) {
 552     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 553            "polling page vectors safepoint stub not created yet");
 554     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 555   } else {
 556     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 557            "polling page safepoint stub not created yet");
 558     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 559   }
 560   log_debug(safepoint)("... found polling page %s exception at pc = "
 561                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 562                        at_poll_return ? "return" : "loop",
 563                        (intptr_t)pc, (intptr_t)stub);
 564   return stub;
 565 }
 566 
 567 
 568 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 569   assert(caller.is_interpreted_frame(), "");
 570   int args_size = ArgumentSizeComputer(sig).size() + 1;
 571   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 572   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 573   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 574   return result;
 575 }
 576 
 577 
 578 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 579   if (JvmtiExport::can_post_on_exceptions()) {
 580     vframeStream vfst(thread, true);
 581     methodHandle method = methodHandle(thread, vfst.method());
 582     address bcp = method()->bcp_from(vfst.bci());
 583     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 584   }
 585   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 586 }
 587 
 588 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 589   Handle h_exception = Exceptions::new_exception(thread, name, message);
 590   throw_and_post_jvmti_exception(thread, h_exception);
 591 }
 592 
 593 // The interpreter code to call this tracing function is only
 594 // called/generated when UL is on for redefine, class and has the right level
 595 // and tags. Since obsolete methods are never compiled, we don't have
 596 // to modify the compilers to generate calls to this function.
 597 //
 598 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 599     JavaThread* thread, Method* method))
 600   if (method->is_obsolete()) {
 601     // We are calling an obsolete method, but this is not necessarily
 602     // an error. Our method could have been redefined just after we
 603     // fetched the Method* from the constant pool.
 604     ResourceMark rm;
 605     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 606   }
 607   return 0;
 608 JRT_END
 609 
 610 // ret_pc points into caller; we are returning caller's exception handler
 611 // for given exception
 612 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 613                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 614   assert(cm != NULL, "must exist");
 615   ResourceMark rm;
 616 
 617 #if INCLUDE_JVMCI
 618   if (cm->is_compiled_by_jvmci()) {
 619     // lookup exception handler for this pc
 620     int catch_pco = ret_pc - cm->code_begin();
 621     ExceptionHandlerTable table(cm);
 622     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 623     if (t != NULL) {
 624       return cm->code_begin() + t->pco();
 625     } else {
 626       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 627     }
 628   }
 629 #endif // INCLUDE_JVMCI
 630 
 631   nmethod* nm = cm->as_nmethod();
 632   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 633   // determine handler bci, if any
 634   EXCEPTION_MARK;
 635 
 636   int handler_bci = -1;
 637   int scope_depth = 0;
 638   if (!force_unwind) {
 639     int bci = sd->bci();
 640     bool recursive_exception = false;
 641     do {
 642       bool skip_scope_increment = false;
 643       // exception handler lookup
 644       Klass* ek = exception->klass();
 645       methodHandle mh(THREAD, sd->method());
 646       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 647       if (HAS_PENDING_EXCEPTION) {
 648         recursive_exception = true;
 649         // We threw an exception while trying to find the exception handler.
 650         // Transfer the new exception to the exception handle which will
 651         // be set into thread local storage, and do another lookup for an
 652         // exception handler for this exception, this time starting at the
 653         // BCI of the exception handler which caused the exception to be
 654         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 655         // argument to ensure that the correct exception is thrown (4870175).
 656         recursive_exception_occurred = true;
 657         exception = Handle(THREAD, PENDING_EXCEPTION);
 658         CLEAR_PENDING_EXCEPTION;
 659         if (handler_bci >= 0) {
 660           bci = handler_bci;
 661           handler_bci = -1;
 662           skip_scope_increment = true;
 663         }
 664       }
 665       else {
 666         recursive_exception = false;
 667       }
 668       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 669         sd = sd->sender();
 670         if (sd != NULL) {
 671           bci = sd->bci();
 672         }
 673         ++scope_depth;
 674       }
 675     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 676   }
 677 
 678   // found handling method => lookup exception handler
 679   int catch_pco = ret_pc - nm->code_begin();
 680 
 681   ExceptionHandlerTable table(nm);
 682   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 683   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 684     // Allow abbreviated catch tables.  The idea is to allow a method
 685     // to materialize its exceptions without committing to the exact
 686     // routing of exceptions.  In particular this is needed for adding
 687     // a synthetic handler to unlock monitors when inlining
 688     // synchronized methods since the unlock path isn't represented in
 689     // the bytecodes.
 690     t = table.entry_for(catch_pco, -1, 0);
 691   }
 692 
 693 #ifdef COMPILER1
 694   if (t == NULL && nm->is_compiled_by_c1()) {
 695     assert(nm->unwind_handler_begin() != NULL, "");
 696     return nm->unwind_handler_begin();
 697   }
 698 #endif
 699 
 700   if (t == NULL) {
 701     ttyLocker ttyl;
 702     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 703     tty->print_cr("   Exception:");
 704     exception->print();
 705     tty->cr();
 706     tty->print_cr(" Compiled exception table :");
 707     table.print();
 708     nm->print_code();
 709     guarantee(false, "missing exception handler");
 710     return NULL;
 711   }
 712 
 713   return nm->code_begin() + t->pco();
 714 }
 715 
 716 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 717   // These errors occur only at call sites
 718   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 719 JRT_END
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 722   // These errors occur only at call sites
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 727   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 728 JRT_END
 729 
 730 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 732 JRT_END
 733 
 734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 735   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 736   // cache sites (when the callee activation is not yet set up) so we are at a call site
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 741   throw_StackOverflowError_common(thread, false);
 742 JRT_END
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 745   throw_StackOverflowError_common(thread, true);
 746 JRT_END
 747 
 748 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 749   // We avoid using the normal exception construction in this case because
 750   // it performs an upcall to Java, and we're already out of stack space.
 751   Thread* THREAD = thread;
 752   Klass* k = SystemDictionary::StackOverflowError_klass();
 753   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 754   if (delayed) {
 755     java_lang_Throwable::set_message(exception_oop,
 756                                      Universe::delayed_stack_overflow_error_message());
 757   }
 758   Handle exception (thread, exception_oop);
 759   if (StackTraceInThrowable) {
 760     java_lang_Throwable::fill_in_stack_trace(exception);
 761   }
 762   // Increment counter for hs_err file reporting
 763   Atomic::inc(&Exceptions::_stack_overflow_errors);
 764   throw_and_post_jvmti_exception(thread, exception);
 765 }
 766 
 767 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 768                                                            address pc,
 769                                                            ImplicitExceptionKind exception_kind)
 770 {
 771   address target_pc = NULL;
 772 
 773   if (Interpreter::contains(pc)) {
 774 #ifdef CC_INTERP
 775     // C++ interpreter doesn't throw implicit exceptions
 776     ShouldNotReachHere();
 777 #else
 778     switch (exception_kind) {
 779       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 780       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 781       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 782       default:                      ShouldNotReachHere();
 783     }
 784 #endif // !CC_INTERP
 785   } else {
 786     switch (exception_kind) {
 787       case STACK_OVERFLOW: {
 788         // Stack overflow only occurs upon frame setup; the callee is
 789         // going to be unwound. Dispatch to a shared runtime stub
 790         // which will cause the StackOverflowError to be fabricated
 791         // and processed.
 792         // Stack overflow should never occur during deoptimization:
 793         // the compiled method bangs the stack by as much as the
 794         // interpreter would need in case of a deoptimization. The
 795         // deoptimization blob and uncommon trap blob bang the stack
 796         // in a debug VM to verify the correctness of the compiled
 797         // method stack banging.
 798         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 799         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 800         return StubRoutines::throw_StackOverflowError_entry();
 801       }
 802 
 803       case IMPLICIT_NULL: {
 804         if (VtableStubs::contains(pc)) {
 805           // We haven't yet entered the callee frame. Fabricate an
 806           // exception and begin dispatching it in the caller. Since
 807           // the caller was at a call site, it's safe to destroy all
 808           // caller-saved registers, as these entry points do.
 809           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 810 
 811           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 812           if (vt_stub == NULL) return NULL;
 813 
 814           if (vt_stub->is_abstract_method_error(pc)) {
 815             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 816             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 817             // Instead of throwing the abstract method error here directly, we re-resolve
 818             // and will throw the AbstractMethodError during resolve. As a result, we'll
 819             // get a more detailed error message.
 820             return SharedRuntime::get_handle_wrong_method_stub();
 821           } else {
 822             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 823             // Assert that the signal comes from the expected location in stub code.
 824             assert(vt_stub->is_null_pointer_exception(pc),
 825                    "obtained signal from unexpected location in stub code");
 826             return StubRoutines::throw_NullPointerException_at_call_entry();
 827           }
 828         } else {
 829           CodeBlob* cb = CodeCache::find_blob(pc);
 830 
 831           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 832           if (cb == NULL) return NULL;
 833 
 834           // Exception happened in CodeCache. Must be either:
 835           // 1. Inline-cache check in C2I handler blob,
 836           // 2. Inline-cache check in nmethod, or
 837           // 3. Implicit null exception in nmethod
 838 
 839           if (!cb->is_compiled()) {
 840             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 841             if (!is_in_blob) {
 842               // Allow normal crash reporting to handle this
 843               return NULL;
 844             }
 845             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 846             // There is no handler here, so we will simply unwind.
 847             return StubRoutines::throw_NullPointerException_at_call_entry();
 848           }
 849 
 850           // Otherwise, it's a compiled method.  Consult its exception handlers.
 851           CompiledMethod* cm = (CompiledMethod*)cb;
 852           if (cm->inlinecache_check_contains(pc)) {
 853             // exception happened inside inline-cache check code
 854             // => the nmethod is not yet active (i.e., the frame
 855             // is not set up yet) => use return address pushed by
 856             // caller => don't push another return address
 857             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 858             return StubRoutines::throw_NullPointerException_at_call_entry();
 859           }
 860 
 861           if (cm->method()->is_method_handle_intrinsic()) {
 862             // exception happened inside MH dispatch code, similar to a vtable stub
 863             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 864             return StubRoutines::throw_NullPointerException_at_call_entry();
 865           }
 866 
 867 #ifndef PRODUCT
 868           _implicit_null_throws++;
 869 #endif
 870           target_pc = cm->continuation_for_implicit_null_exception(pc);
 871           // If there's an unexpected fault, target_pc might be NULL,
 872           // in which case we want to fall through into the normal
 873           // error handling code.
 874         }
 875 
 876         break; // fall through
 877       }
 878 
 879 
 880       case IMPLICIT_DIVIDE_BY_ZERO: {
 881         CompiledMethod* cm = CodeCache::find_compiled(pc);
 882         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 883 #ifndef PRODUCT
 884         _implicit_div0_throws++;
 885 #endif
 886         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 887         // If there's an unexpected fault, target_pc might be NULL,
 888         // in which case we want to fall through into the normal
 889         // error handling code.
 890         break; // fall through
 891       }
 892 
 893       default: ShouldNotReachHere();
 894     }
 895 
 896     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 897 
 898     if (exception_kind == IMPLICIT_NULL) {
 899 #ifndef PRODUCT
 900       // for AbortVMOnException flag
 901       Exceptions::debug_check_abort("java.lang.NullPointerException");
 902 #endif //PRODUCT
 903       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 904     } else {
 905 #ifndef PRODUCT
 906       // for AbortVMOnException flag
 907       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 908 #endif //PRODUCT
 909       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 910     }
 911     return target_pc;
 912   }
 913 
 914   ShouldNotReachHere();
 915   return NULL;
 916 }
 917 
 918 
 919 /**
 920  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 921  * installed in the native function entry of all native Java methods before
 922  * they get linked to their actual native methods.
 923  *
 924  * \note
 925  * This method actually never gets called!  The reason is because
 926  * the interpreter's native entries call NativeLookup::lookup() which
 927  * throws the exception when the lookup fails.  The exception is then
 928  * caught and forwarded on the return from NativeLookup::lookup() call
 929  * before the call to the native function.  This might change in the future.
 930  */
 931 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 932 {
 933   // We return a bad value here to make sure that the exception is
 934   // forwarded before we look at the return value.
 935   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 936 }
 937 JNI_END
 938 
 939 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 940   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 941 }
 942 
 943 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 944 #if INCLUDE_JVMCI
 945   if (!obj->klass()->has_finalizer()) {
 946     return;
 947   }
 948 #endif // INCLUDE_JVMCI
 949   assert(oopDesc::is_oop(obj), "must be a valid oop");
 950   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 951   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 952 JRT_END
 953 
 954 
 955 jlong SharedRuntime::get_java_tid(Thread* thread) {
 956   if (thread != NULL) {
 957     if (thread->is_Java_thread()) {
 958       oop obj = ((JavaThread*)thread)->threadObj();
 959       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 960     }
 961   }
 962   return 0;
 963 }
 964 
 965 /**
 966  * This function ought to be a void function, but cannot be because
 967  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 968  * 6254741.  Once that is fixed we can remove the dummy return value.
 969  */
 970 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 971   return dtrace_object_alloc_base(Thread::current(), o, size);
 972 }
 973 
 974 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 975   assert(DTraceAllocProbes, "wrong call");
 976   Klass* klass = o->klass();
 977   Symbol* name = klass->name();
 978   HOTSPOT_OBJECT_ALLOC(
 979                    get_java_tid(thread),
 980                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 981   return 0;
 982 }
 983 
 984 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 985     JavaThread* thread, Method* method))
 986   assert(DTraceMethodProbes, "wrong call");
 987   Symbol* kname = method->klass_name();
 988   Symbol* name = method->name();
 989   Symbol* sig = method->signature();
 990   HOTSPOT_METHOD_ENTRY(
 991       get_java_tid(thread),
 992       (char *) kname->bytes(), kname->utf8_length(),
 993       (char *) name->bytes(), name->utf8_length(),
 994       (char *) sig->bytes(), sig->utf8_length());
 995   return 0;
 996 JRT_END
 997 
 998 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 999     JavaThread* thread, Method* method))
1000   assert(DTraceMethodProbes, "wrong call");
1001   Symbol* kname = method->klass_name();
1002   Symbol* name = method->name();
1003   Symbol* sig = method->signature();
1004   HOTSPOT_METHOD_RETURN(
1005       get_java_tid(thread),
1006       (char *) kname->bytes(), kname->utf8_length(),
1007       (char *) name->bytes(), name->utf8_length(),
1008       (char *) sig->bytes(), sig->utf8_length());
1009   return 0;
1010 JRT_END
1011 
1012 
1013 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1014 // for a call current in progress, i.e., arguments has been pushed on stack
1015 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1016 // vtable updates, etc.  Caller frame must be compiled.
1017 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1018   ResourceMark rm(THREAD);
1019 
1020   // last java frame on stack (which includes native call frames)
1021   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1022 
1023   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1024 }
1025 
1026 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1027   CompiledMethod* caller = vfst.nm();
1028 
1029   nmethodLocker caller_lock(caller);
1030 
1031   address pc = vfst.frame_pc();
1032   { // Get call instruction under lock because another thread may be busy patching it.
1033     CompiledICLocker ic_locker(caller);
1034     return caller->attached_method_before_pc(pc);
1035   }
1036   return NULL;
1037 }
1038 
1039 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1040 // for a call current in progress, i.e., arguments has been pushed on stack
1041 // but callee has not been invoked yet.  Caller frame must be compiled.
1042 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1043                                               vframeStream& vfst,
1044                                               Bytecodes::Code& bc,
1045                                               CallInfo& callinfo, TRAPS) {
1046   Handle receiver;
1047   Handle nullHandle;  //create a handy null handle for exception returns
1048 
1049   assert(!vfst.at_end(), "Java frame must exist");
1050 
1051   // Find caller and bci from vframe
1052   methodHandle caller(THREAD, vfst.method());
1053   int          bci   = vfst.bci();
1054 
1055   Bytecode_invoke bytecode(caller, bci);
1056   int bytecode_index = bytecode.index();
1057   bc = bytecode.invoke_code();
1058 
1059   methodHandle attached_method = extract_attached_method(vfst);
1060   if (attached_method.not_null()) {
1061     methodHandle callee = bytecode.static_target(CHECK_NH);
1062     vmIntrinsics::ID id = callee->intrinsic_id();
1063     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1064     // it attaches statically resolved method to the call site.
1065     if (MethodHandles::is_signature_polymorphic(id) &&
1066         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1067       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1068 
1069       // Adjust invocation mode according to the attached method.
1070       switch (bc) {
1071         case Bytecodes::_invokevirtual:
1072           if (attached_method->method_holder()->is_interface()) {
1073             bc = Bytecodes::_invokeinterface;
1074           }
1075           break;
1076         case Bytecodes::_invokeinterface:
1077           if (!attached_method->method_holder()->is_interface()) {
1078             bc = Bytecodes::_invokevirtual;
1079           }
1080           break;
1081         case Bytecodes::_invokehandle:
1082           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1083             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1084                                               : Bytecodes::_invokevirtual;
1085           }
1086           break;
1087         default:
1088           break;
1089       }
1090     }
1091   }
1092 
1093   assert(bc != Bytecodes::_illegal, "not initialized");
1094 
1095   bool has_receiver = bc != Bytecodes::_invokestatic &&
1096                       bc != Bytecodes::_invokedynamic &&
1097                       bc != Bytecodes::_invokehandle;
1098 
1099   // Find receiver for non-static call
1100   if (has_receiver) {
1101     // This register map must be update since we need to find the receiver for
1102     // compiled frames. The receiver might be in a register.
1103     RegisterMap reg_map2(thread);
1104     frame stubFrame   = thread->last_frame();
1105     // Caller-frame is a compiled frame
1106     frame callerFrame = stubFrame.sender(&reg_map2);
1107 
1108     if (attached_method.is_null()) {
1109       methodHandle callee = bytecode.static_target(CHECK_NH);
1110       if (callee.is_null()) {
1111         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1112       }
1113     }
1114 
1115     // Retrieve from a compiled argument list
1116     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1117 
1118     if (receiver.is_null()) {
1119       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1120     }
1121   }
1122 
1123   // Resolve method
1124   if (attached_method.not_null()) {
1125     // Parameterized by attached method.
1126     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1127   } else {
1128     // Parameterized by bytecode.
1129     constantPoolHandle constants(THREAD, caller->constants());
1130     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1131   }
1132 
1133 #ifdef ASSERT
1134   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1135   if (has_receiver) {
1136     assert(receiver.not_null(), "should have thrown exception");
1137     Klass* receiver_klass = receiver->klass();
1138     Klass* rk = NULL;
1139     if (attached_method.not_null()) {
1140       // In case there's resolved method attached, use its holder during the check.
1141       rk = attached_method->method_holder();
1142     } else {
1143       // Klass is already loaded.
1144       constantPoolHandle constants(THREAD, caller->constants());
1145       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1146     }
1147     Klass* static_receiver_klass = rk;
1148     methodHandle callee = callinfo.selected_method();
1149     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1150            "actual receiver must be subclass of static receiver klass");
1151     if (receiver_klass->is_instance_klass()) {
1152       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1153         tty->print_cr("ERROR: Klass not yet initialized!!");
1154         receiver_klass->print();
1155       }
1156       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1157     }
1158   }
1159 #endif
1160 
1161   return receiver;
1162 }
1163 
1164 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1165   ResourceMark rm(THREAD);
1166   // We need first to check if any Java activations (compiled, interpreted)
1167   // exist on the stack since last JavaCall.  If not, we need
1168   // to get the target method from the JavaCall wrapper.
1169   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1170   methodHandle callee_method;
1171   if (vfst.at_end()) {
1172     // No Java frames were found on stack since we did the JavaCall.
1173     // Hence the stack can only contain an entry_frame.  We need to
1174     // find the target method from the stub frame.
1175     RegisterMap reg_map(thread, false);
1176     frame fr = thread->last_frame();
1177     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1178     fr = fr.sender(&reg_map);
1179     assert(fr.is_entry_frame(), "must be");
1180     // fr is now pointing to the entry frame.
1181     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1182   } else {
1183     Bytecodes::Code bc;
1184     CallInfo callinfo;
1185     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1186     callee_method = callinfo.selected_method();
1187   }
1188   assert(callee_method()->is_method(), "must be");
1189   return callee_method;
1190 }
1191 
1192 // Resolves a call.
1193 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1194                                            bool is_virtual,
1195                                            bool is_optimized, TRAPS) {
1196   methodHandle callee_method;
1197   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1198   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1199     int retry_count = 0;
1200     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1201            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1202       // If has a pending exception then there is no need to re-try to
1203       // resolve this method.
1204       // If the method has been redefined, we need to try again.
1205       // Hack: we have no way to update the vtables of arrays, so don't
1206       // require that java.lang.Object has been updated.
1207 
1208       // It is very unlikely that method is redefined more than 100 times
1209       // in the middle of resolve. If it is looping here more than 100 times
1210       // means then there could be a bug here.
1211       guarantee((retry_count++ < 100),
1212                 "Could not resolve to latest version of redefined method");
1213       // method is redefined in the middle of resolve so re-try.
1214       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1215     }
1216   }
1217   return callee_method;
1218 }
1219 
1220 // This fails if resolution required refilling of IC stubs
1221 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1222                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1223                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1224   StaticCallInfo static_call_info;
1225   CompiledICInfo virtual_call_info;
1226 
1227   // Make sure the callee nmethod does not get deoptimized and removed before
1228   // we are done patching the code.
1229   CompiledMethod* callee = callee_method->code();
1230 
1231   if (callee != NULL) {
1232     assert(callee->is_compiled(), "must be nmethod for patching");
1233   }
1234 
1235   if (callee != NULL && !callee->is_in_use()) {
1236     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1237     callee = NULL;
1238   }
1239   nmethodLocker nl_callee(callee);
1240 #ifdef ASSERT
1241   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1242 #endif
1243 
1244   bool is_nmethod = caller_nm->is_nmethod();
1245 
1246   if (is_virtual) {
1247     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1248     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1249     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1250     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1251                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1252                      CHECK_false);
1253   } else {
1254     // static call
1255     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1256   }
1257 
1258   // grab lock, check for deoptimization and potentially patch caller
1259   {
1260     CompiledICLocker ml(caller_nm);
1261 
1262     // Lock blocks for safepoint during which both nmethods can change state.
1263 
1264     // Now that we are ready to patch if the Method* was redefined then
1265     // don't update call site and let the caller retry.
1266     // Don't update call site if callee nmethod was unloaded or deoptimized.
1267     // Don't update call site if callee nmethod was replaced by an other nmethod
1268     // which may happen when multiply alive nmethod (tiered compilation)
1269     // will be supported.
1270     if (!callee_method->is_old() &&
1271         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1272 #ifdef ASSERT
1273       // We must not try to patch to jump to an already unloaded method.
1274       if (dest_entry_point != 0) {
1275         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1276         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1277                "should not call unloaded nmethod");
1278       }
1279 #endif
1280       if (is_virtual) {
1281         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1282         if (inline_cache->is_clean()) {
1283           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1284             return false;
1285           }
1286         }
1287       } else {
1288         if (VM_Version::supports_fast_class_init_checks() &&
1289             invoke_code == Bytecodes::_invokestatic &&
1290             callee_method->needs_clinit_barrier() &&
1291             callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1292           return true; // skip patching for JVMCI or AOT code
1293         }
1294         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1295         if (ssc->is_clean()) ssc->set(static_call_info);
1296       }
1297     }
1298   } // unlock CompiledICLocker
1299   return true;
1300 }
1301 
1302 // Resolves a call.  The compilers generate code for calls that go here
1303 // and are patched with the real destination of the call.
1304 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1305                                                bool is_virtual,
1306                                                bool is_optimized, TRAPS) {
1307 
1308   ResourceMark rm(thread);
1309   RegisterMap cbl_map(thread, false);
1310   frame caller_frame = thread->last_frame().sender(&cbl_map);
1311 
1312   CodeBlob* caller_cb = caller_frame.cb();
1313   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1314   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1315 
1316   // make sure caller is not getting deoptimized
1317   // and removed before we are done with it.
1318   // CLEANUP - with lazy deopt shouldn't need this lock
1319   nmethodLocker caller_lock(caller_nm);
1320 
1321   // determine call info & receiver
1322   // note: a) receiver is NULL for static calls
1323   //       b) an exception is thrown if receiver is NULL for non-static calls
1324   CallInfo call_info;
1325   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1326   Handle receiver = find_callee_info(thread, invoke_code,
1327                                      call_info, CHECK_(methodHandle()));
1328   methodHandle callee_method = call_info.selected_method();
1329 
1330   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1331          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1332          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1333          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1334          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1335 
1336   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1337 
1338 #ifndef PRODUCT
1339   // tracing/debugging/statistics
1340   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1341                 (is_virtual) ? (&_resolve_virtual_ctr) :
1342                                (&_resolve_static_ctr);
1343   Atomic::inc(addr);
1344 
1345   if (TraceCallFixup) {
1346     ResourceMark rm(thread);
1347     tty->print("resolving %s%s (%s) call to",
1348       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1349       Bytecodes::name(invoke_code));
1350     callee_method->print_short_name(tty);
1351     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1352                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1353   }
1354 #endif
1355 
1356   if (invoke_code == Bytecodes::_invokestatic) {
1357     assert(callee_method->method_holder()->is_initialized() ||
1358            callee_method->method_holder()->is_reentrant_initialization(thread),
1359            "invalid class initialization state for invoke_static");
1360     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1361       // In order to keep class initialization check, do not patch call
1362       // site for static call when the class is not fully initialized.
1363       // Proper check is enforced by call site re-resolution on every invocation.
1364       //
1365       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1366       // explicit class initialization check is put in nmethod entry (VEP).
1367       assert(callee_method->method_holder()->is_linked(), "must be");
1368       return callee_method;
1369     }
1370   }
1371 
1372   // JSR 292 key invariant:
1373   // If the resolved method is a MethodHandle invoke target, the call
1374   // site must be a MethodHandle call site, because the lambda form might tail-call
1375   // leaving the stack in a state unknown to either caller or callee
1376   // TODO detune for now but we might need it again
1377 //  assert(!callee_method->is_compiled_lambda_form() ||
1378 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1379 
1380   // Compute entry points. This might require generation of C2I converter
1381   // frames, so we cannot be holding any locks here. Furthermore, the
1382   // computation of the entry points is independent of patching the call.  We
1383   // always return the entry-point, but we only patch the stub if the call has
1384   // not been deoptimized.  Return values: For a virtual call this is an
1385   // (cached_oop, destination address) pair. For a static call/optimized
1386   // virtual this is just a destination address.
1387 
1388   // Patching IC caches may fail if we run out if transition stubs.
1389   // We refill the ic stubs then and try again.
1390   for (;;) {
1391     ICRefillVerifier ic_refill_verifier;
1392     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1393                                                   is_virtual, is_optimized, receiver,
1394                                                   call_info, invoke_code, CHECK_(methodHandle()));
1395     if (successful) {
1396       return callee_method;
1397     } else {
1398       InlineCacheBuffer::refill_ic_stubs();
1399     }
1400   }
1401 
1402 }
1403 
1404 
1405 // Inline caches exist only in compiled code
1406 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1407 #ifdef ASSERT
1408   RegisterMap reg_map(thread, false);
1409   frame stub_frame = thread->last_frame();
1410   assert(stub_frame.is_runtime_frame(), "sanity check");
1411   frame caller_frame = stub_frame.sender(&reg_map);
1412   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1413 #endif /* ASSERT */
1414 
1415   methodHandle callee_method;
1416   JRT_BLOCK
1417     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1418     // Return Method* through TLS
1419     thread->set_vm_result_2(callee_method());
1420   JRT_BLOCK_END
1421   // return compiled code entry point after potential safepoints
1422   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1423   return callee_method->verified_code_entry();
1424 JRT_END
1425 
1426 
1427 // Handle call site that has been made non-entrant
1428 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1429   // 6243940 We might end up in here if the callee is deoptimized
1430   // as we race to call it.  We don't want to take a safepoint if
1431   // the caller was interpreted because the caller frame will look
1432   // interpreted to the stack walkers and arguments are now
1433   // "compiled" so it is much better to make this transition
1434   // invisible to the stack walking code. The i2c path will
1435   // place the callee method in the callee_target. It is stashed
1436   // there because if we try and find the callee by normal means a
1437   // safepoint is possible and have trouble gc'ing the compiled args.
1438   RegisterMap reg_map(thread, false);
1439   frame stub_frame = thread->last_frame();
1440   assert(stub_frame.is_runtime_frame(), "sanity check");
1441   frame caller_frame = stub_frame.sender(&reg_map);
1442 
1443   if (caller_frame.is_interpreted_frame() ||
1444       caller_frame.is_entry_frame()) {
1445     Method* callee = thread->callee_target();
1446     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1447     thread->set_vm_result_2(callee);
1448     thread->set_callee_target(NULL);
1449     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1450       // Bypass class initialization checks in c2i when caller is in native.
1451       // JNI calls to static methods don't have class initialization checks.
1452       // Fast class initialization checks are present in c2i adapters and call into
1453       // SharedRuntime::handle_wrong_method() on the slow path.
1454       //
1455       // JVM upcalls may land here as well, but there's a proper check present in
1456       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1457       // so bypassing it in c2i adapter is benign.
1458       return callee->get_c2i_no_clinit_check_entry();
1459     } else {
1460       return callee->get_c2i_entry();
1461     }
1462   }
1463 
1464   // Must be compiled to compiled path which is safe to stackwalk
1465   methodHandle callee_method;
1466   JRT_BLOCK
1467     // Force resolving of caller (if we called from compiled frame)
1468     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1469     thread->set_vm_result_2(callee_method());
1470   JRT_BLOCK_END
1471   // return compiled code entry point after potential safepoints
1472   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1473   return callee_method->verified_code_entry();
1474 JRT_END
1475 
1476 // Handle abstract method call
1477 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1478   // Verbose error message for AbstractMethodError.
1479   // Get the called method from the invoke bytecode.
1480   vframeStream vfst(thread, true);
1481   assert(!vfst.at_end(), "Java frame must exist");
1482   methodHandle caller(vfst.method());
1483   Bytecode_invoke invoke(caller, vfst.bci());
1484   DEBUG_ONLY( invoke.verify(); )
1485 
1486   // Find the compiled caller frame.
1487   RegisterMap reg_map(thread);
1488   frame stubFrame = thread->last_frame();
1489   assert(stubFrame.is_runtime_frame(), "must be");
1490   frame callerFrame = stubFrame.sender(&reg_map);
1491   assert(callerFrame.is_compiled_frame(), "must be");
1492 
1493   // Install exception and return forward entry.
1494   address res = StubRoutines::throw_AbstractMethodError_entry();
1495   JRT_BLOCK
1496     methodHandle callee = invoke.static_target(thread);
1497     if (!callee.is_null()) {
1498       oop recv = callerFrame.retrieve_receiver(&reg_map);
1499       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1500       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1501       res = StubRoutines::forward_exception_entry();
1502     }
1503   JRT_BLOCK_END
1504   return res;
1505 JRT_END
1506 
1507 
1508 // resolve a static call and patch code
1509 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1510   methodHandle callee_method;
1511   JRT_BLOCK
1512     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1513     thread->set_vm_result_2(callee_method());
1514   JRT_BLOCK_END
1515   // return compiled code entry point after potential safepoints
1516   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1517   return callee_method->verified_code_entry();
1518 JRT_END
1519 
1520 
1521 // resolve virtual call and update inline cache to monomorphic
1522 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1523   methodHandle callee_method;
1524   JRT_BLOCK
1525     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1526     thread->set_vm_result_2(callee_method());
1527   JRT_BLOCK_END
1528   // return compiled code entry point after potential safepoints
1529   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1530   return callee_method->verified_code_entry();
1531 JRT_END
1532 
1533 
1534 // Resolve a virtual call that can be statically bound (e.g., always
1535 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1536 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1537   methodHandle callee_method;
1538   JRT_BLOCK
1539     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1540     thread->set_vm_result_2(callee_method());
1541   JRT_BLOCK_END
1542   // return compiled code entry point after potential safepoints
1543   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1544   return callee_method->verified_code_entry();
1545 JRT_END
1546 
1547 // The handle_ic_miss_helper_internal function returns false if it failed due
1548 // to either running out of vtable stubs or ic stubs due to IC transitions
1549 // to transitional states. The needs_ic_stub_refill value will be set if
1550 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1551 // refills the IC stubs and tries again.
1552 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1553                                                    const frame& caller_frame, methodHandle callee_method,
1554                                                    Bytecodes::Code bc, CallInfo& call_info,
1555                                                    bool& needs_ic_stub_refill, TRAPS) {
1556   CompiledICLocker ml(caller_nm);
1557   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1558   bool should_be_mono = false;
1559   if (inline_cache->is_optimized()) {
1560     if (TraceCallFixup) {
1561       ResourceMark rm(THREAD);
1562       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1563       callee_method->print_short_name(tty);
1564       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1565     }
1566     should_be_mono = true;
1567   } else if (inline_cache->is_icholder_call()) {
1568     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1569     if (ic_oop != NULL) {
1570       if (!ic_oop->is_loader_alive()) {
1571         // Deferred IC cleaning due to concurrent class unloading
1572         if (!inline_cache->set_to_clean()) {
1573           needs_ic_stub_refill = true;
1574           return false;
1575         }
1576       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1577         // This isn't a real miss. We must have seen that compiled code
1578         // is now available and we want the call site converted to a
1579         // monomorphic compiled call site.
1580         // We can't assert for callee_method->code() != NULL because it
1581         // could have been deoptimized in the meantime
1582         if (TraceCallFixup) {
1583           ResourceMark rm(THREAD);
1584           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1585           callee_method->print_short_name(tty);
1586           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1587         }
1588         should_be_mono = true;
1589       }
1590     }
1591   }
1592 
1593   if (should_be_mono) {
1594     // We have a path that was monomorphic but was going interpreted
1595     // and now we have (or had) a compiled entry. We correct the IC
1596     // by using a new icBuffer.
1597     CompiledICInfo info;
1598     Klass* receiver_klass = receiver()->klass();
1599     inline_cache->compute_monomorphic_entry(callee_method,
1600                                             receiver_klass,
1601                                             inline_cache->is_optimized(),
1602                                             false, caller_nm->is_nmethod(),
1603                                             info, CHECK_false);
1604     if (!inline_cache->set_to_monomorphic(info)) {
1605       needs_ic_stub_refill = true;
1606       return false;
1607     }
1608   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1609     // Potential change to megamorphic
1610 
1611     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1612     if (needs_ic_stub_refill) {
1613       return false;
1614     }
1615     if (!successful) {
1616       if (!inline_cache->set_to_clean()) {
1617         needs_ic_stub_refill = true;
1618         return false;
1619       }
1620     }
1621   } else {
1622     // Either clean or megamorphic
1623   }
1624   return true;
1625 }
1626 
1627 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1628   ResourceMark rm(thread);
1629   CallInfo call_info;
1630   Bytecodes::Code bc;
1631 
1632   // receiver is NULL for static calls. An exception is thrown for NULL
1633   // receivers for non-static calls
1634   Handle receiver = find_callee_info(thread, bc, call_info,
1635                                      CHECK_(methodHandle()));
1636   // Compiler1 can produce virtual call sites that can actually be statically bound
1637   // If we fell thru to below we would think that the site was going megamorphic
1638   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1639   // we'd try and do a vtable dispatch however methods that can be statically bound
1640   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1641   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1642   // plain ic_miss) and the site will be converted to an optimized virtual call site
1643   // never to miss again. I don't believe C2 will produce code like this but if it
1644   // did this would still be the correct thing to do for it too, hence no ifdef.
1645   //
1646   if (call_info.resolved_method()->can_be_statically_bound()) {
1647     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1648     if (TraceCallFixup) {
1649       RegisterMap reg_map(thread, false);
1650       frame caller_frame = thread->last_frame().sender(&reg_map);
1651       ResourceMark rm(thread);
1652       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1653       callee_method->print_short_name(tty);
1654       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1655       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1656     }
1657     return callee_method;
1658   }
1659 
1660   methodHandle callee_method = call_info.selected_method();
1661 
1662 #ifndef PRODUCT
1663   Atomic::inc(&_ic_miss_ctr);
1664 
1665   // Statistics & Tracing
1666   if (TraceCallFixup) {
1667     ResourceMark rm(thread);
1668     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1669     callee_method->print_short_name(tty);
1670     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1671   }
1672 
1673   if (ICMissHistogram) {
1674     MutexLocker m(VMStatistic_lock);
1675     RegisterMap reg_map(thread, false);
1676     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1677     // produce statistics under the lock
1678     trace_ic_miss(f.pc());
1679   }
1680 #endif
1681 
1682   // install an event collector so that when a vtable stub is created the
1683   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1684   // event can't be posted when the stub is created as locks are held
1685   // - instead the event will be deferred until the event collector goes
1686   // out of scope.
1687   JvmtiDynamicCodeEventCollector event_collector;
1688 
1689   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1690   // Transitioning IC caches may require transition stubs. If we run out
1691   // of transition stubs, we have to drop locks and perform a safepoint
1692   // that refills them.
1693   RegisterMap reg_map(thread, false);
1694   frame caller_frame = thread->last_frame().sender(&reg_map);
1695   CodeBlob* cb = caller_frame.cb();
1696   CompiledMethod* caller_nm = cb->as_compiled_method();
1697 
1698   for (;;) {
1699     ICRefillVerifier ic_refill_verifier;
1700     bool needs_ic_stub_refill = false;
1701     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1702                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1703     if (successful || !needs_ic_stub_refill) {
1704       return callee_method;
1705     } else {
1706       InlineCacheBuffer::refill_ic_stubs();
1707     }
1708   }
1709 }
1710 
1711 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1712   CompiledICLocker ml(caller_nm);
1713   if (is_static_call) {
1714     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1715     if (!ssc->is_clean()) {
1716       return ssc->set_to_clean();
1717     }
1718   } else {
1719     // compiled, dispatched call (which used to call an interpreted method)
1720     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1721     if (!inline_cache->is_clean()) {
1722       return inline_cache->set_to_clean();
1723     }
1724   }
1725   return true;
1726 }
1727 
1728 //
1729 // Resets a call-site in compiled code so it will get resolved again.
1730 // This routines handles both virtual call sites, optimized virtual call
1731 // sites, and static call sites. Typically used to change a call sites
1732 // destination from compiled to interpreted.
1733 //
1734 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1735   ResourceMark rm(thread);
1736   RegisterMap reg_map(thread, false);
1737   frame stub_frame = thread->last_frame();
1738   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1739   frame caller = stub_frame.sender(&reg_map);
1740 
1741   // Do nothing if the frame isn't a live compiled frame.
1742   // nmethod could be deoptimized by the time we get here
1743   // so no update to the caller is needed.
1744 
1745   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1746 
1747     address pc = caller.pc();
1748 
1749     // Check for static or virtual call
1750     bool is_static_call = false;
1751     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1752 
1753     // Default call_addr is the location of the "basic" call.
1754     // Determine the address of the call we a reresolving. With
1755     // Inline Caches we will always find a recognizable call.
1756     // With Inline Caches disabled we may or may not find a
1757     // recognizable call. We will always find a call for static
1758     // calls and for optimized virtual calls. For vanilla virtual
1759     // calls it depends on the state of the UseInlineCaches switch.
1760     //
1761     // With Inline Caches disabled we can get here for a virtual call
1762     // for two reasons:
1763     //   1 - calling an abstract method. The vtable for abstract methods
1764     //       will run us thru handle_wrong_method and we will eventually
1765     //       end up in the interpreter to throw the ame.
1766     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1767     //       call and between the time we fetch the entry address and
1768     //       we jump to it the target gets deoptimized. Similar to 1
1769     //       we will wind up in the interprter (thru a c2i with c2).
1770     //
1771     address call_addr = NULL;
1772     {
1773       // Get call instruction under lock because another thread may be
1774       // busy patching it.
1775       CompiledICLocker ml(caller_nm);
1776       // Location of call instruction
1777       call_addr = caller_nm->call_instruction_address(pc);
1778     }
1779     // Make sure nmethod doesn't get deoptimized and removed until
1780     // this is done with it.
1781     // CLEANUP - with lazy deopt shouldn't need this lock
1782     nmethodLocker nmlock(caller_nm);
1783 
1784     if (call_addr != NULL) {
1785       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1786       int ret = iter.next(); // Get item
1787       if (ret) {
1788         assert(iter.addr() == call_addr, "must find call");
1789         if (iter.type() == relocInfo::static_call_type) {
1790           is_static_call = true;
1791         } else {
1792           assert(iter.type() == relocInfo::virtual_call_type ||
1793                  iter.type() == relocInfo::opt_virtual_call_type
1794                 , "unexpected relocInfo. type");
1795         }
1796       } else {
1797         assert(!UseInlineCaches, "relocation info. must exist for this address");
1798       }
1799 
1800       // Cleaning the inline cache will force a new resolve. This is more robust
1801       // than directly setting it to the new destination, since resolving of calls
1802       // is always done through the same code path. (experience shows that it
1803       // leads to very hard to track down bugs, if an inline cache gets updated
1804       // to a wrong method). It should not be performance critical, since the
1805       // resolve is only done once.
1806 
1807       for (;;) {
1808         ICRefillVerifier ic_refill_verifier;
1809         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1810           InlineCacheBuffer::refill_ic_stubs();
1811         } else {
1812           break;
1813         }
1814       }
1815     }
1816   }
1817 
1818   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1819 
1820 
1821 #ifndef PRODUCT
1822   Atomic::inc(&_wrong_method_ctr);
1823 
1824   if (TraceCallFixup) {
1825     ResourceMark rm(thread);
1826     tty->print("handle_wrong_method reresolving call to");
1827     callee_method->print_short_name(tty);
1828     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1829   }
1830 #endif
1831 
1832   return callee_method;
1833 }
1834 
1835 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1836   // The faulting unsafe accesses should be changed to throw the error
1837   // synchronously instead. Meanwhile the faulting instruction will be
1838   // skipped over (effectively turning it into a no-op) and an
1839   // asynchronous exception will be raised which the thread will
1840   // handle at a later point. If the instruction is a load it will
1841   // return garbage.
1842 
1843   // Request an async exception.
1844   thread->set_pending_unsafe_access_error();
1845 
1846   // Return address of next instruction to execute.
1847   return next_pc;
1848 }
1849 
1850 #ifdef ASSERT
1851 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1852                                                                 const BasicType* sig_bt,
1853                                                                 const VMRegPair* regs) {
1854   ResourceMark rm;
1855   const int total_args_passed = method->size_of_parameters();
1856   const VMRegPair*    regs_with_member_name = regs;
1857         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1858 
1859   const int member_arg_pos = total_args_passed - 1;
1860   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1861   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1862 
1863   const bool is_outgoing = method->is_method_handle_intrinsic();
1864   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1865 
1866   for (int i = 0; i < member_arg_pos; i++) {
1867     VMReg a =    regs_with_member_name[i].first();
1868     VMReg b = regs_without_member_name[i].first();
1869     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1870   }
1871   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1872 }
1873 #endif
1874 
1875 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1876   if (destination != entry_point) {
1877     CodeBlob* callee = CodeCache::find_blob(destination);
1878     // callee == cb seems weird. It means calling interpreter thru stub.
1879     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1880       // static call or optimized virtual
1881       if (TraceCallFixup) {
1882         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1883         moop->print_short_name(tty);
1884         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1885       }
1886       return true;
1887     } else {
1888       if (TraceCallFixup) {
1889         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1890         moop->print_short_name(tty);
1891         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1892       }
1893       // assert is too strong could also be resolve destinations.
1894       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1895     }
1896   } else {
1897     if (TraceCallFixup) {
1898       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1899       moop->print_short_name(tty);
1900       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1901     }
1902   }
1903   return false;
1904 }
1905 
1906 // ---------------------------------------------------------------------------
1907 // We are calling the interpreter via a c2i. Normally this would mean that
1908 // we were called by a compiled method. However we could have lost a race
1909 // where we went int -> i2c -> c2i and so the caller could in fact be
1910 // interpreted. If the caller is compiled we attempt to patch the caller
1911 // so he no longer calls into the interpreter.
1912 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1913   Method* moop(method);
1914 
1915   address entry_point = moop->from_compiled_entry_no_trampoline();
1916 
1917   // It's possible that deoptimization can occur at a call site which hasn't
1918   // been resolved yet, in which case this function will be called from
1919   // an nmethod that has been patched for deopt and we can ignore the
1920   // request for a fixup.
1921   // Also it is possible that we lost a race in that from_compiled_entry
1922   // is now back to the i2c in that case we don't need to patch and if
1923   // we did we'd leap into space because the callsite needs to use
1924   // "to interpreter" stub in order to load up the Method*. Don't
1925   // ask me how I know this...
1926 
1927   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1928   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1929     return;
1930   }
1931 
1932   // The check above makes sure this is a nmethod.
1933   CompiledMethod* nm = cb->as_compiled_method_or_null();
1934   assert(nm, "must be");
1935 
1936   // Get the return PC for the passed caller PC.
1937   address return_pc = caller_pc + frame::pc_return_offset;
1938 
1939   // There is a benign race here. We could be attempting to patch to a compiled
1940   // entry point at the same time the callee is being deoptimized. If that is
1941   // the case then entry_point may in fact point to a c2i and we'd patch the
1942   // call site with the same old data. clear_code will set code() to NULL
1943   // at the end of it. If we happen to see that NULL then we can skip trying
1944   // to patch. If we hit the window where the callee has a c2i in the
1945   // from_compiled_entry and the NULL isn't present yet then we lose the race
1946   // and patch the code with the same old data. Asi es la vida.
1947 
1948   if (moop->code() == NULL) return;
1949 
1950   if (nm->is_in_use()) {
1951     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1952     CompiledICLocker ic_locker(nm);
1953     if (NativeCall::is_call_before(return_pc)) {
1954       ResourceMark mark;
1955       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1956       //
1957       // bug 6281185. We might get here after resolving a call site to a vanilla
1958       // virtual call. Because the resolvee uses the verified entry it may then
1959       // see compiled code and attempt to patch the site by calling us. This would
1960       // then incorrectly convert the call site to optimized and its downhill from
1961       // there. If you're lucky you'll get the assert in the bugid, if not you've
1962       // just made a call site that could be megamorphic into a monomorphic site
1963       // for the rest of its life! Just another racing bug in the life of
1964       // fixup_callers_callsite ...
1965       //
1966       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1967       iter.next();
1968       assert(iter.has_current(), "must have a reloc at java call site");
1969       relocInfo::relocType typ = iter.reloc()->type();
1970       if (typ != relocInfo::static_call_type &&
1971            typ != relocInfo::opt_virtual_call_type &&
1972            typ != relocInfo::static_stub_type) {
1973         return;
1974       }
1975       address destination = call->destination();
1976       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1977         call->set_destination_mt_safe(entry_point);
1978       }
1979     }
1980   }
1981 JRT_END
1982 
1983 
1984 // same as JVM_Arraycopy, but called directly from compiled code
1985 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1986                                                 oopDesc* dest, jint dest_pos,
1987                                                 jint length,
1988                                                 JavaThread* thread)) {
1989 #ifndef PRODUCT
1990   _slow_array_copy_ctr++;
1991 #endif
1992   // Check if we have null pointers
1993   if (src == NULL || dest == NULL) {
1994     THROW(vmSymbols::java_lang_NullPointerException());
1995   }
1996   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1997   // even though the copy_array API also performs dynamic checks to ensure
1998   // that src and dest are truly arrays (and are conformable).
1999   // The copy_array mechanism is awkward and could be removed, but
2000   // the compilers don't call this function except as a last resort,
2001   // so it probably doesn't matter.
2002   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2003                                         (arrayOopDesc*)dest, dest_pos,
2004                                         length, thread);
2005 }
2006 JRT_END
2007 
2008 // The caller of generate_class_cast_message() (or one of its callers)
2009 // must use a ResourceMark in order to correctly free the result.
2010 char* SharedRuntime::generate_class_cast_message(
2011     JavaThread* thread, Klass* caster_klass) {
2012 
2013   // Get target class name from the checkcast instruction
2014   vframeStream vfst(thread, true);
2015   assert(!vfst.at_end(), "Java frame must exist");
2016   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2017   constantPoolHandle cpool(thread, vfst.method()->constants());
2018   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2019   Symbol* target_klass_name = NULL;
2020   if (target_klass == NULL) {
2021     // This klass should be resolved, but just in case, get the name in the klass slot.
2022     target_klass_name = cpool->klass_name_at(cc.index());
2023   }
2024   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2025 }
2026 
2027 
2028 // The caller of generate_class_cast_message() (or one of its callers)
2029 // must use a ResourceMark in order to correctly free the result.
2030 char* SharedRuntime::generate_class_cast_message(
2031     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2032   const char* caster_name = caster_klass->external_name();
2033 
2034   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2035   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2036                                                    target_klass->external_name();
2037 
2038   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2039 
2040   const char* caster_klass_description = "";
2041   const char* target_klass_description = "";
2042   const char* klass_separator = "";
2043   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2044     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2045   } else {
2046     caster_klass_description = caster_klass->class_in_module_of_loader();
2047     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2048     klass_separator = (target_klass != NULL) ? "; " : "";
2049   }
2050 
2051   // add 3 for parenthesis and preceeding space
2052   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2053 
2054   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2055   if (message == NULL) {
2056     // Shouldn't happen, but don't cause even more problems if it does
2057     message = const_cast<char*>(caster_klass->external_name());
2058   } else {
2059     jio_snprintf(message,
2060                  msglen,
2061                  "class %s cannot be cast to class %s (%s%s%s)",
2062                  caster_name,
2063                  target_name,
2064                  caster_klass_description,
2065                  klass_separator,
2066                  target_klass_description
2067                  );
2068   }
2069   return message;
2070 }
2071 
2072 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2073   (void) JavaThread::current()->reguard_stack();
2074 JRT_END
2075 
2076 
2077 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2078 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2079   if (!SafepointSynchronize::is_synchronizing()) {
2080     // Only try quick_enter() if we're not trying to reach a safepoint
2081     // so that the calling thread reaches the safepoint more quickly.
2082     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2083   }
2084   // NO_ASYNC required because an async exception on the state transition destructor
2085   // would leave you with the lock held and it would never be released.
2086   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2087   // and the model is that an exception implies the method failed.
2088   JRT_BLOCK_NO_ASYNC
2089   oop obj(_obj);
2090   if (PrintBiasedLockingStatistics) {
2091     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2092   }
2093   Handle h_obj(THREAD, obj);
2094   if (UseBiasedLocking) {
2095     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2096     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2097   } else {
2098     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2099   }
2100   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2101   JRT_BLOCK_END
2102 JRT_END
2103 
2104 // Handles the uncommon cases of monitor unlocking in compiled code
2105 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2106    oop obj(_obj);
2107   assert(JavaThread::current() == THREAD, "invariant");
2108   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2109   // testing was unable to ever fire the assert that guarded it so I have removed it.
2110   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2111 #undef MIGHT_HAVE_PENDING
2112 #ifdef MIGHT_HAVE_PENDING
2113   // Save and restore any pending_exception around the exception mark.
2114   // While the slow_exit must not throw an exception, we could come into
2115   // this routine with one set.
2116   oop pending_excep = NULL;
2117   const char* pending_file;
2118   int pending_line;
2119   if (HAS_PENDING_EXCEPTION) {
2120     pending_excep = PENDING_EXCEPTION;
2121     pending_file  = THREAD->exception_file();
2122     pending_line  = THREAD->exception_line();
2123     CLEAR_PENDING_EXCEPTION;
2124   }
2125 #endif /* MIGHT_HAVE_PENDING */
2126 
2127   {
2128     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2129     EXCEPTION_MARK;
2130     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2131   }
2132 
2133 #ifdef MIGHT_HAVE_PENDING
2134   if (pending_excep != NULL) {
2135     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2136   }
2137 #endif /* MIGHT_HAVE_PENDING */
2138 JRT_END
2139 
2140 #ifndef PRODUCT
2141 
2142 void SharedRuntime::print_statistics() {
2143   ttyLocker ttyl;
2144   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2145 
2146   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2147 
2148   SharedRuntime::print_ic_miss_histogram();
2149 
2150   if (CountRemovableExceptions) {
2151     if (_nof_removable_exceptions > 0) {
2152       Unimplemented(); // this counter is not yet incremented
2153       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2154     }
2155   }
2156 
2157   // Dump the JRT_ENTRY counters
2158   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2159   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2160   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2161   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2162   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2163   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2164   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2165 
2166   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2167   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2168   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2169   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2170   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2171 
2172   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2173   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2174   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2175   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2176   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2177   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2178   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2179   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2180   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2181   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2182   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2183   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2184   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2185   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2186   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2187   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2188 
2189   AdapterHandlerLibrary::print_statistics();
2190 
2191   if (xtty != NULL)  xtty->tail("statistics");
2192 }
2193 
2194 inline double percent(int x, int y) {
2195   return 100.0 * x / MAX2(y, 1);
2196 }
2197 
2198 class MethodArityHistogram {
2199  public:
2200   enum { MAX_ARITY = 256 };
2201  private:
2202   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2203   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2204   static int _max_arity;                      // max. arity seen
2205   static int _max_size;                       // max. arg size seen
2206 
2207   static void add_method_to_histogram(nmethod* nm) {
2208     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2209       Method* method = nm->method();
2210       ArgumentCount args(method->signature());
2211       int arity   = args.size() + (method->is_static() ? 0 : 1);
2212       int argsize = method->size_of_parameters();
2213       arity   = MIN2(arity, MAX_ARITY-1);
2214       argsize = MIN2(argsize, MAX_ARITY-1);
2215       int count = method->compiled_invocation_count();
2216       _arity_histogram[arity]  += count;
2217       _size_histogram[argsize] += count;
2218       _max_arity = MAX2(_max_arity, arity);
2219       _max_size  = MAX2(_max_size, argsize);
2220     }
2221   }
2222 
2223   void print_histogram_helper(int n, int* histo, const char* name) {
2224     const int N = MIN2(5, n);
2225     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2226     double sum = 0;
2227     double weighted_sum = 0;
2228     int i;
2229     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2230     double rest = sum;
2231     double percent = sum / 100;
2232     for (i = 0; i <= N; i++) {
2233       rest -= histo[i];
2234       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2235     }
2236     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2237     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2238   }
2239 
2240   void print_histogram() {
2241     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2242     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2243     tty->print_cr("\nSame for parameter size (in words):");
2244     print_histogram_helper(_max_size, _size_histogram, "size");
2245     tty->cr();
2246   }
2247 
2248  public:
2249   MethodArityHistogram() {
2250     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2251     _max_arity = _max_size = 0;
2252     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2253     CodeCache::nmethods_do(add_method_to_histogram);
2254     print_histogram();
2255   }
2256 };
2257 
2258 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2259 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2260 int MethodArityHistogram::_max_arity;
2261 int MethodArityHistogram::_max_size;
2262 
2263 void SharedRuntime::print_call_statistics(int comp_total) {
2264   tty->print_cr("Calls from compiled code:");
2265   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2266   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2267   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2268   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2269   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2270   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2271   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2272   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2273   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2274   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2275   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2276   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2277   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2278   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2279   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2280   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2281   tty->cr();
2282   tty->print_cr("Note 1: counter updates are not MT-safe.");
2283   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2284   tty->print_cr("        %% in nested categories are relative to their category");
2285   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2286   tty->cr();
2287 
2288   MethodArityHistogram h;
2289 }
2290 #endif
2291 
2292 
2293 // A simple wrapper class around the calling convention information
2294 // that allows sharing of adapters for the same calling convention.
2295 class AdapterFingerPrint : public CHeapObj<mtCode> {
2296  private:
2297   enum {
2298     _basic_type_bits = 4,
2299     _basic_type_mask = right_n_bits(_basic_type_bits),
2300     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2301     _compact_int_count = 3
2302   };
2303   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2304   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2305 
2306   union {
2307     int  _compact[_compact_int_count];
2308     int* _fingerprint;
2309   } _value;
2310   int _length; // A negative length indicates the fingerprint is in the compact form,
2311                // Otherwise _value._fingerprint is the array.
2312 
2313   // Remap BasicTypes that are handled equivalently by the adapters.
2314   // These are correct for the current system but someday it might be
2315   // necessary to make this mapping platform dependent.
2316   static int adapter_encoding(BasicType in) {
2317     switch (in) {
2318       case T_BOOLEAN:
2319       case T_BYTE:
2320       case T_SHORT:
2321       case T_CHAR:
2322         // There are all promoted to T_INT in the calling convention
2323         return T_INT;
2324 
2325       case T_OBJECT:
2326       case T_ARRAY:
2327         // In other words, we assume that any register good enough for
2328         // an int or long is good enough for a managed pointer.
2329 #ifdef _LP64
2330         return T_LONG;
2331 #else
2332         return T_INT;
2333 #endif
2334 
2335       case T_INT:
2336       case T_LONG:
2337       case T_FLOAT:
2338       case T_DOUBLE:
2339       case T_VOID:
2340         return in;
2341 
2342       default:
2343         ShouldNotReachHere();
2344         return T_CONFLICT;
2345     }
2346   }
2347 
2348  public:
2349   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2350     // The fingerprint is based on the BasicType signature encoded
2351     // into an array of ints with eight entries per int.
2352     int* ptr;
2353     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2354     if (len <= _compact_int_count) {
2355       assert(_compact_int_count == 3, "else change next line");
2356       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2357       // Storing the signature encoded as signed chars hits about 98%
2358       // of the time.
2359       _length = -len;
2360       ptr = _value._compact;
2361     } else {
2362       _length = len;
2363       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2364       ptr = _value._fingerprint;
2365     }
2366 
2367     // Now pack the BasicTypes with 8 per int
2368     int sig_index = 0;
2369     for (int index = 0; index < len; index++) {
2370       int value = 0;
2371       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2372         int bt = ((sig_index < total_args_passed)
2373                   ? adapter_encoding(sig_bt[sig_index++])
2374                   : 0);
2375         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2376         value = (value << _basic_type_bits) | bt;
2377       }
2378       ptr[index] = value;
2379     }
2380   }
2381 
2382   ~AdapterFingerPrint() {
2383     if (_length > 0) {
2384       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2385     }
2386   }
2387 
2388   int value(int index) {
2389     if (_length < 0) {
2390       return _value._compact[index];
2391     }
2392     return _value._fingerprint[index];
2393   }
2394   int length() {
2395     if (_length < 0) return -_length;
2396     return _length;
2397   }
2398 
2399   bool is_compact() {
2400     return _length <= 0;
2401   }
2402 
2403   unsigned int compute_hash() {
2404     int hash = 0;
2405     for (int i = 0; i < length(); i++) {
2406       int v = value(i);
2407       hash = (hash << 8) ^ v ^ (hash >> 5);
2408     }
2409     return (unsigned int)hash;
2410   }
2411 
2412   const char* as_string() {
2413     stringStream st;
2414     st.print("0x");
2415     for (int i = 0; i < length(); i++) {
2416       st.print("%08x", value(i));
2417     }
2418     return st.as_string();
2419   }
2420 
2421   bool equals(AdapterFingerPrint* other) {
2422     if (other->_length != _length) {
2423       return false;
2424     }
2425     if (_length < 0) {
2426       assert(_compact_int_count == 3, "else change next line");
2427       return _value._compact[0] == other->_value._compact[0] &&
2428              _value._compact[1] == other->_value._compact[1] &&
2429              _value._compact[2] == other->_value._compact[2];
2430     } else {
2431       for (int i = 0; i < _length; i++) {
2432         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2433           return false;
2434         }
2435       }
2436     }
2437     return true;
2438   }
2439 };
2440 
2441 
2442 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2443 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2444   friend class AdapterHandlerTableIterator;
2445 
2446  private:
2447 
2448 #ifndef PRODUCT
2449   static int _lookups; // number of calls to lookup
2450   static int _buckets; // number of buckets checked
2451   static int _equals;  // number of buckets checked with matching hash
2452   static int _hits;    // number of successful lookups
2453   static int _compact; // number of equals calls with compact signature
2454 #endif
2455 
2456   AdapterHandlerEntry* bucket(int i) {
2457     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2458   }
2459 
2460  public:
2461   AdapterHandlerTable()
2462     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2463 
2464   // Create a new entry suitable for insertion in the table
2465   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, address c2i_no_clinit_check_entry) {
2466     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2467     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2468     if (DumpSharedSpaces) {
2469       ((CDSAdapterHandlerEntry*)entry)->init();
2470     }
2471     return entry;
2472   }
2473 
2474   // Insert an entry into the table
2475   void add(AdapterHandlerEntry* entry) {
2476     int index = hash_to_index(entry->hash());
2477     add_entry(index, entry);
2478   }
2479 
2480   void free_entry(AdapterHandlerEntry* entry) {
2481     entry->deallocate();
2482     BasicHashtable<mtCode>::free_entry(entry);
2483   }
2484 
2485   // Find a entry with the same fingerprint if it exists
2486   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2487     NOT_PRODUCT(_lookups++);
2488     AdapterFingerPrint fp(total_args_passed, sig_bt);
2489     unsigned int hash = fp.compute_hash();
2490     int index = hash_to_index(hash);
2491     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2492       NOT_PRODUCT(_buckets++);
2493       if (e->hash() == hash) {
2494         NOT_PRODUCT(_equals++);
2495         if (fp.equals(e->fingerprint())) {
2496 #ifndef PRODUCT
2497           if (fp.is_compact()) _compact++;
2498           _hits++;
2499 #endif
2500           return e;
2501         }
2502       }
2503     }
2504     return NULL;
2505   }
2506 
2507 #ifndef PRODUCT
2508   void print_statistics() {
2509     ResourceMark rm;
2510     int longest = 0;
2511     int empty = 0;
2512     int total = 0;
2513     int nonempty = 0;
2514     for (int index = 0; index < table_size(); index++) {
2515       int count = 0;
2516       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2517         count++;
2518       }
2519       if (count != 0) nonempty++;
2520       if (count == 0) empty++;
2521       if (count > longest) longest = count;
2522       total += count;
2523     }
2524     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2525                   empty, longest, total, total / (double)nonempty);
2526     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2527                   _lookups, _buckets, _equals, _hits, _compact);
2528   }
2529 #endif
2530 };
2531 
2532 
2533 #ifndef PRODUCT
2534 
2535 int AdapterHandlerTable::_lookups;
2536 int AdapterHandlerTable::_buckets;
2537 int AdapterHandlerTable::_equals;
2538 int AdapterHandlerTable::_hits;
2539 int AdapterHandlerTable::_compact;
2540 
2541 #endif
2542 
2543 class AdapterHandlerTableIterator : public StackObj {
2544  private:
2545   AdapterHandlerTable* _table;
2546   int _index;
2547   AdapterHandlerEntry* _current;
2548 
2549   void scan() {
2550     while (_index < _table->table_size()) {
2551       AdapterHandlerEntry* a = _table->bucket(_index);
2552       _index++;
2553       if (a != NULL) {
2554         _current = a;
2555         return;
2556       }
2557     }
2558   }
2559 
2560  public:
2561   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2562     scan();
2563   }
2564   bool has_next() {
2565     return _current != NULL;
2566   }
2567   AdapterHandlerEntry* next() {
2568     if (_current != NULL) {
2569       AdapterHandlerEntry* result = _current;
2570       _current = _current->next();
2571       if (_current == NULL) scan();
2572       return result;
2573     } else {
2574       return NULL;
2575     }
2576   }
2577 };
2578 
2579 
2580 // ---------------------------------------------------------------------------
2581 // Implementation of AdapterHandlerLibrary
2582 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2583 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2584 const int AdapterHandlerLibrary_size = 16*K;
2585 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2586 
2587 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2588   // Should be called only when AdapterHandlerLibrary_lock is active.
2589   if (_buffer == NULL) // Initialize lazily
2590       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2591   return _buffer;
2592 }
2593 
2594 extern "C" void unexpected_adapter_call() {
2595   ShouldNotCallThis();
2596 }
2597 
2598 void AdapterHandlerLibrary::initialize() {
2599   if (_adapters != NULL) return;
2600   _adapters = new AdapterHandlerTable();
2601 
2602   // Create a special handler for abstract methods.  Abstract methods
2603   // are never compiled so an i2c entry is somewhat meaningless, but
2604   // throw AbstractMethodError just in case.
2605   // Pass wrong_method_abstract for the c2i transitions to return
2606   // AbstractMethodError for invalid invocations.
2607   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2608   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2609                                                               StubRoutines::throw_AbstractMethodError_entry(),
2610                                                               wrong_method_abstract, wrong_method_abstract);
2611 }
2612 
2613 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2614                                                       address i2c_entry,
2615                                                       address c2i_entry,
2616                                                       address c2i_unverified_entry,
2617                                                       address c2i_no_clinit_check_entry) {
2618   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2619 }
2620 
2621 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2622   AdapterHandlerEntry* entry = get_adapter0(method);
2623   if (method->is_shared()) {
2624     // See comments around Method::link_method()
2625     MutexLocker mu(AdapterHandlerLibrary_lock);
2626     if (method->adapter() == NULL) {
2627       method->update_adapter_trampoline(entry);
2628     }
2629     address trampoline = method->from_compiled_entry();
2630     if (*(int*)trampoline == 0) {
2631       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2632       MacroAssembler _masm(&buffer);
2633       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2634       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2635 
2636       if (PrintInterpreter) {
2637         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2638       }
2639     }
2640   }
2641 
2642   return entry;
2643 }
2644 
2645 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2646   // Use customized signature handler.  Need to lock around updates to
2647   // the AdapterHandlerTable (it is not safe for concurrent readers
2648   // and a single writer: this could be fixed if it becomes a
2649   // problem).
2650 
2651   ResourceMark rm;
2652 
2653   NOT_PRODUCT(int insts_size);
2654   AdapterBlob* new_adapter = NULL;
2655   AdapterHandlerEntry* entry = NULL;
2656   AdapterFingerPrint* fingerprint = NULL;
2657   {
2658     MutexLocker mu(AdapterHandlerLibrary_lock);
2659     // make sure data structure is initialized
2660     initialize();
2661 
2662     if (method->is_abstract()) {
2663       return _abstract_method_handler;
2664     }
2665 
2666     // Fill in the signature array, for the calling-convention call.
2667     int total_args_passed = method->size_of_parameters(); // All args on stack
2668 
2669     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2670     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2671     int i = 0;
2672     if (!method->is_static())  // Pass in receiver first
2673       sig_bt[i++] = T_OBJECT;
2674     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2675       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2676       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2677         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2678     }
2679     assert(i == total_args_passed, "");
2680 
2681     // Lookup method signature's fingerprint
2682     entry = _adapters->lookup(total_args_passed, sig_bt);
2683 
2684 #ifdef ASSERT
2685     AdapterHandlerEntry* shared_entry = NULL;
2686     // Start adapter sharing verification only after the VM is booted.
2687     if (VerifyAdapterSharing && (entry != NULL)) {
2688       shared_entry = entry;
2689       entry = NULL;
2690     }
2691 #endif
2692 
2693     if (entry != NULL) {
2694       return entry;
2695     }
2696 
2697     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2698     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2699 
2700     // Make a C heap allocated version of the fingerprint to store in the adapter
2701     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2702 
2703     // StubRoutines::code2() is initialized after this function can be called. As a result,
2704     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2705     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2706     // stub that ensure that an I2C stub is called from an interpreter frame.
2707     bool contains_all_checks = StubRoutines::code2() != NULL;
2708 
2709     // Create I2C & C2I handlers
2710     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2711     if (buf != NULL) {
2712       CodeBuffer buffer(buf);
2713       short buffer_locs[20];
2714       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2715                                              sizeof(buffer_locs)/sizeof(relocInfo));
2716 
2717       MacroAssembler _masm(&buffer);
2718       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2719                                                      total_args_passed,
2720                                                      comp_args_on_stack,
2721                                                      sig_bt,
2722                                                      regs,
2723                                                      fingerprint);
2724 #ifdef ASSERT
2725       if (VerifyAdapterSharing) {
2726         if (shared_entry != NULL) {
2727           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2728           // Release the one just created and return the original
2729           _adapters->free_entry(entry);
2730           return shared_entry;
2731         } else  {
2732           entry->save_code(buf->code_begin(), buffer.insts_size());
2733         }
2734       }
2735 #endif
2736 
2737       new_adapter = AdapterBlob::create(&buffer);
2738       NOT_PRODUCT(insts_size = buffer.insts_size());
2739     }
2740     if (new_adapter == NULL) {
2741       // CodeCache is full, disable compilation
2742       // Ought to log this but compile log is only per compile thread
2743       // and we're some non descript Java thread.
2744       return NULL; // Out of CodeCache space
2745     }
2746     entry->relocate(new_adapter->content_begin());
2747 #ifndef PRODUCT
2748     // debugging suppport
2749     if (PrintAdapterHandlers || PrintStubCode) {
2750       ttyLocker ttyl;
2751       entry->print_adapter_on(tty);
2752       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2753                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2754                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2755       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2756       if (Verbose || PrintStubCode) {
2757         address first_pc = entry->base_address();
2758         if (first_pc != NULL) {
2759           Disassembler::decode(first_pc, first_pc + insts_size);
2760           tty->cr();
2761         }
2762       }
2763     }
2764 #endif
2765     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2766     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2767     if (contains_all_checks || !VerifyAdapterCalls) {
2768       _adapters->add(entry);
2769     }
2770   }
2771   // Outside of the lock
2772   if (new_adapter != NULL) {
2773     char blob_id[256];
2774     jio_snprintf(blob_id,
2775                  sizeof(blob_id),
2776                  "%s(%s)@" PTR_FORMAT,
2777                  new_adapter->name(),
2778                  fingerprint->as_string(),
2779                  new_adapter->content_begin());
2780     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2781 
2782     if (JvmtiExport::should_post_dynamic_code_generated()) {
2783       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2784     }
2785   }
2786   return entry;
2787 }
2788 
2789 address AdapterHandlerEntry::base_address() {
2790   address base = _i2c_entry;
2791   if (base == NULL)  base = _c2i_entry;
2792   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2793   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2794   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
2795   return base;
2796 }
2797 
2798 void AdapterHandlerEntry::relocate(address new_base) {
2799   address old_base = base_address();
2800   assert(old_base != NULL, "");
2801   ptrdiff_t delta = new_base - old_base;
2802   if (_i2c_entry != NULL)
2803     _i2c_entry += delta;
2804   if (_c2i_entry != NULL)
2805     _c2i_entry += delta;
2806   if (_c2i_unverified_entry != NULL)
2807     _c2i_unverified_entry += delta;
2808   if (_c2i_no_clinit_check_entry != NULL)
2809     _c2i_no_clinit_check_entry += delta;
2810   assert(base_address() == new_base, "");
2811 }
2812 
2813 
2814 void AdapterHandlerEntry::deallocate() {
2815   delete _fingerprint;
2816 #ifdef ASSERT
2817   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2818 #endif
2819 }
2820 
2821 
2822 #ifdef ASSERT
2823 // Capture the code before relocation so that it can be compared
2824 // against other versions.  If the code is captured after relocation
2825 // then relative instructions won't be equivalent.
2826 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2827   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2828   _saved_code_length = length;
2829   memcpy(_saved_code, buffer, length);
2830 }
2831 
2832 
2833 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2834   if (length != _saved_code_length) {
2835     return false;
2836   }
2837 
2838   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2839 }
2840 #endif
2841 
2842 
2843 /**
2844  * Create a native wrapper for this native method.  The wrapper converts the
2845  * Java-compiled calling convention to the native convention, handles
2846  * arguments, and transitions to native.  On return from the native we transition
2847  * back to java blocking if a safepoint is in progress.
2848  */
2849 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2850   ResourceMark rm;
2851   nmethod* nm = NULL;
2852   address critical_entry = NULL;
2853 
2854   assert(method->is_native(), "must be native");
2855   assert(method->is_method_handle_intrinsic() ||
2856          method->has_native_function(), "must have something valid to call!");
2857 
2858   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
2859     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
2860     critical_entry = NativeLookup::lookup_critical_entry(method);
2861   }
2862 
2863   {
2864     // Perform the work while holding the lock, but perform any printing outside the lock
2865     MutexLocker mu(AdapterHandlerLibrary_lock);
2866     // See if somebody beat us to it
2867     if (method->code() != NULL) {
2868       return;
2869     }
2870 
2871     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2872     assert(compile_id > 0, "Must generate native wrapper");
2873 
2874 
2875     ResourceMark rm;
2876     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2877     if (buf != NULL) {
2878       CodeBuffer buffer(buf);
2879       double locs_buf[20];
2880       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2881       MacroAssembler _masm(&buffer);
2882 
2883       // Fill in the signature array, for the calling-convention call.
2884       const int total_args_passed = method->size_of_parameters();
2885 
2886       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2887       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2888       int i=0;
2889       if (!method->is_static())  // Pass in receiver first
2890         sig_bt[i++] = T_OBJECT;
2891       SignatureStream ss(method->signature());
2892       for (; !ss.at_return_type(); ss.next()) {
2893         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2894         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2895           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2896       }
2897       assert(i == total_args_passed, "");
2898       BasicType ret_type = ss.type();
2899 
2900       // Now get the compiled-Java layout as input (or output) arguments.
2901       // NOTE: Stubs for compiled entry points of method handle intrinsics
2902       // are just trampolines so the argument registers must be outgoing ones.
2903       const bool is_outgoing = method->is_method_handle_intrinsic();
2904       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2905 
2906       // Generate the compiled-to-native wrapper code
2907       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
2908 
2909       if (nm != NULL) {
2910         method->set_code(method, nm);
2911 
2912         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2913         if (directive->PrintAssemblyOption) {
2914           nm->print_code();
2915         }
2916         DirectivesStack::release(directive);
2917       }
2918     }
2919   } // Unlock AdapterHandlerLibrary_lock
2920 
2921 
2922   // Install the generated code.
2923   if (nm != NULL) {
2924     const char *msg = method->is_static() ? "(static)" : "";
2925     CompileTask::print_ul(nm, msg);
2926     if (PrintCompilation) {
2927       ttyLocker ttyl;
2928       CompileTask::print(tty, nm, msg);
2929     }
2930     nm->post_compiled_method_load_event();
2931   }
2932 }
2933 
2934 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2935   assert(thread == JavaThread::current(), "must be");
2936   // The code is about to enter a JNI lazy critical native method and
2937   // _needs_gc is true, so if this thread is already in a critical
2938   // section then just return, otherwise this thread should block
2939   // until needs_gc has been cleared.
2940   if (thread->in_critical()) {
2941     return;
2942   }
2943   // Lock and unlock a critical section to give the system a chance to block
2944   GCLocker::lock_critical(thread);
2945   GCLocker::unlock_critical(thread);
2946 JRT_END
2947 
2948 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2949   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2950   assert(obj != NULL, "Should not be null");
2951   oop o(obj);
2952   o = Universe::heap()->pin_object(thread, o);
2953   assert(o != NULL, "Should not be null");
2954   return o;
2955 JRT_END
2956 
2957 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2958   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2959   assert(obj != NULL, "Should not be null");
2960   oop o(obj);
2961   Universe::heap()->unpin_object(thread, o);
2962 JRT_END
2963 
2964 // -------------------------------------------------------------------------
2965 // Java-Java calling convention
2966 // (what you use when Java calls Java)
2967 
2968 //------------------------------name_for_receiver----------------------------------
2969 // For a given signature, return the VMReg for parameter 0.
2970 VMReg SharedRuntime::name_for_receiver() {
2971   VMRegPair regs;
2972   BasicType sig_bt = T_OBJECT;
2973   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2974   // Return argument 0 register.  In the LP64 build pointers
2975   // take 2 registers, but the VM wants only the 'main' name.
2976   return regs.first();
2977 }
2978 
2979 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2980   // This method is returning a data structure allocating as a
2981   // ResourceObject, so do not put any ResourceMarks in here.
2982   char *s = sig->as_C_string();
2983   int len = (int)strlen(s);
2984   s++; len--;                   // Skip opening paren
2985 
2986   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2987   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2988   int cnt = 0;
2989   if (has_receiver) {
2990     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2991   }
2992 
2993   while (*s != ')') {          // Find closing right paren
2994     switch (*s++) {            // Switch on signature character
2995     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2996     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2997     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2998     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2999     case 'I': sig_bt[cnt++] = T_INT;     break;
3000     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3001     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3002     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3003     case 'V': sig_bt[cnt++] = T_VOID;    break;
3004     case 'L':                   // Oop
3005       while (*s++ != ';');   // Skip signature
3006       sig_bt[cnt++] = T_OBJECT;
3007       break;
3008     case '[': {                 // Array
3009       do {                      // Skip optional size
3010         while (*s >= '0' && *s <= '9') s++;
3011       } while (*s++ == '[');   // Nested arrays?
3012       // Skip element type
3013       if (s[-1] == 'L')
3014         while (*s++ != ';'); // Skip signature
3015       sig_bt[cnt++] = T_ARRAY;
3016       break;
3017     }
3018     default : ShouldNotReachHere();
3019     }
3020   }
3021 
3022   if (has_appendix) {
3023     sig_bt[cnt++] = T_OBJECT;
3024   }
3025 
3026   assert(cnt < 256, "grow table size");
3027 
3028   int comp_args_on_stack;
3029   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3030 
3031   // the calling convention doesn't count out_preserve_stack_slots so
3032   // we must add that in to get "true" stack offsets.
3033 
3034   if (comp_args_on_stack) {
3035     for (int i = 0; i < cnt; i++) {
3036       VMReg reg1 = regs[i].first();
3037       if (reg1->is_stack()) {
3038         // Yuck
3039         reg1 = reg1->bias(out_preserve_stack_slots());
3040       }
3041       VMReg reg2 = regs[i].second();
3042       if (reg2->is_stack()) {
3043         // Yuck
3044         reg2 = reg2->bias(out_preserve_stack_slots());
3045       }
3046       regs[i].set_pair(reg2, reg1);
3047     }
3048   }
3049 
3050   // results
3051   *arg_size = cnt;
3052   return regs;
3053 }
3054 
3055 // OSR Migration Code
3056 //
3057 // This code is used convert interpreter frames into compiled frames.  It is
3058 // called from very start of a compiled OSR nmethod.  A temp array is
3059 // allocated to hold the interesting bits of the interpreter frame.  All
3060 // active locks are inflated to allow them to move.  The displaced headers and
3061 // active interpreter locals are copied into the temp buffer.  Then we return
3062 // back to the compiled code.  The compiled code then pops the current
3063 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3064 // copies the interpreter locals and displaced headers where it wants.
3065 // Finally it calls back to free the temp buffer.
3066 //
3067 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3068 
3069 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3070 
3071   //
3072   // This code is dependent on the memory layout of the interpreter local
3073   // array and the monitors. On all of our platforms the layout is identical
3074   // so this code is shared. If some platform lays the their arrays out
3075   // differently then this code could move to platform specific code or
3076   // the code here could be modified to copy items one at a time using
3077   // frame accessor methods and be platform independent.
3078 
3079   frame fr = thread->last_frame();
3080   assert(fr.is_interpreted_frame(), "");
3081   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3082 
3083   // Figure out how many monitors are active.
3084   int active_monitor_count = 0;
3085   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3086        kptr < fr.interpreter_frame_monitor_begin();
3087        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3088     if (kptr->obj() != NULL) active_monitor_count++;
3089   }
3090 
3091   // QQQ we could place number of active monitors in the array so that compiled code
3092   // could double check it.
3093 
3094   Method* moop = fr.interpreter_frame_method();
3095   int max_locals = moop->max_locals();
3096   // Allocate temp buffer, 1 word per local & 2 per active monitor
3097   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3098   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3099 
3100   // Copy the locals.  Order is preserved so that loading of longs works.
3101   // Since there's no GC I can copy the oops blindly.
3102   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3103   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3104                        (HeapWord*)&buf[0],
3105                        max_locals);
3106 
3107   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3108   int i = max_locals;
3109   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3110        kptr2 < fr.interpreter_frame_monitor_begin();
3111        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3112     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3113       BasicLock *lock = kptr2->lock();
3114       // Inflate so the displaced header becomes position-independent
3115       if (lock->displaced_header()->is_unlocked())
3116         ObjectSynchronizer::inflate_helper(kptr2->obj());
3117       // Now the displaced header is free to move
3118       buf[i++] = (intptr_t)lock->displaced_header();
3119       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3120     }
3121   }
3122   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3123 
3124   return buf;
3125 JRT_END
3126 
3127 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3128   FREE_C_HEAP_ARRAY(intptr_t, buf);
3129 JRT_END
3130 
3131 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3132   AdapterHandlerTableIterator iter(_adapters);
3133   while (iter.has_next()) {
3134     AdapterHandlerEntry* a = iter.next();
3135     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3136   }
3137   return false;
3138 }
3139 
3140 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3141   AdapterHandlerTableIterator iter(_adapters);
3142   while (iter.has_next()) {
3143     AdapterHandlerEntry* a = iter.next();
3144     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3145       st->print("Adapter for signature: ");
3146       a->print_adapter_on(tty);
3147       return;
3148     }
3149   }
3150   assert(false, "Should have found handler");
3151 }
3152 
3153 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3154   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3155   if (get_i2c_entry() != NULL) {
3156     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3157   }
3158   if (get_c2i_entry() != NULL) {
3159     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3160   }
3161   if (get_c2i_unverified_entry() != NULL) {
3162     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3163   }
3164   if (get_c2i_no_clinit_check_entry() != NULL) {
3165     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3166   }
3167   st->cr();
3168 }
3169 
3170 #if INCLUDE_CDS
3171 
3172 void CDSAdapterHandlerEntry::init() {
3173   assert(DumpSharedSpaces, "used during dump time only");
3174   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3175   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3176 };
3177 
3178 #endif // INCLUDE_CDS
3179 
3180 
3181 #ifndef PRODUCT
3182 
3183 void AdapterHandlerLibrary::print_statistics() {
3184   _adapters->print_statistics();
3185 }
3186 
3187 #endif /* PRODUCT */
3188 
3189 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3190   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3191   if (thread->stack_reserved_zone_disabled()) {
3192   thread->enable_stack_reserved_zone();
3193   }
3194   thread->set_reserved_stack_activation(thread->stack_base());
3195 JRT_END
3196 
3197 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3198   ResourceMark rm(thread);
3199   frame activation;
3200   CompiledMethod* nm = NULL;
3201   int count = 1;
3202 
3203   assert(fr.is_java_frame(), "Must start on Java frame");
3204 
3205   while (true) {
3206     Method* method = NULL;
3207     bool found = false;
3208     if (fr.is_interpreted_frame()) {
3209       method = fr.interpreter_frame_method();
3210       if (method != NULL && method->has_reserved_stack_access()) {
3211         found = true;
3212       }
3213     } else {
3214       CodeBlob* cb = fr.cb();
3215       if (cb != NULL && cb->is_compiled()) {
3216         nm = cb->as_compiled_method();
3217         method = nm->method();
3218         // scope_desc_near() must be used, instead of scope_desc_at() because on
3219         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3220         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3221           method = sd->method();
3222           if (method != NULL && method->has_reserved_stack_access()) {
3223             found = true;
3224       }
3225     }
3226       }
3227     }
3228     if (found) {
3229       activation = fr;
3230       warning("Potentially dangerous stack overflow in "
3231               "ReservedStackAccess annotated method %s [%d]",
3232               method->name_and_sig_as_C_string(), count++);
3233       EventReservedStackActivation event;
3234       if (event.should_commit()) {
3235         event.set_method(method);
3236         event.commit();
3237       }
3238     }
3239     if (fr.is_first_java_frame()) {
3240       break;
3241     } else {
3242       fr = fr.java_sender();
3243     }
3244   }
3245   return activation;
3246 }
3247 
3248 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3249   // After any safepoint, just before going back to compiled code,
3250   // we inform the GC that we will be doing initializing writes to
3251   // this object in the future without emitting card-marks, so
3252   // GC may take any compensating steps.
3253 
3254   oop new_obj = thread->vm_result();
3255   if (new_obj == NULL) return;
3256 
3257   BarrierSet *bs = BarrierSet::barrier_set();
3258   bs->on_slowpath_allocation_exit(thread, new_obj);
3259 }