1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveBuilder.hpp"
  26 #include "cds/archiveUtils.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/aotCodeCache.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/compiledIC.hpp"
  35 #include "code/nmethod.inline.hpp"
  36 #include "code/scopeDesc.hpp"
  37 #include "code/vtableStubs.hpp"
  38 #include "compiler/abstractCompiler.hpp"
  39 #include "compiler/compileBroker.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/interpreterRuntime.hpp"
  45 #include "jvm.h"
  46 #include "jfr/jfrEvents.hpp"
  47 #include "logging/log.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "metaprogramming/primitiveConversions.hpp"
  51 #include "oops/klass.hpp"
  52 #include "oops/method.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "prims/forte.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/methodHandles.hpp"
  59 #include "prims/nativeLookup.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/atomic.hpp"
  62 #include "runtime/basicLock.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/init.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/jniHandles.inline.hpp"
  70 #include "runtime/perfData.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/stackWatermarkSet.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/synchronizer.inline.hpp"
  75 #include "runtime/timerTrace.hpp"
  76 #include "runtime/vframe.inline.hpp"
  77 #include "runtime/vframeArray.hpp"
  78 #include "runtime/vm_version.hpp"
  79 #include "utilities/copy.hpp"
  80 #include "utilities/dtrace.hpp"
  81 #include "utilities/events.hpp"
  82 #include "utilities/globalDefinitions.hpp"
  83 #include "utilities/resourceHash.hpp"
  84 #include "utilities/macros.hpp"
  85 #include "utilities/xmlstream.hpp"
  86 #ifdef COMPILER1
  87 #include "c1/c1_Runtime1.hpp"
  88 #endif
  89 #if INCLUDE_JFR
  90 #include "jfr/jfr.inline.hpp"
  91 #endif
  92 
  93 // Shared runtime stub routines reside in their own unique blob with a
  94 // single entry point
  95 
  96 
  97 #define SHARED_STUB_FIELD_DEFINE(name, type) \
  98   type*       SharedRuntime::BLOB_FIELD_NAME(name);
  99   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
 100 #undef SHARED_STUB_FIELD_DEFINE
 101 
 102 #if 0
 103 // TODO tweak global stub name generation to match this
 104 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 105 const char *SharedRuntime::_stub_names[] = {
 106   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 107 };
 108 #endif
 109 
 110 //----------------------------generate_stubs-----------------------------------
 111 void SharedRuntime::generate_initial_stubs() {
 112   // Build this early so it's available for the interpreter.
 113   _throw_StackOverflowError_blob =
 114     generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
 115                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 116 }
 117 
 118 void SharedRuntime::generate_stubs() {
 119   _wrong_method_blob =
 120     generate_resolve_blob(StubId::shared_wrong_method_id,
 121                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 122   _wrong_method_abstract_blob =
 123     generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
 124                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 125   _ic_miss_blob =
 126     generate_resolve_blob(StubId::shared_ic_miss_id,
 127                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 128   _resolve_opt_virtual_call_blob =
 129     generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
 130                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 131   _resolve_virtual_call_blob =
 132     generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
 133                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 134   _resolve_static_call_blob =
 135     generate_resolve_blob(StubId::shared_resolve_static_call_id,
 136                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 137 
 138   _throw_delayed_StackOverflowError_blob =
 139     generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
 140                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 141 
 142   _throw_AbstractMethodError_blob =
 143     generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
 144                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 145 
 146   _throw_IncompatibleClassChangeError_blob =
 147     generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
 148                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 149 
 150   _throw_NullPointerException_at_call_blob =
 151     generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
 152                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 153 
 154 #if COMPILER2_OR_JVMCI
 155   // Vectors are generated only by C2 and JVMCI.
 156   bool support_wide = is_wide_vector(MaxVectorSize);
 157   if (support_wide) {
 158     _polling_page_vectors_safepoint_handler_blob =
 159       generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
 160                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 161   }
 162 #endif // COMPILER2_OR_JVMCI
 163   _polling_page_safepoint_handler_blob =
 164     generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
 165                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 166   _polling_page_return_handler_blob =
 167     generate_handler_blob(StubId::shared_polling_page_return_handler_id,
 168                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 169 
 170   generate_deopt_blob();
 171 }
 172 
 173 void SharedRuntime::init_adapter_library() {
 174   AdapterHandlerLibrary::initialize();
 175 }
 176 
 177 #if INCLUDE_JFR
 178 //------------------------------generate jfr runtime stubs ------
 179 void SharedRuntime::generate_jfr_stubs() {
 180   ResourceMark rm;
 181   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 182   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 183 
 184   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 185   _jfr_return_lease_blob = generate_jfr_return_lease();
 186 }
 187 
 188 #endif // INCLUDE_JFR
 189 
 190 #include <math.h>
 191 
 192 // Implementation of SharedRuntime
 193 
 194 #ifndef PRODUCT
 195 // For statistics
 196 uint SharedRuntime::_ic_miss_ctr = 0;
 197 uint SharedRuntime::_wrong_method_ctr = 0;
 198 uint SharedRuntime::_resolve_static_ctr = 0;
 199 uint SharedRuntime::_resolve_virtual_ctr = 0;
 200 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
 201 uint SharedRuntime::_implicit_null_throws = 0;
 202 uint SharedRuntime::_implicit_div0_throws = 0;
 203 
 204 int64_t SharedRuntime::_nof_normal_calls = 0;
 205 int64_t SharedRuntime::_nof_inlined_calls = 0;
 206 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 207 int64_t SharedRuntime::_nof_static_calls = 0;
 208 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 209 int64_t SharedRuntime::_nof_interface_calls = 0;
 210 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 211 
 212 uint SharedRuntime::_new_instance_ctr=0;
 213 uint SharedRuntime::_new_array_ctr=0;
 214 uint SharedRuntime::_multi2_ctr=0;
 215 uint SharedRuntime::_multi3_ctr=0;
 216 uint SharedRuntime::_multi4_ctr=0;
 217 uint SharedRuntime::_multi5_ctr=0;
 218 uint SharedRuntime::_mon_enter_stub_ctr=0;
 219 uint SharedRuntime::_mon_exit_stub_ctr=0;
 220 uint SharedRuntime::_mon_enter_ctr=0;
 221 uint SharedRuntime::_mon_exit_ctr=0;
 222 uint SharedRuntime::_partial_subtype_ctr=0;
 223 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 224 uint SharedRuntime::_jshort_array_copy_ctr=0;
 225 uint SharedRuntime::_jint_array_copy_ctr=0;
 226 uint SharedRuntime::_jlong_array_copy_ctr=0;
 227 uint SharedRuntime::_oop_array_copy_ctr=0;
 228 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 229 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 230 uint SharedRuntime::_generic_array_copy_ctr=0;
 231 uint SharedRuntime::_slow_array_copy_ctr=0;
 232 uint SharedRuntime::_find_handler_ctr=0;
 233 uint SharedRuntime::_rethrow_ctr=0;
 234 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 235 
 236 int     SharedRuntime::_ICmiss_index                    = 0;
 237 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 238 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 239 
 240 
 241 void SharedRuntime::trace_ic_miss(address at) {
 242   for (int i = 0; i < _ICmiss_index; i++) {
 243     if (_ICmiss_at[i] == at) {
 244       _ICmiss_count[i]++;
 245       return;
 246     }
 247   }
 248   int index = _ICmiss_index++;
 249   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 250   _ICmiss_at[index] = at;
 251   _ICmiss_count[index] = 1;
 252 }
 253 
 254 void SharedRuntime::print_ic_miss_histogram() {
 255   if (ICMissHistogram) {
 256     tty->print_cr("IC Miss Histogram:");
 257     int tot_misses = 0;
 258     for (int i = 0; i < _ICmiss_index; i++) {
 259       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 260       tot_misses += _ICmiss_count[i];
 261     }
 262     tty->print_cr("Total IC misses: %7d", tot_misses);
 263   }
 264 }
 265 #endif // PRODUCT
 266 
 267 
 268 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 269   return x * y;
 270 JRT_END
 271 
 272 
 273 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 274   if (x == min_jlong && y == CONST64(-1)) {
 275     return x;
 276   } else {
 277     return x / y;
 278   }
 279 JRT_END
 280 
 281 
 282 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 283   if (x == min_jlong && y == CONST64(-1)) {
 284     return 0;
 285   } else {
 286     return x % y;
 287   }
 288 JRT_END
 289 
 290 
 291 #ifdef _WIN64
 292 const juint  float_sign_mask  = 0x7FFFFFFF;
 293 const juint  float_infinity   = 0x7F800000;
 294 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 295 const julong double_infinity  = CONST64(0x7FF0000000000000);
 296 #endif
 297 
 298 #if !defined(X86)
 299 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 300 #ifdef _WIN64
 301   // 64-bit Windows on amd64 returns the wrong values for
 302   // infinity operands.
 303   juint xbits = PrimitiveConversions::cast<juint>(x);
 304   juint ybits = PrimitiveConversions::cast<juint>(y);
 305   // x Mod Infinity == x unless x is infinity
 306   if (((xbits & float_sign_mask) != float_infinity) &&
 307        ((ybits & float_sign_mask) == float_infinity) ) {
 308     return x;
 309   }
 310   return ((jfloat)fmod_winx64((double)x, (double)y));
 311 #else
 312   return ((jfloat)fmod((double)x,(double)y));
 313 #endif
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 317 #ifdef _WIN64
 318   julong xbits = PrimitiveConversions::cast<julong>(x);
 319   julong ybits = PrimitiveConversions::cast<julong>(y);
 320   // x Mod Infinity == x unless x is infinity
 321   if (((xbits & double_sign_mask) != double_infinity) &&
 322        ((ybits & double_sign_mask) == double_infinity) ) {
 323     return x;
 324   }
 325   return ((jdouble)fmod_winx64((double)x, (double)y));
 326 #else
 327   return ((jdouble)fmod((double)x,(double)y));
 328 #endif
 329 JRT_END
 330 #endif // !X86
 331 
 332 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 333   return (jfloat)x;
 334 JRT_END
 335 
 336 #ifdef __SOFTFP__
 337 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 338   return x + y;
 339 JRT_END
 340 
 341 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 342   return x - y;
 343 JRT_END
 344 
 345 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 346   return x * y;
 347 JRT_END
 348 
 349 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 350   return x / y;
 351 JRT_END
 352 
 353 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 354   return x + y;
 355 JRT_END
 356 
 357 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 358   return x - y;
 359 JRT_END
 360 
 361 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 362   return x * y;
 363 JRT_END
 364 
 365 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 366   return x / y;
 367 JRT_END
 368 
 369 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 370   return (jdouble)x;
 371 JRT_END
 372 
 373 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 374   return (jdouble)x;
 375 JRT_END
 376 
 377 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 378   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 379 JRT_END
 380 
 381 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 382   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 383 JRT_END
 384 
 385 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 386   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 387 JRT_END
 388 
 389 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 390   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 391 JRT_END
 392 
 393 // Functions to return the opposite of the aeabi functions for nan.
 394 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 395   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 396 JRT_END
 397 
 398 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 399   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 400 JRT_END
 401 
 402 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 403   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 404 JRT_END
 405 
 406 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 407   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 408 JRT_END
 409 
 410 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 411   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 412 JRT_END
 413 
 414 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 415   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 416 JRT_END
 417 
 418 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 419   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 420 JRT_END
 421 
 422 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 423   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 424 JRT_END
 425 
 426 // Intrinsics make gcc generate code for these.
 427 float  SharedRuntime::fneg(float f)   {
 428   return -f;
 429 }
 430 
 431 double SharedRuntime::dneg(double f)  {
 432   return -f;
 433 }
 434 
 435 #endif // __SOFTFP__
 436 
 437 #if defined(__SOFTFP__) || defined(E500V2)
 438 // Intrinsics make gcc generate code for these.
 439 double SharedRuntime::dabs(double f)  {
 440   return (f <= (double)0.0) ? (double)0.0 - f : f;
 441 }
 442 
 443 #endif
 444 
 445 #if defined(__SOFTFP__)
 446 double SharedRuntime::dsqrt(double f) {
 447   return sqrt(f);
 448 }
 449 #endif
 450 
 451 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 452   if (g_isnan(x))
 453     return 0;
 454   if (x >= (jfloat) max_jint)
 455     return max_jint;
 456   if (x <= (jfloat) min_jint)
 457     return min_jint;
 458   return (jint) x;
 459 JRT_END
 460 
 461 
 462 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 463   if (g_isnan(x))
 464     return 0;
 465   if (x >= (jfloat) max_jlong)
 466     return max_jlong;
 467   if (x <= (jfloat) min_jlong)
 468     return min_jlong;
 469   return (jlong) x;
 470 JRT_END
 471 
 472 
 473 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 474   if (g_isnan(x))
 475     return 0;
 476   if (x >= (jdouble) max_jint)
 477     return max_jint;
 478   if (x <= (jdouble) min_jint)
 479     return min_jint;
 480   return (jint) x;
 481 JRT_END
 482 
 483 
 484 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 485   if (g_isnan(x))
 486     return 0;
 487   if (x >= (jdouble) max_jlong)
 488     return max_jlong;
 489   if (x <= (jdouble) min_jlong)
 490     return min_jlong;
 491   return (jlong) x;
 492 JRT_END
 493 
 494 
 495 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 496   return (jfloat)x;
 497 JRT_END
 498 
 499 
 500 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 501   return (jfloat)x;
 502 JRT_END
 503 
 504 
 505 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 506   return (jdouble)x;
 507 JRT_END
 508 
 509 
 510 // Exception handling across interpreter/compiler boundaries
 511 //
 512 // exception_handler_for_return_address(...) returns the continuation address.
 513 // The continuation address is the entry point of the exception handler of the
 514 // previous frame depending on the return address.
 515 
 516 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 517   // Note: This is called when we have unwound the frame of the callee that did
 518   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 519   // Notably, the stack is not walkable at this point, and hence the check must
 520   // be deferred until later. Specifically, any of the handlers returned here in
 521   // this function, will get dispatched to, and call deferred checks to
 522   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 523   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 524   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 525 
 526   // Reset method handle flag.
 527   current->set_is_method_handle_return(false);
 528 
 529 #if INCLUDE_JVMCI
 530   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 531   // and other exception handler continuations do not read it
 532   current->set_exception_pc(nullptr);
 533 #endif // INCLUDE_JVMCI
 534 
 535   if (Continuation::is_return_barrier_entry(return_address)) {
 536     return StubRoutines::cont_returnBarrierExc();
 537   }
 538 
 539   // The fastest case first
 540   CodeBlob* blob = CodeCache::find_blob(return_address);
 541   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 542   if (nm != nullptr) {
 543     // Set flag if return address is a method handle call site.
 544     current->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 545     // native nmethods don't have exception handlers
 546     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 547     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 548     if (nm->is_deopt_pc(return_address)) {
 549       // If we come here because of a stack overflow, the stack may be
 550       // unguarded. Reguard the stack otherwise if we return to the
 551       // deopt blob and the stack bang causes a stack overflow we
 552       // crash.
 553       StackOverflow* overflow_state = current->stack_overflow_state();
 554       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 555       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 556         overflow_state->set_reserved_stack_activation(current->stack_base());
 557       }
 558       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 559       // The deferred StackWatermarkSet::after_unwind check will be performed in
 560       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 561       return SharedRuntime::deopt_blob()->unpack_with_exception();
 562     } else {
 563       // The deferred StackWatermarkSet::after_unwind check will be performed in
 564       // * OptoRuntime::handle_exception_C_helper for C2 code
 565       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 566       return nm->exception_begin();
 567     }
 568   }
 569 
 570   // Entry code
 571   if (StubRoutines::returns_to_call_stub(return_address)) {
 572     // The deferred StackWatermarkSet::after_unwind check will be performed in
 573     // JavaCallWrapper::~JavaCallWrapper
 574     assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
 575     return StubRoutines::catch_exception_entry();
 576   }
 577   if (blob != nullptr && blob->is_upcall_stub()) {
 578     return StubRoutines::upcall_stub_exception_handler();
 579   }
 580   // Interpreted code
 581   if (Interpreter::contains(return_address)) {
 582     // The deferred StackWatermarkSet::after_unwind check will be performed in
 583     // InterpreterRuntime::exception_handler_for_exception
 584     return Interpreter::rethrow_exception_entry();
 585   }
 586 
 587   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 588   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 589 
 590 #ifndef PRODUCT
 591   { ResourceMark rm;
 592     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 593     os::print_location(tty, (intptr_t)return_address);
 594     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 595     tty->print_cr("b) other problem");
 596   }
 597 #endif // PRODUCT
 598   ShouldNotReachHere();
 599   return nullptr;
 600 }
 601 
 602 
 603 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 604   return raw_exception_handler_for_return_address(current, return_address);
 605 JRT_END
 606 
 607 
 608 address SharedRuntime::get_poll_stub(address pc) {
 609   address stub;
 610   // Look up the code blob
 611   CodeBlob *cb = CodeCache::find_blob(pc);
 612 
 613   // Should be an nmethod
 614   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 615 
 616   // Look up the relocation information
 617   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 618       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 619 
 620 #ifdef ASSERT
 621   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 622     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 623     Disassembler::decode(cb);
 624     fatal("Only polling locations are used for safepoint");
 625   }
 626 #endif
 627 
 628   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 629   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 630   if (at_poll_return) {
 631     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 632            "polling page return stub not created yet");
 633     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 634   } else if (has_wide_vectors) {
 635     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 636            "polling page vectors safepoint stub not created yet");
 637     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 638   } else {
 639     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 640            "polling page safepoint stub not created yet");
 641     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 642   }
 643   log_debug(safepoint)("... found polling page %s exception at pc = "
 644                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 645                        at_poll_return ? "return" : "loop",
 646                        (intptr_t)pc, (intptr_t)stub);
 647   return stub;
 648 }
 649 
 650 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 651   if (JvmtiExport::can_post_on_exceptions()) {
 652     vframeStream vfst(current, true);
 653     methodHandle method = methodHandle(current, vfst.method());
 654     address bcp = method()->bcp_from(vfst.bci());
 655     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 656   }
 657 
 658 #if INCLUDE_JVMCI
 659   if (EnableJVMCI) {
 660     vframeStream vfst(current, true);
 661     methodHandle method = methodHandle(current, vfst.method());
 662     int bci = vfst.bci();
 663     MethodData* trap_mdo = method->method_data();
 664     if (trap_mdo != nullptr) {
 665       // Set exception_seen if the exceptional bytecode is an invoke
 666       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 667       if (call.is_valid()) {
 668         ResourceMark rm(current);
 669 
 670         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 671         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 672 
 673         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 674         if (pdata != nullptr && pdata->is_BitData()) {
 675           BitData* bit_data = (BitData*) pdata;
 676           bit_data->set_exception_seen();
 677         }
 678       }
 679     }
 680   }
 681 #endif
 682 
 683   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 684 }
 685 
 686 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 687   Handle h_exception = Exceptions::new_exception(current, name, message);
 688   throw_and_post_jvmti_exception(current, h_exception);
 689 }
 690 
 691 #if INCLUDE_JVMTI
 692 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 693   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 694   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 695   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 696   JNIHandles::destroy_local(vthread);
 697 JRT_END
 698 
 699 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 700   assert(hide == JNI_TRUE, "must be VTMS transition start");
 701   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 702   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 703   JNIHandles::destroy_local(vthread);
 704 JRT_END
 705 
 706 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 707   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 708   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 709   JNIHandles::destroy_local(vthread);
 710 JRT_END
 711 
 712 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 713   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 714   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 715   JNIHandles::destroy_local(vthread);
 716 JRT_END
 717 #endif // INCLUDE_JVMTI
 718 
 719 // The interpreter code to call this tracing function is only
 720 // called/generated when UL is on for redefine, class and has the right level
 721 // and tags. Since obsolete methods are never compiled, we don't have
 722 // to modify the compilers to generate calls to this function.
 723 //
 724 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 725     JavaThread* thread, Method* method))
 726   if (method->is_obsolete()) {
 727     // We are calling an obsolete method, but this is not necessarily
 728     // an error. Our method could have been redefined just after we
 729     // fetched the Method* from the constant pool.
 730     ResourceMark rm;
 731     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 732   }
 733   return 0;
 734 JRT_END
 735 
 736 // ret_pc points into caller; we are returning caller's exception handler
 737 // for given exception
 738 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 739 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 740                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 741   assert(nm != nullptr, "must exist");
 742   ResourceMark rm;
 743 
 744 #if INCLUDE_JVMCI
 745   if (nm->is_compiled_by_jvmci()) {
 746     // lookup exception handler for this pc
 747     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 748     ExceptionHandlerTable table(nm);
 749     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 750     if (t != nullptr) {
 751       return nm->code_begin() + t->pco();
 752     } else {
 753       return Deoptimization::deoptimize_for_missing_exception_handler(nm);
 754     }
 755   }
 756 #endif // INCLUDE_JVMCI
 757 
 758   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 759   // determine handler bci, if any
 760   EXCEPTION_MARK;
 761 
 762   int handler_bci = -1;
 763   int scope_depth = 0;
 764   if (!force_unwind) {
 765     int bci = sd->bci();
 766     bool recursive_exception = false;
 767     do {
 768       bool skip_scope_increment = false;
 769       // exception handler lookup
 770       Klass* ek = exception->klass();
 771       methodHandle mh(THREAD, sd->method());
 772       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 773       if (HAS_PENDING_EXCEPTION) {
 774         recursive_exception = true;
 775         // We threw an exception while trying to find the exception handler.
 776         // Transfer the new exception to the exception handle which will
 777         // be set into thread local storage, and do another lookup for an
 778         // exception handler for this exception, this time starting at the
 779         // BCI of the exception handler which caused the exception to be
 780         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 781         // argument to ensure that the correct exception is thrown (4870175).
 782         recursive_exception_occurred = true;
 783         exception = Handle(THREAD, PENDING_EXCEPTION);
 784         CLEAR_PENDING_EXCEPTION;
 785         if (handler_bci >= 0) {
 786           bci = handler_bci;
 787           handler_bci = -1;
 788           skip_scope_increment = true;
 789         }
 790       }
 791       else {
 792         recursive_exception = false;
 793       }
 794       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 795         sd = sd->sender();
 796         if (sd != nullptr) {
 797           bci = sd->bci();
 798         }
 799         ++scope_depth;
 800       }
 801     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 802   }
 803 
 804   // found handling method => lookup exception handler
 805   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 806 
 807   ExceptionHandlerTable table(nm);
 808   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 809   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 810     // Allow abbreviated catch tables.  The idea is to allow a method
 811     // to materialize its exceptions without committing to the exact
 812     // routing of exceptions.  In particular this is needed for adding
 813     // a synthetic handler to unlock monitors when inlining
 814     // synchronized methods since the unlock path isn't represented in
 815     // the bytecodes.
 816     t = table.entry_for(catch_pco, -1, 0);
 817   }
 818 
 819 #ifdef COMPILER1
 820   if (t == nullptr && nm->is_compiled_by_c1()) {
 821     assert(nm->unwind_handler_begin() != nullptr, "");
 822     return nm->unwind_handler_begin();
 823   }
 824 #endif
 825 
 826   if (t == nullptr) {
 827     ttyLocker ttyl;
 828     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 829     tty->print_cr("   Exception:");
 830     exception->print();
 831     tty->cr();
 832     tty->print_cr(" Compiled exception table :");
 833     table.print();
 834     nm->print();
 835     nm->print_code();
 836     guarantee(false, "missing exception handler");
 837     return nullptr;
 838   }
 839 
 840   if (handler_bci != -1) { // did we find a handler in this method?
 841     sd->method()->set_exception_handler_entered(handler_bci); // profile
 842   }
 843   return nm->code_begin() + t->pco();
 844 }
 845 
 846 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 847   // These errors occur only at call sites
 848   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 849 JRT_END
 850 
 851 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 852   // These errors occur only at call sites
 853   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 854 JRT_END
 855 
 856 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 857   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 858 JRT_END
 859 
 860 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 861   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 862 JRT_END
 863 
 864 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 865   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 866   // cache sites (when the callee activation is not yet set up) so we are at a call site
 867   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 868 JRT_END
 869 
 870 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 871   throw_StackOverflowError_common(current, false);
 872 JRT_END
 873 
 874 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 875   throw_StackOverflowError_common(current, true);
 876 JRT_END
 877 
 878 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 879   // We avoid using the normal exception construction in this case because
 880   // it performs an upcall to Java, and we're already out of stack space.
 881   JavaThread* THREAD = current; // For exception macros.
 882   Klass* k = vmClasses::StackOverflowError_klass();
 883   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 884   if (delayed) {
 885     java_lang_Throwable::set_message(exception_oop,
 886                                      Universe::delayed_stack_overflow_error_message());
 887   }
 888   Handle exception (current, exception_oop);
 889   if (StackTraceInThrowable) {
 890     java_lang_Throwable::fill_in_stack_trace(exception);
 891   }
 892   // Remove the ScopedValue bindings in case we got a
 893   // StackOverflowError while we were trying to remove ScopedValue
 894   // bindings.
 895   current->clear_scopedValueBindings();
 896   // Increment counter for hs_err file reporting
 897   Atomic::inc(&Exceptions::_stack_overflow_errors);
 898   throw_and_post_jvmti_exception(current, exception);
 899 }
 900 
 901 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 902                                                            address pc,
 903                                                            ImplicitExceptionKind exception_kind)
 904 {
 905   address target_pc = nullptr;
 906 
 907   if (Interpreter::contains(pc)) {
 908     switch (exception_kind) {
 909       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 910       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 911       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 912       default:                      ShouldNotReachHere();
 913     }
 914   } else {
 915     switch (exception_kind) {
 916       case STACK_OVERFLOW: {
 917         // Stack overflow only occurs upon frame setup; the callee is
 918         // going to be unwound. Dispatch to a shared runtime stub
 919         // which will cause the StackOverflowError to be fabricated
 920         // and processed.
 921         // Stack overflow should never occur during deoptimization:
 922         // the compiled method bangs the stack by as much as the
 923         // interpreter would need in case of a deoptimization. The
 924         // deoptimization blob and uncommon trap blob bang the stack
 925         // in a debug VM to verify the correctness of the compiled
 926         // method stack banging.
 927         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 928         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 929         return SharedRuntime::throw_StackOverflowError_entry();
 930       }
 931 
 932       case IMPLICIT_NULL: {
 933         if (VtableStubs::contains(pc)) {
 934           // We haven't yet entered the callee frame. Fabricate an
 935           // exception and begin dispatching it in the caller. Since
 936           // the caller was at a call site, it's safe to destroy all
 937           // caller-saved registers, as these entry points do.
 938           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 939 
 940           // If vt_stub is null, then return null to signal handler to report the SEGV error.
 941           if (vt_stub == nullptr) return nullptr;
 942 
 943           if (vt_stub->is_abstract_method_error(pc)) {
 944             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 945             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 946             // Instead of throwing the abstract method error here directly, we re-resolve
 947             // and will throw the AbstractMethodError during resolve. As a result, we'll
 948             // get a more detailed error message.
 949             return SharedRuntime::get_handle_wrong_method_stub();
 950           } else {
 951             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 952             // Assert that the signal comes from the expected location in stub code.
 953             assert(vt_stub->is_null_pointer_exception(pc),
 954                    "obtained signal from unexpected location in stub code");
 955             return SharedRuntime::throw_NullPointerException_at_call_entry();
 956           }
 957         } else {
 958           CodeBlob* cb = CodeCache::find_blob(pc);
 959 
 960           // If code blob is null, then return null to signal handler to report the SEGV error.
 961           if (cb == nullptr) return nullptr;
 962 
 963           // Exception happened in CodeCache. Must be either:
 964           // 1. Inline-cache check in C2I handler blob,
 965           // 2. Inline-cache check in nmethod, or
 966           // 3. Implicit null exception in nmethod
 967 
 968           if (!cb->is_nmethod()) {
 969             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 970             if (!is_in_blob) {
 971               // Allow normal crash reporting to handle this
 972               return nullptr;
 973             }
 974             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 975             // There is no handler here, so we will simply unwind.
 976             return SharedRuntime::throw_NullPointerException_at_call_entry();
 977           }
 978 
 979           // Otherwise, it's a compiled method.  Consult its exception handlers.
 980           nmethod* nm = cb->as_nmethod();
 981           if (nm->inlinecache_check_contains(pc)) {
 982             // exception happened inside inline-cache check code
 983             // => the nmethod is not yet active (i.e., the frame
 984             // is not set up yet) => use return address pushed by
 985             // caller => don't push another return address
 986             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 987             return SharedRuntime::throw_NullPointerException_at_call_entry();
 988           }
 989 
 990           if (nm->method()->is_method_handle_intrinsic()) {
 991             // exception happened inside MH dispatch code, similar to a vtable stub
 992             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 993             return SharedRuntime::throw_NullPointerException_at_call_entry();
 994           }
 995 
 996 #ifndef PRODUCT
 997           _implicit_null_throws++;
 998 #endif
 999           target_pc = nm->continuation_for_implicit_null_exception(pc);
1000           // If there's an unexpected fault, target_pc might be null,
1001           // in which case we want to fall through into the normal
1002           // error handling code.
1003         }
1004 
1005         break; // fall through
1006       }
1007 
1008 
1009       case IMPLICIT_DIVIDE_BY_ZERO: {
1010         nmethod* nm = CodeCache::find_nmethod(pc);
1011         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1012 #ifndef PRODUCT
1013         _implicit_div0_throws++;
1014 #endif
1015         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1016         // If there's an unexpected fault, target_pc might be null,
1017         // in which case we want to fall through into the normal
1018         // error handling code.
1019         break; // fall through
1020       }
1021 
1022       default: ShouldNotReachHere();
1023     }
1024 
1025     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1026 
1027     if (exception_kind == IMPLICIT_NULL) {
1028 #ifndef PRODUCT
1029       // for AbortVMOnException flag
1030       Exceptions::debug_check_abort("java.lang.NullPointerException");
1031 #endif //PRODUCT
1032       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1033     } else {
1034 #ifndef PRODUCT
1035       // for AbortVMOnException flag
1036       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1037 #endif //PRODUCT
1038       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1039     }
1040     return target_pc;
1041   }
1042 
1043   ShouldNotReachHere();
1044   return nullptr;
1045 }
1046 
1047 
1048 /**
1049  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1050  * installed in the native function entry of all native Java methods before
1051  * they get linked to their actual native methods.
1052  *
1053  * \note
1054  * This method actually never gets called!  The reason is because
1055  * the interpreter's native entries call NativeLookup::lookup() which
1056  * throws the exception when the lookup fails.  The exception is then
1057  * caught and forwarded on the return from NativeLookup::lookup() call
1058  * before the call to the native function.  This might change in the future.
1059  */
1060 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1061 {
1062   // We return a bad value here to make sure that the exception is
1063   // forwarded before we look at the return value.
1064   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1065 }
1066 JNI_END
1067 
1068 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1069   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1070 }
1071 
1072 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1073 #if INCLUDE_JVMCI
1074   if (!obj->klass()->has_finalizer()) {
1075     return;
1076   }
1077 #endif // INCLUDE_JVMCI
1078   assert(oopDesc::is_oop(obj), "must be a valid oop");
1079   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1080   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1081 JRT_END
1082 
1083 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1084   assert(thread != nullptr, "No thread");
1085   if (thread == nullptr) {
1086     return 0;
1087   }
1088   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1089             "current cannot touch oops after its GC barrier is detached.");
1090   oop obj = thread->threadObj();
1091   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1092 }
1093 
1094 /**
1095  * This function ought to be a void function, but cannot be because
1096  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1097  * 6254741.  Once that is fixed we can remove the dummy return value.
1098  */
1099 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1100   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1101 }
1102 
1103 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1104   return dtrace_object_alloc(thread, o, o->size());
1105 }
1106 
1107 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1108   assert(DTraceAllocProbes, "wrong call");
1109   Klass* klass = o->klass();
1110   Symbol* name = klass->name();
1111   HOTSPOT_OBJECT_ALLOC(
1112                    get_java_tid(thread),
1113                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1114   return 0;
1115 }
1116 
1117 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1118     JavaThread* current, Method* method))
1119   assert(current == JavaThread::current(), "pre-condition");
1120 
1121   assert(DTraceMethodProbes, "wrong call");
1122   Symbol* kname = method->klass_name();
1123   Symbol* name = method->name();
1124   Symbol* sig = method->signature();
1125   HOTSPOT_METHOD_ENTRY(
1126       get_java_tid(current),
1127       (char *) kname->bytes(), kname->utf8_length(),
1128       (char *) name->bytes(), name->utf8_length(),
1129       (char *) sig->bytes(), sig->utf8_length());
1130   return 0;
1131 JRT_END
1132 
1133 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1134     JavaThread* current, Method* method))
1135   assert(current == JavaThread::current(), "pre-condition");
1136   assert(DTraceMethodProbes, "wrong call");
1137   Symbol* kname = method->klass_name();
1138   Symbol* name = method->name();
1139   Symbol* sig = method->signature();
1140   HOTSPOT_METHOD_RETURN(
1141       get_java_tid(current),
1142       (char *) kname->bytes(), kname->utf8_length(),
1143       (char *) name->bytes(), name->utf8_length(),
1144       (char *) sig->bytes(), sig->utf8_length());
1145   return 0;
1146 JRT_END
1147 
1148 
1149 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1150 // for a call current in progress, i.e., arguments has been pushed on stack
1151 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1152 // vtable updates, etc.  Caller frame must be compiled.
1153 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1154   JavaThread* current = THREAD;
1155   ResourceMark rm(current);
1156 
1157   // last java frame on stack (which includes native call frames)
1158   vframeStream vfst(current, true);  // Do not skip and javaCalls
1159 
1160   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1161 }
1162 
1163 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1164   nmethod* caller = vfst.nm();
1165 
1166   address pc = vfst.frame_pc();
1167   { // Get call instruction under lock because another thread may be busy patching it.
1168     CompiledICLocker ic_locker(caller);
1169     return caller->attached_method_before_pc(pc);
1170   }
1171   return nullptr;
1172 }
1173 
1174 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1175 // for a call current in progress, i.e., arguments has been pushed on stack
1176 // but callee has not been invoked yet.  Caller frame must be compiled.
1177 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1178                                               CallInfo& callinfo, TRAPS) {
1179   Handle receiver;
1180   Handle nullHandle;  // create a handy null handle for exception returns
1181   JavaThread* current = THREAD;
1182 
1183   assert(!vfst.at_end(), "Java frame must exist");
1184 
1185   // Find caller and bci from vframe
1186   methodHandle caller(current, vfst.method());
1187   int          bci   = vfst.bci();
1188 
1189   if (caller->is_continuation_enter_intrinsic()) {
1190     bc = Bytecodes::_invokestatic;
1191     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1192     return receiver;
1193   }
1194 
1195   Bytecode_invoke bytecode(caller, bci);
1196   int bytecode_index = bytecode.index();
1197   bc = bytecode.invoke_code();
1198 
1199   methodHandle attached_method(current, extract_attached_method(vfst));
1200   if (attached_method.not_null()) {
1201     Method* callee = bytecode.static_target(CHECK_NH);
1202     vmIntrinsics::ID id = callee->intrinsic_id();
1203     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1204     // it attaches statically resolved method to the call site.
1205     if (MethodHandles::is_signature_polymorphic(id) &&
1206         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1207       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1208 
1209       // Adjust invocation mode according to the attached method.
1210       switch (bc) {
1211         case Bytecodes::_invokevirtual:
1212           if (attached_method->method_holder()->is_interface()) {
1213             bc = Bytecodes::_invokeinterface;
1214           }
1215           break;
1216         case Bytecodes::_invokeinterface:
1217           if (!attached_method->method_holder()->is_interface()) {
1218             bc = Bytecodes::_invokevirtual;
1219           }
1220           break;
1221         case Bytecodes::_invokehandle:
1222           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1223             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1224                                               : Bytecodes::_invokevirtual;
1225           }
1226           break;
1227         default:
1228           break;
1229       }
1230     }
1231   }
1232 
1233   assert(bc != Bytecodes::_illegal, "not initialized");
1234 
1235   bool has_receiver = bc != Bytecodes::_invokestatic &&
1236                       bc != Bytecodes::_invokedynamic &&
1237                       bc != Bytecodes::_invokehandle;
1238 
1239   // Find receiver for non-static call
1240   if (has_receiver) {
1241     // This register map must be update since we need to find the receiver for
1242     // compiled frames. The receiver might be in a register.
1243     RegisterMap reg_map2(current,
1244                          RegisterMap::UpdateMap::include,
1245                          RegisterMap::ProcessFrames::include,
1246                          RegisterMap::WalkContinuation::skip);
1247     frame stubFrame   = current->last_frame();
1248     // Caller-frame is a compiled frame
1249     frame callerFrame = stubFrame.sender(&reg_map2);
1250 
1251     if (attached_method.is_null()) {
1252       Method* callee = bytecode.static_target(CHECK_NH);
1253       if (callee == nullptr) {
1254         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1255       }
1256     }
1257 
1258     // Retrieve from a compiled argument list
1259     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1260     assert(oopDesc::is_oop_or_null(receiver()), "");
1261 
1262     if (receiver.is_null()) {
1263       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1264     }
1265   }
1266 
1267   // Resolve method
1268   if (attached_method.not_null()) {
1269     // Parameterized by attached method.
1270     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1271   } else {
1272     // Parameterized by bytecode.
1273     constantPoolHandle constants(current, caller->constants());
1274     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1275   }
1276 
1277 #ifdef ASSERT
1278   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1279   if (has_receiver) {
1280     assert(receiver.not_null(), "should have thrown exception");
1281     Klass* receiver_klass = receiver->klass();
1282     Klass* rk = nullptr;
1283     if (attached_method.not_null()) {
1284       // In case there's resolved method attached, use its holder during the check.
1285       rk = attached_method->method_holder();
1286     } else {
1287       // Klass is already loaded.
1288       constantPoolHandle constants(current, caller->constants());
1289       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1290     }
1291     Klass* static_receiver_klass = rk;
1292     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1293            "actual receiver must be subclass of static receiver klass");
1294     if (receiver_klass->is_instance_klass()) {
1295       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1296         tty->print_cr("ERROR: Klass not yet initialized!!");
1297         receiver_klass->print();
1298       }
1299       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1300     }
1301   }
1302 #endif
1303 
1304   return receiver;
1305 }
1306 
1307 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1308   JavaThread* current = THREAD;
1309   ResourceMark rm(current);
1310   // We need first to check if any Java activations (compiled, interpreted)
1311   // exist on the stack since last JavaCall.  If not, we need
1312   // to get the target method from the JavaCall wrapper.
1313   vframeStream vfst(current, true);  // Do not skip any javaCalls
1314   methodHandle callee_method;
1315   if (vfst.at_end()) {
1316     // No Java frames were found on stack since we did the JavaCall.
1317     // Hence the stack can only contain an entry_frame.  We need to
1318     // find the target method from the stub frame.
1319     RegisterMap reg_map(current,
1320                         RegisterMap::UpdateMap::skip,
1321                         RegisterMap::ProcessFrames::include,
1322                         RegisterMap::WalkContinuation::skip);
1323     frame fr = current->last_frame();
1324     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1325     fr = fr.sender(&reg_map);
1326     assert(fr.is_entry_frame(), "must be");
1327     // fr is now pointing to the entry frame.
1328     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1329   } else {
1330     Bytecodes::Code bc;
1331     CallInfo callinfo;
1332     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1333     callee_method = methodHandle(current, callinfo.selected_method());
1334   }
1335   assert(callee_method()->is_method(), "must be");
1336   return callee_method;
1337 }
1338 
1339 // Resolves a call.
1340 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1341   JavaThread* current = THREAD;
1342   ResourceMark rm(current);
1343   RegisterMap cbl_map(current,
1344                       RegisterMap::UpdateMap::skip,
1345                       RegisterMap::ProcessFrames::include,
1346                       RegisterMap::WalkContinuation::skip);
1347   frame caller_frame = current->last_frame().sender(&cbl_map);
1348 
1349   CodeBlob* caller_cb = caller_frame.cb();
1350   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1351   nmethod* caller_nm = caller_cb->as_nmethod();
1352 
1353   // determine call info & receiver
1354   // note: a) receiver is null for static calls
1355   //       b) an exception is thrown if receiver is null for non-static calls
1356   CallInfo call_info;
1357   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1358   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1359 
1360   NoSafepointVerifier nsv;
1361 
1362   methodHandle callee_method(current, call_info.selected_method());
1363 
1364   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1365          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1366          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1367          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1368          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1369 
1370   assert(!caller_nm->is_unloading(), "It should not be unloading");
1371 
1372 #ifndef PRODUCT
1373   // tracing/debugging/statistics
1374   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1375                  (is_virtual) ? (&_resolve_virtual_ctr) :
1376                                 (&_resolve_static_ctr);
1377   Atomic::inc(addr);
1378 
1379   if (TraceCallFixup) {
1380     ResourceMark rm(current);
1381     tty->print("resolving %s%s (%s) call to",
1382                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1383                Bytecodes::name(invoke_code));
1384     callee_method->print_short_name(tty);
1385     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1386                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1387   }
1388 #endif
1389 
1390   if (invoke_code == Bytecodes::_invokestatic) {
1391     assert(callee_method->method_holder()->is_initialized() ||
1392            callee_method->method_holder()->is_reentrant_initialization(current),
1393            "invalid class initialization state for invoke_static");
1394     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1395       // In order to keep class initialization check, do not patch call
1396       // site for static call when the class is not fully initialized.
1397       // Proper check is enforced by call site re-resolution on every invocation.
1398       //
1399       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1400       // explicit class initialization check is put in nmethod entry (VEP).
1401       assert(callee_method->method_holder()->is_linked(), "must be");
1402       return callee_method;
1403     }
1404   }
1405 
1406 
1407   // JSR 292 key invariant:
1408   // If the resolved method is a MethodHandle invoke target, the call
1409   // site must be a MethodHandle call site, because the lambda form might tail-call
1410   // leaving the stack in a state unknown to either caller or callee
1411 
1412   // Compute entry points. The computation of the entry points is independent of
1413   // patching the call.
1414 
1415   // Make sure the callee nmethod does not get deoptimized and removed before
1416   // we are done patching the code.
1417 
1418 
1419   CompiledICLocker ml(caller_nm);
1420   if (is_virtual && !is_optimized) {
1421     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1422     inline_cache->update(&call_info, receiver->klass());
1423   } else {
1424     // Callsite is a direct call - set it to the destination method
1425     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1426     callsite->set(callee_method);
1427   }
1428 
1429   return callee_method;
1430 }
1431 
1432 // Inline caches exist only in compiled code
1433 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1434 #ifdef ASSERT
1435   RegisterMap reg_map(current,
1436                       RegisterMap::UpdateMap::skip,
1437                       RegisterMap::ProcessFrames::include,
1438                       RegisterMap::WalkContinuation::skip);
1439   frame stub_frame = current->last_frame();
1440   assert(stub_frame.is_runtime_frame(), "sanity check");
1441   frame caller_frame = stub_frame.sender(&reg_map);
1442   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1443 #endif /* ASSERT */
1444 
1445   methodHandle callee_method;
1446   JRT_BLOCK
1447     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1448     // Return Method* through TLS
1449     current->set_vm_result_metadata(callee_method());
1450   JRT_BLOCK_END
1451   // return compiled code entry point after potential safepoints
1452   return get_resolved_entry(current, callee_method);
1453 JRT_END
1454 
1455 
1456 // Handle call site that has been made non-entrant
1457 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1458   // 6243940 We might end up in here if the callee is deoptimized
1459   // as we race to call it.  We don't want to take a safepoint if
1460   // the caller was interpreted because the caller frame will look
1461   // interpreted to the stack walkers and arguments are now
1462   // "compiled" so it is much better to make this transition
1463   // invisible to the stack walking code. The i2c path will
1464   // place the callee method in the callee_target. It is stashed
1465   // there because if we try and find the callee by normal means a
1466   // safepoint is possible and have trouble gc'ing the compiled args.
1467   RegisterMap reg_map(current,
1468                       RegisterMap::UpdateMap::skip,
1469                       RegisterMap::ProcessFrames::include,
1470                       RegisterMap::WalkContinuation::skip);
1471   frame stub_frame = current->last_frame();
1472   assert(stub_frame.is_runtime_frame(), "sanity check");
1473   frame caller_frame = stub_frame.sender(&reg_map);
1474 
1475   if (caller_frame.is_interpreted_frame() ||
1476       caller_frame.is_entry_frame() ||
1477       caller_frame.is_upcall_stub_frame()) {
1478     Method* callee = current->callee_target();
1479     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1480     current->set_vm_result_metadata(callee);
1481     current->set_callee_target(nullptr);
1482     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1483       // Bypass class initialization checks in c2i when caller is in native.
1484       // JNI calls to static methods don't have class initialization checks.
1485       // Fast class initialization checks are present in c2i adapters and call into
1486       // SharedRuntime::handle_wrong_method() on the slow path.
1487       //
1488       // JVM upcalls may land here as well, but there's a proper check present in
1489       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1490       // so bypassing it in c2i adapter is benign.
1491       return callee->get_c2i_no_clinit_check_entry();
1492     } else {
1493       return callee->get_c2i_entry();
1494     }
1495   }
1496 
1497   // Must be compiled to compiled path which is safe to stackwalk
1498   methodHandle callee_method;
1499   JRT_BLOCK
1500     // Force resolving of caller (if we called from compiled frame)
1501     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1502     current->set_vm_result_metadata(callee_method());
1503   JRT_BLOCK_END
1504   // return compiled code entry point after potential safepoints
1505   return get_resolved_entry(current, callee_method);
1506 JRT_END
1507 
1508 // Handle abstract method call
1509 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1510   // Verbose error message for AbstractMethodError.
1511   // Get the called method from the invoke bytecode.
1512   vframeStream vfst(current, true);
1513   assert(!vfst.at_end(), "Java frame must exist");
1514   methodHandle caller(current, vfst.method());
1515   Bytecode_invoke invoke(caller, vfst.bci());
1516   DEBUG_ONLY( invoke.verify(); )
1517 
1518   // Find the compiled caller frame.
1519   RegisterMap reg_map(current,
1520                       RegisterMap::UpdateMap::include,
1521                       RegisterMap::ProcessFrames::include,
1522                       RegisterMap::WalkContinuation::skip);
1523   frame stubFrame = current->last_frame();
1524   assert(stubFrame.is_runtime_frame(), "must be");
1525   frame callerFrame = stubFrame.sender(&reg_map);
1526   assert(callerFrame.is_compiled_frame(), "must be");
1527 
1528   // Install exception and return forward entry.
1529   address res = SharedRuntime::throw_AbstractMethodError_entry();
1530   JRT_BLOCK
1531     methodHandle callee(current, invoke.static_target(current));
1532     if (!callee.is_null()) {
1533       oop recv = callerFrame.retrieve_receiver(&reg_map);
1534       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1535       res = StubRoutines::forward_exception_entry();
1536       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1537     }
1538   JRT_BLOCK_END
1539   return res;
1540 JRT_END
1541 
1542 // return verified_code_entry if interp_only_mode is not set for the current thread;
1543 // otherwise return c2i entry.
1544 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1545   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1546     // In interp_only_mode we need to go to the interpreted entry
1547     // The c2i won't patch in this mode -- see fixup_callers_callsite
1548     return callee_method->get_c2i_entry();
1549   }
1550   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1551   return callee_method->verified_code_entry();
1552 }
1553 
1554 // resolve a static call and patch code
1555 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1556   methodHandle callee_method;
1557   bool enter_special = false;
1558   JRT_BLOCK
1559     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1560     current->set_vm_result_metadata(callee_method());
1561   JRT_BLOCK_END
1562   // return compiled code entry point after potential safepoints
1563   return get_resolved_entry(current, callee_method);
1564 JRT_END
1565 
1566 // resolve virtual call and update inline cache to monomorphic
1567 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1568   methodHandle callee_method;
1569   JRT_BLOCK
1570     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1571     current->set_vm_result_metadata(callee_method());
1572   JRT_BLOCK_END
1573   // return compiled code entry point after potential safepoints
1574   return get_resolved_entry(current, callee_method);
1575 JRT_END
1576 
1577 
1578 // Resolve a virtual call that can be statically bound (e.g., always
1579 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1580 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1581   methodHandle callee_method;
1582   JRT_BLOCK
1583     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1584     current->set_vm_result_metadata(callee_method());
1585   JRT_BLOCK_END
1586   // return compiled code entry point after potential safepoints
1587   return get_resolved_entry(current, callee_method);
1588 JRT_END
1589 
1590 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1591   JavaThread* current = THREAD;
1592   ResourceMark rm(current);
1593   CallInfo call_info;
1594   Bytecodes::Code bc;
1595 
1596   // receiver is null for static calls. An exception is thrown for null
1597   // receivers for non-static calls
1598   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1599 
1600   methodHandle callee_method(current, call_info.selected_method());
1601 
1602 #ifndef PRODUCT
1603   Atomic::inc(&_ic_miss_ctr);
1604 
1605   // Statistics & Tracing
1606   if (TraceCallFixup) {
1607     ResourceMark rm(current);
1608     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1609     callee_method->print_short_name(tty);
1610     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1611   }
1612 
1613   if (ICMissHistogram) {
1614     MutexLocker m(VMStatistic_lock);
1615     RegisterMap reg_map(current,
1616                         RegisterMap::UpdateMap::skip,
1617                         RegisterMap::ProcessFrames::include,
1618                         RegisterMap::WalkContinuation::skip);
1619     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1620     // produce statistics under the lock
1621     trace_ic_miss(f.pc());
1622   }
1623 #endif
1624 
1625   // install an event collector so that when a vtable stub is created the
1626   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1627   // event can't be posted when the stub is created as locks are held
1628   // - instead the event will be deferred until the event collector goes
1629   // out of scope.
1630   JvmtiDynamicCodeEventCollector event_collector;
1631 
1632   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1633   RegisterMap reg_map(current,
1634                       RegisterMap::UpdateMap::skip,
1635                       RegisterMap::ProcessFrames::include,
1636                       RegisterMap::WalkContinuation::skip);
1637   frame caller_frame = current->last_frame().sender(&reg_map);
1638   CodeBlob* cb = caller_frame.cb();
1639   nmethod* caller_nm = cb->as_nmethod();
1640 
1641   CompiledICLocker ml(caller_nm);
1642   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1643   inline_cache->update(&call_info, receiver()->klass());
1644 
1645   return callee_method;
1646 }
1647 
1648 //
1649 // Resets a call-site in compiled code so it will get resolved again.
1650 // This routines handles both virtual call sites, optimized virtual call
1651 // sites, and static call sites. Typically used to change a call sites
1652 // destination from compiled to interpreted.
1653 //
1654 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1655   JavaThread* current = THREAD;
1656   ResourceMark rm(current);
1657   RegisterMap reg_map(current,
1658                       RegisterMap::UpdateMap::skip,
1659                       RegisterMap::ProcessFrames::include,
1660                       RegisterMap::WalkContinuation::skip);
1661   frame stub_frame = current->last_frame();
1662   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1663   frame caller = stub_frame.sender(&reg_map);
1664 
1665   // Do nothing if the frame isn't a live compiled frame.
1666   // nmethod could be deoptimized by the time we get here
1667   // so no update to the caller is needed.
1668 
1669   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1670       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1671 
1672     address pc = caller.pc();
1673 
1674     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1675     assert(caller_nm != nullptr, "did not find caller nmethod");
1676 
1677     // Default call_addr is the location of the "basic" call.
1678     // Determine the address of the call we a reresolving. With
1679     // Inline Caches we will always find a recognizable call.
1680     // With Inline Caches disabled we may or may not find a
1681     // recognizable call. We will always find a call for static
1682     // calls and for optimized virtual calls. For vanilla virtual
1683     // calls it depends on the state of the UseInlineCaches switch.
1684     //
1685     // With Inline Caches disabled we can get here for a virtual call
1686     // for two reasons:
1687     //   1 - calling an abstract method. The vtable for abstract methods
1688     //       will run us thru handle_wrong_method and we will eventually
1689     //       end up in the interpreter to throw the ame.
1690     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1691     //       call and between the time we fetch the entry address and
1692     //       we jump to it the target gets deoptimized. Similar to 1
1693     //       we will wind up in the interprter (thru a c2i with c2).
1694     //
1695     CompiledICLocker ml(caller_nm);
1696     address call_addr = caller_nm->call_instruction_address(pc);
1697 
1698     if (call_addr != nullptr) {
1699       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1700       // bytes back in the instruction stream so we must also check for reloc info.
1701       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1702       bool ret = iter.next(); // Get item
1703       if (ret) {
1704         switch (iter.type()) {
1705           case relocInfo::static_call_type:
1706           case relocInfo::opt_virtual_call_type: {
1707             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1708             cdc->set_to_clean();
1709             break;
1710           }
1711 
1712           case relocInfo::virtual_call_type: {
1713             // compiled, dispatched call (which used to call an interpreted method)
1714             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1715             inline_cache->set_to_clean();
1716             break;
1717           }
1718           default:
1719             break;
1720         }
1721       }
1722     }
1723   }
1724 
1725   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1726 
1727 
1728 #ifndef PRODUCT
1729   Atomic::inc(&_wrong_method_ctr);
1730 
1731   if (TraceCallFixup) {
1732     ResourceMark rm(current);
1733     tty->print("handle_wrong_method reresolving call to");
1734     callee_method->print_short_name(tty);
1735     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1736   }
1737 #endif
1738 
1739   return callee_method;
1740 }
1741 
1742 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1743   // The faulting unsafe accesses should be changed to throw the error
1744   // synchronously instead. Meanwhile the faulting instruction will be
1745   // skipped over (effectively turning it into a no-op) and an
1746   // asynchronous exception will be raised which the thread will
1747   // handle at a later point. If the instruction is a load it will
1748   // return garbage.
1749 
1750   // Request an async exception.
1751   thread->set_pending_unsafe_access_error();
1752 
1753   // Return address of next instruction to execute.
1754   return next_pc;
1755 }
1756 
1757 #ifdef ASSERT
1758 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1759                                                                 const BasicType* sig_bt,
1760                                                                 const VMRegPair* regs) {
1761   ResourceMark rm;
1762   const int total_args_passed = method->size_of_parameters();
1763   const VMRegPair*    regs_with_member_name = regs;
1764         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1765 
1766   const int member_arg_pos = total_args_passed - 1;
1767   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1768   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1769 
1770   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1771 
1772   for (int i = 0; i < member_arg_pos; i++) {
1773     VMReg a =    regs_with_member_name[i].first();
1774     VMReg b = regs_without_member_name[i].first();
1775     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1776   }
1777   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1778 }
1779 #endif
1780 
1781 // ---------------------------------------------------------------------------
1782 // We are calling the interpreter via a c2i. Normally this would mean that
1783 // we were called by a compiled method. However we could have lost a race
1784 // where we went int -> i2c -> c2i and so the caller could in fact be
1785 // interpreted. If the caller is compiled we attempt to patch the caller
1786 // so he no longer calls into the interpreter.
1787 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1788   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1789 
1790   // It's possible that deoptimization can occur at a call site which hasn't
1791   // been resolved yet, in which case this function will be called from
1792   // an nmethod that has been patched for deopt and we can ignore the
1793   // request for a fixup.
1794   // Also it is possible that we lost a race in that from_compiled_entry
1795   // is now back to the i2c in that case we don't need to patch and if
1796   // we did we'd leap into space because the callsite needs to use
1797   // "to interpreter" stub in order to load up the Method*. Don't
1798   // ask me how I know this...
1799 
1800   // Result from nmethod::is_unloading is not stable across safepoints.
1801   NoSafepointVerifier nsv;
1802 
1803   nmethod* callee = method->code();
1804   if (callee == nullptr) {
1805     return;
1806   }
1807 
1808   // write lock needed because we might patch call site by set_to_clean()
1809   // and is_unloading() can modify nmethod's state
1810   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1811 
1812   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1813   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1814     return;
1815   }
1816 
1817   // The check above makes sure this is an nmethod.
1818   nmethod* caller = cb->as_nmethod();
1819 
1820   // Get the return PC for the passed caller PC.
1821   address return_pc = caller_pc + frame::pc_return_offset;
1822 
1823   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1824     return;
1825   }
1826 
1827   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1828   CompiledICLocker ic_locker(caller);
1829   ResourceMark rm;
1830 
1831   // If we got here through a static call or opt_virtual call, then we know where the
1832   // call address would be; let's peek at it
1833   address callsite_addr = (address)nativeCall_before(return_pc);
1834   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1835   if (!iter.next()) {
1836     // No reloc entry found; not a static or optimized virtual call
1837     return;
1838   }
1839 
1840   relocInfo::relocType type = iter.reloc()->type();
1841   if (type != relocInfo::static_call_type &&
1842       type != relocInfo::opt_virtual_call_type) {
1843     return;
1844   }
1845 
1846   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1847   callsite->set_to_clean();
1848 JRT_END
1849 
1850 
1851 // same as JVM_Arraycopy, but called directly from compiled code
1852 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1853                                                 oopDesc* dest, jint dest_pos,
1854                                                 jint length,
1855                                                 JavaThread* current)) {
1856 #ifndef PRODUCT
1857   _slow_array_copy_ctr++;
1858 #endif
1859   // Check if we have null pointers
1860   if (src == nullptr || dest == nullptr) {
1861     THROW(vmSymbols::java_lang_NullPointerException());
1862   }
1863   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1864   // even though the copy_array API also performs dynamic checks to ensure
1865   // that src and dest are truly arrays (and are conformable).
1866   // The copy_array mechanism is awkward and could be removed, but
1867   // the compilers don't call this function except as a last resort,
1868   // so it probably doesn't matter.
1869   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1870                                         (arrayOopDesc*)dest, dest_pos,
1871                                         length, current);
1872 }
1873 JRT_END
1874 
1875 // The caller of generate_class_cast_message() (or one of its callers)
1876 // must use a ResourceMark in order to correctly free the result.
1877 char* SharedRuntime::generate_class_cast_message(
1878     JavaThread* thread, Klass* caster_klass) {
1879 
1880   // Get target class name from the checkcast instruction
1881   vframeStream vfst(thread, true);
1882   assert(!vfst.at_end(), "Java frame must exist");
1883   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1884   constantPoolHandle cpool(thread, vfst.method()->constants());
1885   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1886   Symbol* target_klass_name = nullptr;
1887   if (target_klass == nullptr) {
1888     // This klass should be resolved, but just in case, get the name in the klass slot.
1889     target_klass_name = cpool->klass_name_at(cc.index());
1890   }
1891   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1892 }
1893 
1894 
1895 // The caller of generate_class_cast_message() (or one of its callers)
1896 // must use a ResourceMark in order to correctly free the result.
1897 char* SharedRuntime::generate_class_cast_message(
1898     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1899   const char* caster_name = caster_klass->external_name();
1900 
1901   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
1902   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
1903                                                    target_klass->external_name();
1904 
1905   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1906 
1907   const char* caster_klass_description = "";
1908   const char* target_klass_description = "";
1909   const char* klass_separator = "";
1910   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
1911     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1912   } else {
1913     caster_klass_description = caster_klass->class_in_module_of_loader();
1914     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
1915     klass_separator = (target_klass != nullptr) ? "; " : "";
1916   }
1917 
1918   // add 3 for parenthesis and preceding space
1919   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1920 
1921   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1922   if (message == nullptr) {
1923     // Shouldn't happen, but don't cause even more problems if it does
1924     message = const_cast<char*>(caster_klass->external_name());
1925   } else {
1926     jio_snprintf(message,
1927                  msglen,
1928                  "class %s cannot be cast to class %s (%s%s%s)",
1929                  caster_name,
1930                  target_name,
1931                  caster_klass_description,
1932                  klass_separator,
1933                  target_klass_description
1934                  );
1935   }
1936   return message;
1937 }
1938 
1939 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1940   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
1941 JRT_END
1942 
1943 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1944   if (!SafepointSynchronize::is_synchronizing()) {
1945     // Only try quick_enter() if we're not trying to reach a safepoint
1946     // so that the calling thread reaches the safepoint more quickly.
1947     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
1948       return;
1949     }
1950   }
1951   // NO_ASYNC required because an async exception on the state transition destructor
1952   // would leave you with the lock held and it would never be released.
1953   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1954   // and the model is that an exception implies the method failed.
1955   JRT_BLOCK_NO_ASYNC
1956   Handle h_obj(THREAD, obj);
1957   ObjectSynchronizer::enter(h_obj, lock, current);
1958   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1959   JRT_BLOCK_END
1960 }
1961 
1962 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1963 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
1964   SharedRuntime::monitor_enter_helper(obj, lock, current);
1965 JRT_END
1966 
1967 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1968   assert(JavaThread::current() == current, "invariant");
1969   // Exit must be non-blocking, and therefore no exceptions can be thrown.
1970   ExceptionMark em(current);
1971 
1972   // Check if C2_MacroAssembler::fast_unlock() or
1973   // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated
1974   // monitor before going slow path.  Since there is no safepoint
1975   // polling when calling into the VM, we can be sure that the monitor
1976   // hasn't been deallocated.
1977   ObjectMonitor* m = current->unlocked_inflated_monitor();
1978   if (m != nullptr) {
1979     assert(!m->has_owner(current), "must be");
1980     current->clear_unlocked_inflated_monitor();
1981 
1982     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
1983     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
1984       // Some other thread acquired the lock (or the monitor was
1985       // deflated). Either way we are done.
1986       current->dec_held_monitor_count();
1987       return;
1988     }
1989   }
1990 
1991   // The object could become unlocked through a JNI call, which we have no other checks for.
1992   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
1993   if (obj->is_unlocked()) {
1994     if (CheckJNICalls) {
1995       fatal("Object has been unlocked by JNI");
1996     }
1997     return;
1998   }
1999   ObjectSynchronizer::exit(obj, lock, current);
2000 }
2001 
2002 // Handles the uncommon cases of monitor unlocking in compiled code
2003 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2004   assert(current == JavaThread::current(), "pre-condition");
2005   SharedRuntime::monitor_exit_helper(obj, lock, current);
2006 JRT_END
2007 
2008 // This is only called when CheckJNICalls is true, and only
2009 // for virtual thread termination.
2010 JRT_LEAF(void,  SharedRuntime::log_jni_monitor_still_held())
2011   assert(CheckJNICalls, "Only call this when checking JNI usage");
2012   if (log_is_enabled(Debug, jni)) {
2013     JavaThread* current = JavaThread::current();
2014     int64_t vthread_id = java_lang_Thread::thread_id(current->vthread());
2015     int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj());
2016     log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT
2017                    ") exiting with Objects still locked by JNI MonitorEnter.",
2018                    vthread_id, carrier_id);
2019   }
2020 JRT_END
2021 
2022 #ifndef PRODUCT
2023 
2024 void SharedRuntime::print_statistics() {
2025   ttyLocker ttyl;
2026   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2027 
2028   SharedRuntime::print_ic_miss_histogram();
2029 
2030   // Dump the JRT_ENTRY counters
2031   if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
2032   if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
2033   if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2034   if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2035   if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2036   if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2037 
2038   tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2039   tty->print_cr("%5u wrong method", _wrong_method_ctr);
2040   tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2041   tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2042   tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2043 
2044   if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2045   if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2046   if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2047   if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2048   if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2049   if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2050   if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2051   if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
2052   if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2053   if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2054   if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2055   if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2056   if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2057   if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2058   if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
2059   if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
2060   if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2061 
2062   AdapterHandlerLibrary::print_statistics();
2063 
2064   if (xtty != nullptr)  xtty->tail("statistics");
2065 }
2066 
2067 inline double percent(int64_t x, int64_t y) {
2068   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2069 }
2070 
2071 class MethodArityHistogram {
2072  public:
2073   enum { MAX_ARITY = 256 };
2074  private:
2075   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2076   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2077   static uint64_t _total_compiled_calls;
2078   static uint64_t _max_compiled_calls_per_method;
2079   static int _max_arity;                       // max. arity seen
2080   static int _max_size;                        // max. arg size seen
2081 
2082   static void add_method_to_histogram(nmethod* nm) {
2083     Method* method = (nm == nullptr) ? nullptr : nm->method();
2084     if (method != nullptr) {
2085       ArgumentCount args(method->signature());
2086       int arity   = args.size() + (method->is_static() ? 0 : 1);
2087       int argsize = method->size_of_parameters();
2088       arity   = MIN2(arity, MAX_ARITY-1);
2089       argsize = MIN2(argsize, MAX_ARITY-1);
2090       uint64_t count = (uint64_t)method->compiled_invocation_count();
2091       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2092       _total_compiled_calls    += count;
2093       _arity_histogram[arity]  += count;
2094       _size_histogram[argsize] += count;
2095       _max_arity = MAX2(_max_arity, arity);
2096       _max_size  = MAX2(_max_size, argsize);
2097     }
2098   }
2099 
2100   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2101     const int N = MIN2(9, n);
2102     double sum = 0;
2103     double weighted_sum = 0;
2104     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2105     if (sum >= 1) { // prevent divide by zero or divide overflow
2106       double rest = sum;
2107       double percent = sum / 100;
2108       for (int i = 0; i <= N; i++) {
2109         rest -= (double)histo[i];
2110         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2111       }
2112       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2113       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2114       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2115       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2116     } else {
2117       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2118     }
2119   }
2120 
2121   void print_histogram() {
2122     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2123     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2124     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2125     print_histogram_helper(_max_size, _size_histogram, "size");
2126     tty->cr();
2127   }
2128 
2129  public:
2130   MethodArityHistogram() {
2131     // Take the Compile_lock to protect against changes in the CodeBlob structures
2132     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2133     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2134     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2135     _max_arity = _max_size = 0;
2136     _total_compiled_calls = 0;
2137     _max_compiled_calls_per_method = 0;
2138     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2139     CodeCache::nmethods_do(add_method_to_histogram);
2140     print_histogram();
2141   }
2142 };
2143 
2144 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2145 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2146 uint64_t MethodArityHistogram::_total_compiled_calls;
2147 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2148 int MethodArityHistogram::_max_arity;
2149 int MethodArityHistogram::_max_size;
2150 
2151 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2152   tty->print_cr("Calls from compiled code:");
2153   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2154   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2155   int64_t mono_i = _nof_interface_calls;
2156   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2157   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2158   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2159   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2160   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2161   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2162   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2163   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2164   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2165   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2166   tty->cr();
2167   tty->print_cr("Note 1: counter updates are not MT-safe.");
2168   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2169   tty->print_cr("        %% in nested categories are relative to their category");
2170   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2171   tty->cr();
2172 
2173   MethodArityHistogram h;
2174 }
2175 #endif
2176 
2177 #ifndef PRODUCT
2178 static int _lookups; // number of calls to lookup
2179 static int _equals;  // number of buckets checked with matching hash
2180 static int _archived_hits; // number of successful lookups in archived table
2181 static int _runtime_hits;  // number of successful lookups in runtime table
2182 #endif
2183 
2184 // A simple wrapper class around the calling convention information
2185 // that allows sharing of adapters for the same calling convention.
2186 class AdapterFingerPrint : public MetaspaceObj {
2187  private:
2188   enum {
2189     _basic_type_bits = 4,
2190     _basic_type_mask = right_n_bits(_basic_type_bits),
2191     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2192   };
2193   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2194   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2195 
2196   int _length;
2197 
2198   static int data_offset() { return sizeof(AdapterFingerPrint); }
2199   int* data_pointer() {
2200     return (int*)((address)this + data_offset());
2201   }
2202 
2203   // Private construtor. Use allocate() to get an instance.
2204   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2205     int* data = data_pointer();
2206     // Pack the BasicTypes with 8 per int
2207     assert(len == length(total_args_passed), "sanity");
2208     _length = len;
2209     int sig_index = 0;
2210     for (int index = 0; index < _length; index++) {
2211       int value = 0;
2212       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2213         int bt = adapter_encoding(sig_bt[sig_index++]);
2214         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2215         value = (value << _basic_type_bits) | bt;
2216       }
2217       data[index] = value;
2218     }
2219   }
2220 
2221   // Call deallocate instead
2222   ~AdapterFingerPrint() {
2223     ShouldNotCallThis();
2224   }
2225 
2226   static int length(int total_args) {
2227     return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2228   }
2229 
2230   static int compute_size_in_words(int len) {
2231     return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2232   }
2233 
2234   // Remap BasicTypes that are handled equivalently by the adapters.
2235   // These are correct for the current system but someday it might be
2236   // necessary to make this mapping platform dependent.
2237   static int adapter_encoding(BasicType in) {
2238     switch (in) {
2239       case T_BOOLEAN:
2240       case T_BYTE:
2241       case T_SHORT:
2242       case T_CHAR:
2243         // There are all promoted to T_INT in the calling convention
2244         return T_INT;
2245 
2246       case T_OBJECT:
2247       case T_ARRAY:
2248         // In other words, we assume that any register good enough for
2249         // an int or long is good enough for a managed pointer.
2250 #ifdef _LP64
2251         return T_LONG;
2252 #else
2253         return T_INT;
2254 #endif
2255 
2256       case T_INT:
2257       case T_LONG:
2258       case T_FLOAT:
2259       case T_DOUBLE:
2260       case T_VOID:
2261         return in;
2262 
2263       default:
2264         ShouldNotReachHere();
2265         return T_CONFLICT;
2266     }
2267   }
2268 
2269   void* operator new(size_t size, size_t fp_size) throw() {
2270     assert(fp_size >= size, "sanity check");
2271     void* p = AllocateHeap(fp_size, mtCode);
2272     memset(p, 0, fp_size);
2273     return p;
2274   }
2275 
2276   template<typename Function>
2277   void iterate_args(Function function) {
2278     for (int i = 0; i < length(); i++) {
2279       unsigned val = (unsigned)value(i);
2280       // args are packed so that first/lower arguments are in the highest
2281       // bits of each int value, so iterate from highest to the lowest
2282       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2283         unsigned v = (val >> j) & _basic_type_mask;
2284         if (v == 0) {
2285           continue;
2286         }
2287         function(v);
2288       }
2289     }
2290   }
2291 
2292  public:
2293   static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2294     int len = length(total_args_passed);
2295     int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2296     AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2297     assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2298     return afp;
2299   }
2300 
2301   static void deallocate(AdapterFingerPrint* fp) {
2302     FreeHeap(fp);
2303   }
2304 
2305   int value(int index) {
2306     int* data = data_pointer();
2307     return data[index];
2308   }
2309 
2310   int length() {
2311     return _length;
2312   }
2313 
2314   unsigned int compute_hash() {
2315     int hash = 0;
2316     for (int i = 0; i < length(); i++) {
2317       int v = value(i);
2318       //Add arithmetic operation to the hash, like +3 to improve hashing
2319       hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2320     }
2321     return (unsigned int)hash;
2322   }
2323 
2324   const char* as_string() {
2325     stringStream st;
2326     st.print("0x");
2327     for (int i = 0; i < length(); i++) {
2328       st.print("%x", value(i));
2329     }
2330     return st.as_string();
2331   }
2332 
2333   const char* as_basic_args_string() {
2334     stringStream st;
2335     bool long_prev = false;
2336     iterate_args([&] (int arg) {
2337       if (long_prev) {
2338         long_prev = false;
2339         if (arg == T_VOID) {
2340           st.print("J");
2341         } else {
2342           st.print("L");
2343         }
2344       }
2345       switch (arg) {
2346         case T_INT:    st.print("I");    break;
2347         case T_LONG:   long_prev = true; break;
2348         case T_FLOAT:  st.print("F");    break;
2349         case T_DOUBLE: st.print("D");    break;
2350         case T_VOID:   break;
2351         default: ShouldNotReachHere();
2352       }
2353     });
2354     if (long_prev) {
2355       st.print("L");
2356     }
2357     return st.as_string();
2358   }
2359 
2360   BasicType* as_basic_type(int& nargs) {
2361     nargs = 0;
2362     GrowableArray<BasicType> btarray;
2363     bool long_prev = false;
2364 
2365     iterate_args([&] (int arg) {
2366       if (long_prev) {
2367         long_prev = false;
2368         if (arg == T_VOID) {
2369           btarray.append(T_LONG);
2370         } else {
2371           btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2372         }
2373       }
2374       switch (arg) {
2375         case T_INT: // fallthrough
2376         case T_FLOAT: // fallthrough
2377         case T_DOUBLE:
2378         case T_VOID:
2379           btarray.append((BasicType)arg);
2380           break;
2381         case T_LONG:
2382           long_prev = true;
2383           break;
2384         default: ShouldNotReachHere();
2385       }
2386     });
2387 
2388     if (long_prev) {
2389       btarray.append(T_OBJECT);
2390     }
2391 
2392     nargs = btarray.length();
2393     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2394     int index = 0;
2395     GrowableArrayIterator<BasicType> iter = btarray.begin();
2396     while (iter != btarray.end()) {
2397       sig_bt[index++] = *iter;
2398       ++iter;
2399     }
2400     assert(index == btarray.length(), "sanity check");
2401 #ifdef ASSERT
2402     {
2403       AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2404       assert(this->equals(compare_fp), "sanity check");
2405       AdapterFingerPrint::deallocate(compare_fp);
2406     }
2407 #endif
2408     return sig_bt;
2409   }
2410 
2411   bool equals(AdapterFingerPrint* other) {
2412     if (other->_length != _length) {
2413       return false;
2414     } else {
2415       for (int i = 0; i < _length; i++) {
2416         if (value(i) != other->value(i)) {
2417           return false;
2418         }
2419       }
2420     }
2421     return true;
2422   }
2423 
2424   // methods required by virtue of being a MetaspaceObj
2425   void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2426   int size() const { return compute_size_in_words(_length); }
2427   MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2428 
2429   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2430     NOT_PRODUCT(_equals++);
2431     return fp1->equals(fp2);
2432   }
2433 
2434   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2435     return fp->compute_hash();
2436   }
2437 };
2438 
2439 #if INCLUDE_CDS
2440 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2441   return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2442 }
2443 
2444 class ArchivedAdapterTable : public OffsetCompactHashtable<
2445   AdapterFingerPrint*,
2446   AdapterHandlerEntry*,
2447   adapter_fp_equals_compact_hashtable_entry> {};
2448 #endif // INCLUDE_CDS
2449 
2450 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2451 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2452                   AnyObj::C_HEAP, mtCode,
2453                   AdapterFingerPrint::compute_hash,
2454                   AdapterFingerPrint::equals>;
2455 static AdapterHandlerTable* _adapter_handler_table;
2456 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2457 
2458 // Find a entry with the same fingerprint if it exists
2459 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2460   NOT_PRODUCT(_lookups++);
2461   assert_lock_strong(AdapterHandlerLibrary_lock);
2462   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2463   AdapterHandlerEntry* entry = nullptr;
2464 #if INCLUDE_CDS
2465   // if we are building the archive then the archived adapter table is
2466   // not valid and we need to use the ones added to the runtime table
2467   if (AOTCodeCache::is_using_adapter()) {
2468     // Search archived table first. It is read-only table so can be searched without lock
2469     entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2470 #ifndef PRODUCT
2471     if (entry != nullptr) {
2472       _archived_hits++;
2473     }
2474 #endif
2475   }
2476 #endif // INCLUDE_CDS
2477   if (entry == nullptr) {
2478     assert_lock_strong(AdapterHandlerLibrary_lock);
2479     AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2480     if (entry_p != nullptr) {
2481       entry = *entry_p;
2482       assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2483              entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2484              fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2485   #ifndef PRODUCT
2486       _runtime_hits++;
2487   #endif
2488     }
2489   }
2490   AdapterFingerPrint::deallocate(fp);
2491   return entry;
2492 }
2493 
2494 #ifndef PRODUCT
2495 static void print_table_statistics() {
2496   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2497     return sizeof(*key) + sizeof(*a);
2498   };
2499   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2500   ts.print(tty, "AdapterHandlerTable");
2501   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2502                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2503   int total_hits = _archived_hits + _runtime_hits;
2504   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2505                 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2506 }
2507 #endif
2508 
2509 // ---------------------------------------------------------------------------
2510 // Implementation of AdapterHandlerLibrary
2511 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr;
2512 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2513 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2514 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2515 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2516 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2517 #if INCLUDE_CDS
2518 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2519 #endif // INCLUDE_CDS
2520 static const int AdapterHandlerLibrary_size = 16*K;
2521 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2522 
2523 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2524   assert(_buffer != nullptr, "should be initialized");
2525   return _buffer;
2526 }
2527 
2528 static void post_adapter_creation(const AdapterBlob* new_adapter,
2529                                   const AdapterHandlerEntry* entry) {
2530   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2531     char blob_id[256];
2532     jio_snprintf(blob_id,
2533                  sizeof(blob_id),
2534                  "%s(%s)",
2535                  new_adapter->name(),
2536                  entry->fingerprint()->as_string());
2537     if (Forte::is_enabled()) {
2538       Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2539     }
2540 
2541     if (JvmtiExport::should_post_dynamic_code_generated()) {
2542       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2543     }
2544   }
2545 }
2546 
2547 void AdapterHandlerLibrary::create_abstract_method_handler() {
2548   assert_lock_strong(AdapterHandlerLibrary_lock);
2549   // Create a special handler for abstract methods.  Abstract methods
2550   // are never compiled so an i2c entry is somewhat meaningless, but
2551   // throw AbstractMethodError just in case.
2552   // Pass wrong_method_abstract for the c2i transitions to return
2553   // AbstractMethodError for invalid invocations.
2554   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2555   _abstract_method_handler = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(0, nullptr));
2556   _abstract_method_handler->set_entry_points(SharedRuntime::throw_AbstractMethodError_entry(),
2557                                              wrong_method_abstract,
2558                                              wrong_method_abstract,
2559                                              nullptr);
2560 }
2561 
2562 void AdapterHandlerLibrary::initialize() {
2563   {
2564     ResourceMark rm;
2565     MutexLocker mu(AdapterHandlerLibrary_lock);
2566     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2567     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2568     create_abstract_method_handler();
2569   }
2570 
2571 #if INCLUDE_CDS
2572   // Link adapters in AOT Cache to their code in AOT Code Cache
2573   if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2574     link_aot_adapters();
2575     lookup_simple_adapters();
2576     return;
2577   }
2578 #endif // INCLUDE_CDS
2579 
2580   ResourceMark rm;
2581   AdapterBlob* no_arg_blob = nullptr;
2582   AdapterBlob* int_arg_blob = nullptr;
2583   AdapterBlob* obj_arg_blob = nullptr;
2584   AdapterBlob* obj_int_arg_blob = nullptr;
2585   AdapterBlob* obj_obj_arg_blob = nullptr;
2586   {
2587     MutexLocker mu(AdapterHandlerLibrary_lock);
2588 
2589     _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr);
2590 
2591     BasicType obj_args[] = { T_OBJECT };
2592     _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args);
2593 
2594     BasicType int_args[] = { T_INT };
2595     _int_arg_handler = create_adapter(int_arg_blob, 1, int_args);
2596 
2597     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2598     _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args);
2599 
2600     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2601     _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args);
2602 
2603     assert(no_arg_blob != nullptr &&
2604            obj_arg_blob != nullptr &&
2605            int_arg_blob != nullptr &&
2606            obj_int_arg_blob != nullptr &&
2607            obj_obj_arg_blob != nullptr, "Initial adapters must be properly created");
2608   }
2609 
2610   // Outside of the lock
2611   post_adapter_creation(no_arg_blob, _no_arg_handler);
2612   post_adapter_creation(obj_arg_blob, _obj_arg_handler);
2613   post_adapter_creation(int_arg_blob, _int_arg_handler);
2614   post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
2615   post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
2616 }
2617 
2618 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2619   return AdapterHandlerEntry::allocate(fingerprint);
2620 }
2621 
2622 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2623   if (method->is_abstract()) {
2624     return _abstract_method_handler;
2625   }
2626   int total_args_passed = method->size_of_parameters(); // All args on stack
2627   if (total_args_passed == 0) {
2628     return _no_arg_handler;
2629   } else if (total_args_passed == 1) {
2630     if (!method->is_static()) {
2631       return _obj_arg_handler;
2632     }
2633     switch (method->signature()->char_at(1)) {
2634       case JVM_SIGNATURE_CLASS:
2635       case JVM_SIGNATURE_ARRAY:
2636         return _obj_arg_handler;
2637       case JVM_SIGNATURE_INT:
2638       case JVM_SIGNATURE_BOOLEAN:
2639       case JVM_SIGNATURE_CHAR:
2640       case JVM_SIGNATURE_BYTE:
2641       case JVM_SIGNATURE_SHORT:
2642         return _int_arg_handler;
2643     }
2644   } else if (total_args_passed == 2 &&
2645              !method->is_static()) {
2646     switch (method->signature()->char_at(1)) {
2647       case JVM_SIGNATURE_CLASS:
2648       case JVM_SIGNATURE_ARRAY:
2649         return _obj_obj_arg_handler;
2650       case JVM_SIGNATURE_INT:
2651       case JVM_SIGNATURE_BOOLEAN:
2652       case JVM_SIGNATURE_CHAR:
2653       case JVM_SIGNATURE_BYTE:
2654       case JVM_SIGNATURE_SHORT:
2655         return _obj_int_arg_handler;
2656     }
2657   }
2658   return nullptr;
2659 }
2660 
2661 class AdapterSignatureIterator : public SignatureIterator {
2662  private:
2663   BasicType stack_sig_bt[16];
2664   BasicType* sig_bt;
2665   int index;
2666 
2667  public:
2668   AdapterSignatureIterator(Symbol* signature,
2669                            fingerprint_t fingerprint,
2670                            bool is_static,
2671                            int total_args_passed) :
2672     SignatureIterator(signature, fingerprint),
2673     index(0)
2674   {
2675     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2676     if (!is_static) { // Pass in receiver first
2677       sig_bt[index++] = T_OBJECT;
2678     }
2679     do_parameters_on(this);
2680   }
2681 
2682   BasicType* basic_types() {
2683     return sig_bt;
2684   }
2685 
2686 #ifdef ASSERT
2687   int slots() {
2688     return index;
2689   }
2690 #endif
2691 
2692  private:
2693 
2694   friend class SignatureIterator;  // so do_parameters_on can call do_type
2695   void do_type(BasicType type) {
2696     sig_bt[index++] = type;
2697     if (type == T_LONG || type == T_DOUBLE) {
2698       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2699     }
2700   }
2701 };
2702 
2703 
2704 const char* AdapterHandlerEntry::_entry_names[] = {
2705   "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2706 };
2707 
2708 #ifdef ASSERT
2709 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2710   AdapterBlob* comparison_blob = nullptr;
2711   AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, true);
2712   assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison");
2713   assert(comparison_entry->compare_code(cached_entry), "code must match");
2714   // Release the one just created
2715   AdapterHandlerEntry::deallocate(comparison_entry);
2716 }
2717 #endif /* ASSERT*/
2718 
2719 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2720   // Use customized signature handler.  Need to lock around updates to
2721   // the _adapter_handler_table (it is not safe for concurrent readers
2722   // and a single writer: this could be fixed if it becomes a
2723   // problem).
2724 
2725   // Fast-path for trivial adapters
2726   AdapterHandlerEntry* entry = get_simple_adapter(method);
2727   if (entry != nullptr) {
2728     return entry;
2729   }
2730 
2731   ResourceMark rm;
2732   AdapterBlob* adapter_blob = nullptr;
2733 
2734   // Fill in the signature array, for the calling-convention call.
2735   int total_args_passed = method->size_of_parameters(); // All args on stack
2736 
2737   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2738                               method->is_static(), total_args_passed);
2739   assert(si.slots() == total_args_passed, "");
2740   BasicType* sig_bt = si.basic_types();
2741   {
2742     MutexLocker mu(AdapterHandlerLibrary_lock);
2743 
2744     // Lookup method signature's fingerprint
2745     entry = lookup(total_args_passed, sig_bt);
2746 
2747     if (entry != nullptr) {
2748       assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2749 #ifdef ASSERT
2750       if (!entry->is_shared() && VerifyAdapterSharing) {
2751         verify_adapter_sharing(total_args_passed, sig_bt, entry);
2752       }
2753 #endif
2754     } else {
2755       entry = create_adapter(adapter_blob, total_args_passed, sig_bt);
2756     }
2757   }
2758 
2759   // Outside of the lock
2760   if (adapter_blob != nullptr) {
2761     post_adapter_creation(adapter_blob, entry);
2762   }
2763   return entry;
2764 }
2765 
2766 AdapterBlob* AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2767   ResourceMark rm;
2768   const char* name = AdapterHandlerLibrary::name(handler->fingerprint());
2769   const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint());
2770   int offsets[AdapterHandlerEntry::ENTRIES_COUNT];
2771 
2772   AdapterBlob* adapter_blob = nullptr;
2773   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, offsets);
2774   if (blob != nullptr) {
2775     adapter_blob = blob->as_adapter_blob();
2776     address i2c_entry = adapter_blob->content_begin();
2777     assert(offsets[0] == 0, "sanity check");
2778     handler->set_entry_points(i2c_entry, i2c_entry + offsets[1], i2c_entry + offsets[2], i2c_entry + offsets[3]);
2779   }
2780   return adapter_blob;
2781 }
2782 
2783 #ifndef PRODUCT
2784 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) {
2785   ttyLocker ttyl;
2786   ResourceMark rm;
2787   int insts_size = adapter_blob->code_size();
2788   handler->print_adapter_on(tty);
2789   st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2790                 handler->fingerprint()->as_basic_args_string(),
2791                 handler->fingerprint()->as_string(), insts_size);
2792   st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2793   if (Verbose || PrintStubCode) {
2794     address first_pc = handler->base_address();
2795     if (first_pc != nullptr) {
2796       Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2797       st->cr();
2798     }
2799   }
2800 }
2801 #endif // PRODUCT
2802 
2803 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob,
2804                                                   AdapterHandlerEntry* handler,
2805                                                   int total_args_passed,
2806                                                   BasicType* sig_bt,
2807                                                   bool is_transient) {
2808   if (log_is_enabled(Info, perf, class, link)) {
2809     ClassLoader::perf_method_adapters_count()->inc();
2810   }
2811 
2812   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2813   CodeBuffer buffer(buf);
2814   short buffer_locs[20];
2815   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2816                                          sizeof(buffer_locs)/sizeof(relocInfo));
2817   MacroAssembler masm(&buffer);
2818   VMRegPair stack_regs[16];
2819   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2820 
2821   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2822   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2823   SharedRuntime::generate_i2c2i_adapters(&masm,
2824                                          total_args_passed,
2825                                          comp_args_on_stack,
2826                                          sig_bt,
2827                                          regs,
2828                                          handler);
2829 #ifdef ASSERT
2830   if (VerifyAdapterSharing) {
2831     handler->save_code(buf->code_begin(), buffer.insts_size());
2832     if (is_transient) {
2833       return true;
2834     }
2835   }
2836 #endif
2837 
2838   adapter_blob = AdapterBlob::create(&buffer);
2839   if (adapter_blob == nullptr) {
2840     // CodeCache is full, disable compilation
2841     // Ought to log this but compile log is only per compile thread
2842     // and we're some non descript Java thread.
2843     return false;
2844   }
2845   if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2846     // try to save generated code
2847     const char* name = AdapterHandlerLibrary::name(handler->fingerprint());
2848     const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint());
2849     int entry_offset[AdapterHandlerEntry::ENTRIES_COUNT];
2850     assert(AdapterHandlerEntry::ENTRIES_COUNT == 4, "sanity");
2851     address i2c_entry = handler->get_i2c_entry();
2852     entry_offset[0] = 0; // i2c_entry offset
2853     entry_offset[1] = handler->get_c2i_entry() - i2c_entry;
2854     entry_offset[2] = handler->get_c2i_unverified_entry() - i2c_entry;
2855     entry_offset[3] = handler->get_c2i_no_clinit_check_entry() - i2c_entry;
2856     bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, entry_offset);
2857     assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2858   }
2859   handler->relocate(adapter_blob->content_begin());
2860 #ifndef PRODUCT
2861   // debugging support
2862   if (PrintAdapterHandlers || PrintStubCode) {
2863     print_adapter_handler_info(tty, handler, adapter_blob);
2864   }
2865 #endif
2866   return true;
2867 }
2868 
2869 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob,
2870                                                            int total_args_passed,
2871                                                            BasicType* sig_bt,
2872                                                            bool is_transient) {
2873   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2874   AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2875   if (!generate_adapter_code(adapter_blob, handler, total_args_passed, sig_bt, is_transient)) {
2876     AdapterHandlerEntry::deallocate(handler);
2877     return nullptr;
2878   }
2879   if (!is_transient) {
2880     assert_lock_strong(AdapterHandlerLibrary_lock);
2881     _adapter_handler_table->put(fp, handler);
2882   }
2883   return handler;
2884 }
2885 
2886 #if INCLUDE_CDS
2887 void AdapterHandlerEntry::remove_unshareable_info() {
2888 #ifdef ASSERT
2889    _saved_code = nullptr;
2890    _saved_code_length = 0;
2891 #endif // ASSERT
2892   set_entry_points(nullptr, nullptr, nullptr, nullptr, false);
2893 }
2894 
2895 class CopyAdapterTableToArchive : StackObj {
2896 private:
2897   CompactHashtableWriter* _writer;
2898   ArchiveBuilder* _builder;
2899 public:
2900   CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
2901                                                              _builder(ArchiveBuilder::current())
2902   {}
2903 
2904   bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
2905     LogStreamHandle(Trace, aot) lsh;
2906     if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
2907       assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
2908       AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
2909       assert(buffered_fp != nullptr,"sanity check");
2910       AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
2911       assert(buffered_entry != nullptr,"sanity check");
2912 
2913       uint hash = fp->compute_hash();
2914       u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
2915       _writer->add(hash, delta);
2916       if (lsh.is_enabled()) {
2917         address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
2918         address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
2919         log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
2920       }
2921     } else {
2922       if (lsh.is_enabled()) {
2923         log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
2924       }
2925     }
2926     return true;
2927   }
2928 };
2929 
2930 void AdapterHandlerLibrary::dump_aot_adapter_table() {
2931   CompactHashtableStats stats;
2932   CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
2933   CopyAdapterTableToArchive copy(&writer);
2934   _adapter_handler_table->iterate(&copy);
2935   writer.dump(&_aot_adapter_handler_table, "archived adapter table");
2936 }
2937 
2938 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
2939   _aot_adapter_handler_table.serialize_header(soc);
2940 }
2941 
2942 AdapterBlob* AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
2943 #ifdef ASSERT
2944   if (TestAOTAdapterLinkFailure) {
2945     return nullptr;
2946   }
2947 #endif
2948   AdapterBlob* blob = lookup_aot_cache(handler);
2949 #ifndef PRODUCT
2950   // debugging support
2951   if ((blob != nullptr) && (PrintAdapterHandlers || PrintStubCode)) {
2952     print_adapter_handler_info(tty, handler, blob);
2953   }
2954 #endif
2955   return blob;
2956 }
2957 
2958 // This method is used during production run to link archived adapters (stored in AOT Cache)
2959 // to their code in AOT Code Cache
2960 void AdapterHandlerEntry::link() {
2961   AdapterBlob* adapter_blob = nullptr;
2962   ResourceMark rm;
2963   assert(_fingerprint != nullptr, "_fingerprint must not be null");
2964   bool generate_code = false;
2965   // Generate code only if AOTCodeCache is not available, or
2966   // caching adapters is disabled, or we fail to link
2967   // the AdapterHandlerEntry to its code in the AOTCodeCache
2968   if (AOTCodeCache::is_using_adapter()) {
2969     adapter_blob = AdapterHandlerLibrary::link_aot_adapter_handler(this);
2970     if (adapter_blob == nullptr) {
2971       log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
2972       generate_code = true;
2973     }
2974   } else {
2975     generate_code = true;
2976   }
2977   if (generate_code) {
2978     int nargs;
2979     BasicType* bt = _fingerprint->as_basic_type(nargs);
2980     if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, nargs, bt, /* is_transient */ false)) {
2981       // Don't throw exceptions during VM initialization because java.lang.* classes
2982       // might not have been initialized, causing problems when constructing the
2983       // Java exception object.
2984       vm_exit_during_initialization("Out of space in CodeCache for adapters");
2985     }
2986   }
2987   // Outside of the lock
2988   if (adapter_blob != nullptr) {
2989     post_adapter_creation(adapter_blob, this);
2990   }
2991   assert(_linked, "AdapterHandlerEntry must now be linked");
2992 }
2993 
2994 void AdapterHandlerLibrary::link_aot_adapters() {
2995   assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
2996   _aot_adapter_handler_table.iterate([](AdapterHandlerEntry* entry) {
2997     assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
2998     entry->link();
2999   });
3000 }
3001 
3002 // This method is called during production run to lookup simple adapters
3003 // in the archived adapter handler table
3004 void AdapterHandlerLibrary::lookup_simple_adapters() {
3005   assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3006 
3007   MutexLocker mu(AdapterHandlerLibrary_lock);
3008   _no_arg_handler = lookup(0, nullptr);
3009 
3010   BasicType obj_args[] = { T_OBJECT };
3011   _obj_arg_handler = lookup(1, obj_args);
3012 
3013   BasicType int_args[] = { T_INT };
3014   _int_arg_handler = lookup(1, int_args);
3015 
3016   BasicType obj_int_args[] = { T_OBJECT, T_INT };
3017   _obj_int_arg_handler = lookup(2, obj_int_args);
3018 
3019   BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3020   _obj_obj_arg_handler = lookup(2, obj_obj_args);
3021 
3022   assert(_no_arg_handler != nullptr &&
3023          _obj_arg_handler != nullptr &&
3024          _int_arg_handler != nullptr &&
3025          _obj_int_arg_handler != nullptr &&
3026          _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3027   assert(_no_arg_handler->is_linked() &&
3028          _obj_arg_handler->is_linked() &&
3029          _int_arg_handler->is_linked() &&
3030          _obj_int_arg_handler->is_linked() &&
3031          _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3032 }
3033 #endif // INCLUDE_CDS
3034 
3035 address AdapterHandlerEntry::base_address() {
3036   address base = _i2c_entry;
3037   if (base == nullptr)  base = _c2i_entry;
3038   assert(base <= _c2i_entry || _c2i_entry == nullptr, "");
3039   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, "");
3040   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, "");
3041   return base;
3042 }
3043 
3044 void AdapterHandlerEntry::relocate(address new_base) {
3045   address old_base = base_address();
3046   assert(old_base != nullptr, "");
3047   ptrdiff_t delta = new_base - old_base;
3048   if (_i2c_entry != nullptr)
3049     _i2c_entry += delta;
3050   if (_c2i_entry != nullptr)
3051     _c2i_entry += delta;
3052   if (_c2i_unverified_entry != nullptr)
3053     _c2i_unverified_entry += delta;
3054   if (_c2i_no_clinit_check_entry != nullptr)
3055     _c2i_no_clinit_check_entry += delta;
3056   assert(base_address() == new_base, "");
3057 }
3058 
3059 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3060   LogStreamHandle(Trace, aot) lsh;
3061   if (lsh.is_enabled()) {
3062     lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3063     lsh.cr();
3064   }
3065   it->push(&_fingerprint);
3066 }
3067 
3068 AdapterHandlerEntry::~AdapterHandlerEntry() {
3069   if (_fingerprint != nullptr) {
3070     AdapterFingerPrint::deallocate(_fingerprint);
3071     _fingerprint = nullptr;
3072   }
3073 #ifdef ASSERT
3074   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3075 #endif
3076   FreeHeap(this);
3077 }
3078 
3079 
3080 #ifdef ASSERT
3081 // Capture the code before relocation so that it can be compared
3082 // against other versions.  If the code is captured after relocation
3083 // then relative instructions won't be equivalent.
3084 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3085   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3086   _saved_code_length = length;
3087   memcpy(_saved_code, buffer, length);
3088 }
3089 
3090 
3091 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3092   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3093 
3094   if (other->_saved_code_length != _saved_code_length) {
3095     return false;
3096   }
3097 
3098   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3099 }
3100 #endif
3101 
3102 
3103 /**
3104  * Create a native wrapper for this native method.  The wrapper converts the
3105  * Java-compiled calling convention to the native convention, handles
3106  * arguments, and transitions to native.  On return from the native we transition
3107  * back to java blocking if a safepoint is in progress.
3108  */
3109 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3110   ResourceMark rm;
3111   nmethod* nm = nullptr;
3112 
3113   // Check if memory should be freed before allocation
3114   CodeCache::gc_on_allocation();
3115 
3116   assert(method->is_native(), "must be native");
3117   assert(method->is_special_native_intrinsic() ||
3118          method->has_native_function(), "must have something valid to call!");
3119 
3120   {
3121     // Perform the work while holding the lock, but perform any printing outside the lock
3122     MutexLocker mu(AdapterHandlerLibrary_lock);
3123     // See if somebody beat us to it
3124     if (method->code() != nullptr) {
3125       return;
3126     }
3127 
3128     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3129     assert(compile_id > 0, "Must generate native wrapper");
3130 
3131 
3132     ResourceMark rm;
3133     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3134     if (buf != nullptr) {
3135       CodeBuffer buffer(buf);
3136 
3137       if (method->is_continuation_enter_intrinsic()) {
3138         buffer.initialize_stubs_size(192);
3139       }
3140 
3141       struct { double data[20]; } locs_buf;
3142       struct { double data[20]; } stubs_locs_buf;
3143       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3144 #if defined(AARCH64) || defined(PPC64)
3145       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3146       // in the constant pool to ensure ordering between the barrier and oops
3147       // accesses. For native_wrappers we need a constant.
3148       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3149       // static java call that is resolved in the runtime.
3150       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3151         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3152       }
3153 #endif
3154       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3155       MacroAssembler _masm(&buffer);
3156 
3157       // Fill in the signature array, for the calling-convention call.
3158       const int total_args_passed = method->size_of_parameters();
3159 
3160       VMRegPair stack_regs[16];
3161       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3162 
3163       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3164                               method->is_static(), total_args_passed);
3165       BasicType* sig_bt = si.basic_types();
3166       assert(si.slots() == total_args_passed, "");
3167       BasicType ret_type = si.return_type();
3168 
3169       // Now get the compiled-Java arguments layout.
3170       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3171 
3172       // Generate the compiled-to-native wrapper code
3173       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3174 
3175       if (nm != nullptr) {
3176         {
3177           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3178           if (nm->make_in_use()) {
3179             method->set_code(method, nm);
3180           }
3181         }
3182 
3183         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3184         if (directive->PrintAssemblyOption) {
3185           nm->print_code();
3186         }
3187         DirectivesStack::release(directive);
3188       }
3189     }
3190   } // Unlock AdapterHandlerLibrary_lock
3191 
3192 
3193   // Install the generated code.
3194   if (nm != nullptr) {
3195     const char *msg = method->is_static() ? "(static)" : "";
3196     CompileTask::print_ul(nm, msg);
3197     if (PrintCompilation) {
3198       ttyLocker ttyl;
3199       CompileTask::print(tty, nm, msg);
3200     }
3201     nm->post_compiled_method_load_event();
3202   }
3203 }
3204 
3205 // -------------------------------------------------------------------------
3206 // Java-Java calling convention
3207 // (what you use when Java calls Java)
3208 
3209 //------------------------------name_for_receiver----------------------------------
3210 // For a given signature, return the VMReg for parameter 0.
3211 VMReg SharedRuntime::name_for_receiver() {
3212   VMRegPair regs;
3213   BasicType sig_bt = T_OBJECT;
3214   (void) java_calling_convention(&sig_bt, &regs, 1);
3215   // Return argument 0 register.  In the LP64 build pointers
3216   // take 2 registers, but the VM wants only the 'main' name.
3217   return regs.first();
3218 }
3219 
3220 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3221   // This method is returning a data structure allocating as a
3222   // ResourceObject, so do not put any ResourceMarks in here.
3223 
3224   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3225   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3226   int cnt = 0;
3227   if (has_receiver) {
3228     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3229   }
3230 
3231   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3232     BasicType type = ss.type();
3233     sig_bt[cnt++] = type;
3234     if (is_double_word_type(type))
3235       sig_bt[cnt++] = T_VOID;
3236   }
3237 
3238   if (has_appendix) {
3239     sig_bt[cnt++] = T_OBJECT;
3240   }
3241 
3242   assert(cnt < 256, "grow table size");
3243 
3244   int comp_args_on_stack;
3245   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3246 
3247   // the calling convention doesn't count out_preserve_stack_slots so
3248   // we must add that in to get "true" stack offsets.
3249 
3250   if (comp_args_on_stack) {
3251     for (int i = 0; i < cnt; i++) {
3252       VMReg reg1 = regs[i].first();
3253       if (reg1->is_stack()) {
3254         // Yuck
3255         reg1 = reg1->bias(out_preserve_stack_slots());
3256       }
3257       VMReg reg2 = regs[i].second();
3258       if (reg2->is_stack()) {
3259         // Yuck
3260         reg2 = reg2->bias(out_preserve_stack_slots());
3261       }
3262       regs[i].set_pair(reg2, reg1);
3263     }
3264   }
3265 
3266   // results
3267   *arg_size = cnt;
3268   return regs;
3269 }
3270 
3271 // OSR Migration Code
3272 //
3273 // This code is used convert interpreter frames into compiled frames.  It is
3274 // called from very start of a compiled OSR nmethod.  A temp array is
3275 // allocated to hold the interesting bits of the interpreter frame.  All
3276 // active locks are inflated to allow them to move.  The displaced headers and
3277 // active interpreter locals are copied into the temp buffer.  Then we return
3278 // back to the compiled code.  The compiled code then pops the current
3279 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3280 // copies the interpreter locals and displaced headers where it wants.
3281 // Finally it calls back to free the temp buffer.
3282 //
3283 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3284 
3285 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3286   assert(current == JavaThread::current(), "pre-condition");
3287   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3288   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3289   // frame. The stack watermark code below ensures that the interpreted frame is processed
3290   // before it gets unwound. This is helpful as the size of the compiled frame could be
3291   // larger than the interpreted frame, which could result in the new frame not being
3292   // processed correctly.
3293   StackWatermarkSet::before_unwind(current);
3294 
3295   //
3296   // This code is dependent on the memory layout of the interpreter local
3297   // array and the monitors. On all of our platforms the layout is identical
3298   // so this code is shared. If some platform lays the their arrays out
3299   // differently then this code could move to platform specific code or
3300   // the code here could be modified to copy items one at a time using
3301   // frame accessor methods and be platform independent.
3302 
3303   frame fr = current->last_frame();
3304   assert(fr.is_interpreted_frame(), "");
3305   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3306 
3307   // Figure out how many monitors are active.
3308   int active_monitor_count = 0;
3309   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3310        kptr < fr.interpreter_frame_monitor_begin();
3311        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3312     if (kptr->obj() != nullptr) active_monitor_count++;
3313   }
3314 
3315   // QQQ we could place number of active monitors in the array so that compiled code
3316   // could double check it.
3317 
3318   Method* moop = fr.interpreter_frame_method();
3319   int max_locals = moop->max_locals();
3320   // Allocate temp buffer, 1 word per local & 2 per active monitor
3321   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3322   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3323 
3324   // Copy the locals.  Order is preserved so that loading of longs works.
3325   // Since there's no GC I can copy the oops blindly.
3326   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3327   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3328                        (HeapWord*)&buf[0],
3329                        max_locals);
3330 
3331   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3332   int i = max_locals;
3333   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3334        kptr2 < fr.interpreter_frame_monitor_begin();
3335        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3336     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3337       BasicLock *lock = kptr2->lock();
3338       if (LockingMode == LM_LEGACY) {
3339         // Inflate so the object's header no longer refers to the BasicLock.
3340         if (lock->displaced_header().is_unlocked()) {
3341           // The object is locked and the resulting ObjectMonitor* will also be
3342           // locked so it can't be async deflated until ownership is dropped.
3343           // See the big comment in basicLock.cpp: BasicLock::move_to().
3344           ObjectSynchronizer::inflate_helper(kptr2->obj());
3345         }
3346         // Now the displaced header is free to move because the
3347         // object's header no longer refers to it.
3348         buf[i] = (intptr_t)lock->displaced_header().value();
3349       } else if (UseObjectMonitorTable) {
3350         buf[i] = (intptr_t)lock->object_monitor_cache();
3351       }
3352 #ifdef ASSERT
3353       else {
3354         buf[i] = badDispHeaderOSR;
3355       }
3356 #endif
3357       i++;
3358       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3359     }
3360   }
3361   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3362 
3363   RegisterMap map(current,
3364                   RegisterMap::UpdateMap::skip,
3365                   RegisterMap::ProcessFrames::include,
3366                   RegisterMap::WalkContinuation::skip);
3367   frame sender = fr.sender(&map);
3368   if (sender.is_interpreted_frame()) {
3369     current->push_cont_fastpath(sender.sp());
3370   }
3371 
3372   return buf;
3373 JRT_END
3374 
3375 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3376   FREE_C_HEAP_ARRAY(intptr_t, buf);
3377 JRT_END
3378 
3379 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3380   bool found = false;
3381 #if INCLUDE_CDS
3382   if (AOTCodeCache::is_using_adapter()) {
3383     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3384       return (found = (b == CodeCache::find_blob(handler->get_i2c_entry())));
3385     };
3386     _aot_adapter_handler_table.iterate(findblob_archived_table);
3387   }
3388 #endif // INCLUDE_CDS
3389   if (!found) {
3390     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3391       return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3392     };
3393     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3394     _adapter_handler_table->iterate(findblob_runtime_table);
3395   }
3396   return found;
3397 }
3398 
3399 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) {
3400   return fingerprint->as_basic_args_string();
3401 }
3402 
3403 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) {
3404   unsigned int hash = fingerprint->compute_hash();
3405   return hash;
3406 }
3407 
3408 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3409   bool found = false;
3410 #if INCLUDE_CDS
3411   if (AOTCodeCache::is_using_adapter()) {
3412     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3413       if (b == CodeCache::find_blob(handler->get_i2c_entry())) {
3414         found = true;
3415         st->print("Adapter for signature: ");
3416         handler->print_adapter_on(st);
3417         return true;
3418       } else {
3419         return false; // keep looking
3420       }
3421     };
3422     _aot_adapter_handler_table.iterate(findblob_archived_table);
3423   }
3424 #endif // INCLUDE_CDS
3425   if (!found) {
3426     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3427       if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3428         found = true;
3429         st->print("Adapter for signature: ");
3430         a->print_adapter_on(st);
3431         return true;
3432       } else {
3433         return false; // keep looking
3434       }
3435     };
3436     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3437     _adapter_handler_table->iterate(findblob_runtime_table);
3438   }
3439   assert(found, "Should have found handler");
3440 }
3441 
3442 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3443   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3444   if (get_i2c_entry() != nullptr) {
3445     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3446   }
3447   if (get_c2i_entry() != nullptr) {
3448     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3449   }
3450   if (get_c2i_unverified_entry() != nullptr) {
3451     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3452   }
3453   if (get_c2i_no_clinit_check_entry() != nullptr) {
3454     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3455   }
3456   st->cr();
3457 }
3458 
3459 #ifndef PRODUCT
3460 
3461 void AdapterHandlerLibrary::print_statistics() {
3462   print_table_statistics();
3463 }
3464 
3465 #endif /* PRODUCT */
3466 
3467 bool AdapterHandlerLibrary::is_abstract_method_adapter(AdapterHandlerEntry* entry) {
3468   if (entry == _abstract_method_handler) {
3469     return true;
3470   }
3471   return false;
3472 }
3473 
3474 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3475   assert(current == JavaThread::current(), "pre-condition");
3476   StackOverflow* overflow_state = current->stack_overflow_state();
3477   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3478   overflow_state->set_reserved_stack_activation(current->stack_base());
3479 JRT_END
3480 
3481 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3482   ResourceMark rm(current);
3483   frame activation;
3484   nmethod* nm = nullptr;
3485   int count = 1;
3486 
3487   assert(fr.is_java_frame(), "Must start on Java frame");
3488 
3489   RegisterMap map(JavaThread::current(),
3490                   RegisterMap::UpdateMap::skip,
3491                   RegisterMap::ProcessFrames::skip,
3492                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3493   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3494     if (!fr.is_java_frame()) {
3495       continue;
3496     }
3497 
3498     Method* method = nullptr;
3499     bool found = false;
3500     if (fr.is_interpreted_frame()) {
3501       method = fr.interpreter_frame_method();
3502       if (method != nullptr && method->has_reserved_stack_access()) {
3503         found = true;
3504       }
3505     } else {
3506       CodeBlob* cb = fr.cb();
3507       if (cb != nullptr && cb->is_nmethod()) {
3508         nm = cb->as_nmethod();
3509         method = nm->method();
3510         // scope_desc_near() must be used, instead of scope_desc_at() because on
3511         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3512         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3513           method = sd->method();
3514           if (method != nullptr && method->has_reserved_stack_access()) {
3515             found = true;
3516           }
3517         }
3518       }
3519     }
3520     if (found) {
3521       activation = fr;
3522       warning("Potentially dangerous stack overflow in "
3523               "ReservedStackAccess annotated method %s [%d]",
3524               method->name_and_sig_as_C_string(), count++);
3525       EventReservedStackActivation event;
3526       if (event.should_commit()) {
3527         event.set_method(method);
3528         event.commit();
3529       }
3530     }
3531   }
3532   return activation;
3533 }
3534 
3535 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3536   // After any safepoint, just before going back to compiled code,
3537   // we inform the GC that we will be doing initializing writes to
3538   // this object in the future without emitting card-marks, so
3539   // GC may take any compensating steps.
3540 
3541   oop new_obj = current->vm_result_oop();
3542   if (new_obj == nullptr) return;
3543 
3544   BarrierSet *bs = BarrierSet::barrier_set();
3545   bs->on_slowpath_allocation_exit(current, new_obj);
3546 }