1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/classLoader.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/compiledIC.hpp" 32 #include "code/nmethod.inline.hpp" 33 #include "code/scopeDesc.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "compiler/abstractCompiler.hpp" 36 #include "compiler/compileBroker.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "gc/shared/barrierSet.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "interpreter/interpreter.hpp" 41 #include "interpreter/interpreterRuntime.hpp" 42 #include "jvm.h" 43 #include "jfr/jfrEvents.hpp" 44 #include "logging/log.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "memory/universe.hpp" 47 #include "metaprogramming/primitiveConversions.hpp" 48 #include "oops/klass.hpp" 49 #include "oops/method.inline.hpp" 50 #include "oops/objArrayKlass.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "prims/forte.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "prims/jvmtiThreadState.hpp" 55 #include "prims/methodHandles.hpp" 56 #include "prims/nativeLookup.hpp" 57 #include "runtime/arguments.hpp" 58 #include "runtime/atomic.hpp" 59 #include "runtime/basicLock.inline.hpp" 60 #include "runtime/frame.inline.hpp" 61 #include "runtime/handles.inline.hpp" 62 #include "runtime/init.hpp" 63 #include "runtime/interfaceSupport.inline.hpp" 64 #include "runtime/java.hpp" 65 #include "runtime/javaCalls.hpp" 66 #include "runtime/jniHandles.inline.hpp" 67 #include "runtime/perfData.hpp" 68 #include "runtime/sharedRuntime.hpp" 69 #include "runtime/stackWatermarkSet.hpp" 70 #include "runtime/stubRoutines.hpp" 71 #include "runtime/synchronizer.inline.hpp" 72 #include "runtime/timerTrace.hpp" 73 #include "runtime/vframe.inline.hpp" 74 #include "runtime/vframeArray.hpp" 75 #include "runtime/vm_version.hpp" 76 #include "utilities/copy.hpp" 77 #include "utilities/dtrace.hpp" 78 #include "utilities/events.hpp" 79 #include "utilities/globalDefinitions.hpp" 80 #include "utilities/resourceHash.hpp" 81 #include "utilities/macros.hpp" 82 #include "utilities/xmlstream.hpp" 83 #ifdef COMPILER1 84 #include "c1/c1_Runtime1.hpp" 85 #endif 86 #if INCLUDE_JFR 87 #include "jfr/jfr.hpp" 88 #endif 89 90 // Shared runtime stub routines reside in their own unique blob with a 91 // single entry point 92 93 94 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 95 type SharedRuntime::BLOB_FIELD_NAME(name); 96 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 97 #undef SHARED_STUB_FIELD_DEFINE 98 99 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 100 const char *SharedRuntime::_stub_names[] = { 101 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 102 }; 103 104 //----------------------------generate_stubs----------------------------------- 105 void SharedRuntime::generate_initial_stubs() { 106 // Build this early so it's available for the interpreter. 107 _throw_StackOverflowError_blob = 108 generate_throw_exception(SharedStubId::throw_StackOverflowError_id, 109 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 110 } 111 112 void SharedRuntime::generate_stubs() { 113 _wrong_method_blob = 114 generate_resolve_blob(SharedStubId::wrong_method_id, 115 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 116 _wrong_method_abstract_blob = 117 generate_resolve_blob(SharedStubId::wrong_method_abstract_id, 118 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 119 _ic_miss_blob = 120 generate_resolve_blob(SharedStubId::ic_miss_id, 121 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 122 _resolve_opt_virtual_call_blob = 123 generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id, 124 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 125 _resolve_virtual_call_blob = 126 generate_resolve_blob(SharedStubId::resolve_virtual_call_id, 127 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 128 _resolve_static_call_blob = 129 generate_resolve_blob(SharedStubId::resolve_static_call_id, 130 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 131 132 _throw_delayed_StackOverflowError_blob = 133 generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id, 134 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 135 136 _throw_AbstractMethodError_blob = 137 generate_throw_exception(SharedStubId::throw_AbstractMethodError_id, 138 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 139 140 _throw_IncompatibleClassChangeError_blob = 141 generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id, 142 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 143 144 _throw_NullPointerException_at_call_blob = 145 generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id, 146 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 147 148 AdapterHandlerLibrary::initialize(); 149 150 #if COMPILER2_OR_JVMCI 151 // Vectors are generated only by C2 and JVMCI. 152 bool support_wide = is_wide_vector(MaxVectorSize); 153 if (support_wide) { 154 _polling_page_vectors_safepoint_handler_blob = 155 generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id, 156 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 157 } 158 #endif // COMPILER2_OR_JVMCI 159 _polling_page_safepoint_handler_blob = 160 generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id, 161 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 162 _polling_page_return_handler_blob = 163 generate_handler_blob(SharedStubId::polling_page_return_handler_id, 164 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 165 166 generate_deopt_blob(); 167 } 168 169 #if INCLUDE_JFR 170 //------------------------------generate jfr runtime stubs ------ 171 void SharedRuntime::generate_jfr_stubs() { 172 ResourceMark rm; 173 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 174 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 175 176 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 177 _jfr_return_lease_blob = generate_jfr_return_lease(); 178 } 179 180 #endif // INCLUDE_JFR 181 182 #include <math.h> 183 184 // Implementation of SharedRuntime 185 186 #ifndef PRODUCT 187 // For statistics 188 uint SharedRuntime::_ic_miss_ctr = 0; 189 uint SharedRuntime::_wrong_method_ctr = 0; 190 uint SharedRuntime::_resolve_static_ctr = 0; 191 uint SharedRuntime::_resolve_virtual_ctr = 0; 192 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 193 uint SharedRuntime::_implicit_null_throws = 0; 194 uint SharedRuntime::_implicit_div0_throws = 0; 195 196 int64_t SharedRuntime::_nof_normal_calls = 0; 197 int64_t SharedRuntime::_nof_inlined_calls = 0; 198 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 199 int64_t SharedRuntime::_nof_static_calls = 0; 200 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 201 int64_t SharedRuntime::_nof_interface_calls = 0; 202 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 203 204 uint SharedRuntime::_new_instance_ctr=0; 205 uint SharedRuntime::_new_array_ctr=0; 206 uint SharedRuntime::_multi2_ctr=0; 207 uint SharedRuntime::_multi3_ctr=0; 208 uint SharedRuntime::_multi4_ctr=0; 209 uint SharedRuntime::_multi5_ctr=0; 210 uint SharedRuntime::_mon_enter_stub_ctr=0; 211 uint SharedRuntime::_mon_exit_stub_ctr=0; 212 uint SharedRuntime::_mon_enter_ctr=0; 213 uint SharedRuntime::_mon_exit_ctr=0; 214 uint SharedRuntime::_partial_subtype_ctr=0; 215 uint SharedRuntime::_jbyte_array_copy_ctr=0; 216 uint SharedRuntime::_jshort_array_copy_ctr=0; 217 uint SharedRuntime::_jint_array_copy_ctr=0; 218 uint SharedRuntime::_jlong_array_copy_ctr=0; 219 uint SharedRuntime::_oop_array_copy_ctr=0; 220 uint SharedRuntime::_checkcast_array_copy_ctr=0; 221 uint SharedRuntime::_unsafe_array_copy_ctr=0; 222 uint SharedRuntime::_generic_array_copy_ctr=0; 223 uint SharedRuntime::_slow_array_copy_ctr=0; 224 uint SharedRuntime::_find_handler_ctr=0; 225 uint SharedRuntime::_rethrow_ctr=0; 226 uint SharedRuntime::_unsafe_set_memory_ctr=0; 227 228 int SharedRuntime::_ICmiss_index = 0; 229 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 230 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 231 232 233 void SharedRuntime::trace_ic_miss(address at) { 234 for (int i = 0; i < _ICmiss_index; i++) { 235 if (_ICmiss_at[i] == at) { 236 _ICmiss_count[i]++; 237 return; 238 } 239 } 240 int index = _ICmiss_index++; 241 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 242 _ICmiss_at[index] = at; 243 _ICmiss_count[index] = 1; 244 } 245 246 void SharedRuntime::print_ic_miss_histogram() { 247 if (ICMissHistogram) { 248 tty->print_cr("IC Miss Histogram:"); 249 int tot_misses = 0; 250 for (int i = 0; i < _ICmiss_index; i++) { 251 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 252 tot_misses += _ICmiss_count[i]; 253 } 254 tty->print_cr("Total IC misses: %7d", tot_misses); 255 } 256 } 257 #endif // PRODUCT 258 259 260 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 261 return x * y; 262 JRT_END 263 264 265 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 266 if (x == min_jlong && y == CONST64(-1)) { 267 return x; 268 } else { 269 return x / y; 270 } 271 JRT_END 272 273 274 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 275 if (x == min_jlong && y == CONST64(-1)) { 276 return 0; 277 } else { 278 return x % y; 279 } 280 JRT_END 281 282 283 #ifdef _WIN64 284 const juint float_sign_mask = 0x7FFFFFFF; 285 const juint float_infinity = 0x7F800000; 286 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 287 const julong double_infinity = CONST64(0x7FF0000000000000); 288 #endif 289 290 #if !defined(X86) 291 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 292 #ifdef _WIN64 293 // 64-bit Windows on amd64 returns the wrong values for 294 // infinity operands. 295 juint xbits = PrimitiveConversions::cast<juint>(x); 296 juint ybits = PrimitiveConversions::cast<juint>(y); 297 // x Mod Infinity == x unless x is infinity 298 if (((xbits & float_sign_mask) != float_infinity) && 299 ((ybits & float_sign_mask) == float_infinity) ) { 300 return x; 301 } 302 return ((jfloat)fmod_winx64((double)x, (double)y)); 303 #else 304 return ((jfloat)fmod((double)x,(double)y)); 305 #endif 306 JRT_END 307 308 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 309 #ifdef _WIN64 310 julong xbits = PrimitiveConversions::cast<julong>(x); 311 julong ybits = PrimitiveConversions::cast<julong>(y); 312 // x Mod Infinity == x unless x is infinity 313 if (((xbits & double_sign_mask) != double_infinity) && 314 ((ybits & double_sign_mask) == double_infinity) ) { 315 return x; 316 } 317 return ((jdouble)fmod_winx64((double)x, (double)y)); 318 #else 319 return ((jdouble)fmod((double)x,(double)y)); 320 #endif 321 JRT_END 322 #endif // !X86 323 324 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 325 return (jfloat)x; 326 JRT_END 327 328 #ifdef __SOFTFP__ 329 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 330 return x + y; 331 JRT_END 332 333 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 334 return x - y; 335 JRT_END 336 337 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 338 return x * y; 339 JRT_END 340 341 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 342 return x / y; 343 JRT_END 344 345 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 346 return x + y; 347 JRT_END 348 349 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 350 return x - y; 351 JRT_END 352 353 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 354 return x * y; 355 JRT_END 356 357 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 358 return x / y; 359 JRT_END 360 361 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 362 return (jdouble)x; 363 JRT_END 364 365 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 366 return (jdouble)x; 367 JRT_END 368 369 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 370 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 371 JRT_END 372 373 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 374 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 375 JRT_END 376 377 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 378 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 379 JRT_END 380 381 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 382 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 383 JRT_END 384 385 // Functions to return the opposite of the aeabi functions for nan. 386 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 387 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 388 JRT_END 389 390 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 391 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 392 JRT_END 393 394 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 395 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 396 JRT_END 397 398 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 399 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 400 JRT_END 401 402 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 403 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 404 JRT_END 405 406 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 407 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 408 JRT_END 409 410 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 411 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 412 JRT_END 413 414 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 415 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 416 JRT_END 417 418 // Intrinsics make gcc generate code for these. 419 float SharedRuntime::fneg(float f) { 420 return -f; 421 } 422 423 double SharedRuntime::dneg(double f) { 424 return -f; 425 } 426 427 #endif // __SOFTFP__ 428 429 #if defined(__SOFTFP__) || defined(E500V2) 430 // Intrinsics make gcc generate code for these. 431 double SharedRuntime::dabs(double f) { 432 return (f <= (double)0.0) ? (double)0.0 - f : f; 433 } 434 435 #endif 436 437 #if defined(__SOFTFP__) || defined(PPC) 438 double SharedRuntime::dsqrt(double f) { 439 return sqrt(f); 440 } 441 #endif 442 443 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 444 if (g_isnan(x)) 445 return 0; 446 if (x >= (jfloat) max_jint) 447 return max_jint; 448 if (x <= (jfloat) min_jint) 449 return min_jint; 450 return (jint) x; 451 JRT_END 452 453 454 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 455 if (g_isnan(x)) 456 return 0; 457 if (x >= (jfloat) max_jlong) 458 return max_jlong; 459 if (x <= (jfloat) min_jlong) 460 return min_jlong; 461 return (jlong) x; 462 JRT_END 463 464 465 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 466 if (g_isnan(x)) 467 return 0; 468 if (x >= (jdouble) max_jint) 469 return max_jint; 470 if (x <= (jdouble) min_jint) 471 return min_jint; 472 return (jint) x; 473 JRT_END 474 475 476 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 477 if (g_isnan(x)) 478 return 0; 479 if (x >= (jdouble) max_jlong) 480 return max_jlong; 481 if (x <= (jdouble) min_jlong) 482 return min_jlong; 483 return (jlong) x; 484 JRT_END 485 486 487 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 488 return (jfloat)x; 489 JRT_END 490 491 492 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 493 return (jfloat)x; 494 JRT_END 495 496 497 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 498 return (jdouble)x; 499 JRT_END 500 501 502 // Exception handling across interpreter/compiler boundaries 503 // 504 // exception_handler_for_return_address(...) returns the continuation address. 505 // The continuation address is the entry point of the exception handler of the 506 // previous frame depending on the return address. 507 508 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 509 // Note: This is called when we have unwound the frame of the callee that did 510 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 511 // Notably, the stack is not walkable at this point, and hence the check must 512 // be deferred until later. Specifically, any of the handlers returned here in 513 // this function, will get dispatched to, and call deferred checks to 514 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 515 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 516 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 517 518 // Reset method handle flag. 519 current->set_is_method_handle_return(false); 520 521 #if INCLUDE_JVMCI 522 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 523 // and other exception handler continuations do not read it 524 current->set_exception_pc(nullptr); 525 #endif // INCLUDE_JVMCI 526 527 if (Continuation::is_return_barrier_entry(return_address)) { 528 return StubRoutines::cont_returnBarrierExc(); 529 } 530 531 // The fastest case first 532 CodeBlob* blob = CodeCache::find_blob(return_address); 533 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 534 if (nm != nullptr) { 535 // Set flag if return address is a method handle call site. 536 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 537 // native nmethods don't have exception handlers 538 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 539 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 540 if (nm->is_deopt_pc(return_address)) { 541 // If we come here because of a stack overflow, the stack may be 542 // unguarded. Reguard the stack otherwise if we return to the 543 // deopt blob and the stack bang causes a stack overflow we 544 // crash. 545 StackOverflow* overflow_state = current->stack_overflow_state(); 546 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 547 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 548 overflow_state->set_reserved_stack_activation(current->stack_base()); 549 } 550 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 551 // The deferred StackWatermarkSet::after_unwind check will be performed in 552 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 553 return SharedRuntime::deopt_blob()->unpack_with_exception(); 554 } else { 555 // The deferred StackWatermarkSet::after_unwind check will be performed in 556 // * OptoRuntime::handle_exception_C_helper for C2 code 557 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 558 return nm->exception_begin(); 559 } 560 } 561 562 // Entry code 563 if (StubRoutines::returns_to_call_stub(return_address)) { 564 // The deferred StackWatermarkSet::after_unwind check will be performed in 565 // JavaCallWrapper::~JavaCallWrapper 566 return StubRoutines::catch_exception_entry(); 567 } 568 if (blob != nullptr && blob->is_upcall_stub()) { 569 return StubRoutines::upcall_stub_exception_handler(); 570 } 571 // Interpreted code 572 if (Interpreter::contains(return_address)) { 573 // The deferred StackWatermarkSet::after_unwind check will be performed in 574 // InterpreterRuntime::exception_handler_for_exception 575 return Interpreter::rethrow_exception_entry(); 576 } 577 578 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 579 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 580 581 #ifndef PRODUCT 582 { ResourceMark rm; 583 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 584 os::print_location(tty, (intptr_t)return_address); 585 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 586 tty->print_cr("b) other problem"); 587 } 588 #endif // PRODUCT 589 ShouldNotReachHere(); 590 return nullptr; 591 } 592 593 594 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 595 return raw_exception_handler_for_return_address(current, return_address); 596 JRT_END 597 598 599 address SharedRuntime::get_poll_stub(address pc) { 600 address stub; 601 // Look up the code blob 602 CodeBlob *cb = CodeCache::find_blob(pc); 603 604 // Should be an nmethod 605 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 606 607 // Look up the relocation information 608 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 609 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 610 611 #ifdef ASSERT 612 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 613 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 614 Disassembler::decode(cb); 615 fatal("Only polling locations are used for safepoint"); 616 } 617 #endif 618 619 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 620 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 621 if (at_poll_return) { 622 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 623 "polling page return stub not created yet"); 624 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 625 } else if (has_wide_vectors) { 626 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 627 "polling page vectors safepoint stub not created yet"); 628 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 629 } else { 630 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 631 "polling page safepoint stub not created yet"); 632 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 633 } 634 log_debug(safepoint)("... found polling page %s exception at pc = " 635 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 636 at_poll_return ? "return" : "loop", 637 (intptr_t)pc, (intptr_t)stub); 638 return stub; 639 } 640 641 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 642 if (JvmtiExport::can_post_on_exceptions()) { 643 vframeStream vfst(current, true); 644 methodHandle method = methodHandle(current, vfst.method()); 645 address bcp = method()->bcp_from(vfst.bci()); 646 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 647 } 648 649 #if INCLUDE_JVMCI 650 if (EnableJVMCI) { 651 vframeStream vfst(current, true); 652 methodHandle method = methodHandle(current, vfst.method()); 653 int bci = vfst.bci(); 654 MethodData* trap_mdo = method->method_data(); 655 if (trap_mdo != nullptr) { 656 // Set exception_seen if the exceptional bytecode is an invoke 657 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 658 if (call.is_valid()) { 659 ResourceMark rm(current); 660 661 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 662 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 663 664 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 665 if (pdata != nullptr && pdata->is_BitData()) { 666 BitData* bit_data = (BitData*) pdata; 667 bit_data->set_exception_seen(); 668 } 669 } 670 } 671 } 672 #endif 673 674 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 675 } 676 677 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 678 Handle h_exception = Exceptions::new_exception(current, name, message); 679 throw_and_post_jvmti_exception(current, h_exception); 680 } 681 682 #if INCLUDE_JVMTI 683 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 684 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 685 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 686 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 687 JNIHandles::destroy_local(vthread); 688 JRT_END 689 690 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 691 assert(hide == JNI_TRUE, "must be VTMS transition start"); 692 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 693 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 694 JNIHandles::destroy_local(vthread); 695 JRT_END 696 697 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 698 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 699 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 700 JNIHandles::destroy_local(vthread); 701 JRT_END 702 703 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 704 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 705 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 706 JNIHandles::destroy_local(vthread); 707 JRT_END 708 #endif // INCLUDE_JVMTI 709 710 // The interpreter code to call this tracing function is only 711 // called/generated when UL is on for redefine, class and has the right level 712 // and tags. Since obsolete methods are never compiled, we don't have 713 // to modify the compilers to generate calls to this function. 714 // 715 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 716 JavaThread* thread, Method* method)) 717 if (method->is_obsolete()) { 718 // We are calling an obsolete method, but this is not necessarily 719 // an error. Our method could have been redefined just after we 720 // fetched the Method* from the constant pool. 721 ResourceMark rm; 722 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 723 } 724 return 0; 725 JRT_END 726 727 // ret_pc points into caller; we are returning caller's exception handler 728 // for given exception 729 // Note that the implementation of this method assumes it's only called when an exception has actually occured 730 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 731 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 732 assert(nm != nullptr, "must exist"); 733 ResourceMark rm; 734 735 #if INCLUDE_JVMCI 736 if (nm->is_compiled_by_jvmci()) { 737 // lookup exception handler for this pc 738 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 739 ExceptionHandlerTable table(nm); 740 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 741 if (t != nullptr) { 742 return nm->code_begin() + t->pco(); 743 } else { 744 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 745 } 746 } 747 #endif // INCLUDE_JVMCI 748 749 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 750 // determine handler bci, if any 751 EXCEPTION_MARK; 752 753 int handler_bci = -1; 754 int scope_depth = 0; 755 if (!force_unwind) { 756 int bci = sd->bci(); 757 bool recursive_exception = false; 758 do { 759 bool skip_scope_increment = false; 760 // exception handler lookup 761 Klass* ek = exception->klass(); 762 methodHandle mh(THREAD, sd->method()); 763 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 764 if (HAS_PENDING_EXCEPTION) { 765 recursive_exception = true; 766 // We threw an exception while trying to find the exception handler. 767 // Transfer the new exception to the exception handle which will 768 // be set into thread local storage, and do another lookup for an 769 // exception handler for this exception, this time starting at the 770 // BCI of the exception handler which caused the exception to be 771 // thrown (bugs 4307310 and 4546590). Set "exception" reference 772 // argument to ensure that the correct exception is thrown (4870175). 773 recursive_exception_occurred = true; 774 exception = Handle(THREAD, PENDING_EXCEPTION); 775 CLEAR_PENDING_EXCEPTION; 776 if (handler_bci >= 0) { 777 bci = handler_bci; 778 handler_bci = -1; 779 skip_scope_increment = true; 780 } 781 } 782 else { 783 recursive_exception = false; 784 } 785 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 786 sd = sd->sender(); 787 if (sd != nullptr) { 788 bci = sd->bci(); 789 } 790 ++scope_depth; 791 } 792 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 793 } 794 795 // found handling method => lookup exception handler 796 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 797 798 ExceptionHandlerTable table(nm); 799 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 800 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 801 // Allow abbreviated catch tables. The idea is to allow a method 802 // to materialize its exceptions without committing to the exact 803 // routing of exceptions. In particular this is needed for adding 804 // a synthetic handler to unlock monitors when inlining 805 // synchronized methods since the unlock path isn't represented in 806 // the bytecodes. 807 t = table.entry_for(catch_pco, -1, 0); 808 } 809 810 #ifdef COMPILER1 811 if (t == nullptr && nm->is_compiled_by_c1()) { 812 assert(nm->unwind_handler_begin() != nullptr, ""); 813 return nm->unwind_handler_begin(); 814 } 815 #endif 816 817 if (t == nullptr) { 818 ttyLocker ttyl; 819 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 820 tty->print_cr(" Exception:"); 821 exception->print(); 822 tty->cr(); 823 tty->print_cr(" Compiled exception table :"); 824 table.print(); 825 nm->print(); 826 nm->print_code(); 827 guarantee(false, "missing exception handler"); 828 return nullptr; 829 } 830 831 if (handler_bci != -1) { // did we find a handler in this method? 832 sd->method()->set_exception_handler_entered(handler_bci); // profile 833 } 834 return nm->code_begin() + t->pco(); 835 } 836 837 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 838 // These errors occur only at call sites 839 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 840 JRT_END 841 842 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 843 // These errors occur only at call sites 844 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 845 JRT_END 846 847 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 848 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 849 JRT_END 850 851 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 852 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 853 JRT_END 854 855 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 856 // This entry point is effectively only used for NullPointerExceptions which occur at inline 857 // cache sites (when the callee activation is not yet set up) so we are at a call site 858 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 859 JRT_END 860 861 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 862 throw_StackOverflowError_common(current, false); 863 JRT_END 864 865 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 866 throw_StackOverflowError_common(current, true); 867 JRT_END 868 869 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 870 // We avoid using the normal exception construction in this case because 871 // it performs an upcall to Java, and we're already out of stack space. 872 JavaThread* THREAD = current; // For exception macros. 873 Klass* k = vmClasses::StackOverflowError_klass(); 874 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 875 if (delayed) { 876 java_lang_Throwable::set_message(exception_oop, 877 Universe::delayed_stack_overflow_error_message()); 878 } 879 Handle exception (current, exception_oop); 880 if (StackTraceInThrowable) { 881 java_lang_Throwable::fill_in_stack_trace(exception); 882 } 883 // Remove the ScopedValue bindings in case we got a 884 // StackOverflowError while we were trying to remove ScopedValue 885 // bindings. 886 current->clear_scopedValueBindings(); 887 // Increment counter for hs_err file reporting 888 Atomic::inc(&Exceptions::_stack_overflow_errors); 889 throw_and_post_jvmti_exception(current, exception); 890 } 891 892 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 893 address pc, 894 ImplicitExceptionKind exception_kind) 895 { 896 address target_pc = nullptr; 897 898 if (Interpreter::contains(pc)) { 899 switch (exception_kind) { 900 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 901 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 902 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 903 default: ShouldNotReachHere(); 904 } 905 } else { 906 switch (exception_kind) { 907 case STACK_OVERFLOW: { 908 // Stack overflow only occurs upon frame setup; the callee is 909 // going to be unwound. Dispatch to a shared runtime stub 910 // which will cause the StackOverflowError to be fabricated 911 // and processed. 912 // Stack overflow should never occur during deoptimization: 913 // the compiled method bangs the stack by as much as the 914 // interpreter would need in case of a deoptimization. The 915 // deoptimization blob and uncommon trap blob bang the stack 916 // in a debug VM to verify the correctness of the compiled 917 // method stack banging. 918 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 919 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 920 return SharedRuntime::throw_StackOverflowError_entry(); 921 } 922 923 case IMPLICIT_NULL: { 924 if (VtableStubs::contains(pc)) { 925 // We haven't yet entered the callee frame. Fabricate an 926 // exception and begin dispatching it in the caller. Since 927 // the caller was at a call site, it's safe to destroy all 928 // caller-saved registers, as these entry points do. 929 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 930 931 // If vt_stub is null, then return null to signal handler to report the SEGV error. 932 if (vt_stub == nullptr) return nullptr; 933 934 if (vt_stub->is_abstract_method_error(pc)) { 935 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 936 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 937 // Instead of throwing the abstract method error here directly, we re-resolve 938 // and will throw the AbstractMethodError during resolve. As a result, we'll 939 // get a more detailed error message. 940 return SharedRuntime::get_handle_wrong_method_stub(); 941 } else { 942 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 943 // Assert that the signal comes from the expected location in stub code. 944 assert(vt_stub->is_null_pointer_exception(pc), 945 "obtained signal from unexpected location in stub code"); 946 return SharedRuntime::throw_NullPointerException_at_call_entry(); 947 } 948 } else { 949 CodeBlob* cb = CodeCache::find_blob(pc); 950 951 // If code blob is null, then return null to signal handler to report the SEGV error. 952 if (cb == nullptr) return nullptr; 953 954 // Exception happened in CodeCache. Must be either: 955 // 1. Inline-cache check in C2I handler blob, 956 // 2. Inline-cache check in nmethod, or 957 // 3. Implicit null exception in nmethod 958 959 if (!cb->is_nmethod()) { 960 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 961 if (!is_in_blob) { 962 // Allow normal crash reporting to handle this 963 return nullptr; 964 } 965 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 966 // There is no handler here, so we will simply unwind. 967 return SharedRuntime::throw_NullPointerException_at_call_entry(); 968 } 969 970 // Otherwise, it's a compiled method. Consult its exception handlers. 971 nmethod* nm = cb->as_nmethod(); 972 if (nm->inlinecache_check_contains(pc)) { 973 // exception happened inside inline-cache check code 974 // => the nmethod is not yet active (i.e., the frame 975 // is not set up yet) => use return address pushed by 976 // caller => don't push another return address 977 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 978 return SharedRuntime::throw_NullPointerException_at_call_entry(); 979 } 980 981 if (nm->method()->is_method_handle_intrinsic()) { 982 // exception happened inside MH dispatch code, similar to a vtable stub 983 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 984 return SharedRuntime::throw_NullPointerException_at_call_entry(); 985 } 986 987 #ifndef PRODUCT 988 _implicit_null_throws++; 989 #endif 990 target_pc = nm->continuation_for_implicit_null_exception(pc); 991 // If there's an unexpected fault, target_pc might be null, 992 // in which case we want to fall through into the normal 993 // error handling code. 994 } 995 996 break; // fall through 997 } 998 999 1000 case IMPLICIT_DIVIDE_BY_ZERO: { 1001 nmethod* nm = CodeCache::find_nmethod(pc); 1002 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1003 #ifndef PRODUCT 1004 _implicit_div0_throws++; 1005 #endif 1006 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1007 // If there's an unexpected fault, target_pc might be null, 1008 // in which case we want to fall through into the normal 1009 // error handling code. 1010 break; // fall through 1011 } 1012 1013 default: ShouldNotReachHere(); 1014 } 1015 1016 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1017 1018 if (exception_kind == IMPLICIT_NULL) { 1019 #ifndef PRODUCT 1020 // for AbortVMOnException flag 1021 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1022 #endif //PRODUCT 1023 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1024 } else { 1025 #ifndef PRODUCT 1026 // for AbortVMOnException flag 1027 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1028 #endif //PRODUCT 1029 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1030 } 1031 return target_pc; 1032 } 1033 1034 ShouldNotReachHere(); 1035 return nullptr; 1036 } 1037 1038 1039 /** 1040 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1041 * installed in the native function entry of all native Java methods before 1042 * they get linked to their actual native methods. 1043 * 1044 * \note 1045 * This method actually never gets called! The reason is because 1046 * the interpreter's native entries call NativeLookup::lookup() which 1047 * throws the exception when the lookup fails. The exception is then 1048 * caught and forwarded on the return from NativeLookup::lookup() call 1049 * before the call to the native function. This might change in the future. 1050 */ 1051 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1052 { 1053 // We return a bad value here to make sure that the exception is 1054 // forwarded before we look at the return value. 1055 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1056 } 1057 JNI_END 1058 1059 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1060 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1061 } 1062 1063 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1064 #if INCLUDE_JVMCI 1065 if (!obj->klass()->has_finalizer()) { 1066 return; 1067 } 1068 #endif // INCLUDE_JVMCI 1069 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1070 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1071 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1072 JRT_END 1073 1074 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1075 assert(thread != nullptr, "No thread"); 1076 if (thread == nullptr) { 1077 return 0; 1078 } 1079 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1080 "current cannot touch oops after its GC barrier is detached."); 1081 oop obj = thread->threadObj(); 1082 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1083 } 1084 1085 /** 1086 * This function ought to be a void function, but cannot be because 1087 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1088 * 6254741. Once that is fixed we can remove the dummy return value. 1089 */ 1090 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1091 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1092 } 1093 1094 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1095 return dtrace_object_alloc(thread, o, o->size()); 1096 } 1097 1098 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1099 assert(DTraceAllocProbes, "wrong call"); 1100 Klass* klass = o->klass(); 1101 Symbol* name = klass->name(); 1102 HOTSPOT_OBJECT_ALLOC( 1103 get_java_tid(thread), 1104 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1105 return 0; 1106 } 1107 1108 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1109 JavaThread* current, Method* method)) 1110 assert(current == JavaThread::current(), "pre-condition"); 1111 1112 assert(DTraceMethodProbes, "wrong call"); 1113 Symbol* kname = method->klass_name(); 1114 Symbol* name = method->name(); 1115 Symbol* sig = method->signature(); 1116 HOTSPOT_METHOD_ENTRY( 1117 get_java_tid(current), 1118 (char *) kname->bytes(), kname->utf8_length(), 1119 (char *) name->bytes(), name->utf8_length(), 1120 (char *) sig->bytes(), sig->utf8_length()); 1121 return 0; 1122 JRT_END 1123 1124 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1125 JavaThread* current, Method* method)) 1126 assert(current == JavaThread::current(), "pre-condition"); 1127 assert(DTraceMethodProbes, "wrong call"); 1128 Symbol* kname = method->klass_name(); 1129 Symbol* name = method->name(); 1130 Symbol* sig = method->signature(); 1131 HOTSPOT_METHOD_RETURN( 1132 get_java_tid(current), 1133 (char *) kname->bytes(), kname->utf8_length(), 1134 (char *) name->bytes(), name->utf8_length(), 1135 (char *) sig->bytes(), sig->utf8_length()); 1136 return 0; 1137 JRT_END 1138 1139 1140 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1141 // for a call current in progress, i.e., arguments has been pushed on stack 1142 // put callee has not been invoked yet. Used by: resolve virtual/static, 1143 // vtable updates, etc. Caller frame must be compiled. 1144 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1145 JavaThread* current = THREAD; 1146 ResourceMark rm(current); 1147 1148 // last java frame on stack (which includes native call frames) 1149 vframeStream vfst(current, true); // Do not skip and javaCalls 1150 1151 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1152 } 1153 1154 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1155 nmethod* caller = vfst.nm(); 1156 1157 address pc = vfst.frame_pc(); 1158 { // Get call instruction under lock because another thread may be busy patching it. 1159 CompiledICLocker ic_locker(caller); 1160 return caller->attached_method_before_pc(pc); 1161 } 1162 return nullptr; 1163 } 1164 1165 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1166 // for a call current in progress, i.e., arguments has been pushed on stack 1167 // but callee has not been invoked yet. Caller frame must be compiled. 1168 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1169 CallInfo& callinfo, TRAPS) { 1170 Handle receiver; 1171 Handle nullHandle; // create a handy null handle for exception returns 1172 JavaThread* current = THREAD; 1173 1174 assert(!vfst.at_end(), "Java frame must exist"); 1175 1176 // Find caller and bci from vframe 1177 methodHandle caller(current, vfst.method()); 1178 int bci = vfst.bci(); 1179 1180 if (caller->is_continuation_enter_intrinsic()) { 1181 bc = Bytecodes::_invokestatic; 1182 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1183 return receiver; 1184 } 1185 1186 Bytecode_invoke bytecode(caller, bci); 1187 int bytecode_index = bytecode.index(); 1188 bc = bytecode.invoke_code(); 1189 1190 methodHandle attached_method(current, extract_attached_method(vfst)); 1191 if (attached_method.not_null()) { 1192 Method* callee = bytecode.static_target(CHECK_NH); 1193 vmIntrinsics::ID id = callee->intrinsic_id(); 1194 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1195 // it attaches statically resolved method to the call site. 1196 if (MethodHandles::is_signature_polymorphic(id) && 1197 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1198 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1199 1200 // Adjust invocation mode according to the attached method. 1201 switch (bc) { 1202 case Bytecodes::_invokevirtual: 1203 if (attached_method->method_holder()->is_interface()) { 1204 bc = Bytecodes::_invokeinterface; 1205 } 1206 break; 1207 case Bytecodes::_invokeinterface: 1208 if (!attached_method->method_holder()->is_interface()) { 1209 bc = Bytecodes::_invokevirtual; 1210 } 1211 break; 1212 case Bytecodes::_invokehandle: 1213 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1214 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1215 : Bytecodes::_invokevirtual; 1216 } 1217 break; 1218 default: 1219 break; 1220 } 1221 } 1222 } 1223 1224 assert(bc != Bytecodes::_illegal, "not initialized"); 1225 1226 bool has_receiver = bc != Bytecodes::_invokestatic && 1227 bc != Bytecodes::_invokedynamic && 1228 bc != Bytecodes::_invokehandle; 1229 1230 // Find receiver for non-static call 1231 if (has_receiver) { 1232 // This register map must be update since we need to find the receiver for 1233 // compiled frames. The receiver might be in a register. 1234 RegisterMap reg_map2(current, 1235 RegisterMap::UpdateMap::include, 1236 RegisterMap::ProcessFrames::include, 1237 RegisterMap::WalkContinuation::skip); 1238 frame stubFrame = current->last_frame(); 1239 // Caller-frame is a compiled frame 1240 frame callerFrame = stubFrame.sender(®_map2); 1241 1242 if (attached_method.is_null()) { 1243 Method* callee = bytecode.static_target(CHECK_NH); 1244 if (callee == nullptr) { 1245 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1246 } 1247 } 1248 1249 // Retrieve from a compiled argument list 1250 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1251 assert(oopDesc::is_oop_or_null(receiver()), ""); 1252 1253 if (receiver.is_null()) { 1254 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1255 } 1256 } 1257 1258 // Resolve method 1259 if (attached_method.not_null()) { 1260 // Parameterized by attached method. 1261 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1262 } else { 1263 // Parameterized by bytecode. 1264 constantPoolHandle constants(current, caller->constants()); 1265 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1266 } 1267 1268 #ifdef ASSERT 1269 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1270 if (has_receiver) { 1271 assert(receiver.not_null(), "should have thrown exception"); 1272 Klass* receiver_klass = receiver->klass(); 1273 Klass* rk = nullptr; 1274 if (attached_method.not_null()) { 1275 // In case there's resolved method attached, use its holder during the check. 1276 rk = attached_method->method_holder(); 1277 } else { 1278 // Klass is already loaded. 1279 constantPoolHandle constants(current, caller->constants()); 1280 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1281 } 1282 Klass* static_receiver_klass = rk; 1283 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1284 "actual receiver must be subclass of static receiver klass"); 1285 if (receiver_klass->is_instance_klass()) { 1286 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1287 tty->print_cr("ERROR: Klass not yet initialized!!"); 1288 receiver_klass->print(); 1289 } 1290 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1291 } 1292 } 1293 #endif 1294 1295 return receiver; 1296 } 1297 1298 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1299 JavaThread* current = THREAD; 1300 ResourceMark rm(current); 1301 // We need first to check if any Java activations (compiled, interpreted) 1302 // exist on the stack since last JavaCall. If not, we need 1303 // to get the target method from the JavaCall wrapper. 1304 vframeStream vfst(current, true); // Do not skip any javaCalls 1305 methodHandle callee_method; 1306 if (vfst.at_end()) { 1307 // No Java frames were found on stack since we did the JavaCall. 1308 // Hence the stack can only contain an entry_frame. We need to 1309 // find the target method from the stub frame. 1310 RegisterMap reg_map(current, 1311 RegisterMap::UpdateMap::skip, 1312 RegisterMap::ProcessFrames::include, 1313 RegisterMap::WalkContinuation::skip); 1314 frame fr = current->last_frame(); 1315 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1316 fr = fr.sender(®_map); 1317 assert(fr.is_entry_frame(), "must be"); 1318 // fr is now pointing to the entry frame. 1319 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1320 } else { 1321 Bytecodes::Code bc; 1322 CallInfo callinfo; 1323 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1324 callee_method = methodHandle(current, callinfo.selected_method()); 1325 } 1326 assert(callee_method()->is_method(), "must be"); 1327 return callee_method; 1328 } 1329 1330 // Resolves a call. 1331 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1332 JavaThread* current = THREAD; 1333 ResourceMark rm(current); 1334 RegisterMap cbl_map(current, 1335 RegisterMap::UpdateMap::skip, 1336 RegisterMap::ProcessFrames::include, 1337 RegisterMap::WalkContinuation::skip); 1338 frame caller_frame = current->last_frame().sender(&cbl_map); 1339 1340 CodeBlob* caller_cb = caller_frame.cb(); 1341 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1342 nmethod* caller_nm = caller_cb->as_nmethod(); 1343 1344 // determine call info & receiver 1345 // note: a) receiver is null for static calls 1346 // b) an exception is thrown if receiver is null for non-static calls 1347 CallInfo call_info; 1348 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1349 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1350 1351 NoSafepointVerifier nsv; 1352 1353 methodHandle callee_method(current, call_info.selected_method()); 1354 1355 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1356 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1357 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1358 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1359 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1360 1361 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1362 1363 #ifndef PRODUCT 1364 // tracing/debugging/statistics 1365 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1366 (is_virtual) ? (&_resolve_virtual_ctr) : 1367 (&_resolve_static_ctr); 1368 Atomic::inc(addr); 1369 1370 if (TraceCallFixup) { 1371 ResourceMark rm(current); 1372 tty->print("resolving %s%s (%s) call to", 1373 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1374 Bytecodes::name(invoke_code)); 1375 callee_method->print_short_name(tty); 1376 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1377 p2i(caller_frame.pc()), p2i(callee_method->code())); 1378 } 1379 #endif 1380 1381 if (invoke_code == Bytecodes::_invokestatic) { 1382 assert(callee_method->method_holder()->is_initialized() || 1383 callee_method->method_holder()->is_reentrant_initialization(current), 1384 "invalid class initialization state for invoke_static"); 1385 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1386 // In order to keep class initialization check, do not patch call 1387 // site for static call when the class is not fully initialized. 1388 // Proper check is enforced by call site re-resolution on every invocation. 1389 // 1390 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1391 // explicit class initialization check is put in nmethod entry (VEP). 1392 assert(callee_method->method_holder()->is_linked(), "must be"); 1393 return callee_method; 1394 } 1395 } 1396 1397 1398 // JSR 292 key invariant: 1399 // If the resolved method is a MethodHandle invoke target, the call 1400 // site must be a MethodHandle call site, because the lambda form might tail-call 1401 // leaving the stack in a state unknown to either caller or callee 1402 1403 // Compute entry points. The computation of the entry points is independent of 1404 // patching the call. 1405 1406 // Make sure the callee nmethod does not get deoptimized and removed before 1407 // we are done patching the code. 1408 1409 1410 CompiledICLocker ml(caller_nm); 1411 if (is_virtual && !is_optimized) { 1412 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1413 inline_cache->update(&call_info, receiver->klass()); 1414 } else { 1415 // Callsite is a direct call - set it to the destination method 1416 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1417 callsite->set(callee_method); 1418 } 1419 1420 return callee_method; 1421 } 1422 1423 // Inline caches exist only in compiled code 1424 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1425 #ifdef ASSERT 1426 RegisterMap reg_map(current, 1427 RegisterMap::UpdateMap::skip, 1428 RegisterMap::ProcessFrames::include, 1429 RegisterMap::WalkContinuation::skip); 1430 frame stub_frame = current->last_frame(); 1431 assert(stub_frame.is_runtime_frame(), "sanity check"); 1432 frame caller_frame = stub_frame.sender(®_map); 1433 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1434 #endif /* ASSERT */ 1435 1436 methodHandle callee_method; 1437 JRT_BLOCK 1438 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1439 // Return Method* through TLS 1440 current->set_vm_result_metadata(callee_method()); 1441 JRT_BLOCK_END 1442 // return compiled code entry point after potential safepoints 1443 return get_resolved_entry(current, callee_method); 1444 JRT_END 1445 1446 1447 // Handle call site that has been made non-entrant 1448 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1449 // 6243940 We might end up in here if the callee is deoptimized 1450 // as we race to call it. We don't want to take a safepoint if 1451 // the caller was interpreted because the caller frame will look 1452 // interpreted to the stack walkers and arguments are now 1453 // "compiled" so it is much better to make this transition 1454 // invisible to the stack walking code. The i2c path will 1455 // place the callee method in the callee_target. It is stashed 1456 // there because if we try and find the callee by normal means a 1457 // safepoint is possible and have trouble gc'ing the compiled args. 1458 RegisterMap reg_map(current, 1459 RegisterMap::UpdateMap::skip, 1460 RegisterMap::ProcessFrames::include, 1461 RegisterMap::WalkContinuation::skip); 1462 frame stub_frame = current->last_frame(); 1463 assert(stub_frame.is_runtime_frame(), "sanity check"); 1464 frame caller_frame = stub_frame.sender(®_map); 1465 1466 if (caller_frame.is_interpreted_frame() || 1467 caller_frame.is_entry_frame() || 1468 caller_frame.is_upcall_stub_frame()) { 1469 Method* callee = current->callee_target(); 1470 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1471 current->set_vm_result_metadata(callee); 1472 current->set_callee_target(nullptr); 1473 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1474 // Bypass class initialization checks in c2i when caller is in native. 1475 // JNI calls to static methods don't have class initialization checks. 1476 // Fast class initialization checks are present in c2i adapters and call into 1477 // SharedRuntime::handle_wrong_method() on the slow path. 1478 // 1479 // JVM upcalls may land here as well, but there's a proper check present in 1480 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1481 // so bypassing it in c2i adapter is benign. 1482 return callee->get_c2i_no_clinit_check_entry(); 1483 } else { 1484 return callee->get_c2i_entry(); 1485 } 1486 } 1487 1488 // Must be compiled to compiled path which is safe to stackwalk 1489 methodHandle callee_method; 1490 JRT_BLOCK 1491 // Force resolving of caller (if we called from compiled frame) 1492 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1493 current->set_vm_result_metadata(callee_method()); 1494 JRT_BLOCK_END 1495 // return compiled code entry point after potential safepoints 1496 return get_resolved_entry(current, callee_method); 1497 JRT_END 1498 1499 // Handle abstract method call 1500 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1501 // Verbose error message for AbstractMethodError. 1502 // Get the called method from the invoke bytecode. 1503 vframeStream vfst(current, true); 1504 assert(!vfst.at_end(), "Java frame must exist"); 1505 methodHandle caller(current, vfst.method()); 1506 Bytecode_invoke invoke(caller, vfst.bci()); 1507 DEBUG_ONLY( invoke.verify(); ) 1508 1509 // Find the compiled caller frame. 1510 RegisterMap reg_map(current, 1511 RegisterMap::UpdateMap::include, 1512 RegisterMap::ProcessFrames::include, 1513 RegisterMap::WalkContinuation::skip); 1514 frame stubFrame = current->last_frame(); 1515 assert(stubFrame.is_runtime_frame(), "must be"); 1516 frame callerFrame = stubFrame.sender(®_map); 1517 assert(callerFrame.is_compiled_frame(), "must be"); 1518 1519 // Install exception and return forward entry. 1520 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1521 JRT_BLOCK 1522 methodHandle callee(current, invoke.static_target(current)); 1523 if (!callee.is_null()) { 1524 oop recv = callerFrame.retrieve_receiver(®_map); 1525 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1526 res = StubRoutines::forward_exception_entry(); 1527 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1528 } 1529 JRT_BLOCK_END 1530 return res; 1531 JRT_END 1532 1533 // return verified_code_entry if interp_only_mode is not set for the current thread; 1534 // otherwise return c2i entry. 1535 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1536 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1537 // In interp_only_mode we need to go to the interpreted entry 1538 // The c2i won't patch in this mode -- see fixup_callers_callsite 1539 return callee_method->get_c2i_entry(); 1540 } 1541 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1542 return callee_method->verified_code_entry(); 1543 } 1544 1545 // resolve a static call and patch code 1546 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1547 methodHandle callee_method; 1548 bool enter_special = false; 1549 JRT_BLOCK 1550 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1551 current->set_vm_result_metadata(callee_method()); 1552 JRT_BLOCK_END 1553 // return compiled code entry point after potential safepoints 1554 return get_resolved_entry(current, callee_method); 1555 JRT_END 1556 1557 // resolve virtual call and update inline cache to monomorphic 1558 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1559 methodHandle callee_method; 1560 JRT_BLOCK 1561 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1562 current->set_vm_result_metadata(callee_method()); 1563 JRT_BLOCK_END 1564 // return compiled code entry point after potential safepoints 1565 return get_resolved_entry(current, callee_method); 1566 JRT_END 1567 1568 1569 // Resolve a virtual call that can be statically bound (e.g., always 1570 // monomorphic, so it has no inline cache). Patch code to resolved target. 1571 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1572 methodHandle callee_method; 1573 JRT_BLOCK 1574 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1575 current->set_vm_result_metadata(callee_method()); 1576 JRT_BLOCK_END 1577 // return compiled code entry point after potential safepoints 1578 return get_resolved_entry(current, callee_method); 1579 JRT_END 1580 1581 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1582 JavaThread* current = THREAD; 1583 ResourceMark rm(current); 1584 CallInfo call_info; 1585 Bytecodes::Code bc; 1586 1587 // receiver is null for static calls. An exception is thrown for null 1588 // receivers for non-static calls 1589 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1590 1591 methodHandle callee_method(current, call_info.selected_method()); 1592 1593 #ifndef PRODUCT 1594 Atomic::inc(&_ic_miss_ctr); 1595 1596 // Statistics & Tracing 1597 if (TraceCallFixup) { 1598 ResourceMark rm(current); 1599 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1600 callee_method->print_short_name(tty); 1601 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1602 } 1603 1604 if (ICMissHistogram) { 1605 MutexLocker m(VMStatistic_lock); 1606 RegisterMap reg_map(current, 1607 RegisterMap::UpdateMap::skip, 1608 RegisterMap::ProcessFrames::include, 1609 RegisterMap::WalkContinuation::skip); 1610 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1611 // produce statistics under the lock 1612 trace_ic_miss(f.pc()); 1613 } 1614 #endif 1615 1616 // install an event collector so that when a vtable stub is created the 1617 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1618 // event can't be posted when the stub is created as locks are held 1619 // - instead the event will be deferred until the event collector goes 1620 // out of scope. 1621 JvmtiDynamicCodeEventCollector event_collector; 1622 1623 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1624 RegisterMap reg_map(current, 1625 RegisterMap::UpdateMap::skip, 1626 RegisterMap::ProcessFrames::include, 1627 RegisterMap::WalkContinuation::skip); 1628 frame caller_frame = current->last_frame().sender(®_map); 1629 CodeBlob* cb = caller_frame.cb(); 1630 nmethod* caller_nm = cb->as_nmethod(); 1631 1632 CompiledICLocker ml(caller_nm); 1633 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1634 inline_cache->update(&call_info, receiver()->klass()); 1635 1636 return callee_method; 1637 } 1638 1639 // 1640 // Resets a call-site in compiled code so it will get resolved again. 1641 // This routines handles both virtual call sites, optimized virtual call 1642 // sites, and static call sites. Typically used to change a call sites 1643 // destination from compiled to interpreted. 1644 // 1645 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1646 JavaThread* current = THREAD; 1647 ResourceMark rm(current); 1648 RegisterMap reg_map(current, 1649 RegisterMap::UpdateMap::skip, 1650 RegisterMap::ProcessFrames::include, 1651 RegisterMap::WalkContinuation::skip); 1652 frame stub_frame = current->last_frame(); 1653 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1654 frame caller = stub_frame.sender(®_map); 1655 1656 // Do nothing if the frame isn't a live compiled frame. 1657 // nmethod could be deoptimized by the time we get here 1658 // so no update to the caller is needed. 1659 1660 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1661 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1662 1663 address pc = caller.pc(); 1664 1665 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1666 assert(caller_nm != nullptr, "did not find caller nmethod"); 1667 1668 // Default call_addr is the location of the "basic" call. 1669 // Determine the address of the call we a reresolving. With 1670 // Inline Caches we will always find a recognizable call. 1671 // With Inline Caches disabled we may or may not find a 1672 // recognizable call. We will always find a call for static 1673 // calls and for optimized virtual calls. For vanilla virtual 1674 // calls it depends on the state of the UseInlineCaches switch. 1675 // 1676 // With Inline Caches disabled we can get here for a virtual call 1677 // for two reasons: 1678 // 1 - calling an abstract method. The vtable for abstract methods 1679 // will run us thru handle_wrong_method and we will eventually 1680 // end up in the interpreter to throw the ame. 1681 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1682 // call and between the time we fetch the entry address and 1683 // we jump to it the target gets deoptimized. Similar to 1 1684 // we will wind up in the interprter (thru a c2i with c2). 1685 // 1686 CompiledICLocker ml(caller_nm); 1687 address call_addr = caller_nm->call_instruction_address(pc); 1688 1689 if (call_addr != nullptr) { 1690 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1691 // bytes back in the instruction stream so we must also check for reloc info. 1692 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1693 bool ret = iter.next(); // Get item 1694 if (ret) { 1695 switch (iter.type()) { 1696 case relocInfo::static_call_type: 1697 case relocInfo::opt_virtual_call_type: { 1698 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1699 cdc->set_to_clean(); 1700 break; 1701 } 1702 1703 case relocInfo::virtual_call_type: { 1704 // compiled, dispatched call (which used to call an interpreted method) 1705 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1706 inline_cache->set_to_clean(); 1707 break; 1708 } 1709 default: 1710 break; 1711 } 1712 } 1713 } 1714 } 1715 1716 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1717 1718 1719 #ifndef PRODUCT 1720 Atomic::inc(&_wrong_method_ctr); 1721 1722 if (TraceCallFixup) { 1723 ResourceMark rm(current); 1724 tty->print("handle_wrong_method reresolving call to"); 1725 callee_method->print_short_name(tty); 1726 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1727 } 1728 #endif 1729 1730 return callee_method; 1731 } 1732 1733 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1734 // The faulting unsafe accesses should be changed to throw the error 1735 // synchronously instead. Meanwhile the faulting instruction will be 1736 // skipped over (effectively turning it into a no-op) and an 1737 // asynchronous exception will be raised which the thread will 1738 // handle at a later point. If the instruction is a load it will 1739 // return garbage. 1740 1741 // Request an async exception. 1742 thread->set_pending_unsafe_access_error(); 1743 1744 // Return address of next instruction to execute. 1745 return next_pc; 1746 } 1747 1748 #ifdef ASSERT 1749 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1750 const BasicType* sig_bt, 1751 const VMRegPair* regs) { 1752 ResourceMark rm; 1753 const int total_args_passed = method->size_of_parameters(); 1754 const VMRegPair* regs_with_member_name = regs; 1755 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1756 1757 const int member_arg_pos = total_args_passed - 1; 1758 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1759 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1760 1761 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1762 1763 for (int i = 0; i < member_arg_pos; i++) { 1764 VMReg a = regs_with_member_name[i].first(); 1765 VMReg b = regs_without_member_name[i].first(); 1766 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1767 } 1768 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1769 } 1770 #endif 1771 1772 // --------------------------------------------------------------------------- 1773 // We are calling the interpreter via a c2i. Normally this would mean that 1774 // we were called by a compiled method. However we could have lost a race 1775 // where we went int -> i2c -> c2i and so the caller could in fact be 1776 // interpreted. If the caller is compiled we attempt to patch the caller 1777 // so he no longer calls into the interpreter. 1778 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1779 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1780 1781 // It's possible that deoptimization can occur at a call site which hasn't 1782 // been resolved yet, in which case this function will be called from 1783 // an nmethod that has been patched for deopt and we can ignore the 1784 // request for a fixup. 1785 // Also it is possible that we lost a race in that from_compiled_entry 1786 // is now back to the i2c in that case we don't need to patch and if 1787 // we did we'd leap into space because the callsite needs to use 1788 // "to interpreter" stub in order to load up the Method*. Don't 1789 // ask me how I know this... 1790 1791 // Result from nmethod::is_unloading is not stable across safepoints. 1792 NoSafepointVerifier nsv; 1793 1794 nmethod* callee = method->code(); 1795 if (callee == nullptr) { 1796 return; 1797 } 1798 1799 // write lock needed because we might patch call site by set_to_clean() 1800 // and is_unloading() can modify nmethod's state 1801 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1802 1803 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1804 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1805 return; 1806 } 1807 1808 // The check above makes sure this is an nmethod. 1809 nmethod* caller = cb->as_nmethod(); 1810 1811 // Get the return PC for the passed caller PC. 1812 address return_pc = caller_pc + frame::pc_return_offset; 1813 1814 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1815 return; 1816 } 1817 1818 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1819 CompiledICLocker ic_locker(caller); 1820 ResourceMark rm; 1821 1822 // If we got here through a static call or opt_virtual call, then we know where the 1823 // call address would be; let's peek at it 1824 address callsite_addr = (address)nativeCall_before(return_pc); 1825 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1826 if (!iter.next()) { 1827 // No reloc entry found; not a static or optimized virtual call 1828 return; 1829 } 1830 1831 relocInfo::relocType type = iter.reloc()->type(); 1832 if (type != relocInfo::static_call_type && 1833 type != relocInfo::opt_virtual_call_type) { 1834 return; 1835 } 1836 1837 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1838 callsite->set_to_clean(); 1839 JRT_END 1840 1841 1842 // same as JVM_Arraycopy, but called directly from compiled code 1843 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1844 oopDesc* dest, jint dest_pos, 1845 jint length, 1846 JavaThread* current)) { 1847 #ifndef PRODUCT 1848 _slow_array_copy_ctr++; 1849 #endif 1850 // Check if we have null pointers 1851 if (src == nullptr || dest == nullptr) { 1852 THROW(vmSymbols::java_lang_NullPointerException()); 1853 } 1854 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1855 // even though the copy_array API also performs dynamic checks to ensure 1856 // that src and dest are truly arrays (and are conformable). 1857 // The copy_array mechanism is awkward and could be removed, but 1858 // the compilers don't call this function except as a last resort, 1859 // so it probably doesn't matter. 1860 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1861 (arrayOopDesc*)dest, dest_pos, 1862 length, current); 1863 } 1864 JRT_END 1865 1866 // The caller of generate_class_cast_message() (or one of its callers) 1867 // must use a ResourceMark in order to correctly free the result. 1868 char* SharedRuntime::generate_class_cast_message( 1869 JavaThread* thread, Klass* caster_klass) { 1870 1871 // Get target class name from the checkcast instruction 1872 vframeStream vfst(thread, true); 1873 assert(!vfst.at_end(), "Java frame must exist"); 1874 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1875 constantPoolHandle cpool(thread, vfst.method()->constants()); 1876 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1877 Symbol* target_klass_name = nullptr; 1878 if (target_klass == nullptr) { 1879 // This klass should be resolved, but just in case, get the name in the klass slot. 1880 target_klass_name = cpool->klass_name_at(cc.index()); 1881 } 1882 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1883 } 1884 1885 1886 // The caller of generate_class_cast_message() (or one of its callers) 1887 // must use a ResourceMark in order to correctly free the result. 1888 char* SharedRuntime::generate_class_cast_message( 1889 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1890 const char* caster_name = caster_klass->external_name(); 1891 1892 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1893 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1894 target_klass->external_name(); 1895 1896 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1897 1898 const char* caster_klass_description = ""; 1899 const char* target_klass_description = ""; 1900 const char* klass_separator = ""; 1901 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1902 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1903 } else { 1904 caster_klass_description = caster_klass->class_in_module_of_loader(); 1905 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1906 klass_separator = (target_klass != nullptr) ? "; " : ""; 1907 } 1908 1909 // add 3 for parenthesis and preceding space 1910 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1911 1912 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1913 if (message == nullptr) { 1914 // Shouldn't happen, but don't cause even more problems if it does 1915 message = const_cast<char*>(caster_klass->external_name()); 1916 } else { 1917 jio_snprintf(message, 1918 msglen, 1919 "class %s cannot be cast to class %s (%s%s%s)", 1920 caster_name, 1921 target_name, 1922 caster_klass_description, 1923 klass_separator, 1924 target_klass_description 1925 ); 1926 } 1927 return message; 1928 } 1929 1930 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1931 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 1932 JRT_END 1933 1934 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1935 if (!SafepointSynchronize::is_synchronizing()) { 1936 // Only try quick_enter() if we're not trying to reach a safepoint 1937 // so that the calling thread reaches the safepoint more quickly. 1938 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 1939 return; 1940 } 1941 } 1942 // NO_ASYNC required because an async exception on the state transition destructor 1943 // would leave you with the lock held and it would never be released. 1944 // The normal monitorenter NullPointerException is thrown without acquiring a lock 1945 // and the model is that an exception implies the method failed. 1946 JRT_BLOCK_NO_ASYNC 1947 Handle h_obj(THREAD, obj); 1948 ObjectSynchronizer::enter(h_obj, lock, current); 1949 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1950 JRT_BLOCK_END 1951 } 1952 1953 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1954 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1955 SharedRuntime::monitor_enter_helper(obj, lock, current); 1956 JRT_END 1957 1958 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1959 assert(JavaThread::current() == current, "invariant"); 1960 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1961 ExceptionMark em(current); 1962 1963 // Check if C2_MacroAssembler::fast_unlock() or 1964 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 1965 // monitor before going slow path. Since there is no safepoint 1966 // polling when calling into the VM, we can be sure that the monitor 1967 // hasn't been deallocated. 1968 ObjectMonitor* m = current->unlocked_inflated_monitor(); 1969 if (m != nullptr) { 1970 assert(!m->has_owner(current), "must be"); 1971 current->clear_unlocked_inflated_monitor(); 1972 1973 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 1974 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 1975 // Some other thread acquired the lock (or the monitor was 1976 // deflated). Either way we are done. 1977 current->dec_held_monitor_count(); 1978 return; 1979 } 1980 } 1981 1982 // The object could become unlocked through a JNI call, which we have no other checks for. 1983 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 1984 if (obj->is_unlocked()) { 1985 if (CheckJNICalls) { 1986 fatal("Object has been unlocked by JNI"); 1987 } 1988 return; 1989 } 1990 ObjectSynchronizer::exit(obj, lock, current); 1991 } 1992 1993 // Handles the uncommon cases of monitor unlocking in compiled code 1994 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1995 assert(current == JavaThread::current(), "pre-condition"); 1996 SharedRuntime::monitor_exit_helper(obj, lock, current); 1997 JRT_END 1998 1999 // This is only called when CheckJNICalls is true, and only 2000 // for virtual thread termination. 2001 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2002 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2003 if (log_is_enabled(Debug, jni)) { 2004 JavaThread* current = JavaThread::current(); 2005 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2006 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2007 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2008 ") exiting with Objects still locked by JNI MonitorEnter.", 2009 vthread_id, carrier_id); 2010 } 2011 JRT_END 2012 2013 #ifndef PRODUCT 2014 2015 void SharedRuntime::print_statistics() { 2016 ttyLocker ttyl; 2017 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2018 2019 SharedRuntime::print_ic_miss_histogram(); 2020 2021 // Dump the JRT_ENTRY counters 2022 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2023 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2024 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2025 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2026 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2027 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2028 2029 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2030 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2031 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2032 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2033 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2034 2035 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2036 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2037 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2038 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2039 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2040 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2041 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2042 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2043 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2044 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2045 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2046 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2047 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2048 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2049 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2050 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2051 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2052 2053 AdapterHandlerLibrary::print_statistics(); 2054 2055 if (xtty != nullptr) xtty->tail("statistics"); 2056 } 2057 2058 inline double percent(int64_t x, int64_t y) { 2059 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2060 } 2061 2062 class MethodArityHistogram { 2063 public: 2064 enum { MAX_ARITY = 256 }; 2065 private: 2066 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2067 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2068 static uint64_t _total_compiled_calls; 2069 static uint64_t _max_compiled_calls_per_method; 2070 static int _max_arity; // max. arity seen 2071 static int _max_size; // max. arg size seen 2072 2073 static void add_method_to_histogram(nmethod* nm) { 2074 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2075 if (method != nullptr) { 2076 ArgumentCount args(method->signature()); 2077 int arity = args.size() + (method->is_static() ? 0 : 1); 2078 int argsize = method->size_of_parameters(); 2079 arity = MIN2(arity, MAX_ARITY-1); 2080 argsize = MIN2(argsize, MAX_ARITY-1); 2081 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2082 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2083 _total_compiled_calls += count; 2084 _arity_histogram[arity] += count; 2085 _size_histogram[argsize] += count; 2086 _max_arity = MAX2(_max_arity, arity); 2087 _max_size = MAX2(_max_size, argsize); 2088 } 2089 } 2090 2091 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2092 const int N = MIN2(9, n); 2093 double sum = 0; 2094 double weighted_sum = 0; 2095 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2096 if (sum >= 1) { // prevent divide by zero or divide overflow 2097 double rest = sum; 2098 double percent = sum / 100; 2099 for (int i = 0; i <= N; i++) { 2100 rest -= (double)histo[i]; 2101 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2102 } 2103 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2104 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2105 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2106 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2107 } else { 2108 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2109 } 2110 } 2111 2112 void print_histogram() { 2113 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2114 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2115 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2116 print_histogram_helper(_max_size, _size_histogram, "size"); 2117 tty->cr(); 2118 } 2119 2120 public: 2121 MethodArityHistogram() { 2122 // Take the Compile_lock to protect against changes in the CodeBlob structures 2123 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2124 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2125 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2126 _max_arity = _max_size = 0; 2127 _total_compiled_calls = 0; 2128 _max_compiled_calls_per_method = 0; 2129 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2130 CodeCache::nmethods_do(add_method_to_histogram); 2131 print_histogram(); 2132 } 2133 }; 2134 2135 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2136 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2137 uint64_t MethodArityHistogram::_total_compiled_calls; 2138 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2139 int MethodArityHistogram::_max_arity; 2140 int MethodArityHistogram::_max_size; 2141 2142 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2143 tty->print_cr("Calls from compiled code:"); 2144 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2145 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2146 int64_t mono_i = _nof_interface_calls; 2147 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2148 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2149 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2150 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2151 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2152 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2153 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2154 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2155 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2156 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2157 tty->cr(); 2158 tty->print_cr("Note 1: counter updates are not MT-safe."); 2159 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2160 tty->print_cr(" %% in nested categories are relative to their category"); 2161 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2162 tty->cr(); 2163 2164 MethodArityHistogram h; 2165 } 2166 #endif 2167 2168 #ifndef PRODUCT 2169 static int _lookups; // number of calls to lookup 2170 static int _equals; // number of buckets checked with matching hash 2171 static int _hits; // number of successful lookups 2172 static int _compact; // number of equals calls with compact signature 2173 #endif 2174 2175 // A simple wrapper class around the calling convention information 2176 // that allows sharing of adapters for the same calling convention. 2177 class AdapterFingerPrint : public CHeapObj<mtCode> { 2178 private: 2179 enum { 2180 _basic_type_bits = 4, 2181 _basic_type_mask = right_n_bits(_basic_type_bits), 2182 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2183 _compact_int_count = 3 2184 }; 2185 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2186 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2187 2188 union { 2189 int _compact[_compact_int_count]; 2190 int* _fingerprint; 2191 } _value; 2192 int _length; // A negative length indicates the fingerprint is in the compact form, 2193 // Otherwise _value._fingerprint is the array. 2194 2195 // Remap BasicTypes that are handled equivalently by the adapters. 2196 // These are correct for the current system but someday it might be 2197 // necessary to make this mapping platform dependent. 2198 static int adapter_encoding(BasicType in) { 2199 switch (in) { 2200 case T_BOOLEAN: 2201 case T_BYTE: 2202 case T_SHORT: 2203 case T_CHAR: 2204 // There are all promoted to T_INT in the calling convention 2205 return T_INT; 2206 2207 case T_OBJECT: 2208 case T_ARRAY: 2209 // In other words, we assume that any register good enough for 2210 // an int or long is good enough for a managed pointer. 2211 #ifdef _LP64 2212 return T_LONG; 2213 #else 2214 return T_INT; 2215 #endif 2216 2217 case T_INT: 2218 case T_LONG: 2219 case T_FLOAT: 2220 case T_DOUBLE: 2221 case T_VOID: 2222 return in; 2223 2224 default: 2225 ShouldNotReachHere(); 2226 return T_CONFLICT; 2227 } 2228 } 2229 2230 public: 2231 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2232 // The fingerprint is based on the BasicType signature encoded 2233 // into an array of ints with eight entries per int. 2234 int* ptr; 2235 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2236 if (len <= _compact_int_count) { 2237 assert(_compact_int_count == 3, "else change next line"); 2238 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2239 // Storing the signature encoded as signed chars hits about 98% 2240 // of the time. 2241 _length = -len; 2242 ptr = _value._compact; 2243 } else { 2244 _length = len; 2245 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2246 ptr = _value._fingerprint; 2247 } 2248 2249 // Now pack the BasicTypes with 8 per int 2250 int sig_index = 0; 2251 for (int index = 0; index < len; index++) { 2252 int value = 0; 2253 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2254 int bt = adapter_encoding(sig_bt[sig_index++]); 2255 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2256 value = (value << _basic_type_bits) | bt; 2257 } 2258 ptr[index] = value; 2259 } 2260 } 2261 2262 ~AdapterFingerPrint() { 2263 if (_length > 0) { 2264 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2265 } 2266 } 2267 2268 int value(int index) { 2269 if (_length < 0) { 2270 return _value._compact[index]; 2271 } 2272 return _value._fingerprint[index]; 2273 } 2274 int length() { 2275 if (_length < 0) return -_length; 2276 return _length; 2277 } 2278 2279 bool is_compact() { 2280 return _length <= 0; 2281 } 2282 2283 unsigned int compute_hash() { 2284 int hash = 0; 2285 for (int i = 0; i < length(); i++) { 2286 int v = value(i); 2287 hash = (hash << 8) ^ v ^ (hash >> 5); 2288 } 2289 return (unsigned int)hash; 2290 } 2291 2292 const char* as_string() { 2293 stringStream st; 2294 st.print("0x"); 2295 for (int i = 0; i < length(); i++) { 2296 st.print("%x", value(i)); 2297 } 2298 return st.as_string(); 2299 } 2300 2301 #ifndef PRODUCT 2302 // Reconstitutes the basic type arguments from the fingerprint, 2303 // producing strings like LIJDF 2304 const char* as_basic_args_string() { 2305 stringStream st; 2306 bool long_prev = false; 2307 for (int i = 0; i < length(); i++) { 2308 unsigned val = (unsigned)value(i); 2309 // args are packed so that first/lower arguments are in the highest 2310 // bits of each int value, so iterate from highest to the lowest 2311 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2312 unsigned v = (val >> j) & _basic_type_mask; 2313 if (v == 0) { 2314 assert(i == length() - 1, "Only expect zeroes in the last word"); 2315 continue; 2316 } 2317 if (long_prev) { 2318 long_prev = false; 2319 if (v == T_VOID) { 2320 st.print("J"); 2321 } else { 2322 st.print("L"); 2323 } 2324 } 2325 switch (v) { 2326 case T_INT: st.print("I"); break; 2327 case T_LONG: long_prev = true; break; 2328 case T_FLOAT: st.print("F"); break; 2329 case T_DOUBLE: st.print("D"); break; 2330 case T_VOID: break; 2331 default: ShouldNotReachHere(); 2332 } 2333 } 2334 } 2335 if (long_prev) { 2336 st.print("L"); 2337 } 2338 return st.as_string(); 2339 } 2340 #endif // !product 2341 2342 bool equals(AdapterFingerPrint* other) { 2343 if (other->_length != _length) { 2344 return false; 2345 } 2346 if (_length < 0) { 2347 assert(_compact_int_count == 3, "else change next line"); 2348 return _value._compact[0] == other->_value._compact[0] && 2349 _value._compact[1] == other->_value._compact[1] && 2350 _value._compact[2] == other->_value._compact[2]; 2351 } else { 2352 for (int i = 0; i < _length; i++) { 2353 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2354 return false; 2355 } 2356 } 2357 } 2358 return true; 2359 } 2360 2361 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2362 NOT_PRODUCT(_equals++); 2363 return fp1->equals(fp2); 2364 } 2365 2366 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2367 return fp->compute_hash(); 2368 } 2369 }; 2370 2371 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2372 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2373 AnyObj::C_HEAP, mtCode, 2374 AdapterFingerPrint::compute_hash, 2375 AdapterFingerPrint::equals>; 2376 static AdapterHandlerTable* _adapter_handler_table; 2377 2378 // Find a entry with the same fingerprint if it exists 2379 static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2380 NOT_PRODUCT(_lookups++); 2381 assert_lock_strong(AdapterHandlerLibrary_lock); 2382 AdapterFingerPrint fp(total_args_passed, sig_bt); 2383 AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp); 2384 if (entry != nullptr) { 2385 #ifndef PRODUCT 2386 if (fp.is_compact()) _compact++; 2387 _hits++; 2388 #endif 2389 return *entry; 2390 } 2391 return nullptr; 2392 } 2393 2394 #ifndef PRODUCT 2395 static void print_table_statistics() { 2396 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2397 return sizeof(*key) + sizeof(*a); 2398 }; 2399 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2400 ts.print(tty, "AdapterHandlerTable"); 2401 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2402 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2403 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d", 2404 _lookups, _equals, _hits, _compact); 2405 } 2406 #endif 2407 2408 // --------------------------------------------------------------------------- 2409 // Implementation of AdapterHandlerLibrary 2410 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2411 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2412 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2413 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2414 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2415 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2416 const int AdapterHandlerLibrary_size = 16*K; 2417 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2418 2419 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2420 return _buffer; 2421 } 2422 2423 static void post_adapter_creation(const AdapterBlob* new_adapter, 2424 const AdapterHandlerEntry* entry) { 2425 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2426 char blob_id[256]; 2427 jio_snprintf(blob_id, 2428 sizeof(blob_id), 2429 "%s(%s)", 2430 new_adapter->name(), 2431 entry->fingerprint()->as_string()); 2432 if (Forte::is_enabled()) { 2433 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2434 } 2435 2436 if (JvmtiExport::should_post_dynamic_code_generated()) { 2437 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2438 } 2439 } 2440 } 2441 2442 void AdapterHandlerLibrary::initialize() { 2443 ResourceMark rm; 2444 AdapterBlob* no_arg_blob = nullptr; 2445 AdapterBlob* int_arg_blob = nullptr; 2446 AdapterBlob* obj_arg_blob = nullptr; 2447 AdapterBlob* obj_int_arg_blob = nullptr; 2448 AdapterBlob* obj_obj_arg_blob = nullptr; 2449 { 2450 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2451 MutexLocker mu(AdapterHandlerLibrary_lock); 2452 2453 // Create a special handler for abstract methods. Abstract methods 2454 // are never compiled so an i2c entry is somewhat meaningless, but 2455 // throw AbstractMethodError just in case. 2456 // Pass wrong_method_abstract for the c2i transitions to return 2457 // AbstractMethodError for invalid invocations. 2458 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2459 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, nullptr), 2460 SharedRuntime::throw_AbstractMethodError_entry(), 2461 wrong_method_abstract, wrong_method_abstract); 2462 2463 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2464 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr, true); 2465 2466 BasicType obj_args[] = { T_OBJECT }; 2467 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true); 2468 2469 BasicType int_args[] = { T_INT }; 2470 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true); 2471 2472 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2473 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true); 2474 2475 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2476 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true); 2477 2478 assert(no_arg_blob != nullptr && 2479 obj_arg_blob != nullptr && 2480 int_arg_blob != nullptr && 2481 obj_int_arg_blob != nullptr && 2482 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2483 } 2484 2485 // Outside of the lock 2486 post_adapter_creation(no_arg_blob, _no_arg_handler); 2487 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2488 post_adapter_creation(int_arg_blob, _int_arg_handler); 2489 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2490 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2491 } 2492 2493 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2494 address i2c_entry, 2495 address c2i_entry, 2496 address c2i_unverified_entry, 2497 address c2i_no_clinit_check_entry) { 2498 // Insert an entry into the table 2499 return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, 2500 c2i_no_clinit_check_entry); 2501 } 2502 2503 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2504 if (method->is_abstract()) { 2505 return _abstract_method_handler; 2506 } 2507 int total_args_passed = method->size_of_parameters(); // All args on stack 2508 if (total_args_passed == 0) { 2509 return _no_arg_handler; 2510 } else if (total_args_passed == 1) { 2511 if (!method->is_static()) { 2512 return _obj_arg_handler; 2513 } 2514 switch (method->signature()->char_at(1)) { 2515 case JVM_SIGNATURE_CLASS: 2516 case JVM_SIGNATURE_ARRAY: 2517 return _obj_arg_handler; 2518 case JVM_SIGNATURE_INT: 2519 case JVM_SIGNATURE_BOOLEAN: 2520 case JVM_SIGNATURE_CHAR: 2521 case JVM_SIGNATURE_BYTE: 2522 case JVM_SIGNATURE_SHORT: 2523 return _int_arg_handler; 2524 } 2525 } else if (total_args_passed == 2 && 2526 !method->is_static()) { 2527 switch (method->signature()->char_at(1)) { 2528 case JVM_SIGNATURE_CLASS: 2529 case JVM_SIGNATURE_ARRAY: 2530 return _obj_obj_arg_handler; 2531 case JVM_SIGNATURE_INT: 2532 case JVM_SIGNATURE_BOOLEAN: 2533 case JVM_SIGNATURE_CHAR: 2534 case JVM_SIGNATURE_BYTE: 2535 case JVM_SIGNATURE_SHORT: 2536 return _obj_int_arg_handler; 2537 } 2538 } 2539 return nullptr; 2540 } 2541 2542 class AdapterSignatureIterator : public SignatureIterator { 2543 private: 2544 BasicType stack_sig_bt[16]; 2545 BasicType* sig_bt; 2546 int index; 2547 2548 public: 2549 AdapterSignatureIterator(Symbol* signature, 2550 fingerprint_t fingerprint, 2551 bool is_static, 2552 int total_args_passed) : 2553 SignatureIterator(signature, fingerprint), 2554 index(0) 2555 { 2556 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2557 if (!is_static) { // Pass in receiver first 2558 sig_bt[index++] = T_OBJECT; 2559 } 2560 do_parameters_on(this); 2561 } 2562 2563 BasicType* basic_types() { 2564 return sig_bt; 2565 } 2566 2567 #ifdef ASSERT 2568 int slots() { 2569 return index; 2570 } 2571 #endif 2572 2573 private: 2574 2575 friend class SignatureIterator; // so do_parameters_on can call do_type 2576 void do_type(BasicType type) { 2577 sig_bt[index++] = type; 2578 if (type == T_LONG || type == T_DOUBLE) { 2579 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2580 } 2581 } 2582 }; 2583 2584 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2585 // Use customized signature handler. Need to lock around updates to 2586 // the _adapter_handler_table (it is not safe for concurrent readers 2587 // and a single writer: this could be fixed if it becomes a 2588 // problem). 2589 2590 // Fast-path for trivial adapters 2591 AdapterHandlerEntry* entry = get_simple_adapter(method); 2592 if (entry != nullptr) { 2593 return entry; 2594 } 2595 2596 ResourceMark rm; 2597 AdapterBlob* new_adapter = nullptr; 2598 2599 // Fill in the signature array, for the calling-convention call. 2600 int total_args_passed = method->size_of_parameters(); // All args on stack 2601 2602 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2603 method->is_static(), total_args_passed); 2604 assert(si.slots() == total_args_passed, ""); 2605 BasicType* sig_bt = si.basic_types(); 2606 { 2607 MutexLocker mu(AdapterHandlerLibrary_lock); 2608 2609 // Lookup method signature's fingerprint 2610 entry = lookup(total_args_passed, sig_bt); 2611 2612 if (entry != nullptr) { 2613 #ifdef ASSERT 2614 if (VerifyAdapterSharing) { 2615 AdapterBlob* comparison_blob = nullptr; 2616 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false); 2617 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2618 assert(comparison_entry->compare_code(entry), "code must match"); 2619 // Release the one just created and return the original 2620 delete comparison_entry; 2621 } 2622 #endif 2623 return entry; 2624 } 2625 2626 entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true); 2627 } 2628 2629 // Outside of the lock 2630 if (new_adapter != nullptr) { 2631 post_adapter_creation(new_adapter, entry); 2632 } 2633 return entry; 2634 } 2635 2636 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter, 2637 int total_args_passed, 2638 BasicType* sig_bt, 2639 bool allocate_code_blob) { 2640 if (log_is_enabled(Info, perf, class, link)) { 2641 ClassLoader::perf_method_adapters_count()->inc(); 2642 } 2643 2644 // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result, 2645 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior 2646 // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated 2647 // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs. 2648 bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr; 2649 2650 VMRegPair stack_regs[16]; 2651 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2652 2653 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2654 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2655 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2656 CodeBuffer buffer(buf); 2657 short buffer_locs[20]; 2658 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2659 sizeof(buffer_locs)/sizeof(relocInfo)); 2660 2661 // Make a C heap allocated version of the fingerprint to store in the adapter 2662 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2663 MacroAssembler _masm(&buffer); 2664 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2665 total_args_passed, 2666 comp_args_on_stack, 2667 sig_bt, 2668 regs, 2669 fingerprint); 2670 2671 #ifdef ASSERT 2672 if (VerifyAdapterSharing) { 2673 entry->save_code(buf->code_begin(), buffer.insts_size()); 2674 if (!allocate_code_blob) { 2675 return entry; 2676 } 2677 } 2678 #endif 2679 2680 new_adapter = AdapterBlob::create(&buffer); 2681 NOT_PRODUCT(int insts_size = buffer.insts_size()); 2682 if (new_adapter == nullptr) { 2683 // CodeCache is full, disable compilation 2684 // Ought to log this but compile log is only per compile thread 2685 // and we're some non descript Java thread. 2686 return nullptr; 2687 } 2688 entry->relocate(new_adapter->content_begin()); 2689 #ifndef PRODUCT 2690 // debugging support 2691 if (PrintAdapterHandlers || PrintStubCode) { 2692 ttyLocker ttyl; 2693 entry->print_adapter_on(tty); 2694 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 2695 _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(), 2696 fingerprint->as_string(), insts_size); 2697 tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry())); 2698 if (Verbose || PrintStubCode) { 2699 address first_pc = entry->base_address(); 2700 if (first_pc != nullptr) { 2701 Disassembler::decode(first_pc, first_pc + insts_size, tty 2702 NOT_PRODUCT(COMMA &new_adapter->asm_remarks())); 2703 tty->cr(); 2704 } 2705 } 2706 } 2707 #endif 2708 2709 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2710 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2711 if (contains_all_checks || !VerifyAdapterCalls) { 2712 assert_lock_strong(AdapterHandlerLibrary_lock); 2713 _adapter_handler_table->put(fingerprint, entry); 2714 } 2715 return entry; 2716 } 2717 2718 address AdapterHandlerEntry::base_address() { 2719 address base = _i2c_entry; 2720 if (base == nullptr) base = _c2i_entry; 2721 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 2722 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 2723 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 2724 return base; 2725 } 2726 2727 void AdapterHandlerEntry::relocate(address new_base) { 2728 address old_base = base_address(); 2729 assert(old_base != nullptr, ""); 2730 ptrdiff_t delta = new_base - old_base; 2731 if (_i2c_entry != nullptr) 2732 _i2c_entry += delta; 2733 if (_c2i_entry != nullptr) 2734 _c2i_entry += delta; 2735 if (_c2i_unverified_entry != nullptr) 2736 _c2i_unverified_entry += delta; 2737 if (_c2i_no_clinit_check_entry != nullptr) 2738 _c2i_no_clinit_check_entry += delta; 2739 assert(base_address() == new_base, ""); 2740 } 2741 2742 2743 AdapterHandlerEntry::~AdapterHandlerEntry() { 2744 delete _fingerprint; 2745 #ifdef ASSERT 2746 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2747 #endif 2748 } 2749 2750 2751 #ifdef ASSERT 2752 // Capture the code before relocation so that it can be compared 2753 // against other versions. If the code is captured after relocation 2754 // then relative instructions won't be equivalent. 2755 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 2756 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 2757 _saved_code_length = length; 2758 memcpy(_saved_code, buffer, length); 2759 } 2760 2761 2762 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 2763 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 2764 2765 if (other->_saved_code_length != _saved_code_length) { 2766 return false; 2767 } 2768 2769 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 2770 } 2771 #endif 2772 2773 2774 /** 2775 * Create a native wrapper for this native method. The wrapper converts the 2776 * Java-compiled calling convention to the native convention, handles 2777 * arguments, and transitions to native. On return from the native we transition 2778 * back to java blocking if a safepoint is in progress. 2779 */ 2780 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 2781 ResourceMark rm; 2782 nmethod* nm = nullptr; 2783 2784 // Check if memory should be freed before allocation 2785 CodeCache::gc_on_allocation(); 2786 2787 assert(method->is_native(), "must be native"); 2788 assert(method->is_special_native_intrinsic() || 2789 method->has_native_function(), "must have something valid to call!"); 2790 2791 { 2792 // Perform the work while holding the lock, but perform any printing outside the lock 2793 MutexLocker mu(AdapterHandlerLibrary_lock); 2794 // See if somebody beat us to it 2795 if (method->code() != nullptr) { 2796 return; 2797 } 2798 2799 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 2800 assert(compile_id > 0, "Must generate native wrapper"); 2801 2802 2803 ResourceMark rm; 2804 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2805 if (buf != nullptr) { 2806 CodeBuffer buffer(buf); 2807 2808 if (method->is_continuation_enter_intrinsic()) { 2809 buffer.initialize_stubs_size(192); 2810 } 2811 2812 struct { double data[20]; } locs_buf; 2813 struct { double data[20]; } stubs_locs_buf; 2814 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2815 #if defined(AARCH64) || defined(PPC64) 2816 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 2817 // in the constant pool to ensure ordering between the barrier and oops 2818 // accesses. For native_wrappers we need a constant. 2819 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 2820 // static java call that is resolved in the runtime. 2821 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 2822 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 2823 } 2824 #endif 2825 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 2826 MacroAssembler _masm(&buffer); 2827 2828 // Fill in the signature array, for the calling-convention call. 2829 const int total_args_passed = method->size_of_parameters(); 2830 2831 VMRegPair stack_regs[16]; 2832 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2833 2834 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2835 method->is_static(), total_args_passed); 2836 BasicType* sig_bt = si.basic_types(); 2837 assert(si.slots() == total_args_passed, ""); 2838 BasicType ret_type = si.return_type(); 2839 2840 // Now get the compiled-Java arguments layout. 2841 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2842 2843 // Generate the compiled-to-native wrapper code 2844 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 2845 2846 if (nm != nullptr) { 2847 { 2848 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2849 if (nm->make_in_use()) { 2850 method->set_code(method, nm); 2851 } 2852 } 2853 2854 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 2855 if (directive->PrintAssemblyOption) { 2856 nm->print_code(); 2857 } 2858 DirectivesStack::release(directive); 2859 } 2860 } 2861 } // Unlock AdapterHandlerLibrary_lock 2862 2863 2864 // Install the generated code. 2865 if (nm != nullptr) { 2866 const char *msg = method->is_static() ? "(static)" : ""; 2867 CompileTask::print_ul(nm, msg); 2868 if (PrintCompilation) { 2869 ttyLocker ttyl; 2870 CompileTask::print(tty, nm, msg); 2871 } 2872 nm->post_compiled_method_load_event(); 2873 } 2874 } 2875 2876 // ------------------------------------------------------------------------- 2877 // Java-Java calling convention 2878 // (what you use when Java calls Java) 2879 2880 //------------------------------name_for_receiver---------------------------------- 2881 // For a given signature, return the VMReg for parameter 0. 2882 VMReg SharedRuntime::name_for_receiver() { 2883 VMRegPair regs; 2884 BasicType sig_bt = T_OBJECT; 2885 (void) java_calling_convention(&sig_bt, ®s, 1); 2886 // Return argument 0 register. In the LP64 build pointers 2887 // take 2 registers, but the VM wants only the 'main' name. 2888 return regs.first(); 2889 } 2890 2891 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 2892 // This method is returning a data structure allocating as a 2893 // ResourceObject, so do not put any ResourceMarks in here. 2894 2895 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 2896 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 2897 int cnt = 0; 2898 if (has_receiver) { 2899 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 2900 } 2901 2902 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 2903 BasicType type = ss.type(); 2904 sig_bt[cnt++] = type; 2905 if (is_double_word_type(type)) 2906 sig_bt[cnt++] = T_VOID; 2907 } 2908 2909 if (has_appendix) { 2910 sig_bt[cnt++] = T_OBJECT; 2911 } 2912 2913 assert(cnt < 256, "grow table size"); 2914 2915 int comp_args_on_stack; 2916 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 2917 2918 // the calling convention doesn't count out_preserve_stack_slots so 2919 // we must add that in to get "true" stack offsets. 2920 2921 if (comp_args_on_stack) { 2922 for (int i = 0; i < cnt; i++) { 2923 VMReg reg1 = regs[i].first(); 2924 if (reg1->is_stack()) { 2925 // Yuck 2926 reg1 = reg1->bias(out_preserve_stack_slots()); 2927 } 2928 VMReg reg2 = regs[i].second(); 2929 if (reg2->is_stack()) { 2930 // Yuck 2931 reg2 = reg2->bias(out_preserve_stack_slots()); 2932 } 2933 regs[i].set_pair(reg2, reg1); 2934 } 2935 } 2936 2937 // results 2938 *arg_size = cnt; 2939 return regs; 2940 } 2941 2942 // OSR Migration Code 2943 // 2944 // This code is used convert interpreter frames into compiled frames. It is 2945 // called from very start of a compiled OSR nmethod. A temp array is 2946 // allocated to hold the interesting bits of the interpreter frame. All 2947 // active locks are inflated to allow them to move. The displaced headers and 2948 // active interpreter locals are copied into the temp buffer. Then we return 2949 // back to the compiled code. The compiled code then pops the current 2950 // interpreter frame off the stack and pushes a new compiled frame. Then it 2951 // copies the interpreter locals and displaced headers where it wants. 2952 // Finally it calls back to free the temp buffer. 2953 // 2954 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 2955 2956 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 2957 assert(current == JavaThread::current(), "pre-condition"); 2958 2959 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 2960 // frame. The stack watermark code below ensures that the interpreted frame is processed 2961 // before it gets unwound. This is helpful as the size of the compiled frame could be 2962 // larger than the interpreted frame, which could result in the new frame not being 2963 // processed correctly. 2964 StackWatermarkSet::before_unwind(current); 2965 2966 // 2967 // This code is dependent on the memory layout of the interpreter local 2968 // array and the monitors. On all of our platforms the layout is identical 2969 // so this code is shared. If some platform lays the their arrays out 2970 // differently then this code could move to platform specific code or 2971 // the code here could be modified to copy items one at a time using 2972 // frame accessor methods and be platform independent. 2973 2974 frame fr = current->last_frame(); 2975 assert(fr.is_interpreted_frame(), ""); 2976 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 2977 2978 // Figure out how many monitors are active. 2979 int active_monitor_count = 0; 2980 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 2981 kptr < fr.interpreter_frame_monitor_begin(); 2982 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 2983 if (kptr->obj() != nullptr) active_monitor_count++; 2984 } 2985 2986 // QQQ we could place number of active monitors in the array so that compiled code 2987 // could double check it. 2988 2989 Method* moop = fr.interpreter_frame_method(); 2990 int max_locals = moop->max_locals(); 2991 // Allocate temp buffer, 1 word per local & 2 per active monitor 2992 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 2993 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 2994 2995 // Copy the locals. Order is preserved so that loading of longs works. 2996 // Since there's no GC I can copy the oops blindly. 2997 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 2998 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 2999 (HeapWord*)&buf[0], 3000 max_locals); 3001 3002 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3003 int i = max_locals; 3004 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3005 kptr2 < fr.interpreter_frame_monitor_begin(); 3006 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3007 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3008 BasicLock *lock = kptr2->lock(); 3009 if (LockingMode == LM_LEGACY) { 3010 // Inflate so the object's header no longer refers to the BasicLock. 3011 if (lock->displaced_header().is_unlocked()) { 3012 // The object is locked and the resulting ObjectMonitor* will also be 3013 // locked so it can't be async deflated until ownership is dropped. 3014 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3015 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3016 } 3017 // Now the displaced header is free to move because the 3018 // object's header no longer refers to it. 3019 buf[i] = (intptr_t)lock->displaced_header().value(); 3020 } else if (UseObjectMonitorTable) { 3021 buf[i] = (intptr_t)lock->object_monitor_cache(); 3022 } 3023 #ifdef ASSERT 3024 else { 3025 buf[i] = badDispHeaderOSR; 3026 } 3027 #endif 3028 i++; 3029 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3030 } 3031 } 3032 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3033 3034 RegisterMap map(current, 3035 RegisterMap::UpdateMap::skip, 3036 RegisterMap::ProcessFrames::include, 3037 RegisterMap::WalkContinuation::skip); 3038 frame sender = fr.sender(&map); 3039 if (sender.is_interpreted_frame()) { 3040 current->push_cont_fastpath(sender.sp()); 3041 } 3042 3043 return buf; 3044 JRT_END 3045 3046 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3047 FREE_C_HEAP_ARRAY(intptr_t, buf); 3048 JRT_END 3049 3050 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3051 bool found = false; 3052 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3053 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3054 }; 3055 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3056 _adapter_handler_table->iterate(findblob); 3057 return found; 3058 } 3059 3060 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3061 bool found = false; 3062 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3063 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3064 found = true; 3065 st->print("Adapter for signature: "); 3066 a->print_adapter_on(st); 3067 return true; 3068 } else { 3069 return false; // keep looking 3070 } 3071 }; 3072 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3073 _adapter_handler_table->iterate(findblob); 3074 assert(found, "Should have found handler"); 3075 } 3076 3077 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3078 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3079 if (get_i2c_entry() != nullptr) { 3080 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3081 } 3082 if (get_c2i_entry() != nullptr) { 3083 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3084 } 3085 if (get_c2i_unverified_entry() != nullptr) { 3086 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3087 } 3088 if (get_c2i_no_clinit_check_entry() != nullptr) { 3089 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3090 } 3091 st->cr(); 3092 } 3093 3094 #ifndef PRODUCT 3095 3096 void AdapterHandlerLibrary::print_statistics() { 3097 print_table_statistics(); 3098 } 3099 3100 #endif /* PRODUCT */ 3101 3102 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3103 assert(current == JavaThread::current(), "pre-condition"); 3104 StackOverflow* overflow_state = current->stack_overflow_state(); 3105 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3106 overflow_state->set_reserved_stack_activation(current->stack_base()); 3107 JRT_END 3108 3109 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3110 ResourceMark rm(current); 3111 frame activation; 3112 nmethod* nm = nullptr; 3113 int count = 1; 3114 3115 assert(fr.is_java_frame(), "Must start on Java frame"); 3116 3117 RegisterMap map(JavaThread::current(), 3118 RegisterMap::UpdateMap::skip, 3119 RegisterMap::ProcessFrames::skip, 3120 RegisterMap::WalkContinuation::skip); // don't walk continuations 3121 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3122 if (!fr.is_java_frame()) { 3123 continue; 3124 } 3125 3126 Method* method = nullptr; 3127 bool found = false; 3128 if (fr.is_interpreted_frame()) { 3129 method = fr.interpreter_frame_method(); 3130 if (method != nullptr && method->has_reserved_stack_access()) { 3131 found = true; 3132 } 3133 } else { 3134 CodeBlob* cb = fr.cb(); 3135 if (cb != nullptr && cb->is_nmethod()) { 3136 nm = cb->as_nmethod(); 3137 method = nm->method(); 3138 // scope_desc_near() must be used, instead of scope_desc_at() because on 3139 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3140 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3141 method = sd->method(); 3142 if (method != nullptr && method->has_reserved_stack_access()) { 3143 found = true; 3144 } 3145 } 3146 } 3147 } 3148 if (found) { 3149 activation = fr; 3150 warning("Potentially dangerous stack overflow in " 3151 "ReservedStackAccess annotated method %s [%d]", 3152 method->name_and_sig_as_C_string(), count++); 3153 EventReservedStackActivation event; 3154 if (event.should_commit()) { 3155 event.set_method(method); 3156 event.commit(); 3157 } 3158 } 3159 } 3160 return activation; 3161 } 3162 3163 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3164 // After any safepoint, just before going back to compiled code, 3165 // we inform the GC that we will be doing initializing writes to 3166 // this object in the future without emitting card-marks, so 3167 // GC may take any compensating steps. 3168 3169 oop new_obj = current->vm_result_oop(); 3170 if (new_obj == nullptr) return; 3171 3172 BarrierSet *bs = BarrierSet::barrier_set(); 3173 bs->on_slowpath_allocation_exit(current, new_obj); 3174 }