1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jvm.h" 46 #include "jfr/jfrEvents.hpp" 47 #include "logging/log.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "metaprogramming/primitiveConversions.hpp" 51 #include "oops/klass.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/forte.hpp" 56 #include "prims/jvmtiExport.hpp" 57 #include "prims/jvmtiThreadState.hpp" 58 #include "prims/methodHandles.hpp" 59 #include "prims/nativeLookup.hpp" 60 #include "runtime/arguments.hpp" 61 #include "runtime/atomic.hpp" 62 #include "runtime/basicLock.inline.hpp" 63 #include "runtime/frame.inline.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/init.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/java.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/jniHandles.inline.hpp" 70 #include "runtime/perfData.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/stackWatermarkSet.hpp" 73 #include "runtime/stubRoutines.hpp" 74 #include "runtime/synchronizer.inline.hpp" 75 #include "runtime/timerTrace.hpp" 76 #include "runtime/vframe.inline.hpp" 77 #include "runtime/vframeArray.hpp" 78 #include "runtime/vm_version.hpp" 79 #include "utilities/copy.hpp" 80 #include "utilities/dtrace.hpp" 81 #include "utilities/events.hpp" 82 #include "utilities/globalDefinitions.hpp" 83 #include "utilities/resourceHash.hpp" 84 #include "utilities/macros.hpp" 85 #include "utilities/xmlstream.hpp" 86 #ifdef COMPILER1 87 #include "c1/c1_Runtime1.hpp" 88 #endif 89 #if INCLUDE_JFR 90 #include "jfr/jfr.hpp" 91 #endif 92 93 // Shared runtime stub routines reside in their own unique blob with a 94 // single entry point 95 96 97 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 98 type SharedRuntime::BLOB_FIELD_NAME(name); 99 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 100 #undef SHARED_STUB_FIELD_DEFINE 101 102 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 103 const char *SharedRuntime::_stub_names[] = { 104 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 105 }; 106 107 //----------------------------generate_stubs----------------------------------- 108 void SharedRuntime::generate_initial_stubs() { 109 // Build this early so it's available for the interpreter. 110 _throw_StackOverflowError_blob = 111 generate_throw_exception(SharedStubId::throw_StackOverflowError_id, 112 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 113 } 114 115 void SharedRuntime::generate_stubs() { 116 _wrong_method_blob = 117 generate_resolve_blob(SharedStubId::wrong_method_id, 118 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 119 _wrong_method_abstract_blob = 120 generate_resolve_blob(SharedStubId::wrong_method_abstract_id, 121 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 122 _ic_miss_blob = 123 generate_resolve_blob(SharedStubId::ic_miss_id, 124 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 125 _resolve_opt_virtual_call_blob = 126 generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id, 127 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 128 _resolve_virtual_call_blob = 129 generate_resolve_blob(SharedStubId::resolve_virtual_call_id, 130 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 131 _resolve_static_call_blob = 132 generate_resolve_blob(SharedStubId::resolve_static_call_id, 133 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 134 135 _throw_delayed_StackOverflowError_blob = 136 generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id, 137 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 138 139 _throw_AbstractMethodError_blob = 140 generate_throw_exception(SharedStubId::throw_AbstractMethodError_id, 141 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 142 143 _throw_IncompatibleClassChangeError_blob = 144 generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id, 145 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 146 147 _throw_NullPointerException_at_call_blob = 148 generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id, 149 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 150 151 #if COMPILER2_OR_JVMCI 152 // Vectors are generated only by C2 and JVMCI. 153 bool support_wide = is_wide_vector(MaxVectorSize); 154 if (support_wide) { 155 _polling_page_vectors_safepoint_handler_blob = 156 generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id, 157 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 158 } 159 #endif // COMPILER2_OR_JVMCI 160 _polling_page_safepoint_handler_blob = 161 generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id, 162 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 163 _polling_page_return_handler_blob = 164 generate_handler_blob(SharedStubId::polling_page_return_handler_id, 165 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 166 167 generate_deopt_blob(); 168 } 169 170 void SharedRuntime::init_adapter_library() { 171 AdapterHandlerLibrary::initialize(); 172 } 173 174 #if INCLUDE_JFR 175 //------------------------------generate jfr runtime stubs ------ 176 void SharedRuntime::generate_jfr_stubs() { 177 ResourceMark rm; 178 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 179 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 180 181 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 182 _jfr_return_lease_blob = generate_jfr_return_lease(); 183 } 184 185 #endif // INCLUDE_JFR 186 187 #include <math.h> 188 189 // Implementation of SharedRuntime 190 191 #ifndef PRODUCT 192 // For statistics 193 uint SharedRuntime::_ic_miss_ctr = 0; 194 uint SharedRuntime::_wrong_method_ctr = 0; 195 uint SharedRuntime::_resolve_static_ctr = 0; 196 uint SharedRuntime::_resolve_virtual_ctr = 0; 197 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 198 uint SharedRuntime::_implicit_null_throws = 0; 199 uint SharedRuntime::_implicit_div0_throws = 0; 200 201 int64_t SharedRuntime::_nof_normal_calls = 0; 202 int64_t SharedRuntime::_nof_inlined_calls = 0; 203 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 204 int64_t SharedRuntime::_nof_static_calls = 0; 205 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 206 int64_t SharedRuntime::_nof_interface_calls = 0; 207 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 208 209 uint SharedRuntime::_new_instance_ctr=0; 210 uint SharedRuntime::_new_array_ctr=0; 211 uint SharedRuntime::_multi2_ctr=0; 212 uint SharedRuntime::_multi3_ctr=0; 213 uint SharedRuntime::_multi4_ctr=0; 214 uint SharedRuntime::_multi5_ctr=0; 215 uint SharedRuntime::_mon_enter_stub_ctr=0; 216 uint SharedRuntime::_mon_exit_stub_ctr=0; 217 uint SharedRuntime::_mon_enter_ctr=0; 218 uint SharedRuntime::_mon_exit_ctr=0; 219 uint SharedRuntime::_partial_subtype_ctr=0; 220 uint SharedRuntime::_jbyte_array_copy_ctr=0; 221 uint SharedRuntime::_jshort_array_copy_ctr=0; 222 uint SharedRuntime::_jint_array_copy_ctr=0; 223 uint SharedRuntime::_jlong_array_copy_ctr=0; 224 uint SharedRuntime::_oop_array_copy_ctr=0; 225 uint SharedRuntime::_checkcast_array_copy_ctr=0; 226 uint SharedRuntime::_unsafe_array_copy_ctr=0; 227 uint SharedRuntime::_generic_array_copy_ctr=0; 228 uint SharedRuntime::_slow_array_copy_ctr=0; 229 uint SharedRuntime::_find_handler_ctr=0; 230 uint SharedRuntime::_rethrow_ctr=0; 231 uint SharedRuntime::_unsafe_set_memory_ctr=0; 232 233 int SharedRuntime::_ICmiss_index = 0; 234 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 235 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 236 237 238 void SharedRuntime::trace_ic_miss(address at) { 239 for (int i = 0; i < _ICmiss_index; i++) { 240 if (_ICmiss_at[i] == at) { 241 _ICmiss_count[i]++; 242 return; 243 } 244 } 245 int index = _ICmiss_index++; 246 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 247 _ICmiss_at[index] = at; 248 _ICmiss_count[index] = 1; 249 } 250 251 void SharedRuntime::print_ic_miss_histogram() { 252 if (ICMissHistogram) { 253 tty->print_cr("IC Miss Histogram:"); 254 int tot_misses = 0; 255 for (int i = 0; i < _ICmiss_index; i++) { 256 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 257 tot_misses += _ICmiss_count[i]; 258 } 259 tty->print_cr("Total IC misses: %7d", tot_misses); 260 } 261 } 262 #endif // PRODUCT 263 264 265 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 266 return x * y; 267 JRT_END 268 269 270 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 271 if (x == min_jlong && y == CONST64(-1)) { 272 return x; 273 } else { 274 return x / y; 275 } 276 JRT_END 277 278 279 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 280 if (x == min_jlong && y == CONST64(-1)) { 281 return 0; 282 } else { 283 return x % y; 284 } 285 JRT_END 286 287 288 #ifdef _WIN64 289 const juint float_sign_mask = 0x7FFFFFFF; 290 const juint float_infinity = 0x7F800000; 291 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 292 const julong double_infinity = CONST64(0x7FF0000000000000); 293 #endif 294 295 #if !defined(X86) 296 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 297 #ifdef _WIN64 298 // 64-bit Windows on amd64 returns the wrong values for 299 // infinity operands. 300 juint xbits = PrimitiveConversions::cast<juint>(x); 301 juint ybits = PrimitiveConversions::cast<juint>(y); 302 // x Mod Infinity == x unless x is infinity 303 if (((xbits & float_sign_mask) != float_infinity) && 304 ((ybits & float_sign_mask) == float_infinity) ) { 305 return x; 306 } 307 return ((jfloat)fmod_winx64((double)x, (double)y)); 308 #else 309 return ((jfloat)fmod((double)x,(double)y)); 310 #endif 311 JRT_END 312 313 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 314 #ifdef _WIN64 315 julong xbits = PrimitiveConversions::cast<julong>(x); 316 julong ybits = PrimitiveConversions::cast<julong>(y); 317 // x Mod Infinity == x unless x is infinity 318 if (((xbits & double_sign_mask) != double_infinity) && 319 ((ybits & double_sign_mask) == double_infinity) ) { 320 return x; 321 } 322 return ((jdouble)fmod_winx64((double)x, (double)y)); 323 #else 324 return ((jdouble)fmod((double)x,(double)y)); 325 #endif 326 JRT_END 327 #endif // !X86 328 329 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 330 return (jfloat)x; 331 JRT_END 332 333 #ifdef __SOFTFP__ 334 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 335 return x + y; 336 JRT_END 337 338 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 339 return x - y; 340 JRT_END 341 342 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 343 return x * y; 344 JRT_END 345 346 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 347 return x / y; 348 JRT_END 349 350 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 351 return x + y; 352 JRT_END 353 354 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 355 return x - y; 356 JRT_END 357 358 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 359 return x * y; 360 JRT_END 361 362 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 363 return x / y; 364 JRT_END 365 366 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 367 return (jdouble)x; 368 JRT_END 369 370 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 371 return (jdouble)x; 372 JRT_END 373 374 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 375 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 376 JRT_END 377 378 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 379 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 380 JRT_END 381 382 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 383 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 384 JRT_END 385 386 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 387 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 388 JRT_END 389 390 // Functions to return the opposite of the aeabi functions for nan. 391 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 392 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 393 JRT_END 394 395 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 396 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 397 JRT_END 398 399 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 400 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 401 JRT_END 402 403 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 404 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 405 JRT_END 406 407 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 408 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 409 JRT_END 410 411 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 412 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 413 JRT_END 414 415 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 416 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 417 JRT_END 418 419 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 420 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 421 JRT_END 422 423 // Intrinsics make gcc generate code for these. 424 float SharedRuntime::fneg(float f) { 425 return -f; 426 } 427 428 double SharedRuntime::dneg(double f) { 429 return -f; 430 } 431 432 #endif // __SOFTFP__ 433 434 #if defined(__SOFTFP__) || defined(E500V2) 435 // Intrinsics make gcc generate code for these. 436 double SharedRuntime::dabs(double f) { 437 return (f <= (double)0.0) ? (double)0.0 - f : f; 438 } 439 440 #endif 441 442 #if defined(__SOFTFP__) || defined(PPC) 443 double SharedRuntime::dsqrt(double f) { 444 return sqrt(f); 445 } 446 #endif 447 448 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 449 if (g_isnan(x)) 450 return 0; 451 if (x >= (jfloat) max_jint) 452 return max_jint; 453 if (x <= (jfloat) min_jint) 454 return min_jint; 455 return (jint) x; 456 JRT_END 457 458 459 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 460 if (g_isnan(x)) 461 return 0; 462 if (x >= (jfloat) max_jlong) 463 return max_jlong; 464 if (x <= (jfloat) min_jlong) 465 return min_jlong; 466 return (jlong) x; 467 JRT_END 468 469 470 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 471 if (g_isnan(x)) 472 return 0; 473 if (x >= (jdouble) max_jint) 474 return max_jint; 475 if (x <= (jdouble) min_jint) 476 return min_jint; 477 return (jint) x; 478 JRT_END 479 480 481 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 482 if (g_isnan(x)) 483 return 0; 484 if (x >= (jdouble) max_jlong) 485 return max_jlong; 486 if (x <= (jdouble) min_jlong) 487 return min_jlong; 488 return (jlong) x; 489 JRT_END 490 491 492 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 493 return (jfloat)x; 494 JRT_END 495 496 497 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 498 return (jfloat)x; 499 JRT_END 500 501 502 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 503 return (jdouble)x; 504 JRT_END 505 506 507 // Exception handling across interpreter/compiler boundaries 508 // 509 // exception_handler_for_return_address(...) returns the continuation address. 510 // The continuation address is the entry point of the exception handler of the 511 // previous frame depending on the return address. 512 513 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 514 // Note: This is called when we have unwound the frame of the callee that did 515 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 516 // Notably, the stack is not walkable at this point, and hence the check must 517 // be deferred until later. Specifically, any of the handlers returned here in 518 // this function, will get dispatched to, and call deferred checks to 519 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 520 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 521 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 522 523 // Reset method handle flag. 524 current->set_is_method_handle_return(false); 525 526 #if INCLUDE_JVMCI 527 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 528 // and other exception handler continuations do not read it 529 current->set_exception_pc(nullptr); 530 #endif // INCLUDE_JVMCI 531 532 if (Continuation::is_return_barrier_entry(return_address)) { 533 return StubRoutines::cont_returnBarrierExc(); 534 } 535 536 // The fastest case first 537 CodeBlob* blob = CodeCache::find_blob(return_address); 538 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 539 if (nm != nullptr) { 540 // Set flag if return address is a method handle call site. 541 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 542 // native nmethods don't have exception handlers 543 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 544 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 545 if (nm->is_deopt_pc(return_address)) { 546 // If we come here because of a stack overflow, the stack may be 547 // unguarded. Reguard the stack otherwise if we return to the 548 // deopt blob and the stack bang causes a stack overflow we 549 // crash. 550 StackOverflow* overflow_state = current->stack_overflow_state(); 551 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 552 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 553 overflow_state->set_reserved_stack_activation(current->stack_base()); 554 } 555 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 556 // The deferred StackWatermarkSet::after_unwind check will be performed in 557 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 558 return SharedRuntime::deopt_blob()->unpack_with_exception(); 559 } else { 560 // The deferred StackWatermarkSet::after_unwind check will be performed in 561 // * OptoRuntime::handle_exception_C_helper for C2 code 562 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 563 return nm->exception_begin(); 564 } 565 } 566 567 // Entry code 568 if (StubRoutines::returns_to_call_stub(return_address)) { 569 // The deferred StackWatermarkSet::after_unwind check will be performed in 570 // JavaCallWrapper::~JavaCallWrapper 571 return StubRoutines::catch_exception_entry(); 572 } 573 if (blob != nullptr && blob->is_upcall_stub()) { 574 return StubRoutines::upcall_stub_exception_handler(); 575 } 576 // Interpreted code 577 if (Interpreter::contains(return_address)) { 578 // The deferred StackWatermarkSet::after_unwind check will be performed in 579 // InterpreterRuntime::exception_handler_for_exception 580 return Interpreter::rethrow_exception_entry(); 581 } 582 583 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 584 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 585 586 #ifndef PRODUCT 587 { ResourceMark rm; 588 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 589 os::print_location(tty, (intptr_t)return_address); 590 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 591 tty->print_cr("b) other problem"); 592 } 593 #endif // PRODUCT 594 ShouldNotReachHere(); 595 return nullptr; 596 } 597 598 599 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 600 return raw_exception_handler_for_return_address(current, return_address); 601 JRT_END 602 603 604 address SharedRuntime::get_poll_stub(address pc) { 605 address stub; 606 // Look up the code blob 607 CodeBlob *cb = CodeCache::find_blob(pc); 608 609 // Should be an nmethod 610 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 611 612 // Look up the relocation information 613 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 614 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 615 616 #ifdef ASSERT 617 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 618 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 619 Disassembler::decode(cb); 620 fatal("Only polling locations are used for safepoint"); 621 } 622 #endif 623 624 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 625 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 626 if (at_poll_return) { 627 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 628 "polling page return stub not created yet"); 629 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 630 } else if (has_wide_vectors) { 631 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 632 "polling page vectors safepoint stub not created yet"); 633 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 634 } else { 635 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 636 "polling page safepoint stub not created yet"); 637 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 638 } 639 log_debug(safepoint)("... found polling page %s exception at pc = " 640 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 641 at_poll_return ? "return" : "loop", 642 (intptr_t)pc, (intptr_t)stub); 643 return stub; 644 } 645 646 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 647 if (JvmtiExport::can_post_on_exceptions()) { 648 vframeStream vfst(current, true); 649 methodHandle method = methodHandle(current, vfst.method()); 650 address bcp = method()->bcp_from(vfst.bci()); 651 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 652 } 653 654 #if INCLUDE_JVMCI 655 if (EnableJVMCI) { 656 vframeStream vfst(current, true); 657 methodHandle method = methodHandle(current, vfst.method()); 658 int bci = vfst.bci(); 659 MethodData* trap_mdo = method->method_data(); 660 if (trap_mdo != nullptr) { 661 // Set exception_seen if the exceptional bytecode is an invoke 662 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 663 if (call.is_valid()) { 664 ResourceMark rm(current); 665 666 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 667 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 668 669 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 670 if (pdata != nullptr && pdata->is_BitData()) { 671 BitData* bit_data = (BitData*) pdata; 672 bit_data->set_exception_seen(); 673 } 674 } 675 } 676 } 677 #endif 678 679 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 680 } 681 682 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 683 Handle h_exception = Exceptions::new_exception(current, name, message); 684 throw_and_post_jvmti_exception(current, h_exception); 685 } 686 687 #if INCLUDE_JVMTI 688 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 689 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 690 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 691 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 692 JNIHandles::destroy_local(vthread); 693 JRT_END 694 695 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 696 assert(hide == JNI_TRUE, "must be VTMS transition start"); 697 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 698 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 699 JNIHandles::destroy_local(vthread); 700 JRT_END 701 702 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 703 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 704 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 705 JNIHandles::destroy_local(vthread); 706 JRT_END 707 708 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 709 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 710 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 711 JNIHandles::destroy_local(vthread); 712 JRT_END 713 #endif // INCLUDE_JVMTI 714 715 // The interpreter code to call this tracing function is only 716 // called/generated when UL is on for redefine, class and has the right level 717 // and tags. Since obsolete methods are never compiled, we don't have 718 // to modify the compilers to generate calls to this function. 719 // 720 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 721 JavaThread* thread, Method* method)) 722 if (method->is_obsolete()) { 723 // We are calling an obsolete method, but this is not necessarily 724 // an error. Our method could have been redefined just after we 725 // fetched the Method* from the constant pool. 726 ResourceMark rm; 727 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 728 } 729 return 0; 730 JRT_END 731 732 // ret_pc points into caller; we are returning caller's exception handler 733 // for given exception 734 // Note that the implementation of this method assumes it's only called when an exception has actually occured 735 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 736 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 737 assert(nm != nullptr, "must exist"); 738 ResourceMark rm; 739 740 #if INCLUDE_JVMCI 741 if (nm->is_compiled_by_jvmci()) { 742 // lookup exception handler for this pc 743 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 744 ExceptionHandlerTable table(nm); 745 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 746 if (t != nullptr) { 747 return nm->code_begin() + t->pco(); 748 } else { 749 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 750 } 751 } 752 #endif // INCLUDE_JVMCI 753 754 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 755 // determine handler bci, if any 756 EXCEPTION_MARK; 757 758 int handler_bci = -1; 759 int scope_depth = 0; 760 if (!force_unwind) { 761 int bci = sd->bci(); 762 bool recursive_exception = false; 763 do { 764 bool skip_scope_increment = false; 765 // exception handler lookup 766 Klass* ek = exception->klass(); 767 methodHandle mh(THREAD, sd->method()); 768 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 769 if (HAS_PENDING_EXCEPTION) { 770 recursive_exception = true; 771 // We threw an exception while trying to find the exception handler. 772 // Transfer the new exception to the exception handle which will 773 // be set into thread local storage, and do another lookup for an 774 // exception handler for this exception, this time starting at the 775 // BCI of the exception handler which caused the exception to be 776 // thrown (bugs 4307310 and 4546590). Set "exception" reference 777 // argument to ensure that the correct exception is thrown (4870175). 778 recursive_exception_occurred = true; 779 exception = Handle(THREAD, PENDING_EXCEPTION); 780 CLEAR_PENDING_EXCEPTION; 781 if (handler_bci >= 0) { 782 bci = handler_bci; 783 handler_bci = -1; 784 skip_scope_increment = true; 785 } 786 } 787 else { 788 recursive_exception = false; 789 } 790 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 791 sd = sd->sender(); 792 if (sd != nullptr) { 793 bci = sd->bci(); 794 } 795 ++scope_depth; 796 } 797 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 798 } 799 800 // found handling method => lookup exception handler 801 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 802 803 ExceptionHandlerTable table(nm); 804 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 805 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 806 // Allow abbreviated catch tables. The idea is to allow a method 807 // to materialize its exceptions without committing to the exact 808 // routing of exceptions. In particular this is needed for adding 809 // a synthetic handler to unlock monitors when inlining 810 // synchronized methods since the unlock path isn't represented in 811 // the bytecodes. 812 t = table.entry_for(catch_pco, -1, 0); 813 } 814 815 #ifdef COMPILER1 816 if (t == nullptr && nm->is_compiled_by_c1()) { 817 assert(nm->unwind_handler_begin() != nullptr, ""); 818 return nm->unwind_handler_begin(); 819 } 820 #endif 821 822 if (t == nullptr) { 823 ttyLocker ttyl; 824 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 825 tty->print_cr(" Exception:"); 826 exception->print(); 827 tty->cr(); 828 tty->print_cr(" Compiled exception table :"); 829 table.print(); 830 nm->print(); 831 nm->print_code(); 832 guarantee(false, "missing exception handler"); 833 return nullptr; 834 } 835 836 if (handler_bci != -1) { // did we find a handler in this method? 837 sd->method()->set_exception_handler_entered(handler_bci); // profile 838 } 839 return nm->code_begin() + t->pco(); 840 } 841 842 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 843 // These errors occur only at call sites 844 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 845 JRT_END 846 847 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 848 // These errors occur only at call sites 849 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 850 JRT_END 851 852 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 853 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 854 JRT_END 855 856 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 857 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 858 JRT_END 859 860 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 861 // This entry point is effectively only used for NullPointerExceptions which occur at inline 862 // cache sites (when the callee activation is not yet set up) so we are at a call site 863 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 864 JRT_END 865 866 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 867 throw_StackOverflowError_common(current, false); 868 JRT_END 869 870 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 871 throw_StackOverflowError_common(current, true); 872 JRT_END 873 874 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 875 // We avoid using the normal exception construction in this case because 876 // it performs an upcall to Java, and we're already out of stack space. 877 JavaThread* THREAD = current; // For exception macros. 878 Klass* k = vmClasses::StackOverflowError_klass(); 879 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 880 if (delayed) { 881 java_lang_Throwable::set_message(exception_oop, 882 Universe::delayed_stack_overflow_error_message()); 883 } 884 Handle exception (current, exception_oop); 885 if (StackTraceInThrowable) { 886 java_lang_Throwable::fill_in_stack_trace(exception); 887 } 888 // Remove the ScopedValue bindings in case we got a 889 // StackOverflowError while we were trying to remove ScopedValue 890 // bindings. 891 current->clear_scopedValueBindings(); 892 // Increment counter for hs_err file reporting 893 Atomic::inc(&Exceptions::_stack_overflow_errors); 894 throw_and_post_jvmti_exception(current, exception); 895 } 896 897 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 898 address pc, 899 ImplicitExceptionKind exception_kind) 900 { 901 address target_pc = nullptr; 902 903 if (Interpreter::contains(pc)) { 904 switch (exception_kind) { 905 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 906 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 907 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 908 default: ShouldNotReachHere(); 909 } 910 } else { 911 switch (exception_kind) { 912 case STACK_OVERFLOW: { 913 // Stack overflow only occurs upon frame setup; the callee is 914 // going to be unwound. Dispatch to a shared runtime stub 915 // which will cause the StackOverflowError to be fabricated 916 // and processed. 917 // Stack overflow should never occur during deoptimization: 918 // the compiled method bangs the stack by as much as the 919 // interpreter would need in case of a deoptimization. The 920 // deoptimization blob and uncommon trap blob bang the stack 921 // in a debug VM to verify the correctness of the compiled 922 // method stack banging. 923 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 924 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 925 return SharedRuntime::throw_StackOverflowError_entry(); 926 } 927 928 case IMPLICIT_NULL: { 929 if (VtableStubs::contains(pc)) { 930 // We haven't yet entered the callee frame. Fabricate an 931 // exception and begin dispatching it in the caller. Since 932 // the caller was at a call site, it's safe to destroy all 933 // caller-saved registers, as these entry points do. 934 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 935 936 // If vt_stub is null, then return null to signal handler to report the SEGV error. 937 if (vt_stub == nullptr) return nullptr; 938 939 if (vt_stub->is_abstract_method_error(pc)) { 940 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 941 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 942 // Instead of throwing the abstract method error here directly, we re-resolve 943 // and will throw the AbstractMethodError during resolve. As a result, we'll 944 // get a more detailed error message. 945 return SharedRuntime::get_handle_wrong_method_stub(); 946 } else { 947 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 948 // Assert that the signal comes from the expected location in stub code. 949 assert(vt_stub->is_null_pointer_exception(pc), 950 "obtained signal from unexpected location in stub code"); 951 return SharedRuntime::throw_NullPointerException_at_call_entry(); 952 } 953 } else { 954 CodeBlob* cb = CodeCache::find_blob(pc); 955 956 // If code blob is null, then return null to signal handler to report the SEGV error. 957 if (cb == nullptr) return nullptr; 958 959 // Exception happened in CodeCache. Must be either: 960 // 1. Inline-cache check in C2I handler blob, 961 // 2. Inline-cache check in nmethod, or 962 // 3. Implicit null exception in nmethod 963 964 if (!cb->is_nmethod()) { 965 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 966 if (!is_in_blob) { 967 // Allow normal crash reporting to handle this 968 return nullptr; 969 } 970 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 971 // There is no handler here, so we will simply unwind. 972 return SharedRuntime::throw_NullPointerException_at_call_entry(); 973 } 974 975 // Otherwise, it's a compiled method. Consult its exception handlers. 976 nmethod* nm = cb->as_nmethod(); 977 if (nm->inlinecache_check_contains(pc)) { 978 // exception happened inside inline-cache check code 979 // => the nmethod is not yet active (i.e., the frame 980 // is not set up yet) => use return address pushed by 981 // caller => don't push another return address 982 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 983 return SharedRuntime::throw_NullPointerException_at_call_entry(); 984 } 985 986 if (nm->method()->is_method_handle_intrinsic()) { 987 // exception happened inside MH dispatch code, similar to a vtable stub 988 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 989 return SharedRuntime::throw_NullPointerException_at_call_entry(); 990 } 991 992 #ifndef PRODUCT 993 _implicit_null_throws++; 994 #endif 995 target_pc = nm->continuation_for_implicit_null_exception(pc); 996 // If there's an unexpected fault, target_pc might be null, 997 // in which case we want to fall through into the normal 998 // error handling code. 999 } 1000 1001 break; // fall through 1002 } 1003 1004 1005 case IMPLICIT_DIVIDE_BY_ZERO: { 1006 nmethod* nm = CodeCache::find_nmethod(pc); 1007 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1008 #ifndef PRODUCT 1009 _implicit_div0_throws++; 1010 #endif 1011 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1012 // If there's an unexpected fault, target_pc might be null, 1013 // in which case we want to fall through into the normal 1014 // error handling code. 1015 break; // fall through 1016 } 1017 1018 default: ShouldNotReachHere(); 1019 } 1020 1021 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1022 1023 if (exception_kind == IMPLICIT_NULL) { 1024 #ifndef PRODUCT 1025 // for AbortVMOnException flag 1026 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1027 #endif //PRODUCT 1028 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1029 } else { 1030 #ifndef PRODUCT 1031 // for AbortVMOnException flag 1032 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1033 #endif //PRODUCT 1034 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1035 } 1036 return target_pc; 1037 } 1038 1039 ShouldNotReachHere(); 1040 return nullptr; 1041 } 1042 1043 1044 /** 1045 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1046 * installed in the native function entry of all native Java methods before 1047 * they get linked to their actual native methods. 1048 * 1049 * \note 1050 * This method actually never gets called! The reason is because 1051 * the interpreter's native entries call NativeLookup::lookup() which 1052 * throws the exception when the lookup fails. The exception is then 1053 * caught and forwarded on the return from NativeLookup::lookup() call 1054 * before the call to the native function. This might change in the future. 1055 */ 1056 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1057 { 1058 // We return a bad value here to make sure that the exception is 1059 // forwarded before we look at the return value. 1060 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1061 } 1062 JNI_END 1063 1064 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1065 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1066 } 1067 1068 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1069 #if INCLUDE_JVMCI 1070 if (!obj->klass()->has_finalizer()) { 1071 return; 1072 } 1073 #endif // INCLUDE_JVMCI 1074 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1075 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1076 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1077 JRT_END 1078 1079 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1080 assert(thread != nullptr, "No thread"); 1081 if (thread == nullptr) { 1082 return 0; 1083 } 1084 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1085 "current cannot touch oops after its GC barrier is detached."); 1086 oop obj = thread->threadObj(); 1087 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1088 } 1089 1090 /** 1091 * This function ought to be a void function, but cannot be because 1092 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1093 * 6254741. Once that is fixed we can remove the dummy return value. 1094 */ 1095 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1096 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1097 } 1098 1099 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1100 return dtrace_object_alloc(thread, o, o->size()); 1101 } 1102 1103 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1104 assert(DTraceAllocProbes, "wrong call"); 1105 Klass* klass = o->klass(); 1106 Symbol* name = klass->name(); 1107 HOTSPOT_OBJECT_ALLOC( 1108 get_java_tid(thread), 1109 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1110 return 0; 1111 } 1112 1113 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1114 JavaThread* current, Method* method)) 1115 assert(current == JavaThread::current(), "pre-condition"); 1116 1117 assert(DTraceMethodProbes, "wrong call"); 1118 Symbol* kname = method->klass_name(); 1119 Symbol* name = method->name(); 1120 Symbol* sig = method->signature(); 1121 HOTSPOT_METHOD_ENTRY( 1122 get_java_tid(current), 1123 (char *) kname->bytes(), kname->utf8_length(), 1124 (char *) name->bytes(), name->utf8_length(), 1125 (char *) sig->bytes(), sig->utf8_length()); 1126 return 0; 1127 JRT_END 1128 1129 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1130 JavaThread* current, Method* method)) 1131 assert(current == JavaThread::current(), "pre-condition"); 1132 assert(DTraceMethodProbes, "wrong call"); 1133 Symbol* kname = method->klass_name(); 1134 Symbol* name = method->name(); 1135 Symbol* sig = method->signature(); 1136 HOTSPOT_METHOD_RETURN( 1137 get_java_tid(current), 1138 (char *) kname->bytes(), kname->utf8_length(), 1139 (char *) name->bytes(), name->utf8_length(), 1140 (char *) sig->bytes(), sig->utf8_length()); 1141 return 0; 1142 JRT_END 1143 1144 1145 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1146 // for a call current in progress, i.e., arguments has been pushed on stack 1147 // put callee has not been invoked yet. Used by: resolve virtual/static, 1148 // vtable updates, etc. Caller frame must be compiled. 1149 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1150 JavaThread* current = THREAD; 1151 ResourceMark rm(current); 1152 1153 // last java frame on stack (which includes native call frames) 1154 vframeStream vfst(current, true); // Do not skip and javaCalls 1155 1156 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1157 } 1158 1159 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1160 nmethod* caller = vfst.nm(); 1161 1162 address pc = vfst.frame_pc(); 1163 { // Get call instruction under lock because another thread may be busy patching it. 1164 CompiledICLocker ic_locker(caller); 1165 return caller->attached_method_before_pc(pc); 1166 } 1167 return nullptr; 1168 } 1169 1170 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1171 // for a call current in progress, i.e., arguments has been pushed on stack 1172 // but callee has not been invoked yet. Caller frame must be compiled. 1173 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1174 CallInfo& callinfo, TRAPS) { 1175 Handle receiver; 1176 Handle nullHandle; // create a handy null handle for exception returns 1177 JavaThread* current = THREAD; 1178 1179 assert(!vfst.at_end(), "Java frame must exist"); 1180 1181 // Find caller and bci from vframe 1182 methodHandle caller(current, vfst.method()); 1183 int bci = vfst.bci(); 1184 1185 if (caller->is_continuation_enter_intrinsic()) { 1186 bc = Bytecodes::_invokestatic; 1187 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1188 return receiver; 1189 } 1190 1191 Bytecode_invoke bytecode(caller, bci); 1192 int bytecode_index = bytecode.index(); 1193 bc = bytecode.invoke_code(); 1194 1195 methodHandle attached_method(current, extract_attached_method(vfst)); 1196 if (attached_method.not_null()) { 1197 Method* callee = bytecode.static_target(CHECK_NH); 1198 vmIntrinsics::ID id = callee->intrinsic_id(); 1199 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1200 // it attaches statically resolved method to the call site. 1201 if (MethodHandles::is_signature_polymorphic(id) && 1202 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1203 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1204 1205 // Adjust invocation mode according to the attached method. 1206 switch (bc) { 1207 case Bytecodes::_invokevirtual: 1208 if (attached_method->method_holder()->is_interface()) { 1209 bc = Bytecodes::_invokeinterface; 1210 } 1211 break; 1212 case Bytecodes::_invokeinterface: 1213 if (!attached_method->method_holder()->is_interface()) { 1214 bc = Bytecodes::_invokevirtual; 1215 } 1216 break; 1217 case Bytecodes::_invokehandle: 1218 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1219 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1220 : Bytecodes::_invokevirtual; 1221 } 1222 break; 1223 default: 1224 break; 1225 } 1226 } 1227 } 1228 1229 assert(bc != Bytecodes::_illegal, "not initialized"); 1230 1231 bool has_receiver = bc != Bytecodes::_invokestatic && 1232 bc != Bytecodes::_invokedynamic && 1233 bc != Bytecodes::_invokehandle; 1234 1235 // Find receiver for non-static call 1236 if (has_receiver) { 1237 // This register map must be update since we need to find the receiver for 1238 // compiled frames. The receiver might be in a register. 1239 RegisterMap reg_map2(current, 1240 RegisterMap::UpdateMap::include, 1241 RegisterMap::ProcessFrames::include, 1242 RegisterMap::WalkContinuation::skip); 1243 frame stubFrame = current->last_frame(); 1244 // Caller-frame is a compiled frame 1245 frame callerFrame = stubFrame.sender(®_map2); 1246 1247 if (attached_method.is_null()) { 1248 Method* callee = bytecode.static_target(CHECK_NH); 1249 if (callee == nullptr) { 1250 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1251 } 1252 } 1253 1254 // Retrieve from a compiled argument list 1255 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1256 assert(oopDesc::is_oop_or_null(receiver()), ""); 1257 1258 if (receiver.is_null()) { 1259 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1260 } 1261 } 1262 1263 // Resolve method 1264 if (attached_method.not_null()) { 1265 // Parameterized by attached method. 1266 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1267 } else { 1268 // Parameterized by bytecode. 1269 constantPoolHandle constants(current, caller->constants()); 1270 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1271 } 1272 1273 #ifdef ASSERT 1274 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1275 if (has_receiver) { 1276 assert(receiver.not_null(), "should have thrown exception"); 1277 Klass* receiver_klass = receiver->klass(); 1278 Klass* rk = nullptr; 1279 if (attached_method.not_null()) { 1280 // In case there's resolved method attached, use its holder during the check. 1281 rk = attached_method->method_holder(); 1282 } else { 1283 // Klass is already loaded. 1284 constantPoolHandle constants(current, caller->constants()); 1285 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1286 } 1287 Klass* static_receiver_klass = rk; 1288 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1289 "actual receiver must be subclass of static receiver klass"); 1290 if (receiver_klass->is_instance_klass()) { 1291 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1292 tty->print_cr("ERROR: Klass not yet initialized!!"); 1293 receiver_klass->print(); 1294 } 1295 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1296 } 1297 } 1298 #endif 1299 1300 return receiver; 1301 } 1302 1303 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1304 JavaThread* current = THREAD; 1305 ResourceMark rm(current); 1306 // We need first to check if any Java activations (compiled, interpreted) 1307 // exist on the stack since last JavaCall. If not, we need 1308 // to get the target method from the JavaCall wrapper. 1309 vframeStream vfst(current, true); // Do not skip any javaCalls 1310 methodHandle callee_method; 1311 if (vfst.at_end()) { 1312 // No Java frames were found on stack since we did the JavaCall. 1313 // Hence the stack can only contain an entry_frame. We need to 1314 // find the target method from the stub frame. 1315 RegisterMap reg_map(current, 1316 RegisterMap::UpdateMap::skip, 1317 RegisterMap::ProcessFrames::include, 1318 RegisterMap::WalkContinuation::skip); 1319 frame fr = current->last_frame(); 1320 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1321 fr = fr.sender(®_map); 1322 assert(fr.is_entry_frame(), "must be"); 1323 // fr is now pointing to the entry frame. 1324 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1325 } else { 1326 Bytecodes::Code bc; 1327 CallInfo callinfo; 1328 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1329 callee_method = methodHandle(current, callinfo.selected_method()); 1330 } 1331 assert(callee_method()->is_method(), "must be"); 1332 return callee_method; 1333 } 1334 1335 // Resolves a call. 1336 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1337 JavaThread* current = THREAD; 1338 ResourceMark rm(current); 1339 RegisterMap cbl_map(current, 1340 RegisterMap::UpdateMap::skip, 1341 RegisterMap::ProcessFrames::include, 1342 RegisterMap::WalkContinuation::skip); 1343 frame caller_frame = current->last_frame().sender(&cbl_map); 1344 1345 CodeBlob* caller_cb = caller_frame.cb(); 1346 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1347 nmethod* caller_nm = caller_cb->as_nmethod(); 1348 1349 // determine call info & receiver 1350 // note: a) receiver is null for static calls 1351 // b) an exception is thrown if receiver is null for non-static calls 1352 CallInfo call_info; 1353 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1354 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1355 1356 NoSafepointVerifier nsv; 1357 1358 methodHandle callee_method(current, call_info.selected_method()); 1359 1360 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1361 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1362 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1363 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1364 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1365 1366 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1367 1368 #ifndef PRODUCT 1369 // tracing/debugging/statistics 1370 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1371 (is_virtual) ? (&_resolve_virtual_ctr) : 1372 (&_resolve_static_ctr); 1373 Atomic::inc(addr); 1374 1375 if (TraceCallFixup) { 1376 ResourceMark rm(current); 1377 tty->print("resolving %s%s (%s) call to", 1378 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1379 Bytecodes::name(invoke_code)); 1380 callee_method->print_short_name(tty); 1381 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1382 p2i(caller_frame.pc()), p2i(callee_method->code())); 1383 } 1384 #endif 1385 1386 if (invoke_code == Bytecodes::_invokestatic) { 1387 assert(callee_method->method_holder()->is_initialized() || 1388 callee_method->method_holder()->is_reentrant_initialization(current), 1389 "invalid class initialization state for invoke_static"); 1390 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1391 // In order to keep class initialization check, do not patch call 1392 // site for static call when the class is not fully initialized. 1393 // Proper check is enforced by call site re-resolution on every invocation. 1394 // 1395 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1396 // explicit class initialization check is put in nmethod entry (VEP). 1397 assert(callee_method->method_holder()->is_linked(), "must be"); 1398 return callee_method; 1399 } 1400 } 1401 1402 1403 // JSR 292 key invariant: 1404 // If the resolved method is a MethodHandle invoke target, the call 1405 // site must be a MethodHandle call site, because the lambda form might tail-call 1406 // leaving the stack in a state unknown to either caller or callee 1407 1408 // Compute entry points. The computation of the entry points is independent of 1409 // patching the call. 1410 1411 // Make sure the callee nmethod does not get deoptimized and removed before 1412 // we are done patching the code. 1413 1414 1415 CompiledICLocker ml(caller_nm); 1416 if (is_virtual && !is_optimized) { 1417 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1418 inline_cache->update(&call_info, receiver->klass()); 1419 } else { 1420 // Callsite is a direct call - set it to the destination method 1421 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1422 callsite->set(callee_method); 1423 } 1424 1425 return callee_method; 1426 } 1427 1428 // Inline caches exist only in compiled code 1429 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1430 #ifdef ASSERT 1431 RegisterMap reg_map(current, 1432 RegisterMap::UpdateMap::skip, 1433 RegisterMap::ProcessFrames::include, 1434 RegisterMap::WalkContinuation::skip); 1435 frame stub_frame = current->last_frame(); 1436 assert(stub_frame.is_runtime_frame(), "sanity check"); 1437 frame caller_frame = stub_frame.sender(®_map); 1438 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1439 #endif /* ASSERT */ 1440 1441 methodHandle callee_method; 1442 JRT_BLOCK 1443 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1444 // Return Method* through TLS 1445 current->set_vm_result_metadata(callee_method()); 1446 JRT_BLOCK_END 1447 // return compiled code entry point after potential safepoints 1448 return get_resolved_entry(current, callee_method); 1449 JRT_END 1450 1451 1452 // Handle call site that has been made non-entrant 1453 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1454 // 6243940 We might end up in here if the callee is deoptimized 1455 // as we race to call it. We don't want to take a safepoint if 1456 // the caller was interpreted because the caller frame will look 1457 // interpreted to the stack walkers and arguments are now 1458 // "compiled" so it is much better to make this transition 1459 // invisible to the stack walking code. The i2c path will 1460 // place the callee method in the callee_target. It is stashed 1461 // there because if we try and find the callee by normal means a 1462 // safepoint is possible and have trouble gc'ing the compiled args. 1463 RegisterMap reg_map(current, 1464 RegisterMap::UpdateMap::skip, 1465 RegisterMap::ProcessFrames::include, 1466 RegisterMap::WalkContinuation::skip); 1467 frame stub_frame = current->last_frame(); 1468 assert(stub_frame.is_runtime_frame(), "sanity check"); 1469 frame caller_frame = stub_frame.sender(®_map); 1470 1471 if (caller_frame.is_interpreted_frame() || 1472 caller_frame.is_entry_frame() || 1473 caller_frame.is_upcall_stub_frame()) { 1474 Method* callee = current->callee_target(); 1475 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1476 current->set_vm_result_metadata(callee); 1477 current->set_callee_target(nullptr); 1478 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1479 // Bypass class initialization checks in c2i when caller is in native. 1480 // JNI calls to static methods don't have class initialization checks. 1481 // Fast class initialization checks are present in c2i adapters and call into 1482 // SharedRuntime::handle_wrong_method() on the slow path. 1483 // 1484 // JVM upcalls may land here as well, but there's a proper check present in 1485 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1486 // so bypassing it in c2i adapter is benign. 1487 return callee->get_c2i_no_clinit_check_entry(); 1488 } else { 1489 return callee->get_c2i_entry(); 1490 } 1491 } 1492 1493 // Must be compiled to compiled path which is safe to stackwalk 1494 methodHandle callee_method; 1495 JRT_BLOCK 1496 // Force resolving of caller (if we called from compiled frame) 1497 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1498 current->set_vm_result_metadata(callee_method()); 1499 JRT_BLOCK_END 1500 // return compiled code entry point after potential safepoints 1501 return get_resolved_entry(current, callee_method); 1502 JRT_END 1503 1504 // Handle abstract method call 1505 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1506 // Verbose error message for AbstractMethodError. 1507 // Get the called method from the invoke bytecode. 1508 vframeStream vfst(current, true); 1509 assert(!vfst.at_end(), "Java frame must exist"); 1510 methodHandle caller(current, vfst.method()); 1511 Bytecode_invoke invoke(caller, vfst.bci()); 1512 DEBUG_ONLY( invoke.verify(); ) 1513 1514 // Find the compiled caller frame. 1515 RegisterMap reg_map(current, 1516 RegisterMap::UpdateMap::include, 1517 RegisterMap::ProcessFrames::include, 1518 RegisterMap::WalkContinuation::skip); 1519 frame stubFrame = current->last_frame(); 1520 assert(stubFrame.is_runtime_frame(), "must be"); 1521 frame callerFrame = stubFrame.sender(®_map); 1522 assert(callerFrame.is_compiled_frame(), "must be"); 1523 1524 // Install exception and return forward entry. 1525 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1526 JRT_BLOCK 1527 methodHandle callee(current, invoke.static_target(current)); 1528 if (!callee.is_null()) { 1529 oop recv = callerFrame.retrieve_receiver(®_map); 1530 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1531 res = StubRoutines::forward_exception_entry(); 1532 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1533 } 1534 JRT_BLOCK_END 1535 return res; 1536 JRT_END 1537 1538 // return verified_code_entry if interp_only_mode is not set for the current thread; 1539 // otherwise return c2i entry. 1540 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1541 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1542 // In interp_only_mode we need to go to the interpreted entry 1543 // The c2i won't patch in this mode -- see fixup_callers_callsite 1544 return callee_method->get_c2i_entry(); 1545 } 1546 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1547 return callee_method->verified_code_entry(); 1548 } 1549 1550 // resolve a static call and patch code 1551 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1552 methodHandle callee_method; 1553 bool enter_special = false; 1554 JRT_BLOCK 1555 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1556 current->set_vm_result_metadata(callee_method()); 1557 JRT_BLOCK_END 1558 // return compiled code entry point after potential safepoints 1559 return get_resolved_entry(current, callee_method); 1560 JRT_END 1561 1562 // resolve virtual call and update inline cache to monomorphic 1563 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1564 methodHandle callee_method; 1565 JRT_BLOCK 1566 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1567 current->set_vm_result_metadata(callee_method()); 1568 JRT_BLOCK_END 1569 // return compiled code entry point after potential safepoints 1570 return get_resolved_entry(current, callee_method); 1571 JRT_END 1572 1573 1574 // Resolve a virtual call that can be statically bound (e.g., always 1575 // monomorphic, so it has no inline cache). Patch code to resolved target. 1576 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1577 methodHandle callee_method; 1578 JRT_BLOCK 1579 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1580 current->set_vm_result_metadata(callee_method()); 1581 JRT_BLOCK_END 1582 // return compiled code entry point after potential safepoints 1583 return get_resolved_entry(current, callee_method); 1584 JRT_END 1585 1586 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1587 JavaThread* current = THREAD; 1588 ResourceMark rm(current); 1589 CallInfo call_info; 1590 Bytecodes::Code bc; 1591 1592 // receiver is null for static calls. An exception is thrown for null 1593 // receivers for non-static calls 1594 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1595 1596 methodHandle callee_method(current, call_info.selected_method()); 1597 1598 #ifndef PRODUCT 1599 Atomic::inc(&_ic_miss_ctr); 1600 1601 // Statistics & Tracing 1602 if (TraceCallFixup) { 1603 ResourceMark rm(current); 1604 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1605 callee_method->print_short_name(tty); 1606 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1607 } 1608 1609 if (ICMissHistogram) { 1610 MutexLocker m(VMStatistic_lock); 1611 RegisterMap reg_map(current, 1612 RegisterMap::UpdateMap::skip, 1613 RegisterMap::ProcessFrames::include, 1614 RegisterMap::WalkContinuation::skip); 1615 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1616 // produce statistics under the lock 1617 trace_ic_miss(f.pc()); 1618 } 1619 #endif 1620 1621 // install an event collector so that when a vtable stub is created the 1622 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1623 // event can't be posted when the stub is created as locks are held 1624 // - instead the event will be deferred until the event collector goes 1625 // out of scope. 1626 JvmtiDynamicCodeEventCollector event_collector; 1627 1628 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1629 RegisterMap reg_map(current, 1630 RegisterMap::UpdateMap::skip, 1631 RegisterMap::ProcessFrames::include, 1632 RegisterMap::WalkContinuation::skip); 1633 frame caller_frame = current->last_frame().sender(®_map); 1634 CodeBlob* cb = caller_frame.cb(); 1635 nmethod* caller_nm = cb->as_nmethod(); 1636 1637 CompiledICLocker ml(caller_nm); 1638 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1639 inline_cache->update(&call_info, receiver()->klass()); 1640 1641 return callee_method; 1642 } 1643 1644 // 1645 // Resets a call-site in compiled code so it will get resolved again. 1646 // This routines handles both virtual call sites, optimized virtual call 1647 // sites, and static call sites. Typically used to change a call sites 1648 // destination from compiled to interpreted. 1649 // 1650 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1651 JavaThread* current = THREAD; 1652 ResourceMark rm(current); 1653 RegisterMap reg_map(current, 1654 RegisterMap::UpdateMap::skip, 1655 RegisterMap::ProcessFrames::include, 1656 RegisterMap::WalkContinuation::skip); 1657 frame stub_frame = current->last_frame(); 1658 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1659 frame caller = stub_frame.sender(®_map); 1660 1661 // Do nothing if the frame isn't a live compiled frame. 1662 // nmethod could be deoptimized by the time we get here 1663 // so no update to the caller is needed. 1664 1665 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1666 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1667 1668 address pc = caller.pc(); 1669 1670 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1671 assert(caller_nm != nullptr, "did not find caller nmethod"); 1672 1673 // Default call_addr is the location of the "basic" call. 1674 // Determine the address of the call we a reresolving. With 1675 // Inline Caches we will always find a recognizable call. 1676 // With Inline Caches disabled we may or may not find a 1677 // recognizable call. We will always find a call for static 1678 // calls and for optimized virtual calls. For vanilla virtual 1679 // calls it depends on the state of the UseInlineCaches switch. 1680 // 1681 // With Inline Caches disabled we can get here for a virtual call 1682 // for two reasons: 1683 // 1 - calling an abstract method. The vtable for abstract methods 1684 // will run us thru handle_wrong_method and we will eventually 1685 // end up in the interpreter to throw the ame. 1686 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1687 // call and between the time we fetch the entry address and 1688 // we jump to it the target gets deoptimized. Similar to 1 1689 // we will wind up in the interprter (thru a c2i with c2). 1690 // 1691 CompiledICLocker ml(caller_nm); 1692 address call_addr = caller_nm->call_instruction_address(pc); 1693 1694 if (call_addr != nullptr) { 1695 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1696 // bytes back in the instruction stream so we must also check for reloc info. 1697 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1698 bool ret = iter.next(); // Get item 1699 if (ret) { 1700 switch (iter.type()) { 1701 case relocInfo::static_call_type: 1702 case relocInfo::opt_virtual_call_type: { 1703 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1704 cdc->set_to_clean(); 1705 break; 1706 } 1707 1708 case relocInfo::virtual_call_type: { 1709 // compiled, dispatched call (which used to call an interpreted method) 1710 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1711 inline_cache->set_to_clean(); 1712 break; 1713 } 1714 default: 1715 break; 1716 } 1717 } 1718 } 1719 } 1720 1721 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1722 1723 1724 #ifndef PRODUCT 1725 Atomic::inc(&_wrong_method_ctr); 1726 1727 if (TraceCallFixup) { 1728 ResourceMark rm(current); 1729 tty->print("handle_wrong_method reresolving call to"); 1730 callee_method->print_short_name(tty); 1731 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1732 } 1733 #endif 1734 1735 return callee_method; 1736 } 1737 1738 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1739 // The faulting unsafe accesses should be changed to throw the error 1740 // synchronously instead. Meanwhile the faulting instruction will be 1741 // skipped over (effectively turning it into a no-op) and an 1742 // asynchronous exception will be raised which the thread will 1743 // handle at a later point. If the instruction is a load it will 1744 // return garbage. 1745 1746 // Request an async exception. 1747 thread->set_pending_unsafe_access_error(); 1748 1749 // Return address of next instruction to execute. 1750 return next_pc; 1751 } 1752 1753 #ifdef ASSERT 1754 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1755 const BasicType* sig_bt, 1756 const VMRegPair* regs) { 1757 ResourceMark rm; 1758 const int total_args_passed = method->size_of_parameters(); 1759 const VMRegPair* regs_with_member_name = regs; 1760 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1761 1762 const int member_arg_pos = total_args_passed - 1; 1763 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1764 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1765 1766 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1767 1768 for (int i = 0; i < member_arg_pos; i++) { 1769 VMReg a = regs_with_member_name[i].first(); 1770 VMReg b = regs_without_member_name[i].first(); 1771 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1772 } 1773 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1774 } 1775 #endif 1776 1777 // --------------------------------------------------------------------------- 1778 // We are calling the interpreter via a c2i. Normally this would mean that 1779 // we were called by a compiled method. However we could have lost a race 1780 // where we went int -> i2c -> c2i and so the caller could in fact be 1781 // interpreted. If the caller is compiled we attempt to patch the caller 1782 // so he no longer calls into the interpreter. 1783 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1784 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1785 1786 // It's possible that deoptimization can occur at a call site which hasn't 1787 // been resolved yet, in which case this function will be called from 1788 // an nmethod that has been patched for deopt and we can ignore the 1789 // request for a fixup. 1790 // Also it is possible that we lost a race in that from_compiled_entry 1791 // is now back to the i2c in that case we don't need to patch and if 1792 // we did we'd leap into space because the callsite needs to use 1793 // "to interpreter" stub in order to load up the Method*. Don't 1794 // ask me how I know this... 1795 1796 // Result from nmethod::is_unloading is not stable across safepoints. 1797 NoSafepointVerifier nsv; 1798 1799 nmethod* callee = method->code(); 1800 if (callee == nullptr) { 1801 return; 1802 } 1803 1804 // write lock needed because we might patch call site by set_to_clean() 1805 // and is_unloading() can modify nmethod's state 1806 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1807 1808 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1809 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1810 return; 1811 } 1812 1813 // The check above makes sure this is an nmethod. 1814 nmethod* caller = cb->as_nmethod(); 1815 1816 // Get the return PC for the passed caller PC. 1817 address return_pc = caller_pc + frame::pc_return_offset; 1818 1819 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1820 return; 1821 } 1822 1823 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1824 CompiledICLocker ic_locker(caller); 1825 ResourceMark rm; 1826 1827 // If we got here through a static call or opt_virtual call, then we know where the 1828 // call address would be; let's peek at it 1829 address callsite_addr = (address)nativeCall_before(return_pc); 1830 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1831 if (!iter.next()) { 1832 // No reloc entry found; not a static or optimized virtual call 1833 return; 1834 } 1835 1836 relocInfo::relocType type = iter.reloc()->type(); 1837 if (type != relocInfo::static_call_type && 1838 type != relocInfo::opt_virtual_call_type) { 1839 return; 1840 } 1841 1842 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1843 callsite->set_to_clean(); 1844 JRT_END 1845 1846 1847 // same as JVM_Arraycopy, but called directly from compiled code 1848 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1849 oopDesc* dest, jint dest_pos, 1850 jint length, 1851 JavaThread* current)) { 1852 #ifndef PRODUCT 1853 _slow_array_copy_ctr++; 1854 #endif 1855 // Check if we have null pointers 1856 if (src == nullptr || dest == nullptr) { 1857 THROW(vmSymbols::java_lang_NullPointerException()); 1858 } 1859 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1860 // even though the copy_array API also performs dynamic checks to ensure 1861 // that src and dest are truly arrays (and are conformable). 1862 // The copy_array mechanism is awkward and could be removed, but 1863 // the compilers don't call this function except as a last resort, 1864 // so it probably doesn't matter. 1865 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1866 (arrayOopDesc*)dest, dest_pos, 1867 length, current); 1868 } 1869 JRT_END 1870 1871 // The caller of generate_class_cast_message() (or one of its callers) 1872 // must use a ResourceMark in order to correctly free the result. 1873 char* SharedRuntime::generate_class_cast_message( 1874 JavaThread* thread, Klass* caster_klass) { 1875 1876 // Get target class name from the checkcast instruction 1877 vframeStream vfst(thread, true); 1878 assert(!vfst.at_end(), "Java frame must exist"); 1879 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1880 constantPoolHandle cpool(thread, vfst.method()->constants()); 1881 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1882 Symbol* target_klass_name = nullptr; 1883 if (target_klass == nullptr) { 1884 // This klass should be resolved, but just in case, get the name in the klass slot. 1885 target_klass_name = cpool->klass_name_at(cc.index()); 1886 } 1887 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1888 } 1889 1890 1891 // The caller of generate_class_cast_message() (or one of its callers) 1892 // must use a ResourceMark in order to correctly free the result. 1893 char* SharedRuntime::generate_class_cast_message( 1894 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1895 const char* caster_name = caster_klass->external_name(); 1896 1897 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1898 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1899 target_klass->external_name(); 1900 1901 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1902 1903 const char* caster_klass_description = ""; 1904 const char* target_klass_description = ""; 1905 const char* klass_separator = ""; 1906 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1907 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1908 } else { 1909 caster_klass_description = caster_klass->class_in_module_of_loader(); 1910 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1911 klass_separator = (target_klass != nullptr) ? "; " : ""; 1912 } 1913 1914 // add 3 for parenthesis and preceding space 1915 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1916 1917 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1918 if (message == nullptr) { 1919 // Shouldn't happen, but don't cause even more problems if it does 1920 message = const_cast<char*>(caster_klass->external_name()); 1921 } else { 1922 jio_snprintf(message, 1923 msglen, 1924 "class %s cannot be cast to class %s (%s%s%s)", 1925 caster_name, 1926 target_name, 1927 caster_klass_description, 1928 klass_separator, 1929 target_klass_description 1930 ); 1931 } 1932 return message; 1933 } 1934 1935 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1936 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 1937 JRT_END 1938 1939 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1940 if (!SafepointSynchronize::is_synchronizing()) { 1941 // Only try quick_enter() if we're not trying to reach a safepoint 1942 // so that the calling thread reaches the safepoint more quickly. 1943 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 1944 return; 1945 } 1946 } 1947 // NO_ASYNC required because an async exception on the state transition destructor 1948 // would leave you with the lock held and it would never be released. 1949 // The normal monitorenter NullPointerException is thrown without acquiring a lock 1950 // and the model is that an exception implies the method failed. 1951 JRT_BLOCK_NO_ASYNC 1952 Handle h_obj(THREAD, obj); 1953 ObjectSynchronizer::enter(h_obj, lock, current); 1954 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1955 JRT_BLOCK_END 1956 } 1957 1958 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1959 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1960 SharedRuntime::monitor_enter_helper(obj, lock, current); 1961 JRT_END 1962 1963 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1964 assert(JavaThread::current() == current, "invariant"); 1965 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1966 ExceptionMark em(current); 1967 1968 // Check if C2_MacroAssembler::fast_unlock() or 1969 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 1970 // monitor before going slow path. Since there is no safepoint 1971 // polling when calling into the VM, we can be sure that the monitor 1972 // hasn't been deallocated. 1973 ObjectMonitor* m = current->unlocked_inflated_monitor(); 1974 if (m != nullptr) { 1975 assert(!m->has_owner(current), "must be"); 1976 current->clear_unlocked_inflated_monitor(); 1977 1978 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 1979 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 1980 // Some other thread acquired the lock (or the monitor was 1981 // deflated). Either way we are done. 1982 current->dec_held_monitor_count(); 1983 return; 1984 } 1985 } 1986 1987 // The object could become unlocked through a JNI call, which we have no other checks for. 1988 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 1989 if (obj->is_unlocked()) { 1990 if (CheckJNICalls) { 1991 fatal("Object has been unlocked by JNI"); 1992 } 1993 return; 1994 } 1995 ObjectSynchronizer::exit(obj, lock, current); 1996 } 1997 1998 // Handles the uncommon cases of monitor unlocking in compiled code 1999 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2000 assert(current == JavaThread::current(), "pre-condition"); 2001 SharedRuntime::monitor_exit_helper(obj, lock, current); 2002 JRT_END 2003 2004 // This is only called when CheckJNICalls is true, and only 2005 // for virtual thread termination. 2006 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2007 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2008 if (log_is_enabled(Debug, jni)) { 2009 JavaThread* current = JavaThread::current(); 2010 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2011 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2012 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2013 ") exiting with Objects still locked by JNI MonitorEnter.", 2014 vthread_id, carrier_id); 2015 } 2016 JRT_END 2017 2018 #ifndef PRODUCT 2019 2020 void SharedRuntime::print_statistics() { 2021 ttyLocker ttyl; 2022 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2023 2024 SharedRuntime::print_ic_miss_histogram(); 2025 2026 // Dump the JRT_ENTRY counters 2027 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2028 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2029 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2030 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2031 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2032 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2033 2034 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2035 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2036 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2037 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2038 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2039 2040 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2041 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2042 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2043 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2044 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2045 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2046 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2047 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2048 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2049 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2050 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2051 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2052 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2053 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2054 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2055 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2056 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2057 2058 AdapterHandlerLibrary::print_statistics(); 2059 2060 if (xtty != nullptr) xtty->tail("statistics"); 2061 } 2062 2063 inline double percent(int64_t x, int64_t y) { 2064 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2065 } 2066 2067 class MethodArityHistogram { 2068 public: 2069 enum { MAX_ARITY = 256 }; 2070 private: 2071 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2072 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2073 static uint64_t _total_compiled_calls; 2074 static uint64_t _max_compiled_calls_per_method; 2075 static int _max_arity; // max. arity seen 2076 static int _max_size; // max. arg size seen 2077 2078 static void add_method_to_histogram(nmethod* nm) { 2079 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2080 if (method != nullptr) { 2081 ArgumentCount args(method->signature()); 2082 int arity = args.size() + (method->is_static() ? 0 : 1); 2083 int argsize = method->size_of_parameters(); 2084 arity = MIN2(arity, MAX_ARITY-1); 2085 argsize = MIN2(argsize, MAX_ARITY-1); 2086 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2087 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2088 _total_compiled_calls += count; 2089 _arity_histogram[arity] += count; 2090 _size_histogram[argsize] += count; 2091 _max_arity = MAX2(_max_arity, arity); 2092 _max_size = MAX2(_max_size, argsize); 2093 } 2094 } 2095 2096 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2097 const int N = MIN2(9, n); 2098 double sum = 0; 2099 double weighted_sum = 0; 2100 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2101 if (sum >= 1) { // prevent divide by zero or divide overflow 2102 double rest = sum; 2103 double percent = sum / 100; 2104 for (int i = 0; i <= N; i++) { 2105 rest -= (double)histo[i]; 2106 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2107 } 2108 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2109 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2110 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2111 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2112 } else { 2113 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2114 } 2115 } 2116 2117 void print_histogram() { 2118 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2119 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2120 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2121 print_histogram_helper(_max_size, _size_histogram, "size"); 2122 tty->cr(); 2123 } 2124 2125 public: 2126 MethodArityHistogram() { 2127 // Take the Compile_lock to protect against changes in the CodeBlob structures 2128 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2129 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2130 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2131 _max_arity = _max_size = 0; 2132 _total_compiled_calls = 0; 2133 _max_compiled_calls_per_method = 0; 2134 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2135 CodeCache::nmethods_do(add_method_to_histogram); 2136 print_histogram(); 2137 } 2138 }; 2139 2140 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2141 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2142 uint64_t MethodArityHistogram::_total_compiled_calls; 2143 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2144 int MethodArityHistogram::_max_arity; 2145 int MethodArityHistogram::_max_size; 2146 2147 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2148 tty->print_cr("Calls from compiled code:"); 2149 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2150 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2151 int64_t mono_i = _nof_interface_calls; 2152 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2153 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2154 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2155 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2156 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2157 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2158 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2159 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2160 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2161 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2162 tty->cr(); 2163 tty->print_cr("Note 1: counter updates are not MT-safe."); 2164 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2165 tty->print_cr(" %% in nested categories are relative to their category"); 2166 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2167 tty->cr(); 2168 2169 MethodArityHistogram h; 2170 } 2171 #endif 2172 2173 #ifndef PRODUCT 2174 static int _lookups; // number of calls to lookup 2175 static int _equals; // number of buckets checked with matching hash 2176 static int _archived_hits; // number of successful lookups in archived table 2177 static int _runtime_hits; // number of successful lookups in runtime table 2178 static int _compact; // number of equals calls with compact signature 2179 #endif 2180 2181 // A simple wrapper class around the calling convention information 2182 // that allows sharing of adapters for the same calling convention. 2183 class AdapterFingerPrint : public MetaspaceObj { 2184 private: 2185 enum { 2186 _basic_type_bits = 4, 2187 _basic_type_mask = right_n_bits(_basic_type_bits), 2188 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2189 _compact_int_count = 3 2190 }; 2191 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2192 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2193 2194 int _length; 2195 int _value[_compact_int_count]; 2196 2197 // Private construtor. Use allocate() to get an instance. 2198 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2199 // Pack the BasicTypes with 8 per int 2200 _length = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2201 int sig_index = 0; 2202 for (int index = 0; index < _length; index++) { 2203 int value = 0; 2204 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2205 int bt = adapter_encoding(sig_bt[sig_index++]); 2206 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2207 value = (value << _basic_type_bits) | bt; 2208 } 2209 _value[index] = value; 2210 } 2211 } 2212 2213 // Call deallocate instead 2214 ~AdapterFingerPrint() { 2215 FreeHeap(this); 2216 } 2217 2218 // Remap BasicTypes that are handled equivalently by the adapters. 2219 // These are correct for the current system but someday it might be 2220 // necessary to make this mapping platform dependent. 2221 static int adapter_encoding(BasicType in) { 2222 switch (in) { 2223 case T_BOOLEAN: 2224 case T_BYTE: 2225 case T_SHORT: 2226 case T_CHAR: 2227 // There are all promoted to T_INT in the calling convention 2228 return T_INT; 2229 2230 case T_OBJECT: 2231 case T_ARRAY: 2232 // In other words, we assume that any register good enough for 2233 // an int or long is good enough for a managed pointer. 2234 #ifdef _LP64 2235 return T_LONG; 2236 #else 2237 return T_INT; 2238 #endif 2239 2240 case T_INT: 2241 case T_LONG: 2242 case T_FLOAT: 2243 case T_DOUBLE: 2244 case T_VOID: 2245 return in; 2246 2247 default: 2248 ShouldNotReachHere(); 2249 return T_CONFLICT; 2250 } 2251 } 2252 2253 void* operator new(size_t size, size_t fp_size) throw() { 2254 assert(fp_size >= size, "sanity check"); 2255 void* p = AllocateHeap(fp_size, mtCode); 2256 memset(p, 0, fp_size); 2257 return p; 2258 } 2259 2260 template<typename Function> 2261 void iterate_args(Function function) { 2262 for (int i = 0; i < length(); i++) { 2263 unsigned val = (unsigned)value(i); 2264 // args are packed so that first/lower arguments are in the highest 2265 // bits of each int value, so iterate from highest to the lowest 2266 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2267 unsigned v = (val >> j) & _basic_type_mask; 2268 if (v == 0) { 2269 continue; 2270 } 2271 function(v); 2272 } 2273 } 2274 } 2275 2276 public: 2277 static int allocation_size(int total_args_passed, BasicType* sig_bt) { 2278 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2279 return sizeof(AdapterFingerPrint) + (len > _compact_int_count ? (len - _compact_int_count) * sizeof(int) : 0); 2280 } 2281 2282 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) { 2283 int size_in_bytes = allocation_size(total_args_passed, sig_bt); 2284 return new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt); 2285 } 2286 2287 static void deallocate(AdapterFingerPrint* fp) { 2288 fp->~AdapterFingerPrint(); 2289 } 2290 2291 int value(int index) { 2292 return _value[index]; 2293 } 2294 2295 int length() { 2296 if (_length < 0) return -_length; 2297 return _length; 2298 } 2299 2300 bool is_compact() { 2301 return _length <= _compact_int_count; 2302 } 2303 2304 unsigned int compute_hash() { 2305 int hash = 0; 2306 for (int i = 0; i < length(); i++) { 2307 int v = value(i); 2308 //Add arithmetic operation to the hash, like +3 to improve hashing 2309 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2310 } 2311 return (unsigned int)hash; 2312 } 2313 2314 const char* as_string() { 2315 stringStream st; 2316 st.print("0x"); 2317 for (int i = 0; i < length(); i++) { 2318 st.print("%x", value(i)); 2319 } 2320 return st.as_string(); 2321 } 2322 2323 const char* as_basic_args_string() { 2324 stringStream st; 2325 bool long_prev = false; 2326 iterate_args([&] (int arg) { 2327 if (long_prev) { 2328 long_prev = false; 2329 if (arg == T_VOID) { 2330 st.print("J"); 2331 } else { 2332 st.print("L"); 2333 } 2334 } 2335 switch (arg) { 2336 case T_INT: st.print("I"); break; 2337 case T_LONG: long_prev = true; break; 2338 case T_FLOAT: st.print("F"); break; 2339 case T_DOUBLE: st.print("D"); break; 2340 case T_VOID: break; 2341 default: ShouldNotReachHere(); 2342 } 2343 }); 2344 if (long_prev) { 2345 st.print("L"); 2346 } 2347 return st.as_string(); 2348 } 2349 2350 BasicType* as_basic_type(int& nargs) { 2351 nargs = 0; 2352 GrowableArray<BasicType> btarray; 2353 bool long_prev = false; 2354 2355 iterate_args([&] (int arg) { 2356 if (long_prev) { 2357 long_prev = false; 2358 if (arg == T_VOID) { 2359 btarray.append(T_LONG); 2360 } else { 2361 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter 2362 } 2363 } 2364 switch (arg) { 2365 case T_INT: // fallthrough 2366 case T_FLOAT: // fallthrough 2367 case T_DOUBLE: 2368 case T_VOID: 2369 btarray.append((BasicType)arg); 2370 break; 2371 case T_LONG: 2372 long_prev = true; 2373 break; 2374 default: ShouldNotReachHere(); 2375 } 2376 }); 2377 2378 if (long_prev) { 2379 btarray.append(T_OBJECT); 2380 } 2381 2382 nargs = btarray.length(); 2383 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs); 2384 int index = 0; 2385 GrowableArrayIterator<BasicType> iter = btarray.begin(); 2386 while (iter != btarray.end()) { 2387 sig_bt[index++] = *iter; 2388 ++iter; 2389 } 2390 assert(index == btarray.length(), "sanity check"); 2391 #ifdef ASSERT 2392 { 2393 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt); 2394 assert(this->equals(compare_fp), "sanity check"); 2395 AdapterFingerPrint::deallocate(compare_fp); 2396 } 2397 #endif 2398 return sig_bt; 2399 } 2400 2401 bool equals(AdapterFingerPrint* other) { 2402 if (other->_length != _length) { 2403 return false; 2404 } else { 2405 for (int i = 0; i < _length; i++) { 2406 if (_value[i] != other->_value[i]) { 2407 return false; 2408 } 2409 } 2410 } 2411 return true; 2412 } 2413 2414 // methods required by virtue of being a MetaspaceObj 2415 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2416 int size() const { return (int)heap_word_size(sizeof(AdapterFingerPrint) + (_length > _compact_int_count ? (_length - _compact_int_count) * sizeof(int) : 0)); } 2417 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2418 2419 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2420 NOT_PRODUCT(_equals++); 2421 return fp1->equals(fp2); 2422 } 2423 2424 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2425 return fp->compute_hash(); 2426 } 2427 }; 2428 2429 #if INCLUDE_CDS 2430 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2431 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2432 } 2433 2434 class ArchivedAdapterTable : public OffsetCompactHashtable< 2435 AdapterFingerPrint*, 2436 AdapterHandlerEntry*, 2437 adapter_fp_equals_compact_hashtable_entry> {}; 2438 #endif // INCLUDE_CDS 2439 2440 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2441 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2442 AnyObj::C_HEAP, mtCode, 2443 AdapterFingerPrint::compute_hash, 2444 AdapterFingerPrint::equals>; 2445 static AdapterHandlerTable* _adapter_handler_table; 2446 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2447 2448 // Find a entry with the same fingerprint if it exists 2449 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) { 2450 NOT_PRODUCT(_lookups++); 2451 assert_lock_strong(AdapterHandlerLibrary_lock); 2452 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2453 AdapterHandlerEntry* entry = nullptr; 2454 #if INCLUDE_CDS 2455 // if we are building the archive then the archived adapter table is 2456 // not valid and we need to use the ones added to the runtime table 2457 if (!AOTCodeCache::is_dumping_adapters()) { 2458 // Search archived table first. It is read-only table so can be searched without lock 2459 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2460 if (entry != nullptr) { 2461 #ifndef PRODUCT 2462 if (fp->is_compact()) { 2463 _compact++; 2464 } 2465 _archived_hits++; 2466 #endif 2467 } 2468 } 2469 #endif // INCLUDE_CDS 2470 if (entry == nullptr) { 2471 assert_lock_strong(AdapterHandlerLibrary_lock); 2472 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2473 if (entry_p != nullptr) { 2474 entry = *entry_p; 2475 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2476 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2477 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2478 #ifndef PRODUCT 2479 if (fp->is_compact()) _compact++; 2480 _runtime_hits++; 2481 #endif 2482 } 2483 } 2484 AdapterFingerPrint::deallocate(fp); 2485 return entry; 2486 } 2487 2488 #ifndef PRODUCT 2489 static void print_table_statistics() { 2490 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2491 return sizeof(*key) + sizeof(*a); 2492 }; 2493 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2494 ts.print(tty, "AdapterHandlerTable"); 2495 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2496 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2497 int total_hits = _archived_hits + _runtime_hits; 2498 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d) compact %d", 2499 _lookups, _equals, total_hits, _archived_hits, _runtime_hits, _compact); 2500 } 2501 #endif 2502 2503 // --------------------------------------------------------------------------- 2504 // Implementation of AdapterHandlerLibrary 2505 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2506 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2507 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2508 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2509 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2510 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2511 #if INCLUDE_CDS 2512 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2513 #endif // INCLUDE_CDS 2514 static const int AdapterHandlerLibrary_size = 16*K; 2515 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2516 2517 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2518 assert(_buffer != nullptr, "should be initialized"); 2519 return _buffer; 2520 } 2521 2522 static void post_adapter_creation(const AdapterBlob* new_adapter, 2523 const AdapterHandlerEntry* entry) { 2524 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2525 char blob_id[256]; 2526 jio_snprintf(blob_id, 2527 sizeof(blob_id), 2528 "%s(%s)", 2529 new_adapter->name(), 2530 entry->fingerprint()->as_string()); 2531 if (Forte::is_enabled()) { 2532 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2533 } 2534 2535 if (JvmtiExport::should_post_dynamic_code_generated()) { 2536 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2537 } 2538 } 2539 } 2540 2541 void AdapterHandlerLibrary::create_abstract_method_handler() { 2542 assert_lock_strong(AdapterHandlerLibrary_lock); 2543 // Create a special handler for abstract methods. Abstract methods 2544 // are never compiled so an i2c entry is somewhat meaningless, but 2545 // throw AbstractMethodError just in case. 2546 // Pass wrong_method_abstract for the c2i transitions to return 2547 // AbstractMethodError for invalid invocations. 2548 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2549 _abstract_method_handler = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(0, nullptr)); 2550 _abstract_method_handler->set_entry_points(SharedRuntime::throw_AbstractMethodError_entry(), 2551 wrong_method_abstract, 2552 wrong_method_abstract, 2553 nullptr); 2554 } 2555 2556 void AdapterHandlerLibrary::initialize() { 2557 { 2558 ResourceMark rm; 2559 MutexLocker mu(AdapterHandlerLibrary_lock); 2560 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2561 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2562 create_abstract_method_handler(); 2563 } 2564 2565 #if INCLUDE_CDS 2566 // Link adapters in AOT Cache to their code in AOT Code Cache 2567 if (!_aot_adapter_handler_table.empty()) { 2568 link_aot_adapters(); 2569 lookup_simple_adapters(); 2570 return; 2571 } 2572 #endif // INCLUDE_CDS 2573 2574 ResourceMark rm; 2575 AdapterBlob* no_arg_blob = nullptr; 2576 AdapterBlob* int_arg_blob = nullptr; 2577 AdapterBlob* obj_arg_blob = nullptr; 2578 AdapterBlob* obj_int_arg_blob = nullptr; 2579 AdapterBlob* obj_obj_arg_blob = nullptr; 2580 { 2581 MutexLocker mu(AdapterHandlerLibrary_lock); 2582 2583 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr); 2584 2585 BasicType obj_args[] = { T_OBJECT }; 2586 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args); 2587 2588 BasicType int_args[] = { T_INT }; 2589 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args); 2590 2591 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2592 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args); 2593 2594 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2595 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args); 2596 2597 assert(no_arg_blob != nullptr && 2598 obj_arg_blob != nullptr && 2599 int_arg_blob != nullptr && 2600 obj_int_arg_blob != nullptr && 2601 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2602 } 2603 2604 // Outside of the lock 2605 post_adapter_creation(no_arg_blob, _no_arg_handler); 2606 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2607 post_adapter_creation(int_arg_blob, _int_arg_handler); 2608 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2609 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2610 } 2611 2612 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2613 return AdapterHandlerEntry::allocate(fingerprint); 2614 } 2615 2616 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2617 if (method->is_abstract()) { 2618 return _abstract_method_handler; 2619 } 2620 int total_args_passed = method->size_of_parameters(); // All args on stack 2621 if (total_args_passed == 0) { 2622 return _no_arg_handler; 2623 } else if (total_args_passed == 1) { 2624 if (!method->is_static()) { 2625 return _obj_arg_handler; 2626 } 2627 switch (method->signature()->char_at(1)) { 2628 case JVM_SIGNATURE_CLASS: 2629 case JVM_SIGNATURE_ARRAY: 2630 return _obj_arg_handler; 2631 case JVM_SIGNATURE_INT: 2632 case JVM_SIGNATURE_BOOLEAN: 2633 case JVM_SIGNATURE_CHAR: 2634 case JVM_SIGNATURE_BYTE: 2635 case JVM_SIGNATURE_SHORT: 2636 return _int_arg_handler; 2637 } 2638 } else if (total_args_passed == 2 && 2639 !method->is_static()) { 2640 switch (method->signature()->char_at(1)) { 2641 case JVM_SIGNATURE_CLASS: 2642 case JVM_SIGNATURE_ARRAY: 2643 return _obj_obj_arg_handler; 2644 case JVM_SIGNATURE_INT: 2645 case JVM_SIGNATURE_BOOLEAN: 2646 case JVM_SIGNATURE_CHAR: 2647 case JVM_SIGNATURE_BYTE: 2648 case JVM_SIGNATURE_SHORT: 2649 return _obj_int_arg_handler; 2650 } 2651 } 2652 return nullptr; 2653 } 2654 2655 class AdapterSignatureIterator : public SignatureIterator { 2656 private: 2657 BasicType stack_sig_bt[16]; 2658 BasicType* sig_bt; 2659 int index; 2660 2661 public: 2662 AdapterSignatureIterator(Symbol* signature, 2663 fingerprint_t fingerprint, 2664 bool is_static, 2665 int total_args_passed) : 2666 SignatureIterator(signature, fingerprint), 2667 index(0) 2668 { 2669 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2670 if (!is_static) { // Pass in receiver first 2671 sig_bt[index++] = T_OBJECT; 2672 } 2673 do_parameters_on(this); 2674 } 2675 2676 BasicType* basic_types() { 2677 return sig_bt; 2678 } 2679 2680 #ifdef ASSERT 2681 int slots() { 2682 return index; 2683 } 2684 #endif 2685 2686 private: 2687 2688 friend class SignatureIterator; // so do_parameters_on can call do_type 2689 void do_type(BasicType type) { 2690 sig_bt[index++] = type; 2691 if (type == T_LONG || type == T_DOUBLE) { 2692 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2693 } 2694 } 2695 }; 2696 2697 2698 const char* AdapterHandlerEntry::_entry_names[] = { 2699 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 2700 }; 2701 2702 #ifdef ASSERT 2703 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) { 2704 AdapterBlob* comparison_blob = nullptr; 2705 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, true); 2706 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2707 assert(comparison_entry->compare_code(cached_entry), "code must match"); 2708 // Release the one just created 2709 AdapterHandlerEntry::deallocate(comparison_entry); 2710 } 2711 #endif /* ASSERT*/ 2712 2713 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2714 // Use customized signature handler. Need to lock around updates to 2715 // the _adapter_handler_table (it is not safe for concurrent readers 2716 // and a single writer: this could be fixed if it becomes a 2717 // problem). 2718 2719 // Fast-path for trivial adapters 2720 AdapterHandlerEntry* entry = get_simple_adapter(method); 2721 if (entry != nullptr) { 2722 return entry; 2723 } 2724 2725 ResourceMark rm; 2726 AdapterBlob* adapter_blob = nullptr; 2727 2728 // Fill in the signature array, for the calling-convention call. 2729 int total_args_passed = method->size_of_parameters(); // All args on stack 2730 2731 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2732 method->is_static(), total_args_passed); 2733 assert(si.slots() == total_args_passed, ""); 2734 BasicType* sig_bt = si.basic_types(); 2735 { 2736 MutexLocker mu(AdapterHandlerLibrary_lock); 2737 2738 // Lookup method signature's fingerprint 2739 entry = lookup(total_args_passed, sig_bt); 2740 2741 if (entry != nullptr) { 2742 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 2743 #ifdef ASSERT 2744 if (!entry->is_shared() && VerifyAdapterSharing) { 2745 verify_adapter_sharing(total_args_passed, sig_bt, entry); 2746 } 2747 #endif 2748 } else { 2749 entry = create_adapter(adapter_blob, total_args_passed, sig_bt); 2750 } 2751 } 2752 2753 // Outside of the lock 2754 if (adapter_blob != nullptr) { 2755 post_adapter_creation(adapter_blob, entry); 2756 } 2757 return entry; 2758 } 2759 2760 AdapterBlob* AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 2761 ResourceMark rm; 2762 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2763 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2764 int offsets[AdapterHandlerEntry::ENTRIES_COUNT]; 2765 2766 AdapterBlob* adapter_blob = nullptr; 2767 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, offsets); 2768 if (blob != nullptr) { 2769 adapter_blob = blob->as_adapter_blob(); 2770 address i2c_entry = adapter_blob->content_begin(); 2771 assert(offsets[0] == 0, "sanity check"); 2772 handler->set_entry_points(i2c_entry, i2c_entry + offsets[1], i2c_entry + offsets[2], i2c_entry + offsets[3]); 2773 } 2774 return adapter_blob; 2775 } 2776 2777 #ifndef PRODUCT 2778 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) { 2779 ttyLocker ttyl; 2780 ResourceMark rm; 2781 int insts_size = adapter_blob->code_size(); 2782 handler->print_adapter_on(tty); 2783 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 2784 handler->fingerprint()->as_basic_args_string(), 2785 handler->fingerprint()->as_string(), insts_size); 2786 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 2787 if (Verbose || PrintStubCode) { 2788 address first_pc = handler->base_address(); 2789 if (first_pc != nullptr) { 2790 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 2791 st->cr(); 2792 } 2793 } 2794 } 2795 #endif // PRODUCT 2796 2797 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob, 2798 AdapterHandlerEntry* handler, 2799 int total_args_passed, 2800 BasicType* sig_bt, 2801 bool is_transient) { 2802 if (log_is_enabled(Info, perf, class, link)) { 2803 ClassLoader::perf_method_adapters_count()->inc(); 2804 } 2805 2806 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2807 CodeBuffer buffer(buf); 2808 short buffer_locs[20]; 2809 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2810 sizeof(buffer_locs)/sizeof(relocInfo)); 2811 MacroAssembler masm(&buffer); 2812 VMRegPair stack_regs[16]; 2813 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2814 2815 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2816 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2817 SharedRuntime::generate_i2c2i_adapters(&masm, 2818 total_args_passed, 2819 comp_args_on_stack, 2820 sig_bt, 2821 regs, 2822 handler); 2823 #ifdef ASSERT 2824 if (VerifyAdapterSharing) { 2825 handler->save_code(buf->code_begin(), buffer.insts_size()); 2826 if (is_transient) { 2827 return true; 2828 } 2829 } 2830 #endif 2831 2832 adapter_blob = AdapterBlob::create(&buffer); 2833 if (adapter_blob == nullptr) { 2834 // CodeCache is full, disable compilation 2835 // Ought to log this but compile log is only per compile thread 2836 // and we're some non descript Java thread. 2837 return false; 2838 } 2839 if (!is_transient && AOTCodeCache::is_dumping_adapters()) { 2840 // try to save generated code 2841 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2842 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2843 int entry_offset[AdapterHandlerEntry::ENTRIES_COUNT]; 2844 assert(AdapterHandlerEntry::ENTRIES_COUNT == 4, "sanity"); 2845 address i2c_entry = handler->get_i2c_entry(); 2846 entry_offset[0] = 0; // i2c_entry offset 2847 entry_offset[1] = handler->get_c2i_entry() - i2c_entry; 2848 entry_offset[2] = handler->get_c2i_unverified_entry() - i2c_entry; 2849 entry_offset[3] = handler->get_c2i_no_clinit_check_entry() - i2c_entry; 2850 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, entry_offset); 2851 assert(success || !AOTCodeCache::is_dumping_adapters(), "caching of adapter must be disabled"); 2852 } 2853 handler->relocate(adapter_blob->content_begin()); 2854 #ifndef PRODUCT 2855 // debugging support 2856 if (PrintAdapterHandlers || PrintStubCode) { 2857 print_adapter_handler_info(tty, handler, adapter_blob); 2858 } 2859 #endif 2860 return true; 2861 } 2862 2863 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob, 2864 int total_args_passed, 2865 BasicType* sig_bt, 2866 bool is_transient) { 2867 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2868 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 2869 if (!generate_adapter_code(adapter_blob, handler, total_args_passed, sig_bt, is_transient)) { 2870 AdapterHandlerEntry::deallocate(handler); 2871 return nullptr; 2872 } 2873 if (!is_transient) { 2874 assert_lock_strong(AdapterHandlerLibrary_lock); 2875 _adapter_handler_table->put(fp, handler); 2876 } 2877 return handler; 2878 } 2879 2880 #if INCLUDE_CDS 2881 void AdapterHandlerEntry::remove_unshareable_info() { 2882 #ifdef ASSERT 2883 _saved_code = nullptr; 2884 _saved_code_length = 0; 2885 #endif // ASSERT 2886 set_entry_points(nullptr, nullptr, nullptr, nullptr, false); 2887 } 2888 2889 class CopyAdapterTableToArchive : StackObj { 2890 private: 2891 CompactHashtableWriter* _writer; 2892 ArchiveBuilder* _builder; 2893 public: 2894 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 2895 _builder(ArchiveBuilder::current()) 2896 {} 2897 2898 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 2899 LogStreamHandle(Trace, cds) lsh; 2900 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 2901 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 2902 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 2903 assert(buffered_fp != nullptr,"sanity check"); 2904 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 2905 assert(buffered_entry != nullptr,"sanity check"); 2906 2907 uint hash = fp->compute_hash(); 2908 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 2909 _writer->add(hash, delta); 2910 if (lsh.is_enabled()) { 2911 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 2912 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 2913 log_trace(cds)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 2914 } 2915 } else { 2916 if (lsh.is_enabled()) { 2917 log_trace(cds)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 2918 } 2919 } 2920 return true; 2921 } 2922 }; 2923 2924 void AdapterHandlerLibrary::dump_aot_adapter_table() { 2925 CompactHashtableStats stats; 2926 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 2927 CopyAdapterTableToArchive copy(&writer); 2928 _adapter_handler_table->iterate(©); 2929 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 2930 } 2931 2932 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 2933 _aot_adapter_handler_table.serialize_header(soc); 2934 } 2935 2936 AdapterBlob* AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 2937 #ifdef ASSERT 2938 if (TestAOTAdapterLinkFailure) { 2939 return nullptr; 2940 } 2941 #endif 2942 AdapterBlob* blob = lookup_aot_cache(handler); 2943 #ifndef PRODUCT 2944 // debugging support 2945 if ((blob != nullptr) && (PrintAdapterHandlers || PrintStubCode)) { 2946 print_adapter_handler_info(tty, handler, blob); 2947 } 2948 #endif 2949 return blob; 2950 } 2951 2952 // This method is used during production run to link archived adapters (stored in AOT Cache) 2953 // to their code in AOT Code Cache 2954 void AdapterHandlerEntry::link() { 2955 AdapterBlob* adapter_blob = nullptr; 2956 ResourceMark rm; 2957 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 2958 bool generate_code = false; 2959 // Generate code only if AOTCodeCache is not available, or 2960 // caching adapters is disabled, or we fail to link 2961 // the AdapterHandlerEntry to its code in the AOTCodeCache 2962 if (AOTCodeCache::is_using_adapters()) { 2963 adapter_blob = AdapterHandlerLibrary::link_aot_adapter_handler(this); 2964 if (adapter_blob == nullptr) { 2965 log_warning(cds)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 2966 generate_code = true; 2967 } 2968 } else { 2969 generate_code = true; 2970 } 2971 if (generate_code) { 2972 int nargs; 2973 BasicType* bt = _fingerprint->as_basic_type(nargs); 2974 if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, nargs, bt, /* is_transient */ false)) { 2975 // Don't throw exceptions during VM initialization because java.lang.* classes 2976 // might not have been initialized, causing problems when constructing the 2977 // Java exception object. 2978 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 2979 } 2980 } 2981 // Outside of the lock 2982 if (adapter_blob != nullptr) { 2983 post_adapter_creation(adapter_blob, this); 2984 } 2985 assert(_linked, "AdapterHandlerEntry must now be linked"); 2986 } 2987 2988 void AdapterHandlerLibrary::link_aot_adapters() { 2989 _aot_adapter_handler_table.iterate([](AdapterHandlerEntry* entry) { 2990 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 2991 entry->link(); 2992 }); 2993 } 2994 2995 // This method is called during production run to lookup simple adapters 2996 // in the archived adapter handler table 2997 void AdapterHandlerLibrary::lookup_simple_adapters() { 2998 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 2999 3000 MutexLocker mu(AdapterHandlerLibrary_lock); 3001 _no_arg_handler = lookup(0, nullptr); 3002 3003 BasicType obj_args[] = { T_OBJECT }; 3004 _obj_arg_handler = lookup(1, obj_args); 3005 3006 BasicType int_args[] = { T_INT }; 3007 _int_arg_handler = lookup(1, int_args); 3008 3009 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 3010 _obj_int_arg_handler = lookup(2, obj_int_args); 3011 3012 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 3013 _obj_obj_arg_handler = lookup(2, obj_obj_args); 3014 3015 assert(_no_arg_handler != nullptr && 3016 _obj_arg_handler != nullptr && 3017 _int_arg_handler != nullptr && 3018 _obj_int_arg_handler != nullptr && 3019 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3020 assert(_no_arg_handler->is_linked() && 3021 _obj_arg_handler->is_linked() && 3022 _int_arg_handler->is_linked() && 3023 _obj_int_arg_handler->is_linked() && 3024 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3025 } 3026 #endif // INCLUDE_CDS 3027 3028 address AdapterHandlerEntry::base_address() { 3029 address base = _i2c_entry; 3030 if (base == nullptr) base = _c2i_entry; 3031 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3032 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3033 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3034 return base; 3035 } 3036 3037 void AdapterHandlerEntry::relocate(address new_base) { 3038 address old_base = base_address(); 3039 assert(old_base != nullptr, ""); 3040 ptrdiff_t delta = new_base - old_base; 3041 if (_i2c_entry != nullptr) 3042 _i2c_entry += delta; 3043 if (_c2i_entry != nullptr) 3044 _c2i_entry += delta; 3045 if (_c2i_unverified_entry != nullptr) 3046 _c2i_unverified_entry += delta; 3047 if (_c2i_no_clinit_check_entry != nullptr) 3048 _c2i_no_clinit_check_entry += delta; 3049 assert(base_address() == new_base, ""); 3050 } 3051 3052 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3053 LogStreamHandle(Trace, cds) lsh; 3054 if (lsh.is_enabled()) { 3055 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3056 lsh.cr(); 3057 } 3058 it->push(&_fingerprint); 3059 } 3060 3061 AdapterHandlerEntry::~AdapterHandlerEntry() { 3062 if (_fingerprint != nullptr) { 3063 AdapterFingerPrint::deallocate(_fingerprint); 3064 _fingerprint = nullptr; 3065 } 3066 #ifdef ASSERT 3067 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3068 #endif 3069 FreeHeap(this); 3070 } 3071 3072 3073 #ifdef ASSERT 3074 // Capture the code before relocation so that it can be compared 3075 // against other versions. If the code is captured after relocation 3076 // then relative instructions won't be equivalent. 3077 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3078 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3079 _saved_code_length = length; 3080 memcpy(_saved_code, buffer, length); 3081 } 3082 3083 3084 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3085 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3086 3087 if (other->_saved_code_length != _saved_code_length) { 3088 return false; 3089 } 3090 3091 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3092 } 3093 #endif 3094 3095 3096 /** 3097 * Create a native wrapper for this native method. The wrapper converts the 3098 * Java-compiled calling convention to the native convention, handles 3099 * arguments, and transitions to native. On return from the native we transition 3100 * back to java blocking if a safepoint is in progress. 3101 */ 3102 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3103 ResourceMark rm; 3104 nmethod* nm = nullptr; 3105 3106 // Check if memory should be freed before allocation 3107 CodeCache::gc_on_allocation(); 3108 3109 assert(method->is_native(), "must be native"); 3110 assert(method->is_special_native_intrinsic() || 3111 method->has_native_function(), "must have something valid to call!"); 3112 3113 { 3114 // Perform the work while holding the lock, but perform any printing outside the lock 3115 MutexLocker mu(AdapterHandlerLibrary_lock); 3116 // See if somebody beat us to it 3117 if (method->code() != nullptr) { 3118 return; 3119 } 3120 3121 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3122 assert(compile_id > 0, "Must generate native wrapper"); 3123 3124 3125 ResourceMark rm; 3126 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3127 if (buf != nullptr) { 3128 CodeBuffer buffer(buf); 3129 3130 if (method->is_continuation_enter_intrinsic()) { 3131 buffer.initialize_stubs_size(192); 3132 } 3133 3134 struct { double data[20]; } locs_buf; 3135 struct { double data[20]; } stubs_locs_buf; 3136 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3137 #if defined(AARCH64) || defined(PPC64) 3138 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3139 // in the constant pool to ensure ordering between the barrier and oops 3140 // accesses. For native_wrappers we need a constant. 3141 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3142 // static java call that is resolved in the runtime. 3143 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3144 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3145 } 3146 #endif 3147 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3148 MacroAssembler _masm(&buffer); 3149 3150 // Fill in the signature array, for the calling-convention call. 3151 const int total_args_passed = method->size_of_parameters(); 3152 3153 VMRegPair stack_regs[16]; 3154 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3155 3156 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3157 method->is_static(), total_args_passed); 3158 BasicType* sig_bt = si.basic_types(); 3159 assert(si.slots() == total_args_passed, ""); 3160 BasicType ret_type = si.return_type(); 3161 3162 // Now get the compiled-Java arguments layout. 3163 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3164 3165 // Generate the compiled-to-native wrapper code 3166 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3167 3168 if (nm != nullptr) { 3169 { 3170 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3171 if (nm->make_in_use()) { 3172 method->set_code(method, nm); 3173 } 3174 } 3175 3176 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3177 if (directive->PrintAssemblyOption) { 3178 nm->print_code(); 3179 } 3180 DirectivesStack::release(directive); 3181 } 3182 } 3183 } // Unlock AdapterHandlerLibrary_lock 3184 3185 3186 // Install the generated code. 3187 if (nm != nullptr) { 3188 const char *msg = method->is_static() ? "(static)" : ""; 3189 CompileTask::print_ul(nm, msg); 3190 if (PrintCompilation) { 3191 ttyLocker ttyl; 3192 CompileTask::print(tty, nm, msg); 3193 } 3194 nm->post_compiled_method_load_event(); 3195 } 3196 } 3197 3198 // ------------------------------------------------------------------------- 3199 // Java-Java calling convention 3200 // (what you use when Java calls Java) 3201 3202 //------------------------------name_for_receiver---------------------------------- 3203 // For a given signature, return the VMReg for parameter 0. 3204 VMReg SharedRuntime::name_for_receiver() { 3205 VMRegPair regs; 3206 BasicType sig_bt = T_OBJECT; 3207 (void) java_calling_convention(&sig_bt, ®s, 1); 3208 // Return argument 0 register. In the LP64 build pointers 3209 // take 2 registers, but the VM wants only the 'main' name. 3210 return regs.first(); 3211 } 3212 3213 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3214 // This method is returning a data structure allocating as a 3215 // ResourceObject, so do not put any ResourceMarks in here. 3216 3217 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3218 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3219 int cnt = 0; 3220 if (has_receiver) { 3221 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3222 } 3223 3224 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3225 BasicType type = ss.type(); 3226 sig_bt[cnt++] = type; 3227 if (is_double_word_type(type)) 3228 sig_bt[cnt++] = T_VOID; 3229 } 3230 3231 if (has_appendix) { 3232 sig_bt[cnt++] = T_OBJECT; 3233 } 3234 3235 assert(cnt < 256, "grow table size"); 3236 3237 int comp_args_on_stack; 3238 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3239 3240 // the calling convention doesn't count out_preserve_stack_slots so 3241 // we must add that in to get "true" stack offsets. 3242 3243 if (comp_args_on_stack) { 3244 for (int i = 0; i < cnt; i++) { 3245 VMReg reg1 = regs[i].first(); 3246 if (reg1->is_stack()) { 3247 // Yuck 3248 reg1 = reg1->bias(out_preserve_stack_slots()); 3249 } 3250 VMReg reg2 = regs[i].second(); 3251 if (reg2->is_stack()) { 3252 // Yuck 3253 reg2 = reg2->bias(out_preserve_stack_slots()); 3254 } 3255 regs[i].set_pair(reg2, reg1); 3256 } 3257 } 3258 3259 // results 3260 *arg_size = cnt; 3261 return regs; 3262 } 3263 3264 // OSR Migration Code 3265 // 3266 // This code is used convert interpreter frames into compiled frames. It is 3267 // called from very start of a compiled OSR nmethod. A temp array is 3268 // allocated to hold the interesting bits of the interpreter frame. All 3269 // active locks are inflated to allow them to move. The displaced headers and 3270 // active interpreter locals are copied into the temp buffer. Then we return 3271 // back to the compiled code. The compiled code then pops the current 3272 // interpreter frame off the stack and pushes a new compiled frame. Then it 3273 // copies the interpreter locals and displaced headers where it wants. 3274 // Finally it calls back to free the temp buffer. 3275 // 3276 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3277 3278 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3279 assert(current == JavaThread::current(), "pre-condition"); 3280 3281 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3282 // frame. The stack watermark code below ensures that the interpreted frame is processed 3283 // before it gets unwound. This is helpful as the size of the compiled frame could be 3284 // larger than the interpreted frame, which could result in the new frame not being 3285 // processed correctly. 3286 StackWatermarkSet::before_unwind(current); 3287 3288 // 3289 // This code is dependent on the memory layout of the interpreter local 3290 // array and the monitors. On all of our platforms the layout is identical 3291 // so this code is shared. If some platform lays the their arrays out 3292 // differently then this code could move to platform specific code or 3293 // the code here could be modified to copy items one at a time using 3294 // frame accessor methods and be platform independent. 3295 3296 frame fr = current->last_frame(); 3297 assert(fr.is_interpreted_frame(), ""); 3298 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3299 3300 // Figure out how many monitors are active. 3301 int active_monitor_count = 0; 3302 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3303 kptr < fr.interpreter_frame_monitor_begin(); 3304 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3305 if (kptr->obj() != nullptr) active_monitor_count++; 3306 } 3307 3308 // QQQ we could place number of active monitors in the array so that compiled code 3309 // could double check it. 3310 3311 Method* moop = fr.interpreter_frame_method(); 3312 int max_locals = moop->max_locals(); 3313 // Allocate temp buffer, 1 word per local & 2 per active monitor 3314 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3315 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3316 3317 // Copy the locals. Order is preserved so that loading of longs works. 3318 // Since there's no GC I can copy the oops blindly. 3319 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3320 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3321 (HeapWord*)&buf[0], 3322 max_locals); 3323 3324 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3325 int i = max_locals; 3326 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3327 kptr2 < fr.interpreter_frame_monitor_begin(); 3328 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3329 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3330 BasicLock *lock = kptr2->lock(); 3331 if (LockingMode == LM_LEGACY) { 3332 // Inflate so the object's header no longer refers to the BasicLock. 3333 if (lock->displaced_header().is_unlocked()) { 3334 // The object is locked and the resulting ObjectMonitor* will also be 3335 // locked so it can't be async deflated until ownership is dropped. 3336 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3337 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3338 } 3339 // Now the displaced header is free to move because the 3340 // object's header no longer refers to it. 3341 buf[i] = (intptr_t)lock->displaced_header().value(); 3342 } else if (UseObjectMonitorTable) { 3343 buf[i] = (intptr_t)lock->object_monitor_cache(); 3344 } 3345 #ifdef ASSERT 3346 else { 3347 buf[i] = badDispHeaderOSR; 3348 } 3349 #endif 3350 i++; 3351 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3352 } 3353 } 3354 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3355 3356 RegisterMap map(current, 3357 RegisterMap::UpdateMap::skip, 3358 RegisterMap::ProcessFrames::include, 3359 RegisterMap::WalkContinuation::skip); 3360 frame sender = fr.sender(&map); 3361 if (sender.is_interpreted_frame()) { 3362 current->push_cont_fastpath(sender.sp()); 3363 } 3364 3365 return buf; 3366 JRT_END 3367 3368 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3369 FREE_C_HEAP_ARRAY(intptr_t, buf); 3370 JRT_END 3371 3372 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3373 bool found = false; 3374 #if INCLUDE_CDS 3375 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3376 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); 3377 }; 3378 _aot_adapter_handler_table.iterate(findblob_archived_table); 3379 #endif // INCLUDE_CDS 3380 if (!found) { 3381 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3382 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3383 }; 3384 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3385 _adapter_handler_table->iterate(findblob_runtime_table); 3386 } 3387 return found; 3388 } 3389 3390 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) { 3391 return fingerprint->as_basic_args_string(); 3392 } 3393 3394 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) { 3395 unsigned int hash = fingerprint->compute_hash(); 3396 return hash; 3397 } 3398 3399 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3400 bool found = false; 3401 #if INCLUDE_CDS 3402 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3403 if (b == CodeCache::find_blob(handler->get_i2c_entry())) { 3404 found = true; 3405 st->print("Adapter for signature: "); 3406 handler->print_adapter_on(st); 3407 return true; 3408 } else { 3409 return false; // keep looking 3410 3411 } 3412 }; 3413 _aot_adapter_handler_table.iterate(findblob_archived_table); 3414 #endif // INCLUDE_CDS 3415 if (!found) { 3416 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3417 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3418 found = true; 3419 st->print("Adapter for signature: "); 3420 a->print_adapter_on(st); 3421 return true; 3422 } else { 3423 return false; // keep looking 3424 } 3425 }; 3426 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3427 _adapter_handler_table->iterate(findblob_runtime_table); 3428 } 3429 assert(found, "Should have found handler"); 3430 } 3431 3432 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3433 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3434 if (get_i2c_entry() != nullptr) { 3435 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3436 } 3437 if (get_c2i_entry() != nullptr) { 3438 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3439 } 3440 if (get_c2i_unverified_entry() != nullptr) { 3441 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3442 } 3443 if (get_c2i_no_clinit_check_entry() != nullptr) { 3444 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3445 } 3446 st->cr(); 3447 } 3448 3449 #ifndef PRODUCT 3450 3451 void AdapterHandlerLibrary::print_statistics() { 3452 print_table_statistics(); 3453 } 3454 3455 #endif /* PRODUCT */ 3456 3457 bool AdapterHandlerLibrary::is_abstract_method_adapter(AdapterHandlerEntry* entry) { 3458 if (entry == _abstract_method_handler) { 3459 return true; 3460 } 3461 return false; 3462 } 3463 3464 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3465 assert(current == JavaThread::current(), "pre-condition"); 3466 StackOverflow* overflow_state = current->stack_overflow_state(); 3467 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3468 overflow_state->set_reserved_stack_activation(current->stack_base()); 3469 JRT_END 3470 3471 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3472 ResourceMark rm(current); 3473 frame activation; 3474 nmethod* nm = nullptr; 3475 int count = 1; 3476 3477 assert(fr.is_java_frame(), "Must start on Java frame"); 3478 3479 RegisterMap map(JavaThread::current(), 3480 RegisterMap::UpdateMap::skip, 3481 RegisterMap::ProcessFrames::skip, 3482 RegisterMap::WalkContinuation::skip); // don't walk continuations 3483 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3484 if (!fr.is_java_frame()) { 3485 continue; 3486 } 3487 3488 Method* method = nullptr; 3489 bool found = false; 3490 if (fr.is_interpreted_frame()) { 3491 method = fr.interpreter_frame_method(); 3492 if (method != nullptr && method->has_reserved_stack_access()) { 3493 found = true; 3494 } 3495 } else { 3496 CodeBlob* cb = fr.cb(); 3497 if (cb != nullptr && cb->is_nmethod()) { 3498 nm = cb->as_nmethod(); 3499 method = nm->method(); 3500 // scope_desc_near() must be used, instead of scope_desc_at() because on 3501 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3502 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3503 method = sd->method(); 3504 if (method != nullptr && method->has_reserved_stack_access()) { 3505 found = true; 3506 } 3507 } 3508 } 3509 } 3510 if (found) { 3511 activation = fr; 3512 warning("Potentially dangerous stack overflow in " 3513 "ReservedStackAccess annotated method %s [%d]", 3514 method->name_and_sig_as_C_string(), count++); 3515 EventReservedStackActivation event; 3516 if (event.should_commit()) { 3517 event.set_method(method); 3518 event.commit(); 3519 } 3520 } 3521 } 3522 return activation; 3523 } 3524 3525 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3526 // After any safepoint, just before going back to compiled code, 3527 // we inform the GC that we will be doing initializing writes to 3528 // this object in the future without emitting card-marks, so 3529 // GC may take any compensating steps. 3530 3531 oop new_obj = current->vm_result_oop(); 3532 if (new_obj == nullptr) return; 3533 3534 BarrierSet *bs = BarrierSet::barrier_set(); 3535 bs->on_slowpath_allocation_exit(current, new_obj); 3536 }