1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveBuilder.hpp"
  26 #include "cds/archiveUtils.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/aotCodeCache.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/compiledIC.hpp"
  35 #include "code/nmethod.inline.hpp"
  36 #include "code/scopeDesc.hpp"
  37 #include "code/vtableStubs.hpp"
  38 #include "compiler/abstractCompiler.hpp"
  39 #include "compiler/compileBroker.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/interpreterRuntime.hpp"
  45 #include "jvm.h"
  46 #include "jfr/jfrEvents.hpp"
  47 #include "logging/log.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "metaprogramming/primitiveConversions.hpp"
  51 #include "oops/klass.hpp"
  52 #include "oops/method.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "prims/forte.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/methodHandles.hpp"
  59 #include "prims/nativeLookup.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/atomic.hpp"
  62 #include "runtime/basicLock.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/init.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/jniHandles.inline.hpp"
  70 #include "runtime/perfData.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/stackWatermarkSet.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/synchronizer.inline.hpp"
  75 #include "runtime/timerTrace.hpp"
  76 #include "runtime/vframe.inline.hpp"
  77 #include "runtime/vframeArray.hpp"
  78 #include "runtime/vm_version.hpp"
  79 #include "utilities/copy.hpp"
  80 #include "utilities/dtrace.hpp"
  81 #include "utilities/events.hpp"
  82 #include "utilities/globalDefinitions.hpp"
  83 #include "utilities/resourceHash.hpp"
  84 #include "utilities/macros.hpp"
  85 #include "utilities/xmlstream.hpp"
  86 #ifdef COMPILER1
  87 #include "c1/c1_Runtime1.hpp"
  88 #endif
  89 #if INCLUDE_JFR
  90 #include "jfr/jfr.inline.hpp"
  91 #endif
  92 
  93 // Shared runtime stub routines reside in their own unique blob with a
  94 // single entry point
  95 
  96 
  97 #define SHARED_STUB_FIELD_DEFINE(name, type) \
  98   type        SharedRuntime::BLOB_FIELD_NAME(name);
  99   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
 100 #undef SHARED_STUB_FIELD_DEFINE
 101 
 102 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 103 const char *SharedRuntime::_stub_names[] = {
 104   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 105 };
 106 
 107 //----------------------------generate_stubs-----------------------------------
 108 void SharedRuntime::generate_initial_stubs() {
 109   // Build this early so it's available for the interpreter.
 110   _throw_StackOverflowError_blob =
 111     generate_throw_exception(SharedStubId::throw_StackOverflowError_id,
 112                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 113 }
 114 
 115 void SharedRuntime::generate_stubs() {
 116   _wrong_method_blob =
 117     generate_resolve_blob(SharedStubId::wrong_method_id,
 118                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 119   _wrong_method_abstract_blob =
 120     generate_resolve_blob(SharedStubId::wrong_method_abstract_id,
 121                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 122   _ic_miss_blob =
 123     generate_resolve_blob(SharedStubId::ic_miss_id,
 124                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 125   _resolve_opt_virtual_call_blob =
 126     generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id,
 127                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 128   _resolve_virtual_call_blob =
 129     generate_resolve_blob(SharedStubId::resolve_virtual_call_id,
 130                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 131   _resolve_static_call_blob =
 132     generate_resolve_blob(SharedStubId::resolve_static_call_id,
 133                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 134 
 135   _throw_delayed_StackOverflowError_blob =
 136     generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id,
 137                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 138 
 139   _throw_AbstractMethodError_blob =
 140     generate_throw_exception(SharedStubId::throw_AbstractMethodError_id,
 141                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 142 
 143   _throw_IncompatibleClassChangeError_blob =
 144     generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id,
 145                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 146 
 147   _throw_NullPointerException_at_call_blob =
 148     generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id,
 149                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 150 
 151 #if COMPILER2_OR_JVMCI
 152   // Vectors are generated only by C2 and JVMCI.
 153   bool support_wide = is_wide_vector(MaxVectorSize);
 154   if (support_wide) {
 155     _polling_page_vectors_safepoint_handler_blob =
 156       generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id,
 157                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 158   }
 159 #endif // COMPILER2_OR_JVMCI
 160   _polling_page_safepoint_handler_blob =
 161     generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id,
 162                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 163   _polling_page_return_handler_blob =
 164     generate_handler_blob(SharedStubId::polling_page_return_handler_id,
 165                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 166 
 167   generate_deopt_blob();
 168 }
 169 
 170 void SharedRuntime::init_adapter_library() {
 171   AdapterHandlerLibrary::initialize();
 172 }
 173 
 174 #if INCLUDE_JFR
 175 //------------------------------generate jfr runtime stubs ------
 176 void SharedRuntime::generate_jfr_stubs() {
 177   ResourceMark rm;
 178   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 179   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 180 
 181   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 182   _jfr_return_lease_blob = generate_jfr_return_lease();
 183 }
 184 
 185 #endif // INCLUDE_JFR
 186 
 187 #include <math.h>
 188 
 189 // Implementation of SharedRuntime
 190 
 191 #ifndef PRODUCT
 192 // For statistics
 193 uint SharedRuntime::_ic_miss_ctr = 0;
 194 uint SharedRuntime::_wrong_method_ctr = 0;
 195 uint SharedRuntime::_resolve_static_ctr = 0;
 196 uint SharedRuntime::_resolve_virtual_ctr = 0;
 197 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
 198 uint SharedRuntime::_implicit_null_throws = 0;
 199 uint SharedRuntime::_implicit_div0_throws = 0;
 200 
 201 int64_t SharedRuntime::_nof_normal_calls = 0;
 202 int64_t SharedRuntime::_nof_inlined_calls = 0;
 203 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 204 int64_t SharedRuntime::_nof_static_calls = 0;
 205 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 206 int64_t SharedRuntime::_nof_interface_calls = 0;
 207 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 208 
 209 uint SharedRuntime::_new_instance_ctr=0;
 210 uint SharedRuntime::_new_array_ctr=0;
 211 uint SharedRuntime::_multi2_ctr=0;
 212 uint SharedRuntime::_multi3_ctr=0;
 213 uint SharedRuntime::_multi4_ctr=0;
 214 uint SharedRuntime::_multi5_ctr=0;
 215 uint SharedRuntime::_mon_enter_stub_ctr=0;
 216 uint SharedRuntime::_mon_exit_stub_ctr=0;
 217 uint SharedRuntime::_mon_enter_ctr=0;
 218 uint SharedRuntime::_mon_exit_ctr=0;
 219 uint SharedRuntime::_partial_subtype_ctr=0;
 220 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 221 uint SharedRuntime::_jshort_array_copy_ctr=0;
 222 uint SharedRuntime::_jint_array_copy_ctr=0;
 223 uint SharedRuntime::_jlong_array_copy_ctr=0;
 224 uint SharedRuntime::_oop_array_copy_ctr=0;
 225 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 226 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 227 uint SharedRuntime::_generic_array_copy_ctr=0;
 228 uint SharedRuntime::_slow_array_copy_ctr=0;
 229 uint SharedRuntime::_find_handler_ctr=0;
 230 uint SharedRuntime::_rethrow_ctr=0;
 231 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 232 
 233 int     SharedRuntime::_ICmiss_index                    = 0;
 234 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 235 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 236 
 237 
 238 void SharedRuntime::trace_ic_miss(address at) {
 239   for (int i = 0; i < _ICmiss_index; i++) {
 240     if (_ICmiss_at[i] == at) {
 241       _ICmiss_count[i]++;
 242       return;
 243     }
 244   }
 245   int index = _ICmiss_index++;
 246   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 247   _ICmiss_at[index] = at;
 248   _ICmiss_count[index] = 1;
 249 }
 250 
 251 void SharedRuntime::print_ic_miss_histogram() {
 252   if (ICMissHistogram) {
 253     tty->print_cr("IC Miss Histogram:");
 254     int tot_misses = 0;
 255     for (int i = 0; i < _ICmiss_index; i++) {
 256       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 257       tot_misses += _ICmiss_count[i];
 258     }
 259     tty->print_cr("Total IC misses: %7d", tot_misses);
 260   }
 261 }
 262 #endif // PRODUCT
 263 
 264 
 265 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 266   return x * y;
 267 JRT_END
 268 
 269 
 270 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 271   if (x == min_jlong && y == CONST64(-1)) {
 272     return x;
 273   } else {
 274     return x / y;
 275   }
 276 JRT_END
 277 
 278 
 279 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 280   if (x == min_jlong && y == CONST64(-1)) {
 281     return 0;
 282   } else {
 283     return x % y;
 284   }
 285 JRT_END
 286 
 287 
 288 #ifdef _WIN64
 289 const juint  float_sign_mask  = 0x7FFFFFFF;
 290 const juint  float_infinity   = 0x7F800000;
 291 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 292 const julong double_infinity  = CONST64(0x7FF0000000000000);
 293 #endif
 294 
 295 #if !defined(X86)
 296 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 297 #ifdef _WIN64
 298   // 64-bit Windows on amd64 returns the wrong values for
 299   // infinity operands.
 300   juint xbits = PrimitiveConversions::cast<juint>(x);
 301   juint ybits = PrimitiveConversions::cast<juint>(y);
 302   // x Mod Infinity == x unless x is infinity
 303   if (((xbits & float_sign_mask) != float_infinity) &&
 304        ((ybits & float_sign_mask) == float_infinity) ) {
 305     return x;
 306   }
 307   return ((jfloat)fmod_winx64((double)x, (double)y));
 308 #else
 309   return ((jfloat)fmod((double)x,(double)y));
 310 #endif
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 314 #ifdef _WIN64
 315   julong xbits = PrimitiveConversions::cast<julong>(x);
 316   julong ybits = PrimitiveConversions::cast<julong>(y);
 317   // x Mod Infinity == x unless x is infinity
 318   if (((xbits & double_sign_mask) != double_infinity) &&
 319        ((ybits & double_sign_mask) == double_infinity) ) {
 320     return x;
 321   }
 322   return ((jdouble)fmod_winx64((double)x, (double)y));
 323 #else
 324   return ((jdouble)fmod((double)x,(double)y));
 325 #endif
 326 JRT_END
 327 #endif // !X86
 328 
 329 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 330   return (jfloat)x;
 331 JRT_END
 332 
 333 #ifdef __SOFTFP__
 334 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 335   return x + y;
 336 JRT_END
 337 
 338 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 339   return x - y;
 340 JRT_END
 341 
 342 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 343   return x * y;
 344 JRT_END
 345 
 346 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 347   return x / y;
 348 JRT_END
 349 
 350 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 351   return x + y;
 352 JRT_END
 353 
 354 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 355   return x - y;
 356 JRT_END
 357 
 358 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 359   return x * y;
 360 JRT_END
 361 
 362 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 363   return x / y;
 364 JRT_END
 365 
 366 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 367   return (jdouble)x;
 368 JRT_END
 369 
 370 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 371   return (jdouble)x;
 372 JRT_END
 373 
 374 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 375   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 376 JRT_END
 377 
 378 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 379   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 380 JRT_END
 381 
 382 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 383   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 384 JRT_END
 385 
 386 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 387   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 388 JRT_END
 389 
 390 // Functions to return the opposite of the aeabi functions for nan.
 391 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 392   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 393 JRT_END
 394 
 395 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 396   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 397 JRT_END
 398 
 399 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 400   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 401 JRT_END
 402 
 403 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 404   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 405 JRT_END
 406 
 407 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 408   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 409 JRT_END
 410 
 411 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 412   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 413 JRT_END
 414 
 415 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 416   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 417 JRT_END
 418 
 419 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 420   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 421 JRT_END
 422 
 423 // Intrinsics make gcc generate code for these.
 424 float  SharedRuntime::fneg(float f)   {
 425   return -f;
 426 }
 427 
 428 double SharedRuntime::dneg(double f)  {
 429   return -f;
 430 }
 431 
 432 #endif // __SOFTFP__
 433 
 434 #if defined(__SOFTFP__) || defined(E500V2)
 435 // Intrinsics make gcc generate code for these.
 436 double SharedRuntime::dabs(double f)  {
 437   return (f <= (double)0.0) ? (double)0.0 - f : f;
 438 }
 439 
 440 #endif
 441 
 442 #if defined(__SOFTFP__)
 443 double SharedRuntime::dsqrt(double f) {
 444   return sqrt(f);
 445 }
 446 #endif
 447 
 448 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 449   if (g_isnan(x))
 450     return 0;
 451   if (x >= (jfloat) max_jint)
 452     return max_jint;
 453   if (x <= (jfloat) min_jint)
 454     return min_jint;
 455   return (jint) x;
 456 JRT_END
 457 
 458 
 459 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 460   if (g_isnan(x))
 461     return 0;
 462   if (x >= (jfloat) max_jlong)
 463     return max_jlong;
 464   if (x <= (jfloat) min_jlong)
 465     return min_jlong;
 466   return (jlong) x;
 467 JRT_END
 468 
 469 
 470 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 471   if (g_isnan(x))
 472     return 0;
 473   if (x >= (jdouble) max_jint)
 474     return max_jint;
 475   if (x <= (jdouble) min_jint)
 476     return min_jint;
 477   return (jint) x;
 478 JRT_END
 479 
 480 
 481 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 482   if (g_isnan(x))
 483     return 0;
 484   if (x >= (jdouble) max_jlong)
 485     return max_jlong;
 486   if (x <= (jdouble) min_jlong)
 487     return min_jlong;
 488   return (jlong) x;
 489 JRT_END
 490 
 491 
 492 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 493   return (jfloat)x;
 494 JRT_END
 495 
 496 
 497 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 498   return (jfloat)x;
 499 JRT_END
 500 
 501 
 502 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 503   return (jdouble)x;
 504 JRT_END
 505 
 506 
 507 // Exception handling across interpreter/compiler boundaries
 508 //
 509 // exception_handler_for_return_address(...) returns the continuation address.
 510 // The continuation address is the entry point of the exception handler of the
 511 // previous frame depending on the return address.
 512 
 513 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 514   // Note: This is called when we have unwound the frame of the callee that did
 515   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 516   // Notably, the stack is not walkable at this point, and hence the check must
 517   // be deferred until later. Specifically, any of the handlers returned here in
 518   // this function, will get dispatched to, and call deferred checks to
 519   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 520   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 521   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 522 
 523   // Reset method handle flag.
 524   current->set_is_method_handle_return(false);
 525 
 526 #if INCLUDE_JVMCI
 527   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 528   // and other exception handler continuations do not read it
 529   current->set_exception_pc(nullptr);
 530 #endif // INCLUDE_JVMCI
 531 
 532   if (Continuation::is_return_barrier_entry(return_address)) {
 533     return StubRoutines::cont_returnBarrierExc();
 534   }
 535 
 536   // The fastest case first
 537   CodeBlob* blob = CodeCache::find_blob(return_address);
 538   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 539   if (nm != nullptr) {
 540     // Set flag if return address is a method handle call site.
 541     current->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 542     // native nmethods don't have exception handlers
 543     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 544     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 545     if (nm->is_deopt_pc(return_address)) {
 546       // If we come here because of a stack overflow, the stack may be
 547       // unguarded. Reguard the stack otherwise if we return to the
 548       // deopt blob and the stack bang causes a stack overflow we
 549       // crash.
 550       StackOverflow* overflow_state = current->stack_overflow_state();
 551       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 552       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 553         overflow_state->set_reserved_stack_activation(current->stack_base());
 554       }
 555       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 556       // The deferred StackWatermarkSet::after_unwind check will be performed in
 557       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 558       return SharedRuntime::deopt_blob()->unpack_with_exception();
 559     } else {
 560       // The deferred StackWatermarkSet::after_unwind check will be performed in
 561       // * OptoRuntime::handle_exception_C_helper for C2 code
 562       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 563       return nm->exception_begin();
 564     }
 565   }
 566 
 567   // Entry code
 568   if (StubRoutines::returns_to_call_stub(return_address)) {
 569     // The deferred StackWatermarkSet::after_unwind check will be performed in
 570     // JavaCallWrapper::~JavaCallWrapper
 571     assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
 572     return StubRoutines::catch_exception_entry();
 573   }
 574   if (blob != nullptr && blob->is_upcall_stub()) {
 575     return StubRoutines::upcall_stub_exception_handler();
 576   }
 577   // Interpreted code
 578   if (Interpreter::contains(return_address)) {
 579     // The deferred StackWatermarkSet::after_unwind check will be performed in
 580     // InterpreterRuntime::exception_handler_for_exception
 581     return Interpreter::rethrow_exception_entry();
 582   }
 583 
 584   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 585   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 586 
 587 #ifndef PRODUCT
 588   { ResourceMark rm;
 589     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 590     os::print_location(tty, (intptr_t)return_address);
 591     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 592     tty->print_cr("b) other problem");
 593   }
 594 #endif // PRODUCT
 595   ShouldNotReachHere();
 596   return nullptr;
 597 }
 598 
 599 
 600 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 601   return raw_exception_handler_for_return_address(current, return_address);
 602 JRT_END
 603 
 604 
 605 address SharedRuntime::get_poll_stub(address pc) {
 606   address stub;
 607   // Look up the code blob
 608   CodeBlob *cb = CodeCache::find_blob(pc);
 609 
 610   // Should be an nmethod
 611   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 612 
 613   // Look up the relocation information
 614   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 615       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 616 
 617 #ifdef ASSERT
 618   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 619     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 620     Disassembler::decode(cb);
 621     fatal("Only polling locations are used for safepoint");
 622   }
 623 #endif
 624 
 625   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 626   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 627   if (at_poll_return) {
 628     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 629            "polling page return stub not created yet");
 630     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 631   } else if (has_wide_vectors) {
 632     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 633            "polling page vectors safepoint stub not created yet");
 634     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 635   } else {
 636     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 637            "polling page safepoint stub not created yet");
 638     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 639   }
 640   log_debug(safepoint)("... found polling page %s exception at pc = "
 641                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 642                        at_poll_return ? "return" : "loop",
 643                        (intptr_t)pc, (intptr_t)stub);
 644   return stub;
 645 }
 646 
 647 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 648   if (JvmtiExport::can_post_on_exceptions()) {
 649     vframeStream vfst(current, true);
 650     methodHandle method = methodHandle(current, vfst.method());
 651     address bcp = method()->bcp_from(vfst.bci());
 652     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 653   }
 654 
 655 #if INCLUDE_JVMCI
 656   if (EnableJVMCI) {
 657     vframeStream vfst(current, true);
 658     methodHandle method = methodHandle(current, vfst.method());
 659     int bci = vfst.bci();
 660     MethodData* trap_mdo = method->method_data();
 661     if (trap_mdo != nullptr) {
 662       // Set exception_seen if the exceptional bytecode is an invoke
 663       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 664       if (call.is_valid()) {
 665         ResourceMark rm(current);
 666 
 667         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 668         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 669 
 670         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 671         if (pdata != nullptr && pdata->is_BitData()) {
 672           BitData* bit_data = (BitData*) pdata;
 673           bit_data->set_exception_seen();
 674         }
 675       }
 676     }
 677   }
 678 #endif
 679 
 680   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 681 }
 682 
 683 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 684   Handle h_exception = Exceptions::new_exception(current, name, message);
 685   throw_and_post_jvmti_exception(current, h_exception);
 686 }
 687 
 688 #if INCLUDE_JVMTI
 689 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 690   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 691   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 692   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 693   JNIHandles::destroy_local(vthread);
 694 JRT_END
 695 
 696 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 697   assert(hide == JNI_TRUE, "must be VTMS transition start");
 698   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 699   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 700   JNIHandles::destroy_local(vthread);
 701 JRT_END
 702 
 703 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 704   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 705   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 706   JNIHandles::destroy_local(vthread);
 707 JRT_END
 708 
 709 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 710   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 711   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 712   JNIHandles::destroy_local(vthread);
 713 JRT_END
 714 #endif // INCLUDE_JVMTI
 715 
 716 // The interpreter code to call this tracing function is only
 717 // called/generated when UL is on for redefine, class and has the right level
 718 // and tags. Since obsolete methods are never compiled, we don't have
 719 // to modify the compilers to generate calls to this function.
 720 //
 721 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 722     JavaThread* thread, Method* method))
 723   if (method->is_obsolete()) {
 724     // We are calling an obsolete method, but this is not necessarily
 725     // an error. Our method could have been redefined just after we
 726     // fetched the Method* from the constant pool.
 727     ResourceMark rm;
 728     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 729   }
 730   return 0;
 731 JRT_END
 732 
 733 // ret_pc points into caller; we are returning caller's exception handler
 734 // for given exception
 735 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 736 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 737                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 738   assert(nm != nullptr, "must exist");
 739   ResourceMark rm;
 740 
 741 #if INCLUDE_JVMCI
 742   if (nm->is_compiled_by_jvmci()) {
 743     // lookup exception handler for this pc
 744     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 745     ExceptionHandlerTable table(nm);
 746     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 747     if (t != nullptr) {
 748       return nm->code_begin() + t->pco();
 749     } else {
 750       return Deoptimization::deoptimize_for_missing_exception_handler(nm);
 751     }
 752   }
 753 #endif // INCLUDE_JVMCI
 754 
 755   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 756   // determine handler bci, if any
 757   EXCEPTION_MARK;
 758 
 759   int handler_bci = -1;
 760   int scope_depth = 0;
 761   if (!force_unwind) {
 762     int bci = sd->bci();
 763     bool recursive_exception = false;
 764     do {
 765       bool skip_scope_increment = false;
 766       // exception handler lookup
 767       Klass* ek = exception->klass();
 768       methodHandle mh(THREAD, sd->method());
 769       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 770       if (HAS_PENDING_EXCEPTION) {
 771         recursive_exception = true;
 772         // We threw an exception while trying to find the exception handler.
 773         // Transfer the new exception to the exception handle which will
 774         // be set into thread local storage, and do another lookup for an
 775         // exception handler for this exception, this time starting at the
 776         // BCI of the exception handler which caused the exception to be
 777         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 778         // argument to ensure that the correct exception is thrown (4870175).
 779         recursive_exception_occurred = true;
 780         exception = Handle(THREAD, PENDING_EXCEPTION);
 781         CLEAR_PENDING_EXCEPTION;
 782         if (handler_bci >= 0) {
 783           bci = handler_bci;
 784           handler_bci = -1;
 785           skip_scope_increment = true;
 786         }
 787       }
 788       else {
 789         recursive_exception = false;
 790       }
 791       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 792         sd = sd->sender();
 793         if (sd != nullptr) {
 794           bci = sd->bci();
 795         }
 796         ++scope_depth;
 797       }
 798     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 799   }
 800 
 801   // found handling method => lookup exception handler
 802   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 803 
 804   ExceptionHandlerTable table(nm);
 805   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 806   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 807     // Allow abbreviated catch tables.  The idea is to allow a method
 808     // to materialize its exceptions without committing to the exact
 809     // routing of exceptions.  In particular this is needed for adding
 810     // a synthetic handler to unlock monitors when inlining
 811     // synchronized methods since the unlock path isn't represented in
 812     // the bytecodes.
 813     t = table.entry_for(catch_pco, -1, 0);
 814   }
 815 
 816 #ifdef COMPILER1
 817   if (t == nullptr && nm->is_compiled_by_c1()) {
 818     assert(nm->unwind_handler_begin() != nullptr, "");
 819     return nm->unwind_handler_begin();
 820   }
 821 #endif
 822 
 823   if (t == nullptr) {
 824     ttyLocker ttyl;
 825     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 826     tty->print_cr("   Exception:");
 827     exception->print();
 828     tty->cr();
 829     tty->print_cr(" Compiled exception table :");
 830     table.print();
 831     nm->print();
 832     nm->print_code();
 833     guarantee(false, "missing exception handler");
 834     return nullptr;
 835   }
 836 
 837   if (handler_bci != -1) { // did we find a handler in this method?
 838     sd->method()->set_exception_handler_entered(handler_bci); // profile
 839   }
 840   return nm->code_begin() + t->pco();
 841 }
 842 
 843 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 844   // These errors occur only at call sites
 845   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 846 JRT_END
 847 
 848 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 849   // These errors occur only at call sites
 850   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 851 JRT_END
 852 
 853 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 854   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 855 JRT_END
 856 
 857 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 858   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 859 JRT_END
 860 
 861 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 862   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 863   // cache sites (when the callee activation is not yet set up) so we are at a call site
 864   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 865 JRT_END
 866 
 867 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 868   throw_StackOverflowError_common(current, false);
 869 JRT_END
 870 
 871 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 872   throw_StackOverflowError_common(current, true);
 873 JRT_END
 874 
 875 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 876   // We avoid using the normal exception construction in this case because
 877   // it performs an upcall to Java, and we're already out of stack space.
 878   JavaThread* THREAD = current; // For exception macros.
 879   Klass* k = vmClasses::StackOverflowError_klass();
 880   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 881   if (delayed) {
 882     java_lang_Throwable::set_message(exception_oop,
 883                                      Universe::delayed_stack_overflow_error_message());
 884   }
 885   Handle exception (current, exception_oop);
 886   if (StackTraceInThrowable) {
 887     java_lang_Throwable::fill_in_stack_trace(exception);
 888   }
 889   // Remove the ScopedValue bindings in case we got a
 890   // StackOverflowError while we were trying to remove ScopedValue
 891   // bindings.
 892   current->clear_scopedValueBindings();
 893   // Increment counter for hs_err file reporting
 894   Atomic::inc(&Exceptions::_stack_overflow_errors);
 895   throw_and_post_jvmti_exception(current, exception);
 896 }
 897 
 898 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 899                                                            address pc,
 900                                                            ImplicitExceptionKind exception_kind)
 901 {
 902   address target_pc = nullptr;
 903 
 904   if (Interpreter::contains(pc)) {
 905     switch (exception_kind) {
 906       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 907       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 908       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 909       default:                      ShouldNotReachHere();
 910     }
 911   } else {
 912     switch (exception_kind) {
 913       case STACK_OVERFLOW: {
 914         // Stack overflow only occurs upon frame setup; the callee is
 915         // going to be unwound. Dispatch to a shared runtime stub
 916         // which will cause the StackOverflowError to be fabricated
 917         // and processed.
 918         // Stack overflow should never occur during deoptimization:
 919         // the compiled method bangs the stack by as much as the
 920         // interpreter would need in case of a deoptimization. The
 921         // deoptimization blob and uncommon trap blob bang the stack
 922         // in a debug VM to verify the correctness of the compiled
 923         // method stack banging.
 924         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 925         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 926         return SharedRuntime::throw_StackOverflowError_entry();
 927       }
 928 
 929       case IMPLICIT_NULL: {
 930         if (VtableStubs::contains(pc)) {
 931           // We haven't yet entered the callee frame. Fabricate an
 932           // exception and begin dispatching it in the caller. Since
 933           // the caller was at a call site, it's safe to destroy all
 934           // caller-saved registers, as these entry points do.
 935           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 936 
 937           // If vt_stub is null, then return null to signal handler to report the SEGV error.
 938           if (vt_stub == nullptr) return nullptr;
 939 
 940           if (vt_stub->is_abstract_method_error(pc)) {
 941             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 942             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 943             // Instead of throwing the abstract method error here directly, we re-resolve
 944             // and will throw the AbstractMethodError during resolve. As a result, we'll
 945             // get a more detailed error message.
 946             return SharedRuntime::get_handle_wrong_method_stub();
 947           } else {
 948             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 949             // Assert that the signal comes from the expected location in stub code.
 950             assert(vt_stub->is_null_pointer_exception(pc),
 951                    "obtained signal from unexpected location in stub code");
 952             return SharedRuntime::throw_NullPointerException_at_call_entry();
 953           }
 954         } else {
 955           CodeBlob* cb = CodeCache::find_blob(pc);
 956 
 957           // If code blob is null, then return null to signal handler to report the SEGV error.
 958           if (cb == nullptr) return nullptr;
 959 
 960           // Exception happened in CodeCache. Must be either:
 961           // 1. Inline-cache check in C2I handler blob,
 962           // 2. Inline-cache check in nmethod, or
 963           // 3. Implicit null exception in nmethod
 964 
 965           if (!cb->is_nmethod()) {
 966             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 967             if (!is_in_blob) {
 968               // Allow normal crash reporting to handle this
 969               return nullptr;
 970             }
 971             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 972             // There is no handler here, so we will simply unwind.
 973             return SharedRuntime::throw_NullPointerException_at_call_entry();
 974           }
 975 
 976           // Otherwise, it's a compiled method.  Consult its exception handlers.
 977           nmethod* nm = cb->as_nmethod();
 978           if (nm->inlinecache_check_contains(pc)) {
 979             // exception happened inside inline-cache check code
 980             // => the nmethod is not yet active (i.e., the frame
 981             // is not set up yet) => use return address pushed by
 982             // caller => don't push another return address
 983             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 984             return SharedRuntime::throw_NullPointerException_at_call_entry();
 985           }
 986 
 987           if (nm->method()->is_method_handle_intrinsic()) {
 988             // exception happened inside MH dispatch code, similar to a vtable stub
 989             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 990             return SharedRuntime::throw_NullPointerException_at_call_entry();
 991           }
 992 
 993 #ifndef PRODUCT
 994           _implicit_null_throws++;
 995 #endif
 996           target_pc = nm->continuation_for_implicit_null_exception(pc);
 997           // If there's an unexpected fault, target_pc might be null,
 998           // in which case we want to fall through into the normal
 999           // error handling code.
1000         }
1001 
1002         break; // fall through
1003       }
1004 
1005 
1006       case IMPLICIT_DIVIDE_BY_ZERO: {
1007         nmethod* nm = CodeCache::find_nmethod(pc);
1008         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1009 #ifndef PRODUCT
1010         _implicit_div0_throws++;
1011 #endif
1012         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1013         // If there's an unexpected fault, target_pc might be null,
1014         // in which case we want to fall through into the normal
1015         // error handling code.
1016         break; // fall through
1017       }
1018 
1019       default: ShouldNotReachHere();
1020     }
1021 
1022     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1023 
1024     if (exception_kind == IMPLICIT_NULL) {
1025 #ifndef PRODUCT
1026       // for AbortVMOnException flag
1027       Exceptions::debug_check_abort("java.lang.NullPointerException");
1028 #endif //PRODUCT
1029       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1030     } else {
1031 #ifndef PRODUCT
1032       // for AbortVMOnException flag
1033       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1034 #endif //PRODUCT
1035       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1036     }
1037     return target_pc;
1038   }
1039 
1040   ShouldNotReachHere();
1041   return nullptr;
1042 }
1043 
1044 
1045 /**
1046  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1047  * installed in the native function entry of all native Java methods before
1048  * they get linked to their actual native methods.
1049  *
1050  * \note
1051  * This method actually never gets called!  The reason is because
1052  * the interpreter's native entries call NativeLookup::lookup() which
1053  * throws the exception when the lookup fails.  The exception is then
1054  * caught and forwarded on the return from NativeLookup::lookup() call
1055  * before the call to the native function.  This might change in the future.
1056  */
1057 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1058 {
1059   // We return a bad value here to make sure that the exception is
1060   // forwarded before we look at the return value.
1061   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1062 }
1063 JNI_END
1064 
1065 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1066   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1067 }
1068 
1069 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1070 #if INCLUDE_JVMCI
1071   if (!obj->klass()->has_finalizer()) {
1072     return;
1073   }
1074 #endif // INCLUDE_JVMCI
1075   assert(oopDesc::is_oop(obj), "must be a valid oop");
1076   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1077   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1078 JRT_END
1079 
1080 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1081   assert(thread != nullptr, "No thread");
1082   if (thread == nullptr) {
1083     return 0;
1084   }
1085   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1086             "current cannot touch oops after its GC barrier is detached.");
1087   oop obj = thread->threadObj();
1088   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1089 }
1090 
1091 /**
1092  * This function ought to be a void function, but cannot be because
1093  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1094  * 6254741.  Once that is fixed we can remove the dummy return value.
1095  */
1096 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1097   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1098 }
1099 
1100 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1101   return dtrace_object_alloc(thread, o, o->size());
1102 }
1103 
1104 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1105   assert(DTraceAllocProbes, "wrong call");
1106   Klass* klass = o->klass();
1107   Symbol* name = klass->name();
1108   HOTSPOT_OBJECT_ALLOC(
1109                    get_java_tid(thread),
1110                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1111   return 0;
1112 }
1113 
1114 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1115     JavaThread* current, Method* method))
1116   assert(current == JavaThread::current(), "pre-condition");
1117 
1118   assert(DTraceMethodProbes, "wrong call");
1119   Symbol* kname = method->klass_name();
1120   Symbol* name = method->name();
1121   Symbol* sig = method->signature();
1122   HOTSPOT_METHOD_ENTRY(
1123       get_java_tid(current),
1124       (char *) kname->bytes(), kname->utf8_length(),
1125       (char *) name->bytes(), name->utf8_length(),
1126       (char *) sig->bytes(), sig->utf8_length());
1127   return 0;
1128 JRT_END
1129 
1130 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1131     JavaThread* current, Method* method))
1132   assert(current == JavaThread::current(), "pre-condition");
1133   assert(DTraceMethodProbes, "wrong call");
1134   Symbol* kname = method->klass_name();
1135   Symbol* name = method->name();
1136   Symbol* sig = method->signature();
1137   HOTSPOT_METHOD_RETURN(
1138       get_java_tid(current),
1139       (char *) kname->bytes(), kname->utf8_length(),
1140       (char *) name->bytes(), name->utf8_length(),
1141       (char *) sig->bytes(), sig->utf8_length());
1142   return 0;
1143 JRT_END
1144 
1145 
1146 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1147 // for a call current in progress, i.e., arguments has been pushed on stack
1148 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1149 // vtable updates, etc.  Caller frame must be compiled.
1150 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1151   JavaThread* current = THREAD;
1152   ResourceMark rm(current);
1153 
1154   // last java frame on stack (which includes native call frames)
1155   vframeStream vfst(current, true);  // Do not skip and javaCalls
1156 
1157   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1158 }
1159 
1160 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1161   nmethod* caller = vfst.nm();
1162 
1163   address pc = vfst.frame_pc();
1164   { // Get call instruction under lock because another thread may be busy patching it.
1165     CompiledICLocker ic_locker(caller);
1166     return caller->attached_method_before_pc(pc);
1167   }
1168   return nullptr;
1169 }
1170 
1171 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1172 // for a call current in progress, i.e., arguments has been pushed on stack
1173 // but callee has not been invoked yet.  Caller frame must be compiled.
1174 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1175                                               CallInfo& callinfo, TRAPS) {
1176   Handle receiver;
1177   Handle nullHandle;  // create a handy null handle for exception returns
1178   JavaThread* current = THREAD;
1179 
1180   assert(!vfst.at_end(), "Java frame must exist");
1181 
1182   // Find caller and bci from vframe
1183   methodHandle caller(current, vfst.method());
1184   int          bci   = vfst.bci();
1185 
1186   if (caller->is_continuation_enter_intrinsic()) {
1187     bc = Bytecodes::_invokestatic;
1188     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1189     return receiver;
1190   }
1191 
1192   Bytecode_invoke bytecode(caller, bci);
1193   int bytecode_index = bytecode.index();
1194   bc = bytecode.invoke_code();
1195 
1196   methodHandle attached_method(current, extract_attached_method(vfst));
1197   if (attached_method.not_null()) {
1198     Method* callee = bytecode.static_target(CHECK_NH);
1199     vmIntrinsics::ID id = callee->intrinsic_id();
1200     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1201     // it attaches statically resolved method to the call site.
1202     if (MethodHandles::is_signature_polymorphic(id) &&
1203         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1204       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1205 
1206       // Adjust invocation mode according to the attached method.
1207       switch (bc) {
1208         case Bytecodes::_invokevirtual:
1209           if (attached_method->method_holder()->is_interface()) {
1210             bc = Bytecodes::_invokeinterface;
1211           }
1212           break;
1213         case Bytecodes::_invokeinterface:
1214           if (!attached_method->method_holder()->is_interface()) {
1215             bc = Bytecodes::_invokevirtual;
1216           }
1217           break;
1218         case Bytecodes::_invokehandle:
1219           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1220             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1221                                               : Bytecodes::_invokevirtual;
1222           }
1223           break;
1224         default:
1225           break;
1226       }
1227     }
1228   }
1229 
1230   assert(bc != Bytecodes::_illegal, "not initialized");
1231 
1232   bool has_receiver = bc != Bytecodes::_invokestatic &&
1233                       bc != Bytecodes::_invokedynamic &&
1234                       bc != Bytecodes::_invokehandle;
1235 
1236   // Find receiver for non-static call
1237   if (has_receiver) {
1238     // This register map must be update since we need to find the receiver for
1239     // compiled frames. The receiver might be in a register.
1240     RegisterMap reg_map2(current,
1241                          RegisterMap::UpdateMap::include,
1242                          RegisterMap::ProcessFrames::include,
1243                          RegisterMap::WalkContinuation::skip);
1244     frame stubFrame   = current->last_frame();
1245     // Caller-frame is a compiled frame
1246     frame callerFrame = stubFrame.sender(&reg_map2);
1247 
1248     if (attached_method.is_null()) {
1249       Method* callee = bytecode.static_target(CHECK_NH);
1250       if (callee == nullptr) {
1251         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1252       }
1253     }
1254 
1255     // Retrieve from a compiled argument list
1256     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1257     assert(oopDesc::is_oop_or_null(receiver()), "");
1258 
1259     if (receiver.is_null()) {
1260       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1261     }
1262   }
1263 
1264   // Resolve method
1265   if (attached_method.not_null()) {
1266     // Parameterized by attached method.
1267     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1268   } else {
1269     // Parameterized by bytecode.
1270     constantPoolHandle constants(current, caller->constants());
1271     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1272   }
1273 
1274 #ifdef ASSERT
1275   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1276   if (has_receiver) {
1277     assert(receiver.not_null(), "should have thrown exception");
1278     Klass* receiver_klass = receiver->klass();
1279     Klass* rk = nullptr;
1280     if (attached_method.not_null()) {
1281       // In case there's resolved method attached, use its holder during the check.
1282       rk = attached_method->method_holder();
1283     } else {
1284       // Klass is already loaded.
1285       constantPoolHandle constants(current, caller->constants());
1286       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1287     }
1288     Klass* static_receiver_klass = rk;
1289     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1290            "actual receiver must be subclass of static receiver klass");
1291     if (receiver_klass->is_instance_klass()) {
1292       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1293         tty->print_cr("ERROR: Klass not yet initialized!!");
1294         receiver_klass->print();
1295       }
1296       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1297     }
1298   }
1299 #endif
1300 
1301   return receiver;
1302 }
1303 
1304 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1305   JavaThread* current = THREAD;
1306   ResourceMark rm(current);
1307   // We need first to check if any Java activations (compiled, interpreted)
1308   // exist on the stack since last JavaCall.  If not, we need
1309   // to get the target method from the JavaCall wrapper.
1310   vframeStream vfst(current, true);  // Do not skip any javaCalls
1311   methodHandle callee_method;
1312   if (vfst.at_end()) {
1313     // No Java frames were found on stack since we did the JavaCall.
1314     // Hence the stack can only contain an entry_frame.  We need to
1315     // find the target method from the stub frame.
1316     RegisterMap reg_map(current,
1317                         RegisterMap::UpdateMap::skip,
1318                         RegisterMap::ProcessFrames::include,
1319                         RegisterMap::WalkContinuation::skip);
1320     frame fr = current->last_frame();
1321     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1322     fr = fr.sender(&reg_map);
1323     assert(fr.is_entry_frame(), "must be");
1324     // fr is now pointing to the entry frame.
1325     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1326   } else {
1327     Bytecodes::Code bc;
1328     CallInfo callinfo;
1329     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1330     callee_method = methodHandle(current, callinfo.selected_method());
1331   }
1332   assert(callee_method()->is_method(), "must be");
1333   return callee_method;
1334 }
1335 
1336 // Resolves a call.
1337 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1338   JavaThread* current = THREAD;
1339   ResourceMark rm(current);
1340   RegisterMap cbl_map(current,
1341                       RegisterMap::UpdateMap::skip,
1342                       RegisterMap::ProcessFrames::include,
1343                       RegisterMap::WalkContinuation::skip);
1344   frame caller_frame = current->last_frame().sender(&cbl_map);
1345 
1346   CodeBlob* caller_cb = caller_frame.cb();
1347   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1348   nmethod* caller_nm = caller_cb->as_nmethod();
1349 
1350   // determine call info & receiver
1351   // note: a) receiver is null for static calls
1352   //       b) an exception is thrown if receiver is null for non-static calls
1353   CallInfo call_info;
1354   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1355   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1356 
1357   NoSafepointVerifier nsv;
1358 
1359   methodHandle callee_method(current, call_info.selected_method());
1360 
1361   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1362          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1363          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1364          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1365          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1366 
1367   assert(!caller_nm->is_unloading(), "It should not be unloading");
1368 
1369 #ifndef PRODUCT
1370   // tracing/debugging/statistics
1371   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1372                  (is_virtual) ? (&_resolve_virtual_ctr) :
1373                                 (&_resolve_static_ctr);
1374   Atomic::inc(addr);
1375 
1376   if (TraceCallFixup) {
1377     ResourceMark rm(current);
1378     tty->print("resolving %s%s (%s) call to",
1379                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1380                Bytecodes::name(invoke_code));
1381     callee_method->print_short_name(tty);
1382     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1383                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1384   }
1385 #endif
1386 
1387   if (invoke_code == Bytecodes::_invokestatic) {
1388     assert(callee_method->method_holder()->is_initialized() ||
1389            callee_method->method_holder()->is_reentrant_initialization(current),
1390            "invalid class initialization state for invoke_static");
1391     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1392       // In order to keep class initialization check, do not patch call
1393       // site for static call when the class is not fully initialized.
1394       // Proper check is enforced by call site re-resolution on every invocation.
1395       //
1396       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1397       // explicit class initialization check is put in nmethod entry (VEP).
1398       assert(callee_method->method_holder()->is_linked(), "must be");
1399       return callee_method;
1400     }
1401   }
1402 
1403 
1404   // JSR 292 key invariant:
1405   // If the resolved method is a MethodHandle invoke target, the call
1406   // site must be a MethodHandle call site, because the lambda form might tail-call
1407   // leaving the stack in a state unknown to either caller or callee
1408 
1409   // Compute entry points. The computation of the entry points is independent of
1410   // patching the call.
1411 
1412   // Make sure the callee nmethod does not get deoptimized and removed before
1413   // we are done patching the code.
1414 
1415 
1416   CompiledICLocker ml(caller_nm);
1417   if (is_virtual && !is_optimized) {
1418     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1419     inline_cache->update(&call_info, receiver->klass());
1420   } else {
1421     // Callsite is a direct call - set it to the destination method
1422     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1423     callsite->set(callee_method);
1424   }
1425 
1426   return callee_method;
1427 }
1428 
1429 // Inline caches exist only in compiled code
1430 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1431 #ifdef ASSERT
1432   RegisterMap reg_map(current,
1433                       RegisterMap::UpdateMap::skip,
1434                       RegisterMap::ProcessFrames::include,
1435                       RegisterMap::WalkContinuation::skip);
1436   frame stub_frame = current->last_frame();
1437   assert(stub_frame.is_runtime_frame(), "sanity check");
1438   frame caller_frame = stub_frame.sender(&reg_map);
1439   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1440 #endif /* ASSERT */
1441 
1442   methodHandle callee_method;
1443   JRT_BLOCK
1444     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1445     // Return Method* through TLS
1446     current->set_vm_result_metadata(callee_method());
1447   JRT_BLOCK_END
1448   // return compiled code entry point after potential safepoints
1449   return get_resolved_entry(current, callee_method);
1450 JRT_END
1451 
1452 
1453 // Handle call site that has been made non-entrant
1454 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1455   // 6243940 We might end up in here if the callee is deoptimized
1456   // as we race to call it.  We don't want to take a safepoint if
1457   // the caller was interpreted because the caller frame will look
1458   // interpreted to the stack walkers and arguments are now
1459   // "compiled" so it is much better to make this transition
1460   // invisible to the stack walking code. The i2c path will
1461   // place the callee method in the callee_target. It is stashed
1462   // there because if we try and find the callee by normal means a
1463   // safepoint is possible and have trouble gc'ing the compiled args.
1464   RegisterMap reg_map(current,
1465                       RegisterMap::UpdateMap::skip,
1466                       RegisterMap::ProcessFrames::include,
1467                       RegisterMap::WalkContinuation::skip);
1468   frame stub_frame = current->last_frame();
1469   assert(stub_frame.is_runtime_frame(), "sanity check");
1470   frame caller_frame = stub_frame.sender(&reg_map);
1471 
1472   if (caller_frame.is_interpreted_frame() ||
1473       caller_frame.is_entry_frame() ||
1474       caller_frame.is_upcall_stub_frame()) {
1475     Method* callee = current->callee_target();
1476     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1477     current->set_vm_result_metadata(callee);
1478     current->set_callee_target(nullptr);
1479     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1480       // Bypass class initialization checks in c2i when caller is in native.
1481       // JNI calls to static methods don't have class initialization checks.
1482       // Fast class initialization checks are present in c2i adapters and call into
1483       // SharedRuntime::handle_wrong_method() on the slow path.
1484       //
1485       // JVM upcalls may land here as well, but there's a proper check present in
1486       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1487       // so bypassing it in c2i adapter is benign.
1488       return callee->get_c2i_no_clinit_check_entry();
1489     } else {
1490       return callee->get_c2i_entry();
1491     }
1492   }
1493 
1494   // Must be compiled to compiled path which is safe to stackwalk
1495   methodHandle callee_method;
1496   JRT_BLOCK
1497     // Force resolving of caller (if we called from compiled frame)
1498     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1499     current->set_vm_result_metadata(callee_method());
1500   JRT_BLOCK_END
1501   // return compiled code entry point after potential safepoints
1502   return get_resolved_entry(current, callee_method);
1503 JRT_END
1504 
1505 // Handle abstract method call
1506 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1507   // Verbose error message for AbstractMethodError.
1508   // Get the called method from the invoke bytecode.
1509   vframeStream vfst(current, true);
1510   assert(!vfst.at_end(), "Java frame must exist");
1511   methodHandle caller(current, vfst.method());
1512   Bytecode_invoke invoke(caller, vfst.bci());
1513   DEBUG_ONLY( invoke.verify(); )
1514 
1515   // Find the compiled caller frame.
1516   RegisterMap reg_map(current,
1517                       RegisterMap::UpdateMap::include,
1518                       RegisterMap::ProcessFrames::include,
1519                       RegisterMap::WalkContinuation::skip);
1520   frame stubFrame = current->last_frame();
1521   assert(stubFrame.is_runtime_frame(), "must be");
1522   frame callerFrame = stubFrame.sender(&reg_map);
1523   assert(callerFrame.is_compiled_frame(), "must be");
1524 
1525   // Install exception and return forward entry.
1526   address res = SharedRuntime::throw_AbstractMethodError_entry();
1527   JRT_BLOCK
1528     methodHandle callee(current, invoke.static_target(current));
1529     if (!callee.is_null()) {
1530       oop recv = callerFrame.retrieve_receiver(&reg_map);
1531       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1532       res = StubRoutines::forward_exception_entry();
1533       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1534     }
1535   JRT_BLOCK_END
1536   return res;
1537 JRT_END
1538 
1539 // return verified_code_entry if interp_only_mode is not set for the current thread;
1540 // otherwise return c2i entry.
1541 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1542   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1543     // In interp_only_mode we need to go to the interpreted entry
1544     // The c2i won't patch in this mode -- see fixup_callers_callsite
1545     return callee_method->get_c2i_entry();
1546   }
1547   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1548   return callee_method->verified_code_entry();
1549 }
1550 
1551 // resolve a static call and patch code
1552 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1553   methodHandle callee_method;
1554   bool enter_special = false;
1555   JRT_BLOCK
1556     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1557     current->set_vm_result_metadata(callee_method());
1558   JRT_BLOCK_END
1559   // return compiled code entry point after potential safepoints
1560   return get_resolved_entry(current, callee_method);
1561 JRT_END
1562 
1563 // resolve virtual call and update inline cache to monomorphic
1564 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1565   methodHandle callee_method;
1566   JRT_BLOCK
1567     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1568     current->set_vm_result_metadata(callee_method());
1569   JRT_BLOCK_END
1570   // return compiled code entry point after potential safepoints
1571   return get_resolved_entry(current, callee_method);
1572 JRT_END
1573 
1574 
1575 // Resolve a virtual call that can be statically bound (e.g., always
1576 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1577 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1578   methodHandle callee_method;
1579   JRT_BLOCK
1580     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1581     current->set_vm_result_metadata(callee_method());
1582   JRT_BLOCK_END
1583   // return compiled code entry point after potential safepoints
1584   return get_resolved_entry(current, callee_method);
1585 JRT_END
1586 
1587 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1588   JavaThread* current = THREAD;
1589   ResourceMark rm(current);
1590   CallInfo call_info;
1591   Bytecodes::Code bc;
1592 
1593   // receiver is null for static calls. An exception is thrown for null
1594   // receivers for non-static calls
1595   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1596 
1597   methodHandle callee_method(current, call_info.selected_method());
1598 
1599 #ifndef PRODUCT
1600   Atomic::inc(&_ic_miss_ctr);
1601 
1602   // Statistics & Tracing
1603   if (TraceCallFixup) {
1604     ResourceMark rm(current);
1605     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1606     callee_method->print_short_name(tty);
1607     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1608   }
1609 
1610   if (ICMissHistogram) {
1611     MutexLocker m(VMStatistic_lock);
1612     RegisterMap reg_map(current,
1613                         RegisterMap::UpdateMap::skip,
1614                         RegisterMap::ProcessFrames::include,
1615                         RegisterMap::WalkContinuation::skip);
1616     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1617     // produce statistics under the lock
1618     trace_ic_miss(f.pc());
1619   }
1620 #endif
1621 
1622   // install an event collector so that when a vtable stub is created the
1623   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1624   // event can't be posted when the stub is created as locks are held
1625   // - instead the event will be deferred until the event collector goes
1626   // out of scope.
1627   JvmtiDynamicCodeEventCollector event_collector;
1628 
1629   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1630   RegisterMap reg_map(current,
1631                       RegisterMap::UpdateMap::skip,
1632                       RegisterMap::ProcessFrames::include,
1633                       RegisterMap::WalkContinuation::skip);
1634   frame caller_frame = current->last_frame().sender(&reg_map);
1635   CodeBlob* cb = caller_frame.cb();
1636   nmethod* caller_nm = cb->as_nmethod();
1637 
1638   CompiledICLocker ml(caller_nm);
1639   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1640   inline_cache->update(&call_info, receiver()->klass());
1641 
1642   return callee_method;
1643 }
1644 
1645 //
1646 // Resets a call-site in compiled code so it will get resolved again.
1647 // This routines handles both virtual call sites, optimized virtual call
1648 // sites, and static call sites. Typically used to change a call sites
1649 // destination from compiled to interpreted.
1650 //
1651 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1652   JavaThread* current = THREAD;
1653   ResourceMark rm(current);
1654   RegisterMap reg_map(current,
1655                       RegisterMap::UpdateMap::skip,
1656                       RegisterMap::ProcessFrames::include,
1657                       RegisterMap::WalkContinuation::skip);
1658   frame stub_frame = current->last_frame();
1659   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1660   frame caller = stub_frame.sender(&reg_map);
1661 
1662   // Do nothing if the frame isn't a live compiled frame.
1663   // nmethod could be deoptimized by the time we get here
1664   // so no update to the caller is needed.
1665 
1666   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1667       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1668 
1669     address pc = caller.pc();
1670 
1671     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1672     assert(caller_nm != nullptr, "did not find caller nmethod");
1673 
1674     // Default call_addr is the location of the "basic" call.
1675     // Determine the address of the call we a reresolving. With
1676     // Inline Caches we will always find a recognizable call.
1677     // With Inline Caches disabled we may or may not find a
1678     // recognizable call. We will always find a call for static
1679     // calls and for optimized virtual calls. For vanilla virtual
1680     // calls it depends on the state of the UseInlineCaches switch.
1681     //
1682     // With Inline Caches disabled we can get here for a virtual call
1683     // for two reasons:
1684     //   1 - calling an abstract method. The vtable for abstract methods
1685     //       will run us thru handle_wrong_method and we will eventually
1686     //       end up in the interpreter to throw the ame.
1687     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1688     //       call and between the time we fetch the entry address and
1689     //       we jump to it the target gets deoptimized. Similar to 1
1690     //       we will wind up in the interprter (thru a c2i with c2).
1691     //
1692     CompiledICLocker ml(caller_nm);
1693     address call_addr = caller_nm->call_instruction_address(pc);
1694 
1695     if (call_addr != nullptr) {
1696       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1697       // bytes back in the instruction stream so we must also check for reloc info.
1698       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1699       bool ret = iter.next(); // Get item
1700       if (ret) {
1701         switch (iter.type()) {
1702           case relocInfo::static_call_type:
1703           case relocInfo::opt_virtual_call_type: {
1704             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1705             cdc->set_to_clean();
1706             break;
1707           }
1708 
1709           case relocInfo::virtual_call_type: {
1710             // compiled, dispatched call (which used to call an interpreted method)
1711             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1712             inline_cache->set_to_clean();
1713             break;
1714           }
1715           default:
1716             break;
1717         }
1718       }
1719     }
1720   }
1721 
1722   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1723 
1724 
1725 #ifndef PRODUCT
1726   Atomic::inc(&_wrong_method_ctr);
1727 
1728   if (TraceCallFixup) {
1729     ResourceMark rm(current);
1730     tty->print("handle_wrong_method reresolving call to");
1731     callee_method->print_short_name(tty);
1732     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1733   }
1734 #endif
1735 
1736   return callee_method;
1737 }
1738 
1739 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1740   // The faulting unsafe accesses should be changed to throw the error
1741   // synchronously instead. Meanwhile the faulting instruction will be
1742   // skipped over (effectively turning it into a no-op) and an
1743   // asynchronous exception will be raised which the thread will
1744   // handle at a later point. If the instruction is a load it will
1745   // return garbage.
1746 
1747   // Request an async exception.
1748   thread->set_pending_unsafe_access_error();
1749 
1750   // Return address of next instruction to execute.
1751   return next_pc;
1752 }
1753 
1754 #ifdef ASSERT
1755 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1756                                                                 const BasicType* sig_bt,
1757                                                                 const VMRegPair* regs) {
1758   ResourceMark rm;
1759   const int total_args_passed = method->size_of_parameters();
1760   const VMRegPair*    regs_with_member_name = regs;
1761         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1762 
1763   const int member_arg_pos = total_args_passed - 1;
1764   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1765   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1766 
1767   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1768 
1769   for (int i = 0; i < member_arg_pos; i++) {
1770     VMReg a =    regs_with_member_name[i].first();
1771     VMReg b = regs_without_member_name[i].first();
1772     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1773   }
1774   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1775 }
1776 #endif
1777 
1778 // ---------------------------------------------------------------------------
1779 // We are calling the interpreter via a c2i. Normally this would mean that
1780 // we were called by a compiled method. However we could have lost a race
1781 // where we went int -> i2c -> c2i and so the caller could in fact be
1782 // interpreted. If the caller is compiled we attempt to patch the caller
1783 // so he no longer calls into the interpreter.
1784 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1785   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1786 
1787   // It's possible that deoptimization can occur at a call site which hasn't
1788   // been resolved yet, in which case this function will be called from
1789   // an nmethod that has been patched for deopt and we can ignore the
1790   // request for a fixup.
1791   // Also it is possible that we lost a race in that from_compiled_entry
1792   // is now back to the i2c in that case we don't need to patch and if
1793   // we did we'd leap into space because the callsite needs to use
1794   // "to interpreter" stub in order to load up the Method*. Don't
1795   // ask me how I know this...
1796 
1797   // Result from nmethod::is_unloading is not stable across safepoints.
1798   NoSafepointVerifier nsv;
1799 
1800   nmethod* callee = method->code();
1801   if (callee == nullptr) {
1802     return;
1803   }
1804 
1805   // write lock needed because we might patch call site by set_to_clean()
1806   // and is_unloading() can modify nmethod's state
1807   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1808 
1809   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1810   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1811     return;
1812   }
1813 
1814   // The check above makes sure this is an nmethod.
1815   nmethod* caller = cb->as_nmethod();
1816 
1817   // Get the return PC for the passed caller PC.
1818   address return_pc = caller_pc + frame::pc_return_offset;
1819 
1820   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1821     return;
1822   }
1823 
1824   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1825   CompiledICLocker ic_locker(caller);
1826   ResourceMark rm;
1827 
1828   // If we got here through a static call or opt_virtual call, then we know where the
1829   // call address would be; let's peek at it
1830   address callsite_addr = (address)nativeCall_before(return_pc);
1831   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1832   if (!iter.next()) {
1833     // No reloc entry found; not a static or optimized virtual call
1834     return;
1835   }
1836 
1837   relocInfo::relocType type = iter.reloc()->type();
1838   if (type != relocInfo::static_call_type &&
1839       type != relocInfo::opt_virtual_call_type) {
1840     return;
1841   }
1842 
1843   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1844   callsite->set_to_clean();
1845 JRT_END
1846 
1847 
1848 // same as JVM_Arraycopy, but called directly from compiled code
1849 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1850                                                 oopDesc* dest, jint dest_pos,
1851                                                 jint length,
1852                                                 JavaThread* current)) {
1853 #ifndef PRODUCT
1854   _slow_array_copy_ctr++;
1855 #endif
1856   // Check if we have null pointers
1857   if (src == nullptr || dest == nullptr) {
1858     THROW(vmSymbols::java_lang_NullPointerException());
1859   }
1860   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1861   // even though the copy_array API also performs dynamic checks to ensure
1862   // that src and dest are truly arrays (and are conformable).
1863   // The copy_array mechanism is awkward and could be removed, but
1864   // the compilers don't call this function except as a last resort,
1865   // so it probably doesn't matter.
1866   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1867                                         (arrayOopDesc*)dest, dest_pos,
1868                                         length, current);
1869 }
1870 JRT_END
1871 
1872 // The caller of generate_class_cast_message() (or one of its callers)
1873 // must use a ResourceMark in order to correctly free the result.
1874 char* SharedRuntime::generate_class_cast_message(
1875     JavaThread* thread, Klass* caster_klass) {
1876 
1877   // Get target class name from the checkcast instruction
1878   vframeStream vfst(thread, true);
1879   assert(!vfst.at_end(), "Java frame must exist");
1880   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1881   constantPoolHandle cpool(thread, vfst.method()->constants());
1882   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1883   Symbol* target_klass_name = nullptr;
1884   if (target_klass == nullptr) {
1885     // This klass should be resolved, but just in case, get the name in the klass slot.
1886     target_klass_name = cpool->klass_name_at(cc.index());
1887   }
1888   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1889 }
1890 
1891 
1892 // The caller of generate_class_cast_message() (or one of its callers)
1893 // must use a ResourceMark in order to correctly free the result.
1894 char* SharedRuntime::generate_class_cast_message(
1895     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1896   const char* caster_name = caster_klass->external_name();
1897 
1898   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
1899   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
1900                                                    target_klass->external_name();
1901 
1902   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1903 
1904   const char* caster_klass_description = "";
1905   const char* target_klass_description = "";
1906   const char* klass_separator = "";
1907   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
1908     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1909   } else {
1910     caster_klass_description = caster_klass->class_in_module_of_loader();
1911     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
1912     klass_separator = (target_klass != nullptr) ? "; " : "";
1913   }
1914 
1915   // add 3 for parenthesis and preceding space
1916   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1917 
1918   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1919   if (message == nullptr) {
1920     // Shouldn't happen, but don't cause even more problems if it does
1921     message = const_cast<char*>(caster_klass->external_name());
1922   } else {
1923     jio_snprintf(message,
1924                  msglen,
1925                  "class %s cannot be cast to class %s (%s%s%s)",
1926                  caster_name,
1927                  target_name,
1928                  caster_klass_description,
1929                  klass_separator,
1930                  target_klass_description
1931                  );
1932   }
1933   return message;
1934 }
1935 
1936 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1937   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
1938 JRT_END
1939 
1940 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1941   if (!SafepointSynchronize::is_synchronizing()) {
1942     // Only try quick_enter() if we're not trying to reach a safepoint
1943     // so that the calling thread reaches the safepoint more quickly.
1944     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
1945       return;
1946     }
1947   }
1948   // NO_ASYNC required because an async exception on the state transition destructor
1949   // would leave you with the lock held and it would never be released.
1950   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1951   // and the model is that an exception implies the method failed.
1952   JRT_BLOCK_NO_ASYNC
1953   Handle h_obj(THREAD, obj);
1954   ObjectSynchronizer::enter(h_obj, lock, current);
1955   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1956   JRT_BLOCK_END
1957 }
1958 
1959 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1960 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
1961   SharedRuntime::monitor_enter_helper(obj, lock, current);
1962 JRT_END
1963 
1964 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1965   assert(JavaThread::current() == current, "invariant");
1966   // Exit must be non-blocking, and therefore no exceptions can be thrown.
1967   ExceptionMark em(current);
1968 
1969   // Check if C2_MacroAssembler::fast_unlock() or
1970   // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated
1971   // monitor before going slow path.  Since there is no safepoint
1972   // polling when calling into the VM, we can be sure that the monitor
1973   // hasn't been deallocated.
1974   ObjectMonitor* m = current->unlocked_inflated_monitor();
1975   if (m != nullptr) {
1976     assert(!m->has_owner(current), "must be");
1977     current->clear_unlocked_inflated_monitor();
1978 
1979     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
1980     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
1981       // Some other thread acquired the lock (or the monitor was
1982       // deflated). Either way we are done.
1983       current->dec_held_monitor_count();
1984       return;
1985     }
1986   }
1987 
1988   // The object could become unlocked through a JNI call, which we have no other checks for.
1989   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
1990   if (obj->is_unlocked()) {
1991     if (CheckJNICalls) {
1992       fatal("Object has been unlocked by JNI");
1993     }
1994     return;
1995   }
1996   ObjectSynchronizer::exit(obj, lock, current);
1997 }
1998 
1999 // Handles the uncommon cases of monitor unlocking in compiled code
2000 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2001   assert(current == JavaThread::current(), "pre-condition");
2002   SharedRuntime::monitor_exit_helper(obj, lock, current);
2003 JRT_END
2004 
2005 // This is only called when CheckJNICalls is true, and only
2006 // for virtual thread termination.
2007 JRT_LEAF(void,  SharedRuntime::log_jni_monitor_still_held())
2008   assert(CheckJNICalls, "Only call this when checking JNI usage");
2009   if (log_is_enabled(Debug, jni)) {
2010     JavaThread* current = JavaThread::current();
2011     int64_t vthread_id = java_lang_Thread::thread_id(current->vthread());
2012     int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj());
2013     log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT
2014                    ") exiting with Objects still locked by JNI MonitorEnter.",
2015                    vthread_id, carrier_id);
2016   }
2017 JRT_END
2018 
2019 #ifndef PRODUCT
2020 
2021 void SharedRuntime::print_statistics() {
2022   ttyLocker ttyl;
2023   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2024 
2025   SharedRuntime::print_ic_miss_histogram();
2026 
2027   // Dump the JRT_ENTRY counters
2028   if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
2029   if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
2030   if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2031   if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2032   if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2033   if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2034 
2035   tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2036   tty->print_cr("%5u wrong method", _wrong_method_ctr);
2037   tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2038   tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2039   tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2040 
2041   if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2042   if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2043   if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2044   if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2045   if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2046   if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2047   if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2048   if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
2049   if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2050   if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2051   if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2052   if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2053   if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2054   if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2055   if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
2056   if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
2057   if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2058 
2059   AdapterHandlerLibrary::print_statistics();
2060 
2061   if (xtty != nullptr)  xtty->tail("statistics");
2062 }
2063 
2064 inline double percent(int64_t x, int64_t y) {
2065   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2066 }
2067 
2068 class MethodArityHistogram {
2069  public:
2070   enum { MAX_ARITY = 256 };
2071  private:
2072   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2073   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2074   static uint64_t _total_compiled_calls;
2075   static uint64_t _max_compiled_calls_per_method;
2076   static int _max_arity;                       // max. arity seen
2077   static int _max_size;                        // max. arg size seen
2078 
2079   static void add_method_to_histogram(nmethod* nm) {
2080     Method* method = (nm == nullptr) ? nullptr : nm->method();
2081     if (method != nullptr) {
2082       ArgumentCount args(method->signature());
2083       int arity   = args.size() + (method->is_static() ? 0 : 1);
2084       int argsize = method->size_of_parameters();
2085       arity   = MIN2(arity, MAX_ARITY-1);
2086       argsize = MIN2(argsize, MAX_ARITY-1);
2087       uint64_t count = (uint64_t)method->compiled_invocation_count();
2088       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2089       _total_compiled_calls    += count;
2090       _arity_histogram[arity]  += count;
2091       _size_histogram[argsize] += count;
2092       _max_arity = MAX2(_max_arity, arity);
2093       _max_size  = MAX2(_max_size, argsize);
2094     }
2095   }
2096 
2097   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2098     const int N = MIN2(9, n);
2099     double sum = 0;
2100     double weighted_sum = 0;
2101     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2102     if (sum >= 1) { // prevent divide by zero or divide overflow
2103       double rest = sum;
2104       double percent = sum / 100;
2105       for (int i = 0; i <= N; i++) {
2106         rest -= (double)histo[i];
2107         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2108       }
2109       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2110       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2111       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2112       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2113     } else {
2114       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2115     }
2116   }
2117 
2118   void print_histogram() {
2119     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2120     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2121     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2122     print_histogram_helper(_max_size, _size_histogram, "size");
2123     tty->cr();
2124   }
2125 
2126  public:
2127   MethodArityHistogram() {
2128     // Take the Compile_lock to protect against changes in the CodeBlob structures
2129     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2130     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2131     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2132     _max_arity = _max_size = 0;
2133     _total_compiled_calls = 0;
2134     _max_compiled_calls_per_method = 0;
2135     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2136     CodeCache::nmethods_do(add_method_to_histogram);
2137     print_histogram();
2138   }
2139 };
2140 
2141 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2142 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2143 uint64_t MethodArityHistogram::_total_compiled_calls;
2144 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2145 int MethodArityHistogram::_max_arity;
2146 int MethodArityHistogram::_max_size;
2147 
2148 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2149   tty->print_cr("Calls from compiled code:");
2150   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2151   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2152   int64_t mono_i = _nof_interface_calls;
2153   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2154   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2155   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2156   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2157   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2158   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2159   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2160   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2161   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2162   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2163   tty->cr();
2164   tty->print_cr("Note 1: counter updates are not MT-safe.");
2165   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2166   tty->print_cr("        %% in nested categories are relative to their category");
2167   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2168   tty->cr();
2169 
2170   MethodArityHistogram h;
2171 }
2172 #endif
2173 
2174 #ifndef PRODUCT
2175 static int _lookups; // number of calls to lookup
2176 static int _equals;  // number of buckets checked with matching hash
2177 static int _archived_hits; // number of successful lookups in archived table
2178 static int _runtime_hits;  // number of successful lookups in runtime table
2179 #endif
2180 
2181 // A simple wrapper class around the calling convention information
2182 // that allows sharing of adapters for the same calling convention.
2183 class AdapterFingerPrint : public MetaspaceObj {
2184  private:
2185   enum {
2186     _basic_type_bits = 4,
2187     _basic_type_mask = right_n_bits(_basic_type_bits),
2188     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2189   };
2190   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2191   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2192 
2193   int _length;
2194 
2195   static int data_offset() { return sizeof(AdapterFingerPrint); }
2196   int* data_pointer() {
2197     return (int*)((address)this + data_offset());
2198   }
2199 
2200   // Private construtor. Use allocate() to get an instance.
2201   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2202     int* data = data_pointer();
2203     // Pack the BasicTypes with 8 per int
2204     assert(len == length(total_args_passed), "sanity");
2205     _length = len;
2206     int sig_index = 0;
2207     for (int index = 0; index < _length; index++) {
2208       int value = 0;
2209       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2210         int bt = adapter_encoding(sig_bt[sig_index++]);
2211         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2212         value = (value << _basic_type_bits) | bt;
2213       }
2214       data[index] = value;
2215     }
2216   }
2217 
2218   // Call deallocate instead
2219   ~AdapterFingerPrint() {
2220     ShouldNotCallThis();
2221   }
2222 
2223   static int length(int total_args) {
2224     return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2225   }
2226 
2227   static int compute_size_in_words(int len) {
2228     return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2229   }
2230 
2231   // Remap BasicTypes that are handled equivalently by the adapters.
2232   // These are correct for the current system but someday it might be
2233   // necessary to make this mapping platform dependent.
2234   static int adapter_encoding(BasicType in) {
2235     switch (in) {
2236       case T_BOOLEAN:
2237       case T_BYTE:
2238       case T_SHORT:
2239       case T_CHAR:
2240         // There are all promoted to T_INT in the calling convention
2241         return T_INT;
2242 
2243       case T_OBJECT:
2244       case T_ARRAY:
2245         // In other words, we assume that any register good enough for
2246         // an int or long is good enough for a managed pointer.
2247 #ifdef _LP64
2248         return T_LONG;
2249 #else
2250         return T_INT;
2251 #endif
2252 
2253       case T_INT:
2254       case T_LONG:
2255       case T_FLOAT:
2256       case T_DOUBLE:
2257       case T_VOID:
2258         return in;
2259 
2260       default:
2261         ShouldNotReachHere();
2262         return T_CONFLICT;
2263     }
2264   }
2265 
2266   void* operator new(size_t size, size_t fp_size) throw() {
2267     assert(fp_size >= size, "sanity check");
2268     void* p = AllocateHeap(fp_size, mtCode);
2269     memset(p, 0, fp_size);
2270     return p;
2271   }
2272 
2273   template<typename Function>
2274   void iterate_args(Function function) {
2275     for (int i = 0; i < length(); i++) {
2276       unsigned val = (unsigned)value(i);
2277       // args are packed so that first/lower arguments are in the highest
2278       // bits of each int value, so iterate from highest to the lowest
2279       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2280         unsigned v = (val >> j) & _basic_type_mask;
2281         if (v == 0) {
2282           continue;
2283         }
2284         function(v);
2285       }
2286     }
2287   }
2288 
2289  public:
2290   static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2291     int len = length(total_args_passed);
2292     int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2293     AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2294     assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2295     return afp;
2296   }
2297 
2298   static void deallocate(AdapterFingerPrint* fp) {
2299     FreeHeap(fp);
2300   }
2301 
2302   int value(int index) {
2303     int* data = data_pointer();
2304     return data[index];
2305   }
2306 
2307   int length() {
2308     return _length;
2309   }
2310 
2311   unsigned int compute_hash() {
2312     int hash = 0;
2313     for (int i = 0; i < length(); i++) {
2314       int v = value(i);
2315       //Add arithmetic operation to the hash, like +3 to improve hashing
2316       hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2317     }
2318     return (unsigned int)hash;
2319   }
2320 
2321   const char* as_string() {
2322     stringStream st;
2323     st.print("0x");
2324     for (int i = 0; i < length(); i++) {
2325       st.print("%x", value(i));
2326     }
2327     return st.as_string();
2328   }
2329 
2330   const char* as_basic_args_string() {
2331     stringStream st;
2332     bool long_prev = false;
2333     iterate_args([&] (int arg) {
2334       if (long_prev) {
2335         long_prev = false;
2336         if (arg == T_VOID) {
2337           st.print("J");
2338         } else {
2339           st.print("L");
2340         }
2341       }
2342       switch (arg) {
2343         case T_INT:    st.print("I");    break;
2344         case T_LONG:   long_prev = true; break;
2345         case T_FLOAT:  st.print("F");    break;
2346         case T_DOUBLE: st.print("D");    break;
2347         case T_VOID:   break;
2348         default: ShouldNotReachHere();
2349       }
2350     });
2351     if (long_prev) {
2352       st.print("L");
2353     }
2354     return st.as_string();
2355   }
2356 
2357   BasicType* as_basic_type(int& nargs) {
2358     nargs = 0;
2359     GrowableArray<BasicType> btarray;
2360     bool long_prev = false;
2361 
2362     iterate_args([&] (int arg) {
2363       if (long_prev) {
2364         long_prev = false;
2365         if (arg == T_VOID) {
2366           btarray.append(T_LONG);
2367         } else {
2368           btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2369         }
2370       }
2371       switch (arg) {
2372         case T_INT: // fallthrough
2373         case T_FLOAT: // fallthrough
2374         case T_DOUBLE:
2375         case T_VOID:
2376           btarray.append((BasicType)arg);
2377           break;
2378         case T_LONG:
2379           long_prev = true;
2380           break;
2381         default: ShouldNotReachHere();
2382       }
2383     });
2384 
2385     if (long_prev) {
2386       btarray.append(T_OBJECT);
2387     }
2388 
2389     nargs = btarray.length();
2390     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2391     int index = 0;
2392     GrowableArrayIterator<BasicType> iter = btarray.begin();
2393     while (iter != btarray.end()) {
2394       sig_bt[index++] = *iter;
2395       ++iter;
2396     }
2397     assert(index == btarray.length(), "sanity check");
2398 #ifdef ASSERT
2399     {
2400       AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2401       assert(this->equals(compare_fp), "sanity check");
2402       AdapterFingerPrint::deallocate(compare_fp);
2403     }
2404 #endif
2405     return sig_bt;
2406   }
2407 
2408   bool equals(AdapterFingerPrint* other) {
2409     if (other->_length != _length) {
2410       return false;
2411     } else {
2412       for (int i = 0; i < _length; i++) {
2413         if (value(i) != other->value(i)) {
2414           return false;
2415         }
2416       }
2417     }
2418     return true;
2419   }
2420 
2421   // methods required by virtue of being a MetaspaceObj
2422   void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2423   int size() const { return compute_size_in_words(_length); }
2424   MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2425 
2426   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2427     NOT_PRODUCT(_equals++);
2428     return fp1->equals(fp2);
2429   }
2430 
2431   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2432     return fp->compute_hash();
2433   }
2434 };
2435 
2436 #if INCLUDE_CDS
2437 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2438   return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2439 }
2440 
2441 class ArchivedAdapterTable : public OffsetCompactHashtable<
2442   AdapterFingerPrint*,
2443   AdapterHandlerEntry*,
2444   adapter_fp_equals_compact_hashtable_entry> {};
2445 #endif // INCLUDE_CDS
2446 
2447 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2448 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2449                   AnyObj::C_HEAP, mtCode,
2450                   AdapterFingerPrint::compute_hash,
2451                   AdapterFingerPrint::equals>;
2452 static AdapterHandlerTable* _adapter_handler_table;
2453 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2454 
2455 // Find a entry with the same fingerprint if it exists
2456 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2457   NOT_PRODUCT(_lookups++);
2458   assert_lock_strong(AdapterHandlerLibrary_lock);
2459   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2460   AdapterHandlerEntry* entry = nullptr;
2461 #if INCLUDE_CDS
2462   // if we are building the archive then the archived adapter table is
2463   // not valid and we need to use the ones added to the runtime table
2464   if (AOTCodeCache::is_using_adapter()) {
2465     // Search archived table first. It is read-only table so can be searched without lock
2466     entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2467 #ifndef PRODUCT
2468     if (entry != nullptr) {
2469       _archived_hits++;
2470     }
2471 #endif
2472   }
2473 #endif // INCLUDE_CDS
2474   if (entry == nullptr) {
2475     assert_lock_strong(AdapterHandlerLibrary_lock);
2476     AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2477     if (entry_p != nullptr) {
2478       entry = *entry_p;
2479       assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2480              entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2481              fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2482   #ifndef PRODUCT
2483       _runtime_hits++;
2484   #endif
2485     }
2486   }
2487   AdapterFingerPrint::deallocate(fp);
2488   return entry;
2489 }
2490 
2491 #ifndef PRODUCT
2492 static void print_table_statistics() {
2493   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2494     return sizeof(*key) + sizeof(*a);
2495   };
2496   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2497   ts.print(tty, "AdapterHandlerTable");
2498   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2499                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2500   int total_hits = _archived_hits + _runtime_hits;
2501   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2502                 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2503 }
2504 #endif
2505 
2506 // ---------------------------------------------------------------------------
2507 // Implementation of AdapterHandlerLibrary
2508 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr;
2509 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2510 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2511 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2512 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2513 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2514 #if INCLUDE_CDS
2515 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2516 #endif // INCLUDE_CDS
2517 static const int AdapterHandlerLibrary_size = 16*K;
2518 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2519 
2520 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2521   assert(_buffer != nullptr, "should be initialized");
2522   return _buffer;
2523 }
2524 
2525 static void post_adapter_creation(const AdapterBlob* new_adapter,
2526                                   const AdapterHandlerEntry* entry) {
2527   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2528     char blob_id[256];
2529     jio_snprintf(blob_id,
2530                  sizeof(blob_id),
2531                  "%s(%s)",
2532                  new_adapter->name(),
2533                  entry->fingerprint()->as_string());
2534     if (Forte::is_enabled()) {
2535       Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2536     }
2537 
2538     if (JvmtiExport::should_post_dynamic_code_generated()) {
2539       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2540     }
2541   }
2542 }
2543 
2544 void AdapterHandlerLibrary::create_abstract_method_handler() {
2545   assert_lock_strong(AdapterHandlerLibrary_lock);
2546   // Create a special handler for abstract methods.  Abstract methods
2547   // are never compiled so an i2c entry is somewhat meaningless, but
2548   // throw AbstractMethodError just in case.
2549   // Pass wrong_method_abstract for the c2i transitions to return
2550   // AbstractMethodError for invalid invocations.
2551   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2552   _abstract_method_handler = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(0, nullptr));
2553   _abstract_method_handler->set_entry_points(SharedRuntime::throw_AbstractMethodError_entry(),
2554                                              wrong_method_abstract,
2555                                              wrong_method_abstract,
2556                                              nullptr);
2557 }
2558 
2559 void AdapterHandlerLibrary::initialize() {
2560   {
2561     ResourceMark rm;
2562     MutexLocker mu(AdapterHandlerLibrary_lock);
2563     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2564     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2565     create_abstract_method_handler();
2566   }
2567 
2568 #if INCLUDE_CDS
2569   // Link adapters in AOT Cache to their code in AOT Code Cache
2570   if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2571     link_aot_adapters();
2572     lookup_simple_adapters();
2573     return;
2574   }
2575 #endif // INCLUDE_CDS
2576 
2577   ResourceMark rm;
2578   AdapterBlob* no_arg_blob = nullptr;
2579   AdapterBlob* int_arg_blob = nullptr;
2580   AdapterBlob* obj_arg_blob = nullptr;
2581   AdapterBlob* obj_int_arg_blob = nullptr;
2582   AdapterBlob* obj_obj_arg_blob = nullptr;
2583   {
2584     MutexLocker mu(AdapterHandlerLibrary_lock);
2585 
2586     _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr);
2587 
2588     BasicType obj_args[] = { T_OBJECT };
2589     _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args);
2590 
2591     BasicType int_args[] = { T_INT };
2592     _int_arg_handler = create_adapter(int_arg_blob, 1, int_args);
2593 
2594     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2595     _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args);
2596 
2597     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2598     _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args);
2599 
2600     assert(no_arg_blob != nullptr &&
2601            obj_arg_blob != nullptr &&
2602            int_arg_blob != nullptr &&
2603            obj_int_arg_blob != nullptr &&
2604            obj_obj_arg_blob != nullptr, "Initial adapters must be properly created");
2605   }
2606 
2607   // Outside of the lock
2608   post_adapter_creation(no_arg_blob, _no_arg_handler);
2609   post_adapter_creation(obj_arg_blob, _obj_arg_handler);
2610   post_adapter_creation(int_arg_blob, _int_arg_handler);
2611   post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
2612   post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
2613 }
2614 
2615 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2616   return AdapterHandlerEntry::allocate(fingerprint);
2617 }
2618 
2619 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2620   if (method->is_abstract()) {
2621     return _abstract_method_handler;
2622   }
2623   int total_args_passed = method->size_of_parameters(); // All args on stack
2624   if (total_args_passed == 0) {
2625     return _no_arg_handler;
2626   } else if (total_args_passed == 1) {
2627     if (!method->is_static()) {
2628       return _obj_arg_handler;
2629     }
2630     switch (method->signature()->char_at(1)) {
2631       case JVM_SIGNATURE_CLASS:
2632       case JVM_SIGNATURE_ARRAY:
2633         return _obj_arg_handler;
2634       case JVM_SIGNATURE_INT:
2635       case JVM_SIGNATURE_BOOLEAN:
2636       case JVM_SIGNATURE_CHAR:
2637       case JVM_SIGNATURE_BYTE:
2638       case JVM_SIGNATURE_SHORT:
2639         return _int_arg_handler;
2640     }
2641   } else if (total_args_passed == 2 &&
2642              !method->is_static()) {
2643     switch (method->signature()->char_at(1)) {
2644       case JVM_SIGNATURE_CLASS:
2645       case JVM_SIGNATURE_ARRAY:
2646         return _obj_obj_arg_handler;
2647       case JVM_SIGNATURE_INT:
2648       case JVM_SIGNATURE_BOOLEAN:
2649       case JVM_SIGNATURE_CHAR:
2650       case JVM_SIGNATURE_BYTE:
2651       case JVM_SIGNATURE_SHORT:
2652         return _obj_int_arg_handler;
2653     }
2654   }
2655   return nullptr;
2656 }
2657 
2658 class AdapterSignatureIterator : public SignatureIterator {
2659  private:
2660   BasicType stack_sig_bt[16];
2661   BasicType* sig_bt;
2662   int index;
2663 
2664  public:
2665   AdapterSignatureIterator(Symbol* signature,
2666                            fingerprint_t fingerprint,
2667                            bool is_static,
2668                            int total_args_passed) :
2669     SignatureIterator(signature, fingerprint),
2670     index(0)
2671   {
2672     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2673     if (!is_static) { // Pass in receiver first
2674       sig_bt[index++] = T_OBJECT;
2675     }
2676     do_parameters_on(this);
2677   }
2678 
2679   BasicType* basic_types() {
2680     return sig_bt;
2681   }
2682 
2683 #ifdef ASSERT
2684   int slots() {
2685     return index;
2686   }
2687 #endif
2688 
2689  private:
2690 
2691   friend class SignatureIterator;  // so do_parameters_on can call do_type
2692   void do_type(BasicType type) {
2693     sig_bt[index++] = type;
2694     if (type == T_LONG || type == T_DOUBLE) {
2695       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2696     }
2697   }
2698 };
2699 
2700 
2701 const char* AdapterHandlerEntry::_entry_names[] = {
2702   "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2703 };
2704 
2705 #ifdef ASSERT
2706 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2707   AdapterBlob* comparison_blob = nullptr;
2708   AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, true);
2709   assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison");
2710   assert(comparison_entry->compare_code(cached_entry), "code must match");
2711   // Release the one just created
2712   AdapterHandlerEntry::deallocate(comparison_entry);
2713 }
2714 #endif /* ASSERT*/
2715 
2716 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2717   // Use customized signature handler.  Need to lock around updates to
2718   // the _adapter_handler_table (it is not safe for concurrent readers
2719   // and a single writer: this could be fixed if it becomes a
2720   // problem).
2721 
2722   // Fast-path for trivial adapters
2723   AdapterHandlerEntry* entry = get_simple_adapter(method);
2724   if (entry != nullptr) {
2725     return entry;
2726   }
2727 
2728   ResourceMark rm;
2729   AdapterBlob* adapter_blob = nullptr;
2730 
2731   // Fill in the signature array, for the calling-convention call.
2732   int total_args_passed = method->size_of_parameters(); // All args on stack
2733 
2734   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2735                               method->is_static(), total_args_passed);
2736   assert(si.slots() == total_args_passed, "");
2737   BasicType* sig_bt = si.basic_types();
2738   {
2739     MutexLocker mu(AdapterHandlerLibrary_lock);
2740 
2741     // Lookup method signature's fingerprint
2742     entry = lookup(total_args_passed, sig_bt);
2743 
2744     if (entry != nullptr) {
2745       assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2746 #ifdef ASSERT
2747       if (!entry->is_shared() && VerifyAdapterSharing) {
2748         verify_adapter_sharing(total_args_passed, sig_bt, entry);
2749       }
2750 #endif
2751     } else {
2752       entry = create_adapter(adapter_blob, total_args_passed, sig_bt);
2753     }
2754   }
2755 
2756   // Outside of the lock
2757   if (adapter_blob != nullptr) {
2758     post_adapter_creation(adapter_blob, entry);
2759   }
2760   return entry;
2761 }
2762 
2763 AdapterBlob* AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2764   ResourceMark rm;
2765   const char* name = AdapterHandlerLibrary::name(handler->fingerprint());
2766   const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint());
2767   int offsets[AdapterHandlerEntry::ENTRIES_COUNT];
2768 
2769   AdapterBlob* adapter_blob = nullptr;
2770   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, offsets);
2771   if (blob != nullptr) {
2772     adapter_blob = blob->as_adapter_blob();
2773     address i2c_entry = adapter_blob->content_begin();
2774     assert(offsets[0] == 0, "sanity check");
2775     handler->set_entry_points(i2c_entry, i2c_entry + offsets[1], i2c_entry + offsets[2], i2c_entry + offsets[3]);
2776   }
2777   return adapter_blob;
2778 }
2779 
2780 #ifndef PRODUCT
2781 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) {
2782   ttyLocker ttyl;
2783   ResourceMark rm;
2784   int insts_size = adapter_blob->code_size();
2785   handler->print_adapter_on(tty);
2786   st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2787                 handler->fingerprint()->as_basic_args_string(),
2788                 handler->fingerprint()->as_string(), insts_size);
2789   st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2790   if (Verbose || PrintStubCode) {
2791     address first_pc = handler->base_address();
2792     if (first_pc != nullptr) {
2793       Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2794       st->cr();
2795     }
2796   }
2797 }
2798 #endif // PRODUCT
2799 
2800 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob,
2801                                                   AdapterHandlerEntry* handler,
2802                                                   int total_args_passed,
2803                                                   BasicType* sig_bt,
2804                                                   bool is_transient) {
2805   if (log_is_enabled(Info, perf, class, link)) {
2806     ClassLoader::perf_method_adapters_count()->inc();
2807   }
2808 
2809   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2810   CodeBuffer buffer(buf);
2811   short buffer_locs[20];
2812   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2813                                          sizeof(buffer_locs)/sizeof(relocInfo));
2814   MacroAssembler masm(&buffer);
2815   VMRegPair stack_regs[16];
2816   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2817 
2818   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2819   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2820   SharedRuntime::generate_i2c2i_adapters(&masm,
2821                                          total_args_passed,
2822                                          comp_args_on_stack,
2823                                          sig_bt,
2824                                          regs,
2825                                          handler);
2826 #ifdef ASSERT
2827   if (VerifyAdapterSharing) {
2828     handler->save_code(buf->code_begin(), buffer.insts_size());
2829     if (is_transient) {
2830       return true;
2831     }
2832   }
2833 #endif
2834 
2835   adapter_blob = AdapterBlob::create(&buffer);
2836   if (adapter_blob == nullptr) {
2837     // CodeCache is full, disable compilation
2838     // Ought to log this but compile log is only per compile thread
2839     // and we're some non descript Java thread.
2840     return false;
2841   }
2842   if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2843     // try to save generated code
2844     const char* name = AdapterHandlerLibrary::name(handler->fingerprint());
2845     const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint());
2846     int entry_offset[AdapterHandlerEntry::ENTRIES_COUNT];
2847     assert(AdapterHandlerEntry::ENTRIES_COUNT == 4, "sanity");
2848     address i2c_entry = handler->get_i2c_entry();
2849     entry_offset[0] = 0; // i2c_entry offset
2850     entry_offset[1] = handler->get_c2i_entry() - i2c_entry;
2851     entry_offset[2] = handler->get_c2i_unverified_entry() - i2c_entry;
2852     entry_offset[3] = handler->get_c2i_no_clinit_check_entry() - i2c_entry;
2853     bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, entry_offset);
2854     assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2855   }
2856   handler->relocate(adapter_blob->content_begin());
2857 #ifndef PRODUCT
2858   // debugging support
2859   if (PrintAdapterHandlers || PrintStubCode) {
2860     print_adapter_handler_info(tty, handler, adapter_blob);
2861   }
2862 #endif
2863   return true;
2864 }
2865 
2866 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob,
2867                                                            int total_args_passed,
2868                                                            BasicType* sig_bt,
2869                                                            bool is_transient) {
2870   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2871   AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2872   if (!generate_adapter_code(adapter_blob, handler, total_args_passed, sig_bt, is_transient)) {
2873     AdapterHandlerEntry::deallocate(handler);
2874     return nullptr;
2875   }
2876   if (!is_transient) {
2877     assert_lock_strong(AdapterHandlerLibrary_lock);
2878     _adapter_handler_table->put(fp, handler);
2879   }
2880   return handler;
2881 }
2882 
2883 #if INCLUDE_CDS
2884 void AdapterHandlerEntry::remove_unshareable_info() {
2885 #ifdef ASSERT
2886    _saved_code = nullptr;
2887    _saved_code_length = 0;
2888 #endif // ASSERT
2889   set_entry_points(nullptr, nullptr, nullptr, nullptr, false);
2890 }
2891 
2892 class CopyAdapterTableToArchive : StackObj {
2893 private:
2894   CompactHashtableWriter* _writer;
2895   ArchiveBuilder* _builder;
2896 public:
2897   CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
2898                                                              _builder(ArchiveBuilder::current())
2899   {}
2900 
2901   bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
2902     LogStreamHandle(Trace, aot) lsh;
2903     if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
2904       assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
2905       AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
2906       assert(buffered_fp != nullptr,"sanity check");
2907       AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
2908       assert(buffered_entry != nullptr,"sanity check");
2909 
2910       uint hash = fp->compute_hash();
2911       u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
2912       _writer->add(hash, delta);
2913       if (lsh.is_enabled()) {
2914         address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
2915         address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
2916         log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
2917       }
2918     } else {
2919       if (lsh.is_enabled()) {
2920         log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
2921       }
2922     }
2923     return true;
2924   }
2925 };
2926 
2927 void AdapterHandlerLibrary::dump_aot_adapter_table() {
2928   CompactHashtableStats stats;
2929   CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
2930   CopyAdapterTableToArchive copy(&writer);
2931   _adapter_handler_table->iterate(&copy);
2932   writer.dump(&_aot_adapter_handler_table, "archived adapter table");
2933 }
2934 
2935 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
2936   _aot_adapter_handler_table.serialize_header(soc);
2937 }
2938 
2939 AdapterBlob* AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
2940 #ifdef ASSERT
2941   if (TestAOTAdapterLinkFailure) {
2942     return nullptr;
2943   }
2944 #endif
2945   AdapterBlob* blob = lookup_aot_cache(handler);
2946 #ifndef PRODUCT
2947   // debugging support
2948   if ((blob != nullptr) && (PrintAdapterHandlers || PrintStubCode)) {
2949     print_adapter_handler_info(tty, handler, blob);
2950   }
2951 #endif
2952   return blob;
2953 }
2954 
2955 // This method is used during production run to link archived adapters (stored in AOT Cache)
2956 // to their code in AOT Code Cache
2957 void AdapterHandlerEntry::link() {
2958   AdapterBlob* adapter_blob = nullptr;
2959   ResourceMark rm;
2960   assert(_fingerprint != nullptr, "_fingerprint must not be null");
2961   bool generate_code = false;
2962   // Generate code only if AOTCodeCache is not available, or
2963   // caching adapters is disabled, or we fail to link
2964   // the AdapterHandlerEntry to its code in the AOTCodeCache
2965   if (AOTCodeCache::is_using_adapter()) {
2966     adapter_blob = AdapterHandlerLibrary::link_aot_adapter_handler(this);
2967     if (adapter_blob == nullptr) {
2968       log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
2969       generate_code = true;
2970     }
2971   } else {
2972     generate_code = true;
2973   }
2974   if (generate_code) {
2975     int nargs;
2976     BasicType* bt = _fingerprint->as_basic_type(nargs);
2977     if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, nargs, bt, /* is_transient */ false)) {
2978       // Don't throw exceptions during VM initialization because java.lang.* classes
2979       // might not have been initialized, causing problems when constructing the
2980       // Java exception object.
2981       vm_exit_during_initialization("Out of space in CodeCache for adapters");
2982     }
2983   }
2984   // Outside of the lock
2985   if (adapter_blob != nullptr) {
2986     post_adapter_creation(adapter_blob, this);
2987   }
2988   assert(_linked, "AdapterHandlerEntry must now be linked");
2989 }
2990 
2991 void AdapterHandlerLibrary::link_aot_adapters() {
2992   assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
2993   _aot_adapter_handler_table.iterate([](AdapterHandlerEntry* entry) {
2994     assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
2995     entry->link();
2996   });
2997 }
2998 
2999 // This method is called during production run to lookup simple adapters
3000 // in the archived adapter handler table
3001 void AdapterHandlerLibrary::lookup_simple_adapters() {
3002   assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3003 
3004   MutexLocker mu(AdapterHandlerLibrary_lock);
3005   _no_arg_handler = lookup(0, nullptr);
3006 
3007   BasicType obj_args[] = { T_OBJECT };
3008   _obj_arg_handler = lookup(1, obj_args);
3009 
3010   BasicType int_args[] = { T_INT };
3011   _int_arg_handler = lookup(1, int_args);
3012 
3013   BasicType obj_int_args[] = { T_OBJECT, T_INT };
3014   _obj_int_arg_handler = lookup(2, obj_int_args);
3015 
3016   BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3017   _obj_obj_arg_handler = lookup(2, obj_obj_args);
3018 
3019   assert(_no_arg_handler != nullptr &&
3020          _obj_arg_handler != nullptr &&
3021          _int_arg_handler != nullptr &&
3022          _obj_int_arg_handler != nullptr &&
3023          _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3024   assert(_no_arg_handler->is_linked() &&
3025          _obj_arg_handler->is_linked() &&
3026          _int_arg_handler->is_linked() &&
3027          _obj_int_arg_handler->is_linked() &&
3028          _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3029 }
3030 #endif // INCLUDE_CDS
3031 
3032 address AdapterHandlerEntry::base_address() {
3033   address base = _i2c_entry;
3034   if (base == nullptr)  base = _c2i_entry;
3035   assert(base <= _c2i_entry || _c2i_entry == nullptr, "");
3036   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, "");
3037   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, "");
3038   return base;
3039 }
3040 
3041 void AdapterHandlerEntry::relocate(address new_base) {
3042   address old_base = base_address();
3043   assert(old_base != nullptr, "");
3044   ptrdiff_t delta = new_base - old_base;
3045   if (_i2c_entry != nullptr)
3046     _i2c_entry += delta;
3047   if (_c2i_entry != nullptr)
3048     _c2i_entry += delta;
3049   if (_c2i_unverified_entry != nullptr)
3050     _c2i_unverified_entry += delta;
3051   if (_c2i_no_clinit_check_entry != nullptr)
3052     _c2i_no_clinit_check_entry += delta;
3053   assert(base_address() == new_base, "");
3054 }
3055 
3056 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3057   LogStreamHandle(Trace, aot) lsh;
3058   if (lsh.is_enabled()) {
3059     lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3060     lsh.cr();
3061   }
3062   it->push(&_fingerprint);
3063 }
3064 
3065 AdapterHandlerEntry::~AdapterHandlerEntry() {
3066   if (_fingerprint != nullptr) {
3067     AdapterFingerPrint::deallocate(_fingerprint);
3068     _fingerprint = nullptr;
3069   }
3070 #ifdef ASSERT
3071   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3072 #endif
3073   FreeHeap(this);
3074 }
3075 
3076 
3077 #ifdef ASSERT
3078 // Capture the code before relocation so that it can be compared
3079 // against other versions.  If the code is captured after relocation
3080 // then relative instructions won't be equivalent.
3081 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3082   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3083   _saved_code_length = length;
3084   memcpy(_saved_code, buffer, length);
3085 }
3086 
3087 
3088 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3089   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3090 
3091   if (other->_saved_code_length != _saved_code_length) {
3092     return false;
3093   }
3094 
3095   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3096 }
3097 #endif
3098 
3099 
3100 /**
3101  * Create a native wrapper for this native method.  The wrapper converts the
3102  * Java-compiled calling convention to the native convention, handles
3103  * arguments, and transitions to native.  On return from the native we transition
3104  * back to java blocking if a safepoint is in progress.
3105  */
3106 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3107   ResourceMark rm;
3108   nmethod* nm = nullptr;
3109 
3110   // Check if memory should be freed before allocation
3111   CodeCache::gc_on_allocation();
3112 
3113   assert(method->is_native(), "must be native");
3114   assert(method->is_special_native_intrinsic() ||
3115          method->has_native_function(), "must have something valid to call!");
3116 
3117   {
3118     // Perform the work while holding the lock, but perform any printing outside the lock
3119     MutexLocker mu(AdapterHandlerLibrary_lock);
3120     // See if somebody beat us to it
3121     if (method->code() != nullptr) {
3122       return;
3123     }
3124 
3125     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3126     assert(compile_id > 0, "Must generate native wrapper");
3127 
3128 
3129     ResourceMark rm;
3130     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3131     if (buf != nullptr) {
3132       CodeBuffer buffer(buf);
3133 
3134       if (method->is_continuation_enter_intrinsic()) {
3135         buffer.initialize_stubs_size(192);
3136       }
3137 
3138       struct { double data[20]; } locs_buf;
3139       struct { double data[20]; } stubs_locs_buf;
3140       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3141 #if defined(AARCH64) || defined(PPC64)
3142       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3143       // in the constant pool to ensure ordering between the barrier and oops
3144       // accesses. For native_wrappers we need a constant.
3145       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3146       // static java call that is resolved in the runtime.
3147       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3148         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3149       }
3150 #endif
3151       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3152       MacroAssembler _masm(&buffer);
3153 
3154       // Fill in the signature array, for the calling-convention call.
3155       const int total_args_passed = method->size_of_parameters();
3156 
3157       VMRegPair stack_regs[16];
3158       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3159 
3160       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3161                               method->is_static(), total_args_passed);
3162       BasicType* sig_bt = si.basic_types();
3163       assert(si.slots() == total_args_passed, "");
3164       BasicType ret_type = si.return_type();
3165 
3166       // Now get the compiled-Java arguments layout.
3167       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3168 
3169       // Generate the compiled-to-native wrapper code
3170       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3171 
3172       if (nm != nullptr) {
3173         {
3174           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3175           if (nm->make_in_use()) {
3176             method->set_code(method, nm);
3177           }
3178         }
3179 
3180         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3181         if (directive->PrintAssemblyOption) {
3182           nm->print_code();
3183         }
3184         DirectivesStack::release(directive);
3185       }
3186     }
3187   } // Unlock AdapterHandlerLibrary_lock
3188 
3189 
3190   // Install the generated code.
3191   if (nm != nullptr) {
3192     const char *msg = method->is_static() ? "(static)" : "";
3193     CompileTask::print_ul(nm, msg);
3194     if (PrintCompilation) {
3195       ttyLocker ttyl;
3196       CompileTask::print(tty, nm, msg);
3197     }
3198     nm->post_compiled_method_load_event();
3199   }
3200 }
3201 
3202 // -------------------------------------------------------------------------
3203 // Java-Java calling convention
3204 // (what you use when Java calls Java)
3205 
3206 //------------------------------name_for_receiver----------------------------------
3207 // For a given signature, return the VMReg for parameter 0.
3208 VMReg SharedRuntime::name_for_receiver() {
3209   VMRegPair regs;
3210   BasicType sig_bt = T_OBJECT;
3211   (void) java_calling_convention(&sig_bt, &regs, 1);
3212   // Return argument 0 register.  In the LP64 build pointers
3213   // take 2 registers, but the VM wants only the 'main' name.
3214   return regs.first();
3215 }
3216 
3217 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3218   // This method is returning a data structure allocating as a
3219   // ResourceObject, so do not put any ResourceMarks in here.
3220 
3221   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3222   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3223   int cnt = 0;
3224   if (has_receiver) {
3225     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3226   }
3227 
3228   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3229     BasicType type = ss.type();
3230     sig_bt[cnt++] = type;
3231     if (is_double_word_type(type))
3232       sig_bt[cnt++] = T_VOID;
3233   }
3234 
3235   if (has_appendix) {
3236     sig_bt[cnt++] = T_OBJECT;
3237   }
3238 
3239   assert(cnt < 256, "grow table size");
3240 
3241   int comp_args_on_stack;
3242   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3243 
3244   // the calling convention doesn't count out_preserve_stack_slots so
3245   // we must add that in to get "true" stack offsets.
3246 
3247   if (comp_args_on_stack) {
3248     for (int i = 0; i < cnt; i++) {
3249       VMReg reg1 = regs[i].first();
3250       if (reg1->is_stack()) {
3251         // Yuck
3252         reg1 = reg1->bias(out_preserve_stack_slots());
3253       }
3254       VMReg reg2 = regs[i].second();
3255       if (reg2->is_stack()) {
3256         // Yuck
3257         reg2 = reg2->bias(out_preserve_stack_slots());
3258       }
3259       regs[i].set_pair(reg2, reg1);
3260     }
3261   }
3262 
3263   // results
3264   *arg_size = cnt;
3265   return regs;
3266 }
3267 
3268 // OSR Migration Code
3269 //
3270 // This code is used convert interpreter frames into compiled frames.  It is
3271 // called from very start of a compiled OSR nmethod.  A temp array is
3272 // allocated to hold the interesting bits of the interpreter frame.  All
3273 // active locks are inflated to allow them to move.  The displaced headers and
3274 // active interpreter locals are copied into the temp buffer.  Then we return
3275 // back to the compiled code.  The compiled code then pops the current
3276 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3277 // copies the interpreter locals and displaced headers where it wants.
3278 // Finally it calls back to free the temp buffer.
3279 //
3280 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3281 
3282 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3283   assert(current == JavaThread::current(), "pre-condition");
3284   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3285   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3286   // frame. The stack watermark code below ensures that the interpreted frame is processed
3287   // before it gets unwound. This is helpful as the size of the compiled frame could be
3288   // larger than the interpreted frame, which could result in the new frame not being
3289   // processed correctly.
3290   StackWatermarkSet::before_unwind(current);
3291 
3292   //
3293   // This code is dependent on the memory layout of the interpreter local
3294   // array and the monitors. On all of our platforms the layout is identical
3295   // so this code is shared. If some platform lays the their arrays out
3296   // differently then this code could move to platform specific code or
3297   // the code here could be modified to copy items one at a time using
3298   // frame accessor methods and be platform independent.
3299 
3300   frame fr = current->last_frame();
3301   assert(fr.is_interpreted_frame(), "");
3302   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3303 
3304   // Figure out how many monitors are active.
3305   int active_monitor_count = 0;
3306   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3307        kptr < fr.interpreter_frame_monitor_begin();
3308        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3309     if (kptr->obj() != nullptr) active_monitor_count++;
3310   }
3311 
3312   // QQQ we could place number of active monitors in the array so that compiled code
3313   // could double check it.
3314 
3315   Method* moop = fr.interpreter_frame_method();
3316   int max_locals = moop->max_locals();
3317   // Allocate temp buffer, 1 word per local & 2 per active monitor
3318   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3319   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3320 
3321   // Copy the locals.  Order is preserved so that loading of longs works.
3322   // Since there's no GC I can copy the oops blindly.
3323   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3324   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3325                        (HeapWord*)&buf[0],
3326                        max_locals);
3327 
3328   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3329   int i = max_locals;
3330   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3331        kptr2 < fr.interpreter_frame_monitor_begin();
3332        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3333     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3334       BasicLock *lock = kptr2->lock();
3335       if (LockingMode == LM_LEGACY) {
3336         // Inflate so the object's header no longer refers to the BasicLock.
3337         if (lock->displaced_header().is_unlocked()) {
3338           // The object is locked and the resulting ObjectMonitor* will also be
3339           // locked so it can't be async deflated until ownership is dropped.
3340           // See the big comment in basicLock.cpp: BasicLock::move_to().
3341           ObjectSynchronizer::inflate_helper(kptr2->obj());
3342         }
3343         // Now the displaced header is free to move because the
3344         // object's header no longer refers to it.
3345         buf[i] = (intptr_t)lock->displaced_header().value();
3346       } else if (UseObjectMonitorTable) {
3347         buf[i] = (intptr_t)lock->object_monitor_cache();
3348       }
3349 #ifdef ASSERT
3350       else {
3351         buf[i] = badDispHeaderOSR;
3352       }
3353 #endif
3354       i++;
3355       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3356     }
3357   }
3358   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3359 
3360   RegisterMap map(current,
3361                   RegisterMap::UpdateMap::skip,
3362                   RegisterMap::ProcessFrames::include,
3363                   RegisterMap::WalkContinuation::skip);
3364   frame sender = fr.sender(&map);
3365   if (sender.is_interpreted_frame()) {
3366     current->push_cont_fastpath(sender.sp());
3367   }
3368 
3369   return buf;
3370 JRT_END
3371 
3372 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3373   FREE_C_HEAP_ARRAY(intptr_t, buf);
3374 JRT_END
3375 
3376 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3377   bool found = false;
3378 #if INCLUDE_CDS
3379   if (AOTCodeCache::is_using_adapter()) {
3380     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3381       return (found = (b == CodeCache::find_blob(handler->get_i2c_entry())));
3382     };
3383     _aot_adapter_handler_table.iterate(findblob_archived_table);
3384   }
3385 #endif // INCLUDE_CDS
3386   if (!found) {
3387     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3388       return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3389     };
3390     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3391     _adapter_handler_table->iterate(findblob_runtime_table);
3392   }
3393   return found;
3394 }
3395 
3396 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) {
3397   return fingerprint->as_basic_args_string();
3398 }
3399 
3400 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) {
3401   unsigned int hash = fingerprint->compute_hash();
3402   return hash;
3403 }
3404 
3405 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3406   bool found = false;
3407 #if INCLUDE_CDS
3408   if (AOTCodeCache::is_using_adapter()) {
3409     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3410       if (b == CodeCache::find_blob(handler->get_i2c_entry())) {
3411         found = true;
3412         st->print("Adapter for signature: ");
3413         handler->print_adapter_on(st);
3414         return true;
3415       } else {
3416         return false; // keep looking
3417       }
3418     };
3419     _aot_adapter_handler_table.iterate(findblob_archived_table);
3420   }
3421 #endif // INCLUDE_CDS
3422   if (!found) {
3423     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3424       if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3425         found = true;
3426         st->print("Adapter for signature: ");
3427         a->print_adapter_on(st);
3428         return true;
3429       } else {
3430         return false; // keep looking
3431       }
3432     };
3433     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3434     _adapter_handler_table->iterate(findblob_runtime_table);
3435   }
3436   assert(found, "Should have found handler");
3437 }
3438 
3439 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3440   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3441   if (get_i2c_entry() != nullptr) {
3442     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3443   }
3444   if (get_c2i_entry() != nullptr) {
3445     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3446   }
3447   if (get_c2i_unverified_entry() != nullptr) {
3448     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3449   }
3450   if (get_c2i_no_clinit_check_entry() != nullptr) {
3451     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3452   }
3453   st->cr();
3454 }
3455 
3456 #ifndef PRODUCT
3457 
3458 void AdapterHandlerLibrary::print_statistics() {
3459   print_table_statistics();
3460 }
3461 
3462 #endif /* PRODUCT */
3463 
3464 bool AdapterHandlerLibrary::is_abstract_method_adapter(AdapterHandlerEntry* entry) {
3465   if (entry == _abstract_method_handler) {
3466     return true;
3467   }
3468   return false;
3469 }
3470 
3471 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3472   assert(current == JavaThread::current(), "pre-condition");
3473   StackOverflow* overflow_state = current->stack_overflow_state();
3474   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3475   overflow_state->set_reserved_stack_activation(current->stack_base());
3476 JRT_END
3477 
3478 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3479   ResourceMark rm(current);
3480   frame activation;
3481   nmethod* nm = nullptr;
3482   int count = 1;
3483 
3484   assert(fr.is_java_frame(), "Must start on Java frame");
3485 
3486   RegisterMap map(JavaThread::current(),
3487                   RegisterMap::UpdateMap::skip,
3488                   RegisterMap::ProcessFrames::skip,
3489                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3490   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3491     if (!fr.is_java_frame()) {
3492       continue;
3493     }
3494 
3495     Method* method = nullptr;
3496     bool found = false;
3497     if (fr.is_interpreted_frame()) {
3498       method = fr.interpreter_frame_method();
3499       if (method != nullptr && method->has_reserved_stack_access()) {
3500         found = true;
3501       }
3502     } else {
3503       CodeBlob* cb = fr.cb();
3504       if (cb != nullptr && cb->is_nmethod()) {
3505         nm = cb->as_nmethod();
3506         method = nm->method();
3507         // scope_desc_near() must be used, instead of scope_desc_at() because on
3508         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3509         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3510           method = sd->method();
3511           if (method != nullptr && method->has_reserved_stack_access()) {
3512             found = true;
3513           }
3514         }
3515       }
3516     }
3517     if (found) {
3518       activation = fr;
3519       warning("Potentially dangerous stack overflow in "
3520               "ReservedStackAccess annotated method %s [%d]",
3521               method->name_and_sig_as_C_string(), count++);
3522       EventReservedStackActivation event;
3523       if (event.should_commit()) {
3524         event.set_method(method);
3525         event.commit();
3526       }
3527     }
3528   }
3529   return activation;
3530 }
3531 
3532 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3533   // After any safepoint, just before going back to compiled code,
3534   // we inform the GC that we will be doing initializing writes to
3535   // this object in the future without emitting card-marks, so
3536   // GC may take any compensating steps.
3537 
3538   oop new_obj = current->vm_result_oop();
3539   if (new_obj == nullptr) return;
3540 
3541   BarrierSet *bs = BarrierSet::barrier_set();
3542   bs->on_slowpath_allocation_exit(current, new_obj);
3543 }