1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/compilationPolicy.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/vframe.inline.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/dtrace.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/hashtable.inline.hpp"
  75 #include "utilities/macros.hpp"
  76 #include "utilities/xmlstream.hpp"
  77 #ifdef COMPILER1
  78 #include "c1/c1_Runtime1.hpp"
  79 #endif
  80 
  81 // Shared stub locations
  82 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  83 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  84 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  88 address             SharedRuntime::_resolve_static_call_entry;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  94 
  95 #ifdef COMPILER2
  96 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  97 #endif // COMPILER2
  98 
  99 
 100 //----------------------------generate_stubs-----------------------------------
 101 void SharedRuntime::generate_stubs() {
 102   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 103   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 108   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 109 
 110 #if COMPILER2_OR_JVMCI
 111   // Vectors are generated only by C2 and JVMCI.
 112   bool support_wide = is_wide_vector(MaxVectorSize);
 113   if (support_wide) {
 114     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 115   }
 116 #endif // COMPILER2_OR_JVMCI
 117   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 118   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 119 
 120   generate_deopt_blob();
 121 
 122 #ifdef COMPILER2
 123   generate_uncommon_trap_blob();
 124 #endif // COMPILER2
 125 }
 126 
 127 #include <math.h>
 128 
 129 // Implementation of SharedRuntime
 130 
 131 #ifndef PRODUCT
 132 // For statistics
 133 int SharedRuntime::_ic_miss_ctr = 0;
 134 int SharedRuntime::_wrong_method_ctr = 0;
 135 int SharedRuntime::_resolve_static_ctr = 0;
 136 int SharedRuntime::_resolve_virtual_ctr = 0;
 137 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 138 int SharedRuntime::_implicit_null_throws = 0;
 139 int SharedRuntime::_implicit_div0_throws = 0;
 140 int SharedRuntime::_throw_null_ctr = 0;
 141 
 142 int SharedRuntime::_nof_normal_calls = 0;
 143 int SharedRuntime::_nof_optimized_calls = 0;
 144 int SharedRuntime::_nof_inlined_calls = 0;
 145 int SharedRuntime::_nof_megamorphic_calls = 0;
 146 int SharedRuntime::_nof_static_calls = 0;
 147 int SharedRuntime::_nof_inlined_static_calls = 0;
 148 int SharedRuntime::_nof_interface_calls = 0;
 149 int SharedRuntime::_nof_optimized_interface_calls = 0;
 150 int SharedRuntime::_nof_inlined_interface_calls = 0;
 151 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 152 int SharedRuntime::_nof_removable_exceptions = 0;
 153 
 154 int SharedRuntime::_new_instance_ctr=0;
 155 int SharedRuntime::_new_array_ctr=0;
 156 int SharedRuntime::_multi1_ctr=0;
 157 int SharedRuntime::_multi2_ctr=0;
 158 int SharedRuntime::_multi3_ctr=0;
 159 int SharedRuntime::_multi4_ctr=0;
 160 int SharedRuntime::_multi5_ctr=0;
 161 int SharedRuntime::_mon_enter_stub_ctr=0;
 162 int SharedRuntime::_mon_exit_stub_ctr=0;
 163 int SharedRuntime::_mon_enter_ctr=0;
 164 int SharedRuntime::_mon_exit_ctr=0;
 165 int SharedRuntime::_partial_subtype_ctr=0;
 166 int SharedRuntime::_jbyte_array_copy_ctr=0;
 167 int SharedRuntime::_jshort_array_copy_ctr=0;
 168 int SharedRuntime::_jint_array_copy_ctr=0;
 169 int SharedRuntime::_jlong_array_copy_ctr=0;
 170 int SharedRuntime::_oop_array_copy_ctr=0;
 171 int SharedRuntime::_checkcast_array_copy_ctr=0;
 172 int SharedRuntime::_unsafe_array_copy_ctr=0;
 173 int SharedRuntime::_generic_array_copy_ctr=0;
 174 int SharedRuntime::_slow_array_copy_ctr=0;
 175 int SharedRuntime::_find_handler_ctr=0;
 176 int SharedRuntime::_rethrow_ctr=0;
 177 
 178 int     SharedRuntime::_ICmiss_index                    = 0;
 179 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 180 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 181 
 182 
 183 void SharedRuntime::trace_ic_miss(address at) {
 184   for (int i = 0; i < _ICmiss_index; i++) {
 185     if (_ICmiss_at[i] == at) {
 186       _ICmiss_count[i]++;
 187       return;
 188     }
 189   }
 190   int index = _ICmiss_index++;
 191   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 192   _ICmiss_at[index] = at;
 193   _ICmiss_count[index] = 1;
 194 }
 195 
 196 void SharedRuntime::print_ic_miss_histogram() {
 197   if (ICMissHistogram) {
 198     tty->print_cr("IC Miss Histogram:");
 199     int tot_misses = 0;
 200     for (int i = 0; i < _ICmiss_index; i++) {
 201       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 202       tot_misses += _ICmiss_count[i];
 203     }
 204     tty->print_cr("Total IC misses: %7d", tot_misses);
 205   }
 206 }
 207 #endif // PRODUCT
 208 
 209 
 210 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 211   return x * y;
 212 JRT_END
 213 
 214 
 215 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 216   if (x == min_jlong && y == CONST64(-1)) {
 217     return x;
 218   } else {
 219     return x / y;
 220   }
 221 JRT_END
 222 
 223 
 224 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 225   if (x == min_jlong && y == CONST64(-1)) {
 226     return 0;
 227   } else {
 228     return x % y;
 229   }
 230 JRT_END
 231 
 232 
 233 const juint  float_sign_mask  = 0x7FFFFFFF;
 234 const juint  float_infinity   = 0x7F800000;
 235 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 236 const julong double_infinity  = CONST64(0x7FF0000000000000);
 237 
 238 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 239 #ifdef _WIN64
 240   // 64-bit Windows on amd64 returns the wrong values for
 241   // infinity operands.
 242   union { jfloat f; juint i; } xbits, ybits;
 243   xbits.f = x;
 244   ybits.f = y;
 245   // x Mod Infinity == x unless x is infinity
 246   if (((xbits.i & float_sign_mask) != float_infinity) &&
 247        ((ybits.i & float_sign_mask) == float_infinity) ) {
 248     return x;
 249   }
 250   return ((jfloat)fmod_winx64((double)x, (double)y));
 251 #else
 252   return ((jfloat)fmod((double)x,(double)y));
 253 #endif
 254 JRT_END
 255 
 256 
 257 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 258 #ifdef _WIN64
 259   union { jdouble d; julong l; } xbits, ybits;
 260   xbits.d = x;
 261   ybits.d = y;
 262   // x Mod Infinity == x unless x is infinity
 263   if (((xbits.l & double_sign_mask) != double_infinity) &&
 264        ((ybits.l & double_sign_mask) == double_infinity) ) {
 265     return x;
 266   }
 267   return ((jdouble)fmod_winx64((double)x, (double)y));
 268 #else
 269   return ((jdouble)fmod((double)x,(double)y));
 270 #endif
 271 JRT_END
 272 
 273 #ifdef __SOFTFP__
 274 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 275   return x + y;
 276 JRT_END
 277 
 278 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 279   return x - y;
 280 JRT_END
 281 
 282 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 283   return x * y;
 284 JRT_END
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 287   return x / y;
 288 JRT_END
 289 
 290 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 291   return x + y;
 292 JRT_END
 293 
 294 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 295   return x - y;
 296 JRT_END
 297 
 298 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 299   return x * y;
 300 JRT_END
 301 
 302 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 303   return x / y;
 304 JRT_END
 305 
 306 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 307   return (jfloat)x;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 311   return (jdouble)x;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 315   return (jdouble)x;
 316 JRT_END
 317 
 318 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 319   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 320 JRT_END
 321 
 322 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 323   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 324 JRT_END
 325 
 326 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 327   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 328 JRT_END
 329 
 330 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 331   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 332 JRT_END
 333 
 334 // Functions to return the opposite of the aeabi functions for nan.
 335 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 336   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 337 JRT_END
 338 
 339 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 340   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 341 JRT_END
 342 
 343 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 344   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 345 JRT_END
 346 
 347 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 348   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 349 JRT_END
 350 
 351 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 352   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 353 JRT_END
 354 
 355 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 356   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 360   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 364   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 // Intrinsics make gcc generate code for these.
 368 float  SharedRuntime::fneg(float f)   {
 369   return -f;
 370 }
 371 
 372 double SharedRuntime::dneg(double f)  {
 373   return -f;
 374 }
 375 
 376 #endif // __SOFTFP__
 377 
 378 #if defined(__SOFTFP__) || defined(E500V2)
 379 // Intrinsics make gcc generate code for these.
 380 double SharedRuntime::dabs(double f)  {
 381   return (f <= (double)0.0) ? (double)0.0 - f : f;
 382 }
 383 
 384 #endif
 385 
 386 #if defined(__SOFTFP__) || defined(PPC)
 387 double SharedRuntime::dsqrt(double f) {
 388   return sqrt(f);
 389 }
 390 #endif
 391 
 392 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 393   if (g_isnan(x))
 394     return 0;
 395   if (x >= (jfloat) max_jint)
 396     return max_jint;
 397   if (x <= (jfloat) min_jint)
 398     return min_jint;
 399   return (jint) x;
 400 JRT_END
 401 
 402 
 403 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 404   if (g_isnan(x))
 405     return 0;
 406   if (x >= (jfloat) max_jlong)
 407     return max_jlong;
 408   if (x <= (jfloat) min_jlong)
 409     return min_jlong;
 410   return (jlong) x;
 411 JRT_END
 412 
 413 
 414 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 415   if (g_isnan(x))
 416     return 0;
 417   if (x >= (jdouble) max_jint)
 418     return max_jint;
 419   if (x <= (jdouble) min_jint)
 420     return min_jint;
 421   return (jint) x;
 422 JRT_END
 423 
 424 
 425 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 426   if (g_isnan(x))
 427     return 0;
 428   if (x >= (jdouble) max_jlong)
 429     return max_jlong;
 430   if (x <= (jdouble) min_jlong)
 431     return min_jlong;
 432   return (jlong) x;
 433 JRT_END
 434 
 435 
 436 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 437   return (jfloat)x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 442   return (jfloat)x;
 443 JRT_END
 444 
 445 
 446 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 447   return (jdouble)x;
 448 JRT_END
 449 
 450 // Exception handling across interpreter/compiler boundaries
 451 //
 452 // exception_handler_for_return_address(...) returns the continuation address.
 453 // The continuation address is the entry point of the exception handler of the
 454 // previous frame depending on the return address.
 455 
 456 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 457   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 458   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 459 
 460   // Reset method handle flag.
 461   thread->set_is_method_handle_return(false);
 462 
 463 #if INCLUDE_JVMCI
 464   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 465   // and other exception handler continuations do not read it
 466   thread->set_exception_pc(NULL);
 467 #endif // INCLUDE_JVMCI
 468 
 469   if (Continuation::is_return_barrier_entry(return_address)) {
 470     return StubRoutines::cont_returnBarrierExc();
 471   }
 472   
 473   // The fastest case first
 474   CodeBlob* blob = CodeCache::find_blob(return_address);
 475   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 476   if (nm != NULL) {
 477     // Set flag if return address is a method handle call site.
 478     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 479     // native nmethods don't have exception handlers
 480     assert(!nm->is_native_method(), "no exception handler");
 481     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 482     if (nm->is_deopt_pc(return_address)) {
 483       // If we come here because of a stack overflow, the stack may be
 484       // unguarded. Reguard the stack otherwise if we return to the
 485       // deopt blob and the stack bang causes a stack overflow we
 486       // crash.
 487       bool guard_pages_enabled = thread->stack_guards_enabled();
 488       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 489       if (thread->reserved_stack_activation() != thread->stack_base()) {
 490         thread->set_reserved_stack_activation(thread->stack_base());
 491       }
 492       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 493       return SharedRuntime::deopt_blob()->unpack_with_exception();
 494     } else {
 495       return nm->exception_begin();
 496     }
 497   }
 498 
 499   // Entry code
 500   if (StubRoutines::returns_to_call_stub(return_address)) {
 501     return StubRoutines::catch_exception_entry();
 502   }
 503   // Interpreted code
 504   if (Interpreter::contains(return_address)) {
 505     return Interpreter::rethrow_exception_entry();
 506   }
 507 
 508   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 509   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 510 
 511 #ifndef PRODUCT
 512   { ResourceMark rm;
 513     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 514     os::print_location(tty, (intptr_t)return_address);
 515     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 516     tty->print_cr("b) other problem");
 517   }
 518 #endif // PRODUCT
 519 
 520   ShouldNotReachHere();
 521   return NULL;
 522 }
 523 
 524 
 525 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 526   return raw_exception_handler_for_return_address(thread, return_address);
 527 JRT_END
 528 
 529 
 530 address SharedRuntime::get_poll_stub(address pc) {
 531   address stub;
 532   // Look up the code blob
 533   CodeBlob *cb = CodeCache::find_blob(pc);
 534 
 535   // Should be an nmethod
 536   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 537 
 538   // Look up the relocation information
 539   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 540       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 541 
 542 #ifdef ASSERT
 543   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 544     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 545     Disassembler::decode(cb);
 546     fatal("Only polling locations are used for safepoint");
 547   }
 548 #endif
 549 
 550   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 551   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 552   if (at_poll_return) {
 553     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 554            "polling page return stub not created yet");
 555     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 556   } else if (has_wide_vectors) {
 557     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 558            "polling page vectors safepoint stub not created yet");
 559     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 560   } else {
 561     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 562            "polling page safepoint stub not created yet");
 563     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 564   }
 565   log_debug(safepoint)("... found polling page %s exception at pc = "
 566                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 567                        at_poll_return ? "return" : "loop",
 568                        (intptr_t)pc, (intptr_t)stub);
 569   return stub;
 570 }
 571 
 572 
 573 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 574   assert(caller.is_interpreted_frame(), "");
 575   int args_size = ArgumentSizeComputer(sig).size() + 1;
 576   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 577   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 578   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 579   return result;
 580 }
 581 
 582 
 583 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 584   if (JvmtiExport::can_post_on_exceptions()) {
 585     vframeStream vfst(thread, true);
 586     methodHandle method = methodHandle(thread, vfst.method());
 587     address bcp = method()->bcp_from(vfst.bci());
 588     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 589   }
 590   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 591 }
 592 
 593 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 594   Handle h_exception = Exceptions::new_exception(thread, name, message);
 595   throw_and_post_jvmti_exception(thread, h_exception);
 596 }
 597 
 598 // The interpreter code to call this tracing function is only
 599 // called/generated when UL is on for redefine, class and has the right level
 600 // and tags. Since obsolete methods are never compiled, we don't have
 601 // to modify the compilers to generate calls to this function.
 602 //
 603 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 604     JavaThread* thread, Method* method))
 605   if (method->is_obsolete()) {
 606     // We are calling an obsolete method, but this is not necessarily
 607     // an error. Our method could have been redefined just after we
 608     // fetched the Method* from the constant pool.
 609     ResourceMark rm;
 610     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 611   }
 612   return 0;
 613 JRT_END
 614 
 615 // ret_pc points into caller; we are returning caller's exception handler
 616 // for given exception
 617 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 618                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 619   assert(cm != NULL, "must exist");
 620   ResourceMark rm;
 621 
 622 #if INCLUDE_JVMCI
 623   if (cm->is_compiled_by_jvmci()) {
 624     // lookup exception handler for this pc
 625     int catch_pco = ret_pc - cm->code_begin();
 626     ExceptionHandlerTable table(cm);
 627     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 628     if (t != NULL) {
 629       return cm->code_begin() + t->pco();
 630     } else {
 631       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 632     }
 633   }
 634 #endif // INCLUDE_JVMCI
 635 
 636   nmethod* nm = cm->as_nmethod();
 637   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 638   // determine handler bci, if any
 639   EXCEPTION_MARK;
 640 
 641   int handler_bci = -1;
 642   int scope_depth = 0;
 643   if (!force_unwind) {
 644     int bci = sd->bci();
 645     bool recursive_exception = false;
 646     do {
 647       bool skip_scope_increment = false;
 648       // exception handler lookup
 649       Klass* ek = exception->klass();
 650       methodHandle mh(THREAD, sd->method());
 651       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 652       if (HAS_PENDING_EXCEPTION) {
 653         recursive_exception = true;
 654         // We threw an exception while trying to find the exception handler.
 655         // Transfer the new exception to the exception handle which will
 656         // be set into thread local storage, and do another lookup for an
 657         // exception handler for this exception, this time starting at the
 658         // BCI of the exception handler which caused the exception to be
 659         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 660         // argument to ensure that the correct exception is thrown (4870175).
 661         recursive_exception_occurred = true;
 662         exception = Handle(THREAD, PENDING_EXCEPTION);
 663         CLEAR_PENDING_EXCEPTION;
 664         if (handler_bci >= 0) {
 665           bci = handler_bci;
 666           handler_bci = -1;
 667           skip_scope_increment = true;
 668         }
 669       }
 670       else {
 671         recursive_exception = false;
 672       }
 673       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 674         sd = sd->sender();
 675         if (sd != NULL) {
 676           bci = sd->bci();
 677         }
 678         ++scope_depth;
 679       }
 680     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 681   }
 682 
 683   // found handling method => lookup exception handler
 684   int catch_pco = ret_pc - nm->code_begin();
 685 
 686   ExceptionHandlerTable table(nm);
 687   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 688   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 689     // Allow abbreviated catch tables.  The idea is to allow a method
 690     // to materialize its exceptions without committing to the exact
 691     // routing of exceptions.  In particular this is needed for adding
 692     // a synthetic handler to unlock monitors when inlining
 693     // synchronized methods since the unlock path isn't represented in
 694     // the bytecodes.
 695     t = table.entry_for(catch_pco, -1, 0);
 696   }
 697 
 698 #ifdef COMPILER1
 699   if (t == NULL && nm->is_compiled_by_c1()) {
 700     assert(nm->unwind_handler_begin() != NULL, "");
 701     return nm->unwind_handler_begin();
 702   }
 703 #endif
 704 
 705   if (t == NULL) {
 706     ttyLocker ttyl;
 707     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 708     tty->print_cr("   Exception:");
 709     exception->print();
 710     tty->cr();
 711     tty->print_cr(" Compiled exception table :");
 712     table.print();
 713     nm->print();
 714     // nm->print_code();
 715     guarantee(false, "missing exception handler");
 716     return NULL;
 717   }
 718 
 719   return nm->code_begin() + t->pco();
 720 }
 721 
 722 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 723   // These errors occur only at call sites
 724   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 725 JRT_END
 726 
 727 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 728   // These errors occur only at call sites
 729   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 730 JRT_END
 731 
 732 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 733   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 734 JRT_END
 735 
 736 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 741   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 742   // cache sites (when the callee activation is not yet set up) so we are at a call site
 743   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 747   throw_StackOverflowError_common(thread, false);
 748 JRT_END
 749 
 750 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 751   throw_StackOverflowError_common(thread, true);
 752 JRT_END
 753 
 754 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 755   // We avoid using the normal exception construction in this case because
 756   // it performs an upcall to Java, and we're already out of stack space.
 757   Thread* THREAD = thread;
 758   Klass* k = SystemDictionary::StackOverflowError_klass();
 759   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 760   if (delayed) {
 761     java_lang_Throwable::set_message(exception_oop,
 762                                      Universe::delayed_stack_overflow_error_message());
 763   }
 764   Handle exception (thread, exception_oop);
 765   if (StackTraceInThrowable) {
 766     java_lang_Throwable::fill_in_stack_trace(exception);
 767   }
 768   // Increment counter for hs_err file reporting
 769   Atomic::inc(&Exceptions::_stack_overflow_errors);
 770   throw_and_post_jvmti_exception(thread, exception);
 771 }
 772 
 773 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 774                                                            address pc,
 775                                                            ImplicitExceptionKind exception_kind)
 776 {
 777   address target_pc = NULL;
 778 
 779   if (Interpreter::contains(pc)) {
 780 #ifdef CC_INTERP
 781     // C++ interpreter doesn't throw implicit exceptions
 782     ShouldNotReachHere();
 783 #else
 784     switch (exception_kind) {
 785       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 786       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 787       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 788       default:                      ShouldNotReachHere();
 789     }
 790 #endif // !CC_INTERP
 791   } else {
 792     switch (exception_kind) {
 793       case STACK_OVERFLOW: {
 794         // Stack overflow only occurs upon frame setup; the callee is
 795         // going to be unwound. Dispatch to a shared runtime stub
 796         // which will cause the StackOverflowError to be fabricated
 797         // and processed.
 798         // Stack overflow should never occur during deoptimization:
 799         // the compiled method bangs the stack by as much as the
 800         // interpreter would need in case of a deoptimization. The
 801         // deoptimization blob and uncommon trap blob bang the stack
 802         // in a debug VM to verify the correctness of the compiled
 803         // method stack banging.
 804         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 805         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 806         return StubRoutines::throw_StackOverflowError_entry();
 807       }
 808 
 809       case IMPLICIT_NULL: {
 810         if (VtableStubs::contains(pc)) {
 811           // We haven't yet entered the callee frame. Fabricate an
 812           // exception and begin dispatching it in the caller. Since
 813           // the caller was at a call site, it's safe to destroy all
 814           // caller-saved registers, as these entry points do.
 815           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 816 
 817           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 818           if (vt_stub == NULL) return NULL;
 819 
 820           if (vt_stub->is_abstract_method_error(pc)) {
 821             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 822             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 823             // Instead of throwing the abstract method error here directly, we re-resolve
 824             // and will throw the AbstractMethodError during resolve. As a result, we'll
 825             // get a more detailed error message.
 826             return SharedRuntime::get_handle_wrong_method_stub();
 827           } else {
 828             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 829             // Assert that the signal comes from the expected location in stub code.
 830             assert(vt_stub->is_null_pointer_exception(pc),
 831                    "obtained signal from unexpected location in stub code");
 832             return StubRoutines::throw_NullPointerException_at_call_entry();
 833           }
 834         } else {
 835           CodeBlob* cb = CodeCache::find_blob(pc);
 836 
 837           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 838           if (cb == NULL) return NULL;
 839 
 840           // Exception happened in CodeCache. Must be either:
 841           // 1. Inline-cache check in C2I handler blob,
 842           // 2. Inline-cache check in nmethod, or
 843           // 3. Implicit null exception in nmethod
 844 
 845           if (!cb->is_compiled()) {
 846             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 847             if (!is_in_blob) {
 848               // Allow normal crash reporting to handle this
 849               return NULL;
 850             }
 851             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 852             // There is no handler here, so we will simply unwind.
 853             return StubRoutines::throw_NullPointerException_at_call_entry();
 854           }
 855 
 856           // Otherwise, it's a compiled method.  Consult its exception handlers.
 857           CompiledMethod* cm = (CompiledMethod*)cb;
 858           if (cm->inlinecache_check_contains(pc)) {
 859             // exception happened inside inline-cache check code
 860             // => the nmethod is not yet active (i.e., the frame
 861             // is not set up yet) => use return address pushed by
 862             // caller => don't push another return address
 863             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 864             return StubRoutines::throw_NullPointerException_at_call_entry();
 865           }
 866 
 867           if (cm->method()->is_method_handle_intrinsic()) {
 868             // exception happened inside MH dispatch code, similar to a vtable stub
 869             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 870             return StubRoutines::throw_NullPointerException_at_call_entry();
 871           }
 872 
 873 #ifndef PRODUCT
 874           _implicit_null_throws++;
 875 #endif
 876           target_pc = cm->continuation_for_implicit_null_exception(pc);
 877           // If there's an unexpected fault, target_pc might be NULL,
 878           // in which case we want to fall through into the normal
 879           // error handling code.
 880         }
 881 
 882         break; // fall through
 883       }
 884 
 885 
 886       case IMPLICIT_DIVIDE_BY_ZERO: {
 887         CompiledMethod* cm = CodeCache::find_compiled(pc);
 888         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 889 #ifndef PRODUCT
 890         _implicit_div0_throws++;
 891 #endif
 892         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 893         // If there's an unexpected fault, target_pc might be NULL,
 894         // in which case we want to fall through into the normal
 895         // error handling code.
 896         break; // fall through
 897       }
 898 
 899       default: ShouldNotReachHere();
 900     }
 901 
 902     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 903 
 904     if (exception_kind == IMPLICIT_NULL) {
 905 #ifndef PRODUCT
 906       // for AbortVMOnException flag
 907       Exceptions::debug_check_abort("java.lang.NullPointerException");
 908 #endif //PRODUCT
 909       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 910     } else {
 911 #ifndef PRODUCT
 912       // for AbortVMOnException flag
 913       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 914 #endif //PRODUCT
 915       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 916     }
 917     return target_pc;
 918   }
 919 
 920   ShouldNotReachHere();
 921   return NULL;
 922 }
 923 
 924 
 925 /**
 926  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 927  * installed in the native function entry of all native Java methods before
 928  * they get linked to their actual native methods.
 929  *
 930  * \note
 931  * This method actually never gets called!  The reason is because
 932  * the interpreter's native entries call NativeLookup::lookup() which
 933  * throws the exception when the lookup fails.  The exception is then
 934  * caught and forwarded on the return from NativeLookup::lookup() call
 935  * before the call to the native function.  This might change in the future.
 936  */
 937 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 938 {
 939   // We return a bad value here to make sure that the exception is
 940   // forwarded before we look at the return value.
 941   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 942 }
 943 JNI_END
 944 
 945 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 946   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 947 }
 948 
 949 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 950 #if INCLUDE_JVMCI
 951   if (!obj->klass()->has_finalizer()) {
 952     return;
 953   }
 954 #endif // INCLUDE_JVMCI
 955   assert(oopDesc::is_oop(obj), "must be a valid oop");
 956   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 957   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 958 JRT_END
 959 
 960 
 961 jlong SharedRuntime::get_java_tid(Thread* thread) {
 962   if (thread != NULL) {
 963     if (thread->is_Java_thread()) {
 964       oop obj = ((JavaThread*)thread)->threadObj();
 965       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 966     }
 967   }
 968   return 0;
 969 }
 970 
 971 /**
 972  * This function ought to be a void function, but cannot be because
 973  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 974  * 6254741.  Once that is fixed we can remove the dummy return value.
 975  */
 976 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 977   return dtrace_object_alloc_base(Thread::current(), o, size);
 978 }
 979 
 980 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 981   assert(DTraceAllocProbes, "wrong call");
 982   Klass* klass = o->klass();
 983   Symbol* name = klass->name();
 984   HOTSPOT_OBJECT_ALLOC(
 985                    get_java_tid(thread),
 986                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 987   return 0;
 988 }
 989 
 990 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 991     JavaThread* thread, Method* method))
 992   assert(DTraceMethodProbes, "wrong call");
 993   Symbol* kname = method->klass_name();
 994   Symbol* name = method->name();
 995   Symbol* sig = method->signature();
 996   HOTSPOT_METHOD_ENTRY(
 997       get_java_tid(thread),
 998       (char *) kname->bytes(), kname->utf8_length(),
 999       (char *) name->bytes(), name->utf8_length(),
1000       (char *) sig->bytes(), sig->utf8_length());
1001   return 0;
1002 JRT_END
1003 
1004 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1005     JavaThread* thread, Method* method))
1006   assert(DTraceMethodProbes, "wrong call");
1007   Symbol* kname = method->klass_name();
1008   Symbol* name = method->name();
1009   Symbol* sig = method->signature();
1010   HOTSPOT_METHOD_RETURN(
1011       get_java_tid(thread),
1012       (char *) kname->bytes(), kname->utf8_length(),
1013       (char *) name->bytes(), name->utf8_length(),
1014       (char *) sig->bytes(), sig->utf8_length());
1015   return 0;
1016 JRT_END
1017 
1018 
1019 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1020 // for a call current in progress, i.e., arguments has been pushed on stack
1021 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1022 // vtable updates, etc.  Caller frame must be compiled.
1023 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1024   ResourceMark rm(THREAD);
1025 
1026   // last java frame on stack (which includes native call frames)
1027   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1028 
1029   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1030 }
1031 
1032 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1033   CompiledMethod* caller = vfst.nm();
1034 
1035   nmethodLocker caller_lock(caller);
1036 
1037   address pc = vfst.frame_pc();
1038   { // Get call instruction under lock because another thread may be busy patching it.
1039     CompiledICLocker ic_locker(caller);
1040     return caller->attached_method_before_pc(pc);
1041   }
1042   return NULL;
1043 }
1044 
1045 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1046 // for a call current in progress, i.e., arguments has been pushed on stack
1047 // but callee has not been invoked yet.  Caller frame must be compiled.
1048 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1049                                               vframeStream& vfst,
1050                                               Bytecodes::Code& bc,
1051                                               CallInfo& callinfo, TRAPS) {
1052   Handle receiver;
1053   Handle nullHandle;  //create a handy null handle for exception returns
1054 
1055   assert(!vfst.at_end(), "Java frame must exist");
1056 
1057   // Find caller and bci from vframe
1058   methodHandle caller(THREAD, vfst.method());
1059   int          bci   = vfst.bci();
1060 
1061   Bytecode_invoke bytecode(caller, bci);
1062   int bytecode_index = bytecode.index();
1063   bc = bytecode.invoke_code();
1064 
1065   methodHandle attached_method = extract_attached_method(vfst);
1066   if (attached_method.not_null()) {
1067     methodHandle callee = bytecode.static_target(CHECK_NH);
1068     vmIntrinsics::ID id = callee->intrinsic_id();
1069     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1070     // it attaches statically resolved method to the call site.
1071     if (MethodHandles::is_signature_polymorphic(id) &&
1072         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1073       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1074 
1075       // Adjust invocation mode according to the attached method.
1076       switch (bc) {
1077         case Bytecodes::_invokevirtual:
1078           if (attached_method->method_holder()->is_interface()) {
1079             bc = Bytecodes::_invokeinterface;
1080           }
1081           break;
1082         case Bytecodes::_invokeinterface:
1083           if (!attached_method->method_holder()->is_interface()) {
1084             bc = Bytecodes::_invokevirtual;
1085           }
1086           break;
1087         case Bytecodes::_invokehandle:
1088           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1089             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1090                                               : Bytecodes::_invokevirtual;
1091           }
1092           break;
1093         default:
1094           break;
1095       }
1096     }
1097   }
1098 
1099   assert(bc != Bytecodes::_illegal, "not initialized");
1100 
1101   bool has_receiver = bc != Bytecodes::_invokestatic &&
1102                       bc != Bytecodes::_invokedynamic &&
1103                       bc != Bytecodes::_invokehandle;
1104 
1105   // Find receiver for non-static call
1106   if (has_receiver) {
1107     // This register map must be update since we need to find the receiver for
1108     // compiled frames. The receiver might be in a register.
1109     RegisterMap reg_map2(thread);
1110     frame stubFrame   = thread->last_frame();
1111     // Caller-frame is a compiled frame
1112     frame callerFrame = stubFrame.sender(&reg_map2);
1113 
1114     if (attached_method.is_null()) {
1115       methodHandle callee = bytecode.static_target(CHECK_NH);
1116       if (callee.is_null()) {
1117         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1118       }
1119     }
1120 
1121     // Retrieve from a compiled argument list
1122     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1123 
1124     if (receiver.is_null()) {
1125       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1126     }
1127   }
1128 
1129   // Resolve method
1130   if (attached_method.not_null()) {
1131     // Parameterized by attached method.
1132     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1133   } else {
1134     // Parameterized by bytecode.
1135     constantPoolHandle constants(THREAD, caller->constants());
1136     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1137   }
1138 
1139 #ifdef ASSERT
1140   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1141   if (has_receiver) {
1142     assert(receiver.not_null(), "should have thrown exception");
1143     Klass* receiver_klass = receiver->klass();
1144     Klass* rk = NULL;
1145     if (attached_method.not_null()) {
1146       // In case there's resolved method attached, use its holder during the check.
1147       rk = attached_method->method_holder();
1148     } else {
1149       // Klass is already loaded.
1150       constantPoolHandle constants(THREAD, caller->constants());
1151       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1152     }
1153     Klass* static_receiver_klass = rk;
1154     methodHandle callee = callinfo.selected_method();
1155     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1156            "actual receiver must be subclass of static receiver klass");
1157     if (receiver_klass->is_instance_klass()) {
1158       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1159         tty->print_cr("ERROR: Klass not yet initialized!!");
1160         receiver_klass->print();
1161       }
1162       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1163     }
1164   }
1165 #endif
1166 
1167   return receiver;
1168 }
1169 
1170 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1171   ResourceMark rm(THREAD);
1172   // We need first to check if any Java activations (compiled, interpreted)
1173   // exist on the stack since last JavaCall.  If not, we need
1174   // to get the target method from the JavaCall wrapper.
1175   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1176   methodHandle callee_method;
1177   if (vfst.at_end()) {
1178     // No Java frames were found on stack since we did the JavaCall.
1179     // Hence the stack can only contain an entry_frame.  We need to
1180     // find the target method from the stub frame.
1181     RegisterMap reg_map(thread, false);
1182     frame fr = thread->last_frame();
1183     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1184     fr = fr.sender(&reg_map);
1185     assert(fr.is_entry_frame(), "must be");
1186     // fr is now pointing to the entry frame.
1187     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1188   } else {
1189     Bytecodes::Code bc;
1190     CallInfo callinfo;
1191     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1192     callee_method = callinfo.selected_method();
1193   }
1194   assert(callee_method()->is_method(), "must be");
1195   return callee_method;
1196 }
1197 
1198 // Resolves a call.
1199 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1200                                            bool is_virtual,
1201                                            bool is_optimized, TRAPS) {
1202   methodHandle callee_method;
1203   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1204   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1205     int retry_count = 0;
1206     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1207            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1208       // If has a pending exception then there is no need to re-try to
1209       // resolve this method.
1210       // If the method has been redefined, we need to try again.
1211       // Hack: we have no way to update the vtables of arrays, so don't
1212       // require that java.lang.Object has been updated.
1213 
1214       // It is very unlikely that method is redefined more than 100 times
1215       // in the middle of resolve. If it is looping here more than 100 times
1216       // means then there could be a bug here.
1217       guarantee((retry_count++ < 100),
1218                 "Could not resolve to latest version of redefined method");
1219       // method is redefined in the middle of resolve so re-try.
1220       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1221     }
1222   }
1223   return callee_method;
1224 }
1225 
1226 // This fails if resolution required refilling of IC stubs
1227 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1228                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1229                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1230   StaticCallInfo static_call_info;
1231   CompiledICInfo virtual_call_info;
1232 
1233   // Make sure the callee nmethod does not get deoptimized and removed before
1234   // we are done patching the code.
1235   CompiledMethod* callee = callee_method->code();
1236 
1237   if (callee != NULL) {
1238     assert(callee->is_compiled(), "must be nmethod for patching");
1239   }
1240 
1241   if (callee != NULL && !callee->is_in_use()) {
1242     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1243     callee = NULL;
1244   }
1245   nmethodLocker nl_callee(callee);
1246 #ifdef ASSERT
1247   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1248 #endif
1249 
1250   bool is_nmethod = caller_nm->is_nmethod();
1251 
1252   if (is_virtual) {
1253     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1254     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1255     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1256     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1257                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1258                      CHECK_false);
1259   } else {
1260     // static call
1261     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1262   }
1263 
1264   // grab lock, check for deoptimization and potentially patch caller
1265   {
1266     CompiledICLocker ml(caller_nm);
1267 
1268     // Lock blocks for safepoint during which both nmethods can change state.
1269 
1270     // Now that we are ready to patch if the Method* was redefined then
1271     // don't update call site and let the caller retry.
1272     // Don't update call site if callee nmethod was unloaded or deoptimized.
1273     // Don't update call site if callee nmethod was replaced by an other nmethod
1274     // which may happen when multiply alive nmethod (tiered compilation)
1275     // will be supported.
1276     if (!callee_method->is_old() &&
1277         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1278 #ifdef ASSERT
1279       // We must not try to patch to jump to an already unloaded method.
1280       if (dest_entry_point != 0) {
1281         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1282         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1283                "should not call unloaded nmethod");
1284       }
1285 #endif
1286       if (is_virtual) {
1287         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1288         if (inline_cache->is_clean()) {
1289           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1290             return false;
1291           }
1292         }
1293       } else {
1294         if (VM_Version::supports_fast_class_init_checks() &&
1295             invoke_code == Bytecodes::_invokestatic &&
1296             callee_method->needs_clinit_barrier() &&
1297             callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1298           return true; // skip patching for JVMCI or AOT code
1299         }
1300         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1301         if (ssc->is_clean()) ssc->set(static_call_info);
1302       }
1303     }
1304   } // unlock CompiledICLocker
1305   return true;
1306 }
1307 
1308 // Resolves a call.  The compilers generate code for calls that go here
1309 // and are patched with the real destination of the call.
1310 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1311                                                bool is_virtual,
1312                                                bool is_optimized, TRAPS) {
1313 
1314   ResourceMark rm(thread);
1315   RegisterMap cbl_map(thread, false);
1316   frame caller_frame = thread->last_frame().sender(&cbl_map);
1317 
1318   CodeBlob* caller_cb = caller_frame.cb();
1319   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1320   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1321 
1322   // make sure caller is not getting deoptimized
1323   // and removed before we are done with it.
1324   // CLEANUP - with lazy deopt shouldn't need this lock
1325   nmethodLocker caller_lock(caller_nm);
1326 
1327   // determine call info & receiver
1328   // note: a) receiver is NULL for static calls
1329   //       b) an exception is thrown if receiver is NULL for non-static calls
1330   CallInfo call_info;
1331   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1332   Handle receiver = find_callee_info(thread, invoke_code,
1333                                      call_info, CHECK_(methodHandle()));
1334   methodHandle callee_method = call_info.selected_method();
1335 
1336   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1337          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1338          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1339          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1340          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1341 
1342   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1343 
1344 #ifndef PRODUCT
1345   // tracing/debugging/statistics
1346   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1347                 (is_virtual) ? (&_resolve_virtual_ctr) :
1348                                (&_resolve_static_ctr);
1349   Atomic::inc(addr);
1350 
1351   if (TraceCallFixup) {
1352     ResourceMark rm(thread);
1353     tty->print("resolving %s%s (%s) call to",
1354       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1355       Bytecodes::name(invoke_code));
1356     callee_method->print_short_name(tty);
1357     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1358                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1359   }
1360 #endif
1361 
1362   if (invoke_code == Bytecodes::_invokestatic) {
1363     assert(callee_method->method_holder()->is_initialized() ||
1364            callee_method->method_holder()->is_reentrant_initialization(thread),
1365            "invalid class initialization state for invoke_static");
1366     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1367       // In order to keep class initialization check, do not patch call
1368       // site for static call when the class is not fully initialized.
1369       // Proper check is enforced by call site re-resolution on every invocation.
1370       //
1371       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1372       // explicit class initialization check is put in nmethod entry (VEP).
1373       assert(callee_method->method_holder()->is_linked(), "must be");
1374       return callee_method;
1375     }
1376   }
1377 
1378   // JSR 292 key invariant:
1379   // If the resolved method is a MethodHandle invoke target, the call
1380   // site must be a MethodHandle call site, because the lambda form might tail-call
1381   // leaving the stack in a state unknown to either caller or callee
1382   // TODO detune for now but we might need it again
1383 //  assert(!callee_method->is_compiled_lambda_form() ||
1384 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1385 
1386   // Compute entry points. This might require generation of C2I converter
1387   // frames, so we cannot be holding any locks here. Furthermore, the
1388   // computation of the entry points is independent of patching the call.  We
1389   // always return the entry-point, but we only patch the stub if the call has
1390   // not been deoptimized.  Return values: For a virtual call this is an
1391   // (cached_oop, destination address) pair. For a static call/optimized
1392   // virtual this is just a destination address.
1393 
1394   // Patching IC caches may fail if we run out if transition stubs.
1395   // We refill the ic stubs then and try again.
1396   for (;;) {
1397     ICRefillVerifier ic_refill_verifier;
1398     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1399                                                   is_virtual, is_optimized, receiver,
1400                                                   call_info, invoke_code, CHECK_(methodHandle()));
1401     if (successful) {
1402       return callee_method;
1403     } else {
1404       InlineCacheBuffer::refill_ic_stubs();
1405     }
1406   }
1407 
1408 }
1409 
1410 
1411 // Inline caches exist only in compiled code
1412 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1413 #ifdef ASSERT
1414   RegisterMap reg_map(thread, false);
1415   frame stub_frame = thread->last_frame();
1416   assert(stub_frame.is_runtime_frame(), "sanity check");
1417   frame caller_frame = stub_frame.sender(&reg_map);
1418   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1419 #endif /* ASSERT */
1420 
1421   methodHandle callee_method;
1422   JRT_BLOCK
1423     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1424     // Return Method* through TLS
1425     thread->set_vm_result_2(callee_method());
1426   JRT_BLOCK_END
1427   // return compiled code entry point after potential safepoints
1428   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1429   return callee_method->verified_code_entry();
1430 JRT_END
1431 
1432 
1433 // Handle call site that has been made non-entrant
1434 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1435   // 6243940 We might end up in here if the callee is deoptimized
1436   // as we race to call it.  We don't want to take a safepoint if
1437   // the caller was interpreted because the caller frame will look
1438   // interpreted to the stack walkers and arguments are now
1439   // "compiled" so it is much better to make this transition
1440   // invisible to the stack walking code. The i2c path will
1441   // place the callee method in the callee_target. It is stashed
1442   // there because if we try and find the callee by normal means a
1443   // safepoint is possible and have trouble gc'ing the compiled args.
1444   RegisterMap reg_map(thread, false);
1445   frame stub_frame = thread->last_frame();
1446   assert(stub_frame.is_runtime_frame(), "sanity check");
1447   frame caller_frame = stub_frame.sender(&reg_map);
1448 
1449   if (caller_frame.is_interpreted_frame() ||
1450       caller_frame.is_entry_frame()) {
1451     Method* callee = thread->callee_target();
1452     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1453     thread->set_vm_result_2(callee);
1454     thread->set_callee_target(NULL);
1455     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1456       // Bypass class initialization checks in c2i when caller is in native.
1457       // JNI calls to static methods don't have class initialization checks.
1458       // Fast class initialization checks are present in c2i adapters and call into
1459       // SharedRuntime::handle_wrong_method() on the slow path.
1460       //
1461       // JVM upcalls may land here as well, but there's a proper check present in
1462       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1463       // so bypassing it in c2i adapter is benign.
1464       return callee->get_c2i_no_clinit_check_entry();
1465     } else {
1466       return callee->get_c2i_entry();
1467     }
1468   }
1469 
1470   // Must be compiled to compiled path which is safe to stackwalk
1471   methodHandle callee_method;
1472   JRT_BLOCK
1473     // Force resolving of caller (if we called from compiled frame)
1474     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1475     thread->set_vm_result_2(callee_method());
1476   JRT_BLOCK_END
1477   // return compiled code entry point after potential safepoints
1478   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1479   return callee_method->verified_code_entry();
1480 JRT_END
1481 
1482 // Handle abstract method call
1483 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1484   // Verbose error message for AbstractMethodError.
1485   // Get the called method from the invoke bytecode.
1486   vframeStream vfst(thread, true);
1487   assert(!vfst.at_end(), "Java frame must exist");
1488   methodHandle caller(vfst.method());
1489   Bytecode_invoke invoke(caller, vfst.bci());
1490   DEBUG_ONLY( invoke.verify(); )
1491 
1492   // Find the compiled caller frame.
1493   RegisterMap reg_map(thread);
1494   frame stubFrame = thread->last_frame();
1495   assert(stubFrame.is_runtime_frame(), "must be");
1496   frame callerFrame = stubFrame.sender(&reg_map);
1497   assert(callerFrame.is_compiled_frame(), "must be");
1498 
1499   // Install exception and return forward entry.
1500   address res = StubRoutines::throw_AbstractMethodError_entry();
1501   JRT_BLOCK
1502     methodHandle callee = invoke.static_target(thread);
1503     if (!callee.is_null()) {
1504       oop recv = callerFrame.retrieve_receiver(&reg_map);
1505       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1506       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1507       res = StubRoutines::forward_exception_entry();
1508     }
1509   JRT_BLOCK_END
1510   return res;
1511 JRT_END
1512 
1513 
1514 // resolve a static call and patch code
1515 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1516   methodHandle callee_method;
1517   JRT_BLOCK
1518     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1519     thread->set_vm_result_2(callee_method());
1520   JRT_BLOCK_END
1521   // return compiled code entry point after potential safepoints
1522   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1523   return callee_method->verified_code_entry();
1524 JRT_END
1525 
1526 
1527 // resolve virtual call and update inline cache to monomorphic
1528 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1529   methodHandle callee_method;
1530   JRT_BLOCK
1531     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1532     thread->set_vm_result_2(callee_method());
1533   JRT_BLOCK_END
1534   // return compiled code entry point after potential safepoints
1535   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1536   return callee_method->verified_code_entry();
1537 JRT_END
1538 
1539 
1540 // Resolve a virtual call that can be statically bound (e.g., always
1541 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1542 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1543   methodHandle callee_method;
1544   JRT_BLOCK
1545     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1546     thread->set_vm_result_2(callee_method());
1547   JRT_BLOCK_END
1548   // return compiled code entry point after potential safepoints
1549   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1550   return callee_method->verified_code_entry();
1551 JRT_END
1552 
1553 // The handle_ic_miss_helper_internal function returns false if it failed due
1554 // to either running out of vtable stubs or ic stubs due to IC transitions
1555 // to transitional states. The needs_ic_stub_refill value will be set if
1556 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1557 // refills the IC stubs and tries again.
1558 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1559                                                    const frame& caller_frame, methodHandle callee_method,
1560                                                    Bytecodes::Code bc, CallInfo& call_info,
1561                                                    bool& needs_ic_stub_refill, TRAPS) {
1562   CompiledICLocker ml(caller_nm);
1563   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1564   bool should_be_mono = false;
1565   if (inline_cache->is_optimized()) {
1566     if (TraceCallFixup) {
1567       ResourceMark rm(THREAD);
1568       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1569       callee_method->print_short_name(tty);
1570       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1571     }
1572     should_be_mono = true;
1573   } else if (inline_cache->is_icholder_call()) {
1574     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1575     if (ic_oop != NULL) {
1576       if (!ic_oop->is_loader_alive()) {
1577         // Deferred IC cleaning due to concurrent class unloading
1578         if (!inline_cache->set_to_clean()) {
1579           needs_ic_stub_refill = true;
1580           return false;
1581         }
1582       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1583         // This isn't a real miss. We must have seen that compiled code
1584         // is now available and we want the call site converted to a
1585         // monomorphic compiled call site.
1586         // We can't assert for callee_method->code() != NULL because it
1587         // could have been deoptimized in the meantime
1588         if (TraceCallFixup) {
1589           ResourceMark rm(THREAD);
1590           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1591           callee_method->print_short_name(tty);
1592           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1593         }
1594         should_be_mono = true;
1595       }
1596     }
1597   }
1598 
1599   if (should_be_mono) {
1600     // We have a path that was monomorphic but was going interpreted
1601     // and now we have (or had) a compiled entry. We correct the IC
1602     // by using a new icBuffer.
1603     CompiledICInfo info;
1604     Klass* receiver_klass = receiver()->klass();
1605     inline_cache->compute_monomorphic_entry(callee_method,
1606                                             receiver_klass,
1607                                             inline_cache->is_optimized(),
1608                                             false, caller_nm->is_nmethod(),
1609                                             info, CHECK_false);
1610     if (!inline_cache->set_to_monomorphic(info)) {
1611       needs_ic_stub_refill = true;
1612       return false;
1613     }
1614   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1615     // Potential change to megamorphic
1616 
1617     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1618     if (needs_ic_stub_refill) {
1619       return false;
1620     }
1621     if (!successful) {
1622       if (!inline_cache->set_to_clean()) {
1623         needs_ic_stub_refill = true;
1624         return false;
1625       }
1626     }
1627   } else {
1628     // Either clean or megamorphic
1629   }
1630   return true;
1631 }
1632 
1633 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1634   ResourceMark rm(thread);
1635   CallInfo call_info;
1636   Bytecodes::Code bc;
1637 
1638   // receiver is NULL for static calls. An exception is thrown for NULL
1639   // receivers for non-static calls
1640   Handle receiver = find_callee_info(thread, bc, call_info,
1641                                      CHECK_(methodHandle()));
1642   // Compiler1 can produce virtual call sites that can actually be statically bound
1643   // If we fell thru to below we would think that the site was going megamorphic
1644   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1645   // we'd try and do a vtable dispatch however methods that can be statically bound
1646   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1647   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1648   // plain ic_miss) and the site will be converted to an optimized virtual call site
1649   // never to miss again. I don't believe C2 will produce code like this but if it
1650   // did this would still be the correct thing to do for it too, hence no ifdef.
1651   //
1652   if (call_info.resolved_method()->can_be_statically_bound()) {
1653     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1654     if (TraceCallFixup) {
1655       RegisterMap reg_map(thread, false);
1656       frame caller_frame = thread->last_frame().sender(&reg_map);
1657       ResourceMark rm(thread);
1658       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1659       callee_method->print_short_name(tty);
1660       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1661       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1662     }
1663     return callee_method;
1664   }
1665 
1666   methodHandle callee_method = call_info.selected_method();
1667 
1668 #ifndef PRODUCT
1669   Atomic::inc(&_ic_miss_ctr);
1670 
1671   // Statistics & Tracing
1672   if (TraceCallFixup) {
1673     ResourceMark rm(thread);
1674     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1675     callee_method->print_short_name(tty);
1676     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1677   }
1678 
1679   if (ICMissHistogram) {
1680     MutexLocker m(VMStatistic_lock);
1681     RegisterMap reg_map(thread, false);
1682     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1683     // produce statistics under the lock
1684     trace_ic_miss(f.pc());
1685   }
1686 #endif
1687 
1688   // install an event collector so that when a vtable stub is created the
1689   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1690   // event can't be posted when the stub is created as locks are held
1691   // - instead the event will be deferred until the event collector goes
1692   // out of scope.
1693   JvmtiDynamicCodeEventCollector event_collector;
1694 
1695   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1696   // Transitioning IC caches may require transition stubs. If we run out
1697   // of transition stubs, we have to drop locks and perform a safepoint
1698   // that refills them.
1699   RegisterMap reg_map(thread, false);
1700   frame caller_frame = thread->last_frame().sender(&reg_map);
1701   CodeBlob* cb = caller_frame.cb();
1702   CompiledMethod* caller_nm = cb->as_compiled_method();
1703 
1704   for (;;) {
1705     ICRefillVerifier ic_refill_verifier;
1706     bool needs_ic_stub_refill = false;
1707     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1708                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1709     if (successful || !needs_ic_stub_refill) {
1710       return callee_method;
1711     } else {
1712       InlineCacheBuffer::refill_ic_stubs();
1713     }
1714   }
1715 }
1716 
1717 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1718   CompiledICLocker ml(caller_nm);
1719   if (is_static_call) {
1720     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1721     if (!ssc->is_clean()) {
1722       return ssc->set_to_clean();
1723     }
1724   } else {
1725     // compiled, dispatched call (which used to call an interpreted method)
1726     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1727     if (!inline_cache->is_clean()) {
1728       return inline_cache->set_to_clean();
1729     }
1730   }
1731   return true;
1732 }
1733 
1734 //
1735 // Resets a call-site in compiled code so it will get resolved again.
1736 // This routines handles both virtual call sites, optimized virtual call
1737 // sites, and static call sites. Typically used to change a call sites
1738 // destination from compiled to interpreted.
1739 //
1740 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1741   ResourceMark rm(thread);
1742   RegisterMap reg_map(thread, false);
1743   frame stub_frame = thread->last_frame();
1744   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1745   frame caller = stub_frame.sender(&reg_map);
1746 
1747   // Do nothing if the frame isn't a live compiled frame.
1748   // nmethod could be deoptimized by the time we get here
1749   // so no update to the caller is needed.
1750 
1751   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1752 
1753     address pc = caller.pc();
1754 
1755     // Check for static or virtual call
1756     bool is_static_call = false;
1757     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1758 
1759     // Default call_addr is the location of the "basic" call.
1760     // Determine the address of the call we a reresolving. With
1761     // Inline Caches we will always find a recognizable call.
1762     // With Inline Caches disabled we may or may not find a
1763     // recognizable call. We will always find a call for static
1764     // calls and for optimized virtual calls. For vanilla virtual
1765     // calls it depends on the state of the UseInlineCaches switch.
1766     //
1767     // With Inline Caches disabled we can get here for a virtual call
1768     // for two reasons:
1769     //   1 - calling an abstract method. The vtable for abstract methods
1770     //       will run us thru handle_wrong_method and we will eventually
1771     //       end up in the interpreter to throw the ame.
1772     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1773     //       call and between the time we fetch the entry address and
1774     //       we jump to it the target gets deoptimized. Similar to 1
1775     //       we will wind up in the interprter (thru a c2i with c2).
1776     //
1777     address call_addr = NULL;
1778     {
1779       // Get call instruction under lock because another thread may be
1780       // busy patching it.
1781       CompiledICLocker ml(caller_nm);
1782       // Location of call instruction
1783       call_addr = caller_nm->call_instruction_address(pc);
1784     }
1785     // Make sure nmethod doesn't get deoptimized and removed until
1786     // this is done with it.
1787     // CLEANUP - with lazy deopt shouldn't need this lock
1788     nmethodLocker nmlock(caller_nm);
1789 
1790     if (call_addr != NULL) {
1791       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1792       int ret = iter.next(); // Get item
1793       if (ret) {
1794         assert(iter.addr() == call_addr, "must find call");
1795         if (iter.type() == relocInfo::static_call_type) {
1796           is_static_call = true;
1797         } else {
1798           assert(iter.type() == relocInfo::virtual_call_type ||
1799                  iter.type() == relocInfo::opt_virtual_call_type
1800                 , "unexpected relocInfo. type");
1801         }
1802       } else {
1803         assert(!UseInlineCaches, "relocation info. must exist for this address");
1804       }
1805 
1806       // Cleaning the inline cache will force a new resolve. This is more robust
1807       // than directly setting it to the new destination, since resolving of calls
1808       // is always done through the same code path. (experience shows that it
1809       // leads to very hard to track down bugs, if an inline cache gets updated
1810       // to a wrong method). It should not be performance critical, since the
1811       // resolve is only done once.
1812 
1813       for (;;) {
1814         ICRefillVerifier ic_refill_verifier;
1815         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1816           InlineCacheBuffer::refill_ic_stubs();
1817         } else {
1818           break;
1819         }
1820       }
1821     }
1822   }
1823 
1824   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1825 
1826 
1827 #ifndef PRODUCT
1828   Atomic::inc(&_wrong_method_ctr);
1829 
1830   if (TraceCallFixup) {
1831     ResourceMark rm(thread);
1832     tty->print("handle_wrong_method reresolving call to");
1833     callee_method->print_short_name(tty);
1834     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1835   }
1836 #endif
1837 
1838   return callee_method;
1839 }
1840 
1841 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1842   // The faulting unsafe accesses should be changed to throw the error
1843   // synchronously instead. Meanwhile the faulting instruction will be
1844   // skipped over (effectively turning it into a no-op) and an
1845   // asynchronous exception will be raised which the thread will
1846   // handle at a later point. If the instruction is a load it will
1847   // return garbage.
1848 
1849   // Request an async exception.
1850   thread->set_pending_unsafe_access_error();
1851 
1852   // Return address of next instruction to execute.
1853   return next_pc;
1854 }
1855 
1856 #ifdef ASSERT
1857 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1858                                                                 const BasicType* sig_bt,
1859                                                                 const VMRegPair* regs) {
1860   ResourceMark rm;
1861   const int total_args_passed = method->size_of_parameters();
1862   const VMRegPair*    regs_with_member_name = regs;
1863         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1864 
1865   const int member_arg_pos = total_args_passed - 1;
1866   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1867   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1868 
1869   const bool is_outgoing = method->is_method_handle_intrinsic();
1870   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1871 
1872   for (int i = 0; i < member_arg_pos; i++) {
1873     VMReg a =    regs_with_member_name[i].first();
1874     VMReg b = regs_without_member_name[i].first();
1875     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1876   }
1877   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1878 }
1879 #endif
1880 
1881 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1882   if (destination != entry_point) {
1883     CodeBlob* callee = CodeCache::find_blob(destination);
1884     // callee == cb seems weird. It means calling interpreter thru stub.
1885     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1886       // static call or optimized virtual
1887       if (TraceCallFixup) {
1888         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1889         moop->print_short_name(tty);
1890         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1891       }
1892       return true;
1893     } else {
1894       if (TraceCallFixup) {
1895         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1896         moop->print_short_name(tty);
1897         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1898       }
1899       // assert is too strong could also be resolve destinations.
1900       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1901     }
1902   } else {
1903     if (TraceCallFixup) {
1904       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1905       moop->print_short_name(tty);
1906       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1907     }
1908   }
1909   return false;
1910 }
1911 
1912 // ---------------------------------------------------------------------------
1913 // We are calling the interpreter via a c2i. Normally this would mean that
1914 // we were called by a compiled method. However we could have lost a race
1915 // where we went int -> i2c -> c2i and so the caller could in fact be
1916 // interpreted. If the caller is compiled we attempt to patch the caller
1917 // so he no longer calls into the interpreter.
1918 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1919   Method* moop(method);
1920 
1921   address entry_point = moop->from_compiled_entry_no_trampoline();
1922 
1923   // It's possible that deoptimization can occur at a call site which hasn't
1924   // been resolved yet, in which case this function will be called from
1925   // an nmethod that has been patched for deopt and we can ignore the
1926   // request for a fixup.
1927   // Also it is possible that we lost a race in that from_compiled_entry
1928   // is now back to the i2c in that case we don't need to patch and if
1929   // we did we'd leap into space because the callsite needs to use
1930   // "to interpreter" stub in order to load up the Method*. Don't
1931   // ask me how I know this...
1932 
1933   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1934   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1935     return;
1936   }
1937 
1938   // The check above makes sure this is a nmethod.
1939   CompiledMethod* nm = cb->as_compiled_method_or_null();
1940   assert(nm, "must be");
1941 
1942   // Get the return PC for the passed caller PC.
1943   address return_pc = caller_pc + frame::pc_return_offset;
1944 
1945   // There is a benign race here. We could be attempting to patch to a compiled
1946   // entry point at the same time the callee is being deoptimized. If that is
1947   // the case then entry_point may in fact point to a c2i and we'd patch the
1948   // call site with the same old data. clear_code will set code() to NULL
1949   // at the end of it. If we happen to see that NULL then we can skip trying
1950   // to patch. If we hit the window where the callee has a c2i in the
1951   // from_compiled_entry and the NULL isn't present yet then we lose the race
1952   // and patch the code with the same old data. Asi es la vida.
1953 
1954   if (moop->code() == NULL) return;
1955 
1956   if (nm->is_in_use()) {
1957     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1958     CompiledICLocker ic_locker(nm);
1959     if (NativeCall::is_call_before(return_pc)) {
1960       ResourceMark mark;
1961       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1962       //
1963       // bug 6281185. We might get here after resolving a call site to a vanilla
1964       // virtual call. Because the resolvee uses the verified entry it may then
1965       // see compiled code and attempt to patch the site by calling us. This would
1966       // then incorrectly convert the call site to optimized and its downhill from
1967       // there. If you're lucky you'll get the assert in the bugid, if not you've
1968       // just made a call site that could be megamorphic into a monomorphic site
1969       // for the rest of its life! Just another racing bug in the life of
1970       // fixup_callers_callsite ...
1971       //
1972       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1973       iter.next();
1974       assert(iter.has_current(), "must have a reloc at java call site");
1975       relocInfo::relocType typ = iter.reloc()->type();
1976       if (typ != relocInfo::static_call_type &&
1977            typ != relocInfo::opt_virtual_call_type &&
1978            typ != relocInfo::static_stub_type) {
1979         return;
1980       }
1981       address destination = call->destination();
1982       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1983         call->set_destination_mt_safe(entry_point);
1984       }
1985     }
1986   }
1987 JRT_END
1988 
1989 
1990 // same as JVM_Arraycopy, but called directly from compiled code
1991 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1992                                                 oopDesc* dest, jint dest_pos,
1993                                                 jint length,
1994                                                 JavaThread* thread)) {
1995 #ifndef PRODUCT
1996   _slow_array_copy_ctr++;
1997 #endif
1998   // Check if we have null pointers
1999   if (src == NULL || dest == NULL) {
2000     THROW(vmSymbols::java_lang_NullPointerException());
2001   }
2002   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2003   // even though the copy_array API also performs dynamic checks to ensure
2004   // that src and dest are truly arrays (and are conformable).
2005   // The copy_array mechanism is awkward and could be removed, but
2006   // the compilers don't call this function except as a last resort,
2007   // so it probably doesn't matter.
2008   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2009                                         (arrayOopDesc*)dest, dest_pos,
2010                                         length, thread);
2011 }
2012 JRT_END
2013 
2014 // The caller of generate_class_cast_message() (or one of its callers)
2015 // must use a ResourceMark in order to correctly free the result.
2016 char* SharedRuntime::generate_class_cast_message(
2017     JavaThread* thread, Klass* caster_klass) {
2018 
2019   // Get target class name from the checkcast instruction
2020   vframeStream vfst(thread, true);
2021   assert(!vfst.at_end(), "Java frame must exist");
2022   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2023   constantPoolHandle cpool(thread, vfst.method()->constants());
2024   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2025   Symbol* target_klass_name = NULL;
2026   if (target_klass == NULL) {
2027     // This klass should be resolved, but just in case, get the name in the klass slot.
2028     target_klass_name = cpool->klass_name_at(cc.index());
2029   }
2030   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2031 }
2032 
2033 
2034 // The caller of generate_class_cast_message() (or one of its callers)
2035 // must use a ResourceMark in order to correctly free the result.
2036 char* SharedRuntime::generate_class_cast_message(
2037     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2038   const char* caster_name = caster_klass->external_name();
2039 
2040   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2041   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2042                                                    target_klass->external_name();
2043 
2044   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2045 
2046   const char* caster_klass_description = "";
2047   const char* target_klass_description = "";
2048   const char* klass_separator = "";
2049   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2050     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2051   } else {
2052     caster_klass_description = caster_klass->class_in_module_of_loader();
2053     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2054     klass_separator = (target_klass != NULL) ? "; " : "";
2055   }
2056 
2057   // add 3 for parenthesis and preceeding space
2058   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2059 
2060   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2061   if (message == NULL) {
2062     // Shouldn't happen, but don't cause even more problems if it does
2063     message = const_cast<char*>(caster_klass->external_name());
2064   } else {
2065     jio_snprintf(message,
2066                  msglen,
2067                  "class %s cannot be cast to class %s (%s%s%s)",
2068                  caster_name,
2069                  target_name,
2070                  caster_klass_description,
2071                  klass_separator,
2072                  target_klass_description
2073                  );
2074   }
2075   return message;
2076 }
2077 
2078 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2079   (void) JavaThread::current()->reguard_stack();
2080 JRT_END
2081 
2082 
2083 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2084 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2085   if (!SafepointSynchronize::is_synchronizing()) {
2086     // Only try quick_enter() if we're not trying to reach a safepoint
2087     // so that the calling thread reaches the safepoint more quickly.
2088     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2089   }
2090   // NO_ASYNC required because an async exception on the state transition destructor
2091   // would leave you with the lock held and it would never be released.
2092   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2093   // and the model is that an exception implies the method failed.
2094   JRT_BLOCK_NO_ASYNC
2095   oop obj(_obj);
2096   if (PrintBiasedLockingStatistics) {
2097     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2098   }
2099   Handle h_obj(THREAD, obj);
2100   if (UseBiasedLocking) {
2101     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2102     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2103   } else {
2104     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2105   }
2106   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2107   JRT_BLOCK_END
2108 JRT_END
2109 
2110 // Handles the uncommon cases of monitor unlocking in compiled code
2111 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2112    oop obj(_obj);
2113   assert(JavaThread::current() == THREAD, "invariant");
2114   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2115   // testing was unable to ever fire the assert that guarded it so I have removed it.
2116   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2117 #undef MIGHT_HAVE_PENDING
2118 #ifdef MIGHT_HAVE_PENDING
2119   // Save and restore any pending_exception around the exception mark.
2120   // While the slow_exit must not throw an exception, we could come into
2121   // this routine with one set.
2122   oop pending_excep = NULL;
2123   const char* pending_file;
2124   int pending_line;
2125   if (HAS_PENDING_EXCEPTION) {
2126     pending_excep = PENDING_EXCEPTION;
2127     pending_file  = THREAD->exception_file();
2128     pending_line  = THREAD->exception_line();
2129     CLEAR_PENDING_EXCEPTION;
2130   }
2131 #endif /* MIGHT_HAVE_PENDING */
2132 
2133   {
2134     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2135     EXCEPTION_MARK;
2136     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2137   }
2138 
2139 #ifdef MIGHT_HAVE_PENDING
2140   if (pending_excep != NULL) {
2141     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2142   }
2143 #endif /* MIGHT_HAVE_PENDING */
2144 JRT_END
2145 
2146 #ifndef PRODUCT
2147 
2148 void SharedRuntime::print_statistics() {
2149   ttyLocker ttyl;
2150   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2151 
2152   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2153 
2154   SharedRuntime::print_ic_miss_histogram();
2155 
2156   if (CountRemovableExceptions) {
2157     if (_nof_removable_exceptions > 0) {
2158       Unimplemented(); // this counter is not yet incremented
2159       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2160     }
2161   }
2162 
2163   // Dump the JRT_ENTRY counters
2164   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2165   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2166   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2167   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2168   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2169   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2170   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2171 
2172   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2173   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2174   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2175   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2176   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2177 
2178   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2179   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2180   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2181   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2182   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2183   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2184   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2185   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2186   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2187   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2188   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2189   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2190   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2191   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2192   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2193   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2194 
2195   AdapterHandlerLibrary::print_statistics();
2196 
2197   if (xtty != NULL)  xtty->tail("statistics");
2198 }
2199 
2200 inline double percent(int x, int y) {
2201   return 100.0 * x / MAX2(y, 1);
2202 }
2203 
2204 class MethodArityHistogram {
2205  public:
2206   enum { MAX_ARITY = 256 };
2207  private:
2208   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2209   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2210   static int _max_arity;                      // max. arity seen
2211   static int _max_size;                       // max. arg size seen
2212 
2213   static void add_method_to_histogram(nmethod* nm) {
2214     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2215       Method* method = nm->method();
2216       ArgumentCount args(method->signature());
2217       int arity   = args.size() + (method->is_static() ? 0 : 1);
2218       int argsize = method->size_of_parameters();
2219       arity   = MIN2(arity, MAX_ARITY-1);
2220       argsize = MIN2(argsize, MAX_ARITY-1);
2221       int count = method->compiled_invocation_count();
2222       _arity_histogram[arity]  += count;
2223       _size_histogram[argsize] += count;
2224       _max_arity = MAX2(_max_arity, arity);
2225       _max_size  = MAX2(_max_size, argsize);
2226     }
2227   }
2228 
2229   void print_histogram_helper(int n, int* histo, const char* name) {
2230     const int N = MIN2(5, n);
2231     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2232     double sum = 0;
2233     double weighted_sum = 0;
2234     int i;
2235     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2236     double rest = sum;
2237     double percent = sum / 100;
2238     for (i = 0; i <= N; i++) {
2239       rest -= histo[i];
2240       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2241     }
2242     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2243     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2244   }
2245 
2246   void print_histogram() {
2247     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2248     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2249     tty->print_cr("\nSame for parameter size (in words):");
2250     print_histogram_helper(_max_size, _size_histogram, "size");
2251     tty->cr();
2252   }
2253 
2254  public:
2255   MethodArityHistogram() {
2256     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2257     _max_arity = _max_size = 0;
2258     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2259     CodeCache::nmethods_do(add_method_to_histogram);
2260     print_histogram();
2261   }
2262 };
2263 
2264 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2265 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2266 int MethodArityHistogram::_max_arity;
2267 int MethodArityHistogram::_max_size;
2268 
2269 void SharedRuntime::print_call_statistics(int comp_total) {
2270   tty->print_cr("Calls from compiled code:");
2271   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2272   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2273   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2274   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2275   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2276   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2277   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2278   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2279   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2280   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2281   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2282   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2283   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2284   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2285   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2286   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2287   tty->cr();
2288   tty->print_cr("Note 1: counter updates are not MT-safe.");
2289   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2290   tty->print_cr("        %% in nested categories are relative to their category");
2291   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2292   tty->cr();
2293 
2294   MethodArityHistogram h;
2295 }
2296 #endif
2297 
2298 
2299 // A simple wrapper class around the calling convention information
2300 // that allows sharing of adapters for the same calling convention.
2301 class AdapterFingerPrint : public CHeapObj<mtCode> {
2302  private:
2303   enum {
2304     _basic_type_bits = 4,
2305     _basic_type_mask = right_n_bits(_basic_type_bits),
2306     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2307     _compact_int_count = 3
2308   };
2309   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2310   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2311 
2312   union {
2313     int  _compact[_compact_int_count];
2314     int* _fingerprint;
2315   } _value;
2316   int _length; // A negative length indicates the fingerprint is in the compact form,
2317                // Otherwise _value._fingerprint is the array.
2318 
2319   // Remap BasicTypes that are handled equivalently by the adapters.
2320   // These are correct for the current system but someday it might be
2321   // necessary to make this mapping platform dependent.
2322   static int adapter_encoding(BasicType in) {
2323     switch (in) {
2324       case T_BOOLEAN:
2325       case T_BYTE:
2326       case T_SHORT:
2327       case T_CHAR:
2328         // There are all promoted to T_INT in the calling convention
2329         return T_INT;
2330 
2331       case T_OBJECT:
2332       case T_ARRAY:
2333         // In other words, we assume that any register good enough for
2334         // an int or long is good enough for a managed pointer.
2335 #ifdef _LP64
2336         return T_LONG;
2337 #else
2338         return T_INT;
2339 #endif
2340 
2341       case T_INT:
2342       case T_LONG:
2343       case T_FLOAT:
2344       case T_DOUBLE:
2345       case T_VOID:
2346         return in;
2347 
2348       default:
2349         ShouldNotReachHere();
2350         return T_CONFLICT;
2351     }
2352   }
2353 
2354  public:
2355   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2356     // The fingerprint is based on the BasicType signature encoded
2357     // into an array of ints with eight entries per int.
2358     int* ptr;
2359     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2360     if (len <= _compact_int_count) {
2361       assert(_compact_int_count == 3, "else change next line");
2362       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2363       // Storing the signature encoded as signed chars hits about 98%
2364       // of the time.
2365       _length = -len;
2366       ptr = _value._compact;
2367     } else {
2368       _length = len;
2369       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2370       ptr = _value._fingerprint;
2371     }
2372 
2373     // Now pack the BasicTypes with 8 per int
2374     int sig_index = 0;
2375     for (int index = 0; index < len; index++) {
2376       int value = 0;
2377       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2378         int bt = ((sig_index < total_args_passed)
2379                   ? adapter_encoding(sig_bt[sig_index++])
2380                   : 0);
2381         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2382         value = (value << _basic_type_bits) | bt;
2383       }
2384       ptr[index] = value;
2385     }
2386   }
2387 
2388   ~AdapterFingerPrint() {
2389     if (_length > 0) {
2390       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2391     }
2392   }
2393 
2394   int value(int index) {
2395     if (_length < 0) {
2396       return _value._compact[index];
2397     }
2398     return _value._fingerprint[index];
2399   }
2400   int length() {
2401     if (_length < 0) return -_length;
2402     return _length;
2403   }
2404 
2405   bool is_compact() {
2406     return _length <= 0;
2407   }
2408 
2409   unsigned int compute_hash() {
2410     int hash = 0;
2411     for (int i = 0; i < length(); i++) {
2412       int v = value(i);
2413       hash = (hash << 8) ^ v ^ (hash >> 5);
2414     }
2415     return (unsigned int)hash;
2416   }
2417 
2418   const char* as_string() {
2419     stringStream st;
2420     st.print("0x");
2421     for (int i = 0; i < length(); i++) {
2422       st.print("%08x", value(i));
2423     }
2424     return st.as_string();
2425   }
2426 
2427   bool equals(AdapterFingerPrint* other) {
2428     if (other->_length != _length) {
2429       return false;
2430     }
2431     if (_length < 0) {
2432       assert(_compact_int_count == 3, "else change next line");
2433       return _value._compact[0] == other->_value._compact[0] &&
2434              _value._compact[1] == other->_value._compact[1] &&
2435              _value._compact[2] == other->_value._compact[2];
2436     } else {
2437       for (int i = 0; i < _length; i++) {
2438         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2439           return false;
2440         }
2441       }
2442     }
2443     return true;
2444   }
2445 };
2446 
2447 
2448 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2449 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2450   friend class AdapterHandlerTableIterator;
2451 
2452  private:
2453 
2454 #ifndef PRODUCT
2455   static int _lookups; // number of calls to lookup
2456   static int _buckets; // number of buckets checked
2457   static int _equals;  // number of buckets checked with matching hash
2458   static int _hits;    // number of successful lookups
2459   static int _compact; // number of equals calls with compact signature
2460 #endif
2461 
2462   AdapterHandlerEntry* bucket(int i) {
2463     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2464   }
2465 
2466  public:
2467   AdapterHandlerTable()
2468     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2469 
2470   // Create a new entry suitable for insertion in the table
2471   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, address c2i_no_clinit_check_entry) {
2472     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2473     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2474     if (DumpSharedSpaces) {
2475       ((CDSAdapterHandlerEntry*)entry)->init();
2476     }
2477     return entry;
2478   }
2479 
2480   // Insert an entry into the table
2481   void add(AdapterHandlerEntry* entry) {
2482     int index = hash_to_index(entry->hash());
2483     add_entry(index, entry);
2484   }
2485 
2486   void free_entry(AdapterHandlerEntry* entry) {
2487     entry->deallocate();
2488     BasicHashtable<mtCode>::free_entry(entry);
2489   }
2490 
2491   // Find a entry with the same fingerprint if it exists
2492   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2493     NOT_PRODUCT(_lookups++);
2494     AdapterFingerPrint fp(total_args_passed, sig_bt);
2495     unsigned int hash = fp.compute_hash();
2496     int index = hash_to_index(hash);
2497     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2498       NOT_PRODUCT(_buckets++);
2499       if (e->hash() == hash) {
2500         NOT_PRODUCT(_equals++);
2501         if (fp.equals(e->fingerprint())) {
2502 #ifndef PRODUCT
2503           if (fp.is_compact()) _compact++;
2504           _hits++;
2505 #endif
2506           return e;
2507         }
2508       }
2509     }
2510     return NULL;
2511   }
2512 
2513 #ifndef PRODUCT
2514   void print_statistics() {
2515     ResourceMark rm;
2516     int longest = 0;
2517     int empty = 0;
2518     int total = 0;
2519     int nonempty = 0;
2520     for (int index = 0; index < table_size(); index++) {
2521       int count = 0;
2522       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2523         count++;
2524       }
2525       if (count != 0) nonempty++;
2526       if (count == 0) empty++;
2527       if (count > longest) longest = count;
2528       total += count;
2529     }
2530     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2531                   empty, longest, total, total / (double)nonempty);
2532     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2533                   _lookups, _buckets, _equals, _hits, _compact);
2534   }
2535 #endif
2536 };
2537 
2538 
2539 #ifndef PRODUCT
2540 
2541 int AdapterHandlerTable::_lookups;
2542 int AdapterHandlerTable::_buckets;
2543 int AdapterHandlerTable::_equals;
2544 int AdapterHandlerTable::_hits;
2545 int AdapterHandlerTable::_compact;
2546 
2547 #endif
2548 
2549 class AdapterHandlerTableIterator : public StackObj {
2550  private:
2551   AdapterHandlerTable* _table;
2552   int _index;
2553   AdapterHandlerEntry* _current;
2554 
2555   void scan() {
2556     while (_index < _table->table_size()) {
2557       AdapterHandlerEntry* a = _table->bucket(_index);
2558       _index++;
2559       if (a != NULL) {
2560         _current = a;
2561         return;
2562       }
2563     }
2564   }
2565 
2566  public:
2567   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2568     scan();
2569   }
2570   bool has_next() {
2571     return _current != NULL;
2572   }
2573   AdapterHandlerEntry* next() {
2574     if (_current != NULL) {
2575       AdapterHandlerEntry* result = _current;
2576       _current = _current->next();
2577       if (_current == NULL) scan();
2578       return result;
2579     } else {
2580       return NULL;
2581     }
2582   }
2583 };
2584 
2585 
2586 // ---------------------------------------------------------------------------
2587 // Implementation of AdapterHandlerLibrary
2588 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2589 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2590 const int AdapterHandlerLibrary_size = 16*K;
2591 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2592 
2593 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2594   // Should be called only when AdapterHandlerLibrary_lock is active.
2595   if (_buffer == NULL) // Initialize lazily
2596       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2597   return _buffer;
2598 }
2599 
2600 extern "C" void unexpected_adapter_call() {
2601   ShouldNotCallThis();
2602 }
2603 
2604 void AdapterHandlerLibrary::initialize() {
2605   if (_adapters != NULL) return;
2606   _adapters = new AdapterHandlerTable();
2607 
2608   // Create a special handler for abstract methods.  Abstract methods
2609   // are never compiled so an i2c entry is somewhat meaningless, but
2610   // throw AbstractMethodError just in case.
2611   // Pass wrong_method_abstract for the c2i transitions to return
2612   // AbstractMethodError for invalid invocations.
2613   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2614   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2615                                                               StubRoutines::throw_AbstractMethodError_entry(),
2616                                                               wrong_method_abstract, wrong_method_abstract);
2617 }
2618 
2619 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2620                                                       address i2c_entry,
2621                                                       address c2i_entry,
2622                                                       address c2i_unverified_entry,
2623                                                       address c2i_no_clinit_check_entry) {
2624   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2625 }
2626 
2627 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2628   AdapterHandlerEntry* entry = get_adapter0(method);
2629   if (method->is_shared()) {
2630     // See comments around Method::link_method()
2631     MutexLocker mu(AdapterHandlerLibrary_lock);
2632     if (method->adapter() == NULL) {
2633       method->update_adapter_trampoline(entry);
2634     }
2635     address trampoline = method->from_compiled_entry();
2636     if (*(int*)trampoline == 0) {
2637       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2638       MacroAssembler _masm(&buffer);
2639       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2640       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2641 
2642       if (PrintInterpreter) {
2643         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2644       }
2645     }
2646   }
2647 
2648   return entry;
2649 }
2650 
2651 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2652   // Use customized signature handler.  Need to lock around updates to
2653   // the AdapterHandlerTable (it is not safe for concurrent readers
2654   // and a single writer: this could be fixed if it becomes a
2655   // problem).
2656 
2657   ResourceMark rm;
2658 
2659   NOT_PRODUCT(int insts_size);
2660   AdapterBlob* new_adapter = NULL;
2661   AdapterHandlerEntry* entry = NULL;
2662   AdapterFingerPrint* fingerprint = NULL;
2663   {
2664     MutexLocker mu(AdapterHandlerLibrary_lock);
2665     // make sure data structure is initialized
2666     initialize();
2667 
2668     if (method->is_abstract()) {
2669       return _abstract_method_handler;
2670     }
2671 
2672     // Fill in the signature array, for the calling-convention call.
2673     int total_args_passed = method->size_of_parameters(); // All args on stack
2674 
2675     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2676     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2677     int i = 0;
2678     if (!method->is_static())  // Pass in receiver first
2679       sig_bt[i++] = T_OBJECT;
2680     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2681       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2682       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2683         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2684     }
2685     assert(i == total_args_passed, "");
2686 
2687     // Lookup method signature's fingerprint
2688     entry = _adapters->lookup(total_args_passed, sig_bt);
2689 
2690 #ifdef ASSERT
2691     AdapterHandlerEntry* shared_entry = NULL;
2692     // Start adapter sharing verification only after the VM is booted.
2693     if (VerifyAdapterSharing && (entry != NULL)) {
2694       shared_entry = entry;
2695       entry = NULL;
2696     }
2697 #endif
2698 
2699     if (entry != NULL) {
2700       return entry;
2701     }
2702 
2703     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2704     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2705 
2706     // Make a C heap allocated version of the fingerprint to store in the adapter
2707     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2708 
2709     // StubRoutines::code2() is initialized after this function can be called. As a result,
2710     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2711     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2712     // stub that ensure that an I2C stub is called from an interpreter frame.
2713     bool contains_all_checks = StubRoutines::code2() != NULL;
2714 
2715     // Create I2C & C2I handlers
2716     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2717     if (buf != NULL) {
2718       CodeBuffer buffer(buf);
2719       short buffer_locs[20];
2720       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2721                                              sizeof(buffer_locs)/sizeof(relocInfo));
2722 
2723       MacroAssembler _masm(&buffer);
2724       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2725                                                      total_args_passed,
2726                                                      comp_args_on_stack,
2727                                                      sig_bt,
2728                                                      regs,
2729                                                      fingerprint);
2730 #ifdef ASSERT
2731       if (VerifyAdapterSharing) {
2732         if (shared_entry != NULL) {
2733           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2734           // Release the one just created and return the original
2735           _adapters->free_entry(entry);
2736           return shared_entry;
2737         } else  {
2738           entry->save_code(buf->code_begin(), buffer.insts_size());
2739         }
2740       }
2741 #endif
2742 
2743       new_adapter = AdapterBlob::create(&buffer);
2744       NOT_PRODUCT(insts_size = buffer.insts_size());
2745     }
2746     if (new_adapter == NULL) {
2747       // CodeCache is full, disable compilation
2748       // Ought to log this but compile log is only per compile thread
2749       // and we're some non descript Java thread.
2750       return NULL; // Out of CodeCache space
2751     }
2752     entry->relocate(new_adapter->content_begin());
2753 #ifndef PRODUCT
2754     // debugging suppport
2755     if (PrintAdapterHandlers || PrintStubCode) {
2756       ttyLocker ttyl;
2757       entry->print_adapter_on(tty);
2758       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2759                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2760                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2761       tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry()));
2762       if (Verbose || PrintStubCode) {
2763         address first_pc = entry->base_address();
2764         if (first_pc != NULL) {
2765           Disassembler::decode(first_pc, first_pc + insts_size);
2766           tty->cr();
2767         }
2768       }
2769     }
2770 #endif
2771     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2772     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2773     if (contains_all_checks || !VerifyAdapterCalls) {
2774       _adapters->add(entry);
2775     }
2776   }
2777   // Outside of the lock
2778   if (new_adapter != NULL) {
2779     char blob_id[256];
2780     jio_snprintf(blob_id,
2781                  sizeof(blob_id),
2782                  "%s(%s)@" PTR_FORMAT,
2783                  new_adapter->name(),
2784                  fingerprint->as_string(),
2785                  new_adapter->content_begin());
2786     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2787 
2788     if (JvmtiExport::should_post_dynamic_code_generated()) {
2789       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2790     }
2791   }
2792   return entry;
2793 }
2794 
2795 address AdapterHandlerEntry::base_address() {
2796   address base = _i2c_entry;
2797   if (base == NULL)  base = _c2i_entry;
2798   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2799   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2800   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
2801   return base;
2802 }
2803 
2804 void AdapterHandlerEntry::relocate(address new_base) {
2805   address old_base = base_address();
2806   assert(old_base != NULL, "");
2807   ptrdiff_t delta = new_base - old_base;
2808   if (_i2c_entry != NULL)
2809     _i2c_entry += delta;
2810   if (_c2i_entry != NULL)
2811     _c2i_entry += delta;
2812   if (_c2i_unverified_entry != NULL)
2813     _c2i_unverified_entry += delta;
2814   if (_c2i_no_clinit_check_entry != NULL)
2815     _c2i_no_clinit_check_entry += delta;
2816   assert(base_address() == new_base, "");
2817 }
2818 
2819 
2820 void AdapterHandlerEntry::deallocate() {
2821   delete _fingerprint;
2822 #ifdef ASSERT
2823   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2824 #endif
2825 }
2826 
2827 
2828 #ifdef ASSERT
2829 // Capture the code before relocation so that it can be compared
2830 // against other versions.  If the code is captured after relocation
2831 // then relative instructions won't be equivalent.
2832 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2833   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2834   _saved_code_length = length;
2835   memcpy(_saved_code, buffer, length);
2836 }
2837 
2838 
2839 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2840   if (length != _saved_code_length) {
2841     return false;
2842   }
2843 
2844   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2845 }
2846 #endif
2847 
2848 
2849 /**
2850  * Create a native wrapper for this native method.  The wrapper converts the
2851  * Java-compiled calling convention to the native convention, handles
2852  * arguments, and transitions to native.  On return from the native we transition
2853  * back to java blocking if a safepoint is in progress.
2854  */
2855 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2856   ResourceMark rm;
2857   nmethod* nm = NULL;
2858   address critical_entry = NULL;
2859 
2860   assert(method->is_native(), "must be native");
2861   assert(method->is_method_handle_intrinsic() ||
2862          method->has_native_function(), "must have something valid to call!");
2863 
2864   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
2865     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
2866     critical_entry = NativeLookup::lookup_critical_entry(method);
2867   }
2868 
2869   {
2870     // Perform the work while holding the lock, but perform any printing outside the lock
2871     MutexLocker mu(AdapterHandlerLibrary_lock);
2872     // See if somebody beat us to it
2873     if (method->code() != NULL) {
2874       return;
2875     }
2876 
2877     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2878     assert(compile_id > 0, "Must generate native wrapper");
2879 
2880 
2881     ResourceMark rm;
2882     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2883     if (buf != NULL) {
2884       CodeBuffer buffer(buf);
2885       double locs_buf[20];
2886       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2887       MacroAssembler _masm(&buffer);
2888 
2889       // Fill in the signature array, for the calling-convention call.
2890       const int total_args_passed = method->size_of_parameters();
2891 
2892       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2893       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2894       int i=0;
2895       if (!method->is_static())  // Pass in receiver first
2896         sig_bt[i++] = T_OBJECT;
2897       SignatureStream ss(method->signature());
2898       for (; !ss.at_return_type(); ss.next()) {
2899         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2900         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2901           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2902       }
2903       assert(i == total_args_passed, "");
2904       BasicType ret_type = ss.type();
2905 
2906       // Now get the compiled-Java layout as input (or output) arguments.
2907       // NOTE: Stubs for compiled entry points of method handle intrinsics
2908       // are just trampolines so the argument registers must be outgoing ones.
2909       const bool is_outgoing = method->is_method_handle_intrinsic();
2910       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2911 
2912       // Generate the compiled-to-native wrapper code
2913       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
2914 
2915       if (nm != NULL) {
2916         method->set_code(method, nm);
2917 
2918         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2919         if (directive->PrintAssemblyOption) {
2920           nm->print_code();
2921         }
2922         DirectivesStack::release(directive);
2923       }
2924     }
2925   } // Unlock AdapterHandlerLibrary_lock
2926 
2927 
2928   // Install the generated code.
2929   if (nm != NULL) {
2930     const char *msg = method->is_static() ? "(static)" : "";
2931     CompileTask::print_ul(nm, msg);
2932     if (PrintCompilation) {
2933       ttyLocker ttyl;
2934       CompileTask::print(tty, nm, msg);
2935     }
2936     nm->post_compiled_method_load_event();
2937   }
2938 }
2939 
2940 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2941   assert(thread == JavaThread::current(), "must be");
2942   // The code is about to enter a JNI lazy critical native method and
2943   // _needs_gc is true, so if this thread is already in a critical
2944   // section then just return, otherwise this thread should block
2945   // until needs_gc has been cleared.
2946   if (thread->in_critical()) {
2947     return;
2948   }
2949   // Lock and unlock a critical section to give the system a chance to block
2950   GCLocker::lock_critical(thread);
2951   GCLocker::unlock_critical(thread);
2952 JRT_END
2953 
2954 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2955   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2956   assert(obj != NULL, "Should not be null");
2957   oop o(obj);
2958   o = Universe::heap()->pin_object(thread, o);
2959   assert(o != NULL, "Should not be null");
2960   return o;
2961 JRT_END
2962 
2963 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2964   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2965   assert(obj != NULL, "Should not be null");
2966   oop o(obj);
2967   Universe::heap()->unpin_object(thread, o);
2968 JRT_END
2969 
2970 // -------------------------------------------------------------------------
2971 // Java-Java calling convention
2972 // (what you use when Java calls Java)
2973 
2974 //------------------------------name_for_receiver----------------------------------
2975 // For a given signature, return the VMReg for parameter 0.
2976 VMReg SharedRuntime::name_for_receiver() {
2977   VMRegPair regs;
2978   BasicType sig_bt = T_OBJECT;
2979   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2980   // Return argument 0 register.  In the LP64 build pointers
2981   // take 2 registers, but the VM wants only the 'main' name.
2982   return regs.first();
2983 }
2984 
2985 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2986   // This method is returning a data structure allocating as a
2987   // ResourceObject, so do not put any ResourceMarks in here.
2988   char *s = sig->as_C_string();
2989   int len = (int)strlen(s);
2990   s++; len--;                   // Skip opening paren
2991 
2992   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2993   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2994   int cnt = 0;
2995   if (has_receiver) {
2996     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2997   }
2998 
2999   while (*s != ')') {          // Find closing right paren
3000     switch (*s++) {            // Switch on signature character
3001     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3002     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3003     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3004     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3005     case 'I': sig_bt[cnt++] = T_INT;     break;
3006     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3007     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3008     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3009     case 'V': sig_bt[cnt++] = T_VOID;    break;
3010     case 'L':                   // Oop
3011       while (*s++ != ';');   // Skip signature
3012       sig_bt[cnt++] = T_OBJECT;
3013       break;
3014     case '[': {                 // Array
3015       do {                      // Skip optional size
3016         while (*s >= '0' && *s <= '9') s++;
3017       } while (*s++ == '[');   // Nested arrays?
3018       // Skip element type
3019       if (s[-1] == 'L')
3020         while (*s++ != ';'); // Skip signature
3021       sig_bt[cnt++] = T_ARRAY;
3022       break;
3023     }
3024     default : ShouldNotReachHere();
3025     }
3026   }
3027 
3028   if (has_appendix) {
3029     sig_bt[cnt++] = T_OBJECT;
3030   }
3031 
3032   assert(cnt < 256, "grow table size");
3033 
3034   int comp_args_on_stack;
3035   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3036 
3037   // the calling convention doesn't count out_preserve_stack_slots so
3038   // we must add that in to get "true" stack offsets.
3039 
3040   if (comp_args_on_stack) {
3041     for (int i = 0; i < cnt; i++) {
3042       VMReg reg1 = regs[i].first();
3043       if (reg1->is_stack()) {
3044         // Yuck
3045         reg1 = reg1->bias(out_preserve_stack_slots());
3046       }
3047       VMReg reg2 = regs[i].second();
3048       if (reg2->is_stack()) {
3049         // Yuck
3050         reg2 = reg2->bias(out_preserve_stack_slots());
3051       }
3052       regs[i].set_pair(reg2, reg1);
3053     }
3054   }
3055 
3056   // results
3057   *arg_size = cnt;
3058   return regs;
3059 }
3060 
3061 JRT_LEAF(jlong, SharedRuntime::continuation_getFP(JavaThread* thread) )
3062   RegisterMap reg_map2(thread);
3063   assert(false, "");
3064   frame stubFrame   = thread->last_frame();
3065     // Caller-frame is a compiled frame
3066   frame callerFrame = stubFrame.sender(&reg_map2);
3067   return (jlong) callerFrame.real_fp();
3068 JRT_END
3069 
3070 // OSR Migration Code
3071 //
3072 // This code is used convert interpreter frames into compiled frames.  It is
3073 // called from very start of a compiled OSR nmethod.  A temp array is
3074 // allocated to hold the interesting bits of the interpreter frame.  All
3075 // active locks are inflated to allow them to move.  The displaced headers and
3076 // active interpreter locals are copied into the temp buffer.  Then we return
3077 // back to the compiled code.  The compiled code then pops the current
3078 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3079 // copies the interpreter locals and displaced headers where it wants.
3080 // Finally it calls back to free the temp buffer.
3081 //
3082 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3083 
3084 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3085 
3086   //
3087   // This code is dependent on the memory layout of the interpreter local
3088   // array and the monitors. On all of our platforms the layout is identical
3089   // so this code is shared. If some platform lays the their arrays out
3090   // differently then this code could move to platform specific code or
3091   // the code here could be modified to copy items one at a time using
3092   // frame accessor methods and be platform independent.
3093 
3094   frame fr = thread->last_frame();
3095   assert(fr.is_interpreted_frame(), "");
3096   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3097 
3098   // Figure out how many monitors are active.
3099   int active_monitor_count = 0;
3100   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3101        kptr < fr.interpreter_frame_monitor_begin();
3102        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3103     if (kptr->obj() != NULL) active_monitor_count++;
3104   }
3105 
3106   // QQQ we could place number of active monitors in the array so that compiled code
3107   // could double check it.
3108 
3109   Method* moop = fr.interpreter_frame_method();
3110   int max_locals = moop->max_locals();
3111   // Allocate temp buffer, 1 word per local & 2 per active monitor
3112   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3113   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3114 
3115   // Copy the locals.  Order is preserved so that loading of longs works.
3116   // Since there's no GC I can copy the oops blindly.
3117   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3118   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3119                        (HeapWord*)&buf[0],
3120                        max_locals);
3121 
3122   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3123   int i = max_locals;
3124   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3125        kptr2 < fr.interpreter_frame_monitor_begin();
3126        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3127     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3128       BasicLock *lock = kptr2->lock();
3129       // Inflate so the displaced header becomes position-independent
3130       if (lock->displaced_header()->is_unlocked())
3131         ObjectSynchronizer::inflate_helper(kptr2->obj());
3132       // Now the displaced header is free to move
3133       buf[i++] = (intptr_t)lock->displaced_header();
3134       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3135     }
3136   }
3137   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3138 
3139   return buf;
3140 JRT_END
3141 
3142 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3143   FREE_C_HEAP_ARRAY(intptr_t, buf);
3144 JRT_END
3145 
3146 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3147   AdapterHandlerTableIterator iter(_adapters);
3148   while (iter.has_next()) {
3149     AdapterHandlerEntry* a = iter.next();
3150     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3151   }
3152   return false;
3153 }
3154 
3155 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3156   AdapterHandlerTableIterator iter(_adapters);
3157   while (iter.has_next()) {
3158     AdapterHandlerEntry* a = iter.next();
3159     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3160       st->print("Adapter for signature: ");
3161       a->print_adapter_on(tty);
3162       return;
3163     }
3164   }
3165   assert(false, "Should have found handler");
3166 }
3167 
3168 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3169   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3170   if (get_i2c_entry() != NULL) {
3171     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3172   }
3173   if (get_c2i_entry() != NULL) {
3174     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3175   }
3176   if (get_c2i_unverified_entry() != NULL) {
3177     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3178   }
3179   if (get_c2i_no_clinit_check_entry() != NULL) {
3180     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3181   }
3182   st->cr();
3183 }
3184 
3185 #if INCLUDE_CDS
3186 
3187 void CDSAdapterHandlerEntry::init() {
3188   assert(DumpSharedSpaces, "used during dump time only");
3189   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3190   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3191 };
3192 
3193 #endif // INCLUDE_CDS
3194 
3195 
3196 #ifndef PRODUCT
3197 
3198 void AdapterHandlerLibrary::print_statistics() {
3199   _adapters->print_statistics();
3200 }
3201 
3202 #endif /* PRODUCT */
3203 
3204 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3205   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3206   if (thread->stack_reserved_zone_disabled()) {
3207   thread->enable_stack_reserved_zone();
3208   }
3209   thread->set_reserved_stack_activation(thread->stack_base());
3210 JRT_END
3211 
3212 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3213   ResourceMark rm(thread);
3214   frame activation;
3215   CompiledMethod* nm = NULL;
3216   int count = 1;
3217 
3218   assert(fr.is_java_frame(), "Must start on Java frame");
3219 
3220   RegisterMap map(JavaThread::current(), false, true); // don't update; walk continuations
3221   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3222     if (!fr.is_java_frame())
3223       continue;
3224 
3225     Method* method = NULL;
3226     bool found = false;
3227     if (fr.is_interpreted_frame()) {
3228       method = fr.interpreter_frame_method();
3229       if (method != NULL && method->has_reserved_stack_access()) {
3230         found = true;
3231       }
3232     } else {
3233       CodeBlob* cb = fr.cb();
3234       if (cb != NULL && cb->is_compiled()) {
3235         nm = cb->as_compiled_method();
3236         method = nm->method();
3237         // scope_desc_near() must be used, instead of scope_desc_at() because on
3238         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3239         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3240           method = sd->method();
3241           if (method != NULL && method->has_reserved_stack_access()) {
3242             found = true;
3243       }
3244     }
3245       }
3246     }
3247     if (found) {
3248       activation = fr;
3249       warning("Potentially dangerous stack overflow in "
3250               "ReservedStackAccess annotated method %s [%d]",
3251               method->name_and_sig_as_C_string(), count++);
3252       EventReservedStackActivation event;
3253       if (event.should_commit()) {
3254         event.set_method(method);
3255         event.commit();
3256       }
3257     }
3258   }
3259   return activation;
3260 }
3261 
3262 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3263   // After any safepoint, just before going back to compiled code,
3264   // we inform the GC that we will be doing initializing writes to
3265   // this object in the future without emitting card-marks, so
3266   // GC may take any compensating steps.
3267 
3268   oop new_obj = thread->vm_result();
3269   if (new_obj == NULL) return;
3270 
3271   BarrierSet *bs = BarrierSet::barrier_set();
3272   bs->on_slowpath_allocation_exit(thread, new_obj);
3273 }