1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "code/debugInfo.hpp" 26 #include "oops/access.hpp" 27 #include "oops/compressedOops.inline.hpp" 28 #include "oops/oop.hpp" 29 #include "runtime/frame.inline.hpp" 30 #include "runtime/globals.hpp" 31 #include "runtime/handles.inline.hpp" 32 #include "runtime/stackValue.hpp" 33 #if INCLUDE_ZGC 34 #include "gc/z/zBarrier.inline.hpp" 35 #endif 36 #if INCLUDE_SHENANDOAHGC 37 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp" 38 #endif 39 40 class RegisterMap; 41 class SmallRegisterMap; 42 43 template StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv); 44 template StackValue* StackValue::create_stack_value(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv); 45 46 template<typename RegisterMapT> 47 StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) { 48 return create_stack_value(sv, stack_value_address(fr, reg_map, sv), reg_map); 49 } 50 51 static oop oop_from_oop_location(stackChunkOop chunk, void* addr) { 52 if (addr == nullptr) { 53 return nullptr; 54 } 55 56 if (UseCompressedOops) { 57 // When compressed oops is enabled, an oop location may 58 // contain narrow oop values - we deal with that here 59 60 if (chunk != nullptr && chunk->has_bitmap()) { 61 // Transformed stack chunk with narrow oops 62 return chunk->load_oop((narrowOop*)addr); 63 } 64 65 #ifdef _LP64 66 if (CompressedOops::is_base(*(void**)addr)) { 67 // Compiled code may produce decoded oop = narrow_oop_base 68 // when a narrow oop implicit null check is used. 69 // The narrow_oop_base could be null or be the address 70 // of the page below heap. Use null value for both cases. 71 return nullptr; 72 } 73 #endif 74 } 75 76 if (chunk != nullptr) { 77 // Load oop from chunk 78 return chunk->load_oop((oop*)addr); 79 } 80 81 // Load oop from stack 82 oop val = *(oop*)addr; 83 84 #if INCLUDE_SHENANDOAHGC 85 if (UseShenandoahGC) { 86 // Pass the value through the barrier to avoid capturing bad oops as 87 // stack values. Note: do not heal the location, to avoid accidentally 88 // corrupting the stack. Stack watermark barriers are supposed to handle 89 // the healing. 90 val = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(val); 91 } 92 #endif 93 94 return val; 95 } 96 97 static oop oop_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) { 98 assert(UseCompressedOops, "Narrow oops should not exist"); 99 assert(addr != nullptr, "Not expecting null address"); 100 narrowOop* narrow_addr; 101 if (is_register) { 102 // The callee has no clue whether the register holds an int, 103 // long or is unused. He always saves a long. Here we know 104 // a long was saved, but we only want an int back. Narrow the 105 // saved long to the int that the JVM wants. We can't just 106 // use narrow_oop_cast directly, because we don't know what 107 // the high bits of the value might be. 108 narrow_addr = ((narrowOop*)addr) BIG_ENDIAN_ONLY(+ 1); 109 } else { 110 narrow_addr = (narrowOop*)addr; 111 } 112 113 if (chunk != nullptr) { 114 // Load oop from chunk 115 return chunk->load_oop(narrow_addr); 116 } 117 118 // Load oop from stack 119 oop val = CompressedOops::decode(*narrow_addr); 120 121 #if INCLUDE_SHENANDOAHGC 122 if (UseShenandoahGC) { 123 // Pass the value through the barrier to avoid capturing bad oops as 124 // stack values. Note: do not heal the location, to avoid accidentally 125 // corrupting the stack. Stack watermark barriers are supposed to handle 126 // the healing. 127 val = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(val); 128 } 129 #endif 130 131 return val; 132 } 133 134 StackValue* StackValue::create_stack_value_from_oop_location(stackChunkOop chunk, void* addr) { 135 oop val = oop_from_oop_location(chunk, addr); 136 assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d", 137 p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops); 138 Handle h(Thread::current(), val); // Wrap a handle around the oop 139 return new StackValue(h); 140 } 141 142 StackValue* StackValue::create_stack_value_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) { 143 oop val = oop_from_narrowOop_location(chunk, addr, is_register); 144 assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d", 145 p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops); 146 Handle h(Thread::current(), val); // Wrap a handle around the oop 147 return new StackValue(h); 148 } 149 150 template<typename RegisterMapT> 151 StackValue* StackValue::create_stack_value(ScopeValue* sv, address value_addr, const RegisterMapT* reg_map) { 152 stackChunkOop chunk = reg_map->stack_chunk()(); 153 if (sv->is_location()) { 154 // Stack or register value 155 Location loc = ((LocationValue *)sv)->location(); 156 157 // Then package it right depending on type 158 // Note: the transfer of the data is thru a union that contains 159 // an intptr_t. This is because an interpreter stack slot is 160 // really an intptr_t. The use of a union containing an intptr_t 161 // ensures that on a 64 bit platform we have proper alignment 162 // and that we store the value where the interpreter will expect 163 // to find it (i.e. proper endian). Similarly on a 32bit platform 164 // using the intptr_t ensures that when a value is larger than 165 // a stack slot (jlong/jdouble) that we capture the proper part 166 // of the value for the stack slot in question. 167 // 168 switch( loc.type() ) { 169 case Location::float_in_dbl: { // Holds a float in a double register? 170 // The callee has no clue whether the register holds a float, 171 // double or is unused. He always saves a double. Here we know 172 // a double was saved, but we only want a float back. Narrow the 173 // saved double to the float that the JVM wants. 174 assert( loc.is_register(), "floats always saved to stack in 1 word" ); 175 union { intptr_t p; jfloat jf; } value; 176 value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); 177 value.jf = (jfloat) *(jdouble*) value_addr; 178 return new StackValue(value.p); // 64-bit high half is stack junk 179 } 180 case Location::int_in_long: { // Holds an int in a long register? 181 // The callee has no clue whether the register holds an int, 182 // long or is unused. He always saves a long. Here we know 183 // a long was saved, but we only want an int back. Narrow the 184 // saved long to the int that the JVM wants. 185 assert( loc.is_register(), "ints always saved to stack in 1 word" ); 186 union { intptr_t p; jint ji;} value; 187 value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); 188 value.ji = (jint) *(jlong*) value_addr; 189 return new StackValue(value.p); // 64-bit high half is stack junk 190 } 191 #ifdef _LP64 192 case Location::dbl: 193 // Double value in an aligned adjacent pair 194 return new StackValue(*(intptr_t*)value_addr); 195 case Location::lng: 196 // Long value in an aligned adjacent pair 197 return new StackValue(*(intptr_t*)value_addr); 198 case Location::narrowoop: 199 return create_stack_value_from_narrowOop_location(reg_map->stack_chunk()(), (void*)value_addr, loc.is_register()); 200 #endif 201 case Location::oop: 202 return create_stack_value_from_oop_location(reg_map->stack_chunk()(), (void*)value_addr); 203 case Location::addr: { 204 loc.print_on(tty); 205 ShouldNotReachHere(); // both C1 and C2 now inline jsrs 206 } 207 case Location::normal: { 208 // Just copy all other bits straight through 209 union { intptr_t p; jint ji;} value; 210 value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); 211 value.ji = *(jint*)value_addr; 212 return new StackValue(value.p); 213 } 214 case Location::invalid: { 215 return new StackValue(); 216 } 217 case Location::vector: { 218 loc.print_on(tty); 219 ShouldNotReachHere(); // should be handled by VectorSupport::allocate_vector() 220 } 221 default: 222 loc.print_on(tty); 223 ShouldNotReachHere(); 224 } 225 226 } else if (sv->is_constant_int()) { 227 // Constant int: treat same as register int. 228 union { intptr_t p; jint ji;} value; 229 value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); 230 value.ji = (jint)((ConstantIntValue*)sv)->value(); 231 return new StackValue(value.p); 232 } else if (sv->is_constant_oop()) { 233 // constant oop 234 return new StackValue(sv->as_ConstantOopReadValue()->value()); 235 #ifdef _LP64 236 } else if (sv->is_constant_double()) { 237 // Constant double in a single stack slot 238 union { intptr_t p; double d; } value; 239 value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); 240 value.d = ((ConstantDoubleValue *)sv)->value(); 241 return new StackValue(value.p); 242 } else if (sv->is_constant_long()) { 243 // Constant long in a single stack slot 244 union { intptr_t p; jlong jl; } value; 245 value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); 246 value.jl = ((ConstantLongValue *)sv)->value(); 247 return new StackValue(value.p); 248 #endif 249 } else if (sv->is_object()) { // Scalar replaced object in compiled frame 250 ObjectValue* ov = (ObjectValue *)sv; 251 Handle hdl = ov->value(); 252 return new StackValue(hdl, hdl.is_null() && ov->is_scalar_replaced() ? 1 : 0); 253 } else if (sv->is_marker()) { 254 // Should never need to directly construct a marker. 255 ShouldNotReachHere(); 256 } 257 // Unknown ScopeValue type 258 ShouldNotReachHere(); 259 return new StackValue((intptr_t) 0); // dummy 260 } 261 262 template address StackValue::stack_value_address(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv); 263 template address StackValue::stack_value_address(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv); 264 265 template<typename RegisterMapT> 266 address StackValue::stack_value_address(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) { 267 if (!sv->is_location()) { 268 return nullptr; 269 } 270 Location loc = ((LocationValue *)sv)->location(); 271 if (loc.type() == Location::invalid) { 272 return nullptr; 273 } 274 275 if (!reg_map->in_cont()) { 276 address value_addr = loc.is_register() 277 // Value was in a callee-save register 278 ? reg_map->location(VMRegImpl::as_VMReg(loc.register_number()), fr->sp()) 279 // Else value was directly saved on the stack. The frame's original stack pointer, 280 // before any extension by its callee (due to Compiler1 linkage on SPARC), must be used. 281 : ((address)fr->unextended_sp()) + loc.stack_offset(); 282 283 assert(value_addr == nullptr || reg_map->thread() == nullptr || reg_map->thread()->is_in_usable_stack(value_addr), INTPTR_FORMAT, p2i(value_addr)); 284 return value_addr; 285 } 286 287 address value_addr = loc.is_register() 288 ? reg_map->as_RegisterMap()->stack_chunk()->reg_to_location(*fr, reg_map->as_RegisterMap(), VMRegImpl::as_VMReg(loc.register_number())) 289 : reg_map->as_RegisterMap()->stack_chunk()->usp_offset_to_location(*fr, loc.stack_offset()); 290 291 assert(value_addr == nullptr || Continuation::is_in_usable_stack(value_addr, reg_map->as_RegisterMap()) || (reg_map->thread() != nullptr && reg_map->thread()->is_in_usable_stack(value_addr)), INTPTR_FORMAT, p2i(value_addr)); 292 return value_addr; 293 } 294 295 BasicLock* StackValue::resolve_monitor_lock(const frame& fr, Location location) { 296 assert(location.is_stack(), "for now we only look at the stack"); 297 int word_offset = location.stack_offset() / wordSize; 298 // (stack picture) 299 // high: [ ] word_offset + 1 300 // low [ ] word_offset 301 // 302 // sp-> [ ] 0 303 // the word_offset is the distance from the stack pointer to the lowest address 304 // The frame's original stack pointer, before any extension by its callee 305 // (due to Compiler1 linkage on SPARC), must be used. 306 return (BasicLock*) (fr.unextended_sp() + word_offset); 307 } 308 309 310 #ifndef PRODUCT 311 312 void StackValue::print_on(outputStream* st) const { 313 switch(_type) { 314 case T_INT: 315 st->print("%d (int) %f (float) %x (hex)", *(int *)&_integer_value, *(float *)&_integer_value, *(int *)&_integer_value); 316 break; 317 318 case T_OBJECT: 319 if (_handle_value() != nullptr) { 320 _handle_value()->print_value_on(st); 321 } else { 322 st->print("null"); 323 } 324 st->print(" <" INTPTR_FORMAT ">", p2i(_handle_value())); 325 break; 326 327 case T_CONFLICT: 328 st->print("conflict"); 329 break; 330 331 default: 332 ShouldNotReachHere(); 333 } 334 } 335 336 #endif