1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmSymbols.hpp" 26 #include "gc/shared/collectedHeap.hpp" 27 #include "jfr/jfrEvents.hpp" 28 #include "logging/log.hpp" 29 #include "logging/logStream.hpp" 30 #include "memory/allocation.inline.hpp" 31 #include "memory/padded.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/markWord.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "runtime/atomic.hpp" 37 #include "runtime/basicLock.inline.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/globals.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/handshake.hpp" 42 #include "runtime/interfaceSupport.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/lightweightSynchronizer.hpp" 45 #include "runtime/lockStack.inline.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/objectMonitor.inline.hpp" 48 #include "runtime/os.inline.hpp" 49 #include "runtime/osThread.hpp" 50 #include "runtime/safepointMechanism.inline.hpp" 51 #include "runtime/safepointVerifiers.hpp" 52 #include "runtime/sharedRuntime.hpp" 53 #include "runtime/stubRoutines.hpp" 54 #include "runtime/synchronizer.inline.hpp" 55 #include "runtime/threads.hpp" 56 #include "runtime/timer.hpp" 57 #include "runtime/trimNativeHeap.hpp" 58 #include "runtime/vframe.hpp" 59 #include "runtime/vmThread.hpp" 60 #include "utilities/align.hpp" 61 #include "utilities/dtrace.hpp" 62 #include "utilities/events.hpp" 63 #include "utilities/globalCounter.inline.hpp" 64 #include "utilities/globalDefinitions.hpp" 65 #include "utilities/linkedlist.hpp" 66 #include "utilities/preserveException.hpp" 67 68 class ObjectMonitorDeflationLogging; 69 70 void MonitorList::add(ObjectMonitor* m) { 71 ObjectMonitor* head; 72 do { 73 head = Atomic::load(&_head); 74 m->set_next_om(head); 75 } while (Atomic::cmpxchg(&_head, head, m) != head); 76 77 size_t count = Atomic::add(&_count, 1u, memory_order_relaxed); 78 size_t old_max; 79 do { 80 old_max = Atomic::load(&_max); 81 if (count <= old_max) { 82 break; 83 } 84 } while (Atomic::cmpxchg(&_max, old_max, count, memory_order_relaxed) != old_max); 85 } 86 87 size_t MonitorList::count() const { 88 return Atomic::load(&_count); 89 } 90 91 size_t MonitorList::max() const { 92 return Atomic::load(&_max); 93 } 94 95 class ObjectMonitorDeflationSafepointer : public StackObj { 96 JavaThread* const _current; 97 ObjectMonitorDeflationLogging* const _log; 98 99 public: 100 ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log) 101 : _current(current), _log(log) {} 102 103 void block_for_safepoint(const char* op_name, const char* count_name, size_t counter); 104 }; 105 106 // Walk the in-use list and unlink deflated ObjectMonitors. 107 // Returns the number of unlinked ObjectMonitors. 108 size_t MonitorList::unlink_deflated(size_t deflated_count, 109 GrowableArray<ObjectMonitor*>* unlinked_list, 110 ObjectMonitorDeflationSafepointer* safepointer) { 111 size_t unlinked_count = 0; 112 ObjectMonitor* prev = nullptr; 113 ObjectMonitor* m = Atomic::load_acquire(&_head); 114 115 while (m != nullptr) { 116 if (m->is_being_async_deflated()) { 117 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 118 // modify the list once per batch. The batch starts at "m". 119 size_t unlinked_batch = 0; 120 ObjectMonitor* next = m; 121 // Look for at most MonitorUnlinkBatch monitors, or the number of 122 // deflated and not unlinked monitors, whatever comes first. 123 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 124 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 125 do { 126 ObjectMonitor* next_next = next->next_om(); 127 unlinked_batch++; 128 unlinked_list->append(next); 129 next = next_next; 130 if (unlinked_batch >= unlinked_batch_limit) { 131 // Reached the max batch, so bail out of the gathering loop. 132 break; 133 } 134 if (prev == nullptr && Atomic::load(&_head) != m) { 135 // Current batch used to be at head, but it is not at head anymore. 136 // Bail out and figure out where we currently are. This avoids long 137 // walks searching for new prev during unlink under heavy list inserts. 138 break; 139 } 140 } while (next != nullptr && next->is_being_async_deflated()); 141 142 // Unlink the found batch. 143 if (prev == nullptr) { 144 // The current batch is the first batch, so there is a chance that it starts at head. 145 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 146 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 147 if (prev_head != m) { 148 // Something must have updated the head. Figure out the actual prev for this batch. 149 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 150 prev = n; 151 } 152 assert(prev != nullptr, "Should have found the prev for the current batch"); 153 prev->set_next_om(next); 154 } 155 } else { 156 // The current batch is preceded by another batch. This guarantees the current batch 157 // does not start at head. Unlink the entire current batch without updating the head. 158 assert(Atomic::load(&_head) != m, "Sanity"); 159 prev->set_next_om(next); 160 } 161 162 unlinked_count += unlinked_batch; 163 if (unlinked_count >= deflated_count) { 164 // Reached the max so bail out of the searching loop. 165 // There should be no more deflated monitors left. 166 break; 167 } 168 m = next; 169 } else { 170 prev = m; 171 m = m->next_om(); 172 } 173 174 // Must check for a safepoint/handshake and honor it. 175 safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count); 176 } 177 178 #ifdef ASSERT 179 // Invariant: the code above should unlink all deflated monitors. 180 // The code that runs after this unlinking does not expect deflated monitors. 181 // Notably, attempting to deflate the already deflated monitor would break. 182 { 183 ObjectMonitor* m = Atomic::load_acquire(&_head); 184 while (m != nullptr) { 185 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 186 m = m->next_om(); 187 } 188 } 189 #endif 190 191 Atomic::sub(&_count, unlinked_count); 192 return unlinked_count; 193 } 194 195 MonitorList::Iterator MonitorList::iterator() const { 196 return Iterator(Atomic::load_acquire(&_head)); 197 } 198 199 ObjectMonitor* MonitorList::Iterator::next() { 200 ObjectMonitor* current = _current; 201 _current = current->next_om(); 202 return current; 203 } 204 205 // The "core" versions of monitor enter and exit reside in this file. 206 // The interpreter and compilers contain specialized transliterated 207 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 208 // fast_lock(...) for instance. If you make changes here, make sure to modify the 209 // interpreter, and both C1 and C2 fast-path inline locking code emission. 210 // 211 // ----------------------------------------------------------------------------- 212 213 #ifdef DTRACE_ENABLED 214 215 // Only bother with this argument setup if dtrace is available 216 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 217 218 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 219 char* bytes = nullptr; \ 220 int len = 0; \ 221 jlong jtid = SharedRuntime::get_java_tid(thread); \ 222 Symbol* klassname = obj->klass()->name(); \ 223 if (klassname != nullptr) { \ 224 bytes = (char*)klassname->bytes(); \ 225 len = klassname->utf8_length(); \ 226 } 227 228 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 229 { \ 230 if (DTraceMonitorProbes) { \ 231 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 232 HOTSPOT_MONITOR_WAIT(jtid, \ 233 (uintptr_t)(monitor), bytes, len, (millis)); \ 234 } \ 235 } 236 237 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 238 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 239 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 240 241 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 242 { \ 243 if (DTraceMonitorProbes) { \ 244 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 245 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 246 (uintptr_t)(monitor), bytes, len); \ 247 } \ 248 } 249 250 #else // ndef DTRACE_ENABLED 251 252 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 253 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 254 255 #endif // ndef DTRACE_ENABLED 256 257 // This exists only as a workaround of dtrace bug 6254741 258 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 259 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 260 return 0; 261 } 262 263 static constexpr size_t inflation_lock_count() { 264 return 256; 265 } 266 267 // Static storage for an array of PlatformMutex. 268 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 269 270 static inline PlatformMutex* inflation_lock(size_t index) { 271 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 272 } 273 274 void ObjectSynchronizer::initialize() { 275 for (size_t i = 0; i < inflation_lock_count(); i++) { 276 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 277 } 278 // Start the ceiling with the estimate for one thread. 279 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 280 281 // Start the timer for deflations, so it does not trigger immediately. 282 _last_async_deflation_time_ns = os::javaTimeNanos(); 283 284 if (LockingMode == LM_LIGHTWEIGHT) { 285 LightweightSynchronizer::initialize(); 286 } 287 } 288 289 MonitorList ObjectSynchronizer::_in_use_list; 290 // monitors_used_above_threshold() policy is as follows: 291 // 292 // The ratio of the current _in_use_list count to the ceiling is used 293 // to determine if we are above MonitorUsedDeflationThreshold and need 294 // to do an async monitor deflation cycle. The ceiling is increased by 295 // AvgMonitorsPerThreadEstimate when a thread is added to the system 296 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 297 // removed from the system. 298 // 299 // Note: If the _in_use_list max exceeds the ceiling, then 300 // monitors_used_above_threshold() will use the in_use_list max instead 301 // of the thread count derived ceiling because we have used more 302 // ObjectMonitors than the estimated average. 303 // 304 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 305 // no-progress async monitor deflation cycles in a row, then the ceiling 306 // is adjusted upwards by monitors_used_above_threshold(). 307 // 308 // Start the ceiling with the estimate for one thread in initialize() 309 // which is called after cmd line options are processed. 310 static size_t _in_use_list_ceiling = 0; 311 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 312 bool volatile ObjectSynchronizer::_is_final_audit = false; 313 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 314 static uintx _no_progress_cnt = 0; 315 static bool _no_progress_skip_increment = false; 316 317 // =====================> Quick functions 318 319 // The quick_* forms are special fast-path variants used to improve 320 // performance. In the simplest case, a "quick_*" implementation could 321 // simply return false, in which case the caller will perform the necessary 322 // state transitions and call the slow-path form. 323 // The fast-path is designed to handle frequently arising cases in an efficient 324 // manner and is just a degenerate "optimistic" variant of the slow-path. 325 // returns true -- to indicate the call was satisfied. 326 // returns false -- to indicate the call needs the services of the slow-path. 327 // A no-loitering ordinance is in effect for code in the quick_* family 328 // operators: safepoints or indefinite blocking (blocking that might span a 329 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 330 // entry. 331 // 332 // Consider: An interesting optimization is to have the JIT recognize the 333 // following common idiom: 334 // synchronized (someobj) { .... ; notify(); } 335 // That is, we find a notify() or notifyAll() call that immediately precedes 336 // the monitorexit operation. In that case the JIT could fuse the operations 337 // into a single notifyAndExit() runtime primitive. 338 339 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 340 assert(current->thread_state() == _thread_in_Java, "invariant"); 341 NoSafepointVerifier nsv; 342 if (obj == nullptr) return false; // slow-path for invalid obj 343 const markWord mark = obj->mark(); 344 345 if (LockingMode == LM_LIGHTWEIGHT) { 346 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 347 // Degenerate notify 348 // fast-locked by caller so by definition the implied waitset is empty. 349 return true; 350 } 351 } else if (LockingMode == LM_LEGACY) { 352 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 353 // Degenerate notify 354 // stack-locked by caller so by definition the implied waitset is empty. 355 return true; 356 } 357 } 358 359 if (mark.has_monitor()) { 360 ObjectMonitor* const mon = read_monitor(current, obj, mark); 361 if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) { 362 // Racing with inflation/deflation go slow path 363 return false; 364 } 365 assert(mon->object() == oop(obj), "invariant"); 366 if (!mon->has_owner(current)) return false; // slow-path for IMS exception 367 368 if (mon->first_waiter() != nullptr) { 369 // We have one or more waiters. Since this is an inflated monitor 370 // that we own, we quickly notify them here and now, avoiding the slow-path. 371 if (all) { 372 mon->quick_notifyAll(current); 373 } else { 374 mon->quick_notify(current); 375 } 376 } 377 return true; 378 } 379 380 // other IMS exception states take the slow-path 381 return false; 382 } 383 384 static bool useHeavyMonitors() { 385 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 386 return LockingMode == LM_MONITOR; 387 #else 388 return false; 389 #endif 390 } 391 392 // The LockNode emitted directly at the synchronization site would have 393 // been too big if it were to have included support for the cases of inflated 394 // recursive enter and exit, so they go here instead. 395 // Note that we can't safely call AsyncPrintJavaStack() from within 396 // quick_enter() as our thread state remains _in_Java. 397 398 bool ObjectSynchronizer::quick_enter_legacy(oop obj, BasicLock* lock, JavaThread* current) { 399 assert(current->thread_state() == _thread_in_Java, "invariant"); 400 401 if (useHeavyMonitors()) { 402 return false; // Slow path 403 } 404 405 assert(LockingMode == LM_LEGACY, "legacy mode below"); 406 407 const markWord mark = obj->mark(); 408 409 if (mark.has_monitor()) { 410 411 ObjectMonitor* const m = read_monitor(mark); 412 // An async deflation or GC can race us before we manage to make 413 // the ObjectMonitor busy by setting the owner below. If we detect 414 // that race we just bail out to the slow-path here. 415 if (m->object_peek() == nullptr) { 416 return false; 417 } 418 419 // Lock contention and Transactional Lock Elision (TLE) diagnostics 420 // and observability 421 // Case: light contention possibly amenable to TLE 422 // Case: TLE inimical operations such as nested/recursive synchronization 423 424 if (m->has_owner(current)) { 425 m->increment_recursions(current); 426 current->inc_held_monitor_count(); 427 return true; 428 } 429 430 // This Java Monitor is inflated so obj's header will never be 431 // displaced to this thread's BasicLock. Make the displaced header 432 // non-null so this BasicLock is not seen as recursive nor as 433 // being locked. We do this unconditionally so that this thread's 434 // BasicLock cannot be mis-interpreted by any stack walkers. For 435 // performance reasons, stack walkers generally first check for 436 // stack-locking in the object's header, the second check is for 437 // recursive stack-locking in the displaced header in the BasicLock, 438 // and last are the inflated Java Monitor (ObjectMonitor) checks. 439 lock->set_displaced_header(markWord::unused_mark()); 440 441 if (!m->has_owner() && m->try_set_owner(current)) { 442 assert(m->recursions() == 0, "invariant"); 443 current->inc_held_monitor_count(); 444 return true; 445 } 446 } 447 448 // Note that we could inflate in quick_enter. 449 // This is likely a useful optimization 450 // Critically, in quick_enter() we must not: 451 // -- block indefinitely, or 452 // -- reach a safepoint 453 454 return false; // revert to slow-path 455 } 456 457 // Handle notifications when synchronizing on value based classes 458 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 459 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 460 frame last_frame = locking_thread->last_frame(); 461 bool bcp_was_adjusted = false; 462 // Don't decrement bcp if it points to the frame's first instruction. This happens when 463 // handle_sync_on_value_based_class() is called because of a synchronized method. There 464 // is no actual monitorenter instruction in the byte code in this case. 465 if (last_frame.is_interpreted_frame() && 466 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 467 // adjust bcp to point back to monitorenter so that we print the correct line numbers 468 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 469 bcp_was_adjusted = true; 470 } 471 472 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 473 ResourceMark rm; 474 stringStream ss; 475 locking_thread->print_active_stack_on(&ss); 476 char* base = (char*)strstr(ss.base(), "at"); 477 char* newline = (char*)strchr(ss.base(), '\n'); 478 if (newline != nullptr) { 479 *newline = '\0'; 480 } 481 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 482 } else { 483 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 484 ResourceMark rm; 485 Log(valuebasedclasses) vblog; 486 487 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 488 if (locking_thread->has_last_Java_frame()) { 489 LogStream info_stream(vblog.info()); 490 locking_thread->print_active_stack_on(&info_stream); 491 } else { 492 vblog.info("Cannot find the last Java frame"); 493 } 494 495 EventSyncOnValueBasedClass event; 496 if (event.should_commit()) { 497 event.set_valueBasedClass(obj->klass()); 498 event.commit(); 499 } 500 } 501 502 if (bcp_was_adjusted) { 503 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 504 } 505 } 506 507 // ----------------------------------------------------------------------------- 508 // Monitor Enter/Exit 509 510 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 511 // When called with locking_thread != Thread::current() some mechanism must synchronize 512 // the locking_thread with respect to the current thread. Currently only used when 513 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 514 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 515 516 if (LockingMode == LM_LIGHTWEIGHT) { 517 return LightweightSynchronizer::enter_for(obj, lock, locking_thread); 518 } 519 520 if (!enter_fast_impl(obj, lock, locking_thread)) { 521 // Inflated ObjectMonitor::enter_for is required 522 523 // An async deflation can race after the inflate_for() call and before 524 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 525 // if we have lost the race to async deflation and we simply try again. 526 while (true) { 527 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 528 if (monitor->enter_for(locking_thread)) { 529 return; 530 } 531 assert(monitor->is_being_async_deflated(), "must be"); 532 } 533 } 534 } 535 536 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) { 537 if (!enter_fast_impl(obj, lock, current)) { 538 // Inflated ObjectMonitor::enter is required 539 540 // An async deflation can race after the inflate() call and before 541 // enter() can make the ObjectMonitor busy. enter() returns false if 542 // we have lost the race to async deflation and we simply try again. 543 while (true) { 544 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 545 if (monitor->enter(current)) { 546 return; 547 } 548 } 549 } 550 } 551 552 // The interpreter and compiler assembly code tries to lock using the fast path 553 // of this algorithm. Make sure to update that code if the following function is 554 // changed. The implementation is extremely sensitive to race condition. Be careful. 555 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 556 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 557 558 if (obj->klass()->is_value_based()) { 559 handle_sync_on_value_based_class(obj, locking_thread); 560 } 561 562 locking_thread->inc_held_monitor_count(); 563 564 if (!useHeavyMonitors()) { 565 if (LockingMode == LM_LEGACY) { 566 markWord mark = obj->mark(); 567 if (mark.is_unlocked()) { 568 // Anticipate successful CAS -- the ST of the displaced mark must 569 // be visible <= the ST performed by the CAS. 570 lock->set_displaced_header(mark); 571 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 572 return true; 573 } 574 } else if (mark.has_locker() && 575 locking_thread->is_lock_owned((address) mark.locker())) { 576 assert(lock != mark.locker(), "must not re-lock the same lock"); 577 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 578 lock->set_displaced_header(markWord::from_pointer(nullptr)); 579 return true; 580 } 581 582 // The object header will never be displaced to this lock, 583 // so it does not matter what the value is, except that it 584 // must be non-zero to avoid looking like a re-entrant lock, 585 // and must not look locked either. 586 lock->set_displaced_header(markWord::unused_mark()); 587 588 // Failed to fast lock. 589 return false; 590 } 591 } else if (VerifyHeavyMonitors) { 592 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 593 } 594 595 return false; 596 } 597 598 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) { 599 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 600 601 if (!useHeavyMonitors()) { 602 markWord mark = object->mark(); 603 if (LockingMode == LM_LEGACY) { 604 markWord dhw = lock->displaced_header(); 605 if (dhw.value() == 0) { 606 // If the displaced header is null, then this exit matches up with 607 // a recursive enter. No real work to do here except for diagnostics. 608 #ifndef PRODUCT 609 if (mark != markWord::INFLATING()) { 610 // Only do diagnostics if we are not racing an inflation. Simply 611 // exiting a recursive enter of a Java Monitor that is being 612 // inflated is safe; see the has_monitor() comment below. 613 assert(!mark.is_unlocked(), "invariant"); 614 assert(!mark.has_locker() || 615 current->is_lock_owned((address)mark.locker()), "invariant"); 616 if (mark.has_monitor()) { 617 // The BasicLock's displaced_header is marked as a recursive 618 // enter and we have an inflated Java Monitor (ObjectMonitor). 619 // This is a special case where the Java Monitor was inflated 620 // after this thread entered the stack-lock recursively. When a 621 // Java Monitor is inflated, we cannot safely walk the Java 622 // Monitor owner's stack and update the BasicLocks because a 623 // Java Monitor can be asynchronously inflated by a thread that 624 // does not own the Java Monitor. 625 ObjectMonitor* m = read_monitor(mark); 626 assert(m->object()->mark() == mark, "invariant"); 627 assert(m->is_entered(current), "invariant"); 628 } 629 } 630 #endif 631 return; 632 } 633 634 if (mark == markWord::from_pointer(lock)) { 635 // If the object is stack-locked by the current thread, try to 636 // swing the displaced header from the BasicLock back to the mark. 637 assert(dhw.is_neutral(), "invariant"); 638 if (object->cas_set_mark(dhw, mark) == mark) { 639 return; 640 } 641 } 642 } 643 } else if (VerifyHeavyMonitors) { 644 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 645 } 646 647 // We have to take the slow-path of possible inflation and then exit. 648 // The ObjectMonitor* can't be async deflated until ownership is 649 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 650 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 651 assert(!monitor->has_anonymous_owner(), "must not be"); 652 monitor->exit(current); 653 } 654 655 // ----------------------------------------------------------------------------- 656 // JNI locks on java objects 657 // NOTE: must use heavy weight monitor to handle jni monitor enter 658 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 659 // Top native frames in the stack will not be seen if we attempt 660 // preemption, since we start walking from the last Java anchor. 661 NoPreemptMark npm(current); 662 663 if (obj->klass()->is_value_based()) { 664 handle_sync_on_value_based_class(obj, current); 665 } 666 667 // the current locking is from JNI instead of Java code 668 current->set_current_pending_monitor_is_from_java(false); 669 // An async deflation can race after the inflate() call and before 670 // enter() can make the ObjectMonitor busy. enter() returns false if 671 // we have lost the race to async deflation and we simply try again. 672 while (true) { 673 ObjectMonitor* monitor; 674 bool entered; 675 if (LockingMode == LM_LIGHTWEIGHT) { 676 BasicLock lock; 677 entered = LightweightSynchronizer::inflate_and_enter(obj(), &lock, inflate_cause_jni_enter, current, current) != nullptr; 678 } else { 679 monitor = inflate(current, obj(), inflate_cause_jni_enter); 680 entered = monitor->enter(current); 681 } 682 683 if (entered) { 684 current->inc_held_monitor_count(1, true); 685 break; 686 } 687 } 688 current->set_current_pending_monitor_is_from_java(true); 689 } 690 691 // NOTE: must use heavy weight monitor to handle jni monitor exit 692 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 693 JavaThread* current = THREAD; 694 695 ObjectMonitor* monitor; 696 if (LockingMode == LM_LIGHTWEIGHT) { 697 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK); 698 } else { 699 // The ObjectMonitor* can't be async deflated until ownership is 700 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 701 monitor = inflate(current, obj, inflate_cause_jni_exit); 702 } 703 // If this thread has locked the object, exit the monitor. We 704 // intentionally do not use CHECK on check_owner because we must exit the 705 // monitor even if an exception was already pending. 706 if (monitor->check_owner(THREAD)) { 707 monitor->exit(current); 708 current->dec_held_monitor_count(1, true); 709 } 710 } 711 712 // ----------------------------------------------------------------------------- 713 // Internal VM locks on java objects 714 // standard constructor, allows locking failures 715 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) : _npm(thread) { 716 _thread = thread; 717 _thread->check_for_valid_safepoint_state(); 718 _obj = obj; 719 720 if (_obj() != nullptr) { 721 ObjectSynchronizer::enter(_obj, &_lock, _thread); 722 } 723 } 724 725 ObjectLocker::~ObjectLocker() { 726 if (_obj() != nullptr) { 727 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 728 } 729 } 730 731 732 // ----------------------------------------------------------------------------- 733 // Wait/Notify/NotifyAll 734 // NOTE: must use heavy weight monitor to handle wait() 735 736 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 737 JavaThread* current = THREAD; 738 if (millis < 0) { 739 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 740 } 741 742 ObjectMonitor* monitor; 743 if (LockingMode == LM_LIGHTWEIGHT) { 744 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0); 745 } else { 746 // The ObjectMonitor* can't be async deflated because the _waiters 747 // field is incremented before ownership is dropped and decremented 748 // after ownership is regained. 749 monitor = inflate(current, obj(), inflate_cause_wait); 750 } 751 752 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 753 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 754 755 // This dummy call is in place to get around dtrace bug 6254741. Once 756 // that's fixed we can uncomment the following line, remove the call 757 // and change this function back into a "void" func. 758 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 759 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 760 return ret_code; 761 } 762 763 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 764 if (millis < 0) { 765 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 766 } 767 768 ObjectMonitor* monitor; 769 if (LockingMode == LM_LIGHTWEIGHT) { 770 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK); 771 } else { 772 monitor = inflate(THREAD, obj(), inflate_cause_wait); 773 } 774 monitor->wait(millis, false, THREAD); 775 } 776 777 778 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 779 JavaThread* current = THREAD; 780 781 markWord mark = obj->mark(); 782 if (LockingMode == LM_LIGHTWEIGHT) { 783 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 784 // Not inflated so there can't be any waiters to notify. 785 return; 786 } 787 } else if (LockingMode == LM_LEGACY) { 788 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 789 // Not inflated so there can't be any waiters to notify. 790 return; 791 } 792 } 793 794 ObjectMonitor* monitor; 795 if (LockingMode == LM_LIGHTWEIGHT) { 796 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 797 } else { 798 // The ObjectMonitor* can't be async deflated until ownership is 799 // dropped by the calling thread. 800 monitor = inflate(current, obj(), inflate_cause_notify); 801 } 802 monitor->notify(CHECK); 803 } 804 805 // NOTE: see comment of notify() 806 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 807 JavaThread* current = THREAD; 808 809 markWord mark = obj->mark(); 810 if (LockingMode == LM_LIGHTWEIGHT) { 811 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 812 // Not inflated so there can't be any waiters to notify. 813 return; 814 } 815 } else if (LockingMode == LM_LEGACY) { 816 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 817 // Not inflated so there can't be any waiters to notify. 818 return; 819 } 820 } 821 822 ObjectMonitor* monitor; 823 if (LockingMode == LM_LIGHTWEIGHT) { 824 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 825 } else { 826 // The ObjectMonitor* can't be async deflated until ownership is 827 // dropped by the calling thread. 828 monitor = inflate(current, obj(), inflate_cause_notify); 829 } 830 monitor->notifyAll(CHECK); 831 } 832 833 // ----------------------------------------------------------------------------- 834 // Hash Code handling 835 836 struct SharedGlobals { 837 char _pad_prefix[OM_CACHE_LINE_SIZE]; 838 // This is a highly shared mostly-read variable. 839 // To avoid false-sharing it needs to be the sole occupant of a cache line. 840 volatile int stw_random; 841 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 842 // Hot RW variable -- Sequester to avoid false-sharing 843 volatile int hc_sequence; 844 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 845 }; 846 847 static SharedGlobals GVars; 848 849 static markWord read_stable_mark(oop obj) { 850 markWord mark = obj->mark_acquire(); 851 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 852 // New lightweight locking does not use the markWord::INFLATING() protocol. 853 return mark; // normal fast-path return 854 } 855 856 int its = 0; 857 for (;;) { 858 markWord mark = obj->mark_acquire(); 859 if (!mark.is_being_inflated()) { 860 return mark; // normal fast-path return 861 } 862 863 // The object is being inflated by some other thread. 864 // The caller of read_stable_mark() must wait for inflation to complete. 865 // Avoid live-lock. 866 867 ++its; 868 if (its > 10000 || !os::is_MP()) { 869 if (its & 1) { 870 os::naked_yield(); 871 } else { 872 // Note that the following code attenuates the livelock problem but is not 873 // a complete remedy. A more complete solution would require that the inflating 874 // thread hold the associated inflation lock. The following code simply restricts 875 // the number of spinners to at most one. We'll have N-2 threads blocked 876 // on the inflationlock, 1 thread holding the inflation lock and using 877 // a yield/park strategy, and 1 thread in the midst of inflation. 878 // A more refined approach would be to change the encoding of INFLATING 879 // to allow encapsulation of a native thread pointer. Threads waiting for 880 // inflation to complete would use CAS to push themselves onto a singly linked 881 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 882 // and calling park(). When inflation was complete the thread that accomplished inflation 883 // would detach the list and set the markword to inflated with a single CAS and 884 // then for each thread on the list, set the flag and unpark() the thread. 885 886 // Index into the lock array based on the current object address. 887 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 888 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 889 int YieldThenBlock = 0; 890 assert(ix < inflation_lock_count(), "invariant"); 891 inflation_lock(ix)->lock(); 892 while (obj->mark_acquire() == markWord::INFLATING()) { 893 // Beware: naked_yield() is advisory and has almost no effect on some platforms 894 // so we periodically call current->_ParkEvent->park(1). 895 // We use a mixed spin/yield/block mechanism. 896 if ((YieldThenBlock++) >= 16) { 897 Thread::current()->_ParkEvent->park(1); 898 } else { 899 os::naked_yield(); 900 } 901 } 902 inflation_lock(ix)->unlock(); 903 } 904 } else { 905 SpinPause(); // SMP-polite spinning 906 } 907 } 908 } 909 910 // hashCode() generation : 911 // 912 // Possibilities: 913 // * MD5Digest of {obj,stw_random} 914 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 915 // * A DES- or AES-style SBox[] mechanism 916 // * One of the Phi-based schemes, such as: 917 // 2654435761 = 2^32 * Phi (golden ratio) 918 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 919 // * A variation of Marsaglia's shift-xor RNG scheme. 920 // * (obj ^ stw_random) is appealing, but can result 921 // in undesirable regularity in the hashCode values of adjacent objects 922 // (objects allocated back-to-back, in particular). This could potentially 923 // result in hashtable collisions and reduced hashtable efficiency. 924 // There are simple ways to "diffuse" the middle address bits over the 925 // generated hashCode values: 926 927 static intptr_t get_next_hash(Thread* current, oop obj) { 928 intptr_t value = 0; 929 if (hashCode == 0) { 930 // This form uses global Park-Miller RNG. 931 // On MP system we'll have lots of RW access to a global, so the 932 // mechanism induces lots of coherency traffic. 933 value = os::random(); 934 } else if (hashCode == 1) { 935 // This variation has the property of being stable (idempotent) 936 // between STW operations. This can be useful in some of the 1-0 937 // synchronization schemes. 938 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 939 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 940 } else if (hashCode == 2) { 941 value = 1; // for sensitivity testing 942 } else if (hashCode == 3) { 943 value = ++GVars.hc_sequence; 944 } else if (hashCode == 4) { 945 value = cast_from_oop<intptr_t>(obj); 946 } else { 947 // Marsaglia's xor-shift scheme with thread-specific state 948 // This is probably the best overall implementation -- we'll 949 // likely make this the default in future releases. 950 unsigned t = current->_hashStateX; 951 t ^= (t << 11); 952 current->_hashStateX = current->_hashStateY; 953 current->_hashStateY = current->_hashStateZ; 954 current->_hashStateZ = current->_hashStateW; 955 unsigned v = current->_hashStateW; 956 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 957 current->_hashStateW = v; 958 value = v; 959 } 960 961 value &= markWord::hash_mask; 962 if (value == 0) value = 0xBAD; 963 assert(value != markWord::no_hash, "invariant"); 964 return value; 965 } 966 967 static intptr_t install_hash_code(Thread* current, oop obj) { 968 assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be"); 969 970 markWord mark = obj->mark_acquire(); 971 for (;;) { 972 intptr_t hash = mark.hash(); 973 if (hash != 0) { 974 return hash; 975 } 976 977 hash = get_next_hash(current, obj); 978 const markWord old_mark = mark; 979 const markWord new_mark = old_mark.copy_set_hash(hash); 980 981 mark = obj->cas_set_mark(new_mark, old_mark); 982 if (old_mark == mark) { 983 return hash; 984 } 985 } 986 } 987 988 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 989 if (UseObjectMonitorTable) { 990 // Since the monitor isn't in the object header, the hash can simply be 991 // installed in the object header. 992 return install_hash_code(current, obj); 993 } 994 995 while (true) { 996 ObjectMonitor* monitor = nullptr; 997 markWord temp, test; 998 intptr_t hash; 999 markWord mark = read_stable_mark(obj); 1000 if (VerifyHeavyMonitors) { 1001 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 1002 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 1003 } 1004 if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1005 hash = mark.hash(); 1006 if (hash != 0) { // if it has a hash, just return it 1007 return hash; 1008 } 1009 hash = get_next_hash(current, obj); // get a new hash 1010 temp = mark.copy_set_hash(hash); // merge the hash into header 1011 // try to install the hash 1012 test = obj->cas_set_mark(temp, mark); 1013 if (test == mark) { // if the hash was installed, return it 1014 return hash; 1015 } 1016 if (LockingMode == LM_LIGHTWEIGHT) { 1017 // CAS failed, retry 1018 continue; 1019 } 1020 // Failed to install the hash. It could be that another thread 1021 // installed the hash just before our attempt or inflation has 1022 // occurred or... so we fall thru to inflate the monitor for 1023 // stability and then install the hash. 1024 } else if (mark.has_monitor()) { 1025 monitor = mark.monitor(); 1026 temp = monitor->header(); 1027 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1028 hash = temp.hash(); 1029 if (hash != 0) { 1030 // It has a hash. 1031 1032 // Separate load of dmw/header above from the loads in 1033 // is_being_async_deflated(). 1034 1035 // dmw/header and _contentions may get written by different threads. 1036 // Make sure to observe them in the same order when having several observers. 1037 OrderAccess::loadload_for_IRIW(); 1038 1039 if (monitor->is_being_async_deflated()) { 1040 // But we can't safely use the hash if we detect that async 1041 // deflation has occurred. So we attempt to restore the 1042 // header/dmw to the object's header so that we only retry 1043 // once if the deflater thread happens to be slow. 1044 monitor->install_displaced_markword_in_object(obj); 1045 continue; 1046 } 1047 return hash; 1048 } 1049 // Fall thru so we only have one place that installs the hash in 1050 // the ObjectMonitor. 1051 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1052 && current->is_Java_thread() 1053 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1054 // This is a stack-lock owned by the calling thread so fetch the 1055 // displaced markWord from the BasicLock on the stack. 1056 temp = mark.displaced_mark_helper(); 1057 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1058 hash = temp.hash(); 1059 if (hash != 0) { // if it has a hash, just return it 1060 return hash; 1061 } 1062 // WARNING: 1063 // The displaced header in the BasicLock on a thread's stack 1064 // is strictly immutable. It CANNOT be changed in ANY cases. 1065 // So we have to inflate the stack-lock into an ObjectMonitor 1066 // even if the current thread owns the lock. The BasicLock on 1067 // a thread's stack can be asynchronously read by other threads 1068 // during an inflate() call so any change to that stack memory 1069 // may not propagate to other threads correctly. 1070 } 1071 1072 // Inflate the monitor to set the hash. 1073 1074 // There's no need to inflate if the mark has already got a monitor. 1075 // NOTE: an async deflation can race after we get the monitor and 1076 // before we can update the ObjectMonitor's header with the hash 1077 // value below. 1078 monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code); 1079 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1080 mark = monitor->header(); 1081 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1082 hash = mark.hash(); 1083 if (hash == 0) { // if it does not have a hash 1084 hash = get_next_hash(current, obj); // get a new hash 1085 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1086 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1087 uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value()); 1088 test = markWord(v); 1089 if (test != mark) { 1090 // The attempt to update the ObjectMonitor's header/dmw field 1091 // did not work. This can happen if another thread managed to 1092 // merge in the hash just before our cmpxchg(). 1093 // If we add any new usages of the header/dmw field, this code 1094 // will need to be updated. 1095 hash = test.hash(); 1096 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1097 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1098 } 1099 if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) { 1100 // If we detect that async deflation has occurred, then we 1101 // attempt to restore the header/dmw to the object's header 1102 // so that we only retry once if the deflater thread happens 1103 // to be slow. 1104 monitor->install_displaced_markword_in_object(obj); 1105 continue; 1106 } 1107 } 1108 // We finally get the hash. 1109 return hash; 1110 } 1111 } 1112 1113 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1114 Handle h_obj) { 1115 assert(current == JavaThread::current(), "Can only be called on current thread"); 1116 oop obj = h_obj(); 1117 1118 markWord mark = read_stable_mark(obj); 1119 1120 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1121 // stack-locked case, header points into owner's stack 1122 return current->is_lock_owned((address)mark.locker()); 1123 } 1124 1125 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1126 // fast-locking case, see if lock is in current's lock stack 1127 return current->lock_stack().contains(h_obj()); 1128 } 1129 1130 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1131 ObjectMonitor* monitor = read_monitor(current, obj, mark); 1132 if (monitor != nullptr) { 1133 return monitor->is_entered(current) != 0; 1134 } 1135 // Racing with inflation/deflation, retry 1136 mark = obj->mark_acquire(); 1137 1138 if (mark.is_fast_locked()) { 1139 // Some other thread fast_locked, current could not have held the lock 1140 return false; 1141 } 1142 } 1143 1144 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1145 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1146 // The first stage of async deflation does not affect any field 1147 // used by this comparison so the ObjectMonitor* is usable here. 1148 ObjectMonitor* monitor = read_monitor(mark); 1149 return monitor->is_entered(current) != 0; 1150 } 1151 // Unlocked case, header in place 1152 assert(mark.is_unlocked(), "sanity check"); 1153 return false; 1154 } 1155 1156 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1157 oop obj = h_obj(); 1158 markWord mark = read_stable_mark(obj); 1159 1160 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1161 // stack-locked so header points into owner's stack. 1162 // owning_thread_from_monitor_owner() may also return null here: 1163 return Threads::owning_thread_from_stacklock(t_list, (address) mark.locker()); 1164 } 1165 1166 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1167 // fast-locked so get owner from the object. 1168 // owning_thread_from_object() may also return null here: 1169 return Threads::owning_thread_from_object(t_list, h_obj()); 1170 } 1171 1172 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1173 ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark); 1174 if (monitor != nullptr) { 1175 return Threads::owning_thread_from_monitor(t_list, monitor); 1176 } 1177 // Racing with inflation/deflation, retry 1178 mark = obj->mark_acquire(); 1179 1180 if (mark.is_fast_locked()) { 1181 // Some other thread fast_locked 1182 return Threads::owning_thread_from_object(t_list, h_obj()); 1183 } 1184 } 1185 1186 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1187 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1188 // The first stage of async deflation does not affect any field 1189 // used by this comparison so the ObjectMonitor* is usable here. 1190 ObjectMonitor* monitor = read_monitor(mark); 1191 assert(monitor != nullptr, "monitor should be non-null"); 1192 // owning_thread_from_monitor() may also return null here: 1193 return Threads::owning_thread_from_monitor(t_list, monitor); 1194 } 1195 1196 // Unlocked case, header in place 1197 // Cannot have assertion since this object may have been 1198 // locked by another thread when reaching here. 1199 // assert(mark.is_unlocked(), "sanity check"); 1200 1201 return nullptr; 1202 } 1203 1204 // Visitors ... 1205 1206 // Iterate over all ObjectMonitors. 1207 template <typename Function> 1208 void ObjectSynchronizer::monitors_iterate(Function function) { 1209 MonitorList::Iterator iter = _in_use_list.iterator(); 1210 while (iter.has_next()) { 1211 ObjectMonitor* monitor = iter.next(); 1212 function(monitor); 1213 } 1214 } 1215 1216 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1217 // returns true. 1218 template <typename OwnerFilter> 1219 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1220 monitors_iterate([&](ObjectMonitor* monitor) { 1221 // This function is only called at a safepoint or when the 1222 // target thread is suspended or when the target thread is 1223 // operating on itself. The current closures in use today are 1224 // only interested in an owned ObjectMonitor and ownership 1225 // cannot be dropped under the calling contexts so the 1226 // ObjectMonitor cannot be async deflated. 1227 if (monitor->has_owner() && filter(monitor)) { 1228 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1229 1230 closure->do_monitor(monitor); 1231 } 1232 }); 1233 } 1234 1235 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1236 // ObjectMonitors where owner is set to a stack-lock address in thread. 1237 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1238 int64_t key = ObjectMonitor::owner_id_from(thread); 1239 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1240 return owned_monitors_iterate_filtered(closure, thread_filter); 1241 } 1242 1243 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, oop vthread) { 1244 int64_t key = ObjectMonitor::owner_id_from(vthread); 1245 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1246 return owned_monitors_iterate_filtered(closure, thread_filter); 1247 } 1248 1249 // Iterate ObjectMonitors owned by any thread. 1250 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1251 auto all_filter = [&](ObjectMonitor* monitor) { return true; }; 1252 return owned_monitors_iterate_filtered(closure, all_filter); 1253 } 1254 1255 static bool monitors_used_above_threshold(MonitorList* list) { 1256 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1257 return false; 1258 } 1259 size_t monitors_used = list->count(); 1260 if (monitors_used == 0) { // empty list is easy 1261 return false; 1262 } 1263 size_t old_ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1264 // Make sure that we use a ceiling value that is not lower than 1265 // previous, not lower than the recorded max used by the system, and 1266 // not lower than the current number of monitors in use (which can 1267 // race ahead of max). The result is guaranteed > 0. 1268 size_t ceiling = MAX3(old_ceiling, list->max(), monitors_used); 1269 1270 // Check if our monitor usage is above the threshold: 1271 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1272 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1273 // Deflate monitors if over the threshold percentage, unless no 1274 // progress on previous deflations. 1275 bool is_above_threshold = true; 1276 1277 // Check if it's time to adjust the in_use_list_ceiling up, due 1278 // to too many async deflation attempts without any progress. 1279 if (NoAsyncDeflationProgressMax != 0 && 1280 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1281 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1282 size_t delta = (size_t)(ceiling * remainder) + 1; 1283 size_t new_ceiling = (ceiling > SIZE_MAX - delta) 1284 ? SIZE_MAX // Overflow, let's clamp new_ceiling. 1285 : ceiling + delta; 1286 1287 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1288 log_info(monitorinflation)("Too many deflations without progress; " 1289 "bumping in_use_list_ceiling from %zu" 1290 " to %zu", old_ceiling, new_ceiling); 1291 _no_progress_cnt = 0; 1292 ceiling = new_ceiling; 1293 1294 // Check if our monitor usage is still above the threshold: 1295 monitor_usage = (monitors_used * 100LL) / ceiling; 1296 is_above_threshold = int(monitor_usage) > MonitorUsedDeflationThreshold; 1297 } 1298 log_info(monitorinflation)("monitors_used=%zu, ceiling=%zu" 1299 ", monitor_usage=%zu, threshold=%d", 1300 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1301 return is_above_threshold; 1302 } 1303 1304 return false; 1305 } 1306 1307 size_t ObjectSynchronizer::in_use_list_count() { 1308 return _in_use_list.count(); 1309 } 1310 1311 size_t ObjectSynchronizer::in_use_list_max() { 1312 return _in_use_list.max(); 1313 } 1314 1315 size_t ObjectSynchronizer::in_use_list_ceiling() { 1316 return _in_use_list_ceiling; 1317 } 1318 1319 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1320 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1321 } 1322 1323 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1324 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1325 } 1326 1327 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1328 _in_use_list_ceiling = new_value; 1329 } 1330 1331 bool ObjectSynchronizer::is_async_deflation_needed() { 1332 if (is_async_deflation_requested()) { 1333 // Async deflation request. 1334 log_info(monitorinflation)("Async deflation needed: explicit request"); 1335 return true; 1336 } 1337 1338 jlong time_since_last = time_since_last_async_deflation_ms(); 1339 1340 if (AsyncDeflationInterval > 0 && 1341 time_since_last > AsyncDeflationInterval && 1342 monitors_used_above_threshold(&_in_use_list)) { 1343 // It's been longer than our specified deflate interval and there 1344 // are too many monitors in use. We don't deflate more frequently 1345 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1346 // in order to not swamp the MonitorDeflationThread. 1347 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1348 return true; 1349 } 1350 1351 if (GuaranteedAsyncDeflationInterval > 0 && 1352 time_since_last > GuaranteedAsyncDeflationInterval) { 1353 // It's been longer than our specified guaranteed deflate interval. 1354 // We need to clean up the used monitors even if the threshold is 1355 // not reached, to keep the memory utilization at bay when many threads 1356 // touched many monitors. 1357 log_info(monitorinflation)("Async deflation needed: guaranteed interval (%zd ms) " 1358 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1359 GuaranteedAsyncDeflationInterval, time_since_last); 1360 1361 // If this deflation has no progress, then it should not affect the no-progress 1362 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1363 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1364 // the generic code would bump the no-progress counter, and we compensate for that 1365 // by telling it to skip the update. 1366 // 1367 // If this deflation has progress, then it should let non-progress tracking 1368 // know about this, otherwise the threshold heuristics would kick in, potentially 1369 // experience no-progress due to aggressive cleanup by this deflation, and think 1370 // it is still in no-progress stride. In this "progress" case, the generic code would 1371 // zero the counter, and we allow it to happen. 1372 _no_progress_skip_increment = true; 1373 1374 return true; 1375 } 1376 1377 return false; 1378 } 1379 1380 void ObjectSynchronizer::request_deflate_idle_monitors() { 1381 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1382 set_is_async_deflation_requested(true); 1383 ml.notify_all(); 1384 } 1385 1386 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1387 JavaThread* current = JavaThread::current(); 1388 bool ret_code = false; 1389 1390 jlong last_time = last_async_deflation_time_ns(); 1391 1392 request_deflate_idle_monitors(); 1393 1394 const int N_CHECKS = 5; 1395 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1396 if (last_async_deflation_time_ns() > last_time) { 1397 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1398 ret_code = true; 1399 break; 1400 } 1401 { 1402 // JavaThread has to honor the blocking protocol. 1403 ThreadBlockInVM tbivm(current); 1404 os::naked_short_sleep(999); // sleep for almost 1 second 1405 } 1406 } 1407 if (!ret_code) { 1408 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1409 } 1410 1411 return ret_code; 1412 } 1413 1414 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1415 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1416 } 1417 1418 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1419 const oop obj, 1420 ObjectSynchronizer::InflateCause cause) { 1421 assert(event != nullptr, "invariant"); 1422 const Klass* monitor_klass = obj->klass(); 1423 if (ObjectMonitor::is_jfr_excluded(monitor_klass)) { 1424 return; 1425 } 1426 event->set_monitorClass(monitor_klass); 1427 event->set_address((uintptr_t)(void*)obj); 1428 event->set_cause((u1)cause); 1429 event->commit(); 1430 } 1431 1432 // Fast path code shared by multiple functions 1433 void ObjectSynchronizer::inflate_helper(oop obj) { 1434 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1435 markWord mark = obj->mark_acquire(); 1436 if (mark.has_monitor()) { 1437 ObjectMonitor* monitor = read_monitor(mark); 1438 markWord dmw = monitor->header(); 1439 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1440 return; 1441 } 1442 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1443 } 1444 1445 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1446 assert(current == Thread::current(), "must be"); 1447 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1448 return inflate_impl(current->is_Java_thread() ? JavaThread::cast(current) : nullptr, obj, cause); 1449 } 1450 1451 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1452 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1453 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for"); 1454 return inflate_impl(thread, obj, cause); 1455 } 1456 1457 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* locking_thread, oop object, const InflateCause cause) { 1458 // The JavaThread* locking_thread requires that the locking_thread == Thread::current() or 1459 // is suspended throughout the call by some other mechanism. 1460 // The thread might be nullptr when called from a non JavaThread. (As may still be 1461 // the case from FastHashCode). However it is only important for correctness that the 1462 // thread is set when called from ObjectSynchronizer::enter from the owning thread, 1463 // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit. 1464 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl"); 1465 EventJavaMonitorInflate event; 1466 1467 for (;;) { 1468 const markWord mark = object->mark_acquire(); 1469 1470 // The mark can be in one of the following states: 1471 // * inflated - If the ObjectMonitor owner is anonymous and the 1472 // locking_thread owns the object lock, then we 1473 // make the locking_thread the ObjectMonitor owner. 1474 // * stack-locked - Coerce it to inflated from stack-locked. 1475 // * INFLATING - Busy wait for conversion from stack-locked to 1476 // inflated. 1477 // * unlocked - Aggressively inflate the object. 1478 1479 // CASE: inflated 1480 if (mark.has_monitor()) { 1481 ObjectMonitor* inf = mark.monitor(); 1482 markWord dmw = inf->header(); 1483 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1484 if (inf->has_anonymous_owner() && locking_thread != nullptr) { 1485 assert(LockingMode == LM_LEGACY, "invariant"); 1486 if (locking_thread->is_lock_owned((address)inf->stack_locker())) { 1487 inf->set_stack_locker(nullptr); 1488 inf->set_owner_from_anonymous(locking_thread); 1489 } 1490 } 1491 return inf; 1492 } 1493 1494 // CASE: inflation in progress - inflating over a stack-lock. 1495 // Some other thread is converting from stack-locked to inflated. 1496 // Only that thread can complete inflation -- other threads must wait. 1497 // The INFLATING value is transient. 1498 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1499 // We could always eliminate polling by parking the thread on some auxiliary list. 1500 if (mark == markWord::INFLATING()) { 1501 read_stable_mark(object); 1502 continue; 1503 } 1504 1505 // CASE: stack-locked 1506 // Could be stack-locked either by current or by some other thread. 1507 // 1508 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1509 // to install INFLATING into the mark word. We originally installed INFLATING, 1510 // allocated the ObjectMonitor, and then finally STed the address of the 1511 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1512 // the interval in which INFLATING appeared in the mark, thus increasing 1513 // the odds of inflation contention. If we lose the race to set INFLATING, 1514 // then we just delete the ObjectMonitor and loop around again. 1515 // 1516 LogStreamHandle(Trace, monitorinflation) lsh; 1517 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1518 ObjectMonitor* m = new ObjectMonitor(object); 1519 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1520 // We do this before the CAS in order to minimize the length of time 1521 // in which INFLATING appears in the mark. 1522 1523 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1524 if (cmp != mark) { 1525 delete m; 1526 continue; // Interference -- just retry 1527 } 1528 1529 // We've successfully installed INFLATING (0) into the mark-word. 1530 // This is the only case where 0 will appear in a mark-word. 1531 // Only the singular thread that successfully swings the mark-word 1532 // to 0 can perform (or more precisely, complete) inflation. 1533 // 1534 // Why do we CAS a 0 into the mark-word instead of just CASing the 1535 // mark-word from the stack-locked value directly to the new inflated state? 1536 // Consider what happens when a thread unlocks a stack-locked object. 1537 // It attempts to use CAS to swing the displaced header value from the 1538 // on-stack BasicLock back into the object header. Recall also that the 1539 // header value (hash code, etc) can reside in (a) the object header, or 1540 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1541 // header in an ObjectMonitor. The inflate() routine must copy the header 1542 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1543 // the while preserving the hashCode stability invariants. If the owner 1544 // decides to release the lock while the value is 0, the unlock will fail 1545 // and control will eventually pass from slow_exit() to inflate. The owner 1546 // will then spin, waiting for the 0 value to disappear. Put another way, 1547 // the 0 causes the owner to stall if the owner happens to try to 1548 // drop the lock (restoring the header from the BasicLock to the object) 1549 // while inflation is in-progress. This protocol avoids races that might 1550 // would otherwise permit hashCode values to change or "flicker" for an object. 1551 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1552 // 0 serves as a "BUSY" inflate-in-progress indicator. 1553 1554 1555 // fetch the displaced mark from the owner's stack. 1556 // The owner can't die or unwind past the lock while our INFLATING 1557 // object is in the mark. Furthermore the owner can't complete 1558 // an unlock on the object, either. 1559 markWord dmw = mark.displaced_mark_helper(); 1560 // Catch if the object's header is not neutral (not locked and 1561 // not marked is what we care about here). 1562 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1563 1564 // Setup monitor fields to proper values -- prepare the monitor 1565 m->set_header(dmw); 1566 1567 // Note that a thread can inflate an object 1568 // that it has stack-locked -- as might happen in wait() -- directly 1569 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1570 if (locking_thread != nullptr && locking_thread->is_lock_owned((address)mark.locker())) { 1571 m->set_owner(locking_thread); 1572 } else { 1573 // Use ANONYMOUS_OWNER to indicate that the owner is the BasicLock on the stack, 1574 // and set the stack locker field in the monitor. 1575 m->set_stack_locker(mark.locker()); 1576 m->set_anonymous_owner(); 1577 } 1578 // TODO-FIXME: assert BasicLock->dhw != 0. 1579 1580 // Must preserve store ordering. The monitor state must 1581 // be stable at the time of publishing the monitor address. 1582 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1583 // Release semantics so that above set_object() is seen first. 1584 object->release_set_mark(markWord::encode(m)); 1585 1586 // Once ObjectMonitor is configured and the object is associated 1587 // with the ObjectMonitor, it is safe to allow async deflation: 1588 _in_use_list.add(m); 1589 1590 if (log_is_enabled(Trace, monitorinflation)) { 1591 ResourceMark rm; 1592 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1593 INTPTR_FORMAT ", type='%s'", p2i(object), 1594 object->mark().value(), object->klass()->external_name()); 1595 } 1596 if (event.should_commit()) { 1597 post_monitor_inflate_event(&event, object, cause); 1598 } 1599 return m; 1600 } 1601 1602 // CASE: unlocked 1603 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1604 // If we know we're inflating for entry it's better to inflate by swinging a 1605 // pre-locked ObjectMonitor pointer into the object header. A successful 1606 // CAS inflates the object *and* confers ownership to the inflating thread. 1607 // In the current implementation we use a 2-step mechanism where we CAS() 1608 // to inflate and then CAS() again to try to swing _owner from null to current. 1609 // An inflateTry() method that we could call from enter() would be useful. 1610 1611 assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1612 ObjectMonitor* m = new ObjectMonitor(object); 1613 // prepare m for installation - set monitor to initial state 1614 m->set_header(mark); 1615 1616 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1617 delete m; 1618 m = nullptr; 1619 continue; 1620 // interference - the markword changed - just retry. 1621 // The state-transitions are one-way, so there's no chance of 1622 // live-lock -- "Inflated" is an absorbing state. 1623 } 1624 1625 // Once the ObjectMonitor is configured and object is associated 1626 // with the ObjectMonitor, it is safe to allow async deflation: 1627 _in_use_list.add(m); 1628 1629 if (log_is_enabled(Trace, monitorinflation)) { 1630 ResourceMark rm; 1631 lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark=" 1632 INTPTR_FORMAT ", type='%s'", p2i(object), 1633 object->mark().value(), object->klass()->external_name()); 1634 } 1635 if (event.should_commit()) { 1636 post_monitor_inflate_event(&event, object, cause); 1637 } 1638 return m; 1639 } 1640 } 1641 1642 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1643 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1644 // 1645 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) { 1646 MonitorList::Iterator iter = _in_use_list.iterator(); 1647 size_t deflated_count = 0; 1648 Thread* current = Thread::current(); 1649 1650 while (iter.has_next()) { 1651 if (deflated_count >= (size_t)MonitorDeflationMax) { 1652 break; 1653 } 1654 ObjectMonitor* mid = iter.next(); 1655 if (mid->deflate_monitor(current)) { 1656 deflated_count++; 1657 } 1658 1659 // Must check for a safepoint/handshake and honor it. 1660 safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count); 1661 } 1662 1663 return deflated_count; 1664 } 1665 1666 class DeflationHandshakeClosure : public HandshakeClosure { 1667 public: 1668 DeflationHandshakeClosure() : HandshakeClosure("DeflationHandshakeClosure") {} 1669 1670 void do_thread(Thread* thread) { 1671 log_trace(monitorinflation)("DeflationHandshakeClosure::do_thread: thread=" 1672 INTPTR_FORMAT, p2i(thread)); 1673 if (thread->is_Java_thread()) { 1674 // Clear OM cache 1675 JavaThread* jt = JavaThread::cast(thread); 1676 jt->om_clear_monitor_cache(); 1677 } 1678 } 1679 }; 1680 1681 class VM_RendezvousGCThreads : public VM_Operation { 1682 public: 1683 bool evaluate_at_safepoint() const override { return false; } 1684 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1685 void doit() override { 1686 Universe::heap()->safepoint_synchronize_begin(); 1687 Universe::heap()->safepoint_synchronize_end(); 1688 }; 1689 }; 1690 1691 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list, 1692 ObjectMonitorDeflationSafepointer* safepointer) { 1693 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1694 size_t deleted_count = 0; 1695 for (ObjectMonitor* monitor: *delete_list) { 1696 delete monitor; 1697 deleted_count++; 1698 // A JavaThread must check for a safepoint/handshake and honor it. 1699 safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count); 1700 } 1701 return deleted_count; 1702 } 1703 1704 class ObjectMonitorDeflationLogging: public StackObj { 1705 LogStreamHandle(Debug, monitorinflation) _debug; 1706 LogStreamHandle(Info, monitorinflation) _info; 1707 LogStream* _stream; 1708 elapsedTimer _timer; 1709 1710 size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); } 1711 size_t count() const { return ObjectSynchronizer::in_use_list_count(); } 1712 size_t max() const { return ObjectSynchronizer::in_use_list_max(); } 1713 1714 public: 1715 ObjectMonitorDeflationLogging() 1716 : _debug(), _info(), _stream(nullptr) { 1717 if (_debug.is_enabled()) { 1718 _stream = &_debug; 1719 } else if (_info.is_enabled()) { 1720 _stream = &_info; 1721 } 1722 } 1723 1724 void begin() { 1725 if (_stream != nullptr) { 1726 _stream->print_cr("begin deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1727 ceiling(), count(), max()); 1728 _timer.start(); 1729 } 1730 } 1731 1732 void before_handshake(size_t unlinked_count) { 1733 if (_stream != nullptr) { 1734 _timer.stop(); 1735 _stream->print_cr("before handshaking: unlinked_count=%zu" 1736 ", in_use_list stats: ceiling=%zu, count=" 1737 "%zu, max=%zu", 1738 unlinked_count, ceiling(), count(), max()); 1739 } 1740 } 1741 1742 void after_handshake() { 1743 if (_stream != nullptr) { 1744 _stream->print_cr("after handshaking: in_use_list stats: ceiling=" 1745 "%zu, count=%zu, max=%zu", 1746 ceiling(), count(), max()); 1747 _timer.start(); 1748 } 1749 } 1750 1751 void end(size_t deflated_count, size_t unlinked_count) { 1752 if (_stream != nullptr) { 1753 _timer.stop(); 1754 if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) { 1755 _stream->print_cr("deflated_count=%zu, {unlinked,deleted}_count=%zu monitors in %3.7f secs", 1756 deflated_count, unlinked_count, _timer.seconds()); 1757 } 1758 _stream->print_cr("end deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1759 ceiling(), count(), max()); 1760 } 1761 } 1762 1763 void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) { 1764 if (_stream != nullptr) { 1765 _timer.stop(); 1766 _stream->print_cr("pausing %s: %s=%zu, in_use_list stats: ceiling=" 1767 "%zu, count=%zu, max=%zu", 1768 op_name, cnt_name, cnt, ceiling(), count(), max()); 1769 } 1770 } 1771 1772 void after_block_for_safepoint(const char* op_name) { 1773 if (_stream != nullptr) { 1774 _stream->print_cr("resuming %s: in_use_list stats: ceiling=%zu" 1775 ", count=%zu, max=%zu", op_name, 1776 ceiling(), count(), max()); 1777 _timer.start(); 1778 } 1779 } 1780 }; 1781 1782 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) { 1783 if (!SafepointMechanism::should_process(_current)) { 1784 return; 1785 } 1786 1787 // A safepoint/handshake has started. 1788 _log->before_block_for_safepoint(op_name, count_name, counter); 1789 1790 { 1791 // Honor block request. 1792 ThreadBlockInVM tbivm(_current); 1793 } 1794 1795 _log->after_block_for_safepoint(op_name); 1796 } 1797 1798 // This function is called by the MonitorDeflationThread to deflate 1799 // ObjectMonitors. 1800 size_t ObjectSynchronizer::deflate_idle_monitors() { 1801 JavaThread* current = JavaThread::current(); 1802 assert(current->is_monitor_deflation_thread(), "The only monitor deflater"); 1803 1804 // The async deflation request has been processed. 1805 _last_async_deflation_time_ns = os::javaTimeNanos(); 1806 set_is_async_deflation_requested(false); 1807 1808 ObjectMonitorDeflationLogging log; 1809 ObjectMonitorDeflationSafepointer safepointer(current, &log); 1810 1811 log.begin(); 1812 1813 // Deflate some idle ObjectMonitors. 1814 size_t deflated_count = deflate_monitor_list(&safepointer); 1815 1816 // Unlink the deflated ObjectMonitors from the in-use list. 1817 size_t unlinked_count = 0; 1818 size_t deleted_count = 0; 1819 if (deflated_count > 0) { 1820 ResourceMark rm(current); 1821 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1822 unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer); 1823 1824 #ifdef ASSERT 1825 if (UseObjectMonitorTable) { 1826 for (ObjectMonitor* monitor : delete_list) { 1827 assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed"); 1828 } 1829 } 1830 #endif 1831 1832 log.before_handshake(unlinked_count); 1833 1834 // A JavaThread needs to handshake in order to safely free the 1835 // ObjectMonitors that were deflated in this cycle. 1836 DeflationHandshakeClosure dhc; 1837 Handshake::execute(&dhc); 1838 // Also, we sync and desync GC threads around the handshake, so that they can 1839 // safely read the mark-word and look-through to the object-monitor, without 1840 // being afraid that the object-monitor is going away. 1841 VM_RendezvousGCThreads sync_gc; 1842 VMThread::execute(&sync_gc); 1843 1844 log.after_handshake(); 1845 1846 // After the handshake, safely free the ObjectMonitors that were 1847 // deflated and unlinked in this cycle. 1848 1849 // Delete the unlinked ObjectMonitors. 1850 deleted_count = delete_monitors(&delete_list, &safepointer); 1851 assert(unlinked_count == deleted_count, "must be"); 1852 } 1853 1854 log.end(deflated_count, unlinked_count); 1855 1856 GVars.stw_random = os::random(); 1857 1858 if (deflated_count != 0) { 1859 _no_progress_cnt = 0; 1860 } else if (_no_progress_skip_increment) { 1861 _no_progress_skip_increment = false; 1862 } else { 1863 _no_progress_cnt++; 1864 } 1865 1866 return deflated_count; 1867 } 1868 1869 // Monitor cleanup on JavaThread::exit 1870 1871 // Iterate through monitor cache and attempt to release thread's monitors 1872 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1873 private: 1874 JavaThread* _thread; 1875 1876 public: 1877 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1878 void do_monitor(ObjectMonitor* mid) { 1879 intx rec = mid->complete_exit(_thread); 1880 _thread->dec_held_monitor_count(rec + 1); 1881 } 1882 }; 1883 1884 // Release all inflated monitors owned by current thread. Lightweight monitors are 1885 // ignored. This is meant to be called during JNI thread detach which assumes 1886 // all remaining monitors are heavyweight. All exceptions are swallowed. 1887 // Scanning the extant monitor list can be time consuming. 1888 // A simple optimization is to add a per-thread flag that indicates a thread 1889 // called jni_monitorenter() during its lifetime. 1890 // 1891 // Instead of NoSafepointVerifier it might be cheaper to 1892 // use an idiom of the form: 1893 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1894 // <code that must not run at safepoint> 1895 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1896 // Since the tests are extremely cheap we could leave them enabled 1897 // for normal product builds. 1898 1899 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1900 assert(current == JavaThread::current(), "must be current Java thread"); 1901 NoSafepointVerifier nsv; 1902 ReleaseJavaMonitorsClosure rjmc(current); 1903 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1904 assert(!current->has_pending_exception(), "Should not be possible"); 1905 current->clear_pending_exception(); 1906 assert(current->held_monitor_count() == 0, "Should not be possible"); 1907 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1908 current->clear_jni_monitor_count(); 1909 } 1910 1911 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1912 switch (cause) { 1913 case inflate_cause_vm_internal: return "VM Internal"; 1914 case inflate_cause_monitor_enter: return "Monitor Enter"; 1915 case inflate_cause_wait: return "Monitor Wait"; 1916 case inflate_cause_notify: return "Monitor Notify"; 1917 case inflate_cause_hash_code: return "Monitor Hash Code"; 1918 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1919 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1920 default: 1921 ShouldNotReachHere(); 1922 } 1923 return "Unknown"; 1924 } 1925 1926 //------------------------------------------------------------------------------ 1927 // Debugging code 1928 1929 u_char* ObjectSynchronizer::get_gvars_addr() { 1930 return (u_char*)&GVars; 1931 } 1932 1933 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1934 return (u_char*)&GVars.hc_sequence; 1935 } 1936 1937 size_t ObjectSynchronizer::get_gvars_size() { 1938 return sizeof(SharedGlobals); 1939 } 1940 1941 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1942 return (u_char*)&GVars.stw_random; 1943 } 1944 1945 // Do the final audit and print of ObjectMonitor stats; must be done 1946 // by the VMThread at VM exit time. 1947 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1948 assert(Thread::current()->is_VM_thread(), "sanity check"); 1949 1950 if (is_final_audit()) { // Only do the audit once. 1951 return; 1952 } 1953 set_is_final_audit(); 1954 log_info(monitorinflation)("Starting the final audit."); 1955 1956 if (log_is_enabled(Info, monitorinflation)) { 1957 LogStreamHandle(Info, monitorinflation) ls; 1958 audit_and_print_stats(&ls, true /* on_exit */); 1959 } 1960 } 1961 1962 // This function can be called by the MonitorDeflationThread or it can be called when 1963 // we are trying to exit the VM. The list walker functions can run in parallel with 1964 // the other list operations. 1965 // Calls to this function can be added in various places as a debugging 1966 // aid. 1967 // 1968 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) { 1969 int error_cnt = 0; 1970 1971 ls->print_cr("Checking in_use_list:"); 1972 chk_in_use_list(ls, &error_cnt); 1973 1974 if (error_cnt == 0) { 1975 ls->print_cr("No errors found in in_use_list checks."); 1976 } else { 1977 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 1978 } 1979 1980 // When exiting, only log the interesting entries at the Info level. 1981 // When called at intervals by the MonitorDeflationThread, log output 1982 // at the Trace level since there can be a lot of it. 1983 if (!on_exit && log_is_enabled(Trace, monitorinflation)) { 1984 LogStreamHandle(Trace, monitorinflation) ls_tr; 1985 log_in_use_monitor_details(&ls_tr, true /* log_all */); 1986 } else if (on_exit) { 1987 log_in_use_monitor_details(ls, false /* log_all */); 1988 } 1989 1990 ls->flush(); 1991 1992 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 1993 } 1994 1995 // Check the in_use_list; log the results of the checks. 1996 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 1997 size_t l_in_use_count = _in_use_list.count(); 1998 size_t l_in_use_max = _in_use_list.max(); 1999 out->print_cr("count=%zu, max=%zu", l_in_use_count, 2000 l_in_use_max); 2001 2002 size_t ck_in_use_count = 0; 2003 MonitorList::Iterator iter = _in_use_list.iterator(); 2004 while (iter.has_next()) { 2005 ObjectMonitor* mid = iter.next(); 2006 chk_in_use_entry(mid, out, error_cnt_p); 2007 ck_in_use_count++; 2008 } 2009 2010 if (l_in_use_count == ck_in_use_count) { 2011 out->print_cr("in_use_count=%zu equals ck_in_use_count=%zu", 2012 l_in_use_count, ck_in_use_count); 2013 } else { 2014 out->print_cr("WARNING: in_use_count=%zu is not equal to " 2015 "ck_in_use_count=%zu", l_in_use_count, 2016 ck_in_use_count); 2017 } 2018 2019 size_t ck_in_use_max = _in_use_list.max(); 2020 if (l_in_use_max == ck_in_use_max) { 2021 out->print_cr("in_use_max=%zu equals ck_in_use_max=%zu", 2022 l_in_use_max, ck_in_use_max); 2023 } else { 2024 out->print_cr("WARNING: in_use_max=%zu is not equal to " 2025 "ck_in_use_max=%zu", l_in_use_max, ck_in_use_max); 2026 } 2027 } 2028 2029 // Check an in-use monitor entry; log any errors. 2030 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2031 int* error_cnt_p) { 2032 if (n->owner_is_DEFLATER_MARKER()) { 2033 // This could happen when monitor deflation blocks for a safepoint. 2034 return; 2035 } 2036 2037 2038 if (n->metadata() == 0) { 2039 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2040 "have non-null _metadata (header/hash) field.", p2i(n)); 2041 *error_cnt_p = *error_cnt_p + 1; 2042 } 2043 2044 const oop obj = n->object_peek(); 2045 if (obj == nullptr) { 2046 return; 2047 } 2048 2049 const markWord mark = obj->mark(); 2050 if (!mark.has_monitor()) { 2051 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2052 "object does not think it has a monitor: obj=" 2053 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2054 p2i(obj), mark.value()); 2055 *error_cnt_p = *error_cnt_p + 1; 2056 return; 2057 } 2058 2059 ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark); 2060 if (n != obj_mon) { 2061 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2062 "object does not refer to the same monitor: obj=" 2063 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2064 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2065 *error_cnt_p = *error_cnt_p + 1; 2066 } 2067 } 2068 2069 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2070 // flags indicate why the entry is in-use, 'object' and 'object type' 2071 // indicate the associated object and its type. 2072 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2073 if (_in_use_list.count() > 0) { 2074 stringStream ss; 2075 out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)"); 2076 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2077 out->print_cr("%18s %s %18s %18s", 2078 "monitor", "BHL", "object", "object type"); 2079 out->print_cr("================== === ================== =================="); 2080 2081 auto is_interesting = [&](ObjectMonitor* monitor) { 2082 return log_all || monitor->has_owner() || monitor->is_busy(); 2083 }; 2084 2085 monitors_iterate([&](ObjectMonitor* monitor) { 2086 if (is_interesting(monitor)) { 2087 const oop obj = monitor->object_peek(); 2088 const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash(); 2089 ResourceMark rm; 2090 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2091 monitor->is_busy(), hash != 0, monitor->has_owner(), 2092 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2093 if (monitor->is_busy()) { 2094 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2095 ss.reset(); 2096 } 2097 out->cr(); 2098 } 2099 }); 2100 } 2101 2102 out->flush(); 2103 }