1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmSymbols.hpp" 26 #include "gc/shared/collectedHeap.hpp" 27 #include "jfr/jfrEvents.hpp" 28 #include "logging/log.hpp" 29 #include "logging/logStream.hpp" 30 #include "memory/allocation.inline.hpp" 31 #include "memory/padded.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/markWord.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "runtime/atomic.hpp" 37 #include "runtime/basicLock.inline.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/globals.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/handshake.hpp" 42 #include "runtime/interfaceSupport.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/lightweightSynchronizer.hpp" 45 #include "runtime/lockStack.inline.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/objectMonitor.hpp" 48 #include "runtime/objectMonitor.inline.hpp" 49 #include "runtime/os.inline.hpp" 50 #include "runtime/osThread.hpp" 51 #include "runtime/safepointMechanism.inline.hpp" 52 #include "runtime/safepointVerifiers.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/synchronizer.inline.hpp" 56 #include "runtime/threads.hpp" 57 #include "runtime/timer.hpp" 58 #include "runtime/trimNativeHeap.hpp" 59 #include "runtime/vframe.hpp" 60 #include "runtime/vmThread.hpp" 61 #include "utilities/align.hpp" 62 #include "utilities/dtrace.hpp" 63 #include "utilities/events.hpp" 64 #include "utilities/globalCounter.inline.hpp" 65 #include "utilities/globalDefinitions.hpp" 66 #include "utilities/linkedlist.hpp" 67 #include "utilities/preserveException.hpp" 68 69 class ObjectMonitorDeflationLogging; 70 71 void MonitorList::add(ObjectMonitor* m) { 72 ObjectMonitor* head; 73 do { 74 head = Atomic::load(&_head); 75 m->set_next_om(head); 76 } while (Atomic::cmpxchg(&_head, head, m) != head); 77 78 size_t count = Atomic::add(&_count, 1u, memory_order_relaxed); 79 size_t old_max; 80 do { 81 old_max = Atomic::load(&_max); 82 if (count <= old_max) { 83 break; 84 } 85 } while (Atomic::cmpxchg(&_max, old_max, count, memory_order_relaxed) != old_max); 86 } 87 88 size_t MonitorList::count() const { 89 return Atomic::load(&_count); 90 } 91 92 size_t MonitorList::max() const { 93 return Atomic::load(&_max); 94 } 95 96 class ObjectMonitorDeflationSafepointer : public StackObj { 97 JavaThread* const _current; 98 ObjectMonitorDeflationLogging* const _log; 99 100 public: 101 ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log) 102 : _current(current), _log(log) {} 103 104 void block_for_safepoint(const char* op_name, const char* count_name, size_t counter); 105 }; 106 107 // Walk the in-use list and unlink deflated ObjectMonitors. 108 // Returns the number of unlinked ObjectMonitors. 109 size_t MonitorList::unlink_deflated(size_t deflated_count, 110 GrowableArray<ObjectMonitor*>* unlinked_list, 111 ObjectMonitorDeflationSafepointer* safepointer) { 112 size_t unlinked_count = 0; 113 ObjectMonitor* prev = nullptr; 114 ObjectMonitor* m = Atomic::load_acquire(&_head); 115 116 while (m != nullptr) { 117 if (m->is_being_async_deflated()) { 118 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 119 // modify the list once per batch. The batch starts at "m". 120 size_t unlinked_batch = 0; 121 ObjectMonitor* next = m; 122 // Look for at most MonitorUnlinkBatch monitors, or the number of 123 // deflated and not unlinked monitors, whatever comes first. 124 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 125 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 126 do { 127 ObjectMonitor* next_next = next->next_om(); 128 unlinked_batch++; 129 unlinked_list->append(next); 130 next = next_next; 131 if (unlinked_batch >= unlinked_batch_limit) { 132 // Reached the max batch, so bail out of the gathering loop. 133 break; 134 } 135 if (prev == nullptr && Atomic::load(&_head) != m) { 136 // Current batch used to be at head, but it is not at head anymore. 137 // Bail out and figure out where we currently are. This avoids long 138 // walks searching for new prev during unlink under heavy list inserts. 139 break; 140 } 141 } while (next != nullptr && next->is_being_async_deflated()); 142 143 // Unlink the found batch. 144 if (prev == nullptr) { 145 // The current batch is the first batch, so there is a chance that it starts at head. 146 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 147 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 148 if (prev_head != m) { 149 // Something must have updated the head. Figure out the actual prev for this batch. 150 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 151 prev = n; 152 } 153 assert(prev != nullptr, "Should have found the prev for the current batch"); 154 prev->set_next_om(next); 155 } 156 } else { 157 // The current batch is preceded by another batch. This guarantees the current batch 158 // does not start at head. Unlink the entire current batch without updating the head. 159 assert(Atomic::load(&_head) != m, "Sanity"); 160 prev->set_next_om(next); 161 } 162 163 unlinked_count += unlinked_batch; 164 if (unlinked_count >= deflated_count) { 165 // Reached the max so bail out of the searching loop. 166 // There should be no more deflated monitors left. 167 break; 168 } 169 m = next; 170 } else { 171 prev = m; 172 m = m->next_om(); 173 } 174 175 // Must check for a safepoint/handshake and honor it. 176 safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count); 177 } 178 179 #ifdef ASSERT 180 // Invariant: the code above should unlink all deflated monitors. 181 // The code that runs after this unlinking does not expect deflated monitors. 182 // Notably, attempting to deflate the already deflated monitor would break. 183 { 184 ObjectMonitor* m = Atomic::load_acquire(&_head); 185 while (m != nullptr) { 186 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 187 m = m->next_om(); 188 } 189 } 190 #endif 191 192 Atomic::sub(&_count, unlinked_count); 193 return unlinked_count; 194 } 195 196 MonitorList::Iterator MonitorList::iterator() const { 197 return Iterator(Atomic::load_acquire(&_head)); 198 } 199 200 ObjectMonitor* MonitorList::Iterator::next() { 201 ObjectMonitor* current = _current; 202 _current = current->next_om(); 203 return current; 204 } 205 206 // The "core" versions of monitor enter and exit reside in this file. 207 // The interpreter and compilers contain specialized transliterated 208 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 209 // fast_lock(...) for instance. If you make changes here, make sure to modify the 210 // interpreter, and both C1 and C2 fast-path inline locking code emission. 211 // 212 // ----------------------------------------------------------------------------- 213 214 #ifdef DTRACE_ENABLED 215 216 // Only bother with this argument setup if dtrace is available 217 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 218 219 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 220 char* bytes = nullptr; \ 221 int len = 0; \ 222 jlong jtid = SharedRuntime::get_java_tid(thread); \ 223 Symbol* klassname = obj->klass()->name(); \ 224 if (klassname != nullptr) { \ 225 bytes = (char*)klassname->bytes(); \ 226 len = klassname->utf8_length(); \ 227 } 228 229 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 230 { \ 231 if (DTraceMonitorProbes) { \ 232 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 233 HOTSPOT_MONITOR_WAIT(jtid, \ 234 (uintptr_t)(monitor), bytes, len, (millis)); \ 235 } \ 236 } 237 238 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 239 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 240 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 241 242 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 243 { \ 244 if (DTraceMonitorProbes) { \ 245 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 246 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 247 (uintptr_t)(monitor), bytes, len); \ 248 } \ 249 } 250 251 #else // ndef DTRACE_ENABLED 252 253 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 254 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 255 256 #endif // ndef DTRACE_ENABLED 257 258 // This exists only as a workaround of dtrace bug 6254741 259 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 260 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 261 return 0; 262 } 263 264 static constexpr size_t inflation_lock_count() { 265 return 256; 266 } 267 268 // Static storage for an array of PlatformMutex. 269 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 270 271 static inline PlatformMutex* inflation_lock(size_t index) { 272 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 273 } 274 275 void ObjectSynchronizer::initialize() { 276 for (size_t i = 0; i < inflation_lock_count(); i++) { 277 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 278 } 279 // Start the ceiling with the estimate for one thread. 280 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 281 282 // Start the timer for deflations, so it does not trigger immediately. 283 _last_async_deflation_time_ns = os::javaTimeNanos(); 284 285 if (LockingMode == LM_LIGHTWEIGHT) { 286 LightweightSynchronizer::initialize(); 287 } 288 } 289 290 MonitorList ObjectSynchronizer::_in_use_list; 291 // monitors_used_above_threshold() policy is as follows: 292 // 293 // The ratio of the current _in_use_list count to the ceiling is used 294 // to determine if we are above MonitorUsedDeflationThreshold and need 295 // to do an async monitor deflation cycle. The ceiling is increased by 296 // AvgMonitorsPerThreadEstimate when a thread is added to the system 297 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 298 // removed from the system. 299 // 300 // Note: If the _in_use_list max exceeds the ceiling, then 301 // monitors_used_above_threshold() will use the in_use_list max instead 302 // of the thread count derived ceiling because we have used more 303 // ObjectMonitors than the estimated average. 304 // 305 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 306 // no-progress async monitor deflation cycles in a row, then the ceiling 307 // is adjusted upwards by monitors_used_above_threshold(). 308 // 309 // Start the ceiling with the estimate for one thread in initialize() 310 // which is called after cmd line options are processed. 311 static size_t _in_use_list_ceiling = 0; 312 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 313 bool volatile ObjectSynchronizer::_is_final_audit = false; 314 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 315 static uintx _no_progress_cnt = 0; 316 static bool _no_progress_skip_increment = false; 317 318 // =====================> Quick functions 319 320 // The quick_* forms are special fast-path variants used to improve 321 // performance. In the simplest case, a "quick_*" implementation could 322 // simply return false, in which case the caller will perform the necessary 323 // state transitions and call the slow-path form. 324 // The fast-path is designed to handle frequently arising cases in an efficient 325 // manner and is just a degenerate "optimistic" variant of the slow-path. 326 // returns true -- to indicate the call was satisfied. 327 // returns false -- to indicate the call needs the services of the slow-path. 328 // A no-loitering ordinance is in effect for code in the quick_* family 329 // operators: safepoints or indefinite blocking (blocking that might span a 330 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 331 // entry. 332 // 333 // Consider: An interesting optimization is to have the JIT recognize the 334 // following common idiom: 335 // synchronized (someobj) { .... ; notify(); } 336 // That is, we find a notify() or notifyAll() call that immediately precedes 337 // the monitorexit operation. In that case the JIT could fuse the operations 338 // into a single notifyAndExit() runtime primitive. 339 340 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 341 assert(current->thread_state() == _thread_in_Java, "invariant"); 342 NoSafepointVerifier nsv; 343 if (obj == nullptr) return false; // slow-path for invalid obj 344 const markWord mark = obj->mark(); 345 346 if (LockingMode == LM_LIGHTWEIGHT) { 347 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 348 // Degenerate notify 349 // fast-locked by caller so by definition the implied waitset is empty. 350 return true; 351 } 352 } else if (LockingMode == LM_LEGACY) { 353 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 354 // Degenerate notify 355 // stack-locked by caller so by definition the implied waitset is empty. 356 return true; 357 } 358 } 359 360 if (mark.has_monitor()) { 361 ObjectMonitor* const mon = read_monitor(current, obj, mark); 362 if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) { 363 // Racing with inflation/deflation go slow path 364 return false; 365 } 366 assert(mon->object() == oop(obj), "invariant"); 367 if (!mon->has_owner(current)) return false; // slow-path for IMS exception 368 369 if (mon->first_waiter() != nullptr) { 370 // We have one or more waiters. Since this is an inflated monitor 371 // that we own, we quickly notify them here and now, avoiding the slow-path. 372 if (all) { 373 mon->quick_notifyAll(current); 374 } else { 375 mon->quick_notify(current); 376 } 377 } 378 return true; 379 } 380 381 // other IMS exception states take the slow-path 382 return false; 383 } 384 385 static bool useHeavyMonitors() { 386 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 387 return LockingMode == LM_MONITOR; 388 #else 389 return false; 390 #endif 391 } 392 393 // The LockNode emitted directly at the synchronization site would have 394 // been too big if it were to have included support for the cases of inflated 395 // recursive enter and exit, so they go here instead. 396 // Note that we can't safely call AsyncPrintJavaStack() from within 397 // quick_enter() as our thread state remains _in_Java. 398 399 bool ObjectSynchronizer::quick_enter_legacy(oop obj, BasicLock* lock, JavaThread* current) { 400 assert(current->thread_state() == _thread_in_Java, "invariant"); 401 402 if (useHeavyMonitors()) { 403 return false; // Slow path 404 } 405 406 assert(LockingMode == LM_LEGACY, "legacy mode below"); 407 408 const markWord mark = obj->mark(); 409 410 if (mark.has_monitor()) { 411 412 ObjectMonitor* const m = read_monitor(mark); 413 // An async deflation or GC can race us before we manage to make 414 // the ObjectMonitor busy by setting the owner below. If we detect 415 // that race we just bail out to the slow-path here. 416 if (m->object_peek() == nullptr) { 417 return false; 418 } 419 420 // Lock contention and Transactional Lock Elision (TLE) diagnostics 421 // and observability 422 // Case: light contention possibly amenable to TLE 423 // Case: TLE inimical operations such as nested/recursive synchronization 424 425 if (m->has_owner(current)) { 426 m->increment_recursions(current); 427 current->inc_held_monitor_count(); 428 return true; 429 } 430 431 // This Java Monitor is inflated so obj's header will never be 432 // displaced to this thread's BasicLock. Make the displaced header 433 // non-null so this BasicLock is not seen as recursive nor as 434 // being locked. We do this unconditionally so that this thread's 435 // BasicLock cannot be mis-interpreted by any stack walkers. For 436 // performance reasons, stack walkers generally first check for 437 // stack-locking in the object's header, the second check is for 438 // recursive stack-locking in the displaced header in the BasicLock, 439 // and last are the inflated Java Monitor (ObjectMonitor) checks. 440 lock->set_displaced_header(markWord::unused_mark()); 441 442 if (!m->has_owner() && m->try_set_owner(current)) { 443 assert(m->recursions() == 0, "invariant"); 444 current->inc_held_monitor_count(); 445 return true; 446 } 447 } 448 449 // Note that we could inflate in quick_enter. 450 // This is likely a useful optimization 451 // Critically, in quick_enter() we must not: 452 // -- block indefinitely, or 453 // -- reach a safepoint 454 455 return false; // revert to slow-path 456 } 457 458 // Handle notifications when synchronizing on value based classes 459 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 460 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 461 frame last_frame = locking_thread->last_frame(); 462 bool bcp_was_adjusted = false; 463 // Don't decrement bcp if it points to the frame's first instruction. This happens when 464 // handle_sync_on_value_based_class() is called because of a synchronized method. There 465 // is no actual monitorenter instruction in the byte code in this case. 466 if (last_frame.is_interpreted_frame() && 467 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 468 // adjust bcp to point back to monitorenter so that we print the correct line numbers 469 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 470 bcp_was_adjusted = true; 471 } 472 473 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 474 ResourceMark rm; 475 stringStream ss; 476 locking_thread->print_active_stack_on(&ss); 477 char* base = (char*)strstr(ss.base(), "at"); 478 char* newline = (char*)strchr(ss.base(), '\n'); 479 if (newline != nullptr) { 480 *newline = '\0'; 481 } 482 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 483 } else { 484 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 485 ResourceMark rm; 486 Log(valuebasedclasses) vblog; 487 488 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 489 if (locking_thread->has_last_Java_frame()) { 490 LogStream info_stream(vblog.info()); 491 locking_thread->print_active_stack_on(&info_stream); 492 } else { 493 vblog.info("Cannot find the last Java frame"); 494 } 495 496 EventSyncOnValueBasedClass event; 497 if (event.should_commit()) { 498 event.set_valueBasedClass(obj->klass()); 499 event.commit(); 500 } 501 } 502 503 if (bcp_was_adjusted) { 504 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 505 } 506 } 507 508 // ----------------------------------------------------------------------------- 509 // Monitor Enter/Exit 510 511 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 512 // When called with locking_thread != Thread::current() some mechanism must synchronize 513 // the locking_thread with respect to the current thread. Currently only used when 514 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 515 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 516 517 if (LockingMode == LM_LIGHTWEIGHT) { 518 return LightweightSynchronizer::enter_for(obj, lock, locking_thread); 519 } 520 521 if (!enter_fast_impl(obj, lock, locking_thread)) { 522 // Inflated ObjectMonitor::enter_for is required 523 524 // An async deflation can race after the inflate_for() call and before 525 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 526 // if we have lost the race to async deflation and we simply try again. 527 while (true) { 528 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 529 if (monitor->enter_for(locking_thread)) { 530 return; 531 } 532 assert(monitor->is_being_async_deflated(), "must be"); 533 } 534 } 535 } 536 537 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) { 538 if (!enter_fast_impl(obj, lock, current)) { 539 // Inflated ObjectMonitor::enter is required 540 541 // An async deflation can race after the inflate() call and before 542 // enter() can make the ObjectMonitor busy. enter() returns false if 543 // we have lost the race to async deflation and we simply try again. 544 while (true) { 545 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 546 if (monitor->enter(current)) { 547 return; 548 } 549 } 550 } 551 } 552 553 // The interpreter and compiler assembly code tries to lock using the fast path 554 // of this algorithm. Make sure to update that code if the following function is 555 // changed. The implementation is extremely sensitive to race condition. Be careful. 556 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 557 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 558 559 if (obj->klass()->is_value_based()) { 560 handle_sync_on_value_based_class(obj, locking_thread); 561 } 562 563 locking_thread->inc_held_monitor_count(); 564 565 if (!useHeavyMonitors()) { 566 if (LockingMode == LM_LEGACY) { 567 markWord mark = obj->mark(); 568 if (mark.is_unlocked()) { 569 // Anticipate successful CAS -- the ST of the displaced mark must 570 // be visible <= the ST performed by the CAS. 571 lock->set_displaced_header(mark); 572 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 573 return true; 574 } 575 } else if (mark.has_locker() && 576 locking_thread->is_lock_owned((address) mark.locker())) { 577 assert(lock != mark.locker(), "must not re-lock the same lock"); 578 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 579 lock->set_displaced_header(markWord::from_pointer(nullptr)); 580 return true; 581 } 582 583 // The object header will never be displaced to this lock, 584 // so it does not matter what the value is, except that it 585 // must be non-zero to avoid looking like a re-entrant lock, 586 // and must not look locked either. 587 lock->set_displaced_header(markWord::unused_mark()); 588 589 // Failed to fast lock. 590 return false; 591 } 592 } else if (VerifyHeavyMonitors) { 593 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 594 } 595 596 return false; 597 } 598 599 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) { 600 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 601 602 if (!useHeavyMonitors()) { 603 markWord mark = object->mark(); 604 if (LockingMode == LM_LEGACY) { 605 markWord dhw = lock->displaced_header(); 606 if (dhw.value() == 0) { 607 // If the displaced header is null, then this exit matches up with 608 // a recursive enter. No real work to do here except for diagnostics. 609 #ifndef PRODUCT 610 if (mark != markWord::INFLATING()) { 611 // Only do diagnostics if we are not racing an inflation. Simply 612 // exiting a recursive enter of a Java Monitor that is being 613 // inflated is safe; see the has_monitor() comment below. 614 assert(!mark.is_unlocked(), "invariant"); 615 assert(!mark.has_locker() || 616 current->is_lock_owned((address)mark.locker()), "invariant"); 617 if (mark.has_monitor()) { 618 // The BasicLock's displaced_header is marked as a recursive 619 // enter and we have an inflated Java Monitor (ObjectMonitor). 620 // This is a special case where the Java Monitor was inflated 621 // after this thread entered the stack-lock recursively. When a 622 // Java Monitor is inflated, we cannot safely walk the Java 623 // Monitor owner's stack and update the BasicLocks because a 624 // Java Monitor can be asynchronously inflated by a thread that 625 // does not own the Java Monitor. 626 ObjectMonitor* m = read_monitor(mark); 627 assert(m->object()->mark() == mark, "invariant"); 628 assert(m->is_entered(current), "invariant"); 629 } 630 } 631 #endif 632 return; 633 } 634 635 if (mark == markWord::from_pointer(lock)) { 636 // If the object is stack-locked by the current thread, try to 637 // swing the displaced header from the BasicLock back to the mark. 638 assert(dhw.is_neutral(), "invariant"); 639 if (object->cas_set_mark(dhw, mark) == mark) { 640 return; 641 } 642 } 643 } 644 } else if (VerifyHeavyMonitors) { 645 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 646 } 647 648 // We have to take the slow-path of possible inflation and then exit. 649 // The ObjectMonitor* can't be async deflated until ownership is 650 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 651 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 652 assert(!monitor->has_anonymous_owner(), "must not be"); 653 monitor->exit(current); 654 } 655 656 // ----------------------------------------------------------------------------- 657 // JNI locks on java objects 658 // NOTE: must use heavy weight monitor to handle jni monitor enter 659 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 660 // Top native frames in the stack will not be seen if we attempt 661 // preemption, since we start walking from the last Java anchor. 662 NoPreemptMark npm(current); 663 664 if (obj->klass()->is_value_based()) { 665 handle_sync_on_value_based_class(obj, current); 666 } 667 668 // the current locking is from JNI instead of Java code 669 current->set_current_pending_monitor_is_from_java(false); 670 // An async deflation can race after the inflate() call and before 671 // enter() can make the ObjectMonitor busy. enter() returns false if 672 // we have lost the race to async deflation and we simply try again. 673 while (true) { 674 ObjectMonitor* monitor; 675 bool entered; 676 if (LockingMode == LM_LIGHTWEIGHT) { 677 BasicLock lock; 678 entered = LightweightSynchronizer::inflate_and_enter(obj(), &lock, inflate_cause_jni_enter, current, current) != nullptr; 679 } else { 680 monitor = inflate(current, obj(), inflate_cause_jni_enter); 681 entered = monitor->enter(current); 682 } 683 684 if (entered) { 685 current->inc_held_monitor_count(1, true); 686 break; 687 } 688 } 689 current->set_current_pending_monitor_is_from_java(true); 690 } 691 692 // NOTE: must use heavy weight monitor to handle jni monitor exit 693 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 694 JavaThread* current = THREAD; 695 696 ObjectMonitor* monitor; 697 if (LockingMode == LM_LIGHTWEIGHT) { 698 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK); 699 } else { 700 // The ObjectMonitor* can't be async deflated until ownership is 701 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 702 monitor = inflate(current, obj, inflate_cause_jni_exit); 703 } 704 // If this thread has locked the object, exit the monitor. We 705 // intentionally do not use CHECK on check_owner because we must exit the 706 // monitor even if an exception was already pending. 707 if (monitor->check_owner(THREAD)) { 708 monitor->exit(current); 709 current->dec_held_monitor_count(1, true); 710 } 711 } 712 713 // ----------------------------------------------------------------------------- 714 // Internal VM locks on java objects 715 // standard constructor, allows locking failures 716 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) : _npm(thread) { 717 _thread = thread; 718 _thread->check_for_valid_safepoint_state(); 719 _obj = obj; 720 721 if (_obj() != nullptr) { 722 ObjectSynchronizer::enter(_obj, &_lock, _thread); 723 } 724 } 725 726 ObjectLocker::~ObjectLocker() { 727 if (_obj() != nullptr) { 728 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 729 } 730 } 731 732 733 // ----------------------------------------------------------------------------- 734 // Wait/Notify/NotifyAll 735 // NOTE: must use heavy weight monitor to handle wait() 736 737 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 738 JavaThread* current = THREAD; 739 if (millis < 0) { 740 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 741 } 742 743 ObjectMonitor* monitor; 744 if (LockingMode == LM_LIGHTWEIGHT) { 745 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0); 746 } else { 747 // The ObjectMonitor* can't be async deflated because the _waiters 748 // field is incremented before ownership is dropped and decremented 749 // after ownership is regained. 750 monitor = inflate(current, obj(), inflate_cause_wait); 751 } 752 753 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 754 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 755 756 // This dummy call is in place to get around dtrace bug 6254741. Once 757 // that's fixed we can uncomment the following line, remove the call 758 // and change this function back into a "void" func. 759 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 760 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 761 return ret_code; 762 } 763 764 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 765 if (millis < 0) { 766 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 767 } 768 769 ObjectMonitor* monitor; 770 if (LockingMode == LM_LIGHTWEIGHT) { 771 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK); 772 } else { 773 monitor = inflate(THREAD, obj(), inflate_cause_wait); 774 } 775 monitor->wait(millis, false, THREAD); 776 } 777 778 779 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 780 JavaThread* current = THREAD; 781 782 markWord mark = obj->mark(); 783 if (LockingMode == LM_LIGHTWEIGHT) { 784 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 785 // Not inflated so there can't be any waiters to notify. 786 return; 787 } 788 } else if (LockingMode == LM_LEGACY) { 789 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 790 // Not inflated so there can't be any waiters to notify. 791 return; 792 } 793 } 794 795 ObjectMonitor* monitor; 796 if (LockingMode == LM_LIGHTWEIGHT) { 797 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 798 } else { 799 // The ObjectMonitor* can't be async deflated until ownership is 800 // dropped by the calling thread. 801 monitor = inflate(current, obj(), inflate_cause_notify); 802 } 803 monitor->notify(CHECK); 804 } 805 806 // NOTE: see comment of notify() 807 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 808 JavaThread* current = THREAD; 809 810 markWord mark = obj->mark(); 811 if (LockingMode == LM_LIGHTWEIGHT) { 812 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 813 // Not inflated so there can't be any waiters to notify. 814 return; 815 } 816 } else if (LockingMode == LM_LEGACY) { 817 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 818 // Not inflated so there can't be any waiters to notify. 819 return; 820 } 821 } 822 823 ObjectMonitor* monitor; 824 if (LockingMode == LM_LIGHTWEIGHT) { 825 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 826 } else { 827 // The ObjectMonitor* can't be async deflated until ownership is 828 // dropped by the calling thread. 829 monitor = inflate(current, obj(), inflate_cause_notify); 830 } 831 monitor->notifyAll(CHECK); 832 } 833 834 // ----------------------------------------------------------------------------- 835 // Hash Code handling 836 837 struct SharedGlobals { 838 char _pad_prefix[OM_CACHE_LINE_SIZE]; 839 // This is a highly shared mostly-read variable. 840 // To avoid false-sharing it needs to be the sole occupant of a cache line. 841 volatile int stw_random; 842 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 843 // Hot RW variable -- Sequester to avoid false-sharing 844 volatile int hc_sequence; 845 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 846 }; 847 848 static SharedGlobals GVars; 849 850 static markWord read_stable_mark(oop obj) { 851 markWord mark = obj->mark_acquire(); 852 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 853 // New lightweight locking does not use the markWord::INFLATING() protocol. 854 return mark; // normal fast-path return 855 } 856 857 int its = 0; 858 for (;;) { 859 markWord mark = obj->mark_acquire(); 860 if (!mark.is_being_inflated()) { 861 return mark; // normal fast-path return 862 } 863 864 // The object is being inflated by some other thread. 865 // The caller of read_stable_mark() must wait for inflation to complete. 866 // Avoid live-lock. 867 868 ++its; 869 if (its > 10000 || !os::is_MP()) { 870 if (its & 1) { 871 os::naked_yield(); 872 } else { 873 // Note that the following code attenuates the livelock problem but is not 874 // a complete remedy. A more complete solution would require that the inflating 875 // thread hold the associated inflation lock. The following code simply restricts 876 // the number of spinners to at most one. We'll have N-2 threads blocked 877 // on the inflationlock, 1 thread holding the inflation lock and using 878 // a yield/park strategy, and 1 thread in the midst of inflation. 879 // A more refined approach would be to change the encoding of INFLATING 880 // to allow encapsulation of a native thread pointer. Threads waiting for 881 // inflation to complete would use CAS to push themselves onto a singly linked 882 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 883 // and calling park(). When inflation was complete the thread that accomplished inflation 884 // would detach the list and set the markword to inflated with a single CAS and 885 // then for each thread on the list, set the flag and unpark() the thread. 886 887 // Index into the lock array based on the current object address. 888 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 889 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 890 int YieldThenBlock = 0; 891 assert(ix < inflation_lock_count(), "invariant"); 892 inflation_lock(ix)->lock(); 893 while (obj->mark_acquire() == markWord::INFLATING()) { 894 // Beware: naked_yield() is advisory and has almost no effect on some platforms 895 // so we periodically call current->_ParkEvent->park(1). 896 // We use a mixed spin/yield/block mechanism. 897 if ((YieldThenBlock++) >= 16) { 898 Thread::current()->_ParkEvent->park(1); 899 } else { 900 os::naked_yield(); 901 } 902 } 903 inflation_lock(ix)->unlock(); 904 } 905 } else { 906 SpinPause(); // SMP-polite spinning 907 } 908 } 909 } 910 911 // hashCode() generation : 912 // 913 // Possibilities: 914 // * MD5Digest of {obj,stw_random} 915 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 916 // * A DES- or AES-style SBox[] mechanism 917 // * One of the Phi-based schemes, such as: 918 // 2654435761 = 2^32 * Phi (golden ratio) 919 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 920 // * A variation of Marsaglia's shift-xor RNG scheme. 921 // * (obj ^ stw_random) is appealing, but can result 922 // in undesirable regularity in the hashCode values of adjacent objects 923 // (objects allocated back-to-back, in particular). This could potentially 924 // result in hashtable collisions and reduced hashtable efficiency. 925 // There are simple ways to "diffuse" the middle address bits over the 926 // generated hashCode values: 927 928 static intptr_t get_next_hash(Thread* current, oop obj) { 929 intptr_t value = 0; 930 if (hashCode == 0) { 931 // This form uses global Park-Miller RNG. 932 // On MP system we'll have lots of RW access to a global, so the 933 // mechanism induces lots of coherency traffic. 934 value = os::random(); 935 } else if (hashCode == 1) { 936 // This variation has the property of being stable (idempotent) 937 // between STW operations. This can be useful in some of the 1-0 938 // synchronization schemes. 939 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 940 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 941 } else if (hashCode == 2) { 942 value = 1; // for sensitivity testing 943 } else if (hashCode == 3) { 944 value = ++GVars.hc_sequence; 945 } else if (hashCode == 4) { 946 value = cast_from_oop<intptr_t>(obj); 947 } else { 948 // Marsaglia's xor-shift scheme with thread-specific state 949 // This is probably the best overall implementation -- we'll 950 // likely make this the default in future releases. 951 unsigned t = current->_hashStateX; 952 t ^= (t << 11); 953 current->_hashStateX = current->_hashStateY; 954 current->_hashStateY = current->_hashStateZ; 955 current->_hashStateZ = current->_hashStateW; 956 unsigned v = current->_hashStateW; 957 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 958 current->_hashStateW = v; 959 value = v; 960 } 961 962 value &= markWord::hash_mask; 963 if (value == 0) value = 0xBAD; 964 assert(value != markWord::no_hash, "invariant"); 965 return value; 966 } 967 968 static intptr_t install_hash_code(Thread* current, oop obj) { 969 assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be"); 970 971 markWord mark = obj->mark_acquire(); 972 for (;;) { 973 intptr_t hash = mark.hash(); 974 if (hash != 0) { 975 return hash; 976 } 977 978 hash = get_next_hash(current, obj); 979 const markWord old_mark = mark; 980 const markWord new_mark = old_mark.copy_set_hash(hash); 981 982 mark = obj->cas_set_mark(new_mark, old_mark); 983 if (old_mark == mark) { 984 return hash; 985 } 986 } 987 } 988 989 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 990 if (UseObjectMonitorTable) { 991 // Since the monitor isn't in the object header, the hash can simply be 992 // installed in the object header. 993 return install_hash_code(current, obj); 994 } 995 996 while (true) { 997 ObjectMonitor* monitor = nullptr; 998 markWord temp, test; 999 intptr_t hash; 1000 markWord mark = read_stable_mark(obj); 1001 if (VerifyHeavyMonitors) { 1002 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 1003 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 1004 } 1005 if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1006 hash = mark.hash(); 1007 if (hash != 0) { // if it has a hash, just return it 1008 return hash; 1009 } 1010 hash = get_next_hash(current, obj); // get a new hash 1011 temp = mark.copy_set_hash(hash); // merge the hash into header 1012 // try to install the hash 1013 test = obj->cas_set_mark(temp, mark); 1014 if (test == mark) { // if the hash was installed, return it 1015 return hash; 1016 } 1017 if (LockingMode == LM_LIGHTWEIGHT) { 1018 // CAS failed, retry 1019 continue; 1020 } 1021 // Failed to install the hash. It could be that another thread 1022 // installed the hash just before our attempt or inflation has 1023 // occurred or... so we fall thru to inflate the monitor for 1024 // stability and then install the hash. 1025 } else if (mark.has_monitor()) { 1026 monitor = mark.monitor(); 1027 temp = monitor->header(); 1028 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1029 hash = temp.hash(); 1030 if (hash != 0) { 1031 // It has a hash. 1032 1033 // Separate load of dmw/header above from the loads in 1034 // is_being_async_deflated(). 1035 1036 // dmw/header and _contentions may get written by different threads. 1037 // Make sure to observe them in the same order when having several observers. 1038 OrderAccess::loadload_for_IRIW(); 1039 1040 if (monitor->is_being_async_deflated()) { 1041 // But we can't safely use the hash if we detect that async 1042 // deflation has occurred. So we attempt to restore the 1043 // header/dmw to the object's header so that we only retry 1044 // once if the deflater thread happens to be slow. 1045 monitor->install_displaced_markword_in_object(obj); 1046 continue; 1047 } 1048 return hash; 1049 } 1050 // Fall thru so we only have one place that installs the hash in 1051 // the ObjectMonitor. 1052 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1053 && current->is_Java_thread() 1054 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1055 // This is a stack-lock owned by the calling thread so fetch the 1056 // displaced markWord from the BasicLock on the stack. 1057 temp = mark.displaced_mark_helper(); 1058 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1059 hash = temp.hash(); 1060 if (hash != 0) { // if it has a hash, just return it 1061 return hash; 1062 } 1063 // WARNING: 1064 // The displaced header in the BasicLock on a thread's stack 1065 // is strictly immutable. It CANNOT be changed in ANY cases. 1066 // So we have to inflate the stack-lock into an ObjectMonitor 1067 // even if the current thread owns the lock. The BasicLock on 1068 // a thread's stack can be asynchronously read by other threads 1069 // during an inflate() call so any change to that stack memory 1070 // may not propagate to other threads correctly. 1071 } 1072 1073 // Inflate the monitor to set the hash. 1074 1075 // There's no need to inflate if the mark has already got a monitor. 1076 // NOTE: an async deflation can race after we get the monitor and 1077 // before we can update the ObjectMonitor's header with the hash 1078 // value below. 1079 monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code); 1080 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1081 mark = monitor->header(); 1082 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1083 hash = mark.hash(); 1084 if (hash == 0) { // if it does not have a hash 1085 hash = get_next_hash(current, obj); // get a new hash 1086 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1087 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1088 uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value()); 1089 test = markWord(v); 1090 if (test != mark) { 1091 // The attempt to update the ObjectMonitor's header/dmw field 1092 // did not work. This can happen if another thread managed to 1093 // merge in the hash just before our cmpxchg(). 1094 // If we add any new usages of the header/dmw field, this code 1095 // will need to be updated. 1096 hash = test.hash(); 1097 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1098 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1099 } 1100 if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) { 1101 // If we detect that async deflation has occurred, then we 1102 // attempt to restore the header/dmw to the object's header 1103 // so that we only retry once if the deflater thread happens 1104 // to be slow. 1105 monitor->install_displaced_markword_in_object(obj); 1106 continue; 1107 } 1108 } 1109 // We finally get the hash. 1110 return hash; 1111 } 1112 } 1113 1114 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1115 Handle h_obj) { 1116 assert(current == JavaThread::current(), "Can only be called on current thread"); 1117 oop obj = h_obj(); 1118 1119 markWord mark = read_stable_mark(obj); 1120 1121 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1122 // stack-locked case, header points into owner's stack 1123 return current->is_lock_owned((address)mark.locker()); 1124 } 1125 1126 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1127 // fast-locking case, see if lock is in current's lock stack 1128 return current->lock_stack().contains(h_obj()); 1129 } 1130 1131 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1132 ObjectMonitor* monitor = read_monitor(current, obj, mark); 1133 if (monitor != nullptr) { 1134 return monitor->is_entered(current) != 0; 1135 } 1136 // Racing with inflation/deflation, retry 1137 mark = obj->mark_acquire(); 1138 1139 if (mark.is_fast_locked()) { 1140 // Some other thread fast_locked, current could not have held the lock 1141 return false; 1142 } 1143 } 1144 1145 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1146 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1147 // The first stage of async deflation does not affect any field 1148 // used by this comparison so the ObjectMonitor* is usable here. 1149 ObjectMonitor* monitor = read_monitor(mark); 1150 return monitor->is_entered(current) != 0; 1151 } 1152 // Unlocked case, header in place 1153 assert(mark.is_unlocked(), "sanity check"); 1154 return false; 1155 } 1156 1157 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1158 oop obj = h_obj(); 1159 markWord mark = read_stable_mark(obj); 1160 1161 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1162 // stack-locked so header points into owner's stack. 1163 // owning_thread_from_monitor_owner() may also return null here: 1164 return Threads::owning_thread_from_stacklock(t_list, (address) mark.locker()); 1165 } 1166 1167 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1168 // fast-locked so get owner from the object. 1169 // owning_thread_from_object() may also return null here: 1170 return Threads::owning_thread_from_object(t_list, h_obj()); 1171 } 1172 1173 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1174 ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark); 1175 if (monitor != nullptr) { 1176 return Threads::owning_thread_from_monitor(t_list, monitor); 1177 } 1178 // Racing with inflation/deflation, retry 1179 mark = obj->mark_acquire(); 1180 1181 if (mark.is_fast_locked()) { 1182 // Some other thread fast_locked 1183 return Threads::owning_thread_from_object(t_list, h_obj()); 1184 } 1185 } 1186 1187 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1188 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1189 // The first stage of async deflation does not affect any field 1190 // used by this comparison so the ObjectMonitor* is usable here. 1191 ObjectMonitor* monitor = read_monitor(mark); 1192 assert(monitor != nullptr, "monitor should be non-null"); 1193 // owning_thread_from_monitor() may also return null here: 1194 return Threads::owning_thread_from_monitor(t_list, monitor); 1195 } 1196 1197 // Unlocked case, header in place 1198 // Cannot have assertion since this object may have been 1199 // locked by another thread when reaching here. 1200 // assert(mark.is_unlocked(), "sanity check"); 1201 1202 return nullptr; 1203 } 1204 1205 // Visitors ... 1206 1207 // Iterate over all ObjectMonitors. 1208 template <typename Function> 1209 void ObjectSynchronizer::monitors_iterate(Function function) { 1210 MonitorList::Iterator iter = _in_use_list.iterator(); 1211 while (iter.has_next()) { 1212 ObjectMonitor* monitor = iter.next(); 1213 function(monitor); 1214 } 1215 } 1216 1217 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1218 // returns true. 1219 template <typename OwnerFilter> 1220 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1221 monitors_iterate([&](ObjectMonitor* monitor) { 1222 // This function is only called at a safepoint or when the 1223 // target thread is suspended or when the target thread is 1224 // operating on itself. The current closures in use today are 1225 // only interested in an owned ObjectMonitor and ownership 1226 // cannot be dropped under the calling contexts so the 1227 // ObjectMonitor cannot be async deflated. 1228 if (monitor->has_owner() && filter(monitor)) { 1229 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1230 1231 closure->do_monitor(monitor); 1232 } 1233 }); 1234 } 1235 1236 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1237 // ObjectMonitors where owner is set to a stack-lock address in thread. 1238 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1239 int64_t key = ObjectMonitor::owner_id_from(thread); 1240 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1241 return owned_monitors_iterate_filtered(closure, thread_filter); 1242 } 1243 1244 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, oop vthread) { 1245 int64_t key = ObjectMonitor::owner_id_from(vthread); 1246 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1247 return owned_monitors_iterate_filtered(closure, thread_filter); 1248 } 1249 1250 // Iterate ObjectMonitors owned by any thread. 1251 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1252 auto all_filter = [&](ObjectMonitor* monitor) { return true; }; 1253 return owned_monitors_iterate_filtered(closure, all_filter); 1254 } 1255 1256 static bool monitors_used_above_threshold(MonitorList* list) { 1257 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1258 return false; 1259 } 1260 size_t monitors_used = list->count(); 1261 if (monitors_used == 0) { // empty list is easy 1262 return false; 1263 } 1264 size_t old_ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1265 // Make sure that we use a ceiling value that is not lower than 1266 // previous, not lower than the recorded max used by the system, and 1267 // not lower than the current number of monitors in use (which can 1268 // race ahead of max). The result is guaranteed > 0. 1269 size_t ceiling = MAX3(old_ceiling, list->max(), monitors_used); 1270 1271 // Check if our monitor usage is above the threshold: 1272 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1273 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1274 // Deflate monitors if over the threshold percentage, unless no 1275 // progress on previous deflations. 1276 bool is_above_threshold = true; 1277 1278 // Check if it's time to adjust the in_use_list_ceiling up, due 1279 // to too many async deflation attempts without any progress. 1280 if (NoAsyncDeflationProgressMax != 0 && 1281 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1282 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1283 size_t delta = (size_t)(ceiling * remainder) + 1; 1284 size_t new_ceiling = (ceiling > SIZE_MAX - delta) 1285 ? SIZE_MAX // Overflow, let's clamp new_ceiling. 1286 : ceiling + delta; 1287 1288 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1289 log_info(monitorinflation)("Too many deflations without progress; " 1290 "bumping in_use_list_ceiling from %zu" 1291 " to %zu", old_ceiling, new_ceiling); 1292 _no_progress_cnt = 0; 1293 ceiling = new_ceiling; 1294 1295 // Check if our monitor usage is still above the threshold: 1296 monitor_usage = (monitors_used * 100LL) / ceiling; 1297 is_above_threshold = int(monitor_usage) > MonitorUsedDeflationThreshold; 1298 } 1299 log_info(monitorinflation)("monitors_used=%zu, ceiling=%zu" 1300 ", monitor_usage=%zu, threshold=%d", 1301 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1302 return is_above_threshold; 1303 } 1304 1305 return false; 1306 } 1307 1308 size_t ObjectSynchronizer::in_use_list_count() { 1309 return _in_use_list.count(); 1310 } 1311 1312 size_t ObjectSynchronizer::in_use_list_max() { 1313 return _in_use_list.max(); 1314 } 1315 1316 size_t ObjectSynchronizer::in_use_list_ceiling() { 1317 return _in_use_list_ceiling; 1318 } 1319 1320 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1321 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1322 } 1323 1324 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1325 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1326 } 1327 1328 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1329 _in_use_list_ceiling = new_value; 1330 } 1331 1332 bool ObjectSynchronizer::is_async_deflation_needed() { 1333 if (is_async_deflation_requested()) { 1334 // Async deflation request. 1335 log_info(monitorinflation)("Async deflation needed: explicit request"); 1336 return true; 1337 } 1338 1339 jlong time_since_last = time_since_last_async_deflation_ms(); 1340 1341 if (AsyncDeflationInterval > 0 && 1342 time_since_last > AsyncDeflationInterval && 1343 monitors_used_above_threshold(&_in_use_list)) { 1344 // It's been longer than our specified deflate interval and there 1345 // are too many monitors in use. We don't deflate more frequently 1346 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1347 // in order to not swamp the MonitorDeflationThread. 1348 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1349 return true; 1350 } 1351 1352 if (GuaranteedAsyncDeflationInterval > 0 && 1353 time_since_last > GuaranteedAsyncDeflationInterval) { 1354 // It's been longer than our specified guaranteed deflate interval. 1355 // We need to clean up the used monitors even if the threshold is 1356 // not reached, to keep the memory utilization at bay when many threads 1357 // touched many monitors. 1358 log_info(monitorinflation)("Async deflation needed: guaranteed interval (%zd ms) " 1359 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1360 GuaranteedAsyncDeflationInterval, time_since_last); 1361 1362 // If this deflation has no progress, then it should not affect the no-progress 1363 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1364 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1365 // the generic code would bump the no-progress counter, and we compensate for that 1366 // by telling it to skip the update. 1367 // 1368 // If this deflation has progress, then it should let non-progress tracking 1369 // know about this, otherwise the threshold heuristics would kick in, potentially 1370 // experience no-progress due to aggressive cleanup by this deflation, and think 1371 // it is still in no-progress stride. In this "progress" case, the generic code would 1372 // zero the counter, and we allow it to happen. 1373 _no_progress_skip_increment = true; 1374 1375 return true; 1376 } 1377 1378 return false; 1379 } 1380 1381 void ObjectSynchronizer::request_deflate_idle_monitors() { 1382 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1383 set_is_async_deflation_requested(true); 1384 ml.notify_all(); 1385 } 1386 1387 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1388 JavaThread* current = JavaThread::current(); 1389 bool ret_code = false; 1390 1391 jlong last_time = last_async_deflation_time_ns(); 1392 1393 request_deflate_idle_monitors(); 1394 1395 const int N_CHECKS = 5; 1396 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1397 if (last_async_deflation_time_ns() > last_time) { 1398 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1399 ret_code = true; 1400 break; 1401 } 1402 { 1403 // JavaThread has to honor the blocking protocol. 1404 ThreadBlockInVM tbivm(current); 1405 os::naked_short_sleep(999); // sleep for almost 1 second 1406 } 1407 } 1408 if (!ret_code) { 1409 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1410 } 1411 1412 return ret_code; 1413 } 1414 1415 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1416 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1417 } 1418 1419 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1420 const oop obj, 1421 ObjectSynchronizer::InflateCause cause) { 1422 assert(event != nullptr, "invariant"); 1423 const Klass* monitor_klass = obj->klass(); 1424 if (ObjectMonitor::is_jfr_excluded(monitor_klass)) { 1425 return; 1426 } 1427 event->set_monitorClass(monitor_klass); 1428 event->set_address((uintptr_t)(void*)obj); 1429 event->set_cause((u1)cause); 1430 event->commit(); 1431 } 1432 1433 // Fast path code shared by multiple functions 1434 void ObjectSynchronizer::inflate_helper(oop obj) { 1435 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1436 markWord mark = obj->mark_acquire(); 1437 if (mark.has_monitor()) { 1438 ObjectMonitor* monitor = read_monitor(mark); 1439 markWord dmw = monitor->header(); 1440 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1441 return; 1442 } 1443 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1444 } 1445 1446 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1447 assert(current == Thread::current(), "must be"); 1448 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1449 return inflate_impl(current->is_Java_thread() ? JavaThread::cast(current) : nullptr, obj, cause); 1450 } 1451 1452 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1453 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1454 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for"); 1455 return inflate_impl(thread, obj, cause); 1456 } 1457 1458 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* locking_thread, oop object, const InflateCause cause) { 1459 // The JavaThread* locking_thread requires that the locking_thread == Thread::current() or 1460 // is suspended throughout the call by some other mechanism. 1461 // The thread might be nullptr when called from a non JavaThread. (As may still be 1462 // the case from FastHashCode). However it is only important for correctness that the 1463 // thread is set when called from ObjectSynchronizer::enter from the owning thread, 1464 // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit. 1465 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl"); 1466 EventJavaMonitorInflate event; 1467 1468 for (;;) { 1469 const markWord mark = object->mark_acquire(); 1470 1471 // The mark can be in one of the following states: 1472 // * inflated - If the ObjectMonitor owner is anonymous and the 1473 // locking_thread owns the object lock, then we 1474 // make the locking_thread the ObjectMonitor owner. 1475 // * stack-locked - Coerce it to inflated from stack-locked. 1476 // * INFLATING - Busy wait for conversion from stack-locked to 1477 // inflated. 1478 // * unlocked - Aggressively inflate the object. 1479 1480 // CASE: inflated 1481 if (mark.has_monitor()) { 1482 ObjectMonitor* inf = mark.monitor(); 1483 markWord dmw = inf->header(); 1484 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1485 if (inf->has_anonymous_owner() && locking_thread != nullptr) { 1486 assert(LockingMode == LM_LEGACY, "invariant"); 1487 if (locking_thread->is_lock_owned((address)inf->stack_locker())) { 1488 inf->set_stack_locker(nullptr); 1489 inf->set_owner_from_anonymous(locking_thread); 1490 } 1491 } 1492 return inf; 1493 } 1494 1495 // CASE: inflation in progress - inflating over a stack-lock. 1496 // Some other thread is converting from stack-locked to inflated. 1497 // Only that thread can complete inflation -- other threads must wait. 1498 // The INFLATING value is transient. 1499 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1500 // We could always eliminate polling by parking the thread on some auxiliary list. 1501 if (mark == markWord::INFLATING()) { 1502 read_stable_mark(object); 1503 continue; 1504 } 1505 1506 // CASE: stack-locked 1507 // Could be stack-locked either by current or by some other thread. 1508 // 1509 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1510 // to install INFLATING into the mark word. We originally installed INFLATING, 1511 // allocated the ObjectMonitor, and then finally STed the address of the 1512 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1513 // the interval in which INFLATING appeared in the mark, thus increasing 1514 // the odds of inflation contention. If we lose the race to set INFLATING, 1515 // then we just delete the ObjectMonitor and loop around again. 1516 // 1517 LogStreamHandle(Trace, monitorinflation) lsh; 1518 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1519 ObjectMonitor* m = new ObjectMonitor(object); 1520 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1521 // We do this before the CAS in order to minimize the length of time 1522 // in which INFLATING appears in the mark. 1523 1524 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1525 if (cmp != mark) { 1526 delete m; 1527 continue; // Interference -- just retry 1528 } 1529 1530 // We've successfully installed INFLATING (0) into the mark-word. 1531 // This is the only case where 0 will appear in a mark-word. 1532 // Only the singular thread that successfully swings the mark-word 1533 // to 0 can perform (or more precisely, complete) inflation. 1534 // 1535 // Why do we CAS a 0 into the mark-word instead of just CASing the 1536 // mark-word from the stack-locked value directly to the new inflated state? 1537 // Consider what happens when a thread unlocks a stack-locked object. 1538 // It attempts to use CAS to swing the displaced header value from the 1539 // on-stack BasicLock back into the object header. Recall also that the 1540 // header value (hash code, etc) can reside in (a) the object header, or 1541 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1542 // header in an ObjectMonitor. The inflate() routine must copy the header 1543 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1544 // the while preserving the hashCode stability invariants. If the owner 1545 // decides to release the lock while the value is 0, the unlock will fail 1546 // and control will eventually pass from slow_exit() to inflate. The owner 1547 // will then spin, waiting for the 0 value to disappear. Put another way, 1548 // the 0 causes the owner to stall if the owner happens to try to 1549 // drop the lock (restoring the header from the BasicLock to the object) 1550 // while inflation is in-progress. This protocol avoids races that might 1551 // would otherwise permit hashCode values to change or "flicker" for an object. 1552 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1553 // 0 serves as a "BUSY" inflate-in-progress indicator. 1554 1555 1556 // fetch the displaced mark from the owner's stack. 1557 // The owner can't die or unwind past the lock while our INFLATING 1558 // object is in the mark. Furthermore the owner can't complete 1559 // an unlock on the object, either. 1560 markWord dmw = mark.displaced_mark_helper(); 1561 // Catch if the object's header is not neutral (not locked and 1562 // not marked is what we care about here). 1563 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1564 1565 // Setup monitor fields to proper values -- prepare the monitor 1566 m->set_header(dmw); 1567 1568 // Note that a thread can inflate an object 1569 // that it has stack-locked -- as might happen in wait() -- directly 1570 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1571 if (locking_thread != nullptr && locking_thread->is_lock_owned((address)mark.locker())) { 1572 m->set_owner(locking_thread); 1573 } else { 1574 // Use ANONYMOUS_OWNER to indicate that the owner is the BasicLock on the stack, 1575 // and set the stack locker field in the monitor. 1576 m->set_stack_locker(mark.locker()); 1577 m->set_anonymous_owner(); 1578 } 1579 // TODO-FIXME: assert BasicLock->dhw != 0. 1580 1581 // Must preserve store ordering. The monitor state must 1582 // be stable at the time of publishing the monitor address. 1583 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1584 // Release semantics so that above set_object() is seen first. 1585 object->release_set_mark(markWord::encode(m)); 1586 1587 // Once ObjectMonitor is configured and the object is associated 1588 // with the ObjectMonitor, it is safe to allow async deflation: 1589 _in_use_list.add(m); 1590 1591 if (log_is_enabled(Trace, monitorinflation)) { 1592 ResourceMark rm; 1593 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1594 INTPTR_FORMAT ", type='%s'", p2i(object), 1595 object->mark().value(), object->klass()->external_name()); 1596 } 1597 if (event.should_commit()) { 1598 post_monitor_inflate_event(&event, object, cause); 1599 } 1600 return m; 1601 } 1602 1603 // CASE: unlocked 1604 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1605 // If we know we're inflating for entry it's better to inflate by swinging a 1606 // pre-locked ObjectMonitor pointer into the object header. A successful 1607 // CAS inflates the object *and* confers ownership to the inflating thread. 1608 // In the current implementation we use a 2-step mechanism where we CAS() 1609 // to inflate and then CAS() again to try to swing _owner from null to current. 1610 // An inflateTry() method that we could call from enter() would be useful. 1611 1612 assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1613 ObjectMonitor* m = new ObjectMonitor(object); 1614 // prepare m for installation - set monitor to initial state 1615 m->set_header(mark); 1616 1617 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1618 delete m; 1619 m = nullptr; 1620 continue; 1621 // interference - the markword changed - just retry. 1622 // The state-transitions are one-way, so there's no chance of 1623 // live-lock -- "Inflated" is an absorbing state. 1624 } 1625 1626 // Once the ObjectMonitor is configured and object is associated 1627 // with the ObjectMonitor, it is safe to allow async deflation: 1628 _in_use_list.add(m); 1629 1630 if (log_is_enabled(Trace, monitorinflation)) { 1631 ResourceMark rm; 1632 lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark=" 1633 INTPTR_FORMAT ", type='%s'", p2i(object), 1634 object->mark().value(), object->klass()->external_name()); 1635 } 1636 if (event.should_commit()) { 1637 post_monitor_inflate_event(&event, object, cause); 1638 } 1639 return m; 1640 } 1641 } 1642 1643 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1644 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1645 // 1646 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) { 1647 MonitorList::Iterator iter = _in_use_list.iterator(); 1648 size_t deflated_count = 0; 1649 Thread* current = Thread::current(); 1650 1651 while (iter.has_next()) { 1652 if (deflated_count >= (size_t)MonitorDeflationMax) { 1653 break; 1654 } 1655 ObjectMonitor* mid = iter.next(); 1656 if (mid->deflate_monitor(current)) { 1657 deflated_count++; 1658 } 1659 1660 // Must check for a safepoint/handshake and honor it. 1661 safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count); 1662 } 1663 1664 return deflated_count; 1665 } 1666 1667 class HandshakeForDeflation : public HandshakeClosure { 1668 public: 1669 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1670 1671 void do_thread(Thread* thread) { 1672 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1673 INTPTR_FORMAT, p2i(thread)); 1674 if (thread->is_Java_thread()) { 1675 // Clear OM cache 1676 JavaThread* jt = JavaThread::cast(thread); 1677 jt->om_clear_monitor_cache(); 1678 } 1679 } 1680 }; 1681 1682 class VM_RendezvousGCThreads : public VM_Operation { 1683 public: 1684 bool evaluate_at_safepoint() const override { return false; } 1685 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1686 void doit() override { 1687 Universe::heap()->safepoint_synchronize_begin(); 1688 Universe::heap()->safepoint_synchronize_end(); 1689 }; 1690 }; 1691 1692 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list, 1693 ObjectMonitorDeflationSafepointer* safepointer) { 1694 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1695 size_t deleted_count = 0; 1696 for (ObjectMonitor* monitor: *delete_list) { 1697 delete monitor; 1698 deleted_count++; 1699 // A JavaThread must check for a safepoint/handshake and honor it. 1700 safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count); 1701 } 1702 return deleted_count; 1703 } 1704 1705 class ObjectMonitorDeflationLogging: public StackObj { 1706 LogStreamHandle(Debug, monitorinflation) _debug; 1707 LogStreamHandle(Info, monitorinflation) _info; 1708 LogStream* _stream; 1709 elapsedTimer _timer; 1710 1711 size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); } 1712 size_t count() const { return ObjectSynchronizer::in_use_list_count(); } 1713 size_t max() const { return ObjectSynchronizer::in_use_list_max(); } 1714 1715 public: 1716 ObjectMonitorDeflationLogging() 1717 : _debug(), _info(), _stream(nullptr) { 1718 if (_debug.is_enabled()) { 1719 _stream = &_debug; 1720 } else if (_info.is_enabled()) { 1721 _stream = &_info; 1722 } 1723 } 1724 1725 void begin() { 1726 if (_stream != nullptr) { 1727 _stream->print_cr("begin deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1728 ceiling(), count(), max()); 1729 _timer.start(); 1730 } 1731 } 1732 1733 void before_handshake(size_t unlinked_count) { 1734 if (_stream != nullptr) { 1735 _timer.stop(); 1736 _stream->print_cr("before handshaking: unlinked_count=%zu" 1737 ", in_use_list stats: ceiling=%zu, count=" 1738 "%zu, max=%zu", 1739 unlinked_count, ceiling(), count(), max()); 1740 } 1741 } 1742 1743 void after_handshake() { 1744 if (_stream != nullptr) { 1745 _stream->print_cr("after handshaking: in_use_list stats: ceiling=" 1746 "%zu, count=%zu, max=%zu", 1747 ceiling(), count(), max()); 1748 _timer.start(); 1749 } 1750 } 1751 1752 void end(size_t deflated_count, size_t unlinked_count) { 1753 if (_stream != nullptr) { 1754 _timer.stop(); 1755 if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) { 1756 _stream->print_cr("deflated_count=%zu, {unlinked,deleted}_count=%zu monitors in %3.7f secs", 1757 deflated_count, unlinked_count, _timer.seconds()); 1758 } 1759 _stream->print_cr("end deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1760 ceiling(), count(), max()); 1761 } 1762 } 1763 1764 void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) { 1765 if (_stream != nullptr) { 1766 _timer.stop(); 1767 _stream->print_cr("pausing %s: %s=%zu, in_use_list stats: ceiling=" 1768 "%zu, count=%zu, max=%zu", 1769 op_name, cnt_name, cnt, ceiling(), count(), max()); 1770 } 1771 } 1772 1773 void after_block_for_safepoint(const char* op_name) { 1774 if (_stream != nullptr) { 1775 _stream->print_cr("resuming %s: in_use_list stats: ceiling=%zu" 1776 ", count=%zu, max=%zu", op_name, 1777 ceiling(), count(), max()); 1778 _timer.start(); 1779 } 1780 } 1781 }; 1782 1783 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) { 1784 if (!SafepointMechanism::should_process(_current)) { 1785 return; 1786 } 1787 1788 // A safepoint/handshake has started. 1789 _log->before_block_for_safepoint(op_name, count_name, counter); 1790 1791 { 1792 // Honor block request. 1793 ThreadBlockInVM tbivm(_current); 1794 } 1795 1796 _log->after_block_for_safepoint(op_name); 1797 } 1798 1799 // This function is called by the MonitorDeflationThread to deflate 1800 // ObjectMonitors. 1801 size_t ObjectSynchronizer::deflate_idle_monitors() { 1802 JavaThread* current = JavaThread::current(); 1803 assert(current->is_monitor_deflation_thread(), "The only monitor deflater"); 1804 1805 // The async deflation request has been processed. 1806 _last_async_deflation_time_ns = os::javaTimeNanos(); 1807 set_is_async_deflation_requested(false); 1808 1809 ObjectMonitorDeflationLogging log; 1810 ObjectMonitorDeflationSafepointer safepointer(current, &log); 1811 1812 log.begin(); 1813 1814 // Deflate some idle ObjectMonitors. 1815 size_t deflated_count = deflate_monitor_list(&safepointer); 1816 1817 // Unlink the deflated ObjectMonitors from the in-use list. 1818 size_t unlinked_count = 0; 1819 size_t deleted_count = 0; 1820 if (deflated_count > 0) { 1821 ResourceMark rm(current); 1822 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1823 unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer); 1824 1825 #ifdef ASSERT 1826 if (UseObjectMonitorTable) { 1827 for (ObjectMonitor* monitor : delete_list) { 1828 assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed"); 1829 } 1830 } 1831 #endif 1832 1833 log.before_handshake(unlinked_count); 1834 1835 // A JavaThread needs to handshake in order to safely free the 1836 // ObjectMonitors that were deflated in this cycle. 1837 HandshakeForDeflation hfd_hc; 1838 Handshake::execute(&hfd_hc); 1839 // Also, we sync and desync GC threads around the handshake, so that they can 1840 // safely read the mark-word and look-through to the object-monitor, without 1841 // being afraid that the object-monitor is going away. 1842 VM_RendezvousGCThreads sync_gc; 1843 VMThread::execute(&sync_gc); 1844 1845 log.after_handshake(); 1846 1847 // After the handshake, safely free the ObjectMonitors that were 1848 // deflated and unlinked in this cycle. 1849 1850 // Delete the unlinked ObjectMonitors. 1851 deleted_count = delete_monitors(&delete_list, &safepointer); 1852 assert(unlinked_count == deleted_count, "must be"); 1853 } 1854 1855 log.end(deflated_count, unlinked_count); 1856 1857 GVars.stw_random = os::random(); 1858 1859 if (deflated_count != 0) { 1860 _no_progress_cnt = 0; 1861 } else if (_no_progress_skip_increment) { 1862 _no_progress_skip_increment = false; 1863 } else { 1864 _no_progress_cnt++; 1865 } 1866 1867 return deflated_count; 1868 } 1869 1870 // Monitor cleanup on JavaThread::exit 1871 1872 // Iterate through monitor cache and attempt to release thread's monitors 1873 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1874 private: 1875 JavaThread* _thread; 1876 1877 public: 1878 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1879 void do_monitor(ObjectMonitor* mid) { 1880 intx rec = mid->complete_exit(_thread); 1881 _thread->dec_held_monitor_count(rec + 1); 1882 } 1883 }; 1884 1885 // Release all inflated monitors owned by current thread. Lightweight monitors are 1886 // ignored. This is meant to be called during JNI thread detach which assumes 1887 // all remaining monitors are heavyweight. All exceptions are swallowed. 1888 // Scanning the extant monitor list can be time consuming. 1889 // A simple optimization is to add a per-thread flag that indicates a thread 1890 // called jni_monitorenter() during its lifetime. 1891 // 1892 // Instead of NoSafepointVerifier it might be cheaper to 1893 // use an idiom of the form: 1894 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1895 // <code that must not run at safepoint> 1896 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1897 // Since the tests are extremely cheap we could leave them enabled 1898 // for normal product builds. 1899 1900 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1901 assert(current == JavaThread::current(), "must be current Java thread"); 1902 NoSafepointVerifier nsv; 1903 ReleaseJavaMonitorsClosure rjmc(current); 1904 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1905 assert(!current->has_pending_exception(), "Should not be possible"); 1906 current->clear_pending_exception(); 1907 assert(current->held_monitor_count() == 0, "Should not be possible"); 1908 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1909 current->clear_jni_monitor_count(); 1910 } 1911 1912 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1913 switch (cause) { 1914 case inflate_cause_vm_internal: return "VM Internal"; 1915 case inflate_cause_monitor_enter: return "Monitor Enter"; 1916 case inflate_cause_wait: return "Monitor Wait"; 1917 case inflate_cause_notify: return "Monitor Notify"; 1918 case inflate_cause_hash_code: return "Monitor Hash Code"; 1919 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1920 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1921 default: 1922 ShouldNotReachHere(); 1923 } 1924 return "Unknown"; 1925 } 1926 1927 //------------------------------------------------------------------------------ 1928 // Debugging code 1929 1930 u_char* ObjectSynchronizer::get_gvars_addr() { 1931 return (u_char*)&GVars; 1932 } 1933 1934 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1935 return (u_char*)&GVars.hc_sequence; 1936 } 1937 1938 size_t ObjectSynchronizer::get_gvars_size() { 1939 return sizeof(SharedGlobals); 1940 } 1941 1942 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1943 return (u_char*)&GVars.stw_random; 1944 } 1945 1946 // Do the final audit and print of ObjectMonitor stats; must be done 1947 // by the VMThread at VM exit time. 1948 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1949 assert(Thread::current()->is_VM_thread(), "sanity check"); 1950 1951 if (is_final_audit()) { // Only do the audit once. 1952 return; 1953 } 1954 set_is_final_audit(); 1955 log_info(monitorinflation)("Starting the final audit."); 1956 1957 if (log_is_enabled(Info, monitorinflation)) { 1958 LogStreamHandle(Info, monitorinflation) ls; 1959 audit_and_print_stats(&ls, true /* on_exit */); 1960 } 1961 } 1962 1963 // This function can be called by the MonitorDeflationThread or it can be called when 1964 // we are trying to exit the VM. The list walker functions can run in parallel with 1965 // the other list operations. 1966 // Calls to this function can be added in various places as a debugging 1967 // aid. 1968 // 1969 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) { 1970 int error_cnt = 0; 1971 1972 ls->print_cr("Checking in_use_list:"); 1973 chk_in_use_list(ls, &error_cnt); 1974 1975 if (error_cnt == 0) { 1976 ls->print_cr("No errors found in in_use_list checks."); 1977 } else { 1978 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 1979 } 1980 1981 // When exiting, only log the interesting entries at the Info level. 1982 // When called at intervals by the MonitorDeflationThread, log output 1983 // at the Trace level since there can be a lot of it. 1984 if (!on_exit && log_is_enabled(Trace, monitorinflation)) { 1985 LogStreamHandle(Trace, monitorinflation) ls_tr; 1986 log_in_use_monitor_details(&ls_tr, true /* log_all */); 1987 } else if (on_exit) { 1988 log_in_use_monitor_details(ls, false /* log_all */); 1989 } 1990 1991 ls->flush(); 1992 1993 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 1994 } 1995 1996 // Check the in_use_list; log the results of the checks. 1997 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 1998 size_t l_in_use_count = _in_use_list.count(); 1999 size_t l_in_use_max = _in_use_list.max(); 2000 out->print_cr("count=%zu, max=%zu", l_in_use_count, 2001 l_in_use_max); 2002 2003 size_t ck_in_use_count = 0; 2004 MonitorList::Iterator iter = _in_use_list.iterator(); 2005 while (iter.has_next()) { 2006 ObjectMonitor* mid = iter.next(); 2007 chk_in_use_entry(mid, out, error_cnt_p); 2008 ck_in_use_count++; 2009 } 2010 2011 if (l_in_use_count == ck_in_use_count) { 2012 out->print_cr("in_use_count=%zu equals ck_in_use_count=%zu", 2013 l_in_use_count, ck_in_use_count); 2014 } else { 2015 out->print_cr("WARNING: in_use_count=%zu is not equal to " 2016 "ck_in_use_count=%zu", l_in_use_count, 2017 ck_in_use_count); 2018 } 2019 2020 size_t ck_in_use_max = _in_use_list.max(); 2021 if (l_in_use_max == ck_in_use_max) { 2022 out->print_cr("in_use_max=%zu equals ck_in_use_max=%zu", 2023 l_in_use_max, ck_in_use_max); 2024 } else { 2025 out->print_cr("WARNING: in_use_max=%zu is not equal to " 2026 "ck_in_use_max=%zu", l_in_use_max, ck_in_use_max); 2027 } 2028 } 2029 2030 // Check an in-use monitor entry; log any errors. 2031 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2032 int* error_cnt_p) { 2033 if (n->owner_is_DEFLATER_MARKER()) { 2034 // This could happen when monitor deflation blocks for a safepoint. 2035 return; 2036 } 2037 2038 2039 if (n->metadata() == 0) { 2040 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2041 "have non-null _metadata (header/hash) field.", p2i(n)); 2042 *error_cnt_p = *error_cnt_p + 1; 2043 } 2044 2045 const oop obj = n->object_peek(); 2046 if (obj == nullptr) { 2047 return; 2048 } 2049 2050 const markWord mark = obj->mark(); 2051 if (!mark.has_monitor()) { 2052 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2053 "object does not think it has a monitor: obj=" 2054 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2055 p2i(obj), mark.value()); 2056 *error_cnt_p = *error_cnt_p + 1; 2057 return; 2058 } 2059 2060 ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark); 2061 if (n != obj_mon) { 2062 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2063 "object does not refer to the same monitor: obj=" 2064 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2065 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2066 *error_cnt_p = *error_cnt_p + 1; 2067 } 2068 } 2069 2070 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2071 // flags indicate why the entry is in-use, 'object' and 'object type' 2072 // indicate the associated object and its type. 2073 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2074 if (_in_use_list.count() > 0) { 2075 stringStream ss; 2076 out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)"); 2077 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2078 out->print_cr("%18s %s %18s %18s", 2079 "monitor", "BHL", "object", "object type"); 2080 out->print_cr("================== === ================== =================="); 2081 2082 auto is_interesting = [&](ObjectMonitor* monitor) { 2083 return log_all || monitor->has_owner() || monitor->is_busy(); 2084 }; 2085 2086 monitors_iterate([&](ObjectMonitor* monitor) { 2087 if (is_interesting(monitor)) { 2088 const oop obj = monitor->object_peek(); 2089 const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash(); 2090 ResourceMark rm; 2091 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2092 monitor->is_busy(), hash != 0, monitor->has_owner(), 2093 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2094 if (monitor->is_busy()) { 2095 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2096 ss.reset(); 2097 } 2098 out->cr(); 2099 } 2100 }); 2101 } 2102 2103 out->flush(); 2104 }