1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "jfr/jfrEvents.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/globals.hpp"
  40 #include "runtime/handles.inline.hpp"
  41 #include "runtime/handshake.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/javaThread.hpp"
  44 #include "runtime/lockStack.inline.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/objectMonitor.hpp"
  47 #include "runtime/objectMonitor.inline.hpp"
  48 #include "runtime/os.inline.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/perfData.hpp"
  51 #include "runtime/safepointMechanism.inline.hpp"
  52 #include "runtime/safepointVerifiers.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/synchronizer.hpp"
  56 #include "runtime/threads.hpp"
  57 #include "runtime/timer.hpp"
  58 #include "runtime/trimNativeHeap.hpp"
  59 #include "runtime/vframe.hpp"
  60 #include "runtime/vmThread.hpp"
  61 #include "utilities/align.hpp"
  62 #include "utilities/dtrace.hpp"
  63 #include "utilities/events.hpp"
  64 #include "utilities/globalDefinitions.hpp"
  65 #include "utilities/linkedlist.hpp"
  66 #include "utilities/preserveException.hpp"
  67 
  68 class ObjectMonitorDeflationLogging;
  69 
  70 void MonitorList::add(ObjectMonitor* m) {
  71   ObjectMonitor* head;
  72   do {
  73     head = Atomic::load(&_head);
  74     m->set_next_om(head);
  75   } while (Atomic::cmpxchg(&_head, head, m) != head);
  76 
  77   size_t count = Atomic::add(&_count, 1u);
  78   if (count > max()) {
  79     Atomic::inc(&_max);
  80   }
  81 }
  82 
  83 size_t MonitorList::count() const {
  84   return Atomic::load(&_count);
  85 }
  86 
  87 size_t MonitorList::max() const {
  88   return Atomic::load(&_max);
  89 }
  90 
  91 class ObjectMonitorDeflationSafepointer : public StackObj {
  92   JavaThread* const                    _current;
  93   ObjectMonitorDeflationLogging* const _log;
  94 
  95 public:
  96   ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log)
  97     : _current(current), _log(log) {}
  98 
  99   void block_for_safepoint(const char* op_name, const char* count_name, size_t counter);
 100 };
 101 
 102 // Walk the in-use list and unlink deflated ObjectMonitors.
 103 // Returns the number of unlinked ObjectMonitors.
 104 size_t MonitorList::unlink_deflated(size_t deflated_count,
 105                                     GrowableArray<ObjectMonitor*>* unlinked_list,
 106                                     ObjectMonitorDeflationSafepointer* safepointer) {
 107   size_t unlinked_count = 0;
 108   ObjectMonitor* prev = nullptr;
 109   ObjectMonitor* m = Atomic::load_acquire(&_head);
 110 
 111   while (m != nullptr) {
 112     if (m->is_being_async_deflated()) {
 113       // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can
 114       // modify the list once per batch. The batch starts at "m".
 115       size_t unlinked_batch = 0;
 116       ObjectMonitor* next = m;
 117       // Look for at most MonitorUnlinkBatch monitors, or the number of
 118       // deflated and not unlinked monitors, whatever comes first.
 119       assert(deflated_count >= unlinked_count, "Sanity: underflow");
 120       size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch);
 121       do {
 122         ObjectMonitor* next_next = next->next_om();
 123         unlinked_batch++;
 124         unlinked_list->append(next);
 125         next = next_next;
 126         if (unlinked_batch >= unlinked_batch_limit) {
 127           // Reached the max batch, so bail out of the gathering loop.
 128           break;
 129         }
 130         if (prev == nullptr && Atomic::load(&_head) != m) {
 131           // Current batch used to be at head, but it is not at head anymore.
 132           // Bail out and figure out where we currently are. This avoids long
 133           // walks searching for new prev during unlink under heavy list inserts.
 134           break;
 135         }
 136       } while (next != nullptr && next->is_being_async_deflated());
 137 
 138       // Unlink the found batch.
 139       if (prev == nullptr) {
 140         // The current batch is the first batch, so there is a chance that it starts at head.
 141         // Optimistically assume no inserts happened, and try to unlink the entire batch from the head.
 142         ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next);
 143         if (prev_head != m) {
 144           // Something must have updated the head. Figure out the actual prev for this batch.
 145           for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) {
 146             prev = n;
 147           }
 148           assert(prev != nullptr, "Should have found the prev for the current batch");
 149           prev->set_next_om(next);
 150         }
 151       } else {
 152         // The current batch is preceded by another batch. This guarantees the current batch
 153         // does not start at head. Unlink the entire current batch without updating the head.
 154         assert(Atomic::load(&_head) != m, "Sanity");
 155         prev->set_next_om(next);
 156       }
 157 
 158       unlinked_count += unlinked_batch;
 159       if (unlinked_count >= deflated_count) {
 160         // Reached the max so bail out of the searching loop.
 161         // There should be no more deflated monitors left.
 162         break;
 163       }
 164       m = next;
 165     } else {
 166       prev = m;
 167       m = m->next_om();
 168     }
 169 
 170     // Must check for a safepoint/handshake and honor it.
 171     safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count);
 172   }
 173 
 174 #ifdef ASSERT
 175   // Invariant: the code above should unlink all deflated monitors.
 176   // The code that runs after this unlinking does not expect deflated monitors.
 177   // Notably, attempting to deflate the already deflated monitor would break.
 178   {
 179     ObjectMonitor* m = Atomic::load_acquire(&_head);
 180     while (m != nullptr) {
 181       assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked");
 182       m = m->next_om();
 183     }
 184   }
 185 #endif
 186 
 187   Atomic::sub(&_count, unlinked_count);
 188   return unlinked_count;
 189 }
 190 
 191 MonitorList::Iterator MonitorList::iterator() const {
 192   return Iterator(Atomic::load_acquire(&_head));
 193 }
 194 
 195 ObjectMonitor* MonitorList::Iterator::next() {
 196   ObjectMonitor* current = _current;
 197   _current = current->next_om();
 198   return current;
 199 }
 200 
 201 // The "core" versions of monitor enter and exit reside in this file.
 202 // The interpreter and compilers contain specialized transliterated
 203 // variants of the enter-exit fast-path operations.  See c2_MacroAssembler_x86.cpp
 204 // fast_lock(...) for instance.  If you make changes here, make sure to modify the
 205 // interpreter, and both C1 and C2 fast-path inline locking code emission.
 206 //
 207 // -----------------------------------------------------------------------------
 208 
 209 #ifdef DTRACE_ENABLED
 210 
 211 // Only bother with this argument setup if dtrace is available
 212 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
 213 
 214 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
 215   char* bytes = nullptr;                                                      \
 216   int len = 0;                                                             \
 217   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
 218   Symbol* klassname = obj->klass()->name();                                \
 219   if (klassname != nullptr) {                                                 \
 220     bytes = (char*)klassname->bytes();                                     \
 221     len = klassname->utf8_length();                                        \
 222   }
 223 
 224 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 225   {                                                                        \
 226     if (DTraceMonitorProbes) {                                             \
 227       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 228       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 229                            (uintptr_t)(monitor), bytes, len, (millis));    \
 230     }                                                                      \
 231   }
 232 
 233 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
 234 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 235 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
 236 
 237 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 238   {                                                                        \
 239     if (DTraceMonitorProbes) {                                             \
 240       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 241       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 242                                     (uintptr_t)(monitor), bytes, len);     \
 243     }                                                                      \
 244   }
 245 
 246 #else //  ndef DTRACE_ENABLED
 247 
 248 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 249 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 250 
 251 #endif // ndef DTRACE_ENABLED
 252 
 253 // This exists only as a workaround of dtrace bug 6254741
 254 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) {
 255   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 256   return 0;
 257 }
 258 
 259 static constexpr size_t inflation_lock_count() {
 260   return 256;
 261 }
 262 
 263 // Static storage for an array of PlatformMutex.
 264 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)];
 265 
 266 static inline PlatformMutex* inflation_lock(size_t index) {
 267   return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]);
 268 }
 269 
 270 void ObjectSynchronizer::initialize() {
 271   for (size_t i = 0; i < inflation_lock_count(); i++) {
 272     ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex();
 273   }
 274   // Start the ceiling with the estimate for one thread.
 275   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 276 
 277   // Start the timer for deflations, so it does not trigger immediately.
 278   _last_async_deflation_time_ns = os::javaTimeNanos();
 279 }
 280 
 281 MonitorList ObjectSynchronizer::_in_use_list;
 282 // monitors_used_above_threshold() policy is as follows:
 283 //
 284 // The ratio of the current _in_use_list count to the ceiling is used
 285 // to determine if we are above MonitorUsedDeflationThreshold and need
 286 // to do an async monitor deflation cycle. The ceiling is increased by
 287 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 288 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 289 // removed from the system.
 290 //
 291 // Note: If the _in_use_list max exceeds the ceiling, then
 292 // monitors_used_above_threshold() will use the in_use_list max instead
 293 // of the thread count derived ceiling because we have used more
 294 // ObjectMonitors than the estimated average.
 295 //
 296 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 297 // no-progress async monitor deflation cycles in a row, then the ceiling
 298 // is adjusted upwards by monitors_used_above_threshold().
 299 //
 300 // Start the ceiling with the estimate for one thread in initialize()
 301 // which is called after cmd line options are processed.
 302 static size_t _in_use_list_ceiling = 0;
 303 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 304 bool volatile ObjectSynchronizer::_is_final_audit = false;
 305 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 306 static uintx _no_progress_cnt = 0;
 307 static bool _no_progress_skip_increment = false;
 308 
 309 // =====================> Quick functions
 310 
 311 // The quick_* forms are special fast-path variants used to improve
 312 // performance.  In the simplest case, a "quick_*" implementation could
 313 // simply return false, in which case the caller will perform the necessary
 314 // state transitions and call the slow-path form.
 315 // The fast-path is designed to handle frequently arising cases in an efficient
 316 // manner and is just a degenerate "optimistic" variant of the slow-path.
 317 // returns true  -- to indicate the call was satisfied.
 318 // returns false -- to indicate the call needs the services of the slow-path.
 319 // A no-loitering ordinance is in effect for code in the quick_* family
 320 // operators: safepoints or indefinite blocking (blocking that might span a
 321 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 322 // entry.
 323 //
 324 // Consider: An interesting optimization is to have the JIT recognize the
 325 // following common idiom:
 326 //   synchronized (someobj) { .... ; notify(); }
 327 // That is, we find a notify() or notifyAll() call that immediately precedes
 328 // the monitorexit operation.  In that case the JIT could fuse the operations
 329 // into a single notifyAndExit() runtime primitive.
 330 
 331 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) {
 332   assert(current->thread_state() == _thread_in_Java, "invariant");
 333   NoSafepointVerifier nsv;
 334   if (obj == nullptr) return false;  // slow-path for invalid obj
 335   const markWord mark = obj->mark();
 336 
 337   if (LockingMode == LM_LIGHTWEIGHT) {
 338     if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) {
 339       // Degenerate notify
 340       // fast-locked by caller so by definition the implied waitset is empty.
 341       return true;
 342     }
 343   } else if (LockingMode == LM_LEGACY) {
 344     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 345       // Degenerate notify
 346       // stack-locked by caller so by definition the implied waitset is empty.
 347       return true;
 348     }
 349   }
 350 
 351   if (mark.has_monitor()) {
 352     ObjectMonitor* const mon = mark.monitor();
 353     assert(mon->object() == oop(obj), "invariant");
 354     if (!mon->is_owner(current)) return false;  // slow-path for IMS exception
 355 
 356     if (mon->first_waiter() != nullptr) {
 357       // We have one or more waiters. Since this is an inflated monitor
 358       // that we own, we can transfer one or more threads from the waitset
 359       // to the entrylist here and now, avoiding the slow-path.
 360       if (all) {
 361         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current);
 362       } else {
 363         DTRACE_MONITOR_PROBE(notify, mon, obj, current);
 364       }
 365       int free_count = 0;
 366       do {
 367         mon->INotify(current);
 368         ++free_count;
 369       } while (mon->first_waiter() != nullptr && all);
 370       OM_PERFDATA_OP(Notifications, inc(free_count));
 371     }
 372     return true;
 373   }
 374 
 375   // other IMS exception states take the slow-path
 376   return false;
 377 }
 378 
 379 
 380 // The LockNode emitted directly at the synchronization site would have
 381 // been too big if it were to have included support for the cases of inflated
 382 // recursive enter and exit, so they go here instead.
 383 // Note that we can't safely call AsyncPrintJavaStack() from within
 384 // quick_enter() as our thread state remains _in_Java.
 385 
 386 bool ObjectSynchronizer::quick_enter(oop obj, JavaThread* current,
 387                                      BasicLock * lock) {
 388   assert(current->thread_state() == _thread_in_Java, "invariant");
 389   NoSafepointVerifier nsv;
 390   if (obj == nullptr) return false;       // Need to throw NPE
 391 
 392   if (obj->klass()->is_value_based()) {
 393     return false;
 394   }
 395 
 396   if (LockingMode == LM_LIGHTWEIGHT) {
 397     LockStack& lock_stack = current->lock_stack();
 398     if (lock_stack.is_full()) {
 399       // Always go into runtime if the lock stack is full.
 400       return false;
 401     }
 402     if (lock_stack.try_recursive_enter(obj)) {
 403       // Recursive lock successful.
 404       NOT_LOOM_MONITOR_SUPPORT(current->inc_held_monitor_count();)
 405       return true;
 406     }
 407   }
 408 
 409   const markWord mark = obj->mark();
 410 
 411   if (mark.has_monitor()) {
 412     ObjectMonitor* const m = mark.monitor();
 413     // An async deflation or GC can race us before we manage to make
 414     // the ObjectMonitor busy by setting the owner below. If we detect
 415     // that race we just bail out to the slow-path here.
 416     if (m->object_peek() == nullptr) {
 417       return false;
 418     }
 419 
 420     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 421     // and observability
 422     // Case: light contention possibly amenable to TLE
 423     // Case: TLE inimical operations such as nested/recursive synchronization
 424 
 425     if (m->is_owner(current)) {
 426       m->_recursions++;
 427       NOT_LOOM_MONITOR_SUPPORT(current->inc_held_monitor_count();)
 428       return true;
 429     }
 430 
 431     if (LockingMode != LM_LIGHTWEIGHT) {
 432       // This Java Monitor is inflated so obj's header will never be
 433       // displaced to this thread's BasicLock. Make the displaced header
 434       // non-null so this BasicLock is not seen as recursive nor as
 435       // being locked. We do this unconditionally so that this thread's
 436       // BasicLock cannot be mis-interpreted by any stack walkers. For
 437       // performance reasons, stack walkers generally first check for
 438       // stack-locking in the object's header, the second check is for
 439       // recursive stack-locking in the displaced header in the BasicLock,
 440       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 441       lock->set_displaced_header(markWord::unused_mark());
 442     }
 443 
 444     if (!m->has_owner() && m->try_set_owner_from(nullptr, current) == nullptr) {
 445       assert(m->_recursions == 0, "invariant");
 446       NOT_LOOM_MONITOR_SUPPORT(current->inc_held_monitor_count();)
 447       return true;
 448     }
 449   }
 450 
 451   // Note that we could inflate in quick_enter.
 452   // This is likely a useful optimization
 453   // Critically, in quick_enter() we must not:
 454   // -- block indefinitely, or
 455   // -- reach a safepoint
 456 
 457   return false;        // revert to slow-path
 458 }
 459 
 460 // Handle notifications when synchronizing on value based classes
 461 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) {
 462   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 463   frame last_frame = locking_thread->last_frame();
 464   bool bcp_was_adjusted = false;
 465   // Don't decrement bcp if it points to the frame's first instruction.  This happens when
 466   // handle_sync_on_value_based_class() is called because of a synchronized method.  There
 467   // is no actual monitorenter instruction in the byte code in this case.
 468   if (last_frame.is_interpreted_frame() &&
 469       (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) {
 470     // adjust bcp to point back to monitorenter so that we print the correct line numbers
 471     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1);
 472     bcp_was_adjusted = true;
 473   }
 474 
 475   if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) {
 476     ResourceMark rm;
 477     stringStream ss;
 478     locking_thread->print_active_stack_on(&ss);
 479     char* base = (char*)strstr(ss.base(), "at");
 480     char* newline = (char*)strchr(ss.base(), '\n');
 481     if (newline != nullptr) {
 482       *newline = '\0';
 483     }
 484     fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base);
 485   } else {
 486     assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses");
 487     ResourceMark rm;
 488     Log(valuebasedclasses) vblog;
 489 
 490     vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name());
 491     if (locking_thread->has_last_Java_frame()) {
 492       LogStream info_stream(vblog.info());
 493       locking_thread->print_active_stack_on(&info_stream);
 494     } else {
 495       vblog.info("Cannot find the last Java frame");
 496     }
 497 
 498     EventSyncOnValueBasedClass event;
 499     if (event.should_commit()) {
 500       event.set_valueBasedClass(obj->klass());
 501       event.commit();
 502     }
 503   }
 504 
 505   if (bcp_was_adjusted) {
 506     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 507   }
 508 }
 509 
 510 static bool useHeavyMonitors() {
 511 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390)
 512   return LockingMode == LM_MONITOR;
 513 #else
 514   return false;
 515 #endif
 516 }
 517 
 518 // -----------------------------------------------------------------------------
 519 // Monitor Enter/Exit
 520 
 521 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 522   // When called with locking_thread != Thread::current() some mechanism must synchronize
 523   // the locking_thread with respect to the current thread. Currently only used when
 524   // deoptimizing and re-locking locks. See Deoptimization::relock_objects
 525   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 526 
 527   NOT_LOOM_MONITOR_SUPPORT(locking_thread->inc_held_monitor_count();)
 528 
 529   if (!enter_fast_impl(obj, lock, locking_thread)) {
 530     // Inflated ObjectMonitor::enter_for is required
 531 
 532     // An async deflation can race after the inflate_for() call and before
 533     // enter_for() can make the ObjectMonitor busy. enter_for() returns false
 534     // if we have lost the race to async deflation and we simply try again.
 535     while (true) {
 536       ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter);
 537       if (monitor->enter_for(locking_thread)) {
 538         return;
 539       }
 540       assert(monitor->is_being_async_deflated(), "must be");
 541     }
 542   }
 543 }
 544 
 545 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) {
 546   assert(current == Thread::current(), "must be");
 547 
 548   NOT_LOOM_MONITOR_SUPPORT(current->inc_held_monitor_count();)
 549 
 550   if (!enter_fast_impl(obj, lock, current)) {
 551     // Inflated ObjectMonitor::enter is required
 552 
 553     // An async deflation can race after the inflate() call and before
 554     // enter() can make the ObjectMonitor busy. enter() returns false if
 555     // we have lost the race to async deflation and we simply try again.
 556     while (true) {
 557       ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter);
 558       if (monitor->enter(current)) {
 559         return;
 560       }
 561     }
 562   }
 563 }
 564 
 565 // The interpreter and compiler assembly code tries to lock using the fast path
 566 // of this algorithm. Make sure to update that code if the following function is
 567 // changed. The implementation is extremely sensitive to race condition. Be careful.
 568 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 569   if (obj->klass()->is_value_based()) {
 570     handle_sync_on_value_based_class(obj, locking_thread);
 571   }
 572 
 573   if (!useHeavyMonitors()) {
 574     if (LockingMode == LM_LIGHTWEIGHT) {
 575       // Fast-locking does not use the 'lock' argument.
 576       LockStack& lock_stack = locking_thread->lock_stack();
 577       if (lock_stack.is_full()) {
 578         // We unconditionally make room on the lock stack by inflating
 579         // the least recently locked object on the lock stack.
 580 
 581         // About the choice to inflate least recently locked object.
 582         // First we must chose to inflate a lock, either some lock on
 583         // the lock-stack or the lock that is currently being entered
 584         // (which may or may not be on the lock-stack).
 585         // Second the best lock to inflate is a lock which is entered
 586         // in a control flow where there are only a very few locks being
 587         // used, as the costly part of inflated locking is inflation,
 588         // not locking. But this property is entirely program dependent.
 589         // Third inflating the lock currently being entered on when it
 590         // is not present on the lock-stack will result in a still full
 591         // lock-stack. This creates a scenario where every deeper nested
 592         // monitorenter must call into the runtime.
 593         // The rational here is as follows:
 594         // Because we cannot (currently) figure out the second, and want
 595         // to avoid the third, we inflate a lock on the lock-stack.
 596         // The least recently locked lock is chosen as it is the lock
 597         // with the longest critical section.
 598 
 599         log_info(monitorinflation)("LockStack capacity exceeded, inflating.");
 600         ObjectMonitor* monitor = inflate_for(locking_thread, lock_stack.bottom(), inflate_cause_vm_internal);
 601         assert(monitor->is_owner(JavaThread::current()), "must be owner=" PTR_FORMAT " current=" PTR_FORMAT " mark=" PTR_FORMAT,
 602                p2i(monitor->owner()), p2i(Thread::current()), monitor->object()->mark_acquire().value());
 603         assert(!lock_stack.is_full(), "must have made room here");
 604       }
 605 
 606       markWord mark = obj()->mark_acquire();
 607       while (mark.is_unlocked()) {
 608         // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications.
 609         // Try to swing into 'fast-locked' state.
 610         assert(!lock_stack.contains(obj()), "thread must not already hold the lock");
 611         const markWord locked_mark = mark.set_fast_locked();
 612         const markWord old_mark = obj()->cas_set_mark(locked_mark, mark);
 613         if (old_mark == mark) {
 614           // Successfully fast-locked, push object to lock-stack and return.
 615           lock_stack.push(obj());
 616           return true;
 617         }
 618         mark = old_mark;
 619       }
 620 
 621       if (mark.is_fast_locked() && lock_stack.try_recursive_enter(obj())) {
 622         // Recursive lock successful.
 623         return true;
 624       }
 625 
 626       // Failed to fast lock.
 627       return false;
 628     } else if (LockingMode == LM_LEGACY) {
 629       markWord mark = obj->mark();
 630       if (mark.is_unlocked()) {
 631         // Anticipate successful CAS -- the ST of the displaced mark must
 632         // be visible <= the ST performed by the CAS.
 633         lock->set_displaced_header(mark);
 634         if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 635           LOOM_MONITOR_SUPPORT_ONLY(locking_thread->inc_held_monitor_count();)
 636           return true;
 637         }
 638       } else if (mark.has_locker() &&
 639                  locking_thread->is_lock_owned((address) mark.locker())) {
 640         assert(lock != mark.locker(), "must not re-lock the same lock");
 641         assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock");
 642         lock->set_displaced_header(markWord::from_pointer(nullptr));
 643         return true;
 644       }
 645 
 646       // The object header will never be displaced to this lock,
 647       // so it does not matter what the value is, except that it
 648       // must be non-zero to avoid looking like a re-entrant lock,
 649       // and must not look locked either.
 650       lock->set_displaced_header(markWord::unused_mark());
 651 
 652       // Failed to fast lock.
 653       return false;
 654     }
 655   } else if (VerifyHeavyMonitors) {
 656     guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 657   }
 658 
 659   return false;
 660 }
 661 
 662 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) {
 663   NOT_LOOM_MONITOR_SUPPORT(current->dec_held_monitor_count();)
 664 
 665   if (!useHeavyMonitors()) {
 666     markWord mark = object->mark();
 667     if (LockingMode == LM_LIGHTWEIGHT) {
 668       // Fast-locking does not use the 'lock' argument.
 669       LockStack& lock_stack = current->lock_stack();
 670       if (mark.is_fast_locked() && lock_stack.try_recursive_exit(object)) {
 671         // Recursively unlocked.
 672         return;
 673       }
 674 
 675       if (mark.is_fast_locked() && lock_stack.is_recursive(object)) {
 676         // This lock is recursive but is not at the top of the lock stack so we're
 677         // doing an unbalanced exit. We have to fall thru to inflation below and
 678         // let ObjectMonitor::exit() do the unlock.
 679       } else {
 680         while (mark.is_fast_locked()) {
 681           // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications.
 682           const markWord unlocked_mark = mark.set_unlocked();
 683           const markWord old_mark = object->cas_set_mark(unlocked_mark, mark);
 684           if (old_mark == mark) {
 685             size_t recursions = lock_stack.remove(object) - 1;
 686             assert(recursions == 0, "must not be recursive here");
 687             return;
 688           }
 689           mark = old_mark;
 690         }
 691       }
 692     } else if (LockingMode == LM_LEGACY) {
 693       markWord dhw = lock->displaced_header();
 694       if (dhw.value() == 0) {
 695         // If the displaced header is null, then this exit matches up with
 696         // a recursive enter. No real work to do here except for diagnostics.
 697 #ifndef PRODUCT
 698         if (mark != markWord::INFLATING()) {
 699           // Only do diagnostics if we are not racing an inflation. Simply
 700           // exiting a recursive enter of a Java Monitor that is being
 701           // inflated is safe; see the has_monitor() comment below.
 702           assert(!mark.is_unlocked(), "invariant");
 703           assert(!mark.has_locker() ||
 704                  current->is_lock_owned((address)mark.locker()), "invariant");
 705           if (mark.has_monitor()) {
 706             // The BasicLock's displaced_header is marked as a recursive
 707             // enter and we have an inflated Java Monitor (ObjectMonitor).
 708             // This is a special case where the Java Monitor was inflated
 709             // after this thread entered the stack-lock recursively. When a
 710             // Java Monitor is inflated, we cannot safely walk the Java
 711             // Monitor owner's stack and update the BasicLocks because a
 712             // Java Monitor can be asynchronously inflated by a thread that
 713             // does not own the Java Monitor.
 714             ObjectMonitor* m = mark.monitor();
 715             assert(m->object()->mark() == mark, "invariant");
 716             assert(m->is_entered(current), "invariant");
 717           }
 718         }
 719 #endif
 720         return;
 721       }
 722 
 723       if (mark == markWord::from_pointer(lock)) {
 724         // If the object is stack-locked by the current thread, try to
 725         // swing the displaced header from the BasicLock back to the mark.
 726         assert(dhw.is_neutral(), "invariant");
 727         if (object->cas_set_mark(dhw, mark) == mark) {
 728           LOOM_MONITOR_SUPPORT_ONLY(current->dec_held_monitor_count();)
 729           return;
 730         }
 731       }
 732     }
 733   } else if (VerifyHeavyMonitors) {
 734     guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 735   }
 736 
 737   // We have to take the slow-path of possible inflation and then exit.
 738   // The ObjectMonitor* can't be async deflated until ownership is
 739   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 740   ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal);
 741   assert(!monitor->is_owner_anonymous(), "must not be");
 742   monitor->exit(current);
 743 }
 744 
 745 // -----------------------------------------------------------------------------
 746 // JNI locks on java objects
 747 // NOTE: must use heavy weight monitor to handle jni monitor enter
 748 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 749   if (obj->klass()->is_value_based()) {
 750     handle_sync_on_value_based_class(obj, current);
 751   }
 752 
 753   // the current locking is from JNI instead of Java code
 754   current->set_current_pending_monitor_is_from_java(false);
 755   // An async deflation can race after the inflate() call and before
 756   // enter() can make the ObjectMonitor busy. enter() returns false if
 757   // we have lost the race to async deflation and we simply try again.
 758   while (true) {
 759     ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_jni_enter);
 760     if (monitor->enter(current)) {
 761       current->inc_held_monitor_count(1, true);
 762       break;
 763     }
 764   }
 765   current->set_current_pending_monitor_is_from_java(true);
 766 }
 767 
 768 // NOTE: must use heavy weight monitor to handle jni monitor exit
 769 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 770   JavaThread* current = THREAD;
 771 
 772   // The ObjectMonitor* can't be async deflated until ownership is
 773   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 774   ObjectMonitor* monitor = inflate(current, obj, inflate_cause_jni_exit);
 775   // If this thread has locked the object, exit the monitor. We
 776   // intentionally do not use CHECK on check_owner because we must exit the
 777   // monitor even if an exception was already pending.
 778   if (monitor->check_owner(THREAD)) {
 779     monitor->exit(current);
 780     current->dec_held_monitor_count(1, true);
 781   }
 782 }
 783 
 784 // -----------------------------------------------------------------------------
 785 // Internal VM locks on java objects
 786 // standard constructor, allows locking failures
 787 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) {
 788   _thread = thread;
 789   _thread->check_for_valid_safepoint_state();
 790   DEBUG_ONLY(_thread->inc_obj_locker_count();)
 791   _obj = obj;
 792 
 793   if (_obj() != nullptr) {
 794     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 795   }
 796 }
 797 
 798 ObjectLocker::~ObjectLocker() {
 799   DEBUG_ONLY(_thread->dec_obj_locker_count();)
 800   if (_obj() != nullptr) {
 801     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 802   }
 803 }
 804 
 805 
 806 // -----------------------------------------------------------------------------
 807 //  Wait/Notify/NotifyAll
 808 // NOTE: must use heavy weight monitor to handle wait()
 809 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 810   JavaThread* current = THREAD;
 811   if (millis < 0) {
 812     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 813   }
 814   // The ObjectMonitor* can't be async deflated because the _waiters
 815   // field is incremented before ownership is dropped and decremented
 816   // after ownership is regained.
 817   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait);
 818 
 819   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 820   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 821 
 822   // This dummy call is in place to get around dtrace bug 6254741.  Once
 823   // that's fixed we can uncomment the following line, remove the call
 824   // and change this function back into a "void" func.
 825   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 826   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 827   return ret_code;
 828 }
 829 
 830 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 831   if (millis < 0) {
 832     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 833   }
 834   ObjectSynchronizer::inflate(THREAD,
 835                               obj(),
 836                               inflate_cause_wait)->wait(millis, false, THREAD);
 837 }
 838 
 839 
 840 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 841   JavaThread* current = THREAD;
 842 
 843   markWord mark = obj->mark();
 844   if (LockingMode == LM_LIGHTWEIGHT) {
 845     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 846       // Not inflated so there can't be any waiters to notify.
 847       return;
 848     }
 849   } else if (LockingMode == LM_LEGACY) {
 850     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 851       // Not inflated so there can't be any waiters to notify.
 852       return;
 853     }
 854   }
 855   // The ObjectMonitor* can't be async deflated until ownership is
 856   // dropped by the calling thread.
 857   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify);
 858   monitor->notify(CHECK);
 859 }
 860 
 861 // NOTE: see comment of notify()
 862 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 863   JavaThread* current = THREAD;
 864 
 865   markWord mark = obj->mark();
 866   if (LockingMode == LM_LIGHTWEIGHT) {
 867     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 868       // Not inflated so there can't be any waiters to notify.
 869       return;
 870     }
 871   } else if (LockingMode == LM_LEGACY) {
 872     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 873       // Not inflated so there can't be any waiters to notify.
 874       return;
 875     }
 876   }
 877   // The ObjectMonitor* can't be async deflated until ownership is
 878   // dropped by the calling thread.
 879   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify);
 880   monitor->notifyAll(CHECK);
 881 }
 882 
 883 // -----------------------------------------------------------------------------
 884 // Hash Code handling
 885 
 886 struct SharedGlobals {
 887   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 888   // This is a highly shared mostly-read variable.
 889   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 890   volatile int stw_random;
 891   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 892   // Hot RW variable -- Sequester to avoid false-sharing
 893   volatile int hc_sequence;
 894   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 895 };
 896 
 897 static SharedGlobals GVars;
 898 
 899 static markWord read_stable_mark(oop obj) {
 900   markWord mark = obj->mark_acquire();
 901   if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) {
 902     // New lightweight locking does not use the markWord::INFLATING() protocol.
 903     return mark;       // normal fast-path return
 904   }
 905 
 906   int its = 0;
 907   for (;;) {
 908     markWord mark = obj->mark_acquire();
 909     if (!mark.is_being_inflated()) {
 910       return mark;    // normal fast-path return
 911     }
 912 
 913     // The object is being inflated by some other thread.
 914     // The caller of read_stable_mark() must wait for inflation to complete.
 915     // Avoid live-lock.
 916 
 917     ++its;
 918     if (its > 10000 || !os::is_MP()) {
 919       if (its & 1) {
 920         os::naked_yield();
 921       } else {
 922         // Note that the following code attenuates the livelock problem but is not
 923         // a complete remedy.  A more complete solution would require that the inflating
 924         // thread hold the associated inflation lock.  The following code simply restricts
 925         // the number of spinners to at most one.  We'll have N-2 threads blocked
 926         // on the inflationlock, 1 thread holding the inflation lock and using
 927         // a yield/park strategy, and 1 thread in the midst of inflation.
 928         // A more refined approach would be to change the encoding of INFLATING
 929         // to allow encapsulation of a native thread pointer.  Threads waiting for
 930         // inflation to complete would use CAS to push themselves onto a singly linked
 931         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 932         // and calling park().  When inflation was complete the thread that accomplished inflation
 933         // would detach the list and set the markword to inflated with a single CAS and
 934         // then for each thread on the list, set the flag and unpark() the thread.
 935 
 936         // Index into the lock array based on the current object address.
 937         static_assert(is_power_of_2(inflation_lock_count()), "must be");
 938         size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1);
 939         int YieldThenBlock = 0;
 940         assert(ix < inflation_lock_count(), "invariant");
 941         inflation_lock(ix)->lock();
 942         while (obj->mark_acquire() == markWord::INFLATING()) {
 943           // Beware: naked_yield() is advisory and has almost no effect on some platforms
 944           // so we periodically call current->_ParkEvent->park(1).
 945           // We use a mixed spin/yield/block mechanism.
 946           if ((YieldThenBlock++) >= 16) {
 947             Thread::current()->_ParkEvent->park(1);
 948           } else {
 949             os::naked_yield();
 950           }
 951         }
 952         inflation_lock(ix)->unlock();
 953       }
 954     } else {
 955       SpinPause();       // SMP-polite spinning
 956     }
 957   }
 958 }
 959 
 960 // hashCode() generation :
 961 //
 962 // Possibilities:
 963 // * MD5Digest of {obj,stw_random}
 964 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 965 // * A DES- or AES-style SBox[] mechanism
 966 // * One of the Phi-based schemes, such as:
 967 //   2654435761 = 2^32 * Phi (golden ratio)
 968 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 969 // * A variation of Marsaglia's shift-xor RNG scheme.
 970 // * (obj ^ stw_random) is appealing, but can result
 971 //   in undesirable regularity in the hashCode values of adjacent objects
 972 //   (objects allocated back-to-back, in particular).  This could potentially
 973 //   result in hashtable collisions and reduced hashtable efficiency.
 974 //   There are simple ways to "diffuse" the middle address bits over the
 975 //   generated hashCode values:
 976 
 977 static inline intptr_t get_next_hash(Thread* current, oop obj) {
 978   intptr_t value = 0;
 979   if (hashCode == 0) {
 980     // This form uses global Park-Miller RNG.
 981     // On MP system we'll have lots of RW access to a global, so the
 982     // mechanism induces lots of coherency traffic.
 983     value = os::random();
 984   } else if (hashCode == 1) {
 985     // This variation has the property of being stable (idempotent)
 986     // between STW operations.  This can be useful in some of the 1-0
 987     // synchronization schemes.
 988     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 989     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 990   } else if (hashCode == 2) {
 991     value = 1;            // for sensitivity testing
 992   } else if (hashCode == 3) {
 993     value = ++GVars.hc_sequence;
 994   } else if (hashCode == 4) {
 995     value = cast_from_oop<intptr_t>(obj);
 996   } else {
 997     // Marsaglia's xor-shift scheme with thread-specific state
 998     // This is probably the best overall implementation -- we'll
 999     // likely make this the default in future releases.
1000     unsigned t = current->_hashStateX;
1001     t ^= (t << 11);
1002     current->_hashStateX = current->_hashStateY;
1003     current->_hashStateY = current->_hashStateZ;
1004     current->_hashStateZ = current->_hashStateW;
1005     unsigned v = current->_hashStateW;
1006     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
1007     current->_hashStateW = v;
1008     value = v;
1009   }
1010 
1011   value &= markWord::hash_mask;
1012   if (value == 0) value = 0xBAD;
1013   assert(value != markWord::no_hash, "invariant");
1014   return value;
1015 }
1016 
1017 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {
1018 
1019   while (true) {
1020     ObjectMonitor* monitor = nullptr;
1021     markWord temp, test;
1022     intptr_t hash;
1023     markWord mark = read_stable_mark(obj);
1024     if (VerifyHeavyMonitors) {
1025       assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)");
1026       guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
1027     }
1028     if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) {
1029       hash = mark.hash();
1030       if (hash != 0) {                     // if it has a hash, just return it
1031         return hash;
1032       }
1033       hash = get_next_hash(current, obj);  // get a new hash
1034       temp = mark.copy_set_hash(hash);     // merge the hash into header
1035                                            // try to install the hash
1036       test = obj->cas_set_mark(temp, mark);
1037       if (test == mark) {                  // if the hash was installed, return it
1038         return hash;
1039       }
1040       if (LockingMode == LM_LIGHTWEIGHT) {
1041         // CAS failed, retry
1042         continue;
1043       }
1044       // Failed to install the hash. It could be that another thread
1045       // installed the hash just before our attempt or inflation has
1046       // occurred or... so we fall thru to inflate the monitor for
1047       // stability and then install the hash.
1048     } else if (mark.has_monitor()) {
1049       monitor = mark.monitor();
1050       temp = monitor->header();
1051       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1052       hash = temp.hash();
1053       if (hash != 0) {
1054         // It has a hash.
1055 
1056         // Separate load of dmw/header above from the loads in
1057         // is_being_async_deflated().
1058 
1059         // dmw/header and _contentions may get written by different threads.
1060         // Make sure to observe them in the same order when having several observers.
1061         OrderAccess::loadload_for_IRIW();
1062 
1063         if (monitor->is_being_async_deflated()) {
1064           // But we can't safely use the hash if we detect that async
1065           // deflation has occurred. So we attempt to restore the
1066           // header/dmw to the object's header so that we only retry
1067           // once if the deflater thread happens to be slow.
1068           monitor->install_displaced_markword_in_object(obj);
1069           continue;
1070         }
1071         return hash;
1072       }
1073       // Fall thru so we only have one place that installs the hash in
1074       // the ObjectMonitor.
1075     } else if (LockingMode == LM_LEGACY && mark.has_locker()
1076                && current->is_Java_thread()
1077                && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) {
1078       // This is a stack-lock owned by the calling thread so fetch the
1079       // displaced markWord from the BasicLock on the stack.
1080       temp = mark.displaced_mark_helper();
1081       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1082       hash = temp.hash();
1083       if (hash != 0) {                  // if it has a hash, just return it
1084         return hash;
1085       }
1086       // WARNING:
1087       // The displaced header in the BasicLock on a thread's stack
1088       // is strictly immutable. It CANNOT be changed in ANY cases.
1089       // So we have to inflate the stack-lock into an ObjectMonitor
1090       // even if the current thread owns the lock. The BasicLock on
1091       // a thread's stack can be asynchronously read by other threads
1092       // during an inflate() call so any change to that stack memory
1093       // may not propagate to other threads correctly.
1094     }
1095 
1096     // Inflate the monitor to set the hash.
1097 
1098     // There's no need to inflate if the mark has already got a monitor.
1099     // NOTE: an async deflation can race after we get the monitor and
1100     // before we can update the ObjectMonitor's header with the hash
1101     // value below.
1102     monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code);
1103     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1104     mark = monitor->header();
1105     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1106     hash = mark.hash();
1107     if (hash == 0) {                       // if it does not have a hash
1108       hash = get_next_hash(current, obj);  // get a new hash
1109       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
1110       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1111       uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
1112       test = markWord(v);
1113       if (test != mark) {
1114         // The attempt to update the ObjectMonitor's header/dmw field
1115         // did not work. This can happen if another thread managed to
1116         // merge in the hash just before our cmpxchg().
1117         // If we add any new usages of the header/dmw field, this code
1118         // will need to be updated.
1119         hash = test.hash();
1120         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1121         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1122       }
1123       if (monitor->is_being_async_deflated()) {
1124         // If we detect that async deflation has occurred, then we
1125         // attempt to restore the header/dmw to the object's header
1126         // so that we only retry once if the deflater thread happens
1127         // to be slow.
1128         monitor->install_displaced_markword_in_object(obj);
1129         continue;
1130       }
1131     }
1132     // We finally get the hash.
1133     return hash;
1134   }
1135 }
1136 
1137 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
1138                                                    Handle h_obj) {
1139   assert(current == JavaThread::current(), "Can only be called on current thread");
1140   oop obj = h_obj();
1141 
1142   markWord mark = read_stable_mark(obj);
1143 
1144   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1145     // stack-locked case, header points into owner's stack
1146     return current->is_lock_owned((address)mark.locker());
1147   }
1148 
1149   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1150     // fast-locking case, see if lock is in current's lock stack
1151     return current->lock_stack().contains(h_obj());
1152   }
1153 
1154   if (mark.has_monitor()) {
1155     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1156     // The first stage of async deflation does not affect any field
1157     // used by this comparison so the ObjectMonitor* is usable here.
1158     ObjectMonitor* monitor = mark.monitor();
1159     return monitor->is_entered(current) != 0;
1160   }
1161   // Unlocked case, header in place
1162   assert(mark.is_unlocked(), "sanity check");
1163   return false;
1164 }
1165 
1166 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1167   oop obj = h_obj();
1168   markWord mark = read_stable_mark(obj);
1169 
1170   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1171     // stack-locked so header points into owner's stack.
1172     // owning_thread_from_monitor_owner() may also return null here:
1173     return Threads::owning_thread_from_stacklock(t_list, (address) mark.locker());
1174   }
1175 
1176   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1177     // fast-locked so get owner from the object.
1178     // owning_thread_from_object() may also return null here:
1179     return Threads::owning_thread_from_object(t_list, h_obj());
1180   }
1181 
1182   if (mark.has_monitor()) {
1183     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1184     // The first stage of async deflation does not affect any field
1185     // used by this comparison so the ObjectMonitor* is usable here.
1186     ObjectMonitor* monitor = mark.monitor();
1187     assert(monitor != nullptr, "monitor should be non-null");
1188     // owning_thread_from_monitor() may also return null here:
1189     return Threads::owning_thread_from_monitor(t_list, monitor);
1190   }
1191 
1192   // Unlocked case, header in place
1193   // Cannot have assertion since this object may have been
1194   // locked by another thread when reaching here.
1195   // assert(mark.is_unlocked(), "sanity check");
1196 
1197   return nullptr;
1198 }
1199 
1200 // Visitors ...
1201 
1202 // Iterate over all ObjectMonitors.
1203 template <typename Function>
1204 void ObjectSynchronizer::monitors_iterate(Function function) {
1205   MonitorList::Iterator iter = _in_use_list.iterator();
1206   while (iter.has_next()) {
1207     ObjectMonitor* monitor = iter.next();
1208     function(monitor);
1209   }
1210 }
1211 
1212 // Iterate ObjectMonitors owned by any thread and where the owner `filter`
1213 // returns true.
1214 template <typename OwnerFilter>
1215 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) {
1216   monitors_iterate([&](ObjectMonitor* monitor) {
1217     // This function is only called at a safepoint or when the
1218     // target thread is suspended or when the target thread is
1219     // operating on itself. The current closures in use today are
1220     // only interested in an owned ObjectMonitor and ownership
1221     // cannot be dropped under the calling contexts so the
1222     // ObjectMonitor cannot be async deflated.
1223     if (monitor->has_owner() && filter(monitor)) {
1224       assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating");
1225 
1226       closure->do_monitor(monitor);
1227     }
1228   });
1229 }
1230 
1231 // Iterate ObjectMonitors where the owner == thread; this does NOT include
1232 // ObjectMonitors where owner is set to a stack-lock address in thread.
1233 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) {
1234   auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->is_owner(thread); };
1235   return owned_monitors_iterate_filtered(closure, thread_filter);
1236 }
1237 
1238 // Iterate ObjectMonitors owned by any thread.
1239 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) {
1240   auto all_filter = [&](ObjectMonitor* monitor) { return true; };
1241   return owned_monitors_iterate_filtered(closure, all_filter);
1242 }
1243 
1244 static bool monitors_used_above_threshold(MonitorList* list) {
1245   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
1246     return false;
1247   }
1248   // Start with ceiling based on a per-thread estimate:
1249   size_t ceiling = ObjectSynchronizer::in_use_list_ceiling();
1250   size_t old_ceiling = ceiling;
1251   if (ceiling < list->max()) {
1252     // The max used by the system has exceeded the ceiling so use that:
1253     ceiling = list->max();
1254   }
1255   size_t monitors_used = list->count();
1256   if (monitors_used == 0) {  // empty list is easy
1257     return false;
1258   }
1259   if (NoAsyncDeflationProgressMax != 0 &&
1260       _no_progress_cnt >= NoAsyncDeflationProgressMax) {
1261     double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
1262     size_t new_ceiling = ceiling + (size_t)((double)ceiling * remainder) + 1;
1263     ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
1264     log_info(monitorinflation)("Too many deflations without progress; "
1265                                "bumping in_use_list_ceiling from " SIZE_FORMAT
1266                                " to " SIZE_FORMAT, old_ceiling, new_ceiling);
1267     _no_progress_cnt = 0;
1268     ceiling = new_ceiling;
1269   }
1270 
1271   // Check if our monitor usage is above the threshold:
1272   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
1273   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
1274     log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT
1275                                ", monitor_usage=" SIZE_FORMAT ", threshold=%d",
1276                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
1277     return true;
1278   }
1279 
1280   return false;
1281 }
1282 
1283 size_t ObjectSynchronizer::in_use_list_ceiling() {
1284   return _in_use_list_ceiling;
1285 }
1286 
1287 void ObjectSynchronizer::dec_in_use_list_ceiling() {
1288   Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1289 }
1290 
1291 void ObjectSynchronizer::inc_in_use_list_ceiling() {
1292   Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1293 }
1294 
1295 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) {
1296   _in_use_list_ceiling = new_value;
1297 }
1298 
1299 bool ObjectSynchronizer::is_async_deflation_needed() {
1300   if (is_async_deflation_requested()) {
1301     // Async deflation request.
1302     log_info(monitorinflation)("Async deflation needed: explicit request");
1303     return true;
1304   }
1305 
1306   jlong time_since_last = time_since_last_async_deflation_ms();
1307 
1308   if (AsyncDeflationInterval > 0 &&
1309       time_since_last > AsyncDeflationInterval &&
1310       monitors_used_above_threshold(&_in_use_list)) {
1311     // It's been longer than our specified deflate interval and there
1312     // are too many monitors in use. We don't deflate more frequently
1313     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1314     // in order to not swamp the MonitorDeflationThread.
1315     log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold");
1316     return true;
1317   }
1318 
1319   if (GuaranteedAsyncDeflationInterval > 0 &&
1320       time_since_last > GuaranteedAsyncDeflationInterval) {
1321     // It's been longer than our specified guaranteed deflate interval.
1322     // We need to clean up the used monitors even if the threshold is
1323     // not reached, to keep the memory utilization at bay when many threads
1324     // touched many monitors.
1325     log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) "
1326                                "is greater than time since last deflation (" JLONG_FORMAT " ms)",
1327                                GuaranteedAsyncDeflationInterval, time_since_last);
1328 
1329     // If this deflation has no progress, then it should not affect the no-progress
1330     // tracking, otherwise threshold heuristics would think it was triggered, experienced
1331     // no progress, and needs to backoff more aggressively. In this "no progress" case,
1332     // the generic code would bump the no-progress counter, and we compensate for that
1333     // by telling it to skip the update.
1334     //
1335     // If this deflation has progress, then it should let non-progress tracking
1336     // know about this, otherwise the threshold heuristics would kick in, potentially
1337     // experience no-progress due to aggressive cleanup by this deflation, and think
1338     // it is still in no-progress stride. In this "progress" case, the generic code would
1339     // zero the counter, and we allow it to happen.
1340     _no_progress_skip_increment = true;
1341 
1342     return true;
1343   }
1344 
1345   return false;
1346 }
1347 
1348 void ObjectSynchronizer::request_deflate_idle_monitors() {
1349   MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag);
1350   set_is_async_deflation_requested(true);
1351   ml.notify_all();
1352 }
1353 
1354 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() {
1355   JavaThread* current = JavaThread::current();
1356   bool ret_code = false;
1357 
1358   jlong last_time = last_async_deflation_time_ns();
1359 
1360   request_deflate_idle_monitors();
1361 
1362   const int N_CHECKS = 5;
1363   for (int i = 0; i < N_CHECKS; i++) {  // sleep for at most 5 seconds
1364     if (last_async_deflation_time_ns() > last_time) {
1365       log_info(monitorinflation)("Async Deflation happened after %d check(s).", i);
1366       ret_code = true;
1367       break;
1368     }
1369     {
1370       // JavaThread has to honor the blocking protocol.
1371       ThreadBlockInVM tbivm(current);
1372       os::naked_short_sleep(999);  // sleep for almost 1 second
1373     }
1374   }
1375   if (!ret_code) {
1376     log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS);
1377   }
1378 
1379   return ret_code;
1380 }
1381 
1382 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1383   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1384 }
1385 
1386 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1387                                        const oop obj,
1388                                        ObjectSynchronizer::InflateCause cause) {
1389   assert(event != nullptr, "invariant");
1390   event->set_monitorClass(obj->klass());
1391   event->set_address((uintptr_t)(void*)obj);
1392   event->set_cause((u1)cause);
1393   event->commit();
1394 }
1395 
1396 // Fast path code shared by multiple functions
1397 void ObjectSynchronizer::inflate_helper(oop obj) {
1398   markWord mark = obj->mark_acquire();
1399   if (mark.has_monitor()) {
1400     ObjectMonitor* monitor = mark.monitor();
1401     markWord dmw = monitor->header();
1402     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1403     return;
1404   }
1405   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1406 }
1407 
1408 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) {
1409   assert(current == Thread::current(), "must be");
1410   return inflate_impl(current->is_Java_thread() ? JavaThread::cast(current) : nullptr, obj, cause);
1411 }
1412 
1413 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) {
1414   assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be");
1415   return inflate_impl(thread, obj, cause);
1416 }
1417 
1418 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* inflating_thread, oop object, const InflateCause cause) {
1419   // The JavaThread* inflating_thread requires that the inflating_thread == Thread::current() or
1420   // is suspended throughout the call by some other mechanism.
1421   // The thread might be nullptr when called from a non JavaThread. (As may still be
1422   // the case from FastHashCode). However it is only important for correctness that the
1423   // thread is set when called from ObjectSynchronizer::enter from the owning thread,
1424   // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit.
1425   EventJavaMonitorInflate event;
1426 
1427   for (;;) {
1428     const markWord mark = object->mark_acquire();
1429 
1430     // The mark can be in one of the following states:
1431     // *  inflated     - If the ObjectMonitor owner is anonymous and the
1432     //                   inflating_thread owns the object lock, then we
1433     //                   make the inflating_thread the ObjectMonitor owner.
1434     //                   For LM_LIGHTWEIGHT we also remove the lock from
1435     //                   the inflating_thread's lock stack.
1436     // *  fast-locked  - Coerce it to inflated from fast-locked.
1437     // *  stack-locked - Coerce it to inflated from stack-locked.
1438     // *  INFLATING    - Busy wait for conversion from stack-locked to
1439     //                   inflated.
1440     // *  unlocked     - Aggressively inflate the object.
1441 
1442     // CASE: inflated
1443     if (mark.has_monitor()) {
1444       ObjectMonitor* inf = mark.monitor();
1445       markWord dmw = inf->header();
1446       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1447       if (inf->is_owner_anonymous() && inflating_thread != nullptr) {
1448         if (LockingMode == LM_LIGHTWEIGHT) {
1449           if (inflating_thread->lock_stack().contains(object)) {
1450             inf->set_owner_from_anonymous(inflating_thread);
1451             size_t removed = inflating_thread->lock_stack().remove(object);
1452             inf->set_recursions(removed - 1);
1453           }
1454         } else {
1455           assert(LockingMode == LM_LEGACY, "invariant");
1456           if (inflating_thread->is_lock_owned((address)inf->stack_locker())) {
1457             inf->set_owner_from_BasicLock(inflating_thread);
1458             // Decrement monitor count now since this monitor is okay for freezing
1459             LOOM_MONITOR_SUPPORT_ONLY(inflating_thread->dec_held_monitor_count();)
1460           }
1461         }
1462       }
1463       return inf;
1464     }
1465 
1466     if (LockingMode != LM_LIGHTWEIGHT) {
1467       // New lightweight locking does not use INFLATING.
1468       // CASE: inflation in progress - inflating over a stack-lock.
1469       // Some other thread is converting from stack-locked to inflated.
1470       // Only that thread can complete inflation -- other threads must wait.
1471       // The INFLATING value is transient.
1472       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1473       // We could always eliminate polling by parking the thread on some auxiliary list.
1474       if (mark == markWord::INFLATING()) {
1475         read_stable_mark(object);
1476         continue;
1477       }
1478     }
1479 
1480     // CASE: fast-locked
1481     // Could be fast-locked either by the inflating_thread or by some other thread.
1482     //
1483     // Note that we allocate the ObjectMonitor speculatively, _before_
1484     // attempting to set the object's mark to the new ObjectMonitor. If
1485     // the inflating_thread owns the monitor, then we set the ObjectMonitor's
1486     // owner to the inflating_thread. Otherwise, we set the ObjectMonitor's owner
1487     // to anonymous. If we lose the race to set the object's mark to the
1488     // new ObjectMonitor, then we just delete it and loop around again.
1489     //
1490     LogStreamHandle(Trace, monitorinflation) lsh;
1491     if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1492       ObjectMonitor* monitor = new ObjectMonitor(object);
1493       monitor->set_header(mark.set_unlocked());
1494       bool own = inflating_thread != nullptr && inflating_thread->lock_stack().contains(object);
1495       if (own) {
1496         // Owned by inflating_thread.
1497         monitor->set_owner_from(nullptr, inflating_thread);
1498       } else {
1499         // Owned by somebody else.
1500         monitor->set_owner_anonymous();
1501       }
1502       markWord monitor_mark = markWord::encode(monitor);
1503       markWord old_mark = object->cas_set_mark(monitor_mark, mark);
1504       if (old_mark == mark) {
1505         // Success! Return inflated monitor.
1506         if (own) {
1507           size_t removed = inflating_thread->lock_stack().remove(object);
1508           monitor->set_recursions(removed - 1);
1509         }
1510         // Once the ObjectMonitor is configured and object is associated
1511         // with the ObjectMonitor, it is safe to allow async deflation:
1512         _in_use_list.add(monitor);
1513 
1514         // Hopefully the performance counters are allocated on distinct
1515         // cache lines to avoid false sharing on MP systems ...
1516         OM_PERFDATA_OP(Inflations, inc());
1517         if (log_is_enabled(Trace, monitorinflation)) {
1518           ResourceMark rm;
1519           lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1520                        INTPTR_FORMAT ", type='%s'", p2i(object),
1521                        object->mark().value(), object->klass()->external_name());
1522         }
1523         if (event.should_commit()) {
1524           post_monitor_inflate_event(&event, object, cause);
1525         }
1526         return monitor;
1527       } else {
1528         delete monitor;
1529         continue;  // Interference -- just retry
1530       }
1531     }
1532 
1533     // CASE: stack-locked
1534     // Could be stack-locked either by current or by some other thread.
1535     //
1536     // Note that we allocate the ObjectMonitor speculatively, _before_ attempting
1537     // to install INFLATING into the mark word.  We originally installed INFLATING,
1538     // allocated the ObjectMonitor, and then finally STed the address of the
1539     // ObjectMonitor into the mark.  This was correct, but artificially lengthened
1540     // the interval in which INFLATING appeared in the mark, thus increasing
1541     // the odds of inflation contention. If we lose the race to set INFLATING,
1542     // then we just delete the ObjectMonitor and loop around again.
1543     //
1544     if (LockingMode == LM_LEGACY && mark.has_locker()) {
1545       assert(LockingMode != LM_LIGHTWEIGHT, "cannot happen with new lightweight locking");
1546       ObjectMonitor* m = new ObjectMonitor(object);
1547       // Optimistically prepare the ObjectMonitor - anticipate successful CAS
1548       // We do this before the CAS in order to minimize the length of time
1549       // in which INFLATING appears in the mark.
1550 
1551       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1552       if (cmp != mark) {
1553         delete m;
1554         continue;       // Interference -- just retry
1555       }
1556 
1557       // We've successfully installed INFLATING (0) into the mark-word.
1558       // This is the only case where 0 will appear in a mark-word.
1559       // Only the singular thread that successfully swings the mark-word
1560       // to 0 can perform (or more precisely, complete) inflation.
1561       //
1562       // Why do we CAS a 0 into the mark-word instead of just CASing the
1563       // mark-word from the stack-locked value directly to the new inflated state?
1564       // Consider what happens when a thread unlocks a stack-locked object.
1565       // It attempts to use CAS to swing the displaced header value from the
1566       // on-stack BasicLock back into the object header.  Recall also that the
1567       // header value (hash code, etc) can reside in (a) the object header, or
1568       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1569       // header in an ObjectMonitor.  The inflate() routine must copy the header
1570       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1571       // the while preserving the hashCode stability invariants.  If the owner
1572       // decides to release the lock while the value is 0, the unlock will fail
1573       // and control will eventually pass from slow_exit() to inflate.  The owner
1574       // will then spin, waiting for the 0 value to disappear.   Put another way,
1575       // the 0 causes the owner to stall if the owner happens to try to
1576       // drop the lock (restoring the header from the BasicLock to the object)
1577       // while inflation is in-progress.  This protocol avoids races that might
1578       // would otherwise permit hashCode values to change or "flicker" for an object.
1579       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1580       // 0 serves as a "BUSY" inflate-in-progress indicator.
1581 
1582 
1583       // fetch the displaced mark from the owner's stack.
1584       // The owner can't die or unwind past the lock while our INFLATING
1585       // object is in the mark.  Furthermore the owner can't complete
1586       // an unlock on the object, either.
1587       markWord dmw = mark.displaced_mark_helper();
1588       // Catch if the object's header is not neutral (not locked and
1589       // not marked is what we care about here).
1590       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1591 
1592       // Setup monitor fields to proper values -- prepare the monitor
1593       m->set_header(dmw);
1594 
1595       // Note that a thread can inflate an object
1596       // that it has stack-locked -- as might happen in wait() -- directly
1597       // with CAS.  That is, we can avoid the xchg-nullptr .... ST idiom.
1598       if (inflating_thread != nullptr && inflating_thread->is_lock_owned((address)mark.locker())) {
1599         m->set_owner_from(nullptr, inflating_thread);
1600         // Decrement monitor count now since this monitor is okay for freezing
1601         LOOM_MONITOR_SUPPORT_ONLY(inflating_thread->dec_held_monitor_count();)
1602       } else {
1603         // Use ANONYMOUS_OWNER to indicate that the owner is the BasicLock on the stack,
1604         // and set the stack locker field in the monitor.
1605         m->set_stack_locker(mark.locker());
1606         m->set_owner_anonymous();  // second
1607       }
1608       // TODO-FIXME: assert BasicLock->dhw != 0.
1609 
1610       // Must preserve store ordering. The monitor state must
1611       // be stable at the time of publishing the monitor address.
1612       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1613       // Release semantics so that above set_object() is seen first.
1614       object->release_set_mark(markWord::encode(m));
1615 
1616       // Once ObjectMonitor is configured and the object is associated
1617       // with the ObjectMonitor, it is safe to allow async deflation:
1618       _in_use_list.add(m);
1619 
1620       // Hopefully the performance counters are allocated on distinct cache lines
1621       // to avoid false sharing on MP systems ...
1622       OM_PERFDATA_OP(Inflations, inc());
1623       if (log_is_enabled(Trace, monitorinflation)) {
1624         ResourceMark rm;
1625         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1626                      INTPTR_FORMAT ", type='%s'", p2i(object),
1627                      object->mark().value(), object->klass()->external_name());
1628       }
1629       if (event.should_commit()) {
1630         post_monitor_inflate_event(&event, object, cause);
1631       }
1632       return m;
1633     }
1634 
1635     // CASE: unlocked
1636     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1637     // If we know we're inflating for entry it's better to inflate by swinging a
1638     // pre-locked ObjectMonitor pointer into the object header.   A successful
1639     // CAS inflates the object *and* confers ownership to the inflating thread.
1640     // In the current implementation we use a 2-step mechanism where we CAS()
1641     // to inflate and then CAS() again to try to swing _owner from null to current.
1642     // An inflateTry() method that we could call from enter() would be useful.
1643 
1644     assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value());
1645     ObjectMonitor* m = new ObjectMonitor(object);
1646     // prepare m for installation - set monitor to initial state
1647     m->set_header(mark);
1648 
1649     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1650       delete m;
1651       m = nullptr;
1652       continue;
1653       // interference - the markword changed - just retry.
1654       // The state-transitions are one-way, so there's no chance of
1655       // live-lock -- "Inflated" is an absorbing state.
1656     }
1657 
1658     // Once the ObjectMonitor is configured and object is associated
1659     // with the ObjectMonitor, it is safe to allow async deflation:
1660     _in_use_list.add(m);
1661 
1662     // Hopefully the performance counters are allocated on distinct
1663     // cache lines to avoid false sharing on MP systems ...
1664     OM_PERFDATA_OP(Inflations, inc());
1665     if (log_is_enabled(Trace, monitorinflation)) {
1666       ResourceMark rm;
1667       lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark="
1668                    INTPTR_FORMAT ", type='%s'", p2i(object),
1669                    object->mark().value(), object->klass()->external_name());
1670     }
1671     if (event.should_commit()) {
1672       post_monitor_inflate_event(&event, object, cause);
1673     }
1674     return m;
1675   }
1676 }
1677 
1678 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1679 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1680 //
1681 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) {
1682   MonitorList::Iterator iter = _in_use_list.iterator();
1683   size_t deflated_count = 0;
1684 
1685   while (iter.has_next()) {
1686     if (deflated_count >= (size_t)MonitorDeflationMax) {
1687       break;
1688     }
1689     ObjectMonitor* mid = iter.next();
1690     if (mid->deflate_monitor()) {
1691       deflated_count++;
1692     }
1693 
1694     // Must check for a safepoint/handshake and honor it.
1695     safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count);
1696   }
1697 
1698   return deflated_count;
1699 }
1700 
1701 class HandshakeForDeflation : public HandshakeClosure {
1702  public:
1703   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
1704 
1705   void do_thread(Thread* thread) {
1706     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
1707                                 INTPTR_FORMAT, p2i(thread));
1708   }
1709 };
1710 
1711 class VM_RendezvousGCThreads : public VM_Operation {
1712 public:
1713   bool evaluate_at_safepoint() const override { return false; }
1714   VMOp_Type type() const override { return VMOp_RendezvousGCThreads; }
1715   void doit() override {
1716     Universe::heap()->safepoint_synchronize_begin();
1717     Universe::heap()->safepoint_synchronize_end();
1718   };
1719 };
1720 
1721 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list,
1722                               ObjectMonitorDeflationSafepointer* safepointer) {
1723   NativeHeapTrimmer::SuspendMark sm("monitor deletion");
1724   size_t deleted_count = 0;
1725   for (ObjectMonitor* monitor: *delete_list) {
1726     delete monitor;
1727     deleted_count++;
1728     // A JavaThread must check for a safepoint/handshake and honor it.
1729     safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count);
1730   }
1731   return deleted_count;
1732 }
1733 
1734 class ObjectMonitorDeflationLogging: public StackObj {
1735   LogStreamHandle(Debug, monitorinflation) _debug;
1736   LogStreamHandle(Info, monitorinflation)  _info;
1737   LogStream*                               _stream;
1738   elapsedTimer                             _timer;
1739 
1740   size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); }
1741   size_t count() const   { return ObjectSynchronizer::_in_use_list.count(); }
1742   size_t max() const     { return ObjectSynchronizer::_in_use_list.max(); }
1743 
1744 public:
1745   ObjectMonitorDeflationLogging()
1746     : _debug(), _info(), _stream(nullptr) {
1747     if (_debug.is_enabled()) {
1748       _stream = &_debug;
1749     } else if (_info.is_enabled()) {
1750       _stream = &_info;
1751     }
1752   }
1753 
1754   void begin() {
1755     if (_stream != nullptr) {
1756       _stream->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1757                         ceiling(), count(), max());
1758       _timer.start();
1759     }
1760   }
1761 
1762   void before_handshake(size_t unlinked_count) {
1763     if (_stream != nullptr) {
1764       _timer.stop();
1765       _stream->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT
1766                         ", in_use_list stats: ceiling=" SIZE_FORMAT ", count="
1767                         SIZE_FORMAT ", max=" SIZE_FORMAT,
1768                         unlinked_count, ceiling(), count(), max());
1769     }
1770   }
1771 
1772   void after_handshake() {
1773     if (_stream != nullptr) {
1774       _stream->print_cr("after handshaking: in_use_list stats: ceiling="
1775                         SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1776                         ceiling(), count(), max());
1777       _timer.start();
1778     }
1779   }
1780 
1781   void end(size_t deflated_count, size_t unlinked_count) {
1782     if (_stream != nullptr) {
1783       _timer.stop();
1784       if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) {
1785         _stream->print_cr("deflated_count=" SIZE_FORMAT ", {unlinked,deleted}_count=" SIZE_FORMAT " monitors in %3.7f secs",
1786                           deflated_count, unlinked_count, _timer.seconds());
1787       }
1788       _stream->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1789                         ceiling(), count(), max());
1790     }
1791   }
1792 
1793   void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) {
1794     if (_stream != nullptr) {
1795       _timer.stop();
1796       _stream->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling="
1797                         SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1798                         op_name, cnt_name, cnt, ceiling(), count(), max());
1799     }
1800   }
1801 
1802   void after_block_for_safepoint(const char* op_name) {
1803     if (_stream != nullptr) {
1804       _stream->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT
1805                         ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name,
1806                         ceiling(), count(), max());
1807       _timer.start();
1808     }
1809   }
1810 };
1811 
1812 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) {
1813   if (!SafepointMechanism::should_process(_current)) {
1814     return;
1815   }
1816 
1817   // A safepoint/handshake has started.
1818   _log->before_block_for_safepoint(op_name, count_name, counter);
1819 
1820   {
1821     // Honor block request.
1822     ThreadBlockInVM tbivm(_current);
1823   }
1824 
1825   _log->after_block_for_safepoint(op_name);
1826 }
1827 
1828 // This function is called by the MonitorDeflationThread to deflate
1829 // ObjectMonitors.
1830 size_t ObjectSynchronizer::deflate_idle_monitors() {
1831   JavaThread* current = JavaThread::current();
1832   assert(current->is_monitor_deflation_thread(), "The only monitor deflater");
1833 
1834   // The async deflation request has been processed.
1835   _last_async_deflation_time_ns = os::javaTimeNanos();
1836   set_is_async_deflation_requested(false);
1837 
1838   ObjectMonitorDeflationLogging log;
1839   ObjectMonitorDeflationSafepointer safepointer(current, &log);
1840 
1841   log.begin();
1842 
1843   // Deflate some idle ObjectMonitors.
1844   size_t deflated_count = deflate_monitor_list(&safepointer);
1845 
1846   // Unlink the deflated ObjectMonitors from the in-use list.
1847   size_t unlinked_count = 0;
1848   size_t deleted_count = 0;
1849   if (deflated_count > 0) {
1850     ResourceMark rm(current);
1851     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1852     unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer);
1853 
1854     log.before_handshake(unlinked_count);
1855 
1856     // A JavaThread needs to handshake in order to safely free the
1857     // ObjectMonitors that were deflated in this cycle.
1858     HandshakeForDeflation hfd_hc;
1859     Handshake::execute(&hfd_hc);
1860     // Also, we sync and desync GC threads around the handshake, so that they can
1861     // safely read the mark-word and look-through to the object-monitor, without
1862     // being afraid that the object-monitor is going away.
1863     VM_RendezvousGCThreads sync_gc;
1864     VMThread::execute(&sync_gc);
1865 
1866     log.after_handshake();
1867 
1868     // After the handshake, safely free the ObjectMonitors that were
1869     // deflated and unlinked in this cycle.
1870 
1871     // Delete the unlinked ObjectMonitors.
1872     deleted_count = delete_monitors(&delete_list, &safepointer);
1873     assert(unlinked_count == deleted_count, "must be");
1874   }
1875 
1876   log.end(deflated_count, unlinked_count);
1877 
1878   OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count()));
1879   OM_PERFDATA_OP(Deflations, inc(deflated_count));
1880 
1881   GVars.stw_random = os::random();
1882 
1883   if (deflated_count != 0) {
1884     _no_progress_cnt = 0;
1885   } else if (_no_progress_skip_increment) {
1886     _no_progress_skip_increment = false;
1887   } else {
1888     _no_progress_cnt++;
1889   }
1890 
1891   return deflated_count;
1892 }
1893 
1894 // Monitor cleanup on JavaThread::exit
1895 
1896 // Iterate through monitor cache and attempt to release thread's monitors
1897 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1898  private:
1899   JavaThread* _thread;
1900 
1901  public:
1902   ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {}
1903   void do_monitor(ObjectMonitor* mid) {
1904     intx rec = mid->complete_exit(_thread);
1905     _thread->dec_held_monitor_count(NOT_LOOM_MONITOR_SUPPORT((rec + 1)));
1906   }
1907 };
1908 
1909 // Release all inflated monitors owned by current thread.  Lightweight monitors are
1910 // ignored.  This is meant to be called during JNI thread detach which assumes
1911 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1912 // Scanning the extant monitor list can be time consuming.
1913 // A simple optimization is to add a per-thread flag that indicates a thread
1914 // called jni_monitorenter() during its lifetime.
1915 //
1916 // Instead of NoSafepointVerifier it might be cheaper to
1917 // use an idiom of the form:
1918 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1919 //   <code that must not run at safepoint>
1920 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1921 // Since the tests are extremely cheap we could leave them enabled
1922 // for normal product builds.
1923 
1924 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) {
1925   assert(current == JavaThread::current(), "must be current Java thread");
1926   NoSafepointVerifier nsv;
1927   ReleaseJavaMonitorsClosure rjmc(current);
1928   ObjectSynchronizer::owned_monitors_iterate(&rjmc, current);
1929   assert(!current->has_pending_exception(), "Should not be possible");
1930   current->clear_pending_exception();
1931   assert(current->held_monitor_count() == 0, "Should not be possible");
1932   // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count.
1933   current->clear_jni_monitor_count();
1934 }
1935 
1936 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1937   switch (cause) {
1938     case inflate_cause_vm_internal:    return "VM Internal";
1939     case inflate_cause_monitor_enter:  return "Monitor Enter";
1940     case inflate_cause_wait:           return "Monitor Wait";
1941     case inflate_cause_notify:         return "Monitor Notify";
1942     case inflate_cause_hash_code:      return "Monitor Hash Code";
1943     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1944     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1945     case inflate_cause_cont_freeze:    return "Continuation Freeze";
1946     default:
1947       ShouldNotReachHere();
1948   }
1949   return "Unknown";
1950 }
1951 
1952 //------------------------------------------------------------------------------
1953 // Debugging code
1954 
1955 u_char* ObjectSynchronizer::get_gvars_addr() {
1956   return (u_char*)&GVars;
1957 }
1958 
1959 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
1960   return (u_char*)&GVars.hc_sequence;
1961 }
1962 
1963 size_t ObjectSynchronizer::get_gvars_size() {
1964   return sizeof(SharedGlobals);
1965 }
1966 
1967 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
1968   return (u_char*)&GVars.stw_random;
1969 }
1970 
1971 // Do the final audit and print of ObjectMonitor stats; must be done
1972 // by the VMThread at VM exit time.
1973 void ObjectSynchronizer::do_final_audit_and_print_stats() {
1974   assert(Thread::current()->is_VM_thread(), "sanity check");
1975 
1976   if (is_final_audit()) {  // Only do the audit once.
1977     return;
1978   }
1979   set_is_final_audit();
1980   log_info(monitorinflation)("Starting the final audit.");
1981 
1982   if (log_is_enabled(Info, monitorinflation)) {
1983     LogStreamHandle(Info, monitorinflation) ls;
1984     audit_and_print_stats(&ls, true /* on_exit */);
1985   }
1986 }
1987 
1988 // This function can be called by the MonitorDeflationThread or it can be called when
1989 // we are trying to exit the VM. The list walker functions can run in parallel with
1990 // the other list operations.
1991 // Calls to this function can be added in various places as a debugging
1992 // aid.
1993 //
1994 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) {
1995   int error_cnt = 0;
1996 
1997   ls->print_cr("Checking in_use_list:");
1998   chk_in_use_list(ls, &error_cnt);
1999 
2000   if (error_cnt == 0) {
2001     ls->print_cr("No errors found in in_use_list checks.");
2002   } else {
2003     log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt);
2004   }
2005 
2006   // When exiting, only log the interesting entries at the Info level.
2007   // When called at intervals by the MonitorDeflationThread, log output
2008   // at the Trace level since there can be a lot of it.
2009   if (!on_exit && log_is_enabled(Trace, monitorinflation)) {
2010     LogStreamHandle(Trace, monitorinflation) ls_tr;
2011     log_in_use_monitor_details(&ls_tr, true /* log_all */);
2012   } else if (on_exit) {
2013     log_in_use_monitor_details(ls, false /* log_all */);
2014   }
2015 
2016   ls->flush();
2017 
2018   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
2019 }
2020 
2021 // Check the in_use_list; log the results of the checks.
2022 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) {
2023   size_t l_in_use_count = _in_use_list.count();
2024   size_t l_in_use_max = _in_use_list.max();
2025   out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count,
2026                 l_in_use_max);
2027 
2028   size_t ck_in_use_count = 0;
2029   MonitorList::Iterator iter = _in_use_list.iterator();
2030   while (iter.has_next()) {
2031     ObjectMonitor* mid = iter.next();
2032     chk_in_use_entry(mid, out, error_cnt_p);
2033     ck_in_use_count++;
2034   }
2035 
2036   if (l_in_use_count == ck_in_use_count) {
2037     out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count="
2038                   SIZE_FORMAT, l_in_use_count, ck_in_use_count);
2039   } else {
2040     out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to "
2041                   "ck_in_use_count=" SIZE_FORMAT, l_in_use_count,
2042                   ck_in_use_count);
2043   }
2044 
2045   size_t ck_in_use_max = _in_use_list.max();
2046   if (l_in_use_max == ck_in_use_max) {
2047     out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max="
2048                   SIZE_FORMAT, l_in_use_max, ck_in_use_max);
2049   } else {
2050     out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to "
2051                   "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max);
2052   }
2053 }
2054 
2055 // Check an in-use monitor entry; log any errors.
2056 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
2057                                           int* error_cnt_p) {
2058   if (n->owner_is_DEFLATER_MARKER()) {
2059     // This could happen when monitor deflation blocks for a safepoint.
2060     return;
2061   }
2062 
2063   if (n->header().value() == 0) {
2064     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
2065                   "have non-null _header field.", p2i(n));
2066     *error_cnt_p = *error_cnt_p + 1;
2067   }
2068   const oop obj = n->object_peek();
2069   if (obj != nullptr) {
2070     const markWord mark = obj->mark();
2071     if (!mark.has_monitor()) {
2072       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2073                     "object does not think it has a monitor: obj="
2074                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2075                     p2i(obj), mark.value());
2076       *error_cnt_p = *error_cnt_p + 1;
2077     }
2078     ObjectMonitor* const obj_mon = mark.monitor();
2079     if (n != obj_mon) {
2080       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2081                     "object does not refer to the same monitor: obj="
2082                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2083                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2084       *error_cnt_p = *error_cnt_p + 1;
2085     }
2086   }
2087 }
2088 
2089 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
2090 // flags indicate why the entry is in-use, 'object' and 'object type'
2091 // indicate the associated object and its type.
2092 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) {
2093   if (_in_use_list.count() > 0) {
2094     stringStream ss;
2095     out->print_cr("In-use monitor info:");
2096     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2097     out->print_cr("%18s  %s  %18s  %18s",
2098                   "monitor", "BHL", "object", "object type");
2099     out->print_cr("==================  ===  ==================  ==================");
2100 
2101     auto is_interesting = [&](ObjectMonitor* monitor) {
2102       return log_all || monitor->has_owner() || monitor->is_busy();
2103     };
2104 
2105     monitors_iterate([&](ObjectMonitor* monitor) {
2106       if (is_interesting(monitor)) {
2107         const oop obj = monitor->object_peek();
2108         const markWord mark = monitor->header();
2109         ResourceMark rm;
2110         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(monitor),
2111                    monitor->is_busy(), mark.hash() != 0, monitor->owner() != nullptr,
2112                    p2i(obj), obj == nullptr ? "" : obj->klass()->external_name());
2113         if (monitor->is_busy()) {
2114           out->print(" (%s)", monitor->is_busy_to_string(&ss));
2115           ss.reset();
2116         }
2117         out->cr();
2118       }
2119     });
2120   }
2121 
2122   out->flush();
2123 }