1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmSymbols.hpp" 26 #include "gc/shared/collectedHeap.hpp" 27 #include "jfr/jfrEvents.hpp" 28 #include "logging/log.hpp" 29 #include "logging/logStream.hpp" 30 #include "memory/allocation.inline.hpp" 31 #include "memory/padded.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/markWord.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "runtime/atomic.hpp" 37 #include "runtime/basicLock.inline.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/globals.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/handshake.hpp" 42 #include "runtime/interfaceSupport.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/lightweightSynchronizer.hpp" 45 #include "runtime/lockStack.inline.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/objectMonitor.hpp" 48 #include "runtime/objectMonitor.inline.hpp" 49 #include "runtime/os.inline.hpp" 50 #include "runtime/osThread.hpp" 51 #include "runtime/safepointMechanism.inline.hpp" 52 #include "runtime/safepointVerifiers.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/synchronizer.inline.hpp" 56 #include "runtime/threads.hpp" 57 #include "runtime/timer.hpp" 58 #include "runtime/trimNativeHeap.hpp" 59 #include "runtime/vframe.hpp" 60 #include "runtime/vmThread.hpp" 61 #include "utilities/align.hpp" 62 #include "utilities/dtrace.hpp" 63 #include "utilities/events.hpp" 64 #include "utilities/globalCounter.inline.hpp" 65 #include "utilities/globalDefinitions.hpp" 66 #include "utilities/linkedlist.hpp" 67 #include "utilities/preserveException.hpp" 68 69 class ObjectMonitorDeflationLogging; 70 71 void MonitorList::add(ObjectMonitor* m) { 72 ObjectMonitor* head; 73 do { 74 head = Atomic::load(&_head); 75 m->set_next_om(head); 76 } while (Atomic::cmpxchg(&_head, head, m) != head); 77 78 size_t count = Atomic::add(&_count, 1u, memory_order_relaxed); 79 size_t old_max; 80 do { 81 old_max = Atomic::load(&_max); 82 if (count <= old_max) { 83 break; 84 } 85 } while (Atomic::cmpxchg(&_max, old_max, count, memory_order_relaxed) != old_max); 86 } 87 88 size_t MonitorList::count() const { 89 return Atomic::load(&_count); 90 } 91 92 size_t MonitorList::max() const { 93 return Atomic::load(&_max); 94 } 95 96 class ObjectMonitorDeflationSafepointer : public StackObj { 97 JavaThread* const _current; 98 ObjectMonitorDeflationLogging* const _log; 99 100 public: 101 ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log) 102 : _current(current), _log(log) {} 103 104 void block_for_safepoint(const char* op_name, const char* count_name, size_t counter); 105 }; 106 107 // Walk the in-use list and unlink deflated ObjectMonitors. 108 // Returns the number of unlinked ObjectMonitors. 109 size_t MonitorList::unlink_deflated(size_t deflated_count, 110 GrowableArray<ObjectMonitor*>* unlinked_list, 111 ObjectMonitorDeflationSafepointer* safepointer) { 112 size_t unlinked_count = 0; 113 ObjectMonitor* prev = nullptr; 114 ObjectMonitor* m = Atomic::load_acquire(&_head); 115 116 while (m != nullptr) { 117 if (m->is_being_async_deflated()) { 118 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 119 // modify the list once per batch. The batch starts at "m". 120 size_t unlinked_batch = 0; 121 ObjectMonitor* next = m; 122 // Look for at most MonitorUnlinkBatch monitors, or the number of 123 // deflated and not unlinked monitors, whatever comes first. 124 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 125 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 126 do { 127 ObjectMonitor* next_next = next->next_om(); 128 unlinked_batch++; 129 unlinked_list->append(next); 130 next = next_next; 131 if (unlinked_batch >= unlinked_batch_limit) { 132 // Reached the max batch, so bail out of the gathering loop. 133 break; 134 } 135 if (prev == nullptr && Atomic::load(&_head) != m) { 136 // Current batch used to be at head, but it is not at head anymore. 137 // Bail out and figure out where we currently are. This avoids long 138 // walks searching for new prev during unlink under heavy list inserts. 139 break; 140 } 141 } while (next != nullptr && next->is_being_async_deflated()); 142 143 // Unlink the found batch. 144 if (prev == nullptr) { 145 // The current batch is the first batch, so there is a chance that it starts at head. 146 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 147 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 148 if (prev_head != m) { 149 // Something must have updated the head. Figure out the actual prev for this batch. 150 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 151 prev = n; 152 } 153 assert(prev != nullptr, "Should have found the prev for the current batch"); 154 prev->set_next_om(next); 155 } 156 } else { 157 // The current batch is preceded by another batch. This guarantees the current batch 158 // does not start at head. Unlink the entire current batch without updating the head. 159 assert(Atomic::load(&_head) != m, "Sanity"); 160 prev->set_next_om(next); 161 } 162 163 unlinked_count += unlinked_batch; 164 if (unlinked_count >= deflated_count) { 165 // Reached the max so bail out of the searching loop. 166 // There should be no more deflated monitors left. 167 break; 168 } 169 m = next; 170 } else { 171 prev = m; 172 m = m->next_om(); 173 } 174 175 // Must check for a safepoint/handshake and honor it. 176 safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count); 177 } 178 179 #ifdef ASSERT 180 // Invariant: the code above should unlink all deflated monitors. 181 // The code that runs after this unlinking does not expect deflated monitors. 182 // Notably, attempting to deflate the already deflated monitor would break. 183 { 184 ObjectMonitor* m = Atomic::load_acquire(&_head); 185 while (m != nullptr) { 186 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 187 m = m->next_om(); 188 } 189 } 190 #endif 191 192 Atomic::sub(&_count, unlinked_count); 193 return unlinked_count; 194 } 195 196 MonitorList::Iterator MonitorList::iterator() const { 197 return Iterator(Atomic::load_acquire(&_head)); 198 } 199 200 ObjectMonitor* MonitorList::Iterator::next() { 201 ObjectMonitor* current = _current; 202 _current = current->next_om(); 203 return current; 204 } 205 206 // The "core" versions of monitor enter and exit reside in this file. 207 // The interpreter and compilers contain specialized transliterated 208 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 209 // fast_lock(...) for instance. If you make changes here, make sure to modify the 210 // interpreter, and both C1 and C2 fast-path inline locking code emission. 211 // 212 // ----------------------------------------------------------------------------- 213 214 #ifdef DTRACE_ENABLED 215 216 // Only bother with this argument setup if dtrace is available 217 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 218 219 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 220 char* bytes = nullptr; \ 221 int len = 0; \ 222 jlong jtid = SharedRuntime::get_java_tid(thread); \ 223 Symbol* klassname = obj->klass()->name(); \ 224 if (klassname != nullptr) { \ 225 bytes = (char*)klassname->bytes(); \ 226 len = klassname->utf8_length(); \ 227 } 228 229 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 230 { \ 231 if (DTraceMonitorProbes) { \ 232 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 233 HOTSPOT_MONITOR_WAIT(jtid, \ 234 (uintptr_t)(monitor), bytes, len, (millis)); \ 235 } \ 236 } 237 238 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 239 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 240 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 241 242 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 243 { \ 244 if (DTraceMonitorProbes) { \ 245 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 246 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 247 (uintptr_t)(monitor), bytes, len); \ 248 } \ 249 } 250 251 #else // ndef DTRACE_ENABLED 252 253 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 254 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 255 256 #endif // ndef DTRACE_ENABLED 257 258 // This exists only as a workaround of dtrace bug 6254741 259 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 260 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 261 return 0; 262 } 263 264 static constexpr size_t inflation_lock_count() { 265 return 256; 266 } 267 268 // Static storage for an array of PlatformMutex. 269 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 270 271 static inline PlatformMutex* inflation_lock(size_t index) { 272 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 273 } 274 275 void ObjectSynchronizer::initialize() { 276 for (size_t i = 0; i < inflation_lock_count(); i++) { 277 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 278 } 279 // Start the ceiling with the estimate for one thread. 280 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 281 282 // Start the timer for deflations, so it does not trigger immediately. 283 _last_async_deflation_time_ns = os::javaTimeNanos(); 284 285 if (LockingMode == LM_LIGHTWEIGHT) { 286 LightweightSynchronizer::initialize(); 287 } 288 } 289 290 MonitorList ObjectSynchronizer::_in_use_list; 291 // monitors_used_above_threshold() policy is as follows: 292 // 293 // The ratio of the current _in_use_list count to the ceiling is used 294 // to determine if we are above MonitorUsedDeflationThreshold and need 295 // to do an async monitor deflation cycle. The ceiling is increased by 296 // AvgMonitorsPerThreadEstimate when a thread is added to the system 297 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 298 // removed from the system. 299 // 300 // Note: If the _in_use_list max exceeds the ceiling, then 301 // monitors_used_above_threshold() will use the in_use_list max instead 302 // of the thread count derived ceiling because we have used more 303 // ObjectMonitors than the estimated average. 304 // 305 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 306 // no-progress async monitor deflation cycles in a row, then the ceiling 307 // is adjusted upwards by monitors_used_above_threshold(). 308 // 309 // Start the ceiling with the estimate for one thread in initialize() 310 // which is called after cmd line options are processed. 311 static size_t _in_use_list_ceiling = 0; 312 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 313 bool volatile ObjectSynchronizer::_is_final_audit = false; 314 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 315 static uintx _no_progress_cnt = 0; 316 static bool _no_progress_skip_increment = false; 317 318 // =====================> Quick functions 319 320 // The quick_* forms are special fast-path variants used to improve 321 // performance. In the simplest case, a "quick_*" implementation could 322 // simply return false, in which case the caller will perform the necessary 323 // state transitions and call the slow-path form. 324 // The fast-path is designed to handle frequently arising cases in an efficient 325 // manner and is just a degenerate "optimistic" variant of the slow-path. 326 // returns true -- to indicate the call was satisfied. 327 // returns false -- to indicate the call needs the services of the slow-path. 328 // A no-loitering ordinance is in effect for code in the quick_* family 329 // operators: safepoints or indefinite blocking (blocking that might span a 330 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 331 // entry. 332 // 333 // Consider: An interesting optimization is to have the JIT recognize the 334 // following common idiom: 335 // synchronized (someobj) { .... ; notify(); } 336 // That is, we find a notify() or notifyAll() call that immediately precedes 337 // the monitorexit operation. In that case the JIT could fuse the operations 338 // into a single notifyAndExit() runtime primitive. 339 340 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 341 assert(current->thread_state() == _thread_in_Java, "invariant"); 342 NoSafepointVerifier nsv; 343 if (obj == nullptr) return false; // slow-path for invalid obj 344 const markWord mark = obj->mark(); 345 346 if (LockingMode == LM_LIGHTWEIGHT) { 347 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 348 // Degenerate notify 349 // fast-locked by caller so by definition the implied waitset is empty. 350 return true; 351 } 352 } else if (LockingMode == LM_LEGACY) { 353 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 354 // Degenerate notify 355 // stack-locked by caller so by definition the implied waitset is empty. 356 return true; 357 } 358 } 359 360 if (mark.has_monitor()) { 361 ObjectMonitor* const mon = read_monitor(current, obj, mark); 362 if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) { 363 // Racing with inflation/deflation go slow path 364 return false; 365 } 366 assert(mon->object() == oop(obj), "invariant"); 367 if (!mon->has_owner(current)) return false; // slow-path for IMS exception 368 369 if (mon->first_waiter() != nullptr) { 370 // We have one or more waiters. Since this is an inflated monitor 371 // that we own, we quickly notify them here and now, avoiding the slow-path. 372 if (all) { 373 mon->quick_notifyAll(current); 374 } else { 375 mon->quick_notify(current); 376 } 377 } 378 return true; 379 } 380 381 // other IMS exception states take the slow-path 382 return false; 383 } 384 385 static bool useHeavyMonitors() { 386 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 387 return LockingMode == LM_MONITOR; 388 #else 389 return false; 390 #endif 391 } 392 393 // The LockNode emitted directly at the synchronization site would have 394 // been too big if it were to have included support for the cases of inflated 395 // recursive enter and exit, so they go here instead. 396 // Note that we can't safely call AsyncPrintJavaStack() from within 397 // quick_enter() as our thread state remains _in_Java. 398 399 bool ObjectSynchronizer::quick_enter_legacy(oop obj, BasicLock* lock, JavaThread* current) { 400 assert(current->thread_state() == _thread_in_Java, "invariant"); 401 402 if (useHeavyMonitors()) { 403 return false; // Slow path 404 } 405 406 assert(LockingMode == LM_LEGACY, "legacy mode below"); 407 408 const markWord mark = obj->mark(); 409 410 if (mark.has_monitor()) { 411 412 ObjectMonitor* const m = read_monitor(mark); 413 // An async deflation or GC can race us before we manage to make 414 // the ObjectMonitor busy by setting the owner below. If we detect 415 // that race we just bail out to the slow-path here. 416 if (m->object_peek() == nullptr) { 417 return false; 418 } 419 420 // Lock contention and Transactional Lock Elision (TLE) diagnostics 421 // and observability 422 // Case: light contention possibly amenable to TLE 423 // Case: TLE inimical operations such as nested/recursive synchronization 424 425 if (m->has_owner(current)) { 426 m->increment_recursions(current); 427 current->inc_held_monitor_count(); 428 return true; 429 } 430 431 // This Java Monitor is inflated so obj's header will never be 432 // displaced to this thread's BasicLock. Make the displaced header 433 // non-null so this BasicLock is not seen as recursive nor as 434 // being locked. We do this unconditionally so that this thread's 435 // BasicLock cannot be mis-interpreted by any stack walkers. For 436 // performance reasons, stack walkers generally first check for 437 // stack-locking in the object's header, the second check is for 438 // recursive stack-locking in the displaced header in the BasicLock, 439 // and last are the inflated Java Monitor (ObjectMonitor) checks. 440 lock->set_displaced_header(markWord::unused_mark()); 441 442 if (!m->has_owner() && m->try_set_owner(current)) { 443 assert(m->recursions() == 0, "invariant"); 444 current->inc_held_monitor_count(); 445 return true; 446 } 447 } 448 449 // Note that we could inflate in quick_enter. 450 // This is likely a useful optimization 451 // Critically, in quick_enter() we must not: 452 // -- block indefinitely, or 453 // -- reach a safepoint 454 455 return false; // revert to slow-path 456 } 457 458 // Handle notifications when synchronizing on value based classes 459 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 460 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 461 frame last_frame = locking_thread->last_frame(); 462 bool bcp_was_adjusted = false; 463 // Don't decrement bcp if it points to the frame's first instruction. This happens when 464 // handle_sync_on_value_based_class() is called because of a synchronized method. There 465 // is no actual monitorenter instruction in the byte code in this case. 466 if (last_frame.is_interpreted_frame() && 467 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 468 // adjust bcp to point back to monitorenter so that we print the correct line numbers 469 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 470 bcp_was_adjusted = true; 471 } 472 473 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 474 ResourceMark rm; 475 stringStream ss; 476 locking_thread->print_active_stack_on(&ss); 477 char* base = (char*)strstr(ss.base(), "at"); 478 char* newline = (char*)strchr(ss.base(), '\n'); 479 if (newline != nullptr) { 480 *newline = '\0'; 481 } 482 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 483 } else { 484 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 485 ResourceMark rm; 486 Log(valuebasedclasses) vblog; 487 488 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 489 if (locking_thread->has_last_Java_frame()) { 490 LogStream info_stream(vblog.info()); 491 locking_thread->print_active_stack_on(&info_stream); 492 } else { 493 vblog.info("Cannot find the last Java frame"); 494 } 495 496 EventSyncOnValueBasedClass event; 497 if (event.should_commit()) { 498 event.set_valueBasedClass(obj->klass()); 499 event.commit(); 500 } 501 } 502 503 if (bcp_was_adjusted) { 504 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 505 } 506 } 507 508 // ----------------------------------------------------------------------------- 509 // Monitor Enter/Exit 510 511 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 512 // When called with locking_thread != Thread::current() some mechanism must synchronize 513 // the locking_thread with respect to the current thread. Currently only used when 514 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 515 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 516 517 if (LockingMode == LM_LIGHTWEIGHT) { 518 return LightweightSynchronizer::enter_for(obj, lock, locking_thread); 519 } 520 521 if (!enter_fast_impl(obj, lock, locking_thread)) { 522 // Inflated ObjectMonitor::enter_for is required 523 524 // An async deflation can race after the inflate_for() call and before 525 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 526 // if we have lost the race to async deflation and we simply try again. 527 while (true) { 528 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 529 if (monitor->enter_for(locking_thread)) { 530 return; 531 } 532 assert(monitor->is_being_async_deflated(), "must be"); 533 } 534 } 535 } 536 537 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) { 538 if (!enter_fast_impl(obj, lock, current)) { 539 // Inflated ObjectMonitor::enter is required 540 541 // An async deflation can race after the inflate() call and before 542 // enter() can make the ObjectMonitor busy. enter() returns false if 543 // we have lost the race to async deflation and we simply try again. 544 while (true) { 545 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 546 if (monitor->enter(current)) { 547 return; 548 } 549 } 550 } 551 } 552 553 // The interpreter and compiler assembly code tries to lock using the fast path 554 // of this algorithm. Make sure to update that code if the following function is 555 // changed. The implementation is extremely sensitive to race condition. Be careful. 556 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 557 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 558 559 if (obj->klass()->is_value_based()) { 560 handle_sync_on_value_based_class(obj, locking_thread); 561 } 562 563 locking_thread->inc_held_monitor_count(); 564 565 if (!useHeavyMonitors()) { 566 if (LockingMode == LM_LEGACY) { 567 markWord mark = obj->mark(); 568 if (mark.is_unlocked()) { 569 // Anticipate successful CAS -- the ST of the displaced mark must 570 // be visible <= the ST performed by the CAS. 571 lock->set_displaced_header(mark); 572 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 573 return true; 574 } 575 } else if (mark.has_locker() && 576 locking_thread->is_lock_owned((address) mark.locker())) { 577 assert(lock != mark.locker(), "must not re-lock the same lock"); 578 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 579 lock->set_displaced_header(markWord::from_pointer(nullptr)); 580 return true; 581 } 582 583 // The object header will never be displaced to this lock, 584 // so it does not matter what the value is, except that it 585 // must be non-zero to avoid looking like a re-entrant lock, 586 // and must not look locked either. 587 lock->set_displaced_header(markWord::unused_mark()); 588 589 // Failed to fast lock. 590 return false; 591 } 592 } else if (VerifyHeavyMonitors) { 593 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 594 } 595 596 return false; 597 } 598 599 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) { 600 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 601 602 if (!useHeavyMonitors()) { 603 markWord mark = object->mark(); 604 if (LockingMode == LM_LEGACY) { 605 markWord dhw = lock->displaced_header(); 606 if (dhw.value() == 0) { 607 // If the displaced header is null, then this exit matches up with 608 // a recursive enter. No real work to do here except for diagnostics. 609 #ifndef PRODUCT 610 if (mark != markWord::INFLATING()) { 611 // Only do diagnostics if we are not racing an inflation. Simply 612 // exiting a recursive enter of a Java Monitor that is being 613 // inflated is safe; see the has_monitor() comment below. 614 assert(!mark.is_unlocked(), "invariant"); 615 assert(!mark.has_locker() || 616 current->is_lock_owned((address)mark.locker()), "invariant"); 617 if (mark.has_monitor()) { 618 // The BasicLock's displaced_header is marked as a recursive 619 // enter and we have an inflated Java Monitor (ObjectMonitor). 620 // This is a special case where the Java Monitor was inflated 621 // after this thread entered the stack-lock recursively. When a 622 // Java Monitor is inflated, we cannot safely walk the Java 623 // Monitor owner's stack and update the BasicLocks because a 624 // Java Monitor can be asynchronously inflated by a thread that 625 // does not own the Java Monitor. 626 ObjectMonitor* m = read_monitor(mark); 627 assert(m->object()->mark() == mark, "invariant"); 628 assert(m->is_entered(current), "invariant"); 629 } 630 } 631 #endif 632 return; 633 } 634 635 if (mark == markWord::from_pointer(lock)) { 636 // If the object is stack-locked by the current thread, try to 637 // swing the displaced header from the BasicLock back to the mark. 638 assert(dhw.is_neutral(), "invariant"); 639 if (object->cas_set_mark(dhw, mark) == mark) { 640 return; 641 } 642 } 643 } 644 } else if (VerifyHeavyMonitors) { 645 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 646 } 647 648 // We have to take the slow-path of possible inflation and then exit. 649 // The ObjectMonitor* can't be async deflated until ownership is 650 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 651 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 652 assert(!monitor->has_anonymous_owner(), "must not be"); 653 monitor->exit(current); 654 } 655 656 // ----------------------------------------------------------------------------- 657 // JNI locks on java objects 658 // NOTE: must use heavy weight monitor to handle jni monitor enter 659 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 660 // Top native frames in the stack will not be seen if we attempt 661 // preemption, since we start walking from the last Java anchor. 662 NoPreemptMark npm(current); 663 664 if (obj->klass()->is_value_based()) { 665 handle_sync_on_value_based_class(obj, current); 666 } 667 668 // the current locking is from JNI instead of Java code 669 current->set_current_pending_monitor_is_from_java(false); 670 // An async deflation can race after the inflate() call and before 671 // enter() can make the ObjectMonitor busy. enter() returns false if 672 // we have lost the race to async deflation and we simply try again. 673 while (true) { 674 ObjectMonitor* monitor; 675 bool entered; 676 if (LockingMode == LM_LIGHTWEIGHT) { 677 BasicLock lock; 678 entered = LightweightSynchronizer::inflate_and_enter(obj(), &lock, inflate_cause_jni_enter, current, current) != nullptr; 679 } else { 680 monitor = inflate(current, obj(), inflate_cause_jni_enter); 681 entered = monitor->enter(current); 682 } 683 684 if (entered) { 685 current->inc_held_monitor_count(1, true); 686 break; 687 } 688 } 689 current->set_current_pending_monitor_is_from_java(true); 690 } 691 692 // NOTE: must use heavy weight monitor to handle jni monitor exit 693 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 694 JavaThread* current = THREAD; 695 696 ObjectMonitor* monitor; 697 if (LockingMode == LM_LIGHTWEIGHT) { 698 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK); 699 } else { 700 // The ObjectMonitor* can't be async deflated until ownership is 701 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 702 monitor = inflate(current, obj, inflate_cause_jni_exit); 703 } 704 // If this thread has locked the object, exit the monitor. We 705 // intentionally do not use CHECK on check_owner because we must exit the 706 // monitor even if an exception was already pending. 707 if (monitor->check_owner(THREAD)) { 708 monitor->exit(current); 709 current->dec_held_monitor_count(1, true); 710 } 711 } 712 713 // ----------------------------------------------------------------------------- 714 // Internal VM locks on java objects 715 // standard constructor, allows locking failures 716 ObjectLocker::ObjectLocker(Handle obj, TRAPS) : _thread(THREAD), _obj(obj), 717 _npm(_thread, _thread->at_preemptable_init() /* ignore_mark */), _skip_exit(false) { 718 assert(!_thread->preempting(), ""); 719 720 _thread->check_for_valid_safepoint_state(); 721 722 if (_obj() != nullptr) { 723 ObjectSynchronizer::enter(_obj, &_lock, _thread); 724 725 if (_thread->preempting()) { 726 // If preemption was cancelled we acquired the monitor after freezing 727 // the frames. Redoing the vm call laterĀ in thaw will require us to 728 // release it since the call should look like the original one. We 729 // do it in ~ObjectLocker to reduce the window of time we hold the 730 // monitor since we can't do anything useful with it now, and would 731 // otherwise just force other vthreads to preempt in case they try 732 // to acquire this monitor. 733 _skip_exit = !_thread->preemption_cancelled(); 734 _thread->set_pending_preempted_exception(); 735 } 736 } 737 } 738 739 ObjectLocker::~ObjectLocker() { 740 if (_obj() != nullptr && !_skip_exit) { 741 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 742 } 743 } 744 745 void ObjectLocker::wait_uninterruptibly(TRAPS) { 746 ObjectSynchronizer::waitUninterruptibly(_obj, 0, _thread); 747 if (_thread->preempting()) { 748 _skip_exit = true; 749 _thread->set_pending_preempted_exception(); 750 _thread->set_class_to_be_initialized(nullptr); 751 } 752 } 753 754 // ----------------------------------------------------------------------------- 755 // Wait/Notify/NotifyAll 756 // NOTE: must use heavy weight monitor to handle wait() 757 758 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 759 JavaThread* current = THREAD; 760 if (millis < 0) { 761 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 762 } 763 764 ObjectMonitor* monitor; 765 if (LockingMode == LM_LIGHTWEIGHT) { 766 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0); 767 } else { 768 // The ObjectMonitor* can't be async deflated because the _waiters 769 // field is incremented before ownership is dropped and decremented 770 // after ownership is regained. 771 monitor = inflate(current, obj(), inflate_cause_wait); 772 } 773 774 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 775 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 776 777 // This dummy call is in place to get around dtrace bug 6254741. Once 778 // that's fixed we can uncomment the following line, remove the call 779 // and change this function back into a "void" func. 780 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 781 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 782 return ret_code; 783 } 784 785 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 786 assert(millis >= 0, "timeout value is negative"); 787 788 ObjectMonitor* monitor; 789 if (LockingMode == LM_LIGHTWEIGHT) { 790 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK); 791 } else { 792 monitor = inflate(THREAD, obj(), inflate_cause_wait); 793 } 794 monitor->wait(millis, false, THREAD); 795 } 796 797 798 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 799 JavaThread* current = THREAD; 800 801 markWord mark = obj->mark(); 802 if (LockingMode == LM_LIGHTWEIGHT) { 803 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 804 // Not inflated so there can't be any waiters to notify. 805 return; 806 } 807 } else if (LockingMode == LM_LEGACY) { 808 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 809 // Not inflated so there can't be any waiters to notify. 810 return; 811 } 812 } 813 814 ObjectMonitor* monitor; 815 if (LockingMode == LM_LIGHTWEIGHT) { 816 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 817 } else { 818 // The ObjectMonitor* can't be async deflated until ownership is 819 // dropped by the calling thread. 820 monitor = inflate(current, obj(), inflate_cause_notify); 821 } 822 monitor->notify(CHECK); 823 } 824 825 // NOTE: see comment of notify() 826 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 827 JavaThread* current = THREAD; 828 829 markWord mark = obj->mark(); 830 if (LockingMode == LM_LIGHTWEIGHT) { 831 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 832 // Not inflated so there can't be any waiters to notify. 833 return; 834 } 835 } else if (LockingMode == LM_LEGACY) { 836 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 837 // Not inflated so there can't be any waiters to notify. 838 return; 839 } 840 } 841 842 ObjectMonitor* monitor; 843 if (LockingMode == LM_LIGHTWEIGHT) { 844 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 845 } else { 846 // The ObjectMonitor* can't be async deflated until ownership is 847 // dropped by the calling thread. 848 monitor = inflate(current, obj(), inflate_cause_notify); 849 } 850 monitor->notifyAll(CHECK); 851 } 852 853 // ----------------------------------------------------------------------------- 854 // Hash Code handling 855 856 struct SharedGlobals { 857 char _pad_prefix[OM_CACHE_LINE_SIZE]; 858 // This is a highly shared mostly-read variable. 859 // To avoid false-sharing it needs to be the sole occupant of a cache line. 860 volatile int stw_random; 861 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 862 // Hot RW variable -- Sequester to avoid false-sharing 863 volatile int hc_sequence; 864 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 865 }; 866 867 static SharedGlobals GVars; 868 869 static markWord read_stable_mark(oop obj) { 870 markWord mark = obj->mark_acquire(); 871 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 872 // New lightweight locking does not use the markWord::INFLATING() protocol. 873 return mark; // normal fast-path return 874 } 875 876 int its = 0; 877 for (;;) { 878 markWord mark = obj->mark_acquire(); 879 if (!mark.is_being_inflated()) { 880 return mark; // normal fast-path return 881 } 882 883 // The object is being inflated by some other thread. 884 // The caller of read_stable_mark() must wait for inflation to complete. 885 // Avoid live-lock. 886 887 ++its; 888 if (its > 10000 || !os::is_MP()) { 889 if (its & 1) { 890 os::naked_yield(); 891 } else { 892 // Note that the following code attenuates the livelock problem but is not 893 // a complete remedy. A more complete solution would require that the inflating 894 // thread hold the associated inflation lock. The following code simply restricts 895 // the number of spinners to at most one. We'll have N-2 threads blocked 896 // on the inflationlock, 1 thread holding the inflation lock and using 897 // a yield/park strategy, and 1 thread in the midst of inflation. 898 // A more refined approach would be to change the encoding of INFLATING 899 // to allow encapsulation of a native thread pointer. Threads waiting for 900 // inflation to complete would use CAS to push themselves onto a singly linked 901 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 902 // and calling park(). When inflation was complete the thread that accomplished inflation 903 // would detach the list and set the markword to inflated with a single CAS and 904 // then for each thread on the list, set the flag and unpark() the thread. 905 906 // Index into the lock array based on the current object address. 907 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 908 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 909 int YieldThenBlock = 0; 910 assert(ix < inflation_lock_count(), "invariant"); 911 inflation_lock(ix)->lock(); 912 while (obj->mark_acquire() == markWord::INFLATING()) { 913 // Beware: naked_yield() is advisory and has almost no effect on some platforms 914 // so we periodically call current->_ParkEvent->park(1). 915 // We use a mixed spin/yield/block mechanism. 916 if ((YieldThenBlock++) >= 16) { 917 Thread::current()->_ParkEvent->park(1); 918 } else { 919 os::naked_yield(); 920 } 921 } 922 inflation_lock(ix)->unlock(); 923 } 924 } else { 925 SpinPause(); // SMP-polite spinning 926 } 927 } 928 } 929 930 // hashCode() generation : 931 // 932 // Possibilities: 933 // * MD5Digest of {obj,stw_random} 934 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 935 // * A DES- or AES-style SBox[] mechanism 936 // * One of the Phi-based schemes, such as: 937 // 2654435761 = 2^32 * Phi (golden ratio) 938 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 939 // * A variation of Marsaglia's shift-xor RNG scheme. 940 // * (obj ^ stw_random) is appealing, but can result 941 // in undesirable regularity in the hashCode values of adjacent objects 942 // (objects allocated back-to-back, in particular). This could potentially 943 // result in hashtable collisions and reduced hashtable efficiency. 944 // There are simple ways to "diffuse" the middle address bits over the 945 // generated hashCode values: 946 947 static intptr_t get_next_hash(Thread* current, oop obj) { 948 intptr_t value = 0; 949 if (hashCode == 0) { 950 // This form uses global Park-Miller RNG. 951 // On MP system we'll have lots of RW access to a global, so the 952 // mechanism induces lots of coherency traffic. 953 value = os::random(); 954 } else if (hashCode == 1) { 955 // This variation has the property of being stable (idempotent) 956 // between STW operations. This can be useful in some of the 1-0 957 // synchronization schemes. 958 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 959 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 960 } else if (hashCode == 2) { 961 value = 1; // for sensitivity testing 962 } else if (hashCode == 3) { 963 value = ++GVars.hc_sequence; 964 } else if (hashCode == 4) { 965 value = cast_from_oop<intptr_t>(obj); 966 } else { 967 // Marsaglia's xor-shift scheme with thread-specific state 968 // This is probably the best overall implementation -- we'll 969 // likely make this the default in future releases. 970 unsigned t = current->_hashStateX; 971 t ^= (t << 11); 972 current->_hashStateX = current->_hashStateY; 973 current->_hashStateY = current->_hashStateZ; 974 current->_hashStateZ = current->_hashStateW; 975 unsigned v = current->_hashStateW; 976 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 977 current->_hashStateW = v; 978 value = v; 979 } 980 981 value &= markWord::hash_mask; 982 if (value == 0) value = 0xBAD; 983 assert(value != markWord::no_hash, "invariant"); 984 return value; 985 } 986 987 static intptr_t install_hash_code(Thread* current, oop obj) { 988 assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be"); 989 990 markWord mark = obj->mark_acquire(); 991 for (;;) { 992 intptr_t hash = mark.hash(); 993 if (hash != 0) { 994 return hash; 995 } 996 997 hash = get_next_hash(current, obj); 998 const markWord old_mark = mark; 999 const markWord new_mark = old_mark.copy_set_hash(hash); 1000 1001 mark = obj->cas_set_mark(new_mark, old_mark); 1002 if (old_mark == mark) { 1003 return hash; 1004 } 1005 } 1006 } 1007 1008 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 1009 if (UseObjectMonitorTable) { 1010 // Since the monitor isn't in the object header, the hash can simply be 1011 // installed in the object header. 1012 return install_hash_code(current, obj); 1013 } 1014 1015 while (true) { 1016 ObjectMonitor* monitor = nullptr; 1017 markWord temp, test; 1018 intptr_t hash; 1019 markWord mark = read_stable_mark(obj); 1020 if (VerifyHeavyMonitors) { 1021 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 1022 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 1023 } 1024 if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1025 hash = mark.hash(); 1026 if (hash != 0) { // if it has a hash, just return it 1027 return hash; 1028 } 1029 hash = get_next_hash(current, obj); // get a new hash 1030 temp = mark.copy_set_hash(hash); // merge the hash into header 1031 // try to install the hash 1032 test = obj->cas_set_mark(temp, mark); 1033 if (test == mark) { // if the hash was installed, return it 1034 return hash; 1035 } 1036 if (LockingMode == LM_LIGHTWEIGHT) { 1037 // CAS failed, retry 1038 continue; 1039 } 1040 // Failed to install the hash. It could be that another thread 1041 // installed the hash just before our attempt or inflation has 1042 // occurred or... so we fall thru to inflate the monitor for 1043 // stability and then install the hash. 1044 } else if (mark.has_monitor()) { 1045 monitor = mark.monitor(); 1046 temp = monitor->header(); 1047 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1048 hash = temp.hash(); 1049 if (hash != 0) { 1050 // It has a hash. 1051 1052 // Separate load of dmw/header above from the loads in 1053 // is_being_async_deflated(). 1054 1055 // dmw/header and _contentions may get written by different threads. 1056 // Make sure to observe them in the same order when having several observers. 1057 OrderAccess::loadload_for_IRIW(); 1058 1059 if (monitor->is_being_async_deflated()) { 1060 // But we can't safely use the hash if we detect that async 1061 // deflation has occurred. So we attempt to restore the 1062 // header/dmw to the object's header so that we only retry 1063 // once if the deflater thread happens to be slow. 1064 monitor->install_displaced_markword_in_object(obj); 1065 continue; 1066 } 1067 return hash; 1068 } 1069 // Fall thru so we only have one place that installs the hash in 1070 // the ObjectMonitor. 1071 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1072 && current->is_Java_thread() 1073 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1074 // This is a stack-lock owned by the calling thread so fetch the 1075 // displaced markWord from the BasicLock on the stack. 1076 temp = mark.displaced_mark_helper(); 1077 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1078 hash = temp.hash(); 1079 if (hash != 0) { // if it has a hash, just return it 1080 return hash; 1081 } 1082 // WARNING: 1083 // The displaced header in the BasicLock on a thread's stack 1084 // is strictly immutable. It CANNOT be changed in ANY cases. 1085 // So we have to inflate the stack-lock into an ObjectMonitor 1086 // even if the current thread owns the lock. The BasicLock on 1087 // a thread's stack can be asynchronously read by other threads 1088 // during an inflate() call so any change to that stack memory 1089 // may not propagate to other threads correctly. 1090 } 1091 1092 // Inflate the monitor to set the hash. 1093 1094 // There's no need to inflate if the mark has already got a monitor. 1095 // NOTE: an async deflation can race after we get the monitor and 1096 // before we can update the ObjectMonitor's header with the hash 1097 // value below. 1098 monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code); 1099 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1100 mark = monitor->header(); 1101 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1102 hash = mark.hash(); 1103 if (hash == 0) { // if it does not have a hash 1104 hash = get_next_hash(current, obj); // get a new hash 1105 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1106 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1107 uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value()); 1108 test = markWord(v); 1109 if (test != mark) { 1110 // The attempt to update the ObjectMonitor's header/dmw field 1111 // did not work. This can happen if another thread managed to 1112 // merge in the hash just before our cmpxchg(). 1113 // If we add any new usages of the header/dmw field, this code 1114 // will need to be updated. 1115 hash = test.hash(); 1116 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1117 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1118 } 1119 if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) { 1120 // If we detect that async deflation has occurred, then we 1121 // attempt to restore the header/dmw to the object's header 1122 // so that we only retry once if the deflater thread happens 1123 // to be slow. 1124 monitor->install_displaced_markword_in_object(obj); 1125 continue; 1126 } 1127 } 1128 // We finally get the hash. 1129 return hash; 1130 } 1131 } 1132 1133 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1134 Handle h_obj) { 1135 assert(current == JavaThread::current(), "Can only be called on current thread"); 1136 oop obj = h_obj(); 1137 1138 markWord mark = read_stable_mark(obj); 1139 1140 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1141 // stack-locked case, header points into owner's stack 1142 return current->is_lock_owned((address)mark.locker()); 1143 } 1144 1145 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1146 // fast-locking case, see if lock is in current's lock stack 1147 return current->lock_stack().contains(h_obj()); 1148 } 1149 1150 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1151 ObjectMonitor* monitor = read_monitor(current, obj, mark); 1152 if (monitor != nullptr) { 1153 return monitor->is_entered(current) != 0; 1154 } 1155 // Racing with inflation/deflation, retry 1156 mark = obj->mark_acquire(); 1157 1158 if (mark.is_fast_locked()) { 1159 // Some other thread fast_locked, current could not have held the lock 1160 return false; 1161 } 1162 } 1163 1164 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1165 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1166 // The first stage of async deflation does not affect any field 1167 // used by this comparison so the ObjectMonitor* is usable here. 1168 ObjectMonitor* monitor = read_monitor(mark); 1169 return monitor->is_entered(current) != 0; 1170 } 1171 // Unlocked case, header in place 1172 assert(mark.is_unlocked(), "sanity check"); 1173 return false; 1174 } 1175 1176 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1177 oop obj = h_obj(); 1178 markWord mark = read_stable_mark(obj); 1179 1180 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1181 // stack-locked so header points into owner's stack. 1182 // owning_thread_from_monitor_owner() may also return null here: 1183 return Threads::owning_thread_from_stacklock(t_list, (address) mark.locker()); 1184 } 1185 1186 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1187 // fast-locked so get owner from the object. 1188 // owning_thread_from_object() may also return null here: 1189 return Threads::owning_thread_from_object(t_list, h_obj()); 1190 } 1191 1192 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1193 ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark); 1194 if (monitor != nullptr) { 1195 return Threads::owning_thread_from_monitor(t_list, monitor); 1196 } 1197 // Racing with inflation/deflation, retry 1198 mark = obj->mark_acquire(); 1199 1200 if (mark.is_fast_locked()) { 1201 // Some other thread fast_locked 1202 return Threads::owning_thread_from_object(t_list, h_obj()); 1203 } 1204 } 1205 1206 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1207 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1208 // The first stage of async deflation does not affect any field 1209 // used by this comparison so the ObjectMonitor* is usable here. 1210 ObjectMonitor* monitor = read_monitor(mark); 1211 assert(monitor != nullptr, "monitor should be non-null"); 1212 // owning_thread_from_monitor() may also return null here: 1213 return Threads::owning_thread_from_monitor(t_list, monitor); 1214 } 1215 1216 // Unlocked case, header in place 1217 // Cannot have assertion since this object may have been 1218 // locked by another thread when reaching here. 1219 // assert(mark.is_unlocked(), "sanity check"); 1220 1221 return nullptr; 1222 } 1223 1224 // Visitors ... 1225 1226 // Iterate over all ObjectMonitors. 1227 template <typename Function> 1228 void ObjectSynchronizer::monitors_iterate(Function function) { 1229 MonitorList::Iterator iter = _in_use_list.iterator(); 1230 while (iter.has_next()) { 1231 ObjectMonitor* monitor = iter.next(); 1232 function(monitor); 1233 } 1234 } 1235 1236 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1237 // returns true. 1238 template <typename OwnerFilter> 1239 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1240 monitors_iterate([&](ObjectMonitor* monitor) { 1241 // This function is only called at a safepoint or when the 1242 // target thread is suspended or when the target thread is 1243 // operating on itself. The current closures in use today are 1244 // only interested in an owned ObjectMonitor and ownership 1245 // cannot be dropped under the calling contexts so the 1246 // ObjectMonitor cannot be async deflated. 1247 if (monitor->has_owner() && filter(monitor)) { 1248 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1249 1250 closure->do_monitor(monitor); 1251 } 1252 }); 1253 } 1254 1255 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1256 // ObjectMonitors where owner is set to a stack-lock address in thread. 1257 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1258 int64_t key = ObjectMonitor::owner_id_from(thread); 1259 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1260 return owned_monitors_iterate_filtered(closure, thread_filter); 1261 } 1262 1263 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, oop vthread) { 1264 int64_t key = ObjectMonitor::owner_id_from(vthread); 1265 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1266 return owned_monitors_iterate_filtered(closure, thread_filter); 1267 } 1268 1269 // Iterate ObjectMonitors owned by any thread. 1270 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1271 auto all_filter = [&](ObjectMonitor* monitor) { return true; }; 1272 return owned_monitors_iterate_filtered(closure, all_filter); 1273 } 1274 1275 static bool monitors_used_above_threshold(MonitorList* list) { 1276 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1277 return false; 1278 } 1279 size_t monitors_used = list->count(); 1280 if (monitors_used == 0) { // empty list is easy 1281 return false; 1282 } 1283 size_t old_ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1284 // Make sure that we use a ceiling value that is not lower than 1285 // previous, not lower than the recorded max used by the system, and 1286 // not lower than the current number of monitors in use (which can 1287 // race ahead of max). The result is guaranteed > 0. 1288 size_t ceiling = MAX3(old_ceiling, list->max(), monitors_used); 1289 1290 // Check if our monitor usage is above the threshold: 1291 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1292 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1293 // Deflate monitors if over the threshold percentage, unless no 1294 // progress on previous deflations. 1295 bool is_above_threshold = true; 1296 1297 // Check if it's time to adjust the in_use_list_ceiling up, due 1298 // to too many async deflation attempts without any progress. 1299 if (NoAsyncDeflationProgressMax != 0 && 1300 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1301 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1302 size_t delta = (size_t)(ceiling * remainder) + 1; 1303 size_t new_ceiling = (ceiling > SIZE_MAX - delta) 1304 ? SIZE_MAX // Overflow, let's clamp new_ceiling. 1305 : ceiling + delta; 1306 1307 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1308 log_info(monitorinflation)("Too many deflations without progress; " 1309 "bumping in_use_list_ceiling from %zu" 1310 " to %zu", old_ceiling, new_ceiling); 1311 _no_progress_cnt = 0; 1312 ceiling = new_ceiling; 1313 1314 // Check if our monitor usage is still above the threshold: 1315 monitor_usage = (monitors_used * 100LL) / ceiling; 1316 is_above_threshold = int(monitor_usage) > MonitorUsedDeflationThreshold; 1317 } 1318 log_info(monitorinflation)("monitors_used=%zu, ceiling=%zu" 1319 ", monitor_usage=%zu, threshold=%d", 1320 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1321 return is_above_threshold; 1322 } 1323 1324 return false; 1325 } 1326 1327 size_t ObjectSynchronizer::in_use_list_count() { 1328 return _in_use_list.count(); 1329 } 1330 1331 size_t ObjectSynchronizer::in_use_list_max() { 1332 return _in_use_list.max(); 1333 } 1334 1335 size_t ObjectSynchronizer::in_use_list_ceiling() { 1336 return _in_use_list_ceiling; 1337 } 1338 1339 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1340 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1341 } 1342 1343 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1344 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1345 } 1346 1347 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1348 _in_use_list_ceiling = new_value; 1349 } 1350 1351 bool ObjectSynchronizer::is_async_deflation_needed() { 1352 if (is_async_deflation_requested()) { 1353 // Async deflation request. 1354 log_info(monitorinflation)("Async deflation needed: explicit request"); 1355 return true; 1356 } 1357 1358 jlong time_since_last = time_since_last_async_deflation_ms(); 1359 1360 if (AsyncDeflationInterval > 0 && 1361 time_since_last > AsyncDeflationInterval && 1362 monitors_used_above_threshold(&_in_use_list)) { 1363 // It's been longer than our specified deflate interval and there 1364 // are too many monitors in use. We don't deflate more frequently 1365 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1366 // in order to not swamp the MonitorDeflationThread. 1367 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1368 return true; 1369 } 1370 1371 if (GuaranteedAsyncDeflationInterval > 0 && 1372 time_since_last > GuaranteedAsyncDeflationInterval) { 1373 // It's been longer than our specified guaranteed deflate interval. 1374 // We need to clean up the used monitors even if the threshold is 1375 // not reached, to keep the memory utilization at bay when many threads 1376 // touched many monitors. 1377 log_info(monitorinflation)("Async deflation needed: guaranteed interval (%zd ms) " 1378 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1379 GuaranteedAsyncDeflationInterval, time_since_last); 1380 1381 // If this deflation has no progress, then it should not affect the no-progress 1382 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1383 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1384 // the generic code would bump the no-progress counter, and we compensate for that 1385 // by telling it to skip the update. 1386 // 1387 // If this deflation has progress, then it should let non-progress tracking 1388 // know about this, otherwise the threshold heuristics would kick in, potentially 1389 // experience no-progress due to aggressive cleanup by this deflation, and think 1390 // it is still in no-progress stride. In this "progress" case, the generic code would 1391 // zero the counter, and we allow it to happen. 1392 _no_progress_skip_increment = true; 1393 1394 return true; 1395 } 1396 1397 return false; 1398 } 1399 1400 void ObjectSynchronizer::request_deflate_idle_monitors() { 1401 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1402 set_is_async_deflation_requested(true); 1403 ml.notify_all(); 1404 } 1405 1406 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1407 JavaThread* current = JavaThread::current(); 1408 bool ret_code = false; 1409 1410 jlong last_time = last_async_deflation_time_ns(); 1411 1412 request_deflate_idle_monitors(); 1413 1414 const int N_CHECKS = 5; 1415 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1416 if (last_async_deflation_time_ns() > last_time) { 1417 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1418 ret_code = true; 1419 break; 1420 } 1421 { 1422 // JavaThread has to honor the blocking protocol. 1423 ThreadBlockInVM tbivm(current); 1424 os::naked_short_sleep(999); // sleep for almost 1 second 1425 } 1426 } 1427 if (!ret_code) { 1428 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1429 } 1430 1431 return ret_code; 1432 } 1433 1434 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1435 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1436 } 1437 1438 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1439 const oop obj, 1440 ObjectSynchronizer::InflateCause cause) { 1441 assert(event != nullptr, "invariant"); 1442 const Klass* monitor_klass = obj->klass(); 1443 if (ObjectMonitor::is_jfr_excluded(monitor_klass)) { 1444 return; 1445 } 1446 event->set_monitorClass(monitor_klass); 1447 event->set_address((uintptr_t)(void*)obj); 1448 event->set_cause((u1)cause); 1449 event->commit(); 1450 } 1451 1452 // Fast path code shared by multiple functions 1453 void ObjectSynchronizer::inflate_helper(oop obj) { 1454 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1455 markWord mark = obj->mark_acquire(); 1456 if (mark.has_monitor()) { 1457 ObjectMonitor* monitor = read_monitor(mark); 1458 markWord dmw = monitor->header(); 1459 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1460 return; 1461 } 1462 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1463 } 1464 1465 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1466 assert(current == Thread::current(), "must be"); 1467 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1468 return inflate_impl(current->is_Java_thread() ? JavaThread::cast(current) : nullptr, obj, cause); 1469 } 1470 1471 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1472 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1473 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for"); 1474 return inflate_impl(thread, obj, cause); 1475 } 1476 1477 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* locking_thread, oop object, const InflateCause cause) { 1478 // The JavaThread* locking_thread requires that the locking_thread == Thread::current() or 1479 // is suspended throughout the call by some other mechanism. 1480 // The thread might be nullptr when called from a non JavaThread. (As may still be 1481 // the case from FastHashCode). However it is only important for correctness that the 1482 // thread is set when called from ObjectSynchronizer::enter from the owning thread, 1483 // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit. 1484 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl"); 1485 EventJavaMonitorInflate event; 1486 1487 for (;;) { 1488 const markWord mark = object->mark_acquire(); 1489 1490 // The mark can be in one of the following states: 1491 // * inflated - If the ObjectMonitor owner is anonymous and the 1492 // locking_thread owns the object lock, then we 1493 // make the locking_thread the ObjectMonitor owner. 1494 // * stack-locked - Coerce it to inflated from stack-locked. 1495 // * INFLATING - Busy wait for conversion from stack-locked to 1496 // inflated. 1497 // * unlocked - Aggressively inflate the object. 1498 1499 // CASE: inflated 1500 if (mark.has_monitor()) { 1501 ObjectMonitor* inf = mark.monitor(); 1502 markWord dmw = inf->header(); 1503 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1504 if (inf->has_anonymous_owner() && locking_thread != nullptr) { 1505 assert(LockingMode == LM_LEGACY, "invariant"); 1506 if (locking_thread->is_lock_owned((address)inf->stack_locker())) { 1507 inf->set_stack_locker(nullptr); 1508 inf->set_owner_from_anonymous(locking_thread); 1509 } 1510 } 1511 return inf; 1512 } 1513 1514 // CASE: inflation in progress - inflating over a stack-lock. 1515 // Some other thread is converting from stack-locked to inflated. 1516 // Only that thread can complete inflation -- other threads must wait. 1517 // The INFLATING value is transient. 1518 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1519 // We could always eliminate polling by parking the thread on some auxiliary list. 1520 if (mark == markWord::INFLATING()) { 1521 read_stable_mark(object); 1522 continue; 1523 } 1524 1525 // CASE: stack-locked 1526 // Could be stack-locked either by current or by some other thread. 1527 // 1528 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1529 // to install INFLATING into the mark word. We originally installed INFLATING, 1530 // allocated the ObjectMonitor, and then finally STed the address of the 1531 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1532 // the interval in which INFLATING appeared in the mark, thus increasing 1533 // the odds of inflation contention. If we lose the race to set INFLATING, 1534 // then we just delete the ObjectMonitor and loop around again. 1535 // 1536 LogStreamHandle(Trace, monitorinflation) lsh; 1537 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1538 ObjectMonitor* m = new ObjectMonitor(object); 1539 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1540 // We do this before the CAS in order to minimize the length of time 1541 // in which INFLATING appears in the mark. 1542 1543 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1544 if (cmp != mark) { 1545 delete m; 1546 continue; // Interference -- just retry 1547 } 1548 1549 // We've successfully installed INFLATING (0) into the mark-word. 1550 // This is the only case where 0 will appear in a mark-word. 1551 // Only the singular thread that successfully swings the mark-word 1552 // to 0 can perform (or more precisely, complete) inflation. 1553 // 1554 // Why do we CAS a 0 into the mark-word instead of just CASing the 1555 // mark-word from the stack-locked value directly to the new inflated state? 1556 // Consider what happens when a thread unlocks a stack-locked object. 1557 // It attempts to use CAS to swing the displaced header value from the 1558 // on-stack BasicLock back into the object header. Recall also that the 1559 // header value (hash code, etc) can reside in (a) the object header, or 1560 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1561 // header in an ObjectMonitor. The inflate() routine must copy the header 1562 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1563 // the while preserving the hashCode stability invariants. If the owner 1564 // decides to release the lock while the value is 0, the unlock will fail 1565 // and control will eventually pass from slow_exit() to inflate. The owner 1566 // will then spin, waiting for the 0 value to disappear. Put another way, 1567 // the 0 causes the owner to stall if the owner happens to try to 1568 // drop the lock (restoring the header from the BasicLock to the object) 1569 // while inflation is in-progress. This protocol avoids races that might 1570 // would otherwise permit hashCode values to change or "flicker" for an object. 1571 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1572 // 0 serves as a "BUSY" inflate-in-progress indicator. 1573 1574 1575 // fetch the displaced mark from the owner's stack. 1576 // The owner can't die or unwind past the lock while our INFLATING 1577 // object is in the mark. Furthermore the owner can't complete 1578 // an unlock on the object, either. 1579 markWord dmw = mark.displaced_mark_helper(); 1580 // Catch if the object's header is not neutral (not locked and 1581 // not marked is what we care about here). 1582 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1583 1584 // Setup monitor fields to proper values -- prepare the monitor 1585 m->set_header(dmw); 1586 1587 // Note that a thread can inflate an object 1588 // that it has stack-locked -- as might happen in wait() -- directly 1589 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1590 if (locking_thread != nullptr && locking_thread->is_lock_owned((address)mark.locker())) { 1591 m->set_owner(locking_thread); 1592 } else { 1593 // Use ANONYMOUS_OWNER to indicate that the owner is the BasicLock on the stack, 1594 // and set the stack locker field in the monitor. 1595 m->set_stack_locker(mark.locker()); 1596 m->set_anonymous_owner(); 1597 } 1598 // TODO-FIXME: assert BasicLock->dhw != 0. 1599 1600 // Must preserve store ordering. The monitor state must 1601 // be stable at the time of publishing the monitor address. 1602 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1603 // Release semantics so that above set_object() is seen first. 1604 object->release_set_mark(markWord::encode(m)); 1605 1606 // Once ObjectMonitor is configured and the object is associated 1607 // with the ObjectMonitor, it is safe to allow async deflation: 1608 _in_use_list.add(m); 1609 1610 if (log_is_enabled(Trace, monitorinflation)) { 1611 ResourceMark rm; 1612 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1613 INTPTR_FORMAT ", type='%s'", p2i(object), 1614 object->mark().value(), object->klass()->external_name()); 1615 } 1616 if (event.should_commit()) { 1617 post_monitor_inflate_event(&event, object, cause); 1618 } 1619 return m; 1620 } 1621 1622 // CASE: unlocked 1623 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1624 // If we know we're inflating for entry it's better to inflate by swinging a 1625 // pre-locked ObjectMonitor pointer into the object header. A successful 1626 // CAS inflates the object *and* confers ownership to the inflating thread. 1627 // In the current implementation we use a 2-step mechanism where we CAS() 1628 // to inflate and then CAS() again to try to swing _owner from null to current. 1629 // An inflateTry() method that we could call from enter() would be useful. 1630 1631 assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1632 ObjectMonitor* m = new ObjectMonitor(object); 1633 // prepare m for installation - set monitor to initial state 1634 m->set_header(mark); 1635 1636 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1637 delete m; 1638 m = nullptr; 1639 continue; 1640 // interference - the markword changed - just retry. 1641 // The state-transitions are one-way, so there's no chance of 1642 // live-lock -- "Inflated" is an absorbing state. 1643 } 1644 1645 // Once the ObjectMonitor is configured and object is associated 1646 // with the ObjectMonitor, it is safe to allow async deflation: 1647 _in_use_list.add(m); 1648 1649 if (log_is_enabled(Trace, monitorinflation)) { 1650 ResourceMark rm; 1651 lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark=" 1652 INTPTR_FORMAT ", type='%s'", p2i(object), 1653 object->mark().value(), object->klass()->external_name()); 1654 } 1655 if (event.should_commit()) { 1656 post_monitor_inflate_event(&event, object, cause); 1657 } 1658 return m; 1659 } 1660 } 1661 1662 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1663 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1664 // 1665 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) { 1666 MonitorList::Iterator iter = _in_use_list.iterator(); 1667 size_t deflated_count = 0; 1668 Thread* current = Thread::current(); 1669 1670 while (iter.has_next()) { 1671 if (deflated_count >= (size_t)MonitorDeflationMax) { 1672 break; 1673 } 1674 ObjectMonitor* mid = iter.next(); 1675 if (mid->deflate_monitor(current)) { 1676 deflated_count++; 1677 } 1678 1679 // Must check for a safepoint/handshake and honor it. 1680 safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count); 1681 } 1682 1683 return deflated_count; 1684 } 1685 1686 class HandshakeForDeflation : public HandshakeClosure { 1687 public: 1688 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1689 1690 void do_thread(Thread* thread) { 1691 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1692 INTPTR_FORMAT, p2i(thread)); 1693 if (thread->is_Java_thread()) { 1694 // Clear OM cache 1695 JavaThread* jt = JavaThread::cast(thread); 1696 jt->om_clear_monitor_cache(); 1697 } 1698 } 1699 }; 1700 1701 class VM_RendezvousGCThreads : public VM_Operation { 1702 public: 1703 bool evaluate_at_safepoint() const override { return false; } 1704 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1705 void doit() override { 1706 Universe::heap()->safepoint_synchronize_begin(); 1707 Universe::heap()->safepoint_synchronize_end(); 1708 }; 1709 }; 1710 1711 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list, 1712 ObjectMonitorDeflationSafepointer* safepointer) { 1713 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1714 size_t deleted_count = 0; 1715 for (ObjectMonitor* monitor: *delete_list) { 1716 delete monitor; 1717 deleted_count++; 1718 // A JavaThread must check for a safepoint/handshake and honor it. 1719 safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count); 1720 } 1721 return deleted_count; 1722 } 1723 1724 class ObjectMonitorDeflationLogging: public StackObj { 1725 LogStreamHandle(Debug, monitorinflation) _debug; 1726 LogStreamHandle(Info, monitorinflation) _info; 1727 LogStream* _stream; 1728 elapsedTimer _timer; 1729 1730 size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); } 1731 size_t count() const { return ObjectSynchronizer::in_use_list_count(); } 1732 size_t max() const { return ObjectSynchronizer::in_use_list_max(); } 1733 1734 public: 1735 ObjectMonitorDeflationLogging() 1736 : _debug(), _info(), _stream(nullptr) { 1737 if (_debug.is_enabled()) { 1738 _stream = &_debug; 1739 } else if (_info.is_enabled()) { 1740 _stream = &_info; 1741 } 1742 } 1743 1744 void begin() { 1745 if (_stream != nullptr) { 1746 _stream->print_cr("begin deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1747 ceiling(), count(), max()); 1748 _timer.start(); 1749 } 1750 } 1751 1752 void before_handshake(size_t unlinked_count) { 1753 if (_stream != nullptr) { 1754 _timer.stop(); 1755 _stream->print_cr("before handshaking: unlinked_count=%zu" 1756 ", in_use_list stats: ceiling=%zu, count=" 1757 "%zu, max=%zu", 1758 unlinked_count, ceiling(), count(), max()); 1759 } 1760 } 1761 1762 void after_handshake() { 1763 if (_stream != nullptr) { 1764 _stream->print_cr("after handshaking: in_use_list stats: ceiling=" 1765 "%zu, count=%zu, max=%zu", 1766 ceiling(), count(), max()); 1767 _timer.start(); 1768 } 1769 } 1770 1771 void end(size_t deflated_count, size_t unlinked_count) { 1772 if (_stream != nullptr) { 1773 _timer.stop(); 1774 if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) { 1775 _stream->print_cr("deflated_count=%zu, {unlinked,deleted}_count=%zu monitors in %3.7f secs", 1776 deflated_count, unlinked_count, _timer.seconds()); 1777 } 1778 _stream->print_cr("end deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1779 ceiling(), count(), max()); 1780 } 1781 } 1782 1783 void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) { 1784 if (_stream != nullptr) { 1785 _timer.stop(); 1786 _stream->print_cr("pausing %s: %s=%zu, in_use_list stats: ceiling=" 1787 "%zu, count=%zu, max=%zu", 1788 op_name, cnt_name, cnt, ceiling(), count(), max()); 1789 } 1790 } 1791 1792 void after_block_for_safepoint(const char* op_name) { 1793 if (_stream != nullptr) { 1794 _stream->print_cr("resuming %s: in_use_list stats: ceiling=%zu" 1795 ", count=%zu, max=%zu", op_name, 1796 ceiling(), count(), max()); 1797 _timer.start(); 1798 } 1799 } 1800 }; 1801 1802 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) { 1803 if (!SafepointMechanism::should_process(_current)) { 1804 return; 1805 } 1806 1807 // A safepoint/handshake has started. 1808 _log->before_block_for_safepoint(op_name, count_name, counter); 1809 1810 { 1811 // Honor block request. 1812 ThreadBlockInVM tbivm(_current); 1813 } 1814 1815 _log->after_block_for_safepoint(op_name); 1816 } 1817 1818 // This function is called by the MonitorDeflationThread to deflate 1819 // ObjectMonitors. 1820 size_t ObjectSynchronizer::deflate_idle_monitors() { 1821 JavaThread* current = JavaThread::current(); 1822 assert(current->is_monitor_deflation_thread(), "The only monitor deflater"); 1823 1824 // The async deflation request has been processed. 1825 _last_async_deflation_time_ns = os::javaTimeNanos(); 1826 set_is_async_deflation_requested(false); 1827 1828 ObjectMonitorDeflationLogging log; 1829 ObjectMonitorDeflationSafepointer safepointer(current, &log); 1830 1831 log.begin(); 1832 1833 // Deflate some idle ObjectMonitors. 1834 size_t deflated_count = deflate_monitor_list(&safepointer); 1835 1836 // Unlink the deflated ObjectMonitors from the in-use list. 1837 size_t unlinked_count = 0; 1838 size_t deleted_count = 0; 1839 if (deflated_count > 0) { 1840 ResourceMark rm(current); 1841 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1842 unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer); 1843 1844 #ifdef ASSERT 1845 if (UseObjectMonitorTable) { 1846 for (ObjectMonitor* monitor : delete_list) { 1847 assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed"); 1848 } 1849 } 1850 #endif 1851 1852 log.before_handshake(unlinked_count); 1853 1854 // A JavaThread needs to handshake in order to safely free the 1855 // ObjectMonitors that were deflated in this cycle. 1856 HandshakeForDeflation hfd_hc; 1857 Handshake::execute(&hfd_hc); 1858 // Also, we sync and desync GC threads around the handshake, so that they can 1859 // safely read the mark-word and look-through to the object-monitor, without 1860 // being afraid that the object-monitor is going away. 1861 VM_RendezvousGCThreads sync_gc; 1862 VMThread::execute(&sync_gc); 1863 1864 log.after_handshake(); 1865 1866 // After the handshake, safely free the ObjectMonitors that were 1867 // deflated and unlinked in this cycle. 1868 1869 // Delete the unlinked ObjectMonitors. 1870 deleted_count = delete_monitors(&delete_list, &safepointer); 1871 assert(unlinked_count == deleted_count, "must be"); 1872 } 1873 1874 log.end(deflated_count, unlinked_count); 1875 1876 GVars.stw_random = os::random(); 1877 1878 if (deflated_count != 0) { 1879 _no_progress_cnt = 0; 1880 } else if (_no_progress_skip_increment) { 1881 _no_progress_skip_increment = false; 1882 } else { 1883 _no_progress_cnt++; 1884 } 1885 1886 return deflated_count; 1887 } 1888 1889 // Monitor cleanup on JavaThread::exit 1890 1891 // Iterate through monitor cache and attempt to release thread's monitors 1892 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1893 private: 1894 JavaThread* _thread; 1895 1896 public: 1897 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1898 void do_monitor(ObjectMonitor* mid) { 1899 intx rec = mid->complete_exit(_thread); 1900 _thread->dec_held_monitor_count(rec + 1); 1901 } 1902 }; 1903 1904 // Release all inflated monitors owned by current thread. Lightweight monitors are 1905 // ignored. This is meant to be called during JNI thread detach which assumes 1906 // all remaining monitors are heavyweight. All exceptions are swallowed. 1907 // Scanning the extant monitor list can be time consuming. 1908 // A simple optimization is to add a per-thread flag that indicates a thread 1909 // called jni_monitorenter() during its lifetime. 1910 // 1911 // Instead of NoSafepointVerifier it might be cheaper to 1912 // use an idiom of the form: 1913 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1914 // <code that must not run at safepoint> 1915 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1916 // Since the tests are extremely cheap we could leave them enabled 1917 // for normal product builds. 1918 1919 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1920 assert(current == JavaThread::current(), "must be current Java thread"); 1921 NoSafepointVerifier nsv; 1922 ReleaseJavaMonitorsClosure rjmc(current); 1923 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1924 assert(!current->has_pending_exception(), "Should not be possible"); 1925 current->clear_pending_exception(); 1926 assert(current->held_monitor_count() == 0, "Should not be possible"); 1927 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1928 current->clear_jni_monitor_count(); 1929 } 1930 1931 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1932 switch (cause) { 1933 case inflate_cause_vm_internal: return "VM Internal"; 1934 case inflate_cause_monitor_enter: return "Monitor Enter"; 1935 case inflate_cause_wait: return "Monitor Wait"; 1936 case inflate_cause_notify: return "Monitor Notify"; 1937 case inflate_cause_hash_code: return "Monitor Hash Code"; 1938 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1939 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1940 default: 1941 ShouldNotReachHere(); 1942 } 1943 return "Unknown"; 1944 } 1945 1946 //------------------------------------------------------------------------------ 1947 // Debugging code 1948 1949 u_char* ObjectSynchronizer::get_gvars_addr() { 1950 return (u_char*)&GVars; 1951 } 1952 1953 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1954 return (u_char*)&GVars.hc_sequence; 1955 } 1956 1957 size_t ObjectSynchronizer::get_gvars_size() { 1958 return sizeof(SharedGlobals); 1959 } 1960 1961 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1962 return (u_char*)&GVars.stw_random; 1963 } 1964 1965 // Do the final audit and print of ObjectMonitor stats; must be done 1966 // by the VMThread at VM exit time. 1967 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1968 assert(Thread::current()->is_VM_thread(), "sanity check"); 1969 1970 if (is_final_audit()) { // Only do the audit once. 1971 return; 1972 } 1973 set_is_final_audit(); 1974 log_info(monitorinflation)("Starting the final audit."); 1975 1976 if (log_is_enabled(Info, monitorinflation)) { 1977 LogStreamHandle(Info, monitorinflation) ls; 1978 audit_and_print_stats(&ls, true /* on_exit */); 1979 } 1980 } 1981 1982 // This function can be called by the MonitorDeflationThread or it can be called when 1983 // we are trying to exit the VM. The list walker functions can run in parallel with 1984 // the other list operations. 1985 // Calls to this function can be added in various places as a debugging 1986 // aid. 1987 // 1988 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) { 1989 int error_cnt = 0; 1990 1991 ls->print_cr("Checking in_use_list:"); 1992 chk_in_use_list(ls, &error_cnt); 1993 1994 if (error_cnt == 0) { 1995 ls->print_cr("No errors found in in_use_list checks."); 1996 } else { 1997 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 1998 } 1999 2000 // When exiting, only log the interesting entries at the Info level. 2001 // When called at intervals by the MonitorDeflationThread, log output 2002 // at the Trace level since there can be a lot of it. 2003 if (!on_exit && log_is_enabled(Trace, monitorinflation)) { 2004 LogStreamHandle(Trace, monitorinflation) ls_tr; 2005 log_in_use_monitor_details(&ls_tr, true /* log_all */); 2006 } else if (on_exit) { 2007 log_in_use_monitor_details(ls, false /* log_all */); 2008 } 2009 2010 ls->flush(); 2011 2012 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 2013 } 2014 2015 // Check the in_use_list; log the results of the checks. 2016 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 2017 size_t l_in_use_count = _in_use_list.count(); 2018 size_t l_in_use_max = _in_use_list.max(); 2019 out->print_cr("count=%zu, max=%zu", l_in_use_count, 2020 l_in_use_max); 2021 2022 size_t ck_in_use_count = 0; 2023 MonitorList::Iterator iter = _in_use_list.iterator(); 2024 while (iter.has_next()) { 2025 ObjectMonitor* mid = iter.next(); 2026 chk_in_use_entry(mid, out, error_cnt_p); 2027 ck_in_use_count++; 2028 } 2029 2030 if (l_in_use_count == ck_in_use_count) { 2031 out->print_cr("in_use_count=%zu equals ck_in_use_count=%zu", 2032 l_in_use_count, ck_in_use_count); 2033 } else { 2034 out->print_cr("WARNING: in_use_count=%zu is not equal to " 2035 "ck_in_use_count=%zu", l_in_use_count, 2036 ck_in_use_count); 2037 } 2038 2039 size_t ck_in_use_max = _in_use_list.max(); 2040 if (l_in_use_max == ck_in_use_max) { 2041 out->print_cr("in_use_max=%zu equals ck_in_use_max=%zu", 2042 l_in_use_max, ck_in_use_max); 2043 } else { 2044 out->print_cr("WARNING: in_use_max=%zu is not equal to " 2045 "ck_in_use_max=%zu", l_in_use_max, ck_in_use_max); 2046 } 2047 } 2048 2049 // Check an in-use monitor entry; log any errors. 2050 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2051 int* error_cnt_p) { 2052 if (n->owner_is_DEFLATER_MARKER()) { 2053 // This could happen when monitor deflation blocks for a safepoint. 2054 return; 2055 } 2056 2057 2058 if (n->metadata() == 0) { 2059 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2060 "have non-null _metadata (header/hash) field.", p2i(n)); 2061 *error_cnt_p = *error_cnt_p + 1; 2062 } 2063 2064 const oop obj = n->object_peek(); 2065 if (obj == nullptr) { 2066 return; 2067 } 2068 2069 const markWord mark = obj->mark(); 2070 if (!mark.has_monitor()) { 2071 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2072 "object does not think it has a monitor: obj=" 2073 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2074 p2i(obj), mark.value()); 2075 *error_cnt_p = *error_cnt_p + 1; 2076 return; 2077 } 2078 2079 ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark); 2080 if (n != obj_mon) { 2081 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2082 "object does not refer to the same monitor: obj=" 2083 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2084 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2085 *error_cnt_p = *error_cnt_p + 1; 2086 } 2087 } 2088 2089 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2090 // flags indicate why the entry is in-use, 'object' and 'object type' 2091 // indicate the associated object and its type. 2092 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2093 if (_in_use_list.count() > 0) { 2094 stringStream ss; 2095 out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)"); 2096 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2097 out->print_cr("%18s %s %18s %18s", 2098 "monitor", "BHL", "object", "object type"); 2099 out->print_cr("================== === ================== =================="); 2100 2101 auto is_interesting = [&](ObjectMonitor* monitor) { 2102 return log_all || monitor->has_owner() || monitor->is_busy(); 2103 }; 2104 2105 monitors_iterate([&](ObjectMonitor* monitor) { 2106 if (is_interesting(monitor)) { 2107 const oop obj = monitor->object_peek(); 2108 const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash(); 2109 ResourceMark rm; 2110 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2111 monitor->is_busy(), hash != 0, monitor->has_owner(), 2112 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2113 if (monitor->is_busy()) { 2114 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2115 ss.reset(); 2116 } 2117 out->cr(); 2118 } 2119 }); 2120 } 2121 2122 out->flush(); 2123 }