1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include COMPILER_HEADER(utilities/globalDefinitions)
  33 
  34 // Defaults for macros that might be defined per compiler.
  35 #ifndef NOINLINE
  36 #define NOINLINE
  37 #endif
  38 #ifndef ALWAYSINLINE
  39 #define ALWAYSINLINE inline
  40 #endif
  41 #ifndef __HOT
  42 #define __HOT
  43 #endif
  44 #ifndef __COLD
  45 #define __COLD
  46 #endif
  47 
  48 #ifndef ATTRIBUTE_ALIGNED
  49 #define ATTRIBUTE_ALIGNED(x)
  50 #endif
  51 #ifndef LIKELY
  52 #define LIKELY(condition)   (condition)
  53 #endif
  54 #ifndef UNLIKELY
  55 #define UNLIKELY(condition) (condition)
  56 #endif
  57 
  58 // These are #defines to selectively turn on/off the Print(Opto)Assembly
  59 // capabilities. Choices should be led by a tradeoff between
  60 // code size and improved supportability.
  61 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
  62 // to have a fallback in case hsdis is not available.
  63 #if defined(PRODUCT)
  64   #define SUPPORT_ABSTRACT_ASSEMBLY
  65   #define SUPPORT_ASSEMBLY
  66   #undef  SUPPORT_OPTO_ASSEMBLY      // Can't activate. In PRODUCT, many dump methods are missing.
  67   #undef  SUPPORT_DATA_STRUCTS       // Of limited use. In PRODUCT, many print methods are empty.
  68 #else
  69   #define SUPPORT_ABSTRACT_ASSEMBLY
  70   #define SUPPORT_ASSEMBLY
  71   #define SUPPORT_OPTO_ASSEMBLY
  72   #define SUPPORT_DATA_STRUCTS
  73 #endif
  74 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
  75   #define SUPPORT_ABSTRACT_ASSEMBLY
  76 #endif
  77 
  78 // This file holds all globally used constants & types, class (forward)
  79 // declarations and a few frequently used utility functions.
  80 
  81 //----------------------------------------------------------------------------------------------------
  82 // Printf-style formatters for fixed- and variable-width types as pointers and
  83 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  84 // doesn't provide appropriate definitions, they should be provided in
  85 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  86 
  87 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  88 
  89 // Format 32-bit quantities.
  90 #define INT32_FORMAT           "%" PRId32
  91 #define UINT32_FORMAT          "%" PRIu32
  92 #define INT32_FORMAT_W(width)  "%" #width PRId32
  93 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  94 
  95 #define PTR32_FORMAT           "0x%08" PRIx32
  96 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  97 
  98 // Format 64-bit quantities.
  99 #define INT64_FORMAT           "%" PRId64
 100 #define UINT64_FORMAT          "%" PRIu64
 101 #define UINT64_FORMAT_X        "%" PRIx64
 102 #define INT64_FORMAT_W(width)  "%" #width PRId64
 103 #define UINT64_FORMAT_W(width) "%" #width PRIu64
 104 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64
 105 
 106 #define PTR64_FORMAT           "0x%016" PRIx64
 107 
 108 // Format jlong, if necessary
 109 #ifndef JLONG_FORMAT
 110 #define JLONG_FORMAT           INT64_FORMAT
 111 #endif
 112 #ifndef JLONG_FORMAT_W
 113 #define JLONG_FORMAT_W(width)  INT64_FORMAT_W(width)
 114 #endif
 115 #ifndef JULONG_FORMAT
 116 #define JULONG_FORMAT          UINT64_FORMAT
 117 #endif
 118 #ifndef JULONG_FORMAT_X
 119 #define JULONG_FORMAT_X        UINT64_FORMAT_X
 120 #endif
 121 
 122 // Format pointers which change size between 32- and 64-bit.
 123 #ifdef  _LP64
 124 #define INTPTR_FORMAT "0x%016" PRIxPTR
 125 #define PTR_FORMAT    "0x%016" PRIxPTR
 126 #else   // !_LP64
 127 #define INTPTR_FORMAT "0x%08"  PRIxPTR
 128 #define PTR_FORMAT    "0x%08"  PRIxPTR
 129 #endif  // _LP64
 130 
 131 // Format pointers without leading zeros
 132 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
 133 
 134 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
 135 
 136 #define SSIZE_FORMAT             "%"   PRIdPTR
 137 #define SIZE_FORMAT              "%"   PRIuPTR
 138 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
 139 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 140 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 141 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 142 
 143 #define INTX_FORMAT           "%" PRIdPTR
 144 #define UINTX_FORMAT          "%" PRIuPTR
 145 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 146 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 147 
 148 //----------------------------------------------------------------------------------------------------
 149 // Constants
 150 
 151 const int LogBytesPerShort   = 1;
 152 const int LogBytesPerInt     = 2;
 153 #ifdef _LP64
 154 const int LogBytesPerWord    = 3;
 155 #else
 156 const int LogBytesPerWord    = 2;
 157 #endif
 158 const int LogBytesPerLong    = 3;
 159 
 160 const int BytesPerShort      = 1 << LogBytesPerShort;
 161 const int BytesPerInt        = 1 << LogBytesPerInt;
 162 const int BytesPerWord       = 1 << LogBytesPerWord;
 163 const int BytesPerLong       = 1 << LogBytesPerLong;
 164 
 165 const int LogBitsPerByte     = 3;
 166 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 167 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 168 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 169 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 170 
 171 const int BitsPerByte        = 1 << LogBitsPerByte;
 172 const int BitsPerShort       = 1 << LogBitsPerShort;
 173 const int BitsPerInt         = 1 << LogBitsPerInt;
 174 const int BitsPerWord        = 1 << LogBitsPerWord;
 175 const int BitsPerLong        = 1 << LogBitsPerLong;
 176 
 177 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 178 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 179 
 180 const int WordsPerLong       = 2;       // Number of stack entries for longs
 181 
 182 const int oopSize            = sizeof(char*); // Full-width oop
 183 extern int heapOopSize;                       // Oop within a java object
 184 const int wordSize           = sizeof(char*);
 185 const int longSize           = sizeof(jlong);
 186 const int jintSize           = sizeof(jint);
 187 const int size_tSize         = sizeof(size_t);
 188 
 189 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 190 
 191 extern int LogBytesPerHeapOop;                // Oop within a java object
 192 extern int LogBitsPerHeapOop;
 193 extern int BytesPerHeapOop;
 194 extern int BitsPerHeapOop;
 195 
 196 const int BitsPerJavaInteger = 32;
 197 const int BitsPerJavaLong    = 64;
 198 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 199 
 200 // Size of a char[] needed to represent a jint as a string in decimal.
 201 const int jintAsStringSize = 12;
 202 
 203 // An opaque type, so that HeapWord* can be a generic pointer into the heap.
 204 // We require that object sizes be measured in units of heap words (e.g.
 205 // pointer-sized values), so that given HeapWord* hw,
 206 //   hw += oop(hw)->foo();
 207 // works, where foo is a method (like size or scavenge) that returns the
 208 // object size.
 209 class HeapWordImpl;             // Opaque, never defined.
 210 typedef HeapWordImpl* HeapWord;
 211 
 212 // Analogous opaque struct for metadata allocated from metaspaces.
 213 class MetaWordImpl;             // Opaque, never defined.
 214 typedef MetaWordImpl* MetaWord;
 215 
 216 // HeapWordSize must be 2^LogHeapWordSize.
 217 const int HeapWordSize        = sizeof(HeapWord);
 218 #ifdef _LP64
 219 const int LogHeapWordSize     = 3;
 220 #else
 221 const int LogHeapWordSize     = 2;
 222 #endif
 223 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 224 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 225 
 226 // The minimum number of native machine words necessary to contain "byte_size"
 227 // bytes.
 228 inline size_t heap_word_size(size_t byte_size) {
 229   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 230 }
 231 
 232 //-------------------------------------------
 233 // Constant for jlong (standardized by C++11)
 234 
 235 // Build a 64bit integer constant
 236 #define CONST64(x)  (x ## LL)
 237 #define UCONST64(x) (x ## ULL)
 238 
 239 const jlong min_jlong = CONST64(0x8000000000000000);
 240 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 241 
 242 const size_t K                  = 1024;
 243 const size_t M                  = K*K;
 244 const size_t G                  = M*K;
 245 const size_t HWperKB            = K / sizeof(HeapWord);
 246 
 247 // Constants for converting from a base unit to milli-base units.  For
 248 // example from seconds to milliseconds and microseconds
 249 
 250 const int MILLIUNITS    = 1000;         // milli units per base unit
 251 const int MICROUNITS    = 1000000;      // micro units per base unit
 252 const int NANOUNITS     = 1000000000;   // nano units per base unit
 253 
 254 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 255 const jint  NANOSECS_PER_MILLISEC = 1000000;
 256 
 257 // Proper units routines try to maintain at least three significant digits.
 258 // In worst case, it would print five significant digits with lower prefix.
 259 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 260 // and therefore we need to be careful.
 261 
 262 inline const char* proper_unit_for_byte_size(size_t s) {
 263 #ifdef _LP64
 264   if (s >= 100*G) {
 265     return "G";
 266   }
 267 #endif
 268   if (s >= 100*M) {
 269     return "M";
 270   } else if (s >= 100*K) {
 271     return "K";
 272   } else {
 273     return "B";
 274   }
 275 }
 276 
 277 template <class T>
 278 inline T byte_size_in_proper_unit(T s) {
 279 #ifdef _LP64
 280   if (s >= 100*G) {
 281     return (T)(s/G);
 282   }
 283 #endif
 284   if (s >= 100*M) {
 285     return (T)(s/M);
 286   } else if (s >= 100*K) {
 287     return (T)(s/K);
 288   } else {
 289     return s;
 290   }
 291 }
 292 
 293 inline const char* exact_unit_for_byte_size(size_t s) {
 294 #ifdef _LP64
 295   if (s >= G && (s % G) == 0) {
 296     return "G";
 297   }
 298 #endif
 299   if (s >= M && (s % M) == 0) {
 300     return "M";
 301   }
 302   if (s >= K && (s % K) == 0) {
 303     return "K";
 304   }
 305   return "B";
 306 }
 307 
 308 inline size_t byte_size_in_exact_unit(size_t s) {
 309 #ifdef _LP64
 310   if (s >= G && (s % G) == 0) {
 311     return s / G;
 312   }
 313 #endif
 314   if (s >= M && (s % M) == 0) {
 315     return s / M;
 316   }
 317   if (s >= K && (s % K) == 0) {
 318     return s / K;
 319   }
 320   return s;
 321 }
 322 
 323 // Memory size transition formatting.
 324 
 325 #define HEAP_CHANGE_FORMAT "%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)->" SIZE_FORMAT "K(" SIZE_FORMAT "K)"
 326 
 327 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \
 328   (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K
 329 
 330 //----------------------------------------------------------------------------------------------------
 331 // VM type definitions
 332 
 333 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 334 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 335 
 336 typedef intptr_t  intx;
 337 typedef uintptr_t uintx;
 338 
 339 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 340 const intx  max_intx  = (uintx)min_intx - 1;
 341 const uintx max_uintx = (uintx)-1;
 342 
 343 // Table of values:
 344 //      sizeof intx         4               8
 345 // min_intx             0x80000000      0x8000000000000000
 346 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 347 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 348 
 349 typedef unsigned int uint;   NEEDS_CLEANUP
 350 
 351 
 352 //----------------------------------------------------------------------------------------------------
 353 // Java type definitions
 354 
 355 // All kinds of 'plain' byte addresses
 356 typedef   signed char s_char;
 357 typedef unsigned char u_char;
 358 typedef u_char*       address;
 359 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 360                                     // except for some implementations of a C++
 361                                     // linkage pointer to function. Should never
 362                                     // need one of those to be placed in this
 363                                     // type anyway.
 364 
 365 //  Utility functions to "portably" (?) bit twiddle pointers
 366 //  Where portable means keep ANSI C++ compilers quiet
 367 
 368 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 369 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 370 
 371 //  Utility functions to "portably" make cast to/from function pointers.
 372 
 373 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 374 inline address_word  castable_address(address x)              { return address_word(x) ; }
 375 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 376 
 377 // Pointer subtraction.
 378 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 379 // the range we might need to find differences from one end of the heap
 380 // to the other.
 381 // A typical use might be:
 382 //     if (pointer_delta(end(), top()) >= size) {
 383 //       // enough room for an object of size
 384 //       ...
 385 // and then additions like
 386 //       ... top() + size ...
 387 // are safe because we know that top() is at least size below end().
 388 inline size_t pointer_delta(const volatile void* left,
 389                             const volatile void* right,
 390                             size_t element_size) {
 391   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 392 }
 393 
 394 // A version specialized for HeapWord*'s.
 395 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 396   return pointer_delta(left, right, sizeof(HeapWord));
 397 }
 398 // A version specialized for MetaWord*'s.
 399 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 400   return pointer_delta(left, right, sizeof(MetaWord));
 401 }
 402 
 403 //
 404 // ANSI C++ does not allow casting from one pointer type to a function pointer
 405 // directly without at best a warning. This macro accomplishes it silently
 406 // In every case that is present at this point the value be cast is a pointer
 407 // to a C linkage function. In some case the type used for the cast reflects
 408 // that linkage and a picky compiler would not complain. In other cases because
 409 // there is no convenient place to place a typedef with extern C linkage (i.e
 410 // a platform dependent header file) it doesn't. At this point no compiler seems
 411 // picky enough to catch these instances (which are few). It is possible that
 412 // using templates could fix these for all cases. This use of templates is likely
 413 // so far from the middle of the road that it is likely to be problematic in
 414 // many C++ compilers.
 415 //
 416 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 417 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 418 
 419 // Unsigned byte types for os and stream.hpp
 420 
 421 // Unsigned one, two, four and eigth byte quantities used for describing
 422 // the .class file format. See JVM book chapter 4.
 423 
 424 typedef jubyte  u1;
 425 typedef jushort u2;
 426 typedef juint   u4;
 427 typedef julong  u8;
 428 
 429 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 430 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 431 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 432 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 433 
 434 typedef jbyte  s1;
 435 typedef jshort s2;
 436 typedef jint   s4;
 437 typedef jlong  s8;
 438 
 439 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 440 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 441 const jshort min_jshort = -(1 << 15);    // smallest jshort
 442 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 443 
 444 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 445 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 446 
 447 //----------------------------------------------------------------------------------------------------
 448 // JVM spec restrictions
 449 
 450 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 451 
 452 //----------------------------------------------------------------------------------------------------
 453 // Object alignment, in units of HeapWords.
 454 //
 455 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 456 // reference fields can be naturally aligned.
 457 
 458 extern int MinObjAlignment;
 459 extern int MinObjAlignmentInBytes;
 460 extern int MinObjAlignmentInBytesMask;
 461 
 462 extern int LogMinObjAlignment;
 463 extern int LogMinObjAlignmentInBytes;
 464 
 465 const int LogKlassAlignmentInBytes = 3;
 466 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 467 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 468 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 469 
 470 // Maximal size of heap where unscaled compression can be used. Also upper bound
 471 // for heap placement: 4GB.
 472 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 473 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 474 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 475 extern uint64_t OopEncodingHeapMax;
 476 
 477 // Maximal size of compressed class space. Above this limit compression is not possible.
 478 // Also upper bound for placement of zero based class space. (Class space is further limited
 479 // to be < 3G, see arguments.cpp.)
 480 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 481 
 482 // Machine dependent stuff
 483 
 484 // The maximum size of the code cache.  Can be overridden by targets.
 485 #define CODE_CACHE_SIZE_LIMIT (2*G)
 486 // Allow targets to reduce the default size of the code cache.
 487 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 488 
 489 #include CPU_HEADER(globalDefinitions)
 490 
 491 // To assure the IRIW property on processors that are not multiple copy
 492 // atomic, sync instructions must be issued between volatile reads to
 493 // assure their ordering, instead of after volatile stores.
 494 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 495 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 496 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 497 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 498 #else
 499 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 500 #endif
 501 
 502 // The expected size in bytes of a cache line, used to pad data structures.
 503 #ifndef DEFAULT_CACHE_LINE_SIZE
 504   #define DEFAULT_CACHE_LINE_SIZE 64
 505 #endif
 506 
 507 
 508 //----------------------------------------------------------------------------------------------------
 509 // Utility macros for compilers
 510 // used to silence compiler warnings
 511 
 512 #define Unused_Variable(var) var
 513 
 514 
 515 //----------------------------------------------------------------------------------------------------
 516 // Miscellaneous
 517 
 518 // 6302670 Eliminate Hotspot __fabsf dependency
 519 // All fabs() callers should call this function instead, which will implicitly
 520 // convert the operand to double, avoiding a dependency on __fabsf which
 521 // doesn't exist in early versions of Solaris 8.
 522 inline double fabsd(double value) {
 523   return fabs(value);
 524 }
 525 
 526 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 527 // is zero, return 0.0.
 528 template<typename T>
 529 inline double percent_of(T numerator, T denominator) {
 530   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 531 }
 532 
 533 //----------------------------------------------------------------------------------------------------
 534 // Special casts
 535 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 536 typedef union {
 537   jfloat f;
 538   jint i;
 539 } FloatIntConv;
 540 
 541 typedef union {
 542   jdouble d;
 543   jlong l;
 544   julong ul;
 545 } DoubleLongConv;
 546 
 547 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 548 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 549 
 550 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 551 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 552 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 553 
 554 inline jint low (jlong value)                    { return jint(value); }
 555 inline jint high(jlong value)                    { return jint(value >> 32); }
 556 
 557 // the fancy casts are a hopefully portable way
 558 // to do unsigned 32 to 64 bit type conversion
 559 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 560                                                    *value |= (jlong)(julong)(juint)low; }
 561 
 562 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 563                                                    *value |= (jlong)high       << 32; }
 564 
 565 inline jlong jlong_from(jint h, jint l) {
 566   jlong result = 0; // initialization to avoid warning
 567   set_high(&result, h);
 568   set_low(&result,  l);
 569   return result;
 570 }
 571 
 572 union jlong_accessor {
 573   jint  words[2];
 574   jlong long_value;
 575 };
 576 
 577 void basic_types_init(); // cannot define here; uses assert
 578 
 579 
 580 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 581 enum BasicType {
 582   T_BOOLEAN     =  4,
 583   T_CHAR        =  5,
 584   T_FLOAT       =  6,
 585   T_DOUBLE      =  7,
 586   T_BYTE        =  8,
 587   T_SHORT       =  9,
 588   T_INT         = 10,
 589   T_LONG        = 11,
 590   T_OBJECT      = 12,
 591   T_ARRAY       = 13,
 592   T_VOID        = 14,
 593   T_ADDRESS     = 15,
 594   T_NARROWOOP   = 16,
 595   T_METADATA    = 17,
 596   T_NARROWKLASS = 18,
 597   T_CONFLICT    = 19, // for stack value type with conflicting contents
 598   T_ILLEGAL     = 99
 599 };
 600 
 601 inline bool is_java_primitive(BasicType t) {
 602   return T_BOOLEAN <= t && t <= T_LONG;
 603 }
 604 
 605 inline bool is_subword_type(BasicType t) {
 606   // these guys are processed exactly like T_INT in calling sequences:
 607   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 608 }
 609 
 610 inline bool is_signed_subword_type(BasicType t) {
 611   return (t == T_BYTE || t == T_SHORT);
 612 }
 613 
 614 inline bool is_reference_type(BasicType t) {
 615   return (t == T_OBJECT || t == T_ARRAY);
 616 }
 617 
 618 // Convert a char from a classfile signature to a BasicType
 619 inline BasicType char2type(char c) {
 620   switch( c ) {
 621   case 'B': return T_BYTE;
 622   case 'C': return T_CHAR;
 623   case 'D': return T_DOUBLE;
 624   case 'F': return T_FLOAT;
 625   case 'I': return T_INT;
 626   case 'J': return T_LONG;
 627   case 'S': return T_SHORT;
 628   case 'Z': return T_BOOLEAN;
 629   case 'V': return T_VOID;
 630   case 'L': return T_OBJECT;
 631   case '[': return T_ARRAY;
 632   }
 633   return T_ILLEGAL;
 634 }
 635 
 636 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 637 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 638 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 639 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 640 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 641 extern BasicType name2type(const char* name);
 642 
 643 // Auxiliary math routines
 644 // least common multiple
 645 extern size_t lcm(size_t a, size_t b);
 646 
 647 
 648 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 649 enum BasicTypeSize {
 650   T_BOOLEAN_size     = 1,
 651   T_CHAR_size        = 1,
 652   T_FLOAT_size       = 1,
 653   T_DOUBLE_size      = 2,
 654   T_BYTE_size        = 1,
 655   T_SHORT_size       = 1,
 656   T_INT_size         = 1,
 657   T_LONG_size        = 2,
 658   T_OBJECT_size      = 1,
 659   T_ARRAY_size       = 1,
 660   T_NARROWOOP_size   = 1,
 661   T_NARROWKLASS_size = 1,
 662   T_VOID_size        = 0
 663 };
 664 
 665 
 666 // maps a BasicType to its instance field storage type:
 667 // all sub-word integral types are widened to T_INT
 668 extern BasicType type2field[T_CONFLICT+1];
 669 extern BasicType type2wfield[T_CONFLICT+1];
 670 
 671 
 672 // size in bytes
 673 enum ArrayElementSize {
 674   T_BOOLEAN_aelem_bytes     = 1,
 675   T_CHAR_aelem_bytes        = 2,
 676   T_FLOAT_aelem_bytes       = 4,
 677   T_DOUBLE_aelem_bytes      = 8,
 678   T_BYTE_aelem_bytes        = 1,
 679   T_SHORT_aelem_bytes       = 2,
 680   T_INT_aelem_bytes         = 4,
 681   T_LONG_aelem_bytes        = 8,
 682 #ifdef _LP64
 683   T_OBJECT_aelem_bytes      = 8,
 684   T_ARRAY_aelem_bytes       = 8,
 685 #else
 686   T_OBJECT_aelem_bytes      = 4,
 687   T_ARRAY_aelem_bytes       = 4,
 688 #endif
 689   T_NARROWOOP_aelem_bytes   = 4,
 690   T_NARROWKLASS_aelem_bytes = 4,
 691   T_VOID_aelem_bytes        = 0
 692 };
 693 
 694 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 695 #ifdef ASSERT
 696 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 697 #else
 698 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 699 #endif
 700 
 701 
 702 // JavaValue serves as a container for arbitrary Java values.
 703 
 704 class JavaValue {
 705 
 706  public:
 707   typedef union JavaCallValue {
 708     jfloat   f;
 709     jdouble  d;
 710     jint     i;
 711     jlong    l;
 712     jobject  h;
 713   } JavaCallValue;
 714 
 715  private:
 716   BasicType _type;
 717   JavaCallValue _value;
 718 
 719  public:
 720   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 721 
 722   JavaValue(jfloat value) {
 723     _type    = T_FLOAT;
 724     _value.f = value;
 725   }
 726 
 727   JavaValue(jdouble value) {
 728     _type    = T_DOUBLE;
 729     _value.d = value;
 730   }
 731 
 732  jfloat get_jfloat() const { return _value.f; }
 733  jdouble get_jdouble() const { return _value.d; }
 734  jint get_jint() const { return _value.i; }
 735  jlong get_jlong() const { return _value.l; }
 736  jobject get_jobject() const { return _value.h; }
 737  JavaCallValue* get_value_addr() { return &_value; }
 738  BasicType get_type() const { return _type; }
 739 
 740  void set_jfloat(jfloat f) { _value.f = f;}
 741  void set_jdouble(jdouble d) { _value.d = d;}
 742  void set_jint(jint i) { _value.i = i;}
 743  void set_jlong(jlong l) { _value.l = l;}
 744  void set_jobject(jobject h) { _value.h = h;}
 745  void set_type(BasicType t) { _type = t; }
 746 
 747  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 748  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 749  jchar get_jchar() const { return (jchar) (_value.i);}
 750  jshort get_jshort() const { return (jshort) (_value.i);}
 751 
 752 };
 753 
 754 
 755 #define STACK_BIAS      0
 756 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 757 // in order to extend the reach of the stack pointer.
 758 #if defined(SPARC) && defined(_LP64)
 759 #undef STACK_BIAS
 760 #define STACK_BIAS      0x7ff
 761 #endif
 762 
 763 
 764 // TosState describes the top-of-stack state before and after the execution of
 765 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 766 // registers. The TosState corresponds to the 'machine representation' of this cached
 767 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 768 // as well as a 5th state in case the top-of-stack value is actually on the top
 769 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 770 // state when it comes to machine representation but is used separately for (oop)
 771 // type specific operations (e.g. verification code).
 772 
 773 enum TosState {         // describes the tos cache contents
 774   btos = 0,             // byte, bool tos cached
 775   ztos = 1,             // byte, bool tos cached
 776   ctos = 2,             // char tos cached
 777   stos = 3,             // short tos cached
 778   itos = 4,             // int tos cached
 779   ltos = 5,             // long tos cached
 780   ftos = 6,             // float tos cached
 781   dtos = 7,             // double tos cached
 782   atos = 8,             // object cached
 783   vtos = 9,             // tos not cached
 784   number_of_states,
 785   ilgl                  // illegal state: should not occur
 786 };
 787 
 788 
 789 inline TosState as_TosState(BasicType type) {
 790   switch (type) {
 791     case T_BYTE   : return btos;
 792     case T_BOOLEAN: return ztos;
 793     case T_CHAR   : return ctos;
 794     case T_SHORT  : return stos;
 795     case T_INT    : return itos;
 796     case T_LONG   : return ltos;
 797     case T_FLOAT  : return ftos;
 798     case T_DOUBLE : return dtos;
 799     case T_VOID   : return vtos;
 800     case T_ARRAY  : // fall through
 801     case T_OBJECT : return atos;
 802     default       : return ilgl;
 803   }
 804 }
 805 
 806 inline BasicType as_BasicType(TosState state) {
 807   switch (state) {
 808     case btos : return T_BYTE;
 809     case ztos : return T_BOOLEAN;
 810     case ctos : return T_CHAR;
 811     case stos : return T_SHORT;
 812     case itos : return T_INT;
 813     case ltos : return T_LONG;
 814     case ftos : return T_FLOAT;
 815     case dtos : return T_DOUBLE;
 816     case atos : return T_OBJECT;
 817     case vtos : return T_VOID;
 818     default   : return T_ILLEGAL;
 819   }
 820 }
 821 
 822 
 823 // Helper function to convert BasicType info into TosState
 824 // Note: Cannot define here as it uses global constant at the time being.
 825 TosState as_TosState(BasicType type);
 826 
 827 
 828 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 829 // information is needed by the safepoint code.
 830 //
 831 // There are 4 essential states:
 832 //
 833 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 834 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 835 //  _thread_in_vm       : Executing in the vm
 836 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 837 //
 838 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 839 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 840 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 841 //
 842 // Given a state, the xxxx_trans state can always be found by adding 1.
 843 //
 844 enum JavaThreadState {
 845   _thread_uninitialized     =  0, // should never happen (missing initialization)
 846   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 847   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 848   _thread_in_native         =  4, // running in native code
 849   _thread_in_native_trans   =  5, // corresponding transition state
 850   _thread_in_vm             =  6, // running in VM
 851   _thread_in_vm_trans       =  7, // corresponding transition state
 852   _thread_in_Java           =  8, // running in Java or in stub code
 853   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 854   _thread_blocked           = 10, // blocked in vm
 855   _thread_blocked_trans     = 11, // corresponding transition state
 856   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 857 };
 858 
 859 //----------------------------------------------------------------------------------------------------
 860 // Special constants for debugging
 861 
 862 const jint     badInt           = -3;                       // generic "bad int" value
 863 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
 864 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
 865 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 866 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 867 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 868 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 869 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 870 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 871 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 872 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 873 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 874 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 875 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 876 
 877 
 878 // (These must be implemented as #defines because C++ compilers are
 879 // not obligated to inline non-integral constants!)
 880 #define       badAddress        ((address)::badAddressVal)
 881 #define       badOop            (cast_to_oop(::badOopVal))
 882 #define       badHeapWord       (::badHeapWordVal)
 883 
 884 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 885 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 886 
 887 //----------------------------------------------------------------------------------------------------
 888 // Utility functions for bitfield manipulations
 889 
 890 const intptr_t AllBits    = ~0; // all bits set in a word
 891 const intptr_t NoBits     =  0; // no bits set in a word
 892 const jlong    NoLongBits =  0; // no bits set in a long
 893 const intptr_t OneBit     =  1; // only right_most bit set in a word
 894 
 895 // get a word with the n.th or the right-most or left-most n bits set
 896 // (note: #define used only so that they can be used in enum constant definitions)
 897 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
 898 #define right_n_bits(n)   (nth_bit(n) - 1)
 899 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
 900 
 901 // bit-operations using a mask m
 902 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 903 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 904 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 905 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 906 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 907 
 908 // bit-operations using the n.th bit
 909 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 910 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 911 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 912 
 913 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 914 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 915   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 916 }
 917 
 918 
 919 //----------------------------------------------------------------------------------------------------
 920 // Utility functions for integers
 921 
 922 // Avoid use of global min/max macros which may cause unwanted double
 923 // evaluation of arguments.
 924 #ifdef max
 925 #undef max
 926 #endif
 927 
 928 #ifdef min
 929 #undef min
 930 #endif
 931 
 932 // It is necessary to use templates here. Having normal overloaded
 933 // functions does not work because it is necessary to provide both 32-
 934 // and 64-bit overloaded functions, which does not work, and having
 935 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
 936 // will be even more error-prone than macros.
 937 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
 938 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
 939 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
 940 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
 941 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
 942 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
 943 
 944 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
 945 
 946 // true if x is a power of 2, false otherwise
 947 inline bool is_power_of_2(intptr_t x) {
 948   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
 949 }
 950 
 951 // long version of is_power_of_2
 952 inline bool is_power_of_2_long(jlong x) {
 953   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
 954 }
 955 
 956 // Returns largest i such that 2^i <= x.
 957 // If x == 0, the function returns -1.
 958 inline int log2_intptr(uintptr_t x) {
 959   int i = -1;
 960   uintptr_t p = 1;
 961   while (p != 0 && p <= x) {
 962     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 963     i++; p *= 2;
 964   }
 965   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 966   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
 967   return i;
 968 }
 969 
 970 //* largest i such that 2^i <= x
 971 inline int log2_long(julong x) {
 972   int i = -1;
 973   julong p =  1;
 974   while (p != 0 && p <= x) {
 975     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 976     i++; p *= 2;
 977   }
 978   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 979   // (if p = 0 then overflow occurred and i = 63)
 980   return i;
 981 }
 982 
 983 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
 984 inline int log2_intptr(intptr_t x) {
 985   return log2_intptr((uintptr_t)x);
 986 }
 987 
 988 inline int log2_int(int x) {
 989   STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t));
 990   return log2_intptr((uintptr_t)x);
 991 }
 992 
 993 inline int log2_jint(jint x) {
 994   STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t));
 995   return log2_intptr((uintptr_t)x);
 996 }
 997 
 998 inline int log2_uint(uint x) {
 999   STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t));
1000   return log2_intptr((uintptr_t)x);
1001 }
1002 
1003 //  A negative value of 'x' will return '63'
1004 inline int log2_jlong(jlong x) {
1005   STATIC_ASSERT(sizeof(jlong) <= sizeof(julong));
1006   return log2_long((julong)x);
1007 }
1008 
1009 //* the argument must be exactly a power of 2
1010 inline int exact_log2(intptr_t x) {
1011   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1012   return log2_intptr(x);
1013 }
1014 
1015 //* the argument must be exactly a power of 2
1016 inline int exact_log2_long(jlong x) {
1017   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1018   return log2_long(x);
1019 }
1020 
1021 inline bool is_odd (intx x) { return x & 1;      }
1022 inline bool is_even(intx x) { return !is_odd(x); }
1023 
1024 // abs methods which cannot overflow and so are well-defined across
1025 // the entire domain of integer types.
1026 static inline unsigned int uabs(unsigned int n) {
1027   union {
1028     unsigned int result;
1029     int value;
1030   };
1031   result = n;
1032   if (value < 0) result = 0-result;
1033   return result;
1034 }
1035 static inline julong uabs(julong n) {
1036   union {
1037     julong result;
1038     jlong value;
1039   };
1040   result = n;
1041   if (value < 0) result = 0-result;
1042   return result;
1043 }
1044 static inline julong uabs(jlong n) { return uabs((julong)n); }
1045 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1046 
1047 // "to" should be greater than "from."
1048 inline intx byte_size(void* from, void* to) {
1049   return (address)to - (address)from;
1050 }
1051 
1052 
1053 // Pack and extract shorts to/from ints:
1054 
1055 inline int extract_low_short_from_int(jint x) {
1056   return x & 0xffff;
1057 }
1058 
1059 inline int extract_high_short_from_int(jint x) {
1060   return (x >> 16) & 0xffff;
1061 }
1062 
1063 inline int build_int_from_shorts( jushort low, jushort high ) {
1064   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1065 }
1066 
1067 // Convert pointer to intptr_t, for use in printing pointers.
1068 inline intptr_t p2i(const void * p) {
1069   return (intptr_t) p;
1070 }
1071 
1072 // swap a & b
1073 template<class T> static void swap(T& a, T& b) {
1074   T tmp = a;
1075   a = b;
1076   b = tmp;
1077 }
1078 
1079 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1080 
1081 //----------------------------------------------------------------------------------------------------
1082 // Sum and product which can never overflow: they wrap, just like the
1083 // Java operations.  Note that we don't intend these to be used for
1084 // general-purpose arithmetic: their purpose is to emulate Java
1085 // operations.
1086 
1087 // The goal of this code to avoid undefined or implementation-defined
1088 // behavior.  The use of an lvalue to reference cast is explicitly
1089 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1090 // 15 in C++03]
1091 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1092 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1093   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1094   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1095   return reinterpret_cast<TYPE&>(ures);                 \
1096 }
1097 
1098 JAVA_INTEGER_OP(+, java_add, jint, juint)
1099 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1100 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1101 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1102 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1103 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1104 
1105 #undef JAVA_INTEGER_OP
1106 
1107 //----------------------------------------------------------------------------------------------------
1108 // The goal of this code is to provide saturating operations for int/uint.
1109 // Checks overflow conditions and saturates the result to min_jint/max_jint.
1110 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \
1111 inline int NAME (TYPE1 in1, TYPE2 in2) {             \
1112   jlong res = static_cast<jlong>(in1);               \
1113   res OP ## = static_cast<jlong>(in2);               \
1114   if (res > max_jint) {                              \
1115     res = max_jint;                                  \
1116   } else if (res < min_jint) {                       \
1117     res = min_jint;                                  \
1118   }                                                  \
1119   return static_cast<int>(res);                      \
1120 }
1121 
1122 SATURATED_INTEGER_OP(+, saturated_add, int, int)
1123 SATURATED_INTEGER_OP(+, saturated_add, int, uint)
1124 SATURATED_INTEGER_OP(+, saturated_add, uint, int)
1125 SATURATED_INTEGER_OP(+, saturated_add, uint, uint)
1126 
1127 #undef SATURATED_INTEGER_OP
1128 
1129 // Dereference vptr
1130 // All C++ compilers that we know of have the vtbl pointer in the first
1131 // word.  If there are exceptions, this function needs to be made compiler
1132 // specific.
1133 static inline void* dereference_vptr(const void* addr) {
1134   return *(void**)addr;
1135 }
1136 
1137 //----------------------------------------------------------------------------------------------------
1138 // String type aliases used by command line flag declarations and
1139 // processing utilities.
1140 
1141 typedef const char* ccstr;
1142 typedef const char* ccstrlist;   // represents string arguments which accumulate
1143 
1144 //----------------------------------------------------------------------------------------------------
1145 // Default hash/equals functions used by ResourceHashtable and KVHashtable
1146 
1147 template<typename K> unsigned primitive_hash(const K& k) {
1148   unsigned hash = (unsigned)((uintptr_t)k);
1149   return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1150 }
1151 
1152 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1153   return k0 == k1;
1154 }
1155 
1156 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP