1 /* 2 * Copyright (c) 2020, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2020, 2022, Red Hat Inc. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. Oracle designates this 9 * particular file as subject to the "Classpath" exception as provided 10 * by Oracle in the LICENSE file that accompanied this code. 11 * 12 * This code is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 * version 2 for more details (a copy is included in the LICENSE file that 16 * accompanied this code). 17 * 18 * You should have received a copy of the GNU General Public License version 19 * 2 along with this work; if not, write to the Free Software Foundation, 20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 21 * 22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 23 * or visit www.oracle.com if you need additional information or have any 24 * questions. 25 */ 26 27 package java.lang; 28 29 import java.util.NoSuchElementException; 30 import java.util.Objects; 31 import java.lang.ref.Reference; 32 import java.util.concurrent.StructuredTaskScope; 33 import java.util.concurrent.StructureViolationException; 34 import java.util.function.Supplier; 35 import jdk.internal.access.JavaUtilConcurrentTLRAccess; 36 import jdk.internal.access.SharedSecrets; 37 import jdk.internal.javac.PreviewFeature; 38 import jdk.internal.vm.annotation.ForceInline; 39 import jdk.internal.vm.annotation.Hidden; 40 import jdk.internal.vm.ScopedValueContainer; 41 import sun.security.action.GetPropertyAction; 42 43 /** 44 * A value that may be safely and efficiently shared to methods without using method 45 * parameters. 46 * 47 * <p> In the Java programming language, data is usually passed to a method by means of a 48 * method parameter. The data may need to be passed through a sequence of many methods to 49 * get to the method that makes use of the data. Every method in the sequence of calls 50 * needs to declare the parameter and every method has access to the data. 51 * {@code ScopedValue} provides a means to pass data to a faraway method (typically a 52 * <em>callback</em>) without using method parameters. In effect, a {@code ScopedValue} 53 * is an <em>implicit method parameter</em>. It is "as if" every method in a sequence of 54 * calls has an additional parameter. None of the methods declare the parameter and only 55 * the methods that have access to the {@code ScopedValue} object can access its value 56 * (the data). {@code ScopedValue} makes it possible to securely pass data from a 57 * <em>caller</em> to a faraway <em>callee</em> through a sequence of intermediate methods 58 * that do not declare a parameter for the data and have no access to the data. 59 * 60 * <p> The {@code ScopedValue} API works by executing a method with a {@code ScopedValue} 61 * object <em>bound</em> to some value for the bounded period of execution of a method. 62 * The method may invoke another method, which in turn may invoke another. The unfolding 63 * execution of the methods define a <em>dynamic scope</em>. Code in these methods with 64 * access to the {@code ScopedValue} object may read its value. The {@code ScopedValue} 65 * object reverts to being <em>unbound</em> when the original method completes normally or 66 * with an exception. The {@code ScopedValue} API supports executing a {@link Runnable}, 67 * or {@link CallableOp} with a {@code ScopedValue} bound to a value. 68 * 69 * <p> Consider the following example with a scoped value "{@code NAME}" bound to the value 70 * "{@code duke}" for the execution of a {@code Runnable}'s {@code run} method. 71 * The {@code run} method, in turn, invokes a method {@code doSomething}. 72 * 73 * 74 * {@snippet lang=java : 75 * // @link substring="newInstance" target="#newInstance" : 76 * private static final ScopedValue<String> NAME = ScopedValue.newInstance(); 77 * 78 * // @link substring="run" target="Carrier#run(Runnable)" : 79 * ScopedValue.where(NAME, "duke").run(() -> doSomething()); 80 * } 81 * Code executed directly or indirectly by {@code doSomething}, with access to the field 82 * {@code NAME}, can invoke {@code NAME.get()} to read the value "{@code duke}". {@code 83 * NAME} is bound while executing the {@code run} method. It reverts to being unbound when 84 * the {@code run} method completes. 85 * 86 * <p> The example using {@code run} invokes a method that does not return a result. 87 * The {@link Carrier#call(CallableOp) call} method can be used 88 * to invoke a method that returns a result. 89 * {@code ScopedValue} defines the {@link #where(ScopedValue, Object)} method 90 * for cases where multiple mappings (of {@code ScopedValue} to value) are accumulated 91 * in advance of calling a method with all {@code ScopedValue}s bound to their value. 92 * 93 * <h2>Bindings are per-thread</h2> 94 * 95 * A {@code ScopedValue} binding to a value is per-thread. Invoking {@code run} 96 * executes a method with a {@code ScopedValue} bound to a value for the current thread. 97 * The {@link #get() get} method returns the value bound for the current thread. 98 * 99 * <p> In the example, if code executed by one thread invokes this: 100 * {@snippet lang=java : 101 * ScopedValue.where(NAME, "duke1").run(() -> doSomething()); 102 * } 103 * and code executed by another thread invokes: 104 * {@snippet lang=java : 105 * ScopedValue.where(NAME, "duke2").run(() -> doSomething()); 106 * } 107 * then code in {@code doSomething} (or any method that it calls) invoking {@code NAME.get()} 108 * will read the value "{@code duke1}" or "{@code duke2}", depending on which thread is 109 * executing. 110 * 111 * <h2>Scoped values as capabilities</h2> 112 * 113 * A {@code ScopedValue} object should be treated as a <em>capability</em> or a key to 114 * access its value when the {@code ScopedValue} is bound. Secure usage depends on access 115 * control (see <cite>The Java Virtual Machine Specification</cite>, Section {@jvms 5.4.4}) 116 * and taking care to not share the {@code ScopedValue} object. In many cases, a {@code 117 * ScopedValue} will be declared in a {@code final} and {@code static} field so that it 118 * is only accessible to code in a single class (or nest). 119 * 120 * <h2><a id="rebind">Rebinding</a></h2> 121 * 122 * The {@code ScopedValue} API allows a new binding to be established for <em>nested 123 * dynamic scopes</em>. This is known as <em>rebinding</em>. A {@code ScopedValue} that 124 * is bound to a value may be bound to a new value for the bounded execution of a new 125 * method. The unfolding execution of code executed by that method defines the nested 126 * dynamic scope. When the method completes, the value of the {@code ScopedValue} reverts 127 * to its previous value. 128 * 129 * <p> In the above example, suppose that code executed by {@code doSomething} binds 130 * {@code NAME} to a new value with: 131 * {@snippet lang=java : 132 * ScopedValue.where(NAME, "duchess").run(() -> doMore()); 133 * } 134 * Code executed directly or indirectly by {@code doMore()} that invokes {@code 135 * NAME.get()} will read the value "{@code duchess}". When {@code doMore()} completes 136 * then the value of {@code NAME} reverts to "{@code duke}". 137 * 138 * <h2><a id="inheritance">Inheritance</a></h2> 139 * 140 * {@code ScopedValue} supports sharing across threads. This sharing is limited to 141 * structured cases where child threads are started and terminate within the bounded 142 * period of execution by a parent thread. When using a {@link StructuredTaskScope}, 143 * scoped value bindings are <em>captured</em> when creating a {@code StructuredTaskScope} 144 * and inherited by all threads started in that task scope with the 145 * {@link StructuredTaskScope#fork(java.util.concurrent.Callable) fork} method. 146 * 147 * <p> A {@code ScopedValue} that is shared across threads requires that the value be an 148 * immutable object or for all access to the value to be appropriately synchronized. 149 * 150 * <p> In the following example, the {@code ScopedValue} {@code NAME} is bound to the 151 * value "{@code duke}" for the execution of a runnable operation. The code in the {@code 152 * run} method creates a {@code StructuredTaskScope} that forks three tasks. Code executed 153 * directly or indirectly by these threads running {@code childTask1()}, {@code childTask2()}, 154 * and {@code childTask3()} that invokes {@code NAME.get()} will read the value 155 * "{@code duke}". 156 * 157 * {@snippet lang=java : 158 * private static final ScopedValue<String> NAME = ScopedValue.newInstance(); 159 160 * ScopedValue.where(NAME, "duke").run(() -> { 161 * try (var scope = new StructuredTaskScope<String>()) { 162 * 163 * // @link substring="fork" target="StructuredTaskScope#fork(java.util.concurrent.Callable)" : 164 * scope.fork(() -> childTask1()); 165 * scope.fork(() -> childTask2()); 166 * scope.fork(() -> childTask3()); 167 * 168 * // @link substring="join" target="StructuredTaskScope#join()" : 169 * scope.join(); 170 * 171 * .. 172 * } 173 * }); 174 * } 175 * 176 * <p> Unless otherwise specified, passing a {@code null} argument to a method in this 177 * class will cause a {@link NullPointerException} to be thrown. 178 * 179 * @apiNote 180 * A {@code ScopedValue} should be preferred over a {@link ThreadLocal} for cases where 181 * the goal is "one-way transmission" of data without using method parameters. While a 182 * {@code ThreadLocal} can be used to pass data to a method without using method parameters, 183 * it does suffer from a number of issues: 184 * <ol> 185 * <li> {@code ThreadLocal} does not prevent code in a faraway callee from {@linkplain 186 * ThreadLocal#set(Object) setting} a new value. 187 * <li> A {@code ThreadLocal} has an unbounded lifetime and thus continues to have a value 188 * after a method completes, unless explicitly {@linkplain ThreadLocal#remove() removed}. 189 * <li> {@linkplain InheritableThreadLocal Inheritance} is expensive - the map of 190 * thread-locals to values must be copied when creating each child thread. 191 * </ol> 192 * 193 * @implNote 194 * Scoped values are designed to be used in fairly small 195 * numbers. {@link #get} initially performs a search through enclosing 196 * scopes to find a scoped value's innermost binding. It 197 * then caches the result of the search in a small thread-local 198 * cache. Subsequent invocations of {@link #get} for that scoped value 199 * will almost always be very fast. However, if a program has many 200 * scoped values that it uses cyclically, the cache hit rate 201 * will be low and performance will be poor. This design allows 202 * scoped-value inheritance by {@link StructuredTaskScope} threads to 203 * be very fast: in essence, no more than copying a pointer, and 204 * leaving a scoped-value binding also requires little more than 205 * updating a pointer. 206 * 207 * <p>Because the scoped-value per-thread cache is small, clients 208 * should minimize the number of bound scoped values in use. For 209 * example, if it is necessary to pass a number of values in this way, 210 * it makes sense to create a record class to hold those values, and 211 * then bind a single {@code ScopedValue} to an instance of that record. 212 * 213 * <p>For this release, the reference implementation 214 * provides some system properties to tune the performance of scoped 215 * values. 216 * 217 * <p>The system property {@code java.lang.ScopedValue.cacheSize} 218 * controls the size of the (per-thread) scoped-value cache. This cache is crucial 219 * for the performance of scoped values. If it is too small, 220 * the runtime library will repeatedly need to scan for each 221 * {@link #get}. If it is too large, memory will be unnecessarily 222 * consumed. The default scoped-value cache size is 16 entries. It may 223 * be varied from 2 to 16 entries in size. {@code ScopedValue.cacheSize} 224 * must be an integer power of 2. 225 * 226 * <p>For example, you could use {@code -Djava.lang.ScopedValue.cacheSize=8}. 227 * 228 * <p>The other system property is {@code jdk.preserveScopedValueCache}. 229 * This property determines whether the per-thread scoped-value 230 * cache is preserved when a virtual thread is blocked. By default 231 * this property is set to {@code true}, meaning that every virtual 232 * thread preserves its scoped-value cache when blocked. Like {@code 233 * ScopedValue.cacheSize}, this is a space versus speed trade-off: in 234 * situations where many virtual threads are blocked most of the time, 235 * setting this property to {@code false} might result in a useful 236 * memory saving, but each virtual thread's scoped-value cache would 237 * have to be regenerated after a blocking operation. 238 * 239 * @param <T> the type of the value 240 * @since 21 241 */ 242 @PreviewFeature(feature = PreviewFeature.Feature.SCOPED_VALUES) 243 public final class ScopedValue<T> { 244 private final int hash; 245 246 @Override 247 public int hashCode() { return hash; } 248 249 /** 250 * An immutable map from {@code ScopedValue} to values. 251 * 252 * <p> Unless otherwise specified, passing a {@code null} argument to a constructor 253 * or method in this class will cause a {@link NullPointerException} to be thrown. 254 */ 255 static final class Snapshot { 256 final Snapshot prev; 257 final Carrier bindings; 258 final int bitmask; 259 260 private static final Object NIL = new Object(); 261 262 static final Snapshot EMPTY_SNAPSHOT = new Snapshot(); 263 264 Snapshot(Carrier bindings, Snapshot prev) { 265 this.prev = prev; 266 this.bindings = bindings; 267 this.bitmask = bindings.bitmask | prev.bitmask; 268 } 269 270 protected Snapshot() { 271 this.prev = null; 272 this.bindings = null; 273 this.bitmask = 0; 274 } 275 276 Object find(ScopedValue<?> key) { 277 int bits = key.bitmask(); 278 for (Snapshot snapshot = this; 279 containsAll(snapshot.bitmask, bits); 280 snapshot = snapshot.prev) { 281 for (Carrier carrier = snapshot.bindings; 282 carrier != null && containsAll(carrier.bitmask, bits); 283 carrier = carrier.prev) { 284 if (carrier.getKey() == key) { 285 Object value = carrier.get(); 286 return value; 287 } 288 } 289 } 290 return NIL; 291 } 292 } 293 294 /** 295 * A mapping of scoped values, as <em>keys</em>, to values. 296 * 297 * <p> A {@code Carrier} is used to accumulate mappings so that an operation (a {@link 298 * Runnable} or {@link CallableOp}) can be executed with all scoped values in the 299 * mapping bound to values. The following example runs an operation with {@code k1} 300 * bound (or rebound) to {@code v1}, and {@code k2} bound (or rebound) to {@code v2}. 301 * {@snippet lang=java : 302 * // @link substring="where" target="#where(ScopedValue, Object)" : 303 * ScopedValue.where(k1, v1).where(k2, v2).run(() -> ... ); 304 * } 305 * 306 * <p> A {@code Carrier} is immutable and thread-safe. The {@link 307 * #where(ScopedValue, Object) where} method returns a new {@code Carrier} object, 308 * it does not mutate an existing mapping. 309 * 310 * <p> Unless otherwise specified, passing a {@code null} argument to a method in 311 * this class will cause a {@link NullPointerException} to be thrown. 312 * 313 * @since 21 314 */ 315 @PreviewFeature(feature = PreviewFeature.Feature.SCOPED_VALUES) 316 public static final class Carrier { 317 // Bit masks: a 1 in position n indicates that this set of bound values 318 // hits that slot in the cache. 319 final int bitmask; 320 final ScopedValue<?> key; 321 final Object value; 322 final Carrier prev; 323 324 Carrier(ScopedValue<?> key, Object value, Carrier prev) { 325 this.key = key; 326 this.value = value; 327 this.prev = prev; 328 int bits = key.bitmask(); 329 if (prev != null) { 330 bits |= prev.bitmask; 331 } 332 this.bitmask = bits; 333 } 334 335 /** 336 * Add a binding to this map, returning a new Carrier instance. 337 */ 338 private static <T> Carrier where(ScopedValue<T> key, T value, Carrier prev) { 339 return new Carrier(key, value, prev); 340 } 341 342 /** 343 * Returns a new {@code Carrier} with the mappings from this carrier plus a 344 * new mapping from {@code key} to {@code value}. If this carrier already has a 345 * mapping for the scoped value {@code key} then it will map to the new 346 * {@code value}. The current carrier is immutable, so it is not changed by this 347 * method. 348 * 349 * @param key the {@code ScopedValue} key 350 * @param value the value, can be {@code null} 351 * @param <T> the type of the value 352 * @return a new {@code Carrier} with the mappings from this carrier plus the new mapping 353 */ 354 public <T> Carrier where(ScopedValue<T> key, T value) { 355 return where(key, value, this); 356 } 357 358 /* 359 * Return a new set consisting of a single binding. 360 */ 361 static <T> Carrier of(ScopedValue<T> key, T value) { 362 return where(key, value, null); 363 } 364 365 Object get() { 366 return value; 367 } 368 369 ScopedValue<?> getKey() { 370 return key; 371 } 372 373 /** 374 * Returns the value of a {@link ScopedValue} in this mapping. 375 * 376 * @param key the {@code ScopedValue} key 377 * @param <T> the type of the value 378 * @return the value 379 * @throws NoSuchElementException if the key is not present in this mapping 380 */ 381 @SuppressWarnings("unchecked") 382 public <T> T get(ScopedValue<T> key) { 383 var bits = key.bitmask(); 384 for (Carrier carrier = this; 385 carrier != null && containsAll(carrier.bitmask, bits); 386 carrier = carrier.prev) { 387 if (carrier.getKey() == key) { 388 Object value = carrier.get(); 389 return (T) value; 390 } 391 } 392 throw new NoSuchElementException("No mapping present"); 393 } 394 395 /** 396 * Calls a value-returning operation with each scoped value in this mapping bound 397 * to its value in the current thread. 398 * When the operation completes (normally or with an exception), each scoped value 399 * in the mapping will revert to being unbound, or revert to its previous value 400 * when previously bound, in the current thread. If {@code op} completes with an 401 * exception then it propagated by this method. 402 * 403 * <p> Scoped values are intended to be used in a <em>structured manner</em>. If code 404 * invoked directly or indirectly by the operation creates a {@link StructuredTaskScope} 405 * but does not {@linkplain StructuredTaskScope#close() close} it, then it is detected 406 * as a <em>structure violation</em> when the operation completes (normally or with an 407 * exception). In that case, the underlying construct of the {@code StructuredTaskScope} 408 * is closed and {@link StructureViolationException} is thrown. 409 * 410 * @param op the operation to run 411 * @param <R> the type of the result of the operation 412 * @param <X> type of the exception thrown by the operation 413 * @return the result 414 * @throws StructureViolationException if a structure violation is detected 415 * @throws X if {@code op} completes with an exception 416 * @since 23 417 */ 418 public <R, X extends Throwable> R call(CallableOp<? extends R, X> op) throws X { 419 Objects.requireNonNull(op); 420 Cache.invalidate(bitmask); 421 var prevSnapshot = scopedValueBindings(); 422 var newSnapshot = new Snapshot(this, prevSnapshot); 423 return runWith(newSnapshot, op); 424 } 425 426 /** 427 * Execute the action with a set of ScopedValue bindings. 428 * 429 * The VM recognizes this method as special, so any changes to the 430 * name or signature require corresponding changes in 431 * JVM_FindScopedValueBindings(). 432 */ 433 @Hidden 434 @ForceInline 435 private <R, X extends Throwable> R runWith(Snapshot newSnapshot, CallableOp<R, X> op) { 436 try { 437 Thread.setScopedValueBindings(newSnapshot); 438 Thread.ensureMaterializedForStackWalk(newSnapshot); 439 return ScopedValueContainer.call(op); 440 } finally { 441 Reference.reachabilityFence(newSnapshot); 442 Thread.setScopedValueBindings(newSnapshot.prev); 443 Cache.invalidate(bitmask); 444 } 445 } 446 447 /** 448 * Runs an operation with each scoped value in this mapping bound to its value 449 * in the current thread. 450 * When the operation completes (normally or with an exception), each scoped value 451 * in the mapping will revert to being unbound, or revert to its previous value 452 * when previously bound, in the current thread. If {@code op} completes with an 453 * exception then it propagated by this method. 454 * 455 * <p> Scoped values are intended to be used in a <em>structured manner</em>. If code 456 * invoked directly or indirectly by the operation creates a {@link StructuredTaskScope} 457 * but does not {@linkplain StructuredTaskScope#close() close} it, then it is detected 458 * as a <em>structure violation</em> when the operation completes (normally or with an 459 * exception). In that case, the underlying construct of the {@code StructuredTaskScope} 460 * is closed and {@link StructureViolationException} is thrown. 461 * 462 * @param op the operation to run 463 * @throws StructureViolationException if a structure violation is detected 464 */ 465 public void run(Runnable op) { 466 Objects.requireNonNull(op); 467 Cache.invalidate(bitmask); 468 var prevSnapshot = scopedValueBindings(); 469 var newSnapshot = new Snapshot(this, prevSnapshot); 470 runWith(newSnapshot, op); 471 } 472 473 /** 474 * Execute the action with a set of {@code ScopedValue} bindings. 475 * 476 * The VM recognizes this method as special, so any changes to the 477 * name or signature require corresponding changes in 478 * JVM_FindScopedValueBindings(). 479 */ 480 @Hidden 481 @ForceInline 482 private void runWith(Snapshot newSnapshot, Runnable op) { 483 try { 484 Thread.setScopedValueBindings(newSnapshot); 485 Thread.ensureMaterializedForStackWalk(newSnapshot); 486 ScopedValueContainer.run(op); 487 } finally { 488 Reference.reachabilityFence(newSnapshot); 489 Thread.setScopedValueBindings(newSnapshot.prev); 490 Cache.invalidate(bitmask); 491 } 492 } 493 } 494 495 /** 496 * An operation that returns a result and may throw an exception. 497 * 498 * @param <T> result type of the operation 499 * @param <X> type of the exception thrown by the operation 500 * @since 23 501 */ 502 @PreviewFeature(feature = PreviewFeature.Feature.SCOPED_VALUES) 503 @FunctionalInterface 504 public interface CallableOp<T, X extends Throwable> { 505 /** 506 * Executes this operation. 507 * @return the result, can be null 508 * @throws X if the operation completes with an exception 509 */ 510 T call() throws X; 511 } 512 513 /** 514 * Creates a new {@code Carrier} with a single mapping of a {@code ScopedValue} 515 * <em>key</em> to a value. The {@code Carrier} can be used to accumulate mappings so 516 * that an operation can be executed with all scoped values in the mapping bound to 517 * values. The following example runs an operation with {@code k1} bound (or rebound) 518 * to {@code v1}, and {@code k2} bound (or rebound) to {@code v2}. 519 * {@snippet lang=java : 520 * // @link substring="run" target="Carrier#run(Runnable)" : 521 * ScopedValue.where(k1, v1).where(k2, v2).run(() -> ... ); 522 * } 523 * 524 * @param key the {@code ScopedValue} key 525 * @param value the value, can be {@code null} 526 * @param <T> the type of the value 527 * @return a new {@code Carrier} with a single mapping 528 */ 529 public static <T> Carrier where(ScopedValue<T> key, T value) { 530 return Carrier.of(key, value); 531 } 532 533 private ScopedValue() { 534 this.hash = generateKey(); 535 } 536 537 /** 538 * Creates a scoped value that is initially unbound for all threads. 539 * 540 * @param <T> the type of the value 541 * @return a new {@code ScopedValue} 542 */ 543 public static <T> ScopedValue<T> newInstance() { 544 return new ScopedValue<T>(); 545 } 546 547 /** 548 * {@return the value of the scoped value if bound in the current thread} 549 * 550 * @throws NoSuchElementException if the scoped value is not bound 551 */ 552 @ForceInline 553 @SuppressWarnings("unchecked") 554 public T get() { 555 Object[] objects; 556 if ((objects = scopedValueCache()) != null) { 557 // This code should perhaps be in class Cache. We do it 558 // here because the generated code is small and fast and 559 // we really want it to be inlined in the caller. 560 int n = (hash & Cache.SLOT_MASK) * 2; 561 if (objects[n] == this) { 562 return (T)objects[n + 1]; 563 } 564 n = ((hash >>> Cache.INDEX_BITS) & Cache.SLOT_MASK) * 2; 565 if (objects[n] == this) { 566 return (T)objects[n + 1]; 567 } 568 } 569 return slowGet(); 570 } 571 572 @SuppressWarnings("unchecked") 573 private T slowGet() { 574 var value = findBinding(); 575 if (value == Snapshot.NIL) { 576 throw new NoSuchElementException("ScopedValue not bound"); 577 } 578 Cache.put(this, value); 579 return (T)value; 580 } 581 582 /** 583 * {@return {@code true} if this scoped value is bound in the current thread} 584 */ 585 public boolean isBound() { 586 Object[] objects = scopedValueCache(); 587 if (objects != null) { 588 int n = (hash & Cache.SLOT_MASK) * 2; 589 if (objects[n] == this) { 590 return true; 591 } 592 n = ((hash >>> Cache.INDEX_BITS) & Cache.SLOT_MASK) * 2; 593 if (objects[n] == this) { 594 return true; 595 } 596 } 597 var value = findBinding(); 598 boolean result = (value != Snapshot.NIL); 599 if (result) Cache.put(this, value); 600 return result; 601 } 602 603 /** 604 * Return the value of the scoped value or NIL if not bound. 605 */ 606 private Object findBinding() { 607 Object value = scopedValueBindings().find(this); 608 return value; 609 } 610 611 /** 612 * Returns the value of this scoped value if bound in the current thread, otherwise 613 * returns {@code other}. 614 * 615 * @param other the value to return if not bound, can be {@code null} 616 * @return the value of the scoped value if bound, otherwise {@code other} 617 */ 618 public T orElse(T other) { 619 Object obj = findBinding(); 620 if (obj != Snapshot.NIL) { 621 @SuppressWarnings("unchecked") 622 T value = (T) obj; 623 return value; 624 } else { 625 return other; 626 } 627 } 628 629 /** 630 * Returns the value of this scoped value if bound in the current thread, otherwise 631 * throws an exception produced by the exception supplying function. 632 * 633 * @param <X> the type of the exception that may be thrown 634 * @param exceptionSupplier the supplying function that produces the exception to throw 635 * @return the value of the scoped value if bound in the current thread 636 * @throws X if the scoped value is not bound in the current thread 637 */ 638 public <X extends Throwable> T orElseThrow(Supplier<? extends X> exceptionSupplier) throws X { 639 Objects.requireNonNull(exceptionSupplier); 640 Object obj = findBinding(); 641 if (obj != Snapshot.NIL) { 642 @SuppressWarnings("unchecked") 643 T value = (T) obj; 644 return value; 645 } else { 646 throw exceptionSupplier.get(); 647 } 648 } 649 650 private static Object[] scopedValueCache() { 651 return Thread.scopedValueCache(); 652 } 653 654 private static void setScopedValueCache(Object[] cache) { 655 Thread.setScopedValueCache(cache); 656 } 657 658 // Special value to indicate this is a newly-created Thread 659 // Note that his must match the declaration in j.l.Thread. 660 private static final Object NEW_THREAD_BINDINGS = Thread.class; 661 662 private static Snapshot scopedValueBindings() { 663 // Bindings can be in one of four states: 664 // 665 // 1: class Thread: this is a new Thread instance, and no 666 // scoped values have ever been bound in this Thread, and neither 667 // have any scoped value bindings been inherited from a parent. 668 // 2: EmptySnapshot.SINGLETON: This is effectively an empty binding. 669 // 3: A Snapshot instance: this contains one or more scoped value 670 // bindings. 671 // 4: null: there may be some bindings in this Thread, but we don't know 672 // where they are. We must invoke Thread.findScopedValueBindings() to walk 673 // the stack to find them. 674 675 Object bindings = Thread.scopedValueBindings(); 676 if (bindings == NEW_THREAD_BINDINGS) { 677 // This must be a new thread 678 return Snapshot.EMPTY_SNAPSHOT; 679 } 680 if (bindings == null) { 681 // Search the stack 682 bindings = Thread.findScopedValueBindings(); 683 if (bindings == NEW_THREAD_BINDINGS || bindings == null) { 684 // We've walked the stack without finding anything. 685 bindings = Snapshot.EMPTY_SNAPSHOT; 686 } 687 Thread.setScopedValueBindings(bindings); 688 } 689 assert (bindings != null); 690 return (Snapshot) bindings; 691 } 692 693 private static int nextKey = 0xf0f0_f0f0; 694 695 // A Marsaglia xor-shift generator used to generate hashes. This one has full period, so 696 // it generates 2**32 - 1 hashes before it repeats. We're going to use the lowest n bits 697 // and the next n bits as cache indexes, so we make sure that those indexes map 698 // to different slots in the cache. 699 private static synchronized int generateKey() { 700 int x = nextKey; 701 do { 702 x ^= x >>> 12; 703 x ^= x << 9; 704 x ^= x >>> 23; 705 } while (Cache.primarySlot(x) == Cache.secondarySlot(x)); 706 return (nextKey = x); 707 } 708 709 /** 710 * Return a bit mask that may be used to determine if this ScopedValue is 711 * bound in the current context. Each Carrier holds a bit mask which is 712 * the OR of all the bit masks of the bound ScopedValues. 713 * @return the bitmask 714 */ 715 int bitmask() { 716 return (1 << Cache.primaryIndex(this)) | (1 << (Cache.secondaryIndex(this) + Cache.TABLE_SIZE)); 717 } 718 719 // Return true iff bitmask, considered as a set of bits, contains all 720 // of the bits in targetBits. 721 static boolean containsAll(int bitmask, int targetBits) { 722 return (bitmask & targetBits) == targetBits; 723 } 724 725 // A small fixed-size key-value cache. When a scoped value's get() method 726 // is invoked, we record the result of the lookup in this per-thread cache 727 // for fast access in future. 728 private static final class Cache { 729 static final int INDEX_BITS = 4; // Must be a power of 2 730 static final int TABLE_SIZE = 1 << INDEX_BITS; 731 static final int TABLE_MASK = TABLE_SIZE - 1; 732 static final int PRIMARY_MASK = (1 << TABLE_SIZE) - 1; 733 734 // The number of elements in the cache array, and a bit mask used to 735 // select elements from it. 736 private static final int CACHE_TABLE_SIZE, SLOT_MASK; 737 // The largest cache we allow. Must be a power of 2 and greater than 738 // or equal to 2. 739 private static final int MAX_CACHE_SIZE = 16; 740 741 static { 742 final String propertyName = "java.lang.ScopedValue.cacheSize"; 743 var sizeString = GetPropertyAction.privilegedGetProperty(propertyName, "16"); 744 var cacheSize = Integer.valueOf(sizeString); 745 if (cacheSize < 2 || cacheSize > MAX_CACHE_SIZE) { 746 cacheSize = MAX_CACHE_SIZE; 747 System.err.println(propertyName + " is out of range: is " + sizeString); 748 } 749 if ((cacheSize & (cacheSize - 1)) != 0) { // a power of 2 750 cacheSize = MAX_CACHE_SIZE; 751 System.err.println(propertyName + " must be an integer power of 2: is " + sizeString); 752 } 753 CACHE_TABLE_SIZE = cacheSize; 754 SLOT_MASK = cacheSize - 1; 755 } 756 757 static int primaryIndex(ScopedValue<?> key) { 758 return key.hash & TABLE_MASK; 759 } 760 761 static int secondaryIndex(ScopedValue<?> key) { 762 return (key.hash >> INDEX_BITS) & TABLE_MASK; 763 } 764 765 private static int primarySlot(ScopedValue<?> key) { 766 return key.hashCode() & SLOT_MASK; 767 } 768 769 private static int secondarySlot(ScopedValue<?> key) { 770 return (key.hash >> INDEX_BITS) & SLOT_MASK; 771 } 772 773 static int primarySlot(int hash) { 774 return hash & SLOT_MASK; 775 } 776 777 static int secondarySlot(int hash) { 778 return (hash >> INDEX_BITS) & SLOT_MASK; 779 } 780 781 static void put(ScopedValue<?> key, Object value) { 782 Object[] theCache = scopedValueCache(); 783 if (theCache == null) { 784 theCache = new Object[CACHE_TABLE_SIZE * 2]; 785 setScopedValueCache(theCache); 786 } 787 // Update the cache to replace one entry with the value we just looked up. 788 // Each value can be in one of two possible places in the cache. 789 // Pick a victim at (pseudo-)random. 790 int k1 = primarySlot(key); 791 int k2 = secondarySlot(key); 792 var usePrimaryIndex = chooseVictim(); 793 int victim = usePrimaryIndex ? k1 : k2; 794 int other = usePrimaryIndex ? k2 : k1; 795 setKeyAndObjectAt(victim, key, value); 796 if (getKey(theCache, other) == key) { 797 setKeyAndObjectAt(other, key, value); 798 } 799 } 800 801 private static void setKeyAndObjectAt(int n, Object key, Object value) { 802 var cache = scopedValueCache(); 803 cache[n * 2] = key; 804 cache[n * 2 + 1] = value; 805 } 806 807 private static void setKeyAndObjectAt(Object[] cache, int n, Object key, Object value) { 808 cache[n * 2] = key; 809 cache[n * 2 + 1] = value; 810 } 811 812 private static Object getKey(Object[] objs, int n) { 813 return objs[n * 2]; 814 } 815 816 private static void setKey(Object[] objs, int n, Object key) { 817 objs[n * 2] = key; 818 } 819 820 private static final JavaUtilConcurrentTLRAccess THREAD_LOCAL_RANDOM_ACCESS 821 = SharedSecrets.getJavaUtilConcurrentTLRAccess(); 822 823 // Return either true or false, at pseudo-random, with a bias towards true. 824 // This chooses either the primary or secondary cache slot, but the 825 // primary slot is approximately twice as likely to be chosen as the 826 // secondary one. 827 private static boolean chooseVictim() { 828 int r = THREAD_LOCAL_RANDOM_ACCESS.nextSecondaryThreadLocalRandomSeed(); 829 return (r & 15) >= 5; 830 } 831 832 // Null a set of cache entries, indicated by the 1-bits given 833 static void invalidate(int toClearBits) { 834 toClearBits = (toClearBits >>> TABLE_SIZE) | (toClearBits & PRIMARY_MASK); 835 Object[] objects; 836 if ((objects = scopedValueCache()) != null) { 837 for (int bits = toClearBits; bits != 0; ) { 838 int index = Integer.numberOfTrailingZeros(bits); 839 setKeyAndObjectAt(objects, index & SLOT_MASK, null, null); 840 bits &= ~1 << index; 841 } 842 } 843 } 844 } 845 }