1 /*
  2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.  Oracle designates this
  8  * particular file as subject to the "Classpath" exception as provided
  9  * by Oracle in the LICENSE file that accompanied this code.
 10  *
 11  * This code is distributed in the hope that it will be useful, but WITHOUT
 12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 14  * version 2 for more details (a copy is included in the LICENSE file that
 15  * accompanied this code).
 16  *
 17  * You should have received a copy of the GNU General Public License version
 18  * 2 along with this work; if not, write to the Free Software Foundation,
 19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 20  *
 21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 22  * or visit www.oracle.com if you need additional information or have any
 23  * questions.
 24  */
 25 
 26 package java.lang;
 27 
 28 import java.lang.ref.WeakReference;
 29 import java.util.Objects;
 30 import java.util.concurrent.atomic.AtomicInteger;
 31 import java.util.function.Supplier;
 32 import java.util.stream.Collectors;
 33 
 34 import jdk.internal.misc.CarrierThreadLocal;
 35 import jdk.internal.misc.TerminatingThreadLocal;
 36 import sun.security.action.GetPropertyAction;
 37 
 38 /**
 39  * This class provides thread-local variables.  These variables differ from
 40  * their normal counterparts in that each thread that accesses one (via its
 41  * {@code get} or {@code set} method) has its own, independently initialized
 42  * copy of the variable.  {@code ThreadLocal} instances are typically private
 43  * static fields in classes that wish to associate state with a thread (e.g.,
 44  * a user ID or Transaction ID).
 45  *
 46  * <p>For example, the class below generates unique identifiers local to each
 47  * thread.
 48  * A thread's id is assigned the first time it invokes {@code ThreadId.get()}
 49  * and remains unchanged on subsequent calls.
 50  * <pre>
 51  * import java.util.concurrent.atomic.AtomicInteger;
 52  *
 53  * public class ThreadId {
 54  *     // Atomic integer containing the next thread ID to be assigned
 55  *     private static final AtomicInteger nextId = new AtomicInteger(0);
 56  *
 57  *     // Thread local variable containing each thread's ID
 58  *     private static final ThreadLocal&lt;Integer&gt; threadId =
 59  *         new ThreadLocal&lt;Integer&gt;() {
 60  *             &#64;Override protected Integer initialValue() {
 61  *                 return nextId.getAndIncrement();
 62  *         }
 63  *     };
 64  *
 65  *     // Returns the current thread's unique ID, assigning it if necessary
 66  *     public static int get() {
 67  *         return threadId.get();
 68  *     }
 69  * }
 70  * </pre>
 71  * <p>Each thread holds an implicit reference to its copy of a thread-local
 72  * variable as long as the thread is alive and the {@code ThreadLocal}
 73  * instance is accessible; after a thread goes away, all of its copies of
 74  * thread-local instances are subject to garbage collection (unless other
 75  * references to these copies exist).
 76  * @param <T> the type of the thread local's value
 77  *
 78  * @author  Josh Bloch and Doug Lea
 79  * @since   1.2
 80  */
 81 public class ThreadLocal<T> {
 82     private static final boolean TRACE_VTHREAD_LOCALS = traceVirtualThreadLocals();
 83 
 84     /**
 85      * ThreadLocals rely on per-thread linear-probe hash maps attached
 86      * to each thread (Thread.threadLocals and
 87      * inheritableThreadLocals).  The ThreadLocal objects act as keys,
 88      * searched via threadLocalHashCode.  This is a custom hash code
 89      * (useful only within ThreadLocalMaps) that eliminates collisions
 90      * in the common case where consecutively constructed ThreadLocals
 91      * are used by the same threads, while remaining well-behaved in
 92      * less common cases.
 93      */
 94     private final int threadLocalHashCode = nextHashCode();
 95 
 96     /**
 97      * The next hash code to be given out. Updated atomically. Starts at
 98      * zero.
 99      */
100     private static AtomicInteger nextHashCode =
101         new AtomicInteger();
102 
103     /**
104      * The difference between successively generated hash codes - turns
105      * implicit sequential thread-local IDs into near-optimally spread
106      * multiplicative hash values for power-of-two-sized tables.
107      */
108     private static final int HASH_INCREMENT = 0x61c88647;
109 
110     /**
111      * Returns the next hash code.
112      */
113     private static int nextHashCode() {
114         return nextHashCode.getAndAdd(HASH_INCREMENT);
115     }
116 
117     /**
118      * Returns the current thread's "initial value" for this
119      * thread-local variable.  This method will be invoked the first
120      * time a thread accesses the variable with the {@link #get}
121      * method, unless the thread previously invoked the {@link #set}
122      * method, in which case the {@code initialValue} method will not
123      * be invoked for the thread.  Normally, this method is invoked at
124      * most once per thread, but it may be invoked again in case of
125      * subsequent invocations of {@link #remove} followed by {@link #get}.
126      *
127      * @implSpec
128      * This implementation simply returns {@code null}; if the
129      * programmer desires thread-local variables to have an initial
130      * value other than {@code null}, then either {@code ThreadLocal}
131      * can be subclassed and this method overridden or the method
132      * {@link ThreadLocal#withInitial(Supplier)} can be used to
133      * construct a {@code ThreadLocal}.
134      *
135      * @return the initial value for this thread-local
136      * @see #withInitial(java.util.function.Supplier)
137      */
138     protected T initialValue() {
139         return null;
140     }
141 
142     /**
143      * Creates a thread local variable. The initial value of the variable is
144      * determined by invoking the {@code get} method on the {@code Supplier}.
145      *
146      * @param <S> the type of the thread local's value
147      * @param supplier the supplier to be used to determine the initial value
148      * @return a new thread local variable
149      * @throws NullPointerException if the specified supplier is null
150      * @since 1.8
151      */
152     public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
153         return new SuppliedThreadLocal<>(supplier);
154     }
155 
156     /**
157      * Creates a thread local variable.
158      * @see #withInitial(java.util.function.Supplier)
159      */
160     public ThreadLocal() {
161     }
162 
163     /**
164      * Returns the value in the current thread's copy of this
165      * thread-local variable.  If the variable has no value for the
166      * current thread, it is first initialized to the value returned
167      * by an invocation of the {@link #initialValue} method.
168      *
169      * @return the current thread's value of this thread-local
170      */
171     public T get() {
172         return get(Thread.currentThread());
173     }
174 
175     /**
176      * Returns the value in the current carrier thread's copy of this
177      * thread-local variable.
178      */
179     T getCarrierThreadLocal() {
180         assert this instanceof CarrierThreadLocal<T>;
181         return get(Thread.currentCarrierThread());
182     }
183 
184     private T get(Thread t) {
185         ThreadLocalMap map = getMap(t);
186         if (map != null) {
187             ThreadLocalMap.Entry e = map.getEntry(this);
188             if (e != null) {
189                 @SuppressWarnings("unchecked")
190                 T result = (T) e.value;
191                 return result;
192             }
193         }
194         return setInitialValue(t);
195     }
196 
197     /**
198      * Returns {@code true} if there is a value in the current carrier thread's copy of
199      * this thread-local variable, even if that values is {@code null}.
200      *
201      * @return {@code true} if current carrier thread has associated value in this
202      *         thread-local variable; {@code false} if not
203      */
204     boolean isCarrierThreadLocalPresent() {
205         assert this instanceof CarrierThreadLocal<T>;
206         return isPresent(Thread.currentCarrierThread());
207     }
208 
209     private boolean isPresent(Thread t) {
210         ThreadLocalMap map = getMap(t);
211         if (map != null) {
212             return map.getEntry(this) != null;
213         } else {
214             return false;
215         }
216     }
217 
218     /**
219      * Variant of set() to establish initialValue. Used instead
220      * of set() in case user has overridden the set() method.
221      *
222      * @return the initial value
223      */
224     private T setInitialValue(Thread t) {
225         T value = initialValue();
226         ThreadLocalMap map = getMap(t);
227         if (map != null) {
228             map.set(this, value);
229         } else {
230             createMap(t, value);
231         }
232         if (this instanceof TerminatingThreadLocal<?> ttl) {
233             TerminatingThreadLocal.register(ttl);
234         }
235         if (TRACE_VTHREAD_LOCALS) {
236             dumpStackIfVirtualThread();
237         }
238         return value;
239     }
240 
241     /**
242      * Sets the current thread's copy of this thread-local variable
243      * to the specified value.  Most subclasses will have no need to
244      * override this method, relying solely on the {@link #initialValue}
245      * method to set the values of thread-locals.
246      *
247      * @param value the value to be stored in the current thread's copy of
248      *        this thread-local.
249      */
250     public void set(T value) {
251         set(Thread.currentThread(), value);
252         if (TRACE_VTHREAD_LOCALS) {
253             dumpStackIfVirtualThread();
254         }
255     }
256 
257     void setCarrierThreadLocal(T value) {
258         assert this instanceof CarrierThreadLocal<T>;
259         set(Thread.currentCarrierThread(), value);
260     }
261 
262     private void set(Thread t, T value) {
263         ThreadLocalMap map = getMap(t);
264         if (map != null) {
265             map.set(this, value);
266         } else {
267             createMap(t, value);
268         }
269     }
270 
271     /**
272      * Removes the current thread's value for this thread-local
273      * variable.  If this thread-local variable is subsequently
274      * {@linkplain #get read} by the current thread, its value will be
275      * reinitialized by invoking its {@link #initialValue} method,
276      * unless its value is {@linkplain #set set} by the current thread
277      * in the interim.  This may result in multiple invocations of the
278      * {@code initialValue} method in the current thread.
279      *
280      * @since 1.5
281      */
282      public void remove() {
283          remove(Thread.currentThread());
284      }
285 
286      void removeCarrierThreadLocal() {
287          assert this instanceof CarrierThreadLocal<T>;
288          remove(Thread.currentCarrierThread());
289      }
290 
291      private void remove(Thread t) {
292          ThreadLocalMap m = getMap(t);
293          if (m != null) {
294              m.remove(this);
295          }
296      }
297 
298     /**
299      * Get the map associated with a ThreadLocal. Overridden in
300      * InheritableThreadLocal.
301      *
302      * @param  t the current thread
303      * @return the map
304      */
305     ThreadLocalMap getMap(Thread t) {
306         return t.threadLocals;
307     }
308 
309     /**
310      * Create the map associated with a ThreadLocal. Overridden in
311      * InheritableThreadLocal.
312      *
313      * @param t the current thread
314      * @param firstValue value for the initial entry of the map
315      */
316     void createMap(Thread t, T firstValue) {
317         t.threadLocals = new ThreadLocalMap(this, firstValue);
318     }
319 
320     /**
321      * Factory method to create map of inherited thread locals.
322      * Designed to be called only from Thread constructor.
323      *
324      * @param  parentMap the map associated with parent thread
325      * @return a map containing the parent's inheritable bindings
326      */
327     static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
328         return new ThreadLocalMap(parentMap);
329     }
330 
331     /**
332      * Method childValue is visibly defined in subclass
333      * InheritableThreadLocal, but is internally defined here for the
334      * sake of providing createInheritedMap factory method without
335      * needing to subclass the map class in InheritableThreadLocal.
336      * This technique is preferable to the alternative of embedding
337      * instanceof tests in methods.
338      */
339     T childValue(T parentValue) {
340         throw new UnsupportedOperationException();
341     }
342 
343     /**
344      * An extension of ThreadLocal that obtains its initial value from
345      * the specified {@code Supplier}.
346      */
347     static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {
348 
349         private final Supplier<? extends T> supplier;
350 
351         SuppliedThreadLocal(Supplier<? extends T> supplier) {
352             this.supplier = Objects.requireNonNull(supplier);
353         }
354 
355         @Override
356         protected T initialValue() {
357             return supplier.get();
358         }
359     }
360 
361     /**
362      * ThreadLocalMap is a customized hash map suitable only for
363      * maintaining thread local values. No operations are exported
364      * outside of the ThreadLocal class. The class is package private to
365      * allow declaration of fields in class Thread.  To help deal with
366      * very large and long-lived usages, the hash table entries use
367      * WeakReferences for keys. However, since reference queues are not
368      * used, stale entries are guaranteed to be removed only when
369      * the table starts running out of space.
370      */
371     static class ThreadLocalMap {
372 
373         /**
374          * The entries in this hash map extend WeakReference, using
375          * its main ref field as the key (which is always a
376          * ThreadLocal object).  Note that null keys (i.e. entry.get()
377          * == null) mean that the key is no longer referenced, so the
378          * entry can be expunged from table.  Such entries are referred to
379          * as "stale entries" in the code that follows.
380          */
381         static class Entry extends WeakReference<ThreadLocal<?>> {
382             /** The value associated with this ThreadLocal. */
383             Object value;
384 
385             Entry(ThreadLocal<?> k, Object v) {
386                 super(k);
387                 value = v;
388             }
389         }
390 
391         /**
392          * The initial capacity -- MUST be a power of two.
393          */
394         private static final int INITIAL_CAPACITY = 16;
395 
396         /**
397          * The table, resized as necessary.
398          * table.length MUST always be a power of two.
399          */
400         private Entry[] table;
401 
402         /**
403          * The number of entries in the table.
404          */
405         private int size = 0;
406 
407         /**
408          * The next size value at which to resize.
409          */
410         private int threshold; // Default to 0
411 
412         /**
413          * Set the resize threshold to maintain at worst a 2/3 load factor.
414          */
415         private void setThreshold(int len) {
416             threshold = len * 2 / 3;
417         }
418 
419         /**
420          * Increment i modulo len.
421          */
422         private static int nextIndex(int i, int len) {
423             return ((i + 1 < len) ? i + 1 : 0);
424         }
425 
426         /**
427          * Decrement i modulo len.
428          */
429         private static int prevIndex(int i, int len) {
430             return ((i - 1 >= 0) ? i - 1 : len - 1);
431         }
432 
433         /**
434          * Construct a new map without a table.
435          */
436         private ThreadLocalMap() {
437         }
438 
439         /**
440          * Construct a new map initially containing (firstKey, firstValue).
441          * ThreadLocalMaps are constructed lazily, so we only create
442          * one when we have at least one entry to put in it.
443          */
444         ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
445             table = new Entry[INITIAL_CAPACITY];
446             int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
447             table[i] = new Entry(firstKey, firstValue);
448             size = 1;
449             setThreshold(INITIAL_CAPACITY);
450         }
451 
452         /**
453          * Construct a new map including all Inheritable ThreadLocals
454          * from given parent map. Called only by createInheritedMap.
455          *
456          * @param parentMap the map associated with parent thread.
457          */
458         private ThreadLocalMap(ThreadLocalMap parentMap) {
459             Entry[] parentTable = parentMap.table;
460             int len = parentTable.length;
461             setThreshold(len);
462             table = new Entry[len];
463 
464             for (Entry e : parentTable) {
465                 if (e != null) {
466                     @SuppressWarnings("unchecked")
467                     ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
468                     if (key != null) {
469                         Object value = key.childValue(e.value);
470                         Entry c = new Entry(key, value);
471                         int h = key.threadLocalHashCode & (len - 1);
472                         while (table[h] != null)
473                             h = nextIndex(h, len);
474                         table[h] = c;
475                         size++;
476                     }
477                 }
478             }
479         }
480 
481         /**
482          * Returns the number of elements in the map.
483          */
484         int size() {
485             return size;
486         }
487 
488         /**
489          * Get the entry associated with key.  This method
490          * itself handles only the fast path: a direct hit of existing
491          * key. It otherwise relays to getEntryAfterMiss.  This is
492          * designed to maximize performance for direct hits, in part
493          * by making this method readily inlinable.
494          *
495          * @param  key the thread local object
496          * @return the entry associated with key, or null if no such
497          */
498         private Entry getEntry(ThreadLocal<?> key) {
499             int i = key.threadLocalHashCode & (table.length - 1);
500             Entry e = table[i];
501             if (e != null && e.refersTo(key))
502                 return e;
503             else
504                 return getEntryAfterMiss(key, i, e);
505         }
506 
507         /**
508          * Version of getEntry method for use when key is not found in
509          * its direct hash slot.
510          *
511          * @param  key the thread local object
512          * @param  i the table index for key's hash code
513          * @param  e the entry at table[i]
514          * @return the entry associated with key, or null if no such
515          */
516         private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
517             Entry[] tab = table;
518             int len = tab.length;
519 
520             while (e != null) {
521                 if (e.refersTo(key))
522                     return e;
523                 if (e.refersTo(null))
524                     expungeStaleEntry(i);
525                 else
526                     i = nextIndex(i, len);
527                 e = tab[i];
528             }
529             return null;
530         }
531 
532         /**
533          * Set the value associated with key.
534          *
535          * @param key the thread local object
536          * @param value the value to be set
537          */
538         private void set(ThreadLocal<?> key, Object value) {
539 
540             // We don't use a fast path as with get() because it is at
541             // least as common to use set() to create new entries as
542             // it is to replace existing ones, in which case, a fast
543             // path would fail more often than not.
544 
545             Entry[] tab = table;
546             int len = tab.length;
547             int i = key.threadLocalHashCode & (len-1);
548 
549             for (Entry e = tab[i];
550                  e != null;
551                  e = tab[i = nextIndex(i, len)]) {
552                 if (e.refersTo(key)) {
553                     e.value = value;
554                     return;
555                 }
556 
557                 if (e.refersTo(null)) {
558                     replaceStaleEntry(key, value, i);
559                     return;
560                 }
561             }
562 
563             tab[i] = new Entry(key, value);
564             int sz = ++size;
565             if (!cleanSomeSlots(i, sz) && sz >= threshold)
566                 rehash();
567         }
568 
569         /**
570          * Remove the entry for key.
571          */
572         private void remove(ThreadLocal<?> key) {
573             Entry[] tab = table;
574             int len = tab.length;
575             int i = key.threadLocalHashCode & (len-1);
576             for (Entry e = tab[i];
577                  e != null;
578                  e = tab[i = nextIndex(i, len)]) {
579                 if (e.refersTo(key)) {
580                     e.clear();
581                     expungeStaleEntry(i);
582                     return;
583                 }
584             }
585         }
586 
587         /**
588          * Replace a stale entry encountered during a set operation
589          * with an entry for the specified key.  The value passed in
590          * the value parameter is stored in the entry, whether or not
591          * an entry already exists for the specified key.
592          *
593          * As a side effect, this method expunges all stale entries in the
594          * "run" containing the stale entry.  (A run is a sequence of entries
595          * between two null slots.)
596          *
597          * @param  key the key
598          * @param  value the value to be associated with key
599          * @param  staleSlot index of the first stale entry encountered while
600          *         searching for key.
601          */
602         private void replaceStaleEntry(ThreadLocal<?> key, Object value,
603                                        int staleSlot) {
604             Entry[] tab = table;
605             int len = tab.length;
606             Entry e;
607 
608             // Back up to check for prior stale entry in current run.
609             // We clean out whole runs at a time to avoid continual
610             // incremental rehashing due to garbage collector freeing
611             // up refs in bunches (i.e., whenever the collector runs).
612             int slotToExpunge = staleSlot;
613             for (int i = prevIndex(staleSlot, len);
614                  (e = tab[i]) != null;
615                  i = prevIndex(i, len))
616                 if (e.refersTo(null))
617                     slotToExpunge = i;
618 
619             // Find either the key or trailing null slot of run, whichever
620             // occurs first
621             for (int i = nextIndex(staleSlot, len);
622                  (e = tab[i]) != null;
623                  i = nextIndex(i, len)) {
624                 // If we find key, then we need to swap it
625                 // with the stale entry to maintain hash table order.
626                 // The newly stale slot, or any other stale slot
627                 // encountered above it, can then be sent to expungeStaleEntry
628                 // to remove or rehash all of the other entries in run.
629                 if (e.refersTo(key)) {
630                     e.value = value;
631 
632                     tab[i] = tab[staleSlot];
633                     tab[staleSlot] = e;
634 
635                     // Start expunge at preceding stale entry if it exists
636                     if (slotToExpunge == staleSlot)
637                         slotToExpunge = i;
638                     cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
639                     return;
640                 }
641 
642                 // If we didn't find stale entry on backward scan, the
643                 // first stale entry seen while scanning for key is the
644                 // first still present in the run.
645                 if (e.refersTo(null) && slotToExpunge == staleSlot)
646                     slotToExpunge = i;
647             }
648 
649             // If key not found, put new entry in stale slot
650             tab[staleSlot].value = null;
651             tab[staleSlot] = new Entry(key, value);
652 
653             // If there are any other stale entries in run, expunge them
654             if (slotToExpunge != staleSlot)
655                 cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
656         }
657 
658         /**
659          * Expunge a stale entry by rehashing any possibly colliding entries
660          * lying between staleSlot and the next null slot.  This also expunges
661          * any other stale entries encountered before the trailing null.  See
662          * Knuth, Section 6.4
663          *
664          * @param staleSlot index of slot known to have null key
665          * @return the index of the next null slot after staleSlot
666          * (all between staleSlot and this slot will have been checked
667          * for expunging).
668          */
669         private int expungeStaleEntry(int staleSlot) {
670             Entry[] tab = table;
671             int len = tab.length;
672 
673             // expunge entry at staleSlot
674             tab[staleSlot].value = null;
675             tab[staleSlot] = null;
676             size--;
677 
678             // Rehash until we encounter null
679             Entry e;
680             int i;
681             for (i = nextIndex(staleSlot, len);
682                  (e = tab[i]) != null;
683                  i = nextIndex(i, len)) {
684                 ThreadLocal<?> k = e.get();
685                 if (k == null) {
686                     e.value = null;
687                     tab[i] = null;
688                     size--;
689                 } else {
690                     int h = k.threadLocalHashCode & (len - 1);
691                     if (h != i) {
692                         tab[i] = null;
693 
694                         // Unlike Knuth 6.4 Algorithm R, we must scan until
695                         // null because multiple entries could have been stale.
696                         while (tab[h] != null)
697                             h = nextIndex(h, len);
698                         tab[h] = e;
699                     }
700                 }
701             }
702             return i;
703         }
704 
705         /**
706          * Heuristically scan some cells looking for stale entries.
707          * This is invoked when either a new element is added, or
708          * another stale one has been expunged. It performs a
709          * logarithmic number of scans, as a balance between no
710          * scanning (fast but retains garbage) and a number of scans
711          * proportional to number of elements, that would find all
712          * garbage but would cause some insertions to take O(n) time.
713          *
714          * @param i a position known NOT to hold a stale entry. The
715          * scan starts at the element after i.
716          *
717          * @param n scan control: {@code log2(n)} cells are scanned,
718          * unless a stale entry is found, in which case
719          * {@code log2(table.length)-1} additional cells are scanned.
720          * When called from insertions, this parameter is the number
721          * of elements, but when from replaceStaleEntry, it is the
722          * table length. (Note: all this could be changed to be either
723          * more or less aggressive by weighting n instead of just
724          * using straight log n. But this version is simple, fast, and
725          * seems to work well.)
726          *
727          * @return true if any stale entries have been removed.
728          */
729         private boolean cleanSomeSlots(int i, int n) {
730             boolean removed = false;
731             Entry[] tab = table;
732             int len = tab.length;
733             do {
734                 i = nextIndex(i, len);
735                 Entry e = tab[i];
736                 if (e != null && e.refersTo(null)) {
737                     n = len;
738                     removed = true;
739                     i = expungeStaleEntry(i);
740                 }
741             } while ( (n >>>= 1) != 0);
742             return removed;
743         }
744 
745         /**
746          * Re-pack and/or re-size the table. First scan the entire
747          * table removing stale entries. If this doesn't sufficiently
748          * shrink the size of the table, double the table size.
749          */
750         private void rehash() {
751             expungeStaleEntries();
752 
753             // Use lower threshold for doubling to avoid hysteresis
754             if (size >= threshold - threshold / 4)
755                 resize();
756         }
757 
758         /**
759          * Double the capacity of the table.
760          */
761         private void resize() {
762             Entry[] oldTab = table;
763             int oldLen = oldTab.length;
764             int newLen = oldLen * 2;
765             Entry[] newTab = new Entry[newLen];
766             int count = 0;
767 
768             for (Entry e : oldTab) {
769                 if (e != null) {
770                     ThreadLocal<?> k = e.get();
771                     if (k == null) {
772                         e.value = null; // Help the GC
773                     } else {
774                         int h = k.threadLocalHashCode & (newLen - 1);
775                         while (newTab[h] != null)
776                             h = nextIndex(h, newLen);
777                         newTab[h] = e;
778                         count++;
779                     }
780                 }
781             }
782 
783             setThreshold(newLen);
784             size = count;
785             table = newTab;
786         }
787 
788         /**
789          * Expunge all stale entries in the table.
790          */
791         private void expungeStaleEntries() {
792             Entry[] tab = table;
793             int len = tab.length;
794             for (int j = 0; j < len; j++) {
795                 Entry e = tab[j];
796                 if (e != null && e.refersTo(null))
797                     expungeStaleEntry(j);
798             }
799         }
800     }
801 
802 
803     /**
804      * Reads the value of the jdk.traceVirtualThreadLocals property to determine if
805      * a stack trace should be printed when a virtual threads sets a thread local.
806      */
807     private static boolean traceVirtualThreadLocals() {
808         String propValue = GetPropertyAction.privilegedGetProperty("jdk.traceVirtualThreadLocals");
809         return (propValue != null)
810                 && (propValue.isEmpty() || Boolean.parseBoolean(propValue));
811     }
812 
813     /**
814      * Print a stack trace if the current thread is a virtual thread.
815      */
816     static void dumpStackIfVirtualThread() {
817         if (Thread.currentThread() instanceof VirtualThread vthread) {
818             try {
819                 var stack = StackWalkerHolder.STACK_WALKER.walk(s ->
820                         s.skip(1)  // skip caller
821                          .collect(Collectors.toList()));
822 
823                 // switch to carrier thread to avoid recursive use of thread-locals
824                 vthread.executeOnCarrierThread(() -> {
825                     System.out.println(vthread);
826                     for (StackWalker.StackFrame frame : stack) {
827                         System.out.format("    %s%n", frame.toStackTraceElement());
828                     }
829                     return null;
830                 });
831             } catch (Exception e) {
832                 throw new InternalError(e);
833             }
834         }
835     }
836 
837     private static class StackWalkerHolder {
838         static final StackWalker STACK_WALKER = StackWalker.getInstance();
839     }
840 }