1 /*
   2  * Copyright (c) 2018, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.lang;
  26 
  27 import java.util.Locale;
  28 import java.util.Objects;
  29 import java.util.concurrent.CountDownLatch;
  30 import java.util.concurrent.Executor;
  31 import java.util.concurrent.Executors;
  32 import java.util.concurrent.ForkJoinPool;
  33 import java.util.concurrent.ForkJoinPool.ForkJoinWorkerThreadFactory;
  34 import java.util.concurrent.ForkJoinTask;
  35 import java.util.concurrent.Future;
  36 import java.util.concurrent.RejectedExecutionException;
  37 import java.util.concurrent.ScheduledExecutorService;
  38 import java.util.concurrent.ScheduledThreadPoolExecutor;
  39 import java.util.concurrent.TimeUnit;
  40 import jdk.internal.event.VirtualThreadEndEvent;
  41 import jdk.internal.event.VirtualThreadStartEvent;
  42 import jdk.internal.event.VirtualThreadSubmitFailedEvent;
  43 import jdk.internal.misc.CarrierThread;
  44 import jdk.internal.misc.InnocuousThread;
  45 import jdk.internal.misc.Unsafe;
  46 import jdk.internal.vm.Continuation;
  47 import jdk.internal.vm.ContinuationScope;
  48 import jdk.internal.vm.StackableScope;
  49 import jdk.internal.vm.ThreadContainer;
  50 import jdk.internal.vm.ThreadContainers;
  51 import jdk.internal.vm.annotation.ChangesCurrentThread;
  52 import jdk.internal.vm.annotation.Hidden;
  53 import jdk.internal.vm.annotation.IntrinsicCandidate;
  54 import jdk.internal.vm.annotation.JvmtiHideEvents;
  55 import jdk.internal.vm.annotation.JvmtiMountTransition;
  56 import jdk.internal.vm.annotation.ReservedStackAccess;
  57 import sun.nio.ch.Interruptible;
  58 import static java.util.concurrent.TimeUnit.*;
  59 
  60 /**
  61  * A thread that is scheduled by the Java virtual machine rather than the operating system.
  62  */
  63 final class VirtualThread extends BaseVirtualThread {
  64     private static final Unsafe U = Unsafe.getUnsafe();
  65     private static final ContinuationScope VTHREAD_SCOPE = new ContinuationScope("VirtualThreads");
  66     private static final ForkJoinPool DEFAULT_SCHEDULER = createDefaultScheduler();
  67 
  68     private static final long STATE = U.objectFieldOffset(VirtualThread.class, "state");
  69     private static final long PARK_PERMIT = U.objectFieldOffset(VirtualThread.class, "parkPermit");
  70     private static final long CARRIER_THREAD = U.objectFieldOffset(VirtualThread.class, "carrierThread");
  71     private static final long TERMINATION = U.objectFieldOffset(VirtualThread.class, "termination");
  72     private static final long ON_WAITING_LIST = U.objectFieldOffset(VirtualThread.class, "onWaitingList");
  73 
  74     // scheduler and continuation
  75     private final Executor scheduler;
  76     private final Continuation cont;
  77     private final Runnable runContinuation;
  78 
  79     // virtual thread state, accessed by VM
  80     private volatile int state;
  81 
  82     /*
  83      * Virtual thread state transitions:
  84      *
  85      *      NEW -> STARTED         // Thread.start, schedule to run
  86      *  STARTED -> TERMINATED      // failed to start
  87      *  STARTED -> RUNNING         // first run
  88      *  RUNNING -> TERMINATED      // done
  89      *
  90      *  RUNNING -> PARKING         // Thread parking with LockSupport.park
  91      *  PARKING -> PARKED          // cont.yield successful, parked indefinitely
  92      *  PARKING -> PINNED          // cont.yield failed, parked indefinitely on carrier
  93      *   PARKED -> UNPARKED        // unparked, may be scheduled to continue
  94      *   PINNED -> RUNNING         // unparked, continue execution on same carrier
  95      * UNPARKED -> RUNNING         // continue execution after park
  96      *
  97      *       RUNNING -> TIMED_PARKING   // Thread parking with LockSupport.parkNanos
  98      * TIMED_PARKING -> TIMED_PARKED    // cont.yield successful, timed-parked
  99      * TIMED_PARKING -> TIMED_PINNED    // cont.yield failed, timed-parked on carrier
 100      *  TIMED_PARKED -> UNPARKED        // unparked, may be scheduled to continue
 101      *  TIMED_PINNED -> RUNNING         // unparked, continue execution on same carrier
 102      *
 103      *   RUNNING -> BLOCKING       // blocking on monitor enter
 104      *  BLOCKING -> BLOCKED        // blocked on monitor enter
 105      *   BLOCKED -> UNBLOCKED      // unblocked, may be scheduled to continue
 106      * UNBLOCKED -> RUNNING        // continue execution after blocked on monitor enter
 107      *
 108      *   RUNNING -> WAITING        // transitional state during wait on monitor
 109      *   WAITING -> WAIT           // waiting on monitor
 110      *      WAIT -> BLOCKED        // notified, waiting to be unblocked by monitor owner
 111      *      WAIT -> UNBLOCKED      // timed-out/interrupted
 112      *
 113      *       RUNNING -> TIMED_WAITING   // transition state during timed-waiting on monitor
 114      * TIMED_WAITING -> TIMED_WAIT      // timed-waiting on monitor
 115      *    TIMED_WAIT -> BLOCKED         // notified, waiting to be unblocked by monitor owner
 116      *    TIMED_WAIT -> UNBLOCKED       // timed-out/interrupted
 117      *
 118      *  RUNNING -> YIELDING        // Thread.yield
 119      * YIELDING -> YIELDED         // cont.yield successful, may be scheduled to continue
 120      * YIELDING -> RUNNING         // cont.yield failed
 121      *  YIELDED -> RUNNING         // continue execution after Thread.yield
 122      */
 123     private static final int NEW      = 0;
 124     private static final int STARTED  = 1;
 125     private static final int RUNNING  = 2;     // runnable-mounted
 126 
 127     // untimed and timed parking
 128     private static final int PARKING       = 3;
 129     private static final int PARKED        = 4;     // unmounted
 130     private static final int PINNED        = 5;     // mounted
 131     private static final int TIMED_PARKING = 6;
 132     private static final int TIMED_PARKED  = 7;     // unmounted
 133     private static final int TIMED_PINNED  = 8;     // mounted
 134     private static final int UNPARKED      = 9;     // unmounted but runnable
 135 
 136     // Thread.yield
 137     private static final int YIELDING = 10;
 138     private static final int YIELDED  = 11;         // unmounted but runnable
 139 
 140     // monitor enter
 141     private static final int BLOCKING  = 12;
 142     private static final int BLOCKED   = 13;        // unmounted
 143     private static final int UNBLOCKED = 14;        // unmounted but runnable
 144 
 145     // monitor wait/timed-wait
 146     private static final int WAITING       = 15;
 147     private static final int WAIT          = 16;    // waiting in Object.wait
 148     private static final int TIMED_WAITING = 17;
 149     private static final int TIMED_WAIT    = 18;    // waiting in timed-Object.wait
 150 
 151     private static final int TERMINATED = 99;  // final state
 152 
 153     // can be suspended from scheduling when unmounted
 154     private static final int SUSPENDED = 1 << 8;
 155 
 156     // parking permit made available by LockSupport.unpark
 157     private volatile boolean parkPermit;
 158 
 159     // blocking permit made available by unblocker thread when another thread exits monitor
 160     private volatile boolean blockPermit;
 161 
 162     // true when on the list of virtual threads waiting to be unblocked
 163     private volatile boolean onWaitingList;
 164 
 165     // next virtual thread on the list of virtual threads waiting to be unblocked
 166     private volatile VirtualThread next;
 167 
 168     // notified by Object.notify/notifyAll while waiting in Object.wait
 169     private volatile boolean notified;
 170 
 171     // true when waiting in Object.wait, false for VM internal uninterruptible Object.wait
 172     private volatile boolean interruptibleWait;
 173 
 174     // timed-wait support
 175     private byte timedWaitSeqNo;
 176 
 177     // timeout for timed-park and timed-wait, only accessed on current/carrier thread
 178     private long timeout;
 179 
 180     // timer task for timed-park and timed-wait, only accessed on current/carrier thread
 181     private Future<?> timeoutTask;
 182 
 183     // carrier thread when mounted, accessed by VM
 184     private volatile Thread carrierThread;
 185 
 186     // termination object when joining, created lazily if needed
 187     private volatile CountDownLatch termination;
 188 
 189     /**
 190      * Returns the default scheduler.
 191      */
 192     static Executor defaultScheduler() {
 193         return DEFAULT_SCHEDULER;
 194     }
 195 
 196     /**
 197      * Returns the continuation scope used for virtual threads.
 198      */
 199     static ContinuationScope continuationScope() {
 200         return VTHREAD_SCOPE;
 201     }
 202 
 203     /**
 204      * Creates a new {@code VirtualThread} to run the given task with the given
 205      * scheduler. If the given scheduler is {@code null} and the current thread
 206      * is a platform thread then the newly created virtual thread will use the
 207      * default scheduler. If given scheduler is {@code null} and the current
 208      * thread is a virtual thread then the current thread's scheduler is used.
 209      *
 210      * @param scheduler the scheduler or null
 211      * @param name thread name
 212      * @param characteristics characteristics
 213      * @param task the task to execute
 214      */
 215     VirtualThread(Executor scheduler, String name, int characteristics, Runnable task) {
 216         super(name, characteristics, /*bound*/ false);
 217         Objects.requireNonNull(task);
 218 
 219         // choose scheduler if not specified
 220         if (scheduler == null) {
 221             Thread parent = Thread.currentThread();
 222             if (parent instanceof VirtualThread vparent) {
 223                 scheduler = vparent.scheduler;
 224             } else {
 225                 scheduler = DEFAULT_SCHEDULER;
 226             }
 227         }
 228 
 229         this.scheduler = scheduler;
 230         this.cont = new VThreadContinuation(this, task);
 231         this.runContinuation = this::runContinuation;
 232     }
 233 
 234     /**
 235      * The continuation that a virtual thread executes.
 236      */
 237     private static class VThreadContinuation extends Continuation {
 238         VThreadContinuation(VirtualThread vthread, Runnable task) {
 239             super(VTHREAD_SCOPE, wrap(vthread, task));
 240         }
 241         @Override
 242         protected void onPinned(Continuation.Pinned reason) {
 243         }
 244         private static Runnable wrap(VirtualThread vthread, Runnable task) {
 245             return new Runnable() {
 246                 @Hidden
 247                 @JvmtiHideEvents
 248                 public void run() {
 249                     vthread.endFirstTransition();
 250                     try {
 251                         vthread.run(task);
 252                     } finally {
 253                         vthread.startFinalTransition();
 254                     }
 255                 }
 256             };
 257         }
 258     }
 259 
 260     /**
 261      * Runs or continues execution on the current thread. The virtual thread is mounted
 262      * on the current thread before the task runs or continues. It unmounts when the
 263      * task completes or yields.
 264      */
 265     @ChangesCurrentThread // allow mount/unmount to be inlined
 266     private void runContinuation() {
 267         // the carrier must be a platform thread
 268         if (Thread.currentThread().isVirtual()) {
 269             throw new WrongThreadException();
 270         }
 271 
 272         // set state to RUNNING
 273         int initialState = state();
 274         if (initialState == STARTED || initialState == UNPARKED
 275                 || initialState == UNBLOCKED || initialState == YIELDED) {
 276             // newly started or continue after parking/blocking/Thread.yield
 277             if (!compareAndSetState(initialState, RUNNING)) {
 278                 return;
 279             }
 280             // consume permit when continuing after parking or blocking. If continue
 281             // after a timed-park or timed-wait then the timeout task is cancelled.
 282             if (initialState == UNPARKED) {
 283                 cancelTimeoutTask();
 284                 setParkPermit(false);
 285             } else if (initialState == UNBLOCKED) {
 286                 cancelTimeoutTask();
 287                 blockPermit = false;
 288             }
 289         } else {
 290             // not runnable
 291             return;
 292         }
 293 
 294         mount();
 295         try {
 296             cont.run();
 297         } finally {
 298             unmount();
 299             if (cont.isDone()) {
 300                 afterDone();
 301             } else {
 302                 afterYield();
 303             }
 304         }
 305     }
 306 
 307     /**
 308      * Cancel timeout task when continuing after timed-park or timed-wait.
 309      * The timeout task may be executing, or may have already completed.
 310      */
 311     private void cancelTimeoutTask() {
 312         if (timeoutTask != null) {
 313             timeoutTask.cancel(false);
 314             timeoutTask = null;
 315         }
 316     }
 317 
 318     /**
 319      * Submits the given task to the given executor. If the scheduler is a
 320      * ForkJoinPool then the task is first adapted to a ForkJoinTask.
 321      */
 322     private void submit(Executor executor, Runnable task) {
 323         if (executor instanceof ForkJoinPool pool) {
 324             pool.submit(ForkJoinTask.adapt(task));
 325         } else {
 326             executor.execute(task);
 327         }
 328     }
 329 
 330     /**
 331      * Submits the runContinuation task to the scheduler. For the default scheduler,
 332      * and calling it on a worker thread, the task will be pushed to the local queue,
 333      * otherwise it will be pushed to an external submission queue.
 334      * @param scheduler the scheduler
 335      * @param retryOnOOME true to retry indefinitely if OutOfMemoryError is thrown
 336      * @throws RejectedExecutionException
 337      */
 338     private void submitRunContinuation(Executor scheduler, boolean retryOnOOME) {
 339         boolean done = false;
 340         while (!done) {
 341             try {
 342                 // Pin the continuation to prevent the virtual thread from unmounting
 343                 // when submitting a task. For the default scheduler this ensures that
 344                 // the carrier doesn't change when pushing a task. For other schedulers
 345                 // it avoids deadlock that could arise due to carriers and virtual
 346                 // threads contending for a lock.
 347                 if (currentThread().isVirtual()) {
 348                     Continuation.pin();
 349                     try {
 350                         submit(scheduler, runContinuation);
 351                     } finally {
 352                         Continuation.unpin();
 353                     }
 354                 } else {
 355                     submit(scheduler, runContinuation);
 356                 }
 357                 done = true;
 358             } catch (RejectedExecutionException ree) {
 359                 submitFailed(ree);
 360                 throw ree;
 361             } catch (OutOfMemoryError e) {
 362                 if (retryOnOOME) {
 363                     U.park(false, 100_000_000); // 100ms
 364                 } else {
 365                     throw e;
 366                 }
 367             }
 368         }
 369     }
 370 
 371     /**
 372      * Submits the runContinuation task to the given scheduler as an external submit.
 373      * If OutOfMemoryError is thrown then the submit will be retried until it succeeds.
 374      * @throws RejectedExecutionException
 375      * @see ForkJoinPool#externalSubmit(ForkJoinTask)
 376      */
 377     private void externalSubmitRunContinuation(ForkJoinPool pool) {
 378         assert Thread.currentThread() instanceof CarrierThread;
 379         try {
 380             pool.externalSubmit(ForkJoinTask.adapt(runContinuation));
 381         } catch (RejectedExecutionException ree) {
 382             submitFailed(ree);
 383             throw ree;
 384         } catch (OutOfMemoryError e) {
 385             submitRunContinuation(pool, true);
 386         }
 387     }
 388 
 389     /**
 390      * Submits the runContinuation task to the scheduler. For the default scheduler,
 391      * and calling it on a worker thread, the task will be pushed to the local queue,
 392      * otherwise it will be pushed to an external submission queue.
 393      * If OutOfMemoryError is thrown then the submit will be retried until it succeeds.
 394      * @throws RejectedExecutionException
 395      */
 396     private void submitRunContinuation() {
 397         submitRunContinuation(scheduler, true);
 398     }
 399 
 400     /**
 401      * Lazy submit the runContinuation task if invoked on a carrier thread and its local
 402      * queue is empty. If not empty, or invoked by another thread, then this method works
 403      * like submitRunContinuation and just submits the task to the scheduler.
 404      * If OutOfMemoryError is thrown then the submit will be retried until it succeeds.
 405      * @throws RejectedExecutionException
 406      * @see ForkJoinPool#lazySubmit(ForkJoinTask)
 407      */
 408     private void lazySubmitRunContinuation() {
 409         if (currentThread() instanceof CarrierThread ct && ct.getQueuedTaskCount() == 0) {
 410             ForkJoinPool pool = ct.getPool();
 411             try {
 412                 pool.lazySubmit(ForkJoinTask.adapt(runContinuation));
 413             } catch (RejectedExecutionException ree) {
 414                 submitFailed(ree);
 415                 throw ree;
 416             } catch (OutOfMemoryError e) {
 417                 submitRunContinuation();
 418             }
 419         } else {
 420             submitRunContinuation();
 421         }
 422     }
 423 
 424     /**
 425      * Submits the runContinuation task to the scheduler. For the default scheduler, and
 426      * calling it a virtual thread that uses the default scheduler, the task will be
 427      * pushed to an external submission queue. This method may throw OutOfMemoryError.
 428      * @throws RejectedExecutionException
 429      * @throws OutOfMemoryError
 430      */
 431     private void externalSubmitRunContinuationOrThrow() {
 432         if (scheduler == DEFAULT_SCHEDULER && currentCarrierThread() instanceof CarrierThread ct) {
 433             try {
 434                 ct.getPool().externalSubmit(ForkJoinTask.adapt(runContinuation));
 435             } catch (RejectedExecutionException ree) {
 436                 submitFailed(ree);
 437                 throw ree;
 438             }
 439         } else {
 440             submitRunContinuation(scheduler, false);
 441         }
 442     }
 443 
 444     /**
 445      * If enabled, emits a JFR VirtualThreadSubmitFailedEvent.
 446      */
 447     private void submitFailed(RejectedExecutionException ree) {
 448         var event = new VirtualThreadSubmitFailedEvent();
 449         if (event.isEnabled()) {
 450             event.javaThreadId = threadId();
 451             event.exceptionMessage = ree.getMessage();
 452             event.commit();
 453         }
 454     }
 455 
 456     /**
 457      * Runs a task in the context of this virtual thread.
 458      */
 459     private void run(Runnable task) {
 460         assert Thread.currentThread() == this && state == RUNNING;
 461 
 462         // emit JFR event if enabled
 463         if (VirtualThreadStartEvent.isTurnedOn()) {
 464             var event = new VirtualThreadStartEvent();
 465             event.javaThreadId = threadId();
 466             event.commit();
 467         }
 468 
 469         Object bindings = Thread.scopedValueBindings();
 470         try {
 471             runWith(bindings, task);
 472         } catch (Throwable exc) {
 473             dispatchUncaughtException(exc);
 474         } finally {
 475             // pop any remaining scopes from the stack, this may block
 476             StackableScope.popAll();
 477 
 478             // emit JFR event if enabled
 479             if (VirtualThreadEndEvent.isTurnedOn()) {
 480                 var event = new VirtualThreadEndEvent();
 481                 event.javaThreadId = threadId();
 482                 event.commit();
 483             }
 484         }
 485     }
 486 
 487     /**
 488      * Mounts this virtual thread onto the current platform thread. On
 489      * return, the current thread is the virtual thread.
 490      */
 491     @ChangesCurrentThread
 492     @ReservedStackAccess
 493     private void mount() {
 494         startTransition(/*is_mount*/true);
 495         // We assume following volatile accesses provide equivalent
 496         // of acquire ordering, otherwise we need U.loadFence() here.
 497 
 498         // sets the carrier thread
 499         Thread carrier = Thread.currentCarrierThread();
 500         setCarrierThread(carrier);
 501 
 502         // sync up carrier thread interrupted status if needed
 503         if (interrupted) {
 504             carrier.setInterrupt();
 505         } else if (carrier.isInterrupted()) {
 506             synchronized (interruptLock) {
 507                 // need to recheck interrupted status
 508                 if (!interrupted) {
 509                     carrier.clearInterrupt();
 510                 }
 511             }
 512         }
 513 
 514         // set Thread.currentThread() to return this virtual thread
 515         carrier.setCurrentThread(this);
 516     }
 517 
 518     /**
 519      * Unmounts this virtual thread from the carrier. On return, the
 520      * current thread is the current platform thread.
 521      */
 522     @ChangesCurrentThread
 523     @ReservedStackAccess
 524     private void unmount() {
 525         assert !Thread.holdsLock(interruptLock);
 526 
 527         // set Thread.currentThread() to return the platform thread
 528         Thread carrier = this.carrierThread;
 529         carrier.setCurrentThread(carrier);
 530 
 531         // break connection to carrier thread, synchronized with interrupt
 532         synchronized (interruptLock) {
 533             setCarrierThread(null);
 534         }
 535         carrier.clearInterrupt();
 536 
 537         // We assume previous volatile accesses provide equivalent
 538         // of release ordering, otherwise we need U.storeFence() here.
 539         endTransition(/*is_mount*/false);
 540     }
 541 
 542     /**
 543      * Invokes Continuation.yield, notifying JVMTI (if enabled) to hide frames until
 544      * the continuation continues.
 545      */
 546     @Hidden
 547     private boolean yieldContinuation() {
 548         startTransition(/*is_mount*/false);
 549         try {
 550             return Continuation.yield(VTHREAD_SCOPE);
 551         } finally {
 552             endTransition(/*is_mount*/true);
 553         }
 554     }
 555 
 556     /**
 557      * Invoked in the context of the carrier thread after the Continuation yields when
 558      * parking, blocking on monitor enter, Object.wait, or Thread.yield.
 559      */
 560     private void afterYield() {
 561         assert carrierThread == null;
 562 
 563         // re-adjust parallelism if the virtual thread yielded when compensating
 564         if (currentThread() instanceof CarrierThread ct) {
 565             ct.endBlocking();
 566         }
 567 
 568         int s = state();
 569 
 570         // LockSupport.park/parkNanos
 571         if (s == PARKING || s == TIMED_PARKING) {
 572             int newState;
 573             if (s == PARKING) {
 574                 setState(newState = PARKED);
 575             } else {
 576                 // schedule unpark
 577                 long timeout = this.timeout;
 578                 assert timeout > 0;
 579                 timeoutTask = schedule(this::parkTimeoutExpired, timeout, NANOSECONDS);
 580                 setState(newState = TIMED_PARKED);
 581             }
 582 
 583             // may have been unparked while parking
 584             if (parkPermit && compareAndSetState(newState, UNPARKED)) {
 585                 // lazy submit if local queue is empty
 586                 lazySubmitRunContinuation();
 587             }
 588             return;
 589         }
 590 
 591         // Thread.yield
 592         if (s == YIELDING) {
 593             setState(YIELDED);
 594 
 595             // external submit if there are no tasks in the local task queue
 596             if (currentThread() instanceof CarrierThread ct && ct.getQueuedTaskCount() == 0) {
 597                 externalSubmitRunContinuation(ct.getPool());
 598             } else {
 599                 submitRunContinuation();
 600             }
 601             return;
 602         }
 603 
 604         // blocking on monitorenter
 605         if (s == BLOCKING) {
 606             setState(BLOCKED);
 607 
 608             // may have been unblocked while blocking
 609             if (blockPermit && compareAndSetState(BLOCKED, UNBLOCKED)) {
 610                 // lazy submit if local queue is empty
 611                 lazySubmitRunContinuation();
 612             }
 613             return;
 614         }
 615 
 616         // Object.wait
 617         if (s == WAITING || s == TIMED_WAITING) {
 618             int newState;
 619             boolean interruptible = interruptibleWait;
 620             if (s == WAITING) {
 621                 setState(newState = WAIT);
 622             } else {
 623                 // For timed-wait, a timeout task is scheduled to execute. The timeout
 624                 // task will change the thread state to UNBLOCKED and submit the thread
 625                 // to the scheduler. A sequence number is used to ensure that the timeout
 626                 // task only unblocks the thread for this timed-wait. We synchronize with
 627                 // the timeout task to coordinate access to the sequence number and to
 628                 // ensure the timeout task doesn't execute until the thread has got to
 629                 // the TIMED_WAIT state.
 630                 long timeout = this.timeout;
 631                 assert timeout > 0;
 632                 synchronized (timedWaitLock()) {
 633                     byte seqNo = ++timedWaitSeqNo;
 634                     timeoutTask = schedule(() -> waitTimeoutExpired(seqNo), timeout, MILLISECONDS);
 635                     setState(newState = TIMED_WAIT);
 636                 }
 637             }
 638 
 639             // may have been notified while in transition to wait state
 640             if (notified && compareAndSetState(newState, BLOCKED)) {
 641                 // may have even been unblocked already
 642                 if (blockPermit && compareAndSetState(BLOCKED, UNBLOCKED)) {
 643                     submitRunContinuation();
 644                 }
 645                 return;
 646             }
 647 
 648             // may have been interrupted while in transition to wait state
 649             if (interruptible && interrupted && compareAndSetState(newState, UNBLOCKED)) {
 650                 submitRunContinuation();
 651                 return;
 652             }
 653             return;
 654         }
 655 
 656         assert false;
 657     }
 658 
 659     /**
 660      * Invoked after the continuation completes.
 661      */
 662     private void afterDone() {
 663         afterDone(true);
 664     }
 665 
 666     /**
 667      * Invoked after the continuation completes (or start failed). Sets the thread
 668      * state to TERMINATED and notifies anyone waiting for the thread to terminate.
 669      *
 670      * @param notifyContainer true if its container should be notified
 671      */
 672     private void afterDone(boolean notifyContainer) {
 673         assert carrierThread == null;
 674         setState(TERMINATED);
 675 
 676         // notify anyone waiting for this virtual thread to terminate
 677         CountDownLatch termination = this.termination;
 678         if (termination != null) {
 679             assert termination.getCount() == 1;
 680             termination.countDown();
 681         }
 682 
 683         // notify container
 684         if (notifyContainer) {
 685             threadContainer().remove(this);
 686         }
 687 
 688         // clear references to thread locals
 689         clearReferences();
 690     }
 691 
 692     /**
 693      * Schedules this {@code VirtualThread} to execute.
 694      *
 695      * @throws IllegalStateException if the container is shutdown or closed
 696      * @throws IllegalThreadStateException if the thread has already been started
 697      * @throws RejectedExecutionException if the scheduler cannot accept a task
 698      */
 699     @Override
 700     void start(ThreadContainer container) {
 701         if (!compareAndSetState(NEW, STARTED)) {
 702             throw new IllegalThreadStateException("Already started");
 703         }
 704 
 705         // bind thread to container
 706         assert threadContainer() == null;
 707         setThreadContainer(container);
 708 
 709         // start thread
 710         boolean addedToContainer = false;
 711         boolean started = false;
 712         try {
 713             container.add(this);  // may throw
 714             addedToContainer = true;
 715 
 716             // scoped values may be inherited
 717             inheritScopedValueBindings(container);
 718 
 719             // submit task to run thread, using externalSubmit if possible
 720             externalSubmitRunContinuationOrThrow();
 721             started = true;
 722         } finally {
 723             if (!started) {
 724                 afterDone(addedToContainer);
 725             }
 726         }
 727     }
 728 
 729     @Override
 730     public void start() {
 731         start(ThreadContainers.root());
 732     }
 733 
 734     @Override
 735     public void run() {
 736         // do nothing
 737     }
 738 
 739     /**
 740      * Parks until unparked or interrupted. If already unparked then the parking
 741      * permit is consumed and this method completes immediately (meaning it doesn't
 742      * yield). It also completes immediately if the interrupted status is set.
 743      */
 744     @Override
 745     void park() {
 746         assert Thread.currentThread() == this;
 747 
 748         // complete immediately if parking permit available or interrupted
 749         if (getAndSetParkPermit(false) || interrupted)
 750             return;
 751 
 752         // park the thread
 753         boolean yielded = false;
 754         setState(PARKING);
 755         try {
 756             yielded = yieldContinuation();
 757         } catch (OutOfMemoryError e) {
 758             // park on carrier
 759         } finally {
 760             assert (Thread.currentThread() == this) && (yielded == (state() == RUNNING));
 761             if (!yielded) {
 762                 assert state() == PARKING;
 763                 setState(RUNNING);
 764             }
 765         }
 766 
 767         // park on the carrier thread when pinned
 768         if (!yielded) {
 769             parkOnCarrierThread(false, 0);
 770         }
 771     }
 772 
 773     /**
 774      * Parks up to the given waiting time or until unparked or interrupted.
 775      * If already unparked then the parking permit is consumed and this method
 776      * completes immediately (meaning it doesn't yield). It also completes immediately
 777      * if the interrupted status is set or the waiting time is {@code <= 0}.
 778      *
 779      * @param nanos the maximum number of nanoseconds to wait.
 780      */
 781     @Override
 782     void parkNanos(long nanos) {
 783         assert Thread.currentThread() == this;
 784 
 785         // complete immediately if parking permit available or interrupted
 786         if (getAndSetParkPermit(false) || interrupted)
 787             return;
 788 
 789         // park the thread for the waiting time
 790         if (nanos > 0) {
 791             long startTime = System.nanoTime();
 792 
 793             // park the thread, afterYield will schedule the thread to unpark
 794             boolean yielded = false;
 795             timeout = nanos;
 796             setState(TIMED_PARKING);
 797             try {
 798                 yielded = yieldContinuation();
 799             } catch (OutOfMemoryError e) {
 800                 // park on carrier
 801             } finally {
 802                 assert (Thread.currentThread() == this) && (yielded == (state() == RUNNING));
 803                 if (!yielded) {
 804                     assert state() == TIMED_PARKING;
 805                     setState(RUNNING);
 806                 }
 807             }
 808 
 809             // park on carrier thread for remaining time when pinned (or OOME)
 810             if (!yielded) {
 811                 long remainingNanos = nanos - (System.nanoTime() - startTime);
 812                 parkOnCarrierThread(true, remainingNanos);
 813             }
 814         }
 815     }
 816 
 817     /**
 818      * Parks the current carrier thread up to the given waiting time or until
 819      * unparked or interrupted. If the virtual thread is interrupted then the
 820      * interrupted status will be propagated to the carrier thread.
 821      * @param timed true for a timed park, false for untimed
 822      * @param nanos the waiting time in nanoseconds
 823      */
 824     private void parkOnCarrierThread(boolean timed, long nanos) {
 825         assert state() == RUNNING;
 826 
 827         setState(timed ? TIMED_PINNED : PINNED);
 828         try {
 829             if (!parkPermit) {
 830                 if (!timed) {
 831                     U.park(false, 0);
 832                 } else if (nanos > 0) {
 833                     U.park(false, nanos);
 834                 }
 835             }
 836         } finally {
 837             setState(RUNNING);
 838         }
 839 
 840         // consume parking permit
 841         setParkPermit(false);
 842 
 843         // JFR jdk.VirtualThreadPinned event
 844         postPinnedEvent("LockSupport.park");
 845     }
 846 
 847     /**
 848      * Call into VM when pinned to record a JFR jdk.VirtualThreadPinned event.
 849      * Recording the event in the VM avoids having JFR event recorded in Java
 850      * with the same name, but different ID, to events recorded by the VM.
 851      */
 852     @Hidden
 853     private static native void postPinnedEvent(String op);
 854 
 855     /**
 856      * Re-enables this virtual thread for scheduling. If this virtual thread is parked
 857      * then its task is scheduled to continue, otherwise its next call to {@code park} or
 858      * {@linkplain #parkNanos(long) parkNanos} is guaranteed not to block.
 859      * @throws RejectedExecutionException if the scheduler cannot accept a task
 860      */
 861     @Override
 862     void unpark() {
 863         if (!getAndSetParkPermit(true) && currentThread() != this) {
 864             int s = state();
 865 
 866             // unparked while parked
 867             if ((s == PARKED || s == TIMED_PARKED) && compareAndSetState(s, UNPARKED)) {
 868                 submitRunContinuation();
 869                 return;
 870             }
 871 
 872             // unparked while parked when pinned
 873             if (s == PINNED || s == TIMED_PINNED) {
 874                 // unpark carrier thread when pinned
 875                 disableSuspendAndPreempt();
 876                 try {
 877                     synchronized (carrierThreadAccessLock()) {
 878                         Thread carrier = carrierThread;
 879                         if (carrier != null && ((s = state()) == PINNED || s == TIMED_PINNED)) {
 880                             U.unpark(carrier);
 881                         }
 882                     }
 883                 } finally {
 884                     enableSuspendAndPreempt();
 885                 }
 886                 return;
 887             }
 888         }
 889     }
 890 
 891     /**
 892      * Invoked by unblocker thread to unblock this virtual thread.
 893      */
 894     private void unblock() {
 895         assert !Thread.currentThread().isVirtual();
 896         blockPermit = true;
 897         if (state() == BLOCKED && compareAndSetState(BLOCKED, UNBLOCKED)) {
 898             submitRunContinuation();
 899         }
 900     }
 901 
 902     /**
 903      * Invoked by FJP worker thread or STPE thread when park timeout expires.
 904      */
 905     private void parkTimeoutExpired() {
 906         assert !VirtualThread.currentThread().isVirtual();
 907         if (!getAndSetParkPermit(true)
 908                 && (state() == TIMED_PARKED)
 909                 && compareAndSetState(TIMED_PARKED, UNPARKED)) {
 910             lazySubmitRunContinuation();
 911         }
 912     }
 913 
 914     /**
 915      * Invoked by FJP worker thread or STPE thread when wait timeout expires.
 916      * If the virtual thread is in timed-wait then this method will unblock the thread
 917      * and submit its task so that it continues and attempts to reenter the monitor.
 918      * This method does nothing if the thread has been woken by notify or interrupt.
 919      */
 920     private void waitTimeoutExpired(byte seqNo) {
 921         assert !Thread.currentThread().isVirtual();
 922         for (;;) {
 923             boolean unblocked = false;
 924             synchronized (timedWaitLock()) {
 925                 if (seqNo != timedWaitSeqNo) {
 926                     // this timeout task is for a past timed-wait
 927                     return;
 928                 }
 929                 int s = state();
 930                 if (s == TIMED_WAIT) {
 931                     unblocked = compareAndSetState(TIMED_WAIT, UNBLOCKED);
 932                 } else if (s != (TIMED_WAIT | SUSPENDED)) {
 933                     // notified or interrupted, no longer waiting
 934                     return;
 935                 }
 936             }
 937             if (unblocked) {
 938                 lazySubmitRunContinuation();
 939                 return;
 940             }
 941             // need to retry when thread is suspended in time-wait
 942             Thread.yield();
 943         }
 944     }
 945 
 946     /**
 947      * Attempts to yield the current virtual thread (Thread.yield).
 948      */
 949     void tryYield() {
 950         assert Thread.currentThread() == this;
 951         setState(YIELDING);
 952         boolean yielded = false;
 953         try {
 954             yielded = yieldContinuation();  // may throw
 955         } finally {
 956             assert (Thread.currentThread() == this) && (yielded == (state() == RUNNING));
 957             if (!yielded) {
 958                 assert state() == YIELDING;
 959                 setState(RUNNING);
 960             }
 961         }
 962     }
 963 
 964     /**
 965      * Sleep the current thread for the given sleep time (in nanoseconds). If
 966      * nanos is 0 then the thread will attempt to yield.
 967      *
 968      * @implNote This implementation parks the thread for the given sleeping time
 969      * and will therefore be observed in PARKED state during the sleep. Parking
 970      * will consume the parking permit so this method makes available the parking
 971      * permit after the sleep. This may be observed as a spurious, but benign,
 972      * wakeup when the thread subsequently attempts to park.
 973      *
 974      * @param nanos the maximum number of nanoseconds to sleep
 975      * @throws InterruptedException if interrupted while sleeping
 976      */
 977     void sleepNanos(long nanos) throws InterruptedException {
 978         assert Thread.currentThread() == this && nanos >= 0;
 979         if (getAndClearInterrupt())
 980             throw new InterruptedException();
 981         if (nanos == 0) {
 982             tryYield();
 983         } else {
 984             // park for the sleep time
 985             try {
 986                 long remainingNanos = nanos;
 987                 long startNanos = System.nanoTime();
 988                 while (remainingNanos > 0) {
 989                     parkNanos(remainingNanos);
 990                     if (getAndClearInterrupt()) {
 991                         throw new InterruptedException();
 992                     }
 993                     remainingNanos = nanos - (System.nanoTime() - startNanos);
 994                 }
 995             } finally {
 996                 // may have been unparked while sleeping
 997                 setParkPermit(true);
 998             }
 999         }
1000     }
1001 
1002     /**
1003      * Waits up to {@code nanos} nanoseconds for this virtual thread to terminate.
1004      * A timeout of {@code 0} means to wait forever.
1005      *
1006      * @throws InterruptedException if interrupted while waiting
1007      * @return true if the thread has terminated
1008      */
1009     boolean joinNanos(long nanos) throws InterruptedException {
1010         if (state() == TERMINATED)
1011             return true;
1012 
1013         // ensure termination object exists, then re-check state
1014         CountDownLatch termination = getTermination();
1015         if (state() == TERMINATED)
1016             return true;
1017 
1018         // wait for virtual thread to terminate
1019         if (nanos == 0) {
1020             termination.await();
1021         } else {
1022             boolean terminated = termination.await(nanos, NANOSECONDS);
1023             if (!terminated) {
1024                 // waiting time elapsed
1025                 return false;
1026             }
1027         }
1028         assert state() == TERMINATED;
1029         return true;
1030     }
1031 
1032     @Override
1033     void blockedOn(Interruptible b) {
1034         disableSuspendAndPreempt();
1035         try {
1036             super.blockedOn(b);
1037         } finally {
1038             enableSuspendAndPreempt();
1039         }
1040     }
1041 
1042     @Override
1043     public void interrupt() {
1044         if (Thread.currentThread() != this) {
1045             // if current thread is a virtual thread then prevent it from being
1046             // suspended or unmounted when entering or holding interruptLock
1047             Interruptible blocker;
1048             disableSuspendAndPreempt();
1049             try {
1050                 synchronized (interruptLock) {
1051                     interrupted = true;
1052                     blocker = nioBlocker();
1053                     if (blocker != null) {
1054                         blocker.interrupt(this);
1055                     }
1056 
1057                     // interrupt carrier thread if mounted
1058                     Thread carrier = carrierThread;
1059                     if (carrier != null) carrier.setInterrupt();
1060                 }
1061             } finally {
1062                 enableSuspendAndPreempt();
1063             }
1064 
1065             // notify blocker after releasing interruptLock
1066             if (blocker != null) {
1067                 blocker.postInterrupt();
1068             }
1069 
1070             // make available parking permit, unpark thread if parked
1071             unpark();
1072 
1073             // if thread is waiting in Object.wait then schedule to try to reenter
1074             int s = state();
1075             if ((s == WAIT || s == TIMED_WAIT) && compareAndSetState(s, UNBLOCKED)) {
1076                 submitRunContinuation();
1077             }
1078 
1079         } else {
1080             interrupted = true;
1081             carrierThread.setInterrupt();
1082             setParkPermit(true);
1083         }
1084     }
1085 
1086     @Override
1087     public boolean isInterrupted() {
1088         return interrupted;
1089     }
1090 
1091     @Override
1092     boolean getAndClearInterrupt() {
1093         assert Thread.currentThread() == this;
1094         boolean oldValue = interrupted;
1095         if (oldValue) {
1096             disableSuspendAndPreempt();
1097             try {
1098                 synchronized (interruptLock) {
1099                     interrupted = false;
1100                     carrierThread.clearInterrupt();
1101                 }
1102             } finally {
1103                 enableSuspendAndPreempt();
1104             }
1105         }
1106         return oldValue;
1107     }
1108 
1109     @Override
1110     Thread.State threadState() {
1111         int s = state();
1112         switch (s & ~SUSPENDED) {
1113             case NEW:
1114                 return Thread.State.NEW;
1115             case STARTED:
1116                 // return NEW if thread container not yet set
1117                 if (threadContainer() == null) {
1118                     return Thread.State.NEW;
1119                 } else {
1120                     return Thread.State.RUNNABLE;
1121                 }
1122             case UNPARKED:
1123             case UNBLOCKED:
1124             case YIELDED:
1125                 // runnable, not mounted
1126                 return Thread.State.RUNNABLE;
1127             case RUNNING:
1128                 // if mounted then return state of carrier thread
1129                 if (Thread.currentThread() != this) {
1130                     disableSuspendAndPreempt();
1131                     try {
1132                         synchronized (carrierThreadAccessLock()) {
1133                             Thread carrierThread = this.carrierThread;
1134                             if (carrierThread != null) {
1135                                 return carrierThread.threadState();
1136                             }
1137                         }
1138                     } finally {
1139                         enableSuspendAndPreempt();
1140                     }
1141                 }
1142                 // runnable, mounted
1143                 return Thread.State.RUNNABLE;
1144             case PARKING:
1145             case TIMED_PARKING:
1146             case WAITING:
1147             case TIMED_WAITING:
1148             case YIELDING:
1149                 // runnable, in transition
1150                 return Thread.State.RUNNABLE;
1151             case PARKED:
1152             case PINNED:
1153             case WAIT:
1154                 return Thread.State.WAITING;
1155             case TIMED_PARKED:
1156             case TIMED_PINNED:
1157             case TIMED_WAIT:
1158                 return Thread.State.TIMED_WAITING;
1159             case BLOCKING:
1160             case BLOCKED:
1161                 return Thread.State.BLOCKED;
1162             case TERMINATED:
1163                 return Thread.State.TERMINATED;
1164             default:
1165                 throw new InternalError();
1166         }
1167     }
1168 
1169     @Override
1170     boolean alive() {
1171         int s = state;
1172         return (s != NEW && s != TERMINATED);
1173     }
1174 
1175     @Override
1176     boolean isTerminated() {
1177         return (state == TERMINATED);
1178     }
1179 
1180     @Override
1181     StackTraceElement[] asyncGetStackTrace() {
1182         StackTraceElement[] stackTrace;
1183         do {
1184             stackTrace = (carrierThread != null)
1185                     ? super.asyncGetStackTrace()  // mounted
1186                     : tryGetStackTrace();         // unmounted
1187             if (stackTrace == null) {
1188                 Thread.yield();
1189             }
1190         } while (stackTrace == null);
1191         return stackTrace;
1192     }
1193 
1194     /**
1195      * Returns the stack trace for this virtual thread if it is unmounted.
1196      * Returns null if the thread is mounted or in transition.
1197      */
1198     private StackTraceElement[] tryGetStackTrace() {
1199         int initialState = state() & ~SUSPENDED;
1200         switch (initialState) {
1201             case NEW, STARTED, TERMINATED -> {
1202                 return new StackTraceElement[0];  // unmounted, empty stack
1203             }
1204             case RUNNING, PINNED, TIMED_PINNED -> {
1205                 return null;   // mounted
1206             }
1207             case PARKED, TIMED_PARKED, BLOCKED, WAIT, TIMED_WAIT -> {
1208                 // unmounted, not runnable
1209             }
1210             case UNPARKED, UNBLOCKED, YIELDED -> {
1211                 // unmounted, runnable
1212             }
1213             case PARKING, TIMED_PARKING, BLOCKING, YIELDING, WAITING, TIMED_WAITING -> {
1214                 return null;  // in transition
1215             }
1216             default -> throw new InternalError("" + initialState);
1217         }
1218 
1219         // thread is unmounted, prevent it from continuing
1220         int suspendedState = initialState | SUSPENDED;
1221         if (!compareAndSetState(initialState, suspendedState)) {
1222             return null;
1223         }
1224 
1225         // get stack trace and restore state
1226         StackTraceElement[] stack;
1227         try {
1228             stack = cont.getStackTrace();
1229         } finally {
1230             assert state == suspendedState;
1231             setState(initialState);
1232         }
1233         boolean resubmit = switch (initialState) {
1234             case UNPARKED, UNBLOCKED, YIELDED -> {
1235                 // resubmit as task may have run while suspended
1236                 yield true;
1237             }
1238             case PARKED, TIMED_PARKED -> {
1239                 // resubmit if unparked while suspended
1240                 yield parkPermit && compareAndSetState(initialState, UNPARKED);
1241             }
1242             case BLOCKED -> {
1243                 // resubmit if unblocked while suspended
1244                 yield blockPermit && compareAndSetState(BLOCKED, UNBLOCKED);
1245             }
1246             case WAIT, TIMED_WAIT -> {
1247                 // resubmit if notified or interrupted while waiting (Object.wait)
1248                 // waitTimeoutExpired will retry if the timed expired when suspended
1249                 yield (notified || interrupted) && compareAndSetState(initialState, UNBLOCKED);
1250             }
1251             default -> throw new InternalError();
1252         };
1253         if (resubmit) {
1254             submitRunContinuation();
1255         }
1256         return stack;
1257     }
1258 
1259     @Override
1260     public String toString() {
1261         StringBuilder sb = new StringBuilder("VirtualThread[#");
1262         sb.append(threadId());
1263         String name = getName();
1264         if (!name.isEmpty()) {
1265             sb.append(",");
1266             sb.append(name);
1267         }
1268         sb.append("]/");
1269 
1270         // add the carrier state and thread name when mounted
1271         boolean mounted;
1272         if (Thread.currentThread() == this) {
1273             mounted = appendCarrierInfo(sb);
1274         } else {
1275             disableSuspendAndPreempt();
1276             try {
1277                 synchronized (carrierThreadAccessLock()) {
1278                     mounted = appendCarrierInfo(sb);
1279                 }
1280             } finally {
1281                 enableSuspendAndPreempt();
1282             }
1283         }
1284 
1285         // add virtual thread state when not mounted
1286         if (!mounted) {
1287             String stateAsString = threadState().toString();
1288             sb.append(stateAsString.toLowerCase(Locale.ROOT));
1289         }
1290 
1291         return sb.toString();
1292     }
1293 
1294     /**
1295      * Appends the carrier state and thread name to the string buffer if mounted.
1296      * @return true if mounted, false if not mounted
1297      */
1298     private boolean appendCarrierInfo(StringBuilder sb) {
1299         assert Thread.currentThread() == this || Thread.holdsLock(carrierThreadAccessLock());
1300         Thread carrier = carrierThread;
1301         if (carrier != null) {
1302             String stateAsString = carrier.threadState().toString();
1303             sb.append(stateAsString.toLowerCase(Locale.ROOT));
1304             sb.append('@');
1305             sb.append(carrier.getName());
1306             return true;
1307         } else {
1308             return false;
1309         }
1310     }
1311 
1312     @Override
1313     public int hashCode() {
1314         return (int) threadId();
1315     }
1316 
1317     @Override
1318     public boolean equals(Object obj) {
1319         return obj == this;
1320     }
1321 
1322     /**
1323      * Returns the termination object, creating it if needed.
1324      */
1325     private CountDownLatch getTermination() {
1326         CountDownLatch termination = this.termination;
1327         if (termination == null) {
1328             termination = new CountDownLatch(1);
1329             if (!U.compareAndSetReference(this, TERMINATION, null, termination)) {
1330                 termination = this.termination;
1331             }
1332         }
1333         return termination;
1334     }
1335 
1336     /**
1337      * Returns the lock object to synchronize on when accessing carrierThread.
1338      * The lock prevents carrierThread from being reset to null during unmount.
1339      */
1340     private Object carrierThreadAccessLock() {
1341         // return interruptLock as unmount has to coordinate with interrupt
1342         return interruptLock;
1343     }
1344 
1345     /**
1346      * Returns a lock object for coordinating timed-wait setup and timeout handling.
1347      */
1348     private Object timedWaitLock() {
1349         // use this object for now to avoid the overhead of introducing another lock
1350         return runContinuation;
1351     }
1352 
1353     /**
1354      * Disallow the current thread be suspended or preempted.
1355      */
1356     private void disableSuspendAndPreempt() {
1357         notifyJvmtiDisableSuspend(true);
1358         Continuation.pin();
1359     }
1360 
1361     /**
1362      * Allow the current thread be suspended or preempted.
1363      */
1364     private void enableSuspendAndPreempt() {
1365         Continuation.unpin();
1366         notifyJvmtiDisableSuspend(false);
1367     }
1368 
1369     // -- wrappers for get/set of state, parking permit, and carrier thread --
1370 
1371     private int state() {
1372         return state;  // volatile read
1373     }
1374 
1375     private void setState(int newValue) {
1376         state = newValue;  // volatile write
1377     }
1378 
1379     private boolean compareAndSetState(int expectedValue, int newValue) {
1380         return U.compareAndSetInt(this, STATE, expectedValue, newValue);
1381     }
1382 
1383     private boolean compareAndSetOnWaitingList(boolean expectedValue, boolean newValue) {
1384         return U.compareAndSetBoolean(this, ON_WAITING_LIST, expectedValue, newValue);
1385     }
1386 
1387     private void setParkPermit(boolean newValue) {
1388         if (parkPermit != newValue) {
1389             parkPermit = newValue;
1390         }
1391     }
1392 
1393     private boolean getAndSetParkPermit(boolean newValue) {
1394         if (parkPermit != newValue) {
1395             return U.getAndSetBoolean(this, PARK_PERMIT, newValue);
1396         } else {
1397             return newValue;
1398         }
1399     }
1400 
1401     private void setCarrierThread(Thread carrier) {
1402         // U.putReferenceRelease(this, CARRIER_THREAD, carrier);
1403         this.carrierThread = carrier;
1404     }
1405 
1406     // The following four methods notify the VM when a "transition" starts and ends.
1407     // A "mount transition" embodies the steps to transfer control from a platform
1408     // thread to a virtual thread, changing the thread identity, and starting or
1409     // resuming the virtual thread's continuation on the carrier.
1410     // An "unmount transition" embodies the steps to transfer control from a virtual
1411     // thread to its carrier, suspending the virtual thread's continuation, and
1412     // restoring the thread identity to the platform thread.
1413     // The notifications to the VM are necessary in order to coordinate with functions
1414     // (JVMTI mostly) that disable transitions for one or all virtual threads. Starting
1415     // a transition may block if transitions are disabled. Ending a transition may
1416     // notify a thread that is waiting to disable transitions. The notifications are
1417     // also used to post JVMTI events for virtual thread start and end.
1418 
1419     @IntrinsicCandidate
1420     @JvmtiMountTransition
1421     private native void endFirstTransition();
1422 
1423     @IntrinsicCandidate
1424     @JvmtiMountTransition
1425     private native void startFinalTransition();
1426 
1427     @IntrinsicCandidate
1428     @JvmtiMountTransition
1429     private native void startTransition(boolean is_mount);
1430 
1431     @IntrinsicCandidate
1432     @JvmtiMountTransition
1433     private native void endTransition(boolean is_mount);
1434 
1435     @IntrinsicCandidate
1436     private static native void notifyJvmtiDisableSuspend(boolean enter);
1437 
1438     private static native void registerNatives();
1439     static {
1440         registerNatives();
1441 
1442         // ensure VTHREAD_GROUP is created, may be accessed by JVMTI
1443         var group = Thread.virtualThreadGroup();
1444     }
1445 
1446     /**
1447      * Creates the default ForkJoinPool scheduler.
1448      */
1449     private static ForkJoinPool createDefaultScheduler() {
1450         ForkJoinWorkerThreadFactory factory = pool -> new CarrierThread(pool);
1451         int parallelism, maxPoolSize, minRunnable;
1452         String parallelismValue = System.getProperty("jdk.virtualThreadScheduler.parallelism");
1453         String maxPoolSizeValue = System.getProperty("jdk.virtualThreadScheduler.maxPoolSize");
1454         String minRunnableValue = System.getProperty("jdk.virtualThreadScheduler.minRunnable");
1455         if (parallelismValue != null) {
1456             parallelism = Integer.parseInt(parallelismValue);
1457         } else {
1458             parallelism = Runtime.getRuntime().availableProcessors();
1459         }
1460         if (maxPoolSizeValue != null) {
1461             maxPoolSize = Integer.parseInt(maxPoolSizeValue);
1462             parallelism = Integer.min(parallelism, maxPoolSize);
1463         } else {
1464             maxPoolSize = Integer.max(parallelism, 256);
1465         }
1466         if (minRunnableValue != null) {
1467             minRunnable = Integer.parseInt(minRunnableValue);
1468         } else {
1469             minRunnable = Integer.max(parallelism / 2, 1);
1470         }
1471         Thread.UncaughtExceptionHandler handler = (t, e) -> { };
1472         boolean asyncMode = true; // FIFO
1473         return new ForkJoinPool(parallelism, factory, handler, asyncMode,
1474                      0, maxPoolSize, minRunnable, pool -> true, 30, SECONDS);
1475     }
1476 
1477     /**
1478      * Schedule a runnable task to run after a delay.
1479      */
1480     private Future<?> schedule(Runnable command, long delay, TimeUnit unit) {
1481         if (scheduler instanceof ForkJoinPool pool) {
1482             return pool.schedule(command, delay, unit);
1483         } else {
1484             return DelayedTaskSchedulers.schedule(command, delay, unit);
1485         }
1486     }
1487 
1488     /**
1489      * Supports scheduling a runnable task to run after a delay. It uses a number
1490      * of ScheduledThreadPoolExecutor instances to reduce contention on the delayed
1491      * work queue used. This class is used when using a custom scheduler.
1492      */
1493     private static class DelayedTaskSchedulers {
1494         private static final ScheduledExecutorService[] INSTANCE = createDelayedTaskSchedulers();
1495 
1496         static Future<?> schedule(Runnable command, long delay, TimeUnit unit) {
1497             long tid = Thread.currentThread().threadId();
1498             int index = (int) tid & (INSTANCE.length - 1);
1499             return INSTANCE[index].schedule(command, delay, unit);
1500         }
1501 
1502         private static ScheduledExecutorService[] createDelayedTaskSchedulers() {
1503             String propName = "jdk.virtualThreadScheduler.timerQueues";
1504             String propValue = System.getProperty(propName);
1505             int queueCount;
1506             if (propValue != null) {
1507                 queueCount = Integer.parseInt(propValue);
1508                 if (queueCount != Integer.highestOneBit(queueCount)) {
1509                     throw new RuntimeException("Value of " + propName + " must be power of 2");
1510                 }
1511             } else {
1512                 int ncpus = Runtime.getRuntime().availableProcessors();
1513                 queueCount = Math.max(Integer.highestOneBit(ncpus / 4), 1);
1514             }
1515             var schedulers = new ScheduledExecutorService[queueCount];
1516             for (int i = 0; i < queueCount; i++) {
1517                 ScheduledThreadPoolExecutor stpe = (ScheduledThreadPoolExecutor)
1518                     Executors.newScheduledThreadPool(1, task -> {
1519                         Thread t = InnocuousThread.newThread("VirtualThread-unparker", task);
1520                         t.setDaemon(true);
1521                         return t;
1522                     });
1523                 stpe.setRemoveOnCancelPolicy(true);
1524                 schedulers[i] = stpe;
1525             }
1526             return schedulers;
1527         }
1528     }
1529 
1530     /**
1531      * Schedule virtual threads that are ready to be scheduled after they blocked on
1532      * monitor enter.
1533      */
1534     private static void unblockVirtualThreads() {
1535         while (true) {
1536             VirtualThread vthread = takeVirtualThreadListToUnblock();
1537             while (vthread != null) {
1538                 assert vthread.onWaitingList;
1539                 VirtualThread nextThread = vthread.next;
1540 
1541                 // remove from list and unblock
1542                 vthread.next = null;
1543                 boolean changed = vthread.compareAndSetOnWaitingList(true, false);
1544                 assert changed;
1545                 vthread.unblock();
1546 
1547                 vthread = nextThread;
1548             }
1549         }
1550     }
1551 
1552     /**
1553      * Retrieves the list of virtual threads that are waiting to be unblocked, waiting
1554      * if necessary until a list of one or more threads becomes available.
1555      */
1556     private static native VirtualThread takeVirtualThreadListToUnblock();
1557 
1558     static {
1559         var unblocker = InnocuousThread.newThread("VirtualThread-unblocker",
1560                 VirtualThread::unblockVirtualThreads);
1561         unblocker.setDaemon(true);
1562         unblocker.start();
1563     }
1564 }