1 /*
   2  * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "compiler/compilerDefinitions.inline.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/c1/barrierSetC1.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/vm_version.hpp"
  44 #include "utilities/bitMap.inline.hpp"
  45 #include "utilities/macros.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset() {
  59   _virtual_operands.clear();
  60   _other_operands.clear();
  61   _vreg_table.clear();
  62 }
  63 
  64 
  65 //--------------------------------------------------------------
  66 // PhiResolver
  67 
  68 // Resolves cycles:
  69 //
  70 //  r1 := r2  becomes  temp := r1
  71 //  r2 := r1           r1 := r2
  72 //                     r2 := temp
  73 // and orders moves:
  74 //
  75 //  r2 := r3  becomes  r1 := r2
  76 //  r1 := r2           r2 := r3
  77 
  78 PhiResolver::PhiResolver(LIRGenerator* gen)
  79  : _gen(gen)
  80  , _state(gen->resolver_state())
  81  , _temp(LIR_OprFact::illegalOpr)
  82 {
  83   // reinitialize the shared state arrays
  84   _state.reset();
  85 }
  86 
  87 
  88 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  89   assert(src->is_valid(), "");
  90   assert(dest->is_valid(), "");
  91   __ move(src, dest);
  92 }
  93 
  94 
  95 void PhiResolver::move_temp_to(LIR_Opr dest) {
  96   assert(_temp->is_valid(), "");
  97   emit_move(_temp, dest);
  98   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
  99 }
 100 
 101 
 102 void PhiResolver::move_to_temp(LIR_Opr src) {
 103   assert(_temp->is_illegal(), "");
 104   _temp = _gen->new_register(src->type());
 105   emit_move(src, _temp);
 106 }
 107 
 108 
 109 // Traverse assignment graph in depth first order and generate moves in post order
 110 // ie. two assignments: b := c, a := b start with node c:
 111 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 112 // Generates moves in this order: move b to a and move c to b
 113 // ie. cycle a := b, b := a start with node a
 114 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 115 // Generates moves in this order: move b to temp, move a to b, move temp to a
 116 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 117   if (!dest->visited()) {
 118     dest->set_visited();
 119     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 120       move(dest, dest->destination_at(i));
 121     }
 122   } else if (!dest->start_node()) {
 123     // cylce in graph detected
 124     assert(_loop == NULL, "only one loop valid!");
 125     _loop = dest;
 126     move_to_temp(src->operand());
 127     return;
 128   } // else dest is a start node
 129 
 130   if (!dest->assigned()) {
 131     if (_loop == dest) {
 132       move_temp_to(dest->operand());
 133       dest->set_assigned();
 134     } else if (src != NULL) {
 135       emit_move(src->operand(), dest->operand());
 136       dest->set_assigned();
 137     }
 138   }
 139 }
 140 
 141 
 142 PhiResolver::~PhiResolver() {
 143   int i;
 144   // resolve any cycles in moves from and to virtual registers
 145   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 146     ResolveNode* node = virtual_operands().at(i);
 147     if (!node->visited()) {
 148       _loop = NULL;
 149       move(NULL, node);
 150       node->set_start_node();
 151       assert(_temp->is_illegal(), "move_temp_to() call missing");
 152     }
 153   }
 154 
 155   // generate move for move from non virtual register to abitrary destination
 156   for (i = other_operands().length() - 1; i >= 0; i --) {
 157     ResolveNode* node = other_operands().at(i);
 158     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 159       emit_move(node->operand(), node->destination_at(j)->operand());
 160     }
 161   }
 162 }
 163 
 164 
 165 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 166   ResolveNode* node;
 167   if (opr->is_virtual()) {
 168     int vreg_num = opr->vreg_number();
 169     node = vreg_table().at_grow(vreg_num, NULL);
 170     assert(node == NULL || node->operand() == opr, "");
 171     if (node == NULL) {
 172       node = new ResolveNode(opr);
 173       vreg_table().at_put(vreg_num, node);
 174     }
 175     // Make sure that all virtual operands show up in the list when
 176     // they are used as the source of a move.
 177     if (source && !virtual_operands().contains(node)) {
 178       virtual_operands().append(node);
 179     }
 180   } else {
 181     assert(source, "");
 182     node = new ResolveNode(opr);
 183     other_operands().append(node);
 184   }
 185   return node;
 186 }
 187 
 188 
 189 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 190   assert(dest->is_virtual(), "");
 191   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 192   assert(src->is_valid(), "");
 193   assert(dest->is_valid(), "");
 194   ResolveNode* source = source_node(src);
 195   source->append(destination_node(dest));
 196 }
 197 
 198 
 199 //--------------------------------------------------------------
 200 // LIRItem
 201 
 202 void LIRItem::set_result(LIR_Opr opr) {
 203   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 204   value()->set_operand(opr);
 205 
 206   if (opr->is_virtual()) {
 207     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 208   }
 209 
 210   _result = opr;
 211 }
 212 
 213 void LIRItem::load_item() {
 214   if (result()->is_illegal()) {
 215     // update the items result
 216     _result = value()->operand();
 217   }
 218   if (!result()->is_register()) {
 219     LIR_Opr reg = _gen->new_register(value()->type());
 220     __ move(result(), reg);
 221     if (result()->is_constant()) {
 222       _result = reg;
 223     } else {
 224       set_result(reg);
 225     }
 226   }
 227 }
 228 
 229 
 230 void LIRItem::load_for_store(BasicType type) {
 231   if (_gen->can_store_as_constant(value(), type)) {
 232     _result = value()->operand();
 233     if (!_result->is_constant()) {
 234       _result = LIR_OprFact::value_type(value()->type());
 235     }
 236   } else if (type == T_BYTE || type == T_BOOLEAN) {
 237     load_byte_item();
 238   } else {
 239     load_item();
 240   }
 241 }
 242 
 243 void LIRItem::load_item_force(LIR_Opr reg) {
 244   LIR_Opr r = result();
 245   if (r != reg) {
 246 #if !defined(ARM) && !defined(E500V2)
 247     if (r->type() != reg->type()) {
 248       // moves between different types need an intervening spill slot
 249       r = _gen->force_to_spill(r, reg->type());
 250     }
 251 #endif
 252     __ move(r, reg);
 253     _result = reg;
 254   }
 255 }
 256 
 257 ciObject* LIRItem::get_jobject_constant() const {
 258   ObjectType* oc = type()->as_ObjectType();
 259   if (oc) {
 260     return oc->constant_value();
 261   }
 262   return NULL;
 263 }
 264 
 265 
 266 jint LIRItem::get_jint_constant() const {
 267   assert(is_constant() && value() != NULL, "");
 268   assert(type()->as_IntConstant() != NULL, "type check");
 269   return type()->as_IntConstant()->value();
 270 }
 271 
 272 
 273 jint LIRItem::get_address_constant() const {
 274   assert(is_constant() && value() != NULL, "");
 275   assert(type()->as_AddressConstant() != NULL, "type check");
 276   return type()->as_AddressConstant()->value();
 277 }
 278 
 279 
 280 jfloat LIRItem::get_jfloat_constant() const {
 281   assert(is_constant() && value() != NULL, "");
 282   assert(type()->as_FloatConstant() != NULL, "type check");
 283   return type()->as_FloatConstant()->value();
 284 }
 285 
 286 
 287 jdouble LIRItem::get_jdouble_constant() const {
 288   assert(is_constant() && value() != NULL, "");
 289   assert(type()->as_DoubleConstant() != NULL, "type check");
 290   return type()->as_DoubleConstant()->value();
 291 }
 292 
 293 
 294 jlong LIRItem::get_jlong_constant() const {
 295   assert(is_constant() && value() != NULL, "");
 296   assert(type()->as_LongConstant() != NULL, "type check");
 297   return type()->as_LongConstant()->value();
 298 }
 299 
 300 
 301 
 302 //--------------------------------------------------------------
 303 
 304 
 305 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 306 #ifndef PRODUCT
 307   if (PrintIRWithLIR) {
 308     block->print();
 309   }
 310 #endif
 311 
 312   // set up the list of LIR instructions
 313   assert(block->lir() == NULL, "LIR list already computed for this block");
 314   _lir = new LIR_List(compilation(), block);
 315   block->set_lir(_lir);
 316 
 317   __ branch_destination(block->label());
 318 
 319   if (LIRTraceExecution &&
 320       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 321       !block->is_set(BlockBegin::exception_entry_flag)) {
 322     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 323     trace_block_entry(block);
 324   }
 325 }
 326 
 327 
 328 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 329 #ifndef PRODUCT
 330   if (PrintIRWithLIR) {
 331     tty->cr();
 332   }
 333 #endif
 334 
 335   // LIR_Opr for unpinned constants shouldn't be referenced by other
 336   // blocks so clear them out after processing the block.
 337   for (int i = 0; i < _unpinned_constants.length(); i++) {
 338     _unpinned_constants.at(i)->clear_operand();
 339   }
 340   _unpinned_constants.trunc_to(0);
 341 
 342   // clear our any registers for other local constants
 343   _constants.trunc_to(0);
 344   _reg_for_constants.trunc_to(0);
 345 }
 346 
 347 
 348 void LIRGenerator::block_do(BlockBegin* block) {
 349   CHECK_BAILOUT();
 350 
 351   block_do_prolog(block);
 352   set_block(block);
 353 
 354   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 355     if (instr->is_pinned()) do_root(instr);
 356   }
 357 
 358   set_block(NULL);
 359   block_do_epilog(block);
 360 }
 361 
 362 
 363 //-------------------------LIRGenerator-----------------------------
 364 
 365 // This is where the tree-walk starts; instr must be root;
 366 void LIRGenerator::do_root(Value instr) {
 367   CHECK_BAILOUT();
 368 
 369   InstructionMark im(compilation(), instr);
 370 
 371   assert(instr->is_pinned(), "use only with roots");
 372   assert(instr->subst() == instr, "shouldn't have missed substitution");
 373 
 374   instr->visit(this);
 375 
 376   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 377          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 378 }
 379 
 380 
 381 // This is called for each node in tree; the walk stops if a root is reached
 382 void LIRGenerator::walk(Value instr) {
 383   InstructionMark im(compilation(), instr);
 384   //stop walk when encounter a root
 385   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 386     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 387   } else {
 388     assert(instr->subst() == instr, "shouldn't have missed substitution");
 389     instr->visit(this);
 390     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 391   }
 392 }
 393 
 394 
 395 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 396   assert(state != NULL, "state must be defined");
 397 
 398 #ifndef PRODUCT
 399   state->verify();
 400 #endif
 401 
 402   ValueStack* s = state;
 403   for_each_state(s) {
 404     if (s->kind() == ValueStack::EmptyExceptionState) {
 405       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 406       continue;
 407     }
 408 
 409     int index;
 410     Value value;
 411     for_each_stack_value(s, index, value) {
 412       assert(value->subst() == value, "missed substitution");
 413       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 414         walk(value);
 415         assert(value->operand()->is_valid(), "must be evaluated now");
 416       }
 417     }
 418 
 419     int bci = s->bci();
 420     IRScope* scope = s->scope();
 421     ciMethod* method = scope->method();
 422 
 423     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 424     if (bci == SynchronizationEntryBCI) {
 425       if (x->as_ExceptionObject() || x->as_Throw()) {
 426         // all locals are dead on exit from the synthetic unlocker
 427         liveness.clear();
 428       } else {
 429         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 430       }
 431     }
 432     if (!liveness.is_valid()) {
 433       // Degenerate or breakpointed method.
 434       bailout("Degenerate or breakpointed method");
 435     } else {
 436       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 437       for_each_local_value(s, index, value) {
 438         assert(value->subst() == value, "missed substitution");
 439         if (liveness.at(index) && !value->type()->is_illegal()) {
 440           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 441             walk(value);
 442             assert(value->operand()->is_valid(), "must be evaluated now");
 443           }
 444         } else {
 445           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 446           s->invalidate_local(index);
 447         }
 448       }
 449     }
 450   }
 451 
 452   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 453 }
 454 
 455 
 456 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 457   return state_for(x, x->exception_state());
 458 }
 459 
 460 
 461 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 462   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 463    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 464    * the class. */
 465   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 466     assert(info != NULL, "info must be set if class is not loaded");
 467     __ klass2reg_patch(NULL, r, info);
 468   } else {
 469     // no patching needed
 470     __ metadata2reg(obj->constant_encoding(), r);
 471   }
 472 }
 473 
 474 
 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 477   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 478   if (index->is_constant()) {
 479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 480                 index->as_jint(), null_check_info);
 481     __ branch(lir_cond_belowEqual, stub); // forward branch
 482   } else {
 483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 485     __ branch(lir_cond_aboveEqual, stub); // forward branch
 486   }
 487 }
 488 
 489 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 490   LIR_Opr result_op = result;
 491   LIR_Opr left_op   = left;
 492   LIR_Opr right_op  = right;
 493 
 494   if (two_operand_lir_form && left_op != result_op) {
 495     assert(right_op != result_op, "malformed");
 496     __ move(left_op, result_op);
 497     left_op = result_op;
 498   }
 499 
 500   switch(code) {
 501     case Bytecodes::_dadd:
 502     case Bytecodes::_fadd:
 503     case Bytecodes::_ladd:
 504     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 505     case Bytecodes::_fmul:
 506     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 507 
 508     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 509 
 510     case Bytecodes::_imul:
 511       {
 512         bool did_strength_reduce = false;
 513 
 514         if (right->is_constant()) {
 515           jint c = right->as_jint();
 516           if (c > 0 && is_power_of_2(c)) {
 517             // do not need tmp here
 518             __ shift_left(left_op, exact_log2(c), result_op);
 519             did_strength_reduce = true;
 520           } else {
 521             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 522           }
 523         }
 524         // we couldn't strength reduce so just emit the multiply
 525         if (!did_strength_reduce) {
 526           __ mul(left_op, right_op, result_op);
 527         }
 528       }
 529       break;
 530 
 531     case Bytecodes::_dsub:
 532     case Bytecodes::_fsub:
 533     case Bytecodes::_lsub:
 534     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 535 
 536     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 537     // ldiv and lrem are implemented with a direct runtime call
 538 
 539     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 540 
 541     case Bytecodes::_drem:
 542     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 543 
 544     default: ShouldNotReachHere();
 545   }
 546 }
 547 
 548 
 549 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 550   arithmetic_op(code, result, left, right, tmp);
 551 }
 552 
 553 
 554 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 555   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 556 }
 557 
 558 
 559 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 560   arithmetic_op(code, result, left, right, tmp);
 561 }
 562 
 563 
 564 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 565 
 566   if (two_operand_lir_form && value != result_op
 567       // Only 32bit right shifts require two operand form on S390.
 568       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 569     assert(count != result_op, "malformed");
 570     __ move(value, result_op);
 571     value = result_op;
 572   }
 573 
 574   assert(count->is_constant() || count->is_register(), "must be");
 575   switch(code) {
 576   case Bytecodes::_ishl:
 577   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 578   case Bytecodes::_ishr:
 579   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 580   case Bytecodes::_iushr:
 581   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 582   default: ShouldNotReachHere();
 583   }
 584 }
 585 
 586 
 587 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 588   if (two_operand_lir_form && left_op != result_op) {
 589     assert(right_op != result_op, "malformed");
 590     __ move(left_op, result_op);
 591     left_op = result_op;
 592   }
 593 
 594   switch(code) {
 595     case Bytecodes::_iand:
 596     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 597 
 598     case Bytecodes::_ior:
 599     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 600 
 601     case Bytecodes::_ixor:
 602     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 603 
 604     default: ShouldNotReachHere();
 605   }
 606 }
 607 
 608 
 609 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 610   if (!GenerateSynchronizationCode) return;
 611   // for slow path, use debug info for state after successful locking
 612   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 613   __ load_stack_address_monitor(monitor_no, lock);
 614   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 615   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 616 }
 617 
 618 
 619 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 620   if (!GenerateSynchronizationCode) return;
 621   // setup registers
 622   LIR_Opr hdr = lock;
 623   lock = new_hdr;
 624   CodeStub* slow_path = new MonitorExitStub(lock, !UseHeavyMonitors, monitor_no);
 625   __ load_stack_address_monitor(monitor_no, lock);
 626   __ unlock_object(hdr, object, lock, scratch, slow_path);
 627 }
 628 
 629 #ifndef PRODUCT
 630 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 631   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 632     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 633   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 634     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 635   }
 636 }
 637 #endif
 638 
 639 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 640   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 641   // If klass is not loaded we do not know if the klass has finalizers:
 642   if (UseFastNewInstance && klass->is_loaded()
 643       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 644 
 645     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 646 
 647     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 648 
 649     assert(klass->is_loaded(), "must be loaded");
 650     // allocate space for instance
 651     assert(klass->size_helper() > 0, "illegal instance size");
 652     const int instance_size = align_object_size(klass->size_helper());
 653     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 654                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 655   } else {
 656     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 657     __ branch(lir_cond_always, slow_path);
 658     __ branch_destination(slow_path->continuation());
 659   }
 660 }
 661 
 662 
 663 static bool is_constant_zero(Instruction* inst) {
 664   IntConstant* c = inst->type()->as_IntConstant();
 665   if (c) {
 666     return (c->value() == 0);
 667   }
 668   return false;
 669 }
 670 
 671 
 672 static bool positive_constant(Instruction* inst) {
 673   IntConstant* c = inst->type()->as_IntConstant();
 674   if (c) {
 675     return (c->value() >= 0);
 676   }
 677   return false;
 678 }
 679 
 680 
 681 static ciArrayKlass* as_array_klass(ciType* type) {
 682   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 683     return (ciArrayKlass*)type;
 684   } else {
 685     return NULL;
 686   }
 687 }
 688 
 689 static ciType* phi_declared_type(Phi* phi) {
 690   ciType* t = phi->operand_at(0)->declared_type();
 691   if (t == NULL) {
 692     return NULL;
 693   }
 694   for(int i = 1; i < phi->operand_count(); i++) {
 695     if (t != phi->operand_at(i)->declared_type()) {
 696       return NULL;
 697     }
 698   }
 699   return t;
 700 }
 701 
 702 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 703   Instruction* src     = x->argument_at(0);
 704   Instruction* src_pos = x->argument_at(1);
 705   Instruction* dst     = x->argument_at(2);
 706   Instruction* dst_pos = x->argument_at(3);
 707   Instruction* length  = x->argument_at(4);
 708 
 709   // first try to identify the likely type of the arrays involved
 710   ciArrayKlass* expected_type = NULL;
 711   bool is_exact = false, src_objarray = false, dst_objarray = false;
 712   {
 713     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 714     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 715     Phi* phi;
 716     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 717       src_declared_type = as_array_klass(phi_declared_type(phi));
 718     }
 719     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 720     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 721     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 722       dst_declared_type = as_array_klass(phi_declared_type(phi));
 723     }
 724 
 725     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 726       // the types exactly match so the type is fully known
 727       is_exact = true;
 728       expected_type = src_exact_type;
 729     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 730       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 731       ciArrayKlass* src_type = NULL;
 732       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 733         src_type = (ciArrayKlass*) src_exact_type;
 734       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 735         src_type = (ciArrayKlass*) src_declared_type;
 736       }
 737       if (src_type != NULL) {
 738         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 739           is_exact = true;
 740           expected_type = dst_type;
 741         }
 742       }
 743     }
 744     // at least pass along a good guess
 745     if (expected_type == NULL) expected_type = dst_exact_type;
 746     if (expected_type == NULL) expected_type = src_declared_type;
 747     if (expected_type == NULL) expected_type = dst_declared_type;
 748 
 749     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 750     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 751   }
 752 
 753   // if a probable array type has been identified, figure out if any
 754   // of the required checks for a fast case can be elided.
 755   int flags = LIR_OpArrayCopy::all_flags;
 756 
 757   if (!src_objarray)
 758     flags &= ~LIR_OpArrayCopy::src_objarray;
 759   if (!dst_objarray)
 760     flags &= ~LIR_OpArrayCopy::dst_objarray;
 761 
 762   if (!x->arg_needs_null_check(0))
 763     flags &= ~LIR_OpArrayCopy::src_null_check;
 764   if (!x->arg_needs_null_check(2))
 765     flags &= ~LIR_OpArrayCopy::dst_null_check;
 766 
 767 
 768   if (expected_type != NULL) {
 769     Value length_limit = NULL;
 770 
 771     IfOp* ifop = length->as_IfOp();
 772     if (ifop != NULL) {
 773       // look for expressions like min(v, a.length) which ends up as
 774       //   x > y ? y : x  or  x >= y ? y : x
 775       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 776           ifop->x() == ifop->fval() &&
 777           ifop->y() == ifop->tval()) {
 778         length_limit = ifop->y();
 779       }
 780     }
 781 
 782     // try to skip null checks and range checks
 783     NewArray* src_array = src->as_NewArray();
 784     if (src_array != NULL) {
 785       flags &= ~LIR_OpArrayCopy::src_null_check;
 786       if (length_limit != NULL &&
 787           src_array->length() == length_limit &&
 788           is_constant_zero(src_pos)) {
 789         flags &= ~LIR_OpArrayCopy::src_range_check;
 790       }
 791     }
 792 
 793     NewArray* dst_array = dst->as_NewArray();
 794     if (dst_array != NULL) {
 795       flags &= ~LIR_OpArrayCopy::dst_null_check;
 796       if (length_limit != NULL &&
 797           dst_array->length() == length_limit &&
 798           is_constant_zero(dst_pos)) {
 799         flags &= ~LIR_OpArrayCopy::dst_range_check;
 800       }
 801     }
 802 
 803     // check from incoming constant values
 804     if (positive_constant(src_pos))
 805       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 806     if (positive_constant(dst_pos))
 807       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 808     if (positive_constant(length))
 809       flags &= ~LIR_OpArrayCopy::length_positive_check;
 810 
 811     // see if the range check can be elided, which might also imply
 812     // that src or dst is non-null.
 813     ArrayLength* al = length->as_ArrayLength();
 814     if (al != NULL) {
 815       if (al->array() == src) {
 816         // it's the length of the source array
 817         flags &= ~LIR_OpArrayCopy::length_positive_check;
 818         flags &= ~LIR_OpArrayCopy::src_null_check;
 819         if (is_constant_zero(src_pos))
 820           flags &= ~LIR_OpArrayCopy::src_range_check;
 821       }
 822       if (al->array() == dst) {
 823         // it's the length of the destination array
 824         flags &= ~LIR_OpArrayCopy::length_positive_check;
 825         flags &= ~LIR_OpArrayCopy::dst_null_check;
 826         if (is_constant_zero(dst_pos))
 827           flags &= ~LIR_OpArrayCopy::dst_range_check;
 828       }
 829     }
 830     if (is_exact) {
 831       flags &= ~LIR_OpArrayCopy::type_check;
 832     }
 833   }
 834 
 835   IntConstant* src_int = src_pos->type()->as_IntConstant();
 836   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 837   if (src_int && dst_int) {
 838     int s_offs = src_int->value();
 839     int d_offs = dst_int->value();
 840     if (src_int->value() >= dst_int->value()) {
 841       flags &= ~LIR_OpArrayCopy::overlapping;
 842     }
 843     if (expected_type != NULL) {
 844       BasicType t = expected_type->element_type()->basic_type();
 845       int element_size = type2aelembytes(t);
 846       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 847           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 848         flags &= ~LIR_OpArrayCopy::unaligned;
 849       }
 850     }
 851   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 852     // src and dest positions are the same, or dst is zero so assume
 853     // nonoverlapping copy.
 854     flags &= ~LIR_OpArrayCopy::overlapping;
 855   }
 856 
 857   if (src == dst) {
 858     // moving within a single array so no type checks are needed
 859     if (flags & LIR_OpArrayCopy::type_check) {
 860       flags &= ~LIR_OpArrayCopy::type_check;
 861     }
 862   }
 863   *flagsp = flags;
 864   *expected_typep = (ciArrayKlass*)expected_type;
 865 }
 866 
 867 
 868 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 869   assert(opr->is_register(), "why spill if item is not register?");
 870 
 871   if (strict_fp_requires_explicit_rounding) {
 872 #ifdef IA32
 873     if (UseSSE < 1 && opr->is_single_fpu()) {
 874       LIR_Opr result = new_register(T_FLOAT);
 875       set_vreg_flag(result, must_start_in_memory);
 876       assert(opr->is_register(), "only a register can be spilled");
 877       assert(opr->value_type()->is_float(), "rounding only for floats available");
 878       __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 879       return result;
 880     }
 881 #else
 882     Unimplemented();
 883 #endif // IA32
 884   }
 885   return opr;
 886 }
 887 
 888 
 889 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 890   assert(type2size[t] == type2size[value->type()],
 891          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 892   if (!value->is_register()) {
 893     // force into a register
 894     LIR_Opr r = new_register(value->type());
 895     __ move(value, r);
 896     value = r;
 897   }
 898 
 899   // create a spill location
 900   LIR_Opr tmp = new_register(t);
 901   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 902 
 903   // move from register to spill
 904   __ move(value, tmp);
 905   return tmp;
 906 }
 907 
 908 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 909   if (if_instr->should_profile()) {
 910     ciMethod* method = if_instr->profiled_method();
 911     assert(method != NULL, "method should be set if branch is profiled");
 912     ciMethodData* md = method->method_data_or_null();
 913     assert(md != NULL, "Sanity");
 914     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 915     assert(data != NULL, "must have profiling data");
 916     assert(data->is_BranchData(), "need BranchData for two-way branches");
 917     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 918     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 919     if (if_instr->is_swapped()) {
 920       int t = taken_count_offset;
 921       taken_count_offset = not_taken_count_offset;
 922       not_taken_count_offset = t;
 923     }
 924 
 925     LIR_Opr md_reg = new_register(T_METADATA);
 926     __ metadata2reg(md->constant_encoding(), md_reg);
 927 
 928     LIR_Opr data_offset_reg = new_pointer_register();
 929     __ cmove(lir_cond(cond),
 930              LIR_OprFact::intptrConst(taken_count_offset),
 931              LIR_OprFact::intptrConst(not_taken_count_offset),
 932              data_offset_reg, as_BasicType(if_instr->x()->type()));
 933 
 934     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 935     LIR_Opr data_reg = new_pointer_register();
 936     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 937     __ move(data_addr, data_reg);
 938     // Use leal instead of add to avoid destroying condition codes on x86
 939     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 940     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 941     __ move(data_reg, data_addr);
 942   }
 943 }
 944 
 945 // Phi technique:
 946 // This is about passing live values from one basic block to the other.
 947 // In code generated with Java it is rather rare that more than one
 948 // value is on the stack from one basic block to the other.
 949 // We optimize our technique for efficient passing of one value
 950 // (of type long, int, double..) but it can be extended.
 951 // When entering or leaving a basic block, all registers and all spill
 952 // slots are release and empty. We use the released registers
 953 // and spill slots to pass the live values from one block
 954 // to the other. The topmost value, i.e., the value on TOS of expression
 955 // stack is passed in registers. All other values are stored in spilling
 956 // area. Every Phi has an index which designates its spill slot
 957 // At exit of a basic block, we fill the register(s) and spill slots.
 958 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 959 // and locks necessary registers and spilling slots.
 960 
 961 
 962 // move current value to referenced phi function
 963 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 964   Phi* phi = sux_val->as_Phi();
 965   // cur_val can be null without phi being null in conjunction with inlining
 966   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 967     if (phi->is_local()) {
 968       for (int i = 0; i < phi->operand_count(); i++) {
 969         Value op = phi->operand_at(i);
 970         if (op != NULL && op->type()->is_illegal()) {
 971           bailout("illegal phi operand");
 972         }
 973       }
 974     }
 975     Phi* cur_phi = cur_val->as_Phi();
 976     if (cur_phi != NULL && cur_phi->is_illegal()) {
 977       // Phi and local would need to get invalidated
 978       // (which is unexpected for Linear Scan).
 979       // But this case is very rare so we simply bail out.
 980       bailout("propagation of illegal phi");
 981       return;
 982     }
 983     LIR_Opr operand = cur_val->operand();
 984     if (operand->is_illegal()) {
 985       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 986              "these can be produced lazily");
 987       operand = operand_for_instruction(cur_val);
 988     }
 989     resolver->move(operand, operand_for_instruction(phi));
 990   }
 991 }
 992 
 993 
 994 // Moves all stack values into their PHI position
 995 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 996   BlockBegin* bb = block();
 997   if (bb->number_of_sux() == 1) {
 998     BlockBegin* sux = bb->sux_at(0);
 999     assert(sux->number_of_preds() > 0, "invalid CFG");
1000 
1001     // a block with only one predecessor never has phi functions
1002     if (sux->number_of_preds() > 1) {
1003       PhiResolver resolver(this);
1004 
1005       ValueStack* sux_state = sux->state();
1006       Value sux_value;
1007       int index;
1008 
1009       assert(cur_state->scope() == sux_state->scope(), "not matching");
1010       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1011       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1012 
1013       for_each_stack_value(sux_state, index, sux_value) {
1014         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1015       }
1016 
1017       for_each_local_value(sux_state, index, sux_value) {
1018         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1019       }
1020 
1021       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1022     }
1023   }
1024 }
1025 
1026 
1027 LIR_Opr LIRGenerator::new_register(BasicType type) {
1028   int vreg_num = _virtual_register_number;
1029   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1030   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1031   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1032     bailout("out of virtual registers in LIR generator");
1033     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1034       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1035       _virtual_register_number = LIR_Opr::vreg_base;
1036       vreg_num = LIR_Opr::vreg_base;
1037     }
1038   }
1039   _virtual_register_number += 1;
1040   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1041   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1042   return vreg;
1043 }
1044 
1045 
1046 // Try to lock using register in hint
1047 LIR_Opr LIRGenerator::rlock(Value instr) {
1048   return new_register(instr->type());
1049 }
1050 
1051 
1052 // does an rlock and sets result
1053 LIR_Opr LIRGenerator::rlock_result(Value x) {
1054   LIR_Opr reg = rlock(x);
1055   set_result(x, reg);
1056   return reg;
1057 }
1058 
1059 
1060 // does an rlock and sets result
1061 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1062   LIR_Opr reg;
1063   switch (type) {
1064   case T_BYTE:
1065   case T_BOOLEAN:
1066     reg = rlock_byte(type);
1067     break;
1068   default:
1069     reg = rlock(x);
1070     break;
1071   }
1072 
1073   set_result(x, reg);
1074   return reg;
1075 }
1076 
1077 
1078 //---------------------------------------------------------------------
1079 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1080   ObjectType* oc = value->type()->as_ObjectType();
1081   if (oc) {
1082     return oc->constant_value();
1083   }
1084   return NULL;
1085 }
1086 
1087 
1088 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1089   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1090   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1091 
1092   // no moves are created for phi functions at the begin of exception
1093   // handlers, so assign operands manually here
1094   for_each_phi_fun(block(), phi,
1095                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1096 
1097   LIR_Opr thread_reg = getThreadPointer();
1098   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1099                exceptionOopOpr());
1100   __ move_wide(LIR_OprFact::oopConst(NULL),
1101                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1102   __ move_wide(LIR_OprFact::oopConst(NULL),
1103                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1104 
1105   LIR_Opr result = new_register(T_OBJECT);
1106   __ move(exceptionOopOpr(), result);
1107   set_result(x, result);
1108 }
1109 
1110 
1111 //----------------------------------------------------------------------
1112 //----------------------------------------------------------------------
1113 //----------------------------------------------------------------------
1114 //----------------------------------------------------------------------
1115 //                        visitor functions
1116 //----------------------------------------------------------------------
1117 //----------------------------------------------------------------------
1118 //----------------------------------------------------------------------
1119 //----------------------------------------------------------------------
1120 
1121 void LIRGenerator::do_Phi(Phi* x) {
1122   // phi functions are never visited directly
1123   ShouldNotReachHere();
1124 }
1125 
1126 
1127 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1128 void LIRGenerator::do_Constant(Constant* x) {
1129   if (x->state_before() != NULL) {
1130     // Any constant with a ValueStack requires patching so emit the patch here
1131     LIR_Opr reg = rlock_result(x);
1132     CodeEmitInfo* info = state_for(x, x->state_before());
1133     __ oop2reg_patch(NULL, reg, info);
1134   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1135     if (!x->is_pinned()) {
1136       // unpinned constants are handled specially so that they can be
1137       // put into registers when they are used multiple times within a
1138       // block.  After the block completes their operand will be
1139       // cleared so that other blocks can't refer to that register.
1140       set_result(x, load_constant(x));
1141     } else {
1142       LIR_Opr res = x->operand();
1143       if (!res->is_valid()) {
1144         res = LIR_OprFact::value_type(x->type());
1145       }
1146       if (res->is_constant()) {
1147         LIR_Opr reg = rlock_result(x);
1148         __ move(res, reg);
1149       } else {
1150         set_result(x, res);
1151       }
1152     }
1153   } else {
1154     set_result(x, LIR_OprFact::value_type(x->type()));
1155   }
1156 }
1157 
1158 
1159 void LIRGenerator::do_Local(Local* x) {
1160   // operand_for_instruction has the side effect of setting the result
1161   // so there's no need to do it here.
1162   operand_for_instruction(x);
1163 }
1164 
1165 
1166 void LIRGenerator::do_Return(Return* x) {
1167   if (compilation()->env()->dtrace_method_probes()) {
1168     BasicTypeList signature;
1169     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1170     signature.append(T_METADATA); // Method*
1171     LIR_OprList* args = new LIR_OprList();
1172     args->append(getThreadPointer());
1173     LIR_Opr meth = new_register(T_METADATA);
1174     __ metadata2reg(method()->constant_encoding(), meth);
1175     args->append(meth);
1176     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1177   }
1178 
1179   if (x->type()->is_void()) {
1180     __ return_op(LIR_OprFact::illegalOpr);
1181   } else {
1182     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1183     LIRItem result(x->result(), this);
1184 
1185     result.load_item_force(reg);
1186     __ return_op(result.result());
1187   }
1188   set_no_result(x);
1189 }
1190 
1191 // Example: ref.get()
1192 // Combination of LoadField and g1 pre-write barrier
1193 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1194 
1195   const int referent_offset = java_lang_ref_Reference::referent_offset();
1196 
1197   assert(x->number_of_arguments() == 1, "wrong type");
1198 
1199   LIRItem reference(x->argument_at(0), this);
1200   reference.load_item();
1201 
1202   // need to perform the null check on the reference object
1203   CodeEmitInfo* info = NULL;
1204   if (x->needs_null_check()) {
1205     info = state_for(x);
1206   }
1207 
1208   LIR_Opr result = rlock_result(x, T_OBJECT);
1209   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1210                  reference, LIR_OprFact::intConst(referent_offset), result);
1211 }
1212 
1213 // Example: clazz.isInstance(object)
1214 void LIRGenerator::do_isInstance(Intrinsic* x) {
1215   assert(x->number_of_arguments() == 2, "wrong type");
1216 
1217   // TODO could try to substitute this node with an equivalent InstanceOf
1218   // if clazz is known to be a constant Class. This will pick up newly found
1219   // constants after HIR construction. I'll leave this to a future change.
1220 
1221   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1222   // could follow the aastore example in a future change.
1223 
1224   LIRItem clazz(x->argument_at(0), this);
1225   LIRItem object(x->argument_at(1), this);
1226   clazz.load_item();
1227   object.load_item();
1228   LIR_Opr result = rlock_result(x);
1229 
1230   // need to perform null check on clazz
1231   if (x->needs_null_check()) {
1232     CodeEmitInfo* info = state_for(x);
1233     __ null_check(clazz.result(), info);
1234   }
1235 
1236   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1237                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1238                                      x->type(),
1239                                      NULL); // NULL CodeEmitInfo results in a leaf call
1240   __ move(call_result, result);
1241 }
1242 
1243 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1244   __ load_klass(obj, klass, null_check_info);
1245 }
1246 
1247 // Example: object.getClass ()
1248 void LIRGenerator::do_getClass(Intrinsic* x) {
1249   assert(x->number_of_arguments() == 1, "wrong type");
1250 
1251   LIRItem rcvr(x->argument_at(0), this);
1252   rcvr.load_item();
1253   LIR_Opr temp = new_register(T_ADDRESS);
1254   LIR_Opr result = rlock_result(x);
1255 
1256   // need to perform the null check on the rcvr
1257   CodeEmitInfo* info = NULL;
1258   if (x->needs_null_check()) {
1259     info = state_for(x);
1260   }
1261 
1262   LIR_Opr klass = new_register(T_METADATA);
1263   load_klass(rcvr.result(), klass, info);
1264   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1265   // mirror = ((OopHandle)mirror)->resolve();
1266   access_load(IN_NATIVE, T_OBJECT,
1267               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1268 }
1269 
1270 // java.lang.Class::isPrimitive()
1271 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1272   assert(x->number_of_arguments() == 1, "wrong type");
1273 
1274   LIRItem rcvr(x->argument_at(0), this);
1275   rcvr.load_item();
1276   LIR_Opr temp = new_register(T_METADATA);
1277   LIR_Opr result = rlock_result(x);
1278 
1279   CodeEmitInfo* info = NULL;
1280   if (x->needs_null_check()) {
1281     info = state_for(x);
1282   }
1283 
1284   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1285   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1286   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1287 }
1288 
1289 // Example: Foo.class.getModifiers()
1290 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1291   assert(x->number_of_arguments() == 1, "wrong type");
1292 
1293   LIRItem receiver(x->argument_at(0), this);
1294   receiver.load_item();
1295   LIR_Opr result = rlock_result(x);
1296 
1297   CodeEmitInfo* info = NULL;
1298   if (x->needs_null_check()) {
1299     info = state_for(x);
1300   }
1301 
1302   // While reading off the universal constant mirror is less efficient than doing
1303   // another branch and returning the constant answer, this branchless code runs into
1304   // much less risk of confusion for C1 register allocator. The choice of the universe
1305   // object here is correct as long as it returns the same modifiers we would expect
1306   // from the primitive class itself. See spec for Class.getModifiers that provides
1307   // the typed array klasses with similar modifiers as their component types.
1308 
1309   Klass* univ_klass_obj = Universe::byteArrayKlassObj();
1310   assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity");
1311   LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj);
1312 
1313   LIR_Opr recv_klass = new_register(T_METADATA);
1314   __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
1315 
1316   // Check if this is a Java mirror of primitive type, and select the appropriate klass.
1317   LIR_Opr klass = new_register(T_METADATA);
1318   __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
1319   __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
1320 
1321   // Get the answer.
1322   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1323 }
1324 
1325 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1326   assert(x->number_of_arguments() == 3, "wrong type");
1327   LIR_Opr result_reg = rlock_result(x);
1328 
1329   LIRItem value(x->argument_at(2), this);
1330   value.load_item();
1331 
1332   LIR_Opr klass = new_register(T_METADATA);
1333   load_klass(value.result(), klass, NULL);
1334   LIR_Opr layout = new_register(T_INT);
1335   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1336 
1337   LabelObj* L_done = new LabelObj();
1338   LabelObj* L_array = new LabelObj();
1339 
1340   __ cmp(lir_cond_lessEqual, layout, 0);
1341   __ branch(lir_cond_lessEqual, L_array->label());
1342 
1343   // Instance case: the layout helper gives us instance size almost directly,
1344   // but we need to mask out the _lh_instance_slow_path_bit.
1345 
1346   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1347 
1348   LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1349   __ logical_and(layout, mask, layout);
1350   __ convert(Bytecodes::_i2l, layout, result_reg);
1351 
1352   __ branch(lir_cond_always, L_done->label());
1353 
1354   // Array case: size is round(header + element_size*arraylength).
1355   // Since arraylength is different for every array instance, we have to
1356   // compute the whole thing at runtime.
1357 
1358   __ branch_destination(L_array->label());
1359 
1360   int round_mask = MinObjAlignmentInBytes - 1;
1361 
1362   // Figure out header sizes first.
1363   LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1364   LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1365 
1366   LIR_Opr header_size = new_register(T_INT);
1367   __ move(layout, header_size);
1368   LIR_Opr tmp = new_register(T_INT);
1369   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1370   __ logical_and(header_size, hsm, header_size);
1371   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1372 
1373   // Figure out the array length in bytes
1374   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1375   LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1376   __ logical_and(layout, l2esm, layout);
1377 
1378   LIR_Opr length_int = new_register(T_INT);
1379   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1380 
1381 #ifdef _LP64
1382   LIR_Opr length = new_register(T_LONG);
1383   __ convert(Bytecodes::_i2l, length_int, length);
1384 #endif
1385 
1386   // Shift-left awkwardness. Normally it is just:
1387   //   __ shift_left(length, layout, length);
1388   // But C1 cannot perform shift_left with non-constant count, so we end up
1389   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1390   // longs, so we have to act on ints.
1391   LabelObj* L_shift_loop = new LabelObj();
1392   LabelObj* L_shift_exit = new LabelObj();
1393 
1394   __ branch_destination(L_shift_loop->label());
1395   __ cmp(lir_cond_equal, layout, 0);
1396   __ branch(lir_cond_equal, L_shift_exit->label());
1397 
1398 #ifdef _LP64
1399   __ shift_left(length, 1, length);
1400 #else
1401   __ shift_left(length_int, 1, length_int);
1402 #endif
1403 
1404   __ sub(layout, LIR_OprFact::intConst(1), layout);
1405 
1406   __ branch(lir_cond_always, L_shift_loop->label());
1407   __ branch_destination(L_shift_exit->label());
1408 
1409   // Mix all up, round, and push to the result.
1410 #ifdef _LP64
1411   LIR_Opr header_size_long = new_register(T_LONG);
1412   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1413   __ add(length, header_size_long, length);
1414   if (round_mask != 0) {
1415     LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1416     __ logical_and(length, round_mask_opr, length);
1417   }
1418   __ move(length, result_reg);
1419 #else
1420   __ add(length_int, header_size, length_int);
1421   if (round_mask != 0) {
1422     LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1423     __ logical_and(length_int, round_mask_opr, length_int);
1424   }
1425   __ convert(Bytecodes::_i2l, length_int, result_reg);
1426 #endif
1427 
1428   __ branch_destination(L_done->label());
1429 }
1430 
1431 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1432   do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1433 }
1434 
1435 // Example: Thread.currentCarrierThread()
1436 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1437   do_JavaThreadField(x, JavaThread::threadObj_offset());
1438 }
1439 
1440 void LIRGenerator::do_vthread(Intrinsic* x) {
1441   do_JavaThreadField(x, JavaThread::vthread_offset());
1442 }
1443 
1444 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1445   assert(x->number_of_arguments() == 0, "wrong type");
1446   LIR_Opr temp = new_register(T_ADDRESS);
1447   LIR_Opr reg = rlock_result(x);
1448   __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1449   access_load(IN_NATIVE, T_OBJECT,
1450               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1451 }
1452 
1453 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1454   assert(x->number_of_arguments() == 1, "wrong type");
1455   LIRItem receiver(x->argument_at(0), this);
1456 
1457   receiver.load_item();
1458   BasicTypeList signature;
1459   signature.append(T_OBJECT); // receiver
1460   LIR_OprList* args = new LIR_OprList();
1461   args->append(receiver.result());
1462   CodeEmitInfo* info = state_for(x, x->state());
1463   call_runtime(&signature, args,
1464                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1465                voidType, info);
1466 
1467   set_no_result(x);
1468 }
1469 
1470 
1471 //------------------------local access--------------------------------------
1472 
1473 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1474   if (x->operand()->is_illegal()) {
1475     Constant* c = x->as_Constant();
1476     if (c != NULL) {
1477       x->set_operand(LIR_OprFact::value_type(c->type()));
1478     } else {
1479       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1480       // allocate a virtual register for this local or phi
1481       x->set_operand(rlock(x));
1482       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1483     }
1484   }
1485   return x->operand();
1486 }
1487 
1488 
1489 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1490   if (opr->is_virtual()) {
1491     return instruction_for_vreg(opr->vreg_number());
1492   }
1493   return NULL;
1494 }
1495 
1496 
1497 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1498   if (reg_num < _instruction_for_operand.length()) {
1499     return _instruction_for_operand.at(reg_num);
1500   }
1501   return NULL;
1502 }
1503 
1504 
1505 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1506   if (_vreg_flags.size_in_bits() == 0) {
1507     BitMap2D temp(100, num_vreg_flags);
1508     _vreg_flags = temp;
1509   }
1510   _vreg_flags.at_put_grow(vreg_num, f, true);
1511 }
1512 
1513 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1514   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1515     return false;
1516   }
1517   return _vreg_flags.at(vreg_num, f);
1518 }
1519 
1520 
1521 // Block local constant handling.  This code is useful for keeping
1522 // unpinned constants and constants which aren't exposed in the IR in
1523 // registers.  Unpinned Constant instructions have their operands
1524 // cleared when the block is finished so that other blocks can't end
1525 // up referring to their registers.
1526 
1527 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1528   assert(!x->is_pinned(), "only for unpinned constants");
1529   _unpinned_constants.append(x);
1530   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1531 }
1532 
1533 
1534 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1535   BasicType t = c->type();
1536   for (int i = 0; i < _constants.length(); i++) {
1537     LIR_Const* other = _constants.at(i);
1538     if (t == other->type()) {
1539       switch (t) {
1540       case T_INT:
1541       case T_FLOAT:
1542         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1543         break;
1544       case T_LONG:
1545       case T_DOUBLE:
1546         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1547         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1548         break;
1549       case T_OBJECT:
1550         if (c->as_jobject() != other->as_jobject()) continue;
1551         break;
1552       default:
1553         break;
1554       }
1555       return _reg_for_constants.at(i);
1556     }
1557   }
1558 
1559   LIR_Opr result = new_register(t);
1560   __ move((LIR_Opr)c, result);
1561   _constants.append(c);
1562   _reg_for_constants.append(result);
1563   return result;
1564 }
1565 
1566 //------------------------field access--------------------------------------
1567 
1568 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1569   assert(x->number_of_arguments() == 4, "wrong type");
1570   LIRItem obj   (x->argument_at(0), this);  // object
1571   LIRItem offset(x->argument_at(1), this);  // offset of field
1572   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1573   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1574   assert(obj.type()->tag() == objectTag, "invalid type");
1575   assert(cmp.type()->tag() == type->tag(), "invalid type");
1576   assert(val.type()->tag() == type->tag(), "invalid type");
1577 
1578   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1579                                             obj, offset, cmp, val);
1580   set_result(x, result);
1581 }
1582 
1583 // Comment copied form templateTable_i486.cpp
1584 // ----------------------------------------------------------------------------
1585 // Volatile variables demand their effects be made known to all CPU's in
1586 // order.  Store buffers on most chips allow reads & writes to reorder; the
1587 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1588 // memory barrier (i.e., it's not sufficient that the interpreter does not
1589 // reorder volatile references, the hardware also must not reorder them).
1590 //
1591 // According to the new Java Memory Model (JMM):
1592 // (1) All volatiles are serialized wrt to each other.
1593 // ALSO reads & writes act as acquire & release, so:
1594 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1595 // the read float up to before the read.  It's OK for non-volatile memory refs
1596 // that happen before the volatile read to float down below it.
1597 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1598 // that happen BEFORE the write float down to after the write.  It's OK for
1599 // non-volatile memory refs that happen after the volatile write to float up
1600 // before it.
1601 //
1602 // We only put in barriers around volatile refs (they are expensive), not
1603 // _between_ memory refs (that would require us to track the flavor of the
1604 // previous memory refs).  Requirements (2) and (3) require some barriers
1605 // before volatile stores and after volatile loads.  These nearly cover
1606 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1607 // case is placed after volatile-stores although it could just as well go
1608 // before volatile-loads.
1609 
1610 
1611 void LIRGenerator::do_StoreField(StoreField* x) {
1612   bool needs_patching = x->needs_patching();
1613   bool is_volatile = x->field()->is_volatile();
1614   BasicType field_type = x->field_type();
1615 
1616   CodeEmitInfo* info = NULL;
1617   if (needs_patching) {
1618     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1619     info = state_for(x, x->state_before());
1620   } else if (x->needs_null_check()) {
1621     NullCheck* nc = x->explicit_null_check();
1622     if (nc == NULL) {
1623       info = state_for(x);
1624     } else {
1625       info = state_for(nc);
1626     }
1627   }
1628 
1629   LIRItem object(x->obj(), this);
1630   LIRItem value(x->value(),  this);
1631 
1632   object.load_item();
1633 
1634   if (is_volatile || needs_patching) {
1635     // load item if field is volatile (fewer special cases for volatiles)
1636     // load item if field not initialized
1637     // load item if field not constant
1638     // because of code patching we cannot inline constants
1639     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1640       value.load_byte_item();
1641     } else  {
1642       value.load_item();
1643     }
1644   } else {
1645     value.load_for_store(field_type);
1646   }
1647 
1648   set_no_result(x);
1649 
1650 #ifndef PRODUCT
1651   if (PrintNotLoaded && needs_patching) {
1652     tty->print_cr("   ###class not loaded at store_%s bci %d",
1653                   x->is_static() ?  "static" : "field", x->printable_bci());
1654   }
1655 #endif
1656 
1657   if (x->needs_null_check() &&
1658       (needs_patching ||
1659        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1660     // Emit an explicit null check because the offset is too large.
1661     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1662     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1663     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1664   }
1665 
1666   DecoratorSet decorators = IN_HEAP;
1667   if (is_volatile) {
1668     decorators |= MO_SEQ_CST;
1669   }
1670   if (needs_patching) {
1671     decorators |= C1_NEEDS_PATCHING;
1672   }
1673 
1674   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1675                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1676 }
1677 
1678 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1679   assert(x->is_pinned(),"");
1680   bool needs_range_check = x->compute_needs_range_check();
1681   bool use_length = x->length() != NULL;
1682   bool obj_store = is_reference_type(x->elt_type());
1683   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1684                                          !get_jobject_constant(x->value())->is_null_object() ||
1685                                          x->should_profile());
1686 
1687   LIRItem array(x->array(), this);
1688   LIRItem index(x->index(), this);
1689   LIRItem value(x->value(), this);
1690   LIRItem length(this);
1691 
1692   array.load_item();
1693   index.load_nonconstant();
1694 
1695   if (use_length && needs_range_check) {
1696     length.set_instruction(x->length());
1697     length.load_item();
1698 
1699   }
1700   if (needs_store_check || x->check_boolean()) {
1701     value.load_item();
1702   } else {
1703     value.load_for_store(x->elt_type());
1704   }
1705 
1706   set_no_result(x);
1707 
1708   // the CodeEmitInfo must be duplicated for each different
1709   // LIR-instruction because spilling can occur anywhere between two
1710   // instructions and so the debug information must be different
1711   CodeEmitInfo* range_check_info = state_for(x);
1712   CodeEmitInfo* null_check_info = NULL;
1713   if (x->needs_null_check()) {
1714     null_check_info = new CodeEmitInfo(range_check_info);
1715   }
1716 
1717   if (needs_range_check) {
1718     if (use_length) {
1719       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1720       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1721     } else {
1722       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1723       // range_check also does the null check
1724       null_check_info = NULL;
1725     }
1726   }
1727 
1728   if (GenerateArrayStoreCheck && needs_store_check) {
1729     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1730     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1731   }
1732 
1733   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1734   if (x->check_boolean()) {
1735     decorators |= C1_MASK_BOOLEAN;
1736   }
1737 
1738   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1739                   NULL, null_check_info);
1740 }
1741 
1742 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1743                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1744                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1745   decorators |= ACCESS_READ;
1746   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1747   if (access.is_raw()) {
1748     _barrier_set->BarrierSetC1::load_at(access, result);
1749   } else {
1750     _barrier_set->load_at(access, result);
1751   }
1752 }
1753 
1754 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1755                                LIR_Opr addr, LIR_Opr result) {
1756   decorators |= ACCESS_READ;
1757   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1758   access.set_resolved_addr(addr);
1759   if (access.is_raw()) {
1760     _barrier_set->BarrierSetC1::load(access, result);
1761   } else {
1762     _barrier_set->load(access, result);
1763   }
1764 }
1765 
1766 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1767                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1768                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1769   decorators |= ACCESS_WRITE;
1770   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1771   if (access.is_raw()) {
1772     _barrier_set->BarrierSetC1::store_at(access, value);
1773   } else {
1774     _barrier_set->store_at(access, value);
1775   }
1776 }
1777 
1778 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1779                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1780   decorators |= ACCESS_READ;
1781   decorators |= ACCESS_WRITE;
1782   // Atomic operations are SEQ_CST by default
1783   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1784   LIRAccess access(this, decorators, base, offset, type);
1785   if (access.is_raw()) {
1786     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1787   } else {
1788     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1789   }
1790 }
1791 
1792 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1793                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1794   decorators |= ACCESS_READ;
1795   decorators |= ACCESS_WRITE;
1796   // Atomic operations are SEQ_CST by default
1797   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1798   LIRAccess access(this, decorators, base, offset, type);
1799   if (access.is_raw()) {
1800     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1801   } else {
1802     return _barrier_set->atomic_xchg_at(access, value);
1803   }
1804 }
1805 
1806 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1807                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1808   decorators |= ACCESS_READ;
1809   decorators |= ACCESS_WRITE;
1810   // Atomic operations are SEQ_CST by default
1811   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1812   LIRAccess access(this, decorators, base, offset, type);
1813   if (access.is_raw()) {
1814     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1815   } else {
1816     return _barrier_set->atomic_add_at(access, value);
1817   }
1818 }
1819 
1820 void LIRGenerator::do_LoadField(LoadField* x) {
1821   bool needs_patching = x->needs_patching();
1822   bool is_volatile = x->field()->is_volatile();
1823   BasicType field_type = x->field_type();
1824 
1825   CodeEmitInfo* info = NULL;
1826   if (needs_patching) {
1827     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1828     info = state_for(x, x->state_before());
1829   } else if (x->needs_null_check()) {
1830     NullCheck* nc = x->explicit_null_check();
1831     if (nc == NULL) {
1832       info = state_for(x);
1833     } else {
1834       info = state_for(nc);
1835     }
1836   }
1837 
1838   LIRItem object(x->obj(), this);
1839 
1840   object.load_item();
1841 
1842 #ifndef PRODUCT
1843   if (PrintNotLoaded && needs_patching) {
1844     tty->print_cr("   ###class not loaded at load_%s bci %d",
1845                   x->is_static() ?  "static" : "field", x->printable_bci());
1846   }
1847 #endif
1848 
1849   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1850   if (x->needs_null_check() &&
1851       (needs_patching ||
1852        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1853        stress_deopt)) {
1854     LIR_Opr obj = object.result();
1855     if (stress_deopt) {
1856       obj = new_register(T_OBJECT);
1857       __ move(LIR_OprFact::oopConst(NULL), obj);
1858     }
1859     // Emit an explicit null check because the offset is too large.
1860     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1861     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1862     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1863   }
1864 
1865   DecoratorSet decorators = IN_HEAP;
1866   if (is_volatile) {
1867     decorators |= MO_SEQ_CST;
1868   }
1869   if (needs_patching) {
1870     decorators |= C1_NEEDS_PATCHING;
1871   }
1872 
1873   LIR_Opr result = rlock_result(x, field_type);
1874   access_load_at(decorators, field_type,
1875                  object, LIR_OprFact::intConst(x->offset()), result,
1876                  info ? new CodeEmitInfo(info) : NULL, info);
1877 }
1878 
1879 // int/long jdk.internal.util.Preconditions.checkIndex
1880 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1881   assert(x->number_of_arguments() == 3, "wrong type");
1882   LIRItem index(x->argument_at(0), this);
1883   LIRItem length(x->argument_at(1), this);
1884   LIRItem oobef(x->argument_at(2), this);
1885 
1886   index.load_item();
1887   length.load_item();
1888   oobef.load_item();
1889 
1890   LIR_Opr result = rlock_result(x);
1891   // x->state() is created from copy_state_for_exception, it does not contains arguments
1892   // we should prepare them before entering into interpreter mode due to deoptimization.
1893   ValueStack* state = x->state();
1894   for (int i = 0; i < x->number_of_arguments(); i++) {
1895     Value arg = x->argument_at(i);
1896     state->push(arg->type(), arg);
1897   }
1898   CodeEmitInfo* info = state_for(x, state);
1899 
1900   LIR_Opr len = length.result();
1901   LIR_Opr zero;
1902   if (type == T_INT) {
1903     zero = LIR_OprFact::intConst(0);
1904     if (length.result()->is_constant()){
1905       len = LIR_OprFact::intConst(length.result()->as_jint());
1906     }
1907   } else {
1908     assert(type == T_LONG, "sanity check");
1909     zero = LIR_OprFact::longConst(0);
1910     if (length.result()->is_constant()){
1911       len = LIR_OprFact::longConst(length.result()->as_jlong());
1912     }
1913   }
1914   // C1 can not handle the case that comparing index with constant value while condition
1915   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1916   LIR_Opr zero_reg = new_register(type);
1917   __ move(zero, zero_reg);
1918 #if defined(X86) && !defined(_LP64)
1919   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1920   LIR_Opr index_copy = new_register(index.type());
1921   // index >= 0
1922   __ move(index.result(), index_copy);
1923   __ cmp(lir_cond_less, index_copy, zero_reg);
1924   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1925                                                     Deoptimization::Action_make_not_entrant));
1926   // index < length
1927   __ move(index.result(), index_copy);
1928   __ cmp(lir_cond_greaterEqual, index_copy, len);
1929   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1930                                                             Deoptimization::Action_make_not_entrant));
1931 #else
1932   // index >= 0
1933   __ cmp(lir_cond_less, index.result(), zero_reg);
1934   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1935                                                     Deoptimization::Action_make_not_entrant));
1936   // index < length
1937   __ cmp(lir_cond_greaterEqual, index.result(), len);
1938   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1939                                                             Deoptimization::Action_make_not_entrant));
1940 #endif
1941   __ move(index.result(), result);
1942 }
1943 
1944 //------------------------array access--------------------------------------
1945 
1946 
1947 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1948   LIRItem array(x->array(), this);
1949   array.load_item();
1950   LIR_Opr reg = rlock_result(x);
1951 
1952   CodeEmitInfo* info = NULL;
1953   if (x->needs_null_check()) {
1954     NullCheck* nc = x->explicit_null_check();
1955     if (nc == NULL) {
1956       info = state_for(x);
1957     } else {
1958       info = state_for(nc);
1959     }
1960     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1961       LIR_Opr obj = new_register(T_OBJECT);
1962       __ move(LIR_OprFact::oopConst(NULL), obj);
1963       __ null_check(obj, new CodeEmitInfo(info));
1964     }
1965   }
1966   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1967 }
1968 
1969 
1970 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1971   bool use_length = x->length() != NULL;
1972   LIRItem array(x->array(), this);
1973   LIRItem index(x->index(), this);
1974   LIRItem length(this);
1975   bool needs_range_check = x->compute_needs_range_check();
1976 
1977   if (use_length && needs_range_check) {
1978     length.set_instruction(x->length());
1979     length.load_item();
1980   }
1981 
1982   array.load_item();
1983   if (index.is_constant() && can_inline_as_constant(x->index())) {
1984     // let it be a constant
1985     index.dont_load_item();
1986   } else {
1987     index.load_item();
1988   }
1989 
1990   CodeEmitInfo* range_check_info = state_for(x);
1991   CodeEmitInfo* null_check_info = NULL;
1992   if (x->needs_null_check()) {
1993     NullCheck* nc = x->explicit_null_check();
1994     if (nc != NULL) {
1995       null_check_info = state_for(nc);
1996     } else {
1997       null_check_info = range_check_info;
1998     }
1999     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2000       LIR_Opr obj = new_register(T_OBJECT);
2001       __ move(LIR_OprFact::oopConst(NULL), obj);
2002       __ null_check(obj, new CodeEmitInfo(null_check_info));
2003     }
2004   }
2005 
2006   if (needs_range_check) {
2007     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2008       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2009     } else if (use_length) {
2010       // TODO: use a (modified) version of array_range_check that does not require a
2011       //       constant length to be loaded to a register
2012       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2013       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2014     } else {
2015       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2016       // The range check performs the null check, so clear it out for the load
2017       null_check_info = NULL;
2018     }
2019   }
2020 
2021   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2022 
2023   LIR_Opr result = rlock_result(x, x->elt_type());
2024   access_load_at(decorators, x->elt_type(),
2025                  array, index.result(), result,
2026                  NULL, null_check_info);
2027 }
2028 
2029 
2030 void LIRGenerator::do_NullCheck(NullCheck* x) {
2031   if (x->can_trap()) {
2032     LIRItem value(x->obj(), this);
2033     value.load_item();
2034     CodeEmitInfo* info = state_for(x);
2035     __ null_check(value.result(), info);
2036   }
2037 }
2038 
2039 
2040 void LIRGenerator::do_TypeCast(TypeCast* x) {
2041   LIRItem value(x->obj(), this);
2042   value.load_item();
2043   // the result is the same as from the node we are casting
2044   set_result(x, value.result());
2045 }
2046 
2047 
2048 void LIRGenerator::do_Throw(Throw* x) {
2049   LIRItem exception(x->exception(), this);
2050   exception.load_item();
2051   set_no_result(x);
2052   LIR_Opr exception_opr = exception.result();
2053   CodeEmitInfo* info = state_for(x, x->state());
2054 
2055 #ifndef PRODUCT
2056   if (PrintC1Statistics) {
2057     increment_counter(Runtime1::throw_count_address(), T_INT);
2058   }
2059 #endif
2060 
2061   // check if the instruction has an xhandler in any of the nested scopes
2062   bool unwind = false;
2063   if (info->exception_handlers()->length() == 0) {
2064     // this throw is not inside an xhandler
2065     unwind = true;
2066   } else {
2067     // get some idea of the throw type
2068     bool type_is_exact = true;
2069     ciType* throw_type = x->exception()->exact_type();
2070     if (throw_type == NULL) {
2071       type_is_exact = false;
2072       throw_type = x->exception()->declared_type();
2073     }
2074     if (throw_type != NULL && throw_type->is_instance_klass()) {
2075       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2076       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2077     }
2078   }
2079 
2080   // do null check before moving exception oop into fixed register
2081   // to avoid a fixed interval with an oop during the null check.
2082   // Use a copy of the CodeEmitInfo because debug information is
2083   // different for null_check and throw.
2084   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2085     // if the exception object wasn't created using new then it might be null.
2086     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2087   }
2088 
2089   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2090     // we need to go through the exception lookup path to get JVMTI
2091     // notification done
2092     unwind = false;
2093   }
2094 
2095   // move exception oop into fixed register
2096   __ move(exception_opr, exceptionOopOpr());
2097 
2098   if (unwind) {
2099     __ unwind_exception(exceptionOopOpr());
2100   } else {
2101     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2102   }
2103 }
2104 
2105 
2106 void LIRGenerator::do_RoundFP(RoundFP* x) {
2107   assert(strict_fp_requires_explicit_rounding, "not required");
2108 
2109   LIRItem input(x->input(), this);
2110   input.load_item();
2111   LIR_Opr input_opr = input.result();
2112   assert(input_opr->is_register(), "why round if value is not in a register?");
2113   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2114   if (input_opr->is_single_fpu()) {
2115     set_result(x, round_item(input_opr)); // This code path not currently taken
2116   } else {
2117     LIR_Opr result = new_register(T_DOUBLE);
2118     set_vreg_flag(result, must_start_in_memory);
2119     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2120     set_result(x, result);
2121   }
2122 }
2123 
2124 
2125 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2126   BasicType type = x->basic_type();
2127   LIRItem src(x->object(), this);
2128   LIRItem off(x->offset(), this);
2129 
2130   off.load_item();
2131   src.load_item();
2132 
2133   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2134 
2135   if (x->is_volatile()) {
2136     decorators |= MO_SEQ_CST;
2137   }
2138   if (type == T_BOOLEAN) {
2139     decorators |= C1_MASK_BOOLEAN;
2140   }
2141   if (is_reference_type(type)) {
2142     decorators |= ON_UNKNOWN_OOP_REF;
2143   }
2144 
2145   LIR_Opr result = rlock_result(x, type);
2146   if (!x->is_raw()) {
2147     access_load_at(decorators, type, src, off.result(), result);
2148   } else {
2149     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2150     // It reads the value from [src + offset] directly.
2151 #ifdef _LP64
2152     LIR_Opr offset = new_register(T_LONG);
2153     __ convert(Bytecodes::_i2l, off.result(), offset);
2154 #else
2155     LIR_Opr offset = off.result();
2156 #endif
2157     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2158     if (is_reference_type(type)) {
2159       __ move_wide(addr, result);
2160     } else {
2161       __ move(addr, result);
2162     }
2163   }
2164 }
2165 
2166 
2167 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2168   BasicType type = x->basic_type();
2169   LIRItem src(x->object(), this);
2170   LIRItem off(x->offset(), this);
2171   LIRItem data(x->value(), this);
2172 
2173   src.load_item();
2174   if (type == T_BOOLEAN || type == T_BYTE) {
2175     data.load_byte_item();
2176   } else {
2177     data.load_item();
2178   }
2179   off.load_item();
2180 
2181   set_no_result(x);
2182 
2183   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2184   if (is_reference_type(type)) {
2185     decorators |= ON_UNKNOWN_OOP_REF;
2186   }
2187   if (x->is_volatile()) {
2188     decorators |= MO_SEQ_CST;
2189   }
2190   access_store_at(decorators, type, src, off.result(), data.result());
2191 }
2192 
2193 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2194   BasicType type = x->basic_type();
2195   LIRItem src(x->object(), this);
2196   LIRItem off(x->offset(), this);
2197   LIRItem value(x->value(), this);
2198 
2199   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2200 
2201   if (is_reference_type(type)) {
2202     decorators |= ON_UNKNOWN_OOP_REF;
2203   }
2204 
2205   LIR_Opr result;
2206   if (x->is_add()) {
2207     result = access_atomic_add_at(decorators, type, src, off, value);
2208   } else {
2209     result = access_atomic_xchg_at(decorators, type, src, off, value);
2210   }
2211   set_result(x, result);
2212 }
2213 
2214 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2215   int lng = x->length();
2216 
2217   for (int i = 0; i < lng; i++) {
2218     C1SwitchRange* one_range = x->at(i);
2219     int low_key = one_range->low_key();
2220     int high_key = one_range->high_key();
2221     BlockBegin* dest = one_range->sux();
2222     if (low_key == high_key) {
2223       __ cmp(lir_cond_equal, value, low_key);
2224       __ branch(lir_cond_equal, dest);
2225     } else if (high_key - low_key == 1) {
2226       __ cmp(lir_cond_equal, value, low_key);
2227       __ branch(lir_cond_equal, dest);
2228       __ cmp(lir_cond_equal, value, high_key);
2229       __ branch(lir_cond_equal, dest);
2230     } else {
2231       LabelObj* L = new LabelObj();
2232       __ cmp(lir_cond_less, value, low_key);
2233       __ branch(lir_cond_less, L->label());
2234       __ cmp(lir_cond_lessEqual, value, high_key);
2235       __ branch(lir_cond_lessEqual, dest);
2236       __ branch_destination(L->label());
2237     }
2238   }
2239   __ jump(default_sux);
2240 }
2241 
2242 
2243 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2244   SwitchRangeList* res = new SwitchRangeList();
2245   int len = x->length();
2246   if (len > 0) {
2247     BlockBegin* sux = x->sux_at(0);
2248     int key = x->lo_key();
2249     BlockBegin* default_sux = x->default_sux();
2250     C1SwitchRange* range = new C1SwitchRange(key, sux);
2251     for (int i = 0; i < len; i++, key++) {
2252       BlockBegin* new_sux = x->sux_at(i);
2253       if (sux == new_sux) {
2254         // still in same range
2255         range->set_high_key(key);
2256       } else {
2257         // skip tests which explicitly dispatch to the default
2258         if (sux != default_sux) {
2259           res->append(range);
2260         }
2261         range = new C1SwitchRange(key, new_sux);
2262       }
2263       sux = new_sux;
2264     }
2265     if (res->length() == 0 || res->last() != range)  res->append(range);
2266   }
2267   return res;
2268 }
2269 
2270 
2271 // we expect the keys to be sorted by increasing value
2272 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2273   SwitchRangeList* res = new SwitchRangeList();
2274   int len = x->length();
2275   if (len > 0) {
2276     BlockBegin* default_sux = x->default_sux();
2277     int key = x->key_at(0);
2278     BlockBegin* sux = x->sux_at(0);
2279     C1SwitchRange* range = new C1SwitchRange(key, sux);
2280     for (int i = 1; i < len; i++) {
2281       int new_key = x->key_at(i);
2282       BlockBegin* new_sux = x->sux_at(i);
2283       if (key+1 == new_key && sux == new_sux) {
2284         // still in same range
2285         range->set_high_key(new_key);
2286       } else {
2287         // skip tests which explicitly dispatch to the default
2288         if (range->sux() != default_sux) {
2289           res->append(range);
2290         }
2291         range = new C1SwitchRange(new_key, new_sux);
2292       }
2293       key = new_key;
2294       sux = new_sux;
2295     }
2296     if (res->length() == 0 || res->last() != range)  res->append(range);
2297   }
2298   return res;
2299 }
2300 
2301 
2302 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2303   LIRItem tag(x->tag(), this);
2304   tag.load_item();
2305   set_no_result(x);
2306 
2307   if (x->is_safepoint()) {
2308     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2309   }
2310 
2311   // move values into phi locations
2312   move_to_phi(x->state());
2313 
2314   int lo_key = x->lo_key();
2315   int len = x->length();
2316   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2317   LIR_Opr value = tag.result();
2318 
2319   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2320     ciMethod* method = x->state()->scope()->method();
2321     ciMethodData* md = method->method_data_or_null();
2322     assert(md != NULL, "Sanity");
2323     ciProfileData* data = md->bci_to_data(x->state()->bci());
2324     assert(data != NULL, "must have profiling data");
2325     assert(data->is_MultiBranchData(), "bad profile data?");
2326     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2327     LIR_Opr md_reg = new_register(T_METADATA);
2328     __ metadata2reg(md->constant_encoding(), md_reg);
2329     LIR_Opr data_offset_reg = new_pointer_register();
2330     LIR_Opr tmp_reg = new_pointer_register();
2331 
2332     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2333     for (int i = 0; i < len; i++) {
2334       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2335       __ cmp(lir_cond_equal, value, i + lo_key);
2336       __ move(data_offset_reg, tmp_reg);
2337       __ cmove(lir_cond_equal,
2338                LIR_OprFact::intptrConst(count_offset),
2339                tmp_reg,
2340                data_offset_reg, T_INT);
2341     }
2342 
2343     LIR_Opr data_reg = new_pointer_register();
2344     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2345     __ move(data_addr, data_reg);
2346     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2347     __ move(data_reg, data_addr);
2348   }
2349 
2350   if (UseTableRanges) {
2351     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2352   } else {
2353     for (int i = 0; i < len; i++) {
2354       __ cmp(lir_cond_equal, value, i + lo_key);
2355       __ branch(lir_cond_equal, x->sux_at(i));
2356     }
2357     __ jump(x->default_sux());
2358   }
2359 }
2360 
2361 
2362 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2363   LIRItem tag(x->tag(), this);
2364   tag.load_item();
2365   set_no_result(x);
2366 
2367   if (x->is_safepoint()) {
2368     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2369   }
2370 
2371   // move values into phi locations
2372   move_to_phi(x->state());
2373 
2374   LIR_Opr value = tag.result();
2375   int len = x->length();
2376 
2377   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2378     ciMethod* method = x->state()->scope()->method();
2379     ciMethodData* md = method->method_data_or_null();
2380     assert(md != NULL, "Sanity");
2381     ciProfileData* data = md->bci_to_data(x->state()->bci());
2382     assert(data != NULL, "must have profiling data");
2383     assert(data->is_MultiBranchData(), "bad profile data?");
2384     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2385     LIR_Opr md_reg = new_register(T_METADATA);
2386     __ metadata2reg(md->constant_encoding(), md_reg);
2387     LIR_Opr data_offset_reg = new_pointer_register();
2388     LIR_Opr tmp_reg = new_pointer_register();
2389 
2390     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2391     for (int i = 0; i < len; i++) {
2392       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2393       __ cmp(lir_cond_equal, value, x->key_at(i));
2394       __ move(data_offset_reg, tmp_reg);
2395       __ cmove(lir_cond_equal,
2396                LIR_OprFact::intptrConst(count_offset),
2397                tmp_reg,
2398                data_offset_reg, T_INT);
2399     }
2400 
2401     LIR_Opr data_reg = new_pointer_register();
2402     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2403     __ move(data_addr, data_reg);
2404     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2405     __ move(data_reg, data_addr);
2406   }
2407 
2408   if (UseTableRanges) {
2409     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2410   } else {
2411     int len = x->length();
2412     for (int i = 0; i < len; i++) {
2413       __ cmp(lir_cond_equal, value, x->key_at(i));
2414       __ branch(lir_cond_equal, x->sux_at(i));
2415     }
2416     __ jump(x->default_sux());
2417   }
2418 }
2419 
2420 
2421 void LIRGenerator::do_Goto(Goto* x) {
2422   set_no_result(x);
2423 
2424   if (block()->next()->as_OsrEntry()) {
2425     // need to free up storage used for OSR entry point
2426     LIR_Opr osrBuffer = block()->next()->operand();
2427     BasicTypeList signature;
2428     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2429     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2430     __ move(osrBuffer, cc->args()->at(0));
2431     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2432                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2433   }
2434 
2435   if (x->is_safepoint()) {
2436     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2437 
2438     // increment backedge counter if needed
2439     CodeEmitInfo* info = state_for(x, state);
2440     increment_backedge_counter(info, x->profiled_bci());
2441     CodeEmitInfo* safepoint_info = state_for(x, state);
2442     __ safepoint(safepoint_poll_register(), safepoint_info);
2443   }
2444 
2445   // Gotos can be folded Ifs, handle this case.
2446   if (x->should_profile()) {
2447     ciMethod* method = x->profiled_method();
2448     assert(method != NULL, "method should be set if branch is profiled");
2449     ciMethodData* md = method->method_data_or_null();
2450     assert(md != NULL, "Sanity");
2451     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2452     assert(data != NULL, "must have profiling data");
2453     int offset;
2454     if (x->direction() == Goto::taken) {
2455       assert(data->is_BranchData(), "need BranchData for two-way branches");
2456       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2457     } else if (x->direction() == Goto::not_taken) {
2458       assert(data->is_BranchData(), "need BranchData for two-way branches");
2459       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2460     } else {
2461       assert(data->is_JumpData(), "need JumpData for branches");
2462       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2463     }
2464     LIR_Opr md_reg = new_register(T_METADATA);
2465     __ metadata2reg(md->constant_encoding(), md_reg);
2466 
2467     increment_counter(new LIR_Address(md_reg, offset,
2468                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2469   }
2470 
2471   // emit phi-instruction move after safepoint since this simplifies
2472   // describing the state as the safepoint.
2473   move_to_phi(x->state());
2474 
2475   __ jump(x->default_sux());
2476 }
2477 
2478 /**
2479  * Emit profiling code if needed for arguments, parameters, return value types
2480  *
2481  * @param md                    MDO the code will update at runtime
2482  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2483  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2484  * @param profiled_k            current profile
2485  * @param obj                   IR node for the object to be profiled
2486  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2487  *                              Set once we find an update to make and use for next ones.
2488  * @param not_null              true if we know obj cannot be null
2489  * @param signature_at_call_k   signature at call for obj
2490  * @param callee_signature_k    signature of callee for obj
2491  *                              at call and callee signatures differ at method handle call
2492  * @return                      the only klass we know will ever be seen at this profile point
2493  */
2494 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2495                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2496                                     ciKlass* callee_signature_k) {
2497   ciKlass* result = NULL;
2498   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2499   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2500   // known not to be null or null bit already set and already set to
2501   // unknown: nothing we can do to improve profiling
2502   if (!do_null && !do_update) {
2503     return result;
2504   }
2505 
2506   ciKlass* exact_klass = NULL;
2507   Compilation* comp = Compilation::current();
2508   if (do_update) {
2509     // try to find exact type, using CHA if possible, so that loading
2510     // the klass from the object can be avoided
2511     ciType* type = obj->exact_type();
2512     if (type == NULL) {
2513       type = obj->declared_type();
2514       type = comp->cha_exact_type(type);
2515     }
2516     assert(type == NULL || type->is_klass(), "type should be class");
2517     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2518 
2519     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2520   }
2521 
2522   if (!do_null && !do_update) {
2523     return result;
2524   }
2525 
2526   ciKlass* exact_signature_k = NULL;
2527   if (do_update) {
2528     // Is the type from the signature exact (the only one possible)?
2529     exact_signature_k = signature_at_call_k->exact_klass();
2530     if (exact_signature_k == NULL) {
2531       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2532     } else {
2533       result = exact_signature_k;
2534       // Known statically. No need to emit any code: prevent
2535       // LIR_Assembler::emit_profile_type() from emitting useless code
2536       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2537     }
2538     // exact_klass and exact_signature_k can be both non NULL but
2539     // different if exact_klass is loaded after the ciObject for
2540     // exact_signature_k is created.
2541     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2542       // sometimes the type of the signature is better than the best type
2543       // the compiler has
2544       exact_klass = exact_signature_k;
2545     }
2546     if (callee_signature_k != NULL &&
2547         callee_signature_k != signature_at_call_k) {
2548       ciKlass* improved_klass = callee_signature_k->exact_klass();
2549       if (improved_klass == NULL) {
2550         improved_klass = comp->cha_exact_type(callee_signature_k);
2551       }
2552       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2553         exact_klass = exact_signature_k;
2554       }
2555     }
2556     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2557   }
2558 
2559   if (!do_null && !do_update) {
2560     return result;
2561   }
2562 
2563   if (mdp == LIR_OprFact::illegalOpr) {
2564     mdp = new_register(T_METADATA);
2565     __ metadata2reg(md->constant_encoding(), mdp);
2566     if (md_base_offset != 0) {
2567       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2568       mdp = new_pointer_register();
2569       __ leal(LIR_OprFact::address(base_type_address), mdp);
2570     }
2571   }
2572   LIRItem value(obj, this);
2573   value.load_item();
2574   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2575                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2576   return result;
2577 }
2578 
2579 // profile parameters on entry to the root of the compilation
2580 void LIRGenerator::profile_parameters(Base* x) {
2581   if (compilation()->profile_parameters()) {
2582     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2583     ciMethodData* md = scope()->method()->method_data_or_null();
2584     assert(md != NULL, "Sanity");
2585 
2586     if (md->parameters_type_data() != NULL) {
2587       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2588       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2589       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2590       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2591         LIR_Opr src = args->at(i);
2592         assert(!src->is_illegal(), "check");
2593         BasicType t = src->type();
2594         if (is_reference_type(t)) {
2595           intptr_t profiled_k = parameters->type(j);
2596           Local* local = x->state()->local_at(java_index)->as_Local();
2597           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2598                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2599                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2600           // If the profile is known statically set it once for all and do not emit any code
2601           if (exact != NULL) {
2602             md->set_parameter_type(j, exact);
2603           }
2604           j++;
2605         }
2606         java_index += type2size[t];
2607       }
2608     }
2609   }
2610 }
2611 
2612 void LIRGenerator::do_Base(Base* x) {
2613   __ std_entry(LIR_OprFact::illegalOpr);
2614   // Emit moves from physical registers / stack slots to virtual registers
2615   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2616   IRScope* irScope = compilation()->hir()->top_scope();
2617   int java_index = 0;
2618   for (int i = 0; i < args->length(); i++) {
2619     LIR_Opr src = args->at(i);
2620     assert(!src->is_illegal(), "check");
2621     BasicType t = src->type();
2622 
2623     // Types which are smaller than int are passed as int, so
2624     // correct the type which passed.
2625     switch (t) {
2626     case T_BYTE:
2627     case T_BOOLEAN:
2628     case T_SHORT:
2629     case T_CHAR:
2630       t = T_INT;
2631       break;
2632     default:
2633       break;
2634     }
2635 
2636     LIR_Opr dest = new_register(t);
2637     __ move(src, dest);
2638 
2639     // Assign new location to Local instruction for this local
2640     Local* local = x->state()->local_at(java_index)->as_Local();
2641     assert(local != NULL, "Locals for incoming arguments must have been created");
2642 #ifndef __SOFTFP__
2643     // The java calling convention passes double as long and float as int.
2644     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2645 #endif // __SOFTFP__
2646     local->set_operand(dest);
2647     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2648     java_index += type2size[t];
2649   }
2650 
2651   if (compilation()->env()->dtrace_method_probes()) {
2652     BasicTypeList signature;
2653     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2654     signature.append(T_METADATA); // Method*
2655     LIR_OprList* args = new LIR_OprList();
2656     args->append(getThreadPointer());
2657     LIR_Opr meth = new_register(T_METADATA);
2658     __ metadata2reg(method()->constant_encoding(), meth);
2659     args->append(meth);
2660     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2661   }
2662 
2663   if (method()->is_synchronized()) {
2664     LIR_Opr obj;
2665     if (method()->is_static()) {
2666       obj = new_register(T_OBJECT);
2667       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2668     } else {
2669       Local* receiver = x->state()->local_at(0)->as_Local();
2670       assert(receiver != NULL, "must already exist");
2671       obj = receiver->operand();
2672     }
2673     assert(obj->is_valid(), "must be valid");
2674 
2675     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2676       LIR_Opr lock = syncLockOpr();
2677       __ load_stack_address_monitor(0, lock);
2678 
2679       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2680       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2681 
2682       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2683       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2684     }
2685   }
2686   // increment invocation counters if needed
2687   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2688     profile_parameters(x);
2689     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2690     increment_invocation_counter(info);
2691   }
2692 
2693   // all blocks with a successor must end with an unconditional jump
2694   // to the successor even if they are consecutive
2695   __ jump(x->default_sux());
2696 }
2697 
2698 
2699 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2700   // construct our frame and model the production of incoming pointer
2701   // to the OSR buffer.
2702   __ osr_entry(LIR_Assembler::osrBufferPointer());
2703   LIR_Opr result = rlock_result(x);
2704   __ move(LIR_Assembler::osrBufferPointer(), result);
2705 }
2706 
2707 
2708 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2709   assert(args->length() == arg_list->length(),
2710          "args=%d, arg_list=%d", args->length(), arg_list->length());
2711   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2712     LIRItem* param = args->at(i);
2713     LIR_Opr loc = arg_list->at(i);
2714     if (loc->is_register()) {
2715       param->load_item_force(loc);
2716     } else {
2717       LIR_Address* addr = loc->as_address_ptr();
2718       param->load_for_store(addr->type());
2719       if (addr->type() == T_OBJECT) {
2720         __ move_wide(param->result(), addr);
2721       } else
2722         __ move(param->result(), addr);
2723     }
2724   }
2725 
2726   if (x->has_receiver()) {
2727     LIRItem* receiver = args->at(0);
2728     LIR_Opr loc = arg_list->at(0);
2729     if (loc->is_register()) {
2730       receiver->load_item_force(loc);
2731     } else {
2732       assert(loc->is_address(), "just checking");
2733       receiver->load_for_store(T_OBJECT);
2734       __ move_wide(receiver->result(), loc->as_address_ptr());
2735     }
2736   }
2737 }
2738 
2739 
2740 // Visits all arguments, returns appropriate items without loading them
2741 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2742   LIRItemList* argument_items = new LIRItemList();
2743   if (x->has_receiver()) {
2744     LIRItem* receiver = new LIRItem(x->receiver(), this);
2745     argument_items->append(receiver);
2746   }
2747   for (int i = 0; i < x->number_of_arguments(); i++) {
2748     LIRItem* param = new LIRItem(x->argument_at(i), this);
2749     argument_items->append(param);
2750   }
2751   return argument_items;
2752 }
2753 
2754 
2755 // The invoke with receiver has following phases:
2756 //   a) traverse and load/lock receiver;
2757 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2758 //   c) push receiver on stack
2759 //   d) load each of the items and push on stack
2760 //   e) unlock receiver
2761 //   f) move receiver into receiver-register %o0
2762 //   g) lock result registers and emit call operation
2763 //
2764 // Before issuing a call, we must spill-save all values on stack
2765 // that are in caller-save register. "spill-save" moves those registers
2766 // either in a free callee-save register or spills them if no free
2767 // callee save register is available.
2768 //
2769 // The problem is where to invoke spill-save.
2770 // - if invoked between e) and f), we may lock callee save
2771 //   register in "spill-save" that destroys the receiver register
2772 //   before f) is executed
2773 // - if we rearrange f) to be earlier (by loading %o0) it
2774 //   may destroy a value on the stack that is currently in %o0
2775 //   and is waiting to be spilled
2776 // - if we keep the receiver locked while doing spill-save,
2777 //   we cannot spill it as it is spill-locked
2778 //
2779 void LIRGenerator::do_Invoke(Invoke* x) {
2780   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2781 
2782   LIR_OprList* arg_list = cc->args();
2783   LIRItemList* args = invoke_visit_arguments(x);
2784   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2785 
2786   // setup result register
2787   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2788   if (x->type() != voidType) {
2789     result_register = result_register_for(x->type());
2790   }
2791 
2792   CodeEmitInfo* info = state_for(x, x->state());
2793 
2794   invoke_load_arguments(x, args, arg_list);
2795 
2796   if (x->has_receiver()) {
2797     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2798     receiver = args->at(0)->result();
2799   }
2800 
2801   // emit invoke code
2802   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2803 
2804   // JSR 292
2805   // Preserve the SP over MethodHandle call sites, if needed.
2806   ciMethod* target = x->target();
2807   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2808                                   target->is_method_handle_intrinsic() ||
2809                                   target->is_compiled_lambda_form());
2810   if (is_method_handle_invoke) {
2811     info->set_is_method_handle_invoke(true);
2812     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2813         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2814     }
2815   }
2816 
2817   switch (x->code()) {
2818     case Bytecodes::_invokestatic:
2819       __ call_static(target, result_register,
2820                      SharedRuntime::get_resolve_static_call_stub(),
2821                      arg_list, info);
2822       break;
2823     case Bytecodes::_invokespecial:
2824     case Bytecodes::_invokevirtual:
2825     case Bytecodes::_invokeinterface:
2826       // for loaded and final (method or class) target we still produce an inline cache,
2827       // in order to be able to call mixed mode
2828       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2829         __ call_opt_virtual(target, receiver, result_register,
2830                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2831                             arg_list, info);
2832       } else {
2833         __ call_icvirtual(target, receiver, result_register,
2834                           SharedRuntime::get_resolve_virtual_call_stub(),
2835                           arg_list, info);
2836       }
2837       break;
2838     case Bytecodes::_invokedynamic: {
2839       __ call_dynamic(target, receiver, result_register,
2840                       SharedRuntime::get_resolve_static_call_stub(),
2841                       arg_list, info);
2842       break;
2843     }
2844     default:
2845       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2846       break;
2847   }
2848 
2849   // JSR 292
2850   // Restore the SP after MethodHandle call sites, if needed.
2851   if (is_method_handle_invoke
2852       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2853     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2854   }
2855 
2856   if (result_register->is_valid()) {
2857     LIR_Opr result = rlock_result(x);
2858     __ move(result_register, result);
2859   }
2860 }
2861 
2862 
2863 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2864   assert(x->number_of_arguments() == 1, "wrong type");
2865   LIRItem value       (x->argument_at(0), this);
2866   LIR_Opr reg = rlock_result(x);
2867   value.load_item();
2868   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2869   __ move(tmp, reg);
2870 }
2871 
2872 
2873 
2874 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2875 void LIRGenerator::do_IfOp(IfOp* x) {
2876 #ifdef ASSERT
2877   {
2878     ValueTag xtag = x->x()->type()->tag();
2879     ValueTag ttag = x->tval()->type()->tag();
2880     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2881     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2882     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2883   }
2884 #endif
2885 
2886   LIRItem left(x->x(), this);
2887   LIRItem right(x->y(), this);
2888   left.load_item();
2889   if (can_inline_as_constant(right.value())) {
2890     right.dont_load_item();
2891   } else {
2892     right.load_item();
2893   }
2894 
2895   LIRItem t_val(x->tval(), this);
2896   LIRItem f_val(x->fval(), this);
2897   t_val.dont_load_item();
2898   f_val.dont_load_item();
2899   LIR_Opr reg = rlock_result(x);
2900 
2901   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2902   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2903 }
2904 
2905 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2906   assert(x->number_of_arguments() == 0, "wrong type");
2907   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2908   BasicTypeList signature;
2909   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2910   LIR_Opr reg = result_register_for(x->type());
2911   __ call_runtime_leaf(routine, getThreadTemp(),
2912                        reg, new LIR_OprList());
2913   LIR_Opr result = rlock_result(x);
2914   __ move(reg, result);
2915 }
2916 
2917 
2918 
2919 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2920   switch (x->id()) {
2921   case vmIntrinsics::_intBitsToFloat      :
2922   case vmIntrinsics::_doubleToRawLongBits :
2923   case vmIntrinsics::_longBitsToDouble    :
2924   case vmIntrinsics::_floatToRawIntBits   : {
2925     do_FPIntrinsics(x);
2926     break;
2927   }
2928 
2929 #ifdef JFR_HAVE_INTRINSICS
2930   case vmIntrinsics::_counterTime:
2931     do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2932     break;
2933 #endif
2934 
2935   case vmIntrinsics::_currentTimeMillis:
2936     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2937     break;
2938 
2939   case vmIntrinsics::_nanoTime:
2940     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2941     break;
2942 
2943   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2944   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2945   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
2946   case vmIntrinsics::_getModifiers:   do_getModifiers(x);  break;
2947   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2948   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
2949   case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2950   case vmIntrinsics::_currentThread:  do_vthread(x);       break;
2951   case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2952 
2953   case vmIntrinsics::_dlog:           // fall through
2954   case vmIntrinsics::_dlog10:         // fall through
2955   case vmIntrinsics::_dabs:           // fall through
2956   case vmIntrinsics::_dsqrt:          // fall through
2957   case vmIntrinsics::_dsqrt_strict:   // fall through
2958   case vmIntrinsics::_dtan:           // fall through
2959   case vmIntrinsics::_dsin :          // fall through
2960   case vmIntrinsics::_dcos :          // fall through
2961   case vmIntrinsics::_dexp :          // fall through
2962   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2963   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2964 
2965   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2966   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2967 
2968   case vmIntrinsics::_Preconditions_checkIndex:
2969     do_PreconditionsCheckIndex(x, T_INT);
2970     break;
2971   case vmIntrinsics::_Preconditions_checkLongIndex:
2972     do_PreconditionsCheckIndex(x, T_LONG);
2973     break;
2974 
2975   case vmIntrinsics::_compareAndSetReference:
2976     do_CompareAndSwap(x, objectType);
2977     break;
2978   case vmIntrinsics::_compareAndSetInt:
2979     do_CompareAndSwap(x, intType);
2980     break;
2981   case vmIntrinsics::_compareAndSetLong:
2982     do_CompareAndSwap(x, longType);
2983     break;
2984 
2985   case vmIntrinsics::_loadFence :
2986     __ membar_acquire();
2987     break;
2988   case vmIntrinsics::_storeFence:
2989     __ membar_release();
2990     break;
2991   case vmIntrinsics::_storeStoreFence:
2992     __ membar_storestore();
2993     break;
2994   case vmIntrinsics::_fullFence :
2995     __ membar();
2996     break;
2997   case vmIntrinsics::_onSpinWait:
2998     __ on_spin_wait();
2999     break;
3000   case vmIntrinsics::_Reference_get:
3001     do_Reference_get(x);
3002     break;
3003 
3004   case vmIntrinsics::_updateCRC32:
3005   case vmIntrinsics::_updateBytesCRC32:
3006   case vmIntrinsics::_updateByteBufferCRC32:
3007     do_update_CRC32(x);
3008     break;
3009 
3010   case vmIntrinsics::_updateBytesCRC32C:
3011   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3012     do_update_CRC32C(x);
3013     break;
3014 
3015   case vmIntrinsics::_vectorizedMismatch:
3016     do_vectorizedMismatch(x);
3017     break;
3018 
3019   case vmIntrinsics::_blackhole:
3020     do_blackhole(x);
3021     break;
3022 
3023   default: ShouldNotReachHere(); break;
3024   }
3025 }
3026 
3027 void LIRGenerator::profile_arguments(ProfileCall* x) {
3028   if (compilation()->profile_arguments()) {
3029     int bci = x->bci_of_invoke();
3030     ciMethodData* md = x->method()->method_data_or_null();
3031     assert(md != NULL, "Sanity");
3032     ciProfileData* data = md->bci_to_data(bci);
3033     if (data != NULL) {
3034       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3035           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3036         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3037         int base_offset = md->byte_offset_of_slot(data, extra);
3038         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3039         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3040 
3041         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3042         int start = 0;
3043         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3044         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3045           // first argument is not profiled at call (method handle invoke)
3046           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3047           start = 1;
3048         }
3049         ciSignature* callee_signature = x->callee()->signature();
3050         // method handle call to virtual method
3051         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3052         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3053 
3054         bool ignored_will_link;
3055         ciSignature* signature_at_call = NULL;
3056         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3057         ciSignatureStream signature_at_call_stream(signature_at_call);
3058 
3059         // if called through method handle invoke, some arguments may have been popped
3060         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3061           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3062           ciKlass* exact = profile_type(md, base_offset, off,
3063               args->type(i), x->profiled_arg_at(i+start), mdp,
3064               !x->arg_needs_null_check(i+start),
3065               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3066           if (exact != NULL) {
3067             md->set_argument_type(bci, i, exact);
3068           }
3069         }
3070       } else {
3071 #ifdef ASSERT
3072         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3073         int n = x->nb_profiled_args();
3074         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3075             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3076             "only at JSR292 bytecodes");
3077 #endif
3078       }
3079     }
3080   }
3081 }
3082 
3083 // profile parameters on entry to an inlined method
3084 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3085   if (compilation()->profile_parameters() && x->inlined()) {
3086     ciMethodData* md = x->callee()->method_data_or_null();
3087     if (md != NULL) {
3088       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3089       if (parameters_type_data != NULL) {
3090         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3091         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3092         bool has_receiver = !x->callee()->is_static();
3093         ciSignature* sig = x->callee()->signature();
3094         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3095         int i = 0; // to iterate on the Instructions
3096         Value arg = x->recv();
3097         bool not_null = false;
3098         int bci = x->bci_of_invoke();
3099         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3100         // The first parameter is the receiver so that's what we start
3101         // with if it exists. One exception is method handle call to
3102         // virtual method: the receiver is in the args list
3103         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3104           i = 1;
3105           arg = x->profiled_arg_at(0);
3106           not_null = !x->arg_needs_null_check(0);
3107         }
3108         int k = 0; // to iterate on the profile data
3109         for (;;) {
3110           intptr_t profiled_k = parameters->type(k);
3111           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3112                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3113                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3114           // If the profile is known statically set it once for all and do not emit any code
3115           if (exact != NULL) {
3116             md->set_parameter_type(k, exact);
3117           }
3118           k++;
3119           if (k >= parameters_type_data->number_of_parameters()) {
3120 #ifdef ASSERT
3121             int extra = 0;
3122             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3123                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3124                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3125               extra += 1;
3126             }
3127             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3128 #endif
3129             break;
3130           }
3131           arg = x->profiled_arg_at(i);
3132           not_null = !x->arg_needs_null_check(i);
3133           i++;
3134         }
3135       }
3136     }
3137   }
3138 }
3139 
3140 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3141   // Need recv in a temporary register so it interferes with the other temporaries
3142   LIR_Opr recv = LIR_OprFact::illegalOpr;
3143   LIR_Opr mdo = new_register(T_METADATA);
3144   // tmp is used to hold the counters on SPARC
3145   LIR_Opr tmp = new_pointer_register();
3146 
3147   if (x->nb_profiled_args() > 0) {
3148     profile_arguments(x);
3149   }
3150 
3151   // profile parameters on inlined method entry including receiver
3152   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3153     profile_parameters_at_call(x);
3154   }
3155 
3156   if (x->recv() != NULL) {
3157     LIRItem value(x->recv(), this);
3158     value.load_item();
3159     recv = new_register(T_OBJECT);
3160     __ move(value.result(), recv);
3161   }
3162   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3163 }
3164 
3165 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3166   int bci = x->bci_of_invoke();
3167   ciMethodData* md = x->method()->method_data_or_null();
3168   assert(md != NULL, "Sanity");
3169   ciProfileData* data = md->bci_to_data(bci);
3170   if (data != NULL) {
3171     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3172     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3173     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3174 
3175     bool ignored_will_link;
3176     ciSignature* signature_at_call = NULL;
3177     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3178 
3179     // The offset within the MDO of the entry to update may be too large
3180     // to be used in load/store instructions on some platforms. So have
3181     // profile_type() compute the address of the profile in a register.
3182     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3183         ret->type(), x->ret(), mdp,
3184         !x->needs_null_check(),
3185         signature_at_call->return_type()->as_klass(),
3186         x->callee()->signature()->return_type()->as_klass());
3187     if (exact != NULL) {
3188       md->set_return_type(bci, exact);
3189     }
3190   }
3191 }
3192 
3193 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3194   // We can safely ignore accessors here, since c2 will inline them anyway,
3195   // accessors are also always mature.
3196   if (!x->inlinee()->is_accessor()) {
3197     CodeEmitInfo* info = state_for(x, x->state(), true);
3198     // Notify the runtime very infrequently only to take care of counter overflows
3199     int freq_log = Tier23InlineeNotifyFreqLog;
3200     double scale;
3201     if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3202       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3203     }
3204     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3205   }
3206 }
3207 
3208 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3209   if (compilation()->is_profiling()) {
3210 #if defined(X86) && !defined(_LP64)
3211     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3212     LIR_Opr left_copy = new_register(left->type());
3213     __ move(left, left_copy);
3214     __ cmp(cond, left_copy, right);
3215 #else
3216     __ cmp(cond, left, right);
3217 #endif
3218     LIR_Opr step = new_register(T_INT);
3219     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3220     LIR_Opr zero = LIR_OprFact::intConst(0);
3221     __ cmove(cond,
3222         (left_bci < bci) ? plus_one : zero,
3223         (right_bci < bci) ? plus_one : zero,
3224         step, left->type());
3225     increment_backedge_counter(info, step, bci);
3226   }
3227 }
3228 
3229 
3230 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3231   int freq_log = 0;
3232   int level = compilation()->env()->comp_level();
3233   if (level == CompLevel_limited_profile) {
3234     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3235   } else if (level == CompLevel_full_profile) {
3236     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3237   } else {
3238     ShouldNotReachHere();
3239   }
3240   // Increment the appropriate invocation/backedge counter and notify the runtime.
3241   double scale;
3242   if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3243     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3244   }
3245   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3246 }
3247 
3248 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3249                                                 ciMethod *method, LIR_Opr step, int frequency,
3250                                                 int bci, bool backedge, bool notify) {
3251   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3252   int level = _compilation->env()->comp_level();
3253   assert(level > CompLevel_simple, "Shouldn't be here");
3254 
3255   int offset = -1;
3256   LIR_Opr counter_holder;
3257   if (level == CompLevel_limited_profile) {
3258     MethodCounters* counters_adr = method->ensure_method_counters();
3259     if (counters_adr == NULL) {
3260       bailout("method counters allocation failed");
3261       return;
3262     }
3263     counter_holder = new_pointer_register();
3264     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3265     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3266                                  MethodCounters::invocation_counter_offset());
3267   } else if (level == CompLevel_full_profile) {
3268     counter_holder = new_register(T_METADATA);
3269     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3270                                  MethodData::invocation_counter_offset());
3271     ciMethodData* md = method->method_data_or_null();
3272     assert(md != NULL, "Sanity");
3273     __ metadata2reg(md->constant_encoding(), counter_holder);
3274   } else {
3275     ShouldNotReachHere();
3276   }
3277   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3278   LIR_Opr result = new_register(T_INT);
3279   __ load(counter, result);
3280   __ add(result, step, result);
3281   __ store(result, counter);
3282   if (notify && (!backedge || UseOnStackReplacement)) {
3283     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3284     // The bci for info can point to cmp for if's we want the if bci
3285     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3286     int freq = frequency << InvocationCounter::count_shift;
3287     if (freq == 0) {
3288       if (!step->is_constant()) {
3289         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3290         __ branch(lir_cond_notEqual, overflow);
3291       } else {
3292         __ branch(lir_cond_always, overflow);
3293       }
3294     } else {
3295       LIR_Opr mask = load_immediate(freq, T_INT);
3296       if (!step->is_constant()) {
3297         // If step is 0, make sure the overflow check below always fails
3298         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3299         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3300       }
3301       __ logical_and(result, mask, result);
3302       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3303       __ branch(lir_cond_equal, overflow);
3304     }
3305     __ branch_destination(overflow->continuation());
3306   }
3307 }
3308 
3309 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3310   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3311   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3312 
3313   if (x->pass_thread()) {
3314     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3315     args->append(getThreadPointer());
3316   }
3317 
3318   for (int i = 0; i < x->number_of_arguments(); i++) {
3319     Value a = x->argument_at(i);
3320     LIRItem* item = new LIRItem(a, this);
3321     item->load_item();
3322     args->append(item->result());
3323     signature->append(as_BasicType(a->type()));
3324   }
3325 
3326   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3327   if (x->type() == voidType) {
3328     set_no_result(x);
3329   } else {
3330     __ move(result, rlock_result(x));
3331   }
3332 }
3333 
3334 #ifdef ASSERT
3335 void LIRGenerator::do_Assert(Assert *x) {
3336   ValueTag tag = x->x()->type()->tag();
3337   If::Condition cond = x->cond();
3338 
3339   LIRItem xitem(x->x(), this);
3340   LIRItem yitem(x->y(), this);
3341   LIRItem* xin = &xitem;
3342   LIRItem* yin = &yitem;
3343 
3344   assert(tag == intTag, "Only integer assertions are valid!");
3345 
3346   xin->load_item();
3347   yin->dont_load_item();
3348 
3349   set_no_result(x);
3350 
3351   LIR_Opr left = xin->result();
3352   LIR_Opr right = yin->result();
3353 
3354   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3355 }
3356 #endif
3357 
3358 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3359 
3360 
3361   Instruction *a = x->x();
3362   Instruction *b = x->y();
3363   if (!a || StressRangeCheckElimination) {
3364     assert(!b || StressRangeCheckElimination, "B must also be null");
3365 
3366     CodeEmitInfo *info = state_for(x, x->state());
3367     CodeStub* stub = new PredicateFailedStub(info);
3368 
3369     __ jump(stub);
3370   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3371     int a_int = a->type()->as_IntConstant()->value();
3372     int b_int = b->type()->as_IntConstant()->value();
3373 
3374     bool ok = false;
3375 
3376     switch(x->cond()) {
3377       case Instruction::eql: ok = (a_int == b_int); break;
3378       case Instruction::neq: ok = (a_int != b_int); break;
3379       case Instruction::lss: ok = (a_int < b_int); break;
3380       case Instruction::leq: ok = (a_int <= b_int); break;
3381       case Instruction::gtr: ok = (a_int > b_int); break;
3382       case Instruction::geq: ok = (a_int >= b_int); break;
3383       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3384       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3385       default: ShouldNotReachHere();
3386     }
3387 
3388     if (ok) {
3389 
3390       CodeEmitInfo *info = state_for(x, x->state());
3391       CodeStub* stub = new PredicateFailedStub(info);
3392 
3393       __ jump(stub);
3394     }
3395   } else {
3396 
3397     ValueTag tag = x->x()->type()->tag();
3398     If::Condition cond = x->cond();
3399     LIRItem xitem(x->x(), this);
3400     LIRItem yitem(x->y(), this);
3401     LIRItem* xin = &xitem;
3402     LIRItem* yin = &yitem;
3403 
3404     assert(tag == intTag, "Only integer deoptimizations are valid!");
3405 
3406     xin->load_item();
3407     yin->dont_load_item();
3408     set_no_result(x);
3409 
3410     LIR_Opr left = xin->result();
3411     LIR_Opr right = yin->result();
3412 
3413     CodeEmitInfo *info = state_for(x, x->state());
3414     CodeStub* stub = new PredicateFailedStub(info);
3415 
3416     __ cmp(lir_cond(cond), left, right);
3417     __ branch(lir_cond(cond), stub);
3418   }
3419 }
3420 
3421 void LIRGenerator::do_blackhole(Intrinsic *x) {
3422   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3423   for (int c = 0; c < x->number_of_arguments(); c++) {
3424     // Load the argument
3425     LIRItem vitem(x->argument_at(c), this);
3426     vitem.load_item();
3427     // ...and leave it unused.
3428   }
3429 }
3430 
3431 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3432   LIRItemList args(1);
3433   LIRItem value(arg1, this);
3434   args.append(&value);
3435   BasicTypeList signature;
3436   signature.append(as_BasicType(arg1->type()));
3437 
3438   return call_runtime(&signature, &args, entry, result_type, info);
3439 }
3440 
3441 
3442 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3443   LIRItemList args(2);
3444   LIRItem value1(arg1, this);
3445   LIRItem value2(arg2, this);
3446   args.append(&value1);
3447   args.append(&value2);
3448   BasicTypeList signature;
3449   signature.append(as_BasicType(arg1->type()));
3450   signature.append(as_BasicType(arg2->type()));
3451 
3452   return call_runtime(&signature, &args, entry, result_type, info);
3453 }
3454 
3455 
3456 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3457                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3458   // get a result register
3459   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3460   LIR_Opr result = LIR_OprFact::illegalOpr;
3461   if (result_type->tag() != voidTag) {
3462     result = new_register(result_type);
3463     phys_reg = result_register_for(result_type);
3464   }
3465 
3466   // move the arguments into the correct location
3467   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3468   assert(cc->length() == args->length(), "argument mismatch");
3469   for (int i = 0; i < args->length(); i++) {
3470     LIR_Opr arg = args->at(i);
3471     LIR_Opr loc = cc->at(i);
3472     if (loc->is_register()) {
3473       __ move(arg, loc);
3474     } else {
3475       LIR_Address* addr = loc->as_address_ptr();
3476 //           if (!can_store_as_constant(arg)) {
3477 //             LIR_Opr tmp = new_register(arg->type());
3478 //             __ move(arg, tmp);
3479 //             arg = tmp;
3480 //           }
3481       __ move(arg, addr);
3482     }
3483   }
3484 
3485   if (info) {
3486     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3487   } else {
3488     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3489   }
3490   if (result->is_valid()) {
3491     __ move(phys_reg, result);
3492   }
3493   return result;
3494 }
3495 
3496 
3497 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3498                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3499   // get a result register
3500   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3501   LIR_Opr result = LIR_OprFact::illegalOpr;
3502   if (result_type->tag() != voidTag) {
3503     result = new_register(result_type);
3504     phys_reg = result_register_for(result_type);
3505   }
3506 
3507   // move the arguments into the correct location
3508   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3509 
3510   assert(cc->length() == args->length(), "argument mismatch");
3511   for (int i = 0; i < args->length(); i++) {
3512     LIRItem* arg = args->at(i);
3513     LIR_Opr loc = cc->at(i);
3514     if (loc->is_register()) {
3515       arg->load_item_force(loc);
3516     } else {
3517       LIR_Address* addr = loc->as_address_ptr();
3518       arg->load_for_store(addr->type());
3519       __ move(arg->result(), addr);
3520     }
3521   }
3522 
3523   if (info) {
3524     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3525   } else {
3526     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3527   }
3528   if (result->is_valid()) {
3529     __ move(phys_reg, result);
3530   }
3531   return result;
3532 }
3533 
3534 void LIRGenerator::do_MemBar(MemBar* x) {
3535   LIR_Code code = x->code();
3536   switch(code) {
3537   case lir_membar_acquire   : __ membar_acquire(); break;
3538   case lir_membar_release   : __ membar_release(); break;
3539   case lir_membar           : __ membar(); break;
3540   case lir_membar_loadload  : __ membar_loadload(); break;
3541   case lir_membar_storestore: __ membar_storestore(); break;
3542   case lir_membar_loadstore : __ membar_loadstore(); break;
3543   case lir_membar_storeload : __ membar_storeload(); break;
3544   default                   : ShouldNotReachHere(); break;
3545   }
3546 }
3547 
3548 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3549   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3550   if (two_operand_lir_form) {
3551     __ move(value, value_fixed);
3552     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3553   } else {
3554     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3555   }
3556   LIR_Opr klass = new_register(T_METADATA);
3557   load_klass(array, klass, null_check_info);
3558   null_check_info = NULL;
3559   LIR_Opr layout = new_register(T_INT);
3560   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3561   int diffbit = Klass::layout_helper_boolean_diffbit();
3562   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3563   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3564   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3565   value = value_fixed;
3566   return value;
3567 }