1 /*
   2  * Copyright (c) 2005, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/c1/barrierSetC1.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/vm_version.hpp"
  43 #include "utilities/bitMap.inline.hpp"
  44 #include "utilities/macros.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 
  47 #ifdef ASSERT
  48 #define __ gen()->lir(__FILE__, __LINE__)->
  49 #else
  50 #define __ gen()->lir()->
  51 #endif
  52 
  53 #ifndef PATCHED_ADDR
  54 #define PATCHED_ADDR  (max_jint)
  55 #endif
  56 
  57 void PhiResolverState::reset() {
  58   _virtual_operands.clear();
  59   _other_operands.clear();
  60   _vreg_table.clear();
  61 }
  62 
  63 
  64 //--------------------------------------------------------------
  65 // PhiResolver
  66 
  67 // Resolves cycles:
  68 //
  69 //  r1 := r2  becomes  temp := r1
  70 //  r2 := r1           r1 := r2
  71 //                     r2 := temp
  72 // and orders moves:
  73 //
  74 //  r2 := r3  becomes  r1 := r2
  75 //  r1 := r2           r2 := r3
  76 
  77 PhiResolver::PhiResolver(LIRGenerator* gen)
  78  : _gen(gen)
  79  , _state(gen->resolver_state())
  80  , _temp(LIR_OprFact::illegalOpr)
  81 {
  82   // reinitialize the shared state arrays
  83   _state.reset();
  84 }
  85 
  86 
  87 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  88   assert(src->is_valid(), "");
  89   assert(dest->is_valid(), "");
  90   __ move(src, dest);
  91 }
  92 
  93 
  94 void PhiResolver::move_temp_to(LIR_Opr dest) {
  95   assert(_temp->is_valid(), "");
  96   emit_move(_temp, dest);
  97   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
  98 }
  99 
 100 
 101 void PhiResolver::move_to_temp(LIR_Opr src) {
 102   assert(_temp->is_illegal(), "");
 103   _temp = _gen->new_register(src->type());
 104   emit_move(src, _temp);
 105 }
 106 
 107 
 108 // Traverse assignment graph in depth first order and generate moves in post order
 109 // ie. two assignments: b := c, a := b start with node c:
 110 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 111 // Generates moves in this order: move b to a and move c to b
 112 // ie. cycle a := b, b := a start with node a
 113 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 114 // Generates moves in this order: move b to temp, move a to b, move temp to a
 115 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 116   if (!dest->visited()) {
 117     dest->set_visited();
 118     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 119       move(dest, dest->destination_at(i));
 120     }
 121   } else if (!dest->start_node()) {
 122     // cylce in graph detected
 123     assert(_loop == NULL, "only one loop valid!");
 124     _loop = dest;
 125     move_to_temp(src->operand());
 126     return;
 127   } // else dest is a start node
 128 
 129   if (!dest->assigned()) {
 130     if (_loop == dest) {
 131       move_temp_to(dest->operand());
 132       dest->set_assigned();
 133     } else if (src != NULL) {
 134       emit_move(src->operand(), dest->operand());
 135       dest->set_assigned();
 136     }
 137   }
 138 }
 139 
 140 
 141 PhiResolver::~PhiResolver() {
 142   int i;
 143   // resolve any cycles in moves from and to virtual registers
 144   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 145     ResolveNode* node = virtual_operands().at(i);
 146     if (!node->visited()) {
 147       _loop = NULL;
 148       move(NULL, node);
 149       node->set_start_node();
 150       assert(_temp->is_illegal(), "move_temp_to() call missing");
 151     }
 152   }
 153 
 154   // generate move for move from non virtual register to abitrary destination
 155   for (i = other_operands().length() - 1; i >= 0; i --) {
 156     ResolveNode* node = other_operands().at(i);
 157     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 158       emit_move(node->operand(), node->destination_at(j)->operand());
 159     }
 160   }
 161 }
 162 
 163 
 164 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 165   ResolveNode* node;
 166   if (opr->is_virtual()) {
 167     int vreg_num = opr->vreg_number();
 168     node = vreg_table().at_grow(vreg_num, NULL);
 169     assert(node == NULL || node->operand() == opr, "");
 170     if (node == NULL) {
 171       node = new ResolveNode(opr);
 172       vreg_table().at_put(vreg_num, node);
 173     }
 174     // Make sure that all virtual operands show up in the list when
 175     // they are used as the source of a move.
 176     if (source && !virtual_operands().contains(node)) {
 177       virtual_operands().append(node);
 178     }
 179   } else {
 180     assert(source, "");
 181     node = new ResolveNode(opr);
 182     other_operands().append(node);
 183   }
 184   return node;
 185 }
 186 
 187 
 188 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 189   assert(dest->is_virtual(), "");
 190   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 191   assert(src->is_valid(), "");
 192   assert(dest->is_valid(), "");
 193   ResolveNode* source = source_node(src);
 194   source->append(destination_node(dest));
 195 }
 196 
 197 
 198 //--------------------------------------------------------------
 199 // LIRItem
 200 
 201 void LIRItem::set_result(LIR_Opr opr) {
 202   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 203   value()->set_operand(opr);
 204 
 205   if (opr->is_virtual()) {
 206     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 207   }
 208 
 209   _result = opr;
 210 }
 211 
 212 void LIRItem::load_item() {
 213   if (result()->is_illegal()) {
 214     // update the items result
 215     _result = value()->operand();
 216   }
 217   if (!result()->is_register()) {
 218     LIR_Opr reg = _gen->new_register(value()->type());
 219     __ move(result(), reg);
 220     if (result()->is_constant()) {
 221       _result = reg;
 222     } else {
 223       set_result(reg);
 224     }
 225   }
 226 }
 227 
 228 
 229 void LIRItem::load_for_store(BasicType type) {
 230   if (_gen->can_store_as_constant(value(), type)) {
 231     _result = value()->operand();
 232     if (!_result->is_constant()) {
 233       _result = LIR_OprFact::value_type(value()->type());
 234     }
 235   } else if (type == T_BYTE || type == T_BOOLEAN) {
 236     load_byte_item();
 237   } else {
 238     load_item();
 239   }
 240 }
 241 
 242 void LIRItem::load_item_force(LIR_Opr reg) {
 243   LIR_Opr r = result();
 244   if (r != reg) {
 245 #if !defined(ARM) && !defined(E500V2)
 246     if (r->type() != reg->type()) {
 247       // moves between different types need an intervening spill slot
 248       r = _gen->force_to_spill(r, reg->type());
 249     }
 250 #endif
 251     __ move(r, reg);
 252     _result = reg;
 253   }
 254 }
 255 
 256 ciObject* LIRItem::get_jobject_constant() const {
 257   ObjectType* oc = type()->as_ObjectType();
 258   if (oc) {
 259     return oc->constant_value();
 260   }
 261   return NULL;
 262 }
 263 
 264 
 265 jint LIRItem::get_jint_constant() const {
 266   assert(is_constant() && value() != NULL, "");
 267   assert(type()->as_IntConstant() != NULL, "type check");
 268   return type()->as_IntConstant()->value();
 269 }
 270 
 271 
 272 jint LIRItem::get_address_constant() const {
 273   assert(is_constant() && value() != NULL, "");
 274   assert(type()->as_AddressConstant() != NULL, "type check");
 275   return type()->as_AddressConstant()->value();
 276 }
 277 
 278 
 279 jfloat LIRItem::get_jfloat_constant() const {
 280   assert(is_constant() && value() != NULL, "");
 281   assert(type()->as_FloatConstant() != NULL, "type check");
 282   return type()->as_FloatConstant()->value();
 283 }
 284 
 285 
 286 jdouble LIRItem::get_jdouble_constant() const {
 287   assert(is_constant() && value() != NULL, "");
 288   assert(type()->as_DoubleConstant() != NULL, "type check");
 289   return type()->as_DoubleConstant()->value();
 290 }
 291 
 292 
 293 jlong LIRItem::get_jlong_constant() const {
 294   assert(is_constant() && value() != NULL, "");
 295   assert(type()->as_LongConstant() != NULL, "type check");
 296   return type()->as_LongConstant()->value();
 297 }
 298 
 299 
 300 
 301 //--------------------------------------------------------------
 302 
 303 
 304 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 305 #ifndef PRODUCT
 306   if (PrintIRWithLIR) {
 307     block->print();
 308   }
 309 #endif
 310 
 311   // set up the list of LIR instructions
 312   assert(block->lir() == NULL, "LIR list already computed for this block");
 313   _lir = new LIR_List(compilation(), block);
 314   block->set_lir(_lir);
 315 
 316   __ branch_destination(block->label());
 317 
 318   if (LIRTraceExecution &&
 319       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 320       !block->is_set(BlockBegin::exception_entry_flag)) {
 321     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 322     trace_block_entry(block);
 323   }
 324 }
 325 
 326 
 327 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 328 #ifndef PRODUCT
 329   if (PrintIRWithLIR) {
 330     tty->cr();
 331   }
 332 #endif
 333 
 334   // LIR_Opr for unpinned constants shouldn't be referenced by other
 335   // blocks so clear them out after processing the block.
 336   for (int i = 0; i < _unpinned_constants.length(); i++) {
 337     _unpinned_constants.at(i)->clear_operand();
 338   }
 339   _unpinned_constants.trunc_to(0);
 340 
 341   // clear our any registers for other local constants
 342   _constants.trunc_to(0);
 343   _reg_for_constants.trunc_to(0);
 344 }
 345 
 346 
 347 void LIRGenerator::block_do(BlockBegin* block) {
 348   CHECK_BAILOUT();
 349 
 350   block_do_prolog(block);
 351   set_block(block);
 352 
 353   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 354     if (instr->is_pinned()) do_root(instr);
 355   }
 356 
 357   set_block(NULL);
 358   block_do_epilog(block);
 359 }
 360 
 361 
 362 //-------------------------LIRGenerator-----------------------------
 363 
 364 // This is where the tree-walk starts; instr must be root;
 365 void LIRGenerator::do_root(Value instr) {
 366   CHECK_BAILOUT();
 367 
 368   InstructionMark im(compilation(), instr);
 369 
 370   assert(instr->is_pinned(), "use only with roots");
 371   assert(instr->subst() == instr, "shouldn't have missed substitution");
 372 
 373   instr->visit(this);
 374 
 375   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 376          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 377 }
 378 
 379 
 380 // This is called for each node in tree; the walk stops if a root is reached
 381 void LIRGenerator::walk(Value instr) {
 382   InstructionMark im(compilation(), instr);
 383   //stop walk when encounter a root
 384   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 385     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 386   } else {
 387     assert(instr->subst() == instr, "shouldn't have missed substitution");
 388     instr->visit(this);
 389     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 390   }
 391 }
 392 
 393 
 394 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 395   assert(state != NULL, "state must be defined");
 396 
 397 #ifndef PRODUCT
 398   state->verify();
 399 #endif
 400 
 401   ValueStack* s = state;
 402   for_each_state(s) {
 403     if (s->kind() == ValueStack::EmptyExceptionState) {
 404       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 405       continue;
 406     }
 407 
 408     int index;
 409     Value value;
 410     for_each_stack_value(s, index, value) {
 411       assert(value->subst() == value, "missed substitution");
 412       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 413         walk(value);
 414         assert(value->operand()->is_valid(), "must be evaluated now");
 415       }
 416     }
 417 
 418     int bci = s->bci();
 419     IRScope* scope = s->scope();
 420     ciMethod* method = scope->method();
 421 
 422     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 423     if (bci == SynchronizationEntryBCI) {
 424       if (x->as_ExceptionObject() || x->as_Throw()) {
 425         // all locals are dead on exit from the synthetic unlocker
 426         liveness.clear();
 427       } else {
 428         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 429       }
 430     }
 431     if (!liveness.is_valid()) {
 432       // Degenerate or breakpointed method.
 433       bailout("Degenerate or breakpointed method");
 434     } else {
 435       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 436       for_each_local_value(s, index, value) {
 437         assert(value->subst() == value, "missed substitution");
 438         if (liveness.at(index) && !value->type()->is_illegal()) {
 439           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 440             walk(value);
 441             assert(value->operand()->is_valid(), "must be evaluated now");
 442           }
 443         } else {
 444           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 445           s->invalidate_local(index);
 446         }
 447       }
 448     }
 449   }
 450 
 451   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 452 }
 453 
 454 
 455 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 456   return state_for(x, x->exception_state());
 457 }
 458 
 459 
 460 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 461   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 462    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 463    * the class. */
 464   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 465     assert(info != NULL, "info must be set if class is not loaded");
 466     __ klass2reg_patch(NULL, r, info);
 467   } else {
 468     // no patching needed
 469     __ metadata2reg(obj->constant_encoding(), r);
 470   }
 471 }
 472 
 473 
 474 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 475                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 476   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 477   if (index->is_constant()) {
 478     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 479                 index->as_jint(), null_check_info);
 480     __ branch(lir_cond_belowEqual, stub); // forward branch
 481   } else {
 482     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 483                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 484     __ branch(lir_cond_aboveEqual, stub); // forward branch
 485   }
 486 }
 487 
 488 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 489   LIR_Opr result_op = result;
 490   LIR_Opr left_op   = left;
 491   LIR_Opr right_op  = right;
 492 
 493   if (TwoOperandLIRForm && left_op != result_op) {
 494     assert(right_op != result_op, "malformed");
 495     __ move(left_op, result_op);
 496     left_op = result_op;
 497   }
 498 
 499   switch(code) {
 500     case Bytecodes::_dadd:
 501     case Bytecodes::_fadd:
 502     case Bytecodes::_ladd:
 503     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 504     case Bytecodes::_fmul:
 505     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 506 
 507     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 508 
 509     case Bytecodes::_imul:
 510       {
 511         bool did_strength_reduce = false;
 512 
 513         if (right->is_constant()) {
 514           jint c = right->as_jint();
 515           if (c > 0 && is_power_of_2(c)) {
 516             // do not need tmp here
 517             __ shift_left(left_op, exact_log2(c), result_op);
 518             did_strength_reduce = true;
 519           } else {
 520             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 521           }
 522         }
 523         // we couldn't strength reduce so just emit the multiply
 524         if (!did_strength_reduce) {
 525           __ mul(left_op, right_op, result_op);
 526         }
 527       }
 528       break;
 529 
 530     case Bytecodes::_dsub:
 531     case Bytecodes::_fsub:
 532     case Bytecodes::_lsub:
 533     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 534 
 535     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 536     // ldiv and lrem are implemented with a direct runtime call
 537 
 538     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 539 
 540     case Bytecodes::_drem:
 541     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 542 
 543     default: ShouldNotReachHere();
 544   }
 545 }
 546 
 547 
 548 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 549   arithmetic_op(code, result, left, right, tmp);
 550 }
 551 
 552 
 553 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 554   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 555 }
 556 
 557 
 558 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 559   arithmetic_op(code, result, left, right, tmp);
 560 }
 561 
 562 
 563 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 564 
 565   if (TwoOperandLIRForm && value != result_op
 566       // Only 32bit right shifts require two operand form on S390.
 567       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 568     assert(count != result_op, "malformed");
 569     __ move(value, result_op);
 570     value = result_op;
 571   }
 572 
 573   assert(count->is_constant() || count->is_register(), "must be");
 574   switch(code) {
 575   case Bytecodes::_ishl:
 576   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 577   case Bytecodes::_ishr:
 578   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 579   case Bytecodes::_iushr:
 580   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 581   default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 587   if (TwoOperandLIRForm && left_op != result_op) {
 588     assert(right_op != result_op, "malformed");
 589     __ move(left_op, result_op);
 590     left_op = result_op;
 591   }
 592 
 593   switch(code) {
 594     case Bytecodes::_iand:
 595     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 596 
 597     case Bytecodes::_ior:
 598     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 599 
 600     case Bytecodes::_ixor:
 601     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 602 
 603     default: ShouldNotReachHere();
 604   }
 605 }
 606 
 607 
 608 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 609   if (!GenerateSynchronizationCode) return;
 610   // for slow path, use debug info for state after successful locking
 611   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 612   __ load_stack_address_monitor(monitor_no, lock);
 613   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 614   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 615 }
 616 
 617 
 618 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 619   if (!GenerateSynchronizationCode) return;
 620   // setup registers
 621   LIR_Opr hdr = lock;
 622   lock = new_hdr;
 623   CodeStub* slow_path = new MonitorExitStub(lock, !UseHeavyMonitors, monitor_no);
 624   __ load_stack_address_monitor(monitor_no, lock);
 625   __ unlock_object(hdr, object, lock, scratch, slow_path);
 626 }
 627 
 628 #ifndef PRODUCT
 629 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 630   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 631     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 632   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 633     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 634   }
 635 }
 636 #endif
 637 
 638 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 639   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 640   // If klass is not loaded we do not know if the klass has finalizers:
 641   if (UseFastNewInstance && klass->is_loaded()
 642       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 643 
 644     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 645 
 646     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 647 
 648     assert(klass->is_loaded(), "must be loaded");
 649     // allocate space for instance
 650     assert(klass->size_helper() > 0, "illegal instance size");
 651     const int instance_size = align_object_size(klass->size_helper());
 652     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 653                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 654   } else {
 655     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 656     __ branch(lir_cond_always, slow_path);
 657     __ branch_destination(slow_path->continuation());
 658   }
 659 }
 660 
 661 
 662 static bool is_constant_zero(Instruction* inst) {
 663   IntConstant* c = inst->type()->as_IntConstant();
 664   if (c) {
 665     return (c->value() == 0);
 666   }
 667   return false;
 668 }
 669 
 670 
 671 static bool positive_constant(Instruction* inst) {
 672   IntConstant* c = inst->type()->as_IntConstant();
 673   if (c) {
 674     return (c->value() >= 0);
 675   }
 676   return false;
 677 }
 678 
 679 
 680 static ciArrayKlass* as_array_klass(ciType* type) {
 681   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 682     return (ciArrayKlass*)type;
 683   } else {
 684     return NULL;
 685   }
 686 }
 687 
 688 static ciType* phi_declared_type(Phi* phi) {
 689   ciType* t = phi->operand_at(0)->declared_type();
 690   if (t == NULL) {
 691     return NULL;
 692   }
 693   for(int i = 1; i < phi->operand_count(); i++) {
 694     if (t != phi->operand_at(i)->declared_type()) {
 695       return NULL;
 696     }
 697   }
 698   return t;
 699 }
 700 
 701 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 702   Instruction* src     = x->argument_at(0);
 703   Instruction* src_pos = x->argument_at(1);
 704   Instruction* dst     = x->argument_at(2);
 705   Instruction* dst_pos = x->argument_at(3);
 706   Instruction* length  = x->argument_at(4);
 707 
 708   // first try to identify the likely type of the arrays involved
 709   ciArrayKlass* expected_type = NULL;
 710   bool is_exact = false, src_objarray = false, dst_objarray = false;
 711   {
 712     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 713     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 714     Phi* phi;
 715     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 716       src_declared_type = as_array_klass(phi_declared_type(phi));
 717     }
 718     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 719     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 720     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 721       dst_declared_type = as_array_klass(phi_declared_type(phi));
 722     }
 723 
 724     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 725       // the types exactly match so the type is fully known
 726       is_exact = true;
 727       expected_type = src_exact_type;
 728     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 729       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 730       ciArrayKlass* src_type = NULL;
 731       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 732         src_type = (ciArrayKlass*) src_exact_type;
 733       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 734         src_type = (ciArrayKlass*) src_declared_type;
 735       }
 736       if (src_type != NULL) {
 737         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 738           is_exact = true;
 739           expected_type = dst_type;
 740         }
 741       }
 742     }
 743     // at least pass along a good guess
 744     if (expected_type == NULL) expected_type = dst_exact_type;
 745     if (expected_type == NULL) expected_type = src_declared_type;
 746     if (expected_type == NULL) expected_type = dst_declared_type;
 747 
 748     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 749     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 750   }
 751 
 752   // if a probable array type has been identified, figure out if any
 753   // of the required checks for a fast case can be elided.
 754   int flags = LIR_OpArrayCopy::all_flags;
 755 
 756   if (!src_objarray)
 757     flags &= ~LIR_OpArrayCopy::src_objarray;
 758   if (!dst_objarray)
 759     flags &= ~LIR_OpArrayCopy::dst_objarray;
 760 
 761   if (!x->arg_needs_null_check(0))
 762     flags &= ~LIR_OpArrayCopy::src_null_check;
 763   if (!x->arg_needs_null_check(2))
 764     flags &= ~LIR_OpArrayCopy::dst_null_check;
 765 
 766 
 767   if (expected_type != NULL) {
 768     Value length_limit = NULL;
 769 
 770     IfOp* ifop = length->as_IfOp();
 771     if (ifop != NULL) {
 772       // look for expressions like min(v, a.length) which ends up as
 773       //   x > y ? y : x  or  x >= y ? y : x
 774       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 775           ifop->x() == ifop->fval() &&
 776           ifop->y() == ifop->tval()) {
 777         length_limit = ifop->y();
 778       }
 779     }
 780 
 781     // try to skip null checks and range checks
 782     NewArray* src_array = src->as_NewArray();
 783     if (src_array != NULL) {
 784       flags &= ~LIR_OpArrayCopy::src_null_check;
 785       if (length_limit != NULL &&
 786           src_array->length() == length_limit &&
 787           is_constant_zero(src_pos)) {
 788         flags &= ~LIR_OpArrayCopy::src_range_check;
 789       }
 790     }
 791 
 792     NewArray* dst_array = dst->as_NewArray();
 793     if (dst_array != NULL) {
 794       flags &= ~LIR_OpArrayCopy::dst_null_check;
 795       if (length_limit != NULL &&
 796           dst_array->length() == length_limit &&
 797           is_constant_zero(dst_pos)) {
 798         flags &= ~LIR_OpArrayCopy::dst_range_check;
 799       }
 800     }
 801 
 802     // check from incoming constant values
 803     if (positive_constant(src_pos))
 804       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 805     if (positive_constant(dst_pos))
 806       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 807     if (positive_constant(length))
 808       flags &= ~LIR_OpArrayCopy::length_positive_check;
 809 
 810     // see if the range check can be elided, which might also imply
 811     // that src or dst is non-null.
 812     ArrayLength* al = length->as_ArrayLength();
 813     if (al != NULL) {
 814       if (al->array() == src) {
 815         // it's the length of the source array
 816         flags &= ~LIR_OpArrayCopy::length_positive_check;
 817         flags &= ~LIR_OpArrayCopy::src_null_check;
 818         if (is_constant_zero(src_pos))
 819           flags &= ~LIR_OpArrayCopy::src_range_check;
 820       }
 821       if (al->array() == dst) {
 822         // it's the length of the destination array
 823         flags &= ~LIR_OpArrayCopy::length_positive_check;
 824         flags &= ~LIR_OpArrayCopy::dst_null_check;
 825         if (is_constant_zero(dst_pos))
 826           flags &= ~LIR_OpArrayCopy::dst_range_check;
 827       }
 828     }
 829     if (is_exact) {
 830       flags &= ~LIR_OpArrayCopy::type_check;
 831     }
 832   }
 833 
 834   IntConstant* src_int = src_pos->type()->as_IntConstant();
 835   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 836   if (src_int && dst_int) {
 837     int s_offs = src_int->value();
 838     int d_offs = dst_int->value();
 839     if (src_int->value() >= dst_int->value()) {
 840       flags &= ~LIR_OpArrayCopy::overlapping;
 841     }
 842     if (expected_type != NULL) {
 843       BasicType t = expected_type->element_type()->basic_type();
 844       int element_size = type2aelembytes(t);
 845       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 846           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 847         flags &= ~LIR_OpArrayCopy::unaligned;
 848       }
 849     }
 850   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 851     // src and dest positions are the same, or dst is zero so assume
 852     // nonoverlapping copy.
 853     flags &= ~LIR_OpArrayCopy::overlapping;
 854   }
 855 
 856   if (src == dst) {
 857     // moving within a single array so no type checks are needed
 858     if (flags & LIR_OpArrayCopy::type_check) {
 859       flags &= ~LIR_OpArrayCopy::type_check;
 860     }
 861   }
 862   *flagsp = flags;
 863   *expected_typep = (ciArrayKlass*)expected_type;
 864 }
 865 
 866 
 867 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 868   assert(opr->is_register(), "why spill if item is not register?");
 869 
 870   if (strict_fp_requires_explicit_rounding) {
 871 #ifdef IA32
 872     if (UseSSE < 1 && opr->is_single_fpu()) {
 873       LIR_Opr result = new_register(T_FLOAT);
 874       set_vreg_flag(result, must_start_in_memory);
 875       assert(opr->is_register(), "only a register can be spilled");
 876       assert(opr->value_type()->is_float(), "rounding only for floats available");
 877       __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 878       return result;
 879     }
 880 #else
 881     Unimplemented();
 882 #endif // IA32
 883   }
 884   return opr;
 885 }
 886 
 887 
 888 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 889   assert(type2size[t] == type2size[value->type()],
 890          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 891   if (!value->is_register()) {
 892     // force into a register
 893     LIR_Opr r = new_register(value->type());
 894     __ move(value, r);
 895     value = r;
 896   }
 897 
 898   // create a spill location
 899   LIR_Opr tmp = new_register(t);
 900   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 901 
 902   // move from register to spill
 903   __ move(value, tmp);
 904   return tmp;
 905 }
 906 
 907 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 908   if (if_instr->should_profile()) {
 909     ciMethod* method = if_instr->profiled_method();
 910     assert(method != NULL, "method should be set if branch is profiled");
 911     ciMethodData* md = method->method_data_or_null();
 912     assert(md != NULL, "Sanity");
 913     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 914     assert(data != NULL, "must have profiling data");
 915     assert(data->is_BranchData(), "need BranchData for two-way branches");
 916     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 917     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 918     if (if_instr->is_swapped()) {
 919       int t = taken_count_offset;
 920       taken_count_offset = not_taken_count_offset;
 921       not_taken_count_offset = t;
 922     }
 923 
 924     LIR_Opr md_reg = new_register(T_METADATA);
 925     __ metadata2reg(md->constant_encoding(), md_reg);
 926 
 927     LIR_Opr data_offset_reg = new_pointer_register();
 928     __ cmove(lir_cond(cond),
 929              LIR_OprFact::intptrConst(taken_count_offset),
 930              LIR_OprFact::intptrConst(not_taken_count_offset),
 931              data_offset_reg, as_BasicType(if_instr->x()->type()));
 932 
 933     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 934     LIR_Opr data_reg = new_pointer_register();
 935     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 936     __ move(data_addr, data_reg);
 937     // Use leal instead of add to avoid destroying condition codes on x86
 938     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 939     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 940     __ move(data_reg, data_addr);
 941   }
 942 }
 943 
 944 // Phi technique:
 945 // This is about passing live values from one basic block to the other.
 946 // In code generated with Java it is rather rare that more than one
 947 // value is on the stack from one basic block to the other.
 948 // We optimize our technique for efficient passing of one value
 949 // (of type long, int, double..) but it can be extended.
 950 // When entering or leaving a basic block, all registers and all spill
 951 // slots are release and empty. We use the released registers
 952 // and spill slots to pass the live values from one block
 953 // to the other. The topmost value, i.e., the value on TOS of expression
 954 // stack is passed in registers. All other values are stored in spilling
 955 // area. Every Phi has an index which designates its spill slot
 956 // At exit of a basic block, we fill the register(s) and spill slots.
 957 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 958 // and locks necessary registers and spilling slots.
 959 
 960 
 961 // move current value to referenced phi function
 962 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 963   Phi* phi = sux_val->as_Phi();
 964   // cur_val can be null without phi being null in conjunction with inlining
 965   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 966     if (phi->is_local()) {
 967       for (int i = 0; i < phi->operand_count(); i++) {
 968         Value op = phi->operand_at(i);
 969         if (op != NULL && op->type()->is_illegal()) {
 970           bailout("illegal phi operand");
 971         }
 972       }
 973     }
 974     Phi* cur_phi = cur_val->as_Phi();
 975     if (cur_phi != NULL && cur_phi->is_illegal()) {
 976       // Phi and local would need to get invalidated
 977       // (which is unexpected for Linear Scan).
 978       // But this case is very rare so we simply bail out.
 979       bailout("propagation of illegal phi");
 980       return;
 981     }
 982     LIR_Opr operand = cur_val->operand();
 983     if (operand->is_illegal()) {
 984       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 985              "these can be produced lazily");
 986       operand = operand_for_instruction(cur_val);
 987     }
 988     resolver->move(operand, operand_for_instruction(phi));
 989   }
 990 }
 991 
 992 
 993 // Moves all stack values into their PHI position
 994 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 995   BlockBegin* bb = block();
 996   if (bb->number_of_sux() == 1) {
 997     BlockBegin* sux = bb->sux_at(0);
 998     assert(sux->number_of_preds() > 0, "invalid CFG");
 999 
1000     // a block with only one predecessor never has phi functions
1001     if (sux->number_of_preds() > 1) {
1002       PhiResolver resolver(this);
1003 
1004       ValueStack* sux_state = sux->state();
1005       Value sux_value;
1006       int index;
1007 
1008       assert(cur_state->scope() == sux_state->scope(), "not matching");
1009       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1010       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1011 
1012       for_each_stack_value(sux_state, index, sux_value) {
1013         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1014       }
1015 
1016       for_each_local_value(sux_state, index, sux_value) {
1017         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1018       }
1019 
1020       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1021     }
1022   }
1023 }
1024 
1025 
1026 LIR_Opr LIRGenerator::new_register(BasicType type) {
1027   int vreg_num = _virtual_register_number;
1028   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1029   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1030   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1031     bailout("out of virtual registers in LIR generator");
1032     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1033       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1034       _virtual_register_number = LIR_Opr::vreg_base;
1035       vreg_num = LIR_Opr::vreg_base;
1036     }
1037   }
1038   _virtual_register_number += 1;
1039   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1040   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1041   return vreg;
1042 }
1043 
1044 
1045 // Try to lock using register in hint
1046 LIR_Opr LIRGenerator::rlock(Value instr) {
1047   return new_register(instr->type());
1048 }
1049 
1050 
1051 // does an rlock and sets result
1052 LIR_Opr LIRGenerator::rlock_result(Value x) {
1053   LIR_Opr reg = rlock(x);
1054   set_result(x, reg);
1055   return reg;
1056 }
1057 
1058 
1059 // does an rlock and sets result
1060 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1061   LIR_Opr reg;
1062   switch (type) {
1063   case T_BYTE:
1064   case T_BOOLEAN:
1065     reg = rlock_byte(type);
1066     break;
1067   default:
1068     reg = rlock(x);
1069     break;
1070   }
1071 
1072   set_result(x, reg);
1073   return reg;
1074 }
1075 
1076 
1077 //---------------------------------------------------------------------
1078 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1079   ObjectType* oc = value->type()->as_ObjectType();
1080   if (oc) {
1081     return oc->constant_value();
1082   }
1083   return NULL;
1084 }
1085 
1086 
1087 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1088   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1089   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1090 
1091   // no moves are created for phi functions at the begin of exception
1092   // handlers, so assign operands manually here
1093   for_each_phi_fun(block(), phi,
1094                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1095 
1096   LIR_Opr thread_reg = getThreadPointer();
1097   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1098                exceptionOopOpr());
1099   __ move_wide(LIR_OprFact::oopConst(NULL),
1100                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1101   __ move_wide(LIR_OprFact::oopConst(NULL),
1102                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1103 
1104   LIR_Opr result = new_register(T_OBJECT);
1105   __ move(exceptionOopOpr(), result);
1106   set_result(x, result);
1107 }
1108 
1109 
1110 //----------------------------------------------------------------------
1111 //----------------------------------------------------------------------
1112 //----------------------------------------------------------------------
1113 //----------------------------------------------------------------------
1114 //                        visitor functions
1115 //----------------------------------------------------------------------
1116 //----------------------------------------------------------------------
1117 //----------------------------------------------------------------------
1118 //----------------------------------------------------------------------
1119 
1120 void LIRGenerator::do_Phi(Phi* x) {
1121   // phi functions are never visited directly
1122   ShouldNotReachHere();
1123 }
1124 
1125 
1126 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1127 void LIRGenerator::do_Constant(Constant* x) {
1128   if (x->state_before() != NULL) {
1129     // Any constant with a ValueStack requires patching so emit the patch here
1130     LIR_Opr reg = rlock_result(x);
1131     CodeEmitInfo* info = state_for(x, x->state_before());
1132     __ oop2reg_patch(NULL, reg, info);
1133   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1134     if (!x->is_pinned()) {
1135       // unpinned constants are handled specially so that they can be
1136       // put into registers when they are used multiple times within a
1137       // block.  After the block completes their operand will be
1138       // cleared so that other blocks can't refer to that register.
1139       set_result(x, load_constant(x));
1140     } else {
1141       LIR_Opr res = x->operand();
1142       if (!res->is_valid()) {
1143         res = LIR_OprFact::value_type(x->type());
1144       }
1145       if (res->is_constant()) {
1146         LIR_Opr reg = rlock_result(x);
1147         __ move(res, reg);
1148       } else {
1149         set_result(x, res);
1150       }
1151     }
1152   } else {
1153     set_result(x, LIR_OprFact::value_type(x->type()));
1154   }
1155 }
1156 
1157 
1158 void LIRGenerator::do_Local(Local* x) {
1159   // operand_for_instruction has the side effect of setting the result
1160   // so there's no need to do it here.
1161   operand_for_instruction(x);
1162 }
1163 
1164 
1165 void LIRGenerator::do_Return(Return* x) {
1166   if (compilation()->env()->dtrace_method_probes()) {
1167     BasicTypeList signature;
1168     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1169     signature.append(T_METADATA); // Method*
1170     LIR_OprList* args = new LIR_OprList();
1171     args->append(getThreadPointer());
1172     LIR_Opr meth = new_register(T_METADATA);
1173     __ metadata2reg(method()->constant_encoding(), meth);
1174     args->append(meth);
1175     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1176   }
1177 
1178   if (x->type()->is_void()) {
1179     __ return_op(LIR_OprFact::illegalOpr);
1180   } else {
1181     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1182     LIRItem result(x->result(), this);
1183 
1184     result.load_item_force(reg);
1185     __ return_op(result.result());
1186   }
1187   set_no_result(x);
1188 }
1189 
1190 // Example: ref.get()
1191 // Combination of LoadField and g1 pre-write barrier
1192 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1193 
1194   const int referent_offset = java_lang_ref_Reference::referent_offset();
1195 
1196   assert(x->number_of_arguments() == 1, "wrong type");
1197 
1198   LIRItem reference(x->argument_at(0), this);
1199   reference.load_item();
1200 
1201   // need to perform the null check on the reference object
1202   CodeEmitInfo* info = NULL;
1203   if (x->needs_null_check()) {
1204     info = state_for(x);
1205   }
1206 
1207   LIR_Opr result = rlock_result(x, T_OBJECT);
1208   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1209                  reference, LIR_OprFact::intConst(referent_offset), result);
1210 }
1211 
1212 // Example: clazz.isInstance(object)
1213 void LIRGenerator::do_isInstance(Intrinsic* x) {
1214   assert(x->number_of_arguments() == 2, "wrong type");
1215 
1216   // TODO could try to substitute this node with an equivalent InstanceOf
1217   // if clazz is known to be a constant Class. This will pick up newly found
1218   // constants after HIR construction. I'll leave this to a future change.
1219 
1220   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1221   // could follow the aastore example in a future change.
1222 
1223   LIRItem clazz(x->argument_at(0), this);
1224   LIRItem object(x->argument_at(1), this);
1225   clazz.load_item();
1226   object.load_item();
1227   LIR_Opr result = rlock_result(x);
1228 
1229   // need to perform null check on clazz
1230   if (x->needs_null_check()) {
1231     CodeEmitInfo* info = state_for(x);
1232     __ null_check(clazz.result(), info);
1233   }
1234 
1235   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1236                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1237                                      x->type(),
1238                                      NULL); // NULL CodeEmitInfo results in a leaf call
1239   __ move(call_result, result);
1240 }
1241 
1242 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1243   __ load_klass(obj, klass, null_check_info);
1244 }
1245 
1246 // Example: object.getClass ()
1247 void LIRGenerator::do_getClass(Intrinsic* x) {
1248   assert(x->number_of_arguments() == 1, "wrong type");
1249 
1250   LIRItem rcvr(x->argument_at(0), this);
1251   rcvr.load_item();
1252   LIR_Opr temp = new_register(T_ADDRESS);
1253   LIR_Opr result = rlock_result(x);
1254 
1255   // need to perform the null check on the rcvr
1256   CodeEmitInfo* info = NULL;
1257   if (x->needs_null_check()) {
1258     info = state_for(x);
1259   }
1260 
1261   LIR_Opr klass = new_register(T_METADATA);
1262   load_klass(rcvr.result(), klass, info);
1263   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1264   // mirror = ((OopHandle)mirror)->resolve();
1265   access_load(IN_NATIVE, T_OBJECT,
1266               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1267 }
1268 
1269 // java.lang.Class::isPrimitive()
1270 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1271   assert(x->number_of_arguments() == 1, "wrong type");
1272 
1273   LIRItem rcvr(x->argument_at(0), this);
1274   rcvr.load_item();
1275   LIR_Opr temp = new_register(T_METADATA);
1276   LIR_Opr result = rlock_result(x);
1277 
1278   CodeEmitInfo* info = NULL;
1279   if (x->needs_null_check()) {
1280     info = state_for(x);
1281   }
1282 
1283   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1284   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1285   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1286 }
1287 
1288 // Example: Foo.class.getModifiers()
1289 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1290   assert(x->number_of_arguments() == 1, "wrong type");
1291 
1292   LIRItem receiver(x->argument_at(0), this);
1293   receiver.load_item();
1294   LIR_Opr result = rlock_result(x);
1295 
1296   CodeEmitInfo* info = NULL;
1297   if (x->needs_null_check()) {
1298     info = state_for(x);
1299   }
1300 
1301   // While reading off the universal constant mirror is less efficient than doing
1302   // another branch and returning the constant answer, this branchless code runs into
1303   // much less risk of confusion for C1 register allocator. The choice of the universe
1304   // object here is correct as long as it returns the same modifiers we would expect
1305   // from the primitive class itself. See spec for Class.getModifiers that provides
1306   // the typed array klasses with similar modifiers as their component types.
1307 
1308   Klass* univ_klass_obj = Universe::byteArrayKlassObj();
1309   assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity");
1310   LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj);
1311 
1312   LIR_Opr recv_klass = new_register(T_METADATA);
1313   __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
1314 
1315   // Check if this is a Java mirror of primitive type, and select the appropriate klass.
1316   LIR_Opr klass = new_register(T_METADATA);
1317   __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
1318   __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
1319 
1320   // Get the answer.
1321   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1322 }
1323 
1324 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1325   assert(x->number_of_arguments() == 3, "wrong type");
1326   LIR_Opr result_reg = rlock_result(x);
1327 
1328   LIRItem value(x->argument_at(2), this);
1329   value.load_item();
1330 
1331   LIR_Opr klass = new_register(T_METADATA);
1332   load_klass(value.result(), klass, NULL);
1333   LIR_Opr layout = new_register(T_INT);
1334   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1335 
1336   LabelObj* L_done = new LabelObj();
1337   LabelObj* L_array = new LabelObj();
1338 
1339   __ cmp(lir_cond_lessEqual, layout, 0);
1340   __ branch(lir_cond_lessEqual, L_array->label());
1341 
1342   // Instance case: the layout helper gives us instance size almost directly,
1343   // but we need to mask out the _lh_instance_slow_path_bit.
1344 
1345   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1346 
1347   LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1348   __ logical_and(layout, mask, layout);
1349   __ convert(Bytecodes::_i2l, layout, result_reg);
1350 
1351   __ branch(lir_cond_always, L_done->label());
1352 
1353   // Array case: size is round(header + element_size*arraylength).
1354   // Since arraylength is different for every array instance, we have to
1355   // compute the whole thing at runtime.
1356 
1357   __ branch_destination(L_array->label());
1358 
1359   int round_mask = MinObjAlignmentInBytes - 1;
1360 
1361   // Figure out header sizes first.
1362   LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1363   LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1364 
1365   LIR_Opr header_size = new_register(T_INT);
1366   __ move(layout, header_size);
1367   LIR_Opr tmp = new_register(T_INT);
1368   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1369   __ logical_and(header_size, hsm, header_size);
1370   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1371 
1372   // Figure out the array length in bytes
1373   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1374   LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1375   __ logical_and(layout, l2esm, layout);
1376 
1377   LIR_Opr length_int = new_register(T_INT);
1378   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1379 
1380 #ifdef _LP64
1381   LIR_Opr length = new_register(T_LONG);
1382   __ convert(Bytecodes::_i2l, length_int, length);
1383 #endif
1384 
1385   // Shift-left awkwardness. Normally it is just:
1386   //   __ shift_left(length, layout, length);
1387   // But C1 cannot perform shift_left with non-constant count, so we end up
1388   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1389   // longs, so we have to act on ints.
1390   LabelObj* L_shift_loop = new LabelObj();
1391   LabelObj* L_shift_exit = new LabelObj();
1392 
1393   __ branch_destination(L_shift_loop->label());
1394   __ cmp(lir_cond_equal, layout, 0);
1395   __ branch(lir_cond_equal, L_shift_exit->label());
1396 
1397 #ifdef _LP64
1398   __ shift_left(length, 1, length);
1399 #else
1400   __ shift_left(length_int, 1, length_int);
1401 #endif
1402 
1403   __ sub(layout, LIR_OprFact::intConst(1), layout);
1404 
1405   __ branch(lir_cond_always, L_shift_loop->label());
1406   __ branch_destination(L_shift_exit->label());
1407 
1408   // Mix all up, round, and push to the result.
1409 #ifdef _LP64
1410   LIR_Opr header_size_long = new_register(T_LONG);
1411   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1412   __ add(length, header_size_long, length);
1413   if (round_mask != 0) {
1414     LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1415     __ logical_and(length, round_mask_opr, length);
1416   }
1417   __ move(length, result_reg);
1418 #else
1419   __ add(length_int, header_size, length_int);
1420   if (round_mask != 0) {
1421     LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1422     __ logical_and(length_int, round_mask_opr, length_int);
1423   }
1424   __ convert(Bytecodes::_i2l, length_int, result_reg);
1425 #endif
1426 
1427   __ branch_destination(L_done->label());
1428 }
1429 
1430 void LIRGenerator::do_extentLocalCache(Intrinsic* x) {
1431   do_JavaThreadField(x, JavaThread::extentLocalCache_offset());
1432 }
1433 
1434 // Example: Thread.currentCarrierThread()
1435 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1436   do_JavaThreadField(x, JavaThread::threadObj_offset());
1437 }
1438 
1439 void LIRGenerator::do_vthread(Intrinsic* x) {
1440   do_JavaThreadField(x, JavaThread::vthread_offset());
1441 }
1442 
1443 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1444   assert(x->number_of_arguments() == 0, "wrong type");
1445   LIR_Opr temp = new_register(T_ADDRESS);
1446   LIR_Opr reg = rlock_result(x);
1447   __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1448   access_load(IN_NATIVE, T_OBJECT,
1449               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1450 }
1451 
1452 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1453   assert(x->number_of_arguments() == 1, "wrong type");
1454   LIRItem receiver(x->argument_at(0), this);
1455 
1456   receiver.load_item();
1457   BasicTypeList signature;
1458   signature.append(T_OBJECT); // receiver
1459   LIR_OprList* args = new LIR_OprList();
1460   args->append(receiver.result());
1461   CodeEmitInfo* info = state_for(x, x->state());
1462   call_runtime(&signature, args,
1463                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1464                voidType, info);
1465 
1466   set_no_result(x);
1467 }
1468 
1469 
1470 //------------------------local access--------------------------------------
1471 
1472 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1473   if (x->operand()->is_illegal()) {
1474     Constant* c = x->as_Constant();
1475     if (c != NULL) {
1476       x->set_operand(LIR_OprFact::value_type(c->type()));
1477     } else {
1478       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1479       // allocate a virtual register for this local or phi
1480       x->set_operand(rlock(x));
1481       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1482     }
1483   }
1484   return x->operand();
1485 }
1486 
1487 
1488 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1489   if (opr->is_virtual()) {
1490     return instruction_for_vreg(opr->vreg_number());
1491   }
1492   return NULL;
1493 }
1494 
1495 
1496 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1497   if (reg_num < _instruction_for_operand.length()) {
1498     return _instruction_for_operand.at(reg_num);
1499   }
1500   return NULL;
1501 }
1502 
1503 
1504 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1505   if (_vreg_flags.size_in_bits() == 0) {
1506     BitMap2D temp(100, num_vreg_flags);
1507     _vreg_flags = temp;
1508   }
1509   _vreg_flags.at_put_grow(vreg_num, f, true);
1510 }
1511 
1512 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1513   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1514     return false;
1515   }
1516   return _vreg_flags.at(vreg_num, f);
1517 }
1518 
1519 
1520 // Block local constant handling.  This code is useful for keeping
1521 // unpinned constants and constants which aren't exposed in the IR in
1522 // registers.  Unpinned Constant instructions have their operands
1523 // cleared when the block is finished so that other blocks can't end
1524 // up referring to their registers.
1525 
1526 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1527   assert(!x->is_pinned(), "only for unpinned constants");
1528   _unpinned_constants.append(x);
1529   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1530 }
1531 
1532 
1533 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1534   BasicType t = c->type();
1535   for (int i = 0; i < _constants.length(); i++) {
1536     LIR_Const* other = _constants.at(i);
1537     if (t == other->type()) {
1538       switch (t) {
1539       case T_INT:
1540       case T_FLOAT:
1541         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1542         break;
1543       case T_LONG:
1544       case T_DOUBLE:
1545         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1546         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1547         break;
1548       case T_OBJECT:
1549         if (c->as_jobject() != other->as_jobject()) continue;
1550         break;
1551       default:
1552         break;
1553       }
1554       return _reg_for_constants.at(i);
1555     }
1556   }
1557 
1558   LIR_Opr result = new_register(t);
1559   __ move((LIR_Opr)c, result);
1560   _constants.append(c);
1561   _reg_for_constants.append(result);
1562   return result;
1563 }
1564 
1565 //------------------------field access--------------------------------------
1566 
1567 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1568   assert(x->number_of_arguments() == 4, "wrong type");
1569   LIRItem obj   (x->argument_at(0), this);  // object
1570   LIRItem offset(x->argument_at(1), this);  // offset of field
1571   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1572   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1573   assert(obj.type()->tag() == objectTag, "invalid type");
1574   assert(cmp.type()->tag() == type->tag(), "invalid type");
1575   assert(val.type()->tag() == type->tag(), "invalid type");
1576 
1577   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1578                                             obj, offset, cmp, val);
1579   set_result(x, result);
1580 }
1581 
1582 // Comment copied form templateTable_i486.cpp
1583 // ----------------------------------------------------------------------------
1584 // Volatile variables demand their effects be made known to all CPU's in
1585 // order.  Store buffers on most chips allow reads & writes to reorder; the
1586 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1587 // memory barrier (i.e., it's not sufficient that the interpreter does not
1588 // reorder volatile references, the hardware also must not reorder them).
1589 //
1590 // According to the new Java Memory Model (JMM):
1591 // (1) All volatiles are serialized wrt to each other.
1592 // ALSO reads & writes act as acquire & release, so:
1593 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1594 // the read float up to before the read.  It's OK for non-volatile memory refs
1595 // that happen before the volatile read to float down below it.
1596 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1597 // that happen BEFORE the write float down to after the write.  It's OK for
1598 // non-volatile memory refs that happen after the volatile write to float up
1599 // before it.
1600 //
1601 // We only put in barriers around volatile refs (they are expensive), not
1602 // _between_ memory refs (that would require us to track the flavor of the
1603 // previous memory refs).  Requirements (2) and (3) require some barriers
1604 // before volatile stores and after volatile loads.  These nearly cover
1605 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1606 // case is placed after volatile-stores although it could just as well go
1607 // before volatile-loads.
1608 
1609 
1610 void LIRGenerator::do_StoreField(StoreField* x) {
1611   bool needs_patching = x->needs_patching();
1612   bool is_volatile = x->field()->is_volatile();
1613   BasicType field_type = x->field_type();
1614 
1615   CodeEmitInfo* info = NULL;
1616   if (needs_patching) {
1617     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1618     info = state_for(x, x->state_before());
1619   } else if (x->needs_null_check()) {
1620     NullCheck* nc = x->explicit_null_check();
1621     if (nc == NULL) {
1622       info = state_for(x);
1623     } else {
1624       info = state_for(nc);
1625     }
1626   }
1627 
1628   LIRItem object(x->obj(), this);
1629   LIRItem value(x->value(),  this);
1630 
1631   object.load_item();
1632 
1633   if (is_volatile || needs_patching) {
1634     // load item if field is volatile (fewer special cases for volatiles)
1635     // load item if field not initialized
1636     // load item if field not constant
1637     // because of code patching we cannot inline constants
1638     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1639       value.load_byte_item();
1640     } else  {
1641       value.load_item();
1642     }
1643   } else {
1644     value.load_for_store(field_type);
1645   }
1646 
1647   set_no_result(x);
1648 
1649 #ifndef PRODUCT
1650   if (PrintNotLoaded && needs_patching) {
1651     tty->print_cr("   ###class not loaded at store_%s bci %d",
1652                   x->is_static() ?  "static" : "field", x->printable_bci());
1653   }
1654 #endif
1655 
1656   if (x->needs_null_check() &&
1657       (needs_patching ||
1658        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1659     // Emit an explicit null check because the offset is too large.
1660     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1661     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1662     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1663   }
1664 
1665   DecoratorSet decorators = IN_HEAP;
1666   if (is_volatile) {
1667     decorators |= MO_SEQ_CST;
1668   }
1669   if (needs_patching) {
1670     decorators |= C1_NEEDS_PATCHING;
1671   }
1672 
1673   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1674                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1675 }
1676 
1677 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1678   assert(x->is_pinned(),"");
1679   bool needs_range_check = x->compute_needs_range_check();
1680   bool use_length = x->length() != NULL;
1681   bool obj_store = is_reference_type(x->elt_type());
1682   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1683                                          !get_jobject_constant(x->value())->is_null_object() ||
1684                                          x->should_profile());
1685 
1686   LIRItem array(x->array(), this);
1687   LIRItem index(x->index(), this);
1688   LIRItem value(x->value(), this);
1689   LIRItem length(this);
1690 
1691   array.load_item();
1692   index.load_nonconstant();
1693 
1694   if (use_length && needs_range_check) {
1695     length.set_instruction(x->length());
1696     length.load_item();
1697 
1698   }
1699   if (needs_store_check || x->check_boolean()) {
1700     value.load_item();
1701   } else {
1702     value.load_for_store(x->elt_type());
1703   }
1704 
1705   set_no_result(x);
1706 
1707   // the CodeEmitInfo must be duplicated for each different
1708   // LIR-instruction because spilling can occur anywhere between two
1709   // instructions and so the debug information must be different
1710   CodeEmitInfo* range_check_info = state_for(x);
1711   CodeEmitInfo* null_check_info = NULL;
1712   if (x->needs_null_check()) {
1713     null_check_info = new CodeEmitInfo(range_check_info);
1714   }
1715 
1716   if (GenerateRangeChecks && needs_range_check) {
1717     if (use_length) {
1718       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1719       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1720     } else {
1721       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1722       // range_check also does the null check
1723       null_check_info = NULL;
1724     }
1725   }
1726 
1727   if (GenerateArrayStoreCheck && needs_store_check) {
1728     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1729     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1730   }
1731 
1732   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1733   if (x->check_boolean()) {
1734     decorators |= C1_MASK_BOOLEAN;
1735   }
1736 
1737   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1738                   NULL, null_check_info);
1739 }
1740 
1741 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1742                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1743                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1744   decorators |= ACCESS_READ;
1745   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1746   if (access.is_raw()) {
1747     _barrier_set->BarrierSetC1::load_at(access, result);
1748   } else {
1749     _barrier_set->load_at(access, result);
1750   }
1751 }
1752 
1753 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1754                                LIR_Opr addr, LIR_Opr result) {
1755   decorators |= ACCESS_READ;
1756   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1757   access.set_resolved_addr(addr);
1758   if (access.is_raw()) {
1759     _barrier_set->BarrierSetC1::load(access, result);
1760   } else {
1761     _barrier_set->load(access, result);
1762   }
1763 }
1764 
1765 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1766                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1767                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1768   decorators |= ACCESS_WRITE;
1769   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1770   if (access.is_raw()) {
1771     _barrier_set->BarrierSetC1::store_at(access, value);
1772   } else {
1773     _barrier_set->store_at(access, value);
1774   }
1775 }
1776 
1777 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1778                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1779   decorators |= ACCESS_READ;
1780   decorators |= ACCESS_WRITE;
1781   // Atomic operations are SEQ_CST by default
1782   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1783   LIRAccess access(this, decorators, base, offset, type);
1784   if (access.is_raw()) {
1785     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1786   } else {
1787     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1788   }
1789 }
1790 
1791 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1792                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1793   decorators |= ACCESS_READ;
1794   decorators |= ACCESS_WRITE;
1795   // Atomic operations are SEQ_CST by default
1796   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1797   LIRAccess access(this, decorators, base, offset, type);
1798   if (access.is_raw()) {
1799     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1800   } else {
1801     return _barrier_set->atomic_xchg_at(access, value);
1802   }
1803 }
1804 
1805 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1806                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1807   decorators |= ACCESS_READ;
1808   decorators |= ACCESS_WRITE;
1809   // Atomic operations are SEQ_CST by default
1810   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1811   LIRAccess access(this, decorators, base, offset, type);
1812   if (access.is_raw()) {
1813     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1814   } else {
1815     return _barrier_set->atomic_add_at(access, value);
1816   }
1817 }
1818 
1819 void LIRGenerator::do_LoadField(LoadField* x) {
1820   bool needs_patching = x->needs_patching();
1821   bool is_volatile = x->field()->is_volatile();
1822   BasicType field_type = x->field_type();
1823 
1824   CodeEmitInfo* info = NULL;
1825   if (needs_patching) {
1826     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1827     info = state_for(x, x->state_before());
1828   } else if (x->needs_null_check()) {
1829     NullCheck* nc = x->explicit_null_check();
1830     if (nc == NULL) {
1831       info = state_for(x);
1832     } else {
1833       info = state_for(nc);
1834     }
1835   }
1836 
1837   LIRItem object(x->obj(), this);
1838 
1839   object.load_item();
1840 
1841 #ifndef PRODUCT
1842   if (PrintNotLoaded && needs_patching) {
1843     tty->print_cr("   ###class not loaded at load_%s bci %d",
1844                   x->is_static() ?  "static" : "field", x->printable_bci());
1845   }
1846 #endif
1847 
1848   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1849   if (x->needs_null_check() &&
1850       (needs_patching ||
1851        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1852        stress_deopt)) {
1853     LIR_Opr obj = object.result();
1854     if (stress_deopt) {
1855       obj = new_register(T_OBJECT);
1856       __ move(LIR_OprFact::oopConst(NULL), obj);
1857     }
1858     // Emit an explicit null check because the offset is too large.
1859     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1860     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1861     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1862   }
1863 
1864   DecoratorSet decorators = IN_HEAP;
1865   if (is_volatile) {
1866     decorators |= MO_SEQ_CST;
1867   }
1868   if (needs_patching) {
1869     decorators |= C1_NEEDS_PATCHING;
1870   }
1871 
1872   LIR_Opr result = rlock_result(x, field_type);
1873   access_load_at(decorators, field_type,
1874                  object, LIR_OprFact::intConst(x->offset()), result,
1875                  info ? new CodeEmitInfo(info) : NULL, info);
1876 }
1877 
1878 // int/long jdk.internal.util.Preconditions.checkIndex
1879 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1880   assert(x->number_of_arguments() == 3, "wrong type");
1881   LIRItem index(x->argument_at(0), this);
1882   LIRItem length(x->argument_at(1), this);
1883   LIRItem oobef(x->argument_at(2), this);
1884 
1885   index.load_item();
1886   length.load_item();
1887   oobef.load_item();
1888 
1889   LIR_Opr result = rlock_result(x);
1890   // x->state() is created from copy_state_for_exception, it does not contains arguments
1891   // we should prepare them before entering into interpreter mode due to deoptimization.
1892   ValueStack* state = x->state();
1893   for (int i = 0; i < x->number_of_arguments(); i++) {
1894     Value arg = x->argument_at(i);
1895     state->push(arg->type(), arg);
1896   }
1897   CodeEmitInfo* info = state_for(x, state);
1898 
1899   LIR_Opr len = length.result();
1900   LIR_Opr zero;
1901   if (type == T_INT) {
1902     zero = LIR_OprFact::intConst(0);
1903     if (length.result()->is_constant()){
1904       len = LIR_OprFact::intConst(length.result()->as_jint());
1905     }
1906   } else {
1907     assert(type == T_LONG, "sanity check");
1908     zero = LIR_OprFact::longConst(0);
1909     if (length.result()->is_constant()){
1910       len = LIR_OprFact::longConst(length.result()->as_jlong());
1911     }
1912   }
1913   // C1 can not handle the case that comparing index with constant value while condition
1914   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1915   LIR_Opr zero_reg = new_register(type);
1916   __ move(zero, zero_reg);
1917 #if defined(X86) && !defined(_LP64)
1918   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1919   LIR_Opr index_copy = new_register(index.type());
1920   // index >= 0
1921   __ move(index.result(), index_copy);
1922   __ cmp(lir_cond_less, index_copy, zero_reg);
1923   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1924                                                     Deoptimization::Action_make_not_entrant));
1925   // index < length
1926   __ move(index.result(), index_copy);
1927   __ cmp(lir_cond_greaterEqual, index_copy, len);
1928   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1929                                                             Deoptimization::Action_make_not_entrant));
1930 #else
1931   // index >= 0
1932   __ cmp(lir_cond_less, index.result(), zero_reg);
1933   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1934                                                     Deoptimization::Action_make_not_entrant));
1935   // index < length
1936   __ cmp(lir_cond_greaterEqual, index.result(), len);
1937   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1938                                                             Deoptimization::Action_make_not_entrant));
1939 #endif
1940   __ move(index.result(), result);
1941 }
1942 
1943 //------------------------array access--------------------------------------
1944 
1945 
1946 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1947   LIRItem array(x->array(), this);
1948   array.load_item();
1949   LIR_Opr reg = rlock_result(x);
1950 
1951   CodeEmitInfo* info = NULL;
1952   if (x->needs_null_check()) {
1953     NullCheck* nc = x->explicit_null_check();
1954     if (nc == NULL) {
1955       info = state_for(x);
1956     } else {
1957       info = state_for(nc);
1958     }
1959     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1960       LIR_Opr obj = new_register(T_OBJECT);
1961       __ move(LIR_OprFact::oopConst(NULL), obj);
1962       __ null_check(obj, new CodeEmitInfo(info));
1963     }
1964   }
1965   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1966 }
1967 
1968 
1969 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1970   bool use_length = x->length() != NULL;
1971   LIRItem array(x->array(), this);
1972   LIRItem index(x->index(), this);
1973   LIRItem length(this);
1974   bool needs_range_check = x->compute_needs_range_check();
1975 
1976   if (use_length && needs_range_check) {
1977     length.set_instruction(x->length());
1978     length.load_item();
1979   }
1980 
1981   array.load_item();
1982   if (index.is_constant() && can_inline_as_constant(x->index())) {
1983     // let it be a constant
1984     index.dont_load_item();
1985   } else {
1986     index.load_item();
1987   }
1988 
1989   CodeEmitInfo* range_check_info = state_for(x);
1990   CodeEmitInfo* null_check_info = NULL;
1991   if (x->needs_null_check()) {
1992     NullCheck* nc = x->explicit_null_check();
1993     if (nc != NULL) {
1994       null_check_info = state_for(nc);
1995     } else {
1996       null_check_info = range_check_info;
1997     }
1998     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1999       LIR_Opr obj = new_register(T_OBJECT);
2000       __ move(LIR_OprFact::oopConst(NULL), obj);
2001       __ null_check(obj, new CodeEmitInfo(null_check_info));
2002     }
2003   }
2004 
2005   if (GenerateRangeChecks && needs_range_check) {
2006     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2007       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2008     } else if (use_length) {
2009       // TODO: use a (modified) version of array_range_check that does not require a
2010       //       constant length to be loaded to a register
2011       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2012       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2013     } else {
2014       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2015       // The range check performs the null check, so clear it out for the load
2016       null_check_info = NULL;
2017     }
2018   }
2019 
2020   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2021 
2022   LIR_Opr result = rlock_result(x, x->elt_type());
2023   access_load_at(decorators, x->elt_type(),
2024                  array, index.result(), result,
2025                  NULL, null_check_info);
2026 }
2027 
2028 
2029 void LIRGenerator::do_NullCheck(NullCheck* x) {
2030   if (x->can_trap()) {
2031     LIRItem value(x->obj(), this);
2032     value.load_item();
2033     CodeEmitInfo* info = state_for(x);
2034     __ null_check(value.result(), info);
2035   }
2036 }
2037 
2038 
2039 void LIRGenerator::do_TypeCast(TypeCast* x) {
2040   LIRItem value(x->obj(), this);
2041   value.load_item();
2042   // the result is the same as from the node we are casting
2043   set_result(x, value.result());
2044 }
2045 
2046 
2047 void LIRGenerator::do_Throw(Throw* x) {
2048   LIRItem exception(x->exception(), this);
2049   exception.load_item();
2050   set_no_result(x);
2051   LIR_Opr exception_opr = exception.result();
2052   CodeEmitInfo* info = state_for(x, x->state());
2053 
2054 #ifndef PRODUCT
2055   if (PrintC1Statistics) {
2056     increment_counter(Runtime1::throw_count_address(), T_INT);
2057   }
2058 #endif
2059 
2060   // check if the instruction has an xhandler in any of the nested scopes
2061   bool unwind = false;
2062   if (info->exception_handlers()->length() == 0) {
2063     // this throw is not inside an xhandler
2064     unwind = true;
2065   } else {
2066     // get some idea of the throw type
2067     bool type_is_exact = true;
2068     ciType* throw_type = x->exception()->exact_type();
2069     if (throw_type == NULL) {
2070       type_is_exact = false;
2071       throw_type = x->exception()->declared_type();
2072     }
2073     if (throw_type != NULL && throw_type->is_instance_klass()) {
2074       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2075       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2076     }
2077   }
2078 
2079   // do null check before moving exception oop into fixed register
2080   // to avoid a fixed interval with an oop during the null check.
2081   // Use a copy of the CodeEmitInfo because debug information is
2082   // different for null_check and throw.
2083   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2084     // if the exception object wasn't created using new then it might be null.
2085     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2086   }
2087 
2088   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2089     // we need to go through the exception lookup path to get JVMTI
2090     // notification done
2091     unwind = false;
2092   }
2093 
2094   // move exception oop into fixed register
2095   __ move(exception_opr, exceptionOopOpr());
2096 
2097   if (unwind) {
2098     __ unwind_exception(exceptionOopOpr());
2099   } else {
2100     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2101   }
2102 }
2103 
2104 
2105 void LIRGenerator::do_RoundFP(RoundFP* x) {
2106   assert(strict_fp_requires_explicit_rounding, "not required");
2107 
2108   LIRItem input(x->input(), this);
2109   input.load_item();
2110   LIR_Opr input_opr = input.result();
2111   assert(input_opr->is_register(), "why round if value is not in a register?");
2112   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2113   if (input_opr->is_single_fpu()) {
2114     set_result(x, round_item(input_opr)); // This code path not currently taken
2115   } else {
2116     LIR_Opr result = new_register(T_DOUBLE);
2117     set_vreg_flag(result, must_start_in_memory);
2118     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2119     set_result(x, result);
2120   }
2121 }
2122 
2123 
2124 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2125   BasicType type = x->basic_type();
2126   LIRItem src(x->object(), this);
2127   LIRItem off(x->offset(), this);
2128 
2129   off.load_item();
2130   src.load_item();
2131 
2132   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2133 
2134   if (x->is_volatile()) {
2135     decorators |= MO_SEQ_CST;
2136   }
2137   if (type == T_BOOLEAN) {
2138     decorators |= C1_MASK_BOOLEAN;
2139   }
2140   if (is_reference_type(type)) {
2141     decorators |= ON_UNKNOWN_OOP_REF;
2142   }
2143 
2144   LIR_Opr result = rlock_result(x, type);
2145   if (!x->is_raw()) {
2146     access_load_at(decorators, type, src, off.result(), result);
2147   } else {
2148     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2149     // It reads the value from [src + offset] directly.
2150 #ifdef _LP64
2151     LIR_Opr offset = new_register(T_LONG);
2152     __ convert(Bytecodes::_i2l, off.result(), offset);
2153 #else
2154     LIR_Opr offset = off.result();
2155 #endif
2156     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2157     if (is_reference_type(type)) {
2158       __ move_wide(addr, result);
2159     } else {
2160       __ move(addr, result);
2161     }
2162   }
2163 }
2164 
2165 
2166 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2167   BasicType type = x->basic_type();
2168   LIRItem src(x->object(), this);
2169   LIRItem off(x->offset(), this);
2170   LIRItem data(x->value(), this);
2171 
2172   src.load_item();
2173   if (type == T_BOOLEAN || type == T_BYTE) {
2174     data.load_byte_item();
2175   } else {
2176     data.load_item();
2177   }
2178   off.load_item();
2179 
2180   set_no_result(x);
2181 
2182   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2183   if (is_reference_type(type)) {
2184     decorators |= ON_UNKNOWN_OOP_REF;
2185   }
2186   if (x->is_volatile()) {
2187     decorators |= MO_SEQ_CST;
2188   }
2189   access_store_at(decorators, type, src, off.result(), data.result());
2190 }
2191 
2192 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2193   BasicType type = x->basic_type();
2194   LIRItem src(x->object(), this);
2195   LIRItem off(x->offset(), this);
2196   LIRItem value(x->value(), this);
2197 
2198   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2199 
2200   if (is_reference_type(type)) {
2201     decorators |= ON_UNKNOWN_OOP_REF;
2202   }
2203 
2204   LIR_Opr result;
2205   if (x->is_add()) {
2206     result = access_atomic_add_at(decorators, type, src, off, value);
2207   } else {
2208     result = access_atomic_xchg_at(decorators, type, src, off, value);
2209   }
2210   set_result(x, result);
2211 }
2212 
2213 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2214   int lng = x->length();
2215 
2216   for (int i = 0; i < lng; i++) {
2217     C1SwitchRange* one_range = x->at(i);
2218     int low_key = one_range->low_key();
2219     int high_key = one_range->high_key();
2220     BlockBegin* dest = one_range->sux();
2221     if (low_key == high_key) {
2222       __ cmp(lir_cond_equal, value, low_key);
2223       __ branch(lir_cond_equal, dest);
2224     } else if (high_key - low_key == 1) {
2225       __ cmp(lir_cond_equal, value, low_key);
2226       __ branch(lir_cond_equal, dest);
2227       __ cmp(lir_cond_equal, value, high_key);
2228       __ branch(lir_cond_equal, dest);
2229     } else {
2230       LabelObj* L = new LabelObj();
2231       __ cmp(lir_cond_less, value, low_key);
2232       __ branch(lir_cond_less, L->label());
2233       __ cmp(lir_cond_lessEqual, value, high_key);
2234       __ branch(lir_cond_lessEqual, dest);
2235       __ branch_destination(L->label());
2236     }
2237   }
2238   __ jump(default_sux);
2239 }
2240 
2241 
2242 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2243   SwitchRangeList* res = new SwitchRangeList();
2244   int len = x->length();
2245   if (len > 0) {
2246     BlockBegin* sux = x->sux_at(0);
2247     int key = x->lo_key();
2248     BlockBegin* default_sux = x->default_sux();
2249     C1SwitchRange* range = new C1SwitchRange(key, sux);
2250     for (int i = 0; i < len; i++, key++) {
2251       BlockBegin* new_sux = x->sux_at(i);
2252       if (sux == new_sux) {
2253         // still in same range
2254         range->set_high_key(key);
2255       } else {
2256         // skip tests which explicitly dispatch to the default
2257         if (sux != default_sux) {
2258           res->append(range);
2259         }
2260         range = new C1SwitchRange(key, new_sux);
2261       }
2262       sux = new_sux;
2263     }
2264     if (res->length() == 0 || res->last() != range)  res->append(range);
2265   }
2266   return res;
2267 }
2268 
2269 
2270 // we expect the keys to be sorted by increasing value
2271 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2272   SwitchRangeList* res = new SwitchRangeList();
2273   int len = x->length();
2274   if (len > 0) {
2275     BlockBegin* default_sux = x->default_sux();
2276     int key = x->key_at(0);
2277     BlockBegin* sux = x->sux_at(0);
2278     C1SwitchRange* range = new C1SwitchRange(key, sux);
2279     for (int i = 1; i < len; i++) {
2280       int new_key = x->key_at(i);
2281       BlockBegin* new_sux = x->sux_at(i);
2282       if (key+1 == new_key && sux == new_sux) {
2283         // still in same range
2284         range->set_high_key(new_key);
2285       } else {
2286         // skip tests which explicitly dispatch to the default
2287         if (range->sux() != default_sux) {
2288           res->append(range);
2289         }
2290         range = new C1SwitchRange(new_key, new_sux);
2291       }
2292       key = new_key;
2293       sux = new_sux;
2294     }
2295     if (res->length() == 0 || res->last() != range)  res->append(range);
2296   }
2297   return res;
2298 }
2299 
2300 
2301 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2302   LIRItem tag(x->tag(), this);
2303   tag.load_item();
2304   set_no_result(x);
2305 
2306   if (x->is_safepoint()) {
2307     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2308   }
2309 
2310   // move values into phi locations
2311   move_to_phi(x->state());
2312 
2313   int lo_key = x->lo_key();
2314   int len = x->length();
2315   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2316   LIR_Opr value = tag.result();
2317 
2318   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2319     ciMethod* method = x->state()->scope()->method();
2320     ciMethodData* md = method->method_data_or_null();
2321     assert(md != NULL, "Sanity");
2322     ciProfileData* data = md->bci_to_data(x->state()->bci());
2323     assert(data != NULL, "must have profiling data");
2324     assert(data->is_MultiBranchData(), "bad profile data?");
2325     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2326     LIR_Opr md_reg = new_register(T_METADATA);
2327     __ metadata2reg(md->constant_encoding(), md_reg);
2328     LIR_Opr data_offset_reg = new_pointer_register();
2329     LIR_Opr tmp_reg = new_pointer_register();
2330 
2331     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2332     for (int i = 0; i < len; i++) {
2333       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2334       __ cmp(lir_cond_equal, value, i + lo_key);
2335       __ move(data_offset_reg, tmp_reg);
2336       __ cmove(lir_cond_equal,
2337                LIR_OprFact::intptrConst(count_offset),
2338                tmp_reg,
2339                data_offset_reg, T_INT);
2340     }
2341 
2342     LIR_Opr data_reg = new_pointer_register();
2343     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2344     __ move(data_addr, data_reg);
2345     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2346     __ move(data_reg, data_addr);
2347   }
2348 
2349   if (UseTableRanges) {
2350     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2351   } else {
2352     for (int i = 0; i < len; i++) {
2353       __ cmp(lir_cond_equal, value, i + lo_key);
2354       __ branch(lir_cond_equal, x->sux_at(i));
2355     }
2356     __ jump(x->default_sux());
2357   }
2358 }
2359 
2360 
2361 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2362   LIRItem tag(x->tag(), this);
2363   tag.load_item();
2364   set_no_result(x);
2365 
2366   if (x->is_safepoint()) {
2367     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2368   }
2369 
2370   // move values into phi locations
2371   move_to_phi(x->state());
2372 
2373   LIR_Opr value = tag.result();
2374   int len = x->length();
2375 
2376   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2377     ciMethod* method = x->state()->scope()->method();
2378     ciMethodData* md = method->method_data_or_null();
2379     assert(md != NULL, "Sanity");
2380     ciProfileData* data = md->bci_to_data(x->state()->bci());
2381     assert(data != NULL, "must have profiling data");
2382     assert(data->is_MultiBranchData(), "bad profile data?");
2383     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2384     LIR_Opr md_reg = new_register(T_METADATA);
2385     __ metadata2reg(md->constant_encoding(), md_reg);
2386     LIR_Opr data_offset_reg = new_pointer_register();
2387     LIR_Opr tmp_reg = new_pointer_register();
2388 
2389     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2390     for (int i = 0; i < len; i++) {
2391       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2392       __ cmp(lir_cond_equal, value, x->key_at(i));
2393       __ move(data_offset_reg, tmp_reg);
2394       __ cmove(lir_cond_equal,
2395                LIR_OprFact::intptrConst(count_offset),
2396                tmp_reg,
2397                data_offset_reg, T_INT);
2398     }
2399 
2400     LIR_Opr data_reg = new_pointer_register();
2401     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2402     __ move(data_addr, data_reg);
2403     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2404     __ move(data_reg, data_addr);
2405   }
2406 
2407   if (UseTableRanges) {
2408     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2409   } else {
2410     int len = x->length();
2411     for (int i = 0; i < len; i++) {
2412       __ cmp(lir_cond_equal, value, x->key_at(i));
2413       __ branch(lir_cond_equal, x->sux_at(i));
2414     }
2415     __ jump(x->default_sux());
2416   }
2417 }
2418 
2419 
2420 void LIRGenerator::do_Goto(Goto* x) {
2421   set_no_result(x);
2422 
2423   if (block()->next()->as_OsrEntry()) {
2424     // need to free up storage used for OSR entry point
2425     LIR_Opr osrBuffer = block()->next()->operand();
2426     BasicTypeList signature;
2427     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2428     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2429     __ move(osrBuffer, cc->args()->at(0));
2430     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2431                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2432   }
2433 
2434   if (x->is_safepoint()) {
2435     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2436 
2437     // increment backedge counter if needed
2438     CodeEmitInfo* info = state_for(x, state);
2439     increment_backedge_counter(info, x->profiled_bci());
2440     CodeEmitInfo* safepoint_info = state_for(x, state);
2441     __ safepoint(safepoint_poll_register(), safepoint_info);
2442   }
2443 
2444   // Gotos can be folded Ifs, handle this case.
2445   if (x->should_profile()) {
2446     ciMethod* method = x->profiled_method();
2447     assert(method != NULL, "method should be set if branch is profiled");
2448     ciMethodData* md = method->method_data_or_null();
2449     assert(md != NULL, "Sanity");
2450     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2451     assert(data != NULL, "must have profiling data");
2452     int offset;
2453     if (x->direction() == Goto::taken) {
2454       assert(data->is_BranchData(), "need BranchData for two-way branches");
2455       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2456     } else if (x->direction() == Goto::not_taken) {
2457       assert(data->is_BranchData(), "need BranchData for two-way branches");
2458       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2459     } else {
2460       assert(data->is_JumpData(), "need JumpData for branches");
2461       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2462     }
2463     LIR_Opr md_reg = new_register(T_METADATA);
2464     __ metadata2reg(md->constant_encoding(), md_reg);
2465 
2466     increment_counter(new LIR_Address(md_reg, offset,
2467                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2468   }
2469 
2470   // emit phi-instruction move after safepoint since this simplifies
2471   // describing the state as the safepoint.
2472   move_to_phi(x->state());
2473 
2474   __ jump(x->default_sux());
2475 }
2476 
2477 /**
2478  * Emit profiling code if needed for arguments, parameters, return value types
2479  *
2480  * @param md                    MDO the code will update at runtime
2481  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2482  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2483  * @param profiled_k            current profile
2484  * @param obj                   IR node for the object to be profiled
2485  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2486  *                              Set once we find an update to make and use for next ones.
2487  * @param not_null              true if we know obj cannot be null
2488  * @param signature_at_call_k   signature at call for obj
2489  * @param callee_signature_k    signature of callee for obj
2490  *                              at call and callee signatures differ at method handle call
2491  * @return                      the only klass we know will ever be seen at this profile point
2492  */
2493 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2494                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2495                                     ciKlass* callee_signature_k) {
2496   ciKlass* result = NULL;
2497   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2498   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2499   // known not to be null or null bit already set and already set to
2500   // unknown: nothing we can do to improve profiling
2501   if (!do_null && !do_update) {
2502     return result;
2503   }
2504 
2505   ciKlass* exact_klass = NULL;
2506   Compilation* comp = Compilation::current();
2507   if (do_update) {
2508     // try to find exact type, using CHA if possible, so that loading
2509     // the klass from the object can be avoided
2510     ciType* type = obj->exact_type();
2511     if (type == NULL) {
2512       type = obj->declared_type();
2513       type = comp->cha_exact_type(type);
2514     }
2515     assert(type == NULL || type->is_klass(), "type should be class");
2516     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2517 
2518     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2519   }
2520 
2521   if (!do_null && !do_update) {
2522     return result;
2523   }
2524 
2525   ciKlass* exact_signature_k = NULL;
2526   if (do_update) {
2527     // Is the type from the signature exact (the only one possible)?
2528     exact_signature_k = signature_at_call_k->exact_klass();
2529     if (exact_signature_k == NULL) {
2530       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2531     } else {
2532       result = exact_signature_k;
2533       // Known statically. No need to emit any code: prevent
2534       // LIR_Assembler::emit_profile_type() from emitting useless code
2535       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2536     }
2537     // exact_klass and exact_signature_k can be both non NULL but
2538     // different if exact_klass is loaded after the ciObject for
2539     // exact_signature_k is created.
2540     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2541       // sometimes the type of the signature is better than the best type
2542       // the compiler has
2543       exact_klass = exact_signature_k;
2544     }
2545     if (callee_signature_k != NULL &&
2546         callee_signature_k != signature_at_call_k) {
2547       ciKlass* improved_klass = callee_signature_k->exact_klass();
2548       if (improved_klass == NULL) {
2549         improved_klass = comp->cha_exact_type(callee_signature_k);
2550       }
2551       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2552         exact_klass = exact_signature_k;
2553       }
2554     }
2555     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2556   }
2557 
2558   if (!do_null && !do_update) {
2559     return result;
2560   }
2561 
2562   if (mdp == LIR_OprFact::illegalOpr) {
2563     mdp = new_register(T_METADATA);
2564     __ metadata2reg(md->constant_encoding(), mdp);
2565     if (md_base_offset != 0) {
2566       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2567       mdp = new_pointer_register();
2568       __ leal(LIR_OprFact::address(base_type_address), mdp);
2569     }
2570   }
2571   LIRItem value(obj, this);
2572   value.load_item();
2573   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2574                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2575   return result;
2576 }
2577 
2578 // profile parameters on entry to the root of the compilation
2579 void LIRGenerator::profile_parameters(Base* x) {
2580   if (compilation()->profile_parameters()) {
2581     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2582     ciMethodData* md = scope()->method()->method_data_or_null();
2583     assert(md != NULL, "Sanity");
2584 
2585     if (md->parameters_type_data() != NULL) {
2586       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2587       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2588       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2589       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2590         LIR_Opr src = args->at(i);
2591         assert(!src->is_illegal(), "check");
2592         BasicType t = src->type();
2593         if (is_reference_type(t)) {
2594           intptr_t profiled_k = parameters->type(j);
2595           Local* local = x->state()->local_at(java_index)->as_Local();
2596           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2597                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2598                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2599           // If the profile is known statically set it once for all and do not emit any code
2600           if (exact != NULL) {
2601             md->set_parameter_type(j, exact);
2602           }
2603           j++;
2604         }
2605         java_index += type2size[t];
2606       }
2607     }
2608   }
2609 }
2610 
2611 void LIRGenerator::do_Base(Base* x) {
2612   __ std_entry(LIR_OprFact::illegalOpr);
2613   // Emit moves from physical registers / stack slots to virtual registers
2614   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2615   IRScope* irScope = compilation()->hir()->top_scope();
2616   int java_index = 0;
2617   for (int i = 0; i < args->length(); i++) {
2618     LIR_Opr src = args->at(i);
2619     assert(!src->is_illegal(), "check");
2620     BasicType t = src->type();
2621 
2622     // Types which are smaller than int are passed as int, so
2623     // correct the type which passed.
2624     switch (t) {
2625     case T_BYTE:
2626     case T_BOOLEAN:
2627     case T_SHORT:
2628     case T_CHAR:
2629       t = T_INT;
2630       break;
2631     default:
2632       break;
2633     }
2634 
2635     LIR_Opr dest = new_register(t);
2636     __ move(src, dest);
2637 
2638     // Assign new location to Local instruction for this local
2639     Local* local = x->state()->local_at(java_index)->as_Local();
2640     assert(local != NULL, "Locals for incoming arguments must have been created");
2641 #ifndef __SOFTFP__
2642     // The java calling convention passes double as long and float as int.
2643     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2644 #endif // __SOFTFP__
2645     local->set_operand(dest);
2646     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2647     java_index += type2size[t];
2648   }
2649 
2650   if (compilation()->env()->dtrace_method_probes()) {
2651     BasicTypeList signature;
2652     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2653     signature.append(T_METADATA); // Method*
2654     LIR_OprList* args = new LIR_OprList();
2655     args->append(getThreadPointer());
2656     LIR_Opr meth = new_register(T_METADATA);
2657     __ metadata2reg(method()->constant_encoding(), meth);
2658     args->append(meth);
2659     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2660   }
2661 
2662   if (method()->is_synchronized()) {
2663     LIR_Opr obj;
2664     if (method()->is_static()) {
2665       obj = new_register(T_OBJECT);
2666       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2667     } else {
2668       Local* receiver = x->state()->local_at(0)->as_Local();
2669       assert(receiver != NULL, "must already exist");
2670       obj = receiver->operand();
2671     }
2672     assert(obj->is_valid(), "must be valid");
2673 
2674     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2675       LIR_Opr lock = syncLockOpr();
2676       __ load_stack_address_monitor(0, lock);
2677 
2678       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2679       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2680 
2681       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2682       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2683     }
2684   }
2685   if (compilation()->age_code()) {
2686     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2687     decrement_age(info);
2688   }
2689   // increment invocation counters if needed
2690   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2691     profile_parameters(x);
2692     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2693     increment_invocation_counter(info);
2694   }
2695 
2696   // all blocks with a successor must end with an unconditional jump
2697   // to the successor even if they are consecutive
2698   __ jump(x->default_sux());
2699 }
2700 
2701 
2702 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2703   // construct our frame and model the production of incoming pointer
2704   // to the OSR buffer.
2705   __ osr_entry(LIR_Assembler::osrBufferPointer());
2706   LIR_Opr result = rlock_result(x);
2707   __ move(LIR_Assembler::osrBufferPointer(), result);
2708 }
2709 
2710 
2711 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2712   assert(args->length() == arg_list->length(),
2713          "args=%d, arg_list=%d", args->length(), arg_list->length());
2714   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2715     LIRItem* param = args->at(i);
2716     LIR_Opr loc = arg_list->at(i);
2717     if (loc->is_register()) {
2718       param->load_item_force(loc);
2719     } else {
2720       LIR_Address* addr = loc->as_address_ptr();
2721       param->load_for_store(addr->type());
2722       if (addr->type() == T_OBJECT) {
2723         __ move_wide(param->result(), addr);
2724       } else
2725         __ move(param->result(), addr);
2726     }
2727   }
2728 
2729   if (x->has_receiver()) {
2730     LIRItem* receiver = args->at(0);
2731     LIR_Opr loc = arg_list->at(0);
2732     if (loc->is_register()) {
2733       receiver->load_item_force(loc);
2734     } else {
2735       assert(loc->is_address(), "just checking");
2736       receiver->load_for_store(T_OBJECT);
2737       __ move_wide(receiver->result(), loc->as_address_ptr());
2738     }
2739   }
2740 }
2741 
2742 
2743 // Visits all arguments, returns appropriate items without loading them
2744 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2745   LIRItemList* argument_items = new LIRItemList();
2746   if (x->has_receiver()) {
2747     LIRItem* receiver = new LIRItem(x->receiver(), this);
2748     argument_items->append(receiver);
2749   }
2750   for (int i = 0; i < x->number_of_arguments(); i++) {
2751     LIRItem* param = new LIRItem(x->argument_at(i), this);
2752     argument_items->append(param);
2753   }
2754   return argument_items;
2755 }
2756 
2757 
2758 // The invoke with receiver has following phases:
2759 //   a) traverse and load/lock receiver;
2760 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2761 //   c) push receiver on stack
2762 //   d) load each of the items and push on stack
2763 //   e) unlock receiver
2764 //   f) move receiver into receiver-register %o0
2765 //   g) lock result registers and emit call operation
2766 //
2767 // Before issuing a call, we must spill-save all values on stack
2768 // that are in caller-save register. "spill-save" moves those registers
2769 // either in a free callee-save register or spills them if no free
2770 // callee save register is available.
2771 //
2772 // The problem is where to invoke spill-save.
2773 // - if invoked between e) and f), we may lock callee save
2774 //   register in "spill-save" that destroys the receiver register
2775 //   before f) is executed
2776 // - if we rearrange f) to be earlier (by loading %o0) it
2777 //   may destroy a value on the stack that is currently in %o0
2778 //   and is waiting to be spilled
2779 // - if we keep the receiver locked while doing spill-save,
2780 //   we cannot spill it as it is spill-locked
2781 //
2782 void LIRGenerator::do_Invoke(Invoke* x) {
2783   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2784 
2785   LIR_OprList* arg_list = cc->args();
2786   LIRItemList* args = invoke_visit_arguments(x);
2787   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2788 
2789   // setup result register
2790   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2791   if (x->type() != voidType) {
2792     result_register = result_register_for(x->type());
2793   }
2794 
2795   CodeEmitInfo* info = state_for(x, x->state());
2796 
2797   invoke_load_arguments(x, args, arg_list);
2798 
2799   if (x->has_receiver()) {
2800     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2801     receiver = args->at(0)->result();
2802   }
2803 
2804   // emit invoke code
2805   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2806 
2807   // JSR 292
2808   // Preserve the SP over MethodHandle call sites, if needed.
2809   ciMethod* target = x->target();
2810   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2811                                   target->is_method_handle_intrinsic() ||
2812                                   target->is_compiled_lambda_form());
2813   if (is_method_handle_invoke) {
2814     info->set_is_method_handle_invoke(true);
2815     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2816         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2817     }
2818   }
2819 
2820   switch (x->code()) {
2821     case Bytecodes::_invokestatic:
2822       __ call_static(target, result_register,
2823                      SharedRuntime::get_resolve_static_call_stub(),
2824                      arg_list, info);
2825       break;
2826     case Bytecodes::_invokespecial:
2827     case Bytecodes::_invokevirtual:
2828     case Bytecodes::_invokeinterface:
2829       // for loaded and final (method or class) target we still produce an inline cache,
2830       // in order to be able to call mixed mode
2831       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2832         __ call_opt_virtual(target, receiver, result_register,
2833                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2834                             arg_list, info);
2835       } else {
2836         __ call_icvirtual(target, receiver, result_register,
2837                           SharedRuntime::get_resolve_virtual_call_stub(),
2838                           arg_list, info);
2839       }
2840       break;
2841     case Bytecodes::_invokedynamic: {
2842       __ call_dynamic(target, receiver, result_register,
2843                       SharedRuntime::get_resolve_static_call_stub(),
2844                       arg_list, info);
2845       break;
2846     }
2847     default:
2848       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2849       break;
2850   }
2851 
2852   // JSR 292
2853   // Restore the SP after MethodHandle call sites, if needed.
2854   if (is_method_handle_invoke
2855       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2856     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2857   }
2858 
2859   if (result_register->is_valid()) {
2860     LIR_Opr result = rlock_result(x);
2861     __ move(result_register, result);
2862   }
2863 }
2864 
2865 
2866 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2867   assert(x->number_of_arguments() == 1, "wrong type");
2868   LIRItem value       (x->argument_at(0), this);
2869   LIR_Opr reg = rlock_result(x);
2870   value.load_item();
2871   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2872   __ move(tmp, reg);
2873 }
2874 
2875 
2876 
2877 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2878 void LIRGenerator::do_IfOp(IfOp* x) {
2879 #ifdef ASSERT
2880   {
2881     ValueTag xtag = x->x()->type()->tag();
2882     ValueTag ttag = x->tval()->type()->tag();
2883     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2884     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2885     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2886   }
2887 #endif
2888 
2889   LIRItem left(x->x(), this);
2890   LIRItem right(x->y(), this);
2891   left.load_item();
2892   if (can_inline_as_constant(right.value())) {
2893     right.dont_load_item();
2894   } else {
2895     right.load_item();
2896   }
2897 
2898   LIRItem t_val(x->tval(), this);
2899   LIRItem f_val(x->fval(), this);
2900   t_val.dont_load_item();
2901   f_val.dont_load_item();
2902   LIR_Opr reg = rlock_result(x);
2903 
2904   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2905   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2906 }
2907 
2908 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2909   assert(x->number_of_arguments() == 0, "wrong type");
2910   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2911   BasicTypeList signature;
2912   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2913   LIR_Opr reg = result_register_for(x->type());
2914   __ call_runtime_leaf(routine, getThreadTemp(),
2915                        reg, new LIR_OprList());
2916   LIR_Opr result = rlock_result(x);
2917   __ move(reg, result);
2918 }
2919 
2920 
2921 
2922 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2923   switch (x->id()) {
2924   case vmIntrinsics::_intBitsToFloat      :
2925   case vmIntrinsics::_doubleToRawLongBits :
2926   case vmIntrinsics::_longBitsToDouble    :
2927   case vmIntrinsics::_floatToRawIntBits   : {
2928     do_FPIntrinsics(x);
2929     break;
2930   }
2931 
2932 #ifdef JFR_HAVE_INTRINSICS
2933   case vmIntrinsics::_counterTime:
2934     do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2935     break;
2936 #endif
2937 
2938   case vmIntrinsics::_currentTimeMillis:
2939     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2940     break;
2941 
2942   case vmIntrinsics::_nanoTime:
2943     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2944     break;
2945 
2946   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2947   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2948   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
2949   case vmIntrinsics::_getModifiers:   do_getModifiers(x);  break;
2950   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2951   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
2952   case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2953   case vmIntrinsics::_currentThread:  do_vthread(x);       break;
2954   case vmIntrinsics::_extentLocalCache: do_extentLocalCache(x); break;
2955 
2956   case vmIntrinsics::_dlog:           // fall through
2957   case vmIntrinsics::_dlog10:         // fall through
2958   case vmIntrinsics::_dabs:           // fall through
2959   case vmIntrinsics::_dsqrt:          // fall through
2960   case vmIntrinsics::_dsqrt_strict:   // fall through
2961   case vmIntrinsics::_dtan:           // fall through
2962   case vmIntrinsics::_dsin :          // fall through
2963   case vmIntrinsics::_dcos :          // fall through
2964   case vmIntrinsics::_dexp :          // fall through
2965   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2966   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2967 
2968   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2969   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2970 
2971   case vmIntrinsics::_Preconditions_checkIndex:
2972     do_PreconditionsCheckIndex(x, T_INT);
2973     break;
2974   case vmIntrinsics::_Preconditions_checkLongIndex:
2975     do_PreconditionsCheckIndex(x, T_LONG);
2976     break;
2977 
2978   case vmIntrinsics::_compareAndSetReference:
2979     do_CompareAndSwap(x, objectType);
2980     break;
2981   case vmIntrinsics::_compareAndSetInt:
2982     do_CompareAndSwap(x, intType);
2983     break;
2984   case vmIntrinsics::_compareAndSetLong:
2985     do_CompareAndSwap(x, longType);
2986     break;
2987 
2988   case vmIntrinsics::_loadFence :
2989     __ membar_acquire();
2990     break;
2991   case vmIntrinsics::_storeFence:
2992     __ membar_release();
2993     break;
2994   case vmIntrinsics::_storeStoreFence:
2995     __ membar_storestore();
2996     break;
2997   case vmIntrinsics::_fullFence :
2998     __ membar();
2999     break;
3000   case vmIntrinsics::_onSpinWait:
3001     __ on_spin_wait();
3002     break;
3003   case vmIntrinsics::_Reference_get:
3004     do_Reference_get(x);
3005     break;
3006 
3007   case vmIntrinsics::_updateCRC32:
3008   case vmIntrinsics::_updateBytesCRC32:
3009   case vmIntrinsics::_updateByteBufferCRC32:
3010     do_update_CRC32(x);
3011     break;
3012 
3013   case vmIntrinsics::_updateBytesCRC32C:
3014   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3015     do_update_CRC32C(x);
3016     break;
3017 
3018   case vmIntrinsics::_vectorizedMismatch:
3019     do_vectorizedMismatch(x);
3020     break;
3021 
3022   case vmIntrinsics::_Continuation_doYield:
3023     do_continuation_doYield(x);
3024     break;
3025 
3026   case vmIntrinsics::_blackhole:
3027     do_blackhole(x);
3028     break;
3029 
3030   default: ShouldNotReachHere(); break;
3031   }
3032 }
3033 
3034 void LIRGenerator::profile_arguments(ProfileCall* x) {
3035   if (compilation()->profile_arguments()) {
3036     int bci = x->bci_of_invoke();
3037     ciMethodData* md = x->method()->method_data_or_null();
3038     assert(md != NULL, "Sanity");
3039     ciProfileData* data = md->bci_to_data(bci);
3040     if (data != NULL) {
3041       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3042           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3043         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3044         int base_offset = md->byte_offset_of_slot(data, extra);
3045         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3046         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3047 
3048         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3049         int start = 0;
3050         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3051         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3052           // first argument is not profiled at call (method handle invoke)
3053           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3054           start = 1;
3055         }
3056         ciSignature* callee_signature = x->callee()->signature();
3057         // method handle call to virtual method
3058         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3059         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3060 
3061         bool ignored_will_link;
3062         ciSignature* signature_at_call = NULL;
3063         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3064         ciSignatureStream signature_at_call_stream(signature_at_call);
3065 
3066         // if called through method handle invoke, some arguments may have been popped
3067         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3068           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3069           ciKlass* exact = profile_type(md, base_offset, off,
3070               args->type(i), x->profiled_arg_at(i+start), mdp,
3071               !x->arg_needs_null_check(i+start),
3072               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3073           if (exact != NULL) {
3074             md->set_argument_type(bci, i, exact);
3075           }
3076         }
3077       } else {
3078 #ifdef ASSERT
3079         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3080         int n = x->nb_profiled_args();
3081         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3082             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3083             "only at JSR292 bytecodes");
3084 #endif
3085       }
3086     }
3087   }
3088 }
3089 
3090 // profile parameters on entry to an inlined method
3091 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3092   if (compilation()->profile_parameters() && x->inlined()) {
3093     ciMethodData* md = x->callee()->method_data_or_null();
3094     if (md != NULL) {
3095       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3096       if (parameters_type_data != NULL) {
3097         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3098         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3099         bool has_receiver = !x->callee()->is_static();
3100         ciSignature* sig = x->callee()->signature();
3101         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3102         int i = 0; // to iterate on the Instructions
3103         Value arg = x->recv();
3104         bool not_null = false;
3105         int bci = x->bci_of_invoke();
3106         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3107         // The first parameter is the receiver so that's what we start
3108         // with if it exists. One exception is method handle call to
3109         // virtual method: the receiver is in the args list
3110         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3111           i = 1;
3112           arg = x->profiled_arg_at(0);
3113           not_null = !x->arg_needs_null_check(0);
3114         }
3115         int k = 0; // to iterate on the profile data
3116         for (;;) {
3117           intptr_t profiled_k = parameters->type(k);
3118           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3119                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3120                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3121           // If the profile is known statically set it once for all and do not emit any code
3122           if (exact != NULL) {
3123             md->set_parameter_type(k, exact);
3124           }
3125           k++;
3126           if (k >= parameters_type_data->number_of_parameters()) {
3127 #ifdef ASSERT
3128             int extra = 0;
3129             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3130                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3131                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3132               extra += 1;
3133             }
3134             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3135 #endif
3136             break;
3137           }
3138           arg = x->profiled_arg_at(i);
3139           not_null = !x->arg_needs_null_check(i);
3140           i++;
3141         }
3142       }
3143     }
3144   }
3145 }
3146 
3147 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3148   // Need recv in a temporary register so it interferes with the other temporaries
3149   LIR_Opr recv = LIR_OprFact::illegalOpr;
3150   LIR_Opr mdo = new_register(T_METADATA);
3151   // tmp is used to hold the counters on SPARC
3152   LIR_Opr tmp = new_pointer_register();
3153 
3154   if (x->nb_profiled_args() > 0) {
3155     profile_arguments(x);
3156   }
3157 
3158   // profile parameters on inlined method entry including receiver
3159   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3160     profile_parameters_at_call(x);
3161   }
3162 
3163   if (x->recv() != NULL) {
3164     LIRItem value(x->recv(), this);
3165     value.load_item();
3166     recv = new_register(T_OBJECT);
3167     __ move(value.result(), recv);
3168   }
3169   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3170 }
3171 
3172 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3173   int bci = x->bci_of_invoke();
3174   ciMethodData* md = x->method()->method_data_or_null();
3175   assert(md != NULL, "Sanity");
3176   ciProfileData* data = md->bci_to_data(bci);
3177   if (data != NULL) {
3178     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3179     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3180     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3181 
3182     bool ignored_will_link;
3183     ciSignature* signature_at_call = NULL;
3184     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3185 
3186     // The offset within the MDO of the entry to update may be too large
3187     // to be used in load/store instructions on some platforms. So have
3188     // profile_type() compute the address of the profile in a register.
3189     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3190         ret->type(), x->ret(), mdp,
3191         !x->needs_null_check(),
3192         signature_at_call->return_type()->as_klass(),
3193         x->callee()->signature()->return_type()->as_klass());
3194     if (exact != NULL) {
3195       md->set_return_type(bci, exact);
3196     }
3197   }
3198 }
3199 
3200 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3201   // We can safely ignore accessors here, since c2 will inline them anyway,
3202   // accessors are also always mature.
3203   if (!x->inlinee()->is_accessor()) {
3204     CodeEmitInfo* info = state_for(x, x->state(), true);
3205     // Notify the runtime very infrequently only to take care of counter overflows
3206     int freq_log = Tier23InlineeNotifyFreqLog;
3207     double scale;
3208     if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3209       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3210     }
3211     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3212   }
3213 }
3214 
3215 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3216   if (compilation()->is_profiling()) {
3217 #if defined(X86) && !defined(_LP64)
3218     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3219     LIR_Opr left_copy = new_register(left->type());
3220     __ move(left, left_copy);
3221     __ cmp(cond, left_copy, right);
3222 #else
3223     __ cmp(cond, left, right);
3224 #endif
3225     LIR_Opr step = new_register(T_INT);
3226     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3227     LIR_Opr zero = LIR_OprFact::intConst(0);
3228     __ cmove(cond,
3229         (left_bci < bci) ? plus_one : zero,
3230         (right_bci < bci) ? plus_one : zero,
3231         step, left->type());
3232     increment_backedge_counter(info, step, bci);
3233   }
3234 }
3235 
3236 
3237 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3238   int freq_log = 0;
3239   int level = compilation()->env()->comp_level();
3240   if (level == CompLevel_limited_profile) {
3241     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3242   } else if (level == CompLevel_full_profile) {
3243     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3244   } else {
3245     ShouldNotReachHere();
3246   }
3247   // Increment the appropriate invocation/backedge counter and notify the runtime.
3248   double scale;
3249   if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3250     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3251   }
3252   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3253 }
3254 
3255 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3256   ciMethod* method = info->scope()->method();
3257   MethodCounters* mc_adr = method->ensure_method_counters();
3258   if (mc_adr != NULL) {
3259     LIR_Opr mc = new_pointer_register();
3260     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3261     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3262     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3263     LIR_Opr result = new_register(T_INT);
3264     __ load(counter, result);
3265     __ sub(result, LIR_OprFact::intConst(1), result);
3266     __ store(result, counter);
3267     // DeoptimizeStub will reexecute from the current state in code info.
3268     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3269                                          Deoptimization::Action_make_not_entrant);
3270     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3271     __ branch(lir_cond_lessEqual, deopt);
3272   }
3273 }
3274 
3275 
3276 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3277                                                 ciMethod *method, LIR_Opr step, int frequency,
3278                                                 int bci, bool backedge, bool notify) {
3279   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3280   int level = _compilation->env()->comp_level();
3281   assert(level > CompLevel_simple, "Shouldn't be here");
3282 
3283   int offset = -1;
3284   LIR_Opr counter_holder;
3285   if (level == CompLevel_limited_profile) {
3286     MethodCounters* counters_adr = method->ensure_method_counters();
3287     if (counters_adr == NULL) {
3288       bailout("method counters allocation failed");
3289       return;
3290     }
3291     counter_holder = new_pointer_register();
3292     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3293     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3294                                  MethodCounters::invocation_counter_offset());
3295   } else if (level == CompLevel_full_profile) {
3296     counter_holder = new_register(T_METADATA);
3297     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3298                                  MethodData::invocation_counter_offset());
3299     ciMethodData* md = method->method_data_or_null();
3300     assert(md != NULL, "Sanity");
3301     __ metadata2reg(md->constant_encoding(), counter_holder);
3302   } else {
3303     ShouldNotReachHere();
3304   }
3305   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3306   LIR_Opr result = new_register(T_INT);
3307   __ load(counter, result);
3308   __ add(result, step, result);
3309   __ store(result, counter);
3310   if (notify && (!backedge || UseOnStackReplacement)) {
3311     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3312     // The bci for info can point to cmp for if's we want the if bci
3313     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3314     int freq = frequency << InvocationCounter::count_shift;
3315     if (freq == 0) {
3316       if (!step->is_constant()) {
3317         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3318         __ branch(lir_cond_notEqual, overflow);
3319       } else {
3320         __ branch(lir_cond_always, overflow);
3321       }
3322     } else {
3323       LIR_Opr mask = load_immediate(freq, T_INT);
3324       if (!step->is_constant()) {
3325         // If step is 0, make sure the overflow check below always fails
3326         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3327         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3328       }
3329       __ logical_and(result, mask, result);
3330       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3331       __ branch(lir_cond_equal, overflow);
3332     }
3333     __ branch_destination(overflow->continuation());
3334   }
3335 }
3336 
3337 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3338   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3339   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3340 
3341   if (x->pass_thread()) {
3342     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3343     args->append(getThreadPointer());
3344   }
3345 
3346   for (int i = 0; i < x->number_of_arguments(); i++) {
3347     Value a = x->argument_at(i);
3348     LIRItem* item = new LIRItem(a, this);
3349     item->load_item();
3350     args->append(item->result());
3351     signature->append(as_BasicType(a->type()));
3352   }
3353 
3354   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3355   if (x->type() == voidType) {
3356     set_no_result(x);
3357   } else {
3358     __ move(result, rlock_result(x));
3359   }
3360 }
3361 
3362 #ifdef ASSERT
3363 void LIRGenerator::do_Assert(Assert *x) {
3364   ValueTag tag = x->x()->type()->tag();
3365   If::Condition cond = x->cond();
3366 
3367   LIRItem xitem(x->x(), this);
3368   LIRItem yitem(x->y(), this);
3369   LIRItem* xin = &xitem;
3370   LIRItem* yin = &yitem;
3371 
3372   assert(tag == intTag, "Only integer assertions are valid!");
3373 
3374   xin->load_item();
3375   yin->dont_load_item();
3376 
3377   set_no_result(x);
3378 
3379   LIR_Opr left = xin->result();
3380   LIR_Opr right = yin->result();
3381 
3382   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3383 }
3384 #endif
3385 
3386 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3387 
3388 
3389   Instruction *a = x->x();
3390   Instruction *b = x->y();
3391   if (!a || StressRangeCheckElimination) {
3392     assert(!b || StressRangeCheckElimination, "B must also be null");
3393 
3394     CodeEmitInfo *info = state_for(x, x->state());
3395     CodeStub* stub = new PredicateFailedStub(info);
3396 
3397     __ jump(stub);
3398   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3399     int a_int = a->type()->as_IntConstant()->value();
3400     int b_int = b->type()->as_IntConstant()->value();
3401 
3402     bool ok = false;
3403 
3404     switch(x->cond()) {
3405       case Instruction::eql: ok = (a_int == b_int); break;
3406       case Instruction::neq: ok = (a_int != b_int); break;
3407       case Instruction::lss: ok = (a_int < b_int); break;
3408       case Instruction::leq: ok = (a_int <= b_int); break;
3409       case Instruction::gtr: ok = (a_int > b_int); break;
3410       case Instruction::geq: ok = (a_int >= b_int); break;
3411       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3412       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3413       default: ShouldNotReachHere();
3414     }
3415 
3416     if (ok) {
3417 
3418       CodeEmitInfo *info = state_for(x, x->state());
3419       CodeStub* stub = new PredicateFailedStub(info);
3420 
3421       __ jump(stub);
3422     }
3423   } else {
3424 
3425     ValueTag tag = x->x()->type()->tag();
3426     If::Condition cond = x->cond();
3427     LIRItem xitem(x->x(), this);
3428     LIRItem yitem(x->y(), this);
3429     LIRItem* xin = &xitem;
3430     LIRItem* yin = &yitem;
3431 
3432     assert(tag == intTag, "Only integer deoptimizations are valid!");
3433 
3434     xin->load_item();
3435     yin->dont_load_item();
3436     set_no_result(x);
3437 
3438     LIR_Opr left = xin->result();
3439     LIR_Opr right = yin->result();
3440 
3441     CodeEmitInfo *info = state_for(x, x->state());
3442     CodeStub* stub = new PredicateFailedStub(info);
3443 
3444     __ cmp(lir_cond(cond), left, right);
3445     __ branch(lir_cond(cond), stub);
3446   }
3447 }
3448 
3449 void LIRGenerator::do_blackhole(Intrinsic *x) {
3450   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3451   for (int c = 0; c < x->number_of_arguments(); c++) {
3452     // Load the argument
3453     LIRItem vitem(x->argument_at(c), this);
3454     vitem.load_item();
3455     // ...and leave it unused.
3456   }
3457 }
3458 
3459 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3460   LIRItemList args(1);
3461   LIRItem value(arg1, this);
3462   args.append(&value);
3463   BasicTypeList signature;
3464   signature.append(as_BasicType(arg1->type()));
3465 
3466   return call_runtime(&signature, &args, entry, result_type, info);
3467 }
3468 
3469 
3470 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3471   LIRItemList args(2);
3472   LIRItem value1(arg1, this);
3473   LIRItem value2(arg2, this);
3474   args.append(&value1);
3475   args.append(&value2);
3476   BasicTypeList signature;
3477   signature.append(as_BasicType(arg1->type()));
3478   signature.append(as_BasicType(arg2->type()));
3479 
3480   return call_runtime(&signature, &args, entry, result_type, info);
3481 }
3482 
3483 
3484 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3485                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3486   // get a result register
3487   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3488   LIR_Opr result = LIR_OprFact::illegalOpr;
3489   if (result_type->tag() != voidTag) {
3490     result = new_register(result_type);
3491     phys_reg = result_register_for(result_type);
3492   }
3493 
3494   // move the arguments into the correct location
3495   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3496   assert(cc->length() == args->length(), "argument mismatch");
3497   for (int i = 0; i < args->length(); i++) {
3498     LIR_Opr arg = args->at(i);
3499     LIR_Opr loc = cc->at(i);
3500     if (loc->is_register()) {
3501       __ move(arg, loc);
3502     } else {
3503       LIR_Address* addr = loc->as_address_ptr();
3504 //           if (!can_store_as_constant(arg)) {
3505 //             LIR_Opr tmp = new_register(arg->type());
3506 //             __ move(arg, tmp);
3507 //             arg = tmp;
3508 //           }
3509       __ move(arg, addr);
3510     }
3511   }
3512 
3513   if (info) {
3514     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3515   } else {
3516     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3517   }
3518   if (result->is_valid()) {
3519     __ move(phys_reg, result);
3520   }
3521   return result;
3522 }
3523 
3524 
3525 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3526                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3527   // get a result register
3528   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3529   LIR_Opr result = LIR_OprFact::illegalOpr;
3530   if (result_type->tag() != voidTag) {
3531     result = new_register(result_type);
3532     phys_reg = result_register_for(result_type);
3533   }
3534 
3535   // move the arguments into the correct location
3536   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3537 
3538   assert(cc->length() == args->length(), "argument mismatch");
3539   for (int i = 0; i < args->length(); i++) {
3540     LIRItem* arg = args->at(i);
3541     LIR_Opr loc = cc->at(i);
3542     if (loc->is_register()) {
3543       arg->load_item_force(loc);
3544     } else {
3545       LIR_Address* addr = loc->as_address_ptr();
3546       arg->load_for_store(addr->type());
3547       __ move(arg->result(), addr);
3548     }
3549   }
3550 
3551   if (info) {
3552     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3553   } else {
3554     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3555   }
3556   if (result->is_valid()) {
3557     __ move(phys_reg, result);
3558   }
3559   return result;
3560 }
3561 
3562 void LIRGenerator::do_MemBar(MemBar* x) {
3563   LIR_Code code = x->code();
3564   switch(code) {
3565   case lir_membar_acquire   : __ membar_acquire(); break;
3566   case lir_membar_release   : __ membar_release(); break;
3567   case lir_membar           : __ membar(); break;
3568   case lir_membar_loadload  : __ membar_loadload(); break;
3569   case lir_membar_storestore: __ membar_storestore(); break;
3570   case lir_membar_loadstore : __ membar_loadstore(); break;
3571   case lir_membar_storeload : __ membar_storeload(); break;
3572   default                   : ShouldNotReachHere(); break;
3573   }
3574 }
3575 
3576 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3577   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3578   if (TwoOperandLIRForm) {
3579     __ move(value, value_fixed);
3580     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3581   } else {
3582     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3583   }
3584   LIR_Opr klass = new_register(T_METADATA);
3585   load_klass(array, klass, null_check_info);
3586   null_check_info = NULL;
3587   LIR_Opr layout = new_register(T_INT);
3588   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3589   int diffbit = Klass::layout_helper_boolean_diffbit();
3590   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3591   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3592   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3593   value = value_fixed;
3594   return value;
3595 }