1 /*
2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Compilation.hpp"
26 #include "c1/c1_Defs.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciInstance.hpp"
34 #include "ci/ciObjArray.hpp"
35 #include "ci/ciUtilities.hpp"
36 #include "compiler/compilerDefinitions.inline.hpp"
37 #include "compiler/compilerOracle.hpp"
38 #include "gc/shared/barrierSet.hpp"
39 #include "gc/shared/c1/barrierSetC1.hpp"
40 #include "oops/klass.inline.hpp"
41 #include "oops/methodCounters.hpp"
42 #include "runtime/sharedRuntime.hpp"
43 #include "runtime/stubRoutines.hpp"
44 #include "runtime/vm_version.hpp"
45 #include "utilities/bitMap.inline.hpp"
46 #include "utilities/macros.hpp"
47 #include "utilities/powerOfTwo.hpp"
48
49 #ifdef ASSERT
50 #define __ gen()->lir(__FILE__, __LINE__)->
51 #else
52 #define __ gen()->lir()->
53 #endif
54
55 #ifndef PATCHED_ADDR
56 #define PATCHED_ADDR (max_jint)
57 #endif
58
59 void PhiResolverState::reset() {
60 _virtual_operands.clear();
61 _other_operands.clear();
62 _vreg_table.clear();
63 }
64
65
66 //--------------------------------------------------------------
67 // PhiResolver
68
69 // Resolves cycles:
70 //
71 // r1 := r2 becomes temp := r1
72 // r2 := r1 r1 := r2
73 // r2 := temp
74 // and orders moves:
75 //
76 // r2 := r3 becomes r1 := r2
77 // r1 := r2 r2 := r3
78
79 PhiResolver::PhiResolver(LIRGenerator* gen)
80 : _gen(gen)
81 , _state(gen->resolver_state())
82 , _loop(nullptr)
83 , _temp(LIR_OprFact::illegalOpr)
84 {
85 // reinitialize the shared state arrays
86 _state.reset();
87 }
88
89
90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
91 assert(src->is_valid(), "");
92 assert(dest->is_valid(), "");
93 __ move(src, dest);
94 }
95
96
97 void PhiResolver::move_temp_to(LIR_Opr dest) {
98 assert(_temp->is_valid(), "");
99 emit_move(_temp, dest);
100 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
101 }
102
103
104 void PhiResolver::move_to_temp(LIR_Opr src) {
105 assert(_temp->is_illegal(), "");
106 _temp = _gen->new_register(src->type());
107 emit_move(src, _temp);
108 }
109
110
111 // Traverse assignment graph in depth first order and generate moves in post order
112 // ie. two assignments: b := c, a := b start with node c:
113 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
114 // Generates moves in this order: move b to a and move c to b
115 // ie. cycle a := b, b := a start with node a
116 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
117 // Generates moves in this order: move b to temp, move a to b, move temp to a
118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
119 if (!dest->visited()) {
120 dest->set_visited();
121 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
122 move(dest, dest->destination_at(i));
123 }
124 } else if (!dest->start_node()) {
125 // cylce in graph detected
126 assert(_loop == nullptr, "only one loop valid!");
127 _loop = dest;
128 move_to_temp(src->operand());
129 return;
130 } // else dest is a start node
131
132 if (!dest->assigned()) {
133 if (_loop == dest) {
134 move_temp_to(dest->operand());
135 dest->set_assigned();
136 } else if (src != nullptr) {
137 emit_move(src->operand(), dest->operand());
138 dest->set_assigned();
139 }
140 }
141 }
142
143
144 PhiResolver::~PhiResolver() {
145 int i;
146 // resolve any cycles in moves from and to virtual registers
147 for (i = virtual_operands().length() - 1; i >= 0; i --) {
148 ResolveNode* node = virtual_operands().at(i);
149 if (!node->visited()) {
150 _loop = nullptr;
151 move(nullptr, node);
152 node->set_start_node();
153 assert(_temp->is_illegal(), "move_temp_to() call missing");
154 }
155 }
156
157 // generate move for move from non virtual register to abitrary destination
158 for (i = other_operands().length() - 1; i >= 0; i --) {
159 ResolveNode* node = other_operands().at(i);
160 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
161 emit_move(node->operand(), node->destination_at(j)->operand());
162 }
163 }
164 }
165
166
167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
168 ResolveNode* node;
169 if (opr->is_virtual()) {
170 int vreg_num = opr->vreg_number();
171 node = vreg_table().at_grow(vreg_num, nullptr);
172 assert(node == nullptr || node->operand() == opr, "");
173 if (node == nullptr) {
174 node = new ResolveNode(opr);
175 vreg_table().at_put(vreg_num, node);
176 }
177 // Make sure that all virtual operands show up in the list when
178 // they are used as the source of a move.
179 if (source && !virtual_operands().contains(node)) {
180 virtual_operands().append(node);
181 }
182 } else {
183 assert(source, "");
184 node = new ResolveNode(opr);
185 other_operands().append(node);
186 }
187 return node;
188 }
189
190
191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
192 assert(dest->is_virtual(), "");
193 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
194 assert(src->is_valid(), "");
195 assert(dest->is_valid(), "");
196 ResolveNode* source = source_node(src);
197 source->append(destination_node(dest));
198 }
199
200
201 //--------------------------------------------------------------
202 // LIRItem
203
204 void LIRItem::set_result(LIR_Opr opr) {
205 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
206 value()->set_operand(opr);
207
208 #ifdef ASSERT
209 if (opr->is_virtual()) {
210 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
211 }
212 #endif
213
214 _result = opr;
215 }
216
217 void LIRItem::load_item() {
218 if (result()->is_illegal()) {
219 // update the items result
220 _result = value()->operand();
221 }
222 if (!result()->is_register()) {
223 LIR_Opr reg = _gen->new_register(value()->type());
224 __ move(result(), reg);
225 if (result()->is_constant()) {
226 _result = reg;
227 } else {
228 set_result(reg);
229 }
230 }
231 }
232
233
234 void LIRItem::load_for_store(BasicType type) {
235 if (_gen->can_store_as_constant(value(), type)) {
236 _result = value()->operand();
237 if (!_result->is_constant()) {
238 _result = LIR_OprFact::value_type(value()->type());
239 }
240 } else if (type == T_BYTE || type == T_BOOLEAN) {
241 load_byte_item();
242 } else {
243 load_item();
244 }
245 }
246
247 void LIRItem::load_item_force(LIR_Opr reg) {
248 LIR_Opr r = result();
249 if (r != reg) {
250 #if !defined(ARM) && !defined(E500V2)
251 if (r->type() != reg->type()) {
252 // moves between different types need an intervening spill slot
253 r = _gen->force_to_spill(r, reg->type());
254 }
255 #endif
256 __ move(r, reg);
257 _result = reg;
258 }
259 }
260
261 ciObject* LIRItem::get_jobject_constant() const {
262 ObjectType* oc = type()->as_ObjectType();
263 if (oc) {
264 return oc->constant_value();
265 }
266 return nullptr;
267 }
268
269
270 jint LIRItem::get_jint_constant() const {
271 assert(is_constant() && value() != nullptr, "");
272 assert(type()->as_IntConstant() != nullptr, "type check");
273 return type()->as_IntConstant()->value();
274 }
275
276
277 jint LIRItem::get_address_constant() const {
278 assert(is_constant() && value() != nullptr, "");
279 assert(type()->as_AddressConstant() != nullptr, "type check");
280 return type()->as_AddressConstant()->value();
281 }
282
283
284 jfloat LIRItem::get_jfloat_constant() const {
285 assert(is_constant() && value() != nullptr, "");
286 assert(type()->as_FloatConstant() != nullptr, "type check");
287 return type()->as_FloatConstant()->value();
288 }
289
290
291 jdouble LIRItem::get_jdouble_constant() const {
292 assert(is_constant() && value() != nullptr, "");
293 assert(type()->as_DoubleConstant() != nullptr, "type check");
294 return type()->as_DoubleConstant()->value();
295 }
296
297
298 jlong LIRItem::get_jlong_constant() const {
299 assert(is_constant() && value() != nullptr, "");
300 assert(type()->as_LongConstant() != nullptr, "type check");
301 return type()->as_LongConstant()->value();
302 }
303
304
305
306 //--------------------------------------------------------------
307
308
309 void LIRGenerator::block_do_prolog(BlockBegin* block) {
310 #ifndef PRODUCT
311 if (PrintIRWithLIR) {
312 block->print();
313 }
314 #endif
315
316 // set up the list of LIR instructions
317 assert(block->lir() == nullptr, "LIR list already computed for this block");
318 _lir = new LIR_List(compilation(), block);
319 block->set_lir(_lir);
320
321 __ branch_destination(block->label());
322
323 if (LIRTraceExecution &&
324 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
325 !block->is_set(BlockBegin::exception_entry_flag)) {
326 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
327 trace_block_entry(block);
328 }
329 }
330
331
332 void LIRGenerator::block_do_epilog(BlockBegin* block) {
333 #ifndef PRODUCT
334 if (PrintIRWithLIR) {
335 tty->cr();
336 }
337 #endif
338
339 // LIR_Opr for unpinned constants shouldn't be referenced by other
340 // blocks so clear them out after processing the block.
341 for (int i = 0; i < _unpinned_constants.length(); i++) {
342 _unpinned_constants.at(i)->clear_operand();
343 }
344 _unpinned_constants.trunc_to(0);
345
346 // clear our any registers for other local constants
347 _constants.trunc_to(0);
348 _reg_for_constants.trunc_to(0);
349 }
350
351
352 void LIRGenerator::block_do(BlockBegin* block) {
353 CHECK_BAILOUT();
354
355 block_do_prolog(block);
356 set_block(block);
357
358 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
359 if (instr->is_pinned()) do_root(instr);
360 }
361
362 set_block(nullptr);
363 block_do_epilog(block);
364 }
365
366
367 //-------------------------LIRGenerator-----------------------------
368
369 // This is where the tree-walk starts; instr must be root;
370 void LIRGenerator::do_root(Value instr) {
371 CHECK_BAILOUT();
372
373 InstructionMark im(compilation(), instr);
374
375 assert(instr->is_pinned(), "use only with roots");
376 assert(instr->subst() == instr, "shouldn't have missed substitution");
377
378 instr->visit(this);
379
380 assert(!instr->has_uses() || instr->operand()->is_valid() ||
381 instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
382 }
383
384
385 // This is called for each node in tree; the walk stops if a root is reached
386 void LIRGenerator::walk(Value instr) {
387 InstructionMark im(compilation(), instr);
388 //stop walk when encounter a root
389 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
390 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
391 } else {
392 assert(instr->subst() == instr, "shouldn't have missed substitution");
393 instr->visit(this);
394 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
395 }
396 }
397
398
399 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
400 assert(state != nullptr, "state must be defined");
401
402 #ifndef PRODUCT
403 state->verify();
404 #endif
405
406 ValueStack* s = state;
407 for_each_state(s) {
408 if (s->kind() == ValueStack::EmptyExceptionState ||
409 s->kind() == ValueStack::CallerEmptyExceptionState)
410 {
411 #ifdef ASSERT
412 int index;
413 Value value;
414 for_each_stack_value(s, index, value) {
415 fatal("state must be empty");
416 }
417 for_each_local_value(s, index, value) {
418 fatal("state must be empty");
419 }
420 #endif
421 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty");
422 continue;
423 }
424
425 int index;
426 Value value;
427 for_each_stack_value(s, index, value) {
428 assert(value->subst() == value, "missed substitution");
429 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
430 walk(value);
431 assert(value->operand()->is_valid(), "must be evaluated now");
432 }
433 }
434
435 int bci = s->bci();
436 IRScope* scope = s->scope();
437 ciMethod* method = scope->method();
438
439 MethodLivenessResult liveness = method->liveness_at_bci(bci);
440 if (bci == SynchronizationEntryBCI) {
441 if (x->as_ExceptionObject() || x->as_Throw()) {
442 // all locals are dead on exit from the synthetic unlocker
443 liveness.clear();
444 } else {
445 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
446 }
447 }
448 if (!liveness.is_valid()) {
449 // Degenerate or breakpointed method.
450 bailout("Degenerate or breakpointed method");
451 } else {
452 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
453 for_each_local_value(s, index, value) {
454 assert(value->subst() == value, "missed substitution");
455 if (liveness.at(index) && !value->type()->is_illegal()) {
456 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
457 walk(value);
458 assert(value->operand()->is_valid(), "must be evaluated now");
459 }
460 } else {
461 // null out this local so that linear scan can assume that all non-null values are live.
462 s->invalidate_local(index);
463 }
464 }
465 }
466 }
467
468 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
469 }
470
471
472 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
473 return state_for(x, x->exception_state());
474 }
475
476
477 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
478 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
479 * is active and the class hasn't yet been resolved we need to emit a patch that resolves
480 * the class. */
481 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
482 assert(info != nullptr, "info must be set if class is not loaded");
483 __ klass2reg_patch(nullptr, r, info);
484 } else {
485 // no patching needed
486 __ metadata2reg(obj->constant_encoding(), r);
487 }
488 }
489
490
491 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
492 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
493 CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
494 if (index->is_constant()) {
495 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
496 index->as_jint(), null_check_info);
497 __ branch(lir_cond_belowEqual, stub); // forward branch
498 } else {
499 cmp_reg_mem(lir_cond_aboveEqual, index, array,
500 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
501 __ branch(lir_cond_aboveEqual, stub); // forward branch
502 }
503 }
504
505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
506 LIR_Opr result_op = result;
507 LIR_Opr left_op = left;
508 LIR_Opr right_op = right;
509
510 if (two_operand_lir_form && left_op != result_op) {
511 assert(right_op != result_op, "malformed");
512 __ move(left_op, result_op);
513 left_op = result_op;
514 }
515
516 switch(code) {
517 case Bytecodes::_dadd:
518 case Bytecodes::_fadd:
519 case Bytecodes::_ladd:
520 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
521 case Bytecodes::_fmul:
522 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
523
524 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break;
525
526 case Bytecodes::_imul:
527 {
528 bool did_strength_reduce = false;
529
530 if (right->is_constant()) {
531 jint c = right->as_jint();
532 if (c > 0 && is_power_of_2(c)) {
533 // do not need tmp here
534 __ shift_left(left_op, exact_log2(c), result_op);
535 did_strength_reduce = true;
536 } else {
537 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
538 }
539 }
540 // we couldn't strength reduce so just emit the multiply
541 if (!did_strength_reduce) {
542 __ mul(left_op, right_op, result_op);
543 }
544 }
545 break;
546
547 case Bytecodes::_dsub:
548 case Bytecodes::_fsub:
549 case Bytecodes::_lsub:
550 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
551
552 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
553 // ldiv and lrem are implemented with a direct runtime call
554
555 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
556
557 case Bytecodes::_drem:
558 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
559
560 default: ShouldNotReachHere();
561 }
562 }
563
564
565 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
566 arithmetic_op(code, result, left, right, tmp);
567 }
568
569
570 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
571 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
572 }
573
574
575 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
576 arithmetic_op(code, result, left, right, tmp);
577 }
578
579
580 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
581
582 if (two_operand_lir_form && value != result_op
583 // Only 32bit right shifts require two operand form on S390.
584 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
585 assert(count != result_op, "malformed");
586 __ move(value, result_op);
587 value = result_op;
588 }
589
590 assert(count->is_constant() || count->is_register(), "must be");
591 switch(code) {
592 case Bytecodes::_ishl:
593 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
594 case Bytecodes::_ishr:
595 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
596 case Bytecodes::_iushr:
597 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
598 default: ShouldNotReachHere();
599 }
600 }
601
602
603 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
604 if (two_operand_lir_form && left_op != result_op) {
605 assert(right_op != result_op, "malformed");
606 __ move(left_op, result_op);
607 left_op = result_op;
608 }
609
610 switch(code) {
611 case Bytecodes::_iand:
612 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
613
614 case Bytecodes::_ior:
615 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
616
617 case Bytecodes::_ixor:
618 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
619
620 default: ShouldNotReachHere();
621 }
622 }
623
624
625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
626 // for slow path, use debug info for state after successful locking
627 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
628 __ load_stack_address_monitor(monitor_no, lock);
629 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
630 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
631 }
632
633
634 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
635 // setup registers
636 LIR_Opr hdr = lock;
637 lock = new_hdr;
638 CodeStub* slow_path = new MonitorExitStub(lock, monitor_no);
639 __ load_stack_address_monitor(monitor_no, lock);
640 __ unlock_object(hdr, object, lock, scratch, slow_path);
641 }
642
643 #ifndef PRODUCT
644 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
645 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
646 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
647 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
648 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
649 }
650 }
651 #endif
652
653 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
654 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
655 // If klass is not loaded we do not know if the klass has finalizers:
656 if (UseFastNewInstance && klass->is_loaded()
657 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
658
659 StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
660
661 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
662
663 assert(klass->is_loaded(), "must be loaded");
664 // allocate space for instance
665 assert(klass->size_helper() > 0, "illegal instance size");
666 const int instance_size = align_object_size(klass->size_helper());
667 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
668 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
669 } else {
670 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
671 __ branch(lir_cond_always, slow_path);
672 __ branch_destination(slow_path->continuation());
673 }
674 }
675
676
677 static bool is_constant_zero(Instruction* inst) {
678 IntConstant* c = inst->type()->as_IntConstant();
679 if (c) {
680 return (c->value() == 0);
681 }
682 return false;
683 }
684
685
686 static bool positive_constant(Instruction* inst) {
687 IntConstant* c = inst->type()->as_IntConstant();
688 if (c) {
689 return (c->value() >= 0);
690 }
691 return false;
692 }
693
694
695 static ciArrayKlass* as_array_klass(ciType* type) {
696 if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
697 return (ciArrayKlass*)type;
698 } else {
699 return nullptr;
700 }
701 }
702
703 static ciType* phi_declared_type(Phi* phi) {
704 ciType* t = phi->operand_at(0)->declared_type();
705 if (t == nullptr) {
706 return nullptr;
707 }
708 for(int i = 1; i < phi->operand_count(); i++) {
709 if (t != phi->operand_at(i)->declared_type()) {
710 return nullptr;
711 }
712 }
713 return t;
714 }
715
716 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
717 Instruction* src = x->argument_at(0);
718 Instruction* src_pos = x->argument_at(1);
719 Instruction* dst = x->argument_at(2);
720 Instruction* dst_pos = x->argument_at(3);
721 Instruction* length = x->argument_at(4);
722
723 // first try to identify the likely type of the arrays involved
724 ciArrayKlass* expected_type = nullptr;
725 bool is_exact = false, src_objarray = false, dst_objarray = false;
726 {
727 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
728 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
729 Phi* phi;
730 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
731 src_declared_type = as_array_klass(phi_declared_type(phi));
732 }
733 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
734 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
735 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
736 dst_declared_type = as_array_klass(phi_declared_type(phi));
737 }
738
739 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
740 // the types exactly match so the type is fully known
741 is_exact = true;
742 expected_type = src_exact_type;
743 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
744 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
745 ciArrayKlass* src_type = nullptr;
746 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
747 src_type = (ciArrayKlass*) src_exact_type;
748 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
749 src_type = (ciArrayKlass*) src_declared_type;
750 }
751 if (src_type != nullptr) {
752 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
753 is_exact = true;
754 expected_type = dst_type;
755 }
756 }
757 }
758 // at least pass along a good guess
759 if (expected_type == nullptr) expected_type = dst_exact_type;
760 if (expected_type == nullptr) expected_type = src_declared_type;
761 if (expected_type == nullptr) expected_type = dst_declared_type;
762
763 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
764 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
765 }
766
767 // if a probable array type has been identified, figure out if any
768 // of the required checks for a fast case can be elided.
769 int flags = LIR_OpArrayCopy::all_flags;
770
771 if (!src_objarray)
772 flags &= ~LIR_OpArrayCopy::src_objarray;
773 if (!dst_objarray)
774 flags &= ~LIR_OpArrayCopy::dst_objarray;
775
776 if (!x->arg_needs_null_check(0))
777 flags &= ~LIR_OpArrayCopy::src_null_check;
778 if (!x->arg_needs_null_check(2))
779 flags &= ~LIR_OpArrayCopy::dst_null_check;
780
781
782 if (expected_type != nullptr) {
783 Value length_limit = nullptr;
784
785 IfOp* ifop = length->as_IfOp();
786 if (ifop != nullptr) {
787 // look for expressions like min(v, a.length) which ends up as
788 // x > y ? y : x or x >= y ? y : x
789 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
790 ifop->x() == ifop->fval() &&
791 ifop->y() == ifop->tval()) {
792 length_limit = ifop->y();
793 }
794 }
795
796 // try to skip null checks and range checks
797 NewArray* src_array = src->as_NewArray();
798 if (src_array != nullptr) {
799 flags &= ~LIR_OpArrayCopy::src_null_check;
800 if (length_limit != nullptr &&
801 src_array->length() == length_limit &&
802 is_constant_zero(src_pos)) {
803 flags &= ~LIR_OpArrayCopy::src_range_check;
804 }
805 }
806
807 NewArray* dst_array = dst->as_NewArray();
808 if (dst_array != nullptr) {
809 flags &= ~LIR_OpArrayCopy::dst_null_check;
810 if (length_limit != nullptr &&
811 dst_array->length() == length_limit &&
812 is_constant_zero(dst_pos)) {
813 flags &= ~LIR_OpArrayCopy::dst_range_check;
814 }
815 }
816
817 // check from incoming constant values
818 if (positive_constant(src_pos))
819 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
820 if (positive_constant(dst_pos))
821 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
822 if (positive_constant(length))
823 flags &= ~LIR_OpArrayCopy::length_positive_check;
824
825 // see if the range check can be elided, which might also imply
826 // that src or dst is non-null.
827 ArrayLength* al = length->as_ArrayLength();
828 if (al != nullptr) {
829 if (al->array() == src) {
830 // it's the length of the source array
831 flags &= ~LIR_OpArrayCopy::length_positive_check;
832 flags &= ~LIR_OpArrayCopy::src_null_check;
833 if (is_constant_zero(src_pos))
834 flags &= ~LIR_OpArrayCopy::src_range_check;
835 }
836 if (al->array() == dst) {
837 // it's the length of the destination array
838 flags &= ~LIR_OpArrayCopy::length_positive_check;
839 flags &= ~LIR_OpArrayCopy::dst_null_check;
840 if (is_constant_zero(dst_pos))
841 flags &= ~LIR_OpArrayCopy::dst_range_check;
842 }
843 }
844 if (is_exact) {
845 flags &= ~LIR_OpArrayCopy::type_check;
846 }
847 }
848
849 IntConstant* src_int = src_pos->type()->as_IntConstant();
850 IntConstant* dst_int = dst_pos->type()->as_IntConstant();
851 if (src_int && dst_int) {
852 int s_offs = src_int->value();
853 int d_offs = dst_int->value();
854 if (src_int->value() >= dst_int->value()) {
855 flags &= ~LIR_OpArrayCopy::overlapping;
856 }
857 if (expected_type != nullptr) {
858 BasicType t = expected_type->element_type()->basic_type();
859 int element_size = type2aelembytes(t);
860 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
861 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
862 flags &= ~LIR_OpArrayCopy::unaligned;
863 }
864 }
865 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
866 // src and dest positions are the same, or dst is zero so assume
867 // nonoverlapping copy.
868 flags &= ~LIR_OpArrayCopy::overlapping;
869 }
870
871 if (src == dst) {
872 // moving within a single array so no type checks are needed
873 if (flags & LIR_OpArrayCopy::type_check) {
874 flags &= ~LIR_OpArrayCopy::type_check;
875 }
876 }
877 *flagsp = flags;
878 *expected_typep = (ciArrayKlass*)expected_type;
879 }
880
881
882 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
883 assert(type2size[t] == type2size[value->type()],
884 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
885 if (!value->is_register()) {
886 // force into a register
887 LIR_Opr r = new_register(value->type());
888 __ move(value, r);
889 value = r;
890 }
891
892 // create a spill location
893 LIR_Opr tmp = new_register(t);
894 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
895
896 // move from register to spill
897 __ move(value, tmp);
898 return tmp;
899 }
900
901 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
902 if (if_instr->should_profile()) {
903 ciMethod* method = if_instr->profiled_method();
904 assert(method != nullptr, "method should be set if branch is profiled");
905 ciMethodData* md = method->method_data_or_null();
906 assert(md != nullptr, "Sanity");
907 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
908 assert(data != nullptr, "must have profiling data");
909 assert(data->is_BranchData(), "need BranchData for two-way branches");
910 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
911 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
912 if (if_instr->is_swapped()) {
913 int t = taken_count_offset;
914 taken_count_offset = not_taken_count_offset;
915 not_taken_count_offset = t;
916 }
917
918 LIR_Opr md_reg = new_register(T_METADATA);
919 __ metadata2reg(md->constant_encoding(), md_reg);
920
921 LIR_Opr data_offset_reg = new_pointer_register();
922 __ cmove(lir_cond(cond),
923 LIR_OprFact::intptrConst(taken_count_offset),
924 LIR_OprFact::intptrConst(not_taken_count_offset),
925 data_offset_reg, as_BasicType(if_instr->x()->type()));
926
927 // MDO cells are intptr_t, so the data_reg width is arch-dependent.
928 LIR_Opr data_reg = new_pointer_register();
929 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
930 __ move(data_addr, data_reg);
931 // Use leal instead of add to avoid destroying condition codes on x86
932 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
933 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
934 __ move(data_reg, data_addr);
935 }
936 }
937
938 // Phi technique:
939 // This is about passing live values from one basic block to the other.
940 // In code generated with Java it is rather rare that more than one
941 // value is on the stack from one basic block to the other.
942 // We optimize our technique for efficient passing of one value
943 // (of type long, int, double..) but it can be extended.
944 // When entering or leaving a basic block, all registers and all spill
945 // slots are release and empty. We use the released registers
946 // and spill slots to pass the live values from one block
947 // to the other. The topmost value, i.e., the value on TOS of expression
948 // stack is passed in registers. All other values are stored in spilling
949 // area. Every Phi has an index which designates its spill slot
950 // At exit of a basic block, we fill the register(s) and spill slots.
951 // At entry of a basic block, the block_prolog sets up the content of phi nodes
952 // and locks necessary registers and spilling slots.
953
954
955 // move current value to referenced phi function
956 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
957 Phi* phi = sux_val->as_Phi();
958 // cur_val can be null without phi being null in conjunction with inlining
959 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
960 if (phi->is_local()) {
961 for (int i = 0; i < phi->operand_count(); i++) {
962 Value op = phi->operand_at(i);
963 if (op != nullptr && op->type()->is_illegal()) {
964 bailout("illegal phi operand");
965 }
966 }
967 }
968 Phi* cur_phi = cur_val->as_Phi();
969 if (cur_phi != nullptr && cur_phi->is_illegal()) {
970 // Phi and local would need to get invalidated
971 // (which is unexpected for Linear Scan).
972 // But this case is very rare so we simply bail out.
973 bailout("propagation of illegal phi");
974 return;
975 }
976 LIR_Opr operand = cur_val->operand();
977 if (operand->is_illegal()) {
978 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
979 "these can be produced lazily");
980 operand = operand_for_instruction(cur_val);
981 }
982 resolver->move(operand, operand_for_instruction(phi));
983 }
984 }
985
986
987 // Moves all stack values into their PHI position
988 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
989 BlockBegin* bb = block();
990 if (bb->number_of_sux() == 1) {
991 BlockBegin* sux = bb->sux_at(0);
992 assert(sux->number_of_preds() > 0, "invalid CFG");
993
994 // a block with only one predecessor never has phi functions
995 if (sux->number_of_preds() > 1) {
996 PhiResolver resolver(this);
997
998 ValueStack* sux_state = sux->state();
999 Value sux_value;
1000 int index;
1001
1002 assert(cur_state->scope() == sux_state->scope(), "not matching");
1003 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1004 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1005
1006 for_each_stack_value(sux_state, index, sux_value) {
1007 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1008 }
1009
1010 for_each_local_value(sux_state, index, sux_value) {
1011 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1012 }
1013
1014 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1015 }
1016 }
1017 }
1018
1019
1020 LIR_Opr LIRGenerator::new_register(BasicType type) {
1021 int vreg_num = _virtual_register_number;
1022 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1023 // a few extra registers before we really run out which helps to avoid to trip over assertions.
1024 if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1025 bailout("out of virtual registers in LIR generator");
1026 if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1027 // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1028 _virtual_register_number = LIR_Opr::vreg_base;
1029 vreg_num = LIR_Opr::vreg_base;
1030 }
1031 }
1032 _virtual_register_number += 1;
1033 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1034 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1035 return vreg;
1036 }
1037
1038
1039 // Try to lock using register in hint
1040 LIR_Opr LIRGenerator::rlock(Value instr) {
1041 return new_register(instr->type());
1042 }
1043
1044
1045 // does an rlock and sets result
1046 LIR_Opr LIRGenerator::rlock_result(Value x) {
1047 LIR_Opr reg = rlock(x);
1048 set_result(x, reg);
1049 return reg;
1050 }
1051
1052
1053 // does an rlock and sets result
1054 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1055 LIR_Opr reg;
1056 switch (type) {
1057 case T_BYTE:
1058 case T_BOOLEAN:
1059 reg = rlock_byte(type);
1060 break;
1061 default:
1062 reg = rlock(x);
1063 break;
1064 }
1065
1066 set_result(x, reg);
1067 return reg;
1068 }
1069
1070
1071 //---------------------------------------------------------------------
1072 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1073 ObjectType* oc = value->type()->as_ObjectType();
1074 if (oc) {
1075 return oc->constant_value();
1076 }
1077 return nullptr;
1078 }
1079
1080
1081 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1082 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1083 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1084
1085 // no moves are created for phi functions at the begin of exception
1086 // handlers, so assign operands manually here
1087 for_each_phi_fun(block(), phi,
1088 if (!phi->is_illegal()) { operand_for_instruction(phi); });
1089
1090 LIR_Opr thread_reg = getThreadPointer();
1091 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1092 exceptionOopOpr());
1093 __ move_wide(LIR_OprFact::oopConst(nullptr),
1094 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1095 __ move_wide(LIR_OprFact::oopConst(nullptr),
1096 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1097
1098 LIR_Opr result = new_register(T_OBJECT);
1099 __ move(exceptionOopOpr(), result);
1100 set_result(x, result);
1101 }
1102
1103
1104 //----------------------------------------------------------------------
1105 //----------------------------------------------------------------------
1106 //----------------------------------------------------------------------
1107 //----------------------------------------------------------------------
1108 // visitor functions
1109 //----------------------------------------------------------------------
1110 //----------------------------------------------------------------------
1111 //----------------------------------------------------------------------
1112 //----------------------------------------------------------------------
1113
1114 void LIRGenerator::do_Phi(Phi* x) {
1115 // phi functions are never visited directly
1116 ShouldNotReachHere();
1117 }
1118
1119
1120 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1121 void LIRGenerator::do_Constant(Constant* x) {
1122 if (x->state_before() != nullptr) {
1123 // Any constant with a ValueStack requires patching so emit the patch here
1124 LIR_Opr reg = rlock_result(x);
1125 CodeEmitInfo* info = state_for(x, x->state_before());
1126 __ oop2reg_patch(nullptr, reg, info);
1127 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1128 if (!x->is_pinned()) {
1129 // unpinned constants are handled specially so that they can be
1130 // put into registers when they are used multiple times within a
1131 // block. After the block completes their operand will be
1132 // cleared so that other blocks can't refer to that register.
1133 set_result(x, load_constant(x));
1134 } else {
1135 LIR_Opr res = x->operand();
1136 if (!res->is_valid()) {
1137 res = LIR_OprFact::value_type(x->type());
1138 }
1139 if (res->is_constant()) {
1140 LIR_Opr reg = rlock_result(x);
1141 __ move(res, reg);
1142 } else {
1143 set_result(x, res);
1144 }
1145 }
1146 } else {
1147 set_result(x, LIR_OprFact::value_type(x->type()));
1148 }
1149 }
1150
1151
1152 void LIRGenerator::do_Local(Local* x) {
1153 // operand_for_instruction has the side effect of setting the result
1154 // so there's no need to do it here.
1155 operand_for_instruction(x);
1156 }
1157
1158
1159 void LIRGenerator::do_Return(Return* x) {
1160 if (compilation()->env()->dtrace_method_probes()) {
1161 BasicTypeList signature;
1162 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
1163 signature.append(T_METADATA); // Method*
1164 LIR_OprList* args = new LIR_OprList();
1165 args->append(getThreadPointer());
1166 LIR_Opr meth = new_register(T_METADATA);
1167 __ metadata2reg(method()->constant_encoding(), meth);
1168 args->append(meth);
1169 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1170 }
1171
1172 if (x->type()->is_void()) {
1173 __ return_op(LIR_OprFact::illegalOpr);
1174 } else {
1175 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1176 LIRItem result(x->result(), this);
1177
1178 result.load_item_force(reg);
1179 __ return_op(result.result());
1180 }
1181 set_no_result(x);
1182 }
1183
1184 // Example: ref.get()
1185 // Combination of LoadField and g1 pre-write barrier
1186 void LIRGenerator::do_Reference_get0(Intrinsic* x) {
1187
1188 const int referent_offset = java_lang_ref_Reference::referent_offset();
1189
1190 assert(x->number_of_arguments() == 1, "wrong type");
1191
1192 LIRItem reference(x->argument_at(0), this);
1193 reference.load_item();
1194
1195 // need to perform the null check on the reference object
1196 CodeEmitInfo* info = nullptr;
1197 if (x->needs_null_check()) {
1198 info = state_for(x);
1199 }
1200
1201 LIR_Opr result = rlock_result(x, T_OBJECT);
1202 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1203 reference, LIR_OprFact::intConst(referent_offset), result,
1204 nullptr, info);
1205 }
1206
1207 // Example: clazz.isInstance(object)
1208 void LIRGenerator::do_isInstance(Intrinsic* x) {
1209 assert(x->number_of_arguments() == 2, "wrong type");
1210
1211 LIRItem clazz(x->argument_at(0), this);
1212 LIRItem object(x->argument_at(1), this);
1213 clazz.load_item();
1214 object.load_item();
1215 LIR_Opr result = rlock_result(x);
1216
1217 // need to perform null check on clazz
1218 if (x->needs_null_check()) {
1219 CodeEmitInfo* info = state_for(x);
1220 __ null_check(clazz.result(), info);
1221 }
1222
1223 address pd_instanceof_fn = isInstance_entry();
1224 LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1225 pd_instanceof_fn,
1226 x->type(),
1227 nullptr); // null CodeEmitInfo results in a leaf call
1228 __ move(call_result, result);
1229 }
1230
1231 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1232 __ load_klass(obj, klass, null_check_info);
1233 }
1234
1235 // Example: object.getClass ()
1236 void LIRGenerator::do_getClass(Intrinsic* x) {
1237 assert(x->number_of_arguments() == 1, "wrong type");
1238
1239 LIRItem rcvr(x->argument_at(0), this);
1240 rcvr.load_item();
1241 LIR_Opr temp = new_register(T_ADDRESS);
1242 LIR_Opr result = rlock_result(x);
1243
1244 // need to perform the null check on the rcvr
1245 CodeEmitInfo* info = nullptr;
1246 if (x->needs_null_check()) {
1247 info = state_for(x);
1248 }
1249
1250 LIR_Opr klass = new_register(T_METADATA);
1251 load_klass(rcvr.result(), klass, info);
1252 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1253 // mirror = ((OopHandle)mirror)->resolve();
1254 access_load(IN_NATIVE, T_OBJECT,
1255 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1256 }
1257
1258 void LIRGenerator::do_addressOf(Intrinsic* x) {
1259 assert(x->number_of_arguments() == 1, "wrong type");
1260 LIR_Opr reg = rlock_result(x);
1261
1262 LIRItem value(x->argument_at(0), this);
1263 value.load_item();
1264
1265 #ifdef _LP64
1266 __ move(value.result(), reg, nullptr);
1267 #else
1268 LIR_Opr res = new_register(T_INT);
1269 __ move(value.result(), res, nullptr);
1270 __ convert(Bytecodes::_i2l, res, reg);
1271 #endif
1272 }
1273
1274 void LIRGenerator::do_sizeOf(Intrinsic* x) {
1275 assert(x->number_of_arguments() == 1, "wrong type");
1276 do_sizeOf_impl(x, 0);
1277 }
1278
1279 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1280 assert(x->number_of_arguments() == 3, "wrong type");
1281 do_sizeOf_impl(x, 2);
1282 }
1283
1284 void LIRGenerator::do_sizeOf_impl(Intrinsic* x, int arg_idx) {
1285 LIR_Opr result_reg = rlock_result(x);
1286
1287 LIRItem value(x->argument_at(arg_idx), this);
1288 value.load_item();
1289
1290 LIR_Opr klass = new_register(T_METADATA);
1291 load_klass(value.result(), klass, nullptr);
1292 LIR_Opr layout = new_register(T_INT);
1293 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1294
1295 LabelObj* L_done = new LabelObj();
1296 LabelObj* L_array = new LabelObj();
1297
1298 __ cmp(lir_cond_lessEqual, layout, 0);
1299 __ branch(lir_cond_lessEqual, L_array->label());
1300
1301 // Instance case: the layout helper gives us instance size almost directly,
1302 // but we need to mask out the _lh_instance_slow_path_bit.
1303
1304 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1305
1306 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1307 __ logical_and(layout, mask, layout);
1308 __ convert(Bytecodes::_i2l, layout, result_reg);
1309
1310 __ branch(lir_cond_always, L_done->label());
1311
1312 // Array case: size is round(header + element_size*arraylength).
1313 // Since arraylength is different for every array instance, we have to
1314 // compute the whole thing at runtime.
1315
1316 __ branch_destination(L_array->label());
1317
1318 int round_mask = MinObjAlignmentInBytes - 1;
1319
1320 // Figure out header sizes first.
1321 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1322 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1323
1324 LIR_Opr header_size = new_register(T_INT);
1325 __ move(layout, header_size);
1326 LIR_Opr tmp = new_register(T_INT);
1327 __ unsigned_shift_right(header_size, hss, header_size, tmp);
1328 __ logical_and(header_size, hsm, header_size);
1329 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1330
1331 // Figure out the array length in bytes
1332 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1333 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1334 __ logical_and(layout, l2esm, layout);
1335
1336 LIR_Opr length_int = new_register(T_INT);
1337 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1338
1339 #ifdef _LP64
1340 LIR_Opr length = new_register(T_LONG);
1341 __ convert(Bytecodes::_i2l, length_int, length);
1342 #endif
1343
1344 // Shift-left awkwardness. Normally it is just:
1345 // __ shift_left(length, layout, length);
1346 // But C1 cannot perform shift_left with non-constant count, so we end up
1347 // doing the per-bit loop dance here. x86_32 also does not know how to shift
1348 // longs, so we have to act on ints.
1349 LabelObj* L_shift_loop = new LabelObj();
1350 LabelObj* L_shift_exit = new LabelObj();
1351
1352 __ branch_destination(L_shift_loop->label());
1353 __ cmp(lir_cond_equal, layout, 0);
1354 __ branch(lir_cond_equal, L_shift_exit->label());
1355
1356 #ifdef _LP64
1357 __ shift_left(length, 1, length);
1358 #else
1359 __ shift_left(length_int, 1, length_int);
1360 #endif
1361
1362 __ sub(layout, LIR_OprFact::intConst(1), layout);
1363
1364 __ branch(lir_cond_always, L_shift_loop->label());
1365 __ branch_destination(L_shift_exit->label());
1366
1367 // Mix all up, round, and push to the result.
1368 #ifdef _LP64
1369 LIR_Opr header_size_long = new_register(T_LONG);
1370 __ convert(Bytecodes::_i2l, header_size, header_size_long);
1371 __ add(length, header_size_long, length);
1372 if (round_mask != 0) {
1373 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1374 __ logical_and(length, round_mask_opr, length);
1375 }
1376 __ move(length, result_reg);
1377 #else
1378 __ add(length_int, header_size, length_int);
1379 if (round_mask != 0) {
1380 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1381 __ logical_and(length_int, round_mask_opr, length_int);
1382 }
1383 __ convert(Bytecodes::_i2l, length_int, result_reg);
1384 #endif
1385
1386 __ branch_destination(L_done->label());
1387 }
1388
1389 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1390 do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1391 }
1392
1393 // Example: Thread.currentCarrierThread()
1394 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1395 do_JavaThreadField(x, JavaThread::threadObj_offset());
1396 }
1397
1398 void LIRGenerator::do_vthread(Intrinsic* x) {
1399 do_JavaThreadField(x, JavaThread::vthread_offset());
1400 }
1401
1402 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1403 assert(x->number_of_arguments() == 0, "wrong type");
1404 LIR_Opr temp = new_register(T_ADDRESS);
1405 LIR_Opr reg = rlock_result(x);
1406 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1407 access_load(IN_NATIVE, T_OBJECT,
1408 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1409 }
1410
1411 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1412 assert(x->number_of_arguments() == 1, "wrong type");
1413 LIRItem receiver(x->argument_at(0), this);
1414
1415 receiver.load_item();
1416 BasicTypeList signature;
1417 signature.append(T_OBJECT); // receiver
1418 LIR_OprList* args = new LIR_OprList();
1419 args->append(receiver.result());
1420 CodeEmitInfo* info = state_for(x, x->state());
1421 call_runtime(&signature, args,
1422 CAST_FROM_FN_PTR(address, Runtime1::entry_for(StubId::c1_register_finalizer_id)),
1423 voidType, info);
1424
1425 set_no_result(x);
1426 }
1427
1428
1429 //------------------------local access--------------------------------------
1430
1431 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1432 if (x->operand()->is_illegal()) {
1433 Constant* c = x->as_Constant();
1434 if (c != nullptr) {
1435 x->set_operand(LIR_OprFact::value_type(c->type()));
1436 } else {
1437 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1438 // allocate a virtual register for this local or phi
1439 x->set_operand(rlock(x));
1440 #ifdef ASSERT
1441 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1442 #endif
1443 }
1444 }
1445 return x->operand();
1446 }
1447
1448 #ifdef ASSERT
1449 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1450 if (reg_num < _instruction_for_operand.length()) {
1451 return _instruction_for_operand.at(reg_num);
1452 }
1453 return nullptr;
1454 }
1455 #endif
1456
1457 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1458 if (_vreg_flags.size_in_bits() == 0) {
1459 BitMap2D temp(100, num_vreg_flags);
1460 _vreg_flags = temp;
1461 }
1462 _vreg_flags.at_put_grow(vreg_num, f, true);
1463 }
1464
1465 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1466 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1467 return false;
1468 }
1469 return _vreg_flags.at(vreg_num, f);
1470 }
1471
1472
1473 // Block local constant handling. This code is useful for keeping
1474 // unpinned constants and constants which aren't exposed in the IR in
1475 // registers. Unpinned Constant instructions have their operands
1476 // cleared when the block is finished so that other blocks can't end
1477 // up referring to their registers.
1478
1479 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1480 assert(!x->is_pinned(), "only for unpinned constants");
1481 _unpinned_constants.append(x);
1482 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1483 }
1484
1485
1486 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1487 BasicType t = c->type();
1488 for (int i = 0; i < _constants.length(); i++) {
1489 LIR_Const* other = _constants.at(i);
1490 if (t == other->type()) {
1491 switch (t) {
1492 case T_INT:
1493 case T_FLOAT:
1494 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1495 break;
1496 case T_LONG:
1497 case T_DOUBLE:
1498 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1499 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1500 break;
1501 case T_OBJECT:
1502 if (c->as_jobject() != other->as_jobject()) continue;
1503 break;
1504 default:
1505 break;
1506 }
1507 return _reg_for_constants.at(i);
1508 }
1509 }
1510
1511 LIR_Opr result = new_register(t);
1512 __ move((LIR_Opr)c, result);
1513 _constants.append(c);
1514 _reg_for_constants.append(result);
1515 return result;
1516 }
1517
1518 //------------------------field access--------------------------------------
1519
1520 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1521 assert(x->number_of_arguments() == 4, "wrong type");
1522 LIRItem obj (x->argument_at(0), this); // object
1523 LIRItem offset(x->argument_at(1), this); // offset of field
1524 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1525 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1526 assert(obj.type()->tag() == objectTag, "invalid type");
1527 assert(cmp.type()->tag() == type->tag(), "invalid type");
1528 assert(val.type()->tag() == type->tag(), "invalid type");
1529
1530 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1531 obj, offset, cmp, val);
1532 set_result(x, result);
1533 }
1534
1535 // Comment copied form templateTable_i486.cpp
1536 // ----------------------------------------------------------------------------
1537 // Volatile variables demand their effects be made known to all CPU's in
1538 // order. Store buffers on most chips allow reads & writes to reorder; the
1539 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1540 // memory barrier (i.e., it's not sufficient that the interpreter does not
1541 // reorder volatile references, the hardware also must not reorder them).
1542 //
1543 // According to the new Java Memory Model (JMM):
1544 // (1) All volatiles are serialized wrt to each other.
1545 // ALSO reads & writes act as acquire & release, so:
1546 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1547 // the read float up to before the read. It's OK for non-volatile memory refs
1548 // that happen before the volatile read to float down below it.
1549 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1550 // that happen BEFORE the write float down to after the write. It's OK for
1551 // non-volatile memory refs that happen after the volatile write to float up
1552 // before it.
1553 //
1554 // We only put in barriers around volatile refs (they are expensive), not
1555 // _between_ memory refs (that would require us to track the flavor of the
1556 // previous memory refs). Requirements (2) and (3) require some barriers
1557 // before volatile stores and after volatile loads. These nearly cover
1558 // requirement (1) but miss the volatile-store-volatile-load case. This final
1559 // case is placed after volatile-stores although it could just as well go
1560 // before volatile-loads.
1561
1562
1563 void LIRGenerator::do_StoreField(StoreField* x) {
1564 bool needs_patching = x->needs_patching();
1565 bool is_volatile = x->field()->is_volatile();
1566 BasicType field_type = x->field_type();
1567
1568 CodeEmitInfo* info = nullptr;
1569 if (needs_patching) {
1570 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1571 info = state_for(x, x->state_before());
1572 } else if (x->needs_null_check()) {
1573 NullCheck* nc = x->explicit_null_check();
1574 if (nc == nullptr) {
1575 info = state_for(x);
1576 } else {
1577 info = state_for(nc);
1578 }
1579 }
1580
1581 LIRItem object(x->obj(), this);
1582 LIRItem value(x->value(), this);
1583
1584 object.load_item();
1585
1586 if (is_volatile || needs_patching) {
1587 // load item if field is volatile (fewer special cases for volatiles)
1588 // load item if field not initialized
1589 // load item if field not constant
1590 // because of code patching we cannot inline constants
1591 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1592 value.load_byte_item();
1593 } else {
1594 value.load_item();
1595 }
1596 } else {
1597 value.load_for_store(field_type);
1598 }
1599
1600 set_no_result(x);
1601
1602 #ifndef PRODUCT
1603 if (PrintNotLoaded && needs_patching) {
1604 tty->print_cr(" ###class not loaded at store_%s bci %d",
1605 x->is_static() ? "static" : "field", x->printable_bci());
1606 }
1607 #endif
1608
1609 if (x->needs_null_check() &&
1610 (needs_patching ||
1611 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1612 // Emit an explicit null check because the offset is too large.
1613 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1614 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1615 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1616 }
1617
1618 DecoratorSet decorators = IN_HEAP;
1619 if (is_volatile) {
1620 decorators |= MO_SEQ_CST;
1621 }
1622 if (needs_patching) {
1623 decorators |= C1_NEEDS_PATCHING;
1624 }
1625
1626 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1627 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1628 }
1629
1630 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1631 assert(x->is_pinned(),"");
1632 bool needs_range_check = x->compute_needs_range_check();
1633 bool use_length = x->length() != nullptr;
1634 bool obj_store = is_reference_type(x->elt_type());
1635 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1636 !get_jobject_constant(x->value())->is_null_object() ||
1637 x->should_profile());
1638
1639 LIRItem array(x->array(), this);
1640 LIRItem index(x->index(), this);
1641 LIRItem value(x->value(), this);
1642 LIRItem length(this);
1643
1644 array.load_item();
1645 index.load_nonconstant();
1646
1647 if (use_length && needs_range_check) {
1648 length.set_instruction(x->length());
1649 length.load_item();
1650
1651 }
1652 if (needs_store_check || x->check_boolean()) {
1653 value.load_item();
1654 } else {
1655 value.load_for_store(x->elt_type());
1656 }
1657
1658 set_no_result(x);
1659
1660 // the CodeEmitInfo must be duplicated for each different
1661 // LIR-instruction because spilling can occur anywhere between two
1662 // instructions and so the debug information must be different
1663 CodeEmitInfo* range_check_info = state_for(x);
1664 CodeEmitInfo* null_check_info = nullptr;
1665 if (x->needs_null_check()) {
1666 null_check_info = new CodeEmitInfo(range_check_info);
1667 }
1668
1669 if (needs_range_check) {
1670 if (use_length) {
1671 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1672 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1673 } else {
1674 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1675 // range_check also does the null check
1676 null_check_info = nullptr;
1677 }
1678 }
1679
1680 if (GenerateArrayStoreCheck && needs_store_check) {
1681 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1682 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1683 }
1684
1685 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1686 if (x->check_boolean()) {
1687 decorators |= C1_MASK_BOOLEAN;
1688 }
1689
1690 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1691 nullptr, null_check_info);
1692 }
1693
1694 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1695 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1696 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1697 decorators |= ACCESS_READ;
1698 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1699 if (access.is_raw()) {
1700 _barrier_set->BarrierSetC1::load_at(access, result);
1701 } else {
1702 _barrier_set->load_at(access, result);
1703 }
1704 }
1705
1706 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1707 LIR_Opr addr, LIR_Opr result) {
1708 decorators |= ACCESS_READ;
1709 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1710 access.set_resolved_addr(addr);
1711 if (access.is_raw()) {
1712 _barrier_set->BarrierSetC1::load(access, result);
1713 } else {
1714 _barrier_set->load(access, result);
1715 }
1716 }
1717
1718 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1719 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1720 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1721 decorators |= ACCESS_WRITE;
1722 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1723 if (access.is_raw()) {
1724 _barrier_set->BarrierSetC1::store_at(access, value);
1725 } else {
1726 _barrier_set->store_at(access, value);
1727 }
1728 }
1729
1730 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1731 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1732 decorators |= ACCESS_READ;
1733 decorators |= ACCESS_WRITE;
1734 // Atomic operations are SEQ_CST by default
1735 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1736 LIRAccess access(this, decorators, base, offset, type);
1737 if (access.is_raw()) {
1738 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1739 } else {
1740 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1741 }
1742 }
1743
1744 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1745 LIRItem& base, LIRItem& offset, LIRItem& value) {
1746 decorators |= ACCESS_READ;
1747 decorators |= ACCESS_WRITE;
1748 // Atomic operations are SEQ_CST by default
1749 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1750 LIRAccess access(this, decorators, base, offset, type);
1751 if (access.is_raw()) {
1752 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1753 } else {
1754 return _barrier_set->atomic_xchg_at(access, value);
1755 }
1756 }
1757
1758 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1759 LIRItem& base, LIRItem& offset, LIRItem& value) {
1760 decorators |= ACCESS_READ;
1761 decorators |= ACCESS_WRITE;
1762 // Atomic operations are SEQ_CST by default
1763 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1764 LIRAccess access(this, decorators, base, offset, type);
1765 if (access.is_raw()) {
1766 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1767 } else {
1768 return _barrier_set->atomic_add_at(access, value);
1769 }
1770 }
1771
1772 void LIRGenerator::do_LoadField(LoadField* x) {
1773 bool needs_patching = x->needs_patching();
1774 bool is_volatile = x->field()->is_volatile();
1775 BasicType field_type = x->field_type();
1776
1777 CodeEmitInfo* info = nullptr;
1778 if (needs_patching) {
1779 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1780 info = state_for(x, x->state_before());
1781 } else if (x->needs_null_check()) {
1782 NullCheck* nc = x->explicit_null_check();
1783 if (nc == nullptr) {
1784 info = state_for(x);
1785 } else {
1786 info = state_for(nc);
1787 }
1788 }
1789
1790 LIRItem object(x->obj(), this);
1791
1792 object.load_item();
1793
1794 #ifndef PRODUCT
1795 if (PrintNotLoaded && needs_patching) {
1796 tty->print_cr(" ###class not loaded at load_%s bci %d",
1797 x->is_static() ? "static" : "field", x->printable_bci());
1798 }
1799 #endif
1800
1801 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1802 if (x->needs_null_check() &&
1803 (needs_patching ||
1804 MacroAssembler::needs_explicit_null_check(x->offset()) ||
1805 stress_deopt)) {
1806 LIR_Opr obj = object.result();
1807 if (stress_deopt) {
1808 obj = new_register(T_OBJECT);
1809 __ move(LIR_OprFact::oopConst(nullptr), obj);
1810 }
1811 // Emit an explicit null check because the offset is too large.
1812 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1813 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1814 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1815 }
1816
1817 DecoratorSet decorators = IN_HEAP;
1818 if (is_volatile) {
1819 decorators |= MO_SEQ_CST;
1820 }
1821 if (needs_patching) {
1822 decorators |= C1_NEEDS_PATCHING;
1823 }
1824
1825 LIR_Opr result = rlock_result(x, field_type);
1826 access_load_at(decorators, field_type,
1827 object, LIR_OprFact::intConst(x->offset()), result,
1828 info ? new CodeEmitInfo(info) : nullptr, info);
1829 }
1830
1831 // int/long jdk.internal.util.Preconditions.checkIndex
1832 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1833 assert(x->number_of_arguments() == 3, "wrong type");
1834 LIRItem index(x->argument_at(0), this);
1835 LIRItem length(x->argument_at(1), this);
1836 LIRItem oobef(x->argument_at(2), this);
1837
1838 index.load_item();
1839 length.load_item();
1840 oobef.load_item();
1841
1842 LIR_Opr result = rlock_result(x);
1843 // x->state() is created from copy_state_for_exception, it does not contains arguments
1844 // we should prepare them before entering into interpreter mode due to deoptimization.
1845 ValueStack* state = x->state();
1846 for (int i = 0; i < x->number_of_arguments(); i++) {
1847 Value arg = x->argument_at(i);
1848 state->push(arg->type(), arg);
1849 }
1850 CodeEmitInfo* info = state_for(x, state);
1851
1852 LIR_Opr len = length.result();
1853 LIR_Opr zero;
1854 if (type == T_INT) {
1855 zero = LIR_OprFact::intConst(0);
1856 if (length.result()->is_constant()){
1857 len = LIR_OprFact::intConst(length.result()->as_jint());
1858 }
1859 } else {
1860 assert(type == T_LONG, "sanity check");
1861 zero = LIR_OprFact::longConst(0);
1862 if (length.result()->is_constant()){
1863 len = LIR_OprFact::longConst(length.result()->as_jlong());
1864 }
1865 }
1866 // C1 can not handle the case that comparing index with constant value while condition
1867 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1868 LIR_Opr zero_reg = new_register(type);
1869 __ move(zero, zero_reg);
1870 #if defined(X86) && !defined(_LP64)
1871 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1872 LIR_Opr index_copy = new_register(index.type());
1873 // index >= 0
1874 __ move(index.result(), index_copy);
1875 __ cmp(lir_cond_less, index_copy, zero_reg);
1876 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1877 Deoptimization::Action_make_not_entrant));
1878 // index < length
1879 __ move(index.result(), index_copy);
1880 __ cmp(lir_cond_greaterEqual, index_copy, len);
1881 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1882 Deoptimization::Action_make_not_entrant));
1883 #else
1884 // index >= 0
1885 __ cmp(lir_cond_less, index.result(), zero_reg);
1886 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1887 Deoptimization::Action_make_not_entrant));
1888 // index < length
1889 __ cmp(lir_cond_greaterEqual, index.result(), len);
1890 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1891 Deoptimization::Action_make_not_entrant));
1892 #endif
1893 __ move(index.result(), result);
1894 }
1895
1896 //------------------------array access--------------------------------------
1897
1898
1899 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1900 LIRItem array(x->array(), this);
1901 array.load_item();
1902 LIR_Opr reg = rlock_result(x);
1903
1904 CodeEmitInfo* info = nullptr;
1905 if (x->needs_null_check()) {
1906 NullCheck* nc = x->explicit_null_check();
1907 if (nc == nullptr) {
1908 info = state_for(x);
1909 } else {
1910 info = state_for(nc);
1911 }
1912 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1913 LIR_Opr obj = new_register(T_OBJECT);
1914 __ move(LIR_OprFact::oopConst(nullptr), obj);
1915 __ null_check(obj, new CodeEmitInfo(info));
1916 }
1917 }
1918 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1919 }
1920
1921
1922 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1923 bool use_length = x->length() != nullptr;
1924 LIRItem array(x->array(), this);
1925 LIRItem index(x->index(), this);
1926 LIRItem length(this);
1927 bool needs_range_check = x->compute_needs_range_check();
1928
1929 if (use_length && needs_range_check) {
1930 length.set_instruction(x->length());
1931 length.load_item();
1932 }
1933
1934 array.load_item();
1935 if (index.is_constant() && can_inline_as_constant(x->index())) {
1936 // let it be a constant
1937 index.dont_load_item();
1938 } else {
1939 index.load_item();
1940 }
1941
1942 CodeEmitInfo* range_check_info = state_for(x);
1943 CodeEmitInfo* null_check_info = nullptr;
1944 if (x->needs_null_check()) {
1945 NullCheck* nc = x->explicit_null_check();
1946 if (nc != nullptr) {
1947 null_check_info = state_for(nc);
1948 } else {
1949 null_check_info = range_check_info;
1950 }
1951 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1952 LIR_Opr obj = new_register(T_OBJECT);
1953 __ move(LIR_OprFact::oopConst(nullptr), obj);
1954 __ null_check(obj, new CodeEmitInfo(null_check_info));
1955 }
1956 }
1957
1958 if (needs_range_check) {
1959 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1960 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1961 } else if (use_length) {
1962 // TODO: use a (modified) version of array_range_check that does not require a
1963 // constant length to be loaded to a register
1964 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1965 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1966 } else {
1967 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1968 // The range check performs the null check, so clear it out for the load
1969 null_check_info = nullptr;
1970 }
1971 }
1972
1973 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1974
1975 LIR_Opr result = rlock_result(x, x->elt_type());
1976 access_load_at(decorators, x->elt_type(),
1977 array, index.result(), result,
1978 nullptr, null_check_info);
1979 }
1980
1981
1982 void LIRGenerator::do_NullCheck(NullCheck* x) {
1983 if (x->can_trap()) {
1984 LIRItem value(x->obj(), this);
1985 value.load_item();
1986 CodeEmitInfo* info = state_for(x);
1987 __ null_check(value.result(), info);
1988 }
1989 }
1990
1991
1992 void LIRGenerator::do_TypeCast(TypeCast* x) {
1993 LIRItem value(x->obj(), this);
1994 value.load_item();
1995 // the result is the same as from the node we are casting
1996 set_result(x, value.result());
1997 }
1998
1999
2000 void LIRGenerator::do_Throw(Throw* x) {
2001 LIRItem exception(x->exception(), this);
2002 exception.load_item();
2003 set_no_result(x);
2004 LIR_Opr exception_opr = exception.result();
2005 CodeEmitInfo* info = state_for(x, x->state());
2006
2007 #ifndef PRODUCT
2008 if (PrintC1Statistics) {
2009 increment_counter(Runtime1::throw_count_address(), T_INT);
2010 }
2011 #endif
2012
2013 // check if the instruction has an xhandler in any of the nested scopes
2014 bool unwind = false;
2015 if (info->exception_handlers()->length() == 0) {
2016 // this throw is not inside an xhandler
2017 unwind = true;
2018 } else {
2019 // get some idea of the throw type
2020 bool type_is_exact = true;
2021 ciType* throw_type = x->exception()->exact_type();
2022 if (throw_type == nullptr) {
2023 type_is_exact = false;
2024 throw_type = x->exception()->declared_type();
2025 }
2026 if (throw_type != nullptr && throw_type->is_instance_klass()) {
2027 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2028 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2029 }
2030 }
2031
2032 // do null check before moving exception oop into fixed register
2033 // to avoid a fixed interval with an oop during the null check.
2034 // Use a copy of the CodeEmitInfo because debug information is
2035 // different for null_check and throw.
2036 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2037 // if the exception object wasn't created using new then it might be null.
2038 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2039 }
2040
2041 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2042 // we need to go through the exception lookup path to get JVMTI
2043 // notification done
2044 unwind = false;
2045 }
2046
2047 // move exception oop into fixed register
2048 __ move(exception_opr, exceptionOopOpr());
2049
2050 if (unwind) {
2051 __ unwind_exception(exceptionOopOpr());
2052 } else {
2053 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2054 }
2055 }
2056
2057
2058 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2059 BasicType type = x->basic_type();
2060 LIRItem src(x->object(), this);
2061 LIRItem off(x->offset(), this);
2062
2063 off.load_item();
2064 src.load_item();
2065
2066 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2067
2068 if (x->is_volatile()) {
2069 decorators |= MO_SEQ_CST;
2070 }
2071 if (type == T_BOOLEAN) {
2072 decorators |= C1_MASK_BOOLEAN;
2073 }
2074 if (is_reference_type(type)) {
2075 decorators |= ON_UNKNOWN_OOP_REF;
2076 }
2077
2078 LIR_Opr result = rlock_result(x, type);
2079 if (!x->is_raw()) {
2080 access_load_at(decorators, type, src, off.result(), result);
2081 } else {
2082 // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2083 // It reads the value from [src + offset] directly.
2084 #ifdef _LP64
2085 LIR_Opr offset = new_register(T_LONG);
2086 __ convert(Bytecodes::_i2l, off.result(), offset);
2087 #else
2088 LIR_Opr offset = off.result();
2089 #endif
2090 LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2091 if (is_reference_type(type)) {
2092 __ move_wide(addr, result);
2093 } else {
2094 __ move(addr, result);
2095 }
2096 }
2097 }
2098
2099
2100 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2101 BasicType type = x->basic_type();
2102 LIRItem src(x->object(), this);
2103 LIRItem off(x->offset(), this);
2104 LIRItem data(x->value(), this);
2105
2106 src.load_item();
2107 if (type == T_BOOLEAN || type == T_BYTE) {
2108 data.load_byte_item();
2109 } else {
2110 data.load_item();
2111 }
2112 off.load_item();
2113
2114 set_no_result(x);
2115
2116 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2117 if (is_reference_type(type)) {
2118 decorators |= ON_UNKNOWN_OOP_REF;
2119 }
2120 if (x->is_volatile()) {
2121 decorators |= MO_SEQ_CST;
2122 }
2123 access_store_at(decorators, type, src, off.result(), data.result());
2124 }
2125
2126 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2127 BasicType type = x->basic_type();
2128 LIRItem src(x->object(), this);
2129 LIRItem off(x->offset(), this);
2130 LIRItem value(x->value(), this);
2131
2132 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2133
2134 if (is_reference_type(type)) {
2135 decorators |= ON_UNKNOWN_OOP_REF;
2136 }
2137
2138 LIR_Opr result;
2139 if (x->is_add()) {
2140 result = access_atomic_add_at(decorators, type, src, off, value);
2141 } else {
2142 result = access_atomic_xchg_at(decorators, type, src, off, value);
2143 }
2144 set_result(x, result);
2145 }
2146
2147 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2148 int lng = x->length();
2149
2150 for (int i = 0; i < lng; i++) {
2151 C1SwitchRange* one_range = x->at(i);
2152 int low_key = one_range->low_key();
2153 int high_key = one_range->high_key();
2154 BlockBegin* dest = one_range->sux();
2155 if (low_key == high_key) {
2156 __ cmp(lir_cond_equal, value, low_key);
2157 __ branch(lir_cond_equal, dest);
2158 } else if (high_key - low_key == 1) {
2159 __ cmp(lir_cond_equal, value, low_key);
2160 __ branch(lir_cond_equal, dest);
2161 __ cmp(lir_cond_equal, value, high_key);
2162 __ branch(lir_cond_equal, dest);
2163 } else {
2164 LabelObj* L = new LabelObj();
2165 __ cmp(lir_cond_less, value, low_key);
2166 __ branch(lir_cond_less, L->label());
2167 __ cmp(lir_cond_lessEqual, value, high_key);
2168 __ branch(lir_cond_lessEqual, dest);
2169 __ branch_destination(L->label());
2170 }
2171 }
2172 __ jump(default_sux);
2173 }
2174
2175
2176 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2177 SwitchRangeList* res = new SwitchRangeList();
2178 int len = x->length();
2179 if (len > 0) {
2180 BlockBegin* sux = x->sux_at(0);
2181 int low = x->lo_key();
2182 BlockBegin* default_sux = x->default_sux();
2183 C1SwitchRange* range = new C1SwitchRange(low, sux);
2184 for (int i = 0; i < len; i++) {
2185 int key = low + i;
2186 BlockBegin* new_sux = x->sux_at(i);
2187 if (sux == new_sux) {
2188 // still in same range
2189 range->set_high_key(key);
2190 } else {
2191 // skip tests which explicitly dispatch to the default
2192 if (sux != default_sux) {
2193 res->append(range);
2194 }
2195 range = new C1SwitchRange(key, new_sux);
2196 }
2197 sux = new_sux;
2198 }
2199 if (res->length() == 0 || res->last() != range) res->append(range);
2200 }
2201 return res;
2202 }
2203
2204
2205 // we expect the keys to be sorted by increasing value
2206 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2207 SwitchRangeList* res = new SwitchRangeList();
2208 int len = x->length();
2209 if (len > 0) {
2210 BlockBegin* default_sux = x->default_sux();
2211 int key = x->key_at(0);
2212 BlockBegin* sux = x->sux_at(0);
2213 C1SwitchRange* range = new C1SwitchRange(key, sux);
2214 for (int i = 1; i < len; i++) {
2215 int new_key = x->key_at(i);
2216 BlockBegin* new_sux = x->sux_at(i);
2217 if (key+1 == new_key && sux == new_sux) {
2218 // still in same range
2219 range->set_high_key(new_key);
2220 } else {
2221 // skip tests which explicitly dispatch to the default
2222 if (range->sux() != default_sux) {
2223 res->append(range);
2224 }
2225 range = new C1SwitchRange(new_key, new_sux);
2226 }
2227 key = new_key;
2228 sux = new_sux;
2229 }
2230 if (res->length() == 0 || res->last() != range) res->append(range);
2231 }
2232 return res;
2233 }
2234
2235
2236 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2237 LIRItem tag(x->tag(), this);
2238 tag.load_item();
2239 set_no_result(x);
2240
2241 if (x->is_safepoint()) {
2242 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2243 }
2244
2245 // move values into phi locations
2246 move_to_phi(x->state());
2247
2248 int lo_key = x->lo_key();
2249 int len = x->length();
2250 assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2251 LIR_Opr value = tag.result();
2252
2253 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2254 ciMethod* method = x->state()->scope()->method();
2255 ciMethodData* md = method->method_data_or_null();
2256 assert(md != nullptr, "Sanity");
2257 ciProfileData* data = md->bci_to_data(x->state()->bci());
2258 assert(data != nullptr, "must have profiling data");
2259 assert(data->is_MultiBranchData(), "bad profile data?");
2260 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2261 LIR_Opr md_reg = new_register(T_METADATA);
2262 __ metadata2reg(md->constant_encoding(), md_reg);
2263 LIR_Opr data_offset_reg = new_pointer_register();
2264 LIR_Opr tmp_reg = new_pointer_register();
2265
2266 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2267 for (int i = 0; i < len; i++) {
2268 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2269 __ cmp(lir_cond_equal, value, i + lo_key);
2270 __ move(data_offset_reg, tmp_reg);
2271 __ cmove(lir_cond_equal,
2272 LIR_OprFact::intptrConst(count_offset),
2273 tmp_reg,
2274 data_offset_reg, T_INT);
2275 }
2276
2277 LIR_Opr data_reg = new_pointer_register();
2278 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2279 __ move(data_addr, data_reg);
2280 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2281 __ move(data_reg, data_addr);
2282 }
2283
2284 if (UseTableRanges) {
2285 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2286 } else {
2287 for (int i = 0; i < len; i++) {
2288 __ cmp(lir_cond_equal, value, i + lo_key);
2289 __ branch(lir_cond_equal, x->sux_at(i));
2290 }
2291 __ jump(x->default_sux());
2292 }
2293 }
2294
2295
2296 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2297 LIRItem tag(x->tag(), this);
2298 tag.load_item();
2299 set_no_result(x);
2300
2301 if (x->is_safepoint()) {
2302 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2303 }
2304
2305 // move values into phi locations
2306 move_to_phi(x->state());
2307
2308 LIR_Opr value = tag.result();
2309 int len = x->length();
2310
2311 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2312 ciMethod* method = x->state()->scope()->method();
2313 ciMethodData* md = method->method_data_or_null();
2314 assert(md != nullptr, "Sanity");
2315 ciProfileData* data = md->bci_to_data(x->state()->bci());
2316 assert(data != nullptr, "must have profiling data");
2317 assert(data->is_MultiBranchData(), "bad profile data?");
2318 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2319 LIR_Opr md_reg = new_register(T_METADATA);
2320 __ metadata2reg(md->constant_encoding(), md_reg);
2321 LIR_Opr data_offset_reg = new_pointer_register();
2322 LIR_Opr tmp_reg = new_pointer_register();
2323
2324 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2325 for (int i = 0; i < len; i++) {
2326 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2327 __ cmp(lir_cond_equal, value, x->key_at(i));
2328 __ move(data_offset_reg, tmp_reg);
2329 __ cmove(lir_cond_equal,
2330 LIR_OprFact::intptrConst(count_offset),
2331 tmp_reg,
2332 data_offset_reg, T_INT);
2333 }
2334
2335 LIR_Opr data_reg = new_pointer_register();
2336 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2337 __ move(data_addr, data_reg);
2338 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2339 __ move(data_reg, data_addr);
2340 }
2341
2342 if (UseTableRanges) {
2343 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2344 } else {
2345 int len = x->length();
2346 for (int i = 0; i < len; i++) {
2347 __ cmp(lir_cond_equal, value, x->key_at(i));
2348 __ branch(lir_cond_equal, x->sux_at(i));
2349 }
2350 __ jump(x->default_sux());
2351 }
2352 }
2353
2354
2355 void LIRGenerator::do_Goto(Goto* x) {
2356 set_no_result(x);
2357
2358 if (block()->next()->as_OsrEntry()) {
2359 // need to free up storage used for OSR entry point
2360 LIR_Opr osrBuffer = block()->next()->operand();
2361 BasicTypeList signature;
2362 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2363 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2364 __ move(osrBuffer, cc->args()->at(0));
2365 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2366 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2367 }
2368
2369 if (x->is_safepoint()) {
2370 ValueStack* state = x->state_before() ? x->state_before() : x->state();
2371
2372 // increment backedge counter if needed
2373 CodeEmitInfo* info = state_for(x, state);
2374 increment_backedge_counter(info, x->profiled_bci());
2375 CodeEmitInfo* safepoint_info = state_for(x, state);
2376 __ safepoint(safepoint_poll_register(), safepoint_info);
2377 }
2378
2379 // Gotos can be folded Ifs, handle this case.
2380 if (x->should_profile()) {
2381 ciMethod* method = x->profiled_method();
2382 assert(method != nullptr, "method should be set if branch is profiled");
2383 ciMethodData* md = method->method_data_or_null();
2384 assert(md != nullptr, "Sanity");
2385 ciProfileData* data = md->bci_to_data(x->profiled_bci());
2386 assert(data != nullptr, "must have profiling data");
2387 int offset;
2388 if (x->direction() == Goto::taken) {
2389 assert(data->is_BranchData(), "need BranchData for two-way branches");
2390 offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2391 } else if (x->direction() == Goto::not_taken) {
2392 assert(data->is_BranchData(), "need BranchData for two-way branches");
2393 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2394 } else {
2395 assert(data->is_JumpData(), "need JumpData for branches");
2396 offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2397 }
2398 LIR_Opr md_reg = new_register(T_METADATA);
2399 __ metadata2reg(md->constant_encoding(), md_reg);
2400
2401 increment_counter(new LIR_Address(md_reg, offset,
2402 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2403 }
2404
2405 // emit phi-instruction move after safepoint since this simplifies
2406 // describing the state as the safepoint.
2407 move_to_phi(x->state());
2408
2409 __ jump(x->default_sux());
2410 }
2411
2412 /**
2413 * Emit profiling code if needed for arguments, parameters, return value types
2414 *
2415 * @param md MDO the code will update at runtime
2416 * @param md_base_offset common offset in the MDO for this profile and subsequent ones
2417 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile
2418 * @param profiled_k current profile
2419 * @param obj IR node for the object to be profiled
2420 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset).
2421 * Set once we find an update to make and use for next ones.
2422 * @param not_null true if we know obj cannot be null
2423 * @param signature_at_call_k signature at call for obj
2424 * @param callee_signature_k signature of callee for obj
2425 * at call and callee signatures differ at method handle call
2426 * @return the only klass we know will ever be seen at this profile point
2427 */
2428 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2429 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2430 ciKlass* callee_signature_k) {
2431 ciKlass* result = nullptr;
2432 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2433 bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2434 // known not to be null or null bit already set and already set to
2435 // unknown: nothing we can do to improve profiling
2436 if (!do_null && !do_update) {
2437 return result;
2438 }
2439
2440 ciKlass* exact_klass = nullptr;
2441 Compilation* comp = Compilation::current();
2442 if (do_update) {
2443 // try to find exact type, using CHA if possible, so that loading
2444 // the klass from the object can be avoided
2445 ciType* type = obj->exact_type();
2446 if (type == nullptr) {
2447 type = obj->declared_type();
2448 type = comp->cha_exact_type(type);
2449 }
2450 assert(type == nullptr || type->is_klass(), "type should be class");
2451 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2452
2453 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2454 }
2455
2456 if (!do_null && !do_update) {
2457 return result;
2458 }
2459
2460 ciKlass* exact_signature_k = nullptr;
2461 if (do_update) {
2462 // Is the type from the signature exact (the only one possible)?
2463 exact_signature_k = signature_at_call_k->exact_klass();
2464 if (exact_signature_k == nullptr) {
2465 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2466 } else {
2467 result = exact_signature_k;
2468 // Known statically. No need to emit any code: prevent
2469 // LIR_Assembler::emit_profile_type() from emitting useless code
2470 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2471 }
2472 // exact_klass and exact_signature_k can be both non null but
2473 // different if exact_klass is loaded after the ciObject for
2474 // exact_signature_k is created.
2475 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2476 // sometimes the type of the signature is better than the best type
2477 // the compiler has
2478 exact_klass = exact_signature_k;
2479 }
2480 if (callee_signature_k != nullptr &&
2481 callee_signature_k != signature_at_call_k) {
2482 ciKlass* improved_klass = callee_signature_k->exact_klass();
2483 if (improved_klass == nullptr) {
2484 improved_klass = comp->cha_exact_type(callee_signature_k);
2485 }
2486 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2487 exact_klass = exact_signature_k;
2488 }
2489 }
2490 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2491 }
2492
2493 if (!do_null && !do_update) {
2494 return result;
2495 }
2496
2497 if (mdp == LIR_OprFact::illegalOpr) {
2498 mdp = new_register(T_METADATA);
2499 __ metadata2reg(md->constant_encoding(), mdp);
2500 if (md_base_offset != 0) {
2501 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2502 mdp = new_pointer_register();
2503 __ leal(LIR_OprFact::address(base_type_address), mdp);
2504 }
2505 }
2506 LIRItem value(obj, this);
2507 value.load_item();
2508 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2509 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2510 return result;
2511 }
2512
2513 // profile parameters on entry to the root of the compilation
2514 void LIRGenerator::profile_parameters(Base* x) {
2515 if (compilation()->profile_parameters()) {
2516 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2517 ciMethodData* md = scope()->method()->method_data_or_null();
2518 assert(md != nullptr, "Sanity");
2519
2520 if (md->parameters_type_data() != nullptr) {
2521 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2522 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
2523 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2524 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2525 LIR_Opr src = args->at(i);
2526 assert(!src->is_illegal(), "check");
2527 BasicType t = src->type();
2528 if (is_reference_type(t)) {
2529 intptr_t profiled_k = parameters->type(j);
2530 Local* local = x->state()->local_at(java_index)->as_Local();
2531 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2532 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2533 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2534 // If the profile is known statically set it once for all and do not emit any code
2535 if (exact != nullptr) {
2536 md->set_parameter_type(j, exact);
2537 }
2538 j++;
2539 }
2540 java_index += type2size[t];
2541 }
2542 }
2543 }
2544 }
2545
2546 void LIRGenerator::do_Base(Base* x) {
2547 __ std_entry(LIR_OprFact::illegalOpr);
2548 // Emit moves from physical registers / stack slots to virtual registers
2549 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2550 IRScope* irScope = compilation()->hir()->top_scope();
2551 int java_index = 0;
2552 for (int i = 0; i < args->length(); i++) {
2553 LIR_Opr src = args->at(i);
2554 assert(!src->is_illegal(), "check");
2555 BasicType t = src->type();
2556
2557 // Types which are smaller than int are passed as int, so
2558 // correct the type which passed.
2559 switch (t) {
2560 case T_BYTE:
2561 case T_BOOLEAN:
2562 case T_SHORT:
2563 case T_CHAR:
2564 t = T_INT;
2565 break;
2566 default:
2567 break;
2568 }
2569
2570 LIR_Opr dest = new_register(t);
2571 __ move(src, dest);
2572
2573 // Assign new location to Local instruction for this local
2574 Local* local = x->state()->local_at(java_index)->as_Local();
2575 assert(local != nullptr, "Locals for incoming arguments must have been created");
2576 #ifndef __SOFTFP__
2577 // The java calling convention passes double as long and float as int.
2578 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2579 #endif // __SOFTFP__
2580 local->set_operand(dest);
2581 #ifdef ASSERT
2582 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2583 #endif
2584 java_index += type2size[t];
2585 }
2586
2587 if (compilation()->env()->dtrace_method_probes()) {
2588 BasicTypeList signature;
2589 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2590 signature.append(T_METADATA); // Method*
2591 LIR_OprList* args = new LIR_OprList();
2592 args->append(getThreadPointer());
2593 LIR_Opr meth = new_register(T_METADATA);
2594 __ metadata2reg(method()->constant_encoding(), meth);
2595 args->append(meth);
2596 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2597 }
2598
2599 if (method()->is_synchronized()) {
2600 LIR_Opr obj;
2601 if (method()->is_static()) {
2602 obj = new_register(T_OBJECT);
2603 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2604 } else {
2605 Local* receiver = x->state()->local_at(0)->as_Local();
2606 assert(receiver != nullptr, "must already exist");
2607 obj = receiver->operand();
2608 }
2609 assert(obj->is_valid(), "must be valid");
2610
2611 if (method()->is_synchronized()) {
2612 LIR_Opr lock = syncLockOpr();
2613 __ load_stack_address_monitor(0, lock);
2614
2615 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2616 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2617
2618 // receiver is guaranteed non-null so don't need CodeEmitInfo
2619 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2620 }
2621 }
2622 // increment invocation counters if needed
2623 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2624 profile_parameters(x);
2625 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2626 increment_invocation_counter(info);
2627 }
2628
2629 // all blocks with a successor must end with an unconditional jump
2630 // to the successor even if they are consecutive
2631 __ jump(x->default_sux());
2632 }
2633
2634
2635 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2636 // construct our frame and model the production of incoming pointer
2637 // to the OSR buffer.
2638 __ osr_entry(LIR_Assembler::osrBufferPointer());
2639 LIR_Opr result = rlock_result(x);
2640 __ move(LIR_Assembler::osrBufferPointer(), result);
2641 }
2642
2643
2644 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2645 assert(args->length() == arg_list->length(),
2646 "args=%d, arg_list=%d", args->length(), arg_list->length());
2647 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2648 LIRItem* param = args->at(i);
2649 LIR_Opr loc = arg_list->at(i);
2650 if (loc->is_register()) {
2651 param->load_item_force(loc);
2652 } else {
2653 LIR_Address* addr = loc->as_address_ptr();
2654 param->load_for_store(addr->type());
2655 if (addr->type() == T_OBJECT) {
2656 __ move_wide(param->result(), addr);
2657 } else
2658 __ move(param->result(), addr);
2659 }
2660 }
2661
2662 if (x->has_receiver()) {
2663 LIRItem* receiver = args->at(0);
2664 LIR_Opr loc = arg_list->at(0);
2665 if (loc->is_register()) {
2666 receiver->load_item_force(loc);
2667 } else {
2668 assert(loc->is_address(), "just checking");
2669 receiver->load_for_store(T_OBJECT);
2670 __ move_wide(receiver->result(), loc->as_address_ptr());
2671 }
2672 }
2673 }
2674
2675
2676 // Visits all arguments, returns appropriate items without loading them
2677 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2678 LIRItemList* argument_items = new LIRItemList();
2679 if (x->has_receiver()) {
2680 LIRItem* receiver = new LIRItem(x->receiver(), this);
2681 argument_items->append(receiver);
2682 }
2683 for (int i = 0; i < x->number_of_arguments(); i++) {
2684 LIRItem* param = new LIRItem(x->argument_at(i), this);
2685 argument_items->append(param);
2686 }
2687 return argument_items;
2688 }
2689
2690
2691 // The invoke with receiver has following phases:
2692 // a) traverse and load/lock receiver;
2693 // b) traverse all arguments -> item-array (invoke_visit_argument)
2694 // c) push receiver on stack
2695 // d) load each of the items and push on stack
2696 // e) unlock receiver
2697 // f) move receiver into receiver-register %o0
2698 // g) lock result registers and emit call operation
2699 //
2700 // Before issuing a call, we must spill-save all values on stack
2701 // that are in caller-save register. "spill-save" moves those registers
2702 // either in a free callee-save register or spills them if no free
2703 // callee save register is available.
2704 //
2705 // The problem is where to invoke spill-save.
2706 // - if invoked between e) and f), we may lock callee save
2707 // register in "spill-save" that destroys the receiver register
2708 // before f) is executed
2709 // - if we rearrange f) to be earlier (by loading %o0) it
2710 // may destroy a value on the stack that is currently in %o0
2711 // and is waiting to be spilled
2712 // - if we keep the receiver locked while doing spill-save,
2713 // we cannot spill it as it is spill-locked
2714 //
2715 void LIRGenerator::do_Invoke(Invoke* x) {
2716 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2717
2718 LIR_OprList* arg_list = cc->args();
2719 LIRItemList* args = invoke_visit_arguments(x);
2720 LIR_Opr receiver = LIR_OprFact::illegalOpr;
2721
2722 // setup result register
2723 LIR_Opr result_register = LIR_OprFact::illegalOpr;
2724 if (x->type() != voidType) {
2725 result_register = result_register_for(x->type());
2726 }
2727
2728 CodeEmitInfo* info = state_for(x, x->state());
2729
2730 invoke_load_arguments(x, args, arg_list);
2731
2732 if (x->has_receiver()) {
2733 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2734 receiver = args->at(0)->result();
2735 }
2736
2737 // emit invoke code
2738 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2739
2740 ciMethod* target = x->target();
2741 switch (x->code()) {
2742 case Bytecodes::_invokestatic:
2743 __ call_static(target, result_register,
2744 SharedRuntime::get_resolve_static_call_stub(),
2745 arg_list, info);
2746 break;
2747 case Bytecodes::_invokespecial:
2748 case Bytecodes::_invokevirtual:
2749 case Bytecodes::_invokeinterface:
2750 // for loaded and final (method or class) target we still produce an inline cache,
2751 // in order to be able to call mixed mode
2752 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2753 __ call_opt_virtual(target, receiver, result_register,
2754 SharedRuntime::get_resolve_opt_virtual_call_stub(),
2755 arg_list, info);
2756 } else {
2757 __ call_icvirtual(target, receiver, result_register,
2758 SharedRuntime::get_resolve_virtual_call_stub(),
2759 arg_list, info);
2760 }
2761 break;
2762 case Bytecodes::_invokedynamic: {
2763 __ call_dynamic(target, receiver, result_register,
2764 SharedRuntime::get_resolve_static_call_stub(),
2765 arg_list, info);
2766 break;
2767 }
2768 default:
2769 fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2770 break;
2771 }
2772
2773 if (result_register->is_valid()) {
2774 LIR_Opr result = rlock_result(x);
2775 __ move(result_register, result);
2776 }
2777 }
2778
2779
2780 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2781 assert(x->number_of_arguments() == 1, "wrong type");
2782 LIRItem value (x->argument_at(0), this);
2783 LIR_Opr reg = rlock_result(x);
2784 value.load_item();
2785 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2786 __ move(tmp, reg);
2787 }
2788
2789
2790
2791 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2792 void LIRGenerator::do_IfOp(IfOp* x) {
2793 #ifdef ASSERT
2794 {
2795 ValueTag xtag = x->x()->type()->tag();
2796 ValueTag ttag = x->tval()->type()->tag();
2797 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2798 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2799 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2800 }
2801 #endif
2802
2803 LIRItem left(x->x(), this);
2804 LIRItem right(x->y(), this);
2805 left.load_item();
2806 if (can_inline_as_constant(right.value())) {
2807 right.dont_load_item();
2808 } else {
2809 right.load_item();
2810 }
2811
2812 LIRItem t_val(x->tval(), this);
2813 LIRItem f_val(x->fval(), this);
2814 t_val.dont_load_item();
2815 f_val.dont_load_item();
2816 LIR_Opr reg = rlock_result(x);
2817
2818 __ cmp(lir_cond(x->cond()), left.result(), right.result());
2819 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2820 }
2821
2822 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2823 assert(x->number_of_arguments() == 0, "wrong type");
2824 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2825 BasicTypeList signature;
2826 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2827 LIR_Opr reg = result_register_for(x->type());
2828 __ call_runtime_leaf(routine, getThreadTemp(),
2829 reg, new LIR_OprList());
2830 LIR_Opr result = rlock_result(x);
2831 __ move(reg, result);
2832 }
2833
2834
2835
2836 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2837 switch (x->id()) {
2838 case vmIntrinsics::_intBitsToFloat :
2839 case vmIntrinsics::_doubleToRawLongBits :
2840 case vmIntrinsics::_longBitsToDouble :
2841 case vmIntrinsics::_floatToRawIntBits : {
2842 do_FPIntrinsics(x);
2843 break;
2844 }
2845
2846 #ifdef JFR_HAVE_INTRINSICS
2847 case vmIntrinsics::_counterTime:
2848 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2849 break;
2850 #endif
2851
2852 case vmIntrinsics::_currentTimeMillis:
2853 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2854 break;
2855
2856 case vmIntrinsics::_nanoTime:
2857 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2858 break;
2859
2860 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
2861 case vmIntrinsics::_isInstance: do_isInstance(x); break;
2862 case vmIntrinsics::_getClass: do_getClass(x); break;
2863 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break;
2864 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2865 case vmIntrinsics::_currentThread: do_vthread(x); break;
2866 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2867 case vmIntrinsics::_shipilev_magic_sizeOf: do_sizeOf(x); break;
2868 case vmIntrinsics::_shipilev_magic_addressOf: do_addressOf(x); break;
2869
2870 case vmIntrinsics::_dlog: // fall through
2871 case vmIntrinsics::_dlog10: // fall through
2872 case vmIntrinsics::_dabs: // fall through
2873 case vmIntrinsics::_dsqrt: // fall through
2874 case vmIntrinsics::_dsqrt_strict: // fall through
2875 case vmIntrinsics::_dtan: // fall through
2876 case vmIntrinsics::_dsinh: // fall through
2877 case vmIntrinsics::_dtanh: // fall through
2878 case vmIntrinsics::_dsin : // fall through
2879 case vmIntrinsics::_dcos : // fall through
2880 case vmIntrinsics::_dcbrt : // fall through
2881 case vmIntrinsics::_dexp : // fall through
2882 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
2883 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
2884
2885 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break;
2886 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break;
2887
2888 // Use java.lang.Math intrinsics code since it works for these intrinsics too.
2889 case vmIntrinsics::_floatToFloat16: // fall through
2890 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
2891
2892 case vmIntrinsics::_Preconditions_checkIndex:
2893 do_PreconditionsCheckIndex(x, T_INT);
2894 break;
2895 case vmIntrinsics::_Preconditions_checkLongIndex:
2896 do_PreconditionsCheckIndex(x, T_LONG);
2897 break;
2898
2899 case vmIntrinsics::_compareAndSetReference:
2900 do_CompareAndSwap(x, objectType);
2901 break;
2902 case vmIntrinsics::_compareAndSetInt:
2903 do_CompareAndSwap(x, intType);
2904 break;
2905 case vmIntrinsics::_compareAndSetLong:
2906 do_CompareAndSwap(x, longType);
2907 break;
2908
2909 case vmIntrinsics::_loadFence :
2910 __ membar_acquire();
2911 break;
2912 case vmIntrinsics::_storeFence:
2913 __ membar_release();
2914 break;
2915 case vmIntrinsics::_storeStoreFence:
2916 __ membar_storestore();
2917 break;
2918 case vmIntrinsics::_fullFence :
2919 __ membar();
2920 break;
2921 case vmIntrinsics::_onSpinWait:
2922 __ on_spin_wait();
2923 break;
2924 case vmIntrinsics::_Reference_get0:
2925 do_Reference_get0(x);
2926 break;
2927
2928 case vmIntrinsics::_updateCRC32:
2929 case vmIntrinsics::_updateBytesCRC32:
2930 case vmIntrinsics::_updateByteBufferCRC32:
2931 do_update_CRC32(x);
2932 break;
2933
2934 case vmIntrinsics::_updateBytesCRC32C:
2935 case vmIntrinsics::_updateDirectByteBufferCRC32C:
2936 do_update_CRC32C(x);
2937 break;
2938
2939 case vmIntrinsics::_vectorizedMismatch:
2940 do_vectorizedMismatch(x);
2941 break;
2942
2943 case vmIntrinsics::_blackhole:
2944 do_blackhole(x);
2945 break;
2946
2947 default: ShouldNotReachHere(); break;
2948 }
2949 }
2950
2951 void LIRGenerator::profile_arguments(ProfileCall* x) {
2952 if (compilation()->profile_arguments()) {
2953 int bci = x->bci_of_invoke();
2954 ciMethodData* md = x->method()->method_data_or_null();
2955 assert(md != nullptr, "Sanity");
2956 ciProfileData* data = md->bci_to_data(bci);
2957 if (data != nullptr) {
2958 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
2959 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
2960 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
2961 int base_offset = md->byte_offset_of_slot(data, extra);
2962 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2963 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
2964
2965 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
2966 int start = 0;
2967 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
2968 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
2969 // first argument is not profiled at call (method handle invoke)
2970 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
2971 start = 1;
2972 }
2973 ciSignature* callee_signature = x->callee()->signature();
2974 // method handle call to virtual method
2975 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
2976 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
2977
2978 bool ignored_will_link;
2979 ciSignature* signature_at_call = nullptr;
2980 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
2981 ciSignatureStream signature_at_call_stream(signature_at_call);
2982
2983 // if called through method handle invoke, some arguments may have been popped
2984 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
2985 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
2986 ciKlass* exact = profile_type(md, base_offset, off,
2987 args->type(i), x->profiled_arg_at(i+start), mdp,
2988 !x->arg_needs_null_check(i+start),
2989 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
2990 if (exact != nullptr) {
2991 md->set_argument_type(bci, i, exact);
2992 }
2993 }
2994 } else {
2995 #ifdef ASSERT
2996 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
2997 int n = x->nb_profiled_args();
2998 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
2999 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3000 "only at JSR292 bytecodes");
3001 #endif
3002 }
3003 }
3004 }
3005 }
3006
3007 // profile parameters on entry to an inlined method
3008 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3009 if (compilation()->profile_parameters() && x->inlined()) {
3010 ciMethodData* md = x->callee()->method_data_or_null();
3011 if (md != nullptr) {
3012 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3013 if (parameters_type_data != nullptr) {
3014 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
3015 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3016 bool has_receiver = !x->callee()->is_static();
3017 ciSignature* sig = x->callee()->signature();
3018 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3019 int i = 0; // to iterate on the Instructions
3020 Value arg = x->recv();
3021 bool not_null = false;
3022 int bci = x->bci_of_invoke();
3023 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3024 // The first parameter is the receiver so that's what we start
3025 // with if it exists. One exception is method handle call to
3026 // virtual method: the receiver is in the args list
3027 if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3028 i = 1;
3029 arg = x->profiled_arg_at(0);
3030 not_null = !x->arg_needs_null_check(0);
3031 }
3032 int k = 0; // to iterate on the profile data
3033 for (;;) {
3034 intptr_t profiled_k = parameters->type(k);
3035 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3036 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3037 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3038 // If the profile is known statically set it once for all and do not emit any code
3039 if (exact != nullptr) {
3040 md->set_parameter_type(k, exact);
3041 }
3042 k++;
3043 if (k >= parameters_type_data->number_of_parameters()) {
3044 #ifdef ASSERT
3045 int extra = 0;
3046 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3047 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3048 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3049 extra += 1;
3050 }
3051 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3052 #endif
3053 break;
3054 }
3055 arg = x->profiled_arg_at(i);
3056 not_null = !x->arg_needs_null_check(i);
3057 i++;
3058 }
3059 }
3060 }
3061 }
3062 }
3063
3064 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3065 // Need recv in a temporary register so it interferes with the other temporaries
3066 LIR_Opr recv = LIR_OprFact::illegalOpr;
3067 LIR_Opr mdo = new_register(T_METADATA);
3068 // tmp is used to hold the counters on SPARC
3069 LIR_Opr tmp = new_pointer_register();
3070
3071 if (x->nb_profiled_args() > 0) {
3072 profile_arguments(x);
3073 }
3074
3075 // profile parameters on inlined method entry including receiver
3076 if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3077 profile_parameters_at_call(x);
3078 }
3079
3080 if (x->recv() != nullptr) {
3081 LIRItem value(x->recv(), this);
3082 value.load_item();
3083 recv = new_register(T_OBJECT);
3084 __ move(value.result(), recv);
3085 }
3086 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3087 }
3088
3089 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3090 int bci = x->bci_of_invoke();
3091 ciMethodData* md = x->method()->method_data_or_null();
3092 assert(md != nullptr, "Sanity");
3093 ciProfileData* data = md->bci_to_data(bci);
3094 if (data != nullptr) {
3095 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3096 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3097 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3098
3099 bool ignored_will_link;
3100 ciSignature* signature_at_call = nullptr;
3101 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3102
3103 // The offset within the MDO of the entry to update may be too large
3104 // to be used in load/store instructions on some platforms. So have
3105 // profile_type() compute the address of the profile in a register.
3106 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3107 ret->type(), x->ret(), mdp,
3108 !x->needs_null_check(),
3109 signature_at_call->return_type()->as_klass(),
3110 x->callee()->signature()->return_type()->as_klass());
3111 if (exact != nullptr) {
3112 md->set_return_type(bci, exact);
3113 }
3114 }
3115 }
3116
3117 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3118 // We can safely ignore accessors here, since c2 will inline them anyway,
3119 // accessors are also always mature.
3120 if (!x->inlinee()->is_accessor()) {
3121 CodeEmitInfo* info = state_for(x, x->state(), true);
3122 // Notify the runtime very infrequently only to take care of counter overflows
3123 int freq_log = Tier23InlineeNotifyFreqLog;
3124 double scale;
3125 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3126 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3127 }
3128 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3129 }
3130 }
3131
3132 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3133 if (compilation()->is_profiling()) {
3134 #if defined(X86) && !defined(_LP64)
3135 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3136 LIR_Opr left_copy = new_register(left->type());
3137 __ move(left, left_copy);
3138 __ cmp(cond, left_copy, right);
3139 #else
3140 __ cmp(cond, left, right);
3141 #endif
3142 LIR_Opr step = new_register(T_INT);
3143 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3144 LIR_Opr zero = LIR_OprFact::intConst(0);
3145 __ cmove(cond,
3146 (left_bci < bci) ? plus_one : zero,
3147 (right_bci < bci) ? plus_one : zero,
3148 step, left->type());
3149 increment_backedge_counter(info, step, bci);
3150 }
3151 }
3152
3153
3154 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3155 int freq_log = 0;
3156 int level = compilation()->env()->comp_level();
3157 if (level == CompLevel_limited_profile) {
3158 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3159 } else if (level == CompLevel_full_profile) {
3160 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3161 } else {
3162 ShouldNotReachHere();
3163 }
3164 // Increment the appropriate invocation/backedge counter and notify the runtime.
3165 double scale;
3166 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3167 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3168 }
3169 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3170 }
3171
3172 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3173 ciMethod *method, LIR_Opr step, int frequency,
3174 int bci, bool backedge, bool notify) {
3175 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3176 int level = _compilation->env()->comp_level();
3177 assert(level > CompLevel_simple, "Shouldn't be here");
3178
3179 int offset = -1;
3180 LIR_Opr counter_holder;
3181 if (level == CompLevel_limited_profile) {
3182 MethodCounters* counters_adr = method->ensure_method_counters();
3183 if (counters_adr == nullptr) {
3184 bailout("method counters allocation failed");
3185 return;
3186 }
3187 counter_holder = new_pointer_register();
3188 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3189 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3190 MethodCounters::invocation_counter_offset());
3191 } else if (level == CompLevel_full_profile) {
3192 counter_holder = new_register(T_METADATA);
3193 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3194 MethodData::invocation_counter_offset());
3195 ciMethodData* md = method->method_data_or_null();
3196 assert(md != nullptr, "Sanity");
3197 __ metadata2reg(md->constant_encoding(), counter_holder);
3198 } else {
3199 ShouldNotReachHere();
3200 }
3201 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3202 LIR_Opr result = new_register(T_INT);
3203 __ load(counter, result);
3204 __ add(result, step, result);
3205 __ store(result, counter);
3206 if (notify && (!backedge || UseOnStackReplacement)) {
3207 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3208 // The bci for info can point to cmp for if's we want the if bci
3209 CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3210 int freq = frequency << InvocationCounter::count_shift;
3211 if (freq == 0) {
3212 if (!step->is_constant()) {
3213 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3214 __ branch(lir_cond_notEqual, overflow);
3215 } else {
3216 __ branch(lir_cond_always, overflow);
3217 }
3218 } else {
3219 LIR_Opr mask = load_immediate(freq, T_INT);
3220 if (!step->is_constant()) {
3221 // If step is 0, make sure the overflow check below always fails
3222 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3223 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3224 }
3225 __ logical_and(result, mask, result);
3226 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3227 __ branch(lir_cond_equal, overflow);
3228 }
3229 __ branch_destination(overflow->continuation());
3230 }
3231 }
3232
3233 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3234 LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3235 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3236
3237 if (x->pass_thread()) {
3238 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3239 args->append(getThreadPointer());
3240 }
3241
3242 for (int i = 0; i < x->number_of_arguments(); i++) {
3243 Value a = x->argument_at(i);
3244 LIRItem* item = new LIRItem(a, this);
3245 item->load_item();
3246 args->append(item->result());
3247 signature->append(as_BasicType(a->type()));
3248 }
3249
3250 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3251 if (x->type() == voidType) {
3252 set_no_result(x);
3253 } else {
3254 __ move(result, rlock_result(x));
3255 }
3256 }
3257
3258 #ifdef ASSERT
3259 void LIRGenerator::do_Assert(Assert *x) {
3260 ValueTag tag = x->x()->type()->tag();
3261 If::Condition cond = x->cond();
3262
3263 LIRItem xitem(x->x(), this);
3264 LIRItem yitem(x->y(), this);
3265 LIRItem* xin = &xitem;
3266 LIRItem* yin = &yitem;
3267
3268 assert(tag == intTag, "Only integer assertions are valid!");
3269
3270 xin->load_item();
3271 yin->dont_load_item();
3272
3273 set_no_result(x);
3274
3275 LIR_Opr left = xin->result();
3276 LIR_Opr right = yin->result();
3277
3278 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3279 }
3280 #endif
3281
3282 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3283
3284
3285 Instruction *a = x->x();
3286 Instruction *b = x->y();
3287 if (!a || StressRangeCheckElimination) {
3288 assert(!b || StressRangeCheckElimination, "B must also be null");
3289
3290 CodeEmitInfo *info = state_for(x, x->state());
3291 CodeStub* stub = new PredicateFailedStub(info);
3292
3293 __ jump(stub);
3294 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3295 int a_int = a->type()->as_IntConstant()->value();
3296 int b_int = b->type()->as_IntConstant()->value();
3297
3298 bool ok = false;
3299
3300 switch(x->cond()) {
3301 case Instruction::eql: ok = (a_int == b_int); break;
3302 case Instruction::neq: ok = (a_int != b_int); break;
3303 case Instruction::lss: ok = (a_int < b_int); break;
3304 case Instruction::leq: ok = (a_int <= b_int); break;
3305 case Instruction::gtr: ok = (a_int > b_int); break;
3306 case Instruction::geq: ok = (a_int >= b_int); break;
3307 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3308 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3309 default: ShouldNotReachHere();
3310 }
3311
3312 if (ok) {
3313
3314 CodeEmitInfo *info = state_for(x, x->state());
3315 CodeStub* stub = new PredicateFailedStub(info);
3316
3317 __ jump(stub);
3318 }
3319 } else {
3320
3321 ValueTag tag = x->x()->type()->tag();
3322 If::Condition cond = x->cond();
3323 LIRItem xitem(x->x(), this);
3324 LIRItem yitem(x->y(), this);
3325 LIRItem* xin = &xitem;
3326 LIRItem* yin = &yitem;
3327
3328 assert(tag == intTag, "Only integer deoptimizations are valid!");
3329
3330 xin->load_item();
3331 yin->dont_load_item();
3332 set_no_result(x);
3333
3334 LIR_Opr left = xin->result();
3335 LIR_Opr right = yin->result();
3336
3337 CodeEmitInfo *info = state_for(x, x->state());
3338 CodeStub* stub = new PredicateFailedStub(info);
3339
3340 __ cmp(lir_cond(cond), left, right);
3341 __ branch(lir_cond(cond), stub);
3342 }
3343 }
3344
3345 void LIRGenerator::do_blackhole(Intrinsic *x) {
3346 assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3347 for (int c = 0; c < x->number_of_arguments(); c++) {
3348 // Load the argument
3349 LIRItem vitem(x->argument_at(c), this);
3350 vitem.load_item();
3351 // ...and leave it unused.
3352 }
3353 }
3354
3355 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3356 LIRItemList args(1);
3357 LIRItem value(arg1, this);
3358 args.append(&value);
3359 BasicTypeList signature;
3360 signature.append(as_BasicType(arg1->type()));
3361
3362 return call_runtime(&signature, &args, entry, result_type, info);
3363 }
3364
3365
3366 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3367 LIRItemList args(2);
3368 LIRItem value1(arg1, this);
3369 LIRItem value2(arg2, this);
3370 args.append(&value1);
3371 args.append(&value2);
3372 BasicTypeList signature;
3373 signature.append(as_BasicType(arg1->type()));
3374 signature.append(as_BasicType(arg2->type()));
3375
3376 return call_runtime(&signature, &args, entry, result_type, info);
3377 }
3378
3379
3380 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3381 address entry, ValueType* result_type, CodeEmitInfo* info) {
3382 // get a result register
3383 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3384 LIR_Opr result = LIR_OprFact::illegalOpr;
3385 if (result_type->tag() != voidTag) {
3386 result = new_register(result_type);
3387 phys_reg = result_register_for(result_type);
3388 }
3389
3390 // move the arguments into the correct location
3391 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3392 assert(cc->length() == args->length(), "argument mismatch");
3393 for (int i = 0; i < args->length(); i++) {
3394 LIR_Opr arg = args->at(i);
3395 LIR_Opr loc = cc->at(i);
3396 if (loc->is_register()) {
3397 __ move(arg, loc);
3398 } else {
3399 LIR_Address* addr = loc->as_address_ptr();
3400 // if (!can_store_as_constant(arg)) {
3401 // LIR_Opr tmp = new_register(arg->type());
3402 // __ move(arg, tmp);
3403 // arg = tmp;
3404 // }
3405 __ move(arg, addr);
3406 }
3407 }
3408
3409 if (info) {
3410 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3411 } else {
3412 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3413 }
3414 if (result->is_valid()) {
3415 __ move(phys_reg, result);
3416 }
3417 return result;
3418 }
3419
3420
3421 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3422 address entry, ValueType* result_type, CodeEmitInfo* info) {
3423 // get a result register
3424 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3425 LIR_Opr result = LIR_OprFact::illegalOpr;
3426 if (result_type->tag() != voidTag) {
3427 result = new_register(result_type);
3428 phys_reg = result_register_for(result_type);
3429 }
3430
3431 // move the arguments into the correct location
3432 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3433
3434 assert(cc->length() == args->length(), "argument mismatch");
3435 for (int i = 0; i < args->length(); i++) {
3436 LIRItem* arg = args->at(i);
3437 LIR_Opr loc = cc->at(i);
3438 if (loc->is_register()) {
3439 arg->load_item_force(loc);
3440 } else {
3441 LIR_Address* addr = loc->as_address_ptr();
3442 arg->load_for_store(addr->type());
3443 __ move(arg->result(), addr);
3444 }
3445 }
3446
3447 if (info) {
3448 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3449 } else {
3450 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3451 }
3452 if (result->is_valid()) {
3453 __ move(phys_reg, result);
3454 }
3455 return result;
3456 }
3457
3458 void LIRGenerator::do_MemBar(MemBar* x) {
3459 LIR_Code code = x->code();
3460 switch(code) {
3461 case lir_membar_acquire : __ membar_acquire(); break;
3462 case lir_membar_release : __ membar_release(); break;
3463 case lir_membar : __ membar(); break;
3464 case lir_membar_loadload : __ membar_loadload(); break;
3465 case lir_membar_storestore: __ membar_storestore(); break;
3466 case lir_membar_loadstore : __ membar_loadstore(); break;
3467 case lir_membar_storeload : __ membar_storeload(); break;
3468 default : ShouldNotReachHere(); break;
3469 }
3470 }
3471
3472 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3473 LIR_Opr value_fixed = rlock_byte(T_BYTE);
3474 if (two_operand_lir_form) {
3475 __ move(value, value_fixed);
3476 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3477 } else {
3478 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3479 }
3480 LIR_Opr klass = new_register(T_METADATA);
3481 load_klass(array, klass, null_check_info);
3482 null_check_info = nullptr;
3483 LIR_Opr layout = new_register(T_INT);
3484 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3485 int diffbit = Klass::layout_helper_boolean_diffbit();
3486 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3487 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3488 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3489 value = value_fixed;
3490 return value;
3491 }