1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"
  35 #include "ci/ciUtilities.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "compiler/compilerOracle.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/c1/barrierSetC1.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "oops/methodCounters.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 #ifdef ASSERT
  50 #define __ gen()->lir(__FILE__, __LINE__)->
  51 #else
  52 #define __ gen()->lir()->
  53 #endif
  54 
  55 #ifndef PATCHED_ADDR
  56 #define PATCHED_ADDR  (max_jint)
  57 #endif
  58 
  59 void PhiResolverState::reset() {
  60   _virtual_operands.clear();
  61   _other_operands.clear();
  62   _vreg_table.clear();
  63 }
  64 
  65 
  66 //--------------------------------------------------------------
  67 // PhiResolver
  68 
  69 // Resolves cycles:
  70 //
  71 //  r1 := r2  becomes  temp := r1
  72 //  r2 := r1           r1 := r2
  73 //                     r2 := temp
  74 // and orders moves:
  75 //
  76 //  r2 := r3  becomes  r1 := r2
  77 //  r1 := r2           r2 := r3
  78 
  79 PhiResolver::PhiResolver(LIRGenerator* gen)
  80  : _gen(gen)
  81  , _state(gen->resolver_state())
  82  , _loop(nullptr)
  83  , _temp(LIR_OprFact::illegalOpr)
  84 {
  85   // reinitialize the shared state arrays
  86   _state.reset();
  87 }
  88 
  89 
  90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  91   assert(src->is_valid(), "");
  92   assert(dest->is_valid(), "");
  93   __ move(src, dest);
  94 }
  95 
  96 
  97 void PhiResolver::move_temp_to(LIR_Opr dest) {
  98   assert(_temp->is_valid(), "");
  99   emit_move(_temp, dest);
 100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 101 }
 102 
 103 
 104 void PhiResolver::move_to_temp(LIR_Opr src) {
 105   assert(_temp->is_illegal(), "");
 106   _temp = _gen->new_register(src->type());
 107   emit_move(src, _temp);
 108 }
 109 
 110 
 111 // Traverse assignment graph in depth first order and generate moves in post order
 112 // ie. two assignments: b := c, a := b start with node c:
 113 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
 114 // Generates moves in this order: move b to a and move c to b
 115 // ie. cycle a := b, b := a start with node a
 116 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
 117 // Generates moves in this order: move b to temp, move a to b, move temp to a
 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 119   if (!dest->visited()) {
 120     dest->set_visited();
 121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 122       move(dest, dest->destination_at(i));
 123     }
 124   } else if (!dest->start_node()) {
 125     // cylce in graph detected
 126     assert(_loop == nullptr, "only one loop valid!");
 127     _loop = dest;
 128     move_to_temp(src->operand());
 129     return;
 130   } // else dest is a start node
 131 
 132   if (!dest->assigned()) {
 133     if (_loop == dest) {
 134       move_temp_to(dest->operand());
 135       dest->set_assigned();
 136     } else if (src != nullptr) {
 137       emit_move(src->operand(), dest->operand());
 138       dest->set_assigned();
 139     }
 140   }
 141 }
 142 
 143 
 144 PhiResolver::~PhiResolver() {
 145   int i;
 146   // resolve any cycles in moves from and to virtual registers
 147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 148     ResolveNode* node = virtual_operands().at(i);
 149     if (!node->visited()) {
 150       _loop = nullptr;
 151       move(nullptr, node);
 152       node->set_start_node();
 153       assert(_temp->is_illegal(), "move_temp_to() call missing");
 154     }
 155   }
 156 
 157   // generate move for move from non virtual register to abitrary destination
 158   for (i = other_operands().length() - 1; i >= 0; i --) {
 159     ResolveNode* node = other_operands().at(i);
 160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 161       emit_move(node->operand(), node->destination_at(j)->operand());
 162     }
 163   }
 164 }
 165 
 166 
 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 168   ResolveNode* node;
 169   if (opr->is_virtual()) {
 170     int vreg_num = opr->vreg_number();
 171     node = vreg_table().at_grow(vreg_num, nullptr);
 172     assert(node == nullptr || node->operand() == opr, "");
 173     if (node == nullptr) {
 174       node = new ResolveNode(opr);
 175       vreg_table().at_put(vreg_num, node);
 176     }
 177     // Make sure that all virtual operands show up in the list when
 178     // they are used as the source of a move.
 179     if (source && !virtual_operands().contains(node)) {
 180       virtual_operands().append(node);
 181     }
 182   } else {
 183     assert(source, "");
 184     node = new ResolveNode(opr);
 185     other_operands().append(node);
 186   }
 187   return node;
 188 }
 189 
 190 
 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 192   assert(dest->is_virtual(), "");
 193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 194   assert(src->is_valid(), "");
 195   assert(dest->is_valid(), "");
 196   ResolveNode* source = source_node(src);
 197   source->append(destination_node(dest));
 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208 #ifdef ASSERT
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 211   }
 212 #endif
 213 
 214   _result = opr;
 215 }
 216 
 217 void LIRItem::load_item() {
 218   if (result()->is_illegal()) {
 219     // update the items result
 220     _result = value()->operand();
 221   }
 222   if (!result()->is_register()) {
 223     LIR_Opr reg = _gen->new_register(value()->type());
 224     __ move(result(), reg);
 225     if (result()->is_constant()) {
 226       _result = reg;
 227     } else {
 228       set_result(reg);
 229     }
 230   }
 231 }
 232 
 233 
 234 void LIRItem::load_for_store(BasicType type) {
 235   if (_gen->can_store_as_constant(value(), type)) {
 236     _result = value()->operand();
 237     if (!_result->is_constant()) {
 238       _result = LIR_OprFact::value_type(value()->type());
 239     }
 240   } else if (type == T_BYTE || type == T_BOOLEAN) {
 241     load_byte_item();
 242   } else {
 243     load_item();
 244   }
 245 }
 246 
 247 void LIRItem::load_item_force(LIR_Opr reg) {
 248   LIR_Opr r = result();
 249   if (r != reg) {
 250 #if !defined(ARM) && !defined(E500V2)
 251     if (r->type() != reg->type()) {
 252       // moves between different types need an intervening spill slot
 253       r = _gen->force_to_spill(r, reg->type());
 254     }
 255 #endif
 256     __ move(r, reg);
 257     _result = reg;
 258   }
 259 }
 260 
 261 ciObject* LIRItem::get_jobject_constant() const {
 262   ObjectType* oc = type()->as_ObjectType();
 263   if (oc) {
 264     return oc->constant_value();
 265   }
 266   return nullptr;
 267 }
 268 
 269 
 270 jint LIRItem::get_jint_constant() const {
 271   assert(is_constant() && value() != nullptr, "");
 272   assert(type()->as_IntConstant() != nullptr, "type check");
 273   return type()->as_IntConstant()->value();
 274 }
 275 
 276 
 277 jint LIRItem::get_address_constant() const {
 278   assert(is_constant() && value() != nullptr, "");
 279   assert(type()->as_AddressConstant() != nullptr, "type check");
 280   return type()->as_AddressConstant()->value();
 281 }
 282 
 283 
 284 jfloat LIRItem::get_jfloat_constant() const {
 285   assert(is_constant() && value() != nullptr, "");
 286   assert(type()->as_FloatConstant() != nullptr, "type check");
 287   return type()->as_FloatConstant()->value();
 288 }
 289 
 290 
 291 jdouble LIRItem::get_jdouble_constant() const {
 292   assert(is_constant() && value() != nullptr, "");
 293   assert(type()->as_DoubleConstant() != nullptr, "type check");
 294   return type()->as_DoubleConstant()->value();
 295 }
 296 
 297 
 298 jlong LIRItem::get_jlong_constant() const {
 299   assert(is_constant() && value() != nullptr, "");
 300   assert(type()->as_LongConstant() != nullptr, "type check");
 301   return type()->as_LongConstant()->value();
 302 }
 303 
 304 
 305 
 306 //--------------------------------------------------------------
 307 
 308 
 309 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 310 #ifndef PRODUCT
 311   if (PrintIRWithLIR) {
 312     block->print();
 313   }
 314 #endif
 315 
 316   // set up the list of LIR instructions
 317   assert(block->lir() == nullptr, "LIR list already computed for this block");
 318   _lir = new LIR_List(compilation(), block);
 319   block->set_lir(_lir);
 320 
 321   __ branch_destination(block->label());
 322 
 323   if (LIRTraceExecution &&
 324       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 325       !block->is_set(BlockBegin::exception_entry_flag)) {
 326     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 327     trace_block_entry(block);
 328   }
 329 }
 330 
 331 
 332 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 333 #ifndef PRODUCT
 334   if (PrintIRWithLIR) {
 335     tty->cr();
 336   }
 337 #endif
 338 
 339   // LIR_Opr for unpinned constants shouldn't be referenced by other
 340   // blocks so clear them out after processing the block.
 341   for (int i = 0; i < _unpinned_constants.length(); i++) {
 342     _unpinned_constants.at(i)->clear_operand();
 343   }
 344   _unpinned_constants.trunc_to(0);
 345 
 346   // clear our any registers for other local constants
 347   _constants.trunc_to(0);
 348   _reg_for_constants.trunc_to(0);
 349 }
 350 
 351 
 352 void LIRGenerator::block_do(BlockBegin* block) {
 353   CHECK_BAILOUT();
 354 
 355   block_do_prolog(block);
 356   set_block(block);
 357 
 358   for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
 359     if (instr->is_pinned()) do_root(instr);
 360   }
 361 
 362   set_block(nullptr);
 363   block_do_epilog(block);
 364 }
 365 
 366 
 367 //-------------------------LIRGenerator-----------------------------
 368 
 369 // This is where the tree-walk starts; instr must be root;
 370 void LIRGenerator::do_root(Value instr) {
 371   CHECK_BAILOUT();
 372 
 373   InstructionMark im(compilation(), instr);
 374 
 375   assert(instr->is_pinned(), "use only with roots");
 376   assert(instr->subst() == instr, "shouldn't have missed substitution");
 377 
 378   instr->visit(this);
 379 
 380   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 381          instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
 382 }
 383 
 384 
 385 // This is called for each node in tree; the walk stops if a root is reached
 386 void LIRGenerator::walk(Value instr) {
 387   InstructionMark im(compilation(), instr);
 388   //stop walk when encounter a root
 389   if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
 390     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
 391   } else {
 392     assert(instr->subst() == instr, "shouldn't have missed substitution");
 393     instr->visit(this);
 394     // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
 395   }
 396 }
 397 
 398 
 399 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 400   assert(state != nullptr, "state must be defined");
 401 
 402 #ifndef PRODUCT
 403   state->verify();
 404 #endif
 405 
 406   ValueStack* s = state;
 407   for_each_state(s) {
 408     if (s->kind() == ValueStack::EmptyExceptionState ||
 409         s->kind() == ValueStack::CallerEmptyExceptionState)
 410     {
 411 #ifdef ASSERT
 412       int index;
 413       Value value;
 414       for_each_stack_value(s, index, value) {
 415         fatal("state must be empty");
 416       }
 417       for_each_local_value(s, index, value) {
 418         fatal("state must be empty");
 419       }
 420 #endif
 421       assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty");
 422       continue;
 423     }
 424 
 425     int index;
 426     Value value;
 427     for_each_stack_value(s, index, value) {
 428       assert(value->subst() == value, "missed substitution");
 429       if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 430         walk(value);
 431         assert(value->operand()->is_valid(), "must be evaluated now");
 432       }
 433     }
 434 
 435     int bci = s->bci();
 436     IRScope* scope = s->scope();
 437     ciMethod* method = scope->method();
 438 
 439     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 440     if (bci == SynchronizationEntryBCI) {
 441       if (x->as_ExceptionObject() || x->as_Throw()) {
 442         // all locals are dead on exit from the synthetic unlocker
 443         liveness.clear();
 444       } else {
 445         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 446       }
 447     }
 448     if (!liveness.is_valid()) {
 449       // Degenerate or breakpointed method.
 450       bailout("Degenerate or breakpointed method");
 451     } else {
 452       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 453       for_each_local_value(s, index, value) {
 454         assert(value->subst() == value, "missed substitution");
 455         if (liveness.at(index) && !value->type()->is_illegal()) {
 456           if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 457             walk(value);
 458             assert(value->operand()->is_valid(), "must be evaluated now");
 459           }
 460         } else {
 461           // null out this local so that linear scan can assume that all non-null values are live.
 462           s->invalidate_local(index);
 463         }
 464       }
 465     }
 466   }
 467 
 468   return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 469 }
 470 
 471 
 472 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 473   return state_for(x, x->exception_state());
 474 }
 475 
 476 
 477 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 478   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 479    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 480    * the class. */
 481   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 482     assert(info != nullptr, "info must be set if class is not loaded");
 483     __ klass2reg_patch(nullptr, r, info);
 484   } else {
 485     // no patching needed
 486     __ metadata2reg(obj->constant_encoding(), r);
 487   }
 488 }
 489 
 490 
 491 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 492                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 493   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 494   if (index->is_constant()) {
 495     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 496                 index->as_jint(), null_check_info);
 497     __ branch(lir_cond_belowEqual, stub); // forward branch
 498   } else {
 499     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 500                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 501     __ branch(lir_cond_aboveEqual, stub); // forward branch
 502   }
 503 }
 504 
 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 506   LIR_Opr result_op = result;
 507   LIR_Opr left_op   = left;
 508   LIR_Opr right_op  = right;
 509 
 510   if (two_operand_lir_form && left_op != result_op) {
 511     assert(right_op != result_op, "malformed");
 512     __ move(left_op, result_op);
 513     left_op = result_op;
 514   }
 515 
 516   switch(code) {
 517     case Bytecodes::_dadd:
 518     case Bytecodes::_fadd:
 519     case Bytecodes::_ladd:
 520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 521     case Bytecodes::_fmul:
 522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 523 
 524     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 525 
 526     case Bytecodes::_imul:
 527       {
 528         bool did_strength_reduce = false;
 529 
 530         if (right->is_constant()) {
 531           jint c = right->as_jint();
 532           if (c > 0 && is_power_of_2(c)) {
 533             // do not need tmp here
 534             __ shift_left(left_op, exact_log2(c), result_op);
 535             did_strength_reduce = true;
 536           } else {
 537             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 538           }
 539         }
 540         // we couldn't strength reduce so just emit the multiply
 541         if (!did_strength_reduce) {
 542           __ mul(left_op, right_op, result_op);
 543         }
 544       }
 545       break;
 546 
 547     case Bytecodes::_dsub:
 548     case Bytecodes::_fsub:
 549     case Bytecodes::_lsub:
 550     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 551 
 552     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 553     // ldiv and lrem are implemented with a direct runtime call
 554 
 555     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 556 
 557     case Bytecodes::_drem:
 558     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 559 
 560     default: ShouldNotReachHere();
 561   }
 562 }
 563 
 564 
 565 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 566   arithmetic_op(code, result, left, right, tmp);
 567 }
 568 
 569 
 570 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 571   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 572 }
 573 
 574 
 575 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 576   arithmetic_op(code, result, left, right, tmp);
 577 }
 578 
 579 
 580 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 581 
 582   if (two_operand_lir_form && value != result_op
 583       // Only 32bit right shifts require two operand form on S390.
 584       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 585     assert(count != result_op, "malformed");
 586     __ move(value, result_op);
 587     value = result_op;
 588   }
 589 
 590   assert(count->is_constant() || count->is_register(), "must be");
 591   switch(code) {
 592   case Bytecodes::_ishl:
 593   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 594   case Bytecodes::_ishr:
 595   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 596   case Bytecodes::_iushr:
 597   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 598   default: ShouldNotReachHere();
 599   }
 600 }
 601 
 602 
 603 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 604   if (two_operand_lir_form && left_op != result_op) {
 605     assert(right_op != result_op, "malformed");
 606     __ move(left_op, result_op);
 607     left_op = result_op;
 608   }
 609 
 610   switch(code) {
 611     case Bytecodes::_iand:
 612     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 613 
 614     case Bytecodes::_ior:
 615     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 616 
 617     case Bytecodes::_ixor:
 618     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 619 
 620     default: ShouldNotReachHere();
 621   }
 622 }
 623 
 624 
 625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 626   // for slow path, use debug info for state after successful locking
 627   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 628   __ load_stack_address_monitor(monitor_no, lock);
 629   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 630   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 631 }
 632 
 633 
 634 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 635   // setup registers
 636   LIR_Opr hdr = lock;
 637   lock = new_hdr;
 638   CodeStub* slow_path = new MonitorExitStub(lock, monitor_no);
 639   __ load_stack_address_monitor(monitor_no, lock);
 640   __ unlock_object(hdr, object, lock, scratch, slow_path);
 641 }
 642 
 643 #ifndef PRODUCT
 644 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 645   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 646     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 647   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 648     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 649   }
 650 }
 651 #endif
 652 
 653 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 654   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 655   // If klass is not loaded we do not know if the klass has finalizers:
 656   if (UseFastNewInstance && klass->is_loaded()
 657       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 658 
 659     StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
 660 
 661     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 662 
 663     assert(klass->is_loaded(), "must be loaded");
 664     // allocate space for instance
 665     assert(klass->size_helper() > 0, "illegal instance size");
 666     const int instance_size = align_object_size(klass->size_helper());
 667     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 668                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 669   } else {
 670     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
 671     __ branch(lir_cond_always, slow_path);
 672     __ branch_destination(slow_path->continuation());
 673   }
 674 }
 675 
 676 
 677 static bool is_constant_zero(Instruction* inst) {
 678   IntConstant* c = inst->type()->as_IntConstant();
 679   if (c) {
 680     return (c->value() == 0);
 681   }
 682   return false;
 683 }
 684 
 685 
 686 static bool positive_constant(Instruction* inst) {
 687   IntConstant* c = inst->type()->as_IntConstant();
 688   if (c) {
 689     return (c->value() >= 0);
 690   }
 691   return false;
 692 }
 693 
 694 
 695 static ciArrayKlass* as_array_klass(ciType* type) {
 696   if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
 697     return (ciArrayKlass*)type;
 698   } else {
 699     return nullptr;
 700   }
 701 }
 702 
 703 static ciType* phi_declared_type(Phi* phi) {
 704   ciType* t = phi->operand_at(0)->declared_type();
 705   if (t == nullptr) {
 706     return nullptr;
 707   }
 708   for(int i = 1; i < phi->operand_count(); i++) {
 709     if (t != phi->operand_at(i)->declared_type()) {
 710       return nullptr;
 711     }
 712   }
 713   return t;
 714 }
 715 
 716 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 717   Instruction* src     = x->argument_at(0);
 718   Instruction* src_pos = x->argument_at(1);
 719   Instruction* dst     = x->argument_at(2);
 720   Instruction* dst_pos = x->argument_at(3);
 721   Instruction* length  = x->argument_at(4);
 722 
 723   // first try to identify the likely type of the arrays involved
 724   ciArrayKlass* expected_type = nullptr;
 725   bool is_exact = false, src_objarray = false, dst_objarray = false;
 726   {
 727     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 728     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 729     Phi* phi;
 730     if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
 731       src_declared_type = as_array_klass(phi_declared_type(phi));
 732     }
 733     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 734     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 735     if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
 736       dst_declared_type = as_array_klass(phi_declared_type(phi));
 737     }
 738 
 739     if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
 740       // the types exactly match so the type is fully known
 741       is_exact = true;
 742       expected_type = src_exact_type;
 743     } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
 744       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 745       ciArrayKlass* src_type = nullptr;
 746       if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
 747         src_type = (ciArrayKlass*) src_exact_type;
 748       } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
 749         src_type = (ciArrayKlass*) src_declared_type;
 750       }
 751       if (src_type != nullptr) {
 752         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 753           is_exact = true;
 754           expected_type = dst_type;
 755         }
 756       }
 757     }
 758     // at least pass along a good guess
 759     if (expected_type == nullptr) expected_type = dst_exact_type;
 760     if (expected_type == nullptr) expected_type = src_declared_type;
 761     if (expected_type == nullptr) expected_type = dst_declared_type;
 762 
 763     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 764     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 765   }
 766 
 767   // if a probable array type has been identified, figure out if any
 768   // of the required checks for a fast case can be elided.
 769   int flags = LIR_OpArrayCopy::all_flags;
 770 
 771   if (!src_objarray)
 772     flags &= ~LIR_OpArrayCopy::src_objarray;
 773   if (!dst_objarray)
 774     flags &= ~LIR_OpArrayCopy::dst_objarray;
 775 
 776   if (!x->arg_needs_null_check(0))
 777     flags &= ~LIR_OpArrayCopy::src_null_check;
 778   if (!x->arg_needs_null_check(2))
 779     flags &= ~LIR_OpArrayCopy::dst_null_check;
 780 
 781 
 782   if (expected_type != nullptr) {
 783     Value length_limit = nullptr;
 784 
 785     IfOp* ifop = length->as_IfOp();
 786     if (ifop != nullptr) {
 787       // look for expressions like min(v, a.length) which ends up as
 788       //   x > y ? y : x  or  x >= y ? y : x
 789       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 790           ifop->x() == ifop->fval() &&
 791           ifop->y() == ifop->tval()) {
 792         length_limit = ifop->y();
 793       }
 794     }
 795 
 796     // try to skip null checks and range checks
 797     NewArray* src_array = src->as_NewArray();
 798     if (src_array != nullptr) {
 799       flags &= ~LIR_OpArrayCopy::src_null_check;
 800       if (length_limit != nullptr &&
 801           src_array->length() == length_limit &&
 802           is_constant_zero(src_pos)) {
 803         flags &= ~LIR_OpArrayCopy::src_range_check;
 804       }
 805     }
 806 
 807     NewArray* dst_array = dst->as_NewArray();
 808     if (dst_array != nullptr) {
 809       flags &= ~LIR_OpArrayCopy::dst_null_check;
 810       if (length_limit != nullptr &&
 811           dst_array->length() == length_limit &&
 812           is_constant_zero(dst_pos)) {
 813         flags &= ~LIR_OpArrayCopy::dst_range_check;
 814       }
 815     }
 816 
 817     // check from incoming constant values
 818     if (positive_constant(src_pos))
 819       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 820     if (positive_constant(dst_pos))
 821       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 822     if (positive_constant(length))
 823       flags &= ~LIR_OpArrayCopy::length_positive_check;
 824 
 825     // see if the range check can be elided, which might also imply
 826     // that src or dst is non-null.
 827     ArrayLength* al = length->as_ArrayLength();
 828     if (al != nullptr) {
 829       if (al->array() == src) {
 830         // it's the length of the source array
 831         flags &= ~LIR_OpArrayCopy::length_positive_check;
 832         flags &= ~LIR_OpArrayCopy::src_null_check;
 833         if (is_constant_zero(src_pos))
 834           flags &= ~LIR_OpArrayCopy::src_range_check;
 835       }
 836       if (al->array() == dst) {
 837         // it's the length of the destination array
 838         flags &= ~LIR_OpArrayCopy::length_positive_check;
 839         flags &= ~LIR_OpArrayCopy::dst_null_check;
 840         if (is_constant_zero(dst_pos))
 841           flags &= ~LIR_OpArrayCopy::dst_range_check;
 842       }
 843     }
 844     if (is_exact) {
 845       flags &= ~LIR_OpArrayCopy::type_check;
 846     }
 847   }
 848 
 849   IntConstant* src_int = src_pos->type()->as_IntConstant();
 850   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 851   if (src_int && dst_int) {
 852     int s_offs = src_int->value();
 853     int d_offs = dst_int->value();
 854     if (src_int->value() >= dst_int->value()) {
 855       flags &= ~LIR_OpArrayCopy::overlapping;
 856     }
 857     if (expected_type != nullptr) {
 858       BasicType t = expected_type->element_type()->basic_type();
 859       int element_size = type2aelembytes(t);
 860       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 861           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 862         flags &= ~LIR_OpArrayCopy::unaligned;
 863       }
 864     }
 865   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 866     // src and dest positions are the same, or dst is zero so assume
 867     // nonoverlapping copy.
 868     flags &= ~LIR_OpArrayCopy::overlapping;
 869   }
 870 
 871   if (src == dst) {
 872     // moving within a single array so no type checks are needed
 873     if (flags & LIR_OpArrayCopy::type_check) {
 874       flags &= ~LIR_OpArrayCopy::type_check;
 875     }
 876   }
 877   *flagsp = flags;
 878   *expected_typep = (ciArrayKlass*)expected_type;
 879 }
 880 
 881 
 882 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 883   assert(type2size[t] == type2size[value->type()],
 884          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 885   if (!value->is_register()) {
 886     // force into a register
 887     LIR_Opr r = new_register(value->type());
 888     __ move(value, r);
 889     value = r;
 890   }
 891 
 892   // create a spill location
 893   LIR_Opr tmp = new_register(t);
 894   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 895 
 896   // move from register to spill
 897   __ move(value, tmp);
 898   return tmp;
 899 }
 900 
 901 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 902   if (if_instr->should_profile()) {
 903     ciMethod* method = if_instr->profiled_method();
 904     assert(method != nullptr, "method should be set if branch is profiled");
 905     ciMethodData* md = method->method_data_or_null();
 906     assert(md != nullptr, "Sanity");
 907     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 908     assert(data != nullptr, "must have profiling data");
 909     assert(data->is_BranchData(), "need BranchData for two-way branches");
 910     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 911     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 912     if (if_instr->is_swapped()) {
 913       int t = taken_count_offset;
 914       taken_count_offset = not_taken_count_offset;
 915       not_taken_count_offset = t;
 916     }
 917 
 918     LIR_Opr md_reg = new_register(T_METADATA);
 919     __ metadata2reg(md->constant_encoding(), md_reg);
 920 
 921     LIR_Opr data_offset_reg = new_pointer_register();
 922     __ cmove(lir_cond(cond),
 923              LIR_OprFact::intptrConst(taken_count_offset),
 924              LIR_OprFact::intptrConst(not_taken_count_offset),
 925              data_offset_reg, as_BasicType(if_instr->x()->type()));
 926 
 927     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 928     LIR_Opr data_reg = new_pointer_register();
 929     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 930     __ move(data_addr, data_reg);
 931     // Use leal instead of add to avoid destroying condition codes on x86
 932     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 933     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 934     __ move(data_reg, data_addr);
 935   }
 936 }
 937 
 938 // Phi technique:
 939 // This is about passing live values from one basic block to the other.
 940 // In code generated with Java it is rather rare that more than one
 941 // value is on the stack from one basic block to the other.
 942 // We optimize our technique for efficient passing of one value
 943 // (of type long, int, double..) but it can be extended.
 944 // When entering or leaving a basic block, all registers and all spill
 945 // slots are release and empty. We use the released registers
 946 // and spill slots to pass the live values from one block
 947 // to the other. The topmost value, i.e., the value on TOS of expression
 948 // stack is passed in registers. All other values are stored in spilling
 949 // area. Every Phi has an index which designates its spill slot
 950 // At exit of a basic block, we fill the register(s) and spill slots.
 951 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 952 // and locks necessary registers and spilling slots.
 953 
 954 
 955 // move current value to referenced phi function
 956 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 957   Phi* phi = sux_val->as_Phi();
 958   // cur_val can be null without phi being null in conjunction with inlining
 959   if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
 960     if (phi->is_local()) {
 961       for (int i = 0; i < phi->operand_count(); i++) {
 962         Value op = phi->operand_at(i);
 963         if (op != nullptr && op->type()->is_illegal()) {
 964           bailout("illegal phi operand");
 965         }
 966       }
 967     }
 968     Phi* cur_phi = cur_val->as_Phi();
 969     if (cur_phi != nullptr && cur_phi->is_illegal()) {
 970       // Phi and local would need to get invalidated
 971       // (which is unexpected for Linear Scan).
 972       // But this case is very rare so we simply bail out.
 973       bailout("propagation of illegal phi");
 974       return;
 975     }
 976     LIR_Opr operand = cur_val->operand();
 977     if (operand->is_illegal()) {
 978       assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
 979              "these can be produced lazily");
 980       operand = operand_for_instruction(cur_val);
 981     }
 982     resolver->move(operand, operand_for_instruction(phi));
 983   }
 984 }
 985 
 986 
 987 // Moves all stack values into their PHI position
 988 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 989   BlockBegin* bb = block();
 990   if (bb->number_of_sux() == 1) {
 991     BlockBegin* sux = bb->sux_at(0);
 992     assert(sux->number_of_preds() > 0, "invalid CFG");
 993 
 994     // a block with only one predecessor never has phi functions
 995     if (sux->number_of_preds() > 1) {
 996       PhiResolver resolver(this);
 997 
 998       ValueStack* sux_state = sux->state();
 999       Value sux_value;
1000       int index;
1001 
1002       assert(cur_state->scope() == sux_state->scope(), "not matching");
1003       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1004       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1005 
1006       for_each_stack_value(sux_state, index, sux_value) {
1007         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1008       }
1009 
1010       for_each_local_value(sux_state, index, sux_value) {
1011         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1012       }
1013 
1014       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1015     }
1016   }
1017 }
1018 
1019 
1020 LIR_Opr LIRGenerator::new_register(BasicType type) {
1021   int vreg_num = _virtual_register_number;
1022   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1023   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1024   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1025     bailout("out of virtual registers in LIR generator");
1026     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1027       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1028       _virtual_register_number = LIR_Opr::vreg_base;
1029       vreg_num = LIR_Opr::vreg_base;
1030     }
1031   }
1032   _virtual_register_number += 1;
1033   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1034   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1035   return vreg;
1036 }
1037 
1038 
1039 // Try to lock using register in hint
1040 LIR_Opr LIRGenerator::rlock(Value instr) {
1041   return new_register(instr->type());
1042 }
1043 
1044 
1045 // does an rlock and sets result
1046 LIR_Opr LIRGenerator::rlock_result(Value x) {
1047   LIR_Opr reg = rlock(x);
1048   set_result(x, reg);
1049   return reg;
1050 }
1051 
1052 
1053 // does an rlock and sets result
1054 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1055   LIR_Opr reg;
1056   switch (type) {
1057   case T_BYTE:
1058   case T_BOOLEAN:
1059     reg = rlock_byte(type);
1060     break;
1061   default:
1062     reg = rlock(x);
1063     break;
1064   }
1065 
1066   set_result(x, reg);
1067   return reg;
1068 }
1069 
1070 
1071 //---------------------------------------------------------------------
1072 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1073   ObjectType* oc = value->type()->as_ObjectType();
1074   if (oc) {
1075     return oc->constant_value();
1076   }
1077   return nullptr;
1078 }
1079 
1080 
1081 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1082   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1083   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1084 
1085   // no moves are created for phi functions at the begin of exception
1086   // handlers, so assign operands manually here
1087   for_each_phi_fun(block(), phi,
1088                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1089 
1090   LIR_Opr thread_reg = getThreadPointer();
1091   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1092                exceptionOopOpr());
1093   __ move_wide(LIR_OprFact::oopConst(nullptr),
1094                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1095   __ move_wide(LIR_OprFact::oopConst(nullptr),
1096                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1097 
1098   LIR_Opr result = new_register(T_OBJECT);
1099   __ move(exceptionOopOpr(), result);
1100   set_result(x, result);
1101 }
1102 
1103 
1104 //----------------------------------------------------------------------
1105 //----------------------------------------------------------------------
1106 //----------------------------------------------------------------------
1107 //----------------------------------------------------------------------
1108 //                        visitor functions
1109 //----------------------------------------------------------------------
1110 //----------------------------------------------------------------------
1111 //----------------------------------------------------------------------
1112 //----------------------------------------------------------------------
1113 
1114 void LIRGenerator::do_Phi(Phi* x) {
1115   // phi functions are never visited directly
1116   ShouldNotReachHere();
1117 }
1118 
1119 
1120 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1121 void LIRGenerator::do_Constant(Constant* x) {
1122   if (x->state_before() != nullptr) {
1123     // Any constant with a ValueStack requires patching so emit the patch here
1124     LIR_Opr reg = rlock_result(x);
1125     CodeEmitInfo* info = state_for(x, x->state_before());
1126     __ oop2reg_patch(nullptr, reg, info);
1127   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1128     if (!x->is_pinned()) {
1129       // unpinned constants are handled specially so that they can be
1130       // put into registers when they are used multiple times within a
1131       // block.  After the block completes their operand will be
1132       // cleared so that other blocks can't refer to that register.
1133       set_result(x, load_constant(x));
1134     } else {
1135       LIR_Opr res = x->operand();
1136       if (!res->is_valid()) {
1137         res = LIR_OprFact::value_type(x->type());
1138       }
1139       if (res->is_constant()) {
1140         LIR_Opr reg = rlock_result(x);
1141         __ move(res, reg);
1142       } else {
1143         set_result(x, res);
1144       }
1145     }
1146   } else {
1147     set_result(x, LIR_OprFact::value_type(x->type()));
1148   }
1149 }
1150 
1151 
1152 void LIRGenerator::do_Local(Local* x) {
1153   // operand_for_instruction has the side effect of setting the result
1154   // so there's no need to do it here.
1155   operand_for_instruction(x);
1156 }
1157 
1158 
1159 void LIRGenerator::do_Return(Return* x) {
1160   if (compilation()->env()->dtrace_method_probes()) {
1161     BasicTypeList signature;
1162     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1163     signature.append(T_METADATA); // Method*
1164     LIR_OprList* args = new LIR_OprList();
1165     args->append(getThreadPointer());
1166     LIR_Opr meth = new_register(T_METADATA);
1167     __ metadata2reg(method()->constant_encoding(), meth);
1168     args->append(meth);
1169     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1170   }
1171 
1172   if (x->type()->is_void()) {
1173     __ return_op(LIR_OprFact::illegalOpr);
1174   } else {
1175     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1176     LIRItem result(x->result(), this);
1177 
1178     result.load_item_force(reg);
1179     __ return_op(result.result());
1180   }
1181   set_no_result(x);
1182 }
1183 
1184 // Example: ref.get()
1185 // Combination of LoadField and g1 pre-write barrier
1186 void LIRGenerator::do_Reference_get0(Intrinsic* x) {
1187 
1188   const int referent_offset = java_lang_ref_Reference::referent_offset();
1189 
1190   assert(x->number_of_arguments() == 1, "wrong type");
1191 
1192   LIRItem reference(x->argument_at(0), this);
1193   reference.load_item();
1194 
1195   // need to perform the null check on the reference object
1196   CodeEmitInfo* info = nullptr;
1197   if (x->needs_null_check()) {
1198     info = state_for(x);
1199   }
1200 
1201   LIR_Opr result = rlock_result(x, T_OBJECT);
1202   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1203                  reference, LIR_OprFact::intConst(referent_offset), result,
1204                  nullptr, info);
1205 }
1206 
1207 // Example: clazz.isInstance(object)
1208 void LIRGenerator::do_isInstance(Intrinsic* x) {
1209   assert(x->number_of_arguments() == 2, "wrong type");
1210 
1211   LIRItem clazz(x->argument_at(0), this);
1212   LIRItem object(x->argument_at(1), this);
1213   clazz.load_item();
1214   object.load_item();
1215   LIR_Opr result = rlock_result(x);
1216 
1217   // need to perform null check on clazz
1218   if (x->needs_null_check()) {
1219     CodeEmitInfo* info = state_for(x);
1220     __ null_check(clazz.result(), info);
1221   }
1222 
1223   address pd_instanceof_fn = isInstance_entry();
1224   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1225                                      pd_instanceof_fn,
1226                                      x->type(),
1227                                      nullptr); // null CodeEmitInfo results in a leaf call
1228   __ move(call_result, result);
1229 }
1230 
1231 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1232   __ load_klass(obj, klass, null_check_info);
1233 }
1234 
1235 // Example: object.getClass ()
1236 void LIRGenerator::do_getClass(Intrinsic* x) {
1237   assert(x->number_of_arguments() == 1, "wrong type");
1238 
1239   LIRItem rcvr(x->argument_at(0), this);
1240   rcvr.load_item();
1241   LIR_Opr temp = new_register(T_ADDRESS);
1242   LIR_Opr result = rlock_result(x);
1243 
1244   // need to perform the null check on the rcvr
1245   CodeEmitInfo* info = nullptr;
1246   if (x->needs_null_check()) {
1247     info = state_for(x);
1248   }
1249 
1250   LIR_Opr klass = new_register(T_METADATA);
1251   load_klass(rcvr.result(), klass, info);
1252   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1253   // mirror = ((OopHandle)mirror)->resolve();
1254   access_load(IN_NATIVE, T_OBJECT,
1255               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1256 }
1257 
1258 void LIRGenerator::do_addressOf(Intrinsic* x) {
1259   assert(x->number_of_arguments() == 1, "wrong type");
1260   LIR_Opr reg = rlock_result(x);
1261 
1262   LIRItem value(x->argument_at(0), this);
1263   value.load_item();
1264 
1265 #ifdef _LP64
1266   __ move(value.result(), reg, nullptr);
1267 #else
1268   LIR_Opr res = new_register(T_INT);
1269   __ move(value.result(), res, nullptr);
1270   __ convert(Bytecodes::_i2l, res, reg);
1271 #endif
1272 }
1273 
1274 void LIRGenerator::do_sizeOf(Intrinsic* x) {
1275   assert(x->number_of_arguments() == 1, "wrong type");
1276   do_sizeOf_impl(x, 0);
1277 }
1278 
1279 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1280   assert(x->number_of_arguments() == 3, "wrong type");
1281   do_sizeOf_impl(x, 2);
1282 }
1283 
1284 void LIRGenerator::do_sizeOf_impl(Intrinsic* x, int arg_idx) {
1285   LIR_Opr result_reg = rlock_result(x);
1286 
1287   LIRItem value(x->argument_at(arg_idx), this);
1288   value.load_item();
1289 
1290   LIR_Opr klass = new_register(T_METADATA);
1291   load_klass(value.result(), klass, nullptr);
1292   LIR_Opr layout = new_register(T_INT);
1293   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1294 
1295   LabelObj* L_done = new LabelObj();
1296   LabelObj* L_array = new LabelObj();
1297 
1298   __ cmp(lir_cond_lessEqual, layout, 0);
1299   __ branch(lir_cond_lessEqual, L_array->label());
1300 
1301   // Instance case: the layout helper gives us instance size almost directly,
1302   // but we need to mask out the _lh_instance_slow_path_bit.
1303 
1304   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1305 
1306   LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1307   __ logical_and(layout, mask, layout);
1308   __ convert(Bytecodes::_i2l, layout, result_reg);
1309 
1310   __ branch(lir_cond_always, L_done->label());
1311 
1312   // Array case: size is round(header + element_size*arraylength).
1313   // Since arraylength is different for every array instance, we have to
1314   // compute the whole thing at runtime.
1315 
1316   __ branch_destination(L_array->label());
1317 
1318   int round_mask = MinObjAlignmentInBytes - 1;
1319 
1320   // Figure out header sizes first.
1321   LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1322   LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1323 
1324   LIR_Opr header_size = new_register(T_INT);
1325   __ move(layout, header_size);
1326   LIR_Opr tmp = new_register(T_INT);
1327   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1328   __ logical_and(header_size, hsm, header_size);
1329   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1330 
1331   // Figure out the array length in bytes
1332   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1333   LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1334   __ logical_and(layout, l2esm, layout);
1335 
1336   LIR_Opr length_int = new_register(T_INT);
1337   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1338 
1339 #ifdef _LP64
1340   LIR_Opr length = new_register(T_LONG);
1341   __ convert(Bytecodes::_i2l, length_int, length);
1342 #endif
1343 
1344   // Shift-left awkwardness. Normally it is just:
1345   //   __ shift_left(length, layout, length);
1346   // But C1 cannot perform shift_left with non-constant count, so we end up
1347   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1348   // longs, so we have to act on ints.
1349   LabelObj* L_shift_loop = new LabelObj();
1350   LabelObj* L_shift_exit = new LabelObj();
1351 
1352   __ branch_destination(L_shift_loop->label());
1353   __ cmp(lir_cond_equal, layout, 0);
1354   __ branch(lir_cond_equal, L_shift_exit->label());
1355 
1356 #ifdef _LP64
1357   __ shift_left(length, 1, length);
1358 #else
1359   __ shift_left(length_int, 1, length_int);
1360 #endif
1361 
1362   __ sub(layout, LIR_OprFact::intConst(1), layout);
1363 
1364   __ branch(lir_cond_always, L_shift_loop->label());
1365   __ branch_destination(L_shift_exit->label());
1366 
1367   // Mix all up, round, and push to the result.
1368 #ifdef _LP64
1369   LIR_Opr header_size_long = new_register(T_LONG);
1370   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1371   __ add(length, header_size_long, length);
1372   if (round_mask != 0) {
1373     LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1374     __ logical_and(length, round_mask_opr, length);
1375   }
1376   __ move(length, result_reg);
1377 #else
1378   __ add(length_int, header_size, length_int);
1379   if (round_mask != 0) {
1380     LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1381     __ logical_and(length_int, round_mask_opr, length_int);
1382   }
1383   __ convert(Bytecodes::_i2l, length_int, result_reg);
1384 #endif
1385 
1386   __ branch_destination(L_done->label());
1387 }
1388 
1389 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1390   do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1391 }
1392 
1393 // Example: Thread.currentCarrierThread()
1394 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1395   do_JavaThreadField(x, JavaThread::threadObj_offset());
1396 }
1397 
1398 void LIRGenerator::do_vthread(Intrinsic* x) {
1399   do_JavaThreadField(x, JavaThread::vthread_offset());
1400 }
1401 
1402 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1403   assert(x->number_of_arguments() == 0, "wrong type");
1404   LIR_Opr temp = new_register(T_ADDRESS);
1405   LIR_Opr reg = rlock_result(x);
1406   __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1407   access_load(IN_NATIVE, T_OBJECT,
1408               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1409 }
1410 
1411 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1412   assert(x->number_of_arguments() == 1, "wrong type");
1413   LIRItem receiver(x->argument_at(0), this);
1414 
1415   receiver.load_item();
1416   BasicTypeList signature;
1417   signature.append(T_OBJECT); // receiver
1418   LIR_OprList* args = new LIR_OprList();
1419   args->append(receiver.result());
1420   CodeEmitInfo* info = state_for(x, x->state());
1421   call_runtime(&signature, args,
1422                CAST_FROM_FN_PTR(address, Runtime1::entry_for(StubId::c1_register_finalizer_id)),
1423                voidType, info);
1424 
1425   set_no_result(x);
1426 }
1427 
1428 
1429 //------------------------local access--------------------------------------
1430 
1431 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1432   if (x->operand()->is_illegal()) {
1433     Constant* c = x->as_Constant();
1434     if (c != nullptr) {
1435       x->set_operand(LIR_OprFact::value_type(c->type()));
1436     } else {
1437       assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1438       // allocate a virtual register for this local or phi
1439       x->set_operand(rlock(x));
1440 #ifdef ASSERT
1441       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1442 #endif
1443     }
1444   }
1445   return x->operand();
1446 }
1447 
1448 #ifdef ASSERT
1449 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1450   if (reg_num < _instruction_for_operand.length()) {
1451     return _instruction_for_operand.at(reg_num);
1452   }
1453   return nullptr;
1454 }
1455 #endif
1456 
1457 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1458   if (_vreg_flags.size_in_bits() == 0) {
1459     BitMap2D temp(100, num_vreg_flags);
1460     _vreg_flags = temp;
1461   }
1462   _vreg_flags.at_put_grow(vreg_num, f, true);
1463 }
1464 
1465 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1466   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1467     return false;
1468   }
1469   return _vreg_flags.at(vreg_num, f);
1470 }
1471 
1472 
1473 // Block local constant handling.  This code is useful for keeping
1474 // unpinned constants and constants which aren't exposed in the IR in
1475 // registers.  Unpinned Constant instructions have their operands
1476 // cleared when the block is finished so that other blocks can't end
1477 // up referring to their registers.
1478 
1479 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1480   assert(!x->is_pinned(), "only for unpinned constants");
1481   _unpinned_constants.append(x);
1482   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1483 }
1484 
1485 
1486 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1487   BasicType t = c->type();
1488   for (int i = 0; i < _constants.length(); i++) {
1489     LIR_Const* other = _constants.at(i);
1490     if (t == other->type()) {
1491       switch (t) {
1492       case T_INT:
1493       case T_FLOAT:
1494         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1495         break;
1496       case T_LONG:
1497       case T_DOUBLE:
1498         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1499         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1500         break;
1501       case T_OBJECT:
1502         if (c->as_jobject() != other->as_jobject()) continue;
1503         break;
1504       default:
1505         break;
1506       }
1507       return _reg_for_constants.at(i);
1508     }
1509   }
1510 
1511   LIR_Opr result = new_register(t);
1512   __ move((LIR_Opr)c, result);
1513   _constants.append(c);
1514   _reg_for_constants.append(result);
1515   return result;
1516 }
1517 
1518 //------------------------field access--------------------------------------
1519 
1520 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1521   assert(x->number_of_arguments() == 4, "wrong type");
1522   LIRItem obj   (x->argument_at(0), this);  // object
1523   LIRItem offset(x->argument_at(1), this);  // offset of field
1524   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1525   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1526   assert(obj.type()->tag() == objectTag, "invalid type");
1527   assert(cmp.type()->tag() == type->tag(), "invalid type");
1528   assert(val.type()->tag() == type->tag(), "invalid type");
1529 
1530   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1531                                             obj, offset, cmp, val);
1532   set_result(x, result);
1533 }
1534 
1535 // Comment copied form templateTable_i486.cpp
1536 // ----------------------------------------------------------------------------
1537 // Volatile variables demand their effects be made known to all CPU's in
1538 // order.  Store buffers on most chips allow reads & writes to reorder; the
1539 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1540 // memory barrier (i.e., it's not sufficient that the interpreter does not
1541 // reorder volatile references, the hardware also must not reorder them).
1542 //
1543 // According to the new Java Memory Model (JMM):
1544 // (1) All volatiles are serialized wrt to each other.
1545 // ALSO reads & writes act as acquire & release, so:
1546 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1547 // the read float up to before the read.  It's OK for non-volatile memory refs
1548 // that happen before the volatile read to float down below it.
1549 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1550 // that happen BEFORE the write float down to after the write.  It's OK for
1551 // non-volatile memory refs that happen after the volatile write to float up
1552 // before it.
1553 //
1554 // We only put in barriers around volatile refs (they are expensive), not
1555 // _between_ memory refs (that would require us to track the flavor of the
1556 // previous memory refs).  Requirements (2) and (3) require some barriers
1557 // before volatile stores and after volatile loads.  These nearly cover
1558 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1559 // case is placed after volatile-stores although it could just as well go
1560 // before volatile-loads.
1561 
1562 
1563 void LIRGenerator::do_StoreField(StoreField* x) {
1564   bool needs_patching = x->needs_patching();
1565   bool is_volatile = x->field()->is_volatile();
1566   BasicType field_type = x->field_type();
1567 
1568   CodeEmitInfo* info = nullptr;
1569   if (needs_patching) {
1570     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1571     info = state_for(x, x->state_before());
1572   } else if (x->needs_null_check()) {
1573     NullCheck* nc = x->explicit_null_check();
1574     if (nc == nullptr) {
1575       info = state_for(x);
1576     } else {
1577       info = state_for(nc);
1578     }
1579   }
1580 
1581   LIRItem object(x->obj(), this);
1582   LIRItem value(x->value(),  this);
1583 
1584   object.load_item();
1585 
1586   if (is_volatile || needs_patching) {
1587     // load item if field is volatile (fewer special cases for volatiles)
1588     // load item if field not initialized
1589     // load item if field not constant
1590     // because of code patching we cannot inline constants
1591     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1592       value.load_byte_item();
1593     } else  {
1594       value.load_item();
1595     }
1596   } else {
1597     value.load_for_store(field_type);
1598   }
1599 
1600   set_no_result(x);
1601 
1602 #ifndef PRODUCT
1603   if (PrintNotLoaded && needs_patching) {
1604     tty->print_cr("   ###class not loaded at store_%s bci %d",
1605                   x->is_static() ?  "static" : "field", x->printable_bci());
1606   }
1607 #endif
1608 
1609   if (x->needs_null_check() &&
1610       (needs_patching ||
1611        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1612     // Emit an explicit null check because the offset is too large.
1613     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1614     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1615     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1616   }
1617 
1618   DecoratorSet decorators = IN_HEAP;
1619   if (is_volatile) {
1620     decorators |= MO_SEQ_CST;
1621   }
1622   if (needs_patching) {
1623     decorators |= C1_NEEDS_PATCHING;
1624   }
1625 
1626   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1627                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1628 }
1629 
1630 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1631   assert(x->is_pinned(),"");
1632   bool needs_range_check = x->compute_needs_range_check();
1633   bool use_length = x->length() != nullptr;
1634   bool obj_store = is_reference_type(x->elt_type());
1635   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1636                                          !get_jobject_constant(x->value())->is_null_object() ||
1637                                          x->should_profile());
1638 
1639   LIRItem array(x->array(), this);
1640   LIRItem index(x->index(), this);
1641   LIRItem value(x->value(), this);
1642   LIRItem length(this);
1643 
1644   array.load_item();
1645   index.load_nonconstant();
1646 
1647   if (use_length && needs_range_check) {
1648     length.set_instruction(x->length());
1649     length.load_item();
1650 
1651   }
1652   if (needs_store_check || x->check_boolean()) {
1653     value.load_item();
1654   } else {
1655     value.load_for_store(x->elt_type());
1656   }
1657 
1658   set_no_result(x);
1659 
1660   // the CodeEmitInfo must be duplicated for each different
1661   // LIR-instruction because spilling can occur anywhere between two
1662   // instructions and so the debug information must be different
1663   CodeEmitInfo* range_check_info = state_for(x);
1664   CodeEmitInfo* null_check_info = nullptr;
1665   if (x->needs_null_check()) {
1666     null_check_info = new CodeEmitInfo(range_check_info);
1667   }
1668 
1669   if (needs_range_check) {
1670     if (use_length) {
1671       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1672       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1673     } else {
1674       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1675       // range_check also does the null check
1676       null_check_info = nullptr;
1677     }
1678   }
1679 
1680   if (GenerateArrayStoreCheck && needs_store_check) {
1681     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1682     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1683   }
1684 
1685   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1686   if (x->check_boolean()) {
1687     decorators |= C1_MASK_BOOLEAN;
1688   }
1689 
1690   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1691                   nullptr, null_check_info);
1692 }
1693 
1694 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1695                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1696                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1697   decorators |= ACCESS_READ;
1698   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1699   if (access.is_raw()) {
1700     _barrier_set->BarrierSetC1::load_at(access, result);
1701   } else {
1702     _barrier_set->load_at(access, result);
1703   }
1704 }
1705 
1706 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1707                                LIR_Opr addr, LIR_Opr result) {
1708   decorators |= ACCESS_READ;
1709   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1710   access.set_resolved_addr(addr);
1711   if (access.is_raw()) {
1712     _barrier_set->BarrierSetC1::load(access, result);
1713   } else {
1714     _barrier_set->load(access, result);
1715   }
1716 }
1717 
1718 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1719                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1720                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1721   decorators |= ACCESS_WRITE;
1722   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1723   if (access.is_raw()) {
1724     _barrier_set->BarrierSetC1::store_at(access, value);
1725   } else {
1726     _barrier_set->store_at(access, value);
1727   }
1728 }
1729 
1730 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1731                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1732   decorators |= ACCESS_READ;
1733   decorators |= ACCESS_WRITE;
1734   // Atomic operations are SEQ_CST by default
1735   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1736   LIRAccess access(this, decorators, base, offset, type);
1737   if (access.is_raw()) {
1738     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1739   } else {
1740     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1741   }
1742 }
1743 
1744 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1745                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1746   decorators |= ACCESS_READ;
1747   decorators |= ACCESS_WRITE;
1748   // Atomic operations are SEQ_CST by default
1749   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1750   LIRAccess access(this, decorators, base, offset, type);
1751   if (access.is_raw()) {
1752     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1753   } else {
1754     return _barrier_set->atomic_xchg_at(access, value);
1755   }
1756 }
1757 
1758 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1759                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1760   decorators |= ACCESS_READ;
1761   decorators |= ACCESS_WRITE;
1762   // Atomic operations are SEQ_CST by default
1763   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1764   LIRAccess access(this, decorators, base, offset, type);
1765   if (access.is_raw()) {
1766     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1767   } else {
1768     return _barrier_set->atomic_add_at(access, value);
1769   }
1770 }
1771 
1772 void LIRGenerator::do_LoadField(LoadField* x) {
1773   bool needs_patching = x->needs_patching();
1774   bool is_volatile = x->field()->is_volatile();
1775   BasicType field_type = x->field_type();
1776 
1777   CodeEmitInfo* info = nullptr;
1778   if (needs_patching) {
1779     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1780     info = state_for(x, x->state_before());
1781   } else if (x->needs_null_check()) {
1782     NullCheck* nc = x->explicit_null_check();
1783     if (nc == nullptr) {
1784       info = state_for(x);
1785     } else {
1786       info = state_for(nc);
1787     }
1788   }
1789 
1790   LIRItem object(x->obj(), this);
1791 
1792   object.load_item();
1793 
1794 #ifndef PRODUCT
1795   if (PrintNotLoaded && needs_patching) {
1796     tty->print_cr("   ###class not loaded at load_%s bci %d",
1797                   x->is_static() ?  "static" : "field", x->printable_bci());
1798   }
1799 #endif
1800 
1801   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1802   if (x->needs_null_check() &&
1803       (needs_patching ||
1804        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1805        stress_deopt)) {
1806     LIR_Opr obj = object.result();
1807     if (stress_deopt) {
1808       obj = new_register(T_OBJECT);
1809       __ move(LIR_OprFact::oopConst(nullptr), obj);
1810     }
1811     // Emit an explicit null check because the offset is too large.
1812     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1813     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1814     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1815   }
1816 
1817   DecoratorSet decorators = IN_HEAP;
1818   if (is_volatile) {
1819     decorators |= MO_SEQ_CST;
1820   }
1821   if (needs_patching) {
1822     decorators |= C1_NEEDS_PATCHING;
1823   }
1824 
1825   LIR_Opr result = rlock_result(x, field_type);
1826   access_load_at(decorators, field_type,
1827                  object, LIR_OprFact::intConst(x->offset()), result,
1828                  info ? new CodeEmitInfo(info) : nullptr, info);
1829 }
1830 
1831 // int/long jdk.internal.util.Preconditions.checkIndex
1832 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1833   assert(x->number_of_arguments() == 3, "wrong type");
1834   LIRItem index(x->argument_at(0), this);
1835   LIRItem length(x->argument_at(1), this);
1836   LIRItem oobef(x->argument_at(2), this);
1837 
1838   index.load_item();
1839   length.load_item();
1840   oobef.load_item();
1841 
1842   LIR_Opr result = rlock_result(x);
1843   // x->state() is created from copy_state_for_exception, it does not contains arguments
1844   // we should prepare them before entering into interpreter mode due to deoptimization.
1845   ValueStack* state = x->state();
1846   for (int i = 0; i < x->number_of_arguments(); i++) {
1847     Value arg = x->argument_at(i);
1848     state->push(arg->type(), arg);
1849   }
1850   CodeEmitInfo* info = state_for(x, state);
1851 
1852   LIR_Opr len = length.result();
1853   LIR_Opr zero;
1854   if (type == T_INT) {
1855     zero = LIR_OprFact::intConst(0);
1856     if (length.result()->is_constant()){
1857       len = LIR_OprFact::intConst(length.result()->as_jint());
1858     }
1859   } else {
1860     assert(type == T_LONG, "sanity check");
1861     zero = LIR_OprFact::longConst(0);
1862     if (length.result()->is_constant()){
1863       len = LIR_OprFact::longConst(length.result()->as_jlong());
1864     }
1865   }
1866   // C1 can not handle the case that comparing index with constant value while condition
1867   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1868   LIR_Opr zero_reg = new_register(type);
1869   __ move(zero, zero_reg);
1870 #if defined(X86) && !defined(_LP64)
1871   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1872   LIR_Opr index_copy = new_register(index.type());
1873   // index >= 0
1874   __ move(index.result(), index_copy);
1875   __ cmp(lir_cond_less, index_copy, zero_reg);
1876   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1877                                                     Deoptimization::Action_make_not_entrant));
1878   // index < length
1879   __ move(index.result(), index_copy);
1880   __ cmp(lir_cond_greaterEqual, index_copy, len);
1881   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1882                                                             Deoptimization::Action_make_not_entrant));
1883 #else
1884   // index >= 0
1885   __ cmp(lir_cond_less, index.result(), zero_reg);
1886   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1887                                                     Deoptimization::Action_make_not_entrant));
1888   // index < length
1889   __ cmp(lir_cond_greaterEqual, index.result(), len);
1890   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1891                                                             Deoptimization::Action_make_not_entrant));
1892 #endif
1893   __ move(index.result(), result);
1894 }
1895 
1896 //------------------------array access--------------------------------------
1897 
1898 
1899 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1900   LIRItem array(x->array(), this);
1901   array.load_item();
1902   LIR_Opr reg = rlock_result(x);
1903 
1904   CodeEmitInfo* info = nullptr;
1905   if (x->needs_null_check()) {
1906     NullCheck* nc = x->explicit_null_check();
1907     if (nc == nullptr) {
1908       info = state_for(x);
1909     } else {
1910       info = state_for(nc);
1911     }
1912     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1913       LIR_Opr obj = new_register(T_OBJECT);
1914       __ move(LIR_OprFact::oopConst(nullptr), obj);
1915       __ null_check(obj, new CodeEmitInfo(info));
1916     }
1917   }
1918   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1919 }
1920 
1921 
1922 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1923   bool use_length = x->length() != nullptr;
1924   LIRItem array(x->array(), this);
1925   LIRItem index(x->index(), this);
1926   LIRItem length(this);
1927   bool needs_range_check = x->compute_needs_range_check();
1928 
1929   if (use_length && needs_range_check) {
1930     length.set_instruction(x->length());
1931     length.load_item();
1932   }
1933 
1934   array.load_item();
1935   if (index.is_constant() && can_inline_as_constant(x->index())) {
1936     // let it be a constant
1937     index.dont_load_item();
1938   } else {
1939     index.load_item();
1940   }
1941 
1942   CodeEmitInfo* range_check_info = state_for(x);
1943   CodeEmitInfo* null_check_info = nullptr;
1944   if (x->needs_null_check()) {
1945     NullCheck* nc = x->explicit_null_check();
1946     if (nc != nullptr) {
1947       null_check_info = state_for(nc);
1948     } else {
1949       null_check_info = range_check_info;
1950     }
1951     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1952       LIR_Opr obj = new_register(T_OBJECT);
1953       __ move(LIR_OprFact::oopConst(nullptr), obj);
1954       __ null_check(obj, new CodeEmitInfo(null_check_info));
1955     }
1956   }
1957 
1958   if (needs_range_check) {
1959     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1960       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1961     } else if (use_length) {
1962       // TODO: use a (modified) version of array_range_check that does not require a
1963       //       constant length to be loaded to a register
1964       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1965       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1966     } else {
1967       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1968       // The range check performs the null check, so clear it out for the load
1969       null_check_info = nullptr;
1970     }
1971   }
1972 
1973   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1974 
1975   LIR_Opr result = rlock_result(x, x->elt_type());
1976   access_load_at(decorators, x->elt_type(),
1977                  array, index.result(), result,
1978                  nullptr, null_check_info);
1979 }
1980 
1981 
1982 void LIRGenerator::do_NullCheck(NullCheck* x) {
1983   if (x->can_trap()) {
1984     LIRItem value(x->obj(), this);
1985     value.load_item();
1986     CodeEmitInfo* info = state_for(x);
1987     __ null_check(value.result(), info);
1988   }
1989 }
1990 
1991 
1992 void LIRGenerator::do_TypeCast(TypeCast* x) {
1993   LIRItem value(x->obj(), this);
1994   value.load_item();
1995   // the result is the same as from the node we are casting
1996   set_result(x, value.result());
1997 }
1998 
1999 
2000 void LIRGenerator::do_Throw(Throw* x) {
2001   LIRItem exception(x->exception(), this);
2002   exception.load_item();
2003   set_no_result(x);
2004   LIR_Opr exception_opr = exception.result();
2005   CodeEmitInfo* info = state_for(x, x->state());
2006 
2007 #ifndef PRODUCT
2008   if (PrintC1Statistics) {
2009     increment_counter(Runtime1::throw_count_address(), T_INT);
2010   }
2011 #endif
2012 
2013   // check if the instruction has an xhandler in any of the nested scopes
2014   bool unwind = false;
2015   if (info->exception_handlers()->length() == 0) {
2016     // this throw is not inside an xhandler
2017     unwind = true;
2018   } else {
2019     // get some idea of the throw type
2020     bool type_is_exact = true;
2021     ciType* throw_type = x->exception()->exact_type();
2022     if (throw_type == nullptr) {
2023       type_is_exact = false;
2024       throw_type = x->exception()->declared_type();
2025     }
2026     if (throw_type != nullptr && throw_type->is_instance_klass()) {
2027       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2028       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2029     }
2030   }
2031 
2032   // do null check before moving exception oop into fixed register
2033   // to avoid a fixed interval with an oop during the null check.
2034   // Use a copy of the CodeEmitInfo because debug information is
2035   // different for null_check and throw.
2036   if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2037     // if the exception object wasn't created using new then it might be null.
2038     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2039   }
2040 
2041   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2042     // we need to go through the exception lookup path to get JVMTI
2043     // notification done
2044     unwind = false;
2045   }
2046 
2047   // move exception oop into fixed register
2048   __ move(exception_opr, exceptionOopOpr());
2049 
2050   if (unwind) {
2051     __ unwind_exception(exceptionOopOpr());
2052   } else {
2053     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2054   }
2055 }
2056 
2057 
2058 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2059   BasicType type = x->basic_type();
2060   LIRItem src(x->object(), this);
2061   LIRItem off(x->offset(), this);
2062 
2063   off.load_item();
2064   src.load_item();
2065 
2066   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2067 
2068   if (x->is_volatile()) {
2069     decorators |= MO_SEQ_CST;
2070   }
2071   if (type == T_BOOLEAN) {
2072     decorators |= C1_MASK_BOOLEAN;
2073   }
2074   if (is_reference_type(type)) {
2075     decorators |= ON_UNKNOWN_OOP_REF;
2076   }
2077 
2078   LIR_Opr result = rlock_result(x, type);
2079   if (!x->is_raw()) {
2080     access_load_at(decorators, type, src, off.result(), result);
2081   } else {
2082     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2083     // It reads the value from [src + offset] directly.
2084 #ifdef _LP64
2085     LIR_Opr offset = new_register(T_LONG);
2086     __ convert(Bytecodes::_i2l, off.result(), offset);
2087 #else
2088     LIR_Opr offset = off.result();
2089 #endif
2090     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2091     if (is_reference_type(type)) {
2092       __ move_wide(addr, result);
2093     } else {
2094       __ move(addr, result);
2095     }
2096   }
2097 }
2098 
2099 
2100 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2101   BasicType type = x->basic_type();
2102   LIRItem src(x->object(), this);
2103   LIRItem off(x->offset(), this);
2104   LIRItem data(x->value(), this);
2105 
2106   src.load_item();
2107   if (type == T_BOOLEAN || type == T_BYTE) {
2108     data.load_byte_item();
2109   } else {
2110     data.load_item();
2111   }
2112   off.load_item();
2113 
2114   set_no_result(x);
2115 
2116   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2117   if (is_reference_type(type)) {
2118     decorators |= ON_UNKNOWN_OOP_REF;
2119   }
2120   if (x->is_volatile()) {
2121     decorators |= MO_SEQ_CST;
2122   }
2123   access_store_at(decorators, type, src, off.result(), data.result());
2124 }
2125 
2126 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2127   BasicType type = x->basic_type();
2128   LIRItem src(x->object(), this);
2129   LIRItem off(x->offset(), this);
2130   LIRItem value(x->value(), this);
2131 
2132   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2133 
2134   if (is_reference_type(type)) {
2135     decorators |= ON_UNKNOWN_OOP_REF;
2136   }
2137 
2138   LIR_Opr result;
2139   if (x->is_add()) {
2140     result = access_atomic_add_at(decorators, type, src, off, value);
2141   } else {
2142     result = access_atomic_xchg_at(decorators, type, src, off, value);
2143   }
2144   set_result(x, result);
2145 }
2146 
2147 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2148   int lng = x->length();
2149 
2150   for (int i = 0; i < lng; i++) {
2151     C1SwitchRange* one_range = x->at(i);
2152     int low_key = one_range->low_key();
2153     int high_key = one_range->high_key();
2154     BlockBegin* dest = one_range->sux();
2155     if (low_key == high_key) {
2156       __ cmp(lir_cond_equal, value, low_key);
2157       __ branch(lir_cond_equal, dest);
2158     } else if (high_key - low_key == 1) {
2159       __ cmp(lir_cond_equal, value, low_key);
2160       __ branch(lir_cond_equal, dest);
2161       __ cmp(lir_cond_equal, value, high_key);
2162       __ branch(lir_cond_equal, dest);
2163     } else {
2164       LabelObj* L = new LabelObj();
2165       __ cmp(lir_cond_less, value, low_key);
2166       __ branch(lir_cond_less, L->label());
2167       __ cmp(lir_cond_lessEqual, value, high_key);
2168       __ branch(lir_cond_lessEqual, dest);
2169       __ branch_destination(L->label());
2170     }
2171   }
2172   __ jump(default_sux);
2173 }
2174 
2175 
2176 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2177   SwitchRangeList* res = new SwitchRangeList();
2178   int len = x->length();
2179   if (len > 0) {
2180     BlockBegin* sux = x->sux_at(0);
2181     int low = x->lo_key();
2182     BlockBegin* default_sux = x->default_sux();
2183     C1SwitchRange* range = new C1SwitchRange(low, sux);
2184     for (int i = 0; i < len; i++) {
2185       int key = low + i;
2186       BlockBegin* new_sux = x->sux_at(i);
2187       if (sux == new_sux) {
2188         // still in same range
2189         range->set_high_key(key);
2190       } else {
2191         // skip tests which explicitly dispatch to the default
2192         if (sux != default_sux) {
2193           res->append(range);
2194         }
2195         range = new C1SwitchRange(key, new_sux);
2196       }
2197       sux = new_sux;
2198     }
2199     if (res->length() == 0 || res->last() != range)  res->append(range);
2200   }
2201   return res;
2202 }
2203 
2204 
2205 // we expect the keys to be sorted by increasing value
2206 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2207   SwitchRangeList* res = new SwitchRangeList();
2208   int len = x->length();
2209   if (len > 0) {
2210     BlockBegin* default_sux = x->default_sux();
2211     int key = x->key_at(0);
2212     BlockBegin* sux = x->sux_at(0);
2213     C1SwitchRange* range = new C1SwitchRange(key, sux);
2214     for (int i = 1; i < len; i++) {
2215       int new_key = x->key_at(i);
2216       BlockBegin* new_sux = x->sux_at(i);
2217       if (key+1 == new_key && sux == new_sux) {
2218         // still in same range
2219         range->set_high_key(new_key);
2220       } else {
2221         // skip tests which explicitly dispatch to the default
2222         if (range->sux() != default_sux) {
2223           res->append(range);
2224         }
2225         range = new C1SwitchRange(new_key, new_sux);
2226       }
2227       key = new_key;
2228       sux = new_sux;
2229     }
2230     if (res->length() == 0 || res->last() != range)  res->append(range);
2231   }
2232   return res;
2233 }
2234 
2235 
2236 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2237   LIRItem tag(x->tag(), this);
2238   tag.load_item();
2239   set_no_result(x);
2240 
2241   if (x->is_safepoint()) {
2242     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2243   }
2244 
2245   // move values into phi locations
2246   move_to_phi(x->state());
2247 
2248   int lo_key = x->lo_key();
2249   int len = x->length();
2250   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2251   LIR_Opr value = tag.result();
2252 
2253   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2254     ciMethod* method = x->state()->scope()->method();
2255     ciMethodData* md = method->method_data_or_null();
2256     assert(md != nullptr, "Sanity");
2257     ciProfileData* data = md->bci_to_data(x->state()->bci());
2258     assert(data != nullptr, "must have profiling data");
2259     assert(data->is_MultiBranchData(), "bad profile data?");
2260     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2261     LIR_Opr md_reg = new_register(T_METADATA);
2262     __ metadata2reg(md->constant_encoding(), md_reg);
2263     LIR_Opr data_offset_reg = new_pointer_register();
2264     LIR_Opr tmp_reg = new_pointer_register();
2265 
2266     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2267     for (int i = 0; i < len; i++) {
2268       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2269       __ cmp(lir_cond_equal, value, i + lo_key);
2270       __ move(data_offset_reg, tmp_reg);
2271       __ cmove(lir_cond_equal,
2272                LIR_OprFact::intptrConst(count_offset),
2273                tmp_reg,
2274                data_offset_reg, T_INT);
2275     }
2276 
2277     LIR_Opr data_reg = new_pointer_register();
2278     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2279     __ move(data_addr, data_reg);
2280     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2281     __ move(data_reg, data_addr);
2282   }
2283 
2284   if (UseTableRanges) {
2285     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2286   } else {
2287     for (int i = 0; i < len; i++) {
2288       __ cmp(lir_cond_equal, value, i + lo_key);
2289       __ branch(lir_cond_equal, x->sux_at(i));
2290     }
2291     __ jump(x->default_sux());
2292   }
2293 }
2294 
2295 
2296 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2297   LIRItem tag(x->tag(), this);
2298   tag.load_item();
2299   set_no_result(x);
2300 
2301   if (x->is_safepoint()) {
2302     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2303   }
2304 
2305   // move values into phi locations
2306   move_to_phi(x->state());
2307 
2308   LIR_Opr value = tag.result();
2309   int len = x->length();
2310 
2311   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2312     ciMethod* method = x->state()->scope()->method();
2313     ciMethodData* md = method->method_data_or_null();
2314     assert(md != nullptr, "Sanity");
2315     ciProfileData* data = md->bci_to_data(x->state()->bci());
2316     assert(data != nullptr, "must have profiling data");
2317     assert(data->is_MultiBranchData(), "bad profile data?");
2318     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2319     LIR_Opr md_reg = new_register(T_METADATA);
2320     __ metadata2reg(md->constant_encoding(), md_reg);
2321     LIR_Opr data_offset_reg = new_pointer_register();
2322     LIR_Opr tmp_reg = new_pointer_register();
2323 
2324     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2325     for (int i = 0; i < len; i++) {
2326       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2327       __ cmp(lir_cond_equal, value, x->key_at(i));
2328       __ move(data_offset_reg, tmp_reg);
2329       __ cmove(lir_cond_equal,
2330                LIR_OprFact::intptrConst(count_offset),
2331                tmp_reg,
2332                data_offset_reg, T_INT);
2333     }
2334 
2335     LIR_Opr data_reg = new_pointer_register();
2336     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2337     __ move(data_addr, data_reg);
2338     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2339     __ move(data_reg, data_addr);
2340   }
2341 
2342   if (UseTableRanges) {
2343     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2344   } else {
2345     int len = x->length();
2346     for (int i = 0; i < len; i++) {
2347       __ cmp(lir_cond_equal, value, x->key_at(i));
2348       __ branch(lir_cond_equal, x->sux_at(i));
2349     }
2350     __ jump(x->default_sux());
2351   }
2352 }
2353 
2354 
2355 void LIRGenerator::do_Goto(Goto* x) {
2356   set_no_result(x);
2357 
2358   if (block()->next()->as_OsrEntry()) {
2359     // need to free up storage used for OSR entry point
2360     LIR_Opr osrBuffer = block()->next()->operand();
2361     BasicTypeList signature;
2362     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2363     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2364     __ move(osrBuffer, cc->args()->at(0));
2365     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2366                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2367   }
2368 
2369   if (x->is_safepoint()) {
2370     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2371 
2372     // increment backedge counter if needed
2373     CodeEmitInfo* info = state_for(x, state);
2374     increment_backedge_counter(info, x->profiled_bci());
2375     CodeEmitInfo* safepoint_info = state_for(x, state);
2376     __ safepoint(safepoint_poll_register(), safepoint_info);
2377   }
2378 
2379   // Gotos can be folded Ifs, handle this case.
2380   if (x->should_profile()) {
2381     ciMethod* method = x->profiled_method();
2382     assert(method != nullptr, "method should be set if branch is profiled");
2383     ciMethodData* md = method->method_data_or_null();
2384     assert(md != nullptr, "Sanity");
2385     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2386     assert(data != nullptr, "must have profiling data");
2387     int offset;
2388     if (x->direction() == Goto::taken) {
2389       assert(data->is_BranchData(), "need BranchData for two-way branches");
2390       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2391     } else if (x->direction() == Goto::not_taken) {
2392       assert(data->is_BranchData(), "need BranchData for two-way branches");
2393       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2394     } else {
2395       assert(data->is_JumpData(), "need JumpData for branches");
2396       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2397     }
2398     LIR_Opr md_reg = new_register(T_METADATA);
2399     __ metadata2reg(md->constant_encoding(), md_reg);
2400 
2401     increment_counter(new LIR_Address(md_reg, offset,
2402                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2403   }
2404 
2405   // emit phi-instruction move after safepoint since this simplifies
2406   // describing the state as the safepoint.
2407   move_to_phi(x->state());
2408 
2409   __ jump(x->default_sux());
2410 }
2411 
2412 /**
2413  * Emit profiling code if needed for arguments, parameters, return value types
2414  *
2415  * @param md                    MDO the code will update at runtime
2416  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2417  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2418  * @param profiled_k            current profile
2419  * @param obj                   IR node for the object to be profiled
2420  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2421  *                              Set once we find an update to make and use for next ones.
2422  * @param not_null              true if we know obj cannot be null
2423  * @param signature_at_call_k   signature at call for obj
2424  * @param callee_signature_k    signature of callee for obj
2425  *                              at call and callee signatures differ at method handle call
2426  * @return                      the only klass we know will ever be seen at this profile point
2427  */
2428 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2429                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2430                                     ciKlass* callee_signature_k) {
2431   ciKlass* result = nullptr;
2432   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2433   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2434   // known not to be null or null bit already set and already set to
2435   // unknown: nothing we can do to improve profiling
2436   if (!do_null && !do_update) {
2437     return result;
2438   }
2439 
2440   ciKlass* exact_klass = nullptr;
2441   Compilation* comp = Compilation::current();
2442   if (do_update) {
2443     // try to find exact type, using CHA if possible, so that loading
2444     // the klass from the object can be avoided
2445     ciType* type = obj->exact_type();
2446     if (type == nullptr) {
2447       type = obj->declared_type();
2448       type = comp->cha_exact_type(type);
2449     }
2450     assert(type == nullptr || type->is_klass(), "type should be class");
2451     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2452 
2453     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2454   }
2455 
2456   if (!do_null && !do_update) {
2457     return result;
2458   }
2459 
2460   ciKlass* exact_signature_k = nullptr;
2461   if (do_update) {
2462     // Is the type from the signature exact (the only one possible)?
2463     exact_signature_k = signature_at_call_k->exact_klass();
2464     if (exact_signature_k == nullptr) {
2465       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2466     } else {
2467       result = exact_signature_k;
2468       // Known statically. No need to emit any code: prevent
2469       // LIR_Assembler::emit_profile_type() from emitting useless code
2470       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2471     }
2472     // exact_klass and exact_signature_k can be both non null but
2473     // different if exact_klass is loaded after the ciObject for
2474     // exact_signature_k is created.
2475     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2476       // sometimes the type of the signature is better than the best type
2477       // the compiler has
2478       exact_klass = exact_signature_k;
2479     }
2480     if (callee_signature_k != nullptr &&
2481         callee_signature_k != signature_at_call_k) {
2482       ciKlass* improved_klass = callee_signature_k->exact_klass();
2483       if (improved_klass == nullptr) {
2484         improved_klass = comp->cha_exact_type(callee_signature_k);
2485       }
2486       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2487         exact_klass = exact_signature_k;
2488       }
2489     }
2490     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2491   }
2492 
2493   if (!do_null && !do_update) {
2494     return result;
2495   }
2496 
2497   if (mdp == LIR_OprFact::illegalOpr) {
2498     mdp = new_register(T_METADATA);
2499     __ metadata2reg(md->constant_encoding(), mdp);
2500     if (md_base_offset != 0) {
2501       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2502       mdp = new_pointer_register();
2503       __ leal(LIR_OprFact::address(base_type_address), mdp);
2504     }
2505   }
2506   LIRItem value(obj, this);
2507   value.load_item();
2508   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2509                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2510   return result;
2511 }
2512 
2513 // profile parameters on entry to the root of the compilation
2514 void LIRGenerator::profile_parameters(Base* x) {
2515   if (compilation()->profile_parameters()) {
2516     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2517     ciMethodData* md = scope()->method()->method_data_or_null();
2518     assert(md != nullptr, "Sanity");
2519 
2520     if (md->parameters_type_data() != nullptr) {
2521       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2522       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2523       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2524       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2525         LIR_Opr src = args->at(i);
2526         assert(!src->is_illegal(), "check");
2527         BasicType t = src->type();
2528         if (is_reference_type(t)) {
2529           intptr_t profiled_k = parameters->type(j);
2530           Local* local = x->state()->local_at(java_index)->as_Local();
2531           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2532                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2533                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2534           // If the profile is known statically set it once for all and do not emit any code
2535           if (exact != nullptr) {
2536             md->set_parameter_type(j, exact);
2537           }
2538           j++;
2539         }
2540         java_index += type2size[t];
2541       }
2542     }
2543   }
2544 }
2545 
2546 void LIRGenerator::do_Base(Base* x) {
2547   __ std_entry(LIR_OprFact::illegalOpr);
2548   // Emit moves from physical registers / stack slots to virtual registers
2549   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2550   IRScope* irScope = compilation()->hir()->top_scope();
2551   int java_index = 0;
2552   for (int i = 0; i < args->length(); i++) {
2553     LIR_Opr src = args->at(i);
2554     assert(!src->is_illegal(), "check");
2555     BasicType t = src->type();
2556 
2557     // Types which are smaller than int are passed as int, so
2558     // correct the type which passed.
2559     switch (t) {
2560     case T_BYTE:
2561     case T_BOOLEAN:
2562     case T_SHORT:
2563     case T_CHAR:
2564       t = T_INT;
2565       break;
2566     default:
2567       break;
2568     }
2569 
2570     LIR_Opr dest = new_register(t);
2571     __ move(src, dest);
2572 
2573     // Assign new location to Local instruction for this local
2574     Local* local = x->state()->local_at(java_index)->as_Local();
2575     assert(local != nullptr, "Locals for incoming arguments must have been created");
2576 #ifndef __SOFTFP__
2577     // The java calling convention passes double as long and float as int.
2578     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2579 #endif // __SOFTFP__
2580     local->set_operand(dest);
2581 #ifdef ASSERT
2582     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2583 #endif
2584     java_index += type2size[t];
2585   }
2586 
2587   if (compilation()->env()->dtrace_method_probes()) {
2588     BasicTypeList signature;
2589     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2590     signature.append(T_METADATA); // Method*
2591     LIR_OprList* args = new LIR_OprList();
2592     args->append(getThreadPointer());
2593     LIR_Opr meth = new_register(T_METADATA);
2594     __ metadata2reg(method()->constant_encoding(), meth);
2595     args->append(meth);
2596     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2597   }
2598 
2599   if (method()->is_synchronized()) {
2600     LIR_Opr obj;
2601     if (method()->is_static()) {
2602       obj = new_register(T_OBJECT);
2603       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2604     } else {
2605       Local* receiver = x->state()->local_at(0)->as_Local();
2606       assert(receiver != nullptr, "must already exist");
2607       obj = receiver->operand();
2608     }
2609     assert(obj->is_valid(), "must be valid");
2610 
2611     if (method()->is_synchronized()) {
2612       LIR_Opr lock = syncLockOpr();
2613       __ load_stack_address_monitor(0, lock);
2614 
2615       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2616       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2617 
2618       // receiver is guaranteed non-null so don't need CodeEmitInfo
2619       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2620     }
2621   }
2622   // increment invocation counters if needed
2623   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2624     profile_parameters(x);
2625     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2626     increment_invocation_counter(info);
2627   }
2628 
2629   // all blocks with a successor must end with an unconditional jump
2630   // to the successor even if they are consecutive
2631   __ jump(x->default_sux());
2632 }
2633 
2634 
2635 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2636   // construct our frame and model the production of incoming pointer
2637   // to the OSR buffer.
2638   __ osr_entry(LIR_Assembler::osrBufferPointer());
2639   LIR_Opr result = rlock_result(x);
2640   __ move(LIR_Assembler::osrBufferPointer(), result);
2641 }
2642 
2643 
2644 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2645   assert(args->length() == arg_list->length(),
2646          "args=%d, arg_list=%d", args->length(), arg_list->length());
2647   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2648     LIRItem* param = args->at(i);
2649     LIR_Opr loc = arg_list->at(i);
2650     if (loc->is_register()) {
2651       param->load_item_force(loc);
2652     } else {
2653       LIR_Address* addr = loc->as_address_ptr();
2654       param->load_for_store(addr->type());
2655       if (addr->type() == T_OBJECT) {
2656         __ move_wide(param->result(), addr);
2657       } else
2658         __ move(param->result(), addr);
2659     }
2660   }
2661 
2662   if (x->has_receiver()) {
2663     LIRItem* receiver = args->at(0);
2664     LIR_Opr loc = arg_list->at(0);
2665     if (loc->is_register()) {
2666       receiver->load_item_force(loc);
2667     } else {
2668       assert(loc->is_address(), "just checking");
2669       receiver->load_for_store(T_OBJECT);
2670       __ move_wide(receiver->result(), loc->as_address_ptr());
2671     }
2672   }
2673 }
2674 
2675 
2676 // Visits all arguments, returns appropriate items without loading them
2677 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2678   LIRItemList* argument_items = new LIRItemList();
2679   if (x->has_receiver()) {
2680     LIRItem* receiver = new LIRItem(x->receiver(), this);
2681     argument_items->append(receiver);
2682   }
2683   for (int i = 0; i < x->number_of_arguments(); i++) {
2684     LIRItem* param = new LIRItem(x->argument_at(i), this);
2685     argument_items->append(param);
2686   }
2687   return argument_items;
2688 }
2689 
2690 
2691 // The invoke with receiver has following phases:
2692 //   a) traverse and load/lock receiver;
2693 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2694 //   c) push receiver on stack
2695 //   d) load each of the items and push on stack
2696 //   e) unlock receiver
2697 //   f) move receiver into receiver-register %o0
2698 //   g) lock result registers and emit call operation
2699 //
2700 // Before issuing a call, we must spill-save all values on stack
2701 // that are in caller-save register. "spill-save" moves those registers
2702 // either in a free callee-save register or spills them if no free
2703 // callee save register is available.
2704 //
2705 // The problem is where to invoke spill-save.
2706 // - if invoked between e) and f), we may lock callee save
2707 //   register in "spill-save" that destroys the receiver register
2708 //   before f) is executed
2709 // - if we rearrange f) to be earlier (by loading %o0) it
2710 //   may destroy a value on the stack that is currently in %o0
2711 //   and is waiting to be spilled
2712 // - if we keep the receiver locked while doing spill-save,
2713 //   we cannot spill it as it is spill-locked
2714 //
2715 void LIRGenerator::do_Invoke(Invoke* x) {
2716   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2717 
2718   LIR_OprList* arg_list = cc->args();
2719   LIRItemList* args = invoke_visit_arguments(x);
2720   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2721 
2722   // setup result register
2723   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2724   if (x->type() != voidType) {
2725     result_register = result_register_for(x->type());
2726   }
2727 
2728   CodeEmitInfo* info = state_for(x, x->state());
2729 
2730   invoke_load_arguments(x, args, arg_list);
2731 
2732   if (x->has_receiver()) {
2733     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2734     receiver = args->at(0)->result();
2735   }
2736 
2737   // emit invoke code
2738   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2739 
2740   ciMethod* target = x->target();
2741   switch (x->code()) {
2742     case Bytecodes::_invokestatic:
2743       __ call_static(target, result_register,
2744                      SharedRuntime::get_resolve_static_call_stub(),
2745                      arg_list, info);
2746       break;
2747     case Bytecodes::_invokespecial:
2748     case Bytecodes::_invokevirtual:
2749     case Bytecodes::_invokeinterface:
2750       // for loaded and final (method or class) target we still produce an inline cache,
2751       // in order to be able to call mixed mode
2752       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2753         __ call_opt_virtual(target, receiver, result_register,
2754                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2755                             arg_list, info);
2756       } else {
2757         __ call_icvirtual(target, receiver, result_register,
2758                           SharedRuntime::get_resolve_virtual_call_stub(),
2759                           arg_list, info);
2760       }
2761       break;
2762     case Bytecodes::_invokedynamic: {
2763       __ call_dynamic(target, receiver, result_register,
2764                       SharedRuntime::get_resolve_static_call_stub(),
2765                       arg_list, info);
2766       break;
2767     }
2768     default:
2769       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2770       break;
2771   }
2772 
2773   if (result_register->is_valid()) {
2774     LIR_Opr result = rlock_result(x);
2775     __ move(result_register, result);
2776   }
2777 }
2778 
2779 
2780 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2781   assert(x->number_of_arguments() == 1, "wrong type");
2782   LIRItem value       (x->argument_at(0), this);
2783   LIR_Opr reg = rlock_result(x);
2784   value.load_item();
2785   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2786   __ move(tmp, reg);
2787 }
2788 
2789 
2790 
2791 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2792 void LIRGenerator::do_IfOp(IfOp* x) {
2793 #ifdef ASSERT
2794   {
2795     ValueTag xtag = x->x()->type()->tag();
2796     ValueTag ttag = x->tval()->type()->tag();
2797     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2798     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2799     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2800   }
2801 #endif
2802 
2803   LIRItem left(x->x(), this);
2804   LIRItem right(x->y(), this);
2805   left.load_item();
2806   if (can_inline_as_constant(right.value())) {
2807     right.dont_load_item();
2808   } else {
2809     right.load_item();
2810   }
2811 
2812   LIRItem t_val(x->tval(), this);
2813   LIRItem f_val(x->fval(), this);
2814   t_val.dont_load_item();
2815   f_val.dont_load_item();
2816   LIR_Opr reg = rlock_result(x);
2817 
2818   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2819   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2820 }
2821 
2822 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2823   assert(x->number_of_arguments() == 0, "wrong type");
2824   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2825   BasicTypeList signature;
2826   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2827   LIR_Opr reg = result_register_for(x->type());
2828   __ call_runtime_leaf(routine, getThreadTemp(),
2829                        reg, new LIR_OprList());
2830   LIR_Opr result = rlock_result(x);
2831   __ move(reg, result);
2832 }
2833 
2834 
2835 
2836 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2837   switch (x->id()) {
2838   case vmIntrinsics::_intBitsToFloat      :
2839   case vmIntrinsics::_doubleToRawLongBits :
2840   case vmIntrinsics::_longBitsToDouble    :
2841   case vmIntrinsics::_floatToRawIntBits   : {
2842     do_FPIntrinsics(x);
2843     break;
2844   }
2845 
2846 #ifdef JFR_HAVE_INTRINSICS
2847   case vmIntrinsics::_counterTime:
2848     do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2849     break;
2850 #endif
2851 
2852   case vmIntrinsics::_currentTimeMillis:
2853     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2854     break;
2855 
2856   case vmIntrinsics::_nanoTime:
2857     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2858     break;
2859 
2860   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2861   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2862   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2863   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
2864   case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2865   case vmIntrinsics::_currentThread:  do_vthread(x);       break;
2866   case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2867   case vmIntrinsics::_shipilev_magic_sizeOf:         do_sizeOf(x);        break;
2868   case vmIntrinsics::_shipilev_magic_addressOf:      do_addressOf(x);     break;
2869 
2870   case vmIntrinsics::_dlog:           // fall through
2871   case vmIntrinsics::_dlog10:         // fall through
2872   case vmIntrinsics::_dabs:           // fall through
2873   case vmIntrinsics::_dsqrt:          // fall through
2874   case vmIntrinsics::_dsqrt_strict:   // fall through
2875   case vmIntrinsics::_dtan:           // fall through
2876   case vmIntrinsics::_dsinh:          // fall through
2877   case vmIntrinsics::_dtanh:          // fall through
2878   case vmIntrinsics::_dsin :          // fall through
2879   case vmIntrinsics::_dcos :          // fall through
2880   case vmIntrinsics::_dcbrt :         // fall through
2881   case vmIntrinsics::_dexp :          // fall through
2882   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2883   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2884 
2885   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2886   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2887 
2888   // Use java.lang.Math intrinsics code since it works for these intrinsics too.
2889   case vmIntrinsics::_floatToFloat16: // fall through
2890   case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
2891 
2892   case vmIntrinsics::_Preconditions_checkIndex:
2893     do_PreconditionsCheckIndex(x, T_INT);
2894     break;
2895   case vmIntrinsics::_Preconditions_checkLongIndex:
2896     do_PreconditionsCheckIndex(x, T_LONG);
2897     break;
2898 
2899   case vmIntrinsics::_compareAndSetReference:
2900     do_CompareAndSwap(x, objectType);
2901     break;
2902   case vmIntrinsics::_compareAndSetInt:
2903     do_CompareAndSwap(x, intType);
2904     break;
2905   case vmIntrinsics::_compareAndSetLong:
2906     do_CompareAndSwap(x, longType);
2907     break;
2908 
2909   case vmIntrinsics::_loadFence :
2910     __ membar_acquire();
2911     break;
2912   case vmIntrinsics::_storeFence:
2913     __ membar_release();
2914     break;
2915   case vmIntrinsics::_storeStoreFence:
2916     __ membar_storestore();
2917     break;
2918   case vmIntrinsics::_fullFence :
2919     __ membar();
2920     break;
2921   case vmIntrinsics::_onSpinWait:
2922     __ on_spin_wait();
2923     break;
2924   case vmIntrinsics::_Reference_get0:
2925     do_Reference_get0(x);
2926     break;
2927 
2928   case vmIntrinsics::_updateCRC32:
2929   case vmIntrinsics::_updateBytesCRC32:
2930   case vmIntrinsics::_updateByteBufferCRC32:
2931     do_update_CRC32(x);
2932     break;
2933 
2934   case vmIntrinsics::_updateBytesCRC32C:
2935   case vmIntrinsics::_updateDirectByteBufferCRC32C:
2936     do_update_CRC32C(x);
2937     break;
2938 
2939   case vmIntrinsics::_vectorizedMismatch:
2940     do_vectorizedMismatch(x);
2941     break;
2942 
2943   case vmIntrinsics::_blackhole:
2944     do_blackhole(x);
2945     break;
2946 
2947   default: ShouldNotReachHere(); break;
2948   }
2949 }
2950 
2951 void LIRGenerator::profile_arguments(ProfileCall* x) {
2952   if (compilation()->profile_arguments()) {
2953     int bci = x->bci_of_invoke();
2954     ciMethodData* md = x->method()->method_data_or_null();
2955     assert(md != nullptr, "Sanity");
2956     ciProfileData* data = md->bci_to_data(bci);
2957     if (data != nullptr) {
2958       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
2959           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
2960         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
2961         int base_offset = md->byte_offset_of_slot(data, extra);
2962         LIR_Opr mdp = LIR_OprFact::illegalOpr;
2963         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
2964 
2965         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
2966         int start = 0;
2967         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
2968         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
2969           // first argument is not profiled at call (method handle invoke)
2970           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
2971           start = 1;
2972         }
2973         ciSignature* callee_signature = x->callee()->signature();
2974         // method handle call to virtual method
2975         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
2976         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
2977 
2978         bool ignored_will_link;
2979         ciSignature* signature_at_call = nullptr;
2980         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
2981         ciSignatureStream signature_at_call_stream(signature_at_call);
2982 
2983         // if called through method handle invoke, some arguments may have been popped
2984         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
2985           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
2986           ciKlass* exact = profile_type(md, base_offset, off,
2987               args->type(i), x->profiled_arg_at(i+start), mdp,
2988               !x->arg_needs_null_check(i+start),
2989               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
2990           if (exact != nullptr) {
2991             md->set_argument_type(bci, i, exact);
2992           }
2993         }
2994       } else {
2995 #ifdef ASSERT
2996         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
2997         int n = x->nb_profiled_args();
2998         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
2999             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3000             "only at JSR292 bytecodes");
3001 #endif
3002       }
3003     }
3004   }
3005 }
3006 
3007 // profile parameters on entry to an inlined method
3008 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3009   if (compilation()->profile_parameters() && x->inlined()) {
3010     ciMethodData* md = x->callee()->method_data_or_null();
3011     if (md != nullptr) {
3012       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3013       if (parameters_type_data != nullptr) {
3014         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3015         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3016         bool has_receiver = !x->callee()->is_static();
3017         ciSignature* sig = x->callee()->signature();
3018         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3019         int i = 0; // to iterate on the Instructions
3020         Value arg = x->recv();
3021         bool not_null = false;
3022         int bci = x->bci_of_invoke();
3023         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3024         // The first parameter is the receiver so that's what we start
3025         // with if it exists. One exception is method handle call to
3026         // virtual method: the receiver is in the args list
3027         if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3028           i = 1;
3029           arg = x->profiled_arg_at(0);
3030           not_null = !x->arg_needs_null_check(0);
3031         }
3032         int k = 0; // to iterate on the profile data
3033         for (;;) {
3034           intptr_t profiled_k = parameters->type(k);
3035           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3036                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3037                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3038           // If the profile is known statically set it once for all and do not emit any code
3039           if (exact != nullptr) {
3040             md->set_parameter_type(k, exact);
3041           }
3042           k++;
3043           if (k >= parameters_type_data->number_of_parameters()) {
3044 #ifdef ASSERT
3045             int extra = 0;
3046             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3047                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3048                 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3049               extra += 1;
3050             }
3051             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3052 #endif
3053             break;
3054           }
3055           arg = x->profiled_arg_at(i);
3056           not_null = !x->arg_needs_null_check(i);
3057           i++;
3058         }
3059       }
3060     }
3061   }
3062 }
3063 
3064 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3065   // Need recv in a temporary register so it interferes with the other temporaries
3066   LIR_Opr recv = LIR_OprFact::illegalOpr;
3067   LIR_Opr mdo = new_register(T_METADATA);
3068   // tmp is used to hold the counters on SPARC
3069   LIR_Opr tmp = new_pointer_register();
3070 
3071   if (x->nb_profiled_args() > 0) {
3072     profile_arguments(x);
3073   }
3074 
3075   // profile parameters on inlined method entry including receiver
3076   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3077     profile_parameters_at_call(x);
3078   }
3079 
3080   if (x->recv() != nullptr) {
3081     LIRItem value(x->recv(), this);
3082     value.load_item();
3083     recv = new_register(T_OBJECT);
3084     __ move(value.result(), recv);
3085   }
3086   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3087 }
3088 
3089 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3090   int bci = x->bci_of_invoke();
3091   ciMethodData* md = x->method()->method_data_or_null();
3092   assert(md != nullptr, "Sanity");
3093   ciProfileData* data = md->bci_to_data(bci);
3094   if (data != nullptr) {
3095     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3096     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3097     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3098 
3099     bool ignored_will_link;
3100     ciSignature* signature_at_call = nullptr;
3101     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3102 
3103     // The offset within the MDO of the entry to update may be too large
3104     // to be used in load/store instructions on some platforms. So have
3105     // profile_type() compute the address of the profile in a register.
3106     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3107         ret->type(), x->ret(), mdp,
3108         !x->needs_null_check(),
3109         signature_at_call->return_type()->as_klass(),
3110         x->callee()->signature()->return_type()->as_klass());
3111     if (exact != nullptr) {
3112       md->set_return_type(bci, exact);
3113     }
3114   }
3115 }
3116 
3117 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3118   // We can safely ignore accessors here, since c2 will inline them anyway,
3119   // accessors are also always mature.
3120   if (!x->inlinee()->is_accessor()) {
3121     CodeEmitInfo* info = state_for(x, x->state(), true);
3122     // Notify the runtime very infrequently only to take care of counter overflows
3123     int freq_log = Tier23InlineeNotifyFreqLog;
3124     double scale;
3125     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3126       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3127     }
3128     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3129   }
3130 }
3131 
3132 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3133   if (compilation()->is_profiling()) {
3134 #if defined(X86) && !defined(_LP64)
3135     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3136     LIR_Opr left_copy = new_register(left->type());
3137     __ move(left, left_copy);
3138     __ cmp(cond, left_copy, right);
3139 #else
3140     __ cmp(cond, left, right);
3141 #endif
3142     LIR_Opr step = new_register(T_INT);
3143     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3144     LIR_Opr zero = LIR_OprFact::intConst(0);
3145     __ cmove(cond,
3146         (left_bci < bci) ? plus_one : zero,
3147         (right_bci < bci) ? plus_one : zero,
3148         step, left->type());
3149     increment_backedge_counter(info, step, bci);
3150   }
3151 }
3152 
3153 
3154 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3155   int freq_log = 0;
3156   int level = compilation()->env()->comp_level();
3157   if (level == CompLevel_limited_profile) {
3158     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3159   } else if (level == CompLevel_full_profile) {
3160     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3161   } else {
3162     ShouldNotReachHere();
3163   }
3164   // Increment the appropriate invocation/backedge counter and notify the runtime.
3165   double scale;
3166   if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3167     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3168   }
3169   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3170 }
3171 
3172 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3173                                                 ciMethod *method, LIR_Opr step, int frequency,
3174                                                 int bci, bool backedge, bool notify) {
3175   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3176   int level = _compilation->env()->comp_level();
3177   assert(level > CompLevel_simple, "Shouldn't be here");
3178 
3179   int offset = -1;
3180   LIR_Opr counter_holder;
3181   if (level == CompLevel_limited_profile) {
3182     MethodCounters* counters_adr = method->ensure_method_counters();
3183     if (counters_adr == nullptr) {
3184       bailout("method counters allocation failed");
3185       return;
3186     }
3187     counter_holder = new_pointer_register();
3188     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3189     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3190                                  MethodCounters::invocation_counter_offset());
3191   } else if (level == CompLevel_full_profile) {
3192     counter_holder = new_register(T_METADATA);
3193     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3194                                  MethodData::invocation_counter_offset());
3195     ciMethodData* md = method->method_data_or_null();
3196     assert(md != nullptr, "Sanity");
3197     __ metadata2reg(md->constant_encoding(), counter_holder);
3198   } else {
3199     ShouldNotReachHere();
3200   }
3201   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3202   LIR_Opr result = new_register(T_INT);
3203   __ load(counter, result);
3204   __ add(result, step, result);
3205   __ store(result, counter);
3206   if (notify && (!backedge || UseOnStackReplacement)) {
3207     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3208     // The bci for info can point to cmp for if's we want the if bci
3209     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3210     int freq = frequency << InvocationCounter::count_shift;
3211     if (freq == 0) {
3212       if (!step->is_constant()) {
3213         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3214         __ branch(lir_cond_notEqual, overflow);
3215       } else {
3216         __ branch(lir_cond_always, overflow);
3217       }
3218     } else {
3219       LIR_Opr mask = load_immediate(freq, T_INT);
3220       if (!step->is_constant()) {
3221         // If step is 0, make sure the overflow check below always fails
3222         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3223         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3224       }
3225       __ logical_and(result, mask, result);
3226       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3227       __ branch(lir_cond_equal, overflow);
3228     }
3229     __ branch_destination(overflow->continuation());
3230   }
3231 }
3232 
3233 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3234   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3235   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3236 
3237   if (x->pass_thread()) {
3238     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3239     args->append(getThreadPointer());
3240   }
3241 
3242   for (int i = 0; i < x->number_of_arguments(); i++) {
3243     Value a = x->argument_at(i);
3244     LIRItem* item = new LIRItem(a, this);
3245     item->load_item();
3246     args->append(item->result());
3247     signature->append(as_BasicType(a->type()));
3248   }
3249 
3250   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3251   if (x->type() == voidType) {
3252     set_no_result(x);
3253   } else {
3254     __ move(result, rlock_result(x));
3255   }
3256 }
3257 
3258 #ifdef ASSERT
3259 void LIRGenerator::do_Assert(Assert *x) {
3260   ValueTag tag = x->x()->type()->tag();
3261   If::Condition cond = x->cond();
3262 
3263   LIRItem xitem(x->x(), this);
3264   LIRItem yitem(x->y(), this);
3265   LIRItem* xin = &xitem;
3266   LIRItem* yin = &yitem;
3267 
3268   assert(tag == intTag, "Only integer assertions are valid!");
3269 
3270   xin->load_item();
3271   yin->dont_load_item();
3272 
3273   set_no_result(x);
3274 
3275   LIR_Opr left = xin->result();
3276   LIR_Opr right = yin->result();
3277 
3278   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3279 }
3280 #endif
3281 
3282 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3283 
3284 
3285   Instruction *a = x->x();
3286   Instruction *b = x->y();
3287   if (!a || StressRangeCheckElimination) {
3288     assert(!b || StressRangeCheckElimination, "B must also be null");
3289 
3290     CodeEmitInfo *info = state_for(x, x->state());
3291     CodeStub* stub = new PredicateFailedStub(info);
3292 
3293     __ jump(stub);
3294   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3295     int a_int = a->type()->as_IntConstant()->value();
3296     int b_int = b->type()->as_IntConstant()->value();
3297 
3298     bool ok = false;
3299 
3300     switch(x->cond()) {
3301       case Instruction::eql: ok = (a_int == b_int); break;
3302       case Instruction::neq: ok = (a_int != b_int); break;
3303       case Instruction::lss: ok = (a_int < b_int); break;
3304       case Instruction::leq: ok = (a_int <= b_int); break;
3305       case Instruction::gtr: ok = (a_int > b_int); break;
3306       case Instruction::geq: ok = (a_int >= b_int); break;
3307       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3308       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3309       default: ShouldNotReachHere();
3310     }
3311 
3312     if (ok) {
3313 
3314       CodeEmitInfo *info = state_for(x, x->state());
3315       CodeStub* stub = new PredicateFailedStub(info);
3316 
3317       __ jump(stub);
3318     }
3319   } else {
3320 
3321     ValueTag tag = x->x()->type()->tag();
3322     If::Condition cond = x->cond();
3323     LIRItem xitem(x->x(), this);
3324     LIRItem yitem(x->y(), this);
3325     LIRItem* xin = &xitem;
3326     LIRItem* yin = &yitem;
3327 
3328     assert(tag == intTag, "Only integer deoptimizations are valid!");
3329 
3330     xin->load_item();
3331     yin->dont_load_item();
3332     set_no_result(x);
3333 
3334     LIR_Opr left = xin->result();
3335     LIR_Opr right = yin->result();
3336 
3337     CodeEmitInfo *info = state_for(x, x->state());
3338     CodeStub* stub = new PredicateFailedStub(info);
3339 
3340     __ cmp(lir_cond(cond), left, right);
3341     __ branch(lir_cond(cond), stub);
3342   }
3343 }
3344 
3345 void LIRGenerator::do_blackhole(Intrinsic *x) {
3346   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3347   for (int c = 0; c < x->number_of_arguments(); c++) {
3348     // Load the argument
3349     LIRItem vitem(x->argument_at(c), this);
3350     vitem.load_item();
3351     // ...and leave it unused.
3352   }
3353 }
3354 
3355 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3356   LIRItemList args(1);
3357   LIRItem value(arg1, this);
3358   args.append(&value);
3359   BasicTypeList signature;
3360   signature.append(as_BasicType(arg1->type()));
3361 
3362   return call_runtime(&signature, &args, entry, result_type, info);
3363 }
3364 
3365 
3366 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3367   LIRItemList args(2);
3368   LIRItem value1(arg1, this);
3369   LIRItem value2(arg2, this);
3370   args.append(&value1);
3371   args.append(&value2);
3372   BasicTypeList signature;
3373   signature.append(as_BasicType(arg1->type()));
3374   signature.append(as_BasicType(arg2->type()));
3375 
3376   return call_runtime(&signature, &args, entry, result_type, info);
3377 }
3378 
3379 
3380 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3381                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3382   // get a result register
3383   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3384   LIR_Opr result = LIR_OprFact::illegalOpr;
3385   if (result_type->tag() != voidTag) {
3386     result = new_register(result_type);
3387     phys_reg = result_register_for(result_type);
3388   }
3389 
3390   // move the arguments into the correct location
3391   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3392   assert(cc->length() == args->length(), "argument mismatch");
3393   for (int i = 0; i < args->length(); i++) {
3394     LIR_Opr arg = args->at(i);
3395     LIR_Opr loc = cc->at(i);
3396     if (loc->is_register()) {
3397       __ move(arg, loc);
3398     } else {
3399       LIR_Address* addr = loc->as_address_ptr();
3400 //           if (!can_store_as_constant(arg)) {
3401 //             LIR_Opr tmp = new_register(arg->type());
3402 //             __ move(arg, tmp);
3403 //             arg = tmp;
3404 //           }
3405       __ move(arg, addr);
3406     }
3407   }
3408 
3409   if (info) {
3410     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3411   } else {
3412     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3413   }
3414   if (result->is_valid()) {
3415     __ move(phys_reg, result);
3416   }
3417   return result;
3418 }
3419 
3420 
3421 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3422                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3423   // get a result register
3424   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3425   LIR_Opr result = LIR_OprFact::illegalOpr;
3426   if (result_type->tag() != voidTag) {
3427     result = new_register(result_type);
3428     phys_reg = result_register_for(result_type);
3429   }
3430 
3431   // move the arguments into the correct location
3432   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3433 
3434   assert(cc->length() == args->length(), "argument mismatch");
3435   for (int i = 0; i < args->length(); i++) {
3436     LIRItem* arg = args->at(i);
3437     LIR_Opr loc = cc->at(i);
3438     if (loc->is_register()) {
3439       arg->load_item_force(loc);
3440     } else {
3441       LIR_Address* addr = loc->as_address_ptr();
3442       arg->load_for_store(addr->type());
3443       __ move(arg->result(), addr);
3444     }
3445   }
3446 
3447   if (info) {
3448     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3449   } else {
3450     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3451   }
3452   if (result->is_valid()) {
3453     __ move(phys_reg, result);
3454   }
3455   return result;
3456 }
3457 
3458 void LIRGenerator::do_MemBar(MemBar* x) {
3459   LIR_Code code = x->code();
3460   switch(code) {
3461   case lir_membar_acquire   : __ membar_acquire(); break;
3462   case lir_membar_release   : __ membar_release(); break;
3463   case lir_membar           : __ membar(); break;
3464   case lir_membar_loadload  : __ membar_loadload(); break;
3465   case lir_membar_storestore: __ membar_storestore(); break;
3466   case lir_membar_loadstore : __ membar_loadstore(); break;
3467   case lir_membar_storeload : __ membar_storeload(); break;
3468   default                   : ShouldNotReachHere(); break;
3469   }
3470 }
3471 
3472 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3473   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3474   if (two_operand_lir_form) {
3475     __ move(value, value_fixed);
3476     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3477   } else {
3478     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3479   }
3480   LIR_Opr klass = new_register(T_METADATA);
3481   load_klass(array, klass, null_check_info);
3482   null_check_info = nullptr;
3483   LIR_Opr layout = new_register(T_INT);
3484   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3485   int diffbit = Klass::layout_helper_boolean_diffbit();
3486   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3487   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3488   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3489   value = value_fixed;
3490   return value;
3491 }