1 /*
   2  * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "compiler/compilerDefinitions.inline.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/c1/barrierSetC1.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "oops/methodCounters.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 #ifdef ASSERT
  50 #define __ gen()->lir(__FILE__, __LINE__)->
  51 #else
  52 #define __ gen()->lir()->
  53 #endif
  54 
  55 #ifndef PATCHED_ADDR
  56 #define PATCHED_ADDR  (max_jint)
  57 #endif
  58 
  59 void PhiResolverState::reset() {
  60   _virtual_operands.clear();
  61   _other_operands.clear();
  62   _vreg_table.clear();
  63 }
  64 
  65 
  66 //--------------------------------------------------------------
  67 // PhiResolver
  68 
  69 // Resolves cycles:
  70 //
  71 //  r1 := r2  becomes  temp := r1
  72 //  r2 := r1           r1 := r2
  73 //                     r2 := temp
  74 // and orders moves:
  75 //
  76 //  r2 := r3  becomes  r1 := r2
  77 //  r1 := r2           r2 := r3
  78 
  79 PhiResolver::PhiResolver(LIRGenerator* gen)
  80  : _gen(gen)
  81  , _state(gen->resolver_state())
  82  , _loop(nullptr)
  83  , _temp(LIR_OprFact::illegalOpr)
  84 {
  85   // reinitialize the shared state arrays
  86   _state.reset();
  87 }
  88 
  89 
  90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  91   assert(src->is_valid(), "");
  92   assert(dest->is_valid(), "");
  93   __ move(src, dest);
  94 }
  95 
  96 
  97 void PhiResolver::move_temp_to(LIR_Opr dest) {
  98   assert(_temp->is_valid(), "");
  99   emit_move(_temp, dest);
 100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 101 }
 102 
 103 
 104 void PhiResolver::move_to_temp(LIR_Opr src) {
 105   assert(_temp->is_illegal(), "");
 106   _temp = _gen->new_register(src->type());
 107   emit_move(src, _temp);
 108 }
 109 
 110 
 111 // Traverse assignment graph in depth first order and generate moves in post order
 112 // ie. two assignments: b := c, a := b start with node c:
 113 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
 114 // Generates moves in this order: move b to a and move c to b
 115 // ie. cycle a := b, b := a start with node a
 116 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
 117 // Generates moves in this order: move b to temp, move a to b, move temp to a
 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 119   if (!dest->visited()) {
 120     dest->set_visited();
 121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 122       move(dest, dest->destination_at(i));
 123     }
 124   } else if (!dest->start_node()) {
 125     // cylce in graph detected
 126     assert(_loop == nullptr, "only one loop valid!");
 127     _loop = dest;
 128     move_to_temp(src->operand());
 129     return;
 130   } // else dest is a start node
 131 
 132   if (!dest->assigned()) {
 133     if (_loop == dest) {
 134       move_temp_to(dest->operand());
 135       dest->set_assigned();
 136     } else if (src != nullptr) {
 137       emit_move(src->operand(), dest->operand());
 138       dest->set_assigned();
 139     }
 140   }
 141 }
 142 
 143 
 144 PhiResolver::~PhiResolver() {
 145   int i;
 146   // resolve any cycles in moves from and to virtual registers
 147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 148     ResolveNode* node = virtual_operands().at(i);
 149     if (!node->visited()) {
 150       _loop = nullptr;
 151       move(nullptr, node);
 152       node->set_start_node();
 153       assert(_temp->is_illegal(), "move_temp_to() call missing");
 154     }
 155   }
 156 
 157   // generate move for move from non virtual register to abitrary destination
 158   for (i = other_operands().length() - 1; i >= 0; i --) {
 159     ResolveNode* node = other_operands().at(i);
 160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 161       emit_move(node->operand(), node->destination_at(j)->operand());
 162     }
 163   }
 164 }
 165 
 166 
 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 168   ResolveNode* node;
 169   if (opr->is_virtual()) {
 170     int vreg_num = opr->vreg_number();
 171     node = vreg_table().at_grow(vreg_num, nullptr);
 172     assert(node == nullptr || node->operand() == opr, "");
 173     if (node == nullptr) {
 174       node = new ResolveNode(opr);
 175       vreg_table().at_put(vreg_num, node);
 176     }
 177     // Make sure that all virtual operands show up in the list when
 178     // they are used as the source of a move.
 179     if (source && !virtual_operands().contains(node)) {
 180       virtual_operands().append(node);
 181     }
 182   } else {
 183     assert(source, "");
 184     node = new ResolveNode(opr);
 185     other_operands().append(node);
 186   }
 187   return node;
 188 }
 189 
 190 
 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 192   assert(dest->is_virtual(), "");
 193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 194   assert(src->is_valid(), "");
 195   assert(dest->is_valid(), "");
 196   ResolveNode* source = source_node(src);
 197   source->append(destination_node(dest));
 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208   if (opr->is_virtual()) {
 209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 210   }
 211 
 212   _result = opr;
 213 }
 214 
 215 void LIRItem::load_item() {
 216   if (result()->is_illegal()) {
 217     // update the items result
 218     _result = value()->operand();
 219   }
 220   if (!result()->is_register()) {
 221     LIR_Opr reg = _gen->new_register(value()->type());
 222     __ move(result(), reg);
 223     if (result()->is_constant()) {
 224       _result = reg;
 225     } else {
 226       set_result(reg);
 227     }
 228   }
 229 }
 230 
 231 
 232 void LIRItem::load_for_store(BasicType type) {
 233   if (_gen->can_store_as_constant(value(), type)) {
 234     _result = value()->operand();
 235     if (!_result->is_constant()) {
 236       _result = LIR_OprFact::value_type(value()->type());
 237     }
 238   } else if (type == T_BYTE || type == T_BOOLEAN) {
 239     load_byte_item();
 240   } else {
 241     load_item();
 242   }
 243 }
 244 
 245 void LIRItem::load_item_force(LIR_Opr reg) {
 246   LIR_Opr r = result();
 247   if (r != reg) {
 248 #if !defined(ARM) && !defined(E500V2)
 249     if (r->type() != reg->type()) {
 250       // moves between different types need an intervening spill slot
 251       r = _gen->force_to_spill(r, reg->type());
 252     }
 253 #endif
 254     __ move(r, reg);
 255     _result = reg;
 256   }
 257 }
 258 
 259 ciObject* LIRItem::get_jobject_constant() const {
 260   ObjectType* oc = type()->as_ObjectType();
 261   if (oc) {
 262     return oc->constant_value();
 263   }
 264   return nullptr;
 265 }
 266 
 267 
 268 jint LIRItem::get_jint_constant() const {
 269   assert(is_constant() && value() != nullptr, "");
 270   assert(type()->as_IntConstant() != nullptr, "type check");
 271   return type()->as_IntConstant()->value();
 272 }
 273 
 274 
 275 jint LIRItem::get_address_constant() const {
 276   assert(is_constant() && value() != nullptr, "");
 277   assert(type()->as_AddressConstant() != nullptr, "type check");
 278   return type()->as_AddressConstant()->value();
 279 }
 280 
 281 
 282 jfloat LIRItem::get_jfloat_constant() const {
 283   assert(is_constant() && value() != nullptr, "");
 284   assert(type()->as_FloatConstant() != nullptr, "type check");
 285   return type()->as_FloatConstant()->value();
 286 }
 287 
 288 
 289 jdouble LIRItem::get_jdouble_constant() const {
 290   assert(is_constant() && value() != nullptr, "");
 291   assert(type()->as_DoubleConstant() != nullptr, "type check");
 292   return type()->as_DoubleConstant()->value();
 293 }
 294 
 295 
 296 jlong LIRItem::get_jlong_constant() const {
 297   assert(is_constant() && value() != nullptr, "");
 298   assert(type()->as_LongConstant() != nullptr, "type check");
 299   return type()->as_LongConstant()->value();
 300 }
 301 
 302 
 303 
 304 //--------------------------------------------------------------
 305 
 306 
 307 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 308 #ifndef PRODUCT
 309   if (PrintIRWithLIR) {
 310     block->print();
 311   }
 312 #endif
 313 
 314   // set up the list of LIR instructions
 315   assert(block->lir() == nullptr, "LIR list already computed for this block");
 316   _lir = new LIR_List(compilation(), block);
 317   block->set_lir(_lir);
 318 
 319   __ branch_destination(block->label());
 320 
 321   if (LIRTraceExecution &&
 322       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 323       !block->is_set(BlockBegin::exception_entry_flag)) {
 324     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 325     trace_block_entry(block);
 326   }
 327 }
 328 
 329 
 330 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 331 #ifndef PRODUCT
 332   if (PrintIRWithLIR) {
 333     tty->cr();
 334   }
 335 #endif
 336 
 337   // LIR_Opr for unpinned constants shouldn't be referenced by other
 338   // blocks so clear them out after processing the block.
 339   for (int i = 0; i < _unpinned_constants.length(); i++) {
 340     _unpinned_constants.at(i)->clear_operand();
 341   }
 342   _unpinned_constants.trunc_to(0);
 343 
 344   // clear our any registers for other local constants
 345   _constants.trunc_to(0);
 346   _reg_for_constants.trunc_to(0);
 347 }
 348 
 349 
 350 void LIRGenerator::block_do(BlockBegin* block) {
 351   CHECK_BAILOUT();
 352 
 353   block_do_prolog(block);
 354   set_block(block);
 355 
 356   for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
 357     if (instr->is_pinned()) do_root(instr);
 358   }
 359 
 360   set_block(nullptr);
 361   block_do_epilog(block);
 362 }
 363 
 364 
 365 //-------------------------LIRGenerator-----------------------------
 366 
 367 // This is where the tree-walk starts; instr must be root;
 368 void LIRGenerator::do_root(Value instr) {
 369   CHECK_BAILOUT();
 370 
 371   InstructionMark im(compilation(), instr);
 372 
 373   assert(instr->is_pinned(), "use only with roots");
 374   assert(instr->subst() == instr, "shouldn't have missed substitution");
 375 
 376   instr->visit(this);
 377 
 378   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 379          instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
 380 }
 381 
 382 
 383 // This is called for each node in tree; the walk stops if a root is reached
 384 void LIRGenerator::walk(Value instr) {
 385   InstructionMark im(compilation(), instr);
 386   //stop walk when encounter a root
 387   if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
 388     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
 389   } else {
 390     assert(instr->subst() == instr, "shouldn't have missed substitution");
 391     instr->visit(this);
 392     // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
 393   }
 394 }
 395 
 396 
 397 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 398   assert(state != nullptr, "state must be defined");
 399 
 400 #ifndef PRODUCT
 401   state->verify();
 402 #endif
 403 
 404   ValueStack* s = state;
 405   for_each_state(s) {
 406     if (s->kind() == ValueStack::EmptyExceptionState ||
 407         s->kind() == ValueStack::CallerEmptyExceptionState)
 408     {
 409 #ifdef ASSERT
 410       int index;
 411       Value value;
 412       for_each_stack_value(s, index, value) {
 413         fatal("state must be empty");
 414       }
 415       for_each_local_value(s, index, value) {
 416         fatal("state must be empty");
 417       }
 418 #endif
 419       assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty");
 420       continue;
 421     }
 422 
 423     int index;
 424     Value value;
 425     for_each_stack_value(s, index, value) {
 426       assert(value->subst() == value, "missed substitution");
 427       if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 428         walk(value);
 429         assert(value->operand()->is_valid(), "must be evaluated now");
 430       }
 431     }
 432 
 433     int bci = s->bci();
 434     IRScope* scope = s->scope();
 435     ciMethod* method = scope->method();
 436 
 437     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 438     if (bci == SynchronizationEntryBCI) {
 439       if (x->as_ExceptionObject() || x->as_Throw()) {
 440         // all locals are dead on exit from the synthetic unlocker
 441         liveness.clear();
 442       } else {
 443         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 444       }
 445     }
 446     if (!liveness.is_valid()) {
 447       // Degenerate or breakpointed method.
 448       bailout("Degenerate or breakpointed method");
 449     } else {
 450       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 451       for_each_local_value(s, index, value) {
 452         assert(value->subst() == value, "missed substitution");
 453         if (liveness.at(index) && !value->type()->is_illegal()) {
 454           if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 455             walk(value);
 456             assert(value->operand()->is_valid(), "must be evaluated now");
 457           }
 458         } else {
 459           // null out this local so that linear scan can assume that all non-null values are live.
 460           s->invalidate_local(index);
 461         }
 462       }
 463     }
 464   }
 465 
 466   return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 467 }
 468 
 469 
 470 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 471   return state_for(x, x->exception_state());
 472 }
 473 
 474 
 475 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 476   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 477    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 478    * the class. */
 479   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 480     assert(info != nullptr, "info must be set if class is not loaded");
 481     __ klass2reg_patch(nullptr, r, info);
 482   } else {
 483     // no patching needed
 484     __ metadata2reg(obj->constant_encoding(), r);
 485   }
 486 }
 487 
 488 
 489 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 490                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 491   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 492   if (index->is_constant()) {
 493     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 494                 index->as_jint(), null_check_info);
 495     __ branch(lir_cond_belowEqual, stub); // forward branch
 496   } else {
 497     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 498                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 499     __ branch(lir_cond_aboveEqual, stub); // forward branch
 500   }
 501 }
 502 
 503 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 504   LIR_Opr result_op = result;
 505   LIR_Opr left_op   = left;
 506   LIR_Opr right_op  = right;
 507 
 508   if (two_operand_lir_form && left_op != result_op) {
 509     assert(right_op != result_op, "malformed");
 510     __ move(left_op, result_op);
 511     left_op = result_op;
 512   }
 513 
 514   switch(code) {
 515     case Bytecodes::_dadd:
 516     case Bytecodes::_fadd:
 517     case Bytecodes::_ladd:
 518     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 519     case Bytecodes::_fmul:
 520     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 521 
 522     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 523 
 524     case Bytecodes::_imul:
 525       {
 526         bool did_strength_reduce = false;
 527 
 528         if (right->is_constant()) {
 529           jint c = right->as_jint();
 530           if (c > 0 && is_power_of_2(c)) {
 531             // do not need tmp here
 532             __ shift_left(left_op, exact_log2(c), result_op);
 533             did_strength_reduce = true;
 534           } else {
 535             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 536           }
 537         }
 538         // we couldn't strength reduce so just emit the multiply
 539         if (!did_strength_reduce) {
 540           __ mul(left_op, right_op, result_op);
 541         }
 542       }
 543       break;
 544 
 545     case Bytecodes::_dsub:
 546     case Bytecodes::_fsub:
 547     case Bytecodes::_lsub:
 548     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 549 
 550     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 551     // ldiv and lrem are implemented with a direct runtime call
 552 
 553     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 554 
 555     case Bytecodes::_drem:
 556     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 557 
 558     default: ShouldNotReachHere();
 559   }
 560 }
 561 
 562 
 563 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 564   arithmetic_op(code, result, left, right, tmp);
 565 }
 566 
 567 
 568 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 569   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 570 }
 571 
 572 
 573 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 574   arithmetic_op(code, result, left, right, tmp);
 575 }
 576 
 577 
 578 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 579 
 580   if (two_operand_lir_form && value != result_op
 581       // Only 32bit right shifts require two operand form on S390.
 582       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 583     assert(count != result_op, "malformed");
 584     __ move(value, result_op);
 585     value = result_op;
 586   }
 587 
 588   assert(count->is_constant() || count->is_register(), "must be");
 589   switch(code) {
 590   case Bytecodes::_ishl:
 591   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 592   case Bytecodes::_ishr:
 593   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 594   case Bytecodes::_iushr:
 595   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 596   default: ShouldNotReachHere();
 597   }
 598 }
 599 
 600 
 601 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 602   if (two_operand_lir_form && left_op != result_op) {
 603     assert(right_op != result_op, "malformed");
 604     __ move(left_op, result_op);
 605     left_op = result_op;
 606   }
 607 
 608   switch(code) {
 609     case Bytecodes::_iand:
 610     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 611 
 612     case Bytecodes::_ior:
 613     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 614 
 615     case Bytecodes::_ixor:
 616     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 617 
 618     default: ShouldNotReachHere();
 619   }
 620 }
 621 
 622 
 623 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 624   if (!GenerateSynchronizationCode) return;
 625   // for slow path, use debug info for state after successful locking
 626   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 627   __ load_stack_address_monitor(monitor_no, lock);
 628   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 629   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 630 }
 631 
 632 
 633 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 634   if (!GenerateSynchronizationCode) return;
 635   // setup registers
 636   LIR_Opr hdr = lock;
 637   lock = new_hdr;
 638   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 639   __ load_stack_address_monitor(monitor_no, lock);
 640   __ unlock_object(hdr, object, lock, scratch, slow_path);
 641 }
 642 
 643 #ifndef PRODUCT
 644 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 645   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 646     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 647   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 648     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 649   }
 650 }
 651 #endif
 652 
 653 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 654   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 655   // If klass is not loaded we do not know if the klass has finalizers:
 656   if (UseFastNewInstance && klass->is_loaded()
 657       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 658 
 659     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 660 
 661     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 662 
 663     assert(klass->is_loaded(), "must be loaded");
 664     // allocate space for instance
 665     assert(klass->size_helper() > 0, "illegal instance size");
 666     const int instance_size = align_object_size(klass->size_helper());
 667     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 668                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 669   } else {
 670     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 671     __ branch(lir_cond_always, slow_path);
 672     __ branch_destination(slow_path->continuation());
 673   }
 674 }
 675 
 676 
 677 static bool is_constant_zero(Instruction* inst) {
 678   IntConstant* c = inst->type()->as_IntConstant();
 679   if (c) {
 680     return (c->value() == 0);
 681   }
 682   return false;
 683 }
 684 
 685 
 686 static bool positive_constant(Instruction* inst) {
 687   IntConstant* c = inst->type()->as_IntConstant();
 688   if (c) {
 689     return (c->value() >= 0);
 690   }
 691   return false;
 692 }
 693 
 694 
 695 static ciArrayKlass* as_array_klass(ciType* type) {
 696   if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
 697     return (ciArrayKlass*)type;
 698   } else {
 699     return nullptr;
 700   }
 701 }
 702 
 703 static ciType* phi_declared_type(Phi* phi) {
 704   ciType* t = phi->operand_at(0)->declared_type();
 705   if (t == nullptr) {
 706     return nullptr;
 707   }
 708   for(int i = 1; i < phi->operand_count(); i++) {
 709     if (t != phi->operand_at(i)->declared_type()) {
 710       return nullptr;
 711     }
 712   }
 713   return t;
 714 }
 715 
 716 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 717   Instruction* src     = x->argument_at(0);
 718   Instruction* src_pos = x->argument_at(1);
 719   Instruction* dst     = x->argument_at(2);
 720   Instruction* dst_pos = x->argument_at(3);
 721   Instruction* length  = x->argument_at(4);
 722 
 723   // first try to identify the likely type of the arrays involved
 724   ciArrayKlass* expected_type = nullptr;
 725   bool is_exact = false, src_objarray = false, dst_objarray = false;
 726   {
 727     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 728     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 729     Phi* phi;
 730     if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
 731       src_declared_type = as_array_klass(phi_declared_type(phi));
 732     }
 733     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 734     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 735     if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
 736       dst_declared_type = as_array_klass(phi_declared_type(phi));
 737     }
 738 
 739     if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
 740       // the types exactly match so the type is fully known
 741       is_exact = true;
 742       expected_type = src_exact_type;
 743     } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
 744       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 745       ciArrayKlass* src_type = nullptr;
 746       if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
 747         src_type = (ciArrayKlass*) src_exact_type;
 748       } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
 749         src_type = (ciArrayKlass*) src_declared_type;
 750       }
 751       if (src_type != nullptr) {
 752         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 753           is_exact = true;
 754           expected_type = dst_type;
 755         }
 756       }
 757     }
 758     // at least pass along a good guess
 759     if (expected_type == nullptr) expected_type = dst_exact_type;
 760     if (expected_type == nullptr) expected_type = src_declared_type;
 761     if (expected_type == nullptr) expected_type = dst_declared_type;
 762 
 763     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 764     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 765   }
 766 
 767   // if a probable array type has been identified, figure out if any
 768   // of the required checks for a fast case can be elided.
 769   int flags = LIR_OpArrayCopy::all_flags;
 770 
 771   if (!src_objarray)
 772     flags &= ~LIR_OpArrayCopy::src_objarray;
 773   if (!dst_objarray)
 774     flags &= ~LIR_OpArrayCopy::dst_objarray;
 775 
 776   if (!x->arg_needs_null_check(0))
 777     flags &= ~LIR_OpArrayCopy::src_null_check;
 778   if (!x->arg_needs_null_check(2))
 779     flags &= ~LIR_OpArrayCopy::dst_null_check;
 780 
 781 
 782   if (expected_type != nullptr) {
 783     Value length_limit = nullptr;
 784 
 785     IfOp* ifop = length->as_IfOp();
 786     if (ifop != nullptr) {
 787       // look for expressions like min(v, a.length) which ends up as
 788       //   x > y ? y : x  or  x >= y ? y : x
 789       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 790           ifop->x() == ifop->fval() &&
 791           ifop->y() == ifop->tval()) {
 792         length_limit = ifop->y();
 793       }
 794     }
 795 
 796     // try to skip null checks and range checks
 797     NewArray* src_array = src->as_NewArray();
 798     if (src_array != nullptr) {
 799       flags &= ~LIR_OpArrayCopy::src_null_check;
 800       if (length_limit != nullptr &&
 801           src_array->length() == length_limit &&
 802           is_constant_zero(src_pos)) {
 803         flags &= ~LIR_OpArrayCopy::src_range_check;
 804       }
 805     }
 806 
 807     NewArray* dst_array = dst->as_NewArray();
 808     if (dst_array != nullptr) {
 809       flags &= ~LIR_OpArrayCopy::dst_null_check;
 810       if (length_limit != nullptr &&
 811           dst_array->length() == length_limit &&
 812           is_constant_zero(dst_pos)) {
 813         flags &= ~LIR_OpArrayCopy::dst_range_check;
 814       }
 815     }
 816 
 817     // check from incoming constant values
 818     if (positive_constant(src_pos))
 819       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 820     if (positive_constant(dst_pos))
 821       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 822     if (positive_constant(length))
 823       flags &= ~LIR_OpArrayCopy::length_positive_check;
 824 
 825     // see if the range check can be elided, which might also imply
 826     // that src or dst is non-null.
 827     ArrayLength* al = length->as_ArrayLength();
 828     if (al != nullptr) {
 829       if (al->array() == src) {
 830         // it's the length of the source array
 831         flags &= ~LIR_OpArrayCopy::length_positive_check;
 832         flags &= ~LIR_OpArrayCopy::src_null_check;
 833         if (is_constant_zero(src_pos))
 834           flags &= ~LIR_OpArrayCopy::src_range_check;
 835       }
 836       if (al->array() == dst) {
 837         // it's the length of the destination array
 838         flags &= ~LIR_OpArrayCopy::length_positive_check;
 839         flags &= ~LIR_OpArrayCopy::dst_null_check;
 840         if (is_constant_zero(dst_pos))
 841           flags &= ~LIR_OpArrayCopy::dst_range_check;
 842       }
 843     }
 844     if (is_exact) {
 845       flags &= ~LIR_OpArrayCopy::type_check;
 846     }
 847   }
 848 
 849   IntConstant* src_int = src_pos->type()->as_IntConstant();
 850   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 851   if (src_int && dst_int) {
 852     int s_offs = src_int->value();
 853     int d_offs = dst_int->value();
 854     if (src_int->value() >= dst_int->value()) {
 855       flags &= ~LIR_OpArrayCopy::overlapping;
 856     }
 857     if (expected_type != nullptr) {
 858       BasicType t = expected_type->element_type()->basic_type();
 859       int element_size = type2aelembytes(t);
 860       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 861           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 862         flags &= ~LIR_OpArrayCopy::unaligned;
 863       }
 864     }
 865   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 866     // src and dest positions are the same, or dst is zero so assume
 867     // nonoverlapping copy.
 868     flags &= ~LIR_OpArrayCopy::overlapping;
 869   }
 870 
 871   if (src == dst) {
 872     // moving within a single array so no type checks are needed
 873     if (flags & LIR_OpArrayCopy::type_check) {
 874       flags &= ~LIR_OpArrayCopy::type_check;
 875     }
 876   }
 877   *flagsp = flags;
 878   *expected_typep = (ciArrayKlass*)expected_type;
 879 }
 880 
 881 
 882 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 883   assert(opr->is_register(), "why spill if item is not register?");
 884 
 885   if (strict_fp_requires_explicit_rounding) {
 886 #ifdef IA32
 887     if (UseSSE < 1 && opr->is_single_fpu()) {
 888       LIR_Opr result = new_register(T_FLOAT);
 889       set_vreg_flag(result, must_start_in_memory);
 890       assert(opr->is_register(), "only a register can be spilled");
 891       assert(opr->value_type()->is_float(), "rounding only for floats available");
 892       __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 893       return result;
 894     }
 895 #else
 896     Unimplemented();
 897 #endif // IA32
 898   }
 899   return opr;
 900 }
 901 
 902 
 903 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 904   assert(type2size[t] == type2size[value->type()],
 905          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 906   if (!value->is_register()) {
 907     // force into a register
 908     LIR_Opr r = new_register(value->type());
 909     __ move(value, r);
 910     value = r;
 911   }
 912 
 913   // create a spill location
 914   LIR_Opr tmp = new_register(t);
 915   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 916 
 917   // move from register to spill
 918   __ move(value, tmp);
 919   return tmp;
 920 }
 921 
 922 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 923   if (if_instr->should_profile()) {
 924     ciMethod* method = if_instr->profiled_method();
 925     assert(method != nullptr, "method should be set if branch is profiled");
 926     ciMethodData* md = method->method_data_or_null();
 927     assert(md != nullptr, "Sanity");
 928     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 929     assert(data != nullptr, "must have profiling data");
 930     assert(data->is_BranchData(), "need BranchData for two-way branches");
 931     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 932     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 933     if (if_instr->is_swapped()) {
 934       int t = taken_count_offset;
 935       taken_count_offset = not_taken_count_offset;
 936       not_taken_count_offset = t;
 937     }
 938 
 939     LIR_Opr md_reg = new_register(T_METADATA);
 940     __ metadata2reg(md->constant_encoding(), md_reg);
 941 
 942     LIR_Opr data_offset_reg = new_pointer_register();
 943     __ cmove(lir_cond(cond),
 944              LIR_OprFact::intptrConst(taken_count_offset),
 945              LIR_OprFact::intptrConst(not_taken_count_offset),
 946              data_offset_reg, as_BasicType(if_instr->x()->type()));
 947 
 948     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 949     LIR_Opr data_reg = new_pointer_register();
 950     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 951     __ move(data_addr, data_reg);
 952     // Use leal instead of add to avoid destroying condition codes on x86
 953     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 954     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 955     __ move(data_reg, data_addr);
 956   }
 957 }
 958 
 959 // Phi technique:
 960 // This is about passing live values from one basic block to the other.
 961 // In code generated with Java it is rather rare that more than one
 962 // value is on the stack from one basic block to the other.
 963 // We optimize our technique for efficient passing of one value
 964 // (of type long, int, double..) but it can be extended.
 965 // When entering or leaving a basic block, all registers and all spill
 966 // slots are release and empty. We use the released registers
 967 // and spill slots to pass the live values from one block
 968 // to the other. The topmost value, i.e., the value on TOS of expression
 969 // stack is passed in registers. All other values are stored in spilling
 970 // area. Every Phi has an index which designates its spill slot
 971 // At exit of a basic block, we fill the register(s) and spill slots.
 972 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 973 // and locks necessary registers and spilling slots.
 974 
 975 
 976 // move current value to referenced phi function
 977 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 978   Phi* phi = sux_val->as_Phi();
 979   // cur_val can be null without phi being null in conjunction with inlining
 980   if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
 981     if (phi->is_local()) {
 982       for (int i = 0; i < phi->operand_count(); i++) {
 983         Value op = phi->operand_at(i);
 984         if (op != nullptr && op->type()->is_illegal()) {
 985           bailout("illegal phi operand");
 986         }
 987       }
 988     }
 989     Phi* cur_phi = cur_val->as_Phi();
 990     if (cur_phi != nullptr && cur_phi->is_illegal()) {
 991       // Phi and local would need to get invalidated
 992       // (which is unexpected for Linear Scan).
 993       // But this case is very rare so we simply bail out.
 994       bailout("propagation of illegal phi");
 995       return;
 996     }
 997     LIR_Opr operand = cur_val->operand();
 998     if (operand->is_illegal()) {
 999       assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
1000              "these can be produced lazily");
1001       operand = operand_for_instruction(cur_val);
1002     }
1003     resolver->move(operand, operand_for_instruction(phi));
1004   }
1005 }
1006 
1007 
1008 // Moves all stack values into their PHI position
1009 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1010   BlockBegin* bb = block();
1011   if (bb->number_of_sux() == 1) {
1012     BlockBegin* sux = bb->sux_at(0);
1013     assert(sux->number_of_preds() > 0, "invalid CFG");
1014 
1015     // a block with only one predecessor never has phi functions
1016     if (sux->number_of_preds() > 1) {
1017       PhiResolver resolver(this);
1018 
1019       ValueStack* sux_state = sux->state();
1020       Value sux_value;
1021       int index;
1022 
1023       assert(cur_state->scope() == sux_state->scope(), "not matching");
1024       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1025       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1026 
1027       for_each_stack_value(sux_state, index, sux_value) {
1028         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1029       }
1030 
1031       for_each_local_value(sux_state, index, sux_value) {
1032         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1033       }
1034 
1035       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1036     }
1037   }
1038 }
1039 
1040 
1041 LIR_Opr LIRGenerator::new_register(BasicType type) {
1042   int vreg_num = _virtual_register_number;
1043   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1044   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1045   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1046     bailout("out of virtual registers in LIR generator");
1047     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1048       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1049       _virtual_register_number = LIR_Opr::vreg_base;
1050       vreg_num = LIR_Opr::vreg_base;
1051     }
1052   }
1053   _virtual_register_number += 1;
1054   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1055   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1056   return vreg;
1057 }
1058 
1059 
1060 // Try to lock using register in hint
1061 LIR_Opr LIRGenerator::rlock(Value instr) {
1062   return new_register(instr->type());
1063 }
1064 
1065 
1066 // does an rlock and sets result
1067 LIR_Opr LIRGenerator::rlock_result(Value x) {
1068   LIR_Opr reg = rlock(x);
1069   set_result(x, reg);
1070   return reg;
1071 }
1072 
1073 
1074 // does an rlock and sets result
1075 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1076   LIR_Opr reg;
1077   switch (type) {
1078   case T_BYTE:
1079   case T_BOOLEAN:
1080     reg = rlock_byte(type);
1081     break;
1082   default:
1083     reg = rlock(x);
1084     break;
1085   }
1086 
1087   set_result(x, reg);
1088   return reg;
1089 }
1090 
1091 
1092 //---------------------------------------------------------------------
1093 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1094   ObjectType* oc = value->type()->as_ObjectType();
1095   if (oc) {
1096     return oc->constant_value();
1097   }
1098   return nullptr;
1099 }
1100 
1101 
1102 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1103   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1104   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1105 
1106   // no moves are created for phi functions at the begin of exception
1107   // handlers, so assign operands manually here
1108   for_each_phi_fun(block(), phi,
1109                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1110 
1111   LIR_Opr thread_reg = getThreadPointer();
1112   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1113                exceptionOopOpr());
1114   __ move_wide(LIR_OprFact::oopConst(nullptr),
1115                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1116   __ move_wide(LIR_OprFact::oopConst(nullptr),
1117                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1118 
1119   LIR_Opr result = new_register(T_OBJECT);
1120   __ move(exceptionOopOpr(), result);
1121   set_result(x, result);
1122 }
1123 
1124 
1125 //----------------------------------------------------------------------
1126 //----------------------------------------------------------------------
1127 //----------------------------------------------------------------------
1128 //----------------------------------------------------------------------
1129 //                        visitor functions
1130 //----------------------------------------------------------------------
1131 //----------------------------------------------------------------------
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 
1135 void LIRGenerator::do_Phi(Phi* x) {
1136   // phi functions are never visited directly
1137   ShouldNotReachHere();
1138 }
1139 
1140 
1141 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1142 void LIRGenerator::do_Constant(Constant* x) {
1143   if (x->state_before() != nullptr) {
1144     // Any constant with a ValueStack requires patching so emit the patch here
1145     LIR_Opr reg = rlock_result(x);
1146     CodeEmitInfo* info = state_for(x, x->state_before());
1147     __ oop2reg_patch(nullptr, reg, info);
1148   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1149     if (!x->is_pinned()) {
1150       // unpinned constants are handled specially so that they can be
1151       // put into registers when they are used multiple times within a
1152       // block.  After the block completes their operand will be
1153       // cleared so that other blocks can't refer to that register.
1154       set_result(x, load_constant(x));
1155     } else {
1156       LIR_Opr res = x->operand();
1157       if (!res->is_valid()) {
1158         res = LIR_OprFact::value_type(x->type());
1159       }
1160       if (res->is_constant()) {
1161         LIR_Opr reg = rlock_result(x);
1162         __ move(res, reg);
1163       } else {
1164         set_result(x, res);
1165       }
1166     }
1167   } else {
1168     set_result(x, LIR_OprFact::value_type(x->type()));
1169   }
1170 }
1171 
1172 
1173 void LIRGenerator::do_Local(Local* x) {
1174   // operand_for_instruction has the side effect of setting the result
1175   // so there's no need to do it here.
1176   operand_for_instruction(x);
1177 }
1178 
1179 
1180 void LIRGenerator::do_Return(Return* x) {
1181   if (compilation()->env()->dtrace_method_probes()) {
1182     BasicTypeList signature;
1183     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1184     signature.append(T_METADATA); // Method*
1185     LIR_OprList* args = new LIR_OprList();
1186     args->append(getThreadPointer());
1187     LIR_Opr meth = new_register(T_METADATA);
1188     __ metadata2reg(method()->constant_encoding(), meth);
1189     args->append(meth);
1190     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1191   }
1192 
1193   if (x->type()->is_void()) {
1194     __ return_op(LIR_OprFact::illegalOpr);
1195   } else {
1196     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1197     LIRItem result(x->result(), this);
1198 
1199     result.load_item_force(reg);
1200     __ return_op(result.result());
1201   }
1202   set_no_result(x);
1203 }
1204 
1205 // Example: ref.get()
1206 // Combination of LoadField and g1 pre-write barrier
1207 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1208 
1209   const int referent_offset = java_lang_ref_Reference::referent_offset();
1210 
1211   assert(x->number_of_arguments() == 1, "wrong type");
1212 
1213   LIRItem reference(x->argument_at(0), this);
1214   reference.load_item();
1215 
1216   // need to perform the null check on the reference object
1217   CodeEmitInfo* info = nullptr;
1218   if (x->needs_null_check()) {
1219     info = state_for(x);
1220   }
1221 
1222   LIR_Opr result = rlock_result(x, T_OBJECT);
1223   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1224                  reference, LIR_OprFact::intConst(referent_offset), result,
1225                  nullptr, info);
1226 }
1227 
1228 // Example: clazz.isInstance(object)
1229 void LIRGenerator::do_isInstance(Intrinsic* x) {
1230   assert(x->number_of_arguments() == 2, "wrong type");
1231 
1232   // TODO could try to substitute this node with an equivalent InstanceOf
1233   // if clazz is known to be a constant Class. This will pick up newly found
1234   // constants after HIR construction. I'll leave this to a future change.
1235 
1236   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1237   // could follow the aastore example in a future change.
1238 
1239   LIRItem clazz(x->argument_at(0), this);
1240   LIRItem object(x->argument_at(1), this);
1241   clazz.load_item();
1242   object.load_item();
1243   LIR_Opr result = rlock_result(x);
1244 
1245   // need to perform null check on clazz
1246   if (x->needs_null_check()) {
1247     CodeEmitInfo* info = state_for(x);
1248     __ null_check(clazz.result(), info);
1249   }
1250 
1251   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1252                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1253                                      x->type(),
1254                                      nullptr); // null CodeEmitInfo results in a leaf call
1255   __ move(call_result, result);
1256 }
1257 
1258 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1259   __ load_klass(obj, klass, null_check_info);
1260 }
1261 
1262 // Example: object.getClass ()
1263 void LIRGenerator::do_getClass(Intrinsic* x) {
1264   assert(x->number_of_arguments() == 1, "wrong type");
1265 
1266   LIRItem rcvr(x->argument_at(0), this);
1267   rcvr.load_item();
1268   LIR_Opr temp = new_register(T_ADDRESS);
1269   LIR_Opr result = rlock_result(x);
1270 
1271   // need to perform the null check on the rcvr
1272   CodeEmitInfo* info = nullptr;
1273   if (x->needs_null_check()) {
1274     info = state_for(x);
1275   }
1276 
1277   LIR_Opr klass = new_register(T_METADATA);
1278   load_klass(rcvr.result(), klass, info);
1279   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1280   // mirror = ((OopHandle)mirror)->resolve();
1281   access_load(IN_NATIVE, T_OBJECT,
1282               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1283 }
1284 
1285 // java.lang.Class::isPrimitive()
1286 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1287   assert(x->number_of_arguments() == 1, "wrong type");
1288 
1289   LIRItem rcvr(x->argument_at(0), this);
1290   rcvr.load_item();
1291   LIR_Opr temp = new_register(T_METADATA);
1292   LIR_Opr result = rlock_result(x);
1293 
1294   CodeEmitInfo* info = nullptr;
1295   if (x->needs_null_check()) {
1296     info = state_for(x);
1297   }
1298 
1299   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1300   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1301   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1302 }
1303 
1304 // Example: Foo.class.getModifiers()
1305 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1306   assert(x->number_of_arguments() == 1, "wrong type");
1307 
1308   LIRItem receiver(x->argument_at(0), this);
1309   receiver.load_item();
1310   LIR_Opr result = rlock_result(x);
1311 
1312   CodeEmitInfo* info = nullptr;
1313   if (x->needs_null_check()) {
1314     info = state_for(x);
1315   }
1316 
1317   // While reading off the universal constant mirror is less efficient than doing
1318   // another branch and returning the constant answer, this branchless code runs into
1319   // much less risk of confusion for C1 register allocator. The choice of the universe
1320   // object here is correct as long as it returns the same modifiers we would expect
1321   // from the primitive class itself. See spec for Class.getModifiers that provides
1322   // the typed array klasses with similar modifiers as their component types.
1323 
1324   Klass* univ_klass_obj = Universe::byteArrayKlassObj();
1325   assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity");
1326   LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj);
1327 
1328   LIR_Opr recv_klass = new_register(T_METADATA);
1329   __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
1330 
1331   // Check if this is a Java mirror of primitive type, and select the appropriate klass.
1332   LIR_Opr klass = new_register(T_METADATA);
1333   __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
1334   __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
1335 
1336   // Get the answer.
1337   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1338 }
1339 
1340 void LIRGenerator::do_addressOf(Intrinsic* x) {
1341   assert(x->number_of_arguments() == 1, "wrong type");
1342   LIR_Opr reg = rlock_result(x);
1343 
1344   LIRItem value(x->argument_at(0), this);
1345   value.load_item();
1346 
1347 #ifdef _LP64
1348   __ move(value.result(), reg, NULL);
1349 #else
1350   LIR_Opr res = new_register(T_INT);
1351   __ move(value.result(), res, NULL);
1352   __ convert(Bytecodes::_i2l, res, reg);
1353 #endif
1354 }
1355 
1356 void LIRGenerator::do_sizeOf(Intrinsic* x) {
1357   assert(x->number_of_arguments() == 1, "wrong type");
1358   do_sizeOf_impl(x, 0);
1359 }
1360 
1361 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1362   assert(x->number_of_arguments() == 3, "wrong type");
1363   do_sizeOf_impl(x, 2);
1364 }
1365 
1366 void LIRGenerator::do_sizeOf_impl(Intrinsic* x, int arg_idx) {
1367   LIR_Opr result_reg = rlock_result(x);
1368 
1369   LIRItem value(x->argument_at(arg_idx), this);
1370   value.load_item();
1371 
1372   LIR_Opr klass = new_register(T_METADATA);
1373   load_klass(value.result(), klass, nullptr);
1374   LIR_Opr layout = new_register(T_INT);
1375   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1376 
1377   LabelObj* L_done = new LabelObj();
1378   LabelObj* L_array = new LabelObj();
1379 
1380   __ cmp(lir_cond_lessEqual, layout, 0);
1381   __ branch(lir_cond_lessEqual, L_array->label());
1382 
1383   // Instance case: the layout helper gives us instance size almost directly,
1384   // but we need to mask out the _lh_instance_slow_path_bit.
1385 
1386   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1387 
1388   LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1389   __ logical_and(layout, mask, layout);
1390   __ convert(Bytecodes::_i2l, layout, result_reg);
1391 
1392   __ branch(lir_cond_always, L_done->label());
1393 
1394   // Array case: size is round(header + element_size*arraylength).
1395   // Since arraylength is different for every array instance, we have to
1396   // compute the whole thing at runtime.
1397 
1398   __ branch_destination(L_array->label());
1399 
1400   int round_mask = MinObjAlignmentInBytes - 1;
1401 
1402   // Figure out header sizes first.
1403   LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1404   LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1405 
1406   LIR_Opr header_size = new_register(T_INT);
1407   __ move(layout, header_size);
1408   LIR_Opr tmp = new_register(T_INT);
1409   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1410   __ logical_and(header_size, hsm, header_size);
1411   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1412 
1413   // Figure out the array length in bytes
1414   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1415   LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1416   __ logical_and(layout, l2esm, layout);
1417 
1418   LIR_Opr length_int = new_register(T_INT);
1419   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1420 
1421 #ifdef _LP64
1422   LIR_Opr length = new_register(T_LONG);
1423   __ convert(Bytecodes::_i2l, length_int, length);
1424 #endif
1425 
1426   // Shift-left awkwardness. Normally it is just:
1427   //   __ shift_left(length, layout, length);
1428   // But C1 cannot perform shift_left with non-constant count, so we end up
1429   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1430   // longs, so we have to act on ints.
1431   LabelObj* L_shift_loop = new LabelObj();
1432   LabelObj* L_shift_exit = new LabelObj();
1433 
1434   __ branch_destination(L_shift_loop->label());
1435   __ cmp(lir_cond_equal, layout, 0);
1436   __ branch(lir_cond_equal, L_shift_exit->label());
1437 
1438 #ifdef _LP64
1439   __ shift_left(length, 1, length);
1440 #else
1441   __ shift_left(length_int, 1, length_int);
1442 #endif
1443 
1444   __ sub(layout, LIR_OprFact::intConst(1), layout);
1445 
1446   __ branch(lir_cond_always, L_shift_loop->label());
1447   __ branch_destination(L_shift_exit->label());
1448 
1449   // Mix all up, round, and push to the result.
1450 #ifdef _LP64
1451   LIR_Opr header_size_long = new_register(T_LONG);
1452   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1453   __ add(length, header_size_long, length);
1454   if (round_mask != 0) {
1455     LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1456     __ logical_and(length, round_mask_opr, length);
1457   }
1458   __ move(length, result_reg);
1459 #else
1460   __ add(length_int, header_size, length_int);
1461   if (round_mask != 0) {
1462     LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1463     __ logical_and(length_int, round_mask_opr, length_int);
1464   }
1465   __ convert(Bytecodes::_i2l, length_int, result_reg);
1466 #endif
1467 
1468   __ branch_destination(L_done->label());
1469 }
1470 
1471 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1472   do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1473 }
1474 
1475 // Example: Thread.currentCarrierThread()
1476 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1477   do_JavaThreadField(x, JavaThread::threadObj_offset());
1478 }
1479 
1480 void LIRGenerator::do_vthread(Intrinsic* x) {
1481   do_JavaThreadField(x, JavaThread::vthread_offset());
1482 }
1483 
1484 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1485   assert(x->number_of_arguments() == 0, "wrong type");
1486   LIR_Opr temp = new_register(T_ADDRESS);
1487   LIR_Opr reg = rlock_result(x);
1488   __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1489   access_load(IN_NATIVE, T_OBJECT,
1490               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1491 }
1492 
1493 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1494   assert(x->number_of_arguments() == 1, "wrong type");
1495   LIRItem receiver(x->argument_at(0), this);
1496 
1497   receiver.load_item();
1498   BasicTypeList signature;
1499   signature.append(T_OBJECT); // receiver
1500   LIR_OprList* args = new LIR_OprList();
1501   args->append(receiver.result());
1502   CodeEmitInfo* info = state_for(x, x->state());
1503   call_runtime(&signature, args,
1504                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1505                voidType, info);
1506 
1507   set_no_result(x);
1508 }
1509 
1510 
1511 //------------------------local access--------------------------------------
1512 
1513 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1514   if (x->operand()->is_illegal()) {
1515     Constant* c = x->as_Constant();
1516     if (c != nullptr) {
1517       x->set_operand(LIR_OprFact::value_type(c->type()));
1518     } else {
1519       assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1520       // allocate a virtual register for this local or phi
1521       x->set_operand(rlock(x));
1522       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1523     }
1524   }
1525   return x->operand();
1526 }
1527 
1528 
1529 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1530   if (opr->is_virtual()) {
1531     return instruction_for_vreg(opr->vreg_number());
1532   }
1533   return nullptr;
1534 }
1535 
1536 
1537 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1538   if (reg_num < _instruction_for_operand.length()) {
1539     return _instruction_for_operand.at(reg_num);
1540   }
1541   return nullptr;
1542 }
1543 
1544 
1545 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1546   if (_vreg_flags.size_in_bits() == 0) {
1547     BitMap2D temp(100, num_vreg_flags);
1548     _vreg_flags = temp;
1549   }
1550   _vreg_flags.at_put_grow(vreg_num, f, true);
1551 }
1552 
1553 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1554   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1555     return false;
1556   }
1557   return _vreg_flags.at(vreg_num, f);
1558 }
1559 
1560 
1561 // Block local constant handling.  This code is useful for keeping
1562 // unpinned constants and constants which aren't exposed in the IR in
1563 // registers.  Unpinned Constant instructions have their operands
1564 // cleared when the block is finished so that other blocks can't end
1565 // up referring to their registers.
1566 
1567 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1568   assert(!x->is_pinned(), "only for unpinned constants");
1569   _unpinned_constants.append(x);
1570   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1571 }
1572 
1573 
1574 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1575   BasicType t = c->type();
1576   for (int i = 0; i < _constants.length(); i++) {
1577     LIR_Const* other = _constants.at(i);
1578     if (t == other->type()) {
1579       switch (t) {
1580       case T_INT:
1581       case T_FLOAT:
1582         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1583         break;
1584       case T_LONG:
1585       case T_DOUBLE:
1586         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1587         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1588         break;
1589       case T_OBJECT:
1590         if (c->as_jobject() != other->as_jobject()) continue;
1591         break;
1592       default:
1593         break;
1594       }
1595       return _reg_for_constants.at(i);
1596     }
1597   }
1598 
1599   LIR_Opr result = new_register(t);
1600   __ move((LIR_Opr)c, result);
1601   _constants.append(c);
1602   _reg_for_constants.append(result);
1603   return result;
1604 }
1605 
1606 //------------------------field access--------------------------------------
1607 
1608 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1609   assert(x->number_of_arguments() == 4, "wrong type");
1610   LIRItem obj   (x->argument_at(0), this);  // object
1611   LIRItem offset(x->argument_at(1), this);  // offset of field
1612   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1613   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1614   assert(obj.type()->tag() == objectTag, "invalid type");
1615   assert(cmp.type()->tag() == type->tag(), "invalid type");
1616   assert(val.type()->tag() == type->tag(), "invalid type");
1617 
1618   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1619                                             obj, offset, cmp, val);
1620   set_result(x, result);
1621 }
1622 
1623 // Comment copied form templateTable_i486.cpp
1624 // ----------------------------------------------------------------------------
1625 // Volatile variables demand their effects be made known to all CPU's in
1626 // order.  Store buffers on most chips allow reads & writes to reorder; the
1627 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1628 // memory barrier (i.e., it's not sufficient that the interpreter does not
1629 // reorder volatile references, the hardware also must not reorder them).
1630 //
1631 // According to the new Java Memory Model (JMM):
1632 // (1) All volatiles are serialized wrt to each other.
1633 // ALSO reads & writes act as acquire & release, so:
1634 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1635 // the read float up to before the read.  It's OK for non-volatile memory refs
1636 // that happen before the volatile read to float down below it.
1637 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1638 // that happen BEFORE the write float down to after the write.  It's OK for
1639 // non-volatile memory refs that happen after the volatile write to float up
1640 // before it.
1641 //
1642 // We only put in barriers around volatile refs (they are expensive), not
1643 // _between_ memory refs (that would require us to track the flavor of the
1644 // previous memory refs).  Requirements (2) and (3) require some barriers
1645 // before volatile stores and after volatile loads.  These nearly cover
1646 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1647 // case is placed after volatile-stores although it could just as well go
1648 // before volatile-loads.
1649 
1650 
1651 void LIRGenerator::do_StoreField(StoreField* x) {
1652   bool needs_patching = x->needs_patching();
1653   bool is_volatile = x->field()->is_volatile();
1654   BasicType field_type = x->field_type();
1655 
1656   CodeEmitInfo* info = nullptr;
1657   if (needs_patching) {
1658     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1659     info = state_for(x, x->state_before());
1660   } else if (x->needs_null_check()) {
1661     NullCheck* nc = x->explicit_null_check();
1662     if (nc == nullptr) {
1663       info = state_for(x);
1664     } else {
1665       info = state_for(nc);
1666     }
1667   }
1668 
1669   LIRItem object(x->obj(), this);
1670   LIRItem value(x->value(),  this);
1671 
1672   object.load_item();
1673 
1674   if (is_volatile || needs_patching) {
1675     // load item if field is volatile (fewer special cases for volatiles)
1676     // load item if field not initialized
1677     // load item if field not constant
1678     // because of code patching we cannot inline constants
1679     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1680       value.load_byte_item();
1681     } else  {
1682       value.load_item();
1683     }
1684   } else {
1685     value.load_for_store(field_type);
1686   }
1687 
1688   set_no_result(x);
1689 
1690 #ifndef PRODUCT
1691   if (PrintNotLoaded && needs_patching) {
1692     tty->print_cr("   ###class not loaded at store_%s bci %d",
1693                   x->is_static() ?  "static" : "field", x->printable_bci());
1694   }
1695 #endif
1696 
1697   if (x->needs_null_check() &&
1698       (needs_patching ||
1699        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1700     // Emit an explicit null check because the offset is too large.
1701     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1702     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1703     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1704   }
1705 
1706   DecoratorSet decorators = IN_HEAP;
1707   if (is_volatile) {
1708     decorators |= MO_SEQ_CST;
1709   }
1710   if (needs_patching) {
1711     decorators |= C1_NEEDS_PATCHING;
1712   }
1713 
1714   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1715                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1716 }
1717 
1718 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1719   assert(x->is_pinned(),"");
1720   bool needs_range_check = x->compute_needs_range_check();
1721   bool use_length = x->length() != nullptr;
1722   bool obj_store = is_reference_type(x->elt_type());
1723   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1724                                          !get_jobject_constant(x->value())->is_null_object() ||
1725                                          x->should_profile());
1726 
1727   LIRItem array(x->array(), this);
1728   LIRItem index(x->index(), this);
1729   LIRItem value(x->value(), this);
1730   LIRItem length(this);
1731 
1732   array.load_item();
1733   index.load_nonconstant();
1734 
1735   if (use_length && needs_range_check) {
1736     length.set_instruction(x->length());
1737     length.load_item();
1738 
1739   }
1740   if (needs_store_check || x->check_boolean()) {
1741     value.load_item();
1742   } else {
1743     value.load_for_store(x->elt_type());
1744   }
1745 
1746   set_no_result(x);
1747 
1748   // the CodeEmitInfo must be duplicated for each different
1749   // LIR-instruction because spilling can occur anywhere between two
1750   // instructions and so the debug information must be different
1751   CodeEmitInfo* range_check_info = state_for(x);
1752   CodeEmitInfo* null_check_info = nullptr;
1753   if (x->needs_null_check()) {
1754     null_check_info = new CodeEmitInfo(range_check_info);
1755   }
1756 
1757   if (needs_range_check) {
1758     if (use_length) {
1759       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1760       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1761     } else {
1762       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1763       // range_check also does the null check
1764       null_check_info = nullptr;
1765     }
1766   }
1767 
1768   if (GenerateArrayStoreCheck && needs_store_check) {
1769     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1770     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1771   }
1772 
1773   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1774   if (x->check_boolean()) {
1775     decorators |= C1_MASK_BOOLEAN;
1776   }
1777 
1778   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1779                   nullptr, null_check_info);
1780 }
1781 
1782 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1783                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1784                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1785   decorators |= ACCESS_READ;
1786   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1787   if (access.is_raw()) {
1788     _barrier_set->BarrierSetC1::load_at(access, result);
1789   } else {
1790     _barrier_set->load_at(access, result);
1791   }
1792 }
1793 
1794 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1795                                LIR_Opr addr, LIR_Opr result) {
1796   decorators |= ACCESS_READ;
1797   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1798   access.set_resolved_addr(addr);
1799   if (access.is_raw()) {
1800     _barrier_set->BarrierSetC1::load(access, result);
1801   } else {
1802     _barrier_set->load(access, result);
1803   }
1804 }
1805 
1806 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1807                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1808                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1809   decorators |= ACCESS_WRITE;
1810   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1811   if (access.is_raw()) {
1812     _barrier_set->BarrierSetC1::store_at(access, value);
1813   } else {
1814     _barrier_set->store_at(access, value);
1815   }
1816 }
1817 
1818 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1819                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1820   decorators |= ACCESS_READ;
1821   decorators |= ACCESS_WRITE;
1822   // Atomic operations are SEQ_CST by default
1823   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1824   LIRAccess access(this, decorators, base, offset, type);
1825   if (access.is_raw()) {
1826     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1827   } else {
1828     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1829   }
1830 }
1831 
1832 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1833                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1834   decorators |= ACCESS_READ;
1835   decorators |= ACCESS_WRITE;
1836   // Atomic operations are SEQ_CST by default
1837   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1838   LIRAccess access(this, decorators, base, offset, type);
1839   if (access.is_raw()) {
1840     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1841   } else {
1842     return _barrier_set->atomic_xchg_at(access, value);
1843   }
1844 }
1845 
1846 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1847                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1848   decorators |= ACCESS_READ;
1849   decorators |= ACCESS_WRITE;
1850   // Atomic operations are SEQ_CST by default
1851   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1852   LIRAccess access(this, decorators, base, offset, type);
1853   if (access.is_raw()) {
1854     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1855   } else {
1856     return _barrier_set->atomic_add_at(access, value);
1857   }
1858 }
1859 
1860 void LIRGenerator::do_LoadField(LoadField* x) {
1861   bool needs_patching = x->needs_patching();
1862   bool is_volatile = x->field()->is_volatile();
1863   BasicType field_type = x->field_type();
1864 
1865   CodeEmitInfo* info = nullptr;
1866   if (needs_patching) {
1867     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1868     info = state_for(x, x->state_before());
1869   } else if (x->needs_null_check()) {
1870     NullCheck* nc = x->explicit_null_check();
1871     if (nc == nullptr) {
1872       info = state_for(x);
1873     } else {
1874       info = state_for(nc);
1875     }
1876   }
1877 
1878   LIRItem object(x->obj(), this);
1879 
1880   object.load_item();
1881 
1882 #ifndef PRODUCT
1883   if (PrintNotLoaded && needs_patching) {
1884     tty->print_cr("   ###class not loaded at load_%s bci %d",
1885                   x->is_static() ?  "static" : "field", x->printable_bci());
1886   }
1887 #endif
1888 
1889   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1890   if (x->needs_null_check() &&
1891       (needs_patching ||
1892        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1893        stress_deopt)) {
1894     LIR_Opr obj = object.result();
1895     if (stress_deopt) {
1896       obj = new_register(T_OBJECT);
1897       __ move(LIR_OprFact::oopConst(nullptr), obj);
1898     }
1899     // Emit an explicit null check because the offset is too large.
1900     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1901     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1902     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1903   }
1904 
1905   DecoratorSet decorators = IN_HEAP;
1906   if (is_volatile) {
1907     decorators |= MO_SEQ_CST;
1908   }
1909   if (needs_patching) {
1910     decorators |= C1_NEEDS_PATCHING;
1911   }
1912 
1913   LIR_Opr result = rlock_result(x, field_type);
1914   access_load_at(decorators, field_type,
1915                  object, LIR_OprFact::intConst(x->offset()), result,
1916                  info ? new CodeEmitInfo(info) : nullptr, info);
1917 }
1918 
1919 // int/long jdk.internal.util.Preconditions.checkIndex
1920 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1921   assert(x->number_of_arguments() == 3, "wrong type");
1922   LIRItem index(x->argument_at(0), this);
1923   LIRItem length(x->argument_at(1), this);
1924   LIRItem oobef(x->argument_at(2), this);
1925 
1926   index.load_item();
1927   length.load_item();
1928   oobef.load_item();
1929 
1930   LIR_Opr result = rlock_result(x);
1931   // x->state() is created from copy_state_for_exception, it does not contains arguments
1932   // we should prepare them before entering into interpreter mode due to deoptimization.
1933   ValueStack* state = x->state();
1934   for (int i = 0; i < x->number_of_arguments(); i++) {
1935     Value arg = x->argument_at(i);
1936     state->push(arg->type(), arg);
1937   }
1938   CodeEmitInfo* info = state_for(x, state);
1939 
1940   LIR_Opr len = length.result();
1941   LIR_Opr zero;
1942   if (type == T_INT) {
1943     zero = LIR_OprFact::intConst(0);
1944     if (length.result()->is_constant()){
1945       len = LIR_OprFact::intConst(length.result()->as_jint());
1946     }
1947   } else {
1948     assert(type == T_LONG, "sanity check");
1949     zero = LIR_OprFact::longConst(0);
1950     if (length.result()->is_constant()){
1951       len = LIR_OprFact::longConst(length.result()->as_jlong());
1952     }
1953   }
1954   // C1 can not handle the case that comparing index with constant value while condition
1955   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1956   LIR_Opr zero_reg = new_register(type);
1957   __ move(zero, zero_reg);
1958 #if defined(X86) && !defined(_LP64)
1959   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1960   LIR_Opr index_copy = new_register(index.type());
1961   // index >= 0
1962   __ move(index.result(), index_copy);
1963   __ cmp(lir_cond_less, index_copy, zero_reg);
1964   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1965                                                     Deoptimization::Action_make_not_entrant));
1966   // index < length
1967   __ move(index.result(), index_copy);
1968   __ cmp(lir_cond_greaterEqual, index_copy, len);
1969   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1970                                                             Deoptimization::Action_make_not_entrant));
1971 #else
1972   // index >= 0
1973   __ cmp(lir_cond_less, index.result(), zero_reg);
1974   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1975                                                     Deoptimization::Action_make_not_entrant));
1976   // index < length
1977   __ cmp(lir_cond_greaterEqual, index.result(), len);
1978   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1979                                                             Deoptimization::Action_make_not_entrant));
1980 #endif
1981   __ move(index.result(), result);
1982 }
1983 
1984 //------------------------array access--------------------------------------
1985 
1986 
1987 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1988   LIRItem array(x->array(), this);
1989   array.load_item();
1990   LIR_Opr reg = rlock_result(x);
1991 
1992   CodeEmitInfo* info = nullptr;
1993   if (x->needs_null_check()) {
1994     NullCheck* nc = x->explicit_null_check();
1995     if (nc == nullptr) {
1996       info = state_for(x);
1997     } else {
1998       info = state_for(nc);
1999     }
2000     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2001       LIR_Opr obj = new_register(T_OBJECT);
2002       __ move(LIR_OprFact::oopConst(nullptr), obj);
2003       __ null_check(obj, new CodeEmitInfo(info));
2004     }
2005   }
2006   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2007 }
2008 
2009 
2010 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2011   bool use_length = x->length() != nullptr;
2012   LIRItem array(x->array(), this);
2013   LIRItem index(x->index(), this);
2014   LIRItem length(this);
2015   bool needs_range_check = x->compute_needs_range_check();
2016 
2017   if (use_length && needs_range_check) {
2018     length.set_instruction(x->length());
2019     length.load_item();
2020   }
2021 
2022   array.load_item();
2023   if (index.is_constant() && can_inline_as_constant(x->index())) {
2024     // let it be a constant
2025     index.dont_load_item();
2026   } else {
2027     index.load_item();
2028   }
2029 
2030   CodeEmitInfo* range_check_info = state_for(x);
2031   CodeEmitInfo* null_check_info = nullptr;
2032   if (x->needs_null_check()) {
2033     NullCheck* nc = x->explicit_null_check();
2034     if (nc != nullptr) {
2035       null_check_info = state_for(nc);
2036     } else {
2037       null_check_info = range_check_info;
2038     }
2039     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2040       LIR_Opr obj = new_register(T_OBJECT);
2041       __ move(LIR_OprFact::oopConst(nullptr), obj);
2042       __ null_check(obj, new CodeEmitInfo(null_check_info));
2043     }
2044   }
2045 
2046   if (needs_range_check) {
2047     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2048       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2049     } else if (use_length) {
2050       // TODO: use a (modified) version of array_range_check that does not require a
2051       //       constant length to be loaded to a register
2052       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2053       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2054     } else {
2055       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2056       // The range check performs the null check, so clear it out for the load
2057       null_check_info = nullptr;
2058     }
2059   }
2060 
2061   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2062 
2063   LIR_Opr result = rlock_result(x, x->elt_type());
2064   access_load_at(decorators, x->elt_type(),
2065                  array, index.result(), result,
2066                  nullptr, null_check_info);
2067 }
2068 
2069 
2070 void LIRGenerator::do_NullCheck(NullCheck* x) {
2071   if (x->can_trap()) {
2072     LIRItem value(x->obj(), this);
2073     value.load_item();
2074     CodeEmitInfo* info = state_for(x);
2075     __ null_check(value.result(), info);
2076   }
2077 }
2078 
2079 
2080 void LIRGenerator::do_TypeCast(TypeCast* x) {
2081   LIRItem value(x->obj(), this);
2082   value.load_item();
2083   // the result is the same as from the node we are casting
2084   set_result(x, value.result());
2085 }
2086 
2087 
2088 void LIRGenerator::do_Throw(Throw* x) {
2089   LIRItem exception(x->exception(), this);
2090   exception.load_item();
2091   set_no_result(x);
2092   LIR_Opr exception_opr = exception.result();
2093   CodeEmitInfo* info = state_for(x, x->state());
2094 
2095 #ifndef PRODUCT
2096   if (PrintC1Statistics) {
2097     increment_counter(Runtime1::throw_count_address(), T_INT);
2098   }
2099 #endif
2100 
2101   // check if the instruction has an xhandler in any of the nested scopes
2102   bool unwind = false;
2103   if (info->exception_handlers()->length() == 0) {
2104     // this throw is not inside an xhandler
2105     unwind = true;
2106   } else {
2107     // get some idea of the throw type
2108     bool type_is_exact = true;
2109     ciType* throw_type = x->exception()->exact_type();
2110     if (throw_type == nullptr) {
2111       type_is_exact = false;
2112       throw_type = x->exception()->declared_type();
2113     }
2114     if (throw_type != nullptr && throw_type->is_instance_klass()) {
2115       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2116       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2117     }
2118   }
2119 
2120   // do null check before moving exception oop into fixed register
2121   // to avoid a fixed interval with an oop during the null check.
2122   // Use a copy of the CodeEmitInfo because debug information is
2123   // different for null_check and throw.
2124   if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2125     // if the exception object wasn't created using new then it might be null.
2126     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2127   }
2128 
2129   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2130     // we need to go through the exception lookup path to get JVMTI
2131     // notification done
2132     unwind = false;
2133   }
2134 
2135   // move exception oop into fixed register
2136   __ move(exception_opr, exceptionOopOpr());
2137 
2138   if (unwind) {
2139     __ unwind_exception(exceptionOopOpr());
2140   } else {
2141     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2142   }
2143 }
2144 
2145 
2146 void LIRGenerator::do_RoundFP(RoundFP* x) {
2147   assert(strict_fp_requires_explicit_rounding, "not required");
2148 
2149   LIRItem input(x->input(), this);
2150   input.load_item();
2151   LIR_Opr input_opr = input.result();
2152   assert(input_opr->is_register(), "why round if value is not in a register?");
2153   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2154   if (input_opr->is_single_fpu()) {
2155     set_result(x, round_item(input_opr)); // This code path not currently taken
2156   } else {
2157     LIR_Opr result = new_register(T_DOUBLE);
2158     set_vreg_flag(result, must_start_in_memory);
2159     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2160     set_result(x, result);
2161   }
2162 }
2163 
2164 
2165 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2166   BasicType type = x->basic_type();
2167   LIRItem src(x->object(), this);
2168   LIRItem off(x->offset(), this);
2169 
2170   off.load_item();
2171   src.load_item();
2172 
2173   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2174 
2175   if (x->is_volatile()) {
2176     decorators |= MO_SEQ_CST;
2177   }
2178   if (type == T_BOOLEAN) {
2179     decorators |= C1_MASK_BOOLEAN;
2180   }
2181   if (is_reference_type(type)) {
2182     decorators |= ON_UNKNOWN_OOP_REF;
2183   }
2184 
2185   LIR_Opr result = rlock_result(x, type);
2186   if (!x->is_raw()) {
2187     access_load_at(decorators, type, src, off.result(), result);
2188   } else {
2189     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2190     // It reads the value from [src + offset] directly.
2191 #ifdef _LP64
2192     LIR_Opr offset = new_register(T_LONG);
2193     __ convert(Bytecodes::_i2l, off.result(), offset);
2194 #else
2195     LIR_Opr offset = off.result();
2196 #endif
2197     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2198     if (is_reference_type(type)) {
2199       __ move_wide(addr, result);
2200     } else {
2201       __ move(addr, result);
2202     }
2203   }
2204 }
2205 
2206 
2207 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2208   BasicType type = x->basic_type();
2209   LIRItem src(x->object(), this);
2210   LIRItem off(x->offset(), this);
2211   LIRItem data(x->value(), this);
2212 
2213   src.load_item();
2214   if (type == T_BOOLEAN || type == T_BYTE) {
2215     data.load_byte_item();
2216   } else {
2217     data.load_item();
2218   }
2219   off.load_item();
2220 
2221   set_no_result(x);
2222 
2223   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2224   if (is_reference_type(type)) {
2225     decorators |= ON_UNKNOWN_OOP_REF;
2226   }
2227   if (x->is_volatile()) {
2228     decorators |= MO_SEQ_CST;
2229   }
2230   access_store_at(decorators, type, src, off.result(), data.result());
2231 }
2232 
2233 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2234   BasicType type = x->basic_type();
2235   LIRItem src(x->object(), this);
2236   LIRItem off(x->offset(), this);
2237   LIRItem value(x->value(), this);
2238 
2239   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2240 
2241   if (is_reference_type(type)) {
2242     decorators |= ON_UNKNOWN_OOP_REF;
2243   }
2244 
2245   LIR_Opr result;
2246   if (x->is_add()) {
2247     result = access_atomic_add_at(decorators, type, src, off, value);
2248   } else {
2249     result = access_atomic_xchg_at(decorators, type, src, off, value);
2250   }
2251   set_result(x, result);
2252 }
2253 
2254 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2255   int lng = x->length();
2256 
2257   for (int i = 0; i < lng; i++) {
2258     C1SwitchRange* one_range = x->at(i);
2259     int low_key = one_range->low_key();
2260     int high_key = one_range->high_key();
2261     BlockBegin* dest = one_range->sux();
2262     if (low_key == high_key) {
2263       __ cmp(lir_cond_equal, value, low_key);
2264       __ branch(lir_cond_equal, dest);
2265     } else if (high_key - low_key == 1) {
2266       __ cmp(lir_cond_equal, value, low_key);
2267       __ branch(lir_cond_equal, dest);
2268       __ cmp(lir_cond_equal, value, high_key);
2269       __ branch(lir_cond_equal, dest);
2270     } else {
2271       LabelObj* L = new LabelObj();
2272       __ cmp(lir_cond_less, value, low_key);
2273       __ branch(lir_cond_less, L->label());
2274       __ cmp(lir_cond_lessEqual, value, high_key);
2275       __ branch(lir_cond_lessEqual, dest);
2276       __ branch_destination(L->label());
2277     }
2278   }
2279   __ jump(default_sux);
2280 }
2281 
2282 
2283 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2284   SwitchRangeList* res = new SwitchRangeList();
2285   int len = x->length();
2286   if (len > 0) {
2287     BlockBegin* sux = x->sux_at(0);
2288     int low = x->lo_key();
2289     BlockBegin* default_sux = x->default_sux();
2290     C1SwitchRange* range = new C1SwitchRange(low, sux);
2291     for (int i = 0; i < len; i++) {
2292       int key = low + i;
2293       BlockBegin* new_sux = x->sux_at(i);
2294       if (sux == new_sux) {
2295         // still in same range
2296         range->set_high_key(key);
2297       } else {
2298         // skip tests which explicitly dispatch to the default
2299         if (sux != default_sux) {
2300           res->append(range);
2301         }
2302         range = new C1SwitchRange(key, new_sux);
2303       }
2304       sux = new_sux;
2305     }
2306     if (res->length() == 0 || res->last() != range)  res->append(range);
2307   }
2308   return res;
2309 }
2310 
2311 
2312 // we expect the keys to be sorted by increasing value
2313 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2314   SwitchRangeList* res = new SwitchRangeList();
2315   int len = x->length();
2316   if (len > 0) {
2317     BlockBegin* default_sux = x->default_sux();
2318     int key = x->key_at(0);
2319     BlockBegin* sux = x->sux_at(0);
2320     C1SwitchRange* range = new C1SwitchRange(key, sux);
2321     for (int i = 1; i < len; i++) {
2322       int new_key = x->key_at(i);
2323       BlockBegin* new_sux = x->sux_at(i);
2324       if (key+1 == new_key && sux == new_sux) {
2325         // still in same range
2326         range->set_high_key(new_key);
2327       } else {
2328         // skip tests which explicitly dispatch to the default
2329         if (range->sux() != default_sux) {
2330           res->append(range);
2331         }
2332         range = new C1SwitchRange(new_key, new_sux);
2333       }
2334       key = new_key;
2335       sux = new_sux;
2336     }
2337     if (res->length() == 0 || res->last() != range)  res->append(range);
2338   }
2339   return res;
2340 }
2341 
2342 
2343 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2344   LIRItem tag(x->tag(), this);
2345   tag.load_item();
2346   set_no_result(x);
2347 
2348   if (x->is_safepoint()) {
2349     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2350   }
2351 
2352   // move values into phi locations
2353   move_to_phi(x->state());
2354 
2355   int lo_key = x->lo_key();
2356   int len = x->length();
2357   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2358   LIR_Opr value = tag.result();
2359 
2360   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2361     ciMethod* method = x->state()->scope()->method();
2362     ciMethodData* md = method->method_data_or_null();
2363     assert(md != nullptr, "Sanity");
2364     ciProfileData* data = md->bci_to_data(x->state()->bci());
2365     assert(data != nullptr, "must have profiling data");
2366     assert(data->is_MultiBranchData(), "bad profile data?");
2367     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2368     LIR_Opr md_reg = new_register(T_METADATA);
2369     __ metadata2reg(md->constant_encoding(), md_reg);
2370     LIR_Opr data_offset_reg = new_pointer_register();
2371     LIR_Opr tmp_reg = new_pointer_register();
2372 
2373     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2374     for (int i = 0; i < len; i++) {
2375       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2376       __ cmp(lir_cond_equal, value, i + lo_key);
2377       __ move(data_offset_reg, tmp_reg);
2378       __ cmove(lir_cond_equal,
2379                LIR_OprFact::intptrConst(count_offset),
2380                tmp_reg,
2381                data_offset_reg, T_INT);
2382     }
2383 
2384     LIR_Opr data_reg = new_pointer_register();
2385     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2386     __ move(data_addr, data_reg);
2387     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2388     __ move(data_reg, data_addr);
2389   }
2390 
2391   if (UseTableRanges) {
2392     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2393   } else {
2394     for (int i = 0; i < len; i++) {
2395       __ cmp(lir_cond_equal, value, i + lo_key);
2396       __ branch(lir_cond_equal, x->sux_at(i));
2397     }
2398     __ jump(x->default_sux());
2399   }
2400 }
2401 
2402 
2403 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2404   LIRItem tag(x->tag(), this);
2405   tag.load_item();
2406   set_no_result(x);
2407 
2408   if (x->is_safepoint()) {
2409     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2410   }
2411 
2412   // move values into phi locations
2413   move_to_phi(x->state());
2414 
2415   LIR_Opr value = tag.result();
2416   int len = x->length();
2417 
2418   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2419     ciMethod* method = x->state()->scope()->method();
2420     ciMethodData* md = method->method_data_or_null();
2421     assert(md != nullptr, "Sanity");
2422     ciProfileData* data = md->bci_to_data(x->state()->bci());
2423     assert(data != nullptr, "must have profiling data");
2424     assert(data->is_MultiBranchData(), "bad profile data?");
2425     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2426     LIR_Opr md_reg = new_register(T_METADATA);
2427     __ metadata2reg(md->constant_encoding(), md_reg);
2428     LIR_Opr data_offset_reg = new_pointer_register();
2429     LIR_Opr tmp_reg = new_pointer_register();
2430 
2431     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2432     for (int i = 0; i < len; i++) {
2433       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2434       __ cmp(lir_cond_equal, value, x->key_at(i));
2435       __ move(data_offset_reg, tmp_reg);
2436       __ cmove(lir_cond_equal,
2437                LIR_OprFact::intptrConst(count_offset),
2438                tmp_reg,
2439                data_offset_reg, T_INT);
2440     }
2441 
2442     LIR_Opr data_reg = new_pointer_register();
2443     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2444     __ move(data_addr, data_reg);
2445     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2446     __ move(data_reg, data_addr);
2447   }
2448 
2449   if (UseTableRanges) {
2450     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2451   } else {
2452     int len = x->length();
2453     for (int i = 0; i < len; i++) {
2454       __ cmp(lir_cond_equal, value, x->key_at(i));
2455       __ branch(lir_cond_equal, x->sux_at(i));
2456     }
2457     __ jump(x->default_sux());
2458   }
2459 }
2460 
2461 
2462 void LIRGenerator::do_Goto(Goto* x) {
2463   set_no_result(x);
2464 
2465   if (block()->next()->as_OsrEntry()) {
2466     // need to free up storage used for OSR entry point
2467     LIR_Opr osrBuffer = block()->next()->operand();
2468     BasicTypeList signature;
2469     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2470     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2471     __ move(osrBuffer, cc->args()->at(0));
2472     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2473                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2474   }
2475 
2476   if (x->is_safepoint()) {
2477     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2478 
2479     // increment backedge counter if needed
2480     CodeEmitInfo* info = state_for(x, state);
2481     increment_backedge_counter(info, x->profiled_bci());
2482     CodeEmitInfo* safepoint_info = state_for(x, state);
2483     __ safepoint(safepoint_poll_register(), safepoint_info);
2484   }
2485 
2486   // Gotos can be folded Ifs, handle this case.
2487   if (x->should_profile()) {
2488     ciMethod* method = x->profiled_method();
2489     assert(method != nullptr, "method should be set if branch is profiled");
2490     ciMethodData* md = method->method_data_or_null();
2491     assert(md != nullptr, "Sanity");
2492     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2493     assert(data != nullptr, "must have profiling data");
2494     int offset;
2495     if (x->direction() == Goto::taken) {
2496       assert(data->is_BranchData(), "need BranchData for two-way branches");
2497       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2498     } else if (x->direction() == Goto::not_taken) {
2499       assert(data->is_BranchData(), "need BranchData for two-way branches");
2500       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2501     } else {
2502       assert(data->is_JumpData(), "need JumpData for branches");
2503       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2504     }
2505     LIR_Opr md_reg = new_register(T_METADATA);
2506     __ metadata2reg(md->constant_encoding(), md_reg);
2507 
2508     increment_counter(new LIR_Address(md_reg, offset,
2509                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2510   }
2511 
2512   // emit phi-instruction move after safepoint since this simplifies
2513   // describing the state as the safepoint.
2514   move_to_phi(x->state());
2515 
2516   __ jump(x->default_sux());
2517 }
2518 
2519 /**
2520  * Emit profiling code if needed for arguments, parameters, return value types
2521  *
2522  * @param md                    MDO the code will update at runtime
2523  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2524  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2525  * @param profiled_k            current profile
2526  * @param obj                   IR node for the object to be profiled
2527  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2528  *                              Set once we find an update to make and use for next ones.
2529  * @param not_null              true if we know obj cannot be null
2530  * @param signature_at_call_k   signature at call for obj
2531  * @param callee_signature_k    signature of callee for obj
2532  *                              at call and callee signatures differ at method handle call
2533  * @return                      the only klass we know will ever be seen at this profile point
2534  */
2535 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2536                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2537                                     ciKlass* callee_signature_k) {
2538   ciKlass* result = nullptr;
2539   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2540   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2541   // known not to be null or null bit already set and already set to
2542   // unknown: nothing we can do to improve profiling
2543   if (!do_null && !do_update) {
2544     return result;
2545   }
2546 
2547   ciKlass* exact_klass = nullptr;
2548   Compilation* comp = Compilation::current();
2549   if (do_update) {
2550     // try to find exact type, using CHA if possible, so that loading
2551     // the klass from the object can be avoided
2552     ciType* type = obj->exact_type();
2553     if (type == nullptr) {
2554       type = obj->declared_type();
2555       type = comp->cha_exact_type(type);
2556     }
2557     assert(type == nullptr || type->is_klass(), "type should be class");
2558     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2559 
2560     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2561   }
2562 
2563   if (!do_null && !do_update) {
2564     return result;
2565   }
2566 
2567   ciKlass* exact_signature_k = nullptr;
2568   if (do_update) {
2569     // Is the type from the signature exact (the only one possible)?
2570     exact_signature_k = signature_at_call_k->exact_klass();
2571     if (exact_signature_k == nullptr) {
2572       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2573     } else {
2574       result = exact_signature_k;
2575       // Known statically. No need to emit any code: prevent
2576       // LIR_Assembler::emit_profile_type() from emitting useless code
2577       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2578     }
2579     // exact_klass and exact_signature_k can be both non null but
2580     // different if exact_klass is loaded after the ciObject for
2581     // exact_signature_k is created.
2582     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2583       // sometimes the type of the signature is better than the best type
2584       // the compiler has
2585       exact_klass = exact_signature_k;
2586     }
2587     if (callee_signature_k != nullptr &&
2588         callee_signature_k != signature_at_call_k) {
2589       ciKlass* improved_klass = callee_signature_k->exact_klass();
2590       if (improved_klass == nullptr) {
2591         improved_klass = comp->cha_exact_type(callee_signature_k);
2592       }
2593       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2594         exact_klass = exact_signature_k;
2595       }
2596     }
2597     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2598   }
2599 
2600   if (!do_null && !do_update) {
2601     return result;
2602   }
2603 
2604   if (mdp == LIR_OprFact::illegalOpr) {
2605     mdp = new_register(T_METADATA);
2606     __ metadata2reg(md->constant_encoding(), mdp);
2607     if (md_base_offset != 0) {
2608       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2609       mdp = new_pointer_register();
2610       __ leal(LIR_OprFact::address(base_type_address), mdp);
2611     }
2612   }
2613   LIRItem value(obj, this);
2614   value.load_item();
2615   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2616                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2617   return result;
2618 }
2619 
2620 // profile parameters on entry to the root of the compilation
2621 void LIRGenerator::profile_parameters(Base* x) {
2622   if (compilation()->profile_parameters()) {
2623     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2624     ciMethodData* md = scope()->method()->method_data_or_null();
2625     assert(md != nullptr, "Sanity");
2626 
2627     if (md->parameters_type_data() != nullptr) {
2628       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2629       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2630       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2631       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2632         LIR_Opr src = args->at(i);
2633         assert(!src->is_illegal(), "check");
2634         BasicType t = src->type();
2635         if (is_reference_type(t)) {
2636           intptr_t profiled_k = parameters->type(j);
2637           Local* local = x->state()->local_at(java_index)->as_Local();
2638           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2639                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2640                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2641           // If the profile is known statically set it once for all and do not emit any code
2642           if (exact != nullptr) {
2643             md->set_parameter_type(j, exact);
2644           }
2645           j++;
2646         }
2647         java_index += type2size[t];
2648       }
2649     }
2650   }
2651 }
2652 
2653 void LIRGenerator::do_Base(Base* x) {
2654   __ std_entry(LIR_OprFact::illegalOpr);
2655   // Emit moves from physical registers / stack slots to virtual registers
2656   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2657   IRScope* irScope = compilation()->hir()->top_scope();
2658   int java_index = 0;
2659   for (int i = 0; i < args->length(); i++) {
2660     LIR_Opr src = args->at(i);
2661     assert(!src->is_illegal(), "check");
2662     BasicType t = src->type();
2663 
2664     // Types which are smaller than int are passed as int, so
2665     // correct the type which passed.
2666     switch (t) {
2667     case T_BYTE:
2668     case T_BOOLEAN:
2669     case T_SHORT:
2670     case T_CHAR:
2671       t = T_INT;
2672       break;
2673     default:
2674       break;
2675     }
2676 
2677     LIR_Opr dest = new_register(t);
2678     __ move(src, dest);
2679 
2680     // Assign new location to Local instruction for this local
2681     Local* local = x->state()->local_at(java_index)->as_Local();
2682     assert(local != nullptr, "Locals for incoming arguments must have been created");
2683 #ifndef __SOFTFP__
2684     // The java calling convention passes double as long and float as int.
2685     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2686 #endif // __SOFTFP__
2687     local->set_operand(dest);
2688     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2689     java_index += type2size[t];
2690   }
2691 
2692   if (compilation()->env()->dtrace_method_probes()) {
2693     BasicTypeList signature;
2694     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2695     signature.append(T_METADATA); // Method*
2696     LIR_OprList* args = new LIR_OprList();
2697     args->append(getThreadPointer());
2698     LIR_Opr meth = new_register(T_METADATA);
2699     __ metadata2reg(method()->constant_encoding(), meth);
2700     args->append(meth);
2701     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2702   }
2703 
2704   if (method()->is_synchronized()) {
2705     LIR_Opr obj;
2706     if (method()->is_static()) {
2707       obj = new_register(T_OBJECT);
2708       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2709     } else {
2710       Local* receiver = x->state()->local_at(0)->as_Local();
2711       assert(receiver != nullptr, "must already exist");
2712       obj = receiver->operand();
2713     }
2714     assert(obj->is_valid(), "must be valid");
2715 
2716     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2717       LIR_Opr lock = syncLockOpr();
2718       __ load_stack_address_monitor(0, lock);
2719 
2720       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2721       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2722 
2723       // receiver is guaranteed non-null so don't need CodeEmitInfo
2724       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2725     }
2726   }
2727   // increment invocation counters if needed
2728   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2729     profile_parameters(x);
2730     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2731     increment_invocation_counter(info);
2732   }
2733 
2734   // all blocks with a successor must end with an unconditional jump
2735   // to the successor even if they are consecutive
2736   __ jump(x->default_sux());
2737 }
2738 
2739 
2740 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2741   // construct our frame and model the production of incoming pointer
2742   // to the OSR buffer.
2743   __ osr_entry(LIR_Assembler::osrBufferPointer());
2744   LIR_Opr result = rlock_result(x);
2745   __ move(LIR_Assembler::osrBufferPointer(), result);
2746 }
2747 
2748 
2749 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2750   assert(args->length() == arg_list->length(),
2751          "args=%d, arg_list=%d", args->length(), arg_list->length());
2752   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2753     LIRItem* param = args->at(i);
2754     LIR_Opr loc = arg_list->at(i);
2755     if (loc->is_register()) {
2756       param->load_item_force(loc);
2757     } else {
2758       LIR_Address* addr = loc->as_address_ptr();
2759       param->load_for_store(addr->type());
2760       if (addr->type() == T_OBJECT) {
2761         __ move_wide(param->result(), addr);
2762       } else
2763         __ move(param->result(), addr);
2764     }
2765   }
2766 
2767   if (x->has_receiver()) {
2768     LIRItem* receiver = args->at(0);
2769     LIR_Opr loc = arg_list->at(0);
2770     if (loc->is_register()) {
2771       receiver->load_item_force(loc);
2772     } else {
2773       assert(loc->is_address(), "just checking");
2774       receiver->load_for_store(T_OBJECT);
2775       __ move_wide(receiver->result(), loc->as_address_ptr());
2776     }
2777   }
2778 }
2779 
2780 
2781 // Visits all arguments, returns appropriate items without loading them
2782 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2783   LIRItemList* argument_items = new LIRItemList();
2784   if (x->has_receiver()) {
2785     LIRItem* receiver = new LIRItem(x->receiver(), this);
2786     argument_items->append(receiver);
2787   }
2788   for (int i = 0; i < x->number_of_arguments(); i++) {
2789     LIRItem* param = new LIRItem(x->argument_at(i), this);
2790     argument_items->append(param);
2791   }
2792   return argument_items;
2793 }
2794 
2795 
2796 // The invoke with receiver has following phases:
2797 //   a) traverse and load/lock receiver;
2798 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2799 //   c) push receiver on stack
2800 //   d) load each of the items and push on stack
2801 //   e) unlock receiver
2802 //   f) move receiver into receiver-register %o0
2803 //   g) lock result registers and emit call operation
2804 //
2805 // Before issuing a call, we must spill-save all values on stack
2806 // that are in caller-save register. "spill-save" moves those registers
2807 // either in a free callee-save register or spills them if no free
2808 // callee save register is available.
2809 //
2810 // The problem is where to invoke spill-save.
2811 // - if invoked between e) and f), we may lock callee save
2812 //   register in "spill-save" that destroys the receiver register
2813 //   before f) is executed
2814 // - if we rearrange f) to be earlier (by loading %o0) it
2815 //   may destroy a value on the stack that is currently in %o0
2816 //   and is waiting to be spilled
2817 // - if we keep the receiver locked while doing spill-save,
2818 //   we cannot spill it as it is spill-locked
2819 //
2820 void LIRGenerator::do_Invoke(Invoke* x) {
2821   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2822 
2823   LIR_OprList* arg_list = cc->args();
2824   LIRItemList* args = invoke_visit_arguments(x);
2825   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2826 
2827   // setup result register
2828   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2829   if (x->type() != voidType) {
2830     result_register = result_register_for(x->type());
2831   }
2832 
2833   CodeEmitInfo* info = state_for(x, x->state());
2834 
2835   invoke_load_arguments(x, args, arg_list);
2836 
2837   if (x->has_receiver()) {
2838     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2839     receiver = args->at(0)->result();
2840   }
2841 
2842   // emit invoke code
2843   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2844 
2845   // JSR 292
2846   // Preserve the SP over MethodHandle call sites, if needed.
2847   ciMethod* target = x->target();
2848   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2849                                   target->is_method_handle_intrinsic() ||
2850                                   target->is_compiled_lambda_form());
2851   if (is_method_handle_invoke) {
2852     info->set_is_method_handle_invoke(true);
2853     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2854         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2855     }
2856   }
2857 
2858   switch (x->code()) {
2859     case Bytecodes::_invokestatic:
2860       __ call_static(target, result_register,
2861                      SharedRuntime::get_resolve_static_call_stub(),
2862                      arg_list, info);
2863       break;
2864     case Bytecodes::_invokespecial:
2865     case Bytecodes::_invokevirtual:
2866     case Bytecodes::_invokeinterface:
2867       // for loaded and final (method or class) target we still produce an inline cache,
2868       // in order to be able to call mixed mode
2869       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2870         __ call_opt_virtual(target, receiver, result_register,
2871                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2872                             arg_list, info);
2873       } else {
2874         __ call_icvirtual(target, receiver, result_register,
2875                           SharedRuntime::get_resolve_virtual_call_stub(),
2876                           arg_list, info);
2877       }
2878       break;
2879     case Bytecodes::_invokedynamic: {
2880       __ call_dynamic(target, receiver, result_register,
2881                       SharedRuntime::get_resolve_static_call_stub(),
2882                       arg_list, info);
2883       break;
2884     }
2885     default:
2886       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2887       break;
2888   }
2889 
2890   // JSR 292
2891   // Restore the SP after MethodHandle call sites, if needed.
2892   if (is_method_handle_invoke
2893       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2894     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2895   }
2896 
2897   if (result_register->is_valid()) {
2898     LIR_Opr result = rlock_result(x);
2899     __ move(result_register, result);
2900   }
2901 }
2902 
2903 
2904 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2905   assert(x->number_of_arguments() == 1, "wrong type");
2906   LIRItem value       (x->argument_at(0), this);
2907   LIR_Opr reg = rlock_result(x);
2908   value.load_item();
2909   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2910   __ move(tmp, reg);
2911 }
2912 
2913 
2914 
2915 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2916 void LIRGenerator::do_IfOp(IfOp* x) {
2917 #ifdef ASSERT
2918   {
2919     ValueTag xtag = x->x()->type()->tag();
2920     ValueTag ttag = x->tval()->type()->tag();
2921     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2922     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2923     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2924   }
2925 #endif
2926 
2927   LIRItem left(x->x(), this);
2928   LIRItem right(x->y(), this);
2929   left.load_item();
2930   if (can_inline_as_constant(right.value())) {
2931     right.dont_load_item();
2932   } else {
2933     right.load_item();
2934   }
2935 
2936   LIRItem t_val(x->tval(), this);
2937   LIRItem f_val(x->fval(), this);
2938   t_val.dont_load_item();
2939   f_val.dont_load_item();
2940   LIR_Opr reg = rlock_result(x);
2941 
2942   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2943   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2944 }
2945 
2946 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2947   assert(x->number_of_arguments() == 0, "wrong type");
2948   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2949   BasicTypeList signature;
2950   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2951   LIR_Opr reg = result_register_for(x->type());
2952   __ call_runtime_leaf(routine, getThreadTemp(),
2953                        reg, new LIR_OprList());
2954   LIR_Opr result = rlock_result(x);
2955   __ move(reg, result);
2956 }
2957 
2958 
2959 
2960 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2961   switch (x->id()) {
2962   case vmIntrinsics::_intBitsToFloat      :
2963   case vmIntrinsics::_doubleToRawLongBits :
2964   case vmIntrinsics::_longBitsToDouble    :
2965   case vmIntrinsics::_floatToRawIntBits   : {
2966     do_FPIntrinsics(x);
2967     break;
2968   }
2969 
2970 #ifdef JFR_HAVE_INTRINSICS
2971   case vmIntrinsics::_counterTime:
2972     do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2973     break;
2974 #endif
2975 
2976   case vmIntrinsics::_currentTimeMillis:
2977     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2978     break;
2979 
2980   case vmIntrinsics::_nanoTime:
2981     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2982     break;
2983 
2984   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2985   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2986   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
2987   case vmIntrinsics::_getModifiers:   do_getModifiers(x);  break;
2988   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2989   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
2990   case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2991   case vmIntrinsics::_currentThread:  do_vthread(x);       break;
2992   case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2993   case vmIntrinsics::_shipilev_magic_sizeOf:         do_sizeOf(x);        break;
2994   case vmIntrinsics::_shipilev_magic_addressOf:      do_addressOf(x);     break;
2995 
2996   case vmIntrinsics::_dlog:           // fall through
2997   case vmIntrinsics::_dlog10:         // fall through
2998   case vmIntrinsics::_dabs:           // fall through
2999   case vmIntrinsics::_dsqrt:          // fall through
3000   case vmIntrinsics::_dsqrt_strict:   // fall through
3001   case vmIntrinsics::_dtan:           // fall through
3002   case vmIntrinsics::_dsin :          // fall through
3003   case vmIntrinsics::_dcos :          // fall through
3004   case vmIntrinsics::_dexp :          // fall through
3005   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3006   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3007 
3008   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3009   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3010 
3011   // Use java.lang.Math intrinsics code since it works for these intrinsics too.
3012   case vmIntrinsics::_floatToFloat16: // fall through
3013   case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
3014 
3015   case vmIntrinsics::_Preconditions_checkIndex:
3016     do_PreconditionsCheckIndex(x, T_INT);
3017     break;
3018   case vmIntrinsics::_Preconditions_checkLongIndex:
3019     do_PreconditionsCheckIndex(x, T_LONG);
3020     break;
3021 
3022   case vmIntrinsics::_compareAndSetReference:
3023     do_CompareAndSwap(x, objectType);
3024     break;
3025   case vmIntrinsics::_compareAndSetInt:
3026     do_CompareAndSwap(x, intType);
3027     break;
3028   case vmIntrinsics::_compareAndSetLong:
3029     do_CompareAndSwap(x, longType);
3030     break;
3031 
3032   case vmIntrinsics::_loadFence :
3033     __ membar_acquire();
3034     break;
3035   case vmIntrinsics::_storeFence:
3036     __ membar_release();
3037     break;
3038   case vmIntrinsics::_storeStoreFence:
3039     __ membar_storestore();
3040     break;
3041   case vmIntrinsics::_fullFence :
3042     __ membar();
3043     break;
3044   case vmIntrinsics::_onSpinWait:
3045     __ on_spin_wait();
3046     break;
3047   case vmIntrinsics::_Reference_get:
3048     do_Reference_get(x);
3049     break;
3050 
3051   case vmIntrinsics::_updateCRC32:
3052   case vmIntrinsics::_updateBytesCRC32:
3053   case vmIntrinsics::_updateByteBufferCRC32:
3054     do_update_CRC32(x);
3055     break;
3056 
3057   case vmIntrinsics::_updateBytesCRC32C:
3058   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3059     do_update_CRC32C(x);
3060     break;
3061 
3062   case vmIntrinsics::_vectorizedMismatch:
3063     do_vectorizedMismatch(x);
3064     break;
3065 
3066   case vmIntrinsics::_blackhole:
3067     do_blackhole(x);
3068     break;
3069 
3070   default: ShouldNotReachHere(); break;
3071   }
3072 }
3073 
3074 void LIRGenerator::profile_arguments(ProfileCall* x) {
3075   if (compilation()->profile_arguments()) {
3076     int bci = x->bci_of_invoke();
3077     ciMethodData* md = x->method()->method_data_or_null();
3078     assert(md != nullptr, "Sanity");
3079     ciProfileData* data = md->bci_to_data(bci);
3080     if (data != nullptr) {
3081       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3082           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3083         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3084         int base_offset = md->byte_offset_of_slot(data, extra);
3085         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3086         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3087 
3088         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3089         int start = 0;
3090         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3091         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3092           // first argument is not profiled at call (method handle invoke)
3093           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3094           start = 1;
3095         }
3096         ciSignature* callee_signature = x->callee()->signature();
3097         // method handle call to virtual method
3098         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3099         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
3100 
3101         bool ignored_will_link;
3102         ciSignature* signature_at_call = nullptr;
3103         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3104         ciSignatureStream signature_at_call_stream(signature_at_call);
3105 
3106         // if called through method handle invoke, some arguments may have been popped
3107         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3108           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3109           ciKlass* exact = profile_type(md, base_offset, off,
3110               args->type(i), x->profiled_arg_at(i+start), mdp,
3111               !x->arg_needs_null_check(i+start),
3112               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3113           if (exact != nullptr) {
3114             md->set_argument_type(bci, i, exact);
3115           }
3116         }
3117       } else {
3118 #ifdef ASSERT
3119         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3120         int n = x->nb_profiled_args();
3121         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3122             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3123             "only at JSR292 bytecodes");
3124 #endif
3125       }
3126     }
3127   }
3128 }
3129 
3130 // profile parameters on entry to an inlined method
3131 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3132   if (compilation()->profile_parameters() && x->inlined()) {
3133     ciMethodData* md = x->callee()->method_data_or_null();
3134     if (md != nullptr) {
3135       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3136       if (parameters_type_data != nullptr) {
3137         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3138         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3139         bool has_receiver = !x->callee()->is_static();
3140         ciSignature* sig = x->callee()->signature();
3141         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3142         int i = 0; // to iterate on the Instructions
3143         Value arg = x->recv();
3144         bool not_null = false;
3145         int bci = x->bci_of_invoke();
3146         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3147         // The first parameter is the receiver so that's what we start
3148         // with if it exists. One exception is method handle call to
3149         // virtual method: the receiver is in the args list
3150         if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3151           i = 1;
3152           arg = x->profiled_arg_at(0);
3153           not_null = !x->arg_needs_null_check(0);
3154         }
3155         int k = 0; // to iterate on the profile data
3156         for (;;) {
3157           intptr_t profiled_k = parameters->type(k);
3158           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3159                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3160                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3161           // If the profile is known statically set it once for all and do not emit any code
3162           if (exact != nullptr) {
3163             md->set_parameter_type(k, exact);
3164           }
3165           k++;
3166           if (k >= parameters_type_data->number_of_parameters()) {
3167 #ifdef ASSERT
3168             int extra = 0;
3169             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3170                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3171                 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3172               extra += 1;
3173             }
3174             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3175 #endif
3176             break;
3177           }
3178           arg = x->profiled_arg_at(i);
3179           not_null = !x->arg_needs_null_check(i);
3180           i++;
3181         }
3182       }
3183     }
3184   }
3185 }
3186 
3187 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3188   // Need recv in a temporary register so it interferes with the other temporaries
3189   LIR_Opr recv = LIR_OprFact::illegalOpr;
3190   LIR_Opr mdo = new_register(T_METADATA);
3191   // tmp is used to hold the counters on SPARC
3192   LIR_Opr tmp = new_pointer_register();
3193 
3194   if (x->nb_profiled_args() > 0) {
3195     profile_arguments(x);
3196   }
3197 
3198   // profile parameters on inlined method entry including receiver
3199   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3200     profile_parameters_at_call(x);
3201   }
3202 
3203   if (x->recv() != nullptr) {
3204     LIRItem value(x->recv(), this);
3205     value.load_item();
3206     recv = new_register(T_OBJECT);
3207     __ move(value.result(), recv);
3208   }
3209   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3210 }
3211 
3212 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3213   int bci = x->bci_of_invoke();
3214   ciMethodData* md = x->method()->method_data_or_null();
3215   assert(md != nullptr, "Sanity");
3216   ciProfileData* data = md->bci_to_data(bci);
3217   if (data != nullptr) {
3218     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3219     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3220     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3221 
3222     bool ignored_will_link;
3223     ciSignature* signature_at_call = nullptr;
3224     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3225 
3226     // The offset within the MDO of the entry to update may be too large
3227     // to be used in load/store instructions on some platforms. So have
3228     // profile_type() compute the address of the profile in a register.
3229     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3230         ret->type(), x->ret(), mdp,
3231         !x->needs_null_check(),
3232         signature_at_call->return_type()->as_klass(),
3233         x->callee()->signature()->return_type()->as_klass());
3234     if (exact != nullptr) {
3235       md->set_return_type(bci, exact);
3236     }
3237   }
3238 }
3239 
3240 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3241   // We can safely ignore accessors here, since c2 will inline them anyway,
3242   // accessors are also always mature.
3243   if (!x->inlinee()->is_accessor()) {
3244     CodeEmitInfo* info = state_for(x, x->state(), true);
3245     // Notify the runtime very infrequently only to take care of counter overflows
3246     int freq_log = Tier23InlineeNotifyFreqLog;
3247     double scale;
3248     if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3249       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3250     }
3251     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3252   }
3253 }
3254 
3255 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3256   if (compilation()->is_profiling()) {
3257 #if defined(X86) && !defined(_LP64)
3258     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3259     LIR_Opr left_copy = new_register(left->type());
3260     __ move(left, left_copy);
3261     __ cmp(cond, left_copy, right);
3262 #else
3263     __ cmp(cond, left, right);
3264 #endif
3265     LIR_Opr step = new_register(T_INT);
3266     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3267     LIR_Opr zero = LIR_OprFact::intConst(0);
3268     __ cmove(cond,
3269         (left_bci < bci) ? plus_one : zero,
3270         (right_bci < bci) ? plus_one : zero,
3271         step, left->type());
3272     increment_backedge_counter(info, step, bci);
3273   }
3274 }
3275 
3276 
3277 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3278   int freq_log = 0;
3279   int level = compilation()->env()->comp_level();
3280   if (level == CompLevel_limited_profile) {
3281     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3282   } else if (level == CompLevel_full_profile) {
3283     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3284   } else {
3285     ShouldNotReachHere();
3286   }
3287   // Increment the appropriate invocation/backedge counter and notify the runtime.
3288   double scale;
3289   if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3290     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3291   }
3292   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3293 }
3294 
3295 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3296                                                 ciMethod *method, LIR_Opr step, int frequency,
3297                                                 int bci, bool backedge, bool notify) {
3298   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3299   int level = _compilation->env()->comp_level();
3300   assert(level > CompLevel_simple, "Shouldn't be here");
3301 
3302   int offset = -1;
3303   LIR_Opr counter_holder;
3304   if (level == CompLevel_limited_profile) {
3305     MethodCounters* counters_adr = method->ensure_method_counters();
3306     if (counters_adr == nullptr) {
3307       bailout("method counters allocation failed");
3308       return;
3309     }
3310     counter_holder = new_pointer_register();
3311     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3312     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3313                                  MethodCounters::invocation_counter_offset());
3314   } else if (level == CompLevel_full_profile) {
3315     counter_holder = new_register(T_METADATA);
3316     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3317                                  MethodData::invocation_counter_offset());
3318     ciMethodData* md = method->method_data_or_null();
3319     assert(md != nullptr, "Sanity");
3320     __ metadata2reg(md->constant_encoding(), counter_holder);
3321   } else {
3322     ShouldNotReachHere();
3323   }
3324   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3325   LIR_Opr result = new_register(T_INT);
3326   __ load(counter, result);
3327   __ add(result, step, result);
3328   __ store(result, counter);
3329   if (notify && (!backedge || UseOnStackReplacement)) {
3330     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3331     // The bci for info can point to cmp for if's we want the if bci
3332     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3333     int freq = frequency << InvocationCounter::count_shift;
3334     if (freq == 0) {
3335       if (!step->is_constant()) {
3336         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3337         __ branch(lir_cond_notEqual, overflow);
3338       } else {
3339         __ branch(lir_cond_always, overflow);
3340       }
3341     } else {
3342       LIR_Opr mask = load_immediate(freq, T_INT);
3343       if (!step->is_constant()) {
3344         // If step is 0, make sure the overflow check below always fails
3345         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3346         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3347       }
3348       __ logical_and(result, mask, result);
3349       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3350       __ branch(lir_cond_equal, overflow);
3351     }
3352     __ branch_destination(overflow->continuation());
3353   }
3354 }
3355 
3356 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3357   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3358   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3359 
3360   if (x->pass_thread()) {
3361     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3362     args->append(getThreadPointer());
3363   }
3364 
3365   for (int i = 0; i < x->number_of_arguments(); i++) {
3366     Value a = x->argument_at(i);
3367     LIRItem* item = new LIRItem(a, this);
3368     item->load_item();
3369     args->append(item->result());
3370     signature->append(as_BasicType(a->type()));
3371   }
3372 
3373   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3374   if (x->type() == voidType) {
3375     set_no_result(x);
3376   } else {
3377     __ move(result, rlock_result(x));
3378   }
3379 }
3380 
3381 #ifdef ASSERT
3382 void LIRGenerator::do_Assert(Assert *x) {
3383   ValueTag tag = x->x()->type()->tag();
3384   If::Condition cond = x->cond();
3385 
3386   LIRItem xitem(x->x(), this);
3387   LIRItem yitem(x->y(), this);
3388   LIRItem* xin = &xitem;
3389   LIRItem* yin = &yitem;
3390 
3391   assert(tag == intTag, "Only integer assertions are valid!");
3392 
3393   xin->load_item();
3394   yin->dont_load_item();
3395 
3396   set_no_result(x);
3397 
3398   LIR_Opr left = xin->result();
3399   LIR_Opr right = yin->result();
3400 
3401   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3402 }
3403 #endif
3404 
3405 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3406 
3407 
3408   Instruction *a = x->x();
3409   Instruction *b = x->y();
3410   if (!a || StressRangeCheckElimination) {
3411     assert(!b || StressRangeCheckElimination, "B must also be null");
3412 
3413     CodeEmitInfo *info = state_for(x, x->state());
3414     CodeStub* stub = new PredicateFailedStub(info);
3415 
3416     __ jump(stub);
3417   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3418     int a_int = a->type()->as_IntConstant()->value();
3419     int b_int = b->type()->as_IntConstant()->value();
3420 
3421     bool ok = false;
3422 
3423     switch(x->cond()) {
3424       case Instruction::eql: ok = (a_int == b_int); break;
3425       case Instruction::neq: ok = (a_int != b_int); break;
3426       case Instruction::lss: ok = (a_int < b_int); break;
3427       case Instruction::leq: ok = (a_int <= b_int); break;
3428       case Instruction::gtr: ok = (a_int > b_int); break;
3429       case Instruction::geq: ok = (a_int >= b_int); break;
3430       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3431       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3432       default: ShouldNotReachHere();
3433     }
3434 
3435     if (ok) {
3436 
3437       CodeEmitInfo *info = state_for(x, x->state());
3438       CodeStub* stub = new PredicateFailedStub(info);
3439 
3440       __ jump(stub);
3441     }
3442   } else {
3443 
3444     ValueTag tag = x->x()->type()->tag();
3445     If::Condition cond = x->cond();
3446     LIRItem xitem(x->x(), this);
3447     LIRItem yitem(x->y(), this);
3448     LIRItem* xin = &xitem;
3449     LIRItem* yin = &yitem;
3450 
3451     assert(tag == intTag, "Only integer deoptimizations are valid!");
3452 
3453     xin->load_item();
3454     yin->dont_load_item();
3455     set_no_result(x);
3456 
3457     LIR_Opr left = xin->result();
3458     LIR_Opr right = yin->result();
3459 
3460     CodeEmitInfo *info = state_for(x, x->state());
3461     CodeStub* stub = new PredicateFailedStub(info);
3462 
3463     __ cmp(lir_cond(cond), left, right);
3464     __ branch(lir_cond(cond), stub);
3465   }
3466 }
3467 
3468 void LIRGenerator::do_blackhole(Intrinsic *x) {
3469   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3470   for (int c = 0; c < x->number_of_arguments(); c++) {
3471     // Load the argument
3472     LIRItem vitem(x->argument_at(c), this);
3473     vitem.load_item();
3474     // ...and leave it unused.
3475   }
3476 }
3477 
3478 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3479   LIRItemList args(1);
3480   LIRItem value(arg1, this);
3481   args.append(&value);
3482   BasicTypeList signature;
3483   signature.append(as_BasicType(arg1->type()));
3484 
3485   return call_runtime(&signature, &args, entry, result_type, info);
3486 }
3487 
3488 
3489 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3490   LIRItemList args(2);
3491   LIRItem value1(arg1, this);
3492   LIRItem value2(arg2, this);
3493   args.append(&value1);
3494   args.append(&value2);
3495   BasicTypeList signature;
3496   signature.append(as_BasicType(arg1->type()));
3497   signature.append(as_BasicType(arg2->type()));
3498 
3499   return call_runtime(&signature, &args, entry, result_type, info);
3500 }
3501 
3502 
3503 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3504                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3505   // get a result register
3506   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3507   LIR_Opr result = LIR_OprFact::illegalOpr;
3508   if (result_type->tag() != voidTag) {
3509     result = new_register(result_type);
3510     phys_reg = result_register_for(result_type);
3511   }
3512 
3513   // move the arguments into the correct location
3514   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3515   assert(cc->length() == args->length(), "argument mismatch");
3516   for (int i = 0; i < args->length(); i++) {
3517     LIR_Opr arg = args->at(i);
3518     LIR_Opr loc = cc->at(i);
3519     if (loc->is_register()) {
3520       __ move(arg, loc);
3521     } else {
3522       LIR_Address* addr = loc->as_address_ptr();
3523 //           if (!can_store_as_constant(arg)) {
3524 //             LIR_Opr tmp = new_register(arg->type());
3525 //             __ move(arg, tmp);
3526 //             arg = tmp;
3527 //           }
3528       __ move(arg, addr);
3529     }
3530   }
3531 
3532   if (info) {
3533     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3534   } else {
3535     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3536   }
3537   if (result->is_valid()) {
3538     __ move(phys_reg, result);
3539   }
3540   return result;
3541 }
3542 
3543 
3544 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3545                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3546   // get a result register
3547   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3548   LIR_Opr result = LIR_OprFact::illegalOpr;
3549   if (result_type->tag() != voidTag) {
3550     result = new_register(result_type);
3551     phys_reg = result_register_for(result_type);
3552   }
3553 
3554   // move the arguments into the correct location
3555   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3556 
3557   assert(cc->length() == args->length(), "argument mismatch");
3558   for (int i = 0; i < args->length(); i++) {
3559     LIRItem* arg = args->at(i);
3560     LIR_Opr loc = cc->at(i);
3561     if (loc->is_register()) {
3562       arg->load_item_force(loc);
3563     } else {
3564       LIR_Address* addr = loc->as_address_ptr();
3565       arg->load_for_store(addr->type());
3566       __ move(arg->result(), addr);
3567     }
3568   }
3569 
3570   if (info) {
3571     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3572   } else {
3573     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3574   }
3575   if (result->is_valid()) {
3576     __ move(phys_reg, result);
3577   }
3578   return result;
3579 }
3580 
3581 void LIRGenerator::do_MemBar(MemBar* x) {
3582   LIR_Code code = x->code();
3583   switch(code) {
3584   case lir_membar_acquire   : __ membar_acquire(); break;
3585   case lir_membar_release   : __ membar_release(); break;
3586   case lir_membar           : __ membar(); break;
3587   case lir_membar_loadload  : __ membar_loadload(); break;
3588   case lir_membar_storestore: __ membar_storestore(); break;
3589   case lir_membar_loadstore : __ membar_loadstore(); break;
3590   case lir_membar_storeload : __ membar_storeload(); break;
3591   default                   : ShouldNotReachHere(); break;
3592   }
3593 }
3594 
3595 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3596   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3597   if (two_operand_lir_form) {
3598     __ move(value, value_fixed);
3599     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3600   } else {
3601     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3602   }
3603   LIR_Opr klass = new_register(T_METADATA);
3604   load_klass(array, klass, null_check_info);
3605   null_check_info = nullptr;
3606   LIR_Opr layout = new_register(T_INT);
3607   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3608   int diffbit = Klass::layout_helper_boolean_diffbit();
3609   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3610   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3611   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3612   value = value_fixed;
3613   return value;
3614 }