1 /* 2 * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "compiler/compilerDefinitions.inline.hpp" 38 #include "gc/shared/barrierSet.hpp" 39 #include "gc/shared/c1/barrierSetC1.hpp" 40 #include "oops/klass.inline.hpp" 41 #include "oops/methodCounters.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "runtime/vm_version.hpp" 45 #include "utilities/bitMap.inline.hpp" 46 #include "utilities/macros.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 #ifdef ASSERT 50 #define __ gen()->lir(__FILE__, __LINE__)-> 51 #else 52 #define __ gen()->lir()-> 53 #endif 54 55 #ifndef PATCHED_ADDR 56 #define PATCHED_ADDR (max_jint) 57 #endif 58 59 void PhiResolverState::reset() { 60 _virtual_operands.clear(); 61 _other_operands.clear(); 62 _vreg_table.clear(); 63 } 64 65 66 //-------------------------------------------------------------- 67 // PhiResolver 68 69 // Resolves cycles: 70 // 71 // r1 := r2 becomes temp := r1 72 // r2 := r1 r1 := r2 73 // r2 := temp 74 // and orders moves: 75 // 76 // r2 := r3 becomes r1 := r2 77 // r1 := r2 r2 := r3 78 79 PhiResolver::PhiResolver(LIRGenerator* gen) 80 : _gen(gen) 81 , _state(gen->resolver_state()) 82 , _loop(nullptr) 83 , _temp(LIR_OprFact::illegalOpr) 84 { 85 // reinitialize the shared state arrays 86 _state.reset(); 87 } 88 89 90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 91 assert(src->is_valid(), ""); 92 assert(dest->is_valid(), ""); 93 __ move(src, dest); 94 } 95 96 97 void PhiResolver::move_temp_to(LIR_Opr dest) { 98 assert(_temp->is_valid(), ""); 99 emit_move(_temp, dest); 100 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 101 } 102 103 104 void PhiResolver::move_to_temp(LIR_Opr src) { 105 assert(_temp->is_illegal(), ""); 106 _temp = _gen->new_register(src->type()); 107 emit_move(src, _temp); 108 } 109 110 111 // Traverse assignment graph in depth first order and generate moves in post order 112 // ie. two assignments: b := c, a := b start with node c: 113 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 114 // Generates moves in this order: move b to a and move c to b 115 // ie. cycle a := b, b := a start with node a 116 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 117 // Generates moves in this order: move b to temp, move a to b, move temp to a 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 119 if (!dest->visited()) { 120 dest->set_visited(); 121 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 122 move(dest, dest->destination_at(i)); 123 } 124 } else if (!dest->start_node()) { 125 // cylce in graph detected 126 assert(_loop == nullptr, "only one loop valid!"); 127 _loop = dest; 128 move_to_temp(src->operand()); 129 return; 130 } // else dest is a start node 131 132 if (!dest->assigned()) { 133 if (_loop == dest) { 134 move_temp_to(dest->operand()); 135 dest->set_assigned(); 136 } else if (src != nullptr) { 137 emit_move(src->operand(), dest->operand()); 138 dest->set_assigned(); 139 } 140 } 141 } 142 143 144 PhiResolver::~PhiResolver() { 145 int i; 146 // resolve any cycles in moves from and to virtual registers 147 for (i = virtual_operands().length() - 1; i >= 0; i --) { 148 ResolveNode* node = virtual_operands().at(i); 149 if (!node->visited()) { 150 _loop = nullptr; 151 move(nullptr, node); 152 node->set_start_node(); 153 assert(_temp->is_illegal(), "move_temp_to() call missing"); 154 } 155 } 156 157 // generate move for move from non virtual register to abitrary destination 158 for (i = other_operands().length() - 1; i >= 0; i --) { 159 ResolveNode* node = other_operands().at(i); 160 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 161 emit_move(node->operand(), node->destination_at(j)->operand()); 162 } 163 } 164 } 165 166 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 168 ResolveNode* node; 169 if (opr->is_virtual()) { 170 int vreg_num = opr->vreg_number(); 171 node = vreg_table().at_grow(vreg_num, nullptr); 172 assert(node == nullptr || node->operand() == opr, ""); 173 if (node == nullptr) { 174 node = new ResolveNode(opr); 175 vreg_table().at_put(vreg_num, node); 176 } 177 // Make sure that all virtual operands show up in the list when 178 // they are used as the source of a move. 179 if (source && !virtual_operands().contains(node)) { 180 virtual_operands().append(node); 181 } 182 } else { 183 assert(source, ""); 184 node = new ResolveNode(opr); 185 other_operands().append(node); 186 } 187 return node; 188 } 189 190 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 192 assert(dest->is_virtual(), ""); 193 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 194 assert(src->is_valid(), ""); 195 assert(dest->is_valid(), ""); 196 ResolveNode* source = source_node(src); 197 source->append(destination_node(dest)); 198 } 199 200 201 //-------------------------------------------------------------- 202 // LIRItem 203 204 void LIRItem::set_result(LIR_Opr opr) { 205 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 206 value()->set_operand(opr); 207 208 if (opr->is_virtual()) { 209 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 210 } 211 212 _result = opr; 213 } 214 215 void LIRItem::load_item() { 216 if (result()->is_illegal()) { 217 // update the items result 218 _result = value()->operand(); 219 } 220 if (!result()->is_register()) { 221 LIR_Opr reg = _gen->new_register(value()->type()); 222 __ move(result(), reg); 223 if (result()->is_constant()) { 224 _result = reg; 225 } else { 226 set_result(reg); 227 } 228 } 229 } 230 231 232 void LIRItem::load_for_store(BasicType type) { 233 if (_gen->can_store_as_constant(value(), type)) { 234 _result = value()->operand(); 235 if (!_result->is_constant()) { 236 _result = LIR_OprFact::value_type(value()->type()); 237 } 238 } else if (type == T_BYTE || type == T_BOOLEAN) { 239 load_byte_item(); 240 } else { 241 load_item(); 242 } 243 } 244 245 void LIRItem::load_item_force(LIR_Opr reg) { 246 LIR_Opr r = result(); 247 if (r != reg) { 248 #if !defined(ARM) && !defined(E500V2) 249 if (r->type() != reg->type()) { 250 // moves between different types need an intervening spill slot 251 r = _gen->force_to_spill(r, reg->type()); 252 } 253 #endif 254 __ move(r, reg); 255 _result = reg; 256 } 257 } 258 259 ciObject* LIRItem::get_jobject_constant() const { 260 ObjectType* oc = type()->as_ObjectType(); 261 if (oc) { 262 return oc->constant_value(); 263 } 264 return nullptr; 265 } 266 267 268 jint LIRItem::get_jint_constant() const { 269 assert(is_constant() && value() != nullptr, ""); 270 assert(type()->as_IntConstant() != nullptr, "type check"); 271 return type()->as_IntConstant()->value(); 272 } 273 274 275 jint LIRItem::get_address_constant() const { 276 assert(is_constant() && value() != nullptr, ""); 277 assert(type()->as_AddressConstant() != nullptr, "type check"); 278 return type()->as_AddressConstant()->value(); 279 } 280 281 282 jfloat LIRItem::get_jfloat_constant() const { 283 assert(is_constant() && value() != nullptr, ""); 284 assert(type()->as_FloatConstant() != nullptr, "type check"); 285 return type()->as_FloatConstant()->value(); 286 } 287 288 289 jdouble LIRItem::get_jdouble_constant() const { 290 assert(is_constant() && value() != nullptr, ""); 291 assert(type()->as_DoubleConstant() != nullptr, "type check"); 292 return type()->as_DoubleConstant()->value(); 293 } 294 295 296 jlong LIRItem::get_jlong_constant() const { 297 assert(is_constant() && value() != nullptr, ""); 298 assert(type()->as_LongConstant() != nullptr, "type check"); 299 return type()->as_LongConstant()->value(); 300 } 301 302 303 304 //-------------------------------------------------------------- 305 306 307 void LIRGenerator::block_do_prolog(BlockBegin* block) { 308 #ifndef PRODUCT 309 if (PrintIRWithLIR) { 310 block->print(); 311 } 312 #endif 313 314 // set up the list of LIR instructions 315 assert(block->lir() == nullptr, "LIR list already computed for this block"); 316 _lir = new LIR_List(compilation(), block); 317 block->set_lir(_lir); 318 319 __ branch_destination(block->label()); 320 321 if (LIRTraceExecution && 322 Compilation::current()->hir()->start()->block_id() != block->block_id() && 323 !block->is_set(BlockBegin::exception_entry_flag)) { 324 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 325 trace_block_entry(block); 326 } 327 } 328 329 330 void LIRGenerator::block_do_epilog(BlockBegin* block) { 331 #ifndef PRODUCT 332 if (PrintIRWithLIR) { 333 tty->cr(); 334 } 335 #endif 336 337 // LIR_Opr for unpinned constants shouldn't be referenced by other 338 // blocks so clear them out after processing the block. 339 for (int i = 0; i < _unpinned_constants.length(); i++) { 340 _unpinned_constants.at(i)->clear_operand(); 341 } 342 _unpinned_constants.trunc_to(0); 343 344 // clear our any registers for other local constants 345 _constants.trunc_to(0); 346 _reg_for_constants.trunc_to(0); 347 } 348 349 350 void LIRGenerator::block_do(BlockBegin* block) { 351 CHECK_BAILOUT(); 352 353 block_do_prolog(block); 354 set_block(block); 355 356 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 357 if (instr->is_pinned()) do_root(instr); 358 } 359 360 set_block(nullptr); 361 block_do_epilog(block); 362 } 363 364 365 //-------------------------LIRGenerator----------------------------- 366 367 // This is where the tree-walk starts; instr must be root; 368 void LIRGenerator::do_root(Value instr) { 369 CHECK_BAILOUT(); 370 371 InstructionMark im(compilation(), instr); 372 373 assert(instr->is_pinned(), "use only with roots"); 374 assert(instr->subst() == instr, "shouldn't have missed substitution"); 375 376 instr->visit(this); 377 378 assert(!instr->has_uses() || instr->operand()->is_valid() || 379 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 380 } 381 382 383 // This is called for each node in tree; the walk stops if a root is reached 384 void LIRGenerator::walk(Value instr) { 385 InstructionMark im(compilation(), instr); 386 //stop walk when encounter a root 387 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 388 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 389 } else { 390 assert(instr->subst() == instr, "shouldn't have missed substitution"); 391 instr->visit(this); 392 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 393 } 394 } 395 396 397 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 398 assert(state != nullptr, "state must be defined"); 399 400 #ifndef PRODUCT 401 state->verify(); 402 #endif 403 404 ValueStack* s = state; 405 for_each_state(s) { 406 if (s->kind() == ValueStack::EmptyExceptionState || 407 s->kind() == ValueStack::CallerEmptyExceptionState) 408 { 409 #ifdef ASSERT 410 int index; 411 Value value; 412 for_each_stack_value(s, index, value) { 413 fatal("state must be empty"); 414 } 415 for_each_local_value(s, index, value) { 416 fatal("state must be empty"); 417 } 418 #endif 419 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 420 continue; 421 } 422 423 int index; 424 Value value; 425 for_each_stack_value(s, index, value) { 426 assert(value->subst() == value, "missed substitution"); 427 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 428 walk(value); 429 assert(value->operand()->is_valid(), "must be evaluated now"); 430 } 431 } 432 433 int bci = s->bci(); 434 IRScope* scope = s->scope(); 435 ciMethod* method = scope->method(); 436 437 MethodLivenessResult liveness = method->liveness_at_bci(bci); 438 if (bci == SynchronizationEntryBCI) { 439 if (x->as_ExceptionObject() || x->as_Throw()) { 440 // all locals are dead on exit from the synthetic unlocker 441 liveness.clear(); 442 } else { 443 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 444 } 445 } 446 if (!liveness.is_valid()) { 447 // Degenerate or breakpointed method. 448 bailout("Degenerate or breakpointed method"); 449 } else { 450 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 451 for_each_local_value(s, index, value) { 452 assert(value->subst() == value, "missed substitution"); 453 if (liveness.at(index) && !value->type()->is_illegal()) { 454 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 455 walk(value); 456 assert(value->operand()->is_valid(), "must be evaluated now"); 457 } 458 } else { 459 // null out this local so that linear scan can assume that all non-null values are live. 460 s->invalidate_local(index); 461 } 462 } 463 } 464 } 465 466 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 467 } 468 469 470 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 471 return state_for(x, x->exception_state()); 472 } 473 474 475 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 476 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 477 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 478 * the class. */ 479 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 480 assert(info != nullptr, "info must be set if class is not loaded"); 481 __ klass2reg_patch(nullptr, r, info); 482 } else { 483 // no patching needed 484 __ metadata2reg(obj->constant_encoding(), r); 485 } 486 } 487 488 489 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 490 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 491 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 492 if (index->is_constant()) { 493 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 494 index->as_jint(), null_check_info); 495 __ branch(lir_cond_belowEqual, stub); // forward branch 496 } else { 497 cmp_reg_mem(lir_cond_aboveEqual, index, array, 498 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 499 __ branch(lir_cond_aboveEqual, stub); // forward branch 500 } 501 } 502 503 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 504 LIR_Opr result_op = result; 505 LIR_Opr left_op = left; 506 LIR_Opr right_op = right; 507 508 if (two_operand_lir_form && left_op != result_op) { 509 assert(right_op != result_op, "malformed"); 510 __ move(left_op, result_op); 511 left_op = result_op; 512 } 513 514 switch(code) { 515 case Bytecodes::_dadd: 516 case Bytecodes::_fadd: 517 case Bytecodes::_ladd: 518 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 519 case Bytecodes::_fmul: 520 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 521 522 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 523 524 case Bytecodes::_imul: 525 { 526 bool did_strength_reduce = false; 527 528 if (right->is_constant()) { 529 jint c = right->as_jint(); 530 if (c > 0 && is_power_of_2(c)) { 531 // do not need tmp here 532 __ shift_left(left_op, exact_log2(c), result_op); 533 did_strength_reduce = true; 534 } else { 535 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 536 } 537 } 538 // we couldn't strength reduce so just emit the multiply 539 if (!did_strength_reduce) { 540 __ mul(left_op, right_op, result_op); 541 } 542 } 543 break; 544 545 case Bytecodes::_dsub: 546 case Bytecodes::_fsub: 547 case Bytecodes::_lsub: 548 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 549 550 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 551 // ldiv and lrem are implemented with a direct runtime call 552 553 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 554 555 case Bytecodes::_drem: 556 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 557 558 default: ShouldNotReachHere(); 559 } 560 } 561 562 563 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 564 arithmetic_op(code, result, left, right, tmp); 565 } 566 567 568 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 569 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 570 } 571 572 573 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 574 arithmetic_op(code, result, left, right, tmp); 575 } 576 577 578 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 579 580 if (two_operand_lir_form && value != result_op 581 // Only 32bit right shifts require two operand form on S390. 582 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 583 assert(count != result_op, "malformed"); 584 __ move(value, result_op); 585 value = result_op; 586 } 587 588 assert(count->is_constant() || count->is_register(), "must be"); 589 switch(code) { 590 case Bytecodes::_ishl: 591 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 592 case Bytecodes::_ishr: 593 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 594 case Bytecodes::_iushr: 595 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 596 default: ShouldNotReachHere(); 597 } 598 } 599 600 601 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 602 if (two_operand_lir_form && left_op != result_op) { 603 assert(right_op != result_op, "malformed"); 604 __ move(left_op, result_op); 605 left_op = result_op; 606 } 607 608 switch(code) { 609 case Bytecodes::_iand: 610 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 611 612 case Bytecodes::_ior: 613 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 614 615 case Bytecodes::_ixor: 616 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 617 618 default: ShouldNotReachHere(); 619 } 620 } 621 622 623 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 624 if (!GenerateSynchronizationCode) return; 625 // for slow path, use debug info for state after successful locking 626 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 627 __ load_stack_address_monitor(monitor_no, lock); 628 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 629 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 630 } 631 632 633 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 634 if (!GenerateSynchronizationCode) return; 635 // setup registers 636 LIR_Opr hdr = lock; 637 lock = new_hdr; 638 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 639 __ load_stack_address_monitor(monitor_no, lock); 640 __ unlock_object(hdr, object, lock, scratch, slow_path); 641 } 642 643 #ifndef PRODUCT 644 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 645 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 646 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 647 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 648 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 649 } 650 } 651 #endif 652 653 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 654 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 655 // If klass is not loaded we do not know if the klass has finalizers: 656 if (UseFastNewInstance && klass->is_loaded() 657 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 658 659 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 660 661 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 662 663 assert(klass->is_loaded(), "must be loaded"); 664 // allocate space for instance 665 assert(klass->size_helper() > 0, "illegal instance size"); 666 const int instance_size = align_object_size(klass->size_helper()); 667 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 668 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 669 } else { 670 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); 671 __ branch(lir_cond_always, slow_path); 672 __ branch_destination(slow_path->continuation()); 673 } 674 } 675 676 677 static bool is_constant_zero(Instruction* inst) { 678 IntConstant* c = inst->type()->as_IntConstant(); 679 if (c) { 680 return (c->value() == 0); 681 } 682 return false; 683 } 684 685 686 static bool positive_constant(Instruction* inst) { 687 IntConstant* c = inst->type()->as_IntConstant(); 688 if (c) { 689 return (c->value() >= 0); 690 } 691 return false; 692 } 693 694 695 static ciArrayKlass* as_array_klass(ciType* type) { 696 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 697 return (ciArrayKlass*)type; 698 } else { 699 return nullptr; 700 } 701 } 702 703 static ciType* phi_declared_type(Phi* phi) { 704 ciType* t = phi->operand_at(0)->declared_type(); 705 if (t == nullptr) { 706 return nullptr; 707 } 708 for(int i = 1; i < phi->operand_count(); i++) { 709 if (t != phi->operand_at(i)->declared_type()) { 710 return nullptr; 711 } 712 } 713 return t; 714 } 715 716 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 717 Instruction* src = x->argument_at(0); 718 Instruction* src_pos = x->argument_at(1); 719 Instruction* dst = x->argument_at(2); 720 Instruction* dst_pos = x->argument_at(3); 721 Instruction* length = x->argument_at(4); 722 723 // first try to identify the likely type of the arrays involved 724 ciArrayKlass* expected_type = nullptr; 725 bool is_exact = false, src_objarray = false, dst_objarray = false; 726 { 727 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 728 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 729 Phi* phi; 730 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 731 src_declared_type = as_array_klass(phi_declared_type(phi)); 732 } 733 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 734 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 735 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 736 dst_declared_type = as_array_klass(phi_declared_type(phi)); 737 } 738 739 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 740 // the types exactly match so the type is fully known 741 is_exact = true; 742 expected_type = src_exact_type; 743 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 744 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 745 ciArrayKlass* src_type = nullptr; 746 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 747 src_type = (ciArrayKlass*) src_exact_type; 748 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 749 src_type = (ciArrayKlass*) src_declared_type; 750 } 751 if (src_type != nullptr) { 752 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 753 is_exact = true; 754 expected_type = dst_type; 755 } 756 } 757 } 758 // at least pass along a good guess 759 if (expected_type == nullptr) expected_type = dst_exact_type; 760 if (expected_type == nullptr) expected_type = src_declared_type; 761 if (expected_type == nullptr) expected_type = dst_declared_type; 762 763 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 764 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 765 } 766 767 // if a probable array type has been identified, figure out if any 768 // of the required checks for a fast case can be elided. 769 int flags = LIR_OpArrayCopy::all_flags; 770 771 if (!src_objarray) 772 flags &= ~LIR_OpArrayCopy::src_objarray; 773 if (!dst_objarray) 774 flags &= ~LIR_OpArrayCopy::dst_objarray; 775 776 if (!x->arg_needs_null_check(0)) 777 flags &= ~LIR_OpArrayCopy::src_null_check; 778 if (!x->arg_needs_null_check(2)) 779 flags &= ~LIR_OpArrayCopy::dst_null_check; 780 781 782 if (expected_type != nullptr) { 783 Value length_limit = nullptr; 784 785 IfOp* ifop = length->as_IfOp(); 786 if (ifop != nullptr) { 787 // look for expressions like min(v, a.length) which ends up as 788 // x > y ? y : x or x >= y ? y : x 789 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 790 ifop->x() == ifop->fval() && 791 ifop->y() == ifop->tval()) { 792 length_limit = ifop->y(); 793 } 794 } 795 796 // try to skip null checks and range checks 797 NewArray* src_array = src->as_NewArray(); 798 if (src_array != nullptr) { 799 flags &= ~LIR_OpArrayCopy::src_null_check; 800 if (length_limit != nullptr && 801 src_array->length() == length_limit && 802 is_constant_zero(src_pos)) { 803 flags &= ~LIR_OpArrayCopy::src_range_check; 804 } 805 } 806 807 NewArray* dst_array = dst->as_NewArray(); 808 if (dst_array != nullptr) { 809 flags &= ~LIR_OpArrayCopy::dst_null_check; 810 if (length_limit != nullptr && 811 dst_array->length() == length_limit && 812 is_constant_zero(dst_pos)) { 813 flags &= ~LIR_OpArrayCopy::dst_range_check; 814 } 815 } 816 817 // check from incoming constant values 818 if (positive_constant(src_pos)) 819 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 820 if (positive_constant(dst_pos)) 821 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 822 if (positive_constant(length)) 823 flags &= ~LIR_OpArrayCopy::length_positive_check; 824 825 // see if the range check can be elided, which might also imply 826 // that src or dst is non-null. 827 ArrayLength* al = length->as_ArrayLength(); 828 if (al != nullptr) { 829 if (al->array() == src) { 830 // it's the length of the source array 831 flags &= ~LIR_OpArrayCopy::length_positive_check; 832 flags &= ~LIR_OpArrayCopy::src_null_check; 833 if (is_constant_zero(src_pos)) 834 flags &= ~LIR_OpArrayCopy::src_range_check; 835 } 836 if (al->array() == dst) { 837 // it's the length of the destination array 838 flags &= ~LIR_OpArrayCopy::length_positive_check; 839 flags &= ~LIR_OpArrayCopy::dst_null_check; 840 if (is_constant_zero(dst_pos)) 841 flags &= ~LIR_OpArrayCopy::dst_range_check; 842 } 843 } 844 if (is_exact) { 845 flags &= ~LIR_OpArrayCopy::type_check; 846 } 847 } 848 849 IntConstant* src_int = src_pos->type()->as_IntConstant(); 850 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 851 if (src_int && dst_int) { 852 int s_offs = src_int->value(); 853 int d_offs = dst_int->value(); 854 if (src_int->value() >= dst_int->value()) { 855 flags &= ~LIR_OpArrayCopy::overlapping; 856 } 857 if (expected_type != nullptr) { 858 BasicType t = expected_type->element_type()->basic_type(); 859 int element_size = type2aelembytes(t); 860 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 861 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 862 flags &= ~LIR_OpArrayCopy::unaligned; 863 } 864 } 865 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 866 // src and dest positions are the same, or dst is zero so assume 867 // nonoverlapping copy. 868 flags &= ~LIR_OpArrayCopy::overlapping; 869 } 870 871 if (src == dst) { 872 // moving within a single array so no type checks are needed 873 if (flags & LIR_OpArrayCopy::type_check) { 874 flags &= ~LIR_OpArrayCopy::type_check; 875 } 876 } 877 *flagsp = flags; 878 *expected_typep = (ciArrayKlass*)expected_type; 879 } 880 881 882 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 883 assert(opr->is_register(), "why spill if item is not register?"); 884 885 if (strict_fp_requires_explicit_rounding) { 886 #ifdef IA32 887 if (UseSSE < 1 && opr->is_single_fpu()) { 888 LIR_Opr result = new_register(T_FLOAT); 889 set_vreg_flag(result, must_start_in_memory); 890 assert(opr->is_register(), "only a register can be spilled"); 891 assert(opr->value_type()->is_float(), "rounding only for floats available"); 892 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 893 return result; 894 } 895 #else 896 Unimplemented(); 897 #endif // IA32 898 } 899 return opr; 900 } 901 902 903 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 904 assert(type2size[t] == type2size[value->type()], 905 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 906 if (!value->is_register()) { 907 // force into a register 908 LIR_Opr r = new_register(value->type()); 909 __ move(value, r); 910 value = r; 911 } 912 913 // create a spill location 914 LIR_Opr tmp = new_register(t); 915 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 916 917 // move from register to spill 918 __ move(value, tmp); 919 return tmp; 920 } 921 922 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 923 if (if_instr->should_profile()) { 924 ciMethod* method = if_instr->profiled_method(); 925 assert(method != nullptr, "method should be set if branch is profiled"); 926 ciMethodData* md = method->method_data_or_null(); 927 assert(md != nullptr, "Sanity"); 928 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 929 assert(data != nullptr, "must have profiling data"); 930 assert(data->is_BranchData(), "need BranchData for two-way branches"); 931 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 932 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 933 if (if_instr->is_swapped()) { 934 int t = taken_count_offset; 935 taken_count_offset = not_taken_count_offset; 936 not_taken_count_offset = t; 937 } 938 939 LIR_Opr md_reg = new_register(T_METADATA); 940 __ metadata2reg(md->constant_encoding(), md_reg); 941 942 LIR_Opr data_offset_reg = new_pointer_register(); 943 __ cmove(lir_cond(cond), 944 LIR_OprFact::intptrConst(taken_count_offset), 945 LIR_OprFact::intptrConst(not_taken_count_offset), 946 data_offset_reg, as_BasicType(if_instr->x()->type())); 947 948 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 949 LIR_Opr data_reg = new_pointer_register(); 950 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 951 __ move(data_addr, data_reg); 952 // Use leal instead of add to avoid destroying condition codes on x86 953 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 954 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 955 __ move(data_reg, data_addr); 956 } 957 } 958 959 // Phi technique: 960 // This is about passing live values from one basic block to the other. 961 // In code generated with Java it is rather rare that more than one 962 // value is on the stack from one basic block to the other. 963 // We optimize our technique for efficient passing of one value 964 // (of type long, int, double..) but it can be extended. 965 // When entering or leaving a basic block, all registers and all spill 966 // slots are release and empty. We use the released registers 967 // and spill slots to pass the live values from one block 968 // to the other. The topmost value, i.e., the value on TOS of expression 969 // stack is passed in registers. All other values are stored in spilling 970 // area. Every Phi has an index which designates its spill slot 971 // At exit of a basic block, we fill the register(s) and spill slots. 972 // At entry of a basic block, the block_prolog sets up the content of phi nodes 973 // and locks necessary registers and spilling slots. 974 975 976 // move current value to referenced phi function 977 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 978 Phi* phi = sux_val->as_Phi(); 979 // cur_val can be null without phi being null in conjunction with inlining 980 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 981 if (phi->is_local()) { 982 for (int i = 0; i < phi->operand_count(); i++) { 983 Value op = phi->operand_at(i); 984 if (op != nullptr && op->type()->is_illegal()) { 985 bailout("illegal phi operand"); 986 } 987 } 988 } 989 Phi* cur_phi = cur_val->as_Phi(); 990 if (cur_phi != nullptr && cur_phi->is_illegal()) { 991 // Phi and local would need to get invalidated 992 // (which is unexpected for Linear Scan). 993 // But this case is very rare so we simply bail out. 994 bailout("propagation of illegal phi"); 995 return; 996 } 997 LIR_Opr operand = cur_val->operand(); 998 if (operand->is_illegal()) { 999 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 1000 "these can be produced lazily"); 1001 operand = operand_for_instruction(cur_val); 1002 } 1003 resolver->move(operand, operand_for_instruction(phi)); 1004 } 1005 } 1006 1007 1008 // Moves all stack values into their PHI position 1009 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1010 BlockBegin* bb = block(); 1011 if (bb->number_of_sux() == 1) { 1012 BlockBegin* sux = bb->sux_at(0); 1013 assert(sux->number_of_preds() > 0, "invalid CFG"); 1014 1015 // a block with only one predecessor never has phi functions 1016 if (sux->number_of_preds() > 1) { 1017 PhiResolver resolver(this); 1018 1019 ValueStack* sux_state = sux->state(); 1020 Value sux_value; 1021 int index; 1022 1023 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1024 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1025 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1026 1027 for_each_stack_value(sux_state, index, sux_value) { 1028 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1029 } 1030 1031 for_each_local_value(sux_state, index, sux_value) { 1032 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1033 } 1034 1035 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1036 } 1037 } 1038 } 1039 1040 1041 LIR_Opr LIRGenerator::new_register(BasicType type) { 1042 int vreg_num = _virtual_register_number; 1043 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1044 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1045 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1046 bailout("out of virtual registers in LIR generator"); 1047 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1048 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1049 _virtual_register_number = LIR_Opr::vreg_base; 1050 vreg_num = LIR_Opr::vreg_base; 1051 } 1052 } 1053 _virtual_register_number += 1; 1054 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1055 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1056 return vreg; 1057 } 1058 1059 1060 // Try to lock using register in hint 1061 LIR_Opr LIRGenerator::rlock(Value instr) { 1062 return new_register(instr->type()); 1063 } 1064 1065 1066 // does an rlock and sets result 1067 LIR_Opr LIRGenerator::rlock_result(Value x) { 1068 LIR_Opr reg = rlock(x); 1069 set_result(x, reg); 1070 return reg; 1071 } 1072 1073 1074 // does an rlock and sets result 1075 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1076 LIR_Opr reg; 1077 switch (type) { 1078 case T_BYTE: 1079 case T_BOOLEAN: 1080 reg = rlock_byte(type); 1081 break; 1082 default: 1083 reg = rlock(x); 1084 break; 1085 } 1086 1087 set_result(x, reg); 1088 return reg; 1089 } 1090 1091 1092 //--------------------------------------------------------------------- 1093 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1094 ObjectType* oc = value->type()->as_ObjectType(); 1095 if (oc) { 1096 return oc->constant_value(); 1097 } 1098 return nullptr; 1099 } 1100 1101 1102 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1103 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1104 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1105 1106 // no moves are created for phi functions at the begin of exception 1107 // handlers, so assign operands manually here 1108 for_each_phi_fun(block(), phi, 1109 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1110 1111 LIR_Opr thread_reg = getThreadPointer(); 1112 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1113 exceptionOopOpr()); 1114 __ move_wide(LIR_OprFact::oopConst(nullptr), 1115 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1116 __ move_wide(LIR_OprFact::oopConst(nullptr), 1117 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1118 1119 LIR_Opr result = new_register(T_OBJECT); 1120 __ move(exceptionOopOpr(), result); 1121 set_result(x, result); 1122 } 1123 1124 1125 //---------------------------------------------------------------------- 1126 //---------------------------------------------------------------------- 1127 //---------------------------------------------------------------------- 1128 //---------------------------------------------------------------------- 1129 // visitor functions 1130 //---------------------------------------------------------------------- 1131 //---------------------------------------------------------------------- 1132 //---------------------------------------------------------------------- 1133 //---------------------------------------------------------------------- 1134 1135 void LIRGenerator::do_Phi(Phi* x) { 1136 // phi functions are never visited directly 1137 ShouldNotReachHere(); 1138 } 1139 1140 1141 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1142 void LIRGenerator::do_Constant(Constant* x) { 1143 if (x->state_before() != nullptr) { 1144 // Any constant with a ValueStack requires patching so emit the patch here 1145 LIR_Opr reg = rlock_result(x); 1146 CodeEmitInfo* info = state_for(x, x->state_before()); 1147 __ oop2reg_patch(nullptr, reg, info); 1148 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1149 if (!x->is_pinned()) { 1150 // unpinned constants are handled specially so that they can be 1151 // put into registers when they are used multiple times within a 1152 // block. After the block completes their operand will be 1153 // cleared so that other blocks can't refer to that register. 1154 set_result(x, load_constant(x)); 1155 } else { 1156 LIR_Opr res = x->operand(); 1157 if (!res->is_valid()) { 1158 res = LIR_OprFact::value_type(x->type()); 1159 } 1160 if (res->is_constant()) { 1161 LIR_Opr reg = rlock_result(x); 1162 __ move(res, reg); 1163 } else { 1164 set_result(x, res); 1165 } 1166 } 1167 } else { 1168 set_result(x, LIR_OprFact::value_type(x->type())); 1169 } 1170 } 1171 1172 1173 void LIRGenerator::do_Local(Local* x) { 1174 // operand_for_instruction has the side effect of setting the result 1175 // so there's no need to do it here. 1176 operand_for_instruction(x); 1177 } 1178 1179 1180 void LIRGenerator::do_Return(Return* x) { 1181 if (compilation()->env()->dtrace_method_probes()) { 1182 BasicTypeList signature; 1183 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1184 signature.append(T_METADATA); // Method* 1185 LIR_OprList* args = new LIR_OprList(); 1186 args->append(getThreadPointer()); 1187 LIR_Opr meth = new_register(T_METADATA); 1188 __ metadata2reg(method()->constant_encoding(), meth); 1189 args->append(meth); 1190 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1191 } 1192 1193 if (x->type()->is_void()) { 1194 __ return_op(LIR_OprFact::illegalOpr); 1195 } else { 1196 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1197 LIRItem result(x->result(), this); 1198 1199 result.load_item_force(reg); 1200 __ return_op(result.result()); 1201 } 1202 set_no_result(x); 1203 } 1204 1205 // Example: ref.get() 1206 // Combination of LoadField and g1 pre-write barrier 1207 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1208 1209 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1210 1211 assert(x->number_of_arguments() == 1, "wrong type"); 1212 1213 LIRItem reference(x->argument_at(0), this); 1214 reference.load_item(); 1215 1216 // need to perform the null check on the reference object 1217 CodeEmitInfo* info = nullptr; 1218 if (x->needs_null_check()) { 1219 info = state_for(x); 1220 } 1221 1222 LIR_Opr result = rlock_result(x, T_OBJECT); 1223 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1224 reference, LIR_OprFact::intConst(referent_offset), result, 1225 nullptr, info); 1226 } 1227 1228 // Example: clazz.isInstance(object) 1229 void LIRGenerator::do_isInstance(Intrinsic* x) { 1230 assert(x->number_of_arguments() == 2, "wrong type"); 1231 1232 // TODO could try to substitute this node with an equivalent InstanceOf 1233 // if clazz is known to be a constant Class. This will pick up newly found 1234 // constants after HIR construction. I'll leave this to a future change. 1235 1236 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1237 // could follow the aastore example in a future change. 1238 1239 LIRItem clazz(x->argument_at(0), this); 1240 LIRItem object(x->argument_at(1), this); 1241 clazz.load_item(); 1242 object.load_item(); 1243 LIR_Opr result = rlock_result(x); 1244 1245 // need to perform null check on clazz 1246 if (x->needs_null_check()) { 1247 CodeEmitInfo* info = state_for(x); 1248 __ null_check(clazz.result(), info); 1249 } 1250 1251 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1252 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1253 x->type(), 1254 nullptr); // null CodeEmitInfo results in a leaf call 1255 __ move(call_result, result); 1256 } 1257 1258 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1259 __ load_klass(obj, klass, null_check_info); 1260 } 1261 1262 // Example: object.getClass () 1263 void LIRGenerator::do_getClass(Intrinsic* x) { 1264 assert(x->number_of_arguments() == 1, "wrong type"); 1265 1266 LIRItem rcvr(x->argument_at(0), this); 1267 rcvr.load_item(); 1268 LIR_Opr temp = new_register(T_ADDRESS); 1269 LIR_Opr result = rlock_result(x); 1270 1271 // need to perform the null check on the rcvr 1272 CodeEmitInfo* info = nullptr; 1273 if (x->needs_null_check()) { 1274 info = state_for(x); 1275 } 1276 1277 LIR_Opr klass = new_register(T_METADATA); 1278 load_klass(rcvr.result(), klass, info); 1279 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1280 // mirror = ((OopHandle)mirror)->resolve(); 1281 access_load(IN_NATIVE, T_OBJECT, 1282 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1283 } 1284 1285 // java.lang.Class::isPrimitive() 1286 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1287 assert(x->number_of_arguments() == 1, "wrong type"); 1288 1289 LIRItem rcvr(x->argument_at(0), this); 1290 rcvr.load_item(); 1291 LIR_Opr temp = new_register(T_METADATA); 1292 LIR_Opr result = rlock_result(x); 1293 1294 CodeEmitInfo* info = nullptr; 1295 if (x->needs_null_check()) { 1296 info = state_for(x); 1297 } 1298 1299 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1300 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0)); 1301 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1302 } 1303 1304 // Example: Foo.class.getModifiers() 1305 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1306 assert(x->number_of_arguments() == 1, "wrong type"); 1307 1308 LIRItem receiver(x->argument_at(0), this); 1309 receiver.load_item(); 1310 LIR_Opr result = rlock_result(x); 1311 1312 CodeEmitInfo* info = nullptr; 1313 if (x->needs_null_check()) { 1314 info = state_for(x); 1315 } 1316 1317 // While reading off the universal constant mirror is less efficient than doing 1318 // another branch and returning the constant answer, this branchless code runs into 1319 // much less risk of confusion for C1 register allocator. The choice of the universe 1320 // object here is correct as long as it returns the same modifiers we would expect 1321 // from the primitive class itself. See spec for Class.getModifiers that provides 1322 // the typed array klasses with similar modifiers as their component types. 1323 1324 Klass* univ_klass_obj = Universe::byteArrayKlassObj(); 1325 assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity"); 1326 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj); 1327 1328 LIR_Opr recv_klass = new_register(T_METADATA); 1329 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info); 1330 1331 // Check if this is a Java mirror of primitive type, and select the appropriate klass. 1332 LIR_Opr klass = new_register(T_METADATA); 1333 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0)); 1334 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS); 1335 1336 // Get the answer. 1337 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1338 } 1339 1340 void LIRGenerator::do_addressOf(Intrinsic* x) { 1341 assert(x->number_of_arguments() == 1, "wrong type"); 1342 LIR_Opr reg = rlock_result(x); 1343 1344 LIRItem value(x->argument_at(0), this); 1345 value.load_item(); 1346 1347 #ifdef _LP64 1348 __ move(value.result(), reg, NULL); 1349 #else 1350 LIR_Opr res = new_register(T_INT); 1351 __ move(value.result(), res, NULL); 1352 __ convert(Bytecodes::_i2l, res, reg); 1353 #endif 1354 } 1355 1356 void LIRGenerator::do_sizeOf(Intrinsic* x) { 1357 assert(x->number_of_arguments() == 1, "wrong type"); 1358 do_sizeOf_impl(x, 0); 1359 } 1360 1361 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1362 assert(x->number_of_arguments() == 3, "wrong type"); 1363 do_sizeOf_impl(x, 2); 1364 } 1365 1366 void LIRGenerator::do_sizeOf_impl(Intrinsic* x, int arg_idx) { 1367 LIR_Opr result_reg = rlock_result(x); 1368 1369 LIRItem value(x->argument_at(arg_idx), this); 1370 value.load_item(); 1371 1372 LIR_Opr klass = new_register(T_METADATA); 1373 load_klass(value.result(), klass, nullptr); 1374 LIR_Opr layout = new_register(T_INT); 1375 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1376 1377 LabelObj* L_done = new LabelObj(); 1378 LabelObj* L_array = new LabelObj(); 1379 1380 __ cmp(lir_cond_lessEqual, layout, 0); 1381 __ branch(lir_cond_lessEqual, L_array->label()); 1382 1383 // Instance case: the layout helper gives us instance size almost directly, 1384 // but we need to mask out the _lh_instance_slow_path_bit. 1385 1386 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1387 1388 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1389 __ logical_and(layout, mask, layout); 1390 __ convert(Bytecodes::_i2l, layout, result_reg); 1391 1392 __ branch(lir_cond_always, L_done->label()); 1393 1394 // Array case: size is round(header + element_size*arraylength). 1395 // Since arraylength is different for every array instance, we have to 1396 // compute the whole thing at runtime. 1397 1398 __ branch_destination(L_array->label()); 1399 1400 int round_mask = MinObjAlignmentInBytes - 1; 1401 1402 // Figure out header sizes first. 1403 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1404 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1405 1406 LIR_Opr header_size = new_register(T_INT); 1407 __ move(layout, header_size); 1408 LIR_Opr tmp = new_register(T_INT); 1409 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1410 __ logical_and(header_size, hsm, header_size); 1411 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1412 1413 // Figure out the array length in bytes 1414 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1415 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1416 __ logical_and(layout, l2esm, layout); 1417 1418 LIR_Opr length_int = new_register(T_INT); 1419 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1420 1421 #ifdef _LP64 1422 LIR_Opr length = new_register(T_LONG); 1423 __ convert(Bytecodes::_i2l, length_int, length); 1424 #endif 1425 1426 // Shift-left awkwardness. Normally it is just: 1427 // __ shift_left(length, layout, length); 1428 // But C1 cannot perform shift_left with non-constant count, so we end up 1429 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1430 // longs, so we have to act on ints. 1431 LabelObj* L_shift_loop = new LabelObj(); 1432 LabelObj* L_shift_exit = new LabelObj(); 1433 1434 __ branch_destination(L_shift_loop->label()); 1435 __ cmp(lir_cond_equal, layout, 0); 1436 __ branch(lir_cond_equal, L_shift_exit->label()); 1437 1438 #ifdef _LP64 1439 __ shift_left(length, 1, length); 1440 #else 1441 __ shift_left(length_int, 1, length_int); 1442 #endif 1443 1444 __ sub(layout, LIR_OprFact::intConst(1), layout); 1445 1446 __ branch(lir_cond_always, L_shift_loop->label()); 1447 __ branch_destination(L_shift_exit->label()); 1448 1449 // Mix all up, round, and push to the result. 1450 #ifdef _LP64 1451 LIR_Opr header_size_long = new_register(T_LONG); 1452 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1453 __ add(length, header_size_long, length); 1454 if (round_mask != 0) { 1455 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1456 __ logical_and(length, round_mask_opr, length); 1457 } 1458 __ move(length, result_reg); 1459 #else 1460 __ add(length_int, header_size, length_int); 1461 if (round_mask != 0) { 1462 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1463 __ logical_and(length_int, round_mask_opr, length_int); 1464 } 1465 __ convert(Bytecodes::_i2l, length_int, result_reg); 1466 #endif 1467 1468 __ branch_destination(L_done->label()); 1469 } 1470 1471 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1472 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1473 } 1474 1475 // Example: Thread.currentCarrierThread() 1476 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1477 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1478 } 1479 1480 void LIRGenerator::do_vthread(Intrinsic* x) { 1481 do_JavaThreadField(x, JavaThread::vthread_offset()); 1482 } 1483 1484 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1485 assert(x->number_of_arguments() == 0, "wrong type"); 1486 LIR_Opr temp = new_register(T_ADDRESS); 1487 LIR_Opr reg = rlock_result(x); 1488 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1489 access_load(IN_NATIVE, T_OBJECT, 1490 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1491 } 1492 1493 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1494 assert(x->number_of_arguments() == 1, "wrong type"); 1495 LIRItem receiver(x->argument_at(0), this); 1496 1497 receiver.load_item(); 1498 BasicTypeList signature; 1499 signature.append(T_OBJECT); // receiver 1500 LIR_OprList* args = new LIR_OprList(); 1501 args->append(receiver.result()); 1502 CodeEmitInfo* info = state_for(x, x->state()); 1503 call_runtime(&signature, args, 1504 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1505 voidType, info); 1506 1507 set_no_result(x); 1508 } 1509 1510 1511 //------------------------local access-------------------------------------- 1512 1513 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1514 if (x->operand()->is_illegal()) { 1515 Constant* c = x->as_Constant(); 1516 if (c != nullptr) { 1517 x->set_operand(LIR_OprFact::value_type(c->type())); 1518 } else { 1519 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1520 // allocate a virtual register for this local or phi 1521 x->set_operand(rlock(x)); 1522 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1523 } 1524 } 1525 return x->operand(); 1526 } 1527 1528 1529 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1530 if (opr->is_virtual()) { 1531 return instruction_for_vreg(opr->vreg_number()); 1532 } 1533 return nullptr; 1534 } 1535 1536 1537 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1538 if (reg_num < _instruction_for_operand.length()) { 1539 return _instruction_for_operand.at(reg_num); 1540 } 1541 return nullptr; 1542 } 1543 1544 1545 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1546 if (_vreg_flags.size_in_bits() == 0) { 1547 BitMap2D temp(100, num_vreg_flags); 1548 _vreg_flags = temp; 1549 } 1550 _vreg_flags.at_put_grow(vreg_num, f, true); 1551 } 1552 1553 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1554 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1555 return false; 1556 } 1557 return _vreg_flags.at(vreg_num, f); 1558 } 1559 1560 1561 // Block local constant handling. This code is useful for keeping 1562 // unpinned constants and constants which aren't exposed in the IR in 1563 // registers. Unpinned Constant instructions have their operands 1564 // cleared when the block is finished so that other blocks can't end 1565 // up referring to their registers. 1566 1567 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1568 assert(!x->is_pinned(), "only for unpinned constants"); 1569 _unpinned_constants.append(x); 1570 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1571 } 1572 1573 1574 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1575 BasicType t = c->type(); 1576 for (int i = 0; i < _constants.length(); i++) { 1577 LIR_Const* other = _constants.at(i); 1578 if (t == other->type()) { 1579 switch (t) { 1580 case T_INT: 1581 case T_FLOAT: 1582 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1583 break; 1584 case T_LONG: 1585 case T_DOUBLE: 1586 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1587 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1588 break; 1589 case T_OBJECT: 1590 if (c->as_jobject() != other->as_jobject()) continue; 1591 break; 1592 default: 1593 break; 1594 } 1595 return _reg_for_constants.at(i); 1596 } 1597 } 1598 1599 LIR_Opr result = new_register(t); 1600 __ move((LIR_Opr)c, result); 1601 _constants.append(c); 1602 _reg_for_constants.append(result); 1603 return result; 1604 } 1605 1606 //------------------------field access-------------------------------------- 1607 1608 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1609 assert(x->number_of_arguments() == 4, "wrong type"); 1610 LIRItem obj (x->argument_at(0), this); // object 1611 LIRItem offset(x->argument_at(1), this); // offset of field 1612 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1613 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1614 assert(obj.type()->tag() == objectTag, "invalid type"); 1615 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1616 assert(val.type()->tag() == type->tag(), "invalid type"); 1617 1618 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1619 obj, offset, cmp, val); 1620 set_result(x, result); 1621 } 1622 1623 // Comment copied form templateTable_i486.cpp 1624 // ---------------------------------------------------------------------------- 1625 // Volatile variables demand their effects be made known to all CPU's in 1626 // order. Store buffers on most chips allow reads & writes to reorder; the 1627 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1628 // memory barrier (i.e., it's not sufficient that the interpreter does not 1629 // reorder volatile references, the hardware also must not reorder them). 1630 // 1631 // According to the new Java Memory Model (JMM): 1632 // (1) All volatiles are serialized wrt to each other. 1633 // ALSO reads & writes act as acquire & release, so: 1634 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1635 // the read float up to before the read. It's OK for non-volatile memory refs 1636 // that happen before the volatile read to float down below it. 1637 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1638 // that happen BEFORE the write float down to after the write. It's OK for 1639 // non-volatile memory refs that happen after the volatile write to float up 1640 // before it. 1641 // 1642 // We only put in barriers around volatile refs (they are expensive), not 1643 // _between_ memory refs (that would require us to track the flavor of the 1644 // previous memory refs). Requirements (2) and (3) require some barriers 1645 // before volatile stores and after volatile loads. These nearly cover 1646 // requirement (1) but miss the volatile-store-volatile-load case. This final 1647 // case is placed after volatile-stores although it could just as well go 1648 // before volatile-loads. 1649 1650 1651 void LIRGenerator::do_StoreField(StoreField* x) { 1652 bool needs_patching = x->needs_patching(); 1653 bool is_volatile = x->field()->is_volatile(); 1654 BasicType field_type = x->field_type(); 1655 1656 CodeEmitInfo* info = nullptr; 1657 if (needs_patching) { 1658 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1659 info = state_for(x, x->state_before()); 1660 } else if (x->needs_null_check()) { 1661 NullCheck* nc = x->explicit_null_check(); 1662 if (nc == nullptr) { 1663 info = state_for(x); 1664 } else { 1665 info = state_for(nc); 1666 } 1667 } 1668 1669 LIRItem object(x->obj(), this); 1670 LIRItem value(x->value(), this); 1671 1672 object.load_item(); 1673 1674 if (is_volatile || needs_patching) { 1675 // load item if field is volatile (fewer special cases for volatiles) 1676 // load item if field not initialized 1677 // load item if field not constant 1678 // because of code patching we cannot inline constants 1679 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1680 value.load_byte_item(); 1681 } else { 1682 value.load_item(); 1683 } 1684 } else { 1685 value.load_for_store(field_type); 1686 } 1687 1688 set_no_result(x); 1689 1690 #ifndef PRODUCT 1691 if (PrintNotLoaded && needs_patching) { 1692 tty->print_cr(" ###class not loaded at store_%s bci %d", 1693 x->is_static() ? "static" : "field", x->printable_bci()); 1694 } 1695 #endif 1696 1697 if (x->needs_null_check() && 1698 (needs_patching || 1699 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1700 // Emit an explicit null check because the offset is too large. 1701 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1702 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1703 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1704 } 1705 1706 DecoratorSet decorators = IN_HEAP; 1707 if (is_volatile) { 1708 decorators |= MO_SEQ_CST; 1709 } 1710 if (needs_patching) { 1711 decorators |= C1_NEEDS_PATCHING; 1712 } 1713 1714 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1715 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1716 } 1717 1718 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1719 assert(x->is_pinned(),""); 1720 bool needs_range_check = x->compute_needs_range_check(); 1721 bool use_length = x->length() != nullptr; 1722 bool obj_store = is_reference_type(x->elt_type()); 1723 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr || 1724 !get_jobject_constant(x->value())->is_null_object() || 1725 x->should_profile()); 1726 1727 LIRItem array(x->array(), this); 1728 LIRItem index(x->index(), this); 1729 LIRItem value(x->value(), this); 1730 LIRItem length(this); 1731 1732 array.load_item(); 1733 index.load_nonconstant(); 1734 1735 if (use_length && needs_range_check) { 1736 length.set_instruction(x->length()); 1737 length.load_item(); 1738 1739 } 1740 if (needs_store_check || x->check_boolean()) { 1741 value.load_item(); 1742 } else { 1743 value.load_for_store(x->elt_type()); 1744 } 1745 1746 set_no_result(x); 1747 1748 // the CodeEmitInfo must be duplicated for each different 1749 // LIR-instruction because spilling can occur anywhere between two 1750 // instructions and so the debug information must be different 1751 CodeEmitInfo* range_check_info = state_for(x); 1752 CodeEmitInfo* null_check_info = nullptr; 1753 if (x->needs_null_check()) { 1754 null_check_info = new CodeEmitInfo(range_check_info); 1755 } 1756 1757 if (needs_range_check) { 1758 if (use_length) { 1759 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1760 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1761 } else { 1762 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1763 // range_check also does the null check 1764 null_check_info = nullptr; 1765 } 1766 } 1767 1768 if (GenerateArrayStoreCheck && needs_store_check) { 1769 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1770 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1771 } 1772 1773 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1774 if (x->check_boolean()) { 1775 decorators |= C1_MASK_BOOLEAN; 1776 } 1777 1778 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1779 nullptr, null_check_info); 1780 } 1781 1782 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1783 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1784 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1785 decorators |= ACCESS_READ; 1786 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1787 if (access.is_raw()) { 1788 _barrier_set->BarrierSetC1::load_at(access, result); 1789 } else { 1790 _barrier_set->load_at(access, result); 1791 } 1792 } 1793 1794 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1795 LIR_Opr addr, LIR_Opr result) { 1796 decorators |= ACCESS_READ; 1797 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1798 access.set_resolved_addr(addr); 1799 if (access.is_raw()) { 1800 _barrier_set->BarrierSetC1::load(access, result); 1801 } else { 1802 _barrier_set->load(access, result); 1803 } 1804 } 1805 1806 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1807 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1808 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1809 decorators |= ACCESS_WRITE; 1810 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1811 if (access.is_raw()) { 1812 _barrier_set->BarrierSetC1::store_at(access, value); 1813 } else { 1814 _barrier_set->store_at(access, value); 1815 } 1816 } 1817 1818 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1819 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1820 decorators |= ACCESS_READ; 1821 decorators |= ACCESS_WRITE; 1822 // Atomic operations are SEQ_CST by default 1823 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1824 LIRAccess access(this, decorators, base, offset, type); 1825 if (access.is_raw()) { 1826 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1827 } else { 1828 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1829 } 1830 } 1831 1832 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1833 LIRItem& base, LIRItem& offset, LIRItem& value) { 1834 decorators |= ACCESS_READ; 1835 decorators |= ACCESS_WRITE; 1836 // Atomic operations are SEQ_CST by default 1837 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1838 LIRAccess access(this, decorators, base, offset, type); 1839 if (access.is_raw()) { 1840 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1841 } else { 1842 return _barrier_set->atomic_xchg_at(access, value); 1843 } 1844 } 1845 1846 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1847 LIRItem& base, LIRItem& offset, LIRItem& value) { 1848 decorators |= ACCESS_READ; 1849 decorators |= ACCESS_WRITE; 1850 // Atomic operations are SEQ_CST by default 1851 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1852 LIRAccess access(this, decorators, base, offset, type); 1853 if (access.is_raw()) { 1854 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1855 } else { 1856 return _barrier_set->atomic_add_at(access, value); 1857 } 1858 } 1859 1860 void LIRGenerator::do_LoadField(LoadField* x) { 1861 bool needs_patching = x->needs_patching(); 1862 bool is_volatile = x->field()->is_volatile(); 1863 BasicType field_type = x->field_type(); 1864 1865 CodeEmitInfo* info = nullptr; 1866 if (needs_patching) { 1867 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1868 info = state_for(x, x->state_before()); 1869 } else if (x->needs_null_check()) { 1870 NullCheck* nc = x->explicit_null_check(); 1871 if (nc == nullptr) { 1872 info = state_for(x); 1873 } else { 1874 info = state_for(nc); 1875 } 1876 } 1877 1878 LIRItem object(x->obj(), this); 1879 1880 object.load_item(); 1881 1882 #ifndef PRODUCT 1883 if (PrintNotLoaded && needs_patching) { 1884 tty->print_cr(" ###class not loaded at load_%s bci %d", 1885 x->is_static() ? "static" : "field", x->printable_bci()); 1886 } 1887 #endif 1888 1889 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1890 if (x->needs_null_check() && 1891 (needs_patching || 1892 MacroAssembler::needs_explicit_null_check(x->offset()) || 1893 stress_deopt)) { 1894 LIR_Opr obj = object.result(); 1895 if (stress_deopt) { 1896 obj = new_register(T_OBJECT); 1897 __ move(LIR_OprFact::oopConst(nullptr), obj); 1898 } 1899 // Emit an explicit null check because the offset is too large. 1900 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1901 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1902 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1903 } 1904 1905 DecoratorSet decorators = IN_HEAP; 1906 if (is_volatile) { 1907 decorators |= MO_SEQ_CST; 1908 } 1909 if (needs_patching) { 1910 decorators |= C1_NEEDS_PATCHING; 1911 } 1912 1913 LIR_Opr result = rlock_result(x, field_type); 1914 access_load_at(decorators, field_type, 1915 object, LIR_OprFact::intConst(x->offset()), result, 1916 info ? new CodeEmitInfo(info) : nullptr, info); 1917 } 1918 1919 // int/long jdk.internal.util.Preconditions.checkIndex 1920 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1921 assert(x->number_of_arguments() == 3, "wrong type"); 1922 LIRItem index(x->argument_at(0), this); 1923 LIRItem length(x->argument_at(1), this); 1924 LIRItem oobef(x->argument_at(2), this); 1925 1926 index.load_item(); 1927 length.load_item(); 1928 oobef.load_item(); 1929 1930 LIR_Opr result = rlock_result(x); 1931 // x->state() is created from copy_state_for_exception, it does not contains arguments 1932 // we should prepare them before entering into interpreter mode due to deoptimization. 1933 ValueStack* state = x->state(); 1934 for (int i = 0; i < x->number_of_arguments(); i++) { 1935 Value arg = x->argument_at(i); 1936 state->push(arg->type(), arg); 1937 } 1938 CodeEmitInfo* info = state_for(x, state); 1939 1940 LIR_Opr len = length.result(); 1941 LIR_Opr zero; 1942 if (type == T_INT) { 1943 zero = LIR_OprFact::intConst(0); 1944 if (length.result()->is_constant()){ 1945 len = LIR_OprFact::intConst(length.result()->as_jint()); 1946 } 1947 } else { 1948 assert(type == T_LONG, "sanity check"); 1949 zero = LIR_OprFact::longConst(0); 1950 if (length.result()->is_constant()){ 1951 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1952 } 1953 } 1954 // C1 can not handle the case that comparing index with constant value while condition 1955 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1956 LIR_Opr zero_reg = new_register(type); 1957 __ move(zero, zero_reg); 1958 #if defined(X86) && !defined(_LP64) 1959 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1960 LIR_Opr index_copy = new_register(index.type()); 1961 // index >= 0 1962 __ move(index.result(), index_copy); 1963 __ cmp(lir_cond_less, index_copy, zero_reg); 1964 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1965 Deoptimization::Action_make_not_entrant)); 1966 // index < length 1967 __ move(index.result(), index_copy); 1968 __ cmp(lir_cond_greaterEqual, index_copy, len); 1969 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1970 Deoptimization::Action_make_not_entrant)); 1971 #else 1972 // index >= 0 1973 __ cmp(lir_cond_less, index.result(), zero_reg); 1974 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1975 Deoptimization::Action_make_not_entrant)); 1976 // index < length 1977 __ cmp(lir_cond_greaterEqual, index.result(), len); 1978 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1979 Deoptimization::Action_make_not_entrant)); 1980 #endif 1981 __ move(index.result(), result); 1982 } 1983 1984 //------------------------array access-------------------------------------- 1985 1986 1987 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1988 LIRItem array(x->array(), this); 1989 array.load_item(); 1990 LIR_Opr reg = rlock_result(x); 1991 1992 CodeEmitInfo* info = nullptr; 1993 if (x->needs_null_check()) { 1994 NullCheck* nc = x->explicit_null_check(); 1995 if (nc == nullptr) { 1996 info = state_for(x); 1997 } else { 1998 info = state_for(nc); 1999 } 2000 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 2001 LIR_Opr obj = new_register(T_OBJECT); 2002 __ move(LIR_OprFact::oopConst(nullptr), obj); 2003 __ null_check(obj, new CodeEmitInfo(info)); 2004 } 2005 } 2006 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 2007 } 2008 2009 2010 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 2011 bool use_length = x->length() != nullptr; 2012 LIRItem array(x->array(), this); 2013 LIRItem index(x->index(), this); 2014 LIRItem length(this); 2015 bool needs_range_check = x->compute_needs_range_check(); 2016 2017 if (use_length && needs_range_check) { 2018 length.set_instruction(x->length()); 2019 length.load_item(); 2020 } 2021 2022 array.load_item(); 2023 if (index.is_constant() && can_inline_as_constant(x->index())) { 2024 // let it be a constant 2025 index.dont_load_item(); 2026 } else { 2027 index.load_item(); 2028 } 2029 2030 CodeEmitInfo* range_check_info = state_for(x); 2031 CodeEmitInfo* null_check_info = nullptr; 2032 if (x->needs_null_check()) { 2033 NullCheck* nc = x->explicit_null_check(); 2034 if (nc != nullptr) { 2035 null_check_info = state_for(nc); 2036 } else { 2037 null_check_info = range_check_info; 2038 } 2039 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2040 LIR_Opr obj = new_register(T_OBJECT); 2041 __ move(LIR_OprFact::oopConst(nullptr), obj); 2042 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2043 } 2044 } 2045 2046 if (needs_range_check) { 2047 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2048 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2049 } else if (use_length) { 2050 // TODO: use a (modified) version of array_range_check that does not require a 2051 // constant length to be loaded to a register 2052 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2053 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2054 } else { 2055 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2056 // The range check performs the null check, so clear it out for the load 2057 null_check_info = nullptr; 2058 } 2059 } 2060 2061 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2062 2063 LIR_Opr result = rlock_result(x, x->elt_type()); 2064 access_load_at(decorators, x->elt_type(), 2065 array, index.result(), result, 2066 nullptr, null_check_info); 2067 } 2068 2069 2070 void LIRGenerator::do_NullCheck(NullCheck* x) { 2071 if (x->can_trap()) { 2072 LIRItem value(x->obj(), this); 2073 value.load_item(); 2074 CodeEmitInfo* info = state_for(x); 2075 __ null_check(value.result(), info); 2076 } 2077 } 2078 2079 2080 void LIRGenerator::do_TypeCast(TypeCast* x) { 2081 LIRItem value(x->obj(), this); 2082 value.load_item(); 2083 // the result is the same as from the node we are casting 2084 set_result(x, value.result()); 2085 } 2086 2087 2088 void LIRGenerator::do_Throw(Throw* x) { 2089 LIRItem exception(x->exception(), this); 2090 exception.load_item(); 2091 set_no_result(x); 2092 LIR_Opr exception_opr = exception.result(); 2093 CodeEmitInfo* info = state_for(x, x->state()); 2094 2095 #ifndef PRODUCT 2096 if (PrintC1Statistics) { 2097 increment_counter(Runtime1::throw_count_address(), T_INT); 2098 } 2099 #endif 2100 2101 // check if the instruction has an xhandler in any of the nested scopes 2102 bool unwind = false; 2103 if (info->exception_handlers()->length() == 0) { 2104 // this throw is not inside an xhandler 2105 unwind = true; 2106 } else { 2107 // get some idea of the throw type 2108 bool type_is_exact = true; 2109 ciType* throw_type = x->exception()->exact_type(); 2110 if (throw_type == nullptr) { 2111 type_is_exact = false; 2112 throw_type = x->exception()->declared_type(); 2113 } 2114 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2115 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2116 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2117 } 2118 } 2119 2120 // do null check before moving exception oop into fixed register 2121 // to avoid a fixed interval with an oop during the null check. 2122 // Use a copy of the CodeEmitInfo because debug information is 2123 // different for null_check and throw. 2124 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2125 // if the exception object wasn't created using new then it might be null. 2126 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2127 } 2128 2129 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2130 // we need to go through the exception lookup path to get JVMTI 2131 // notification done 2132 unwind = false; 2133 } 2134 2135 // move exception oop into fixed register 2136 __ move(exception_opr, exceptionOopOpr()); 2137 2138 if (unwind) { 2139 __ unwind_exception(exceptionOopOpr()); 2140 } else { 2141 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2142 } 2143 } 2144 2145 2146 void LIRGenerator::do_RoundFP(RoundFP* x) { 2147 assert(strict_fp_requires_explicit_rounding, "not required"); 2148 2149 LIRItem input(x->input(), this); 2150 input.load_item(); 2151 LIR_Opr input_opr = input.result(); 2152 assert(input_opr->is_register(), "why round if value is not in a register?"); 2153 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2154 if (input_opr->is_single_fpu()) { 2155 set_result(x, round_item(input_opr)); // This code path not currently taken 2156 } else { 2157 LIR_Opr result = new_register(T_DOUBLE); 2158 set_vreg_flag(result, must_start_in_memory); 2159 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2160 set_result(x, result); 2161 } 2162 } 2163 2164 2165 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2166 BasicType type = x->basic_type(); 2167 LIRItem src(x->object(), this); 2168 LIRItem off(x->offset(), this); 2169 2170 off.load_item(); 2171 src.load_item(); 2172 2173 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2174 2175 if (x->is_volatile()) { 2176 decorators |= MO_SEQ_CST; 2177 } 2178 if (type == T_BOOLEAN) { 2179 decorators |= C1_MASK_BOOLEAN; 2180 } 2181 if (is_reference_type(type)) { 2182 decorators |= ON_UNKNOWN_OOP_REF; 2183 } 2184 2185 LIR_Opr result = rlock_result(x, type); 2186 if (!x->is_raw()) { 2187 access_load_at(decorators, type, src, off.result(), result); 2188 } else { 2189 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2190 // It reads the value from [src + offset] directly. 2191 #ifdef _LP64 2192 LIR_Opr offset = new_register(T_LONG); 2193 __ convert(Bytecodes::_i2l, off.result(), offset); 2194 #else 2195 LIR_Opr offset = off.result(); 2196 #endif 2197 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2198 if (is_reference_type(type)) { 2199 __ move_wide(addr, result); 2200 } else { 2201 __ move(addr, result); 2202 } 2203 } 2204 } 2205 2206 2207 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2208 BasicType type = x->basic_type(); 2209 LIRItem src(x->object(), this); 2210 LIRItem off(x->offset(), this); 2211 LIRItem data(x->value(), this); 2212 2213 src.load_item(); 2214 if (type == T_BOOLEAN || type == T_BYTE) { 2215 data.load_byte_item(); 2216 } else { 2217 data.load_item(); 2218 } 2219 off.load_item(); 2220 2221 set_no_result(x); 2222 2223 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2224 if (is_reference_type(type)) { 2225 decorators |= ON_UNKNOWN_OOP_REF; 2226 } 2227 if (x->is_volatile()) { 2228 decorators |= MO_SEQ_CST; 2229 } 2230 access_store_at(decorators, type, src, off.result(), data.result()); 2231 } 2232 2233 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2234 BasicType type = x->basic_type(); 2235 LIRItem src(x->object(), this); 2236 LIRItem off(x->offset(), this); 2237 LIRItem value(x->value(), this); 2238 2239 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2240 2241 if (is_reference_type(type)) { 2242 decorators |= ON_UNKNOWN_OOP_REF; 2243 } 2244 2245 LIR_Opr result; 2246 if (x->is_add()) { 2247 result = access_atomic_add_at(decorators, type, src, off, value); 2248 } else { 2249 result = access_atomic_xchg_at(decorators, type, src, off, value); 2250 } 2251 set_result(x, result); 2252 } 2253 2254 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2255 int lng = x->length(); 2256 2257 for (int i = 0; i < lng; i++) { 2258 C1SwitchRange* one_range = x->at(i); 2259 int low_key = one_range->low_key(); 2260 int high_key = one_range->high_key(); 2261 BlockBegin* dest = one_range->sux(); 2262 if (low_key == high_key) { 2263 __ cmp(lir_cond_equal, value, low_key); 2264 __ branch(lir_cond_equal, dest); 2265 } else if (high_key - low_key == 1) { 2266 __ cmp(lir_cond_equal, value, low_key); 2267 __ branch(lir_cond_equal, dest); 2268 __ cmp(lir_cond_equal, value, high_key); 2269 __ branch(lir_cond_equal, dest); 2270 } else { 2271 LabelObj* L = new LabelObj(); 2272 __ cmp(lir_cond_less, value, low_key); 2273 __ branch(lir_cond_less, L->label()); 2274 __ cmp(lir_cond_lessEqual, value, high_key); 2275 __ branch(lir_cond_lessEqual, dest); 2276 __ branch_destination(L->label()); 2277 } 2278 } 2279 __ jump(default_sux); 2280 } 2281 2282 2283 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2284 SwitchRangeList* res = new SwitchRangeList(); 2285 int len = x->length(); 2286 if (len > 0) { 2287 BlockBegin* sux = x->sux_at(0); 2288 int low = x->lo_key(); 2289 BlockBegin* default_sux = x->default_sux(); 2290 C1SwitchRange* range = new C1SwitchRange(low, sux); 2291 for (int i = 0; i < len; i++) { 2292 int key = low + i; 2293 BlockBegin* new_sux = x->sux_at(i); 2294 if (sux == new_sux) { 2295 // still in same range 2296 range->set_high_key(key); 2297 } else { 2298 // skip tests which explicitly dispatch to the default 2299 if (sux != default_sux) { 2300 res->append(range); 2301 } 2302 range = new C1SwitchRange(key, new_sux); 2303 } 2304 sux = new_sux; 2305 } 2306 if (res->length() == 0 || res->last() != range) res->append(range); 2307 } 2308 return res; 2309 } 2310 2311 2312 // we expect the keys to be sorted by increasing value 2313 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2314 SwitchRangeList* res = new SwitchRangeList(); 2315 int len = x->length(); 2316 if (len > 0) { 2317 BlockBegin* default_sux = x->default_sux(); 2318 int key = x->key_at(0); 2319 BlockBegin* sux = x->sux_at(0); 2320 C1SwitchRange* range = new C1SwitchRange(key, sux); 2321 for (int i = 1; i < len; i++) { 2322 int new_key = x->key_at(i); 2323 BlockBegin* new_sux = x->sux_at(i); 2324 if (key+1 == new_key && sux == new_sux) { 2325 // still in same range 2326 range->set_high_key(new_key); 2327 } else { 2328 // skip tests which explicitly dispatch to the default 2329 if (range->sux() != default_sux) { 2330 res->append(range); 2331 } 2332 range = new C1SwitchRange(new_key, new_sux); 2333 } 2334 key = new_key; 2335 sux = new_sux; 2336 } 2337 if (res->length() == 0 || res->last() != range) res->append(range); 2338 } 2339 return res; 2340 } 2341 2342 2343 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2344 LIRItem tag(x->tag(), this); 2345 tag.load_item(); 2346 set_no_result(x); 2347 2348 if (x->is_safepoint()) { 2349 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2350 } 2351 2352 // move values into phi locations 2353 move_to_phi(x->state()); 2354 2355 int lo_key = x->lo_key(); 2356 int len = x->length(); 2357 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2358 LIR_Opr value = tag.result(); 2359 2360 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2361 ciMethod* method = x->state()->scope()->method(); 2362 ciMethodData* md = method->method_data_or_null(); 2363 assert(md != nullptr, "Sanity"); 2364 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2365 assert(data != nullptr, "must have profiling data"); 2366 assert(data->is_MultiBranchData(), "bad profile data?"); 2367 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2368 LIR_Opr md_reg = new_register(T_METADATA); 2369 __ metadata2reg(md->constant_encoding(), md_reg); 2370 LIR_Opr data_offset_reg = new_pointer_register(); 2371 LIR_Opr tmp_reg = new_pointer_register(); 2372 2373 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2374 for (int i = 0; i < len; i++) { 2375 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2376 __ cmp(lir_cond_equal, value, i + lo_key); 2377 __ move(data_offset_reg, tmp_reg); 2378 __ cmove(lir_cond_equal, 2379 LIR_OprFact::intptrConst(count_offset), 2380 tmp_reg, 2381 data_offset_reg, T_INT); 2382 } 2383 2384 LIR_Opr data_reg = new_pointer_register(); 2385 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2386 __ move(data_addr, data_reg); 2387 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2388 __ move(data_reg, data_addr); 2389 } 2390 2391 if (UseTableRanges) { 2392 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2393 } else { 2394 for (int i = 0; i < len; i++) { 2395 __ cmp(lir_cond_equal, value, i + lo_key); 2396 __ branch(lir_cond_equal, x->sux_at(i)); 2397 } 2398 __ jump(x->default_sux()); 2399 } 2400 } 2401 2402 2403 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2404 LIRItem tag(x->tag(), this); 2405 tag.load_item(); 2406 set_no_result(x); 2407 2408 if (x->is_safepoint()) { 2409 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2410 } 2411 2412 // move values into phi locations 2413 move_to_phi(x->state()); 2414 2415 LIR_Opr value = tag.result(); 2416 int len = x->length(); 2417 2418 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2419 ciMethod* method = x->state()->scope()->method(); 2420 ciMethodData* md = method->method_data_or_null(); 2421 assert(md != nullptr, "Sanity"); 2422 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2423 assert(data != nullptr, "must have profiling data"); 2424 assert(data->is_MultiBranchData(), "bad profile data?"); 2425 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2426 LIR_Opr md_reg = new_register(T_METADATA); 2427 __ metadata2reg(md->constant_encoding(), md_reg); 2428 LIR_Opr data_offset_reg = new_pointer_register(); 2429 LIR_Opr tmp_reg = new_pointer_register(); 2430 2431 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2432 for (int i = 0; i < len; i++) { 2433 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2434 __ cmp(lir_cond_equal, value, x->key_at(i)); 2435 __ move(data_offset_reg, tmp_reg); 2436 __ cmove(lir_cond_equal, 2437 LIR_OprFact::intptrConst(count_offset), 2438 tmp_reg, 2439 data_offset_reg, T_INT); 2440 } 2441 2442 LIR_Opr data_reg = new_pointer_register(); 2443 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2444 __ move(data_addr, data_reg); 2445 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2446 __ move(data_reg, data_addr); 2447 } 2448 2449 if (UseTableRanges) { 2450 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2451 } else { 2452 int len = x->length(); 2453 for (int i = 0; i < len; i++) { 2454 __ cmp(lir_cond_equal, value, x->key_at(i)); 2455 __ branch(lir_cond_equal, x->sux_at(i)); 2456 } 2457 __ jump(x->default_sux()); 2458 } 2459 } 2460 2461 2462 void LIRGenerator::do_Goto(Goto* x) { 2463 set_no_result(x); 2464 2465 if (block()->next()->as_OsrEntry()) { 2466 // need to free up storage used for OSR entry point 2467 LIR_Opr osrBuffer = block()->next()->operand(); 2468 BasicTypeList signature; 2469 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2470 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2471 __ move(osrBuffer, cc->args()->at(0)); 2472 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2473 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2474 } 2475 2476 if (x->is_safepoint()) { 2477 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2478 2479 // increment backedge counter if needed 2480 CodeEmitInfo* info = state_for(x, state); 2481 increment_backedge_counter(info, x->profiled_bci()); 2482 CodeEmitInfo* safepoint_info = state_for(x, state); 2483 __ safepoint(safepoint_poll_register(), safepoint_info); 2484 } 2485 2486 // Gotos can be folded Ifs, handle this case. 2487 if (x->should_profile()) { 2488 ciMethod* method = x->profiled_method(); 2489 assert(method != nullptr, "method should be set if branch is profiled"); 2490 ciMethodData* md = method->method_data_or_null(); 2491 assert(md != nullptr, "Sanity"); 2492 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2493 assert(data != nullptr, "must have profiling data"); 2494 int offset; 2495 if (x->direction() == Goto::taken) { 2496 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2497 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2498 } else if (x->direction() == Goto::not_taken) { 2499 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2500 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2501 } else { 2502 assert(data->is_JumpData(), "need JumpData for branches"); 2503 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2504 } 2505 LIR_Opr md_reg = new_register(T_METADATA); 2506 __ metadata2reg(md->constant_encoding(), md_reg); 2507 2508 increment_counter(new LIR_Address(md_reg, offset, 2509 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2510 } 2511 2512 // emit phi-instruction move after safepoint since this simplifies 2513 // describing the state as the safepoint. 2514 move_to_phi(x->state()); 2515 2516 __ jump(x->default_sux()); 2517 } 2518 2519 /** 2520 * Emit profiling code if needed for arguments, parameters, return value types 2521 * 2522 * @param md MDO the code will update at runtime 2523 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2524 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2525 * @param profiled_k current profile 2526 * @param obj IR node for the object to be profiled 2527 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2528 * Set once we find an update to make and use for next ones. 2529 * @param not_null true if we know obj cannot be null 2530 * @param signature_at_call_k signature at call for obj 2531 * @param callee_signature_k signature of callee for obj 2532 * at call and callee signatures differ at method handle call 2533 * @return the only klass we know will ever be seen at this profile point 2534 */ 2535 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2536 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2537 ciKlass* callee_signature_k) { 2538 ciKlass* result = nullptr; 2539 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2540 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2541 // known not to be null or null bit already set and already set to 2542 // unknown: nothing we can do to improve profiling 2543 if (!do_null && !do_update) { 2544 return result; 2545 } 2546 2547 ciKlass* exact_klass = nullptr; 2548 Compilation* comp = Compilation::current(); 2549 if (do_update) { 2550 // try to find exact type, using CHA if possible, so that loading 2551 // the klass from the object can be avoided 2552 ciType* type = obj->exact_type(); 2553 if (type == nullptr) { 2554 type = obj->declared_type(); 2555 type = comp->cha_exact_type(type); 2556 } 2557 assert(type == nullptr || type->is_klass(), "type should be class"); 2558 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2559 2560 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2561 } 2562 2563 if (!do_null && !do_update) { 2564 return result; 2565 } 2566 2567 ciKlass* exact_signature_k = nullptr; 2568 if (do_update) { 2569 // Is the type from the signature exact (the only one possible)? 2570 exact_signature_k = signature_at_call_k->exact_klass(); 2571 if (exact_signature_k == nullptr) { 2572 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2573 } else { 2574 result = exact_signature_k; 2575 // Known statically. No need to emit any code: prevent 2576 // LIR_Assembler::emit_profile_type() from emitting useless code 2577 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2578 } 2579 // exact_klass and exact_signature_k can be both non null but 2580 // different if exact_klass is loaded after the ciObject for 2581 // exact_signature_k is created. 2582 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2583 // sometimes the type of the signature is better than the best type 2584 // the compiler has 2585 exact_klass = exact_signature_k; 2586 } 2587 if (callee_signature_k != nullptr && 2588 callee_signature_k != signature_at_call_k) { 2589 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2590 if (improved_klass == nullptr) { 2591 improved_klass = comp->cha_exact_type(callee_signature_k); 2592 } 2593 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2594 exact_klass = exact_signature_k; 2595 } 2596 } 2597 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2598 } 2599 2600 if (!do_null && !do_update) { 2601 return result; 2602 } 2603 2604 if (mdp == LIR_OprFact::illegalOpr) { 2605 mdp = new_register(T_METADATA); 2606 __ metadata2reg(md->constant_encoding(), mdp); 2607 if (md_base_offset != 0) { 2608 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2609 mdp = new_pointer_register(); 2610 __ leal(LIR_OprFact::address(base_type_address), mdp); 2611 } 2612 } 2613 LIRItem value(obj, this); 2614 value.load_item(); 2615 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2616 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2617 return result; 2618 } 2619 2620 // profile parameters on entry to the root of the compilation 2621 void LIRGenerator::profile_parameters(Base* x) { 2622 if (compilation()->profile_parameters()) { 2623 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2624 ciMethodData* md = scope()->method()->method_data_or_null(); 2625 assert(md != nullptr, "Sanity"); 2626 2627 if (md->parameters_type_data() != nullptr) { 2628 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2629 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2630 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2631 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2632 LIR_Opr src = args->at(i); 2633 assert(!src->is_illegal(), "check"); 2634 BasicType t = src->type(); 2635 if (is_reference_type(t)) { 2636 intptr_t profiled_k = parameters->type(j); 2637 Local* local = x->state()->local_at(java_index)->as_Local(); 2638 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2639 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2640 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2641 // If the profile is known statically set it once for all and do not emit any code 2642 if (exact != nullptr) { 2643 md->set_parameter_type(j, exact); 2644 } 2645 j++; 2646 } 2647 java_index += type2size[t]; 2648 } 2649 } 2650 } 2651 } 2652 2653 void LIRGenerator::do_Base(Base* x) { 2654 __ std_entry(LIR_OprFact::illegalOpr); 2655 // Emit moves from physical registers / stack slots to virtual registers 2656 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2657 IRScope* irScope = compilation()->hir()->top_scope(); 2658 int java_index = 0; 2659 for (int i = 0; i < args->length(); i++) { 2660 LIR_Opr src = args->at(i); 2661 assert(!src->is_illegal(), "check"); 2662 BasicType t = src->type(); 2663 2664 // Types which are smaller than int are passed as int, so 2665 // correct the type which passed. 2666 switch (t) { 2667 case T_BYTE: 2668 case T_BOOLEAN: 2669 case T_SHORT: 2670 case T_CHAR: 2671 t = T_INT; 2672 break; 2673 default: 2674 break; 2675 } 2676 2677 LIR_Opr dest = new_register(t); 2678 __ move(src, dest); 2679 2680 // Assign new location to Local instruction for this local 2681 Local* local = x->state()->local_at(java_index)->as_Local(); 2682 assert(local != nullptr, "Locals for incoming arguments must have been created"); 2683 #ifndef __SOFTFP__ 2684 // The java calling convention passes double as long and float as int. 2685 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2686 #endif // __SOFTFP__ 2687 local->set_operand(dest); 2688 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 2689 java_index += type2size[t]; 2690 } 2691 2692 if (compilation()->env()->dtrace_method_probes()) { 2693 BasicTypeList signature; 2694 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2695 signature.append(T_METADATA); // Method* 2696 LIR_OprList* args = new LIR_OprList(); 2697 args->append(getThreadPointer()); 2698 LIR_Opr meth = new_register(T_METADATA); 2699 __ metadata2reg(method()->constant_encoding(), meth); 2700 args->append(meth); 2701 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 2702 } 2703 2704 if (method()->is_synchronized()) { 2705 LIR_Opr obj; 2706 if (method()->is_static()) { 2707 obj = new_register(T_OBJECT); 2708 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2709 } else { 2710 Local* receiver = x->state()->local_at(0)->as_Local(); 2711 assert(receiver != nullptr, "must already exist"); 2712 obj = receiver->operand(); 2713 } 2714 assert(obj->is_valid(), "must be valid"); 2715 2716 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2717 LIR_Opr lock = syncLockOpr(); 2718 __ load_stack_address_monitor(0, lock); 2719 2720 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 2721 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2722 2723 // receiver is guaranteed non-null so don't need CodeEmitInfo 2724 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 2725 } 2726 } 2727 // increment invocation counters if needed 2728 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2729 profile_parameters(x); 2730 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 2731 increment_invocation_counter(info); 2732 } 2733 2734 // all blocks with a successor must end with an unconditional jump 2735 // to the successor even if they are consecutive 2736 __ jump(x->default_sux()); 2737 } 2738 2739 2740 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2741 // construct our frame and model the production of incoming pointer 2742 // to the OSR buffer. 2743 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2744 LIR_Opr result = rlock_result(x); 2745 __ move(LIR_Assembler::osrBufferPointer(), result); 2746 } 2747 2748 2749 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2750 assert(args->length() == arg_list->length(), 2751 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2752 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2753 LIRItem* param = args->at(i); 2754 LIR_Opr loc = arg_list->at(i); 2755 if (loc->is_register()) { 2756 param->load_item_force(loc); 2757 } else { 2758 LIR_Address* addr = loc->as_address_ptr(); 2759 param->load_for_store(addr->type()); 2760 if (addr->type() == T_OBJECT) { 2761 __ move_wide(param->result(), addr); 2762 } else 2763 __ move(param->result(), addr); 2764 } 2765 } 2766 2767 if (x->has_receiver()) { 2768 LIRItem* receiver = args->at(0); 2769 LIR_Opr loc = arg_list->at(0); 2770 if (loc->is_register()) { 2771 receiver->load_item_force(loc); 2772 } else { 2773 assert(loc->is_address(), "just checking"); 2774 receiver->load_for_store(T_OBJECT); 2775 __ move_wide(receiver->result(), loc->as_address_ptr()); 2776 } 2777 } 2778 } 2779 2780 2781 // Visits all arguments, returns appropriate items without loading them 2782 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2783 LIRItemList* argument_items = new LIRItemList(); 2784 if (x->has_receiver()) { 2785 LIRItem* receiver = new LIRItem(x->receiver(), this); 2786 argument_items->append(receiver); 2787 } 2788 for (int i = 0; i < x->number_of_arguments(); i++) { 2789 LIRItem* param = new LIRItem(x->argument_at(i), this); 2790 argument_items->append(param); 2791 } 2792 return argument_items; 2793 } 2794 2795 2796 // The invoke with receiver has following phases: 2797 // a) traverse and load/lock receiver; 2798 // b) traverse all arguments -> item-array (invoke_visit_argument) 2799 // c) push receiver on stack 2800 // d) load each of the items and push on stack 2801 // e) unlock receiver 2802 // f) move receiver into receiver-register %o0 2803 // g) lock result registers and emit call operation 2804 // 2805 // Before issuing a call, we must spill-save all values on stack 2806 // that are in caller-save register. "spill-save" moves those registers 2807 // either in a free callee-save register or spills them if no free 2808 // callee save register is available. 2809 // 2810 // The problem is where to invoke spill-save. 2811 // - if invoked between e) and f), we may lock callee save 2812 // register in "spill-save" that destroys the receiver register 2813 // before f) is executed 2814 // - if we rearrange f) to be earlier (by loading %o0) it 2815 // may destroy a value on the stack that is currently in %o0 2816 // and is waiting to be spilled 2817 // - if we keep the receiver locked while doing spill-save, 2818 // we cannot spill it as it is spill-locked 2819 // 2820 void LIRGenerator::do_Invoke(Invoke* x) { 2821 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2822 2823 LIR_OprList* arg_list = cc->args(); 2824 LIRItemList* args = invoke_visit_arguments(x); 2825 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2826 2827 // setup result register 2828 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2829 if (x->type() != voidType) { 2830 result_register = result_register_for(x->type()); 2831 } 2832 2833 CodeEmitInfo* info = state_for(x, x->state()); 2834 2835 invoke_load_arguments(x, args, arg_list); 2836 2837 if (x->has_receiver()) { 2838 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2839 receiver = args->at(0)->result(); 2840 } 2841 2842 // emit invoke code 2843 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2844 2845 // JSR 292 2846 // Preserve the SP over MethodHandle call sites, if needed. 2847 ciMethod* target = x->target(); 2848 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2849 target->is_method_handle_intrinsic() || 2850 target->is_compiled_lambda_form()); 2851 if (is_method_handle_invoke) { 2852 info->set_is_method_handle_invoke(true); 2853 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2854 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2855 } 2856 } 2857 2858 switch (x->code()) { 2859 case Bytecodes::_invokestatic: 2860 __ call_static(target, result_register, 2861 SharedRuntime::get_resolve_static_call_stub(), 2862 arg_list, info); 2863 break; 2864 case Bytecodes::_invokespecial: 2865 case Bytecodes::_invokevirtual: 2866 case Bytecodes::_invokeinterface: 2867 // for loaded and final (method or class) target we still produce an inline cache, 2868 // in order to be able to call mixed mode 2869 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2870 __ call_opt_virtual(target, receiver, result_register, 2871 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2872 arg_list, info); 2873 } else { 2874 __ call_icvirtual(target, receiver, result_register, 2875 SharedRuntime::get_resolve_virtual_call_stub(), 2876 arg_list, info); 2877 } 2878 break; 2879 case Bytecodes::_invokedynamic: { 2880 __ call_dynamic(target, receiver, result_register, 2881 SharedRuntime::get_resolve_static_call_stub(), 2882 arg_list, info); 2883 break; 2884 } 2885 default: 2886 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2887 break; 2888 } 2889 2890 // JSR 292 2891 // Restore the SP after MethodHandle call sites, if needed. 2892 if (is_method_handle_invoke 2893 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2894 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2895 } 2896 2897 if (result_register->is_valid()) { 2898 LIR_Opr result = rlock_result(x); 2899 __ move(result_register, result); 2900 } 2901 } 2902 2903 2904 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2905 assert(x->number_of_arguments() == 1, "wrong type"); 2906 LIRItem value (x->argument_at(0), this); 2907 LIR_Opr reg = rlock_result(x); 2908 value.load_item(); 2909 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2910 __ move(tmp, reg); 2911 } 2912 2913 2914 2915 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2916 void LIRGenerator::do_IfOp(IfOp* x) { 2917 #ifdef ASSERT 2918 { 2919 ValueTag xtag = x->x()->type()->tag(); 2920 ValueTag ttag = x->tval()->type()->tag(); 2921 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2922 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2923 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2924 } 2925 #endif 2926 2927 LIRItem left(x->x(), this); 2928 LIRItem right(x->y(), this); 2929 left.load_item(); 2930 if (can_inline_as_constant(right.value())) { 2931 right.dont_load_item(); 2932 } else { 2933 right.load_item(); 2934 } 2935 2936 LIRItem t_val(x->tval(), this); 2937 LIRItem f_val(x->fval(), this); 2938 t_val.dont_load_item(); 2939 f_val.dont_load_item(); 2940 LIR_Opr reg = rlock_result(x); 2941 2942 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2943 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2944 } 2945 2946 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2947 assert(x->number_of_arguments() == 0, "wrong type"); 2948 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2949 BasicTypeList signature; 2950 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2951 LIR_Opr reg = result_register_for(x->type()); 2952 __ call_runtime_leaf(routine, getThreadTemp(), 2953 reg, new LIR_OprList()); 2954 LIR_Opr result = rlock_result(x); 2955 __ move(reg, result); 2956 } 2957 2958 2959 2960 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2961 switch (x->id()) { 2962 case vmIntrinsics::_intBitsToFloat : 2963 case vmIntrinsics::_doubleToRawLongBits : 2964 case vmIntrinsics::_longBitsToDouble : 2965 case vmIntrinsics::_floatToRawIntBits : { 2966 do_FPIntrinsics(x); 2967 break; 2968 } 2969 2970 #ifdef JFR_HAVE_INTRINSICS 2971 case vmIntrinsics::_counterTime: 2972 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 2973 break; 2974 #endif 2975 2976 case vmIntrinsics::_currentTimeMillis: 2977 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2978 break; 2979 2980 case vmIntrinsics::_nanoTime: 2981 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2982 break; 2983 2984 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2985 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2986 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 2987 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 2988 case vmIntrinsics::_getClass: do_getClass(x); break; 2989 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2990 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 2991 case vmIntrinsics::_currentThread: do_vthread(x); break; 2992 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 2993 case vmIntrinsics::_shipilev_magic_sizeOf: do_sizeOf(x); break; 2994 case vmIntrinsics::_shipilev_magic_addressOf: do_addressOf(x); break; 2995 2996 case vmIntrinsics::_dlog: // fall through 2997 case vmIntrinsics::_dlog10: // fall through 2998 case vmIntrinsics::_dabs: // fall through 2999 case vmIntrinsics::_dsqrt: // fall through 3000 case vmIntrinsics::_dsqrt_strict: // fall through 3001 case vmIntrinsics::_dtan: // fall through 3002 case vmIntrinsics::_dsin : // fall through 3003 case vmIntrinsics::_dcos : // fall through 3004 case vmIntrinsics::_dexp : // fall through 3005 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3006 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3007 3008 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 3009 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 3010 3011 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 3012 case vmIntrinsics::_floatToFloat16: // fall through 3013 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 3014 3015 case vmIntrinsics::_Preconditions_checkIndex: 3016 do_PreconditionsCheckIndex(x, T_INT); 3017 break; 3018 case vmIntrinsics::_Preconditions_checkLongIndex: 3019 do_PreconditionsCheckIndex(x, T_LONG); 3020 break; 3021 3022 case vmIntrinsics::_compareAndSetReference: 3023 do_CompareAndSwap(x, objectType); 3024 break; 3025 case vmIntrinsics::_compareAndSetInt: 3026 do_CompareAndSwap(x, intType); 3027 break; 3028 case vmIntrinsics::_compareAndSetLong: 3029 do_CompareAndSwap(x, longType); 3030 break; 3031 3032 case vmIntrinsics::_loadFence : 3033 __ membar_acquire(); 3034 break; 3035 case vmIntrinsics::_storeFence: 3036 __ membar_release(); 3037 break; 3038 case vmIntrinsics::_storeStoreFence: 3039 __ membar_storestore(); 3040 break; 3041 case vmIntrinsics::_fullFence : 3042 __ membar(); 3043 break; 3044 case vmIntrinsics::_onSpinWait: 3045 __ on_spin_wait(); 3046 break; 3047 case vmIntrinsics::_Reference_get: 3048 do_Reference_get(x); 3049 break; 3050 3051 case vmIntrinsics::_updateCRC32: 3052 case vmIntrinsics::_updateBytesCRC32: 3053 case vmIntrinsics::_updateByteBufferCRC32: 3054 do_update_CRC32(x); 3055 break; 3056 3057 case vmIntrinsics::_updateBytesCRC32C: 3058 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3059 do_update_CRC32C(x); 3060 break; 3061 3062 case vmIntrinsics::_vectorizedMismatch: 3063 do_vectorizedMismatch(x); 3064 break; 3065 3066 case vmIntrinsics::_blackhole: 3067 do_blackhole(x); 3068 break; 3069 3070 default: ShouldNotReachHere(); break; 3071 } 3072 } 3073 3074 void LIRGenerator::profile_arguments(ProfileCall* x) { 3075 if (compilation()->profile_arguments()) { 3076 int bci = x->bci_of_invoke(); 3077 ciMethodData* md = x->method()->method_data_or_null(); 3078 assert(md != nullptr, "Sanity"); 3079 ciProfileData* data = md->bci_to_data(bci); 3080 if (data != nullptr) { 3081 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3082 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3083 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3084 int base_offset = md->byte_offset_of_slot(data, extra); 3085 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3086 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3087 3088 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3089 int start = 0; 3090 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3091 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3092 // first argument is not profiled at call (method handle invoke) 3093 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3094 start = 1; 3095 } 3096 ciSignature* callee_signature = x->callee()->signature(); 3097 // method handle call to virtual method 3098 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3099 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 3100 3101 bool ignored_will_link; 3102 ciSignature* signature_at_call = nullptr; 3103 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3104 ciSignatureStream signature_at_call_stream(signature_at_call); 3105 3106 // if called through method handle invoke, some arguments may have been popped 3107 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3108 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3109 ciKlass* exact = profile_type(md, base_offset, off, 3110 args->type(i), x->profiled_arg_at(i+start), mdp, 3111 !x->arg_needs_null_check(i+start), 3112 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3113 if (exact != nullptr) { 3114 md->set_argument_type(bci, i, exact); 3115 } 3116 } 3117 } else { 3118 #ifdef ASSERT 3119 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3120 int n = x->nb_profiled_args(); 3121 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3122 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3123 "only at JSR292 bytecodes"); 3124 #endif 3125 } 3126 } 3127 } 3128 } 3129 3130 // profile parameters on entry to an inlined method 3131 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3132 if (compilation()->profile_parameters() && x->inlined()) { 3133 ciMethodData* md = x->callee()->method_data_or_null(); 3134 if (md != nullptr) { 3135 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3136 if (parameters_type_data != nullptr) { 3137 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3138 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3139 bool has_receiver = !x->callee()->is_static(); 3140 ciSignature* sig = x->callee()->signature(); 3141 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3142 int i = 0; // to iterate on the Instructions 3143 Value arg = x->recv(); 3144 bool not_null = false; 3145 int bci = x->bci_of_invoke(); 3146 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3147 // The first parameter is the receiver so that's what we start 3148 // with if it exists. One exception is method handle call to 3149 // virtual method: the receiver is in the args list 3150 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3151 i = 1; 3152 arg = x->profiled_arg_at(0); 3153 not_null = !x->arg_needs_null_check(0); 3154 } 3155 int k = 0; // to iterate on the profile data 3156 for (;;) { 3157 intptr_t profiled_k = parameters->type(k); 3158 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3159 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3160 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3161 // If the profile is known statically set it once for all and do not emit any code 3162 if (exact != nullptr) { 3163 md->set_parameter_type(k, exact); 3164 } 3165 k++; 3166 if (k >= parameters_type_data->number_of_parameters()) { 3167 #ifdef ASSERT 3168 int extra = 0; 3169 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3170 x->nb_profiled_args() >= TypeProfileParmsLimit && 3171 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3172 extra += 1; 3173 } 3174 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3175 #endif 3176 break; 3177 } 3178 arg = x->profiled_arg_at(i); 3179 not_null = !x->arg_needs_null_check(i); 3180 i++; 3181 } 3182 } 3183 } 3184 } 3185 } 3186 3187 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3188 // Need recv in a temporary register so it interferes with the other temporaries 3189 LIR_Opr recv = LIR_OprFact::illegalOpr; 3190 LIR_Opr mdo = new_register(T_METADATA); 3191 // tmp is used to hold the counters on SPARC 3192 LIR_Opr tmp = new_pointer_register(); 3193 3194 if (x->nb_profiled_args() > 0) { 3195 profile_arguments(x); 3196 } 3197 3198 // profile parameters on inlined method entry including receiver 3199 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3200 profile_parameters_at_call(x); 3201 } 3202 3203 if (x->recv() != nullptr) { 3204 LIRItem value(x->recv(), this); 3205 value.load_item(); 3206 recv = new_register(T_OBJECT); 3207 __ move(value.result(), recv); 3208 } 3209 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3210 } 3211 3212 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3213 int bci = x->bci_of_invoke(); 3214 ciMethodData* md = x->method()->method_data_or_null(); 3215 assert(md != nullptr, "Sanity"); 3216 ciProfileData* data = md->bci_to_data(bci); 3217 if (data != nullptr) { 3218 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3219 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3220 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3221 3222 bool ignored_will_link; 3223 ciSignature* signature_at_call = nullptr; 3224 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3225 3226 // The offset within the MDO of the entry to update may be too large 3227 // to be used in load/store instructions on some platforms. So have 3228 // profile_type() compute the address of the profile in a register. 3229 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3230 ret->type(), x->ret(), mdp, 3231 !x->needs_null_check(), 3232 signature_at_call->return_type()->as_klass(), 3233 x->callee()->signature()->return_type()->as_klass()); 3234 if (exact != nullptr) { 3235 md->set_return_type(bci, exact); 3236 } 3237 } 3238 } 3239 3240 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3241 // We can safely ignore accessors here, since c2 will inline them anyway, 3242 // accessors are also always mature. 3243 if (!x->inlinee()->is_accessor()) { 3244 CodeEmitInfo* info = state_for(x, x->state(), true); 3245 // Notify the runtime very infrequently only to take care of counter overflows 3246 int freq_log = Tier23InlineeNotifyFreqLog; 3247 double scale; 3248 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3249 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3250 } 3251 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3252 } 3253 } 3254 3255 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3256 if (compilation()->is_profiling()) { 3257 #if defined(X86) && !defined(_LP64) 3258 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3259 LIR_Opr left_copy = new_register(left->type()); 3260 __ move(left, left_copy); 3261 __ cmp(cond, left_copy, right); 3262 #else 3263 __ cmp(cond, left, right); 3264 #endif 3265 LIR_Opr step = new_register(T_INT); 3266 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3267 LIR_Opr zero = LIR_OprFact::intConst(0); 3268 __ cmove(cond, 3269 (left_bci < bci) ? plus_one : zero, 3270 (right_bci < bci) ? plus_one : zero, 3271 step, left->type()); 3272 increment_backedge_counter(info, step, bci); 3273 } 3274 } 3275 3276 3277 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3278 int freq_log = 0; 3279 int level = compilation()->env()->comp_level(); 3280 if (level == CompLevel_limited_profile) { 3281 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3282 } else if (level == CompLevel_full_profile) { 3283 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3284 } else { 3285 ShouldNotReachHere(); 3286 } 3287 // Increment the appropriate invocation/backedge counter and notify the runtime. 3288 double scale; 3289 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3290 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3291 } 3292 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3293 } 3294 3295 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3296 ciMethod *method, LIR_Opr step, int frequency, 3297 int bci, bool backedge, bool notify) { 3298 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3299 int level = _compilation->env()->comp_level(); 3300 assert(level > CompLevel_simple, "Shouldn't be here"); 3301 3302 int offset = -1; 3303 LIR_Opr counter_holder; 3304 if (level == CompLevel_limited_profile) { 3305 MethodCounters* counters_adr = method->ensure_method_counters(); 3306 if (counters_adr == nullptr) { 3307 bailout("method counters allocation failed"); 3308 return; 3309 } 3310 counter_holder = new_pointer_register(); 3311 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3312 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3313 MethodCounters::invocation_counter_offset()); 3314 } else if (level == CompLevel_full_profile) { 3315 counter_holder = new_register(T_METADATA); 3316 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3317 MethodData::invocation_counter_offset()); 3318 ciMethodData* md = method->method_data_or_null(); 3319 assert(md != nullptr, "Sanity"); 3320 __ metadata2reg(md->constant_encoding(), counter_holder); 3321 } else { 3322 ShouldNotReachHere(); 3323 } 3324 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3325 LIR_Opr result = new_register(T_INT); 3326 __ load(counter, result); 3327 __ add(result, step, result); 3328 __ store(result, counter); 3329 if (notify && (!backedge || UseOnStackReplacement)) { 3330 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3331 // The bci for info can point to cmp for if's we want the if bci 3332 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3333 int freq = frequency << InvocationCounter::count_shift; 3334 if (freq == 0) { 3335 if (!step->is_constant()) { 3336 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3337 __ branch(lir_cond_notEqual, overflow); 3338 } else { 3339 __ branch(lir_cond_always, overflow); 3340 } 3341 } else { 3342 LIR_Opr mask = load_immediate(freq, T_INT); 3343 if (!step->is_constant()) { 3344 // If step is 0, make sure the overflow check below always fails 3345 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3346 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3347 } 3348 __ logical_and(result, mask, result); 3349 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3350 __ branch(lir_cond_equal, overflow); 3351 } 3352 __ branch_destination(overflow->continuation()); 3353 } 3354 } 3355 3356 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3357 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3358 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3359 3360 if (x->pass_thread()) { 3361 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3362 args->append(getThreadPointer()); 3363 } 3364 3365 for (int i = 0; i < x->number_of_arguments(); i++) { 3366 Value a = x->argument_at(i); 3367 LIRItem* item = new LIRItem(a, this); 3368 item->load_item(); 3369 args->append(item->result()); 3370 signature->append(as_BasicType(a->type())); 3371 } 3372 3373 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3374 if (x->type() == voidType) { 3375 set_no_result(x); 3376 } else { 3377 __ move(result, rlock_result(x)); 3378 } 3379 } 3380 3381 #ifdef ASSERT 3382 void LIRGenerator::do_Assert(Assert *x) { 3383 ValueTag tag = x->x()->type()->tag(); 3384 If::Condition cond = x->cond(); 3385 3386 LIRItem xitem(x->x(), this); 3387 LIRItem yitem(x->y(), this); 3388 LIRItem* xin = &xitem; 3389 LIRItem* yin = &yitem; 3390 3391 assert(tag == intTag, "Only integer assertions are valid!"); 3392 3393 xin->load_item(); 3394 yin->dont_load_item(); 3395 3396 set_no_result(x); 3397 3398 LIR_Opr left = xin->result(); 3399 LIR_Opr right = yin->result(); 3400 3401 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3402 } 3403 #endif 3404 3405 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3406 3407 3408 Instruction *a = x->x(); 3409 Instruction *b = x->y(); 3410 if (!a || StressRangeCheckElimination) { 3411 assert(!b || StressRangeCheckElimination, "B must also be null"); 3412 3413 CodeEmitInfo *info = state_for(x, x->state()); 3414 CodeStub* stub = new PredicateFailedStub(info); 3415 3416 __ jump(stub); 3417 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3418 int a_int = a->type()->as_IntConstant()->value(); 3419 int b_int = b->type()->as_IntConstant()->value(); 3420 3421 bool ok = false; 3422 3423 switch(x->cond()) { 3424 case Instruction::eql: ok = (a_int == b_int); break; 3425 case Instruction::neq: ok = (a_int != b_int); break; 3426 case Instruction::lss: ok = (a_int < b_int); break; 3427 case Instruction::leq: ok = (a_int <= b_int); break; 3428 case Instruction::gtr: ok = (a_int > b_int); break; 3429 case Instruction::geq: ok = (a_int >= b_int); break; 3430 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3431 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3432 default: ShouldNotReachHere(); 3433 } 3434 3435 if (ok) { 3436 3437 CodeEmitInfo *info = state_for(x, x->state()); 3438 CodeStub* stub = new PredicateFailedStub(info); 3439 3440 __ jump(stub); 3441 } 3442 } else { 3443 3444 ValueTag tag = x->x()->type()->tag(); 3445 If::Condition cond = x->cond(); 3446 LIRItem xitem(x->x(), this); 3447 LIRItem yitem(x->y(), this); 3448 LIRItem* xin = &xitem; 3449 LIRItem* yin = &yitem; 3450 3451 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3452 3453 xin->load_item(); 3454 yin->dont_load_item(); 3455 set_no_result(x); 3456 3457 LIR_Opr left = xin->result(); 3458 LIR_Opr right = yin->result(); 3459 3460 CodeEmitInfo *info = state_for(x, x->state()); 3461 CodeStub* stub = new PredicateFailedStub(info); 3462 3463 __ cmp(lir_cond(cond), left, right); 3464 __ branch(lir_cond(cond), stub); 3465 } 3466 } 3467 3468 void LIRGenerator::do_blackhole(Intrinsic *x) { 3469 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3470 for (int c = 0; c < x->number_of_arguments(); c++) { 3471 // Load the argument 3472 LIRItem vitem(x->argument_at(c), this); 3473 vitem.load_item(); 3474 // ...and leave it unused. 3475 } 3476 } 3477 3478 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3479 LIRItemList args(1); 3480 LIRItem value(arg1, this); 3481 args.append(&value); 3482 BasicTypeList signature; 3483 signature.append(as_BasicType(arg1->type())); 3484 3485 return call_runtime(&signature, &args, entry, result_type, info); 3486 } 3487 3488 3489 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3490 LIRItemList args(2); 3491 LIRItem value1(arg1, this); 3492 LIRItem value2(arg2, this); 3493 args.append(&value1); 3494 args.append(&value2); 3495 BasicTypeList signature; 3496 signature.append(as_BasicType(arg1->type())); 3497 signature.append(as_BasicType(arg2->type())); 3498 3499 return call_runtime(&signature, &args, entry, result_type, info); 3500 } 3501 3502 3503 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3504 address entry, ValueType* result_type, CodeEmitInfo* info) { 3505 // get a result register 3506 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3507 LIR_Opr result = LIR_OprFact::illegalOpr; 3508 if (result_type->tag() != voidTag) { 3509 result = new_register(result_type); 3510 phys_reg = result_register_for(result_type); 3511 } 3512 3513 // move the arguments into the correct location 3514 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3515 assert(cc->length() == args->length(), "argument mismatch"); 3516 for (int i = 0; i < args->length(); i++) { 3517 LIR_Opr arg = args->at(i); 3518 LIR_Opr loc = cc->at(i); 3519 if (loc->is_register()) { 3520 __ move(arg, loc); 3521 } else { 3522 LIR_Address* addr = loc->as_address_ptr(); 3523 // if (!can_store_as_constant(arg)) { 3524 // LIR_Opr tmp = new_register(arg->type()); 3525 // __ move(arg, tmp); 3526 // arg = tmp; 3527 // } 3528 __ move(arg, addr); 3529 } 3530 } 3531 3532 if (info) { 3533 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3534 } else { 3535 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3536 } 3537 if (result->is_valid()) { 3538 __ move(phys_reg, result); 3539 } 3540 return result; 3541 } 3542 3543 3544 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3545 address entry, ValueType* result_type, CodeEmitInfo* info) { 3546 // get a result register 3547 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3548 LIR_Opr result = LIR_OprFact::illegalOpr; 3549 if (result_type->tag() != voidTag) { 3550 result = new_register(result_type); 3551 phys_reg = result_register_for(result_type); 3552 } 3553 3554 // move the arguments into the correct location 3555 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3556 3557 assert(cc->length() == args->length(), "argument mismatch"); 3558 for (int i = 0; i < args->length(); i++) { 3559 LIRItem* arg = args->at(i); 3560 LIR_Opr loc = cc->at(i); 3561 if (loc->is_register()) { 3562 arg->load_item_force(loc); 3563 } else { 3564 LIR_Address* addr = loc->as_address_ptr(); 3565 arg->load_for_store(addr->type()); 3566 __ move(arg->result(), addr); 3567 } 3568 } 3569 3570 if (info) { 3571 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3572 } else { 3573 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3574 } 3575 if (result->is_valid()) { 3576 __ move(phys_reg, result); 3577 } 3578 return result; 3579 } 3580 3581 void LIRGenerator::do_MemBar(MemBar* x) { 3582 LIR_Code code = x->code(); 3583 switch(code) { 3584 case lir_membar_acquire : __ membar_acquire(); break; 3585 case lir_membar_release : __ membar_release(); break; 3586 case lir_membar : __ membar(); break; 3587 case lir_membar_loadload : __ membar_loadload(); break; 3588 case lir_membar_storestore: __ membar_storestore(); break; 3589 case lir_membar_loadstore : __ membar_loadstore(); break; 3590 case lir_membar_storeload : __ membar_storeload(); break; 3591 default : ShouldNotReachHere(); break; 3592 } 3593 } 3594 3595 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3596 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3597 if (two_operand_lir_form) { 3598 __ move(value, value_fixed); 3599 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3600 } else { 3601 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3602 } 3603 LIR_Opr klass = new_register(T_METADATA); 3604 load_klass(array, klass, null_check_info); 3605 null_check_info = nullptr; 3606 LIR_Opr layout = new_register(T_INT); 3607 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3608 int diffbit = Klass::layout_helper_boolean_diffbit(); 3609 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3610 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3611 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3612 value = value_fixed; 3613 return value; 3614 }