1 /* 2 * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_C1_C1_LIRGENERATOR_HPP 26 #define SHARE_C1_C1_LIRGENERATOR_HPP 27 28 #include "c1/c1_Decorators.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIR.hpp" 31 #include "ci/ciMethodData.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "utilities/macros.hpp" 35 #include "utilities/sizes.hpp" 36 37 class BarrierSetC1; 38 39 // The classes responsible for code emission and register allocation 40 41 42 class LIRGenerator; 43 class LIREmitter; 44 class Invoke; 45 class LIRItem; 46 47 typedef GrowableArray<LIRItem*> LIRItemList; 48 49 class C1SwitchRange: public CompilationResourceObj { 50 private: 51 int _low_key; 52 int _high_key; 53 BlockBegin* _sux; 54 public: 55 C1SwitchRange(int start_key, BlockBegin* sux): _low_key(start_key), _high_key(start_key), _sux(sux) {} 56 void set_high_key(int key) { _high_key = key; } 57 58 int high_key() const { return _high_key; } 59 int low_key() const { return _low_key; } 60 BlockBegin* sux() const { return _sux; } 61 }; 62 63 typedef GrowableArray<C1SwitchRange*> SwitchRangeArray; 64 typedef GrowableArray<C1SwitchRange*> SwitchRangeList; 65 66 class ResolveNode; 67 68 typedef GrowableArray<ResolveNode*> NodeList; 69 70 // Node objects form a directed graph of LIR_Opr 71 // Edges between Nodes represent moves from one Node to its destinations 72 class ResolveNode: public CompilationResourceObj { 73 private: 74 LIR_Opr _operand; // the source or destinaton 75 NodeList _destinations; // for the operand 76 bool _assigned; // Value assigned to this Node? 77 bool _visited; // Node already visited? 78 bool _start_node; // Start node already visited? 79 80 public: 81 ResolveNode(LIR_Opr operand) 82 : _operand(operand) 83 , _assigned(false) 84 , _visited(false) 85 , _start_node(false) {}; 86 87 // accessors 88 LIR_Opr operand() const { return _operand; } 89 int no_of_destinations() const { return _destinations.length(); } 90 ResolveNode* destination_at(int i) { return _destinations.at(i); } 91 bool assigned() const { return _assigned; } 92 bool visited() const { return _visited; } 93 bool start_node() const { return _start_node; } 94 95 // modifiers 96 void append(ResolveNode* dest) { _destinations.append(dest); } 97 void set_assigned() { _assigned = true; } 98 void set_visited() { _visited = true; } 99 void set_start_node() { _start_node = true; } 100 }; 101 102 103 // This is shared state to be used by the PhiResolver so the operand 104 // arrays don't have to be reallocated for each resolution. 105 class PhiResolverState: public CompilationResourceObj { 106 friend class PhiResolver; 107 108 private: 109 NodeList _virtual_operands; // Nodes where the operand is a virtual register 110 NodeList _other_operands; // Nodes where the operand is not a virtual register 111 NodeList _vreg_table; // Mapping from virtual register to Node 112 113 public: 114 PhiResolverState() {} 115 116 void reset(); 117 }; 118 119 120 // class used to move value of phi operand to phi function 121 class PhiResolver: public CompilationResourceObj { 122 private: 123 LIRGenerator* _gen; 124 PhiResolverState& _state; // temporary state cached by LIRGenerator 125 126 ResolveNode* _loop; 127 LIR_Opr _temp; 128 129 // access to shared state arrays 130 NodeList& virtual_operands() { return _state._virtual_operands; } 131 NodeList& other_operands() { return _state._other_operands; } 132 NodeList& vreg_table() { return _state._vreg_table; } 133 134 ResolveNode* create_node(LIR_Opr opr, bool source); 135 ResolveNode* source_node(LIR_Opr opr) { return create_node(opr, true); } 136 ResolveNode* destination_node(LIR_Opr opr) { return create_node(opr, false); } 137 138 void emit_move(LIR_Opr src, LIR_Opr dest); 139 void move_to_temp(LIR_Opr src); 140 void move_temp_to(LIR_Opr dest); 141 void move(ResolveNode* src, ResolveNode* dest); 142 143 LIRGenerator* gen() { 144 return _gen; 145 } 146 147 public: 148 PhiResolver(LIRGenerator* _lir_gen); 149 ~PhiResolver(); 150 151 void move(LIR_Opr src, LIR_Opr dest); 152 }; 153 154 155 // only the classes below belong in the same file 156 class LIRGenerator: public InstructionVisitor, public BlockClosure { 157 // LIRGenerator should never get instatiated on the heap. 158 private: 159 void* operator new(size_t size) throw(); 160 void* operator new[](size_t size) throw(); 161 void operator delete(void* p) { ShouldNotReachHere(); } 162 void operator delete[](void* p) { ShouldNotReachHere(); } 163 164 Compilation* _compilation; 165 ciMethod* _method; // method that we are compiling 166 PhiResolverState _resolver_state; 167 BlockBegin* _block; 168 int _virtual_register_number; 169 Values _instruction_for_operand; 170 BitMap2D _vreg_flags; // flags which can be set on a per-vreg basis 171 LIR_List* _lir; 172 173 LIRGenerator* gen() { 174 return this; 175 } 176 177 void print_if_not_loaded(const NewInstance* new_instance) PRODUCT_RETURN; 178 179 public: 180 #ifdef ASSERT 181 LIR_List* lir(const char * file, int line) const { 182 _lir->set_file_and_line(file, line); 183 return _lir; 184 } 185 #endif 186 LIR_List* lir() const { 187 return _lir; 188 } 189 190 private: 191 // a simple cache of constants used within a block 192 GrowableArray<LIR_Const*> _constants; 193 LIR_OprList _reg_for_constants; 194 Values _unpinned_constants; 195 196 friend class PhiResolver; 197 198 public: 199 // unified bailout support 200 void bailout(const char* msg) const { compilation()->bailout(msg); } 201 bool bailed_out() const { return compilation()->bailed_out(); } 202 203 void block_do_prolog(BlockBegin* block); 204 void block_do_epilog(BlockBegin* block); 205 206 // register allocation 207 LIR_Opr rlock(Value instr); // lock a free register 208 LIR_Opr rlock_result(Value instr); 209 LIR_Opr rlock_result(Value instr, BasicType type); 210 LIR_Opr rlock_byte(BasicType type); 211 LIR_Opr rlock_callee_saved(BasicType type); 212 213 // get a constant into a register and get track of what register was used 214 LIR_Opr load_constant(Constant* x); 215 LIR_Opr load_constant(LIR_Const* constant); 216 217 // Given an immediate value, return an operand usable in logical ops. 218 LIR_Opr load_immediate(jlong x, BasicType type); 219 220 void set_result(Value x, LIR_Opr opr) { 221 assert(opr->is_valid(), "must set to valid value"); 222 assert(x->operand()->is_illegal(), "operand should never change"); 223 assert(!opr->is_register() || opr->is_virtual(), "should never set result to a physical register"); 224 x->set_operand(opr); 225 assert(opr == x->operand(), "must be"); 226 if (opr->is_virtual()) { 227 _instruction_for_operand.at_put_grow(opr->vreg_number(), x, nullptr); 228 } 229 } 230 void set_no_result(Value x) { assert(!x->has_uses(), "can't have use"); x->clear_operand(); } 231 232 friend class LIRItem; 233 234 LIR_Opr round_item(LIR_Opr opr); 235 LIR_Opr force_to_spill(LIR_Opr value, BasicType t); 236 237 PhiResolverState& resolver_state() { return _resolver_state; } 238 239 void move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val); 240 void move_to_phi(ValueStack* cur_state); 241 242 void load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info); 243 244 // platform dependent 245 LIR_Opr getThreadPointer(); 246 247 private: 248 // code emission 249 void do_ArithmeticOp_Long(ArithmeticOp* x); 250 void do_ArithmeticOp_Int (ArithmeticOp* x); 251 void do_ArithmeticOp_FPU (ArithmeticOp* x); 252 253 void do_RegisterFinalizer(Intrinsic* x); 254 void do_isInstance(Intrinsic* x); 255 void do_isPrimitive(Intrinsic* x); 256 void do_getModifiers(Intrinsic* x); 257 void do_getClass(Intrinsic* x); 258 void do_getObjectSize(Intrinsic* x); 259 void do_currentCarrierThread(Intrinsic* x); 260 void do_scopedValueCache(Intrinsic* x); 261 void do_vthread(Intrinsic* x); 262 void do_JavaThreadField(Intrinsic* x, ByteSize offset); 263 void do_sizeOf(Intrinsic* x); 264 void do_addressOf(Intrinsic* x); 265 void do_FmaIntrinsic(Intrinsic* x); 266 void do_MathIntrinsic(Intrinsic* x); 267 void do_LibmIntrinsic(Intrinsic* x); 268 void do_ArrayCopy(Intrinsic* x); 269 void do_CompareAndSwap(Intrinsic* x, ValueType* type); 270 void do_PreconditionsCheckIndex(Intrinsic* x, BasicType type); 271 void do_FPIntrinsics(Intrinsic* x); 272 void do_Reference_get(Intrinsic* x); 273 void do_update_CRC32(Intrinsic* x); 274 void do_update_CRC32C(Intrinsic* x); 275 void do_vectorizedMismatch(Intrinsic* x); 276 void do_blackhole(Intrinsic* x); 277 278 public: 279 LIR_Opr call_runtime(BasicTypeArray* signature, LIRItemList* args, address entry, ValueType* result_type, CodeEmitInfo* info); 280 LIR_Opr call_runtime(BasicTypeArray* signature, LIR_OprList* args, address entry, ValueType* result_type, CodeEmitInfo* info); 281 282 // convenience functions 283 LIR_Opr call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info); 284 LIR_Opr call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info); 285 286 // Access API 287 288 private: 289 BarrierSetC1 *_barrier_set; 290 291 public: 292 void access_store_at(DecoratorSet decorators, BasicType type, 293 LIRItem& base, LIR_Opr offset, LIR_Opr value, 294 CodeEmitInfo* patch_info = nullptr, CodeEmitInfo* store_emit_info = nullptr); 295 296 void access_load_at(DecoratorSet decorators, BasicType type, 297 LIRItem& base, LIR_Opr offset, LIR_Opr result, 298 CodeEmitInfo* patch_info = nullptr, CodeEmitInfo* load_emit_info = nullptr); 299 300 void access_load(DecoratorSet decorators, BasicType type, 301 LIR_Opr addr, LIR_Opr result); 302 303 LIR_Opr access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 304 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value); 305 306 LIR_Opr access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 307 LIRItem& base, LIRItem& offset, LIRItem& value); 308 309 LIR_Opr access_atomic_add_at(DecoratorSet decorators, BasicType type, 310 LIRItem& base, LIRItem& offset, LIRItem& value); 311 312 // These need to guarantee JMM volatile semantics are preserved on each platform 313 // and requires one implementation per architecture. 314 LIR_Opr atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value); 315 LIR_Opr atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& new_value); 316 LIR_Opr atomic_add(BasicType type, LIR_Opr addr, LIRItem& new_value); 317 318 #ifdef CARDTABLEBARRIERSET_POST_BARRIER_HELPER 319 virtual void CardTableBarrierSet_post_barrier_helper(LIR_Opr addr, LIR_Const* card_table_base); 320 #endif 321 322 // specific implementations 323 void array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci); 324 325 static LIR_Opr result_register_for(ValueType* type, bool callee = false); 326 327 ciObject* get_jobject_constant(Value value); 328 329 LIRItemList* invoke_visit_arguments(Invoke* x); 330 void invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list); 331 332 void trace_block_entry(BlockBegin* block); 333 334 // volatile field operations are never patchable because a klass 335 // must be loaded to know it's volatile which means that the offset 336 // it always known as well. 337 void volatile_field_store(LIR_Opr value, LIR_Address* address, CodeEmitInfo* info); 338 void volatile_field_load(LIR_Address* address, LIR_Opr result, CodeEmitInfo* info); 339 340 void put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data, BasicType type, bool is_volatile); 341 void get_Object_unsafe(LIR_Opr dest, LIR_Opr src, LIR_Opr offset, BasicType type, bool is_volatile); 342 343 void arithmetic_call_op (Bytecodes::Code code, LIR_Opr result, LIR_OprList* args); 344 345 void increment_counter(address counter, BasicType type, int step = 1); 346 void increment_counter(LIR_Address* addr, int step = 1); 347 348 void arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp, CodeEmitInfo* info = nullptr); 349 // machine dependent. returns true if it emitted code for the multiply 350 bool strength_reduce_multiply(LIR_Opr left, jint constant, LIR_Opr result, LIR_Opr tmp); 351 352 void store_stack_parameter (LIR_Opr opr, ByteSize offset_from_sp_in_bytes); 353 354 void klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve = false); 355 356 // this loads the length and compares against the index 357 void array_range_check (LIR_Opr array, LIR_Opr index, CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info); 358 359 void arithmetic_op_int (Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp); 360 void arithmetic_op_long (Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = nullptr); 361 void arithmetic_op_fpu (Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp = LIR_OprFact::illegalOpr); 362 363 void shift_op (Bytecodes::Code code, LIR_Opr dst_reg, LIR_Opr value, LIR_Opr count, LIR_Opr tmp); 364 365 void logic_op (Bytecodes::Code code, LIR_Opr dst_reg, LIR_Opr left, LIR_Opr right); 366 367 void monitor_enter (LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info); 368 void monitor_exit (LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no); 369 370 void new_instance (LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info); 371 372 // machine dependent 373 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); 374 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info); 375 376 void arraycopy_helper(Intrinsic* x, int* flags, ciArrayKlass** expected_type); 377 378 // returns a LIR_Address to address an array location. May also 379 // emit some code as part of address calculation. If 380 // needs_card_mark is true then compute the full address for use by 381 // both the store and the card mark. 382 LIR_Address* generate_address(LIR_Opr base, 383 LIR_Opr index, int shift, 384 int disp, 385 BasicType type); 386 LIR_Address* generate_address(LIR_Opr base, int disp, BasicType type) { 387 return generate_address(base, LIR_OprFact::illegalOpr, 0, disp, type); 388 } 389 LIR_Address* emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, BasicType type); 390 391 // the helper for generate_address 392 void add_large_constant(LIR_Opr src, int c, LIR_Opr dest); 393 394 // machine preferences and characteristics 395 bool can_inline_as_constant(Value i S390_ONLY(COMMA int bits = 20)) const; 396 bool can_inline_as_constant(LIR_Const* c) const; 397 bool can_store_as_constant(Value i, BasicType type) const; 398 399 LIR_Opr safepoint_poll_register(); 400 401 void profile_branch(If* if_instr, If::Condition cond); 402 void increment_event_counter_impl(CodeEmitInfo* info, 403 ciMethod *method, LIR_Opr step, int frequency, 404 int bci, bool backedge, bool notify); 405 void increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge); 406 void increment_invocation_counter(CodeEmitInfo *info) { 407 if (compilation()->is_profiling()) { 408 increment_event_counter(info, LIR_OprFact::intConst(InvocationCounter::count_increment), InvocationEntryBci, false); 409 } 410 } 411 void increment_backedge_counter(CodeEmitInfo* info, int bci) { 412 if (compilation()->is_profiling()) { 413 increment_event_counter(info, LIR_OprFact::intConst(InvocationCounter::count_increment), bci, true); 414 } 415 } 416 void increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci); 417 void increment_backedge_counter(CodeEmitInfo* info, LIR_Opr step, int bci) { 418 if (compilation()->is_profiling()) { 419 increment_event_counter(info, step, bci, true); 420 } 421 } 422 CodeEmitInfo* state_for(Instruction* x, ValueStack* state, bool ignore_xhandler = false); 423 CodeEmitInfo* state_for(Instruction* x); 424 425 // allocates a virtual register for this instruction if 426 // one isn't already allocated. Only for Phi and Local. 427 LIR_Opr operand_for_instruction(Instruction *x); 428 429 void set_block(BlockBegin* block) { _block = block; } 430 431 void block_prolog(BlockBegin* block); 432 void block_epilog(BlockBegin* block); 433 434 void do_root (Instruction* instr); 435 void walk (Instruction* instr); 436 437 LIR_Opr new_register(BasicType type); 438 LIR_Opr new_register(Value value) { return new_register(as_BasicType(value->type())); } 439 LIR_Opr new_register(ValueType* type) { return new_register(as_BasicType(type)); } 440 441 // returns a register suitable for doing pointer math 442 LIR_Opr new_pointer_register() { 443 #ifdef _LP64 444 return new_register(T_LONG); 445 #else 446 return new_register(T_INT); 447 #endif 448 } 449 450 static LIR_Condition lir_cond(If::Condition cond) { 451 LIR_Condition l = lir_cond_unknown; 452 switch (cond) { 453 case If::eql: l = lir_cond_equal; break; 454 case If::neq: l = lir_cond_notEqual; break; 455 case If::lss: l = lir_cond_less; break; 456 case If::leq: l = lir_cond_lessEqual; break; 457 case If::geq: l = lir_cond_greaterEqual; break; 458 case If::gtr: l = lir_cond_greater; break; 459 case If::aeq: l = lir_cond_aboveEqual; break; 460 case If::beq: l = lir_cond_belowEqual; break; 461 default: fatal("You must pass valid If::Condition"); 462 }; 463 return l; 464 } 465 466 #ifdef __SOFTFP__ 467 void do_soft_float_compare(If *x); 468 #endif // __SOFTFP__ 469 470 SwitchRangeArray* create_lookup_ranges(TableSwitch* x); 471 SwitchRangeArray* create_lookup_ranges(LookupSwitch* x); 472 void do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux); 473 474 void do_RuntimeCall(address routine, Intrinsic* x); 475 476 ciKlass* profile_type(ciMethodData* md, int md_first_offset, int md_offset, intptr_t profiled_k, 477 Value arg, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 478 ciKlass* callee_signature_k); 479 void profile_arguments(ProfileCall* x); 480 void profile_parameters(Base* x); 481 void profile_parameters_at_call(ProfileCall* x); 482 LIR_Opr mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info); 483 484 void do_sizeOf_impl(Intrinsic* x, int arg_idx); 485 486 public: 487 Compilation* compilation() const { return _compilation; } 488 FrameMap* frame_map() const { return _compilation->frame_map(); } 489 ciMethod* method() const { return _method; } 490 BlockBegin* block() const { return _block; } 491 IRScope* scope() const { return block()->scope(); } 492 493 int max_virtual_register_number() const { return _virtual_register_number; } 494 495 void block_do(BlockBegin* block); 496 497 // Flags that can be set on vregs 498 enum VregFlag { 499 must_start_in_memory = 0 // needs to be assigned a memory location at beginning, but may then be loaded in a register 500 , callee_saved = 1 // must be in a callee saved register 501 , byte_reg = 2 // must be in a byte register 502 , num_vreg_flags 503 504 }; 505 506 LIRGenerator(Compilation* compilation, ciMethod* method) 507 : _compilation(compilation) 508 , _method(method) 509 , _virtual_register_number(LIR_Opr::vreg_base) 510 , _vreg_flags(num_vreg_flags) 511 , _barrier_set(BarrierSet::barrier_set()->barrier_set_c1()) { 512 } 513 514 // for virtual registers, maps them back to Phi's or Local's 515 Instruction* instruction_for_opr(LIR_Opr opr); 516 Instruction* instruction_for_vreg(int reg_num); 517 518 void set_vreg_flag (int vreg_num, VregFlag f); 519 bool is_vreg_flag_set(int vreg_num, VregFlag f); 520 void set_vreg_flag (LIR_Opr opr, VregFlag f) { set_vreg_flag(opr->vreg_number(), f); } 521 bool is_vreg_flag_set(LIR_Opr opr, VregFlag f) { return is_vreg_flag_set(opr->vreg_number(), f); } 522 523 // statics 524 static LIR_Opr exceptionOopOpr(); 525 static LIR_Opr exceptionPcOpr(); 526 static LIR_Opr divInOpr(); 527 static LIR_Opr divOutOpr(); 528 static LIR_Opr remOutOpr(); 529 #ifdef S390 530 // On S390 we can do ldiv, lrem without RT call. 531 static LIR_Opr ldivInOpr(); 532 static LIR_Opr ldivOutOpr(); 533 static LIR_Opr lremOutOpr(); 534 #endif 535 static LIR_Opr shiftCountOpr(); 536 LIR_Opr syncLockOpr(); 537 LIR_Opr syncTempOpr(); 538 LIR_Opr atomicLockOpr(); 539 540 // returns a register suitable for saving the thread in a 541 // call_runtime_leaf if one is needed. 542 LIR_Opr getThreadTemp(); 543 544 // visitor functionality 545 virtual void do_Phi (Phi* x); 546 virtual void do_Local (Local* x); 547 virtual void do_Constant (Constant* x); 548 virtual void do_LoadField (LoadField* x); 549 virtual void do_StoreField (StoreField* x); 550 virtual void do_ArrayLength (ArrayLength* x); 551 virtual void do_LoadIndexed (LoadIndexed* x); 552 virtual void do_StoreIndexed (StoreIndexed* x); 553 virtual void do_NegateOp (NegateOp* x); 554 virtual void do_ArithmeticOp (ArithmeticOp* x); 555 virtual void do_ShiftOp (ShiftOp* x); 556 virtual void do_LogicOp (LogicOp* x); 557 virtual void do_CompareOp (CompareOp* x); 558 virtual void do_IfOp (IfOp* x); 559 virtual void do_Convert (Convert* x); 560 virtual void do_NullCheck (NullCheck* x); 561 virtual void do_TypeCast (TypeCast* x); 562 virtual void do_Invoke (Invoke* x); 563 virtual void do_NewInstance (NewInstance* x); 564 virtual void do_NewTypeArray (NewTypeArray* x); 565 virtual void do_NewObjectArray (NewObjectArray* x); 566 virtual void do_NewMultiArray (NewMultiArray* x); 567 virtual void do_CheckCast (CheckCast* x); 568 virtual void do_InstanceOf (InstanceOf* x); 569 virtual void do_MonitorEnter (MonitorEnter* x); 570 virtual void do_MonitorExit (MonitorExit* x); 571 virtual void do_Intrinsic (Intrinsic* x); 572 virtual void do_BlockBegin (BlockBegin* x); 573 virtual void do_Goto (Goto* x); 574 virtual void do_If (If* x); 575 virtual void do_TableSwitch (TableSwitch* x); 576 virtual void do_LookupSwitch (LookupSwitch* x); 577 virtual void do_Return (Return* x); 578 virtual void do_Throw (Throw* x); 579 virtual void do_Base (Base* x); 580 virtual void do_OsrEntry (OsrEntry* x); 581 virtual void do_ExceptionObject(ExceptionObject* x); 582 virtual void do_RoundFP (RoundFP* x); 583 virtual void do_UnsafeGet (UnsafeGet* x); 584 virtual void do_UnsafePut (UnsafePut* x); 585 virtual void do_UnsafeGetAndSet(UnsafeGetAndSet* x); 586 virtual void do_ProfileCall (ProfileCall* x); 587 virtual void do_ProfileReturnType (ProfileReturnType* x); 588 virtual void do_ProfileInvoke (ProfileInvoke* x); 589 virtual void do_RuntimeCall (RuntimeCall* x); 590 virtual void do_MemBar (MemBar* x); 591 virtual void do_RangeCheckPredicate(RangeCheckPredicate* x); 592 #ifdef ASSERT 593 virtual void do_Assert (Assert* x); 594 #endif 595 596 #ifdef C1_LIRGENERATOR_MD_HPP 597 #include C1_LIRGENERATOR_MD_HPP 598 #endif 599 }; 600 601 602 class LIRItem: public CompilationResourceObj { 603 private: 604 Value _value; 605 LIRGenerator* _gen; 606 LIR_Opr _result; 607 bool _destroys_register; 608 LIR_Opr _new_result; 609 610 LIRGenerator* gen() const { return _gen; } 611 612 public: 613 LIRItem(Value value, LIRGenerator* gen) { 614 _destroys_register = false; 615 _gen = gen; 616 set_instruction(value); 617 } 618 619 LIRItem(LIRGenerator* gen) { 620 _destroys_register = false; 621 _gen = gen; 622 _result = LIR_OprFact::illegalOpr; 623 set_instruction(nullptr); 624 } 625 626 void set_instruction(Value value) { 627 _value = value; 628 _result = LIR_OprFact::illegalOpr; 629 if (_value != nullptr) { 630 _gen->walk(_value); 631 _result = _value->operand(); 632 } 633 _new_result = LIR_OprFact::illegalOpr; 634 } 635 636 Value value() const { return _value; } 637 ValueType* type() const { return value()->type(); } 638 LIR_Opr result() { 639 assert(!_destroys_register || (!_result->is_register() || _result->is_virtual()), 640 "shouldn't use set_destroys_register with physical registers"); 641 if (_destroys_register && _result->is_register()) { 642 if (_new_result->is_illegal()) { 643 _new_result = _gen->new_register(type()); 644 gen()->lir()->move(_result, _new_result); 645 } 646 return _new_result; 647 } else { 648 return _result; 649 } 650 } 651 652 void set_result(LIR_Opr opr); 653 654 void load_item(); 655 void load_byte_item(); 656 void load_nonconstant(S390_ONLY(int bits = 20)); 657 // load any values which can't be expressed as part of a single store instruction 658 void load_for_store(BasicType store_type); 659 void load_item_force(LIR_Opr reg); 660 661 void dont_load_item() { 662 // do nothing 663 } 664 665 void set_destroys_register() { 666 _destroys_register = true; 667 } 668 669 bool is_constant() const { return value()->as_Constant() != nullptr; } 670 bool is_stack() { return result()->is_stack(); } 671 bool is_register() { return result()->is_register(); } 672 673 ciObject* get_jobject_constant() const; 674 jint get_jint_constant() const; 675 jlong get_jlong_constant() const; 676 jfloat get_jfloat_constant() const; 677 jdouble get_jdouble_constant() const; 678 jint get_address_constant() const; 679 }; 680 681 #endif // SHARE_C1_C1_LIRGENERATOR_HPP