< prev index next > src/hotspot/share/gc/epsilon/epsilonHeap.cpp
Print this page
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/epsilon/epsilonHeap.hpp"
#include "gc/epsilon/epsilonInitLogger.hpp"
#include "gc/epsilon/epsilonMemoryPool.hpp"
#include "gc/epsilon/epsilonThreadLocalData.hpp"
#include "gc/shared/gcArguments.hpp"
#include "gc/shared/locationPrinter.inline.hpp"
#include "logging/log.hpp"
#include "memory/allocation.hpp"
! #include "memory/allocation.inline.hpp"
#include "memory/metaspaceUtils.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "runtime/atomic.hpp"
#include "runtime/globals.hpp"
jint EpsilonHeap::initialize() {
size_t align = HeapAlignment;
size_t init_byte_size = align_up(InitialHeapSize, align);
size_t max_byte_size = align_up(MaxHeapSize, align);
* questions.
*
*/
#include "precompiled.hpp"
+ #include "classfile/classLoaderDataGraph.hpp"
+ #include "code/codeCache.hpp"
#include "gc/epsilon/epsilonHeap.hpp"
#include "gc/epsilon/epsilonInitLogger.hpp"
#include "gc/epsilon/epsilonMemoryPool.hpp"
#include "gc/epsilon/epsilonThreadLocalData.hpp"
#include "gc/shared/gcArguments.hpp"
+ #include "gc/shared/gcLocker.inline.hpp"
+ #include "gc/shared/gcTraceTime.inline.hpp"
#include "gc/shared/locationPrinter.inline.hpp"
+ #include "gc/shared/markBitMap.inline.hpp"
+ #include "gc/shared/strongRootsScope.hpp"
+ #include "gc/shared/preservedMarks.inline.hpp"
+ #include "gc/shared/oopStorageSet.inline.hpp"
#include "logging/log.hpp"
+ #include "nmt/memTracker.hpp"
#include "memory/allocation.hpp"
! #include "memory/iterator.inline.hpp"
#include "memory/metaspaceUtils.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
+ #include "oops/compressedOops.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/globals.hpp"
+ #include "runtime/thread.hpp"
+ #include "runtime/threads.hpp"
+ #include "runtime/vmOperations.hpp"
+ #include "runtime/vmThread.hpp"
+ #include "services/management.hpp"
+ #include "utilities/stack.inline.hpp"
jint EpsilonHeap::initialize() {
size_t align = HeapAlignment;
size_t init_byte_size = align_up(InitialHeapSize, align);
size_t max_byte_size = align_up(MaxHeapSize, align);
_last_heap_print = 0;
// Install barrier set
BarrierSet::set_barrier_set(new EpsilonBarrierSet());
+ size_t bitmap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
+ size_t _bitmap_size = MarkBitMap::compute_size(heap_rs.size());
+ _bitmap_size = align_up(_bitmap_size, bitmap_page_size);
+
+ // Initialize marking bitmap, but not commit it yet
+ if (EpsilonSlidingGC) {
+ ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
+ MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
+ _bitmap_region = MemRegion((HeapWord *) bitmap.base(), bitmap.size() / HeapWordSize);
+ MemRegion heap_region = MemRegion((HeapWord *) heap_rs.base(), heap_rs.size() / HeapWordSize);
+ _bitmap.initialize(heap_region, _bitmap_region);
+ }
+
// All done, print out the configuration
EpsilonInitLogger::print();
return JNI_OK;
}
ergo_tlab * HeapWordSize / K,
size * HeapWordSize / K);
}
// All prepared, let's do it!
! HeapWord* res = allocate_work(size);
if (res != nullptr) {
// Allocation successful
*actual_size = size;
if (EpsilonElasticTLABDecay) {
ergo_tlab * HeapWordSize / K,
size * HeapWordSize / K);
}
// All prepared, let's do it!
! HeapWord* res = allocate_or_collect_work(size);
if (res != nullptr) {
// Allocation successful
*actual_size = size;
if (EpsilonElasticTLABDecay) {
return res;
}
HeapWord* EpsilonHeap::mem_allocate(size_t size, bool *gc_overhead_limit_was_exceeded) {
*gc_overhead_limit_was_exceeded = false;
! return allocate_work(size);
}
HeapWord* EpsilonHeap::allocate_loaded_archive_space(size_t size) {
// Cannot use verbose=true because Metaspace is not initialized
return allocate_work(size, /* verbose = */false);
return res;
}
HeapWord* EpsilonHeap::mem_allocate(size_t size, bool *gc_overhead_limit_was_exceeded) {
*gc_overhead_limit_was_exceeded = false;
! return allocate_or_collect_work(size);
}
HeapWord* EpsilonHeap::allocate_loaded_archive_space(size_t size) {
// Cannot use verbose=true because Metaspace is not initialized
return allocate_work(size, /* verbose = */false);
log_info(gc)("GC request for \"%s\" is handled", GCCause::to_string(cause));
MetaspaceGC::compute_new_size();
print_metaspace_info();
break;
default:
! log_info(gc)("GC request for \"%s\" is ignored", GCCause::to_string(cause));
}
_monitoring_support->update_counters();
}
void EpsilonHeap::do_full_collection(bool clear_all_soft_refs) {
log_info(gc)("GC request for \"%s\" is handled", GCCause::to_string(cause));
MetaspaceGC::compute_new_size();
print_metaspace_info();
break;
default:
! if (EpsilonSlidingGC) {
+ if (SafepointSynchronize::is_at_safepoint()) {
+ entry_collect(cause);
+ } else {
+ vmentry_collect(cause);
+ }
+ } else {
+ log_info(gc)("GC request for \"%s\" is ignored", GCCause::to_string(cause));
+ }
}
_monitoring_support->update_counters();
}
void EpsilonHeap::do_full_collection(bool clear_all_soft_refs) {
if (reserved != 0) {
log_info(gc)("Heap: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
SIZE_FORMAT "%s (%.2f%%) used",
byte_size_in_proper_unit(reserved), proper_unit_for_byte_size(reserved),
byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
! committed * 100.0 / reserved,
byte_size_in_proper_unit(used), proper_unit_for_byte_size(used),
! used * 100.0 / reserved);
} else {
log_info(gc)("Heap: no reliable data");
}
}
if (reserved != 0) {
log_info(gc)("Heap: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
SIZE_FORMAT "%s (%.2f%%) used",
byte_size_in_proper_unit(reserved), proper_unit_for_byte_size(reserved),
byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
! percent_of(committed, reserved),
byte_size_in_proper_unit(used), proper_unit_for_byte_size(used),
! percent_of(used, reserved)
+ );
} else {
log_info(gc)("Heap: no reliable data");
}
}
if (reserved != 0) {
log_info(gc, metaspace)("Metaspace: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
SIZE_FORMAT "%s (%.2f%%) used",
byte_size_in_proper_unit(reserved), proper_unit_for_byte_size(reserved),
byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
! committed * 100.0 / reserved,
byte_size_in_proper_unit(used), proper_unit_for_byte_size(used),
! used * 100.0 / reserved);
} else {
log_info(gc, metaspace)("Metaspace: no reliable data");
}
}
if (reserved != 0) {
log_info(gc, metaspace)("Metaspace: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
SIZE_FORMAT "%s (%.2f%%) used",
byte_size_in_proper_unit(reserved), proper_unit_for_byte_size(reserved),
byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
! percent_of(committed, reserved),
byte_size_in_proper_unit(used), proper_unit_for_byte_size(used),
! percent_of(used, reserved)
+ );
} else {
log_info(gc, metaspace)("Metaspace: no reliable data");
}
}
+
+ // ------------------ EXPERIMENTAL MARK-COMPACT -------------------------------
+ //
+ // This implements a trivial Lisp2-style sliding collector:
+ // https://en.wikipedia.org/wiki/Mark-compact_algorithm#LISP2_algorithm
+ //
+ // The goal for this implementation is to be as simple as possible, ignoring
+ // non-trivial performance optimizations. This collector does not implement
+ // reference processing: no soft/weak/phantom/finalizeable references are ever
+ // cleared. It also does not implement class unloading and other runtime
+ // cleanups.
+ //
+
+ // VM operation that executes collection cycle under safepoint
+ class VM_EpsilonCollect: public VM_Operation {
+ private:
+ const GCCause::Cause _cause;
+ EpsilonHeap* const _heap;
+ static size_t _req_id;
+ public:
+ VM_EpsilonCollect(GCCause::Cause cause) : VM_Operation(),
+ _cause(cause),
+ _heap(EpsilonHeap::heap()) {};
+
+ VM_Operation::VMOp_Type type() const { return VMOp_EpsilonCollect; }
+ const char* name() const { return "Epsilon Collection"; }
+
+ virtual bool doit_prologue() {
+ size_t id = Atomic::load_acquire(&_req_id);
+
+ // Need to take the Heap lock before managing backing storage.
+ Heap_lock->lock();
+
+ // Heap lock also naturally serializes GC requests, and allows us to coalesce
+ // back-to-back GC requests from many threads. Avoid the consecutive GCs
+ // if we started waiting when other GC request was being handled.
+ if (id < Atomic::load_acquire(&_req_id)) {
+ Heap_lock->unlock();
+ return false;
+ }
+
+ // No contenders. Start handling a new GC request.
+ Atomic::inc(&_req_id);
+ return true;
+ }
+
+ virtual void doit() {
+ _heap->entry_collect(_cause);
+ }
+
+ virtual void doit_epilogue() {
+ Heap_lock->unlock();
+ }
+ };
+
+ size_t VM_EpsilonCollect::_req_id = 0;
+
+ void EpsilonHeap::vmentry_collect(GCCause::Cause cause) {
+ VM_EpsilonCollect vmop(cause);
+ VMThread::execute(&vmop);
+ }
+
+ HeapWord* EpsilonHeap::allocate_or_collect_work(size_t size, bool verbose) {
+ HeapWord* res = allocate_work(size);
+ if (res == NULL && EpsilonSlidingGC && EpsilonImplicitGC) {
+ vmentry_collect(GCCause::_allocation_failure);
+ // TODO: This looks incorrect
+ GCLocker::stall_until_clear();
+ res = allocate_work(size, verbose);
+ }
+ return res;
+ }
+
+ typedef Stack<oop, mtGC> EpsilonMarkStack;
+
+ void EpsilonHeap::process_roots(OopClosure* cl) {
+ // Need to tell runtime we are about to walk the roots with 1 thread
+ StrongRootsScope scope(1);
+
+ // Need to adapt oop closure for some special root types.
+ CLDToOopClosure clds(cl, ClassLoaderData::_claim_none);
+ MarkingCodeBlobClosure blobs(cl, CodeBlobToOopClosure::FixRelocations, true); // TODO: Keepalive?
+
+ // Strong roots: always reachable roots
+
+ // General strong roots that are registered in OopStorages
+ for (auto id : EnumRange<OopStorageSet::StrongId>()) {
+ OopStorageSet::storage(id)->oops_do(cl);
+ }
+
+ // Subsystems that still have their own root handling
+ ClassLoaderDataGraph::cld_do(&clds);
+ Threads::possibly_parallel_oops_do(false, cl, &blobs);
+
+ {
+ MutexLocker lock(CodeCache_lock, Mutex::_no_safepoint_check_flag);
+ CodeCache::blobs_do(&blobs);
+ }
+
+ // Weak roots: in an advanced GC these roots would be skipped during
+ // the initial scan, and walked again after the marking is complete.
+ // Then, we could discover which roots are not actually pointing
+ // to surviving Java objects, and either clean the roots, or mark them.
+ // Current simple implementation does not handle weak roots specially,
+ // and therefore, we mark through them as if they are strong roots.
+ for (auto id : EnumRange<OopStorageSet::WeakId>()) {
+ OopStorageSet::storage(id)->oops_do(cl);
+ }
+ }
+
+ // Walk the marking bitmap and call object closure on every marked object.
+ // This is much faster that walking a (very sparse) parsable heap, but it
+ // takes up to 1/64-th of heap size for the bitmap.
+ void EpsilonHeap::walk_bitmap(ObjectClosure* cl) {
+ HeapWord* limit = _space->top();
+ HeapWord* addr = _bitmap.get_next_marked_addr(_space->bottom(), limit);
+ while (addr < limit) {
+ oop obj = cast_to_oop(addr);
+ assert(_bitmap.is_marked(obj), "sanity");
+ cl->do_object(obj);
+ addr += 1;
+ if (addr < limit) {
+ addr = _bitmap.get_next_marked_addr(addr, limit);
+ }
+ }
+ }
+
+ class EpsilonScanOopClosure : public BasicOopIterateClosure {
+ private:
+ EpsilonMarkStack* const _stack;
+ MarkBitMap* const _bitmap;
+
+ template <class T>
+ void do_oop_work(T* p) {
+ // p is the pointer to memory location where oop is, load the value
+ // from it, unpack the compressed reference, if needed:
+ T o = RawAccess<>::oop_load(p);
+ if (!CompressedOops::is_null(o)) {
+ oop obj = CompressedOops::decode_not_null(o);
+
+ // Object is discovered. See if it is marked already. If not,
+ // mark and push it on mark stack for further traversal. Non-atomic
+ // check and set would do, as this closure is called by single thread.
+ if (!_bitmap->is_marked(obj)) {
+ _bitmap->mark(obj);
+ _stack->push(obj);
+ }
+ }
+ }
+
+ public:
+ EpsilonScanOopClosure(EpsilonMarkStack* stack, MarkBitMap* bitmap) :
+ _stack(stack), _bitmap(bitmap) {}
+ virtual void do_oop(oop* p) { do_oop_work(p); }
+ virtual void do_oop(narrowOop* p) { do_oop_work(p); }
+ };
+
+ class EpsilonCalcNewLocationObjectClosure : public ObjectClosure {
+ private:
+ HeapWord* _compact_point;
+ PreservedMarks* const _preserved_marks;
+
+ public:
+ EpsilonCalcNewLocationObjectClosure(HeapWord* start, PreservedMarks* pm) :
+ _compact_point(start),
+ _preserved_marks(pm) {}
+
+ void do_object(oop obj) {
+ // Record the new location of the object: it is current compaction point.
+ // If object stays at the same location (which is true for objects in
+ // dense prefix, that we would normally get), do not bother recording the
+ // move, letting downstream code ignore it.
+ if (obj != cast_to_oop(_compact_point)) {
+ markWord mark = obj->mark();
+ _preserved_marks->push_if_necessary(obj, mark);
+ obj->forward_to(cast_to_oop(_compact_point));
+ }
+ _compact_point += obj->size();
+ }
+
+ HeapWord* compact_point() {
+ return _compact_point;
+ }
+ };
+
+ class EpsilonAdjustPointersOopClosure : public BasicOopIterateClosure {
+ private:
+ template <class T>
+ void do_oop_work(T* p) {
+ // p is the pointer to memory location where oop is, load the value
+ // from it, unpack the compressed reference, if needed:
+ T o = RawAccess<>::oop_load(p);
+ if (!CompressedOops::is_null(o)) {
+ oop obj = CompressedOops::decode_not_null(o);
+
+ // Rewrite the current pointer to the object with its forwardee.
+ // Skip the write if update is not needed.
+ if (obj->is_forwarded()) {
+ oop fwd = obj->forwardee();
+ assert(fwd != NULL, "just checking");
+ RawAccess<>::oop_store(p, fwd);
+ }
+ }
+ }
+
+ public:
+ virtual void do_oop(oop* p) { do_oop_work(p); }
+ virtual void do_oop(narrowOop* p) { do_oop_work(p); }
+ };
+
+ class EpsilonAdjustPointersObjectClosure : public ObjectClosure {
+ private:
+ EpsilonAdjustPointersOopClosure _cl;
+ public:
+ void do_object(oop obj) {
+ // Apply the updates to all references reachable from current object:
+ obj->oop_iterate(&_cl);
+ }
+ };
+
+ class EpsilonMoveObjectsObjectClosure : public ObjectClosure {
+ private:
+ size_t _moved;
+ public:
+ EpsilonMoveObjectsObjectClosure() : ObjectClosure(), _moved(0) {}
+
+ void do_object(oop obj) {
+ // Copy the object to its new location, if needed. This is final step,
+ // so we have to re-initialize its new mark word, dropping the forwardee
+ // data from it.
+ if (obj->is_forwarded()) {
+ oop fwd = obj->forwardee();
+ assert(fwd != NULL, "just checking");
+ Copy::aligned_conjoint_words(cast_from_oop<HeapWord*>(obj), cast_from_oop<HeapWord*>(fwd), obj->size());
+ fwd->init_mark();
+ _moved++;
+ }
+ }
+
+ size_t moved() {
+ return _moved;
+ }
+ };
+
+ class EpsilonVerifyOopClosure : public BasicOopIterateClosure {
+ private:
+ EpsilonHeap* const _heap;
+ EpsilonMarkStack* const _stack;
+ MarkBitMap* const _bitmap;
+
+ template <class T>
+ void do_oop_work(T* p) {
+ T o = RawAccess<>::oop_load(p);
+ if (!CompressedOops::is_null(o)) {
+ oop obj = CompressedOops::decode_not_null(o);
+ if (!_bitmap->is_marked(obj)) {
+ _bitmap->mark(obj);
+
+ guarantee(_heap->is_in(obj), "Is in heap: " PTR_FORMAT, p2i(obj));
+ guarantee(oopDesc::is_oop(obj), "Is an object: " PTR_FORMAT, p2i(obj));
+ guarantee(!obj->mark().is_marked(), "Mark is gone: " PTR_FORMAT, p2i(obj));
+
+ _stack->push(obj);
+ }
+ }
+ }
+
+ public:
+ EpsilonVerifyOopClosure(EpsilonMarkStack* stack, MarkBitMap* bitmap) :
+ _heap(EpsilonHeap::heap()), _stack(stack), _bitmap(bitmap) {}
+ virtual void do_oop(oop* p) { do_oop_work(p); }
+ virtual void do_oop(narrowOop* p) { do_oop_work(p); }
+ };
+
+ void EpsilonHeap::entry_collect(GCCause::Cause cause) {
+ if (GCLocker::check_active_before_gc()) {
+ return;
+ }
+
+ GCIdMark mark;
+ GCTraceTime(Info, gc) time("Lisp2-style Mark-Compact", NULL, cause, true);
+
+ // Some statistics, for fun and profit:
+ size_t stat_reachable_roots = 0;
+ size_t stat_reachable_heap = 0;
+ size_t stat_moved = 0;
+ size_t stat_preserved_marks = 0;
+
+ {
+ GCTraceTime(Info, gc) time("Step 0: Prologue", NULL);
+
+ // Commit marking bitmap memory. There are several upsides of doing this
+ // before the cycle: no memory is taken if GC is not happening, the memory
+ // is "cleared" on first touch, and untouched parts of bitmap are mapped
+ // to zero page, boosting performance on sparse heaps.
+ if (!os::commit_memory((char*)_bitmap_region.start(), _bitmap_region.byte_size(), false)) {
+ log_warning(gc)("Could not commit native memory for marking bitmap, GC failed");
+ return;
+ }
+
+ // We do not need parsable heap for this algorithm to work, but we want
+ // threads to give up their TLABs.
+ ensure_parsability(true);
+
+ #if COMPILER2_OR_JVMCI
+ // Derived pointers would be re-discovered during the mark.
+ // Clear and activate the table for them.
+ DerivedPointerTable::clear();
+ #endif
+ }
+
+ {
+ GCTraceTime(Info, gc) time("Step 1: Mark", NULL);
+
+ // Marking stack and the closure that does most of the work. The closure
+ // would scan the outgoing references, mark them, and push newly-marked
+ // objects to stack for further processing.
+ EpsilonMarkStack stack;
+ EpsilonScanOopClosure cl(&stack, &_bitmap);
+
+ // Seed the marking with roots.
+ process_roots(&cl);
+ stat_reachable_roots = stack.size();
+
+ // Scan the rest of the heap until we run out of objects. Termination is
+ // guaranteed, because all reachable objects would be marked eventually.
+ while (!stack.is_empty()) {
+ oop obj = stack.pop();
+ obj->oop_iterate(&cl);
+ stat_reachable_heap++;
+ }
+
+ #if COMPILER2_OR_JVMCI
+ // No more derived pointers discovered after marking is done.
+ DerivedPointerTable::set_active(false);
+ #endif
+ }
+
+ // We are going to store forwarding information (where the new copy resides)
+ // in mark words. Some of those mark words need to be carefully preserved.
+ // This is an utility that maintains the list of those special mark words.
+ PreservedMarks preserved_marks;
+
+ // New top of the allocated space.
+ HeapWord* new_top;
+
+ {
+ GCTraceTime(Info, gc) time("Step 2: Calculate new locations", NULL);
+
+ // Walk all alive objects, compute their new addresses and store those
+ // addresses in mark words. Optionally preserve some marks.
+ EpsilonCalcNewLocationObjectClosure cl(_space->bottom(), &preserved_marks);
+ walk_bitmap(&cl);
+
+ // After addresses are calculated, we know the new top for the allocated
+ // space. We cannot set it just yet, because some asserts check that objects
+ // are "in heap" based on current "top".
+ new_top = cl.compact_point();
+
+ stat_preserved_marks = preserved_marks.size();
+ }
+
+ {
+ GCTraceTime(Info, gc) time("Step 3: Adjust pointers", NULL);
+
+ // Walk all alive objects _and their reference fields_, and put "new
+ // addresses" there. We know the new addresses from the forwarding data
+ // in mark words. Take care of the heap objects first.
+ EpsilonAdjustPointersObjectClosure cl;
+ walk_bitmap(&cl);
+
+ // Now do the same, but for all VM roots, which reference the objects on
+ // their own: their references should also be updated.
+ EpsilonAdjustPointersOopClosure cli;
+ process_roots(&cli);
+
+ // Finally, make sure preserved marks know the objects are about to move.
+ preserved_marks.adjust_during_full_gc();
+ }
+
+ {
+ GCTraceTime(Info, gc) time("Step 4: Move objects", NULL);
+
+ // Move all alive objects to their new locations. All the references are
+ // already adjusted at previous step.
+ EpsilonMoveObjectsObjectClosure cl;
+ walk_bitmap(&cl);
+ stat_moved = cl.moved();
+
+ // Now we moved all objects to their relevant locations, we can retract
+ // the "top" of the allocation space to the end of the compacted prefix.
+ _space->set_top(new_top);
+ }
+
+ {
+ GCTraceTime(Info, gc) time("Step 5: Epilogue", NULL);
+
+ // Restore all special mark words.
+ preserved_marks.restore();
+
+ #if COMPILER2_OR_JVMCI
+ // Tell the rest of runtime we have finished the GC.
+ DerivedPointerTable::update_pointers();
+ #endif
+
+ // Verification code walks entire heap and verifies nothing is broken.
+ if (EpsilonVerify) {
+ // The basic implementation turns heap into entirely parsable one with
+ // only alive objects, which mean we could just walked the heap object
+ // by object and verify it. But, it would be inconvenient for verification
+ // to assume heap has only alive objects. Any future change that leaves
+ // at least one dead object with dead outgoing references would fail the
+ // verification. Therefore, it makes more sense to mark through the heap
+ // again, not assuming objects are all alive.
+ EpsilonMarkStack stack;
+ EpsilonVerifyOopClosure cl(&stack, &_bitmap);
+
+ _bitmap.clear();
+
+ // Verify all roots are correct, and that we have the same number of
+ // object reachable from roots.
+ process_roots(&cl);
+
+ size_t verified_roots = stack.size();
+ guarantee(verified_roots == stat_reachable_roots,
+ "Verification discovered " SIZE_FORMAT " roots out of " SIZE_FORMAT,
+ verified_roots, stat_reachable_roots);
+
+ // Verify the rest of the heap is correct, and that we have the same
+ // number of objects reachable from heap.
+ size_t verified_heap = 0;
+ while (!stack.is_empty()) {
+ oop obj = stack.pop();
+ obj->oop_iterate(&cl);
+ verified_heap++;
+ }
+
+ guarantee(verified_heap == stat_reachable_heap,
+ "Verification discovered " SIZE_FORMAT " heap objects out of " SIZE_FORMAT,
+ verified_heap, stat_reachable_heap);
+
+ // Ask parts of runtime to verify themselves too
+ Universe::verify("Epsilon");
+ }
+
+ // Marking bitmap is not needed anymore
+ if (!os::uncommit_memory((char*)_bitmap_region.start(), _bitmap_region.byte_size())) {
+ log_warning(gc)("Could not uncommit native memory for marking bitmap");
+ }
+
+ // Return all memory back if so requested. On large heaps, this would
+ // take a while.
+ if (EpsilonUncommit) {
+ _virtual_space.shrink_by((_space->end() - new_top) * HeapWordSize);
+ _space->set_end((HeapWord*)_virtual_space.high());
+ }
+ }
+
+ size_t stat_reachable = stat_reachable_roots + stat_reachable_heap;
+ log_info(gc)("GC Stats: " SIZE_FORMAT " (%.2f%%) reachable from roots, " SIZE_FORMAT " (%.2f%%) reachable from heap, "
+ SIZE_FORMAT " (%.2f%%) moved, " SIZE_FORMAT " (%.2f%%) markwords preserved",
+ stat_reachable_roots, percent_of(stat_reachable_roots, stat_reachable),
+ stat_reachable_heap, percent_of(stat_reachable_heap, stat_reachable),
+ stat_moved, percent_of(stat_moved, stat_reachable),
+ stat_preserved_marks, percent_of(stat_preserved_marks, stat_reachable)
+ );
+
+ print_heap_info(used());
+ print_metaspace_info();
+ }
+
+ void EpsilonHeap::pin_object(JavaThread* thread, oop obj) {
+ GCLocker::lock_critical(thread);
+ }
+
+ void EpsilonHeap::unpin_object(JavaThread* thread, oop obj) {
+ GCLocker::unlock_critical(thread);
+ }
< prev index next >