1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "prims/unsafe.hpp" 54 #include "runtime/jniHandles.inline.hpp" 55 #include "runtime/objectMonitor.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "runtime/stubRoutines.hpp" 58 #include "utilities/macros.hpp" 59 #include "utilities/powerOfTwo.hpp" 60 61 //---------------------------make_vm_intrinsic---------------------------- 62 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 63 vmIntrinsicID id = m->intrinsic_id(); 64 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 65 66 if (!m->is_loaded()) { 67 // Do not attempt to inline unloaded methods. 68 return NULL; 69 } 70 71 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 72 bool is_available = false; 73 74 { 75 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 76 // the compiler must transition to '_thread_in_vm' state because both 77 // methods access VM-internal data. 78 VM_ENTRY_MARK; 79 methodHandle mh(THREAD, m->get_Method()); 80 is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) && 81 !C->directive()->is_intrinsic_disabled(mh) && 82 !vmIntrinsics::is_disabled_by_flags(mh); 83 84 } 85 86 if (is_available) { 87 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 88 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 89 return new LibraryIntrinsic(m, is_virtual, 90 vmIntrinsics::predicates_needed(id), 91 vmIntrinsics::does_virtual_dispatch(id), 92 id); 93 } else { 94 return NULL; 95 } 96 } 97 98 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 99 LibraryCallKit kit(jvms, this); 100 Compile* C = kit.C; 101 int nodes = C->unique(); 102 #ifndef PRODUCT 103 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 104 char buf[1000]; 105 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 106 tty->print_cr("Intrinsic %s", str); 107 } 108 #endif 109 ciMethod* callee = kit.callee(); 110 const int bci = kit.bci(); 111 #ifdef ASSERT 112 Node* ctrl = kit.control(); 113 #endif 114 // Try to inline the intrinsic. 115 if (callee->check_intrinsic_candidate() && 116 kit.try_to_inline(_last_predicate)) { 117 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 118 : "(intrinsic)"; 119 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 120 if (C->print_intrinsics() || C->print_inlining()) { 121 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 122 } 123 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 124 if (C->log()) { 125 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 126 vmIntrinsics::name_at(intrinsic_id()), 127 (is_virtual() ? " virtual='1'" : ""), 128 C->unique() - nodes); 129 } 130 // Push the result from the inlined method onto the stack. 131 kit.push_result(); 132 C->print_inlining_update(this); 133 return kit.transfer_exceptions_into_jvms(); 134 } 135 136 // The intrinsic bailed out 137 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 138 if (jvms->has_method()) { 139 // Not a root compile. 140 const char* msg; 141 if (callee->intrinsic_candidate()) { 142 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 143 } else { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 145 : "failed to inline (intrinsic), method not annotated"; 146 } 147 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); 148 if (C->print_intrinsics() || C->print_inlining()) { 149 C->print_inlining(callee, jvms->depth() - 1, bci, msg); 150 } 151 } else { 152 // Root compile 153 ResourceMark rm; 154 stringStream msg_stream; 155 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 156 vmIntrinsics::name_at(intrinsic_id()), 157 is_virtual() ? " (virtual)" : "", bci); 158 const char *msg = msg_stream.freeze(); 159 log_debug(jit, inlining)("%s", msg); 160 if (C->print_intrinsics() || C->print_inlining()) { 161 tty->print("%s", msg); 162 } 163 } 164 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 165 C->print_inlining_update(this); 166 167 return NULL; 168 } 169 170 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 171 LibraryCallKit kit(jvms, this); 172 Compile* C = kit.C; 173 int nodes = C->unique(); 174 _last_predicate = predicate; 175 #ifndef PRODUCT 176 assert(is_predicated() && predicate < predicates_count(), "sanity"); 177 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 178 char buf[1000]; 179 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 180 tty->print_cr("Predicate for intrinsic %s", str); 181 } 182 #endif 183 ciMethod* callee = kit.callee(); 184 const int bci = kit.bci(); 185 186 Node* slow_ctl = kit.try_to_predicate(predicate); 187 if (!kit.failing()) { 188 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 189 : "(intrinsic, predicate)"; 190 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 191 if (C->print_intrinsics() || C->print_inlining()) { 192 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 193 } 194 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 195 if (C->log()) { 196 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 197 vmIntrinsics::name_at(intrinsic_id()), 198 (is_virtual() ? " virtual='1'" : ""), 199 C->unique() - nodes); 200 } 201 return slow_ctl; // Could be NULL if the check folds. 202 } 203 204 // The intrinsic bailed out 205 if (jvms->has_method()) { 206 // Not a root compile. 207 const char* msg = "failed to generate predicate for intrinsic"; 208 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); 209 if (C->print_intrinsics() || C->print_inlining()) { 210 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); 211 } 212 } else { 213 // Root compile 214 ResourceMark rm; 215 stringStream msg_stream; 216 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 217 vmIntrinsics::name_at(intrinsic_id()), 218 is_virtual() ? " (virtual)" : "", bci); 219 const char *msg = msg_stream.freeze(); 220 log_debug(jit, inlining)("%s", msg); 221 if (C->print_intrinsics() || C->print_inlining()) { 222 C->print_inlining_stream()->print("%s", msg); 223 } 224 } 225 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 226 return NULL; 227 } 228 229 bool LibraryCallKit::try_to_inline(int predicate) { 230 // Handle symbolic names for otherwise undistinguished boolean switches: 231 const bool is_store = true; 232 const bool is_compress = true; 233 const bool is_static = true; 234 const bool is_volatile = true; 235 236 if (!jvms()->has_method()) { 237 // Root JVMState has a null method. 238 assert(map()->memory()->Opcode() == Op_Parm, ""); 239 // Insert the memory aliasing node 240 set_all_memory(reset_memory()); 241 } 242 assert(merged_memory(), ""); 243 244 switch (intrinsic_id()) { 245 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 246 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 247 case vmIntrinsics::_getClass: return inline_native_getClass(); 248 249 case vmIntrinsics::_ceil: 250 case vmIntrinsics::_floor: 251 case vmIntrinsics::_rint: 252 case vmIntrinsics::_dsin: 253 case vmIntrinsics::_dcos: 254 case vmIntrinsics::_dtan: 255 case vmIntrinsics::_dabs: 256 case vmIntrinsics::_fabs: 257 case vmIntrinsics::_iabs: 258 case vmIntrinsics::_labs: 259 case vmIntrinsics::_datan2: 260 case vmIntrinsics::_dsqrt: 261 case vmIntrinsics::_dsqrt_strict: 262 case vmIntrinsics::_dexp: 263 case vmIntrinsics::_dlog: 264 case vmIntrinsics::_dlog10: 265 case vmIntrinsics::_dpow: 266 case vmIntrinsics::_dcopySign: 267 case vmIntrinsics::_fcopySign: 268 case vmIntrinsics::_dsignum: 269 case vmIntrinsics::_roundF: 270 case vmIntrinsics::_roundD: 271 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 272 273 case vmIntrinsics::_notify: 274 case vmIntrinsics::_notifyAll: 275 return inline_notify(intrinsic_id()); 276 277 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 278 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 279 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 280 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 281 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 282 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 283 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 284 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 285 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 286 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 287 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 288 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 289 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 290 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 291 292 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 293 294 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 295 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 296 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 297 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 298 299 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 300 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 301 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 302 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 303 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 304 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 305 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 306 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 307 308 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 309 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 310 311 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 312 313 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 314 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 315 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 316 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 317 318 case vmIntrinsics::_compressStringC: 319 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 320 case vmIntrinsics::_inflateStringC: 321 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 322 323 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 324 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 325 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 326 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 327 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 328 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 329 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 330 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 331 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 332 333 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 334 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 335 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 336 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 337 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 338 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 339 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 340 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 341 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 342 343 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 344 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 345 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 346 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 347 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 348 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 349 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 350 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 351 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 352 353 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 354 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 355 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 356 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 357 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 358 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 359 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 360 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 361 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 362 363 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 364 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 365 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 366 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 367 368 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 369 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 370 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 371 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 372 373 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 374 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 375 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 376 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 377 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 378 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 379 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 380 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 381 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 382 383 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 384 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 385 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 386 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 387 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 388 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 389 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 390 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 391 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 392 393 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 394 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 395 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 396 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 397 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 398 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 399 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 400 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 401 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 402 403 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 404 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 405 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 406 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 407 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 408 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 409 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 410 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 411 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 412 413 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 414 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 415 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 416 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 417 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 418 419 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 420 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 421 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 422 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 423 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 424 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 425 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 426 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 427 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 428 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 429 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 430 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 431 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 432 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 433 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 434 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 435 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 436 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 437 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 438 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 439 440 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 441 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 442 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 443 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 444 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 445 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 446 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 447 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 448 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 449 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 450 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 451 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 452 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 453 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 454 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 455 456 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 457 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 458 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 459 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 460 461 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 462 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 463 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 464 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 465 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 466 467 case vmIntrinsics::_loadFence: 468 case vmIntrinsics::_storeFence: 469 case vmIntrinsics::_storeStoreFence: 470 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 471 472 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 473 474 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 475 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 476 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 477 478 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 479 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 480 481 #ifdef JFR_HAVE_INTRINSICS 482 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 483 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 484 #endif 485 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 486 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 487 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 488 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 489 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 490 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 491 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 492 case vmIntrinsics::_getLength: return inline_native_getLength(); 493 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 494 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 495 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 496 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 497 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 498 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 499 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 500 501 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 502 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 503 504 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 505 506 case vmIntrinsics::_isInstance: 507 case vmIntrinsics::_getModifiers: 508 case vmIntrinsics::_isInterface: 509 case vmIntrinsics::_isArray: 510 case vmIntrinsics::_isPrimitive: 511 case vmIntrinsics::_isHidden: 512 case vmIntrinsics::_getSuperclass: 513 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 514 515 case vmIntrinsics::_floatToRawIntBits: 516 case vmIntrinsics::_floatToIntBits: 517 case vmIntrinsics::_intBitsToFloat: 518 case vmIntrinsics::_doubleToRawLongBits: 519 case vmIntrinsics::_doubleToLongBits: 520 case vmIntrinsics::_longBitsToDouble: 521 case vmIntrinsics::_floatToFloat16: 522 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 523 524 case vmIntrinsics::_floatIsFinite: 525 case vmIntrinsics::_floatIsInfinite: 526 case vmIntrinsics::_doubleIsFinite: 527 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 528 529 case vmIntrinsics::_numberOfLeadingZeros_i: 530 case vmIntrinsics::_numberOfLeadingZeros_l: 531 case vmIntrinsics::_numberOfTrailingZeros_i: 532 case vmIntrinsics::_numberOfTrailingZeros_l: 533 case vmIntrinsics::_bitCount_i: 534 case vmIntrinsics::_bitCount_l: 535 case vmIntrinsics::_reverse_i: 536 case vmIntrinsics::_reverse_l: 537 case vmIntrinsics::_reverseBytes_i: 538 case vmIntrinsics::_reverseBytes_l: 539 case vmIntrinsics::_reverseBytes_s: 540 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 541 542 case vmIntrinsics::_compress_i: 543 case vmIntrinsics::_compress_l: 544 case vmIntrinsics::_expand_i: 545 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 546 547 case vmIntrinsics::_compareUnsigned_i: 548 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 549 550 case vmIntrinsics::_divideUnsigned_i: 551 case vmIntrinsics::_divideUnsigned_l: 552 case vmIntrinsics::_remainderUnsigned_i: 553 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 554 555 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 556 557 case vmIntrinsics::_Reference_get: return inline_reference_get(); 558 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 559 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 560 561 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 562 563 case vmIntrinsics::_aescrypt_encryptBlock: 564 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 565 566 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 567 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 568 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 569 570 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 571 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 572 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 573 574 case vmIntrinsics::_counterMode_AESCrypt: 575 return inline_counterMode_AESCrypt(intrinsic_id()); 576 577 case vmIntrinsics::_galoisCounterMode_AESCrypt: 578 return inline_galoisCounterMode_AESCrypt(); 579 580 case vmIntrinsics::_md5_implCompress: 581 case vmIntrinsics::_sha_implCompress: 582 case vmIntrinsics::_sha2_implCompress: 583 case vmIntrinsics::_sha5_implCompress: 584 case vmIntrinsics::_sha3_implCompress: 585 return inline_digestBase_implCompress(intrinsic_id()); 586 587 case vmIntrinsics::_digestBase_implCompressMB: 588 return inline_digestBase_implCompressMB(predicate); 589 590 case vmIntrinsics::_multiplyToLen: 591 return inline_multiplyToLen(); 592 593 case vmIntrinsics::_squareToLen: 594 return inline_squareToLen(); 595 596 case vmIntrinsics::_mulAdd: 597 return inline_mulAdd(); 598 599 case vmIntrinsics::_montgomeryMultiply: 600 return inline_montgomeryMultiply(); 601 case vmIntrinsics::_montgomerySquare: 602 return inline_montgomerySquare(); 603 604 case vmIntrinsics::_bigIntegerRightShiftWorker: 605 return inline_bigIntegerShift(true); 606 case vmIntrinsics::_bigIntegerLeftShiftWorker: 607 return inline_bigIntegerShift(false); 608 609 case vmIntrinsics::_vectorizedMismatch: 610 return inline_vectorizedMismatch(); 611 612 case vmIntrinsics::_ghash_processBlocks: 613 return inline_ghash_processBlocks(); 614 case vmIntrinsics::_chacha20Block: 615 return inline_chacha20Block(); 616 case vmIntrinsics::_base64_encodeBlock: 617 return inline_base64_encodeBlock(); 618 case vmIntrinsics::_base64_decodeBlock: 619 return inline_base64_decodeBlock(); 620 case vmIntrinsics::_poly1305_processBlocks: 621 return inline_poly1305_processBlocks(); 622 623 case vmIntrinsics::_encodeISOArray: 624 case vmIntrinsics::_encodeByteISOArray: 625 return inline_encodeISOArray(false); 626 case vmIntrinsics::_encodeAsciiArray: 627 return inline_encodeISOArray(true); 628 629 case vmIntrinsics::_updateCRC32: 630 return inline_updateCRC32(); 631 case vmIntrinsics::_updateBytesCRC32: 632 return inline_updateBytesCRC32(); 633 case vmIntrinsics::_updateByteBufferCRC32: 634 return inline_updateByteBufferCRC32(); 635 636 case vmIntrinsics::_updateBytesCRC32C: 637 return inline_updateBytesCRC32C(); 638 case vmIntrinsics::_updateDirectByteBufferCRC32C: 639 return inline_updateDirectByteBufferCRC32C(); 640 641 case vmIntrinsics::_updateBytesAdler32: 642 return inline_updateBytesAdler32(); 643 case vmIntrinsics::_updateByteBufferAdler32: 644 return inline_updateByteBufferAdler32(); 645 646 case vmIntrinsics::_profileBoolean: 647 return inline_profileBoolean(); 648 case vmIntrinsics::_isCompileConstant: 649 return inline_isCompileConstant(); 650 651 case vmIntrinsics::_countPositives: 652 return inline_countPositives(); 653 654 case vmIntrinsics::_fmaD: 655 case vmIntrinsics::_fmaF: 656 return inline_fma(intrinsic_id()); 657 658 case vmIntrinsics::_isDigit: 659 case vmIntrinsics::_isLowerCase: 660 case vmIntrinsics::_isUpperCase: 661 case vmIntrinsics::_isWhitespace: 662 return inline_character_compare(intrinsic_id()); 663 664 case vmIntrinsics::_min: 665 case vmIntrinsics::_max: 666 case vmIntrinsics::_min_strict: 667 case vmIntrinsics::_max_strict: 668 return inline_min_max(intrinsic_id()); 669 670 case vmIntrinsics::_maxF: 671 case vmIntrinsics::_minF: 672 case vmIntrinsics::_maxD: 673 case vmIntrinsics::_minD: 674 case vmIntrinsics::_maxF_strict: 675 case vmIntrinsics::_minF_strict: 676 case vmIntrinsics::_maxD_strict: 677 case vmIntrinsics::_minD_strict: 678 return inline_fp_min_max(intrinsic_id()); 679 680 case vmIntrinsics::_VectorUnaryOp: 681 return inline_vector_nary_operation(1); 682 case vmIntrinsics::_VectorBinaryOp: 683 return inline_vector_nary_operation(2); 684 case vmIntrinsics::_VectorTernaryOp: 685 return inline_vector_nary_operation(3); 686 case vmIntrinsics::_VectorFromBitsCoerced: 687 return inline_vector_frombits_coerced(); 688 case vmIntrinsics::_VectorShuffleIota: 689 return inline_vector_shuffle_iota(); 690 case vmIntrinsics::_VectorMaskOp: 691 return inline_vector_mask_operation(); 692 case vmIntrinsics::_VectorShuffleToVector: 693 return inline_vector_shuffle_to_vector(); 694 case vmIntrinsics::_VectorLoadOp: 695 return inline_vector_mem_operation(/*is_store=*/false); 696 case vmIntrinsics::_VectorLoadMaskedOp: 697 return inline_vector_mem_masked_operation(/*is_store*/false); 698 case vmIntrinsics::_VectorStoreOp: 699 return inline_vector_mem_operation(/*is_store=*/true); 700 case vmIntrinsics::_VectorStoreMaskedOp: 701 return inline_vector_mem_masked_operation(/*is_store=*/true); 702 case vmIntrinsics::_VectorGatherOp: 703 return inline_vector_gather_scatter(/*is_scatter*/ false); 704 case vmIntrinsics::_VectorScatterOp: 705 return inline_vector_gather_scatter(/*is_scatter*/ true); 706 case vmIntrinsics::_VectorReductionCoerced: 707 return inline_vector_reduction(); 708 case vmIntrinsics::_VectorTest: 709 return inline_vector_test(); 710 case vmIntrinsics::_VectorBlend: 711 return inline_vector_blend(); 712 case vmIntrinsics::_VectorRearrange: 713 return inline_vector_rearrange(); 714 case vmIntrinsics::_VectorCompare: 715 return inline_vector_compare(); 716 case vmIntrinsics::_VectorBroadcastInt: 717 return inline_vector_broadcast_int(); 718 case vmIntrinsics::_VectorConvert: 719 return inline_vector_convert(); 720 case vmIntrinsics::_VectorInsert: 721 return inline_vector_insert(); 722 case vmIntrinsics::_VectorExtract: 723 return inline_vector_extract(); 724 case vmIntrinsics::_VectorCompressExpand: 725 return inline_vector_compress_expand(); 726 case vmIntrinsics::_IndexVector: 727 return inline_index_vector(); 728 729 case vmIntrinsics::_getObjectSize: 730 return inline_getObjectSize(); 731 732 case vmIntrinsics::_blackhole: 733 return inline_blackhole(); 734 735 default: 736 // If you get here, it may be that someone has added a new intrinsic 737 // to the list in vmIntrinsics.hpp without implementing it here. 738 #ifndef PRODUCT 739 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 740 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 741 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 742 } 743 #endif 744 return false; 745 } 746 } 747 748 Node* LibraryCallKit::try_to_predicate(int predicate) { 749 if (!jvms()->has_method()) { 750 // Root JVMState has a null method. 751 assert(map()->memory()->Opcode() == Op_Parm, ""); 752 // Insert the memory aliasing node 753 set_all_memory(reset_memory()); 754 } 755 assert(merged_memory(), ""); 756 757 switch (intrinsic_id()) { 758 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 759 return inline_cipherBlockChaining_AESCrypt_predicate(false); 760 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 761 return inline_cipherBlockChaining_AESCrypt_predicate(true); 762 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 763 return inline_electronicCodeBook_AESCrypt_predicate(false); 764 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 765 return inline_electronicCodeBook_AESCrypt_predicate(true); 766 case vmIntrinsics::_counterMode_AESCrypt: 767 return inline_counterMode_AESCrypt_predicate(); 768 case vmIntrinsics::_digestBase_implCompressMB: 769 return inline_digestBase_implCompressMB_predicate(predicate); 770 case vmIntrinsics::_galoisCounterMode_AESCrypt: 771 return inline_galoisCounterMode_AESCrypt_predicate(); 772 773 default: 774 // If you get here, it may be that someone has added a new intrinsic 775 // to the list in vmIntrinsics.hpp without implementing it here. 776 #ifndef PRODUCT 777 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 778 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 779 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 780 } 781 #endif 782 Node* slow_ctl = control(); 783 set_control(top()); // No fast path intrinsic 784 return slow_ctl; 785 } 786 } 787 788 //------------------------------set_result------------------------------- 789 // Helper function for finishing intrinsics. 790 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 791 record_for_igvn(region); 792 set_control(_gvn.transform(region)); 793 set_result( _gvn.transform(value)); 794 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 795 } 796 797 //------------------------------generate_guard--------------------------- 798 // Helper function for generating guarded fast-slow graph structures. 799 // The given 'test', if true, guards a slow path. If the test fails 800 // then a fast path can be taken. (We generally hope it fails.) 801 // In all cases, GraphKit::control() is updated to the fast path. 802 // The returned value represents the control for the slow path. 803 // The return value is never 'top'; it is either a valid control 804 // or NULL if it is obvious that the slow path can never be taken. 805 // Also, if region and the slow control are not NULL, the slow edge 806 // is appended to the region. 807 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 808 if (stopped()) { 809 // Already short circuited. 810 return NULL; 811 } 812 813 // Build an if node and its projections. 814 // If test is true we take the slow path, which we assume is uncommon. 815 if (_gvn.type(test) == TypeInt::ZERO) { 816 // The slow branch is never taken. No need to build this guard. 817 return NULL; 818 } 819 820 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 821 822 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 823 if (if_slow == top()) { 824 // The slow branch is never taken. No need to build this guard. 825 return NULL; 826 } 827 828 if (region != NULL) 829 region->add_req(if_slow); 830 831 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 832 set_control(if_fast); 833 834 return if_slow; 835 } 836 837 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 838 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 839 } 840 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 841 return generate_guard(test, region, PROB_FAIR); 842 } 843 844 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 845 Node* *pos_index) { 846 if (stopped()) 847 return NULL; // already stopped 848 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 849 return NULL; // index is already adequately typed 850 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 851 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 852 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 853 if (is_neg != NULL && pos_index != NULL) { 854 // Emulate effect of Parse::adjust_map_after_if. 855 Node* ccast = new CastIINode(index, TypeInt::POS); 856 ccast->set_req(0, control()); 857 (*pos_index) = _gvn.transform(ccast); 858 } 859 return is_neg; 860 } 861 862 // Make sure that 'position' is a valid limit index, in [0..length]. 863 // There are two equivalent plans for checking this: 864 // A. (offset + copyLength) unsigned<= arrayLength 865 // B. offset <= (arrayLength - copyLength) 866 // We require that all of the values above, except for the sum and 867 // difference, are already known to be non-negative. 868 // Plan A is robust in the face of overflow, if offset and copyLength 869 // are both hugely positive. 870 // 871 // Plan B is less direct and intuitive, but it does not overflow at 872 // all, since the difference of two non-negatives is always 873 // representable. Whenever Java methods must perform the equivalent 874 // check they generally use Plan B instead of Plan A. 875 // For the moment we use Plan A. 876 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 877 Node* subseq_length, 878 Node* array_length, 879 RegionNode* region) { 880 if (stopped()) 881 return NULL; // already stopped 882 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 883 if (zero_offset && subseq_length->eqv_uncast(array_length)) 884 return NULL; // common case of whole-array copy 885 Node* last = subseq_length; 886 if (!zero_offset) // last += offset 887 last = _gvn.transform(new AddINode(last, offset)); 888 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 889 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 890 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 891 return is_over; 892 } 893 894 // Emit range checks for the given String.value byte array 895 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 896 if (stopped()) { 897 return; // already stopped 898 } 899 RegionNode* bailout = new RegionNode(1); 900 record_for_igvn(bailout); 901 if (char_count) { 902 // Convert char count to byte count 903 count = _gvn.transform(new LShiftINode(count, intcon(1))); 904 } 905 906 // Offset and count must not be negative 907 generate_negative_guard(offset, bailout); 908 generate_negative_guard(count, bailout); 909 // Offset + count must not exceed length of array 910 generate_limit_guard(offset, count, load_array_length(array), bailout); 911 912 if (bailout->req() > 1) { 913 PreserveJVMState pjvms(this); 914 set_control(_gvn.transform(bailout)); 915 uncommon_trap(Deoptimization::Reason_intrinsic, 916 Deoptimization::Action_maybe_recompile); 917 } 918 } 919 920 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 921 bool is_immutable) { 922 ciKlass* thread_klass = env()->Thread_klass(); 923 const Type* thread_type 924 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 925 926 Node* thread = _gvn.transform(new ThreadLocalNode()); 927 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 928 tls_output = thread; 929 930 Node* thread_obj_handle 931 = (is_immutable 932 ? LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(), 933 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 934 : make_load(NULL, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 935 thread_obj_handle = _gvn.transform(thread_obj_handle); 936 937 DecoratorSet decorators = IN_NATIVE; 938 if (is_immutable) { 939 decorators |= C2_IMMUTABLE_MEMORY; 940 } 941 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 942 } 943 944 //--------------------------generate_current_thread-------------------- 945 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 946 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 947 /*is_immutable*/false); 948 } 949 950 //--------------------------generate_virtual_thread-------------------- 951 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 952 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 953 !C->method()->changes_current_thread()); 954 } 955 956 //------------------------------make_string_method_node------------------------ 957 // Helper method for String intrinsic functions. This version is called with 958 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 959 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 960 // containing the lengths of str1 and str2. 961 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 962 Node* result = NULL; 963 switch (opcode) { 964 case Op_StrIndexOf: 965 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 966 str1_start, cnt1, str2_start, cnt2, ae); 967 break; 968 case Op_StrComp: 969 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 970 str1_start, cnt1, str2_start, cnt2, ae); 971 break; 972 case Op_StrEquals: 973 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 974 // Use the constant length if there is one because optimized match rule may exist. 975 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 976 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 977 break; 978 default: 979 ShouldNotReachHere(); 980 return NULL; 981 } 982 983 // All these intrinsics have checks. 984 C->set_has_split_ifs(true); // Has chance for split-if optimization 985 clear_upper_avx(); 986 987 return _gvn.transform(result); 988 } 989 990 //------------------------------inline_string_compareTo------------------------ 991 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 992 Node* arg1 = argument(0); 993 Node* arg2 = argument(1); 994 995 arg1 = must_be_not_null(arg1, true); 996 arg2 = must_be_not_null(arg2, true); 997 998 // Get start addr and length of first argument 999 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1000 Node* arg1_cnt = load_array_length(arg1); 1001 1002 // Get start addr and length of second argument 1003 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1004 Node* arg2_cnt = load_array_length(arg2); 1005 1006 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1007 set_result(result); 1008 return true; 1009 } 1010 1011 //------------------------------inline_string_equals------------------------ 1012 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1013 Node* arg1 = argument(0); 1014 Node* arg2 = argument(1); 1015 1016 // paths (plus control) merge 1017 RegionNode* region = new RegionNode(3); 1018 Node* phi = new PhiNode(region, TypeInt::BOOL); 1019 1020 if (!stopped()) { 1021 1022 arg1 = must_be_not_null(arg1, true); 1023 arg2 = must_be_not_null(arg2, true); 1024 1025 // Get start addr and length of first argument 1026 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1027 Node* arg1_cnt = load_array_length(arg1); 1028 1029 // Get start addr and length of second argument 1030 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1031 Node* arg2_cnt = load_array_length(arg2); 1032 1033 // Check for arg1_cnt != arg2_cnt 1034 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1035 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1036 Node* if_ne = generate_slow_guard(bol, NULL); 1037 if (if_ne != NULL) { 1038 phi->init_req(2, intcon(0)); 1039 region->init_req(2, if_ne); 1040 } 1041 1042 // Check for count == 0 is done by assembler code for StrEquals. 1043 1044 if (!stopped()) { 1045 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1046 phi->init_req(1, equals); 1047 region->init_req(1, control()); 1048 } 1049 } 1050 1051 // post merge 1052 set_control(_gvn.transform(region)); 1053 record_for_igvn(region); 1054 1055 set_result(_gvn.transform(phi)); 1056 return true; 1057 } 1058 1059 //------------------------------inline_array_equals---------------------------- 1060 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1061 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1062 Node* arg1 = argument(0); 1063 Node* arg2 = argument(1); 1064 1065 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1066 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1067 clear_upper_avx(); 1068 1069 return true; 1070 } 1071 1072 1073 //------------------------------inline_countPositives------------------------------ 1074 bool LibraryCallKit::inline_countPositives() { 1075 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1076 return false; 1077 } 1078 1079 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1080 // no receiver since it is static method 1081 Node* ba = argument(0); 1082 Node* offset = argument(1); 1083 Node* len = argument(2); 1084 1085 ba = must_be_not_null(ba, true); 1086 1087 // Range checks 1088 generate_string_range_check(ba, offset, len, false); 1089 if (stopped()) { 1090 return true; 1091 } 1092 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1093 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1094 set_result(_gvn.transform(result)); 1095 return true; 1096 } 1097 1098 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1099 Node* index = argument(0); 1100 Node* length = bt == T_INT ? argument(1) : argument(2); 1101 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1102 return false; 1103 } 1104 1105 // check that length is positive 1106 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1107 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1108 1109 { 1110 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1111 uncommon_trap(Deoptimization::Reason_intrinsic, 1112 Deoptimization::Action_make_not_entrant); 1113 } 1114 1115 if (stopped()) { 1116 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1117 return true; 1118 } 1119 1120 // length is now known positive, add a cast node to make this explicit 1121 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1122 Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1123 casted_length = _gvn.transform(casted_length); 1124 replace_in_map(length, casted_length); 1125 length = casted_length; 1126 1127 // Use an unsigned comparison for the range check itself 1128 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1129 BoolTest::mask btest = BoolTest::lt; 1130 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1131 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1132 _gvn.set_type(rc, rc->Value(&_gvn)); 1133 if (!rc_bool->is_Con()) { 1134 record_for_igvn(rc); 1135 } 1136 set_control(_gvn.transform(new IfTrueNode(rc))); 1137 { 1138 PreserveJVMState pjvms(this); 1139 set_control(_gvn.transform(new IfFalseNode(rc))); 1140 uncommon_trap(Deoptimization::Reason_range_check, 1141 Deoptimization::Action_make_not_entrant); 1142 } 1143 1144 if (stopped()) { 1145 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1146 return true; 1147 } 1148 1149 // index is now known to be >= 0 and < length, cast it 1150 Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1151 result = _gvn.transform(result); 1152 set_result(result); 1153 replace_in_map(index, result); 1154 return true; 1155 } 1156 1157 //------------------------------inline_string_indexOf------------------------ 1158 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1159 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1160 return false; 1161 } 1162 Node* src = argument(0); 1163 Node* tgt = argument(1); 1164 1165 // Make the merge point 1166 RegionNode* result_rgn = new RegionNode(4); 1167 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1168 1169 src = must_be_not_null(src, true); 1170 tgt = must_be_not_null(tgt, true); 1171 1172 // Get start addr and length of source string 1173 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1174 Node* src_count = load_array_length(src); 1175 1176 // Get start addr and length of substring 1177 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1178 Node* tgt_count = load_array_length(tgt); 1179 1180 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1181 // Divide src size by 2 if String is UTF16 encoded 1182 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1183 } 1184 if (ae == StrIntrinsicNode::UU) { 1185 // Divide substring size by 2 if String is UTF16 encoded 1186 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1187 } 1188 1189 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1190 if (result != NULL) { 1191 result_phi->init_req(3, result); 1192 result_rgn->init_req(3, control()); 1193 } 1194 set_control(_gvn.transform(result_rgn)); 1195 record_for_igvn(result_rgn); 1196 set_result(_gvn.transform(result_phi)); 1197 1198 return true; 1199 } 1200 1201 //-----------------------------inline_string_indexOf----------------------- 1202 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1203 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1204 return false; 1205 } 1206 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1207 return false; 1208 } 1209 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1210 Node* src = argument(0); // byte[] 1211 Node* src_count = argument(1); // char count 1212 Node* tgt = argument(2); // byte[] 1213 Node* tgt_count = argument(3); // char count 1214 Node* from_index = argument(4); // char index 1215 1216 src = must_be_not_null(src, true); 1217 tgt = must_be_not_null(tgt, true); 1218 1219 // Multiply byte array index by 2 if String is UTF16 encoded 1220 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1221 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1222 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1223 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1224 1225 // Range checks 1226 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1227 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1228 if (stopped()) { 1229 return true; 1230 } 1231 1232 RegionNode* region = new RegionNode(5); 1233 Node* phi = new PhiNode(region, TypeInt::INT); 1234 1235 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1236 if (result != NULL) { 1237 // The result is index relative to from_index if substring was found, -1 otherwise. 1238 // Generate code which will fold into cmove. 1239 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1240 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1241 1242 Node* if_lt = generate_slow_guard(bol, NULL); 1243 if (if_lt != NULL) { 1244 // result == -1 1245 phi->init_req(3, result); 1246 region->init_req(3, if_lt); 1247 } 1248 if (!stopped()) { 1249 result = _gvn.transform(new AddINode(result, from_index)); 1250 phi->init_req(4, result); 1251 region->init_req(4, control()); 1252 } 1253 } 1254 1255 set_control(_gvn.transform(region)); 1256 record_for_igvn(region); 1257 set_result(_gvn.transform(phi)); 1258 clear_upper_avx(); 1259 1260 return true; 1261 } 1262 1263 // Create StrIndexOfNode with fast path checks 1264 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1265 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1266 // Check for substr count > string count 1267 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1268 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1269 Node* if_gt = generate_slow_guard(bol, NULL); 1270 if (if_gt != NULL) { 1271 phi->init_req(1, intcon(-1)); 1272 region->init_req(1, if_gt); 1273 } 1274 if (!stopped()) { 1275 // Check for substr count == 0 1276 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1277 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1278 Node* if_zero = generate_slow_guard(bol, NULL); 1279 if (if_zero != NULL) { 1280 phi->init_req(2, intcon(0)); 1281 region->init_req(2, if_zero); 1282 } 1283 } 1284 if (!stopped()) { 1285 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1286 } 1287 return NULL; 1288 } 1289 1290 //-----------------------------inline_string_indexOfChar----------------------- 1291 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1292 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1293 return false; 1294 } 1295 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1296 return false; 1297 } 1298 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1299 Node* src = argument(0); // byte[] 1300 Node* tgt = argument(1); // tgt is int ch 1301 Node* from_index = argument(2); 1302 Node* max = argument(3); 1303 1304 src = must_be_not_null(src, true); 1305 1306 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1307 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1308 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1309 1310 // Range checks 1311 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1312 if (stopped()) { 1313 return true; 1314 } 1315 1316 RegionNode* region = new RegionNode(3); 1317 Node* phi = new PhiNode(region, TypeInt::INT); 1318 1319 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, ae); 1320 C->set_has_split_ifs(true); // Has chance for split-if optimization 1321 _gvn.transform(result); 1322 1323 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1324 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1325 1326 Node* if_lt = generate_slow_guard(bol, NULL); 1327 if (if_lt != NULL) { 1328 // result == -1 1329 phi->init_req(2, result); 1330 region->init_req(2, if_lt); 1331 } 1332 if (!stopped()) { 1333 result = _gvn.transform(new AddINode(result, from_index)); 1334 phi->init_req(1, result); 1335 region->init_req(1, control()); 1336 } 1337 set_control(_gvn.transform(region)); 1338 record_for_igvn(region); 1339 set_result(_gvn.transform(phi)); 1340 1341 return true; 1342 } 1343 //---------------------------inline_string_copy--------------------- 1344 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1345 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1346 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1347 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1348 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1349 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1350 bool LibraryCallKit::inline_string_copy(bool compress) { 1351 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1352 return false; 1353 } 1354 int nargs = 5; // 2 oops, 3 ints 1355 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1356 1357 Node* src = argument(0); 1358 Node* src_offset = argument(1); 1359 Node* dst = argument(2); 1360 Node* dst_offset = argument(3); 1361 Node* length = argument(4); 1362 1363 // Check for allocation before we add nodes that would confuse 1364 // tightly_coupled_allocation() 1365 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1366 1367 // Figure out the size and type of the elements we will be copying. 1368 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1369 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1370 if (src_type == nullptr || dst_type == nullptr) { 1371 return false; 1372 } 1373 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1374 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1375 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1376 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1377 "Unsupported array types for inline_string_copy"); 1378 1379 src = must_be_not_null(src, true); 1380 dst = must_be_not_null(dst, true); 1381 1382 // Convert char[] offsets to byte[] offsets 1383 bool convert_src = (compress && src_elem == T_BYTE); 1384 bool convert_dst = (!compress && dst_elem == T_BYTE); 1385 if (convert_src) { 1386 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1387 } else if (convert_dst) { 1388 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1389 } 1390 1391 // Range checks 1392 generate_string_range_check(src, src_offset, length, convert_src); 1393 generate_string_range_check(dst, dst_offset, length, convert_dst); 1394 if (stopped()) { 1395 return true; 1396 } 1397 1398 Node* src_start = array_element_address(src, src_offset, src_elem); 1399 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1400 // 'src_start' points to src array + scaled offset 1401 // 'dst_start' points to dst array + scaled offset 1402 Node* count = NULL; 1403 if (compress) { 1404 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1405 } else { 1406 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1407 } 1408 1409 if (alloc != NULL) { 1410 if (alloc->maybe_set_complete(&_gvn)) { 1411 // "You break it, you buy it." 1412 InitializeNode* init = alloc->initialization(); 1413 assert(init->is_complete(), "we just did this"); 1414 init->set_complete_with_arraycopy(); 1415 assert(dst->is_CheckCastPP(), "sanity"); 1416 assert(dst->in(0)->in(0) == init, "dest pinned"); 1417 } 1418 // Do not let stores that initialize this object be reordered with 1419 // a subsequent store that would make this object accessible by 1420 // other threads. 1421 // Record what AllocateNode this StoreStore protects so that 1422 // escape analysis can go from the MemBarStoreStoreNode to the 1423 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1424 // based on the escape status of the AllocateNode. 1425 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1426 } 1427 if (compress) { 1428 set_result(_gvn.transform(count)); 1429 } 1430 clear_upper_avx(); 1431 1432 return true; 1433 } 1434 1435 #ifdef _LP64 1436 #define XTOP ,top() /*additional argument*/ 1437 #else //_LP64 1438 #define XTOP /*no additional argument*/ 1439 #endif //_LP64 1440 1441 //------------------------inline_string_toBytesU-------------------------- 1442 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1443 bool LibraryCallKit::inline_string_toBytesU() { 1444 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1445 return false; 1446 } 1447 // Get the arguments. 1448 Node* value = argument(0); 1449 Node* offset = argument(1); 1450 Node* length = argument(2); 1451 1452 Node* newcopy = NULL; 1453 1454 // Set the original stack and the reexecute bit for the interpreter to reexecute 1455 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1456 { PreserveReexecuteState preexecs(this); 1457 jvms()->set_should_reexecute(true); 1458 1459 // Check if a null path was taken unconditionally. 1460 value = null_check(value); 1461 1462 RegionNode* bailout = new RegionNode(1); 1463 record_for_igvn(bailout); 1464 1465 // Range checks 1466 generate_negative_guard(offset, bailout); 1467 generate_negative_guard(length, bailout); 1468 generate_limit_guard(offset, length, load_array_length(value), bailout); 1469 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1470 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1471 1472 if (bailout->req() > 1) { 1473 PreserveJVMState pjvms(this); 1474 set_control(_gvn.transform(bailout)); 1475 uncommon_trap(Deoptimization::Reason_intrinsic, 1476 Deoptimization::Action_maybe_recompile); 1477 } 1478 if (stopped()) { 1479 return true; 1480 } 1481 1482 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1483 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1484 newcopy = new_array(klass_node, size, 0); // no arguments to push 1485 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1486 guarantee(alloc != NULL, "created above"); 1487 1488 // Calculate starting addresses. 1489 Node* src_start = array_element_address(value, offset, T_CHAR); 1490 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1491 1492 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1493 const TypeInt* toffset = gvn().type(offset)->is_int(); 1494 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1495 1496 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1497 const char* copyfunc_name = "arraycopy"; 1498 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1499 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1500 OptoRuntime::fast_arraycopy_Type(), 1501 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1502 src_start, dst_start, ConvI2X(length) XTOP); 1503 // Do not let reads from the cloned object float above the arraycopy. 1504 if (alloc->maybe_set_complete(&_gvn)) { 1505 // "You break it, you buy it." 1506 InitializeNode* init = alloc->initialization(); 1507 assert(init->is_complete(), "we just did this"); 1508 init->set_complete_with_arraycopy(); 1509 assert(newcopy->is_CheckCastPP(), "sanity"); 1510 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1511 } 1512 // Do not let stores that initialize this object be reordered with 1513 // a subsequent store that would make this object accessible by 1514 // other threads. 1515 // Record what AllocateNode this StoreStore protects so that 1516 // escape analysis can go from the MemBarStoreStoreNode to the 1517 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1518 // based on the escape status of the AllocateNode. 1519 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1520 } // original reexecute is set back here 1521 1522 C->set_has_split_ifs(true); // Has chance for split-if optimization 1523 if (!stopped()) { 1524 set_result(newcopy); 1525 } 1526 clear_upper_avx(); 1527 1528 return true; 1529 } 1530 1531 //------------------------inline_string_getCharsU-------------------------- 1532 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1533 bool LibraryCallKit::inline_string_getCharsU() { 1534 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1535 return false; 1536 } 1537 1538 // Get the arguments. 1539 Node* src = argument(0); 1540 Node* src_begin = argument(1); 1541 Node* src_end = argument(2); // exclusive offset (i < src_end) 1542 Node* dst = argument(3); 1543 Node* dst_begin = argument(4); 1544 1545 // Check for allocation before we add nodes that would confuse 1546 // tightly_coupled_allocation() 1547 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1548 1549 // Check if a null path was taken unconditionally. 1550 src = null_check(src); 1551 dst = null_check(dst); 1552 if (stopped()) { 1553 return true; 1554 } 1555 1556 // Get length and convert char[] offset to byte[] offset 1557 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1558 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1559 1560 // Range checks 1561 generate_string_range_check(src, src_begin, length, true); 1562 generate_string_range_check(dst, dst_begin, length, false); 1563 if (stopped()) { 1564 return true; 1565 } 1566 1567 if (!stopped()) { 1568 // Calculate starting addresses. 1569 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1570 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1571 1572 // Check if array addresses are aligned to HeapWordSize 1573 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1574 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1575 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1576 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1577 1578 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1579 const char* copyfunc_name = "arraycopy"; 1580 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1581 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1582 OptoRuntime::fast_arraycopy_Type(), 1583 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1584 src_start, dst_start, ConvI2X(length) XTOP); 1585 // Do not let reads from the cloned object float above the arraycopy. 1586 if (alloc != NULL) { 1587 if (alloc->maybe_set_complete(&_gvn)) { 1588 // "You break it, you buy it." 1589 InitializeNode* init = alloc->initialization(); 1590 assert(init->is_complete(), "we just did this"); 1591 init->set_complete_with_arraycopy(); 1592 assert(dst->is_CheckCastPP(), "sanity"); 1593 assert(dst->in(0)->in(0) == init, "dest pinned"); 1594 } 1595 // Do not let stores that initialize this object be reordered with 1596 // a subsequent store that would make this object accessible by 1597 // other threads. 1598 // Record what AllocateNode this StoreStore protects so that 1599 // escape analysis can go from the MemBarStoreStoreNode to the 1600 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1601 // based on the escape status of the AllocateNode. 1602 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1603 } else { 1604 insert_mem_bar(Op_MemBarCPUOrder); 1605 } 1606 } 1607 1608 C->set_has_split_ifs(true); // Has chance for split-if optimization 1609 return true; 1610 } 1611 1612 //----------------------inline_string_char_access---------------------------- 1613 // Store/Load char to/from byte[] array. 1614 // static void StringUTF16.putChar(byte[] val, int index, int c) 1615 // static char StringUTF16.getChar(byte[] val, int index) 1616 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1617 Node* value = argument(0); 1618 Node* index = argument(1); 1619 Node* ch = is_store ? argument(2) : NULL; 1620 1621 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1622 // correctly requires matched array shapes. 1623 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1624 "sanity: byte[] and char[] bases agree"); 1625 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1626 "sanity: byte[] and char[] scales agree"); 1627 1628 // Bail when getChar over constants is requested: constant folding would 1629 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1630 // Java method would constant fold nicely instead. 1631 if (!is_store && value->is_Con() && index->is_Con()) { 1632 return false; 1633 } 1634 1635 // Save state and restore on bailout 1636 uint old_sp = sp(); 1637 SafePointNode* old_map = clone_map(); 1638 1639 value = must_be_not_null(value, true); 1640 1641 Node* adr = array_element_address(value, index, T_CHAR); 1642 if (adr->is_top()) { 1643 set_map(old_map); 1644 set_sp(old_sp); 1645 return false; 1646 } 1647 old_map->destruct(&_gvn); 1648 if (is_store) { 1649 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1650 } else { 1651 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1652 set_result(ch); 1653 } 1654 return true; 1655 } 1656 1657 //--------------------------round_double_node-------------------------------- 1658 // Round a double node if necessary. 1659 Node* LibraryCallKit::round_double_node(Node* n) { 1660 if (Matcher::strict_fp_requires_explicit_rounding) { 1661 #ifdef IA32 1662 if (UseSSE < 2) { 1663 n = _gvn.transform(new RoundDoubleNode(NULL, n)); 1664 } 1665 #else 1666 Unimplemented(); 1667 #endif // IA32 1668 } 1669 return n; 1670 } 1671 1672 //------------------------------inline_math----------------------------------- 1673 // public static double Math.abs(double) 1674 // public static double Math.sqrt(double) 1675 // public static double Math.log(double) 1676 // public static double Math.log10(double) 1677 // public static double Math.round(double) 1678 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1679 Node* arg = round_double_node(argument(0)); 1680 Node* n = NULL; 1681 switch (id) { 1682 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1683 case vmIntrinsics::_dsqrt: 1684 case vmIntrinsics::_dsqrt_strict: 1685 n = new SqrtDNode(C, control(), arg); break; 1686 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1687 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1688 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1689 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1690 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1691 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1692 default: fatal_unexpected_iid(id); break; 1693 } 1694 set_result(_gvn.transform(n)); 1695 return true; 1696 } 1697 1698 //------------------------------inline_math----------------------------------- 1699 // public static float Math.abs(float) 1700 // public static int Math.abs(int) 1701 // public static long Math.abs(long) 1702 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1703 Node* arg = argument(0); 1704 Node* n = NULL; 1705 switch (id) { 1706 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1707 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1708 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1709 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1710 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1711 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1712 default: fatal_unexpected_iid(id); break; 1713 } 1714 set_result(_gvn.transform(n)); 1715 return true; 1716 } 1717 1718 //------------------------------runtime_math----------------------------- 1719 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1720 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1721 "must be (DD)D or (D)D type"); 1722 1723 // Inputs 1724 Node* a = round_double_node(argument(0)); 1725 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL; 1726 1727 const TypePtr* no_memory_effects = NULL; 1728 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1729 no_memory_effects, 1730 a, top(), b, b ? top() : NULL); 1731 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1732 #ifdef ASSERT 1733 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1734 assert(value_top == top(), "second value must be top"); 1735 #endif 1736 1737 set_result(value); 1738 return true; 1739 } 1740 1741 //------------------------------inline_math_pow----------------------------- 1742 bool LibraryCallKit::inline_math_pow() { 1743 Node* exp = round_double_node(argument(2)); 1744 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1745 if (d != NULL) { 1746 if (d->getd() == 2.0) { 1747 // Special case: pow(x, 2.0) => x * x 1748 Node* base = round_double_node(argument(0)); 1749 set_result(_gvn.transform(new MulDNode(base, base))); 1750 return true; 1751 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1752 // Special case: pow(x, 0.5) => sqrt(x) 1753 Node* base = round_double_node(argument(0)); 1754 Node* zero = _gvn.zerocon(T_DOUBLE); 1755 1756 RegionNode* region = new RegionNode(3); 1757 Node* phi = new PhiNode(region, Type::DOUBLE); 1758 1759 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1760 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1761 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1762 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1763 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1764 1765 Node* if_pow = generate_slow_guard(test, NULL); 1766 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1767 phi->init_req(1, value_sqrt); 1768 region->init_req(1, control()); 1769 1770 if (if_pow != NULL) { 1771 set_control(if_pow); 1772 address target = StubRoutines::dpow() != NULL ? StubRoutines::dpow() : 1773 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1774 const TypePtr* no_memory_effects = NULL; 1775 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1776 no_memory_effects, base, top(), exp, top()); 1777 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1778 #ifdef ASSERT 1779 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1780 assert(value_top == top(), "second value must be top"); 1781 #endif 1782 phi->init_req(2, value_pow); 1783 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1784 } 1785 1786 C->set_has_split_ifs(true); // Has chance for split-if optimization 1787 set_control(_gvn.transform(region)); 1788 record_for_igvn(region); 1789 set_result(_gvn.transform(phi)); 1790 1791 return true; 1792 } 1793 } 1794 1795 return StubRoutines::dpow() != NULL ? 1796 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1797 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1798 } 1799 1800 //------------------------------inline_math_native----------------------------- 1801 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1802 switch (id) { 1803 case vmIntrinsics::_dsin: 1804 return StubRoutines::dsin() != NULL ? 1805 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1806 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1807 case vmIntrinsics::_dcos: 1808 return StubRoutines::dcos() != NULL ? 1809 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1810 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1811 case vmIntrinsics::_dtan: 1812 return StubRoutines::dtan() != NULL ? 1813 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1814 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1815 case vmIntrinsics::_dexp: 1816 return StubRoutines::dexp() != NULL ? 1817 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1818 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1819 case vmIntrinsics::_dlog: 1820 return StubRoutines::dlog() != NULL ? 1821 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1822 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1823 case vmIntrinsics::_dlog10: 1824 return StubRoutines::dlog10() != NULL ? 1825 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1826 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1827 1828 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1829 case vmIntrinsics::_ceil: 1830 case vmIntrinsics::_floor: 1831 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1832 1833 case vmIntrinsics::_dsqrt: 1834 case vmIntrinsics::_dsqrt_strict: 1835 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1836 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1837 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1838 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1839 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1840 1841 case vmIntrinsics::_dpow: return inline_math_pow(); 1842 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1843 case vmIntrinsics::_fcopySign: return inline_math(id); 1844 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1845 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1846 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1847 1848 // These intrinsics are not yet correctly implemented 1849 case vmIntrinsics::_datan2: 1850 return false; 1851 1852 default: 1853 fatal_unexpected_iid(id); 1854 return false; 1855 } 1856 } 1857 1858 //----------------------------inline_notify-----------------------------------* 1859 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1860 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1861 address func; 1862 if (id == vmIntrinsics::_notify) { 1863 func = OptoRuntime::monitor_notify_Java(); 1864 } else { 1865 func = OptoRuntime::monitor_notifyAll_Java(); 1866 } 1867 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0)); 1868 make_slow_call_ex(call, env()->Throwable_klass(), false); 1869 return true; 1870 } 1871 1872 1873 //----------------------------inline_min_max----------------------------------- 1874 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1875 set_result(generate_min_max(id, argument(0), argument(1))); 1876 return true; 1877 } 1878 1879 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1880 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1881 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1882 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1883 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1884 1885 { 1886 PreserveJVMState pjvms(this); 1887 PreserveReexecuteState preexecs(this); 1888 jvms()->set_should_reexecute(true); 1889 1890 set_control(slow_path); 1891 set_i_o(i_o()); 1892 1893 uncommon_trap(Deoptimization::Reason_intrinsic, 1894 Deoptimization::Action_none); 1895 } 1896 1897 set_control(fast_path); 1898 set_result(math); 1899 } 1900 1901 template <typename OverflowOp> 1902 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1903 typedef typename OverflowOp::MathOp MathOp; 1904 1905 MathOp* mathOp = new MathOp(arg1, arg2); 1906 Node* operation = _gvn.transform( mathOp ); 1907 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1908 inline_math_mathExact(operation, ofcheck); 1909 return true; 1910 } 1911 1912 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1913 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1914 } 1915 1916 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1917 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1918 } 1919 1920 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1921 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1922 } 1923 1924 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1925 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1926 } 1927 1928 bool LibraryCallKit::inline_math_negateExactI() { 1929 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 1930 } 1931 1932 bool LibraryCallKit::inline_math_negateExactL() { 1933 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 1934 } 1935 1936 bool LibraryCallKit::inline_math_multiplyExactI() { 1937 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 1938 } 1939 1940 bool LibraryCallKit::inline_math_multiplyExactL() { 1941 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 1942 } 1943 1944 bool LibraryCallKit::inline_math_multiplyHigh() { 1945 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 1946 return true; 1947 } 1948 1949 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 1950 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 1951 return true; 1952 } 1953 1954 Node* 1955 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 1956 Node* result_val = NULL; 1957 switch (id) { 1958 case vmIntrinsics::_min: 1959 case vmIntrinsics::_min_strict: 1960 result_val = _gvn.transform(new MinINode(x0, y0)); 1961 break; 1962 case vmIntrinsics::_max: 1963 case vmIntrinsics::_max_strict: 1964 result_val = _gvn.transform(new MaxINode(x0, y0)); 1965 break; 1966 default: 1967 fatal_unexpected_iid(id); 1968 break; 1969 } 1970 return result_val; 1971 } 1972 1973 inline int 1974 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 1975 const TypePtr* base_type = TypePtr::NULL_PTR; 1976 if (base != NULL) base_type = _gvn.type(base)->isa_ptr(); 1977 if (base_type == NULL) { 1978 // Unknown type. 1979 return Type::AnyPtr; 1980 } else if (base_type == TypePtr::NULL_PTR) { 1981 // Since this is a NULL+long form, we have to switch to a rawptr. 1982 base = _gvn.transform(new CastX2PNode(offset)); 1983 offset = MakeConX(0); 1984 return Type::RawPtr; 1985 } else if (base_type->base() == Type::RawPtr) { 1986 return Type::RawPtr; 1987 } else if (base_type->isa_oopptr()) { 1988 // Base is never null => always a heap address. 1989 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 1990 return Type::OopPtr; 1991 } 1992 // Offset is small => always a heap address. 1993 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 1994 if (offset_type != NULL && 1995 base_type->offset() == 0 && // (should always be?) 1996 offset_type->_lo >= 0 && 1997 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 1998 return Type::OopPtr; 1999 } else if (type == T_OBJECT) { 2000 // off heap access to an oop doesn't make any sense. Has to be on 2001 // heap. 2002 return Type::OopPtr; 2003 } 2004 // Otherwise, it might either be oop+off or NULL+addr. 2005 return Type::AnyPtr; 2006 } else { 2007 // No information: 2008 return Type::AnyPtr; 2009 } 2010 } 2011 2012 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2013 Node* uncasted_base = base; 2014 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2015 if (kind == Type::RawPtr) { 2016 return basic_plus_adr(top(), uncasted_base, offset); 2017 } else if (kind == Type::AnyPtr) { 2018 assert(base == uncasted_base, "unexpected base change"); 2019 if (can_cast) { 2020 if (!_gvn.type(base)->speculative_maybe_null() && 2021 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2022 // According to profiling, this access is always on 2023 // heap. Casting the base to not null and thus avoiding membars 2024 // around the access should allow better optimizations 2025 Node* null_ctl = top(); 2026 base = null_check_oop(base, &null_ctl, true, true, true); 2027 assert(null_ctl->is_top(), "no null control here"); 2028 return basic_plus_adr(base, offset); 2029 } else if (_gvn.type(base)->speculative_always_null() && 2030 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2031 // According to profiling, this access is always off 2032 // heap. 2033 base = null_assert(base); 2034 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2035 offset = MakeConX(0); 2036 return basic_plus_adr(top(), raw_base, offset); 2037 } 2038 } 2039 // We don't know if it's an on heap or off heap access. Fall back 2040 // to raw memory access. 2041 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2042 return basic_plus_adr(top(), raw, offset); 2043 } else { 2044 assert(base == uncasted_base, "unexpected base change"); 2045 // We know it's an on heap access so base can't be null 2046 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2047 base = must_be_not_null(base, true); 2048 } 2049 return basic_plus_adr(base, offset); 2050 } 2051 } 2052 2053 //--------------------------inline_number_methods----------------------------- 2054 // inline int Integer.numberOfLeadingZeros(int) 2055 // inline int Long.numberOfLeadingZeros(long) 2056 // 2057 // inline int Integer.numberOfTrailingZeros(int) 2058 // inline int Long.numberOfTrailingZeros(long) 2059 // 2060 // inline int Integer.bitCount(int) 2061 // inline int Long.bitCount(long) 2062 // 2063 // inline char Character.reverseBytes(char) 2064 // inline short Short.reverseBytes(short) 2065 // inline int Integer.reverseBytes(int) 2066 // inline long Long.reverseBytes(long) 2067 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2068 Node* arg = argument(0); 2069 Node* n = NULL; 2070 switch (id) { 2071 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2072 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2073 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2074 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2075 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2076 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2077 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2078 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2079 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2080 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2081 case vmIntrinsics::_reverse_i: n = new ReverseINode(0, arg); break; 2082 case vmIntrinsics::_reverse_l: n = new ReverseLNode(0, arg); break; 2083 default: fatal_unexpected_iid(id); break; 2084 } 2085 set_result(_gvn.transform(n)); 2086 return true; 2087 } 2088 2089 //--------------------------inline_bitshuffle_methods----------------------------- 2090 // inline int Integer.compress(int, int) 2091 // inline int Integer.expand(int, int) 2092 // inline long Long.compress(long, long) 2093 // inline long Long.expand(long, long) 2094 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2095 Node* n = NULL; 2096 switch (id) { 2097 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2098 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2099 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2100 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2101 default: fatal_unexpected_iid(id); break; 2102 } 2103 set_result(_gvn.transform(n)); 2104 return true; 2105 } 2106 2107 //--------------------------inline_number_methods----------------------------- 2108 // inline int Integer.compareUnsigned(int, int) 2109 // inline int Long.compareUnsigned(long, long) 2110 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2111 Node* arg1 = argument(0); 2112 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2113 Node* n = NULL; 2114 switch (id) { 2115 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2116 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2117 default: fatal_unexpected_iid(id); break; 2118 } 2119 set_result(_gvn.transform(n)); 2120 return true; 2121 } 2122 2123 //--------------------------inline_unsigned_divmod_methods----------------------------- 2124 // inline int Integer.divideUnsigned(int, int) 2125 // inline int Integer.remainderUnsigned(int, int) 2126 // inline long Long.divideUnsigned(long, long) 2127 // inline long Long.remainderUnsigned(long, long) 2128 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2129 Node* n = NULL; 2130 switch (id) { 2131 case vmIntrinsics::_divideUnsigned_i: { 2132 zero_check_int(argument(1)); 2133 // Compile-time detect of null-exception 2134 if (stopped()) { 2135 return true; // keep the graph constructed so far 2136 } 2137 n = new UDivINode(control(), argument(0), argument(1)); 2138 break; 2139 } 2140 case vmIntrinsics::_divideUnsigned_l: { 2141 zero_check_long(argument(2)); 2142 // Compile-time detect of null-exception 2143 if (stopped()) { 2144 return true; // keep the graph constructed so far 2145 } 2146 n = new UDivLNode(control(), argument(0), argument(2)); 2147 break; 2148 } 2149 case vmIntrinsics::_remainderUnsigned_i: { 2150 zero_check_int(argument(1)); 2151 // Compile-time detect of null-exception 2152 if (stopped()) { 2153 return true; // keep the graph constructed so far 2154 } 2155 n = new UModINode(control(), argument(0), argument(1)); 2156 break; 2157 } 2158 case vmIntrinsics::_remainderUnsigned_l: { 2159 zero_check_long(argument(2)); 2160 // Compile-time detect of null-exception 2161 if (stopped()) { 2162 return true; // keep the graph constructed so far 2163 } 2164 n = new UModLNode(control(), argument(0), argument(2)); 2165 break; 2166 } 2167 default: fatal_unexpected_iid(id); break; 2168 } 2169 set_result(_gvn.transform(n)); 2170 return true; 2171 } 2172 2173 //----------------------------inline_unsafe_access---------------------------- 2174 2175 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2176 // Attempt to infer a sharper value type from the offset and base type. 2177 ciKlass* sharpened_klass = NULL; 2178 2179 // See if it is an instance field, with an object type. 2180 if (alias_type->field() != NULL) { 2181 if (alias_type->field()->type()->is_klass()) { 2182 sharpened_klass = alias_type->field()->type()->as_klass(); 2183 } 2184 } 2185 2186 const TypeOopPtr* result = NULL; 2187 // See if it is a narrow oop array. 2188 if (adr_type->isa_aryptr()) { 2189 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2190 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2191 if (elem_type != NULL && elem_type->is_loaded()) { 2192 // Sharpen the value type. 2193 result = elem_type; 2194 } 2195 } 2196 } 2197 2198 // The sharpened class might be unloaded if there is no class loader 2199 // contraint in place. 2200 if (result == NULL && sharpened_klass != NULL && sharpened_klass->is_loaded()) { 2201 // Sharpen the value type. 2202 result = TypeOopPtr::make_from_klass(sharpened_klass); 2203 } 2204 if (result != NULL) { 2205 #ifndef PRODUCT 2206 if (C->print_intrinsics() || C->print_inlining()) { 2207 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2208 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2209 } 2210 #endif 2211 } 2212 return result; 2213 } 2214 2215 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2216 switch (kind) { 2217 case Relaxed: 2218 return MO_UNORDERED; 2219 case Opaque: 2220 return MO_RELAXED; 2221 case Acquire: 2222 return MO_ACQUIRE; 2223 case Release: 2224 return MO_RELEASE; 2225 case Volatile: 2226 return MO_SEQ_CST; 2227 default: 2228 ShouldNotReachHere(); 2229 return 0; 2230 } 2231 } 2232 2233 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2234 if (callee()->is_static()) return false; // caller must have the capability! 2235 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2236 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2237 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2238 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2239 2240 if (is_reference_type(type)) { 2241 decorators |= ON_UNKNOWN_OOP_REF; 2242 } 2243 2244 if (unaligned) { 2245 decorators |= C2_UNALIGNED; 2246 } 2247 2248 #ifndef PRODUCT 2249 { 2250 ResourceMark rm; 2251 // Check the signatures. 2252 ciSignature* sig = callee()->signature(); 2253 #ifdef ASSERT 2254 if (!is_store) { 2255 // Object getReference(Object base, int/long offset), etc. 2256 BasicType rtype = sig->return_type()->basic_type(); 2257 assert(rtype == type, "getter must return the expected value"); 2258 assert(sig->count() == 2, "oop getter has 2 arguments"); 2259 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2260 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2261 } else { 2262 // void putReference(Object base, int/long offset, Object x), etc. 2263 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2264 assert(sig->count() == 3, "oop putter has 3 arguments"); 2265 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2266 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2267 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2268 assert(vtype == type, "putter must accept the expected value"); 2269 } 2270 #endif // ASSERT 2271 } 2272 #endif //PRODUCT 2273 2274 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2275 2276 Node* receiver = argument(0); // type: oop 2277 2278 // Build address expression. 2279 Node* heap_base_oop = top(); 2280 2281 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2282 Node* base = argument(1); // type: oop 2283 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2284 Node* offset = argument(2); // type: long 2285 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2286 // to be plain byte offsets, which are also the same as those accepted 2287 // by oopDesc::field_addr. 2288 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2289 "fieldOffset must be byte-scaled"); 2290 // 32-bit machines ignore the high half! 2291 offset = ConvL2X(offset); 2292 2293 // Save state and restore on bailout 2294 uint old_sp = sp(); 2295 SafePointNode* old_map = clone_map(); 2296 2297 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2298 2299 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2300 if (type != T_OBJECT) { 2301 decorators |= IN_NATIVE; // off-heap primitive access 2302 } else { 2303 set_map(old_map); 2304 set_sp(old_sp); 2305 return false; // off-heap oop accesses are not supported 2306 } 2307 } else { 2308 heap_base_oop = base; // on-heap or mixed access 2309 } 2310 2311 // Can base be NULL? Otherwise, always on-heap access. 2312 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2313 2314 if (!can_access_non_heap) { 2315 decorators |= IN_HEAP; 2316 } 2317 2318 Node* val = is_store ? argument(4) : NULL; 2319 2320 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2321 if (adr_type == TypePtr::NULL_PTR) { 2322 set_map(old_map); 2323 set_sp(old_sp); 2324 return false; // off-heap access with zero address 2325 } 2326 2327 // Try to categorize the address. 2328 Compile::AliasType* alias_type = C->alias_type(adr_type); 2329 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2330 2331 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2332 alias_type->adr_type() == TypeAryPtr::RANGE) { 2333 set_map(old_map); 2334 set_sp(old_sp); 2335 return false; // not supported 2336 } 2337 2338 bool mismatched = false; 2339 BasicType bt = alias_type->basic_type(); 2340 if (bt != T_ILLEGAL) { 2341 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2342 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2343 // Alias type doesn't differentiate between byte[] and boolean[]). 2344 // Use address type to get the element type. 2345 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2346 } 2347 if (is_reference_type(bt, true)) { 2348 // accessing an array field with getReference is not a mismatch 2349 bt = T_OBJECT; 2350 } 2351 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2352 // Don't intrinsify mismatched object accesses 2353 set_map(old_map); 2354 set_sp(old_sp); 2355 return false; 2356 } 2357 mismatched = (bt != type); 2358 } else if (alias_type->adr_type()->isa_oopptr()) { 2359 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2360 } 2361 2362 old_map->destruct(&_gvn); 2363 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2364 2365 if (mismatched) { 2366 decorators |= C2_MISMATCHED; 2367 } 2368 2369 // First guess at the value type. 2370 const Type *value_type = Type::get_const_basic_type(type); 2371 2372 // Figure out the memory ordering. 2373 decorators |= mo_decorator_for_access_kind(kind); 2374 2375 if (!is_store && type == T_OBJECT) { 2376 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2377 if (tjp != NULL) { 2378 value_type = tjp; 2379 } 2380 } 2381 2382 receiver = null_check(receiver); 2383 if (stopped()) { 2384 return true; 2385 } 2386 // Heap pointers get a null-check from the interpreter, 2387 // as a courtesy. However, this is not guaranteed by Unsafe, 2388 // and it is not possible to fully distinguish unintended nulls 2389 // from intended ones in this API. 2390 2391 if (!is_store) { 2392 Node* p = NULL; 2393 // Try to constant fold a load from a constant field 2394 ciField* field = alias_type->field(); 2395 if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) { 2396 // final or stable field 2397 p = make_constant_from_field(field, heap_base_oop); 2398 } 2399 2400 if (p == NULL) { // Could not constant fold the load 2401 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2402 // Normalize the value returned by getBoolean in the following cases 2403 if (type == T_BOOLEAN && 2404 (mismatched || 2405 heap_base_oop == top() || // - heap_base_oop is NULL or 2406 (can_access_non_heap && field == NULL)) // - heap_base_oop is potentially NULL 2407 // and the unsafe access is made to large offset 2408 // (i.e., larger than the maximum offset necessary for any 2409 // field access) 2410 ) { 2411 IdealKit ideal = IdealKit(this); 2412 #define __ ideal. 2413 IdealVariable normalized_result(ideal); 2414 __ declarations_done(); 2415 __ set(normalized_result, p); 2416 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2417 __ set(normalized_result, ideal.ConI(1)); 2418 ideal.end_if(); 2419 final_sync(ideal); 2420 p = __ value(normalized_result); 2421 #undef __ 2422 } 2423 } 2424 if (type == T_ADDRESS) { 2425 p = gvn().transform(new CastP2XNode(NULL, p)); 2426 p = ConvX2UL(p); 2427 } 2428 // The load node has the control of the preceding MemBarCPUOrder. All 2429 // following nodes will have the control of the MemBarCPUOrder inserted at 2430 // the end of this method. So, pushing the load onto the stack at a later 2431 // point is fine. 2432 set_result(p); 2433 } else { 2434 if (bt == T_ADDRESS) { 2435 // Repackage the long as a pointer. 2436 val = ConvL2X(val); 2437 val = gvn().transform(new CastX2PNode(val)); 2438 } 2439 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2440 } 2441 2442 return true; 2443 } 2444 2445 //----------------------------inline_unsafe_load_store---------------------------- 2446 // This method serves a couple of different customers (depending on LoadStoreKind): 2447 // 2448 // LS_cmp_swap: 2449 // 2450 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2451 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2452 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2453 // 2454 // LS_cmp_swap_weak: 2455 // 2456 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2457 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2458 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2459 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2460 // 2461 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2462 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2463 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2464 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2465 // 2466 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2467 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2468 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2469 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2470 // 2471 // LS_cmp_exchange: 2472 // 2473 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2474 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2475 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2476 // 2477 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2478 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2479 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2480 // 2481 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2482 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2483 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2484 // 2485 // LS_get_add: 2486 // 2487 // int getAndAddInt( Object o, long offset, int delta) 2488 // long getAndAddLong(Object o, long offset, long delta) 2489 // 2490 // LS_get_set: 2491 // 2492 // int getAndSet(Object o, long offset, int newValue) 2493 // long getAndSet(Object o, long offset, long newValue) 2494 // Object getAndSet(Object o, long offset, Object newValue) 2495 // 2496 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2497 // This basic scheme here is the same as inline_unsafe_access, but 2498 // differs in enough details that combining them would make the code 2499 // overly confusing. (This is a true fact! I originally combined 2500 // them, but even I was confused by it!) As much code/comments as 2501 // possible are retained from inline_unsafe_access though to make 2502 // the correspondences clearer. - dl 2503 2504 if (callee()->is_static()) return false; // caller must have the capability! 2505 2506 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2507 decorators |= mo_decorator_for_access_kind(access_kind); 2508 2509 #ifndef PRODUCT 2510 BasicType rtype; 2511 { 2512 ResourceMark rm; 2513 // Check the signatures. 2514 ciSignature* sig = callee()->signature(); 2515 rtype = sig->return_type()->basic_type(); 2516 switch(kind) { 2517 case LS_get_add: 2518 case LS_get_set: { 2519 // Check the signatures. 2520 #ifdef ASSERT 2521 assert(rtype == type, "get and set must return the expected type"); 2522 assert(sig->count() == 3, "get and set has 3 arguments"); 2523 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2524 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2525 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2526 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2527 #endif // ASSERT 2528 break; 2529 } 2530 case LS_cmp_swap: 2531 case LS_cmp_swap_weak: { 2532 // Check the signatures. 2533 #ifdef ASSERT 2534 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2535 assert(sig->count() == 4, "CAS has 4 arguments"); 2536 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2537 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2538 #endif // ASSERT 2539 break; 2540 } 2541 case LS_cmp_exchange: { 2542 // Check the signatures. 2543 #ifdef ASSERT 2544 assert(rtype == type, "CAS must return the expected type"); 2545 assert(sig->count() == 4, "CAS has 4 arguments"); 2546 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2547 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2548 #endif // ASSERT 2549 break; 2550 } 2551 default: 2552 ShouldNotReachHere(); 2553 } 2554 } 2555 #endif //PRODUCT 2556 2557 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2558 2559 // Get arguments: 2560 Node* receiver = NULL; 2561 Node* base = NULL; 2562 Node* offset = NULL; 2563 Node* oldval = NULL; 2564 Node* newval = NULL; 2565 switch(kind) { 2566 case LS_cmp_swap: 2567 case LS_cmp_swap_weak: 2568 case LS_cmp_exchange: { 2569 const bool two_slot_type = type2size[type] == 2; 2570 receiver = argument(0); // type: oop 2571 base = argument(1); // type: oop 2572 offset = argument(2); // type: long 2573 oldval = argument(4); // type: oop, int, or long 2574 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2575 break; 2576 } 2577 case LS_get_add: 2578 case LS_get_set: { 2579 receiver = argument(0); // type: oop 2580 base = argument(1); // type: oop 2581 offset = argument(2); // type: long 2582 oldval = NULL; 2583 newval = argument(4); // type: oop, int, or long 2584 break; 2585 } 2586 default: 2587 ShouldNotReachHere(); 2588 } 2589 2590 // Build field offset expression. 2591 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2592 // to be plain byte offsets, which are also the same as those accepted 2593 // by oopDesc::field_addr. 2594 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2595 // 32-bit machines ignore the high half of long offsets 2596 offset = ConvL2X(offset); 2597 // Save state and restore on bailout 2598 uint old_sp = sp(); 2599 SafePointNode* old_map = clone_map(); 2600 Node* adr = make_unsafe_address(base, offset,type, false); 2601 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2602 2603 Compile::AliasType* alias_type = C->alias_type(adr_type); 2604 BasicType bt = alias_type->basic_type(); 2605 if (bt != T_ILLEGAL && 2606 (is_reference_type(bt) != (type == T_OBJECT))) { 2607 // Don't intrinsify mismatched object accesses. 2608 set_map(old_map); 2609 set_sp(old_sp); 2610 return false; 2611 } 2612 2613 old_map->destruct(&_gvn); 2614 2615 // For CAS, unlike inline_unsafe_access, there seems no point in 2616 // trying to refine types. Just use the coarse types here. 2617 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2618 const Type *value_type = Type::get_const_basic_type(type); 2619 2620 switch (kind) { 2621 case LS_get_set: 2622 case LS_cmp_exchange: { 2623 if (type == T_OBJECT) { 2624 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2625 if (tjp != NULL) { 2626 value_type = tjp; 2627 } 2628 } 2629 break; 2630 } 2631 case LS_cmp_swap: 2632 case LS_cmp_swap_weak: 2633 case LS_get_add: 2634 break; 2635 default: 2636 ShouldNotReachHere(); 2637 } 2638 2639 // Null check receiver. 2640 receiver = null_check(receiver); 2641 if (stopped()) { 2642 return true; 2643 } 2644 2645 int alias_idx = C->get_alias_index(adr_type); 2646 2647 if (is_reference_type(type)) { 2648 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2649 2650 // Transformation of a value which could be NULL pointer (CastPP #NULL) 2651 // could be delayed during Parse (for example, in adjust_map_after_if()). 2652 // Execute transformation here to avoid barrier generation in such case. 2653 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2654 newval = _gvn.makecon(TypePtr::NULL_PTR); 2655 2656 if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2657 // Refine the value to a null constant, when it is known to be null 2658 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2659 } 2660 } 2661 2662 Node* result = NULL; 2663 switch (kind) { 2664 case LS_cmp_exchange: { 2665 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2666 oldval, newval, value_type, type, decorators); 2667 break; 2668 } 2669 case LS_cmp_swap_weak: 2670 decorators |= C2_WEAK_CMPXCHG; 2671 case LS_cmp_swap: { 2672 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2673 oldval, newval, value_type, type, decorators); 2674 break; 2675 } 2676 case LS_get_set: { 2677 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2678 newval, value_type, type, decorators); 2679 break; 2680 } 2681 case LS_get_add: { 2682 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2683 newval, value_type, type, decorators); 2684 break; 2685 } 2686 default: 2687 ShouldNotReachHere(); 2688 } 2689 2690 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2691 set_result(result); 2692 return true; 2693 } 2694 2695 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2696 // Regardless of form, don't allow previous ld/st to move down, 2697 // then issue acquire, release, or volatile mem_bar. 2698 insert_mem_bar(Op_MemBarCPUOrder); 2699 switch(id) { 2700 case vmIntrinsics::_loadFence: 2701 insert_mem_bar(Op_LoadFence); 2702 return true; 2703 case vmIntrinsics::_storeFence: 2704 insert_mem_bar(Op_StoreFence); 2705 return true; 2706 case vmIntrinsics::_storeStoreFence: 2707 insert_mem_bar(Op_StoreStoreFence); 2708 return true; 2709 case vmIntrinsics::_fullFence: 2710 insert_mem_bar(Op_MemBarVolatile); 2711 return true; 2712 default: 2713 fatal_unexpected_iid(id); 2714 return false; 2715 } 2716 } 2717 2718 bool LibraryCallKit::inline_onspinwait() { 2719 insert_mem_bar(Op_OnSpinWait); 2720 return true; 2721 } 2722 2723 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2724 if (!kls->is_Con()) { 2725 return true; 2726 } 2727 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2728 if (klsptr == NULL) { 2729 return true; 2730 } 2731 ciInstanceKlass* ik = klsptr->instance_klass(); 2732 // don't need a guard for a klass that is already initialized 2733 return !ik->is_initialized(); 2734 } 2735 2736 //----------------------------inline_unsafe_writeback0------------------------- 2737 // public native void Unsafe.writeback0(long address) 2738 bool LibraryCallKit::inline_unsafe_writeback0() { 2739 if (!Matcher::has_match_rule(Op_CacheWB)) { 2740 return false; 2741 } 2742 #ifndef PRODUCT 2743 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2744 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2745 ciSignature* sig = callee()->signature(); 2746 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2747 #endif 2748 null_check_receiver(); // null-check, then ignore 2749 Node *addr = argument(1); 2750 addr = new CastX2PNode(addr); 2751 addr = _gvn.transform(addr); 2752 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2753 flush = _gvn.transform(flush); 2754 set_memory(flush, TypeRawPtr::BOTTOM); 2755 return true; 2756 } 2757 2758 //----------------------------inline_unsafe_writeback0------------------------- 2759 // public native void Unsafe.writeback0(long address) 2760 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2761 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2762 return false; 2763 } 2764 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2765 return false; 2766 } 2767 #ifndef PRODUCT 2768 assert(Matcher::has_match_rule(Op_CacheWB), 2769 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2770 : "found match rule for CacheWBPostSync but not CacheWB")); 2771 2772 #endif 2773 null_check_receiver(); // null-check, then ignore 2774 Node *sync; 2775 if (is_pre) { 2776 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2777 } else { 2778 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2779 } 2780 sync = _gvn.transform(sync); 2781 set_memory(sync, TypeRawPtr::BOTTOM); 2782 return true; 2783 } 2784 2785 //----------------------------inline_unsafe_allocate--------------------------- 2786 // public native Object Unsafe.allocateInstance(Class<?> cls); 2787 bool LibraryCallKit::inline_unsafe_allocate() { 2788 if (callee()->is_static()) return false; // caller must have the capability! 2789 2790 null_check_receiver(); // null-check, then ignore 2791 Node* cls = null_check(argument(1)); 2792 if (stopped()) return true; 2793 2794 Node* kls = load_klass_from_mirror(cls, false, NULL, 0); 2795 kls = null_check(kls); 2796 if (stopped()) return true; // argument was like int.class 2797 2798 Node* test = NULL; 2799 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2800 // Note: The argument might still be an illegal value like 2801 // Serializable.class or Object[].class. The runtime will handle it. 2802 // But we must make an explicit check for initialization. 2803 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2804 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2805 // can generate code to load it as unsigned byte. 2806 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2807 Node* bits = intcon(InstanceKlass::fully_initialized); 2808 test = _gvn.transform(new SubINode(inst, bits)); 2809 // The 'test' is non-zero if we need to take a slow path. 2810 } 2811 2812 Node* obj = new_instance(kls, test); 2813 set_result(obj); 2814 return true; 2815 } 2816 2817 //------------------------inline_native_time_funcs-------------- 2818 // inline code for System.currentTimeMillis() and System.nanoTime() 2819 // these have the same type and signature 2820 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2821 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2822 const TypePtr* no_memory_effects = NULL; 2823 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2824 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2825 #ifdef ASSERT 2826 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2827 assert(value_top == top(), "second value must be top"); 2828 #endif 2829 set_result(value); 2830 return true; 2831 } 2832 2833 #ifdef JFR_HAVE_INTRINSICS 2834 2835 /** 2836 * if oop->klass != null 2837 * // normal class 2838 * epoch = _epoch_state ? 2 : 1 2839 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 2840 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 2841 * } 2842 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 2843 * else 2844 * // primitive class 2845 * if oop->array_klass != null 2846 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 2847 * else 2848 * id = LAST_TYPE_ID + 1 // void class path 2849 * if (!signaled) 2850 * signaled = true 2851 */ 2852 bool LibraryCallKit::inline_native_classID() { 2853 Node* cls = argument(0); 2854 2855 IdealKit ideal(this); 2856 #define __ ideal. 2857 IdealVariable result(ideal); __ declarations_done(); 2858 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), 2859 basic_plus_adr(cls, java_lang_Class::klass_offset()), 2860 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 2861 2862 2863 __ if_then(kls, BoolTest::ne, null()); { 2864 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 2865 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 2866 2867 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 2868 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2869 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 2870 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 2871 mask = _gvn.transform(new OrLNode(mask, epoch)); 2872 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 2873 2874 float unlikely = PROB_UNLIKELY(0.999); 2875 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 2876 sync_kit(ideal); 2877 make_runtime_call(RC_LEAF, 2878 OptoRuntime::class_id_load_barrier_Type(), 2879 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 2880 "class id load barrier", 2881 TypePtr::BOTTOM, 2882 kls); 2883 ideal.sync_kit(this); 2884 } __ end_if(); 2885 2886 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 2887 } __ else_(); { 2888 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), 2889 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 2890 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 2891 __ if_then(array_kls, BoolTest::ne, null()); { 2892 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 2893 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 2894 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 2895 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 2896 } __ else_(); { 2897 // void class case 2898 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 2899 } __ end_if(); 2900 2901 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 2902 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 2903 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 2904 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 2905 } __ end_if(); 2906 } __ end_if(); 2907 2908 final_sync(ideal); 2909 set_result(ideal.value(result)); 2910 #undef __ 2911 return true; 2912 } 2913 2914 /* 2915 * The intrinsic is a model of this pseudo-code: 2916 * 2917 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 2918 * jobject h_event_writer = tl->java_event_writer(); 2919 * if (h_event_writer == NULL) { 2920 * return NULL; 2921 * } 2922 * oop threadObj = Thread::threadObj(); 2923 * oop vthread = java_lang_Thread::vthread(threadObj); 2924 * traceid tid; 2925 * bool excluded; 2926 * if (vthread != threadObj) { // i.e. current thread is virtual 2927 * tid = java_lang_Thread::tid(vthread); 2928 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 2929 * excluded = vthread_epoch_raw & excluded_mask; 2930 * if (!excluded) { 2931 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 2932 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 2933 * if (vthread_epoch != current_epoch) { 2934 * write_checkpoint(); 2935 * } 2936 * } 2937 * } else { 2938 * tid = java_lang_Thread::tid(threadObj); 2939 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 2940 * excluded = thread_epoch_raw & excluded_mask; 2941 * } 2942 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 2943 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 2944 * if (tid_in_event_writer != tid) { 2945 * setField(event_writer, "threadID", tid); 2946 * setField(event_writer, "excluded", excluded); 2947 * } 2948 * return event_writer 2949 */ 2950 bool LibraryCallKit::inline_native_getEventWriter() { 2951 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 2952 2953 // Save input memory and i_o state. 2954 Node* input_memory_state = reset_memory(); 2955 set_all_memory(input_memory_state); 2956 Node* input_io_state = i_o(); 2957 2958 Node* excluded_mask = _gvn.intcon(32768); 2959 Node* epoch_mask = _gvn.intcon(32767); 2960 2961 // TLS 2962 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 2963 2964 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 2965 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 2966 2967 // Load the eventwriter jobject handle. 2968 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 2969 2970 // Null check the jobject handle. 2971 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 2972 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 2973 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 2974 2975 // False path, jobj is null. 2976 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 2977 2978 // True path, jobj is not null. 2979 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 2980 2981 set_control(jobj_is_not_null); 2982 2983 // Load the threadObj for the CarrierThread. 2984 Node* threadObj = generate_current_thread(tls_ptr); 2985 2986 // Load the vthread. 2987 Node* vthread = generate_virtual_thread(tls_ptr); 2988 2989 // If vthread != threadObj, this is a virtual thread. 2990 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 2991 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 2992 IfNode* iff_vthread_not_equal_threadObj = 2993 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 2994 2995 // False branch, fallback to threadObj. 2996 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 2997 set_control(vthread_equal_threadObj); 2998 2999 // Load the tid field from the vthread object. 3000 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3001 3002 // Load the raw epoch value from the threadObj. 3003 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3004 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3005 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3006 3007 // Mask off the excluded information from the epoch. 3008 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3009 3010 // True branch, this is a virtual thread. 3011 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3012 set_control(vthread_not_equal_threadObj); 3013 3014 // Load the tid field from the vthread object. 3015 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3016 3017 // Load the raw epoch value from the vthread. 3018 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3019 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3020 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3021 3022 // Mask off the excluded information from the epoch. 3023 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3024 3025 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3026 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3027 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3028 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3029 3030 // False branch, vthread is excluded, no need to write epoch info. 3031 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3032 3033 // True branch, vthread is included, update epoch info. 3034 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3035 set_control(included); 3036 3037 // Get epoch value. 3038 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3039 3040 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3041 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3042 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3043 3044 // Compare the epoch in the vthread to the current epoch generation. 3045 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3046 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3047 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3048 3049 // False path, epoch is equal, checkpoint information is valid. 3050 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3051 3052 // True path, epoch is not equal, write a checkpoint for the vthread. 3053 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3054 3055 set_control(epoch_is_not_equal); 3056 3057 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3058 // The call also updates the native thread local thread id and the vthread with the current epoch. 3059 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3060 OptoRuntime::jfr_write_checkpoint_Type(), 3061 StubRoutines::jfr_write_checkpoint(), 3062 "write_checkpoint", TypePtr::BOTTOM); 3063 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3064 3065 // vthread epoch != current epoch 3066 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3067 record_for_igvn(epoch_compare_rgn); 3068 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3069 record_for_igvn(epoch_compare_mem); 3070 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3071 record_for_igvn(epoch_compare_io); 3072 3073 // Update control and phi nodes. 3074 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3075 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3076 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3077 epoch_compare_mem->init_req(_false_path, input_memory_state); 3078 epoch_compare_io->init_req(_true_path, i_o()); 3079 epoch_compare_io->init_req(_false_path, input_io_state); 3080 3081 // excluded != true 3082 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3083 record_for_igvn(exclude_compare_rgn); 3084 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3085 record_for_igvn(exclude_compare_mem); 3086 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3087 record_for_igvn(exclude_compare_io); 3088 3089 // Update control and phi nodes. 3090 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3091 exclude_compare_rgn->init_req(_false_path, excluded); 3092 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3093 exclude_compare_mem->init_req(_false_path, input_memory_state); 3094 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3095 exclude_compare_io->init_req(_false_path, input_io_state); 3096 3097 // vthread != threadObj 3098 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3099 record_for_igvn(vthread_compare_rgn); 3100 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3101 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3102 record_for_igvn(vthread_compare_io); 3103 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3104 record_for_igvn(tid); 3105 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3106 record_for_igvn(exclusion); 3107 3108 // Update control and phi nodes. 3109 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3110 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3111 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3112 vthread_compare_mem->init_req(_false_path, input_memory_state); 3113 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3114 vthread_compare_io->init_req(_false_path, input_io_state); 3115 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3116 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3117 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3118 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3119 3120 // Update branch state. 3121 set_control(_gvn.transform(vthread_compare_rgn)); 3122 set_all_memory(_gvn.transform(vthread_compare_mem)); 3123 set_i_o(_gvn.transform(vthread_compare_io)); 3124 3125 // Load the event writer oop by dereferencing the jobject handle. 3126 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3127 assert(klass_EventWriter->is_loaded(), "invariant"); 3128 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3129 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3130 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3131 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3132 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3133 3134 // Load the current thread id from the event writer object. 3135 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3136 // Get the field offset to, conditionally, store an updated tid value later. 3137 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3138 const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); 3139 // Get the field offset to, conditionally, store an updated exclusion value later. 3140 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3141 const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); 3142 3143 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3144 record_for_igvn(event_writer_tid_compare_rgn); 3145 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3146 record_for_igvn(event_writer_tid_compare_mem); 3147 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3148 record_for_igvn(event_writer_tid_compare_io); 3149 3150 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3151 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3152 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3153 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3154 3155 // False path, tids are the same. 3156 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3157 3158 // True path, tid is not equal, need to update the tid in the event writer. 3159 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3160 record_for_igvn(tid_is_not_equal); 3161 3162 // Store the exclusion state to the event writer. 3163 store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); 3164 3165 // Store the tid to the event writer. 3166 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); 3167 3168 // Update control and phi nodes. 3169 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3170 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3171 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3172 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3173 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3174 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3175 3176 // Result of top level CFG, Memory, IO and Value. 3177 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3178 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3179 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3180 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3181 3182 // Result control. 3183 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3184 result_rgn->init_req(_false_path, jobj_is_null); 3185 3186 // Result memory. 3187 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3188 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3189 3190 // Result IO. 3191 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3192 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3193 3194 // Result value. 3195 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3196 result_value->init_req(_false_path, null()); // return NULL 3197 3198 // Set output state. 3199 set_control(_gvn.transform(result_rgn)); 3200 set_all_memory(_gvn.transform(result_mem)); 3201 set_i_o(_gvn.transform(result_io)); 3202 set_result(result_rgn, result_value); 3203 return true; 3204 } 3205 3206 /* 3207 * The intrinsic is a model of this pseudo-code: 3208 * 3209 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3210 * if (carrierThread != thread) { // is virtual thread 3211 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3212 * bool excluded = vthread_epoch_raw & excluded_mask; 3213 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3214 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3215 * if (!excluded) { 3216 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3217 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3218 * } 3219 * Atomic::release_store(&tl->_vthread, true); 3220 * return; 3221 * } 3222 * Atomic::release_store(&tl->_vthread, false); 3223 */ 3224 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3225 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3226 3227 Node* input_memory_state = reset_memory(); 3228 set_all_memory(input_memory_state); 3229 3230 Node* excluded_mask = _gvn.intcon(32768); 3231 Node* epoch_mask = _gvn.intcon(32767); 3232 3233 Node* const carrierThread = generate_current_thread(jt); 3234 // If thread != carrierThread, this is a virtual thread. 3235 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3236 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3237 IfNode* iff_thread_not_equal_carrierThread = 3238 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3239 3240 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3241 3242 // False branch, is carrierThread. 3243 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3244 // Store release 3245 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3246 3247 set_all_memory(input_memory_state); 3248 3249 // True branch, is virtual thread. 3250 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3251 set_control(thread_not_equal_carrierThread); 3252 3253 // Load the raw epoch value from the vthread. 3254 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3255 Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3256 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3257 3258 // Mask off the excluded information from the epoch. 3259 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3260 3261 // Load the tid field from the thread. 3262 Node* tid = load_field_from_object(thread, "tid", "J"); 3263 3264 // Store the vthread tid to the jfr thread local. 3265 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3266 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); 3267 3268 // Branch is_excluded to conditionalize updating the epoch . 3269 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3270 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3271 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3272 3273 // True branch, vthread is excluded, no need to write epoch info. 3274 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3275 set_control(excluded); 3276 Node* vthread_is_excluded = _gvn.intcon(1); 3277 3278 // False branch, vthread is included, update epoch info. 3279 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3280 set_control(included); 3281 Node* vthread_is_included = _gvn.intcon(0); 3282 3283 // Get epoch value. 3284 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3285 3286 // Store the vthread epoch to the jfr thread local. 3287 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3288 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); 3289 3290 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3291 record_for_igvn(excluded_rgn); 3292 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3293 record_for_igvn(excluded_mem); 3294 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3295 record_for_igvn(exclusion); 3296 3297 // Merge the excluded control and memory. 3298 excluded_rgn->init_req(_true_path, excluded); 3299 excluded_rgn->init_req(_false_path, included); 3300 excluded_mem->init_req(_true_path, tid_memory); 3301 excluded_mem->init_req(_false_path, included_memory); 3302 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3303 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3304 3305 // Set intermediate state. 3306 set_control(_gvn.transform(excluded_rgn)); 3307 set_all_memory(excluded_mem); 3308 3309 // Store the vthread exclusion state to the jfr thread local. 3310 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3311 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); 3312 3313 // Store release 3314 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3315 3316 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3317 record_for_igvn(thread_compare_rgn); 3318 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3319 record_for_igvn(thread_compare_mem); 3320 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3321 record_for_igvn(vthread); 3322 3323 // Merge the thread_compare control and memory. 3324 thread_compare_rgn->init_req(_true_path, control()); 3325 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3326 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3327 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3328 3329 // Set output state. 3330 set_control(_gvn.transform(thread_compare_rgn)); 3331 set_all_memory(_gvn.transform(thread_compare_mem)); 3332 } 3333 3334 #endif // JFR_HAVE_INTRINSICS 3335 3336 //------------------------inline_native_currentCarrierThread------------------ 3337 bool LibraryCallKit::inline_native_currentCarrierThread() { 3338 Node* junk = NULL; 3339 set_result(generate_current_thread(junk)); 3340 return true; 3341 } 3342 3343 //------------------------inline_native_currentThread------------------ 3344 bool LibraryCallKit::inline_native_currentThread() { 3345 Node* junk = NULL; 3346 set_result(generate_virtual_thread(junk)); 3347 return true; 3348 } 3349 3350 //------------------------inline_native_setVthread------------------ 3351 bool LibraryCallKit::inline_native_setCurrentThread() { 3352 assert(C->method()->changes_current_thread(), 3353 "method changes current Thread but is not annotated ChangesCurrentThread"); 3354 Node* arr = argument(1); 3355 Node* thread = _gvn.transform(new ThreadLocalNode()); 3356 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3357 Node* thread_obj_handle 3358 = make_load(NULL, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3359 thread_obj_handle = _gvn.transform(thread_obj_handle); 3360 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3361 access_store_at(NULL, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3362 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3363 return true; 3364 } 3365 3366 Node* LibraryCallKit::scopedValueCache_helper() { 3367 ciKlass *objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3368 const TypeOopPtr *etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3369 3370 bool xk = etype->klass_is_exact(); 3371 3372 Node* thread = _gvn.transform(new ThreadLocalNode()); 3373 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3374 // We cannot use immutable_memory() because we might flip onto a 3375 // different carrier thread, at which point we'll need to use that 3376 // carrier thread's cache. 3377 // return _gvn.transform(LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(), 3378 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3379 return make_load(NULL, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3380 } 3381 3382 //------------------------inline_native_scopedValueCache------------------ 3383 bool LibraryCallKit::inline_native_scopedValueCache() { 3384 ciKlass *objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3385 const TypeOopPtr *etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3386 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3387 3388 // Because we create the scopedValue cache lazily we have to make the 3389 // type of the result BotPTR. 3390 bool xk = etype->klass_is_exact(); 3391 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3392 Node* cache_obj_handle = scopedValueCache_helper(); 3393 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3394 3395 return true; 3396 } 3397 3398 //------------------------inline_native_setScopedValueCache------------------ 3399 bool LibraryCallKit::inline_native_setScopedValueCache() { 3400 Node* arr = argument(0); 3401 Node* cache_obj_handle = scopedValueCache_helper(); 3402 3403 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3404 store_to_memory(control(), cache_obj_handle, arr, T_OBJECT, adr_type, 3405 MemNode::unordered); 3406 3407 return true; 3408 } 3409 3410 //---------------------------load_mirror_from_klass---------------------------- 3411 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3412 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3413 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3414 Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3415 // mirror = ((OopHandle)mirror)->resolve(); 3416 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3417 } 3418 3419 //-----------------------load_klass_from_mirror_common------------------------- 3420 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3421 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3422 // and branch to the given path on the region. 3423 // If never_see_null, take an uncommon trap on null, so we can optimistically 3424 // compile for the non-null case. 3425 // If the region is NULL, force never_see_null = true. 3426 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3427 bool never_see_null, 3428 RegionNode* region, 3429 int null_path, 3430 int offset) { 3431 if (region == NULL) never_see_null = true; 3432 Node* p = basic_plus_adr(mirror, offset); 3433 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3434 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3435 Node* null_ctl = top(); 3436 kls = null_check_oop(kls, &null_ctl, never_see_null); 3437 if (region != NULL) { 3438 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3439 region->init_req(null_path, null_ctl); 3440 } else { 3441 assert(null_ctl == top(), "no loose ends"); 3442 } 3443 return kls; 3444 } 3445 3446 //--------------------(inline_native_Class_query helpers)--------------------- 3447 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3448 // Fall through if (mods & mask) == bits, take the guard otherwise. 3449 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3450 // Branch around if the given klass has the given modifier bit set. 3451 // Like generate_guard, adds a new path onto the region. 3452 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3453 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered); 3454 Node* mask = intcon(modifier_mask); 3455 Node* bits = intcon(modifier_bits); 3456 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3457 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3458 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3459 return generate_fair_guard(bol, region); 3460 } 3461 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3462 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3463 } 3464 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3465 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3466 } 3467 3468 //-------------------------inline_native_Class_query------------------- 3469 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3470 const Type* return_type = TypeInt::BOOL; 3471 Node* prim_return_value = top(); // what happens if it's a primitive class? 3472 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3473 bool expect_prim = false; // most of these guys expect to work on refs 3474 3475 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3476 3477 Node* mirror = argument(0); 3478 Node* obj = top(); 3479 3480 switch (id) { 3481 case vmIntrinsics::_isInstance: 3482 // nothing is an instance of a primitive type 3483 prim_return_value = intcon(0); 3484 obj = argument(1); 3485 break; 3486 case vmIntrinsics::_getModifiers: 3487 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3488 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3489 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3490 break; 3491 case vmIntrinsics::_isInterface: 3492 prim_return_value = intcon(0); 3493 break; 3494 case vmIntrinsics::_isArray: 3495 prim_return_value = intcon(0); 3496 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3497 break; 3498 case vmIntrinsics::_isPrimitive: 3499 prim_return_value = intcon(1); 3500 expect_prim = true; // obviously 3501 break; 3502 case vmIntrinsics::_isHidden: 3503 prim_return_value = intcon(0); 3504 break; 3505 case vmIntrinsics::_getSuperclass: 3506 prim_return_value = null(); 3507 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3508 break; 3509 case vmIntrinsics::_getClassAccessFlags: 3510 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3511 return_type = TypeInt::INT; // not bool! 6297094 3512 break; 3513 default: 3514 fatal_unexpected_iid(id); 3515 break; 3516 } 3517 3518 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3519 if (mirror_con == NULL) return false; // cannot happen? 3520 3521 #ifndef PRODUCT 3522 if (C->print_intrinsics() || C->print_inlining()) { 3523 ciType* k = mirror_con->java_mirror_type(); 3524 if (k) { 3525 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3526 k->print_name(); 3527 tty->cr(); 3528 } 3529 } 3530 #endif 3531 3532 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3533 RegionNode* region = new RegionNode(PATH_LIMIT); 3534 record_for_igvn(region); 3535 PhiNode* phi = new PhiNode(region, return_type); 3536 3537 // The mirror will never be null of Reflection.getClassAccessFlags, however 3538 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3539 // if it is. See bug 4774291. 3540 3541 // For Reflection.getClassAccessFlags(), the null check occurs in 3542 // the wrong place; see inline_unsafe_access(), above, for a similar 3543 // situation. 3544 mirror = null_check(mirror); 3545 // If mirror or obj is dead, only null-path is taken. 3546 if (stopped()) return true; 3547 3548 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3549 3550 // Now load the mirror's klass metaobject, and null-check it. 3551 // Side-effects region with the control path if the klass is null. 3552 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3553 // If kls is null, we have a primitive mirror. 3554 phi->init_req(_prim_path, prim_return_value); 3555 if (stopped()) { set_result(region, phi); return true; } 3556 bool safe_for_replace = (region->in(_prim_path) == top()); 3557 3558 Node* p; // handy temp 3559 Node* null_ctl; 3560 3561 // Now that we have the non-null klass, we can perform the real query. 3562 // For constant classes, the query will constant-fold in LoadNode::Value. 3563 Node* query_value = top(); 3564 switch (id) { 3565 case vmIntrinsics::_isInstance: 3566 // nothing is an instance of a primitive type 3567 query_value = gen_instanceof(obj, kls, safe_for_replace); 3568 break; 3569 3570 case vmIntrinsics::_getModifiers: 3571 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3572 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3573 break; 3574 3575 case vmIntrinsics::_isInterface: 3576 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3577 if (generate_interface_guard(kls, region) != NULL) 3578 // A guard was added. If the guard is taken, it was an interface. 3579 phi->add_req(intcon(1)); 3580 // If we fall through, it's a plain class. 3581 query_value = intcon(0); 3582 break; 3583 3584 case vmIntrinsics::_isArray: 3585 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3586 if (generate_array_guard(kls, region) != NULL) 3587 // A guard was added. If the guard is taken, it was an array. 3588 phi->add_req(intcon(1)); 3589 // If we fall through, it's a plain class. 3590 query_value = intcon(0); 3591 break; 3592 3593 case vmIntrinsics::_isPrimitive: 3594 query_value = intcon(0); // "normal" path produces false 3595 break; 3596 3597 case vmIntrinsics::_isHidden: 3598 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 3599 if (generate_hidden_class_guard(kls, region) != NULL) 3600 // A guard was added. If the guard is taken, it was an hidden class. 3601 phi->add_req(intcon(1)); 3602 // If we fall through, it's a plain class. 3603 query_value = intcon(0); 3604 break; 3605 3606 3607 case vmIntrinsics::_getSuperclass: 3608 // The rules here are somewhat unfortunate, but we can still do better 3609 // with random logic than with a JNI call. 3610 // Interfaces store null or Object as _super, but must report null. 3611 // Arrays store an intermediate super as _super, but must report Object. 3612 // Other types can report the actual _super. 3613 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3614 if (generate_interface_guard(kls, region) != NULL) 3615 // A guard was added. If the guard is taken, it was an interface. 3616 phi->add_req(null()); 3617 if (generate_array_guard(kls, region) != NULL) 3618 // A guard was added. If the guard is taken, it was an array. 3619 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3620 // If we fall through, it's a plain class. Get its _super. 3621 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3622 kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3623 null_ctl = top(); 3624 kls = null_check_oop(kls, &null_ctl); 3625 if (null_ctl != top()) { 3626 // If the guard is taken, Object.superClass is null (both klass and mirror). 3627 region->add_req(null_ctl); 3628 phi ->add_req(null()); 3629 } 3630 if (!stopped()) { 3631 query_value = load_mirror_from_klass(kls); 3632 } 3633 break; 3634 3635 case vmIntrinsics::_getClassAccessFlags: 3636 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3637 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3638 break; 3639 3640 default: 3641 fatal_unexpected_iid(id); 3642 break; 3643 } 3644 3645 // Fall-through is the normal case of a query to a real class. 3646 phi->init_req(1, query_value); 3647 region->init_req(1, control()); 3648 3649 C->set_has_split_ifs(true); // Has chance for split-if optimization 3650 set_result(region, phi); 3651 return true; 3652 } 3653 3654 //-------------------------inline_Class_cast------------------- 3655 bool LibraryCallKit::inline_Class_cast() { 3656 Node* mirror = argument(0); // Class 3657 Node* obj = argument(1); 3658 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3659 if (mirror_con == NULL) { 3660 return false; // dead path (mirror->is_top()). 3661 } 3662 if (obj == NULL || obj->is_top()) { 3663 return false; // dead path 3664 } 3665 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3666 3667 // First, see if Class.cast() can be folded statically. 3668 // java_mirror_type() returns non-null for compile-time Class constants. 3669 ciType* tm = mirror_con->java_mirror_type(); 3670 if (tm != NULL && tm->is_klass() && 3671 tp != NULL) { 3672 if (!tp->is_loaded()) { 3673 // Don't use intrinsic when class is not loaded. 3674 return false; 3675 } else { 3676 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 3677 if (static_res == Compile::SSC_always_true) { 3678 // isInstance() is true - fold the code. 3679 set_result(obj); 3680 return true; 3681 } else if (static_res == Compile::SSC_always_false) { 3682 // Don't use intrinsic, have to throw ClassCastException. 3683 // If the reference is null, the non-intrinsic bytecode will 3684 // be optimized appropriately. 3685 return false; 3686 } 3687 } 3688 } 3689 3690 // Bailout intrinsic and do normal inlining if exception path is frequent. 3691 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3692 return false; 3693 } 3694 3695 // Generate dynamic checks. 3696 // Class.cast() is java implementation of _checkcast bytecode. 3697 // Do checkcast (Parse::do_checkcast()) optimizations here. 3698 3699 mirror = null_check(mirror); 3700 // If mirror is dead, only null-path is taken. 3701 if (stopped()) { 3702 return true; 3703 } 3704 3705 // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive). 3706 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3707 RegionNode* region = new RegionNode(PATH_LIMIT); 3708 record_for_igvn(region); 3709 3710 // Now load the mirror's klass metaobject, and null-check it. 3711 // If kls is null, we have a primitive mirror and 3712 // nothing is an instance of a primitive type. 3713 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3714 3715 Node* res = top(); 3716 if (!stopped()) { 3717 Node* bad_type_ctrl = top(); 3718 // Do checkcast optimizations. 3719 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3720 region->init_req(_bad_type_path, bad_type_ctrl); 3721 } 3722 if (region->in(_prim_path) != top() || 3723 region->in(_bad_type_path) != top()) { 3724 // Let Interpreter throw ClassCastException. 3725 PreserveJVMState pjvms(this); 3726 set_control(_gvn.transform(region)); 3727 uncommon_trap(Deoptimization::Reason_intrinsic, 3728 Deoptimization::Action_maybe_recompile); 3729 } 3730 if (!stopped()) { 3731 set_result(res); 3732 } 3733 return true; 3734 } 3735 3736 3737 //--------------------------inline_native_subtype_check------------------------ 3738 // This intrinsic takes the JNI calls out of the heart of 3739 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 3740 bool LibraryCallKit::inline_native_subtype_check() { 3741 // Pull both arguments off the stack. 3742 Node* args[2]; // two java.lang.Class mirrors: superc, subc 3743 args[0] = argument(0); 3744 args[1] = argument(1); 3745 Node* klasses[2]; // corresponding Klasses: superk, subk 3746 klasses[0] = klasses[1] = top(); 3747 3748 enum { 3749 // A full decision tree on {superc is prim, subc is prim}: 3750 _prim_0_path = 1, // {P,N} => false 3751 // {P,P} & superc!=subc => false 3752 _prim_same_path, // {P,P} & superc==subc => true 3753 _prim_1_path, // {N,P} => false 3754 _ref_subtype_path, // {N,N} & subtype check wins => true 3755 _both_ref_path, // {N,N} & subtype check loses => false 3756 PATH_LIMIT 3757 }; 3758 3759 RegionNode* region = new RegionNode(PATH_LIMIT); 3760 Node* phi = new PhiNode(region, TypeInt::BOOL); 3761 record_for_igvn(region); 3762 3763 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 3764 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3765 int class_klass_offset = java_lang_Class::klass_offset(); 3766 3767 // First null-check both mirrors and load each mirror's klass metaobject. 3768 int which_arg; 3769 for (which_arg = 0; which_arg <= 1; which_arg++) { 3770 Node* arg = args[which_arg]; 3771 arg = null_check(arg); 3772 if (stopped()) break; 3773 args[which_arg] = arg; 3774 3775 Node* p = basic_plus_adr(arg, class_klass_offset); 3776 Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type); 3777 klasses[which_arg] = _gvn.transform(kls); 3778 } 3779 3780 // Having loaded both klasses, test each for null. 3781 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3782 for (which_arg = 0; which_arg <= 1; which_arg++) { 3783 Node* kls = klasses[which_arg]; 3784 Node* null_ctl = top(); 3785 kls = null_check_oop(kls, &null_ctl, never_see_null); 3786 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 3787 region->init_req(prim_path, null_ctl); 3788 if (stopped()) break; 3789 klasses[which_arg] = kls; 3790 } 3791 3792 if (!stopped()) { 3793 // now we have two reference types, in klasses[0..1] 3794 Node* subk = klasses[1]; // the argument to isAssignableFrom 3795 Node* superk = klasses[0]; // the receiver 3796 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 3797 // now we have a successful reference subtype check 3798 region->set_req(_ref_subtype_path, control()); 3799 } 3800 3801 // If both operands are primitive (both klasses null), then 3802 // we must return true when they are identical primitives. 3803 // It is convenient to test this after the first null klass check. 3804 set_control(region->in(_prim_0_path)); // go back to first null check 3805 if (!stopped()) { 3806 // Since superc is primitive, make a guard for the superc==subc case. 3807 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 3808 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 3809 generate_guard(bol_eq, region, PROB_FAIR); 3810 if (region->req() == PATH_LIMIT+1) { 3811 // A guard was added. If the added guard is taken, superc==subc. 3812 region->swap_edges(PATH_LIMIT, _prim_same_path); 3813 region->del_req(PATH_LIMIT); 3814 } 3815 region->set_req(_prim_0_path, control()); // Not equal after all. 3816 } 3817 3818 // these are the only paths that produce 'true': 3819 phi->set_req(_prim_same_path, intcon(1)); 3820 phi->set_req(_ref_subtype_path, intcon(1)); 3821 3822 // pull together the cases: 3823 assert(region->req() == PATH_LIMIT, "sane region"); 3824 for (uint i = 1; i < region->req(); i++) { 3825 Node* ctl = region->in(i); 3826 if (ctl == NULL || ctl == top()) { 3827 region->set_req(i, top()); 3828 phi ->set_req(i, top()); 3829 } else if (phi->in(i) == NULL) { 3830 phi->set_req(i, intcon(0)); // all other paths produce 'false' 3831 } 3832 } 3833 3834 set_control(_gvn.transform(region)); 3835 set_result(_gvn.transform(phi)); 3836 return true; 3837 } 3838 3839 //---------------------generate_array_guard_common------------------------ 3840 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 3841 bool obj_array, bool not_array) { 3842 3843 if (stopped()) { 3844 return NULL; 3845 } 3846 3847 // If obj_array/non_array==false/false: 3848 // Branch around if the given klass is in fact an array (either obj or prim). 3849 // If obj_array/non_array==false/true: 3850 // Branch around if the given klass is not an array klass of any kind. 3851 // If obj_array/non_array==true/true: 3852 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 3853 // If obj_array/non_array==true/false: 3854 // Branch around if the kls is an oop array (Object[] or subtype) 3855 // 3856 // Like generate_guard, adds a new path onto the region. 3857 jint layout_con = 0; 3858 Node* layout_val = get_layout_helper(kls, layout_con); 3859 if (layout_val == NULL) { 3860 bool query = (obj_array 3861 ? Klass::layout_helper_is_objArray(layout_con) 3862 : Klass::layout_helper_is_array(layout_con)); 3863 if (query == not_array) { 3864 return NULL; // never a branch 3865 } else { // always a branch 3866 Node* always_branch = control(); 3867 if (region != NULL) 3868 region->add_req(always_branch); 3869 set_control(top()); 3870 return always_branch; 3871 } 3872 } 3873 // Now test the correct condition. 3874 jint nval = (obj_array 3875 ? (jint)(Klass::_lh_array_tag_type_value 3876 << Klass::_lh_array_tag_shift) 3877 : Klass::_lh_neutral_value); 3878 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 3879 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 3880 // invert the test if we are looking for a non-array 3881 if (not_array) btest = BoolTest(btest).negate(); 3882 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 3883 return generate_fair_guard(bol, region); 3884 } 3885 3886 3887 //-----------------------inline_native_newArray-------------------------- 3888 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 3889 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 3890 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 3891 Node* mirror; 3892 Node* count_val; 3893 if (uninitialized) { 3894 mirror = argument(1); 3895 count_val = argument(2); 3896 } else { 3897 mirror = argument(0); 3898 count_val = argument(1); 3899 } 3900 3901 mirror = null_check(mirror); 3902 // If mirror or obj is dead, only null-path is taken. 3903 if (stopped()) return true; 3904 3905 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 3906 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3907 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 3908 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3909 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3910 3911 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3912 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 3913 result_reg, _slow_path); 3914 Node* normal_ctl = control(); 3915 Node* no_array_ctl = result_reg->in(_slow_path); 3916 3917 // Generate code for the slow case. We make a call to newArray(). 3918 set_control(no_array_ctl); 3919 if (!stopped()) { 3920 // Either the input type is void.class, or else the 3921 // array klass has not yet been cached. Either the 3922 // ensuing call will throw an exception, or else it 3923 // will cache the array klass for next time. 3924 PreserveJVMState pjvms(this); 3925 CallJavaNode* slow_call = NULL; 3926 if (uninitialized) { 3927 // Generate optimized virtual call (holder class 'Unsafe' is final) 3928 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false); 3929 } else { 3930 slow_call = generate_method_call_static(vmIntrinsics::_newArray); 3931 } 3932 Node* slow_result = set_results_for_java_call(slow_call); 3933 // this->control() comes from set_results_for_java_call 3934 result_reg->set_req(_slow_path, control()); 3935 result_val->set_req(_slow_path, slow_result); 3936 result_io ->set_req(_slow_path, i_o()); 3937 result_mem->set_req(_slow_path, reset_memory()); 3938 } 3939 3940 set_control(normal_ctl); 3941 if (!stopped()) { 3942 // Normal case: The array type has been cached in the java.lang.Class. 3943 // The following call works fine even if the array type is polymorphic. 3944 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3945 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 3946 result_reg->init_req(_normal_path, control()); 3947 result_val->init_req(_normal_path, obj); 3948 result_io ->init_req(_normal_path, i_o()); 3949 result_mem->init_req(_normal_path, reset_memory()); 3950 3951 if (uninitialized) { 3952 // Mark the allocation so that zeroing is skipped 3953 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); 3954 alloc->maybe_set_complete(&_gvn); 3955 } 3956 } 3957 3958 // Return the combined state. 3959 set_i_o( _gvn.transform(result_io) ); 3960 set_all_memory( _gvn.transform(result_mem)); 3961 3962 C->set_has_split_ifs(true); // Has chance for split-if optimization 3963 set_result(result_reg, result_val); 3964 return true; 3965 } 3966 3967 //----------------------inline_native_getLength-------------------------- 3968 // public static native int java.lang.reflect.Array.getLength(Object array); 3969 bool LibraryCallKit::inline_native_getLength() { 3970 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3971 3972 Node* array = null_check(argument(0)); 3973 // If array is dead, only null-path is taken. 3974 if (stopped()) return true; 3975 3976 // Deoptimize if it is a non-array. 3977 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL); 3978 3979 if (non_array != NULL) { 3980 PreserveJVMState pjvms(this); 3981 set_control(non_array); 3982 uncommon_trap(Deoptimization::Reason_intrinsic, 3983 Deoptimization::Action_maybe_recompile); 3984 } 3985 3986 // If control is dead, only non-array-path is taken. 3987 if (stopped()) return true; 3988 3989 // The works fine even if the array type is polymorphic. 3990 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3991 Node* result = load_array_length(array); 3992 3993 C->set_has_split_ifs(true); // Has chance for split-if optimization 3994 set_result(result); 3995 return true; 3996 } 3997 3998 //------------------------inline_array_copyOf---------------------------- 3999 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4000 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4001 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4002 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4003 4004 // Get the arguments. 4005 Node* original = argument(0); 4006 Node* start = is_copyOfRange? argument(1): intcon(0); 4007 Node* end = is_copyOfRange? argument(2): argument(1); 4008 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4009 4010 Node* newcopy = NULL; 4011 4012 // Set the original stack and the reexecute bit for the interpreter to reexecute 4013 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4014 { PreserveReexecuteState preexecs(this); 4015 jvms()->set_should_reexecute(true); 4016 4017 array_type_mirror = null_check(array_type_mirror); 4018 original = null_check(original); 4019 4020 // Check if a null path was taken unconditionally. 4021 if (stopped()) return true; 4022 4023 Node* orig_length = load_array_length(original); 4024 4025 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0); 4026 klass_node = null_check(klass_node); 4027 4028 RegionNode* bailout = new RegionNode(1); 4029 record_for_igvn(bailout); 4030 4031 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4032 // Bail out if that is so. 4033 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4034 if (not_objArray != NULL) { 4035 // Improve the klass node's type from the new optimistic assumption: 4036 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4037 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4038 Node* cast = new CastPPNode(klass_node, akls); 4039 cast->init_req(0, control()); 4040 klass_node = _gvn.transform(cast); 4041 } 4042 4043 // Bail out if either start or end is negative. 4044 generate_negative_guard(start, bailout, &start); 4045 generate_negative_guard(end, bailout, &end); 4046 4047 Node* length = end; 4048 if (_gvn.type(start) != TypeInt::ZERO) { 4049 length = _gvn.transform(new SubINode(end, start)); 4050 } 4051 4052 // Bail out if length is negative. 4053 // Without this the new_array would throw 4054 // NegativeArraySizeException but IllegalArgumentException is what 4055 // should be thrown 4056 generate_negative_guard(length, bailout, &length); 4057 4058 if (bailout->req() > 1) { 4059 PreserveJVMState pjvms(this); 4060 set_control(_gvn.transform(bailout)); 4061 uncommon_trap(Deoptimization::Reason_intrinsic, 4062 Deoptimization::Action_maybe_recompile); 4063 } 4064 4065 if (!stopped()) { 4066 // How many elements will we copy from the original? 4067 // The answer is MinI(orig_length - start, length). 4068 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4069 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4070 4071 // Generate a direct call to the right arraycopy function(s). 4072 // We know the copy is disjoint but we might not know if the 4073 // oop stores need checking. 4074 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4075 // This will fail a store-check if x contains any non-nulls. 4076 4077 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4078 // loads/stores but it is legal only if we're sure the 4079 // Arrays.copyOf would succeed. So we need all input arguments 4080 // to the copyOf to be validated, including that the copy to the 4081 // new array won't trigger an ArrayStoreException. That subtype 4082 // check can be optimized if we know something on the type of 4083 // the input array from type speculation. 4084 if (_gvn.type(klass_node)->singleton()) { 4085 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4086 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4087 4088 int test = C->static_subtype_check(superk, subk); 4089 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4090 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4091 if (t_original->speculative_type() != NULL) { 4092 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4093 } 4094 } 4095 } 4096 4097 bool validated = false; 4098 // Reason_class_check rather than Reason_intrinsic because we 4099 // want to intrinsify even if this traps. 4100 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4101 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4102 4103 if (not_subtype_ctrl != top()) { 4104 PreserveJVMState pjvms(this); 4105 set_control(not_subtype_ctrl); 4106 uncommon_trap(Deoptimization::Reason_class_check, 4107 Deoptimization::Action_make_not_entrant); 4108 assert(stopped(), "Should be stopped"); 4109 } 4110 validated = true; 4111 } 4112 4113 if (!stopped()) { 4114 newcopy = new_array(klass_node, length, 0); // no arguments to push 4115 4116 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 4117 load_object_klass(original), klass_node); 4118 if (!is_copyOfRange) { 4119 ac->set_copyof(validated); 4120 } else { 4121 ac->set_copyofrange(validated); 4122 } 4123 Node* n = _gvn.transform(ac); 4124 if (n == ac) { 4125 ac->connect_outputs(this); 4126 } else { 4127 assert(validated, "shouldn't transform if all arguments not validated"); 4128 set_all_memory(n); 4129 } 4130 } 4131 } 4132 } // original reexecute is set back here 4133 4134 C->set_has_split_ifs(true); // Has chance for split-if optimization 4135 if (!stopped()) { 4136 set_result(newcopy); 4137 } 4138 return true; 4139 } 4140 4141 4142 //----------------------generate_virtual_guard--------------------------- 4143 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4144 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4145 RegionNode* slow_region) { 4146 ciMethod* method = callee(); 4147 int vtable_index = method->vtable_index(); 4148 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4149 "bad index %d", vtable_index); 4150 // Get the Method* out of the appropriate vtable entry. 4151 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4152 vtable_index*vtableEntry::size_in_bytes() + 4153 vtableEntry::method_offset_in_bytes(); 4154 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4155 Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4156 4157 // Compare the target method with the expected method (e.g., Object.hashCode). 4158 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4159 4160 Node* native_call = makecon(native_call_addr); 4161 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4162 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4163 4164 return generate_slow_guard(test_native, slow_region); 4165 } 4166 4167 //-----------------------generate_method_call---------------------------- 4168 // Use generate_method_call to make a slow-call to the real 4169 // method if the fast path fails. An alternative would be to 4170 // use a stub like OptoRuntime::slow_arraycopy_Java. 4171 // This only works for expanding the current library call, 4172 // not another intrinsic. (E.g., don't use this for making an 4173 // arraycopy call inside of the copyOf intrinsic.) 4174 CallJavaNode* 4175 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) { 4176 // When compiling the intrinsic method itself, do not use this technique. 4177 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4178 4179 ciMethod* method = callee(); 4180 // ensure the JVMS we have will be correct for this call 4181 guarantee(method_id == method->intrinsic_id(), "must match"); 4182 4183 const TypeFunc* tf = TypeFunc::make(method); 4184 CallJavaNode* slow_call; 4185 if (is_static) { 4186 assert(!is_virtual, ""); 4187 slow_call = new CallStaticJavaNode(C, tf, 4188 SharedRuntime::get_resolve_static_call_stub(), method); 4189 } else if (is_virtual) { 4190 null_check_receiver(); 4191 int vtable_index = Method::invalid_vtable_index; 4192 if (UseInlineCaches) { 4193 // Suppress the vtable call 4194 } else { 4195 // hashCode and clone are not a miranda methods, 4196 // so the vtable index is fixed. 4197 // No need to use the linkResolver to get it. 4198 vtable_index = method->vtable_index(); 4199 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4200 "bad index %d", vtable_index); 4201 } 4202 slow_call = new CallDynamicJavaNode(tf, 4203 SharedRuntime::get_resolve_virtual_call_stub(), 4204 method, vtable_index); 4205 } else { // neither virtual nor static: opt_virtual 4206 null_check_receiver(); 4207 slow_call = new CallStaticJavaNode(C, tf, 4208 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4209 slow_call->set_optimized_virtual(true); 4210 } 4211 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4212 // To be able to issue a direct call (optimized virtual or virtual) 4213 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4214 // about the method being invoked should be attached to the call site to 4215 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4216 slow_call->set_override_symbolic_info(true); 4217 } 4218 set_arguments_for_java_call(slow_call); 4219 set_edges_for_java_call(slow_call); 4220 return slow_call; 4221 } 4222 4223 4224 /** 4225 * Build special case code for calls to hashCode on an object. This call may 4226 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4227 * slightly different code. 4228 */ 4229 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4230 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4231 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4232 4233 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4234 4235 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4236 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4237 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4238 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4239 Node* obj = NULL; 4240 if (!is_static) { 4241 // Check for hashing null object 4242 obj = null_check_receiver(); 4243 if (stopped()) return true; // unconditionally null 4244 result_reg->init_req(_null_path, top()); 4245 result_val->init_req(_null_path, top()); 4246 } else { 4247 // Do a null check, and return zero if null. 4248 // System.identityHashCode(null) == 0 4249 obj = argument(0); 4250 Node* null_ctl = top(); 4251 obj = null_check_oop(obj, &null_ctl); 4252 result_reg->init_req(_null_path, null_ctl); 4253 result_val->init_req(_null_path, _gvn.intcon(0)); 4254 } 4255 4256 // Unconditionally null? Then return right away. 4257 if (stopped()) { 4258 set_control( result_reg->in(_null_path)); 4259 if (!stopped()) 4260 set_result(result_val->in(_null_path)); 4261 return true; 4262 } 4263 4264 // We only go to the fast case code if we pass a number of guards. The 4265 // paths which do not pass are accumulated in the slow_region. 4266 RegionNode* slow_region = new RegionNode(1); 4267 record_for_igvn(slow_region); 4268 4269 // If this is a virtual call, we generate a funny guard. We pull out 4270 // the vtable entry corresponding to hashCode() from the target object. 4271 // If the target method which we are calling happens to be the native 4272 // Object hashCode() method, we pass the guard. We do not need this 4273 // guard for non-virtual calls -- the caller is known to be the native 4274 // Object hashCode(). 4275 if (is_virtual) { 4276 // After null check, get the object's klass. 4277 Node* obj_klass = load_object_klass(obj); 4278 generate_virtual_guard(obj_klass, slow_region); 4279 } 4280 4281 // Get the header out of the object, use LoadMarkNode when available 4282 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4283 // The control of the load must be NULL. Otherwise, the load can move before 4284 // the null check after castPP removal. 4285 Node* no_ctrl = NULL; 4286 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4287 4288 // Test the header to see if it is unlocked. 4289 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4290 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4291 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4292 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 4293 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 4294 4295 generate_slow_guard(test_unlocked, slow_region); 4296 4297 // Get the hash value and check to see that it has been properly assigned. 4298 // We depend on hash_mask being at most 32 bits and avoid the use of 4299 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4300 // vm: see markWord.hpp. 4301 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4302 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4303 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4304 // This hack lets the hash bits live anywhere in the mark object now, as long 4305 // as the shift drops the relevant bits into the low 32 bits. Note that 4306 // Java spec says that HashCode is an int so there's no point in capturing 4307 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4308 hshifted_header = ConvX2I(hshifted_header); 4309 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4310 4311 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4312 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4313 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4314 4315 generate_slow_guard(test_assigned, slow_region); 4316 4317 Node* init_mem = reset_memory(); 4318 // fill in the rest of the null path: 4319 result_io ->init_req(_null_path, i_o()); 4320 result_mem->init_req(_null_path, init_mem); 4321 4322 result_val->init_req(_fast_path, hash_val); 4323 result_reg->init_req(_fast_path, control()); 4324 result_io ->init_req(_fast_path, i_o()); 4325 result_mem->init_req(_fast_path, init_mem); 4326 4327 // Generate code for the slow case. We make a call to hashCode(). 4328 set_control(_gvn.transform(slow_region)); 4329 if (!stopped()) { 4330 // No need for PreserveJVMState, because we're using up the present state. 4331 set_all_memory(init_mem); 4332 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4333 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static); 4334 Node* slow_result = set_results_for_java_call(slow_call); 4335 // this->control() comes from set_results_for_java_call 4336 result_reg->init_req(_slow_path, control()); 4337 result_val->init_req(_slow_path, slow_result); 4338 result_io ->set_req(_slow_path, i_o()); 4339 result_mem ->set_req(_slow_path, reset_memory()); 4340 } 4341 4342 // Return the combined state. 4343 set_i_o( _gvn.transform(result_io) ); 4344 set_all_memory( _gvn.transform(result_mem)); 4345 4346 set_result(result_reg, result_val); 4347 return true; 4348 } 4349 4350 //---------------------------inline_native_getClass---------------------------- 4351 // public final native Class<?> java.lang.Object.getClass(); 4352 // 4353 // Build special case code for calls to getClass on an object. 4354 bool LibraryCallKit::inline_native_getClass() { 4355 Node* obj = null_check_receiver(); 4356 if (stopped()) return true; 4357 set_result(load_mirror_from_klass(load_object_klass(obj))); 4358 return true; 4359 } 4360 4361 //-----------------inline_native_Reflection_getCallerClass--------------------- 4362 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4363 // 4364 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4365 // 4366 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4367 // in that it must skip particular security frames and checks for 4368 // caller sensitive methods. 4369 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4370 #ifndef PRODUCT 4371 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4372 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4373 } 4374 #endif 4375 4376 if (!jvms()->has_method()) { 4377 #ifndef PRODUCT 4378 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4379 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4380 } 4381 #endif 4382 return false; 4383 } 4384 4385 // Walk back up the JVM state to find the caller at the required 4386 // depth. 4387 JVMState* caller_jvms = jvms(); 4388 4389 // Cf. JVM_GetCallerClass 4390 // NOTE: Start the loop at depth 1 because the current JVM state does 4391 // not include the Reflection.getCallerClass() frame. 4392 for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) { 4393 ciMethod* m = caller_jvms->method(); 4394 switch (n) { 4395 case 0: 4396 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4397 break; 4398 case 1: 4399 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4400 if (!m->caller_sensitive()) { 4401 #ifndef PRODUCT 4402 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4403 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4404 } 4405 #endif 4406 return false; // bail-out; let JVM_GetCallerClass do the work 4407 } 4408 break; 4409 default: 4410 if (!m->is_ignored_by_security_stack_walk()) { 4411 // We have reached the desired frame; return the holder class. 4412 // Acquire method holder as java.lang.Class and push as constant. 4413 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4414 ciInstance* caller_mirror = caller_klass->java_mirror(); 4415 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4416 4417 #ifndef PRODUCT 4418 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4419 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4420 tty->print_cr(" JVM state at this point:"); 4421 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4422 ciMethod* m = jvms()->of_depth(i)->method(); 4423 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4424 } 4425 } 4426 #endif 4427 return true; 4428 } 4429 break; 4430 } 4431 } 4432 4433 #ifndef PRODUCT 4434 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4435 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4436 tty->print_cr(" JVM state at this point:"); 4437 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4438 ciMethod* m = jvms()->of_depth(i)->method(); 4439 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4440 } 4441 } 4442 #endif 4443 4444 return false; // bail-out; let JVM_GetCallerClass do the work 4445 } 4446 4447 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4448 Node* arg = argument(0); 4449 Node* result = NULL; 4450 4451 switch (id) { 4452 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4453 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4454 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4455 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4456 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4457 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4458 4459 case vmIntrinsics::_doubleToLongBits: { 4460 // two paths (plus control) merge in a wood 4461 RegionNode *r = new RegionNode(3); 4462 Node *phi = new PhiNode(r, TypeLong::LONG); 4463 4464 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4465 // Build the boolean node 4466 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4467 4468 // Branch either way. 4469 // NaN case is less traveled, which makes all the difference. 4470 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4471 Node *opt_isnan = _gvn.transform(ifisnan); 4472 assert( opt_isnan->is_If(), "Expect an IfNode"); 4473 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4474 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4475 4476 set_control(iftrue); 4477 4478 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4479 Node *slow_result = longcon(nan_bits); // return NaN 4480 phi->init_req(1, _gvn.transform( slow_result )); 4481 r->init_req(1, iftrue); 4482 4483 // Else fall through 4484 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4485 set_control(iffalse); 4486 4487 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4488 r->init_req(2, iffalse); 4489 4490 // Post merge 4491 set_control(_gvn.transform(r)); 4492 record_for_igvn(r); 4493 4494 C->set_has_split_ifs(true); // Has chance for split-if optimization 4495 result = phi; 4496 assert(result->bottom_type()->isa_long(), "must be"); 4497 break; 4498 } 4499 4500 case vmIntrinsics::_floatToIntBits: { 4501 // two paths (plus control) merge in a wood 4502 RegionNode *r = new RegionNode(3); 4503 Node *phi = new PhiNode(r, TypeInt::INT); 4504 4505 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4506 // Build the boolean node 4507 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4508 4509 // Branch either way. 4510 // NaN case is less traveled, which makes all the difference. 4511 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4512 Node *opt_isnan = _gvn.transform(ifisnan); 4513 assert( opt_isnan->is_If(), "Expect an IfNode"); 4514 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4515 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4516 4517 set_control(iftrue); 4518 4519 static const jint nan_bits = 0x7fc00000; 4520 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4521 phi->init_req(1, _gvn.transform( slow_result )); 4522 r->init_req(1, iftrue); 4523 4524 // Else fall through 4525 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4526 set_control(iffalse); 4527 4528 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4529 r->init_req(2, iffalse); 4530 4531 // Post merge 4532 set_control(_gvn.transform(r)); 4533 record_for_igvn(r); 4534 4535 C->set_has_split_ifs(true); // Has chance for split-if optimization 4536 result = phi; 4537 assert(result->bottom_type()->isa_int(), "must be"); 4538 break; 4539 } 4540 4541 default: 4542 fatal_unexpected_iid(id); 4543 break; 4544 } 4545 set_result(_gvn.transform(result)); 4546 return true; 4547 } 4548 4549 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 4550 Node* arg = argument(0); 4551 Node* result = NULL; 4552 4553 switch (id) { 4554 case vmIntrinsics::_floatIsInfinite: 4555 result = new IsInfiniteFNode(arg); 4556 break; 4557 case vmIntrinsics::_floatIsFinite: 4558 result = new IsFiniteFNode(arg); 4559 break; 4560 case vmIntrinsics::_doubleIsInfinite: 4561 result = new IsInfiniteDNode(arg); 4562 break; 4563 case vmIntrinsics::_doubleIsFinite: 4564 result = new IsFiniteDNode(arg); 4565 break; 4566 default: 4567 fatal_unexpected_iid(id); 4568 break; 4569 } 4570 set_result(_gvn.transform(result)); 4571 return true; 4572 } 4573 4574 //----------------------inline_unsafe_copyMemory------------------------- 4575 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4576 4577 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 4578 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 4579 const Type* base_t = gvn.type(base); 4580 4581 bool in_native = (base_t == TypePtr::NULL_PTR); 4582 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 4583 bool is_mixed = !in_heap && !in_native; 4584 4585 if (is_mixed) { 4586 return true; // mixed accesses can touch both on-heap and off-heap memory 4587 } 4588 if (in_heap) { 4589 bool is_prim_array = (addr_t != NULL) && (addr_t->elem() != Type::BOTTOM); 4590 if (!is_prim_array) { 4591 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 4592 // there's not enough type information available to determine proper memory slice for it. 4593 return true; 4594 } 4595 } 4596 return false; 4597 } 4598 4599 bool LibraryCallKit::inline_unsafe_copyMemory() { 4600 if (callee()->is_static()) return false; // caller must have the capability! 4601 null_check_receiver(); // null-check receiver 4602 if (stopped()) return true; 4603 4604 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4605 4606 Node* src_base = argument(1); // type: oop 4607 Node* src_off = ConvL2X(argument(2)); // type: long 4608 Node* dst_base = argument(4); // type: oop 4609 Node* dst_off = ConvL2X(argument(5)); // type: long 4610 Node* size = ConvL2X(argument(7)); // type: long 4611 4612 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4613 "fieldOffset must be byte-scaled"); 4614 4615 Node* src_addr = make_unsafe_address(src_base, src_off); 4616 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 4617 4618 Node* thread = _gvn.transform(new ThreadLocalNode()); 4619 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 4620 BasicType doing_unsafe_access_bt = T_BYTE; 4621 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 4622 4623 // update volatile field 4624 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4625 4626 int flags = RC_LEAF | RC_NO_FP; 4627 4628 const TypePtr* dst_type = TypePtr::BOTTOM; 4629 4630 // Adjust memory effects of the runtime call based on input values. 4631 if (!has_wide_mem(_gvn, src_addr, src_base) && 4632 !has_wide_mem(_gvn, dst_addr, dst_base)) { 4633 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 4634 4635 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 4636 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 4637 flags |= RC_NARROW_MEM; // narrow in memory 4638 } 4639 } 4640 4641 // Call it. Note that the length argument is not scaled. 4642 make_runtime_call(flags, 4643 OptoRuntime::fast_arraycopy_Type(), 4644 StubRoutines::unsafe_arraycopy(), 4645 "unsafe_arraycopy", 4646 dst_type, 4647 src_addr, dst_addr, size XTOP); 4648 4649 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4650 4651 return true; 4652 } 4653 4654 #undef XTOP 4655 4656 //------------------------clone_coping----------------------------------- 4657 // Helper function for inline_native_clone. 4658 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4659 assert(obj_size != NULL, ""); 4660 Node* raw_obj = alloc_obj->in(1); 4661 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4662 4663 AllocateNode* alloc = NULL; 4664 if (ReduceBulkZeroing) { 4665 // We will be completely responsible for initializing this object - 4666 // mark Initialize node as complete. 4667 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); 4668 // The object was just allocated - there should be no any stores! 4669 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), ""); 4670 // Mark as complete_with_arraycopy so that on AllocateNode 4671 // expansion, we know this AllocateNode is initialized by an array 4672 // copy and a StoreStore barrier exists after the array copy. 4673 alloc->initialization()->set_complete_with_arraycopy(); 4674 } 4675 4676 Node* size = _gvn.transform(obj_size); 4677 access_clone(obj, alloc_obj, size, is_array); 4678 4679 // Do not let reads from the cloned object float above the arraycopy. 4680 if (alloc != NULL) { 4681 // Do not let stores that initialize this object be reordered with 4682 // a subsequent store that would make this object accessible by 4683 // other threads. 4684 // Record what AllocateNode this StoreStore protects so that 4685 // escape analysis can go from the MemBarStoreStoreNode to the 4686 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4687 // based on the escape status of the AllocateNode. 4688 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4689 } else { 4690 insert_mem_bar(Op_MemBarCPUOrder); 4691 } 4692 } 4693 4694 //------------------------inline_native_clone---------------------------- 4695 // protected native Object java.lang.Object.clone(); 4696 // 4697 // Here are the simple edge cases: 4698 // null receiver => normal trap 4699 // virtual and clone was overridden => slow path to out-of-line clone 4700 // not cloneable or finalizer => slow path to out-of-line Object.clone 4701 // 4702 // The general case has two steps, allocation and copying. 4703 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4704 // 4705 // Copying also has two cases, oop arrays and everything else. 4706 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4707 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4708 // 4709 // These steps fold up nicely if and when the cloned object's klass 4710 // can be sharply typed as an object array, a type array, or an instance. 4711 // 4712 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4713 PhiNode* result_val; 4714 4715 // Set the reexecute bit for the interpreter to reexecute 4716 // the bytecode that invokes Object.clone if deoptimization happens. 4717 { PreserveReexecuteState preexecs(this); 4718 jvms()->set_should_reexecute(true); 4719 4720 Node* obj = null_check_receiver(); 4721 if (stopped()) return true; 4722 4723 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4724 4725 // If we are going to clone an instance, we need its exact type to 4726 // know the number and types of fields to convert the clone to 4727 // loads/stores. Maybe a speculative type can help us. 4728 if (!obj_type->klass_is_exact() && 4729 obj_type->speculative_type() != NULL && 4730 obj_type->speculative_type()->is_instance_klass()) { 4731 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 4732 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 4733 !spec_ik->has_injected_fields()) { 4734 if (!obj_type->isa_instptr() || 4735 obj_type->is_instptr()->instance_klass()->has_subklass()) { 4736 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 4737 } 4738 } 4739 } 4740 4741 // Conservatively insert a memory barrier on all memory slices. 4742 // Do not let writes into the original float below the clone. 4743 insert_mem_bar(Op_MemBarCPUOrder); 4744 4745 // paths into result_reg: 4746 enum { 4747 _slow_path = 1, // out-of-line call to clone method (virtual or not) 4748 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 4749 _array_path, // plain array allocation, plus arrayof_long_arraycopy 4750 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 4751 PATH_LIMIT 4752 }; 4753 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4754 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4755 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 4756 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4757 record_for_igvn(result_reg); 4758 4759 Node* obj_klass = load_object_klass(obj); 4760 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL); 4761 if (array_ctl != NULL) { 4762 // It's an array. 4763 PreserveJVMState pjvms(this); 4764 set_control(array_ctl); 4765 Node* obj_length = load_array_length(obj); 4766 Node* obj_size = NULL; 4767 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size, /*deoptimize_on_exception=*/true); 4768 4769 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4770 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 4771 // If it is an oop array, it requires very special treatment, 4772 // because gc barriers are required when accessing the array. 4773 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL); 4774 if (is_obja != NULL) { 4775 PreserveJVMState pjvms2(this); 4776 set_control(is_obja); 4777 // Generate a direct call to the right arraycopy function(s). 4778 // Clones are always tightly coupled. 4779 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 4780 ac->set_clone_oop_array(); 4781 Node* n = _gvn.transform(ac); 4782 assert(n == ac, "cannot disappear"); 4783 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 4784 4785 result_reg->init_req(_objArray_path, control()); 4786 result_val->init_req(_objArray_path, alloc_obj); 4787 result_i_o ->set_req(_objArray_path, i_o()); 4788 result_mem ->set_req(_objArray_path, reset_memory()); 4789 } 4790 } 4791 // Otherwise, there are no barriers to worry about. 4792 // (We can dispense with card marks if we know the allocation 4793 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 4794 // causes the non-eden paths to take compensating steps to 4795 // simulate a fresh allocation, so that no further 4796 // card marks are required in compiled code to initialize 4797 // the object.) 4798 4799 if (!stopped()) { 4800 copy_to_clone(obj, alloc_obj, obj_size, true); 4801 4802 // Present the results of the copy. 4803 result_reg->init_req(_array_path, control()); 4804 result_val->init_req(_array_path, alloc_obj); 4805 result_i_o ->set_req(_array_path, i_o()); 4806 result_mem ->set_req(_array_path, reset_memory()); 4807 } 4808 } 4809 4810 // We only go to the instance fast case code if we pass a number of guards. 4811 // The paths which do not pass are accumulated in the slow_region. 4812 RegionNode* slow_region = new RegionNode(1); 4813 record_for_igvn(slow_region); 4814 if (!stopped()) { 4815 // It's an instance (we did array above). Make the slow-path tests. 4816 // If this is a virtual call, we generate a funny guard. We grab 4817 // the vtable entry corresponding to clone() from the target object. 4818 // If the target method which we are calling happens to be the 4819 // Object clone() method, we pass the guard. We do not need this 4820 // guard for non-virtual calls; the caller is known to be the native 4821 // Object clone(). 4822 if (is_virtual) { 4823 generate_virtual_guard(obj_klass, slow_region); 4824 } 4825 4826 // The object must be easily cloneable and must not have a finalizer. 4827 // Both of these conditions may be checked in a single test. 4828 // We could optimize the test further, but we don't care. 4829 generate_access_flags_guard(obj_klass, 4830 // Test both conditions: 4831 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 4832 // Must be cloneable but not finalizer: 4833 JVM_ACC_IS_CLONEABLE_FAST, 4834 slow_region); 4835 } 4836 4837 if (!stopped()) { 4838 // It's an instance, and it passed the slow-path tests. 4839 PreserveJVMState pjvms(this); 4840 Node* obj_size = NULL; 4841 // Need to deoptimize on exception from allocation since Object.clone intrinsic 4842 // is reexecuted if deoptimization occurs and there could be problems when merging 4843 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 4844 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true); 4845 4846 copy_to_clone(obj, alloc_obj, obj_size, false); 4847 4848 // Present the results of the slow call. 4849 result_reg->init_req(_instance_path, control()); 4850 result_val->init_req(_instance_path, alloc_obj); 4851 result_i_o ->set_req(_instance_path, i_o()); 4852 result_mem ->set_req(_instance_path, reset_memory()); 4853 } 4854 4855 // Generate code for the slow case. We make a call to clone(). 4856 set_control(_gvn.transform(slow_region)); 4857 if (!stopped()) { 4858 PreserveJVMState pjvms(this); 4859 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual); 4860 // We need to deoptimize on exception (see comment above) 4861 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 4862 // this->control() comes from set_results_for_java_call 4863 result_reg->init_req(_slow_path, control()); 4864 result_val->init_req(_slow_path, slow_result); 4865 result_i_o ->set_req(_slow_path, i_o()); 4866 result_mem ->set_req(_slow_path, reset_memory()); 4867 } 4868 4869 // Return the combined state. 4870 set_control( _gvn.transform(result_reg)); 4871 set_i_o( _gvn.transform(result_i_o)); 4872 set_all_memory( _gvn.transform(result_mem)); 4873 } // original reexecute is set back here 4874 4875 set_result(_gvn.transform(result_val)); 4876 return true; 4877 } 4878 4879 // If we have a tightly coupled allocation, the arraycopy may take care 4880 // of the array initialization. If one of the guards we insert between 4881 // the allocation and the arraycopy causes a deoptimization, an 4882 // uninitialized array will escape the compiled method. To prevent that 4883 // we set the JVM state for uncommon traps between the allocation and 4884 // the arraycopy to the state before the allocation so, in case of 4885 // deoptimization, we'll reexecute the allocation and the 4886 // initialization. 4887 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 4888 if (alloc != NULL) { 4889 ciMethod* trap_method = alloc->jvms()->method(); 4890 int trap_bci = alloc->jvms()->bci(); 4891 4892 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4893 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 4894 // Make sure there's no store between the allocation and the 4895 // arraycopy otherwise visible side effects could be rexecuted 4896 // in case of deoptimization and cause incorrect execution. 4897 bool no_interfering_store = true; 4898 Node* mem = alloc->in(TypeFunc::Memory); 4899 if (mem->is_MergeMem()) { 4900 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 4901 Node* n = mms.memory(); 4902 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4903 assert(n->is_Store(), "what else?"); 4904 no_interfering_store = false; 4905 break; 4906 } 4907 } 4908 } else { 4909 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 4910 Node* n = mms.memory(); 4911 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4912 assert(n->is_Store(), "what else?"); 4913 no_interfering_store = false; 4914 break; 4915 } 4916 } 4917 } 4918 4919 if (no_interfering_store) { 4920 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 4921 4922 JVMState* saved_jvms = jvms(); 4923 saved_reexecute_sp = _reexecute_sp; 4924 4925 set_jvms(sfpt->jvms()); 4926 _reexecute_sp = jvms()->sp(); 4927 4928 return saved_jvms; 4929 } 4930 } 4931 } 4932 return NULL; 4933 } 4934 4935 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 4936 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 4937 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 4938 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 4939 uint size = alloc->req(); 4940 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 4941 old_jvms->set_map(sfpt); 4942 for (uint i = 0; i < size; i++) { 4943 sfpt->init_req(i, alloc->in(i)); 4944 } 4945 // re-push array length for deoptimization 4946 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 4947 old_jvms->set_sp(old_jvms->sp()+1); 4948 old_jvms->set_monoff(old_jvms->monoff()+1); 4949 old_jvms->set_scloff(old_jvms->scloff()+1); 4950 old_jvms->set_endoff(old_jvms->endoff()+1); 4951 old_jvms->set_should_reexecute(true); 4952 4953 sfpt->set_i_o(map()->i_o()); 4954 sfpt->set_memory(map()->memory()); 4955 sfpt->set_control(map()->control()); 4956 return sfpt; 4957 } 4958 4959 // In case of a deoptimization, we restart execution at the 4960 // allocation, allocating a new array. We would leave an uninitialized 4961 // array in the heap that GCs wouldn't expect. Move the allocation 4962 // after the traps so we don't allocate the array if we 4963 // deoptimize. This is possible because tightly_coupled_allocation() 4964 // guarantees there's no observer of the allocated array at this point 4965 // and the control flow is simple enough. 4966 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 4967 int saved_reexecute_sp, uint new_idx) { 4968 if (saved_jvms_before_guards != NULL && !stopped()) { 4969 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 4970 4971 assert(alloc != NULL, "only with a tightly coupled allocation"); 4972 // restore JVM state to the state at the arraycopy 4973 saved_jvms_before_guards->map()->set_control(map()->control()); 4974 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 4975 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 4976 // If we've improved the types of some nodes (null check) while 4977 // emitting the guards, propagate them to the current state 4978 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 4979 set_jvms(saved_jvms_before_guards); 4980 _reexecute_sp = saved_reexecute_sp; 4981 4982 // Remove the allocation from above the guards 4983 CallProjections callprojs; 4984 alloc->extract_projections(&callprojs, true); 4985 InitializeNode* init = alloc->initialization(); 4986 Node* alloc_mem = alloc->in(TypeFunc::Memory); 4987 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 4988 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 4989 4990 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 4991 // the allocation (i.e. is only valid if the allocation succeeds): 4992 // 1) replace CastIINode with AllocateArrayNode's length here 4993 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 4994 // 4995 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 4996 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 4997 Node* init_control = init->proj_out(TypeFunc::Control); 4998 Node* alloc_length = alloc->Ideal_length(); 4999 #ifdef ASSERT 5000 Node* prev_cast = NULL; 5001 #endif 5002 for (uint i = 0; i < init_control->outcnt(); i++) { 5003 Node* init_out = init_control->raw_out(i); 5004 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5005 #ifdef ASSERT 5006 if (prev_cast == NULL) { 5007 prev_cast = init_out; 5008 } else { 5009 if (prev_cast->cmp(*init_out) == false) { 5010 prev_cast->dump(); 5011 init_out->dump(); 5012 assert(false, "not equal CastIINode"); 5013 } 5014 } 5015 #endif 5016 C->gvn_replace_by(init_out, alloc_length); 5017 } 5018 } 5019 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5020 5021 // move the allocation here (after the guards) 5022 _gvn.hash_delete(alloc); 5023 alloc->set_req(TypeFunc::Control, control()); 5024 alloc->set_req(TypeFunc::I_O, i_o()); 5025 Node *mem = reset_memory(); 5026 set_all_memory(mem); 5027 alloc->set_req(TypeFunc::Memory, mem); 5028 set_control(init->proj_out_or_null(TypeFunc::Control)); 5029 set_i_o(callprojs.fallthrough_ioproj); 5030 5031 // Update memory as done in GraphKit::set_output_for_allocation() 5032 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5033 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5034 if (ary_type->isa_aryptr() && length_type != NULL) { 5035 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5036 } 5037 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5038 int elemidx = C->get_alias_index(telemref); 5039 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5040 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5041 5042 Node* allocx = _gvn.transform(alloc); 5043 assert(allocx == alloc, "where has the allocation gone?"); 5044 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5045 5046 _gvn.hash_delete(dest); 5047 dest->set_req(0, control()); 5048 Node* destx = _gvn.transform(dest); 5049 assert(destx == dest, "where has the allocation result gone?"); 5050 5051 array_ideal_length(alloc, ary_type, true); 5052 } 5053 } 5054 5055 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5056 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5057 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5058 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5059 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5060 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5061 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5062 JVMState* saved_jvms_before_guards) { 5063 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5064 // There is at least one unrelated uncommon trap which needs to be replaced. 5065 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5066 5067 JVMState* saved_jvms = jvms(); 5068 const int saved_reexecute_sp = _reexecute_sp; 5069 set_jvms(sfpt->jvms()); 5070 _reexecute_sp = jvms()->sp(); 5071 5072 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5073 5074 // Restore state 5075 set_jvms(saved_jvms); 5076 _reexecute_sp = saved_reexecute_sp; 5077 } 5078 } 5079 5080 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5081 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5082 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5083 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5084 while (if_proj->is_IfProj()) { 5085 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5086 if (uncommon_trap != nullptr) { 5087 create_new_uncommon_trap(uncommon_trap); 5088 } 5089 assert(if_proj->in(0)->is_If(), "must be If"); 5090 if_proj = if_proj->in(0)->in(0); 5091 } 5092 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5093 "must have reached control projection of init node"); 5094 } 5095 5096 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5097 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5098 assert(trap_request != 0, "no valid UCT trap request"); 5099 PreserveJVMState pjvms(this); 5100 set_control(uncommon_trap_call->in(0)); 5101 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5102 Deoptimization::trap_request_action(trap_request)); 5103 assert(stopped(), "Should be stopped"); 5104 _gvn.hash_delete(uncommon_trap_call); 5105 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5106 } 5107 5108 //------------------------------inline_arraycopy----------------------- 5109 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5110 // Object dest, int destPos, 5111 // int length); 5112 bool LibraryCallKit::inline_arraycopy() { 5113 // Get the arguments. 5114 Node* src = argument(0); // type: oop 5115 Node* src_offset = argument(1); // type: int 5116 Node* dest = argument(2); // type: oop 5117 Node* dest_offset = argument(3); // type: int 5118 Node* length = argument(4); // type: int 5119 5120 uint new_idx = C->unique(); 5121 5122 // Check for allocation before we add nodes that would confuse 5123 // tightly_coupled_allocation() 5124 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5125 5126 int saved_reexecute_sp = -1; 5127 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5128 // See arraycopy_restore_alloc_state() comment 5129 // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5130 // if saved_jvms_before_guards != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation 5131 // if saved_jvms_before_guards == NULL and alloc != NULL, we can't emit any guards 5132 bool can_emit_guards = (alloc == NULL || saved_jvms_before_guards != NULL); 5133 5134 // The following tests must be performed 5135 // (1) src and dest are arrays. 5136 // (2) src and dest arrays must have elements of the same BasicType 5137 // (3) src and dest must not be null. 5138 // (4) src_offset must not be negative. 5139 // (5) dest_offset must not be negative. 5140 // (6) length must not be negative. 5141 // (7) src_offset + length must not exceed length of src. 5142 // (8) dest_offset + length must not exceed length of dest. 5143 // (9) each element of an oop array must be assignable 5144 5145 // (3) src and dest must not be null. 5146 // always do this here because we need the JVM state for uncommon traps 5147 Node* null_ctl = top(); 5148 src = saved_jvms_before_guards != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5149 assert(null_ctl->is_top(), "no null control here"); 5150 dest = null_check(dest, T_ARRAY); 5151 5152 if (!can_emit_guards) { 5153 // if saved_jvms_before_guards == NULL and alloc != NULL, we don't emit any 5154 // guards but the arraycopy node could still take advantage of a 5155 // tightly allocated allocation. tightly_coupled_allocation() is 5156 // called again to make sure it takes the null check above into 5157 // account: the null check is mandatory and if it caused an 5158 // uncommon trap to be emitted then the allocation can't be 5159 // considered tightly coupled in this context. 5160 alloc = tightly_coupled_allocation(dest); 5161 } 5162 5163 bool validated = false; 5164 5165 const Type* src_type = _gvn.type(src); 5166 const Type* dest_type = _gvn.type(dest); 5167 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5168 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5169 5170 // Do we have the type of src? 5171 bool has_src = (top_src != NULL && top_src->elem() != Type::BOTTOM); 5172 // Do we have the type of dest? 5173 bool has_dest = (top_dest != NULL && top_dest->elem() != Type::BOTTOM); 5174 // Is the type for src from speculation? 5175 bool src_spec = false; 5176 // Is the type for dest from speculation? 5177 bool dest_spec = false; 5178 5179 if ((!has_src || !has_dest) && can_emit_guards) { 5180 // We don't have sufficient type information, let's see if 5181 // speculative types can help. We need to have types for both src 5182 // and dest so that it pays off. 5183 5184 // Do we already have or could we have type information for src 5185 bool could_have_src = has_src; 5186 // Do we already have or could we have type information for dest 5187 bool could_have_dest = has_dest; 5188 5189 ciKlass* src_k = NULL; 5190 if (!has_src) { 5191 src_k = src_type->speculative_type_not_null(); 5192 if (src_k != NULL && src_k->is_array_klass()) { 5193 could_have_src = true; 5194 } 5195 } 5196 5197 ciKlass* dest_k = NULL; 5198 if (!has_dest) { 5199 dest_k = dest_type->speculative_type_not_null(); 5200 if (dest_k != NULL && dest_k->is_array_klass()) { 5201 could_have_dest = true; 5202 } 5203 } 5204 5205 if (could_have_src && could_have_dest) { 5206 // This is going to pay off so emit the required guards 5207 if (!has_src) { 5208 src = maybe_cast_profiled_obj(src, src_k, true); 5209 src_type = _gvn.type(src); 5210 top_src = src_type->isa_aryptr(); 5211 has_src = (top_src != NULL && top_src->elem() != Type::BOTTOM); 5212 src_spec = true; 5213 } 5214 if (!has_dest) { 5215 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5216 dest_type = _gvn.type(dest); 5217 top_dest = dest_type->isa_aryptr(); 5218 has_dest = (top_dest != NULL && top_dest->elem() != Type::BOTTOM); 5219 dest_spec = true; 5220 } 5221 } 5222 } 5223 5224 if (has_src && has_dest && can_emit_guards) { 5225 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5226 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5227 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5228 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5229 5230 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5231 // If both arrays are object arrays then having the exact types 5232 // for both will remove the need for a subtype check at runtime 5233 // before the call and may make it possible to pick a faster copy 5234 // routine (without a subtype check on every element) 5235 // Do we have the exact type of src? 5236 bool could_have_src = src_spec; 5237 // Do we have the exact type of dest? 5238 bool could_have_dest = dest_spec; 5239 ciKlass* src_k = NULL; 5240 ciKlass* dest_k = NULL; 5241 if (!src_spec) { 5242 src_k = src_type->speculative_type_not_null(); 5243 if (src_k != NULL && src_k->is_array_klass()) { 5244 could_have_src = true; 5245 } 5246 } 5247 if (!dest_spec) { 5248 dest_k = dest_type->speculative_type_not_null(); 5249 if (dest_k != NULL && dest_k->is_array_klass()) { 5250 could_have_dest = true; 5251 } 5252 } 5253 if (could_have_src && could_have_dest) { 5254 // If we can have both exact types, emit the missing guards 5255 if (could_have_src && !src_spec) { 5256 src = maybe_cast_profiled_obj(src, src_k, true); 5257 } 5258 if (could_have_dest && !dest_spec) { 5259 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5260 } 5261 } 5262 } 5263 } 5264 5265 ciMethod* trap_method = method(); 5266 int trap_bci = bci(); 5267 if (saved_jvms_before_guards != NULL) { 5268 trap_method = alloc->jvms()->method(); 5269 trap_bci = alloc->jvms()->bci(); 5270 } 5271 5272 bool negative_length_guard_generated = false; 5273 5274 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5275 can_emit_guards && 5276 !src->is_top() && !dest->is_top()) { 5277 // validate arguments: enables transformation the ArrayCopyNode 5278 validated = true; 5279 5280 RegionNode* slow_region = new RegionNode(1); 5281 record_for_igvn(slow_region); 5282 5283 // (1) src and dest are arrays. 5284 generate_non_array_guard(load_object_klass(src), slow_region); 5285 generate_non_array_guard(load_object_klass(dest), slow_region); 5286 5287 // (2) src and dest arrays must have elements of the same BasicType 5288 // done at macro expansion or at Ideal transformation time 5289 5290 // (4) src_offset must not be negative. 5291 generate_negative_guard(src_offset, slow_region); 5292 5293 // (5) dest_offset must not be negative. 5294 generate_negative_guard(dest_offset, slow_region); 5295 5296 // (7) src_offset + length must not exceed length of src. 5297 generate_limit_guard(src_offset, length, 5298 load_array_length(src), 5299 slow_region); 5300 5301 // (8) dest_offset + length must not exceed length of dest. 5302 generate_limit_guard(dest_offset, length, 5303 load_array_length(dest), 5304 slow_region); 5305 5306 // (6) length must not be negative. 5307 // This is also checked in generate_arraycopy() during macro expansion, but 5308 // we also have to check it here for the case where the ArrayCopyNode will 5309 // be eliminated by Escape Analysis. 5310 if (EliminateAllocations) { 5311 generate_negative_guard(length, slow_region); 5312 negative_length_guard_generated = true; 5313 } 5314 5315 // (9) each element of an oop array must be assignable 5316 Node* dest_klass = load_object_klass(dest); 5317 if (src != dest) { 5318 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5319 5320 if (not_subtype_ctrl != top()) { 5321 PreserveJVMState pjvms(this); 5322 set_control(not_subtype_ctrl); 5323 uncommon_trap(Deoptimization::Reason_intrinsic, 5324 Deoptimization::Action_make_not_entrant); 5325 assert(stopped(), "Should be stopped"); 5326 } 5327 } 5328 { 5329 PreserveJVMState pjvms(this); 5330 set_control(_gvn.transform(slow_region)); 5331 uncommon_trap(Deoptimization::Reason_intrinsic, 5332 Deoptimization::Action_make_not_entrant); 5333 assert(stopped(), "Should be stopped"); 5334 } 5335 5336 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5337 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5338 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5339 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5340 } 5341 5342 if (stopped()) { 5343 return true; 5344 } 5345 5346 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated, 5347 // Create LoadRange and LoadKlass nodes for use during macro expansion here 5348 // so the compiler has a chance to eliminate them: during macro expansion, 5349 // we have to set their control (CastPP nodes are eliminated). 5350 load_object_klass(src), load_object_klass(dest), 5351 load_array_length(src), load_array_length(dest)); 5352 5353 ac->set_arraycopy(validated); 5354 5355 Node* n = _gvn.transform(ac); 5356 if (n == ac) { 5357 ac->connect_outputs(this); 5358 } else { 5359 assert(validated, "shouldn't transform if all arguments not validated"); 5360 set_all_memory(n); 5361 } 5362 clear_upper_avx(); 5363 5364 5365 return true; 5366 } 5367 5368 5369 // Helper function which determines if an arraycopy immediately follows 5370 // an allocation, with no intervening tests or other escapes for the object. 5371 AllocateArrayNode* 5372 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 5373 if (stopped()) return NULL; // no fast path 5374 if (!C->do_aliasing()) return NULL; // no MergeMems around 5375 5376 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); 5377 if (alloc == NULL) return NULL; 5378 5379 Node* rawmem = memory(Compile::AliasIdxRaw); 5380 // Is the allocation's memory state untouched? 5381 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 5382 // Bail out if there have been raw-memory effects since the allocation. 5383 // (Example: There might have been a call or safepoint.) 5384 return NULL; 5385 } 5386 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 5387 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 5388 return NULL; 5389 } 5390 5391 // There must be no unexpected observers of this allocation. 5392 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 5393 Node* obs = ptr->fast_out(i); 5394 if (obs != this->map()) { 5395 return NULL; 5396 } 5397 } 5398 5399 // This arraycopy must unconditionally follow the allocation of the ptr. 5400 Node* alloc_ctl = ptr->in(0); 5401 Node* ctl = control(); 5402 while (ctl != alloc_ctl) { 5403 // There may be guards which feed into the slow_region. 5404 // Any other control flow means that we might not get a chance 5405 // to finish initializing the allocated object. 5406 // Various low-level checks bottom out in uncommon traps. These 5407 // are considered safe since we've already checked above that 5408 // there is no unexpected observer of this allocation. 5409 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 5410 assert(ctl->in(0)->is_If(), "must be If"); 5411 ctl = ctl->in(0)->in(0); 5412 } else { 5413 return nullptr; 5414 } 5415 } 5416 5417 // If we get this far, we have an allocation which immediately 5418 // precedes the arraycopy, and we can take over zeroing the new object. 5419 // The arraycopy will finish the initialization, and provide 5420 // a new control state to which we will anchor the destination pointer. 5421 5422 return alloc; 5423 } 5424 5425 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 5426 if (node->is_IfProj()) { 5427 Node* other_proj = node->as_IfProj()->other_if_proj(); 5428 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 5429 Node* obs = other_proj->fast_out(j); 5430 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 5431 (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 5432 return obs->as_CallStaticJava(); 5433 } 5434 } 5435 } 5436 return nullptr; 5437 } 5438 5439 //-------------inline_encodeISOArray----------------------------------- 5440 // encode char[] to byte[] in ISO_8859_1 or ASCII 5441 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 5442 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 5443 // no receiver since it is static method 5444 Node *src = argument(0); 5445 Node *src_offset = argument(1); 5446 Node *dst = argument(2); 5447 Node *dst_offset = argument(3); 5448 Node *length = argument(4); 5449 5450 src = must_be_not_null(src, true); 5451 dst = must_be_not_null(dst, true); 5452 5453 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 5454 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 5455 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 5456 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 5457 // failed array check 5458 return false; 5459 } 5460 5461 // Figure out the size and type of the elements we will be copying. 5462 BasicType src_elem = src_type->elem()->array_element_basic_type(); 5463 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 5464 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 5465 return false; 5466 } 5467 5468 Node* src_start = array_element_address(src, src_offset, T_CHAR); 5469 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 5470 // 'src_start' points to src array + scaled offset 5471 // 'dst_start' points to dst array + scaled offset 5472 5473 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 5474 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 5475 enc = _gvn.transform(enc); 5476 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 5477 set_memory(res_mem, mtype); 5478 set_result(enc); 5479 clear_upper_avx(); 5480 5481 return true; 5482 } 5483 5484 //-------------inline_multiplyToLen----------------------------------- 5485 bool LibraryCallKit::inline_multiplyToLen() { 5486 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 5487 5488 address stubAddr = StubRoutines::multiplyToLen(); 5489 if (stubAddr == NULL) { 5490 return false; // Intrinsic's stub is not implemented on this platform 5491 } 5492 const char* stubName = "multiplyToLen"; 5493 5494 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 5495 5496 // no receiver because it is a static method 5497 Node* x = argument(0); 5498 Node* xlen = argument(1); 5499 Node* y = argument(2); 5500 Node* ylen = argument(3); 5501 Node* z = argument(4); 5502 5503 x = must_be_not_null(x, true); 5504 y = must_be_not_null(y, true); 5505 5506 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5507 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 5508 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5509 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 5510 // failed array check 5511 return false; 5512 } 5513 5514 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5515 BasicType y_elem = y_type->elem()->array_element_basic_type(); 5516 if (x_elem != T_INT || y_elem != T_INT) { 5517 return false; 5518 } 5519 5520 // Set the original stack and the reexecute bit for the interpreter to reexecute 5521 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5522 // on the return from z array allocation in runtime. 5523 { PreserveReexecuteState preexecs(this); 5524 jvms()->set_should_reexecute(true); 5525 5526 Node* x_start = array_element_address(x, intcon(0), x_elem); 5527 Node* y_start = array_element_address(y, intcon(0), y_elem); 5528 // 'x_start' points to x array + scaled xlen 5529 // 'y_start' points to y array + scaled ylen 5530 5531 // Allocate the result array 5532 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 5533 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 5534 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 5535 5536 IdealKit ideal(this); 5537 5538 #define __ ideal. 5539 Node* one = __ ConI(1); 5540 Node* zero = __ ConI(0); 5541 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 5542 __ set(need_alloc, zero); 5543 __ set(z_alloc, z); 5544 __ if_then(z, BoolTest::eq, null()); { 5545 __ increment (need_alloc, one); 5546 } __ else_(); { 5547 // Update graphKit memory and control from IdealKit. 5548 sync_kit(ideal); 5549 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 5550 cast->init_req(0, control()); 5551 _gvn.set_type(cast, cast->bottom_type()); 5552 C->record_for_igvn(cast); 5553 5554 Node* zlen_arg = load_array_length(cast); 5555 // Update IdealKit memory and control from graphKit. 5556 __ sync_kit(this); 5557 __ if_then(zlen_arg, BoolTest::lt, zlen); { 5558 __ increment (need_alloc, one); 5559 } __ end_if(); 5560 } __ end_if(); 5561 5562 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 5563 // Update graphKit memory and control from IdealKit. 5564 sync_kit(ideal); 5565 Node * narr = new_array(klass_node, zlen, 1); 5566 // Update IdealKit memory and control from graphKit. 5567 __ sync_kit(this); 5568 __ set(z_alloc, narr); 5569 } __ end_if(); 5570 5571 sync_kit(ideal); 5572 z = __ value(z_alloc); 5573 // Can't use TypeAryPtr::INTS which uses Bottom offset. 5574 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 5575 // Final sync IdealKit and GraphKit. 5576 final_sync(ideal); 5577 #undef __ 5578 5579 Node* z_start = array_element_address(z, intcon(0), T_INT); 5580 5581 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5582 OptoRuntime::multiplyToLen_Type(), 5583 stubAddr, stubName, TypePtr::BOTTOM, 5584 x_start, xlen, y_start, ylen, z_start, zlen); 5585 } // original reexecute is set back here 5586 5587 C->set_has_split_ifs(true); // Has chance for split-if optimization 5588 set_result(z); 5589 return true; 5590 } 5591 5592 //-------------inline_squareToLen------------------------------------ 5593 bool LibraryCallKit::inline_squareToLen() { 5594 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5595 5596 address stubAddr = StubRoutines::squareToLen(); 5597 if (stubAddr == NULL) { 5598 return false; // Intrinsic's stub is not implemented on this platform 5599 } 5600 const char* stubName = "squareToLen"; 5601 5602 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5603 5604 Node* x = argument(0); 5605 Node* len = argument(1); 5606 Node* z = argument(2); 5607 Node* zlen = argument(3); 5608 5609 x = must_be_not_null(x, true); 5610 z = must_be_not_null(z, true); 5611 5612 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5613 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 5614 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5615 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 5616 // failed array check 5617 return false; 5618 } 5619 5620 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5621 BasicType z_elem = z_type->elem()->array_element_basic_type(); 5622 if (x_elem != T_INT || z_elem != T_INT) { 5623 return false; 5624 } 5625 5626 5627 Node* x_start = array_element_address(x, intcon(0), x_elem); 5628 Node* z_start = array_element_address(z, intcon(0), z_elem); 5629 5630 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5631 OptoRuntime::squareToLen_Type(), 5632 stubAddr, stubName, TypePtr::BOTTOM, 5633 x_start, len, z_start, zlen); 5634 5635 set_result(z); 5636 return true; 5637 } 5638 5639 //-------------inline_mulAdd------------------------------------------ 5640 bool LibraryCallKit::inline_mulAdd() { 5641 assert(UseMulAddIntrinsic, "not implemented on this platform"); 5642 5643 address stubAddr = StubRoutines::mulAdd(); 5644 if (stubAddr == NULL) { 5645 return false; // Intrinsic's stub is not implemented on this platform 5646 } 5647 const char* stubName = "mulAdd"; 5648 5649 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 5650 5651 Node* out = argument(0); 5652 Node* in = argument(1); 5653 Node* offset = argument(2); 5654 Node* len = argument(3); 5655 Node* k = argument(4); 5656 5657 in = must_be_not_null(in, true); 5658 out = must_be_not_null(out, true); 5659 5660 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 5661 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 5662 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 5663 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 5664 // failed array check 5665 return false; 5666 } 5667 5668 BasicType out_elem = out_type->elem()->array_element_basic_type(); 5669 BasicType in_elem = in_type->elem()->array_element_basic_type(); 5670 if (out_elem != T_INT || in_elem != T_INT) { 5671 return false; 5672 } 5673 5674 Node* outlen = load_array_length(out); 5675 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 5676 Node* out_start = array_element_address(out, intcon(0), out_elem); 5677 Node* in_start = array_element_address(in, intcon(0), in_elem); 5678 5679 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5680 OptoRuntime::mulAdd_Type(), 5681 stubAddr, stubName, TypePtr::BOTTOM, 5682 out_start,in_start, new_offset, len, k); 5683 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5684 set_result(result); 5685 return true; 5686 } 5687 5688 //-------------inline_montgomeryMultiply----------------------------------- 5689 bool LibraryCallKit::inline_montgomeryMultiply() { 5690 address stubAddr = StubRoutines::montgomeryMultiply(); 5691 if (stubAddr == NULL) { 5692 return false; // Intrinsic's stub is not implemented on this platform 5693 } 5694 5695 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 5696 const char* stubName = "montgomery_multiply"; 5697 5698 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 5699 5700 Node* a = argument(0); 5701 Node* b = argument(1); 5702 Node* n = argument(2); 5703 Node* len = argument(3); 5704 Node* inv = argument(4); 5705 Node* m = argument(6); 5706 5707 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 5708 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 5709 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 5710 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 5711 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 5712 b_type == nullptr || b_type->elem() == Type::BOTTOM || 5713 n_type == nullptr || n_type->elem() == Type::BOTTOM || 5714 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 5715 // failed array check 5716 return false; 5717 } 5718 5719 BasicType a_elem = a_type->elem()->array_element_basic_type(); 5720 BasicType b_elem = b_type->elem()->array_element_basic_type(); 5721 BasicType n_elem = n_type->elem()->array_element_basic_type(); 5722 BasicType m_elem = m_type->elem()->array_element_basic_type(); 5723 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5724 return false; 5725 } 5726 5727 // Make the call 5728 { 5729 Node* a_start = array_element_address(a, intcon(0), a_elem); 5730 Node* b_start = array_element_address(b, intcon(0), b_elem); 5731 Node* n_start = array_element_address(n, intcon(0), n_elem); 5732 Node* m_start = array_element_address(m, intcon(0), m_elem); 5733 5734 Node* call = make_runtime_call(RC_LEAF, 5735 OptoRuntime::montgomeryMultiply_Type(), 5736 stubAddr, stubName, TypePtr::BOTTOM, 5737 a_start, b_start, n_start, len, inv, top(), 5738 m_start); 5739 set_result(m); 5740 } 5741 5742 return true; 5743 } 5744 5745 bool LibraryCallKit::inline_montgomerySquare() { 5746 address stubAddr = StubRoutines::montgomerySquare(); 5747 if (stubAddr == NULL) { 5748 return false; // Intrinsic's stub is not implemented on this platform 5749 } 5750 5751 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 5752 const char* stubName = "montgomery_square"; 5753 5754 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 5755 5756 Node* a = argument(0); 5757 Node* n = argument(1); 5758 Node* len = argument(2); 5759 Node* inv = argument(3); 5760 Node* m = argument(5); 5761 5762 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 5763 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 5764 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 5765 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 5766 n_type == nullptr || n_type->elem() == Type::BOTTOM || 5767 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 5768 // failed array check 5769 return false; 5770 } 5771 5772 BasicType a_elem = a_type->elem()->array_element_basic_type(); 5773 BasicType n_elem = n_type->elem()->array_element_basic_type(); 5774 BasicType m_elem = m_type->elem()->array_element_basic_type(); 5775 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5776 return false; 5777 } 5778 5779 // Make the call 5780 { 5781 Node* a_start = array_element_address(a, intcon(0), a_elem); 5782 Node* n_start = array_element_address(n, intcon(0), n_elem); 5783 Node* m_start = array_element_address(m, intcon(0), m_elem); 5784 5785 Node* call = make_runtime_call(RC_LEAF, 5786 OptoRuntime::montgomerySquare_Type(), 5787 stubAddr, stubName, TypePtr::BOTTOM, 5788 a_start, n_start, len, inv, top(), 5789 m_start); 5790 set_result(m); 5791 } 5792 5793 return true; 5794 } 5795 5796 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 5797 address stubAddr = NULL; 5798 const char* stubName = NULL; 5799 5800 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 5801 if (stubAddr == NULL) { 5802 return false; // Intrinsic's stub is not implemented on this platform 5803 } 5804 5805 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 5806 5807 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 5808 5809 Node* newArr = argument(0); 5810 Node* oldArr = argument(1); 5811 Node* newIdx = argument(2); 5812 Node* shiftCount = argument(3); 5813 Node* numIter = argument(4); 5814 5815 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 5816 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 5817 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 5818 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 5819 return false; 5820 } 5821 5822 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 5823 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 5824 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 5825 return false; 5826 } 5827 5828 // Make the call 5829 { 5830 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 5831 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 5832 5833 Node* call = make_runtime_call(RC_LEAF, 5834 OptoRuntime::bigIntegerShift_Type(), 5835 stubAddr, 5836 stubName, 5837 TypePtr::BOTTOM, 5838 newArr_start, 5839 oldArr_start, 5840 newIdx, 5841 shiftCount, 5842 numIter); 5843 } 5844 5845 return true; 5846 } 5847 5848 //-------------inline_vectorizedMismatch------------------------------ 5849 bool LibraryCallKit::inline_vectorizedMismatch() { 5850 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 5851 5852 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 5853 Node* obja = argument(0); // Object 5854 Node* aoffset = argument(1); // long 5855 Node* objb = argument(3); // Object 5856 Node* boffset = argument(4); // long 5857 Node* length = argument(6); // int 5858 Node* scale = argument(7); // int 5859 5860 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 5861 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 5862 if (obja_t == NULL || obja_t->elem() == Type::BOTTOM || 5863 objb_t == NULL || objb_t->elem() == Type::BOTTOM || 5864 scale == top()) { 5865 return false; // failed input validation 5866 } 5867 5868 Node* obja_adr = make_unsafe_address(obja, aoffset); 5869 Node* objb_adr = make_unsafe_address(objb, boffset); 5870 5871 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 5872 // 5873 // inline_limit = ArrayOperationPartialInlineSize / element_size; 5874 // if (length <= inline_limit) { 5875 // inline_path: 5876 // vmask = VectorMaskGen length 5877 // vload1 = LoadVectorMasked obja, vmask 5878 // vload2 = LoadVectorMasked objb, vmask 5879 // result1 = VectorCmpMasked vload1, vload2, vmask 5880 // } else { 5881 // call_stub_path: 5882 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 5883 // } 5884 // exit_block: 5885 // return Phi(result1, result2); 5886 // 5887 enum { inline_path = 1, // input is small enough to process it all at once 5888 stub_path = 2, // input is too large; call into the VM 5889 PATH_LIMIT = 3 5890 }; 5891 5892 Node* exit_block = new RegionNode(PATH_LIMIT); 5893 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 5894 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 5895 5896 Node* call_stub_path = control(); 5897 5898 BasicType elem_bt = T_ILLEGAL; 5899 5900 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 5901 if (scale_t->is_con()) { 5902 switch (scale_t->get_con()) { 5903 case 0: elem_bt = T_BYTE; break; 5904 case 1: elem_bt = T_SHORT; break; 5905 case 2: elem_bt = T_INT; break; 5906 case 3: elem_bt = T_LONG; break; 5907 5908 default: elem_bt = T_ILLEGAL; break; // not supported 5909 } 5910 } 5911 5912 int inline_limit = 0; 5913 bool do_partial_inline = false; 5914 5915 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 5916 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 5917 do_partial_inline = inline_limit >= 16; 5918 } 5919 5920 if (do_partial_inline) { 5921 assert(elem_bt != T_ILLEGAL, "sanity"); 5922 5923 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 5924 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 5925 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 5926 5927 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 5928 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 5929 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 5930 5931 call_stub_path = generate_guard(bol_gt, NULL, PROB_MIN); 5932 5933 if (!stopped()) { 5934 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 5935 5936 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 5937 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 5938 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 5939 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 5940 5941 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 5942 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 5943 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 5944 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 5945 5946 exit_block->init_req(inline_path, control()); 5947 memory_phi->init_req(inline_path, map()->memory()); 5948 result_phi->init_req(inline_path, result); 5949 5950 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 5951 clear_upper_avx(); 5952 } 5953 } 5954 } 5955 5956 if (call_stub_path != NULL) { 5957 set_control(call_stub_path); 5958 5959 Node* call = make_runtime_call(RC_LEAF, 5960 OptoRuntime::vectorizedMismatch_Type(), 5961 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 5962 obja_adr, objb_adr, length, scale); 5963 5964 exit_block->init_req(stub_path, control()); 5965 memory_phi->init_req(stub_path, map()->memory()); 5966 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 5967 } 5968 5969 exit_block = _gvn.transform(exit_block); 5970 memory_phi = _gvn.transform(memory_phi); 5971 result_phi = _gvn.transform(result_phi); 5972 5973 set_control(exit_block); 5974 set_all_memory(memory_phi); 5975 set_result(result_phi); 5976 5977 return true; 5978 } 5979 5980 //------------------------------inline_vectorizedHashcode---------------------------- 5981 bool LibraryCallKit::inline_vectorizedHashCode() { 5982 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 5983 5984 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 5985 Node* array = argument(0); 5986 Node* offset = argument(1); 5987 Node* length = argument(2); 5988 Node* initialValue = argument(3); 5989 Node* basic_type = argument(4); 5990 5991 if (basic_type == top()) { 5992 return false; // failed input validation 5993 } 5994 5995 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 5996 if (!basic_type_t->is_con()) { 5997 return false; // Only intrinsify if mode argument is constant 5998 } 5999 6000 array = must_be_not_null(array, true); 6001 6002 BasicType bt = (BasicType)basic_type_t->get_con(); 6003 6004 // Resolve address of first element 6005 Node* array_start = array_element_address(array, offset, bt); 6006 6007 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6008 array_start, length, initialValue, basic_type))); 6009 clear_upper_avx(); 6010 6011 return true; 6012 } 6013 6014 /** 6015 * Calculate CRC32 for byte. 6016 * int java.util.zip.CRC32.update(int crc, int b) 6017 */ 6018 bool LibraryCallKit::inline_updateCRC32() { 6019 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6020 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6021 // no receiver since it is static method 6022 Node* crc = argument(0); // type: int 6023 Node* b = argument(1); // type: int 6024 6025 /* 6026 * int c = ~ crc; 6027 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6028 * b = b ^ (c >>> 8); 6029 * crc = ~b; 6030 */ 6031 6032 Node* M1 = intcon(-1); 6033 crc = _gvn.transform(new XorINode(crc, M1)); 6034 Node* result = _gvn.transform(new XorINode(crc, b)); 6035 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6036 6037 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6038 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6039 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6040 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6041 6042 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6043 result = _gvn.transform(new XorINode(crc, result)); 6044 result = _gvn.transform(new XorINode(result, M1)); 6045 set_result(result); 6046 return true; 6047 } 6048 6049 /** 6050 * Calculate CRC32 for byte[] array. 6051 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6052 */ 6053 bool LibraryCallKit::inline_updateBytesCRC32() { 6054 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6055 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6056 // no receiver since it is static method 6057 Node* crc = argument(0); // type: int 6058 Node* src = argument(1); // type: oop 6059 Node* offset = argument(2); // type: int 6060 Node* length = argument(3); // type: int 6061 6062 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6063 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6064 // failed array check 6065 return false; 6066 } 6067 6068 // Figure out the size and type of the elements we will be copying. 6069 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6070 if (src_elem != T_BYTE) { 6071 return false; 6072 } 6073 6074 // 'src_start' points to src array + scaled offset 6075 src = must_be_not_null(src, true); 6076 Node* src_start = array_element_address(src, offset, src_elem); 6077 6078 // We assume that range check is done by caller. 6079 // TODO: generate range check (offset+length < src.length) in debug VM. 6080 6081 // Call the stub. 6082 address stubAddr = StubRoutines::updateBytesCRC32(); 6083 const char *stubName = "updateBytesCRC32"; 6084 6085 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6086 stubAddr, stubName, TypePtr::BOTTOM, 6087 crc, src_start, length); 6088 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6089 set_result(result); 6090 return true; 6091 } 6092 6093 /** 6094 * Calculate CRC32 for ByteBuffer. 6095 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6096 */ 6097 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6098 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6099 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6100 // no receiver since it is static method 6101 Node* crc = argument(0); // type: int 6102 Node* src = argument(1); // type: long 6103 Node* offset = argument(3); // type: int 6104 Node* length = argument(4); // type: int 6105 6106 src = ConvL2X(src); // adjust Java long to machine word 6107 Node* base = _gvn.transform(new CastX2PNode(src)); 6108 offset = ConvI2X(offset); 6109 6110 // 'src_start' points to src array + scaled offset 6111 Node* src_start = basic_plus_adr(top(), base, offset); 6112 6113 // Call the stub. 6114 address stubAddr = StubRoutines::updateBytesCRC32(); 6115 const char *stubName = "updateBytesCRC32"; 6116 6117 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6118 stubAddr, stubName, TypePtr::BOTTOM, 6119 crc, src_start, length); 6120 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6121 set_result(result); 6122 return true; 6123 } 6124 6125 //------------------------------get_table_from_crc32c_class----------------------- 6126 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6127 Node* table = load_field_from_object(NULL, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6128 assert (table != NULL, "wrong version of java.util.zip.CRC32C"); 6129 6130 return table; 6131 } 6132 6133 //------------------------------inline_updateBytesCRC32C----------------------- 6134 // 6135 // Calculate CRC32C for byte[] array. 6136 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6137 // 6138 bool LibraryCallKit::inline_updateBytesCRC32C() { 6139 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6140 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6141 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6142 // no receiver since it is a static method 6143 Node* crc = argument(0); // type: int 6144 Node* src = argument(1); // type: oop 6145 Node* offset = argument(2); // type: int 6146 Node* end = argument(3); // type: int 6147 6148 Node* length = _gvn.transform(new SubINode(end, offset)); 6149 6150 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6151 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6152 // failed array check 6153 return false; 6154 } 6155 6156 // Figure out the size and type of the elements we will be copying. 6157 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6158 if (src_elem != T_BYTE) { 6159 return false; 6160 } 6161 6162 // 'src_start' points to src array + scaled offset 6163 src = must_be_not_null(src, true); 6164 Node* src_start = array_element_address(src, offset, src_elem); 6165 6166 // static final int[] byteTable in class CRC32C 6167 Node* table = get_table_from_crc32c_class(callee()->holder()); 6168 table = must_be_not_null(table, true); 6169 Node* table_start = array_element_address(table, intcon(0), T_INT); 6170 6171 // We assume that range check is done by caller. 6172 // TODO: generate range check (offset+length < src.length) in debug VM. 6173 6174 // Call the stub. 6175 address stubAddr = StubRoutines::updateBytesCRC32C(); 6176 const char *stubName = "updateBytesCRC32C"; 6177 6178 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6179 stubAddr, stubName, TypePtr::BOTTOM, 6180 crc, src_start, length, table_start); 6181 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6182 set_result(result); 6183 return true; 6184 } 6185 6186 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6187 // 6188 // Calculate CRC32C for DirectByteBuffer. 6189 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6190 // 6191 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6192 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6193 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6194 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6195 // no receiver since it is a static method 6196 Node* crc = argument(0); // type: int 6197 Node* src = argument(1); // type: long 6198 Node* offset = argument(3); // type: int 6199 Node* end = argument(4); // type: int 6200 6201 Node* length = _gvn.transform(new SubINode(end, offset)); 6202 6203 src = ConvL2X(src); // adjust Java long to machine word 6204 Node* base = _gvn.transform(new CastX2PNode(src)); 6205 offset = ConvI2X(offset); 6206 6207 // 'src_start' points to src array + scaled offset 6208 Node* src_start = basic_plus_adr(top(), base, offset); 6209 6210 // static final int[] byteTable in class CRC32C 6211 Node* table = get_table_from_crc32c_class(callee()->holder()); 6212 table = must_be_not_null(table, true); 6213 Node* table_start = array_element_address(table, intcon(0), T_INT); 6214 6215 // Call the stub. 6216 address stubAddr = StubRoutines::updateBytesCRC32C(); 6217 const char *stubName = "updateBytesCRC32C"; 6218 6219 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6220 stubAddr, stubName, TypePtr::BOTTOM, 6221 crc, src_start, length, table_start); 6222 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6223 set_result(result); 6224 return true; 6225 } 6226 6227 //------------------------------inline_updateBytesAdler32---------------------- 6228 // 6229 // Calculate Adler32 checksum for byte[] array. 6230 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6231 // 6232 bool LibraryCallKit::inline_updateBytesAdler32() { 6233 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6234 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6235 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6236 // no receiver since it is static method 6237 Node* crc = argument(0); // type: int 6238 Node* src = argument(1); // type: oop 6239 Node* offset = argument(2); // type: int 6240 Node* length = argument(3); // type: int 6241 6242 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6243 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6244 // failed array check 6245 return false; 6246 } 6247 6248 // Figure out the size and type of the elements we will be copying. 6249 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6250 if (src_elem != T_BYTE) { 6251 return false; 6252 } 6253 6254 // 'src_start' points to src array + scaled offset 6255 Node* src_start = array_element_address(src, offset, src_elem); 6256 6257 // We assume that range check is done by caller. 6258 // TODO: generate range check (offset+length < src.length) in debug VM. 6259 6260 // Call the stub. 6261 address stubAddr = StubRoutines::updateBytesAdler32(); 6262 const char *stubName = "updateBytesAdler32"; 6263 6264 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6265 stubAddr, stubName, TypePtr::BOTTOM, 6266 crc, src_start, length); 6267 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6268 set_result(result); 6269 return true; 6270 } 6271 6272 //------------------------------inline_updateByteBufferAdler32--------------- 6273 // 6274 // Calculate Adler32 checksum for DirectByteBuffer. 6275 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6276 // 6277 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6278 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6279 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6280 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6281 // no receiver since it is static method 6282 Node* crc = argument(0); // type: int 6283 Node* src = argument(1); // type: long 6284 Node* offset = argument(3); // type: int 6285 Node* length = argument(4); // type: int 6286 6287 src = ConvL2X(src); // adjust Java long to machine word 6288 Node* base = _gvn.transform(new CastX2PNode(src)); 6289 offset = ConvI2X(offset); 6290 6291 // 'src_start' points to src array + scaled offset 6292 Node* src_start = basic_plus_adr(top(), base, offset); 6293 6294 // Call the stub. 6295 address stubAddr = StubRoutines::updateBytesAdler32(); 6296 const char *stubName = "updateBytesAdler32"; 6297 6298 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6299 stubAddr, stubName, TypePtr::BOTTOM, 6300 crc, src_start, length); 6301 6302 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6303 set_result(result); 6304 return true; 6305 } 6306 6307 //----------------------------inline_reference_get---------------------------- 6308 // public T java.lang.ref.Reference.get(); 6309 bool LibraryCallKit::inline_reference_get() { 6310 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6311 6312 // Get the argument: 6313 Node* reference_obj = null_check_receiver(); 6314 if (stopped()) return true; 6315 6316 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6317 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6318 decorators, /*is_static*/ false, NULL); 6319 if (result == NULL) return false; 6320 6321 // Add memory barrier to prevent commoning reads from this field 6322 // across safepoint since GC can change its value. 6323 insert_mem_bar(Op_MemBarCPUOrder); 6324 6325 set_result(result); 6326 return true; 6327 } 6328 6329 //----------------------------inline_reference_refersTo0---------------------------- 6330 // bool java.lang.ref.Reference.refersTo0(); 6331 // bool java.lang.ref.PhantomReference.refersTo0(); 6332 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6333 // Get arguments: 6334 Node* reference_obj = null_check_receiver(); 6335 Node* other_obj = argument(1); 6336 if (stopped()) return true; 6337 6338 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6339 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6340 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6341 decorators, /*is_static*/ false, NULL); 6342 if (referent == NULL) return false; 6343 6344 // Add memory barrier to prevent commoning reads from this field 6345 // across safepoint since GC can change its value. 6346 insert_mem_bar(Op_MemBarCPUOrder); 6347 6348 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6349 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6350 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6351 6352 RegionNode* region = new RegionNode(3); 6353 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6354 6355 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6356 region->init_req(1, if_true); 6357 phi->init_req(1, intcon(1)); 6358 6359 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6360 region->init_req(2, if_false); 6361 phi->init_req(2, intcon(0)); 6362 6363 set_control(_gvn.transform(region)); 6364 record_for_igvn(region); 6365 set_result(_gvn.transform(phi)); 6366 return true; 6367 } 6368 6369 6370 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 6371 DecoratorSet decorators, bool is_static, 6372 ciInstanceKlass* fromKls) { 6373 if (fromKls == NULL) { 6374 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6375 assert(tinst != NULL, "obj is null"); 6376 assert(tinst->is_loaded(), "obj is not loaded"); 6377 fromKls = tinst->instance_klass(); 6378 } else { 6379 assert(is_static, "only for static field access"); 6380 } 6381 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6382 ciSymbol::make(fieldTypeString), 6383 is_static); 6384 6385 assert(field != NULL, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 6386 if (field == NULL) return (Node *) NULL; 6387 6388 if (is_static) { 6389 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6390 fromObj = makecon(tip); 6391 } 6392 6393 // Next code copied from Parse::do_get_xxx(): 6394 6395 // Compute address and memory type. 6396 int offset = field->offset_in_bytes(); 6397 bool is_vol = field->is_volatile(); 6398 ciType* field_klass = field->type(); 6399 assert(field_klass->is_loaded(), "should be loaded"); 6400 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 6401 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6402 BasicType bt = field->layout_type(); 6403 6404 // Build the resultant type of the load 6405 const Type *type; 6406 if (bt == T_OBJECT) { 6407 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 6408 } else { 6409 type = Type::get_const_basic_type(bt); 6410 } 6411 6412 if (is_vol) { 6413 decorators |= MO_SEQ_CST; 6414 } 6415 6416 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 6417 } 6418 6419 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 6420 bool is_exact /* true */, bool is_static /* false */, 6421 ciInstanceKlass * fromKls /* NULL */) { 6422 if (fromKls == NULL) { 6423 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6424 assert(tinst != NULL, "obj is null"); 6425 assert(tinst->is_loaded(), "obj is not loaded"); 6426 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 6427 fromKls = tinst->instance_klass(); 6428 } 6429 else { 6430 assert(is_static, "only for static field access"); 6431 } 6432 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6433 ciSymbol::make(fieldTypeString), 6434 is_static); 6435 6436 assert(field != NULL, "undefined field"); 6437 assert(!field->is_volatile(), "not defined for volatile fields"); 6438 6439 if (is_static) { 6440 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6441 fromObj = makecon(tip); 6442 } 6443 6444 // Next code copied from Parse::do_get_xxx(): 6445 6446 // Compute address and memory type. 6447 int offset = field->offset_in_bytes(); 6448 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6449 6450 return adr; 6451 } 6452 6453 //------------------------------inline_aescrypt_Block----------------------- 6454 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 6455 address stubAddr = NULL; 6456 const char *stubName; 6457 assert(UseAES, "need AES instruction support"); 6458 6459 switch(id) { 6460 case vmIntrinsics::_aescrypt_encryptBlock: 6461 stubAddr = StubRoutines::aescrypt_encryptBlock(); 6462 stubName = "aescrypt_encryptBlock"; 6463 break; 6464 case vmIntrinsics::_aescrypt_decryptBlock: 6465 stubAddr = StubRoutines::aescrypt_decryptBlock(); 6466 stubName = "aescrypt_decryptBlock"; 6467 break; 6468 default: 6469 break; 6470 } 6471 if (stubAddr == NULL) return false; 6472 6473 Node* aescrypt_object = argument(0); 6474 Node* src = argument(1); 6475 Node* src_offset = argument(2); 6476 Node* dest = argument(3); 6477 Node* dest_offset = argument(4); 6478 6479 src = must_be_not_null(src, true); 6480 dest = must_be_not_null(dest, true); 6481 6482 // (1) src and dest are arrays. 6483 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6484 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6485 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6486 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6487 6488 // for the quick and dirty code we will skip all the checks. 6489 // we are just trying to get the call to be generated. 6490 Node* src_start = src; 6491 Node* dest_start = dest; 6492 if (src_offset != NULL || dest_offset != NULL) { 6493 assert(src_offset != NULL && dest_offset != NULL, ""); 6494 src_start = array_element_address(src, src_offset, T_BYTE); 6495 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6496 } 6497 6498 // now need to get the start of its expanded key array 6499 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6500 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6501 if (k_start == NULL) return false; 6502 6503 // Call the stub. 6504 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 6505 stubAddr, stubName, TypePtr::BOTTOM, 6506 src_start, dest_start, k_start); 6507 6508 return true; 6509 } 6510 6511 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 6512 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 6513 address stubAddr = NULL; 6514 const char *stubName = NULL; 6515 6516 assert(UseAES, "need AES instruction support"); 6517 6518 switch(id) { 6519 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 6520 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 6521 stubName = "cipherBlockChaining_encryptAESCrypt"; 6522 break; 6523 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 6524 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 6525 stubName = "cipherBlockChaining_decryptAESCrypt"; 6526 break; 6527 default: 6528 break; 6529 } 6530 if (stubAddr == NULL) return false; 6531 6532 Node* cipherBlockChaining_object = argument(0); 6533 Node* src = argument(1); 6534 Node* src_offset = argument(2); 6535 Node* len = argument(3); 6536 Node* dest = argument(4); 6537 Node* dest_offset = argument(5); 6538 6539 src = must_be_not_null(src, false); 6540 dest = must_be_not_null(dest, false); 6541 6542 // (1) src and dest are arrays. 6543 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6544 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6545 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6546 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6547 6548 // checks are the responsibility of the caller 6549 Node* src_start = src; 6550 Node* dest_start = dest; 6551 if (src_offset != NULL || dest_offset != NULL) { 6552 assert(src_offset != NULL && dest_offset != NULL, ""); 6553 src_start = array_element_address(src, src_offset, T_BYTE); 6554 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6555 } 6556 6557 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6558 // (because of the predicated logic executed earlier). 6559 // so we cast it here safely. 6560 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6561 6562 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6563 if (embeddedCipherObj == NULL) return false; 6564 6565 // cast it to what we know it will be at runtime 6566 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 6567 assert(tinst != NULL, "CBC obj is null"); 6568 assert(tinst->is_loaded(), "CBC obj is not loaded"); 6569 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6570 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6571 6572 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6573 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6574 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6575 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6576 aescrypt_object = _gvn.transform(aescrypt_object); 6577 6578 // we need to get the start of the aescrypt_object's expanded key array 6579 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6580 if (k_start == NULL) return false; 6581 6582 // similarly, get the start address of the r vector 6583 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 6584 if (objRvec == NULL) return false; 6585 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 6586 6587 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6588 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6589 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 6590 stubAddr, stubName, TypePtr::BOTTOM, 6591 src_start, dest_start, k_start, r_start, len); 6592 6593 // return cipher length (int) 6594 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 6595 set_result(retvalue); 6596 return true; 6597 } 6598 6599 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 6600 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 6601 address stubAddr = NULL; 6602 const char *stubName = NULL; 6603 6604 assert(UseAES, "need AES instruction support"); 6605 6606 switch (id) { 6607 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 6608 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 6609 stubName = "electronicCodeBook_encryptAESCrypt"; 6610 break; 6611 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 6612 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 6613 stubName = "electronicCodeBook_decryptAESCrypt"; 6614 break; 6615 default: 6616 break; 6617 } 6618 6619 if (stubAddr == NULL) return false; 6620 6621 Node* electronicCodeBook_object = argument(0); 6622 Node* src = argument(1); 6623 Node* src_offset = argument(2); 6624 Node* len = argument(3); 6625 Node* dest = argument(4); 6626 Node* dest_offset = argument(5); 6627 6628 // (1) src and dest are arrays. 6629 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6630 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6631 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6632 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6633 6634 // checks are the responsibility of the caller 6635 Node* src_start = src; 6636 Node* dest_start = dest; 6637 if (src_offset != NULL || dest_offset != NULL) { 6638 assert(src_offset != NULL && dest_offset != NULL, ""); 6639 src_start = array_element_address(src, src_offset, T_BYTE); 6640 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6641 } 6642 6643 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6644 // (because of the predicated logic executed earlier). 6645 // so we cast it here safely. 6646 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6647 6648 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6649 if (embeddedCipherObj == NULL) return false; 6650 6651 // cast it to what we know it will be at runtime 6652 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 6653 assert(tinst != NULL, "ECB obj is null"); 6654 assert(tinst->is_loaded(), "ECB obj is not loaded"); 6655 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6656 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6657 6658 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6659 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6660 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6661 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6662 aescrypt_object = _gvn.transform(aescrypt_object); 6663 6664 // we need to get the start of the aescrypt_object's expanded key array 6665 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6666 if (k_start == NULL) return false; 6667 6668 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6669 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 6670 OptoRuntime::electronicCodeBook_aescrypt_Type(), 6671 stubAddr, stubName, TypePtr::BOTTOM, 6672 src_start, dest_start, k_start, len); 6673 6674 // return cipher length (int) 6675 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 6676 set_result(retvalue); 6677 return true; 6678 } 6679 6680 //------------------------------inline_counterMode_AESCrypt----------------------- 6681 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 6682 assert(UseAES, "need AES instruction support"); 6683 if (!UseAESCTRIntrinsics) return false; 6684 6685 address stubAddr = NULL; 6686 const char *stubName = NULL; 6687 if (id == vmIntrinsics::_counterMode_AESCrypt) { 6688 stubAddr = StubRoutines::counterMode_AESCrypt(); 6689 stubName = "counterMode_AESCrypt"; 6690 } 6691 if (stubAddr == NULL) return false; 6692 6693 Node* counterMode_object = argument(0); 6694 Node* src = argument(1); 6695 Node* src_offset = argument(2); 6696 Node* len = argument(3); 6697 Node* dest = argument(4); 6698 Node* dest_offset = argument(5); 6699 6700 // (1) src and dest are arrays. 6701 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6702 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6703 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6704 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6705 6706 // checks are the responsibility of the caller 6707 Node* src_start = src; 6708 Node* dest_start = dest; 6709 if (src_offset != NULL || dest_offset != NULL) { 6710 assert(src_offset != NULL && dest_offset != NULL, ""); 6711 src_start = array_element_address(src, src_offset, T_BYTE); 6712 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6713 } 6714 6715 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6716 // (because of the predicated logic executed earlier). 6717 // so we cast it here safely. 6718 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6719 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6720 if (embeddedCipherObj == NULL) return false; 6721 // cast it to what we know it will be at runtime 6722 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 6723 assert(tinst != NULL, "CTR obj is null"); 6724 assert(tinst->is_loaded(), "CTR obj is not loaded"); 6725 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6726 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6727 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6728 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6729 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6730 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6731 aescrypt_object = _gvn.transform(aescrypt_object); 6732 // we need to get the start of the aescrypt_object's expanded key array 6733 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6734 if (k_start == NULL) return false; 6735 // similarly, get the start address of the r vector 6736 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 6737 if (obj_counter == NULL) return false; 6738 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 6739 6740 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 6741 if (saved_encCounter == NULL) return false; 6742 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 6743 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 6744 6745 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6746 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6747 OptoRuntime::counterMode_aescrypt_Type(), 6748 stubAddr, stubName, TypePtr::BOTTOM, 6749 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 6750 6751 // return cipher length (int) 6752 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 6753 set_result(retvalue); 6754 return true; 6755 } 6756 6757 //------------------------------get_key_start_from_aescrypt_object----------------------- 6758 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 6759 #if defined(PPC64) || defined(S390) 6760 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 6761 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 6762 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 6763 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 6764 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 6765 assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6766 if (objSessionK == NULL) { 6767 return (Node *) NULL; 6768 } 6769 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 6770 #else 6771 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 6772 #endif // PPC64 6773 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6774 if (objAESCryptKey == NULL) return (Node *) NULL; 6775 6776 // now have the array, need to get the start address of the K array 6777 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 6778 return k_start; 6779 } 6780 6781 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 6782 // Return node representing slow path of predicate check. 6783 // the pseudo code we want to emulate with this predicate is: 6784 // for encryption: 6785 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6786 // for decryption: 6787 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6788 // note cipher==plain is more conservative than the original java code but that's OK 6789 // 6790 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 6791 // The receiver was checked for NULL already. 6792 Node* objCBC = argument(0); 6793 6794 Node* src = argument(1); 6795 Node* dest = argument(4); 6796 6797 // Load embeddedCipher field of CipherBlockChaining object. 6798 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6799 6800 // get AESCrypt klass for instanceOf check 6801 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6802 // will have same classloader as CipherBlockChaining object 6803 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 6804 assert(tinst != NULL, "CBCobj is null"); 6805 assert(tinst->is_loaded(), "CBCobj is not loaded"); 6806 6807 // we want to do an instanceof comparison against the AESCrypt class 6808 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6809 if (!klass_AESCrypt->is_loaded()) { 6810 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6811 Node* ctrl = control(); 6812 set_control(top()); // no regular fast path 6813 return ctrl; 6814 } 6815 6816 src = must_be_not_null(src, true); 6817 dest = must_be_not_null(dest, true); 6818 6819 // Resolve oops to stable for CmpP below. 6820 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6821 6822 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6823 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6824 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6825 6826 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6827 6828 // for encryption, we are done 6829 if (!decrypting) 6830 return instof_false; // even if it is NULL 6831 6832 // for decryption, we need to add a further check to avoid 6833 // taking the intrinsic path when cipher and plain are the same 6834 // see the original java code for why. 6835 RegionNode* region = new RegionNode(3); 6836 region->init_req(1, instof_false); 6837 6838 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6839 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6840 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6841 region->init_req(2, src_dest_conjoint); 6842 6843 record_for_igvn(region); 6844 return _gvn.transform(region); 6845 } 6846 6847 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 6848 // Return node representing slow path of predicate check. 6849 // the pseudo code we want to emulate with this predicate is: 6850 // for encryption: 6851 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6852 // for decryption: 6853 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6854 // note cipher==plain is more conservative than the original java code but that's OK 6855 // 6856 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 6857 // The receiver was checked for NULL already. 6858 Node* objECB = argument(0); 6859 6860 // Load embeddedCipher field of ElectronicCodeBook object. 6861 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6862 6863 // get AESCrypt klass for instanceOf check 6864 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6865 // will have same classloader as ElectronicCodeBook object 6866 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 6867 assert(tinst != NULL, "ECBobj is null"); 6868 assert(tinst->is_loaded(), "ECBobj is not loaded"); 6869 6870 // we want to do an instanceof comparison against the AESCrypt class 6871 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6872 if (!klass_AESCrypt->is_loaded()) { 6873 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6874 Node* ctrl = control(); 6875 set_control(top()); // no regular fast path 6876 return ctrl; 6877 } 6878 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6879 6880 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6881 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6882 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6883 6884 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6885 6886 // for encryption, we are done 6887 if (!decrypting) 6888 return instof_false; // even if it is NULL 6889 6890 // for decryption, we need to add a further check to avoid 6891 // taking the intrinsic path when cipher and plain are the same 6892 // see the original java code for why. 6893 RegionNode* region = new RegionNode(3); 6894 region->init_req(1, instof_false); 6895 Node* src = argument(1); 6896 Node* dest = argument(4); 6897 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6898 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6899 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6900 region->init_req(2, src_dest_conjoint); 6901 6902 record_for_igvn(region); 6903 return _gvn.transform(region); 6904 } 6905 6906 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 6907 // Return node representing slow path of predicate check. 6908 // the pseudo code we want to emulate with this predicate is: 6909 // for encryption: 6910 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6911 // for decryption: 6912 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6913 // note cipher==plain is more conservative than the original java code but that's OK 6914 // 6915 6916 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 6917 // The receiver was checked for NULL already. 6918 Node* objCTR = argument(0); 6919 6920 // Load embeddedCipher field of CipherBlockChaining object. 6921 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6922 6923 // get AESCrypt klass for instanceOf check 6924 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6925 // will have same classloader as CipherBlockChaining object 6926 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 6927 assert(tinst != NULL, "CTRobj is null"); 6928 assert(tinst->is_loaded(), "CTRobj is not loaded"); 6929 6930 // we want to do an instanceof comparison against the AESCrypt class 6931 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6932 if (!klass_AESCrypt->is_loaded()) { 6933 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6934 Node* ctrl = control(); 6935 set_control(top()); // no regular fast path 6936 return ctrl; 6937 } 6938 6939 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6940 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6941 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6942 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6943 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6944 6945 return instof_false; // even if it is NULL 6946 } 6947 6948 //------------------------------inline_ghash_processBlocks 6949 bool LibraryCallKit::inline_ghash_processBlocks() { 6950 address stubAddr; 6951 const char *stubName; 6952 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 6953 6954 stubAddr = StubRoutines::ghash_processBlocks(); 6955 stubName = "ghash_processBlocks"; 6956 6957 Node* data = argument(0); 6958 Node* offset = argument(1); 6959 Node* len = argument(2); 6960 Node* state = argument(3); 6961 Node* subkeyH = argument(4); 6962 6963 state = must_be_not_null(state, true); 6964 subkeyH = must_be_not_null(subkeyH, true); 6965 data = must_be_not_null(data, true); 6966 6967 Node* state_start = array_element_address(state, intcon(0), T_LONG); 6968 assert(state_start, "state is NULL"); 6969 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 6970 assert(subkeyH_start, "subkeyH is NULL"); 6971 Node* data_start = array_element_address(data, offset, T_BYTE); 6972 assert(data_start, "data is NULL"); 6973 6974 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 6975 OptoRuntime::ghash_processBlocks_Type(), 6976 stubAddr, stubName, TypePtr::BOTTOM, 6977 state_start, subkeyH_start, data_start, len); 6978 return true; 6979 } 6980 6981 //------------------------------inline_chacha20Block 6982 bool LibraryCallKit::inline_chacha20Block() { 6983 address stubAddr; 6984 const char *stubName; 6985 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 6986 6987 stubAddr = StubRoutines::chacha20Block(); 6988 stubName = "chacha20Block"; 6989 6990 Node* state = argument(0); 6991 Node* result = argument(1); 6992 6993 state = must_be_not_null(state, true); 6994 result = must_be_not_null(result, true); 6995 6996 Node* state_start = array_element_address(state, intcon(0), T_INT); 6997 assert(state_start, "state is NULL"); 6998 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 6999 assert(result_start, "result is NULL"); 7000 7001 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7002 OptoRuntime::chacha20Block_Type(), 7003 stubAddr, stubName, TypePtr::BOTTOM, 7004 state_start, result_start); 7005 // return key stream length (int) 7006 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7007 set_result(retvalue); 7008 return true; 7009 } 7010 7011 bool LibraryCallKit::inline_base64_encodeBlock() { 7012 address stubAddr; 7013 const char *stubName; 7014 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7015 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7016 stubAddr = StubRoutines::base64_encodeBlock(); 7017 stubName = "encodeBlock"; 7018 7019 if (!stubAddr) return false; 7020 Node* base64obj = argument(0); 7021 Node* src = argument(1); 7022 Node* offset = argument(2); 7023 Node* len = argument(3); 7024 Node* dest = argument(4); 7025 Node* dp = argument(5); 7026 Node* isURL = argument(6); 7027 7028 src = must_be_not_null(src, true); 7029 dest = must_be_not_null(dest, true); 7030 7031 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7032 assert(src_start, "source array is NULL"); 7033 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7034 assert(dest_start, "destination array is NULL"); 7035 7036 Node* base64 = make_runtime_call(RC_LEAF, 7037 OptoRuntime::base64_encodeBlock_Type(), 7038 stubAddr, stubName, TypePtr::BOTTOM, 7039 src_start, offset, len, dest_start, dp, isURL); 7040 return true; 7041 } 7042 7043 bool LibraryCallKit::inline_base64_decodeBlock() { 7044 address stubAddr; 7045 const char *stubName; 7046 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7047 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7048 stubAddr = StubRoutines::base64_decodeBlock(); 7049 stubName = "decodeBlock"; 7050 7051 if (!stubAddr) return false; 7052 Node* base64obj = argument(0); 7053 Node* src = argument(1); 7054 Node* src_offset = argument(2); 7055 Node* len = argument(3); 7056 Node* dest = argument(4); 7057 Node* dest_offset = argument(5); 7058 Node* isURL = argument(6); 7059 Node* isMIME = argument(7); 7060 7061 src = must_be_not_null(src, true); 7062 dest = must_be_not_null(dest, true); 7063 7064 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7065 assert(src_start, "source array is NULL"); 7066 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7067 assert(dest_start, "destination array is NULL"); 7068 7069 Node* call = make_runtime_call(RC_LEAF, 7070 OptoRuntime::base64_decodeBlock_Type(), 7071 stubAddr, stubName, TypePtr::BOTTOM, 7072 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7073 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7074 set_result(result); 7075 return true; 7076 } 7077 7078 bool LibraryCallKit::inline_poly1305_processBlocks() { 7079 address stubAddr; 7080 const char *stubName; 7081 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7082 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7083 stubAddr = StubRoutines::poly1305_processBlocks(); 7084 stubName = "poly1305_processBlocks"; 7085 7086 if (!stubAddr) return false; 7087 null_check_receiver(); // null-check receiver 7088 if (stopped()) return true; 7089 7090 Node* input = argument(1); 7091 Node* input_offset = argument(2); 7092 Node* len = argument(3); 7093 Node* alimbs = argument(4); 7094 Node* rlimbs = argument(5); 7095 7096 input = must_be_not_null(input, true); 7097 alimbs = must_be_not_null(alimbs, true); 7098 rlimbs = must_be_not_null(rlimbs, true); 7099 7100 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7101 assert(input_start, "input array is NULL"); 7102 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7103 assert(acc_start, "acc array is NULL"); 7104 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7105 assert(r_start, "r array is NULL"); 7106 7107 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7108 OptoRuntime::poly1305_processBlocks_Type(), 7109 stubAddr, stubName, TypePtr::BOTTOM, 7110 input_start, len, acc_start, r_start); 7111 return true; 7112 } 7113 7114 //------------------------------inline_digestBase_implCompress----------------------- 7115 // 7116 // Calculate MD5 for single-block byte[] array. 7117 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7118 // 7119 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7120 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7121 // 7122 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7123 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7124 // 7125 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7126 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7127 // 7128 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7129 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7130 // 7131 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7132 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7133 7134 Node* digestBase_obj = argument(0); 7135 Node* src = argument(1); // type oop 7136 Node* ofs = argument(2); // type int 7137 7138 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7139 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7140 // failed array check 7141 return false; 7142 } 7143 // Figure out the size and type of the elements we will be copying. 7144 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7145 if (src_elem != T_BYTE) { 7146 return false; 7147 } 7148 // 'src_start' points to src array + offset 7149 src = must_be_not_null(src, true); 7150 Node* src_start = array_element_address(src, ofs, src_elem); 7151 Node* state = NULL; 7152 Node* block_size = NULL; 7153 address stubAddr; 7154 const char *stubName; 7155 7156 switch(id) { 7157 case vmIntrinsics::_md5_implCompress: 7158 assert(UseMD5Intrinsics, "need MD5 instruction support"); 7159 state = get_state_from_digest_object(digestBase_obj, T_INT); 7160 stubAddr = StubRoutines::md5_implCompress(); 7161 stubName = "md5_implCompress"; 7162 break; 7163 case vmIntrinsics::_sha_implCompress: 7164 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 7165 state = get_state_from_digest_object(digestBase_obj, T_INT); 7166 stubAddr = StubRoutines::sha1_implCompress(); 7167 stubName = "sha1_implCompress"; 7168 break; 7169 case vmIntrinsics::_sha2_implCompress: 7170 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 7171 state = get_state_from_digest_object(digestBase_obj, T_INT); 7172 stubAddr = StubRoutines::sha256_implCompress(); 7173 stubName = "sha256_implCompress"; 7174 break; 7175 case vmIntrinsics::_sha5_implCompress: 7176 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 7177 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7178 stubAddr = StubRoutines::sha512_implCompress(); 7179 stubName = "sha512_implCompress"; 7180 break; 7181 case vmIntrinsics::_sha3_implCompress: 7182 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 7183 state = get_state_from_digest_object(digestBase_obj, T_BYTE); 7184 stubAddr = StubRoutines::sha3_implCompress(); 7185 stubName = "sha3_implCompress"; 7186 block_size = get_block_size_from_digest_object(digestBase_obj); 7187 if (block_size == NULL) return false; 7188 break; 7189 default: 7190 fatal_unexpected_iid(id); 7191 return false; 7192 } 7193 if (state == NULL) return false; 7194 7195 assert(stubAddr != NULL, "Stub is generated"); 7196 if (stubAddr == NULL) return false; 7197 7198 // Call the stub. 7199 Node* call; 7200 if (block_size == NULL) { 7201 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 7202 stubAddr, stubName, TypePtr::BOTTOM, 7203 src_start, state); 7204 } else { 7205 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 7206 stubAddr, stubName, TypePtr::BOTTOM, 7207 src_start, state, block_size); 7208 } 7209 7210 return true; 7211 } 7212 7213 //------------------------------inline_digestBase_implCompressMB----------------------- 7214 // 7215 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 7216 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 7217 // 7218 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 7219 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7220 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7221 assert((uint)predicate < 5, "sanity"); 7222 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 7223 7224 Node* digestBase_obj = argument(0); // The receiver was checked for NULL already. 7225 Node* src = argument(1); // byte[] array 7226 Node* ofs = argument(2); // type int 7227 Node* limit = argument(3); // type int 7228 7229 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7230 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7231 // failed array check 7232 return false; 7233 } 7234 // Figure out the size and type of the elements we will be copying. 7235 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7236 if (src_elem != T_BYTE) { 7237 return false; 7238 } 7239 // 'src_start' points to src array + offset 7240 src = must_be_not_null(src, false); 7241 Node* src_start = array_element_address(src, ofs, src_elem); 7242 7243 const char* klass_digestBase_name = NULL; 7244 const char* stub_name = NULL; 7245 address stub_addr = NULL; 7246 BasicType elem_type = T_INT; 7247 7248 switch (predicate) { 7249 case 0: 7250 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 7251 klass_digestBase_name = "sun/security/provider/MD5"; 7252 stub_name = "md5_implCompressMB"; 7253 stub_addr = StubRoutines::md5_implCompressMB(); 7254 } 7255 break; 7256 case 1: 7257 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 7258 klass_digestBase_name = "sun/security/provider/SHA"; 7259 stub_name = "sha1_implCompressMB"; 7260 stub_addr = StubRoutines::sha1_implCompressMB(); 7261 } 7262 break; 7263 case 2: 7264 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 7265 klass_digestBase_name = "sun/security/provider/SHA2"; 7266 stub_name = "sha256_implCompressMB"; 7267 stub_addr = StubRoutines::sha256_implCompressMB(); 7268 } 7269 break; 7270 case 3: 7271 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 7272 klass_digestBase_name = "sun/security/provider/SHA5"; 7273 stub_name = "sha512_implCompressMB"; 7274 stub_addr = StubRoutines::sha512_implCompressMB(); 7275 elem_type = T_LONG; 7276 } 7277 break; 7278 case 4: 7279 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 7280 klass_digestBase_name = "sun/security/provider/SHA3"; 7281 stub_name = "sha3_implCompressMB"; 7282 stub_addr = StubRoutines::sha3_implCompressMB(); 7283 elem_type = T_BYTE; 7284 } 7285 break; 7286 default: 7287 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 7288 } 7289 if (klass_digestBase_name != NULL) { 7290 assert(stub_addr != NULL, "Stub is generated"); 7291 if (stub_addr == NULL) return false; 7292 7293 // get DigestBase klass to lookup for SHA klass 7294 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 7295 assert(tinst != NULL, "digestBase_obj is not instance???"); 7296 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7297 7298 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 7299 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 7300 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 7301 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 7302 } 7303 return false; 7304 } 7305 7306 //------------------------------inline_digestBase_implCompressMB----------------------- 7307 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 7308 BasicType elem_type, address stubAddr, const char *stubName, 7309 Node* src_start, Node* ofs, Node* limit) { 7310 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 7311 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7312 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 7313 digest_obj = _gvn.transform(digest_obj); 7314 7315 Node* state = get_state_from_digest_object(digest_obj, elem_type); 7316 if (state == NULL) return false; 7317 7318 Node* block_size = NULL; 7319 if (strcmp("sha3_implCompressMB", stubName) == 0) { 7320 block_size = get_block_size_from_digest_object(digest_obj); 7321 if (block_size == NULL) return false; 7322 } 7323 7324 // Call the stub. 7325 Node* call; 7326 if (block_size == NULL) { 7327 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7328 OptoRuntime::digestBase_implCompressMB_Type(false), 7329 stubAddr, stubName, TypePtr::BOTTOM, 7330 src_start, state, ofs, limit); 7331 } else { 7332 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7333 OptoRuntime::digestBase_implCompressMB_Type(true), 7334 stubAddr, stubName, TypePtr::BOTTOM, 7335 src_start, state, block_size, ofs, limit); 7336 } 7337 7338 // return ofs (int) 7339 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7340 set_result(result); 7341 7342 return true; 7343 } 7344 7345 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 7346 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 7347 assert(UseAES, "need AES instruction support"); 7348 address stubAddr = NULL; 7349 const char *stubName = NULL; 7350 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 7351 stubName = "galoisCounterMode_AESCrypt"; 7352 7353 if (stubAddr == NULL) return false; 7354 7355 Node* in = argument(0); 7356 Node* inOfs = argument(1); 7357 Node* len = argument(2); 7358 Node* ct = argument(3); 7359 Node* ctOfs = argument(4); 7360 Node* out = argument(5); 7361 Node* outOfs = argument(6); 7362 Node* gctr_object = argument(7); 7363 Node* ghash_object = argument(8); 7364 7365 // (1) in, ct and out are arrays. 7366 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 7367 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 7368 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 7369 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 7370 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 7371 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 7372 7373 // checks are the responsibility of the caller 7374 Node* in_start = in; 7375 Node* ct_start = ct; 7376 Node* out_start = out; 7377 if (inOfs != NULL || ctOfs != NULL || outOfs != NULL) { 7378 assert(inOfs != NULL && ctOfs != NULL && outOfs != NULL, ""); 7379 in_start = array_element_address(in, inOfs, T_BYTE); 7380 ct_start = array_element_address(ct, ctOfs, T_BYTE); 7381 out_start = array_element_address(out, outOfs, T_BYTE); 7382 } 7383 7384 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7385 // (because of the predicated logic executed earlier). 7386 // so we cast it here safely. 7387 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7388 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7389 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 7390 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 7391 Node* state = load_field_from_object(ghash_object, "state", "[J"); 7392 7393 if (embeddedCipherObj == NULL || counter == NULL || subkeyHtbl == NULL || state == NULL) { 7394 return false; 7395 } 7396 // cast it to what we know it will be at runtime 7397 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 7398 assert(tinst != NULL, "GCTR obj is null"); 7399 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7400 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7401 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7402 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7403 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7404 const TypeOopPtr* xtype = aklass->as_instance_type(); 7405 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7406 aescrypt_object = _gvn.transform(aescrypt_object); 7407 // we need to get the start of the aescrypt_object's expanded key array 7408 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7409 if (k_start == NULL) return false; 7410 // similarly, get the start address of the r vector 7411 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 7412 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7413 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 7414 7415 7416 // Call the stub, passing params 7417 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7418 OptoRuntime::galoisCounterMode_aescrypt_Type(), 7419 stubAddr, stubName, TypePtr::BOTTOM, 7420 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 7421 7422 // return cipher length (int) 7423 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 7424 set_result(retvalue); 7425 7426 return true; 7427 } 7428 7429 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 7430 // Return node representing slow path of predicate check. 7431 // the pseudo code we want to emulate with this predicate is: 7432 // for encryption: 7433 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7434 // for decryption: 7435 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7436 // note cipher==plain is more conservative than the original java code but that's OK 7437 // 7438 7439 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 7440 // The receiver was checked for NULL already. 7441 Node* objGCTR = argument(7); 7442 // Load embeddedCipher field of GCTR object. 7443 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7444 assert(embeddedCipherObj != NULL, "embeddedCipherObj is null"); 7445 7446 // get AESCrypt klass for instanceOf check 7447 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7448 // will have same classloader as CipherBlockChaining object 7449 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 7450 assert(tinst != NULL, "GCTR obj is null"); 7451 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7452 7453 // we want to do an instanceof comparison against the AESCrypt class 7454 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7455 if (!klass_AESCrypt->is_loaded()) { 7456 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7457 Node* ctrl = control(); 7458 set_control(top()); // no regular fast path 7459 return ctrl; 7460 } 7461 7462 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7463 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7464 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7465 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7466 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 7467 7468 return instof_false; // even if it is NULL 7469 } 7470 7471 //------------------------------get_state_from_digest_object----------------------- 7472 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 7473 const char* state_type; 7474 switch (elem_type) { 7475 case T_BYTE: state_type = "[B"; break; 7476 case T_INT: state_type = "[I"; break; 7477 case T_LONG: state_type = "[J"; break; 7478 default: ShouldNotReachHere(); 7479 } 7480 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 7481 assert (digest_state != NULL, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 7482 if (digest_state == NULL) return (Node *) NULL; 7483 7484 // now have the array, need to get the start address of the state array 7485 Node* state = array_element_address(digest_state, intcon(0), elem_type); 7486 return state; 7487 } 7488 7489 //------------------------------get_block_size_from_sha3_object---------------------------------- 7490 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 7491 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 7492 assert (block_size != NULL, "sanity"); 7493 return block_size; 7494 } 7495 7496 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 7497 // Return node representing slow path of predicate check. 7498 // the pseudo code we want to emulate with this predicate is: 7499 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 7500 // 7501 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 7502 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7503 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7504 assert((uint)predicate < 5, "sanity"); 7505 7506 // The receiver was checked for NULL already. 7507 Node* digestBaseObj = argument(0); 7508 7509 // get DigestBase klass for instanceOf check 7510 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 7511 assert(tinst != NULL, "digestBaseObj is null"); 7512 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7513 7514 const char* klass_name = NULL; 7515 switch (predicate) { 7516 case 0: 7517 if (UseMD5Intrinsics) { 7518 // we want to do an instanceof comparison against the MD5 class 7519 klass_name = "sun/security/provider/MD5"; 7520 } 7521 break; 7522 case 1: 7523 if (UseSHA1Intrinsics) { 7524 // we want to do an instanceof comparison against the SHA class 7525 klass_name = "sun/security/provider/SHA"; 7526 } 7527 break; 7528 case 2: 7529 if (UseSHA256Intrinsics) { 7530 // we want to do an instanceof comparison against the SHA2 class 7531 klass_name = "sun/security/provider/SHA2"; 7532 } 7533 break; 7534 case 3: 7535 if (UseSHA512Intrinsics) { 7536 // we want to do an instanceof comparison against the SHA5 class 7537 klass_name = "sun/security/provider/SHA5"; 7538 } 7539 break; 7540 case 4: 7541 if (UseSHA3Intrinsics) { 7542 // we want to do an instanceof comparison against the SHA3 class 7543 klass_name = "sun/security/provider/SHA3"; 7544 } 7545 break; 7546 default: 7547 fatal("unknown SHA intrinsic predicate: %d", predicate); 7548 } 7549 7550 ciKlass* klass = NULL; 7551 if (klass_name != NULL) { 7552 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 7553 } 7554 if ((klass == NULL) || !klass->is_loaded()) { 7555 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 7556 Node* ctrl = control(); 7557 set_control(top()); // no intrinsic path 7558 return ctrl; 7559 } 7560 ciInstanceKlass* instklass = klass->as_instance_klass(); 7561 7562 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 7563 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7564 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7565 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 7566 7567 return instof_false; // even if it is NULL 7568 } 7569 7570 //-------------inline_fma----------------------------------- 7571 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 7572 Node *a = NULL; 7573 Node *b = NULL; 7574 Node *c = NULL; 7575 Node* result = NULL; 7576 switch (id) { 7577 case vmIntrinsics::_fmaD: 7578 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 7579 // no receiver since it is static method 7580 a = round_double_node(argument(0)); 7581 b = round_double_node(argument(2)); 7582 c = round_double_node(argument(4)); 7583 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 7584 break; 7585 case vmIntrinsics::_fmaF: 7586 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 7587 a = argument(0); 7588 b = argument(1); 7589 c = argument(2); 7590 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 7591 break; 7592 default: 7593 fatal_unexpected_iid(id); break; 7594 } 7595 set_result(result); 7596 return true; 7597 } 7598 7599 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 7600 // argument(0) is receiver 7601 Node* codePoint = argument(1); 7602 Node* n = NULL; 7603 7604 switch (id) { 7605 case vmIntrinsics::_isDigit : 7606 n = new DigitNode(control(), codePoint); 7607 break; 7608 case vmIntrinsics::_isLowerCase : 7609 n = new LowerCaseNode(control(), codePoint); 7610 break; 7611 case vmIntrinsics::_isUpperCase : 7612 n = new UpperCaseNode(control(), codePoint); 7613 break; 7614 case vmIntrinsics::_isWhitespace : 7615 n = new WhitespaceNode(control(), codePoint); 7616 break; 7617 default: 7618 fatal_unexpected_iid(id); 7619 } 7620 7621 set_result(_gvn.transform(n)); 7622 return true; 7623 } 7624 7625 //------------------------------inline_fp_min_max------------------------------ 7626 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 7627 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 7628 7629 // The intrinsic should be used only when the API branches aren't predictable, 7630 // the last one performing the most important comparison. The following heuristic 7631 // uses the branch statistics to eventually bail out if necessary. 7632 7633 ciMethodData *md = callee()->method_data(); 7634 7635 if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) { 7636 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 7637 7638 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 7639 // Bail out if the call-site didn't contribute enough to the statistics. 7640 return false; 7641 } 7642 7643 uint taken = 0, not_taken = 0; 7644 7645 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 7646 if (p->is_BranchData()) { 7647 taken = ((ciBranchData*)p)->taken(); 7648 not_taken = ((ciBranchData*)p)->not_taken(); 7649 } 7650 } 7651 7652 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 7653 balance = balance < 0 ? -balance : balance; 7654 if ( balance > 0.2 ) { 7655 // Bail out if the most important branch is predictable enough. 7656 return false; 7657 } 7658 } 7659 */ 7660 7661 Node *a = NULL; 7662 Node *b = NULL; 7663 Node *n = NULL; 7664 switch (id) { 7665 case vmIntrinsics::_maxF: 7666 case vmIntrinsics::_minF: 7667 case vmIntrinsics::_maxF_strict: 7668 case vmIntrinsics::_minF_strict: 7669 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 7670 a = argument(0); 7671 b = argument(1); 7672 break; 7673 case vmIntrinsics::_maxD: 7674 case vmIntrinsics::_minD: 7675 case vmIntrinsics::_maxD_strict: 7676 case vmIntrinsics::_minD_strict: 7677 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 7678 a = round_double_node(argument(0)); 7679 b = round_double_node(argument(2)); 7680 break; 7681 default: 7682 fatal_unexpected_iid(id); 7683 break; 7684 } 7685 switch (id) { 7686 case vmIntrinsics::_maxF: 7687 case vmIntrinsics::_maxF_strict: 7688 n = new MaxFNode(a, b); 7689 break; 7690 case vmIntrinsics::_minF: 7691 case vmIntrinsics::_minF_strict: 7692 n = new MinFNode(a, b); 7693 break; 7694 case vmIntrinsics::_maxD: 7695 case vmIntrinsics::_maxD_strict: 7696 n = new MaxDNode(a, b); 7697 break; 7698 case vmIntrinsics::_minD: 7699 case vmIntrinsics::_minD_strict: 7700 n = new MinDNode(a, b); 7701 break; 7702 default: 7703 fatal_unexpected_iid(id); 7704 break; 7705 } 7706 set_result(_gvn.transform(n)); 7707 return true; 7708 } 7709 7710 bool LibraryCallKit::inline_profileBoolean() { 7711 Node* counts = argument(1); 7712 const TypeAryPtr* ary = NULL; 7713 ciArray* aobj = NULL; 7714 if (counts->is_Con() 7715 && (ary = counts->bottom_type()->isa_aryptr()) != NULL 7716 && (aobj = ary->const_oop()->as_array()) != NULL 7717 && (aobj->length() == 2)) { 7718 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 7719 jint false_cnt = aobj->element_value(0).as_int(); 7720 jint true_cnt = aobj->element_value(1).as_int(); 7721 7722 if (C->log() != NULL) { 7723 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 7724 false_cnt, true_cnt); 7725 } 7726 7727 if (false_cnt + true_cnt == 0) { 7728 // According to profile, never executed. 7729 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 7730 Deoptimization::Action_reinterpret); 7731 return true; 7732 } 7733 7734 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 7735 // is a number of each value occurrences. 7736 Node* result = argument(0); 7737 if (false_cnt == 0 || true_cnt == 0) { 7738 // According to profile, one value has been never seen. 7739 int expected_val = (false_cnt == 0) ? 1 : 0; 7740 7741 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 7742 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7743 7744 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 7745 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 7746 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 7747 7748 { // Slow path: uncommon trap for never seen value and then reexecute 7749 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 7750 // the value has been seen at least once. 7751 PreserveJVMState pjvms(this); 7752 PreserveReexecuteState preexecs(this); 7753 jvms()->set_should_reexecute(true); 7754 7755 set_control(slow_path); 7756 set_i_o(i_o()); 7757 7758 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 7759 Deoptimization::Action_reinterpret); 7760 } 7761 // The guard for never seen value enables sharpening of the result and 7762 // returning a constant. It allows to eliminate branches on the same value 7763 // later on. 7764 set_control(fast_path); 7765 result = intcon(expected_val); 7766 } 7767 // Stop profiling. 7768 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 7769 // By replacing method body with profile data (represented as ProfileBooleanNode 7770 // on IR level) we effectively disable profiling. 7771 // It enables full speed execution once optimized code is generated. 7772 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 7773 C->record_for_igvn(profile); 7774 set_result(profile); 7775 return true; 7776 } else { 7777 // Continue profiling. 7778 // Profile data isn't available at the moment. So, execute method's bytecode version. 7779 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 7780 // is compiled and counters aren't available since corresponding MethodHandle 7781 // isn't a compile-time constant. 7782 return false; 7783 } 7784 } 7785 7786 bool LibraryCallKit::inline_isCompileConstant() { 7787 Node* n = argument(0); 7788 set_result(n->is_Con() ? intcon(1) : intcon(0)); 7789 return true; 7790 } 7791 7792 //------------------------------- inline_getObjectSize -------------------------------------- 7793 // 7794 // Calculate the runtime size of the object/array. 7795 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 7796 // 7797 bool LibraryCallKit::inline_getObjectSize() { 7798 Node* obj = argument(3); 7799 Node* klass_node = load_object_klass(obj); 7800 7801 jint layout_con = Klass::_lh_neutral_value; 7802 Node* layout_val = get_layout_helper(klass_node, layout_con); 7803 int layout_is_con = (layout_val == NULL); 7804 7805 if (layout_is_con) { 7806 // Layout helper is constant, can figure out things at compile time. 7807 7808 if (Klass::layout_helper_is_instance(layout_con)) { 7809 // Instance case: layout_con contains the size itself. 7810 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 7811 set_result(size); 7812 } else { 7813 // Array case: size is round(header + element_size*arraylength). 7814 // Since arraylength is different for every array instance, we have to 7815 // compute the whole thing at runtime. 7816 7817 Node* arr_length = load_array_length(obj); 7818 7819 int round_mask = MinObjAlignmentInBytes - 1; 7820 int hsize = Klass::layout_helper_header_size(layout_con); 7821 int eshift = Klass::layout_helper_log2_element_size(layout_con); 7822 7823 if ((round_mask & ~right_n_bits(eshift)) == 0) { 7824 round_mask = 0; // strength-reduce it if it goes away completely 7825 } 7826 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 7827 Node* header_size = intcon(hsize + round_mask); 7828 7829 Node* lengthx = ConvI2X(arr_length); 7830 Node* headerx = ConvI2X(header_size); 7831 7832 Node* abody = lengthx; 7833 if (eshift != 0) { 7834 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 7835 } 7836 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 7837 if (round_mask != 0) { 7838 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 7839 } 7840 size = ConvX2L(size); 7841 set_result(size); 7842 } 7843 } else { 7844 // Layout helper is not constant, need to test for array-ness at runtime. 7845 7846 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 7847 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 7848 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 7849 record_for_igvn(result_reg); 7850 7851 Node* array_ctl = generate_array_guard(klass_node, NULL); 7852 if (array_ctl != NULL) { 7853 // Array case: size is round(header + element_size*arraylength). 7854 // Since arraylength is different for every array instance, we have to 7855 // compute the whole thing at runtime. 7856 7857 PreserveJVMState pjvms(this); 7858 set_control(array_ctl); 7859 Node* arr_length = load_array_length(obj); 7860 7861 int round_mask = MinObjAlignmentInBytes - 1; 7862 Node* mask = intcon(round_mask); 7863 7864 Node* hss = intcon(Klass::_lh_header_size_shift); 7865 Node* hsm = intcon(Klass::_lh_header_size_mask); 7866 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 7867 header_size = _gvn.transform(new AndINode(header_size, hsm)); 7868 header_size = _gvn.transform(new AddINode(header_size, mask)); 7869 7870 // There is no need to mask or shift this value. 7871 // The semantics of LShiftINode include an implicit mask to 0x1F. 7872 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 7873 Node* elem_shift = layout_val; 7874 7875 Node* lengthx = ConvI2X(arr_length); 7876 Node* headerx = ConvI2X(header_size); 7877 7878 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 7879 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 7880 if (round_mask != 0) { 7881 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 7882 } 7883 size = ConvX2L(size); 7884 7885 result_reg->init_req(_array_path, control()); 7886 result_val->init_req(_array_path, size); 7887 } 7888 7889 if (!stopped()) { 7890 // Instance case: the layout helper gives us instance size almost directly, 7891 // but we need to mask out the _lh_instance_slow_path_bit. 7892 Node* size = ConvI2X(layout_val); 7893 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 7894 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 7895 size = _gvn.transform(new AndXNode(size, mask)); 7896 size = ConvX2L(size); 7897 7898 result_reg->init_req(_instance_path, control()); 7899 result_val->init_req(_instance_path, size); 7900 } 7901 7902 set_result(result_reg, result_val); 7903 } 7904 7905 return true; 7906 } 7907 7908 //------------------------------- inline_blackhole -------------------------------------- 7909 // 7910 // Make sure all arguments to this node are alive. 7911 // This matches methods that were requested to be blackholed through compile commands. 7912 // 7913 bool LibraryCallKit::inline_blackhole() { 7914 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 7915 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 7916 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 7917 7918 // Blackhole node pinches only the control, not memory. This allows 7919 // the blackhole to be pinned in the loop that computes blackholed 7920 // values, but have no other side effects, like breaking the optimizations 7921 // across the blackhole. 7922 7923 Node* bh = _gvn.transform(new BlackholeNode(control())); 7924 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 7925 7926 // Bind call arguments as blackhole arguments to keep them alive 7927 uint nargs = callee()->arg_size(); 7928 for (uint i = 0; i < nargs; i++) { 7929 bh->add_req(argument(i)); 7930 } 7931 7932 return true; 7933 }