1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "prims/jvmtiThreadState.hpp" 55 #include "prims/unsafe.hpp" 56 #include "runtime/jniHandles.inline.hpp" 57 #include "runtime/objectMonitor.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/stubRoutines.hpp" 60 #include "utilities/macros.hpp" 61 #include "utilities/powerOfTwo.hpp" 62 63 //---------------------------make_vm_intrinsic---------------------------- 64 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 65 vmIntrinsicID id = m->intrinsic_id(); 66 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 67 68 if (!m->is_loaded()) { 69 // Do not attempt to inline unloaded methods. 70 return nullptr; 71 } 72 73 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 74 bool is_available = false; 75 76 { 77 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 78 // the compiler must transition to '_thread_in_vm' state because both 79 // methods access VM-internal data. 80 VM_ENTRY_MARK; 81 methodHandle mh(THREAD, m->get_Method()); 82 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 83 if (is_available && is_virtual) { 84 is_available = vmIntrinsics::does_virtual_dispatch(id); 85 } 86 } 87 88 if (is_available) { 89 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 90 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 91 return new LibraryIntrinsic(m, is_virtual, 92 vmIntrinsics::predicates_needed(id), 93 vmIntrinsics::does_virtual_dispatch(id), 94 id); 95 } else { 96 return nullptr; 97 } 98 } 99 100 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 101 LibraryCallKit kit(jvms, this); 102 Compile* C = kit.C; 103 int nodes = C->unique(); 104 #ifndef PRODUCT 105 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 106 char buf[1000]; 107 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 108 tty->print_cr("Intrinsic %s", str); 109 } 110 #endif 111 ciMethod* callee = kit.callee(); 112 const int bci = kit.bci(); 113 #ifdef ASSERT 114 Node* ctrl = kit.control(); 115 #endif 116 // Try to inline the intrinsic. 117 if (callee->check_intrinsic_candidate() && 118 kit.try_to_inline(_last_predicate)) { 119 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 120 : "(intrinsic)"; 121 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 122 if (C->print_intrinsics() || C->print_inlining()) { 123 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 124 } 125 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 126 if (C->log()) { 127 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 128 vmIntrinsics::name_at(intrinsic_id()), 129 (is_virtual() ? " virtual='1'" : ""), 130 C->unique() - nodes); 131 } 132 // Push the result from the inlined method onto the stack. 133 kit.push_result(); 134 C->print_inlining_update(this); 135 return kit.transfer_exceptions_into_jvms(); 136 } 137 138 // The intrinsic bailed out 139 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 140 if (jvms->has_method()) { 141 // Not a root compile. 142 const char* msg; 143 if (callee->intrinsic_candidate()) { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 145 } else { 146 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 147 : "failed to inline (intrinsic), method not annotated"; 148 } 149 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 150 if (C->print_intrinsics() || C->print_inlining()) { 151 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 152 } 153 } else { 154 // Root compile 155 ResourceMark rm; 156 stringStream msg_stream; 157 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 158 vmIntrinsics::name_at(intrinsic_id()), 159 is_virtual() ? " (virtual)" : "", bci); 160 const char *msg = msg_stream.freeze(); 161 log_debug(jit, inlining)("%s", msg); 162 if (C->print_intrinsics() || C->print_inlining()) { 163 tty->print("%s", msg); 164 } 165 } 166 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 167 C->print_inlining_update(this); 168 169 return nullptr; 170 } 171 172 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 173 LibraryCallKit kit(jvms, this); 174 Compile* C = kit.C; 175 int nodes = C->unique(); 176 _last_predicate = predicate; 177 #ifndef PRODUCT 178 assert(is_predicated() && predicate < predicates_count(), "sanity"); 179 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 180 char buf[1000]; 181 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 182 tty->print_cr("Predicate for intrinsic %s", str); 183 } 184 #endif 185 ciMethod* callee = kit.callee(); 186 const int bci = kit.bci(); 187 188 Node* slow_ctl = kit.try_to_predicate(predicate); 189 if (!kit.failing()) { 190 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 191 : "(intrinsic, predicate)"; 192 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 193 if (C->print_intrinsics() || C->print_inlining()) { 194 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 195 } 196 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 197 if (C->log()) { 198 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 199 vmIntrinsics::name_at(intrinsic_id()), 200 (is_virtual() ? " virtual='1'" : ""), 201 C->unique() - nodes); 202 } 203 return slow_ctl; // Could be null if the check folds. 204 } 205 206 // The intrinsic bailed out 207 if (jvms->has_method()) { 208 // Not a root compile. 209 const char* msg = "failed to generate predicate for intrinsic"; 210 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 211 if (C->print_intrinsics() || C->print_inlining()) { 212 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 213 } 214 } else { 215 // Root compile 216 ResourceMark rm; 217 stringStream msg_stream; 218 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 219 vmIntrinsics::name_at(intrinsic_id()), 220 is_virtual() ? " (virtual)" : "", bci); 221 const char *msg = msg_stream.freeze(); 222 log_debug(jit, inlining)("%s", msg); 223 if (C->print_intrinsics() || C->print_inlining()) { 224 C->print_inlining_stream()->print("%s", msg); 225 } 226 } 227 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 228 return nullptr; 229 } 230 231 bool LibraryCallKit::try_to_inline(int predicate) { 232 // Handle symbolic names for otherwise undistinguished boolean switches: 233 const bool is_store = true; 234 const bool is_compress = true; 235 const bool is_static = true; 236 const bool is_volatile = true; 237 238 if (!jvms()->has_method()) { 239 // Root JVMState has a null method. 240 assert(map()->memory()->Opcode() == Op_Parm, ""); 241 // Insert the memory aliasing node 242 set_all_memory(reset_memory()); 243 } 244 assert(merged_memory(), ""); 245 246 switch (intrinsic_id()) { 247 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 248 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 249 case vmIntrinsics::_getClass: return inline_native_getClass(); 250 251 case vmIntrinsics::_ceil: 252 case vmIntrinsics::_floor: 253 case vmIntrinsics::_rint: 254 case vmIntrinsics::_dsin: 255 case vmIntrinsics::_dcos: 256 case vmIntrinsics::_dtan: 257 case vmIntrinsics::_dabs: 258 case vmIntrinsics::_fabs: 259 case vmIntrinsics::_iabs: 260 case vmIntrinsics::_labs: 261 case vmIntrinsics::_datan2: 262 case vmIntrinsics::_dsqrt: 263 case vmIntrinsics::_dsqrt_strict: 264 case vmIntrinsics::_dexp: 265 case vmIntrinsics::_dlog: 266 case vmIntrinsics::_dlog10: 267 case vmIntrinsics::_dpow: 268 case vmIntrinsics::_dcopySign: 269 case vmIntrinsics::_fcopySign: 270 case vmIntrinsics::_dsignum: 271 case vmIntrinsics::_roundF: 272 case vmIntrinsics::_roundD: 273 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 274 275 case vmIntrinsics::_notify: 276 case vmIntrinsics::_notifyAll: 277 return inline_notify(intrinsic_id()); 278 279 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 280 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 281 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 282 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 283 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 284 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 285 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 286 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 287 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 288 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 289 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 290 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 291 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 292 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 293 294 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 295 296 case vmIntrinsics::_arraySort: return inline_array_sort(); 297 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 298 299 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 300 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 301 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 302 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 303 304 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 305 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 306 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 307 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 308 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 309 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 310 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 311 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 312 313 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 314 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 315 316 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 317 318 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 319 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 320 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 321 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 322 323 case vmIntrinsics::_compressStringC: 324 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 325 case vmIntrinsics::_inflateStringC: 326 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 327 328 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 329 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 330 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 331 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 332 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 333 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 334 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 335 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 336 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 337 338 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 339 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 340 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 341 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 342 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 343 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 344 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 345 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 346 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 347 348 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 349 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 350 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 351 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 352 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 353 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 354 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 355 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 356 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 357 358 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 359 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 360 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 361 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 362 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 363 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 364 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 365 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 366 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 367 368 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 369 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 370 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 371 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 372 373 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 374 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 375 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 376 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 377 378 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 379 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 380 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 381 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 382 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 383 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 384 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 385 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 386 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 387 388 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 389 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 390 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 391 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 392 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 393 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 394 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 395 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 396 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 397 398 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 399 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 400 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 401 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 402 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 403 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 404 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 405 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 406 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 407 408 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 409 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 410 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 411 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 412 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 413 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 414 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 415 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 416 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 417 418 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 419 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 420 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 421 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 422 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 423 424 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 425 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 426 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 427 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 428 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 429 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 430 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 431 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 432 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 433 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 434 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 435 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 436 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 437 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 438 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 439 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 440 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 441 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 442 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 443 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 444 445 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 446 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 447 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 448 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 449 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 450 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 451 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 452 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 453 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 454 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 455 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 456 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 457 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 458 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 459 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 460 461 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 462 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 463 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 464 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 465 466 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 467 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 468 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 469 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 470 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 471 472 case vmIntrinsics::_loadFence: 473 case vmIntrinsics::_storeFence: 474 case vmIntrinsics::_storeStoreFence: 475 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 476 477 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 478 479 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 480 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 481 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 482 483 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 484 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 485 486 #if INCLUDE_JVMTI 487 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 488 "notifyJvmtiStart", true, false); 489 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 490 "notifyJvmtiEnd", false, true); 491 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 492 "notifyJvmtiMount", false, false); 493 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 494 "notifyJvmtiUnmount", false, false); 495 case vmIntrinsics::_notifyJvmtiVThreadHideFrames: return inline_native_notify_jvmti_hide(); 496 #endif 497 498 #ifdef JFR_HAVE_INTRINSICS 499 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 500 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 501 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 502 #endif 503 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 504 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 505 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 506 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 507 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 508 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 509 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 510 case vmIntrinsics::_getLength: return inline_native_getLength(); 511 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 512 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 513 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 514 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 515 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 516 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 517 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 518 519 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 520 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 521 522 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 523 524 case vmIntrinsics::_isInstance: 525 case vmIntrinsics::_getModifiers: 526 case vmIntrinsics::_isInterface: 527 case vmIntrinsics::_isArray: 528 case vmIntrinsics::_isPrimitive: 529 case vmIntrinsics::_isHidden: 530 case vmIntrinsics::_getSuperclass: 531 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 532 533 case vmIntrinsics::_floatToRawIntBits: 534 case vmIntrinsics::_floatToIntBits: 535 case vmIntrinsics::_intBitsToFloat: 536 case vmIntrinsics::_doubleToRawLongBits: 537 case vmIntrinsics::_doubleToLongBits: 538 case vmIntrinsics::_longBitsToDouble: 539 case vmIntrinsics::_floatToFloat16: 540 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 541 542 case vmIntrinsics::_floatIsFinite: 543 case vmIntrinsics::_floatIsInfinite: 544 case vmIntrinsics::_doubleIsFinite: 545 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 546 547 case vmIntrinsics::_numberOfLeadingZeros_i: 548 case vmIntrinsics::_numberOfLeadingZeros_l: 549 case vmIntrinsics::_numberOfTrailingZeros_i: 550 case vmIntrinsics::_numberOfTrailingZeros_l: 551 case vmIntrinsics::_bitCount_i: 552 case vmIntrinsics::_bitCount_l: 553 case vmIntrinsics::_reverse_i: 554 case vmIntrinsics::_reverse_l: 555 case vmIntrinsics::_reverseBytes_i: 556 case vmIntrinsics::_reverseBytes_l: 557 case vmIntrinsics::_reverseBytes_s: 558 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 559 560 case vmIntrinsics::_compress_i: 561 case vmIntrinsics::_compress_l: 562 case vmIntrinsics::_expand_i: 563 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 564 565 case vmIntrinsics::_compareUnsigned_i: 566 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 567 568 case vmIntrinsics::_divideUnsigned_i: 569 case vmIntrinsics::_divideUnsigned_l: 570 case vmIntrinsics::_remainderUnsigned_i: 571 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 572 573 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 574 575 case vmIntrinsics::_Reference_get: return inline_reference_get(); 576 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 577 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 578 579 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 580 581 case vmIntrinsics::_aescrypt_encryptBlock: 582 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 583 584 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 585 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 586 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 587 588 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 589 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 590 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 591 592 case vmIntrinsics::_counterMode_AESCrypt: 593 return inline_counterMode_AESCrypt(intrinsic_id()); 594 595 case vmIntrinsics::_galoisCounterMode_AESCrypt: 596 return inline_galoisCounterMode_AESCrypt(); 597 598 case vmIntrinsics::_md5_implCompress: 599 case vmIntrinsics::_sha_implCompress: 600 case vmIntrinsics::_sha2_implCompress: 601 case vmIntrinsics::_sha5_implCompress: 602 case vmIntrinsics::_sha3_implCompress: 603 return inline_digestBase_implCompress(intrinsic_id()); 604 605 case vmIntrinsics::_digestBase_implCompressMB: 606 return inline_digestBase_implCompressMB(predicate); 607 608 case vmIntrinsics::_multiplyToLen: 609 return inline_multiplyToLen(); 610 611 case vmIntrinsics::_squareToLen: 612 return inline_squareToLen(); 613 614 case vmIntrinsics::_mulAdd: 615 return inline_mulAdd(); 616 617 case vmIntrinsics::_montgomeryMultiply: 618 return inline_montgomeryMultiply(); 619 case vmIntrinsics::_montgomerySquare: 620 return inline_montgomerySquare(); 621 622 case vmIntrinsics::_bigIntegerRightShiftWorker: 623 return inline_bigIntegerShift(true); 624 case vmIntrinsics::_bigIntegerLeftShiftWorker: 625 return inline_bigIntegerShift(false); 626 627 case vmIntrinsics::_vectorizedMismatch: 628 return inline_vectorizedMismatch(); 629 630 case vmIntrinsics::_ghash_processBlocks: 631 return inline_ghash_processBlocks(); 632 case vmIntrinsics::_chacha20Block: 633 return inline_chacha20Block(); 634 case vmIntrinsics::_base64_encodeBlock: 635 return inline_base64_encodeBlock(); 636 case vmIntrinsics::_base64_decodeBlock: 637 return inline_base64_decodeBlock(); 638 case vmIntrinsics::_poly1305_processBlocks: 639 return inline_poly1305_processBlocks(); 640 641 case vmIntrinsics::_encodeISOArray: 642 case vmIntrinsics::_encodeByteISOArray: 643 return inline_encodeISOArray(false); 644 case vmIntrinsics::_encodeAsciiArray: 645 return inline_encodeISOArray(true); 646 647 case vmIntrinsics::_updateCRC32: 648 return inline_updateCRC32(); 649 case vmIntrinsics::_updateBytesCRC32: 650 return inline_updateBytesCRC32(); 651 case vmIntrinsics::_updateByteBufferCRC32: 652 return inline_updateByteBufferCRC32(); 653 654 case vmIntrinsics::_updateBytesCRC32C: 655 return inline_updateBytesCRC32C(); 656 case vmIntrinsics::_updateDirectByteBufferCRC32C: 657 return inline_updateDirectByteBufferCRC32C(); 658 659 case vmIntrinsics::_updateBytesAdler32: 660 return inline_updateBytesAdler32(); 661 case vmIntrinsics::_updateByteBufferAdler32: 662 return inline_updateByteBufferAdler32(); 663 664 case vmIntrinsics::_profileBoolean: 665 return inline_profileBoolean(); 666 case vmIntrinsics::_isCompileConstant: 667 return inline_isCompileConstant(); 668 669 case vmIntrinsics::_countPositives: 670 return inline_countPositives(); 671 672 case vmIntrinsics::_fmaD: 673 case vmIntrinsics::_fmaF: 674 return inline_fma(intrinsic_id()); 675 676 case vmIntrinsics::_isDigit: 677 case vmIntrinsics::_isLowerCase: 678 case vmIntrinsics::_isUpperCase: 679 case vmIntrinsics::_isWhitespace: 680 return inline_character_compare(intrinsic_id()); 681 682 case vmIntrinsics::_min: 683 case vmIntrinsics::_max: 684 case vmIntrinsics::_min_strict: 685 case vmIntrinsics::_max_strict: 686 return inline_min_max(intrinsic_id()); 687 688 case vmIntrinsics::_maxF: 689 case vmIntrinsics::_minF: 690 case vmIntrinsics::_maxD: 691 case vmIntrinsics::_minD: 692 case vmIntrinsics::_maxF_strict: 693 case vmIntrinsics::_minF_strict: 694 case vmIntrinsics::_maxD_strict: 695 case vmIntrinsics::_minD_strict: 696 return inline_fp_min_max(intrinsic_id()); 697 698 case vmIntrinsics::_VectorUnaryOp: 699 return inline_vector_nary_operation(1); 700 case vmIntrinsics::_VectorBinaryOp: 701 return inline_vector_nary_operation(2); 702 case vmIntrinsics::_VectorTernaryOp: 703 return inline_vector_nary_operation(3); 704 case vmIntrinsics::_VectorFromBitsCoerced: 705 return inline_vector_frombits_coerced(); 706 case vmIntrinsics::_VectorShuffleIota: 707 return inline_vector_shuffle_iota(); 708 case vmIntrinsics::_VectorMaskOp: 709 return inline_vector_mask_operation(); 710 case vmIntrinsics::_VectorShuffleToVector: 711 return inline_vector_shuffle_to_vector(); 712 case vmIntrinsics::_VectorLoadOp: 713 return inline_vector_mem_operation(/*is_store=*/false); 714 case vmIntrinsics::_VectorLoadMaskedOp: 715 return inline_vector_mem_masked_operation(/*is_store*/false); 716 case vmIntrinsics::_VectorStoreOp: 717 return inline_vector_mem_operation(/*is_store=*/true); 718 case vmIntrinsics::_VectorStoreMaskedOp: 719 return inline_vector_mem_masked_operation(/*is_store=*/true); 720 case vmIntrinsics::_VectorGatherOp: 721 return inline_vector_gather_scatter(/*is_scatter*/ false); 722 case vmIntrinsics::_VectorScatterOp: 723 return inline_vector_gather_scatter(/*is_scatter*/ true); 724 case vmIntrinsics::_VectorReductionCoerced: 725 return inline_vector_reduction(); 726 case vmIntrinsics::_VectorTest: 727 return inline_vector_test(); 728 case vmIntrinsics::_VectorBlend: 729 return inline_vector_blend(); 730 case vmIntrinsics::_VectorRearrange: 731 return inline_vector_rearrange(); 732 case vmIntrinsics::_VectorCompare: 733 return inline_vector_compare(); 734 case vmIntrinsics::_VectorBroadcastInt: 735 return inline_vector_broadcast_int(); 736 case vmIntrinsics::_VectorConvert: 737 return inline_vector_convert(); 738 case vmIntrinsics::_VectorInsert: 739 return inline_vector_insert(); 740 case vmIntrinsics::_VectorExtract: 741 return inline_vector_extract(); 742 case vmIntrinsics::_VectorCompressExpand: 743 return inline_vector_compress_expand(); 744 case vmIntrinsics::_IndexVector: 745 return inline_index_vector(); 746 case vmIntrinsics::_IndexPartiallyInUpperRange: 747 return inline_index_partially_in_upper_range(); 748 749 case vmIntrinsics::_getObjectSize: 750 return inline_getObjectSize(); 751 752 case vmIntrinsics::_blackhole: 753 return inline_blackhole(); 754 755 case vmIntrinsics::_shipilev_magic_timestamp: 756 return inline_timestamp(false); 757 case vmIntrinsics::_shipilev_magic_timestamp_serial: 758 return inline_timestamp(true); 759 case vmIntrinsics::_shipilev_magic_sizeOf: 760 return inline_sizeOf(); 761 case vmIntrinsics::_shipilev_magic_addressOf: 762 return inline_addressOf(); 763 764 default: 765 // If you get here, it may be that someone has added a new intrinsic 766 // to the list in vmIntrinsics.hpp without implementing it here. 767 #ifndef PRODUCT 768 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 769 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 770 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 771 } 772 #endif 773 return false; 774 } 775 } 776 777 Node* LibraryCallKit::try_to_predicate(int predicate) { 778 if (!jvms()->has_method()) { 779 // Root JVMState has a null method. 780 assert(map()->memory()->Opcode() == Op_Parm, ""); 781 // Insert the memory aliasing node 782 set_all_memory(reset_memory()); 783 } 784 assert(merged_memory(), ""); 785 786 switch (intrinsic_id()) { 787 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 788 return inline_cipherBlockChaining_AESCrypt_predicate(false); 789 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 790 return inline_cipherBlockChaining_AESCrypt_predicate(true); 791 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 792 return inline_electronicCodeBook_AESCrypt_predicate(false); 793 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 794 return inline_electronicCodeBook_AESCrypt_predicate(true); 795 case vmIntrinsics::_counterMode_AESCrypt: 796 return inline_counterMode_AESCrypt_predicate(); 797 case vmIntrinsics::_digestBase_implCompressMB: 798 return inline_digestBase_implCompressMB_predicate(predicate); 799 case vmIntrinsics::_galoisCounterMode_AESCrypt: 800 return inline_galoisCounterMode_AESCrypt_predicate(); 801 802 default: 803 // If you get here, it may be that someone has added a new intrinsic 804 // to the list in vmIntrinsics.hpp without implementing it here. 805 #ifndef PRODUCT 806 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 807 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 808 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 809 } 810 #endif 811 Node* slow_ctl = control(); 812 set_control(top()); // No fast path intrinsic 813 return slow_ctl; 814 } 815 } 816 817 //------------------------------set_result------------------------------- 818 // Helper function for finishing intrinsics. 819 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 820 record_for_igvn(region); 821 set_control(_gvn.transform(region)); 822 set_result( _gvn.transform(value)); 823 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 824 } 825 826 //------------------------------generate_guard--------------------------- 827 // Helper function for generating guarded fast-slow graph structures. 828 // The given 'test', if true, guards a slow path. If the test fails 829 // then a fast path can be taken. (We generally hope it fails.) 830 // In all cases, GraphKit::control() is updated to the fast path. 831 // The returned value represents the control for the slow path. 832 // The return value is never 'top'; it is either a valid control 833 // or null if it is obvious that the slow path can never be taken. 834 // Also, if region and the slow control are not null, the slow edge 835 // is appended to the region. 836 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 837 if (stopped()) { 838 // Already short circuited. 839 return nullptr; 840 } 841 842 // Build an if node and its projections. 843 // If test is true we take the slow path, which we assume is uncommon. 844 if (_gvn.type(test) == TypeInt::ZERO) { 845 // The slow branch is never taken. No need to build this guard. 846 return nullptr; 847 } 848 849 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 850 851 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 852 if (if_slow == top()) { 853 // The slow branch is never taken. No need to build this guard. 854 return nullptr; 855 } 856 857 if (region != nullptr) 858 region->add_req(if_slow); 859 860 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 861 set_control(if_fast); 862 863 return if_slow; 864 } 865 866 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 867 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 868 } 869 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 870 return generate_guard(test, region, PROB_FAIR); 871 } 872 873 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 874 Node* *pos_index) { 875 if (stopped()) 876 return nullptr; // already stopped 877 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 878 return nullptr; // index is already adequately typed 879 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 880 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 881 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 882 if (is_neg != nullptr && pos_index != nullptr) { 883 // Emulate effect of Parse::adjust_map_after_if. 884 Node* ccast = new CastIINode(index, TypeInt::POS); 885 ccast->set_req(0, control()); 886 (*pos_index) = _gvn.transform(ccast); 887 } 888 return is_neg; 889 } 890 891 // Make sure that 'position' is a valid limit index, in [0..length]. 892 // There are two equivalent plans for checking this: 893 // A. (offset + copyLength) unsigned<= arrayLength 894 // B. offset <= (arrayLength - copyLength) 895 // We require that all of the values above, except for the sum and 896 // difference, are already known to be non-negative. 897 // Plan A is robust in the face of overflow, if offset and copyLength 898 // are both hugely positive. 899 // 900 // Plan B is less direct and intuitive, but it does not overflow at 901 // all, since the difference of two non-negatives is always 902 // representable. Whenever Java methods must perform the equivalent 903 // check they generally use Plan B instead of Plan A. 904 // For the moment we use Plan A. 905 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 906 Node* subseq_length, 907 Node* array_length, 908 RegionNode* region) { 909 if (stopped()) 910 return nullptr; // already stopped 911 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 912 if (zero_offset && subseq_length->eqv_uncast(array_length)) 913 return nullptr; // common case of whole-array copy 914 Node* last = subseq_length; 915 if (!zero_offset) // last += offset 916 last = _gvn.transform(new AddINode(last, offset)); 917 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 918 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 919 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 920 return is_over; 921 } 922 923 // Emit range checks for the given String.value byte array 924 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 925 if (stopped()) { 926 return; // already stopped 927 } 928 RegionNode* bailout = new RegionNode(1); 929 record_for_igvn(bailout); 930 if (char_count) { 931 // Convert char count to byte count 932 count = _gvn.transform(new LShiftINode(count, intcon(1))); 933 } 934 935 // Offset and count must not be negative 936 generate_negative_guard(offset, bailout); 937 generate_negative_guard(count, bailout); 938 // Offset + count must not exceed length of array 939 generate_limit_guard(offset, count, load_array_length(array), bailout); 940 941 if (bailout->req() > 1) { 942 PreserveJVMState pjvms(this); 943 set_control(_gvn.transform(bailout)); 944 uncommon_trap(Deoptimization::Reason_intrinsic, 945 Deoptimization::Action_maybe_recompile); 946 } 947 } 948 949 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 950 bool is_immutable) { 951 ciKlass* thread_klass = env()->Thread_klass(); 952 const Type* thread_type 953 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 954 955 Node* thread = _gvn.transform(new ThreadLocalNode()); 956 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 957 tls_output = thread; 958 959 Node* thread_obj_handle 960 = (is_immutable 961 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 962 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 963 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 964 thread_obj_handle = _gvn.transform(thread_obj_handle); 965 966 DecoratorSet decorators = IN_NATIVE; 967 if (is_immutable) { 968 decorators |= C2_IMMUTABLE_MEMORY; 969 } 970 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 971 } 972 973 //--------------------------generate_current_thread-------------------- 974 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 975 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 976 /*is_immutable*/false); 977 } 978 979 //--------------------------generate_virtual_thread-------------------- 980 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 981 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 982 !C->method()->changes_current_thread()); 983 } 984 985 //------------------------------make_string_method_node------------------------ 986 // Helper method for String intrinsic functions. This version is called with 987 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 988 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 989 // containing the lengths of str1 and str2. 990 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 991 Node* result = nullptr; 992 switch (opcode) { 993 case Op_StrIndexOf: 994 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 995 str1_start, cnt1, str2_start, cnt2, ae); 996 break; 997 case Op_StrComp: 998 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 999 str1_start, cnt1, str2_start, cnt2, ae); 1000 break; 1001 case Op_StrEquals: 1002 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1003 // Use the constant length if there is one because optimized match rule may exist. 1004 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1005 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1006 break; 1007 default: 1008 ShouldNotReachHere(); 1009 return nullptr; 1010 } 1011 1012 // All these intrinsics have checks. 1013 C->set_has_split_ifs(true); // Has chance for split-if optimization 1014 clear_upper_avx(); 1015 1016 return _gvn.transform(result); 1017 } 1018 1019 //------------------------------inline_string_compareTo------------------------ 1020 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1021 Node* arg1 = argument(0); 1022 Node* arg2 = argument(1); 1023 1024 arg1 = must_be_not_null(arg1, true); 1025 arg2 = must_be_not_null(arg2, true); 1026 1027 // Get start addr and length of first argument 1028 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1029 Node* arg1_cnt = load_array_length(arg1); 1030 1031 // Get start addr and length of second argument 1032 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1033 Node* arg2_cnt = load_array_length(arg2); 1034 1035 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1036 set_result(result); 1037 return true; 1038 } 1039 1040 //------------------------------inline_string_equals------------------------ 1041 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1042 Node* arg1 = argument(0); 1043 Node* arg2 = argument(1); 1044 1045 // paths (plus control) merge 1046 RegionNode* region = new RegionNode(3); 1047 Node* phi = new PhiNode(region, TypeInt::BOOL); 1048 1049 if (!stopped()) { 1050 1051 arg1 = must_be_not_null(arg1, true); 1052 arg2 = must_be_not_null(arg2, true); 1053 1054 // Get start addr and length of first argument 1055 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1056 Node* arg1_cnt = load_array_length(arg1); 1057 1058 // Get start addr and length of second argument 1059 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1060 Node* arg2_cnt = load_array_length(arg2); 1061 1062 // Check for arg1_cnt != arg2_cnt 1063 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1064 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1065 Node* if_ne = generate_slow_guard(bol, nullptr); 1066 if (if_ne != nullptr) { 1067 phi->init_req(2, intcon(0)); 1068 region->init_req(2, if_ne); 1069 } 1070 1071 // Check for count == 0 is done by assembler code for StrEquals. 1072 1073 if (!stopped()) { 1074 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1075 phi->init_req(1, equals); 1076 region->init_req(1, control()); 1077 } 1078 } 1079 1080 // post merge 1081 set_control(_gvn.transform(region)); 1082 record_for_igvn(region); 1083 1084 set_result(_gvn.transform(phi)); 1085 return true; 1086 } 1087 1088 //------------------------------inline_array_equals---------------------------- 1089 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1090 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1091 Node* arg1 = argument(0); 1092 Node* arg2 = argument(1); 1093 1094 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1095 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1096 clear_upper_avx(); 1097 1098 return true; 1099 } 1100 1101 1102 //------------------------------inline_countPositives------------------------------ 1103 bool LibraryCallKit::inline_countPositives() { 1104 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1105 return false; 1106 } 1107 1108 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1109 // no receiver since it is static method 1110 Node* ba = argument(0); 1111 Node* offset = argument(1); 1112 Node* len = argument(2); 1113 1114 ba = must_be_not_null(ba, true); 1115 1116 // Range checks 1117 generate_string_range_check(ba, offset, len, false); 1118 if (stopped()) { 1119 return true; 1120 } 1121 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1122 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1123 set_result(_gvn.transform(result)); 1124 clear_upper_avx(); 1125 return true; 1126 } 1127 1128 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1129 Node* index = argument(0); 1130 Node* length = bt == T_INT ? argument(1) : argument(2); 1131 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1132 return false; 1133 } 1134 1135 // check that length is positive 1136 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1137 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1138 1139 { 1140 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1141 uncommon_trap(Deoptimization::Reason_intrinsic, 1142 Deoptimization::Action_make_not_entrant); 1143 } 1144 1145 if (stopped()) { 1146 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1147 return true; 1148 } 1149 1150 // length is now known positive, add a cast node to make this explicit 1151 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1152 Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1153 casted_length = _gvn.transform(casted_length); 1154 replace_in_map(length, casted_length); 1155 length = casted_length; 1156 1157 // Use an unsigned comparison for the range check itself 1158 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1159 BoolTest::mask btest = BoolTest::lt; 1160 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1161 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1162 _gvn.set_type(rc, rc->Value(&_gvn)); 1163 if (!rc_bool->is_Con()) { 1164 record_for_igvn(rc); 1165 } 1166 set_control(_gvn.transform(new IfTrueNode(rc))); 1167 { 1168 PreserveJVMState pjvms(this); 1169 set_control(_gvn.transform(new IfFalseNode(rc))); 1170 uncommon_trap(Deoptimization::Reason_range_check, 1171 Deoptimization::Action_make_not_entrant); 1172 } 1173 1174 if (stopped()) { 1175 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1176 return true; 1177 } 1178 1179 // index is now known to be >= 0 and < length, cast it 1180 Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1181 result = _gvn.transform(result); 1182 set_result(result); 1183 replace_in_map(index, result); 1184 return true; 1185 } 1186 1187 //------------------------------inline_string_indexOf------------------------ 1188 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1189 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1190 return false; 1191 } 1192 Node* src = argument(0); 1193 Node* tgt = argument(1); 1194 1195 // Make the merge point 1196 RegionNode* result_rgn = new RegionNode(4); 1197 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1198 1199 src = must_be_not_null(src, true); 1200 tgt = must_be_not_null(tgt, true); 1201 1202 // Get start addr and length of source string 1203 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1204 Node* src_count = load_array_length(src); 1205 1206 // Get start addr and length of substring 1207 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1208 Node* tgt_count = load_array_length(tgt); 1209 1210 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1211 // Divide src size by 2 if String is UTF16 encoded 1212 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1213 } 1214 if (ae == StrIntrinsicNode::UU) { 1215 // Divide substring size by 2 if String is UTF16 encoded 1216 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1217 } 1218 1219 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1220 if (result != nullptr) { 1221 result_phi->init_req(3, result); 1222 result_rgn->init_req(3, control()); 1223 } 1224 set_control(_gvn.transform(result_rgn)); 1225 record_for_igvn(result_rgn); 1226 set_result(_gvn.transform(result_phi)); 1227 1228 return true; 1229 } 1230 1231 //-----------------------------inline_string_indexOf----------------------- 1232 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1233 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1234 return false; 1235 } 1236 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1237 return false; 1238 } 1239 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1240 Node* src = argument(0); // byte[] 1241 Node* src_count = argument(1); // char count 1242 Node* tgt = argument(2); // byte[] 1243 Node* tgt_count = argument(3); // char count 1244 Node* from_index = argument(4); // char index 1245 1246 src = must_be_not_null(src, true); 1247 tgt = must_be_not_null(tgt, true); 1248 1249 // Multiply byte array index by 2 if String is UTF16 encoded 1250 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1251 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1252 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1253 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1254 1255 // Range checks 1256 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1257 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1258 if (stopped()) { 1259 return true; 1260 } 1261 1262 RegionNode* region = new RegionNode(5); 1263 Node* phi = new PhiNode(region, TypeInt::INT); 1264 1265 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1266 if (result != nullptr) { 1267 // The result is index relative to from_index if substring was found, -1 otherwise. 1268 // Generate code which will fold into cmove. 1269 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1270 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1271 1272 Node* if_lt = generate_slow_guard(bol, nullptr); 1273 if (if_lt != nullptr) { 1274 // result == -1 1275 phi->init_req(3, result); 1276 region->init_req(3, if_lt); 1277 } 1278 if (!stopped()) { 1279 result = _gvn.transform(new AddINode(result, from_index)); 1280 phi->init_req(4, result); 1281 region->init_req(4, control()); 1282 } 1283 } 1284 1285 set_control(_gvn.transform(region)); 1286 record_for_igvn(region); 1287 set_result(_gvn.transform(phi)); 1288 clear_upper_avx(); 1289 1290 return true; 1291 } 1292 1293 // Create StrIndexOfNode with fast path checks 1294 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1295 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1296 // Check for substr count > string count 1297 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1298 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1299 Node* if_gt = generate_slow_guard(bol, nullptr); 1300 if (if_gt != nullptr) { 1301 phi->init_req(1, intcon(-1)); 1302 region->init_req(1, if_gt); 1303 } 1304 if (!stopped()) { 1305 // Check for substr count == 0 1306 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1307 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1308 Node* if_zero = generate_slow_guard(bol, nullptr); 1309 if (if_zero != nullptr) { 1310 phi->init_req(2, intcon(0)); 1311 region->init_req(2, if_zero); 1312 } 1313 } 1314 if (!stopped()) { 1315 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1316 } 1317 return nullptr; 1318 } 1319 1320 //-----------------------------inline_string_indexOfChar----------------------- 1321 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1322 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1323 return false; 1324 } 1325 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1326 return false; 1327 } 1328 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1329 Node* src = argument(0); // byte[] 1330 Node* int_ch = argument(1); 1331 Node* from_index = argument(2); 1332 Node* max = argument(3); 1333 1334 src = must_be_not_null(src, true); 1335 1336 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1337 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1338 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1339 1340 // Range checks 1341 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1342 1343 // Check for int_ch >= 0 1344 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1345 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1346 { 1347 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1348 uncommon_trap(Deoptimization::Reason_intrinsic, 1349 Deoptimization::Action_maybe_recompile); 1350 } 1351 if (stopped()) { 1352 return true; 1353 } 1354 1355 RegionNode* region = new RegionNode(3); 1356 Node* phi = new PhiNode(region, TypeInt::INT); 1357 1358 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1359 C->set_has_split_ifs(true); // Has chance for split-if optimization 1360 _gvn.transform(result); 1361 1362 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1363 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1364 1365 Node* if_lt = generate_slow_guard(bol, nullptr); 1366 if (if_lt != nullptr) { 1367 // result == -1 1368 phi->init_req(2, result); 1369 region->init_req(2, if_lt); 1370 } 1371 if (!stopped()) { 1372 result = _gvn.transform(new AddINode(result, from_index)); 1373 phi->init_req(1, result); 1374 region->init_req(1, control()); 1375 } 1376 set_control(_gvn.transform(region)); 1377 record_for_igvn(region); 1378 set_result(_gvn.transform(phi)); 1379 clear_upper_avx(); 1380 1381 return true; 1382 } 1383 //---------------------------inline_string_copy--------------------- 1384 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1385 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1386 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1387 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1388 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1389 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1390 bool LibraryCallKit::inline_string_copy(bool compress) { 1391 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1392 return false; 1393 } 1394 int nargs = 5; // 2 oops, 3 ints 1395 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1396 1397 Node* src = argument(0); 1398 Node* src_offset = argument(1); 1399 Node* dst = argument(2); 1400 Node* dst_offset = argument(3); 1401 Node* length = argument(4); 1402 1403 // Check for allocation before we add nodes that would confuse 1404 // tightly_coupled_allocation() 1405 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1406 1407 // Figure out the size and type of the elements we will be copying. 1408 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1409 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1410 if (src_type == nullptr || dst_type == nullptr) { 1411 return false; 1412 } 1413 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1414 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1415 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1416 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1417 "Unsupported array types for inline_string_copy"); 1418 1419 src = must_be_not_null(src, true); 1420 dst = must_be_not_null(dst, true); 1421 1422 // Convert char[] offsets to byte[] offsets 1423 bool convert_src = (compress && src_elem == T_BYTE); 1424 bool convert_dst = (!compress && dst_elem == T_BYTE); 1425 if (convert_src) { 1426 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1427 } else if (convert_dst) { 1428 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1429 } 1430 1431 // Range checks 1432 generate_string_range_check(src, src_offset, length, convert_src); 1433 generate_string_range_check(dst, dst_offset, length, convert_dst); 1434 if (stopped()) { 1435 return true; 1436 } 1437 1438 Node* src_start = array_element_address(src, src_offset, src_elem); 1439 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1440 // 'src_start' points to src array + scaled offset 1441 // 'dst_start' points to dst array + scaled offset 1442 Node* count = nullptr; 1443 if (compress) { 1444 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1445 } else { 1446 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1447 } 1448 1449 if (alloc != nullptr) { 1450 if (alloc->maybe_set_complete(&_gvn)) { 1451 // "You break it, you buy it." 1452 InitializeNode* init = alloc->initialization(); 1453 assert(init->is_complete(), "we just did this"); 1454 init->set_complete_with_arraycopy(); 1455 assert(dst->is_CheckCastPP(), "sanity"); 1456 assert(dst->in(0)->in(0) == init, "dest pinned"); 1457 } 1458 // Do not let stores that initialize this object be reordered with 1459 // a subsequent store that would make this object accessible by 1460 // other threads. 1461 // Record what AllocateNode this StoreStore protects so that 1462 // escape analysis can go from the MemBarStoreStoreNode to the 1463 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1464 // based on the escape status of the AllocateNode. 1465 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1466 } 1467 if (compress) { 1468 set_result(_gvn.transform(count)); 1469 } 1470 clear_upper_avx(); 1471 1472 return true; 1473 } 1474 1475 #ifdef _LP64 1476 #define XTOP ,top() /*additional argument*/ 1477 #else //_LP64 1478 #define XTOP /*no additional argument*/ 1479 #endif //_LP64 1480 1481 //------------------------inline_string_toBytesU-------------------------- 1482 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1483 bool LibraryCallKit::inline_string_toBytesU() { 1484 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1485 return false; 1486 } 1487 // Get the arguments. 1488 Node* value = argument(0); 1489 Node* offset = argument(1); 1490 Node* length = argument(2); 1491 1492 Node* newcopy = nullptr; 1493 1494 // Set the original stack and the reexecute bit for the interpreter to reexecute 1495 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1496 { PreserveReexecuteState preexecs(this); 1497 jvms()->set_should_reexecute(true); 1498 1499 // Check if a null path was taken unconditionally. 1500 value = null_check(value); 1501 1502 RegionNode* bailout = new RegionNode(1); 1503 record_for_igvn(bailout); 1504 1505 // Range checks 1506 generate_negative_guard(offset, bailout); 1507 generate_negative_guard(length, bailout); 1508 generate_limit_guard(offset, length, load_array_length(value), bailout); 1509 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1510 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1511 1512 if (bailout->req() > 1) { 1513 PreserveJVMState pjvms(this); 1514 set_control(_gvn.transform(bailout)); 1515 uncommon_trap(Deoptimization::Reason_intrinsic, 1516 Deoptimization::Action_maybe_recompile); 1517 } 1518 if (stopped()) { 1519 return true; 1520 } 1521 1522 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1523 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1524 newcopy = new_array(klass_node, size, 0); // no arguments to push 1525 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1526 guarantee(alloc != nullptr, "created above"); 1527 1528 // Calculate starting addresses. 1529 Node* src_start = array_element_address(value, offset, T_CHAR); 1530 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1531 1532 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1533 const TypeInt* toffset = gvn().type(offset)->is_int(); 1534 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1535 1536 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1537 const char* copyfunc_name = "arraycopy"; 1538 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1539 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1540 OptoRuntime::fast_arraycopy_Type(), 1541 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1542 src_start, dst_start, ConvI2X(length) XTOP); 1543 // Do not let reads from the cloned object float above the arraycopy. 1544 if (alloc->maybe_set_complete(&_gvn)) { 1545 // "You break it, you buy it." 1546 InitializeNode* init = alloc->initialization(); 1547 assert(init->is_complete(), "we just did this"); 1548 init->set_complete_with_arraycopy(); 1549 assert(newcopy->is_CheckCastPP(), "sanity"); 1550 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1551 } 1552 // Do not let stores that initialize this object be reordered with 1553 // a subsequent store that would make this object accessible by 1554 // other threads. 1555 // Record what AllocateNode this StoreStore protects so that 1556 // escape analysis can go from the MemBarStoreStoreNode to the 1557 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1558 // based on the escape status of the AllocateNode. 1559 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1560 } // original reexecute is set back here 1561 1562 C->set_has_split_ifs(true); // Has chance for split-if optimization 1563 if (!stopped()) { 1564 set_result(newcopy); 1565 } 1566 clear_upper_avx(); 1567 1568 return true; 1569 } 1570 1571 //------------------------inline_string_getCharsU-------------------------- 1572 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1573 bool LibraryCallKit::inline_string_getCharsU() { 1574 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1575 return false; 1576 } 1577 1578 // Get the arguments. 1579 Node* src = argument(0); 1580 Node* src_begin = argument(1); 1581 Node* src_end = argument(2); // exclusive offset (i < src_end) 1582 Node* dst = argument(3); 1583 Node* dst_begin = argument(4); 1584 1585 // Check for allocation before we add nodes that would confuse 1586 // tightly_coupled_allocation() 1587 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1588 1589 // Check if a null path was taken unconditionally. 1590 src = null_check(src); 1591 dst = null_check(dst); 1592 if (stopped()) { 1593 return true; 1594 } 1595 1596 // Get length and convert char[] offset to byte[] offset 1597 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1598 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1599 1600 // Range checks 1601 generate_string_range_check(src, src_begin, length, true); 1602 generate_string_range_check(dst, dst_begin, length, false); 1603 if (stopped()) { 1604 return true; 1605 } 1606 1607 if (!stopped()) { 1608 // Calculate starting addresses. 1609 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1610 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1611 1612 // Check if array addresses are aligned to HeapWordSize 1613 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1614 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1615 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1616 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1617 1618 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1619 const char* copyfunc_name = "arraycopy"; 1620 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1621 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1622 OptoRuntime::fast_arraycopy_Type(), 1623 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1624 src_start, dst_start, ConvI2X(length) XTOP); 1625 // Do not let reads from the cloned object float above the arraycopy. 1626 if (alloc != nullptr) { 1627 if (alloc->maybe_set_complete(&_gvn)) { 1628 // "You break it, you buy it." 1629 InitializeNode* init = alloc->initialization(); 1630 assert(init->is_complete(), "we just did this"); 1631 init->set_complete_with_arraycopy(); 1632 assert(dst->is_CheckCastPP(), "sanity"); 1633 assert(dst->in(0)->in(0) == init, "dest pinned"); 1634 } 1635 // Do not let stores that initialize this object be reordered with 1636 // a subsequent store that would make this object accessible by 1637 // other threads. 1638 // Record what AllocateNode this StoreStore protects so that 1639 // escape analysis can go from the MemBarStoreStoreNode to the 1640 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1641 // based on the escape status of the AllocateNode. 1642 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1643 } else { 1644 insert_mem_bar(Op_MemBarCPUOrder); 1645 } 1646 } 1647 1648 C->set_has_split_ifs(true); // Has chance for split-if optimization 1649 return true; 1650 } 1651 1652 //----------------------inline_string_char_access---------------------------- 1653 // Store/Load char to/from byte[] array. 1654 // static void StringUTF16.putChar(byte[] val, int index, int c) 1655 // static char StringUTF16.getChar(byte[] val, int index) 1656 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1657 Node* value = argument(0); 1658 Node* index = argument(1); 1659 Node* ch = is_store ? argument(2) : nullptr; 1660 1661 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1662 // correctly requires matched array shapes. 1663 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1664 "sanity: byte[] and char[] bases agree"); 1665 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1666 "sanity: byte[] and char[] scales agree"); 1667 1668 // Bail when getChar over constants is requested: constant folding would 1669 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1670 // Java method would constant fold nicely instead. 1671 if (!is_store && value->is_Con() && index->is_Con()) { 1672 return false; 1673 } 1674 1675 // Save state and restore on bailout 1676 uint old_sp = sp(); 1677 SafePointNode* old_map = clone_map(); 1678 1679 value = must_be_not_null(value, true); 1680 1681 Node* adr = array_element_address(value, index, T_CHAR); 1682 if (adr->is_top()) { 1683 set_map(old_map); 1684 set_sp(old_sp); 1685 return false; 1686 } 1687 destruct_map_clone(old_map); 1688 if (is_store) { 1689 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1690 } else { 1691 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1692 set_result(ch); 1693 } 1694 return true; 1695 } 1696 1697 //--------------------------round_double_node-------------------------------- 1698 // Round a double node if necessary. 1699 Node* LibraryCallKit::round_double_node(Node* n) { 1700 if (Matcher::strict_fp_requires_explicit_rounding) { 1701 #ifdef IA32 1702 if (UseSSE < 2) { 1703 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1704 } 1705 #else 1706 Unimplemented(); 1707 #endif // IA32 1708 } 1709 return n; 1710 } 1711 1712 //------------------------------inline_math----------------------------------- 1713 // public static double Math.abs(double) 1714 // public static double Math.sqrt(double) 1715 // public static double Math.log(double) 1716 // public static double Math.log10(double) 1717 // public static double Math.round(double) 1718 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1719 Node* arg = round_double_node(argument(0)); 1720 Node* n = nullptr; 1721 switch (id) { 1722 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1723 case vmIntrinsics::_dsqrt: 1724 case vmIntrinsics::_dsqrt_strict: 1725 n = new SqrtDNode(C, control(), arg); break; 1726 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1727 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1728 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1729 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1730 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1731 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1732 default: fatal_unexpected_iid(id); break; 1733 } 1734 set_result(_gvn.transform(n)); 1735 return true; 1736 } 1737 1738 //------------------------------inline_math----------------------------------- 1739 // public static float Math.abs(float) 1740 // public static int Math.abs(int) 1741 // public static long Math.abs(long) 1742 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1743 Node* arg = argument(0); 1744 Node* n = nullptr; 1745 switch (id) { 1746 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1747 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1748 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1749 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1750 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1751 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1752 default: fatal_unexpected_iid(id); break; 1753 } 1754 set_result(_gvn.transform(n)); 1755 return true; 1756 } 1757 1758 //------------------------------runtime_math----------------------------- 1759 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1760 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1761 "must be (DD)D or (D)D type"); 1762 1763 // Inputs 1764 Node* a = round_double_node(argument(0)); 1765 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1766 1767 const TypePtr* no_memory_effects = nullptr; 1768 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1769 no_memory_effects, 1770 a, top(), b, b ? top() : nullptr); 1771 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1772 #ifdef ASSERT 1773 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1774 assert(value_top == top(), "second value must be top"); 1775 #endif 1776 1777 set_result(value); 1778 return true; 1779 } 1780 1781 //------------------------------inline_math_pow----------------------------- 1782 bool LibraryCallKit::inline_math_pow() { 1783 Node* exp = round_double_node(argument(2)); 1784 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1785 if (d != nullptr) { 1786 if (d->getd() == 2.0) { 1787 // Special case: pow(x, 2.0) => x * x 1788 Node* base = round_double_node(argument(0)); 1789 set_result(_gvn.transform(new MulDNode(base, base))); 1790 return true; 1791 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1792 // Special case: pow(x, 0.5) => sqrt(x) 1793 Node* base = round_double_node(argument(0)); 1794 Node* zero = _gvn.zerocon(T_DOUBLE); 1795 1796 RegionNode* region = new RegionNode(3); 1797 Node* phi = new PhiNode(region, Type::DOUBLE); 1798 1799 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1800 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1801 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1802 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1803 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1804 1805 Node* if_pow = generate_slow_guard(test, nullptr); 1806 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1807 phi->init_req(1, value_sqrt); 1808 region->init_req(1, control()); 1809 1810 if (if_pow != nullptr) { 1811 set_control(if_pow); 1812 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1813 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1814 const TypePtr* no_memory_effects = nullptr; 1815 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1816 no_memory_effects, base, top(), exp, top()); 1817 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1818 #ifdef ASSERT 1819 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1820 assert(value_top == top(), "second value must be top"); 1821 #endif 1822 phi->init_req(2, value_pow); 1823 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1824 } 1825 1826 C->set_has_split_ifs(true); // Has chance for split-if optimization 1827 set_control(_gvn.transform(region)); 1828 record_for_igvn(region); 1829 set_result(_gvn.transform(phi)); 1830 1831 return true; 1832 } 1833 } 1834 1835 return StubRoutines::dpow() != nullptr ? 1836 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1837 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1838 } 1839 1840 //------------------------------inline_math_native----------------------------- 1841 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1842 switch (id) { 1843 case vmIntrinsics::_dsin: 1844 return StubRoutines::dsin() != nullptr ? 1845 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1846 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1847 case vmIntrinsics::_dcos: 1848 return StubRoutines::dcos() != nullptr ? 1849 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1850 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1851 case vmIntrinsics::_dtan: 1852 return StubRoutines::dtan() != nullptr ? 1853 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1854 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1855 case vmIntrinsics::_dexp: 1856 return StubRoutines::dexp() != nullptr ? 1857 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1858 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1859 case vmIntrinsics::_dlog: 1860 return StubRoutines::dlog() != nullptr ? 1861 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1862 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1863 case vmIntrinsics::_dlog10: 1864 return StubRoutines::dlog10() != nullptr ? 1865 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1866 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1867 1868 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1869 case vmIntrinsics::_ceil: 1870 case vmIntrinsics::_floor: 1871 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1872 1873 case vmIntrinsics::_dsqrt: 1874 case vmIntrinsics::_dsqrt_strict: 1875 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1876 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1877 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1878 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1879 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1880 1881 case vmIntrinsics::_dpow: return inline_math_pow(); 1882 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1883 case vmIntrinsics::_fcopySign: return inline_math(id); 1884 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1885 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1886 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1887 1888 // These intrinsics are not yet correctly implemented 1889 case vmIntrinsics::_datan2: 1890 return false; 1891 1892 default: 1893 fatal_unexpected_iid(id); 1894 return false; 1895 } 1896 } 1897 1898 //----------------------------inline_notify-----------------------------------* 1899 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1900 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1901 address func; 1902 if (id == vmIntrinsics::_notify) { 1903 func = OptoRuntime::monitor_notify_Java(); 1904 } else { 1905 func = OptoRuntime::monitor_notifyAll_Java(); 1906 } 1907 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1908 make_slow_call_ex(call, env()->Throwable_klass(), false); 1909 return true; 1910 } 1911 1912 1913 //----------------------------inline_min_max----------------------------------- 1914 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1915 set_result(generate_min_max(id, argument(0), argument(1))); 1916 return true; 1917 } 1918 1919 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1920 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1921 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1922 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1923 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1924 1925 { 1926 PreserveJVMState pjvms(this); 1927 PreserveReexecuteState preexecs(this); 1928 jvms()->set_should_reexecute(true); 1929 1930 set_control(slow_path); 1931 set_i_o(i_o()); 1932 1933 uncommon_trap(Deoptimization::Reason_intrinsic, 1934 Deoptimization::Action_none); 1935 } 1936 1937 set_control(fast_path); 1938 set_result(math); 1939 } 1940 1941 template <typename OverflowOp> 1942 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1943 typedef typename OverflowOp::MathOp MathOp; 1944 1945 MathOp* mathOp = new MathOp(arg1, arg2); 1946 Node* operation = _gvn.transform( mathOp ); 1947 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1948 inline_math_mathExact(operation, ofcheck); 1949 return true; 1950 } 1951 1952 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1953 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1954 } 1955 1956 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1957 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1958 } 1959 1960 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1961 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1962 } 1963 1964 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1965 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1966 } 1967 1968 bool LibraryCallKit::inline_math_negateExactI() { 1969 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 1970 } 1971 1972 bool LibraryCallKit::inline_math_negateExactL() { 1973 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 1974 } 1975 1976 bool LibraryCallKit::inline_math_multiplyExactI() { 1977 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 1978 } 1979 1980 bool LibraryCallKit::inline_math_multiplyExactL() { 1981 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 1982 } 1983 1984 bool LibraryCallKit::inline_math_multiplyHigh() { 1985 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 1986 return true; 1987 } 1988 1989 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 1990 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 1991 return true; 1992 } 1993 1994 Node* 1995 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 1996 Node* result_val = nullptr; 1997 switch (id) { 1998 case vmIntrinsics::_min: 1999 case vmIntrinsics::_min_strict: 2000 result_val = _gvn.transform(new MinINode(x0, y0)); 2001 break; 2002 case vmIntrinsics::_max: 2003 case vmIntrinsics::_max_strict: 2004 result_val = _gvn.transform(new MaxINode(x0, y0)); 2005 break; 2006 default: 2007 fatal_unexpected_iid(id); 2008 break; 2009 } 2010 return result_val; 2011 } 2012 2013 inline int 2014 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2015 const TypePtr* base_type = TypePtr::NULL_PTR; 2016 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2017 if (base_type == nullptr) { 2018 // Unknown type. 2019 return Type::AnyPtr; 2020 } else if (base_type == TypePtr::NULL_PTR) { 2021 // Since this is a null+long form, we have to switch to a rawptr. 2022 base = _gvn.transform(new CastX2PNode(offset)); 2023 offset = MakeConX(0); 2024 return Type::RawPtr; 2025 } else if (base_type->base() == Type::RawPtr) { 2026 return Type::RawPtr; 2027 } else if (base_type->isa_oopptr()) { 2028 // Base is never null => always a heap address. 2029 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2030 return Type::OopPtr; 2031 } 2032 // Offset is small => always a heap address. 2033 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2034 if (offset_type != nullptr && 2035 base_type->offset() == 0 && // (should always be?) 2036 offset_type->_lo >= 0 && 2037 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2038 return Type::OopPtr; 2039 } else if (type == T_OBJECT) { 2040 // off heap access to an oop doesn't make any sense. Has to be on 2041 // heap. 2042 return Type::OopPtr; 2043 } 2044 // Otherwise, it might either be oop+off or null+addr. 2045 return Type::AnyPtr; 2046 } else { 2047 // No information: 2048 return Type::AnyPtr; 2049 } 2050 } 2051 2052 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2053 Node* uncasted_base = base; 2054 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2055 if (kind == Type::RawPtr) { 2056 return basic_plus_adr(top(), uncasted_base, offset); 2057 } else if (kind == Type::AnyPtr) { 2058 assert(base == uncasted_base, "unexpected base change"); 2059 if (can_cast) { 2060 if (!_gvn.type(base)->speculative_maybe_null() && 2061 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2062 // According to profiling, this access is always on 2063 // heap. Casting the base to not null and thus avoiding membars 2064 // around the access should allow better optimizations 2065 Node* null_ctl = top(); 2066 base = null_check_oop(base, &null_ctl, true, true, true); 2067 assert(null_ctl->is_top(), "no null control here"); 2068 return basic_plus_adr(base, offset); 2069 } else if (_gvn.type(base)->speculative_always_null() && 2070 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2071 // According to profiling, this access is always off 2072 // heap. 2073 base = null_assert(base); 2074 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2075 offset = MakeConX(0); 2076 return basic_plus_adr(top(), raw_base, offset); 2077 } 2078 } 2079 // We don't know if it's an on heap or off heap access. Fall back 2080 // to raw memory access. 2081 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2082 return basic_plus_adr(top(), raw, offset); 2083 } else { 2084 assert(base == uncasted_base, "unexpected base change"); 2085 // We know it's an on heap access so base can't be null 2086 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2087 base = must_be_not_null(base, true); 2088 } 2089 return basic_plus_adr(base, offset); 2090 } 2091 } 2092 2093 //--------------------------inline_number_methods----------------------------- 2094 // inline int Integer.numberOfLeadingZeros(int) 2095 // inline int Long.numberOfLeadingZeros(long) 2096 // 2097 // inline int Integer.numberOfTrailingZeros(int) 2098 // inline int Long.numberOfTrailingZeros(long) 2099 // 2100 // inline int Integer.bitCount(int) 2101 // inline int Long.bitCount(long) 2102 // 2103 // inline char Character.reverseBytes(char) 2104 // inline short Short.reverseBytes(short) 2105 // inline int Integer.reverseBytes(int) 2106 // inline long Long.reverseBytes(long) 2107 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2108 Node* arg = argument(0); 2109 Node* n = nullptr; 2110 switch (id) { 2111 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2112 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2113 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2114 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2115 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2116 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2117 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2118 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2119 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2120 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2121 case vmIntrinsics::_reverse_i: n = new ReverseINode(0, arg); break; 2122 case vmIntrinsics::_reverse_l: n = new ReverseLNode(0, arg); break; 2123 default: fatal_unexpected_iid(id); break; 2124 } 2125 set_result(_gvn.transform(n)); 2126 return true; 2127 } 2128 2129 //--------------------------inline_bitshuffle_methods----------------------------- 2130 // inline int Integer.compress(int, int) 2131 // inline int Integer.expand(int, int) 2132 // inline long Long.compress(long, long) 2133 // inline long Long.expand(long, long) 2134 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2135 Node* n = nullptr; 2136 switch (id) { 2137 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2138 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2139 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2140 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2141 default: fatal_unexpected_iid(id); break; 2142 } 2143 set_result(_gvn.transform(n)); 2144 return true; 2145 } 2146 2147 //--------------------------inline_number_methods----------------------------- 2148 // inline int Integer.compareUnsigned(int, int) 2149 // inline int Long.compareUnsigned(long, long) 2150 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2151 Node* arg1 = argument(0); 2152 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2153 Node* n = nullptr; 2154 switch (id) { 2155 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2156 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2157 default: fatal_unexpected_iid(id); break; 2158 } 2159 set_result(_gvn.transform(n)); 2160 return true; 2161 } 2162 2163 //--------------------------inline_unsigned_divmod_methods----------------------------- 2164 // inline int Integer.divideUnsigned(int, int) 2165 // inline int Integer.remainderUnsigned(int, int) 2166 // inline long Long.divideUnsigned(long, long) 2167 // inline long Long.remainderUnsigned(long, long) 2168 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2169 Node* n = nullptr; 2170 switch (id) { 2171 case vmIntrinsics::_divideUnsigned_i: { 2172 zero_check_int(argument(1)); 2173 // Compile-time detect of null-exception 2174 if (stopped()) { 2175 return true; // keep the graph constructed so far 2176 } 2177 n = new UDivINode(control(), argument(0), argument(1)); 2178 break; 2179 } 2180 case vmIntrinsics::_divideUnsigned_l: { 2181 zero_check_long(argument(2)); 2182 // Compile-time detect of null-exception 2183 if (stopped()) { 2184 return true; // keep the graph constructed so far 2185 } 2186 n = new UDivLNode(control(), argument(0), argument(2)); 2187 break; 2188 } 2189 case vmIntrinsics::_remainderUnsigned_i: { 2190 zero_check_int(argument(1)); 2191 // Compile-time detect of null-exception 2192 if (stopped()) { 2193 return true; // keep the graph constructed so far 2194 } 2195 n = new UModINode(control(), argument(0), argument(1)); 2196 break; 2197 } 2198 case vmIntrinsics::_remainderUnsigned_l: { 2199 zero_check_long(argument(2)); 2200 // Compile-time detect of null-exception 2201 if (stopped()) { 2202 return true; // keep the graph constructed so far 2203 } 2204 n = new UModLNode(control(), argument(0), argument(2)); 2205 break; 2206 } 2207 default: fatal_unexpected_iid(id); break; 2208 } 2209 set_result(_gvn.transform(n)); 2210 return true; 2211 } 2212 2213 //----------------------------inline_unsafe_access---------------------------- 2214 2215 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2216 // Attempt to infer a sharper value type from the offset and base type. 2217 ciKlass* sharpened_klass = nullptr; 2218 2219 // See if it is an instance field, with an object type. 2220 if (alias_type->field() != nullptr) { 2221 if (alias_type->field()->type()->is_klass()) { 2222 sharpened_klass = alias_type->field()->type()->as_klass(); 2223 } 2224 } 2225 2226 const TypeOopPtr* result = nullptr; 2227 // See if it is a narrow oop array. 2228 if (adr_type->isa_aryptr()) { 2229 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2230 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2231 if (elem_type != nullptr && elem_type->is_loaded()) { 2232 // Sharpen the value type. 2233 result = elem_type; 2234 } 2235 } 2236 } 2237 2238 // The sharpened class might be unloaded if there is no class loader 2239 // contraint in place. 2240 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2241 // Sharpen the value type. 2242 result = TypeOopPtr::make_from_klass(sharpened_klass); 2243 } 2244 if (result != nullptr) { 2245 #ifndef PRODUCT 2246 if (C->print_intrinsics() || C->print_inlining()) { 2247 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2248 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2249 } 2250 #endif 2251 } 2252 return result; 2253 } 2254 2255 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2256 switch (kind) { 2257 case Relaxed: 2258 return MO_UNORDERED; 2259 case Opaque: 2260 return MO_RELAXED; 2261 case Acquire: 2262 return MO_ACQUIRE; 2263 case Release: 2264 return MO_RELEASE; 2265 case Volatile: 2266 return MO_SEQ_CST; 2267 default: 2268 ShouldNotReachHere(); 2269 return 0; 2270 } 2271 } 2272 2273 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2274 if (callee()->is_static()) return false; // caller must have the capability! 2275 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2276 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2277 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2278 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2279 2280 if (is_reference_type(type)) { 2281 decorators |= ON_UNKNOWN_OOP_REF; 2282 } 2283 2284 if (unaligned) { 2285 decorators |= C2_UNALIGNED; 2286 } 2287 2288 #ifndef PRODUCT 2289 { 2290 ResourceMark rm; 2291 // Check the signatures. 2292 ciSignature* sig = callee()->signature(); 2293 #ifdef ASSERT 2294 if (!is_store) { 2295 // Object getReference(Object base, int/long offset), etc. 2296 BasicType rtype = sig->return_type()->basic_type(); 2297 assert(rtype == type, "getter must return the expected value"); 2298 assert(sig->count() == 2, "oop getter has 2 arguments"); 2299 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2300 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2301 } else { 2302 // void putReference(Object base, int/long offset, Object x), etc. 2303 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2304 assert(sig->count() == 3, "oop putter has 3 arguments"); 2305 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2306 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2307 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2308 assert(vtype == type, "putter must accept the expected value"); 2309 } 2310 #endif // ASSERT 2311 } 2312 #endif //PRODUCT 2313 2314 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2315 2316 Node* receiver = argument(0); // type: oop 2317 2318 // Build address expression. 2319 Node* heap_base_oop = top(); 2320 2321 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2322 Node* base = argument(1); // type: oop 2323 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2324 Node* offset = argument(2); // type: long 2325 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2326 // to be plain byte offsets, which are also the same as those accepted 2327 // by oopDesc::field_addr. 2328 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2329 "fieldOffset must be byte-scaled"); 2330 // 32-bit machines ignore the high half! 2331 offset = ConvL2X(offset); 2332 2333 // Save state and restore on bailout 2334 uint old_sp = sp(); 2335 SafePointNode* old_map = clone_map(); 2336 2337 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2338 2339 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2340 if (type != T_OBJECT) { 2341 decorators |= IN_NATIVE; // off-heap primitive access 2342 } else { 2343 set_map(old_map); 2344 set_sp(old_sp); 2345 return false; // off-heap oop accesses are not supported 2346 } 2347 } else { 2348 heap_base_oop = base; // on-heap or mixed access 2349 } 2350 2351 // Can base be null? Otherwise, always on-heap access. 2352 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2353 2354 if (!can_access_non_heap) { 2355 decorators |= IN_HEAP; 2356 } 2357 2358 Node* val = is_store ? argument(4) : nullptr; 2359 2360 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2361 if (adr_type == TypePtr::NULL_PTR) { 2362 set_map(old_map); 2363 set_sp(old_sp); 2364 return false; // off-heap access with zero address 2365 } 2366 2367 // Try to categorize the address. 2368 Compile::AliasType* alias_type = C->alias_type(adr_type); 2369 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2370 2371 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2372 alias_type->adr_type() == TypeAryPtr::RANGE) { 2373 set_map(old_map); 2374 set_sp(old_sp); 2375 return false; // not supported 2376 } 2377 2378 bool mismatched = false; 2379 BasicType bt = alias_type->basic_type(); 2380 if (bt != T_ILLEGAL) { 2381 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2382 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2383 // Alias type doesn't differentiate between byte[] and boolean[]). 2384 // Use address type to get the element type. 2385 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2386 } 2387 if (is_reference_type(bt, true)) { 2388 // accessing an array field with getReference is not a mismatch 2389 bt = T_OBJECT; 2390 } 2391 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2392 // Don't intrinsify mismatched object accesses 2393 set_map(old_map); 2394 set_sp(old_sp); 2395 return false; 2396 } 2397 mismatched = (bt != type); 2398 } else if (alias_type->adr_type()->isa_oopptr()) { 2399 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2400 } 2401 2402 destruct_map_clone(old_map); 2403 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2404 2405 if (mismatched) { 2406 decorators |= C2_MISMATCHED; 2407 } 2408 2409 // First guess at the value type. 2410 const Type *value_type = Type::get_const_basic_type(type); 2411 2412 // Figure out the memory ordering. 2413 decorators |= mo_decorator_for_access_kind(kind); 2414 2415 if (!is_store && type == T_OBJECT) { 2416 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2417 if (tjp != nullptr) { 2418 value_type = tjp; 2419 } 2420 } 2421 2422 receiver = null_check(receiver); 2423 if (stopped()) { 2424 return true; 2425 } 2426 // Heap pointers get a null-check from the interpreter, 2427 // as a courtesy. However, this is not guaranteed by Unsafe, 2428 // and it is not possible to fully distinguish unintended nulls 2429 // from intended ones in this API. 2430 2431 if (!is_store) { 2432 Node* p = nullptr; 2433 // Try to constant fold a load from a constant field 2434 ciField* field = alias_type->field(); 2435 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2436 // final or stable field 2437 p = make_constant_from_field(field, heap_base_oop); 2438 } 2439 2440 if (p == nullptr) { // Could not constant fold the load 2441 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2442 // Normalize the value returned by getBoolean in the following cases 2443 if (type == T_BOOLEAN && 2444 (mismatched || 2445 heap_base_oop == top() || // - heap_base_oop is null or 2446 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2447 // and the unsafe access is made to large offset 2448 // (i.e., larger than the maximum offset necessary for any 2449 // field access) 2450 ) { 2451 IdealKit ideal = IdealKit(this); 2452 #define __ ideal. 2453 IdealVariable normalized_result(ideal); 2454 __ declarations_done(); 2455 __ set(normalized_result, p); 2456 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2457 __ set(normalized_result, ideal.ConI(1)); 2458 ideal.end_if(); 2459 final_sync(ideal); 2460 p = __ value(normalized_result); 2461 #undef __ 2462 } 2463 } 2464 if (type == T_ADDRESS) { 2465 p = gvn().transform(new CastP2XNode(nullptr, p)); 2466 p = ConvX2UL(p); 2467 } 2468 // The load node has the control of the preceding MemBarCPUOrder. All 2469 // following nodes will have the control of the MemBarCPUOrder inserted at 2470 // the end of this method. So, pushing the load onto the stack at a later 2471 // point is fine. 2472 set_result(p); 2473 } else { 2474 if (bt == T_ADDRESS) { 2475 // Repackage the long as a pointer. 2476 val = ConvL2X(val); 2477 val = gvn().transform(new CastX2PNode(val)); 2478 } 2479 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2480 } 2481 2482 return true; 2483 } 2484 2485 //----------------------------inline_unsafe_load_store---------------------------- 2486 // This method serves a couple of different customers (depending on LoadStoreKind): 2487 // 2488 // LS_cmp_swap: 2489 // 2490 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2491 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2492 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2493 // 2494 // LS_cmp_swap_weak: 2495 // 2496 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2497 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2498 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2499 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2500 // 2501 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2502 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2503 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2504 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2505 // 2506 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2507 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2508 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2509 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2510 // 2511 // LS_cmp_exchange: 2512 // 2513 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2514 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2515 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2516 // 2517 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2518 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2519 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2520 // 2521 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2522 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2523 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2524 // 2525 // LS_get_add: 2526 // 2527 // int getAndAddInt( Object o, long offset, int delta) 2528 // long getAndAddLong(Object o, long offset, long delta) 2529 // 2530 // LS_get_set: 2531 // 2532 // int getAndSet(Object o, long offset, int newValue) 2533 // long getAndSet(Object o, long offset, long newValue) 2534 // Object getAndSet(Object o, long offset, Object newValue) 2535 // 2536 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2537 // This basic scheme here is the same as inline_unsafe_access, but 2538 // differs in enough details that combining them would make the code 2539 // overly confusing. (This is a true fact! I originally combined 2540 // them, but even I was confused by it!) As much code/comments as 2541 // possible are retained from inline_unsafe_access though to make 2542 // the correspondences clearer. - dl 2543 2544 if (callee()->is_static()) return false; // caller must have the capability! 2545 2546 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2547 decorators |= mo_decorator_for_access_kind(access_kind); 2548 2549 #ifndef PRODUCT 2550 BasicType rtype; 2551 { 2552 ResourceMark rm; 2553 // Check the signatures. 2554 ciSignature* sig = callee()->signature(); 2555 rtype = sig->return_type()->basic_type(); 2556 switch(kind) { 2557 case LS_get_add: 2558 case LS_get_set: { 2559 // Check the signatures. 2560 #ifdef ASSERT 2561 assert(rtype == type, "get and set must return the expected type"); 2562 assert(sig->count() == 3, "get and set has 3 arguments"); 2563 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2564 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2565 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2566 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2567 #endif // ASSERT 2568 break; 2569 } 2570 case LS_cmp_swap: 2571 case LS_cmp_swap_weak: { 2572 // Check the signatures. 2573 #ifdef ASSERT 2574 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2575 assert(sig->count() == 4, "CAS has 4 arguments"); 2576 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2577 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2578 #endif // ASSERT 2579 break; 2580 } 2581 case LS_cmp_exchange: { 2582 // Check the signatures. 2583 #ifdef ASSERT 2584 assert(rtype == type, "CAS must return the expected type"); 2585 assert(sig->count() == 4, "CAS has 4 arguments"); 2586 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2587 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2588 #endif // ASSERT 2589 break; 2590 } 2591 default: 2592 ShouldNotReachHere(); 2593 } 2594 } 2595 #endif //PRODUCT 2596 2597 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2598 2599 // Get arguments: 2600 Node* receiver = nullptr; 2601 Node* base = nullptr; 2602 Node* offset = nullptr; 2603 Node* oldval = nullptr; 2604 Node* newval = nullptr; 2605 switch(kind) { 2606 case LS_cmp_swap: 2607 case LS_cmp_swap_weak: 2608 case LS_cmp_exchange: { 2609 const bool two_slot_type = type2size[type] == 2; 2610 receiver = argument(0); // type: oop 2611 base = argument(1); // type: oop 2612 offset = argument(2); // type: long 2613 oldval = argument(4); // type: oop, int, or long 2614 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2615 break; 2616 } 2617 case LS_get_add: 2618 case LS_get_set: { 2619 receiver = argument(0); // type: oop 2620 base = argument(1); // type: oop 2621 offset = argument(2); // type: long 2622 oldval = nullptr; 2623 newval = argument(4); // type: oop, int, or long 2624 break; 2625 } 2626 default: 2627 ShouldNotReachHere(); 2628 } 2629 2630 // Build field offset expression. 2631 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2632 // to be plain byte offsets, which are also the same as those accepted 2633 // by oopDesc::field_addr. 2634 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2635 // 32-bit machines ignore the high half of long offsets 2636 offset = ConvL2X(offset); 2637 // Save state and restore on bailout 2638 uint old_sp = sp(); 2639 SafePointNode* old_map = clone_map(); 2640 Node* adr = make_unsafe_address(base, offset,type, false); 2641 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2642 2643 Compile::AliasType* alias_type = C->alias_type(adr_type); 2644 BasicType bt = alias_type->basic_type(); 2645 if (bt != T_ILLEGAL && 2646 (is_reference_type(bt) != (type == T_OBJECT))) { 2647 // Don't intrinsify mismatched object accesses. 2648 set_map(old_map); 2649 set_sp(old_sp); 2650 return false; 2651 } 2652 2653 destruct_map_clone(old_map); 2654 2655 // For CAS, unlike inline_unsafe_access, there seems no point in 2656 // trying to refine types. Just use the coarse types here. 2657 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2658 const Type *value_type = Type::get_const_basic_type(type); 2659 2660 switch (kind) { 2661 case LS_get_set: 2662 case LS_cmp_exchange: { 2663 if (type == T_OBJECT) { 2664 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2665 if (tjp != nullptr) { 2666 value_type = tjp; 2667 } 2668 } 2669 break; 2670 } 2671 case LS_cmp_swap: 2672 case LS_cmp_swap_weak: 2673 case LS_get_add: 2674 break; 2675 default: 2676 ShouldNotReachHere(); 2677 } 2678 2679 // Null check receiver. 2680 receiver = null_check(receiver); 2681 if (stopped()) { 2682 return true; 2683 } 2684 2685 int alias_idx = C->get_alias_index(adr_type); 2686 2687 if (is_reference_type(type)) { 2688 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2689 2690 // Transformation of a value which could be null pointer (CastPP #null) 2691 // could be delayed during Parse (for example, in adjust_map_after_if()). 2692 // Execute transformation here to avoid barrier generation in such case. 2693 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2694 newval = _gvn.makecon(TypePtr::NULL_PTR); 2695 2696 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2697 // Refine the value to a null constant, when it is known to be null 2698 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2699 } 2700 } 2701 2702 Node* result = nullptr; 2703 switch (kind) { 2704 case LS_cmp_exchange: { 2705 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2706 oldval, newval, value_type, type, decorators); 2707 break; 2708 } 2709 case LS_cmp_swap_weak: 2710 decorators |= C2_WEAK_CMPXCHG; 2711 case LS_cmp_swap: { 2712 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2713 oldval, newval, value_type, type, decorators); 2714 break; 2715 } 2716 case LS_get_set: { 2717 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2718 newval, value_type, type, decorators); 2719 break; 2720 } 2721 case LS_get_add: { 2722 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2723 newval, value_type, type, decorators); 2724 break; 2725 } 2726 default: 2727 ShouldNotReachHere(); 2728 } 2729 2730 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2731 set_result(result); 2732 return true; 2733 } 2734 2735 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2736 // Regardless of form, don't allow previous ld/st to move down, 2737 // then issue acquire, release, or volatile mem_bar. 2738 insert_mem_bar(Op_MemBarCPUOrder); 2739 switch(id) { 2740 case vmIntrinsics::_loadFence: 2741 insert_mem_bar(Op_LoadFence); 2742 return true; 2743 case vmIntrinsics::_storeFence: 2744 insert_mem_bar(Op_StoreFence); 2745 return true; 2746 case vmIntrinsics::_storeStoreFence: 2747 insert_mem_bar(Op_StoreStoreFence); 2748 return true; 2749 case vmIntrinsics::_fullFence: 2750 insert_mem_bar(Op_MemBarVolatile); 2751 return true; 2752 default: 2753 fatal_unexpected_iid(id); 2754 return false; 2755 } 2756 } 2757 2758 bool LibraryCallKit::inline_onspinwait() { 2759 insert_mem_bar(Op_OnSpinWait); 2760 return true; 2761 } 2762 2763 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2764 if (!kls->is_Con()) { 2765 return true; 2766 } 2767 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2768 if (klsptr == nullptr) { 2769 return true; 2770 } 2771 ciInstanceKlass* ik = klsptr->instance_klass(); 2772 // don't need a guard for a klass that is already initialized 2773 return !ik->is_initialized(); 2774 } 2775 2776 //----------------------------inline_unsafe_writeback0------------------------- 2777 // public native void Unsafe.writeback0(long address) 2778 bool LibraryCallKit::inline_unsafe_writeback0() { 2779 if (!Matcher::has_match_rule(Op_CacheWB)) { 2780 return false; 2781 } 2782 #ifndef PRODUCT 2783 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2784 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2785 ciSignature* sig = callee()->signature(); 2786 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2787 #endif 2788 null_check_receiver(); // null-check, then ignore 2789 Node *addr = argument(1); 2790 addr = new CastX2PNode(addr); 2791 addr = _gvn.transform(addr); 2792 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2793 flush = _gvn.transform(flush); 2794 set_memory(flush, TypeRawPtr::BOTTOM); 2795 return true; 2796 } 2797 2798 //----------------------------inline_unsafe_writeback0------------------------- 2799 // public native void Unsafe.writeback0(long address) 2800 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2801 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2802 return false; 2803 } 2804 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2805 return false; 2806 } 2807 #ifndef PRODUCT 2808 assert(Matcher::has_match_rule(Op_CacheWB), 2809 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2810 : "found match rule for CacheWBPostSync but not CacheWB")); 2811 2812 #endif 2813 null_check_receiver(); // null-check, then ignore 2814 Node *sync; 2815 if (is_pre) { 2816 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2817 } else { 2818 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2819 } 2820 sync = _gvn.transform(sync); 2821 set_memory(sync, TypeRawPtr::BOTTOM); 2822 return true; 2823 } 2824 2825 //----------------------------inline_unsafe_allocate--------------------------- 2826 // public native Object Unsafe.allocateInstance(Class<?> cls); 2827 bool LibraryCallKit::inline_unsafe_allocate() { 2828 2829 #if INCLUDE_JVMTI 2830 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2831 return false; 2832 } 2833 #endif //INCLUDE_JVMTI 2834 2835 if (callee()->is_static()) return false; // caller must have the capability! 2836 2837 null_check_receiver(); // null-check, then ignore 2838 Node* cls = null_check(argument(1)); 2839 if (stopped()) return true; 2840 2841 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2842 kls = null_check(kls); 2843 if (stopped()) return true; // argument was like int.class 2844 2845 #if INCLUDE_JVMTI 2846 // Don't try to access new allocated obj in the intrinsic. 2847 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2848 // Deoptimize and allocate in interpreter instead. 2849 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2850 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2851 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2852 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2853 { 2854 BuildCutout unless(this, tst, PROB_MAX); 2855 uncommon_trap(Deoptimization::Reason_intrinsic, 2856 Deoptimization::Action_make_not_entrant); 2857 } 2858 if (stopped()) { 2859 return true; 2860 } 2861 #endif //INCLUDE_JVMTI 2862 2863 Node* test = nullptr; 2864 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2865 // Note: The argument might still be an illegal value like 2866 // Serializable.class or Object[].class. The runtime will handle it. 2867 // But we must make an explicit check for initialization. 2868 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2869 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2870 // can generate code to load it as unsigned byte. 2871 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2872 Node* bits = intcon(InstanceKlass::fully_initialized); 2873 test = _gvn.transform(new SubINode(inst, bits)); 2874 // The 'test' is non-zero if we need to take a slow path. 2875 } 2876 2877 Node* obj = new_instance(kls, test); 2878 set_result(obj); 2879 return true; 2880 } 2881 2882 //------------------------inline_native_time_funcs-------------- 2883 // inline code for System.currentTimeMillis() and System.nanoTime() 2884 // these have the same type and signature 2885 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2886 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2887 const TypePtr* no_memory_effects = nullptr; 2888 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2889 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2890 #ifdef ASSERT 2891 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2892 assert(value_top == top(), "second value must be top"); 2893 #endif 2894 set_result(value); 2895 return true; 2896 } 2897 2898 2899 #if INCLUDE_JVMTI 2900 2901 // When notifications are disabled then just update the VTMS transition bit and return. 2902 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2903 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2904 if (!DoJVMTIVirtualThreadTransitions) { 2905 return true; 2906 } 2907 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 2908 IdealKit ideal(this); 2909 2910 Node* ONE = ideal.ConI(1); 2911 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 2912 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 2913 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2914 2915 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 2916 sync_kit(ideal); 2917 // if notifyJvmti enabled then make a call to the given SharedRuntime function 2918 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 2919 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 2920 ideal.sync_kit(this); 2921 } ideal.else_(); { 2922 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 2923 Node* thread = ideal.thread(); 2924 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 2925 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 2926 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2927 2928 sync_kit(ideal); 2929 access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2930 access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2931 2932 ideal.sync_kit(this); 2933 } ideal.end_if(); 2934 final_sync(ideal); 2935 2936 return true; 2937 } 2938 2939 // Always update the temporary VTMS transition bit. 2940 bool LibraryCallKit::inline_native_notify_jvmti_hide() { 2941 if (!DoJVMTIVirtualThreadTransitions) { 2942 return true; 2943 } 2944 IdealKit ideal(this); 2945 2946 { 2947 // unconditionally update the temporary VTMS transition bit in current JavaThread 2948 Node* thread = ideal.thread(); 2949 Node* hide = _gvn.transform(argument(1)); // hide argument for temporary VTMS transition notification 2950 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset())); 2951 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2952 2953 sync_kit(ideal); 2954 access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2955 ideal.sync_kit(this); 2956 } 2957 final_sync(ideal); 2958 2959 return true; 2960 } 2961 2962 #endif // INCLUDE_JVMTI 2963 2964 #ifdef JFR_HAVE_INTRINSICS 2965 2966 /** 2967 * if oop->klass != null 2968 * // normal class 2969 * epoch = _epoch_state ? 2 : 1 2970 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 2971 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 2972 * } 2973 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 2974 * else 2975 * // primitive class 2976 * if oop->array_klass != null 2977 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 2978 * else 2979 * id = LAST_TYPE_ID + 1 // void class path 2980 * if (!signaled) 2981 * signaled = true 2982 */ 2983 bool LibraryCallKit::inline_native_classID() { 2984 Node* cls = argument(0); 2985 2986 IdealKit ideal(this); 2987 #define __ ideal. 2988 IdealVariable result(ideal); __ declarations_done(); 2989 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 2990 basic_plus_adr(cls, java_lang_Class::klass_offset()), 2991 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 2992 2993 2994 __ if_then(kls, BoolTest::ne, null()); { 2995 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 2996 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 2997 2998 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 2999 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3000 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3001 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3002 mask = _gvn.transform(new OrLNode(mask, epoch)); 3003 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3004 3005 float unlikely = PROB_UNLIKELY(0.999); 3006 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3007 sync_kit(ideal); 3008 make_runtime_call(RC_LEAF, 3009 OptoRuntime::class_id_load_barrier_Type(), 3010 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3011 "class id load barrier", 3012 TypePtr::BOTTOM, 3013 kls); 3014 ideal.sync_kit(this); 3015 } __ end_if(); 3016 3017 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3018 } __ else_(); { 3019 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3020 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3021 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3022 __ if_then(array_kls, BoolTest::ne, null()); { 3023 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3024 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3025 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3026 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3027 } __ else_(); { 3028 // void class case 3029 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3030 } __ end_if(); 3031 3032 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3033 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3034 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3035 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3036 } __ end_if(); 3037 } __ end_if(); 3038 3039 final_sync(ideal); 3040 set_result(ideal.value(result)); 3041 #undef __ 3042 return true; 3043 } 3044 3045 //------------------------inline_native_jvm_commit------------------ 3046 bool LibraryCallKit::inline_native_jvm_commit() { 3047 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3048 3049 // Save input memory and i_o state. 3050 Node* input_memory_state = reset_memory(); 3051 set_all_memory(input_memory_state); 3052 Node* input_io_state = i_o(); 3053 3054 // TLS. 3055 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3056 // Jfr java buffer. 3057 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3058 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3059 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3060 3061 // Load the current value of the notified field in the JfrThreadLocal. 3062 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3063 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3064 3065 // Test for notification. 3066 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3067 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3068 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3069 3070 // True branch, is notified. 3071 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3072 set_control(is_notified); 3073 3074 // Reset notified state. 3075 Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered); 3076 3077 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3078 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3079 // Convert the machine-word to a long. 3080 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3081 3082 // False branch, not notified. 3083 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3084 set_control(not_notified); 3085 set_all_memory(input_memory_state); 3086 3087 // Arg is the next position as a long. 3088 Node* arg = argument(0); 3089 // Convert long to machine-word. 3090 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3091 3092 // Store the next_position to the underlying jfr java buffer. 3093 Node* commit_memory; 3094 #ifdef _LP64 3095 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release); 3096 #else 3097 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release); 3098 #endif 3099 3100 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3101 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3102 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3103 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3104 3105 // And flags with lease constant. 3106 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3107 3108 // Branch on lease to conditionalize returning the leased java buffer. 3109 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3110 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3111 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3112 3113 // False branch, not a lease. 3114 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3115 3116 // True branch, is lease. 3117 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3118 set_control(is_lease); 3119 3120 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3121 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3122 OptoRuntime::void_void_Type(), 3123 StubRoutines::jfr_return_lease(), 3124 "return_lease", TypePtr::BOTTOM); 3125 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3126 3127 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3128 record_for_igvn(lease_compare_rgn); 3129 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3130 record_for_igvn(lease_compare_mem); 3131 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3132 record_for_igvn(lease_compare_io); 3133 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3134 record_for_igvn(lease_result_value); 3135 3136 // Update control and phi nodes. 3137 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3138 lease_compare_rgn->init_req(_false_path, not_lease); 3139 3140 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3141 lease_compare_mem->init_req(_false_path, commit_memory); 3142 3143 lease_compare_io->init_req(_true_path, i_o()); 3144 lease_compare_io->init_req(_false_path, input_io_state); 3145 3146 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3147 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3148 3149 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3150 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3151 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3152 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3153 3154 // Update control and phi nodes. 3155 result_rgn->init_req(_true_path, is_notified); 3156 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3157 3158 result_mem->init_req(_true_path, notified_reset_memory); 3159 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3160 3161 result_io->init_req(_true_path, input_io_state); 3162 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3163 3164 result_value->init_req(_true_path, current_pos); 3165 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3166 3167 // Set output state. 3168 set_control(_gvn.transform(result_rgn)); 3169 set_all_memory(_gvn.transform(result_mem)); 3170 set_i_o(_gvn.transform(result_io)); 3171 set_result(result_rgn, result_value); 3172 return true; 3173 } 3174 3175 /* 3176 * The intrinsic is a model of this pseudo-code: 3177 * 3178 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3179 * jobject h_event_writer = tl->java_event_writer(); 3180 * if (h_event_writer == nullptr) { 3181 * return nullptr; 3182 * } 3183 * oop threadObj = Thread::threadObj(); 3184 * oop vthread = java_lang_Thread::vthread(threadObj); 3185 * traceid tid; 3186 * bool excluded; 3187 * if (vthread != threadObj) { // i.e. current thread is virtual 3188 * tid = java_lang_Thread::tid(vthread); 3189 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3190 * excluded = vthread_epoch_raw & excluded_mask; 3191 * if (!excluded) { 3192 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3193 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3194 * if (vthread_epoch != current_epoch) { 3195 * write_checkpoint(); 3196 * } 3197 * } 3198 * } else { 3199 * tid = java_lang_Thread::tid(threadObj); 3200 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3201 * excluded = thread_epoch_raw & excluded_mask; 3202 * } 3203 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3204 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3205 * if (tid_in_event_writer != tid) { 3206 * setField(event_writer, "threadID", tid); 3207 * setField(event_writer, "excluded", excluded); 3208 * } 3209 * return event_writer 3210 */ 3211 bool LibraryCallKit::inline_native_getEventWriter() { 3212 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3213 3214 // Save input memory and i_o state. 3215 Node* input_memory_state = reset_memory(); 3216 set_all_memory(input_memory_state); 3217 Node* input_io_state = i_o(); 3218 3219 Node* excluded_mask = _gvn.intcon(32768); 3220 Node* epoch_mask = _gvn.intcon(32767); 3221 3222 // TLS 3223 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3224 3225 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3226 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3227 3228 // Load the eventwriter jobject handle. 3229 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3230 3231 // Null check the jobject handle. 3232 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3233 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3234 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3235 3236 // False path, jobj is null. 3237 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3238 3239 // True path, jobj is not null. 3240 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3241 3242 set_control(jobj_is_not_null); 3243 3244 // Load the threadObj for the CarrierThread. 3245 Node* threadObj = generate_current_thread(tls_ptr); 3246 3247 // Load the vthread. 3248 Node* vthread = generate_virtual_thread(tls_ptr); 3249 3250 // If vthread != threadObj, this is a virtual thread. 3251 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3252 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3253 IfNode* iff_vthread_not_equal_threadObj = 3254 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3255 3256 // False branch, fallback to threadObj. 3257 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3258 set_control(vthread_equal_threadObj); 3259 3260 // Load the tid field from the vthread object. 3261 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3262 3263 // Load the raw epoch value from the threadObj. 3264 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3265 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3266 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3267 3268 // Mask off the excluded information from the epoch. 3269 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3270 3271 // True branch, this is a virtual thread. 3272 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3273 set_control(vthread_not_equal_threadObj); 3274 3275 // Load the tid field from the vthread object. 3276 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3277 3278 // Load the raw epoch value from the vthread. 3279 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3280 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3281 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3282 3283 // Mask off the excluded information from the epoch. 3284 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3285 3286 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3287 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3288 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3289 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3290 3291 // False branch, vthread is excluded, no need to write epoch info. 3292 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3293 3294 // True branch, vthread is included, update epoch info. 3295 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3296 set_control(included); 3297 3298 // Get epoch value. 3299 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3300 3301 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3302 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3303 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3304 3305 // Compare the epoch in the vthread to the current epoch generation. 3306 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3307 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3308 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3309 3310 // False path, epoch is equal, checkpoint information is valid. 3311 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3312 3313 // True path, epoch is not equal, write a checkpoint for the vthread. 3314 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3315 3316 set_control(epoch_is_not_equal); 3317 3318 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3319 // The call also updates the native thread local thread id and the vthread with the current epoch. 3320 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3321 OptoRuntime::jfr_write_checkpoint_Type(), 3322 StubRoutines::jfr_write_checkpoint(), 3323 "write_checkpoint", TypePtr::BOTTOM); 3324 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3325 3326 // vthread epoch != current epoch 3327 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3328 record_for_igvn(epoch_compare_rgn); 3329 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3330 record_for_igvn(epoch_compare_mem); 3331 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3332 record_for_igvn(epoch_compare_io); 3333 3334 // Update control and phi nodes. 3335 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3336 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3337 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3338 epoch_compare_mem->init_req(_false_path, input_memory_state); 3339 epoch_compare_io->init_req(_true_path, i_o()); 3340 epoch_compare_io->init_req(_false_path, input_io_state); 3341 3342 // excluded != true 3343 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3344 record_for_igvn(exclude_compare_rgn); 3345 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3346 record_for_igvn(exclude_compare_mem); 3347 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3348 record_for_igvn(exclude_compare_io); 3349 3350 // Update control and phi nodes. 3351 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3352 exclude_compare_rgn->init_req(_false_path, excluded); 3353 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3354 exclude_compare_mem->init_req(_false_path, input_memory_state); 3355 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3356 exclude_compare_io->init_req(_false_path, input_io_state); 3357 3358 // vthread != threadObj 3359 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3360 record_for_igvn(vthread_compare_rgn); 3361 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3362 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3363 record_for_igvn(vthread_compare_io); 3364 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3365 record_for_igvn(tid); 3366 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3367 record_for_igvn(exclusion); 3368 3369 // Update control and phi nodes. 3370 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3371 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3372 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3373 vthread_compare_mem->init_req(_false_path, input_memory_state); 3374 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3375 vthread_compare_io->init_req(_false_path, input_io_state); 3376 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3377 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3378 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3379 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3380 3381 // Update branch state. 3382 set_control(_gvn.transform(vthread_compare_rgn)); 3383 set_all_memory(_gvn.transform(vthread_compare_mem)); 3384 set_i_o(_gvn.transform(vthread_compare_io)); 3385 3386 // Load the event writer oop by dereferencing the jobject handle. 3387 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3388 assert(klass_EventWriter->is_loaded(), "invariant"); 3389 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3390 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3391 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3392 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3393 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3394 3395 // Load the current thread id from the event writer object. 3396 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3397 // Get the field offset to, conditionally, store an updated tid value later. 3398 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3399 const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); 3400 // Get the field offset to, conditionally, store an updated exclusion value later. 3401 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3402 const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); 3403 3404 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3405 record_for_igvn(event_writer_tid_compare_rgn); 3406 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3407 record_for_igvn(event_writer_tid_compare_mem); 3408 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3409 record_for_igvn(event_writer_tid_compare_io); 3410 3411 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3412 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3413 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3414 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3415 3416 // False path, tids are the same. 3417 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3418 3419 // True path, tid is not equal, need to update the tid in the event writer. 3420 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3421 record_for_igvn(tid_is_not_equal); 3422 3423 // Store the exclusion state to the event writer. 3424 store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); 3425 3426 // Store the tid to the event writer. 3427 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); 3428 3429 // Update control and phi nodes. 3430 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3431 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3432 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3433 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3434 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3435 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3436 3437 // Result of top level CFG, Memory, IO and Value. 3438 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3439 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3440 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3441 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3442 3443 // Result control. 3444 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3445 result_rgn->init_req(_false_path, jobj_is_null); 3446 3447 // Result memory. 3448 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3449 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3450 3451 // Result IO. 3452 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3453 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3454 3455 // Result value. 3456 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3457 result_value->init_req(_false_path, null()); // return null 3458 3459 // Set output state. 3460 set_control(_gvn.transform(result_rgn)); 3461 set_all_memory(_gvn.transform(result_mem)); 3462 set_i_o(_gvn.transform(result_io)); 3463 set_result(result_rgn, result_value); 3464 return true; 3465 } 3466 3467 /* 3468 * The intrinsic is a model of this pseudo-code: 3469 * 3470 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3471 * if (carrierThread != thread) { // is virtual thread 3472 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3473 * bool excluded = vthread_epoch_raw & excluded_mask; 3474 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3475 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3476 * if (!excluded) { 3477 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3478 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3479 * } 3480 * Atomic::release_store(&tl->_vthread, true); 3481 * return; 3482 * } 3483 * Atomic::release_store(&tl->_vthread, false); 3484 */ 3485 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3486 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3487 3488 Node* input_memory_state = reset_memory(); 3489 set_all_memory(input_memory_state); 3490 3491 Node* excluded_mask = _gvn.intcon(32768); 3492 Node* epoch_mask = _gvn.intcon(32767); 3493 3494 Node* const carrierThread = generate_current_thread(jt); 3495 // If thread != carrierThread, this is a virtual thread. 3496 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3497 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3498 IfNode* iff_thread_not_equal_carrierThread = 3499 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3500 3501 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3502 3503 // False branch, is carrierThread. 3504 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3505 // Store release 3506 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3507 3508 set_all_memory(input_memory_state); 3509 3510 // True branch, is virtual thread. 3511 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3512 set_control(thread_not_equal_carrierThread); 3513 3514 // Load the raw epoch value from the vthread. 3515 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3516 Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3517 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3518 3519 // Mask off the excluded information from the epoch. 3520 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3521 3522 // Load the tid field from the thread. 3523 Node* tid = load_field_from_object(thread, "tid", "J"); 3524 3525 // Store the vthread tid to the jfr thread local. 3526 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3527 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); 3528 3529 // Branch is_excluded to conditionalize updating the epoch . 3530 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3531 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3532 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3533 3534 // True branch, vthread is excluded, no need to write epoch info. 3535 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3536 set_control(excluded); 3537 Node* vthread_is_excluded = _gvn.intcon(1); 3538 3539 // False branch, vthread is included, update epoch info. 3540 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3541 set_control(included); 3542 Node* vthread_is_included = _gvn.intcon(0); 3543 3544 // Get epoch value. 3545 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3546 3547 // Store the vthread epoch to the jfr thread local. 3548 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3549 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); 3550 3551 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3552 record_for_igvn(excluded_rgn); 3553 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3554 record_for_igvn(excluded_mem); 3555 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3556 record_for_igvn(exclusion); 3557 3558 // Merge the excluded control and memory. 3559 excluded_rgn->init_req(_true_path, excluded); 3560 excluded_rgn->init_req(_false_path, included); 3561 excluded_mem->init_req(_true_path, tid_memory); 3562 excluded_mem->init_req(_false_path, included_memory); 3563 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3564 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3565 3566 // Set intermediate state. 3567 set_control(_gvn.transform(excluded_rgn)); 3568 set_all_memory(excluded_mem); 3569 3570 // Store the vthread exclusion state to the jfr thread local. 3571 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3572 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); 3573 3574 // Store release 3575 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3576 3577 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3578 record_for_igvn(thread_compare_rgn); 3579 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3580 record_for_igvn(thread_compare_mem); 3581 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3582 record_for_igvn(vthread); 3583 3584 // Merge the thread_compare control and memory. 3585 thread_compare_rgn->init_req(_true_path, control()); 3586 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3587 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3588 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3589 3590 // Set output state. 3591 set_control(_gvn.transform(thread_compare_rgn)); 3592 set_all_memory(_gvn.transform(thread_compare_mem)); 3593 } 3594 3595 #endif // JFR_HAVE_INTRINSICS 3596 3597 //------------------------inline_native_currentCarrierThread------------------ 3598 bool LibraryCallKit::inline_native_currentCarrierThread() { 3599 Node* junk = nullptr; 3600 set_result(generate_current_thread(junk)); 3601 return true; 3602 } 3603 3604 //------------------------inline_native_currentThread------------------ 3605 bool LibraryCallKit::inline_native_currentThread() { 3606 Node* junk = nullptr; 3607 set_result(generate_virtual_thread(junk)); 3608 return true; 3609 } 3610 3611 //------------------------inline_native_setVthread------------------ 3612 bool LibraryCallKit::inline_native_setCurrentThread() { 3613 assert(C->method()->changes_current_thread(), 3614 "method changes current Thread but is not annotated ChangesCurrentThread"); 3615 Node* arr = argument(1); 3616 Node* thread = _gvn.transform(new ThreadLocalNode()); 3617 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3618 Node* thread_obj_handle 3619 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3620 thread_obj_handle = _gvn.transform(thread_obj_handle); 3621 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3622 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3623 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3624 return true; 3625 } 3626 3627 const Type* LibraryCallKit::scopedValueCache_type() { 3628 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3629 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3630 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3631 3632 // Because we create the scopedValue cache lazily we have to make the 3633 // type of the result BotPTR. 3634 bool xk = etype->klass_is_exact(); 3635 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3636 return objects_type; 3637 } 3638 3639 Node* LibraryCallKit::scopedValueCache_helper() { 3640 Node* thread = _gvn.transform(new ThreadLocalNode()); 3641 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3642 // We cannot use immutable_memory() because we might flip onto a 3643 // different carrier thread, at which point we'll need to use that 3644 // carrier thread's cache. 3645 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3646 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3647 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3648 } 3649 3650 //------------------------inline_native_scopedValueCache------------------ 3651 bool LibraryCallKit::inline_native_scopedValueCache() { 3652 Node* cache_obj_handle = scopedValueCache_helper(); 3653 const Type* objects_type = scopedValueCache_type(); 3654 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3655 3656 return true; 3657 } 3658 3659 //------------------------inline_native_setScopedValueCache------------------ 3660 bool LibraryCallKit::inline_native_setScopedValueCache() { 3661 Node* arr = argument(0); 3662 Node* cache_obj_handle = scopedValueCache_helper(); 3663 const Type* objects_type = scopedValueCache_type(); 3664 3665 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3666 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3667 3668 return true; 3669 } 3670 3671 //---------------------------load_mirror_from_klass---------------------------- 3672 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3673 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3674 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3675 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3676 // mirror = ((OopHandle)mirror)->resolve(); 3677 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3678 } 3679 3680 //-----------------------load_klass_from_mirror_common------------------------- 3681 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3682 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3683 // and branch to the given path on the region. 3684 // If never_see_null, take an uncommon trap on null, so we can optimistically 3685 // compile for the non-null case. 3686 // If the region is null, force never_see_null = true. 3687 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3688 bool never_see_null, 3689 RegionNode* region, 3690 int null_path, 3691 int offset) { 3692 if (region == nullptr) never_see_null = true; 3693 Node* p = basic_plus_adr(mirror, offset); 3694 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3695 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3696 Node* null_ctl = top(); 3697 kls = null_check_oop(kls, &null_ctl, never_see_null); 3698 if (region != nullptr) { 3699 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3700 region->init_req(null_path, null_ctl); 3701 } else { 3702 assert(null_ctl == top(), "no loose ends"); 3703 } 3704 return kls; 3705 } 3706 3707 //--------------------(inline_native_Class_query helpers)--------------------- 3708 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3709 // Fall through if (mods & mask) == bits, take the guard otherwise. 3710 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3711 // Branch around if the given klass has the given modifier bit set. 3712 // Like generate_guard, adds a new path onto the region. 3713 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3714 Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered); 3715 Node* mask = intcon(modifier_mask); 3716 Node* bits = intcon(modifier_bits); 3717 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3718 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3719 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3720 return generate_fair_guard(bol, region); 3721 } 3722 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3723 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3724 } 3725 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3726 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3727 } 3728 3729 //-------------------------inline_native_Class_query------------------- 3730 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3731 const Type* return_type = TypeInt::BOOL; 3732 Node* prim_return_value = top(); // what happens if it's a primitive class? 3733 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3734 bool expect_prim = false; // most of these guys expect to work on refs 3735 3736 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3737 3738 Node* mirror = argument(0); 3739 Node* obj = top(); 3740 3741 switch (id) { 3742 case vmIntrinsics::_isInstance: 3743 // nothing is an instance of a primitive type 3744 prim_return_value = intcon(0); 3745 obj = argument(1); 3746 break; 3747 case vmIntrinsics::_getModifiers: 3748 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3749 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3750 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3751 break; 3752 case vmIntrinsics::_isInterface: 3753 prim_return_value = intcon(0); 3754 break; 3755 case vmIntrinsics::_isArray: 3756 prim_return_value = intcon(0); 3757 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3758 break; 3759 case vmIntrinsics::_isPrimitive: 3760 prim_return_value = intcon(1); 3761 expect_prim = true; // obviously 3762 break; 3763 case vmIntrinsics::_isHidden: 3764 prim_return_value = intcon(0); 3765 break; 3766 case vmIntrinsics::_getSuperclass: 3767 prim_return_value = null(); 3768 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3769 break; 3770 case vmIntrinsics::_getClassAccessFlags: 3771 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3772 return_type = TypeInt::INT; // not bool! 6297094 3773 break; 3774 default: 3775 fatal_unexpected_iid(id); 3776 break; 3777 } 3778 3779 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3780 if (mirror_con == nullptr) return false; // cannot happen? 3781 3782 #ifndef PRODUCT 3783 if (C->print_intrinsics() || C->print_inlining()) { 3784 ciType* k = mirror_con->java_mirror_type(); 3785 if (k) { 3786 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3787 k->print_name(); 3788 tty->cr(); 3789 } 3790 } 3791 #endif 3792 3793 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3794 RegionNode* region = new RegionNode(PATH_LIMIT); 3795 record_for_igvn(region); 3796 PhiNode* phi = new PhiNode(region, return_type); 3797 3798 // The mirror will never be null of Reflection.getClassAccessFlags, however 3799 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3800 // if it is. See bug 4774291. 3801 3802 // For Reflection.getClassAccessFlags(), the null check occurs in 3803 // the wrong place; see inline_unsafe_access(), above, for a similar 3804 // situation. 3805 mirror = null_check(mirror); 3806 // If mirror or obj is dead, only null-path is taken. 3807 if (stopped()) return true; 3808 3809 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3810 3811 // Now load the mirror's klass metaobject, and null-check it. 3812 // Side-effects region with the control path if the klass is null. 3813 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3814 // If kls is null, we have a primitive mirror. 3815 phi->init_req(_prim_path, prim_return_value); 3816 if (stopped()) { set_result(region, phi); return true; } 3817 bool safe_for_replace = (region->in(_prim_path) == top()); 3818 3819 Node* p; // handy temp 3820 Node* null_ctl; 3821 3822 // Now that we have the non-null klass, we can perform the real query. 3823 // For constant classes, the query will constant-fold in LoadNode::Value. 3824 Node* query_value = top(); 3825 switch (id) { 3826 case vmIntrinsics::_isInstance: 3827 // nothing is an instance of a primitive type 3828 query_value = gen_instanceof(obj, kls, safe_for_replace); 3829 break; 3830 3831 case vmIntrinsics::_getModifiers: 3832 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3833 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3834 break; 3835 3836 case vmIntrinsics::_isInterface: 3837 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3838 if (generate_interface_guard(kls, region) != nullptr) 3839 // A guard was added. If the guard is taken, it was an interface. 3840 phi->add_req(intcon(1)); 3841 // If we fall through, it's a plain class. 3842 query_value = intcon(0); 3843 break; 3844 3845 case vmIntrinsics::_isArray: 3846 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3847 if (generate_array_guard(kls, region) != nullptr) 3848 // A guard was added. If the guard is taken, it was an array. 3849 phi->add_req(intcon(1)); 3850 // If we fall through, it's a plain class. 3851 query_value = intcon(0); 3852 break; 3853 3854 case vmIntrinsics::_isPrimitive: 3855 query_value = intcon(0); // "normal" path produces false 3856 break; 3857 3858 case vmIntrinsics::_isHidden: 3859 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 3860 if (generate_hidden_class_guard(kls, region) != nullptr) 3861 // A guard was added. If the guard is taken, it was an hidden class. 3862 phi->add_req(intcon(1)); 3863 // If we fall through, it's a plain class. 3864 query_value = intcon(0); 3865 break; 3866 3867 3868 case vmIntrinsics::_getSuperclass: 3869 // The rules here are somewhat unfortunate, but we can still do better 3870 // with random logic than with a JNI call. 3871 // Interfaces store null or Object as _super, but must report null. 3872 // Arrays store an intermediate super as _super, but must report Object. 3873 // Other types can report the actual _super. 3874 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3875 if (generate_interface_guard(kls, region) != nullptr) 3876 // A guard was added. If the guard is taken, it was an interface. 3877 phi->add_req(null()); 3878 if (generate_array_guard(kls, region) != nullptr) 3879 // A guard was added. If the guard is taken, it was an array. 3880 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3881 // If we fall through, it's a plain class. Get its _super. 3882 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3883 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3884 null_ctl = top(); 3885 kls = null_check_oop(kls, &null_ctl); 3886 if (null_ctl != top()) { 3887 // If the guard is taken, Object.superClass is null (both klass and mirror). 3888 region->add_req(null_ctl); 3889 phi ->add_req(null()); 3890 } 3891 if (!stopped()) { 3892 query_value = load_mirror_from_klass(kls); 3893 } 3894 break; 3895 3896 case vmIntrinsics::_getClassAccessFlags: 3897 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3898 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3899 break; 3900 3901 default: 3902 fatal_unexpected_iid(id); 3903 break; 3904 } 3905 3906 // Fall-through is the normal case of a query to a real class. 3907 phi->init_req(1, query_value); 3908 region->init_req(1, control()); 3909 3910 C->set_has_split_ifs(true); // Has chance for split-if optimization 3911 set_result(region, phi); 3912 return true; 3913 } 3914 3915 //-------------------------inline_Class_cast------------------- 3916 bool LibraryCallKit::inline_Class_cast() { 3917 Node* mirror = argument(0); // Class 3918 Node* obj = argument(1); 3919 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3920 if (mirror_con == nullptr) { 3921 return false; // dead path (mirror->is_top()). 3922 } 3923 if (obj == nullptr || obj->is_top()) { 3924 return false; // dead path 3925 } 3926 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3927 3928 // First, see if Class.cast() can be folded statically. 3929 // java_mirror_type() returns non-null for compile-time Class constants. 3930 ciType* tm = mirror_con->java_mirror_type(); 3931 if (tm != nullptr && tm->is_klass() && 3932 tp != nullptr) { 3933 if (!tp->is_loaded()) { 3934 // Don't use intrinsic when class is not loaded. 3935 return false; 3936 } else { 3937 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 3938 if (static_res == Compile::SSC_always_true) { 3939 // isInstance() is true - fold the code. 3940 set_result(obj); 3941 return true; 3942 } else if (static_res == Compile::SSC_always_false) { 3943 // Don't use intrinsic, have to throw ClassCastException. 3944 // If the reference is null, the non-intrinsic bytecode will 3945 // be optimized appropriately. 3946 return false; 3947 } 3948 } 3949 } 3950 3951 // Bailout intrinsic and do normal inlining if exception path is frequent. 3952 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3953 return false; 3954 } 3955 3956 // Generate dynamic checks. 3957 // Class.cast() is java implementation of _checkcast bytecode. 3958 // Do checkcast (Parse::do_checkcast()) optimizations here. 3959 3960 mirror = null_check(mirror); 3961 // If mirror is dead, only null-path is taken. 3962 if (stopped()) { 3963 return true; 3964 } 3965 3966 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 3967 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3968 RegionNode* region = new RegionNode(PATH_LIMIT); 3969 record_for_igvn(region); 3970 3971 // Now load the mirror's klass metaobject, and null-check it. 3972 // If kls is null, we have a primitive mirror and 3973 // nothing is an instance of a primitive type. 3974 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3975 3976 Node* res = top(); 3977 if (!stopped()) { 3978 Node* bad_type_ctrl = top(); 3979 // Do checkcast optimizations. 3980 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3981 region->init_req(_bad_type_path, bad_type_ctrl); 3982 } 3983 if (region->in(_prim_path) != top() || 3984 region->in(_bad_type_path) != top()) { 3985 // Let Interpreter throw ClassCastException. 3986 PreserveJVMState pjvms(this); 3987 set_control(_gvn.transform(region)); 3988 uncommon_trap(Deoptimization::Reason_intrinsic, 3989 Deoptimization::Action_maybe_recompile); 3990 } 3991 if (!stopped()) { 3992 set_result(res); 3993 } 3994 return true; 3995 } 3996 3997 3998 //--------------------------inline_native_subtype_check------------------------ 3999 // This intrinsic takes the JNI calls out of the heart of 4000 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4001 bool LibraryCallKit::inline_native_subtype_check() { 4002 // Pull both arguments off the stack. 4003 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4004 args[0] = argument(0); 4005 args[1] = argument(1); 4006 Node* klasses[2]; // corresponding Klasses: superk, subk 4007 klasses[0] = klasses[1] = top(); 4008 4009 enum { 4010 // A full decision tree on {superc is prim, subc is prim}: 4011 _prim_0_path = 1, // {P,N} => false 4012 // {P,P} & superc!=subc => false 4013 _prim_same_path, // {P,P} & superc==subc => true 4014 _prim_1_path, // {N,P} => false 4015 _ref_subtype_path, // {N,N} & subtype check wins => true 4016 _both_ref_path, // {N,N} & subtype check loses => false 4017 PATH_LIMIT 4018 }; 4019 4020 RegionNode* region = new RegionNode(PATH_LIMIT); 4021 Node* phi = new PhiNode(region, TypeInt::BOOL); 4022 record_for_igvn(region); 4023 4024 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4025 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4026 int class_klass_offset = java_lang_Class::klass_offset(); 4027 4028 // First null-check both mirrors and load each mirror's klass metaobject. 4029 int which_arg; 4030 for (which_arg = 0; which_arg <= 1; which_arg++) { 4031 Node* arg = args[which_arg]; 4032 arg = null_check(arg); 4033 if (stopped()) break; 4034 args[which_arg] = arg; 4035 4036 Node* p = basic_plus_adr(arg, class_klass_offset); 4037 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 4038 klasses[which_arg] = _gvn.transform(kls); 4039 } 4040 4041 // Having loaded both klasses, test each for null. 4042 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4043 for (which_arg = 0; which_arg <= 1; which_arg++) { 4044 Node* kls = klasses[which_arg]; 4045 Node* null_ctl = top(); 4046 kls = null_check_oop(kls, &null_ctl, never_see_null); 4047 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4048 region->init_req(prim_path, null_ctl); 4049 if (stopped()) break; 4050 klasses[which_arg] = kls; 4051 } 4052 4053 if (!stopped()) { 4054 // now we have two reference types, in klasses[0..1] 4055 Node* subk = klasses[1]; // the argument to isAssignableFrom 4056 Node* superk = klasses[0]; // the receiver 4057 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4058 // now we have a successful reference subtype check 4059 region->set_req(_ref_subtype_path, control()); 4060 } 4061 4062 // If both operands are primitive (both klasses null), then 4063 // we must return true when they are identical primitives. 4064 // It is convenient to test this after the first null klass check. 4065 set_control(region->in(_prim_0_path)); // go back to first null check 4066 if (!stopped()) { 4067 // Since superc is primitive, make a guard for the superc==subc case. 4068 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4069 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4070 generate_guard(bol_eq, region, PROB_FAIR); 4071 if (region->req() == PATH_LIMIT+1) { 4072 // A guard was added. If the added guard is taken, superc==subc. 4073 region->swap_edges(PATH_LIMIT, _prim_same_path); 4074 region->del_req(PATH_LIMIT); 4075 } 4076 region->set_req(_prim_0_path, control()); // Not equal after all. 4077 } 4078 4079 // these are the only paths that produce 'true': 4080 phi->set_req(_prim_same_path, intcon(1)); 4081 phi->set_req(_ref_subtype_path, intcon(1)); 4082 4083 // pull together the cases: 4084 assert(region->req() == PATH_LIMIT, "sane region"); 4085 for (uint i = 1; i < region->req(); i++) { 4086 Node* ctl = region->in(i); 4087 if (ctl == nullptr || ctl == top()) { 4088 region->set_req(i, top()); 4089 phi ->set_req(i, top()); 4090 } else if (phi->in(i) == nullptr) { 4091 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4092 } 4093 } 4094 4095 set_control(_gvn.transform(region)); 4096 set_result(_gvn.transform(phi)); 4097 return true; 4098 } 4099 4100 //---------------------generate_array_guard_common------------------------ 4101 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4102 bool obj_array, bool not_array) { 4103 4104 if (stopped()) { 4105 return nullptr; 4106 } 4107 4108 // If obj_array/non_array==false/false: 4109 // Branch around if the given klass is in fact an array (either obj or prim). 4110 // If obj_array/non_array==false/true: 4111 // Branch around if the given klass is not an array klass of any kind. 4112 // If obj_array/non_array==true/true: 4113 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4114 // If obj_array/non_array==true/false: 4115 // Branch around if the kls is an oop array (Object[] or subtype) 4116 // 4117 // Like generate_guard, adds a new path onto the region. 4118 jint layout_con = 0; 4119 Node* layout_val = get_layout_helper(kls, layout_con); 4120 if (layout_val == nullptr) { 4121 bool query = (obj_array 4122 ? Klass::layout_helper_is_objArray(layout_con) 4123 : Klass::layout_helper_is_array(layout_con)); 4124 if (query == not_array) { 4125 return nullptr; // never a branch 4126 } else { // always a branch 4127 Node* always_branch = control(); 4128 if (region != nullptr) 4129 region->add_req(always_branch); 4130 set_control(top()); 4131 return always_branch; 4132 } 4133 } 4134 // Now test the correct condition. 4135 jint nval = (obj_array 4136 ? (jint)(Klass::_lh_array_tag_type_value 4137 << Klass::_lh_array_tag_shift) 4138 : Klass::_lh_neutral_value); 4139 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4140 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4141 // invert the test if we are looking for a non-array 4142 if (not_array) btest = BoolTest(btest).negate(); 4143 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4144 return generate_fair_guard(bol, region); 4145 } 4146 4147 4148 //-----------------------inline_native_newArray-------------------------- 4149 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4150 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4151 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4152 Node* mirror; 4153 Node* count_val; 4154 if (uninitialized) { 4155 null_check_receiver(); 4156 mirror = argument(1); 4157 count_val = argument(2); 4158 } else { 4159 mirror = argument(0); 4160 count_val = argument(1); 4161 } 4162 4163 mirror = null_check(mirror); 4164 // If mirror or obj is dead, only null-path is taken. 4165 if (stopped()) return true; 4166 4167 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4168 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4169 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4170 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4171 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4172 4173 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4174 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4175 result_reg, _slow_path); 4176 Node* normal_ctl = control(); 4177 Node* no_array_ctl = result_reg->in(_slow_path); 4178 4179 // Generate code for the slow case. We make a call to newArray(). 4180 set_control(no_array_ctl); 4181 if (!stopped()) { 4182 // Either the input type is void.class, or else the 4183 // array klass has not yet been cached. Either the 4184 // ensuing call will throw an exception, or else it 4185 // will cache the array klass for next time. 4186 PreserveJVMState pjvms(this); 4187 CallJavaNode* slow_call = nullptr; 4188 if (uninitialized) { 4189 // Generate optimized virtual call (holder class 'Unsafe' is final) 4190 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4191 } else { 4192 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4193 } 4194 Node* slow_result = set_results_for_java_call(slow_call); 4195 // this->control() comes from set_results_for_java_call 4196 result_reg->set_req(_slow_path, control()); 4197 result_val->set_req(_slow_path, slow_result); 4198 result_io ->set_req(_slow_path, i_o()); 4199 result_mem->set_req(_slow_path, reset_memory()); 4200 } 4201 4202 set_control(normal_ctl); 4203 if (!stopped()) { 4204 // Normal case: The array type has been cached in the java.lang.Class. 4205 // The following call works fine even if the array type is polymorphic. 4206 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4207 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4208 result_reg->init_req(_normal_path, control()); 4209 result_val->init_req(_normal_path, obj); 4210 result_io ->init_req(_normal_path, i_o()); 4211 result_mem->init_req(_normal_path, reset_memory()); 4212 4213 if (uninitialized) { 4214 // Mark the allocation so that zeroing is skipped 4215 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4216 alloc->maybe_set_complete(&_gvn); 4217 } 4218 } 4219 4220 // Return the combined state. 4221 set_i_o( _gvn.transform(result_io) ); 4222 set_all_memory( _gvn.transform(result_mem)); 4223 4224 C->set_has_split_ifs(true); // Has chance for split-if optimization 4225 set_result(result_reg, result_val); 4226 return true; 4227 } 4228 4229 //----------------------inline_native_getLength-------------------------- 4230 // public static native int java.lang.reflect.Array.getLength(Object array); 4231 bool LibraryCallKit::inline_native_getLength() { 4232 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4233 4234 Node* array = null_check(argument(0)); 4235 // If array is dead, only null-path is taken. 4236 if (stopped()) return true; 4237 4238 // Deoptimize if it is a non-array. 4239 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr); 4240 4241 if (non_array != nullptr) { 4242 PreserveJVMState pjvms(this); 4243 set_control(non_array); 4244 uncommon_trap(Deoptimization::Reason_intrinsic, 4245 Deoptimization::Action_maybe_recompile); 4246 } 4247 4248 // If control is dead, only non-array-path is taken. 4249 if (stopped()) return true; 4250 4251 // The works fine even if the array type is polymorphic. 4252 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4253 Node* result = load_array_length(array); 4254 4255 C->set_has_split_ifs(true); // Has chance for split-if optimization 4256 set_result(result); 4257 return true; 4258 } 4259 4260 //------------------------inline_array_copyOf---------------------------- 4261 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4262 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4263 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4264 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4265 4266 // Get the arguments. 4267 Node* original = argument(0); 4268 Node* start = is_copyOfRange? argument(1): intcon(0); 4269 Node* end = is_copyOfRange? argument(2): argument(1); 4270 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4271 4272 Node* newcopy = nullptr; 4273 4274 // Set the original stack and the reexecute bit for the interpreter to reexecute 4275 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4276 { PreserveReexecuteState preexecs(this); 4277 jvms()->set_should_reexecute(true); 4278 4279 array_type_mirror = null_check(array_type_mirror); 4280 original = null_check(original); 4281 4282 // Check if a null path was taken unconditionally. 4283 if (stopped()) return true; 4284 4285 Node* orig_length = load_array_length(original); 4286 4287 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4288 klass_node = null_check(klass_node); 4289 4290 RegionNode* bailout = new RegionNode(1); 4291 record_for_igvn(bailout); 4292 4293 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4294 // Bail out if that is so. 4295 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4296 if (not_objArray != nullptr) { 4297 // Improve the klass node's type from the new optimistic assumption: 4298 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4299 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4300 Node* cast = new CastPPNode(klass_node, akls); 4301 cast->init_req(0, control()); 4302 klass_node = _gvn.transform(cast); 4303 } 4304 4305 // Bail out if either start or end is negative. 4306 generate_negative_guard(start, bailout, &start); 4307 generate_negative_guard(end, bailout, &end); 4308 4309 Node* length = end; 4310 if (_gvn.type(start) != TypeInt::ZERO) { 4311 length = _gvn.transform(new SubINode(end, start)); 4312 } 4313 4314 // Bail out if length is negative. 4315 // Without this the new_array would throw 4316 // NegativeArraySizeException but IllegalArgumentException is what 4317 // should be thrown 4318 generate_negative_guard(length, bailout, &length); 4319 4320 if (bailout->req() > 1) { 4321 PreserveJVMState pjvms(this); 4322 set_control(_gvn.transform(bailout)); 4323 uncommon_trap(Deoptimization::Reason_intrinsic, 4324 Deoptimization::Action_maybe_recompile); 4325 } 4326 4327 if (!stopped()) { 4328 // How many elements will we copy from the original? 4329 // The answer is MinI(orig_length - start, length). 4330 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4331 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4332 4333 // Generate a direct call to the right arraycopy function(s). 4334 // We know the copy is disjoint but we might not know if the 4335 // oop stores need checking. 4336 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4337 // This will fail a store-check if x contains any non-nulls. 4338 4339 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4340 // loads/stores but it is legal only if we're sure the 4341 // Arrays.copyOf would succeed. So we need all input arguments 4342 // to the copyOf to be validated, including that the copy to the 4343 // new array won't trigger an ArrayStoreException. That subtype 4344 // check can be optimized if we know something on the type of 4345 // the input array from type speculation. 4346 if (_gvn.type(klass_node)->singleton()) { 4347 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4348 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4349 4350 int test = C->static_subtype_check(superk, subk); 4351 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4352 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4353 if (t_original->speculative_type() != nullptr) { 4354 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4355 } 4356 } 4357 } 4358 4359 bool validated = false; 4360 // Reason_class_check rather than Reason_intrinsic because we 4361 // want to intrinsify even if this traps. 4362 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4363 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4364 4365 if (not_subtype_ctrl != top()) { 4366 PreserveJVMState pjvms(this); 4367 set_control(not_subtype_ctrl); 4368 uncommon_trap(Deoptimization::Reason_class_check, 4369 Deoptimization::Action_make_not_entrant); 4370 assert(stopped(), "Should be stopped"); 4371 } 4372 validated = true; 4373 } 4374 4375 if (!stopped()) { 4376 newcopy = new_array(klass_node, length, 0); // no arguments to push 4377 4378 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 4379 load_object_klass(original), klass_node); 4380 if (!is_copyOfRange) { 4381 ac->set_copyof(validated); 4382 } else { 4383 ac->set_copyofrange(validated); 4384 } 4385 Node* n = _gvn.transform(ac); 4386 if (n == ac) { 4387 ac->connect_outputs(this); 4388 } else { 4389 assert(validated, "shouldn't transform if all arguments not validated"); 4390 set_all_memory(n); 4391 } 4392 } 4393 } 4394 } // original reexecute is set back here 4395 4396 C->set_has_split_ifs(true); // Has chance for split-if optimization 4397 if (!stopped()) { 4398 set_result(newcopy); 4399 } 4400 return true; 4401 } 4402 4403 4404 //----------------------generate_virtual_guard--------------------------- 4405 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4406 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4407 RegionNode* slow_region) { 4408 ciMethod* method = callee(); 4409 int vtable_index = method->vtable_index(); 4410 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4411 "bad index %d", vtable_index); 4412 // Get the Method* out of the appropriate vtable entry. 4413 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4414 vtable_index*vtableEntry::size_in_bytes() + 4415 in_bytes(vtableEntry::method_offset()); 4416 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4417 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4418 4419 // Compare the target method with the expected method (e.g., Object.hashCode). 4420 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4421 4422 Node* native_call = makecon(native_call_addr); 4423 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4424 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4425 4426 return generate_slow_guard(test_native, slow_region); 4427 } 4428 4429 //-----------------------generate_method_call---------------------------- 4430 // Use generate_method_call to make a slow-call to the real 4431 // method if the fast path fails. An alternative would be to 4432 // use a stub like OptoRuntime::slow_arraycopy_Java. 4433 // This only works for expanding the current library call, 4434 // not another intrinsic. (E.g., don't use this for making an 4435 // arraycopy call inside of the copyOf intrinsic.) 4436 CallJavaNode* 4437 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4438 // When compiling the intrinsic method itself, do not use this technique. 4439 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4440 4441 ciMethod* method = callee(); 4442 // ensure the JVMS we have will be correct for this call 4443 guarantee(method_id == method->intrinsic_id(), "must match"); 4444 4445 const TypeFunc* tf = TypeFunc::make(method); 4446 if (res_not_null) { 4447 assert(tf->return_type() == T_OBJECT, ""); 4448 const TypeTuple* range = tf->range(); 4449 const Type** fields = TypeTuple::fields(range->cnt()); 4450 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4451 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4452 tf = TypeFunc::make(tf->domain(), new_range); 4453 } 4454 CallJavaNode* slow_call; 4455 if (is_static) { 4456 assert(!is_virtual, ""); 4457 slow_call = new CallStaticJavaNode(C, tf, 4458 SharedRuntime::get_resolve_static_call_stub(), method); 4459 } else if (is_virtual) { 4460 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4461 int vtable_index = Method::invalid_vtable_index; 4462 if (UseInlineCaches) { 4463 // Suppress the vtable call 4464 } else { 4465 // hashCode and clone are not a miranda methods, 4466 // so the vtable index is fixed. 4467 // No need to use the linkResolver to get it. 4468 vtable_index = method->vtable_index(); 4469 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4470 "bad index %d", vtable_index); 4471 } 4472 slow_call = new CallDynamicJavaNode(tf, 4473 SharedRuntime::get_resolve_virtual_call_stub(), 4474 method, vtable_index); 4475 } else { // neither virtual nor static: opt_virtual 4476 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4477 slow_call = new CallStaticJavaNode(C, tf, 4478 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4479 slow_call->set_optimized_virtual(true); 4480 } 4481 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4482 // To be able to issue a direct call (optimized virtual or virtual) 4483 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4484 // about the method being invoked should be attached to the call site to 4485 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4486 slow_call->set_override_symbolic_info(true); 4487 } 4488 set_arguments_for_java_call(slow_call); 4489 set_edges_for_java_call(slow_call); 4490 return slow_call; 4491 } 4492 4493 4494 /** 4495 * Build special case code for calls to hashCode on an object. This call may 4496 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4497 * slightly different code. 4498 */ 4499 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4500 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4501 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4502 4503 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4504 4505 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4506 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4507 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4508 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4509 Node* obj = nullptr; 4510 if (!is_static) { 4511 // Check for hashing null object 4512 obj = null_check_receiver(); 4513 if (stopped()) return true; // unconditionally null 4514 result_reg->init_req(_null_path, top()); 4515 result_val->init_req(_null_path, top()); 4516 } else { 4517 // Do a null check, and return zero if null. 4518 // System.identityHashCode(null) == 0 4519 obj = argument(0); 4520 Node* null_ctl = top(); 4521 obj = null_check_oop(obj, &null_ctl); 4522 result_reg->init_req(_null_path, null_ctl); 4523 result_val->init_req(_null_path, _gvn.intcon(0)); 4524 } 4525 4526 // Unconditionally null? Then return right away. 4527 if (stopped()) { 4528 set_control( result_reg->in(_null_path)); 4529 if (!stopped()) 4530 set_result(result_val->in(_null_path)); 4531 return true; 4532 } 4533 4534 // We only go to the fast case code if we pass a number of guards. The 4535 // paths which do not pass are accumulated in the slow_region. 4536 RegionNode* slow_region = new RegionNode(1); 4537 record_for_igvn(slow_region); 4538 4539 // If this is a virtual call, we generate a funny guard. We pull out 4540 // the vtable entry corresponding to hashCode() from the target object. 4541 // If the target method which we are calling happens to be the native 4542 // Object hashCode() method, we pass the guard. We do not need this 4543 // guard for non-virtual calls -- the caller is known to be the native 4544 // Object hashCode(). 4545 if (is_virtual) { 4546 // After null check, get the object's klass. 4547 Node* obj_klass = load_object_klass(obj); 4548 generate_virtual_guard(obj_klass, slow_region); 4549 } 4550 4551 // Get the header out of the object, use LoadMarkNode when available 4552 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4553 // The control of the load must be null. Otherwise, the load can move before 4554 // the null check after castPP removal. 4555 Node* no_ctrl = nullptr; 4556 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4557 4558 // Test the header to see if it is unlocked. 4559 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4560 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4561 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4562 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 4563 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 4564 4565 generate_slow_guard(test_unlocked, slow_region); 4566 4567 // Get the hash value and check to see that it has been properly assigned. 4568 // We depend on hash_mask being at most 32 bits and avoid the use of 4569 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4570 // vm: see markWord.hpp. 4571 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4572 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4573 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4574 // This hack lets the hash bits live anywhere in the mark object now, as long 4575 // as the shift drops the relevant bits into the low 32 bits. Note that 4576 // Java spec says that HashCode is an int so there's no point in capturing 4577 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4578 hshifted_header = ConvX2I(hshifted_header); 4579 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4580 4581 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4582 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4583 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4584 4585 generate_slow_guard(test_assigned, slow_region); 4586 4587 Node* init_mem = reset_memory(); 4588 // fill in the rest of the null path: 4589 result_io ->init_req(_null_path, i_o()); 4590 result_mem->init_req(_null_path, init_mem); 4591 4592 result_val->init_req(_fast_path, hash_val); 4593 result_reg->init_req(_fast_path, control()); 4594 result_io ->init_req(_fast_path, i_o()); 4595 result_mem->init_req(_fast_path, init_mem); 4596 4597 // Generate code for the slow case. We make a call to hashCode(). 4598 set_control(_gvn.transform(slow_region)); 4599 if (!stopped()) { 4600 // No need for PreserveJVMState, because we're using up the present state. 4601 set_all_memory(init_mem); 4602 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4603 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4604 Node* slow_result = set_results_for_java_call(slow_call); 4605 // this->control() comes from set_results_for_java_call 4606 result_reg->init_req(_slow_path, control()); 4607 result_val->init_req(_slow_path, slow_result); 4608 result_io ->set_req(_slow_path, i_o()); 4609 result_mem ->set_req(_slow_path, reset_memory()); 4610 } 4611 4612 // Return the combined state. 4613 set_i_o( _gvn.transform(result_io) ); 4614 set_all_memory( _gvn.transform(result_mem)); 4615 4616 set_result(result_reg, result_val); 4617 return true; 4618 } 4619 4620 //---------------------------inline_native_getClass---------------------------- 4621 // public final native Class<?> java.lang.Object.getClass(); 4622 // 4623 // Build special case code for calls to getClass on an object. 4624 bool LibraryCallKit::inline_native_getClass() { 4625 Node* obj = null_check_receiver(); 4626 if (stopped()) return true; 4627 set_result(load_mirror_from_klass(load_object_klass(obj))); 4628 return true; 4629 } 4630 4631 //-----------------inline_native_Reflection_getCallerClass--------------------- 4632 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4633 // 4634 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4635 // 4636 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4637 // in that it must skip particular security frames and checks for 4638 // caller sensitive methods. 4639 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4640 #ifndef PRODUCT 4641 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4642 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4643 } 4644 #endif 4645 4646 if (!jvms()->has_method()) { 4647 #ifndef PRODUCT 4648 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4649 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4650 } 4651 #endif 4652 return false; 4653 } 4654 4655 // Walk back up the JVM state to find the caller at the required 4656 // depth. 4657 JVMState* caller_jvms = jvms(); 4658 4659 // Cf. JVM_GetCallerClass 4660 // NOTE: Start the loop at depth 1 because the current JVM state does 4661 // not include the Reflection.getCallerClass() frame. 4662 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4663 ciMethod* m = caller_jvms->method(); 4664 switch (n) { 4665 case 0: 4666 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4667 break; 4668 case 1: 4669 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4670 if (!m->caller_sensitive()) { 4671 #ifndef PRODUCT 4672 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4673 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4674 } 4675 #endif 4676 return false; // bail-out; let JVM_GetCallerClass do the work 4677 } 4678 break; 4679 default: 4680 if (!m->is_ignored_by_security_stack_walk()) { 4681 // We have reached the desired frame; return the holder class. 4682 // Acquire method holder as java.lang.Class and push as constant. 4683 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4684 ciInstance* caller_mirror = caller_klass->java_mirror(); 4685 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4686 4687 #ifndef PRODUCT 4688 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4689 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4690 tty->print_cr(" JVM state at this point:"); 4691 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4692 ciMethod* m = jvms()->of_depth(i)->method(); 4693 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4694 } 4695 } 4696 #endif 4697 return true; 4698 } 4699 break; 4700 } 4701 } 4702 4703 #ifndef PRODUCT 4704 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4705 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4706 tty->print_cr(" JVM state at this point:"); 4707 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4708 ciMethod* m = jvms()->of_depth(i)->method(); 4709 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4710 } 4711 } 4712 #endif 4713 4714 return false; // bail-out; let JVM_GetCallerClass do the work 4715 } 4716 4717 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4718 Node* arg = argument(0); 4719 Node* result = nullptr; 4720 4721 switch (id) { 4722 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4723 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4724 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4725 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4726 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4727 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4728 4729 case vmIntrinsics::_doubleToLongBits: { 4730 // two paths (plus control) merge in a wood 4731 RegionNode *r = new RegionNode(3); 4732 Node *phi = new PhiNode(r, TypeLong::LONG); 4733 4734 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4735 // Build the boolean node 4736 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4737 4738 // Branch either way. 4739 // NaN case is less traveled, which makes all the difference. 4740 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4741 Node *opt_isnan = _gvn.transform(ifisnan); 4742 assert( opt_isnan->is_If(), "Expect an IfNode"); 4743 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4744 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4745 4746 set_control(iftrue); 4747 4748 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4749 Node *slow_result = longcon(nan_bits); // return NaN 4750 phi->init_req(1, _gvn.transform( slow_result )); 4751 r->init_req(1, iftrue); 4752 4753 // Else fall through 4754 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4755 set_control(iffalse); 4756 4757 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4758 r->init_req(2, iffalse); 4759 4760 // Post merge 4761 set_control(_gvn.transform(r)); 4762 record_for_igvn(r); 4763 4764 C->set_has_split_ifs(true); // Has chance for split-if optimization 4765 result = phi; 4766 assert(result->bottom_type()->isa_long(), "must be"); 4767 break; 4768 } 4769 4770 case vmIntrinsics::_floatToIntBits: { 4771 // two paths (plus control) merge in a wood 4772 RegionNode *r = new RegionNode(3); 4773 Node *phi = new PhiNode(r, TypeInt::INT); 4774 4775 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4776 // Build the boolean node 4777 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4778 4779 // Branch either way. 4780 // NaN case is less traveled, which makes all the difference. 4781 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4782 Node *opt_isnan = _gvn.transform(ifisnan); 4783 assert( opt_isnan->is_If(), "Expect an IfNode"); 4784 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4785 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4786 4787 set_control(iftrue); 4788 4789 static const jint nan_bits = 0x7fc00000; 4790 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4791 phi->init_req(1, _gvn.transform( slow_result )); 4792 r->init_req(1, iftrue); 4793 4794 // Else fall through 4795 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4796 set_control(iffalse); 4797 4798 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4799 r->init_req(2, iffalse); 4800 4801 // Post merge 4802 set_control(_gvn.transform(r)); 4803 record_for_igvn(r); 4804 4805 C->set_has_split_ifs(true); // Has chance for split-if optimization 4806 result = phi; 4807 assert(result->bottom_type()->isa_int(), "must be"); 4808 break; 4809 } 4810 4811 default: 4812 fatal_unexpected_iid(id); 4813 break; 4814 } 4815 set_result(_gvn.transform(result)); 4816 return true; 4817 } 4818 4819 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 4820 Node* arg = argument(0); 4821 Node* result = nullptr; 4822 4823 switch (id) { 4824 case vmIntrinsics::_floatIsInfinite: 4825 result = new IsInfiniteFNode(arg); 4826 break; 4827 case vmIntrinsics::_floatIsFinite: 4828 result = new IsFiniteFNode(arg); 4829 break; 4830 case vmIntrinsics::_doubleIsInfinite: 4831 result = new IsInfiniteDNode(arg); 4832 break; 4833 case vmIntrinsics::_doubleIsFinite: 4834 result = new IsFiniteDNode(arg); 4835 break; 4836 default: 4837 fatal_unexpected_iid(id); 4838 break; 4839 } 4840 set_result(_gvn.transform(result)); 4841 return true; 4842 } 4843 4844 //----------------------inline_unsafe_copyMemory------------------------- 4845 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4846 4847 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 4848 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 4849 const Type* base_t = gvn.type(base); 4850 4851 bool in_native = (base_t == TypePtr::NULL_PTR); 4852 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 4853 bool is_mixed = !in_heap && !in_native; 4854 4855 if (is_mixed) { 4856 return true; // mixed accesses can touch both on-heap and off-heap memory 4857 } 4858 if (in_heap) { 4859 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 4860 if (!is_prim_array) { 4861 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 4862 // there's not enough type information available to determine proper memory slice for it. 4863 return true; 4864 } 4865 } 4866 return false; 4867 } 4868 4869 bool LibraryCallKit::inline_unsafe_copyMemory() { 4870 if (callee()->is_static()) return false; // caller must have the capability! 4871 null_check_receiver(); // null-check receiver 4872 if (stopped()) return true; 4873 4874 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4875 4876 Node* src_base = argument(1); // type: oop 4877 Node* src_off = ConvL2X(argument(2)); // type: long 4878 Node* dst_base = argument(4); // type: oop 4879 Node* dst_off = ConvL2X(argument(5)); // type: long 4880 Node* size = ConvL2X(argument(7)); // type: long 4881 4882 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4883 "fieldOffset must be byte-scaled"); 4884 4885 Node* src_addr = make_unsafe_address(src_base, src_off); 4886 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 4887 4888 Node* thread = _gvn.transform(new ThreadLocalNode()); 4889 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 4890 BasicType doing_unsafe_access_bt = T_BYTE; 4891 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 4892 4893 // update volatile field 4894 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4895 4896 int flags = RC_LEAF | RC_NO_FP; 4897 4898 const TypePtr* dst_type = TypePtr::BOTTOM; 4899 4900 // Adjust memory effects of the runtime call based on input values. 4901 if (!has_wide_mem(_gvn, src_addr, src_base) && 4902 !has_wide_mem(_gvn, dst_addr, dst_base)) { 4903 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 4904 4905 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 4906 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 4907 flags |= RC_NARROW_MEM; // narrow in memory 4908 } 4909 } 4910 4911 // Call it. Note that the length argument is not scaled. 4912 make_runtime_call(flags, 4913 OptoRuntime::fast_arraycopy_Type(), 4914 StubRoutines::unsafe_arraycopy(), 4915 "unsafe_arraycopy", 4916 dst_type, 4917 src_addr, dst_addr, size XTOP); 4918 4919 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4920 4921 return true; 4922 } 4923 4924 #undef XTOP 4925 4926 //------------------------clone_coping----------------------------------- 4927 // Helper function for inline_native_clone. 4928 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4929 assert(obj_size != nullptr, ""); 4930 Node* raw_obj = alloc_obj->in(1); 4931 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4932 4933 AllocateNode* alloc = nullptr; 4934 if (ReduceBulkZeroing) { 4935 // We will be completely responsible for initializing this object - 4936 // mark Initialize node as complete. 4937 alloc = AllocateNode::Ideal_allocation(alloc_obj); 4938 // The object was just allocated - there should be no any stores! 4939 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 4940 // Mark as complete_with_arraycopy so that on AllocateNode 4941 // expansion, we know this AllocateNode is initialized by an array 4942 // copy and a StoreStore barrier exists after the array copy. 4943 alloc->initialization()->set_complete_with_arraycopy(); 4944 } 4945 4946 Node* size = _gvn.transform(obj_size); 4947 access_clone(obj, alloc_obj, size, is_array); 4948 4949 // Do not let reads from the cloned object float above the arraycopy. 4950 if (alloc != nullptr) { 4951 // Do not let stores that initialize this object be reordered with 4952 // a subsequent store that would make this object accessible by 4953 // other threads. 4954 // Record what AllocateNode this StoreStore protects so that 4955 // escape analysis can go from the MemBarStoreStoreNode to the 4956 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4957 // based on the escape status of the AllocateNode. 4958 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4959 } else { 4960 insert_mem_bar(Op_MemBarCPUOrder); 4961 } 4962 } 4963 4964 //------------------------inline_native_clone---------------------------- 4965 // protected native Object java.lang.Object.clone(); 4966 // 4967 // Here are the simple edge cases: 4968 // null receiver => normal trap 4969 // virtual and clone was overridden => slow path to out-of-line clone 4970 // not cloneable or finalizer => slow path to out-of-line Object.clone 4971 // 4972 // The general case has two steps, allocation and copying. 4973 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4974 // 4975 // Copying also has two cases, oop arrays and everything else. 4976 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4977 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4978 // 4979 // These steps fold up nicely if and when the cloned object's klass 4980 // can be sharply typed as an object array, a type array, or an instance. 4981 // 4982 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4983 PhiNode* result_val; 4984 4985 // Set the reexecute bit for the interpreter to reexecute 4986 // the bytecode that invokes Object.clone if deoptimization happens. 4987 { PreserveReexecuteState preexecs(this); 4988 jvms()->set_should_reexecute(true); 4989 4990 Node* obj = null_check_receiver(); 4991 if (stopped()) return true; 4992 4993 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4994 4995 // If we are going to clone an instance, we need its exact type to 4996 // know the number and types of fields to convert the clone to 4997 // loads/stores. Maybe a speculative type can help us. 4998 if (!obj_type->klass_is_exact() && 4999 obj_type->speculative_type() != nullptr && 5000 obj_type->speculative_type()->is_instance_klass()) { 5001 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5002 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5003 !spec_ik->has_injected_fields()) { 5004 if (!obj_type->isa_instptr() || 5005 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5006 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5007 } 5008 } 5009 } 5010 5011 // Conservatively insert a memory barrier on all memory slices. 5012 // Do not let writes into the original float below the clone. 5013 insert_mem_bar(Op_MemBarCPUOrder); 5014 5015 // paths into result_reg: 5016 enum { 5017 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5018 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5019 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5020 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5021 PATH_LIMIT 5022 }; 5023 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5024 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5025 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5026 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5027 record_for_igvn(result_reg); 5028 5029 Node* obj_klass = load_object_klass(obj); 5030 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr); 5031 if (array_ctl != nullptr) { 5032 // It's an array. 5033 PreserveJVMState pjvms(this); 5034 set_control(array_ctl); 5035 Node* obj_length = load_array_length(obj); 5036 Node* array_size = nullptr; // Size of the array without object alignment padding. 5037 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5038 5039 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5040 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5041 // If it is an oop array, it requires very special treatment, 5042 // because gc barriers are required when accessing the array. 5043 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5044 if (is_obja != nullptr) { 5045 PreserveJVMState pjvms2(this); 5046 set_control(is_obja); 5047 // Generate a direct call to the right arraycopy function(s). 5048 // Clones are always tightly coupled. 5049 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5050 ac->set_clone_oop_array(); 5051 Node* n = _gvn.transform(ac); 5052 assert(n == ac, "cannot disappear"); 5053 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5054 5055 result_reg->init_req(_objArray_path, control()); 5056 result_val->init_req(_objArray_path, alloc_obj); 5057 result_i_o ->set_req(_objArray_path, i_o()); 5058 result_mem ->set_req(_objArray_path, reset_memory()); 5059 } 5060 } 5061 // Otherwise, there are no barriers to worry about. 5062 // (We can dispense with card marks if we know the allocation 5063 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5064 // causes the non-eden paths to take compensating steps to 5065 // simulate a fresh allocation, so that no further 5066 // card marks are required in compiled code to initialize 5067 // the object.) 5068 5069 if (!stopped()) { 5070 copy_to_clone(obj, alloc_obj, array_size, true); 5071 5072 // Present the results of the copy. 5073 result_reg->init_req(_array_path, control()); 5074 result_val->init_req(_array_path, alloc_obj); 5075 result_i_o ->set_req(_array_path, i_o()); 5076 result_mem ->set_req(_array_path, reset_memory()); 5077 } 5078 } 5079 5080 // We only go to the instance fast case code if we pass a number of guards. 5081 // The paths which do not pass are accumulated in the slow_region. 5082 RegionNode* slow_region = new RegionNode(1); 5083 record_for_igvn(slow_region); 5084 if (!stopped()) { 5085 // It's an instance (we did array above). Make the slow-path tests. 5086 // If this is a virtual call, we generate a funny guard. We grab 5087 // the vtable entry corresponding to clone() from the target object. 5088 // If the target method which we are calling happens to be the 5089 // Object clone() method, we pass the guard. We do not need this 5090 // guard for non-virtual calls; the caller is known to be the native 5091 // Object clone(). 5092 if (is_virtual) { 5093 generate_virtual_guard(obj_klass, slow_region); 5094 } 5095 5096 // The object must be easily cloneable and must not have a finalizer. 5097 // Both of these conditions may be checked in a single test. 5098 // We could optimize the test further, but we don't care. 5099 generate_access_flags_guard(obj_klass, 5100 // Test both conditions: 5101 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 5102 // Must be cloneable but not finalizer: 5103 JVM_ACC_IS_CLONEABLE_FAST, 5104 slow_region); 5105 } 5106 5107 if (!stopped()) { 5108 // It's an instance, and it passed the slow-path tests. 5109 PreserveJVMState pjvms(this); 5110 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5111 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5112 // is reexecuted if deoptimization occurs and there could be problems when merging 5113 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5114 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5115 5116 copy_to_clone(obj, alloc_obj, obj_size, false); 5117 5118 // Present the results of the slow call. 5119 result_reg->init_req(_instance_path, control()); 5120 result_val->init_req(_instance_path, alloc_obj); 5121 result_i_o ->set_req(_instance_path, i_o()); 5122 result_mem ->set_req(_instance_path, reset_memory()); 5123 } 5124 5125 // Generate code for the slow case. We make a call to clone(). 5126 set_control(_gvn.transform(slow_region)); 5127 if (!stopped()) { 5128 PreserveJVMState pjvms(this); 5129 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5130 // We need to deoptimize on exception (see comment above) 5131 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5132 // this->control() comes from set_results_for_java_call 5133 result_reg->init_req(_slow_path, control()); 5134 result_val->init_req(_slow_path, slow_result); 5135 result_i_o ->set_req(_slow_path, i_o()); 5136 result_mem ->set_req(_slow_path, reset_memory()); 5137 } 5138 5139 // Return the combined state. 5140 set_control( _gvn.transform(result_reg)); 5141 set_i_o( _gvn.transform(result_i_o)); 5142 set_all_memory( _gvn.transform(result_mem)); 5143 } // original reexecute is set back here 5144 5145 set_result(_gvn.transform(result_val)); 5146 return true; 5147 } 5148 5149 // If we have a tightly coupled allocation, the arraycopy may take care 5150 // of the array initialization. If one of the guards we insert between 5151 // the allocation and the arraycopy causes a deoptimization, an 5152 // uninitialized array will escape the compiled method. To prevent that 5153 // we set the JVM state for uncommon traps between the allocation and 5154 // the arraycopy to the state before the allocation so, in case of 5155 // deoptimization, we'll reexecute the allocation and the 5156 // initialization. 5157 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5158 if (alloc != nullptr) { 5159 ciMethod* trap_method = alloc->jvms()->method(); 5160 int trap_bci = alloc->jvms()->bci(); 5161 5162 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5163 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5164 // Make sure there's no store between the allocation and the 5165 // arraycopy otherwise visible side effects could be rexecuted 5166 // in case of deoptimization and cause incorrect execution. 5167 bool no_interfering_store = true; 5168 Node* mem = alloc->in(TypeFunc::Memory); 5169 if (mem->is_MergeMem()) { 5170 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5171 Node* n = mms.memory(); 5172 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5173 assert(n->is_Store(), "what else?"); 5174 no_interfering_store = false; 5175 break; 5176 } 5177 } 5178 } else { 5179 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5180 Node* n = mms.memory(); 5181 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5182 assert(n->is_Store(), "what else?"); 5183 no_interfering_store = false; 5184 break; 5185 } 5186 } 5187 } 5188 5189 if (no_interfering_store) { 5190 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5191 5192 JVMState* saved_jvms = jvms(); 5193 saved_reexecute_sp = _reexecute_sp; 5194 5195 set_jvms(sfpt->jvms()); 5196 _reexecute_sp = jvms()->sp(); 5197 5198 return saved_jvms; 5199 } 5200 } 5201 } 5202 return nullptr; 5203 } 5204 5205 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5206 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5207 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5208 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5209 uint size = alloc->req(); 5210 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5211 old_jvms->set_map(sfpt); 5212 for (uint i = 0; i < size; i++) { 5213 sfpt->init_req(i, alloc->in(i)); 5214 } 5215 // re-push array length for deoptimization 5216 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5217 old_jvms->set_sp(old_jvms->sp()+1); 5218 old_jvms->set_monoff(old_jvms->monoff()+1); 5219 old_jvms->set_scloff(old_jvms->scloff()+1); 5220 old_jvms->set_endoff(old_jvms->endoff()+1); 5221 old_jvms->set_should_reexecute(true); 5222 5223 sfpt->set_i_o(map()->i_o()); 5224 sfpt->set_memory(map()->memory()); 5225 sfpt->set_control(map()->control()); 5226 return sfpt; 5227 } 5228 5229 // In case of a deoptimization, we restart execution at the 5230 // allocation, allocating a new array. We would leave an uninitialized 5231 // array in the heap that GCs wouldn't expect. Move the allocation 5232 // after the traps so we don't allocate the array if we 5233 // deoptimize. This is possible because tightly_coupled_allocation() 5234 // guarantees there's no observer of the allocated array at this point 5235 // and the control flow is simple enough. 5236 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5237 int saved_reexecute_sp, uint new_idx) { 5238 if (saved_jvms_before_guards != nullptr && !stopped()) { 5239 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5240 5241 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5242 // restore JVM state to the state at the arraycopy 5243 saved_jvms_before_guards->map()->set_control(map()->control()); 5244 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5245 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5246 // If we've improved the types of some nodes (null check) while 5247 // emitting the guards, propagate them to the current state 5248 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5249 set_jvms(saved_jvms_before_guards); 5250 _reexecute_sp = saved_reexecute_sp; 5251 5252 // Remove the allocation from above the guards 5253 CallProjections callprojs; 5254 alloc->extract_projections(&callprojs, true); 5255 InitializeNode* init = alloc->initialization(); 5256 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5257 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5258 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5259 5260 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5261 // the allocation (i.e. is only valid if the allocation succeeds): 5262 // 1) replace CastIINode with AllocateArrayNode's length here 5263 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5264 // 5265 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5266 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5267 Node* init_control = init->proj_out(TypeFunc::Control); 5268 Node* alloc_length = alloc->Ideal_length(); 5269 #ifdef ASSERT 5270 Node* prev_cast = nullptr; 5271 #endif 5272 for (uint i = 0; i < init_control->outcnt(); i++) { 5273 Node* init_out = init_control->raw_out(i); 5274 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5275 #ifdef ASSERT 5276 if (prev_cast == nullptr) { 5277 prev_cast = init_out; 5278 } else { 5279 if (prev_cast->cmp(*init_out) == false) { 5280 prev_cast->dump(); 5281 init_out->dump(); 5282 assert(false, "not equal CastIINode"); 5283 } 5284 } 5285 #endif 5286 C->gvn_replace_by(init_out, alloc_length); 5287 } 5288 } 5289 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5290 5291 // move the allocation here (after the guards) 5292 _gvn.hash_delete(alloc); 5293 alloc->set_req(TypeFunc::Control, control()); 5294 alloc->set_req(TypeFunc::I_O, i_o()); 5295 Node *mem = reset_memory(); 5296 set_all_memory(mem); 5297 alloc->set_req(TypeFunc::Memory, mem); 5298 set_control(init->proj_out_or_null(TypeFunc::Control)); 5299 set_i_o(callprojs.fallthrough_ioproj); 5300 5301 // Update memory as done in GraphKit::set_output_for_allocation() 5302 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5303 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5304 if (ary_type->isa_aryptr() && length_type != nullptr) { 5305 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5306 } 5307 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5308 int elemidx = C->get_alias_index(telemref); 5309 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5310 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5311 5312 Node* allocx = _gvn.transform(alloc); 5313 assert(allocx == alloc, "where has the allocation gone?"); 5314 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5315 5316 _gvn.hash_delete(dest); 5317 dest->set_req(0, control()); 5318 Node* destx = _gvn.transform(dest); 5319 assert(destx == dest, "where has the allocation result gone?"); 5320 5321 array_ideal_length(alloc, ary_type, true); 5322 } 5323 } 5324 5325 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5326 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5327 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5328 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5329 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5330 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5331 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5332 JVMState* saved_jvms_before_guards) { 5333 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5334 // There is at least one unrelated uncommon trap which needs to be replaced. 5335 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5336 5337 JVMState* saved_jvms = jvms(); 5338 const int saved_reexecute_sp = _reexecute_sp; 5339 set_jvms(sfpt->jvms()); 5340 _reexecute_sp = jvms()->sp(); 5341 5342 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5343 5344 // Restore state 5345 set_jvms(saved_jvms); 5346 _reexecute_sp = saved_reexecute_sp; 5347 } 5348 } 5349 5350 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5351 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5352 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5353 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5354 while (if_proj->is_IfProj()) { 5355 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5356 if (uncommon_trap != nullptr) { 5357 create_new_uncommon_trap(uncommon_trap); 5358 } 5359 assert(if_proj->in(0)->is_If(), "must be If"); 5360 if_proj = if_proj->in(0)->in(0); 5361 } 5362 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5363 "must have reached control projection of init node"); 5364 } 5365 5366 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5367 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5368 assert(trap_request != 0, "no valid UCT trap request"); 5369 PreserveJVMState pjvms(this); 5370 set_control(uncommon_trap_call->in(0)); 5371 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5372 Deoptimization::trap_request_action(trap_request)); 5373 assert(stopped(), "Should be stopped"); 5374 _gvn.hash_delete(uncommon_trap_call); 5375 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5376 } 5377 5378 //------------------------------inline_array_partition----------------------- 5379 bool LibraryCallKit::inline_array_partition() { 5380 5381 Node* elementType = null_check(argument(0)); 5382 Node* obj = argument(1); 5383 Node* offset = argument(2); 5384 Node* fromIndex = argument(4); 5385 Node* toIndex = argument(5); 5386 Node* indexPivot1 = argument(6); 5387 Node* indexPivot2 = argument(7); 5388 5389 Node* pivotIndices = nullptr; 5390 5391 // Set the original stack and the reexecute bit for the interpreter to reexecute 5392 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 5393 { PreserveReexecuteState preexecs(this); 5394 jvms()->set_should_reexecute(true); 5395 5396 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5397 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 5398 BasicType bt = elem_type->basic_type(); 5399 address stubAddr = nullptr; 5400 stubAddr = StubRoutines::select_array_partition_function(); 5401 // stub not loaded 5402 if (stubAddr == nullptr) { 5403 return false; 5404 } 5405 // get the address of the array 5406 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5407 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM ) { 5408 return false; // failed input validation 5409 } 5410 Node* obj_adr = make_unsafe_address(obj, offset); 5411 5412 // create the pivotIndices array of type int and size = 2 5413 Node* size = intcon(2); 5414 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 5415 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 5416 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 5417 guarantee(alloc != nullptr, "created above"); 5418 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 5419 5420 // pass the basic type enum to the stub 5421 Node* elemType = intcon(bt); 5422 5423 // Call the stub 5424 const char *stubName = "array_partition_stub"; 5425 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 5426 stubAddr, stubName, TypePtr::BOTTOM, 5427 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 5428 indexPivot1, indexPivot2); 5429 5430 } // original reexecute is set back here 5431 5432 if (!stopped()) { 5433 set_result(pivotIndices); 5434 } 5435 5436 return true; 5437 } 5438 5439 5440 //------------------------------inline_array_sort----------------------- 5441 bool LibraryCallKit::inline_array_sort() { 5442 5443 Node* elementType = null_check(argument(0)); 5444 Node* obj = argument(1); 5445 Node* offset = argument(2); 5446 Node* fromIndex = argument(4); 5447 Node* toIndex = argument(5); 5448 5449 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5450 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 5451 BasicType bt = elem_type->basic_type(); 5452 address stubAddr = nullptr; 5453 stubAddr = StubRoutines::select_arraysort_function(); 5454 //stub not loaded 5455 if (stubAddr == nullptr) { 5456 return false; 5457 } 5458 5459 // get address of the array 5460 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5461 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM ) { 5462 return false; // failed input validation 5463 } 5464 Node* obj_adr = make_unsafe_address(obj, offset); 5465 5466 // pass the basic type enum to the stub 5467 Node* elemType = intcon(bt); 5468 5469 // Call the stub. 5470 const char *stubName = "arraysort_stub"; 5471 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 5472 stubAddr, stubName, TypePtr::BOTTOM, 5473 obj_adr, elemType, fromIndex, toIndex); 5474 5475 return true; 5476 } 5477 5478 5479 //------------------------------inline_arraycopy----------------------- 5480 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5481 // Object dest, int destPos, 5482 // int length); 5483 bool LibraryCallKit::inline_arraycopy() { 5484 // Get the arguments. 5485 Node* src = argument(0); // type: oop 5486 Node* src_offset = argument(1); // type: int 5487 Node* dest = argument(2); // type: oop 5488 Node* dest_offset = argument(3); // type: int 5489 Node* length = argument(4); // type: int 5490 5491 uint new_idx = C->unique(); 5492 5493 // Check for allocation before we add nodes that would confuse 5494 // tightly_coupled_allocation() 5495 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5496 5497 int saved_reexecute_sp = -1; 5498 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5499 // See arraycopy_restore_alloc_state() comment 5500 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5501 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5502 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5503 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5504 5505 // The following tests must be performed 5506 // (1) src and dest are arrays. 5507 // (2) src and dest arrays must have elements of the same BasicType 5508 // (3) src and dest must not be null. 5509 // (4) src_offset must not be negative. 5510 // (5) dest_offset must not be negative. 5511 // (6) length must not be negative. 5512 // (7) src_offset + length must not exceed length of src. 5513 // (8) dest_offset + length must not exceed length of dest. 5514 // (9) each element of an oop array must be assignable 5515 5516 // (3) src and dest must not be null. 5517 // always do this here because we need the JVM state for uncommon traps 5518 Node* null_ctl = top(); 5519 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5520 assert(null_ctl->is_top(), "no null control here"); 5521 dest = null_check(dest, T_ARRAY); 5522 5523 if (!can_emit_guards) { 5524 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5525 // guards but the arraycopy node could still take advantage of a 5526 // tightly allocated allocation. tightly_coupled_allocation() is 5527 // called again to make sure it takes the null check above into 5528 // account: the null check is mandatory and if it caused an 5529 // uncommon trap to be emitted then the allocation can't be 5530 // considered tightly coupled in this context. 5531 alloc = tightly_coupled_allocation(dest); 5532 } 5533 5534 bool validated = false; 5535 5536 const Type* src_type = _gvn.type(src); 5537 const Type* dest_type = _gvn.type(dest); 5538 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5539 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5540 5541 // Do we have the type of src? 5542 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5543 // Do we have the type of dest? 5544 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5545 // Is the type for src from speculation? 5546 bool src_spec = false; 5547 // Is the type for dest from speculation? 5548 bool dest_spec = false; 5549 5550 if ((!has_src || !has_dest) && can_emit_guards) { 5551 // We don't have sufficient type information, let's see if 5552 // speculative types can help. We need to have types for both src 5553 // and dest so that it pays off. 5554 5555 // Do we already have or could we have type information for src 5556 bool could_have_src = has_src; 5557 // Do we already have or could we have type information for dest 5558 bool could_have_dest = has_dest; 5559 5560 ciKlass* src_k = nullptr; 5561 if (!has_src) { 5562 src_k = src_type->speculative_type_not_null(); 5563 if (src_k != nullptr && src_k->is_array_klass()) { 5564 could_have_src = true; 5565 } 5566 } 5567 5568 ciKlass* dest_k = nullptr; 5569 if (!has_dest) { 5570 dest_k = dest_type->speculative_type_not_null(); 5571 if (dest_k != nullptr && dest_k->is_array_klass()) { 5572 could_have_dest = true; 5573 } 5574 } 5575 5576 if (could_have_src && could_have_dest) { 5577 // This is going to pay off so emit the required guards 5578 if (!has_src) { 5579 src = maybe_cast_profiled_obj(src, src_k, true); 5580 src_type = _gvn.type(src); 5581 top_src = src_type->isa_aryptr(); 5582 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5583 src_spec = true; 5584 } 5585 if (!has_dest) { 5586 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5587 dest_type = _gvn.type(dest); 5588 top_dest = dest_type->isa_aryptr(); 5589 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5590 dest_spec = true; 5591 } 5592 } 5593 } 5594 5595 if (has_src && has_dest && can_emit_guards) { 5596 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5597 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5598 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5599 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5600 5601 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5602 // If both arrays are object arrays then having the exact types 5603 // for both will remove the need for a subtype check at runtime 5604 // before the call and may make it possible to pick a faster copy 5605 // routine (without a subtype check on every element) 5606 // Do we have the exact type of src? 5607 bool could_have_src = src_spec; 5608 // Do we have the exact type of dest? 5609 bool could_have_dest = dest_spec; 5610 ciKlass* src_k = nullptr; 5611 ciKlass* dest_k = nullptr; 5612 if (!src_spec) { 5613 src_k = src_type->speculative_type_not_null(); 5614 if (src_k != nullptr && src_k->is_array_klass()) { 5615 could_have_src = true; 5616 } 5617 } 5618 if (!dest_spec) { 5619 dest_k = dest_type->speculative_type_not_null(); 5620 if (dest_k != nullptr && dest_k->is_array_klass()) { 5621 could_have_dest = true; 5622 } 5623 } 5624 if (could_have_src && could_have_dest) { 5625 // If we can have both exact types, emit the missing guards 5626 if (could_have_src && !src_spec) { 5627 src = maybe_cast_profiled_obj(src, src_k, true); 5628 } 5629 if (could_have_dest && !dest_spec) { 5630 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5631 } 5632 } 5633 } 5634 } 5635 5636 ciMethod* trap_method = method(); 5637 int trap_bci = bci(); 5638 if (saved_jvms_before_guards != nullptr) { 5639 trap_method = alloc->jvms()->method(); 5640 trap_bci = alloc->jvms()->bci(); 5641 } 5642 5643 bool negative_length_guard_generated = false; 5644 5645 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5646 can_emit_guards && 5647 !src->is_top() && !dest->is_top()) { 5648 // validate arguments: enables transformation the ArrayCopyNode 5649 validated = true; 5650 5651 RegionNode* slow_region = new RegionNode(1); 5652 record_for_igvn(slow_region); 5653 5654 // (1) src and dest are arrays. 5655 generate_non_array_guard(load_object_klass(src), slow_region); 5656 generate_non_array_guard(load_object_klass(dest), slow_region); 5657 5658 // (2) src and dest arrays must have elements of the same BasicType 5659 // done at macro expansion or at Ideal transformation time 5660 5661 // (4) src_offset must not be negative. 5662 generate_negative_guard(src_offset, slow_region); 5663 5664 // (5) dest_offset must not be negative. 5665 generate_negative_guard(dest_offset, slow_region); 5666 5667 // (7) src_offset + length must not exceed length of src. 5668 generate_limit_guard(src_offset, length, 5669 load_array_length(src), 5670 slow_region); 5671 5672 // (8) dest_offset + length must not exceed length of dest. 5673 generate_limit_guard(dest_offset, length, 5674 load_array_length(dest), 5675 slow_region); 5676 5677 // (6) length must not be negative. 5678 // This is also checked in generate_arraycopy() during macro expansion, but 5679 // we also have to check it here for the case where the ArrayCopyNode will 5680 // be eliminated by Escape Analysis. 5681 if (EliminateAllocations) { 5682 generate_negative_guard(length, slow_region); 5683 negative_length_guard_generated = true; 5684 } 5685 5686 // (9) each element of an oop array must be assignable 5687 Node* dest_klass = load_object_klass(dest); 5688 if (src != dest) { 5689 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5690 5691 if (not_subtype_ctrl != top()) { 5692 PreserveJVMState pjvms(this); 5693 set_control(not_subtype_ctrl); 5694 uncommon_trap(Deoptimization::Reason_intrinsic, 5695 Deoptimization::Action_make_not_entrant); 5696 assert(stopped(), "Should be stopped"); 5697 } 5698 } 5699 { 5700 PreserveJVMState pjvms(this); 5701 set_control(_gvn.transform(slow_region)); 5702 uncommon_trap(Deoptimization::Reason_intrinsic, 5703 Deoptimization::Action_make_not_entrant); 5704 assert(stopped(), "Should be stopped"); 5705 } 5706 5707 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5708 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5709 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5710 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5711 } 5712 5713 if (stopped()) { 5714 return true; 5715 } 5716 5717 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 5718 // Create LoadRange and LoadKlass nodes for use during macro expansion here 5719 // so the compiler has a chance to eliminate them: during macro expansion, 5720 // we have to set their control (CastPP nodes are eliminated). 5721 load_object_klass(src), load_object_klass(dest), 5722 load_array_length(src), load_array_length(dest)); 5723 5724 ac->set_arraycopy(validated); 5725 5726 Node* n = _gvn.transform(ac); 5727 if (n == ac) { 5728 ac->connect_outputs(this); 5729 } else { 5730 assert(validated, "shouldn't transform if all arguments not validated"); 5731 set_all_memory(n); 5732 } 5733 clear_upper_avx(); 5734 5735 5736 return true; 5737 } 5738 5739 5740 // Helper function which determines if an arraycopy immediately follows 5741 // an allocation, with no intervening tests or other escapes for the object. 5742 AllocateArrayNode* 5743 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 5744 if (stopped()) return nullptr; // no fast path 5745 if (!C->do_aliasing()) return nullptr; // no MergeMems around 5746 5747 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 5748 if (alloc == nullptr) return nullptr; 5749 5750 Node* rawmem = memory(Compile::AliasIdxRaw); 5751 // Is the allocation's memory state untouched? 5752 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 5753 // Bail out if there have been raw-memory effects since the allocation. 5754 // (Example: There might have been a call or safepoint.) 5755 return nullptr; 5756 } 5757 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 5758 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 5759 return nullptr; 5760 } 5761 5762 // There must be no unexpected observers of this allocation. 5763 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 5764 Node* obs = ptr->fast_out(i); 5765 if (obs != this->map()) { 5766 return nullptr; 5767 } 5768 } 5769 5770 // This arraycopy must unconditionally follow the allocation of the ptr. 5771 Node* alloc_ctl = ptr->in(0); 5772 Node* ctl = control(); 5773 while (ctl != alloc_ctl) { 5774 // There may be guards which feed into the slow_region. 5775 // Any other control flow means that we might not get a chance 5776 // to finish initializing the allocated object. 5777 // Various low-level checks bottom out in uncommon traps. These 5778 // are considered safe since we've already checked above that 5779 // there is no unexpected observer of this allocation. 5780 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 5781 assert(ctl->in(0)->is_If(), "must be If"); 5782 ctl = ctl->in(0)->in(0); 5783 } else { 5784 return nullptr; 5785 } 5786 } 5787 5788 // If we get this far, we have an allocation which immediately 5789 // precedes the arraycopy, and we can take over zeroing the new object. 5790 // The arraycopy will finish the initialization, and provide 5791 // a new control state to which we will anchor the destination pointer. 5792 5793 return alloc; 5794 } 5795 5796 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 5797 if (node->is_IfProj()) { 5798 Node* other_proj = node->as_IfProj()->other_if_proj(); 5799 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 5800 Node* obs = other_proj->fast_out(j); 5801 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 5802 (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 5803 return obs->as_CallStaticJava(); 5804 } 5805 } 5806 } 5807 return nullptr; 5808 } 5809 5810 //-------------inline_encodeISOArray----------------------------------- 5811 // encode char[] to byte[] in ISO_8859_1 or ASCII 5812 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 5813 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 5814 // no receiver since it is static method 5815 Node *src = argument(0); 5816 Node *src_offset = argument(1); 5817 Node *dst = argument(2); 5818 Node *dst_offset = argument(3); 5819 Node *length = argument(4); 5820 5821 src = must_be_not_null(src, true); 5822 dst = must_be_not_null(dst, true); 5823 5824 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 5825 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 5826 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 5827 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 5828 // failed array check 5829 return false; 5830 } 5831 5832 // Figure out the size and type of the elements we will be copying. 5833 BasicType src_elem = src_type->elem()->array_element_basic_type(); 5834 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 5835 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 5836 return false; 5837 } 5838 5839 Node* src_start = array_element_address(src, src_offset, T_CHAR); 5840 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 5841 // 'src_start' points to src array + scaled offset 5842 // 'dst_start' points to dst array + scaled offset 5843 5844 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 5845 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 5846 enc = _gvn.transform(enc); 5847 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 5848 set_memory(res_mem, mtype); 5849 set_result(enc); 5850 clear_upper_avx(); 5851 5852 return true; 5853 } 5854 5855 //-------------inline_multiplyToLen----------------------------------- 5856 bool LibraryCallKit::inline_multiplyToLen() { 5857 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 5858 5859 address stubAddr = StubRoutines::multiplyToLen(); 5860 if (stubAddr == nullptr) { 5861 return false; // Intrinsic's stub is not implemented on this platform 5862 } 5863 const char* stubName = "multiplyToLen"; 5864 5865 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 5866 5867 // no receiver because it is a static method 5868 Node* x = argument(0); 5869 Node* xlen = argument(1); 5870 Node* y = argument(2); 5871 Node* ylen = argument(3); 5872 Node* z = argument(4); 5873 5874 x = must_be_not_null(x, true); 5875 y = must_be_not_null(y, true); 5876 5877 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5878 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 5879 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5880 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 5881 // failed array check 5882 return false; 5883 } 5884 5885 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5886 BasicType y_elem = y_type->elem()->array_element_basic_type(); 5887 if (x_elem != T_INT || y_elem != T_INT) { 5888 return false; 5889 } 5890 5891 // Set the original stack and the reexecute bit for the interpreter to reexecute 5892 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5893 // on the return from z array allocation in runtime. 5894 { PreserveReexecuteState preexecs(this); 5895 jvms()->set_should_reexecute(true); 5896 5897 Node* x_start = array_element_address(x, intcon(0), x_elem); 5898 Node* y_start = array_element_address(y, intcon(0), y_elem); 5899 // 'x_start' points to x array + scaled xlen 5900 // 'y_start' points to y array + scaled ylen 5901 5902 // Allocate the result array 5903 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 5904 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 5905 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 5906 5907 IdealKit ideal(this); 5908 5909 #define __ ideal. 5910 Node* one = __ ConI(1); 5911 Node* zero = __ ConI(0); 5912 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 5913 __ set(need_alloc, zero); 5914 __ set(z_alloc, z); 5915 __ if_then(z, BoolTest::eq, null()); { 5916 __ increment (need_alloc, one); 5917 } __ else_(); { 5918 // Update graphKit memory and control from IdealKit. 5919 sync_kit(ideal); 5920 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 5921 cast->init_req(0, control()); 5922 _gvn.set_type(cast, cast->bottom_type()); 5923 C->record_for_igvn(cast); 5924 5925 Node* zlen_arg = load_array_length(cast); 5926 // Update IdealKit memory and control from graphKit. 5927 __ sync_kit(this); 5928 __ if_then(zlen_arg, BoolTest::lt, zlen); { 5929 __ increment (need_alloc, one); 5930 } __ end_if(); 5931 } __ end_if(); 5932 5933 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 5934 // Update graphKit memory and control from IdealKit. 5935 sync_kit(ideal); 5936 Node * narr = new_array(klass_node, zlen, 1); 5937 // Update IdealKit memory and control from graphKit. 5938 __ sync_kit(this); 5939 __ set(z_alloc, narr); 5940 } __ end_if(); 5941 5942 sync_kit(ideal); 5943 z = __ value(z_alloc); 5944 // Can't use TypeAryPtr::INTS which uses Bottom offset. 5945 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 5946 // Final sync IdealKit and GraphKit. 5947 final_sync(ideal); 5948 #undef __ 5949 5950 Node* z_start = array_element_address(z, intcon(0), T_INT); 5951 5952 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5953 OptoRuntime::multiplyToLen_Type(), 5954 stubAddr, stubName, TypePtr::BOTTOM, 5955 x_start, xlen, y_start, ylen, z_start, zlen); 5956 } // original reexecute is set back here 5957 5958 C->set_has_split_ifs(true); // Has chance for split-if optimization 5959 set_result(z); 5960 return true; 5961 } 5962 5963 //-------------inline_squareToLen------------------------------------ 5964 bool LibraryCallKit::inline_squareToLen() { 5965 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5966 5967 address stubAddr = StubRoutines::squareToLen(); 5968 if (stubAddr == nullptr) { 5969 return false; // Intrinsic's stub is not implemented on this platform 5970 } 5971 const char* stubName = "squareToLen"; 5972 5973 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5974 5975 Node* x = argument(0); 5976 Node* len = argument(1); 5977 Node* z = argument(2); 5978 Node* zlen = argument(3); 5979 5980 x = must_be_not_null(x, true); 5981 z = must_be_not_null(z, true); 5982 5983 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5984 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 5985 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5986 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 5987 // failed array check 5988 return false; 5989 } 5990 5991 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5992 BasicType z_elem = z_type->elem()->array_element_basic_type(); 5993 if (x_elem != T_INT || z_elem != T_INT) { 5994 return false; 5995 } 5996 5997 5998 Node* x_start = array_element_address(x, intcon(0), x_elem); 5999 Node* z_start = array_element_address(z, intcon(0), z_elem); 6000 6001 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6002 OptoRuntime::squareToLen_Type(), 6003 stubAddr, stubName, TypePtr::BOTTOM, 6004 x_start, len, z_start, zlen); 6005 6006 set_result(z); 6007 return true; 6008 } 6009 6010 //-------------inline_mulAdd------------------------------------------ 6011 bool LibraryCallKit::inline_mulAdd() { 6012 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6013 6014 address stubAddr = StubRoutines::mulAdd(); 6015 if (stubAddr == nullptr) { 6016 return false; // Intrinsic's stub is not implemented on this platform 6017 } 6018 const char* stubName = "mulAdd"; 6019 6020 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6021 6022 Node* out = argument(0); 6023 Node* in = argument(1); 6024 Node* offset = argument(2); 6025 Node* len = argument(3); 6026 Node* k = argument(4); 6027 6028 in = must_be_not_null(in, true); 6029 out = must_be_not_null(out, true); 6030 6031 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6032 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6033 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6034 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6035 // failed array check 6036 return false; 6037 } 6038 6039 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6040 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6041 if (out_elem != T_INT || in_elem != T_INT) { 6042 return false; 6043 } 6044 6045 Node* outlen = load_array_length(out); 6046 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6047 Node* out_start = array_element_address(out, intcon(0), out_elem); 6048 Node* in_start = array_element_address(in, intcon(0), in_elem); 6049 6050 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6051 OptoRuntime::mulAdd_Type(), 6052 stubAddr, stubName, TypePtr::BOTTOM, 6053 out_start,in_start, new_offset, len, k); 6054 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6055 set_result(result); 6056 return true; 6057 } 6058 6059 //-------------inline_montgomeryMultiply----------------------------------- 6060 bool LibraryCallKit::inline_montgomeryMultiply() { 6061 address stubAddr = StubRoutines::montgomeryMultiply(); 6062 if (stubAddr == nullptr) { 6063 return false; // Intrinsic's stub is not implemented on this platform 6064 } 6065 6066 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6067 const char* stubName = "montgomery_multiply"; 6068 6069 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6070 6071 Node* a = argument(0); 6072 Node* b = argument(1); 6073 Node* n = argument(2); 6074 Node* len = argument(3); 6075 Node* inv = argument(4); 6076 Node* m = argument(6); 6077 6078 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6079 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6080 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6081 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6082 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6083 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6084 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6085 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6086 // failed array check 6087 return false; 6088 } 6089 6090 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6091 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6092 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6093 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6094 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6095 return false; 6096 } 6097 6098 // Make the call 6099 { 6100 Node* a_start = array_element_address(a, intcon(0), a_elem); 6101 Node* b_start = array_element_address(b, intcon(0), b_elem); 6102 Node* n_start = array_element_address(n, intcon(0), n_elem); 6103 Node* m_start = array_element_address(m, intcon(0), m_elem); 6104 6105 Node* call = make_runtime_call(RC_LEAF, 6106 OptoRuntime::montgomeryMultiply_Type(), 6107 stubAddr, stubName, TypePtr::BOTTOM, 6108 a_start, b_start, n_start, len, inv, top(), 6109 m_start); 6110 set_result(m); 6111 } 6112 6113 return true; 6114 } 6115 6116 bool LibraryCallKit::inline_montgomerySquare() { 6117 address stubAddr = StubRoutines::montgomerySquare(); 6118 if (stubAddr == nullptr) { 6119 return false; // Intrinsic's stub is not implemented on this platform 6120 } 6121 6122 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6123 const char* stubName = "montgomery_square"; 6124 6125 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6126 6127 Node* a = argument(0); 6128 Node* n = argument(1); 6129 Node* len = argument(2); 6130 Node* inv = argument(3); 6131 Node* m = argument(5); 6132 6133 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6134 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6135 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6136 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6137 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6138 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6139 // failed array check 6140 return false; 6141 } 6142 6143 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6144 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6145 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6146 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6147 return false; 6148 } 6149 6150 // Make the call 6151 { 6152 Node* a_start = array_element_address(a, intcon(0), a_elem); 6153 Node* n_start = array_element_address(n, intcon(0), n_elem); 6154 Node* m_start = array_element_address(m, intcon(0), m_elem); 6155 6156 Node* call = make_runtime_call(RC_LEAF, 6157 OptoRuntime::montgomerySquare_Type(), 6158 stubAddr, stubName, TypePtr::BOTTOM, 6159 a_start, n_start, len, inv, top(), 6160 m_start); 6161 set_result(m); 6162 } 6163 6164 return true; 6165 } 6166 6167 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6168 address stubAddr = nullptr; 6169 const char* stubName = nullptr; 6170 6171 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6172 if (stubAddr == nullptr) { 6173 return false; // Intrinsic's stub is not implemented on this platform 6174 } 6175 6176 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6177 6178 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6179 6180 Node* newArr = argument(0); 6181 Node* oldArr = argument(1); 6182 Node* newIdx = argument(2); 6183 Node* shiftCount = argument(3); 6184 Node* numIter = argument(4); 6185 6186 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6187 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6188 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6189 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6190 return false; 6191 } 6192 6193 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6194 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6195 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6196 return false; 6197 } 6198 6199 // Make the call 6200 { 6201 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6202 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6203 6204 Node* call = make_runtime_call(RC_LEAF, 6205 OptoRuntime::bigIntegerShift_Type(), 6206 stubAddr, 6207 stubName, 6208 TypePtr::BOTTOM, 6209 newArr_start, 6210 oldArr_start, 6211 newIdx, 6212 shiftCount, 6213 numIter); 6214 } 6215 6216 return true; 6217 } 6218 6219 //-------------inline_vectorizedMismatch------------------------------ 6220 bool LibraryCallKit::inline_vectorizedMismatch() { 6221 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6222 6223 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6224 Node* obja = argument(0); // Object 6225 Node* aoffset = argument(1); // long 6226 Node* objb = argument(3); // Object 6227 Node* boffset = argument(4); // long 6228 Node* length = argument(6); // int 6229 Node* scale = argument(7); // int 6230 6231 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6232 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6233 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6234 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6235 scale == top()) { 6236 return false; // failed input validation 6237 } 6238 6239 Node* obja_adr = make_unsafe_address(obja, aoffset); 6240 Node* objb_adr = make_unsafe_address(objb, boffset); 6241 6242 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6243 // 6244 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6245 // if (length <= inline_limit) { 6246 // inline_path: 6247 // vmask = VectorMaskGen length 6248 // vload1 = LoadVectorMasked obja, vmask 6249 // vload2 = LoadVectorMasked objb, vmask 6250 // result1 = VectorCmpMasked vload1, vload2, vmask 6251 // } else { 6252 // call_stub_path: 6253 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6254 // } 6255 // exit_block: 6256 // return Phi(result1, result2); 6257 // 6258 enum { inline_path = 1, // input is small enough to process it all at once 6259 stub_path = 2, // input is too large; call into the VM 6260 PATH_LIMIT = 3 6261 }; 6262 6263 Node* exit_block = new RegionNode(PATH_LIMIT); 6264 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6265 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6266 6267 Node* call_stub_path = control(); 6268 6269 BasicType elem_bt = T_ILLEGAL; 6270 6271 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6272 if (scale_t->is_con()) { 6273 switch (scale_t->get_con()) { 6274 case 0: elem_bt = T_BYTE; break; 6275 case 1: elem_bt = T_SHORT; break; 6276 case 2: elem_bt = T_INT; break; 6277 case 3: elem_bt = T_LONG; break; 6278 6279 default: elem_bt = T_ILLEGAL; break; // not supported 6280 } 6281 } 6282 6283 int inline_limit = 0; 6284 bool do_partial_inline = false; 6285 6286 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6287 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6288 do_partial_inline = inline_limit >= 16; 6289 } 6290 6291 if (do_partial_inline) { 6292 assert(elem_bt != T_ILLEGAL, "sanity"); 6293 6294 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6295 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6296 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6297 6298 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6299 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6300 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6301 6302 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6303 6304 if (!stopped()) { 6305 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6306 6307 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6308 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6309 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6310 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6311 6312 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6313 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6314 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6315 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6316 6317 exit_block->init_req(inline_path, control()); 6318 memory_phi->init_req(inline_path, map()->memory()); 6319 result_phi->init_req(inline_path, result); 6320 6321 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6322 clear_upper_avx(); 6323 } 6324 } 6325 } 6326 6327 if (call_stub_path != nullptr) { 6328 set_control(call_stub_path); 6329 6330 Node* call = make_runtime_call(RC_LEAF, 6331 OptoRuntime::vectorizedMismatch_Type(), 6332 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6333 obja_adr, objb_adr, length, scale); 6334 6335 exit_block->init_req(stub_path, control()); 6336 memory_phi->init_req(stub_path, map()->memory()); 6337 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6338 } 6339 6340 exit_block = _gvn.transform(exit_block); 6341 memory_phi = _gvn.transform(memory_phi); 6342 result_phi = _gvn.transform(result_phi); 6343 6344 set_control(exit_block); 6345 set_all_memory(memory_phi); 6346 set_result(result_phi); 6347 6348 return true; 6349 } 6350 6351 //------------------------------inline_vectorizedHashcode---------------------------- 6352 bool LibraryCallKit::inline_vectorizedHashCode() { 6353 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6354 6355 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6356 Node* array = argument(0); 6357 Node* offset = argument(1); 6358 Node* length = argument(2); 6359 Node* initialValue = argument(3); 6360 Node* basic_type = argument(4); 6361 6362 if (basic_type == top()) { 6363 return false; // failed input validation 6364 } 6365 6366 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6367 if (!basic_type_t->is_con()) { 6368 return false; // Only intrinsify if mode argument is constant 6369 } 6370 6371 array = must_be_not_null(array, true); 6372 6373 BasicType bt = (BasicType)basic_type_t->get_con(); 6374 6375 // Resolve address of first element 6376 Node* array_start = array_element_address(array, offset, bt); 6377 6378 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6379 array_start, length, initialValue, basic_type))); 6380 clear_upper_avx(); 6381 6382 return true; 6383 } 6384 6385 /** 6386 * Calculate CRC32 for byte. 6387 * int java.util.zip.CRC32.update(int crc, int b) 6388 */ 6389 bool LibraryCallKit::inline_updateCRC32() { 6390 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6391 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6392 // no receiver since it is static method 6393 Node* crc = argument(0); // type: int 6394 Node* b = argument(1); // type: int 6395 6396 /* 6397 * int c = ~ crc; 6398 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6399 * b = b ^ (c >>> 8); 6400 * crc = ~b; 6401 */ 6402 6403 Node* M1 = intcon(-1); 6404 crc = _gvn.transform(new XorINode(crc, M1)); 6405 Node* result = _gvn.transform(new XorINode(crc, b)); 6406 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6407 6408 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6409 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6410 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6411 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6412 6413 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6414 result = _gvn.transform(new XorINode(crc, result)); 6415 result = _gvn.transform(new XorINode(result, M1)); 6416 set_result(result); 6417 return true; 6418 } 6419 6420 /** 6421 * Calculate CRC32 for byte[] array. 6422 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6423 */ 6424 bool LibraryCallKit::inline_updateBytesCRC32() { 6425 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6426 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6427 // no receiver since it is static method 6428 Node* crc = argument(0); // type: int 6429 Node* src = argument(1); // type: oop 6430 Node* offset = argument(2); // type: int 6431 Node* length = argument(3); // type: int 6432 6433 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6434 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6435 // failed array check 6436 return false; 6437 } 6438 6439 // Figure out the size and type of the elements we will be copying. 6440 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6441 if (src_elem != T_BYTE) { 6442 return false; 6443 } 6444 6445 // 'src_start' points to src array + scaled offset 6446 src = must_be_not_null(src, true); 6447 Node* src_start = array_element_address(src, offset, src_elem); 6448 6449 // We assume that range check is done by caller. 6450 // TODO: generate range check (offset+length < src.length) in debug VM. 6451 6452 // Call the stub. 6453 address stubAddr = StubRoutines::updateBytesCRC32(); 6454 const char *stubName = "updateBytesCRC32"; 6455 6456 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6457 stubAddr, stubName, TypePtr::BOTTOM, 6458 crc, src_start, length); 6459 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6460 set_result(result); 6461 return true; 6462 } 6463 6464 /** 6465 * Calculate CRC32 for ByteBuffer. 6466 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6467 */ 6468 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6469 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6470 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6471 // no receiver since it is static method 6472 Node* crc = argument(0); // type: int 6473 Node* src = argument(1); // type: long 6474 Node* offset = argument(3); // type: int 6475 Node* length = argument(4); // type: int 6476 6477 src = ConvL2X(src); // adjust Java long to machine word 6478 Node* base = _gvn.transform(new CastX2PNode(src)); 6479 offset = ConvI2X(offset); 6480 6481 // 'src_start' points to src array + scaled offset 6482 Node* src_start = basic_plus_adr(top(), base, offset); 6483 6484 // Call the stub. 6485 address stubAddr = StubRoutines::updateBytesCRC32(); 6486 const char *stubName = "updateBytesCRC32"; 6487 6488 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6489 stubAddr, stubName, TypePtr::BOTTOM, 6490 crc, src_start, length); 6491 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6492 set_result(result); 6493 return true; 6494 } 6495 6496 //------------------------------get_table_from_crc32c_class----------------------- 6497 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6498 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6499 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6500 6501 return table; 6502 } 6503 6504 //------------------------------inline_updateBytesCRC32C----------------------- 6505 // 6506 // Calculate CRC32C for byte[] array. 6507 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6508 // 6509 bool LibraryCallKit::inline_updateBytesCRC32C() { 6510 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6511 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6512 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6513 // no receiver since it is a static method 6514 Node* crc = argument(0); // type: int 6515 Node* src = argument(1); // type: oop 6516 Node* offset = argument(2); // type: int 6517 Node* end = argument(3); // type: int 6518 6519 Node* length = _gvn.transform(new SubINode(end, offset)); 6520 6521 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6522 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6523 // failed array check 6524 return false; 6525 } 6526 6527 // Figure out the size and type of the elements we will be copying. 6528 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6529 if (src_elem != T_BYTE) { 6530 return false; 6531 } 6532 6533 // 'src_start' points to src array + scaled offset 6534 src = must_be_not_null(src, true); 6535 Node* src_start = array_element_address(src, offset, src_elem); 6536 6537 // static final int[] byteTable in class CRC32C 6538 Node* table = get_table_from_crc32c_class(callee()->holder()); 6539 table = must_be_not_null(table, true); 6540 Node* table_start = array_element_address(table, intcon(0), T_INT); 6541 6542 // We assume that range check is done by caller. 6543 // TODO: generate range check (offset+length < src.length) in debug VM. 6544 6545 // Call the stub. 6546 address stubAddr = StubRoutines::updateBytesCRC32C(); 6547 const char *stubName = "updateBytesCRC32C"; 6548 6549 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6550 stubAddr, stubName, TypePtr::BOTTOM, 6551 crc, src_start, length, table_start); 6552 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6553 set_result(result); 6554 return true; 6555 } 6556 6557 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6558 // 6559 // Calculate CRC32C for DirectByteBuffer. 6560 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6561 // 6562 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6563 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6564 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6565 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6566 // no receiver since it is a static method 6567 Node* crc = argument(0); // type: int 6568 Node* src = argument(1); // type: long 6569 Node* offset = argument(3); // type: int 6570 Node* end = argument(4); // type: int 6571 6572 Node* length = _gvn.transform(new SubINode(end, offset)); 6573 6574 src = ConvL2X(src); // adjust Java long to machine word 6575 Node* base = _gvn.transform(new CastX2PNode(src)); 6576 offset = ConvI2X(offset); 6577 6578 // 'src_start' points to src array + scaled offset 6579 Node* src_start = basic_plus_adr(top(), base, offset); 6580 6581 // static final int[] byteTable in class CRC32C 6582 Node* table = get_table_from_crc32c_class(callee()->holder()); 6583 table = must_be_not_null(table, true); 6584 Node* table_start = array_element_address(table, intcon(0), T_INT); 6585 6586 // Call the stub. 6587 address stubAddr = StubRoutines::updateBytesCRC32C(); 6588 const char *stubName = "updateBytesCRC32C"; 6589 6590 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6591 stubAddr, stubName, TypePtr::BOTTOM, 6592 crc, src_start, length, table_start); 6593 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6594 set_result(result); 6595 return true; 6596 } 6597 6598 //------------------------------inline_updateBytesAdler32---------------------- 6599 // 6600 // Calculate Adler32 checksum for byte[] array. 6601 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6602 // 6603 bool LibraryCallKit::inline_updateBytesAdler32() { 6604 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6605 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6606 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6607 // no receiver since it is static method 6608 Node* crc = argument(0); // type: int 6609 Node* src = argument(1); // type: oop 6610 Node* offset = argument(2); // type: int 6611 Node* length = argument(3); // type: int 6612 6613 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6614 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6615 // failed array check 6616 return false; 6617 } 6618 6619 // Figure out the size and type of the elements we will be copying. 6620 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6621 if (src_elem != T_BYTE) { 6622 return false; 6623 } 6624 6625 // 'src_start' points to src array + scaled offset 6626 Node* src_start = array_element_address(src, offset, src_elem); 6627 6628 // We assume that range check is done by caller. 6629 // TODO: generate range check (offset+length < src.length) in debug VM. 6630 6631 // Call the stub. 6632 address stubAddr = StubRoutines::updateBytesAdler32(); 6633 const char *stubName = "updateBytesAdler32"; 6634 6635 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6636 stubAddr, stubName, TypePtr::BOTTOM, 6637 crc, src_start, length); 6638 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6639 set_result(result); 6640 return true; 6641 } 6642 6643 //------------------------------inline_updateByteBufferAdler32--------------- 6644 // 6645 // Calculate Adler32 checksum for DirectByteBuffer. 6646 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6647 // 6648 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6649 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6650 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6651 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6652 // no receiver since it is static method 6653 Node* crc = argument(0); // type: int 6654 Node* src = argument(1); // type: long 6655 Node* offset = argument(3); // type: int 6656 Node* length = argument(4); // type: int 6657 6658 src = ConvL2X(src); // adjust Java long to machine word 6659 Node* base = _gvn.transform(new CastX2PNode(src)); 6660 offset = ConvI2X(offset); 6661 6662 // 'src_start' points to src array + scaled offset 6663 Node* src_start = basic_plus_adr(top(), base, offset); 6664 6665 // Call the stub. 6666 address stubAddr = StubRoutines::updateBytesAdler32(); 6667 const char *stubName = "updateBytesAdler32"; 6668 6669 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6670 stubAddr, stubName, TypePtr::BOTTOM, 6671 crc, src_start, length); 6672 6673 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6674 set_result(result); 6675 return true; 6676 } 6677 6678 //----------------------------inline_reference_get---------------------------- 6679 // public T java.lang.ref.Reference.get(); 6680 bool LibraryCallKit::inline_reference_get() { 6681 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6682 6683 // Get the argument: 6684 Node* reference_obj = null_check_receiver(); 6685 if (stopped()) return true; 6686 6687 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6688 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6689 decorators, /*is_static*/ false, nullptr); 6690 if (result == nullptr) return false; 6691 6692 // Add memory barrier to prevent commoning reads from this field 6693 // across safepoint since GC can change its value. 6694 insert_mem_bar(Op_MemBarCPUOrder); 6695 6696 set_result(result); 6697 return true; 6698 } 6699 6700 //----------------------------inline_reference_refersTo0---------------------------- 6701 // bool java.lang.ref.Reference.refersTo0(); 6702 // bool java.lang.ref.PhantomReference.refersTo0(); 6703 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6704 // Get arguments: 6705 Node* reference_obj = null_check_receiver(); 6706 Node* other_obj = argument(1); 6707 if (stopped()) return true; 6708 6709 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6710 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6711 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6712 decorators, /*is_static*/ false, nullptr); 6713 if (referent == nullptr) return false; 6714 6715 // Add memory barrier to prevent commoning reads from this field 6716 // across safepoint since GC can change its value. 6717 insert_mem_bar(Op_MemBarCPUOrder); 6718 6719 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6720 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6721 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6722 6723 RegionNode* region = new RegionNode(3); 6724 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6725 6726 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6727 region->init_req(1, if_true); 6728 phi->init_req(1, intcon(1)); 6729 6730 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6731 region->init_req(2, if_false); 6732 phi->init_req(2, intcon(0)); 6733 6734 set_control(_gvn.transform(region)); 6735 record_for_igvn(region); 6736 set_result(_gvn.transform(phi)); 6737 return true; 6738 } 6739 6740 6741 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 6742 DecoratorSet decorators, bool is_static, 6743 ciInstanceKlass* fromKls) { 6744 if (fromKls == nullptr) { 6745 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6746 assert(tinst != nullptr, "obj is null"); 6747 assert(tinst->is_loaded(), "obj is not loaded"); 6748 fromKls = tinst->instance_klass(); 6749 } else { 6750 assert(is_static, "only for static field access"); 6751 } 6752 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6753 ciSymbol::make(fieldTypeString), 6754 is_static); 6755 6756 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 6757 if (field == nullptr) return (Node *) nullptr; 6758 6759 if (is_static) { 6760 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6761 fromObj = makecon(tip); 6762 } 6763 6764 // Next code copied from Parse::do_get_xxx(): 6765 6766 // Compute address and memory type. 6767 int offset = field->offset_in_bytes(); 6768 bool is_vol = field->is_volatile(); 6769 ciType* field_klass = field->type(); 6770 assert(field_klass->is_loaded(), "should be loaded"); 6771 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 6772 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6773 BasicType bt = field->layout_type(); 6774 6775 // Build the resultant type of the load 6776 const Type *type; 6777 if (bt == T_OBJECT) { 6778 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 6779 } else { 6780 type = Type::get_const_basic_type(bt); 6781 } 6782 6783 if (is_vol) { 6784 decorators |= MO_SEQ_CST; 6785 } 6786 6787 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 6788 } 6789 6790 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 6791 bool is_exact /* true */, bool is_static /* false */, 6792 ciInstanceKlass * fromKls /* nullptr */) { 6793 if (fromKls == nullptr) { 6794 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6795 assert(tinst != nullptr, "obj is null"); 6796 assert(tinst->is_loaded(), "obj is not loaded"); 6797 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 6798 fromKls = tinst->instance_klass(); 6799 } 6800 else { 6801 assert(is_static, "only for static field access"); 6802 } 6803 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6804 ciSymbol::make(fieldTypeString), 6805 is_static); 6806 6807 assert(field != nullptr, "undefined field"); 6808 assert(!field->is_volatile(), "not defined for volatile fields"); 6809 6810 if (is_static) { 6811 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6812 fromObj = makecon(tip); 6813 } 6814 6815 // Next code copied from Parse::do_get_xxx(): 6816 6817 // Compute address and memory type. 6818 int offset = field->offset_in_bytes(); 6819 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6820 6821 return adr; 6822 } 6823 6824 //------------------------------inline_aescrypt_Block----------------------- 6825 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 6826 address stubAddr = nullptr; 6827 const char *stubName; 6828 assert(UseAES, "need AES instruction support"); 6829 6830 switch(id) { 6831 case vmIntrinsics::_aescrypt_encryptBlock: 6832 stubAddr = StubRoutines::aescrypt_encryptBlock(); 6833 stubName = "aescrypt_encryptBlock"; 6834 break; 6835 case vmIntrinsics::_aescrypt_decryptBlock: 6836 stubAddr = StubRoutines::aescrypt_decryptBlock(); 6837 stubName = "aescrypt_decryptBlock"; 6838 break; 6839 default: 6840 break; 6841 } 6842 if (stubAddr == nullptr) return false; 6843 6844 Node* aescrypt_object = argument(0); 6845 Node* src = argument(1); 6846 Node* src_offset = argument(2); 6847 Node* dest = argument(3); 6848 Node* dest_offset = argument(4); 6849 6850 src = must_be_not_null(src, true); 6851 dest = must_be_not_null(dest, true); 6852 6853 // (1) src and dest are arrays. 6854 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6855 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6856 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6857 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6858 6859 // for the quick and dirty code we will skip all the checks. 6860 // we are just trying to get the call to be generated. 6861 Node* src_start = src; 6862 Node* dest_start = dest; 6863 if (src_offset != nullptr || dest_offset != nullptr) { 6864 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6865 src_start = array_element_address(src, src_offset, T_BYTE); 6866 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6867 } 6868 6869 // now need to get the start of its expanded key array 6870 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6871 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6872 if (k_start == nullptr) return false; 6873 6874 // Call the stub. 6875 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 6876 stubAddr, stubName, TypePtr::BOTTOM, 6877 src_start, dest_start, k_start); 6878 6879 return true; 6880 } 6881 6882 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 6883 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 6884 address stubAddr = nullptr; 6885 const char *stubName = nullptr; 6886 6887 assert(UseAES, "need AES instruction support"); 6888 6889 switch(id) { 6890 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 6891 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 6892 stubName = "cipherBlockChaining_encryptAESCrypt"; 6893 break; 6894 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 6895 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 6896 stubName = "cipherBlockChaining_decryptAESCrypt"; 6897 break; 6898 default: 6899 break; 6900 } 6901 if (stubAddr == nullptr) return false; 6902 6903 Node* cipherBlockChaining_object = argument(0); 6904 Node* src = argument(1); 6905 Node* src_offset = argument(2); 6906 Node* len = argument(3); 6907 Node* dest = argument(4); 6908 Node* dest_offset = argument(5); 6909 6910 src = must_be_not_null(src, false); 6911 dest = must_be_not_null(dest, false); 6912 6913 // (1) src and dest are arrays. 6914 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6915 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6916 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6917 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6918 6919 // checks are the responsibility of the caller 6920 Node* src_start = src; 6921 Node* dest_start = dest; 6922 if (src_offset != nullptr || dest_offset != nullptr) { 6923 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6924 src_start = array_element_address(src, src_offset, T_BYTE); 6925 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6926 } 6927 6928 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6929 // (because of the predicated logic executed earlier). 6930 // so we cast it here safely. 6931 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6932 6933 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6934 if (embeddedCipherObj == nullptr) return false; 6935 6936 // cast it to what we know it will be at runtime 6937 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 6938 assert(tinst != nullptr, "CBC obj is null"); 6939 assert(tinst->is_loaded(), "CBC obj is not loaded"); 6940 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6941 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6942 6943 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6944 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6945 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6946 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6947 aescrypt_object = _gvn.transform(aescrypt_object); 6948 6949 // we need to get the start of the aescrypt_object's expanded key array 6950 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6951 if (k_start == nullptr) return false; 6952 6953 // similarly, get the start address of the r vector 6954 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 6955 if (objRvec == nullptr) return false; 6956 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 6957 6958 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6959 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6960 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 6961 stubAddr, stubName, TypePtr::BOTTOM, 6962 src_start, dest_start, k_start, r_start, len); 6963 6964 // return cipher length (int) 6965 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 6966 set_result(retvalue); 6967 return true; 6968 } 6969 6970 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 6971 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 6972 address stubAddr = nullptr; 6973 const char *stubName = nullptr; 6974 6975 assert(UseAES, "need AES instruction support"); 6976 6977 switch (id) { 6978 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 6979 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 6980 stubName = "electronicCodeBook_encryptAESCrypt"; 6981 break; 6982 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 6983 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 6984 stubName = "electronicCodeBook_decryptAESCrypt"; 6985 break; 6986 default: 6987 break; 6988 } 6989 6990 if (stubAddr == nullptr) return false; 6991 6992 Node* electronicCodeBook_object = argument(0); 6993 Node* src = argument(1); 6994 Node* src_offset = argument(2); 6995 Node* len = argument(3); 6996 Node* dest = argument(4); 6997 Node* dest_offset = argument(5); 6998 6999 // (1) src and dest are arrays. 7000 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7001 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7002 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7003 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7004 7005 // checks are the responsibility of the caller 7006 Node* src_start = src; 7007 Node* dest_start = dest; 7008 if (src_offset != nullptr || dest_offset != nullptr) { 7009 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7010 src_start = array_element_address(src, src_offset, T_BYTE); 7011 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7012 } 7013 7014 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7015 // (because of the predicated logic executed earlier). 7016 // so we cast it here safely. 7017 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7018 7019 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7020 if (embeddedCipherObj == nullptr) return false; 7021 7022 // cast it to what we know it will be at runtime 7023 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7024 assert(tinst != nullptr, "ECB obj is null"); 7025 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7026 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7027 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7028 7029 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7030 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7031 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7032 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7033 aescrypt_object = _gvn.transform(aescrypt_object); 7034 7035 // we need to get the start of the aescrypt_object's expanded key array 7036 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7037 if (k_start == nullptr) return false; 7038 7039 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7040 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7041 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7042 stubAddr, stubName, TypePtr::BOTTOM, 7043 src_start, dest_start, k_start, len); 7044 7045 // return cipher length (int) 7046 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7047 set_result(retvalue); 7048 return true; 7049 } 7050 7051 //------------------------------inline_counterMode_AESCrypt----------------------- 7052 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7053 assert(UseAES, "need AES instruction support"); 7054 if (!UseAESCTRIntrinsics) return false; 7055 7056 address stubAddr = nullptr; 7057 const char *stubName = nullptr; 7058 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7059 stubAddr = StubRoutines::counterMode_AESCrypt(); 7060 stubName = "counterMode_AESCrypt"; 7061 } 7062 if (stubAddr == nullptr) return false; 7063 7064 Node* counterMode_object = argument(0); 7065 Node* src = argument(1); 7066 Node* src_offset = argument(2); 7067 Node* len = argument(3); 7068 Node* dest = argument(4); 7069 Node* dest_offset = argument(5); 7070 7071 // (1) src and dest are arrays. 7072 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7073 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7074 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7075 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7076 7077 // checks are the responsibility of the caller 7078 Node* src_start = src; 7079 Node* dest_start = dest; 7080 if (src_offset != nullptr || dest_offset != nullptr) { 7081 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7082 src_start = array_element_address(src, src_offset, T_BYTE); 7083 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7084 } 7085 7086 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7087 // (because of the predicated logic executed earlier). 7088 // so we cast it here safely. 7089 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7090 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7091 if (embeddedCipherObj == nullptr) return false; 7092 // cast it to what we know it will be at runtime 7093 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7094 assert(tinst != nullptr, "CTR obj is null"); 7095 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7096 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7097 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7098 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7099 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7100 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7101 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7102 aescrypt_object = _gvn.transform(aescrypt_object); 7103 // we need to get the start of the aescrypt_object's expanded key array 7104 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7105 if (k_start == nullptr) return false; 7106 // similarly, get the start address of the r vector 7107 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7108 if (obj_counter == nullptr) return false; 7109 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7110 7111 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7112 if (saved_encCounter == nullptr) return false; 7113 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7114 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7115 7116 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7117 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7118 OptoRuntime::counterMode_aescrypt_Type(), 7119 stubAddr, stubName, TypePtr::BOTTOM, 7120 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7121 7122 // return cipher length (int) 7123 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7124 set_result(retvalue); 7125 return true; 7126 } 7127 7128 //------------------------------get_key_start_from_aescrypt_object----------------------- 7129 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7130 #if defined(PPC64) || defined(S390) 7131 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7132 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7133 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7134 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7135 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7136 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7137 if (objSessionK == nullptr) { 7138 return (Node *) nullptr; 7139 } 7140 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7141 #else 7142 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7143 #endif // PPC64 7144 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7145 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7146 7147 // now have the array, need to get the start address of the K array 7148 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7149 return k_start; 7150 } 7151 7152 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7153 // Return node representing slow path of predicate check. 7154 // the pseudo code we want to emulate with this predicate is: 7155 // for encryption: 7156 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7157 // for decryption: 7158 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7159 // note cipher==plain is more conservative than the original java code but that's OK 7160 // 7161 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7162 // The receiver was checked for null already. 7163 Node* objCBC = argument(0); 7164 7165 Node* src = argument(1); 7166 Node* dest = argument(4); 7167 7168 // Load embeddedCipher field of CipherBlockChaining object. 7169 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7170 7171 // get AESCrypt klass for instanceOf check 7172 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7173 // will have same classloader as CipherBlockChaining object 7174 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7175 assert(tinst != nullptr, "CBCobj is null"); 7176 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7177 7178 // we want to do an instanceof comparison against the AESCrypt class 7179 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7180 if (!klass_AESCrypt->is_loaded()) { 7181 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7182 Node* ctrl = control(); 7183 set_control(top()); // no regular fast path 7184 return ctrl; 7185 } 7186 7187 src = must_be_not_null(src, true); 7188 dest = must_be_not_null(dest, true); 7189 7190 // Resolve oops to stable for CmpP below. 7191 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7192 7193 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7194 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7195 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7196 7197 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7198 7199 // for encryption, we are done 7200 if (!decrypting) 7201 return instof_false; // even if it is null 7202 7203 // for decryption, we need to add a further check to avoid 7204 // taking the intrinsic path when cipher and plain are the same 7205 // see the original java code for why. 7206 RegionNode* region = new RegionNode(3); 7207 region->init_req(1, instof_false); 7208 7209 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7210 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7211 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7212 region->init_req(2, src_dest_conjoint); 7213 7214 record_for_igvn(region); 7215 return _gvn.transform(region); 7216 } 7217 7218 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7219 // Return node representing slow path of predicate check. 7220 // the pseudo code we want to emulate with this predicate is: 7221 // for encryption: 7222 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7223 // for decryption: 7224 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7225 // note cipher==plain is more conservative than the original java code but that's OK 7226 // 7227 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7228 // The receiver was checked for null already. 7229 Node* objECB = argument(0); 7230 7231 // Load embeddedCipher field of ElectronicCodeBook object. 7232 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7233 7234 // get AESCrypt klass for instanceOf check 7235 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7236 // will have same classloader as ElectronicCodeBook object 7237 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7238 assert(tinst != nullptr, "ECBobj is null"); 7239 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7240 7241 // we want to do an instanceof comparison against the AESCrypt class 7242 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7243 if (!klass_AESCrypt->is_loaded()) { 7244 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7245 Node* ctrl = control(); 7246 set_control(top()); // no regular fast path 7247 return ctrl; 7248 } 7249 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7250 7251 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7252 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7253 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7254 7255 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7256 7257 // for encryption, we are done 7258 if (!decrypting) 7259 return instof_false; // even if it is null 7260 7261 // for decryption, we need to add a further check to avoid 7262 // taking the intrinsic path when cipher and plain are the same 7263 // see the original java code for why. 7264 RegionNode* region = new RegionNode(3); 7265 region->init_req(1, instof_false); 7266 Node* src = argument(1); 7267 Node* dest = argument(4); 7268 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7269 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7270 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7271 region->init_req(2, src_dest_conjoint); 7272 7273 record_for_igvn(region); 7274 return _gvn.transform(region); 7275 } 7276 7277 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7278 // Return node representing slow path of predicate check. 7279 // the pseudo code we want to emulate with this predicate is: 7280 // for encryption: 7281 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7282 // for decryption: 7283 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7284 // note cipher==plain is more conservative than the original java code but that's OK 7285 // 7286 7287 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7288 // The receiver was checked for null already. 7289 Node* objCTR = argument(0); 7290 7291 // Load embeddedCipher field of CipherBlockChaining object. 7292 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7293 7294 // get AESCrypt klass for instanceOf check 7295 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7296 // will have same classloader as CipherBlockChaining object 7297 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7298 assert(tinst != nullptr, "CTRobj is null"); 7299 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7300 7301 // we want to do an instanceof comparison against the AESCrypt class 7302 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7303 if (!klass_AESCrypt->is_loaded()) { 7304 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7305 Node* ctrl = control(); 7306 set_control(top()); // no regular fast path 7307 return ctrl; 7308 } 7309 7310 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7311 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7312 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7313 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7314 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7315 7316 return instof_false; // even if it is null 7317 } 7318 7319 //------------------------------inline_ghash_processBlocks 7320 bool LibraryCallKit::inline_ghash_processBlocks() { 7321 address stubAddr; 7322 const char *stubName; 7323 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7324 7325 stubAddr = StubRoutines::ghash_processBlocks(); 7326 stubName = "ghash_processBlocks"; 7327 7328 Node* data = argument(0); 7329 Node* offset = argument(1); 7330 Node* len = argument(2); 7331 Node* state = argument(3); 7332 Node* subkeyH = argument(4); 7333 7334 state = must_be_not_null(state, true); 7335 subkeyH = must_be_not_null(subkeyH, true); 7336 data = must_be_not_null(data, true); 7337 7338 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7339 assert(state_start, "state is null"); 7340 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7341 assert(subkeyH_start, "subkeyH is null"); 7342 Node* data_start = array_element_address(data, offset, T_BYTE); 7343 assert(data_start, "data is null"); 7344 7345 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7346 OptoRuntime::ghash_processBlocks_Type(), 7347 stubAddr, stubName, TypePtr::BOTTOM, 7348 state_start, subkeyH_start, data_start, len); 7349 return true; 7350 } 7351 7352 //------------------------------inline_chacha20Block 7353 bool LibraryCallKit::inline_chacha20Block() { 7354 address stubAddr; 7355 const char *stubName; 7356 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7357 7358 stubAddr = StubRoutines::chacha20Block(); 7359 stubName = "chacha20Block"; 7360 7361 Node* state = argument(0); 7362 Node* result = argument(1); 7363 7364 state = must_be_not_null(state, true); 7365 result = must_be_not_null(result, true); 7366 7367 Node* state_start = array_element_address(state, intcon(0), T_INT); 7368 assert(state_start, "state is null"); 7369 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7370 assert(result_start, "result is null"); 7371 7372 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7373 OptoRuntime::chacha20Block_Type(), 7374 stubAddr, stubName, TypePtr::BOTTOM, 7375 state_start, result_start); 7376 // return key stream length (int) 7377 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7378 set_result(retvalue); 7379 return true; 7380 } 7381 7382 bool LibraryCallKit::inline_base64_encodeBlock() { 7383 address stubAddr; 7384 const char *stubName; 7385 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7386 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7387 stubAddr = StubRoutines::base64_encodeBlock(); 7388 stubName = "encodeBlock"; 7389 7390 if (!stubAddr) return false; 7391 Node* base64obj = argument(0); 7392 Node* src = argument(1); 7393 Node* offset = argument(2); 7394 Node* len = argument(3); 7395 Node* dest = argument(4); 7396 Node* dp = argument(5); 7397 Node* isURL = argument(6); 7398 7399 src = must_be_not_null(src, true); 7400 dest = must_be_not_null(dest, true); 7401 7402 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7403 assert(src_start, "source array is null"); 7404 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7405 assert(dest_start, "destination array is null"); 7406 7407 Node* base64 = make_runtime_call(RC_LEAF, 7408 OptoRuntime::base64_encodeBlock_Type(), 7409 stubAddr, stubName, TypePtr::BOTTOM, 7410 src_start, offset, len, dest_start, dp, isURL); 7411 return true; 7412 } 7413 7414 bool LibraryCallKit::inline_base64_decodeBlock() { 7415 address stubAddr; 7416 const char *stubName; 7417 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7418 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7419 stubAddr = StubRoutines::base64_decodeBlock(); 7420 stubName = "decodeBlock"; 7421 7422 if (!stubAddr) return false; 7423 Node* base64obj = argument(0); 7424 Node* src = argument(1); 7425 Node* src_offset = argument(2); 7426 Node* len = argument(3); 7427 Node* dest = argument(4); 7428 Node* dest_offset = argument(5); 7429 Node* isURL = argument(6); 7430 Node* isMIME = argument(7); 7431 7432 src = must_be_not_null(src, true); 7433 dest = must_be_not_null(dest, true); 7434 7435 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7436 assert(src_start, "source array is null"); 7437 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7438 assert(dest_start, "destination array is null"); 7439 7440 Node* call = make_runtime_call(RC_LEAF, 7441 OptoRuntime::base64_decodeBlock_Type(), 7442 stubAddr, stubName, TypePtr::BOTTOM, 7443 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7444 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7445 set_result(result); 7446 return true; 7447 } 7448 7449 bool LibraryCallKit::inline_poly1305_processBlocks() { 7450 address stubAddr; 7451 const char *stubName; 7452 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7453 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7454 stubAddr = StubRoutines::poly1305_processBlocks(); 7455 stubName = "poly1305_processBlocks"; 7456 7457 if (!stubAddr) return false; 7458 null_check_receiver(); // null-check receiver 7459 if (stopped()) return true; 7460 7461 Node* input = argument(1); 7462 Node* input_offset = argument(2); 7463 Node* len = argument(3); 7464 Node* alimbs = argument(4); 7465 Node* rlimbs = argument(5); 7466 7467 input = must_be_not_null(input, true); 7468 alimbs = must_be_not_null(alimbs, true); 7469 rlimbs = must_be_not_null(rlimbs, true); 7470 7471 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7472 assert(input_start, "input array is null"); 7473 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7474 assert(acc_start, "acc array is null"); 7475 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7476 assert(r_start, "r array is null"); 7477 7478 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7479 OptoRuntime::poly1305_processBlocks_Type(), 7480 stubAddr, stubName, TypePtr::BOTTOM, 7481 input_start, len, acc_start, r_start); 7482 return true; 7483 } 7484 7485 //------------------------------inline_digestBase_implCompress----------------------- 7486 // 7487 // Calculate MD5 for single-block byte[] array. 7488 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7489 // 7490 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7491 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7492 // 7493 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7494 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7495 // 7496 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7497 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7498 // 7499 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7500 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7501 // 7502 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7503 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7504 7505 Node* digestBase_obj = argument(0); 7506 Node* src = argument(1); // type oop 7507 Node* ofs = argument(2); // type int 7508 7509 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7510 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7511 // failed array check 7512 return false; 7513 } 7514 // Figure out the size and type of the elements we will be copying. 7515 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7516 if (src_elem != T_BYTE) { 7517 return false; 7518 } 7519 // 'src_start' points to src array + offset 7520 src = must_be_not_null(src, true); 7521 Node* src_start = array_element_address(src, ofs, src_elem); 7522 Node* state = nullptr; 7523 Node* block_size = nullptr; 7524 address stubAddr; 7525 const char *stubName; 7526 7527 switch(id) { 7528 case vmIntrinsics::_md5_implCompress: 7529 assert(UseMD5Intrinsics, "need MD5 instruction support"); 7530 state = get_state_from_digest_object(digestBase_obj, T_INT); 7531 stubAddr = StubRoutines::md5_implCompress(); 7532 stubName = "md5_implCompress"; 7533 break; 7534 case vmIntrinsics::_sha_implCompress: 7535 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 7536 state = get_state_from_digest_object(digestBase_obj, T_INT); 7537 stubAddr = StubRoutines::sha1_implCompress(); 7538 stubName = "sha1_implCompress"; 7539 break; 7540 case vmIntrinsics::_sha2_implCompress: 7541 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 7542 state = get_state_from_digest_object(digestBase_obj, T_INT); 7543 stubAddr = StubRoutines::sha256_implCompress(); 7544 stubName = "sha256_implCompress"; 7545 break; 7546 case vmIntrinsics::_sha5_implCompress: 7547 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 7548 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7549 stubAddr = StubRoutines::sha512_implCompress(); 7550 stubName = "sha512_implCompress"; 7551 break; 7552 case vmIntrinsics::_sha3_implCompress: 7553 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 7554 state = get_state_from_digest_object(digestBase_obj, T_BYTE); 7555 stubAddr = StubRoutines::sha3_implCompress(); 7556 stubName = "sha3_implCompress"; 7557 block_size = get_block_size_from_digest_object(digestBase_obj); 7558 if (block_size == nullptr) return false; 7559 break; 7560 default: 7561 fatal_unexpected_iid(id); 7562 return false; 7563 } 7564 if (state == nullptr) return false; 7565 7566 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 7567 if (stubAddr == nullptr) return false; 7568 7569 // Call the stub. 7570 Node* call; 7571 if (block_size == nullptr) { 7572 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 7573 stubAddr, stubName, TypePtr::BOTTOM, 7574 src_start, state); 7575 } else { 7576 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 7577 stubAddr, stubName, TypePtr::BOTTOM, 7578 src_start, state, block_size); 7579 } 7580 7581 return true; 7582 } 7583 7584 //------------------------------inline_digestBase_implCompressMB----------------------- 7585 // 7586 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 7587 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 7588 // 7589 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 7590 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7591 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7592 assert((uint)predicate < 5, "sanity"); 7593 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 7594 7595 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 7596 Node* src = argument(1); // byte[] array 7597 Node* ofs = argument(2); // type int 7598 Node* limit = argument(3); // type int 7599 7600 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7601 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7602 // failed array check 7603 return false; 7604 } 7605 // Figure out the size and type of the elements we will be copying. 7606 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7607 if (src_elem != T_BYTE) { 7608 return false; 7609 } 7610 // 'src_start' points to src array + offset 7611 src = must_be_not_null(src, false); 7612 Node* src_start = array_element_address(src, ofs, src_elem); 7613 7614 const char* klass_digestBase_name = nullptr; 7615 const char* stub_name = nullptr; 7616 address stub_addr = nullptr; 7617 BasicType elem_type = T_INT; 7618 7619 switch (predicate) { 7620 case 0: 7621 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 7622 klass_digestBase_name = "sun/security/provider/MD5"; 7623 stub_name = "md5_implCompressMB"; 7624 stub_addr = StubRoutines::md5_implCompressMB(); 7625 } 7626 break; 7627 case 1: 7628 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 7629 klass_digestBase_name = "sun/security/provider/SHA"; 7630 stub_name = "sha1_implCompressMB"; 7631 stub_addr = StubRoutines::sha1_implCompressMB(); 7632 } 7633 break; 7634 case 2: 7635 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 7636 klass_digestBase_name = "sun/security/provider/SHA2"; 7637 stub_name = "sha256_implCompressMB"; 7638 stub_addr = StubRoutines::sha256_implCompressMB(); 7639 } 7640 break; 7641 case 3: 7642 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 7643 klass_digestBase_name = "sun/security/provider/SHA5"; 7644 stub_name = "sha512_implCompressMB"; 7645 stub_addr = StubRoutines::sha512_implCompressMB(); 7646 elem_type = T_LONG; 7647 } 7648 break; 7649 case 4: 7650 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 7651 klass_digestBase_name = "sun/security/provider/SHA3"; 7652 stub_name = "sha3_implCompressMB"; 7653 stub_addr = StubRoutines::sha3_implCompressMB(); 7654 elem_type = T_BYTE; 7655 } 7656 break; 7657 default: 7658 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 7659 } 7660 if (klass_digestBase_name != nullptr) { 7661 assert(stub_addr != nullptr, "Stub is generated"); 7662 if (stub_addr == nullptr) return false; 7663 7664 // get DigestBase klass to lookup for SHA klass 7665 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 7666 assert(tinst != nullptr, "digestBase_obj is not instance???"); 7667 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7668 7669 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 7670 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 7671 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 7672 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 7673 } 7674 return false; 7675 } 7676 7677 //------------------------------inline_digestBase_implCompressMB----------------------- 7678 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 7679 BasicType elem_type, address stubAddr, const char *stubName, 7680 Node* src_start, Node* ofs, Node* limit) { 7681 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 7682 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7683 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 7684 digest_obj = _gvn.transform(digest_obj); 7685 7686 Node* state = get_state_from_digest_object(digest_obj, elem_type); 7687 if (state == nullptr) return false; 7688 7689 Node* block_size = nullptr; 7690 if (strcmp("sha3_implCompressMB", stubName) == 0) { 7691 block_size = get_block_size_from_digest_object(digest_obj); 7692 if (block_size == nullptr) return false; 7693 } 7694 7695 // Call the stub. 7696 Node* call; 7697 if (block_size == nullptr) { 7698 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7699 OptoRuntime::digestBase_implCompressMB_Type(false), 7700 stubAddr, stubName, TypePtr::BOTTOM, 7701 src_start, state, ofs, limit); 7702 } else { 7703 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7704 OptoRuntime::digestBase_implCompressMB_Type(true), 7705 stubAddr, stubName, TypePtr::BOTTOM, 7706 src_start, state, block_size, ofs, limit); 7707 } 7708 7709 // return ofs (int) 7710 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7711 set_result(result); 7712 7713 return true; 7714 } 7715 7716 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 7717 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 7718 assert(UseAES, "need AES instruction support"); 7719 address stubAddr = nullptr; 7720 const char *stubName = nullptr; 7721 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 7722 stubName = "galoisCounterMode_AESCrypt"; 7723 7724 if (stubAddr == nullptr) return false; 7725 7726 Node* in = argument(0); 7727 Node* inOfs = argument(1); 7728 Node* len = argument(2); 7729 Node* ct = argument(3); 7730 Node* ctOfs = argument(4); 7731 Node* out = argument(5); 7732 Node* outOfs = argument(6); 7733 Node* gctr_object = argument(7); 7734 Node* ghash_object = argument(8); 7735 7736 // (1) in, ct and out are arrays. 7737 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 7738 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 7739 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 7740 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 7741 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 7742 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 7743 7744 // checks are the responsibility of the caller 7745 Node* in_start = in; 7746 Node* ct_start = ct; 7747 Node* out_start = out; 7748 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 7749 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 7750 in_start = array_element_address(in, inOfs, T_BYTE); 7751 ct_start = array_element_address(ct, ctOfs, T_BYTE); 7752 out_start = array_element_address(out, outOfs, T_BYTE); 7753 } 7754 7755 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7756 // (because of the predicated logic executed earlier). 7757 // so we cast it here safely. 7758 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7759 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7760 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 7761 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 7762 Node* state = load_field_from_object(ghash_object, "state", "[J"); 7763 7764 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 7765 return false; 7766 } 7767 // cast it to what we know it will be at runtime 7768 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 7769 assert(tinst != nullptr, "GCTR obj is null"); 7770 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7771 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7772 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7773 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7774 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7775 const TypeOopPtr* xtype = aklass->as_instance_type(); 7776 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7777 aescrypt_object = _gvn.transform(aescrypt_object); 7778 // we need to get the start of the aescrypt_object's expanded key array 7779 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7780 if (k_start == nullptr) return false; 7781 // similarly, get the start address of the r vector 7782 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 7783 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7784 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 7785 7786 7787 // Call the stub, passing params 7788 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7789 OptoRuntime::galoisCounterMode_aescrypt_Type(), 7790 stubAddr, stubName, TypePtr::BOTTOM, 7791 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 7792 7793 // return cipher length (int) 7794 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 7795 set_result(retvalue); 7796 7797 return true; 7798 } 7799 7800 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 7801 // Return node representing slow path of predicate check. 7802 // the pseudo code we want to emulate with this predicate is: 7803 // for encryption: 7804 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7805 // for decryption: 7806 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7807 // note cipher==plain is more conservative than the original java code but that's OK 7808 // 7809 7810 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 7811 // The receiver was checked for null already. 7812 Node* objGCTR = argument(7); 7813 // Load embeddedCipher field of GCTR object. 7814 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7815 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 7816 7817 // get AESCrypt klass for instanceOf check 7818 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7819 // will have same classloader as CipherBlockChaining object 7820 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 7821 assert(tinst != nullptr, "GCTR obj is null"); 7822 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7823 7824 // we want to do an instanceof comparison against the AESCrypt class 7825 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7826 if (!klass_AESCrypt->is_loaded()) { 7827 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7828 Node* ctrl = control(); 7829 set_control(top()); // no regular fast path 7830 return ctrl; 7831 } 7832 7833 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7834 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7835 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7836 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7837 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7838 7839 return instof_false; // even if it is null 7840 } 7841 7842 //------------------------------get_state_from_digest_object----------------------- 7843 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 7844 const char* state_type; 7845 switch (elem_type) { 7846 case T_BYTE: state_type = "[B"; break; 7847 case T_INT: state_type = "[I"; break; 7848 case T_LONG: state_type = "[J"; break; 7849 default: ShouldNotReachHere(); 7850 } 7851 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 7852 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 7853 if (digest_state == nullptr) return (Node *) nullptr; 7854 7855 // now have the array, need to get the start address of the state array 7856 Node* state = array_element_address(digest_state, intcon(0), elem_type); 7857 return state; 7858 } 7859 7860 //------------------------------get_block_size_from_sha3_object---------------------------------- 7861 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 7862 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 7863 assert (block_size != nullptr, "sanity"); 7864 return block_size; 7865 } 7866 7867 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 7868 // Return node representing slow path of predicate check. 7869 // the pseudo code we want to emulate with this predicate is: 7870 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 7871 // 7872 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 7873 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7874 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7875 assert((uint)predicate < 5, "sanity"); 7876 7877 // The receiver was checked for null already. 7878 Node* digestBaseObj = argument(0); 7879 7880 // get DigestBase klass for instanceOf check 7881 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 7882 assert(tinst != nullptr, "digestBaseObj is null"); 7883 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7884 7885 const char* klass_name = nullptr; 7886 switch (predicate) { 7887 case 0: 7888 if (UseMD5Intrinsics) { 7889 // we want to do an instanceof comparison against the MD5 class 7890 klass_name = "sun/security/provider/MD5"; 7891 } 7892 break; 7893 case 1: 7894 if (UseSHA1Intrinsics) { 7895 // we want to do an instanceof comparison against the SHA class 7896 klass_name = "sun/security/provider/SHA"; 7897 } 7898 break; 7899 case 2: 7900 if (UseSHA256Intrinsics) { 7901 // we want to do an instanceof comparison against the SHA2 class 7902 klass_name = "sun/security/provider/SHA2"; 7903 } 7904 break; 7905 case 3: 7906 if (UseSHA512Intrinsics) { 7907 // we want to do an instanceof comparison against the SHA5 class 7908 klass_name = "sun/security/provider/SHA5"; 7909 } 7910 break; 7911 case 4: 7912 if (UseSHA3Intrinsics) { 7913 // we want to do an instanceof comparison against the SHA3 class 7914 klass_name = "sun/security/provider/SHA3"; 7915 } 7916 break; 7917 default: 7918 fatal("unknown SHA intrinsic predicate: %d", predicate); 7919 } 7920 7921 ciKlass* klass = nullptr; 7922 if (klass_name != nullptr) { 7923 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 7924 } 7925 if ((klass == nullptr) || !klass->is_loaded()) { 7926 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 7927 Node* ctrl = control(); 7928 set_control(top()); // no intrinsic path 7929 return ctrl; 7930 } 7931 ciInstanceKlass* instklass = klass->as_instance_klass(); 7932 7933 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 7934 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7935 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7936 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7937 7938 return instof_false; // even if it is null 7939 } 7940 7941 //-------------inline_fma----------------------------------- 7942 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 7943 Node *a = nullptr; 7944 Node *b = nullptr; 7945 Node *c = nullptr; 7946 Node* result = nullptr; 7947 switch (id) { 7948 case vmIntrinsics::_fmaD: 7949 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 7950 // no receiver since it is static method 7951 a = round_double_node(argument(0)); 7952 b = round_double_node(argument(2)); 7953 c = round_double_node(argument(4)); 7954 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 7955 break; 7956 case vmIntrinsics::_fmaF: 7957 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 7958 a = argument(0); 7959 b = argument(1); 7960 c = argument(2); 7961 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 7962 break; 7963 default: 7964 fatal_unexpected_iid(id); break; 7965 } 7966 set_result(result); 7967 return true; 7968 } 7969 7970 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 7971 // argument(0) is receiver 7972 Node* codePoint = argument(1); 7973 Node* n = nullptr; 7974 7975 switch (id) { 7976 case vmIntrinsics::_isDigit : 7977 n = new DigitNode(control(), codePoint); 7978 break; 7979 case vmIntrinsics::_isLowerCase : 7980 n = new LowerCaseNode(control(), codePoint); 7981 break; 7982 case vmIntrinsics::_isUpperCase : 7983 n = new UpperCaseNode(control(), codePoint); 7984 break; 7985 case vmIntrinsics::_isWhitespace : 7986 n = new WhitespaceNode(control(), codePoint); 7987 break; 7988 default: 7989 fatal_unexpected_iid(id); 7990 } 7991 7992 set_result(_gvn.transform(n)); 7993 return true; 7994 } 7995 7996 //------------------------------inline_fp_min_max------------------------------ 7997 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 7998 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 7999 8000 // The intrinsic should be used only when the API branches aren't predictable, 8001 // the last one performing the most important comparison. The following heuristic 8002 // uses the branch statistics to eventually bail out if necessary. 8003 8004 ciMethodData *md = callee()->method_data(); 8005 8006 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 8007 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 8008 8009 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 8010 // Bail out if the call-site didn't contribute enough to the statistics. 8011 return false; 8012 } 8013 8014 uint taken = 0, not_taken = 0; 8015 8016 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 8017 if (p->is_BranchData()) { 8018 taken = ((ciBranchData*)p)->taken(); 8019 not_taken = ((ciBranchData*)p)->not_taken(); 8020 } 8021 } 8022 8023 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 8024 balance = balance < 0 ? -balance : balance; 8025 if ( balance > 0.2 ) { 8026 // Bail out if the most important branch is predictable enough. 8027 return false; 8028 } 8029 } 8030 */ 8031 8032 Node *a = nullptr; 8033 Node *b = nullptr; 8034 Node *n = nullptr; 8035 switch (id) { 8036 case vmIntrinsics::_maxF: 8037 case vmIntrinsics::_minF: 8038 case vmIntrinsics::_maxF_strict: 8039 case vmIntrinsics::_minF_strict: 8040 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 8041 a = argument(0); 8042 b = argument(1); 8043 break; 8044 case vmIntrinsics::_maxD: 8045 case vmIntrinsics::_minD: 8046 case vmIntrinsics::_maxD_strict: 8047 case vmIntrinsics::_minD_strict: 8048 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 8049 a = round_double_node(argument(0)); 8050 b = round_double_node(argument(2)); 8051 break; 8052 default: 8053 fatal_unexpected_iid(id); 8054 break; 8055 } 8056 switch (id) { 8057 case vmIntrinsics::_maxF: 8058 case vmIntrinsics::_maxF_strict: 8059 n = new MaxFNode(a, b); 8060 break; 8061 case vmIntrinsics::_minF: 8062 case vmIntrinsics::_minF_strict: 8063 n = new MinFNode(a, b); 8064 break; 8065 case vmIntrinsics::_maxD: 8066 case vmIntrinsics::_maxD_strict: 8067 n = new MaxDNode(a, b); 8068 break; 8069 case vmIntrinsics::_minD: 8070 case vmIntrinsics::_minD_strict: 8071 n = new MinDNode(a, b); 8072 break; 8073 default: 8074 fatal_unexpected_iid(id); 8075 break; 8076 } 8077 set_result(_gvn.transform(n)); 8078 return true; 8079 } 8080 8081 bool LibraryCallKit::inline_profileBoolean() { 8082 Node* counts = argument(1); 8083 const TypeAryPtr* ary = nullptr; 8084 ciArray* aobj = nullptr; 8085 if (counts->is_Con() 8086 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8087 && (aobj = ary->const_oop()->as_array()) != nullptr 8088 && (aobj->length() == 2)) { 8089 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8090 jint false_cnt = aobj->element_value(0).as_int(); 8091 jint true_cnt = aobj->element_value(1).as_int(); 8092 8093 if (C->log() != nullptr) { 8094 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8095 false_cnt, true_cnt); 8096 } 8097 8098 if (false_cnt + true_cnt == 0) { 8099 // According to profile, never executed. 8100 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8101 Deoptimization::Action_reinterpret); 8102 return true; 8103 } 8104 8105 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8106 // is a number of each value occurrences. 8107 Node* result = argument(0); 8108 if (false_cnt == 0 || true_cnt == 0) { 8109 // According to profile, one value has been never seen. 8110 int expected_val = (false_cnt == 0) ? 1 : 0; 8111 8112 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8113 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8114 8115 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8116 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8117 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8118 8119 { // Slow path: uncommon trap for never seen value and then reexecute 8120 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8121 // the value has been seen at least once. 8122 PreserveJVMState pjvms(this); 8123 PreserveReexecuteState preexecs(this); 8124 jvms()->set_should_reexecute(true); 8125 8126 set_control(slow_path); 8127 set_i_o(i_o()); 8128 8129 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8130 Deoptimization::Action_reinterpret); 8131 } 8132 // The guard for never seen value enables sharpening of the result and 8133 // returning a constant. It allows to eliminate branches on the same value 8134 // later on. 8135 set_control(fast_path); 8136 result = intcon(expected_val); 8137 } 8138 // Stop profiling. 8139 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8140 // By replacing method body with profile data (represented as ProfileBooleanNode 8141 // on IR level) we effectively disable profiling. 8142 // It enables full speed execution once optimized code is generated. 8143 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8144 C->record_for_igvn(profile); 8145 set_result(profile); 8146 return true; 8147 } else { 8148 // Continue profiling. 8149 // Profile data isn't available at the moment. So, execute method's bytecode version. 8150 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8151 // is compiled and counters aren't available since corresponding MethodHandle 8152 // isn't a compile-time constant. 8153 return false; 8154 } 8155 } 8156 8157 bool LibraryCallKit::inline_isCompileConstant() { 8158 Node* n = argument(0); 8159 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8160 return true; 8161 } 8162 8163 //------------------------------- inline_getObjectSize/sizeOf -------------------------------------- 8164 // 8165 // Calculate the runtime size of the object/array. 8166 // 8167 // long java.lang.Runtime.sizeOf(Object obj) 8168 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8169 // 8170 bool LibraryCallKit::inline_sizeOf() { 8171 Node* obj = argument(0); 8172 return inline_sizeOf_impl(obj); 8173 } 8174 8175 bool LibraryCallKit::inline_getObjectSize() { 8176 Node* obj = argument(3); 8177 return inline_sizeOf_impl(obj); 8178 } 8179 8180 bool LibraryCallKit::inline_sizeOf_impl(Node* obj) { 8181 Node* klass_node = load_object_klass(obj); 8182 8183 jint layout_con = Klass::_lh_neutral_value; 8184 Node* layout_val = get_layout_helper(klass_node, layout_con); 8185 int layout_is_con = (layout_val == nullptr); 8186 8187 if (layout_is_con) { 8188 // Layout helper is constant, can figure out things at compile time. 8189 8190 if (Klass::layout_helper_is_instance(layout_con)) { 8191 // Instance case: layout_con contains the size itself. 8192 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8193 set_result(size); 8194 } else { 8195 // Array case: size is round(header + element_size*arraylength). 8196 // Since arraylength is different for every array instance, we have to 8197 // compute the whole thing at runtime. 8198 8199 Node* arr_length = load_array_length(obj); 8200 8201 int round_mask = MinObjAlignmentInBytes - 1; 8202 int hsize = Klass::layout_helper_header_size(layout_con); 8203 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8204 8205 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8206 round_mask = 0; // strength-reduce it if it goes away completely 8207 } 8208 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8209 Node* header_size = intcon(hsize + round_mask); 8210 8211 Node* lengthx = ConvI2X(arr_length); 8212 Node* headerx = ConvI2X(header_size); 8213 8214 Node* abody = lengthx; 8215 if (eshift != 0) { 8216 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8217 } 8218 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8219 if (round_mask != 0) { 8220 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8221 } 8222 size = ConvX2L(size); 8223 set_result(size); 8224 } 8225 } else { 8226 // Layout helper is not constant, need to test for array-ness at runtime. 8227 8228 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8229 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8230 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8231 record_for_igvn(result_reg); 8232 8233 Node* array_ctl = generate_array_guard(klass_node, nullptr); 8234 if (array_ctl != nullptr) { 8235 // Array case: size is round(header + element_size*arraylength). 8236 // Since arraylength is different for every array instance, we have to 8237 // compute the whole thing at runtime. 8238 8239 PreserveJVMState pjvms(this); 8240 set_control(array_ctl); 8241 Node* arr_length = load_array_length(obj); 8242 8243 int round_mask = MinObjAlignmentInBytes - 1; 8244 Node* mask = intcon(round_mask); 8245 8246 Node* hss = intcon(Klass::_lh_header_size_shift); 8247 Node* hsm = intcon(Klass::_lh_header_size_mask); 8248 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8249 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8250 header_size = _gvn.transform(new AddINode(header_size, mask)); 8251 8252 // There is no need to mask or shift this value. 8253 // The semantics of LShiftINode include an implicit mask to 0x1F. 8254 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8255 Node* elem_shift = layout_val; 8256 8257 Node* lengthx = ConvI2X(arr_length); 8258 Node* headerx = ConvI2X(header_size); 8259 8260 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8261 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8262 if (round_mask != 0) { 8263 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8264 } 8265 size = ConvX2L(size); 8266 8267 result_reg->init_req(_array_path, control()); 8268 result_val->init_req(_array_path, size); 8269 } 8270 8271 if (!stopped()) { 8272 // Instance case: the layout helper gives us instance size almost directly, 8273 // but we need to mask out the _lh_instance_slow_path_bit. 8274 Node* size = ConvI2X(layout_val); 8275 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8276 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8277 size = _gvn.transform(new AndXNode(size, mask)); 8278 size = ConvX2L(size); 8279 8280 result_reg->init_req(_instance_path, control()); 8281 result_val->init_req(_instance_path, size); 8282 } 8283 8284 set_result(result_reg, result_val); 8285 } 8286 8287 return true; 8288 } 8289 8290 //------------------------------- inline_blackhole -------------------------------------- 8291 // 8292 // Make sure all arguments to this node are alive. 8293 // This matches methods that were requested to be blackholed through compile commands. 8294 // 8295 bool LibraryCallKit::inline_blackhole() { 8296 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8297 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8298 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8299 8300 // Blackhole node pinches only the control, not memory. This allows 8301 // the blackhole to be pinned in the loop that computes blackholed 8302 // values, but have no other side effects, like breaking the optimizations 8303 // across the blackhole. 8304 8305 Node* bh = _gvn.transform(new BlackholeNode(control())); 8306 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8307 8308 // Bind call arguments as blackhole arguments to keep them alive 8309 uint nargs = callee()->arg_size(); 8310 for (uint i = 0; i < nargs; i++) { 8311 bh->add_req(argument(i)); 8312 } 8313 8314 return true; 8315 } 8316 8317 bool LibraryCallKit::inline_timestamp(bool serial) { 8318 insert_mem_bar(Op_MemBarCPUOrder); 8319 Node* node = serial ? 8320 _gvn.transform(new TimestampSerialNode(control())) : 8321 _gvn.transform(new TimestampNode(control())); 8322 set_result(node); 8323 insert_mem_bar(Op_MemBarCPUOrder); 8324 return true; 8325 } 8326 8327 bool LibraryCallKit::inline_addressOf() { 8328 Node* obj = argument(0); 8329 Node* raw_val = _gvn.transform(new CastP2XNode(NULL, obj)); 8330 Node* long_val = ConvX2L(raw_val); 8331 set_result(long_val); 8332 return true; 8333 }