1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "prims/jvmtiThreadState.hpp" 55 #include "prims/unsafe.hpp" 56 #include "runtime/jniHandles.inline.hpp" 57 #include "runtime/objectMonitor.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/stubRoutines.hpp" 60 #include "utilities/macros.hpp" 61 #include "utilities/powerOfTwo.hpp" 62 63 //---------------------------make_vm_intrinsic---------------------------- 64 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 65 vmIntrinsicID id = m->intrinsic_id(); 66 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 67 68 if (!m->is_loaded()) { 69 // Do not attempt to inline unloaded methods. 70 return nullptr; 71 } 72 73 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 74 bool is_available = false; 75 76 { 77 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 78 // the compiler must transition to '_thread_in_vm' state because both 79 // methods access VM-internal data. 80 VM_ENTRY_MARK; 81 methodHandle mh(THREAD, m->get_Method()); 82 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 83 if (is_available && is_virtual) { 84 is_available = vmIntrinsics::does_virtual_dispatch(id); 85 } 86 } 87 88 if (is_available) { 89 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 90 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 91 return new LibraryIntrinsic(m, is_virtual, 92 vmIntrinsics::predicates_needed(id), 93 vmIntrinsics::does_virtual_dispatch(id), 94 id); 95 } else { 96 return nullptr; 97 } 98 } 99 100 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 101 LibraryCallKit kit(jvms, this); 102 Compile* C = kit.C; 103 int nodes = C->unique(); 104 #ifndef PRODUCT 105 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 106 char buf[1000]; 107 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 108 tty->print_cr("Intrinsic %s", str); 109 } 110 #endif 111 ciMethod* callee = kit.callee(); 112 const int bci = kit.bci(); 113 #ifdef ASSERT 114 Node* ctrl = kit.control(); 115 #endif 116 // Try to inline the intrinsic. 117 if (callee->check_intrinsic_candidate() && 118 kit.try_to_inline(_last_predicate)) { 119 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 120 : "(intrinsic)"; 121 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 122 if (C->print_intrinsics() || C->print_inlining()) { 123 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 124 } 125 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 126 if (C->log()) { 127 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 128 vmIntrinsics::name_at(intrinsic_id()), 129 (is_virtual() ? " virtual='1'" : ""), 130 C->unique() - nodes); 131 } 132 // Push the result from the inlined method onto the stack. 133 kit.push_result(); 134 C->print_inlining_update(this); 135 return kit.transfer_exceptions_into_jvms(); 136 } 137 138 // The intrinsic bailed out 139 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 140 if (jvms->has_method()) { 141 // Not a root compile. 142 const char* msg; 143 if (callee->intrinsic_candidate()) { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 145 } else { 146 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 147 : "failed to inline (intrinsic), method not annotated"; 148 } 149 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 150 if (C->print_intrinsics() || C->print_inlining()) { 151 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 152 } 153 } else { 154 // Root compile 155 ResourceMark rm; 156 stringStream msg_stream; 157 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 158 vmIntrinsics::name_at(intrinsic_id()), 159 is_virtual() ? " (virtual)" : "", bci); 160 const char *msg = msg_stream.freeze(); 161 log_debug(jit, inlining)("%s", msg); 162 if (C->print_intrinsics() || C->print_inlining()) { 163 tty->print("%s", msg); 164 } 165 } 166 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 167 C->print_inlining_update(this); 168 169 return nullptr; 170 } 171 172 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 173 LibraryCallKit kit(jvms, this); 174 Compile* C = kit.C; 175 int nodes = C->unique(); 176 _last_predicate = predicate; 177 #ifndef PRODUCT 178 assert(is_predicated() && predicate < predicates_count(), "sanity"); 179 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 180 char buf[1000]; 181 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 182 tty->print_cr("Predicate for intrinsic %s", str); 183 } 184 #endif 185 ciMethod* callee = kit.callee(); 186 const int bci = kit.bci(); 187 188 Node* slow_ctl = kit.try_to_predicate(predicate); 189 if (!kit.failing()) { 190 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 191 : "(intrinsic, predicate)"; 192 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 193 if (C->print_intrinsics() || C->print_inlining()) { 194 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 195 } 196 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 197 if (C->log()) { 198 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 199 vmIntrinsics::name_at(intrinsic_id()), 200 (is_virtual() ? " virtual='1'" : ""), 201 C->unique() - nodes); 202 } 203 return slow_ctl; // Could be null if the check folds. 204 } 205 206 // The intrinsic bailed out 207 if (jvms->has_method()) { 208 // Not a root compile. 209 const char* msg = "failed to generate predicate for intrinsic"; 210 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 211 if (C->print_intrinsics() || C->print_inlining()) { 212 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 213 } 214 } else { 215 // Root compile 216 ResourceMark rm; 217 stringStream msg_stream; 218 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 219 vmIntrinsics::name_at(intrinsic_id()), 220 is_virtual() ? " (virtual)" : "", bci); 221 const char *msg = msg_stream.freeze(); 222 log_debug(jit, inlining)("%s", msg); 223 if (C->print_intrinsics() || C->print_inlining()) { 224 C->print_inlining_stream()->print("%s", msg); 225 } 226 } 227 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 228 return nullptr; 229 } 230 231 bool LibraryCallKit::try_to_inline(int predicate) { 232 // Handle symbolic names for otherwise undistinguished boolean switches: 233 const bool is_store = true; 234 const bool is_compress = true; 235 const bool is_static = true; 236 const bool is_volatile = true; 237 238 if (!jvms()->has_method()) { 239 // Root JVMState has a null method. 240 assert(map()->memory()->Opcode() == Op_Parm, ""); 241 // Insert the memory aliasing node 242 set_all_memory(reset_memory()); 243 } 244 assert(merged_memory(), ""); 245 246 switch (intrinsic_id()) { 247 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 248 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 249 case vmIntrinsics::_getClass: return inline_native_getClass(); 250 251 case vmIntrinsics::_ceil: 252 case vmIntrinsics::_floor: 253 case vmIntrinsics::_rint: 254 case vmIntrinsics::_dsin: 255 case vmIntrinsics::_dcos: 256 case vmIntrinsics::_dtan: 257 case vmIntrinsics::_dabs: 258 case vmIntrinsics::_fabs: 259 case vmIntrinsics::_iabs: 260 case vmIntrinsics::_labs: 261 case vmIntrinsics::_datan2: 262 case vmIntrinsics::_dsqrt: 263 case vmIntrinsics::_dsqrt_strict: 264 case vmIntrinsics::_dexp: 265 case vmIntrinsics::_dlog: 266 case vmIntrinsics::_dlog10: 267 case vmIntrinsics::_dpow: 268 case vmIntrinsics::_dcopySign: 269 case vmIntrinsics::_fcopySign: 270 case vmIntrinsics::_dsignum: 271 case vmIntrinsics::_roundF: 272 case vmIntrinsics::_roundD: 273 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 274 275 case vmIntrinsics::_notify: 276 case vmIntrinsics::_notifyAll: 277 return inline_notify(intrinsic_id()); 278 279 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 280 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 281 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 282 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 283 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 284 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 285 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 286 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 287 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 288 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 289 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 290 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 291 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 292 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 293 294 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 295 296 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 297 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 298 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 299 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 300 301 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 302 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 303 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 304 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 305 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 306 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 307 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 308 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 309 310 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 311 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 312 313 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 314 315 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 316 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 317 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 318 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 319 320 case vmIntrinsics::_compressStringC: 321 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 322 case vmIntrinsics::_inflateStringC: 323 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 324 325 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 326 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 327 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 328 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 329 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 330 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 331 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 332 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 333 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 334 335 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 336 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 337 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 338 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 339 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 340 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 341 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 342 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 343 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 344 345 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 346 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 347 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 348 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 349 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 350 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 351 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 352 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 353 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 354 355 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 356 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 357 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 358 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 359 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 360 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 361 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 362 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 363 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 364 365 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 366 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 367 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 368 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 369 370 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 371 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 372 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 373 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 374 375 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 376 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 377 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 378 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 379 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 380 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 381 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 382 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 383 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 384 385 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 386 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 387 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 388 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 389 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 390 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 391 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 392 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 393 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 394 395 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 396 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 397 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 398 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 399 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 400 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 401 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 402 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 403 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 404 405 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 406 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 407 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 408 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 409 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 410 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 411 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 412 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 413 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 414 415 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 416 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 417 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 418 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 419 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 420 421 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 422 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 423 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 424 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 425 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 426 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 427 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 428 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 429 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 430 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 431 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 432 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 433 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 434 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 435 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 436 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 437 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 438 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 439 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 440 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 441 442 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 443 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 444 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 445 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 446 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 447 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 448 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 449 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 450 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 451 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 452 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 453 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 454 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 455 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 456 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 457 458 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 459 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 460 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 461 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 462 463 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 464 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 465 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 466 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 467 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 468 469 case vmIntrinsics::_loadFence: 470 case vmIntrinsics::_storeFence: 471 case vmIntrinsics::_storeStoreFence: 472 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 473 474 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 475 476 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 477 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 478 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 479 480 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 481 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 482 483 #if INCLUDE_JVMTI 484 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 485 "notifyJvmtiStart", true, false); 486 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 487 "notifyJvmtiEnd", false, true); 488 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 489 "notifyJvmtiMount", false, false); 490 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 491 "notifyJvmtiUnmount", false, false); 492 case vmIntrinsics::_notifyJvmtiVThreadHideFrames: return inline_native_notify_jvmti_hide(); 493 #endif 494 495 #ifdef JFR_HAVE_INTRINSICS 496 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 497 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 498 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 499 #endif 500 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 501 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 502 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 503 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 504 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 505 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 506 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 507 case vmIntrinsics::_getLength: return inline_native_getLength(); 508 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 509 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 510 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 511 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 512 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 513 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 514 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 515 516 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 517 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 518 519 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 520 521 case vmIntrinsics::_isInstance: 522 case vmIntrinsics::_getModifiers: 523 case vmIntrinsics::_isInterface: 524 case vmIntrinsics::_isArray: 525 case vmIntrinsics::_isPrimitive: 526 case vmIntrinsics::_isHidden: 527 case vmIntrinsics::_getSuperclass: 528 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 529 530 case vmIntrinsics::_floatToRawIntBits: 531 case vmIntrinsics::_floatToIntBits: 532 case vmIntrinsics::_intBitsToFloat: 533 case vmIntrinsics::_doubleToRawLongBits: 534 case vmIntrinsics::_doubleToLongBits: 535 case vmIntrinsics::_longBitsToDouble: 536 case vmIntrinsics::_floatToFloat16: 537 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 538 539 case vmIntrinsics::_floatIsFinite: 540 case vmIntrinsics::_floatIsInfinite: 541 case vmIntrinsics::_doubleIsFinite: 542 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 543 544 case vmIntrinsics::_numberOfLeadingZeros_i: 545 case vmIntrinsics::_numberOfLeadingZeros_l: 546 case vmIntrinsics::_numberOfTrailingZeros_i: 547 case vmIntrinsics::_numberOfTrailingZeros_l: 548 case vmIntrinsics::_bitCount_i: 549 case vmIntrinsics::_bitCount_l: 550 case vmIntrinsics::_reverse_i: 551 case vmIntrinsics::_reverse_l: 552 case vmIntrinsics::_reverseBytes_i: 553 case vmIntrinsics::_reverseBytes_l: 554 case vmIntrinsics::_reverseBytes_s: 555 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 556 557 case vmIntrinsics::_compress_i: 558 case vmIntrinsics::_compress_l: 559 case vmIntrinsics::_expand_i: 560 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 561 562 case vmIntrinsics::_compareUnsigned_i: 563 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 564 565 case vmIntrinsics::_divideUnsigned_i: 566 case vmIntrinsics::_divideUnsigned_l: 567 case vmIntrinsics::_remainderUnsigned_i: 568 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 569 570 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 571 572 case vmIntrinsics::_Reference_get: return inline_reference_get(); 573 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 574 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 575 576 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 577 578 case vmIntrinsics::_aescrypt_encryptBlock: 579 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 580 581 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 582 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 583 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 584 585 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 586 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 587 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 588 589 case vmIntrinsics::_counterMode_AESCrypt: 590 return inline_counterMode_AESCrypt(intrinsic_id()); 591 592 case vmIntrinsics::_galoisCounterMode_AESCrypt: 593 return inline_galoisCounterMode_AESCrypt(); 594 595 case vmIntrinsics::_md5_implCompress: 596 case vmIntrinsics::_sha_implCompress: 597 case vmIntrinsics::_sha2_implCompress: 598 case vmIntrinsics::_sha5_implCompress: 599 case vmIntrinsics::_sha3_implCompress: 600 return inline_digestBase_implCompress(intrinsic_id()); 601 602 case vmIntrinsics::_digestBase_implCompressMB: 603 return inline_digestBase_implCompressMB(predicate); 604 605 case vmIntrinsics::_multiplyToLen: 606 return inline_multiplyToLen(); 607 608 case vmIntrinsics::_squareToLen: 609 return inline_squareToLen(); 610 611 case vmIntrinsics::_mulAdd: 612 return inline_mulAdd(); 613 614 case vmIntrinsics::_montgomeryMultiply: 615 return inline_montgomeryMultiply(); 616 case vmIntrinsics::_montgomerySquare: 617 return inline_montgomerySquare(); 618 619 case vmIntrinsics::_bigIntegerRightShiftWorker: 620 return inline_bigIntegerShift(true); 621 case vmIntrinsics::_bigIntegerLeftShiftWorker: 622 return inline_bigIntegerShift(false); 623 624 case vmIntrinsics::_vectorizedMismatch: 625 return inline_vectorizedMismatch(); 626 627 case vmIntrinsics::_ghash_processBlocks: 628 return inline_ghash_processBlocks(); 629 case vmIntrinsics::_chacha20Block: 630 return inline_chacha20Block(); 631 case vmIntrinsics::_base64_encodeBlock: 632 return inline_base64_encodeBlock(); 633 case vmIntrinsics::_base64_decodeBlock: 634 return inline_base64_decodeBlock(); 635 case vmIntrinsics::_poly1305_processBlocks: 636 return inline_poly1305_processBlocks(); 637 638 case vmIntrinsics::_encodeISOArray: 639 case vmIntrinsics::_encodeByteISOArray: 640 return inline_encodeISOArray(false); 641 case vmIntrinsics::_encodeAsciiArray: 642 return inline_encodeISOArray(true); 643 644 case vmIntrinsics::_updateCRC32: 645 return inline_updateCRC32(); 646 case vmIntrinsics::_updateBytesCRC32: 647 return inline_updateBytesCRC32(); 648 case vmIntrinsics::_updateByteBufferCRC32: 649 return inline_updateByteBufferCRC32(); 650 651 case vmIntrinsics::_updateBytesCRC32C: 652 return inline_updateBytesCRC32C(); 653 case vmIntrinsics::_updateDirectByteBufferCRC32C: 654 return inline_updateDirectByteBufferCRC32C(); 655 656 case vmIntrinsics::_updateBytesAdler32: 657 return inline_updateBytesAdler32(); 658 case vmIntrinsics::_updateByteBufferAdler32: 659 return inline_updateByteBufferAdler32(); 660 661 case vmIntrinsics::_profileBoolean: 662 return inline_profileBoolean(); 663 case vmIntrinsics::_isCompileConstant: 664 return inline_isCompileConstant(); 665 666 case vmIntrinsics::_countPositives: 667 return inline_countPositives(); 668 669 case vmIntrinsics::_fmaD: 670 case vmIntrinsics::_fmaF: 671 return inline_fma(intrinsic_id()); 672 673 case vmIntrinsics::_isDigit: 674 case vmIntrinsics::_isLowerCase: 675 case vmIntrinsics::_isUpperCase: 676 case vmIntrinsics::_isWhitespace: 677 return inline_character_compare(intrinsic_id()); 678 679 case vmIntrinsics::_min: 680 case vmIntrinsics::_max: 681 case vmIntrinsics::_min_strict: 682 case vmIntrinsics::_max_strict: 683 return inline_min_max(intrinsic_id()); 684 685 case vmIntrinsics::_maxF: 686 case vmIntrinsics::_minF: 687 case vmIntrinsics::_maxD: 688 case vmIntrinsics::_minD: 689 case vmIntrinsics::_maxF_strict: 690 case vmIntrinsics::_minF_strict: 691 case vmIntrinsics::_maxD_strict: 692 case vmIntrinsics::_minD_strict: 693 return inline_fp_min_max(intrinsic_id()); 694 695 case vmIntrinsics::_VectorUnaryOp: 696 return inline_vector_nary_operation(1); 697 case vmIntrinsics::_VectorBinaryOp: 698 return inline_vector_nary_operation(2); 699 case vmIntrinsics::_VectorTernaryOp: 700 return inline_vector_nary_operation(3); 701 case vmIntrinsics::_VectorFromBitsCoerced: 702 return inline_vector_frombits_coerced(); 703 case vmIntrinsics::_VectorShuffleIota: 704 return inline_vector_shuffle_iota(); 705 case vmIntrinsics::_VectorMaskOp: 706 return inline_vector_mask_operation(); 707 case vmIntrinsics::_VectorShuffleToVector: 708 return inline_vector_shuffle_to_vector(); 709 case vmIntrinsics::_VectorLoadOp: 710 return inline_vector_mem_operation(/*is_store=*/false); 711 case vmIntrinsics::_VectorLoadMaskedOp: 712 return inline_vector_mem_masked_operation(/*is_store*/false); 713 case vmIntrinsics::_VectorStoreOp: 714 return inline_vector_mem_operation(/*is_store=*/true); 715 case vmIntrinsics::_VectorStoreMaskedOp: 716 return inline_vector_mem_masked_operation(/*is_store=*/true); 717 case vmIntrinsics::_VectorGatherOp: 718 return inline_vector_gather_scatter(/*is_scatter*/ false); 719 case vmIntrinsics::_VectorScatterOp: 720 return inline_vector_gather_scatter(/*is_scatter*/ true); 721 case vmIntrinsics::_VectorReductionCoerced: 722 return inline_vector_reduction(); 723 case vmIntrinsics::_VectorTest: 724 return inline_vector_test(); 725 case vmIntrinsics::_VectorBlend: 726 return inline_vector_blend(); 727 case vmIntrinsics::_VectorRearrange: 728 return inline_vector_rearrange(); 729 case vmIntrinsics::_VectorCompare: 730 return inline_vector_compare(); 731 case vmIntrinsics::_VectorBroadcastInt: 732 return inline_vector_broadcast_int(); 733 case vmIntrinsics::_VectorConvert: 734 return inline_vector_convert(); 735 case vmIntrinsics::_VectorInsert: 736 return inline_vector_insert(); 737 case vmIntrinsics::_VectorExtract: 738 return inline_vector_extract(); 739 case vmIntrinsics::_VectorCompressExpand: 740 return inline_vector_compress_expand(); 741 case vmIntrinsics::_IndexVector: 742 return inline_index_vector(); 743 case vmIntrinsics::_IndexPartiallyInUpperRange: 744 return inline_index_partially_in_upper_range(); 745 746 case vmIntrinsics::_getObjectSize: 747 return inline_getObjectSize(); 748 749 case vmIntrinsics::_blackhole: 750 return inline_blackhole(); 751 752 case vmIntrinsics::_shipilev_magic_timestamp: 753 return inline_timestamp(false); 754 case vmIntrinsics::_shipilev_magic_timestamp_serial: 755 return inline_timestamp(true); 756 case vmIntrinsics::_shipilev_magic_sizeOf: 757 return inline_sizeOf(); 758 case vmIntrinsics::_shipilev_magic_addressOf: 759 return inline_addressOf(); 760 761 default: 762 // If you get here, it may be that someone has added a new intrinsic 763 // to the list in vmIntrinsics.hpp without implementing it here. 764 #ifndef PRODUCT 765 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 766 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 767 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 768 } 769 #endif 770 return false; 771 } 772 } 773 774 Node* LibraryCallKit::try_to_predicate(int predicate) { 775 if (!jvms()->has_method()) { 776 // Root JVMState has a null method. 777 assert(map()->memory()->Opcode() == Op_Parm, ""); 778 // Insert the memory aliasing node 779 set_all_memory(reset_memory()); 780 } 781 assert(merged_memory(), ""); 782 783 switch (intrinsic_id()) { 784 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 785 return inline_cipherBlockChaining_AESCrypt_predicate(false); 786 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 787 return inline_cipherBlockChaining_AESCrypt_predicate(true); 788 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 789 return inline_electronicCodeBook_AESCrypt_predicate(false); 790 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 791 return inline_electronicCodeBook_AESCrypt_predicate(true); 792 case vmIntrinsics::_counterMode_AESCrypt: 793 return inline_counterMode_AESCrypt_predicate(); 794 case vmIntrinsics::_digestBase_implCompressMB: 795 return inline_digestBase_implCompressMB_predicate(predicate); 796 case vmIntrinsics::_galoisCounterMode_AESCrypt: 797 return inline_galoisCounterMode_AESCrypt_predicate(); 798 799 default: 800 // If you get here, it may be that someone has added a new intrinsic 801 // to the list in vmIntrinsics.hpp without implementing it here. 802 #ifndef PRODUCT 803 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 804 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 805 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 806 } 807 #endif 808 Node* slow_ctl = control(); 809 set_control(top()); // No fast path intrinsic 810 return slow_ctl; 811 } 812 } 813 814 //------------------------------set_result------------------------------- 815 // Helper function for finishing intrinsics. 816 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 817 record_for_igvn(region); 818 set_control(_gvn.transform(region)); 819 set_result( _gvn.transform(value)); 820 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 821 } 822 823 //------------------------------generate_guard--------------------------- 824 // Helper function for generating guarded fast-slow graph structures. 825 // The given 'test', if true, guards a slow path. If the test fails 826 // then a fast path can be taken. (We generally hope it fails.) 827 // In all cases, GraphKit::control() is updated to the fast path. 828 // The returned value represents the control for the slow path. 829 // The return value is never 'top'; it is either a valid control 830 // or null if it is obvious that the slow path can never be taken. 831 // Also, if region and the slow control are not null, the slow edge 832 // is appended to the region. 833 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 834 if (stopped()) { 835 // Already short circuited. 836 return nullptr; 837 } 838 839 // Build an if node and its projections. 840 // If test is true we take the slow path, which we assume is uncommon. 841 if (_gvn.type(test) == TypeInt::ZERO) { 842 // The slow branch is never taken. No need to build this guard. 843 return nullptr; 844 } 845 846 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 847 848 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 849 if (if_slow == top()) { 850 // The slow branch is never taken. No need to build this guard. 851 return nullptr; 852 } 853 854 if (region != nullptr) 855 region->add_req(if_slow); 856 857 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 858 set_control(if_fast); 859 860 return if_slow; 861 } 862 863 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 864 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 865 } 866 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 867 return generate_guard(test, region, PROB_FAIR); 868 } 869 870 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 871 Node* *pos_index) { 872 if (stopped()) 873 return nullptr; // already stopped 874 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 875 return nullptr; // index is already adequately typed 876 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 877 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 878 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 879 if (is_neg != nullptr && pos_index != nullptr) { 880 // Emulate effect of Parse::adjust_map_after_if. 881 Node* ccast = new CastIINode(index, TypeInt::POS); 882 ccast->set_req(0, control()); 883 (*pos_index) = _gvn.transform(ccast); 884 } 885 return is_neg; 886 } 887 888 // Make sure that 'position' is a valid limit index, in [0..length]. 889 // There are two equivalent plans for checking this: 890 // A. (offset + copyLength) unsigned<= arrayLength 891 // B. offset <= (arrayLength - copyLength) 892 // We require that all of the values above, except for the sum and 893 // difference, are already known to be non-negative. 894 // Plan A is robust in the face of overflow, if offset and copyLength 895 // are both hugely positive. 896 // 897 // Plan B is less direct and intuitive, but it does not overflow at 898 // all, since the difference of two non-negatives is always 899 // representable. Whenever Java methods must perform the equivalent 900 // check they generally use Plan B instead of Plan A. 901 // For the moment we use Plan A. 902 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 903 Node* subseq_length, 904 Node* array_length, 905 RegionNode* region) { 906 if (stopped()) 907 return nullptr; // already stopped 908 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 909 if (zero_offset && subseq_length->eqv_uncast(array_length)) 910 return nullptr; // common case of whole-array copy 911 Node* last = subseq_length; 912 if (!zero_offset) // last += offset 913 last = _gvn.transform(new AddINode(last, offset)); 914 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 915 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 916 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 917 return is_over; 918 } 919 920 // Emit range checks for the given String.value byte array 921 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 922 if (stopped()) { 923 return; // already stopped 924 } 925 RegionNode* bailout = new RegionNode(1); 926 record_for_igvn(bailout); 927 if (char_count) { 928 // Convert char count to byte count 929 count = _gvn.transform(new LShiftINode(count, intcon(1))); 930 } 931 932 // Offset and count must not be negative 933 generate_negative_guard(offset, bailout); 934 generate_negative_guard(count, bailout); 935 // Offset + count must not exceed length of array 936 generate_limit_guard(offset, count, load_array_length(array), bailout); 937 938 if (bailout->req() > 1) { 939 PreserveJVMState pjvms(this); 940 set_control(_gvn.transform(bailout)); 941 uncommon_trap(Deoptimization::Reason_intrinsic, 942 Deoptimization::Action_maybe_recompile); 943 } 944 } 945 946 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 947 bool is_immutable) { 948 ciKlass* thread_klass = env()->Thread_klass(); 949 const Type* thread_type 950 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 951 952 Node* thread = _gvn.transform(new ThreadLocalNode()); 953 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 954 tls_output = thread; 955 956 Node* thread_obj_handle 957 = (is_immutable 958 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 959 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 960 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 961 thread_obj_handle = _gvn.transform(thread_obj_handle); 962 963 DecoratorSet decorators = IN_NATIVE; 964 if (is_immutable) { 965 decorators |= C2_IMMUTABLE_MEMORY; 966 } 967 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 968 } 969 970 //--------------------------generate_current_thread-------------------- 971 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 972 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 973 /*is_immutable*/false); 974 } 975 976 //--------------------------generate_virtual_thread-------------------- 977 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 978 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 979 !C->method()->changes_current_thread()); 980 } 981 982 //------------------------------make_string_method_node------------------------ 983 // Helper method for String intrinsic functions. This version is called with 984 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 985 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 986 // containing the lengths of str1 and str2. 987 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 988 Node* result = nullptr; 989 switch (opcode) { 990 case Op_StrIndexOf: 991 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 992 str1_start, cnt1, str2_start, cnt2, ae); 993 break; 994 case Op_StrComp: 995 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 996 str1_start, cnt1, str2_start, cnt2, ae); 997 break; 998 case Op_StrEquals: 999 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1000 // Use the constant length if there is one because optimized match rule may exist. 1001 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1002 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1003 break; 1004 default: 1005 ShouldNotReachHere(); 1006 return nullptr; 1007 } 1008 1009 // All these intrinsics have checks. 1010 C->set_has_split_ifs(true); // Has chance for split-if optimization 1011 clear_upper_avx(); 1012 1013 return _gvn.transform(result); 1014 } 1015 1016 //------------------------------inline_string_compareTo------------------------ 1017 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1018 Node* arg1 = argument(0); 1019 Node* arg2 = argument(1); 1020 1021 arg1 = must_be_not_null(arg1, true); 1022 arg2 = must_be_not_null(arg2, true); 1023 1024 // Get start addr and length of first argument 1025 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1026 Node* arg1_cnt = load_array_length(arg1); 1027 1028 // Get start addr and length of second argument 1029 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1030 Node* arg2_cnt = load_array_length(arg2); 1031 1032 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1033 set_result(result); 1034 return true; 1035 } 1036 1037 //------------------------------inline_string_equals------------------------ 1038 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1039 Node* arg1 = argument(0); 1040 Node* arg2 = argument(1); 1041 1042 // paths (plus control) merge 1043 RegionNode* region = new RegionNode(3); 1044 Node* phi = new PhiNode(region, TypeInt::BOOL); 1045 1046 if (!stopped()) { 1047 1048 arg1 = must_be_not_null(arg1, true); 1049 arg2 = must_be_not_null(arg2, true); 1050 1051 // Get start addr and length of first argument 1052 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1053 Node* arg1_cnt = load_array_length(arg1); 1054 1055 // Get start addr and length of second argument 1056 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1057 Node* arg2_cnt = load_array_length(arg2); 1058 1059 // Check for arg1_cnt != arg2_cnt 1060 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1061 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1062 Node* if_ne = generate_slow_guard(bol, nullptr); 1063 if (if_ne != nullptr) { 1064 phi->init_req(2, intcon(0)); 1065 region->init_req(2, if_ne); 1066 } 1067 1068 // Check for count == 0 is done by assembler code for StrEquals. 1069 1070 if (!stopped()) { 1071 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1072 phi->init_req(1, equals); 1073 region->init_req(1, control()); 1074 } 1075 } 1076 1077 // post merge 1078 set_control(_gvn.transform(region)); 1079 record_for_igvn(region); 1080 1081 set_result(_gvn.transform(phi)); 1082 return true; 1083 } 1084 1085 //------------------------------inline_array_equals---------------------------- 1086 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1087 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1088 Node* arg1 = argument(0); 1089 Node* arg2 = argument(1); 1090 1091 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1092 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1093 clear_upper_avx(); 1094 1095 return true; 1096 } 1097 1098 1099 //------------------------------inline_countPositives------------------------------ 1100 bool LibraryCallKit::inline_countPositives() { 1101 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1102 return false; 1103 } 1104 1105 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1106 // no receiver since it is static method 1107 Node* ba = argument(0); 1108 Node* offset = argument(1); 1109 Node* len = argument(2); 1110 1111 ba = must_be_not_null(ba, true); 1112 1113 // Range checks 1114 generate_string_range_check(ba, offset, len, false); 1115 if (stopped()) { 1116 return true; 1117 } 1118 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1119 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1120 set_result(_gvn.transform(result)); 1121 return true; 1122 } 1123 1124 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1125 Node* index = argument(0); 1126 Node* length = bt == T_INT ? argument(1) : argument(2); 1127 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1128 return false; 1129 } 1130 1131 // check that length is positive 1132 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1133 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1134 1135 { 1136 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1137 uncommon_trap(Deoptimization::Reason_intrinsic, 1138 Deoptimization::Action_make_not_entrant); 1139 } 1140 1141 if (stopped()) { 1142 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1143 return true; 1144 } 1145 1146 // length is now known positive, add a cast node to make this explicit 1147 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1148 Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1149 casted_length = _gvn.transform(casted_length); 1150 replace_in_map(length, casted_length); 1151 length = casted_length; 1152 1153 // Use an unsigned comparison for the range check itself 1154 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1155 BoolTest::mask btest = BoolTest::lt; 1156 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1157 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1158 _gvn.set_type(rc, rc->Value(&_gvn)); 1159 if (!rc_bool->is_Con()) { 1160 record_for_igvn(rc); 1161 } 1162 set_control(_gvn.transform(new IfTrueNode(rc))); 1163 { 1164 PreserveJVMState pjvms(this); 1165 set_control(_gvn.transform(new IfFalseNode(rc))); 1166 uncommon_trap(Deoptimization::Reason_range_check, 1167 Deoptimization::Action_make_not_entrant); 1168 } 1169 1170 if (stopped()) { 1171 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1172 return true; 1173 } 1174 1175 // index is now known to be >= 0 and < length, cast it 1176 Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1177 result = _gvn.transform(result); 1178 set_result(result); 1179 replace_in_map(index, result); 1180 return true; 1181 } 1182 1183 //------------------------------inline_string_indexOf------------------------ 1184 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1185 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1186 return false; 1187 } 1188 Node* src = argument(0); 1189 Node* tgt = argument(1); 1190 1191 // Make the merge point 1192 RegionNode* result_rgn = new RegionNode(4); 1193 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1194 1195 src = must_be_not_null(src, true); 1196 tgt = must_be_not_null(tgt, true); 1197 1198 // Get start addr and length of source string 1199 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1200 Node* src_count = load_array_length(src); 1201 1202 // Get start addr and length of substring 1203 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1204 Node* tgt_count = load_array_length(tgt); 1205 1206 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1207 // Divide src size by 2 if String is UTF16 encoded 1208 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1209 } 1210 if (ae == StrIntrinsicNode::UU) { 1211 // Divide substring size by 2 if String is UTF16 encoded 1212 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1213 } 1214 1215 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1216 if (result != nullptr) { 1217 result_phi->init_req(3, result); 1218 result_rgn->init_req(3, control()); 1219 } 1220 set_control(_gvn.transform(result_rgn)); 1221 record_for_igvn(result_rgn); 1222 set_result(_gvn.transform(result_phi)); 1223 1224 return true; 1225 } 1226 1227 //-----------------------------inline_string_indexOf----------------------- 1228 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1229 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1230 return false; 1231 } 1232 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1233 return false; 1234 } 1235 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1236 Node* src = argument(0); // byte[] 1237 Node* src_count = argument(1); // char count 1238 Node* tgt = argument(2); // byte[] 1239 Node* tgt_count = argument(3); // char count 1240 Node* from_index = argument(4); // char index 1241 1242 src = must_be_not_null(src, true); 1243 tgt = must_be_not_null(tgt, true); 1244 1245 // Multiply byte array index by 2 if String is UTF16 encoded 1246 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1247 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1248 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1249 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1250 1251 // Range checks 1252 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1253 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1254 if (stopped()) { 1255 return true; 1256 } 1257 1258 RegionNode* region = new RegionNode(5); 1259 Node* phi = new PhiNode(region, TypeInt::INT); 1260 1261 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1262 if (result != nullptr) { 1263 // The result is index relative to from_index if substring was found, -1 otherwise. 1264 // Generate code which will fold into cmove. 1265 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1266 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1267 1268 Node* if_lt = generate_slow_guard(bol, nullptr); 1269 if (if_lt != nullptr) { 1270 // result == -1 1271 phi->init_req(3, result); 1272 region->init_req(3, if_lt); 1273 } 1274 if (!stopped()) { 1275 result = _gvn.transform(new AddINode(result, from_index)); 1276 phi->init_req(4, result); 1277 region->init_req(4, control()); 1278 } 1279 } 1280 1281 set_control(_gvn.transform(region)); 1282 record_for_igvn(region); 1283 set_result(_gvn.transform(phi)); 1284 clear_upper_avx(); 1285 1286 return true; 1287 } 1288 1289 // Create StrIndexOfNode with fast path checks 1290 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1291 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1292 // Check for substr count > string count 1293 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1294 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1295 Node* if_gt = generate_slow_guard(bol, nullptr); 1296 if (if_gt != nullptr) { 1297 phi->init_req(1, intcon(-1)); 1298 region->init_req(1, if_gt); 1299 } 1300 if (!stopped()) { 1301 // Check for substr count == 0 1302 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1303 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1304 Node* if_zero = generate_slow_guard(bol, nullptr); 1305 if (if_zero != nullptr) { 1306 phi->init_req(2, intcon(0)); 1307 region->init_req(2, if_zero); 1308 } 1309 } 1310 if (!stopped()) { 1311 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1312 } 1313 return nullptr; 1314 } 1315 1316 //-----------------------------inline_string_indexOfChar----------------------- 1317 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1318 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1319 return false; 1320 } 1321 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1322 return false; 1323 } 1324 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1325 Node* src = argument(0); // byte[] 1326 Node* int_ch = argument(1); 1327 Node* from_index = argument(2); 1328 Node* max = argument(3); 1329 1330 src = must_be_not_null(src, true); 1331 1332 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1333 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1334 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1335 1336 // Range checks 1337 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1338 1339 // Check for int_ch >= 0 1340 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1341 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1342 { 1343 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1344 uncommon_trap(Deoptimization::Reason_intrinsic, 1345 Deoptimization::Action_maybe_recompile); 1346 } 1347 if (stopped()) { 1348 return true; 1349 } 1350 1351 RegionNode* region = new RegionNode(3); 1352 Node* phi = new PhiNode(region, TypeInt::INT); 1353 1354 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1355 C->set_has_split_ifs(true); // Has chance for split-if optimization 1356 _gvn.transform(result); 1357 1358 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1359 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1360 1361 Node* if_lt = generate_slow_guard(bol, nullptr); 1362 if (if_lt != nullptr) { 1363 // result == -1 1364 phi->init_req(2, result); 1365 region->init_req(2, if_lt); 1366 } 1367 if (!stopped()) { 1368 result = _gvn.transform(new AddINode(result, from_index)); 1369 phi->init_req(1, result); 1370 region->init_req(1, control()); 1371 } 1372 set_control(_gvn.transform(region)); 1373 record_for_igvn(region); 1374 set_result(_gvn.transform(phi)); 1375 1376 return true; 1377 } 1378 //---------------------------inline_string_copy--------------------- 1379 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1380 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1381 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1382 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1383 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1384 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1385 bool LibraryCallKit::inline_string_copy(bool compress) { 1386 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1387 return false; 1388 } 1389 int nargs = 5; // 2 oops, 3 ints 1390 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1391 1392 Node* src = argument(0); 1393 Node* src_offset = argument(1); 1394 Node* dst = argument(2); 1395 Node* dst_offset = argument(3); 1396 Node* length = argument(4); 1397 1398 // Check for allocation before we add nodes that would confuse 1399 // tightly_coupled_allocation() 1400 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1401 1402 // Figure out the size and type of the elements we will be copying. 1403 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1404 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1405 if (src_type == nullptr || dst_type == nullptr) { 1406 return false; 1407 } 1408 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1409 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1410 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1411 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1412 "Unsupported array types for inline_string_copy"); 1413 1414 src = must_be_not_null(src, true); 1415 dst = must_be_not_null(dst, true); 1416 1417 // Convert char[] offsets to byte[] offsets 1418 bool convert_src = (compress && src_elem == T_BYTE); 1419 bool convert_dst = (!compress && dst_elem == T_BYTE); 1420 if (convert_src) { 1421 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1422 } else if (convert_dst) { 1423 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1424 } 1425 1426 // Range checks 1427 generate_string_range_check(src, src_offset, length, convert_src); 1428 generate_string_range_check(dst, dst_offset, length, convert_dst); 1429 if (stopped()) { 1430 return true; 1431 } 1432 1433 Node* src_start = array_element_address(src, src_offset, src_elem); 1434 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1435 // 'src_start' points to src array + scaled offset 1436 // 'dst_start' points to dst array + scaled offset 1437 Node* count = nullptr; 1438 if (compress) { 1439 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1440 } else { 1441 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1442 } 1443 1444 if (alloc != nullptr) { 1445 if (alloc->maybe_set_complete(&_gvn)) { 1446 // "You break it, you buy it." 1447 InitializeNode* init = alloc->initialization(); 1448 assert(init->is_complete(), "we just did this"); 1449 init->set_complete_with_arraycopy(); 1450 assert(dst->is_CheckCastPP(), "sanity"); 1451 assert(dst->in(0)->in(0) == init, "dest pinned"); 1452 } 1453 // Do not let stores that initialize this object be reordered with 1454 // a subsequent store that would make this object accessible by 1455 // other threads. 1456 // Record what AllocateNode this StoreStore protects so that 1457 // escape analysis can go from the MemBarStoreStoreNode to the 1458 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1459 // based on the escape status of the AllocateNode. 1460 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1461 } 1462 if (compress) { 1463 set_result(_gvn.transform(count)); 1464 } 1465 clear_upper_avx(); 1466 1467 return true; 1468 } 1469 1470 #ifdef _LP64 1471 #define XTOP ,top() /*additional argument*/ 1472 #else //_LP64 1473 #define XTOP /*no additional argument*/ 1474 #endif //_LP64 1475 1476 //------------------------inline_string_toBytesU-------------------------- 1477 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1478 bool LibraryCallKit::inline_string_toBytesU() { 1479 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1480 return false; 1481 } 1482 // Get the arguments. 1483 Node* value = argument(0); 1484 Node* offset = argument(1); 1485 Node* length = argument(2); 1486 1487 Node* newcopy = nullptr; 1488 1489 // Set the original stack and the reexecute bit for the interpreter to reexecute 1490 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1491 { PreserveReexecuteState preexecs(this); 1492 jvms()->set_should_reexecute(true); 1493 1494 // Check if a null path was taken unconditionally. 1495 value = null_check(value); 1496 1497 RegionNode* bailout = new RegionNode(1); 1498 record_for_igvn(bailout); 1499 1500 // Range checks 1501 generate_negative_guard(offset, bailout); 1502 generate_negative_guard(length, bailout); 1503 generate_limit_guard(offset, length, load_array_length(value), bailout); 1504 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1505 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1506 1507 if (bailout->req() > 1) { 1508 PreserveJVMState pjvms(this); 1509 set_control(_gvn.transform(bailout)); 1510 uncommon_trap(Deoptimization::Reason_intrinsic, 1511 Deoptimization::Action_maybe_recompile); 1512 } 1513 if (stopped()) { 1514 return true; 1515 } 1516 1517 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1518 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1519 newcopy = new_array(klass_node, size, 0); // no arguments to push 1520 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1521 guarantee(alloc != nullptr, "created above"); 1522 1523 // Calculate starting addresses. 1524 Node* src_start = array_element_address(value, offset, T_CHAR); 1525 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1526 1527 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1528 const TypeInt* toffset = gvn().type(offset)->is_int(); 1529 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1530 1531 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1532 const char* copyfunc_name = "arraycopy"; 1533 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1534 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1535 OptoRuntime::fast_arraycopy_Type(), 1536 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1537 src_start, dst_start, ConvI2X(length) XTOP); 1538 // Do not let reads from the cloned object float above the arraycopy. 1539 if (alloc->maybe_set_complete(&_gvn)) { 1540 // "You break it, you buy it." 1541 InitializeNode* init = alloc->initialization(); 1542 assert(init->is_complete(), "we just did this"); 1543 init->set_complete_with_arraycopy(); 1544 assert(newcopy->is_CheckCastPP(), "sanity"); 1545 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1546 } 1547 // Do not let stores that initialize this object be reordered with 1548 // a subsequent store that would make this object accessible by 1549 // other threads. 1550 // Record what AllocateNode this StoreStore protects so that 1551 // escape analysis can go from the MemBarStoreStoreNode to the 1552 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1553 // based on the escape status of the AllocateNode. 1554 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1555 } // original reexecute is set back here 1556 1557 C->set_has_split_ifs(true); // Has chance for split-if optimization 1558 if (!stopped()) { 1559 set_result(newcopy); 1560 } 1561 clear_upper_avx(); 1562 1563 return true; 1564 } 1565 1566 //------------------------inline_string_getCharsU-------------------------- 1567 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1568 bool LibraryCallKit::inline_string_getCharsU() { 1569 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1570 return false; 1571 } 1572 1573 // Get the arguments. 1574 Node* src = argument(0); 1575 Node* src_begin = argument(1); 1576 Node* src_end = argument(2); // exclusive offset (i < src_end) 1577 Node* dst = argument(3); 1578 Node* dst_begin = argument(4); 1579 1580 // Check for allocation before we add nodes that would confuse 1581 // tightly_coupled_allocation() 1582 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1583 1584 // Check if a null path was taken unconditionally. 1585 src = null_check(src); 1586 dst = null_check(dst); 1587 if (stopped()) { 1588 return true; 1589 } 1590 1591 // Get length and convert char[] offset to byte[] offset 1592 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1593 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1594 1595 // Range checks 1596 generate_string_range_check(src, src_begin, length, true); 1597 generate_string_range_check(dst, dst_begin, length, false); 1598 if (stopped()) { 1599 return true; 1600 } 1601 1602 if (!stopped()) { 1603 // Calculate starting addresses. 1604 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1605 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1606 1607 // Check if array addresses are aligned to HeapWordSize 1608 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1609 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1610 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1611 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1612 1613 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1614 const char* copyfunc_name = "arraycopy"; 1615 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1616 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1617 OptoRuntime::fast_arraycopy_Type(), 1618 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1619 src_start, dst_start, ConvI2X(length) XTOP); 1620 // Do not let reads from the cloned object float above the arraycopy. 1621 if (alloc != nullptr) { 1622 if (alloc->maybe_set_complete(&_gvn)) { 1623 // "You break it, you buy it." 1624 InitializeNode* init = alloc->initialization(); 1625 assert(init->is_complete(), "we just did this"); 1626 init->set_complete_with_arraycopy(); 1627 assert(dst->is_CheckCastPP(), "sanity"); 1628 assert(dst->in(0)->in(0) == init, "dest pinned"); 1629 } 1630 // Do not let stores that initialize this object be reordered with 1631 // a subsequent store that would make this object accessible by 1632 // other threads. 1633 // Record what AllocateNode this StoreStore protects so that 1634 // escape analysis can go from the MemBarStoreStoreNode to the 1635 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1636 // based on the escape status of the AllocateNode. 1637 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1638 } else { 1639 insert_mem_bar(Op_MemBarCPUOrder); 1640 } 1641 } 1642 1643 C->set_has_split_ifs(true); // Has chance for split-if optimization 1644 return true; 1645 } 1646 1647 //----------------------inline_string_char_access---------------------------- 1648 // Store/Load char to/from byte[] array. 1649 // static void StringUTF16.putChar(byte[] val, int index, int c) 1650 // static char StringUTF16.getChar(byte[] val, int index) 1651 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1652 Node* value = argument(0); 1653 Node* index = argument(1); 1654 Node* ch = is_store ? argument(2) : nullptr; 1655 1656 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1657 // correctly requires matched array shapes. 1658 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1659 "sanity: byte[] and char[] bases agree"); 1660 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1661 "sanity: byte[] and char[] scales agree"); 1662 1663 // Bail when getChar over constants is requested: constant folding would 1664 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1665 // Java method would constant fold nicely instead. 1666 if (!is_store && value->is_Con() && index->is_Con()) { 1667 return false; 1668 } 1669 1670 // Save state and restore on bailout 1671 uint old_sp = sp(); 1672 SafePointNode* old_map = clone_map(); 1673 1674 value = must_be_not_null(value, true); 1675 1676 Node* adr = array_element_address(value, index, T_CHAR); 1677 if (adr->is_top()) { 1678 set_map(old_map); 1679 set_sp(old_sp); 1680 return false; 1681 } 1682 destruct_map_clone(old_map); 1683 if (is_store) { 1684 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1685 } else { 1686 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1687 set_result(ch); 1688 } 1689 return true; 1690 } 1691 1692 //--------------------------round_double_node-------------------------------- 1693 // Round a double node if necessary. 1694 Node* LibraryCallKit::round_double_node(Node* n) { 1695 if (Matcher::strict_fp_requires_explicit_rounding) { 1696 #ifdef IA32 1697 if (UseSSE < 2) { 1698 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1699 } 1700 #else 1701 Unimplemented(); 1702 #endif // IA32 1703 } 1704 return n; 1705 } 1706 1707 //------------------------------inline_math----------------------------------- 1708 // public static double Math.abs(double) 1709 // public static double Math.sqrt(double) 1710 // public static double Math.log(double) 1711 // public static double Math.log10(double) 1712 // public static double Math.round(double) 1713 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1714 Node* arg = round_double_node(argument(0)); 1715 Node* n = nullptr; 1716 switch (id) { 1717 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1718 case vmIntrinsics::_dsqrt: 1719 case vmIntrinsics::_dsqrt_strict: 1720 n = new SqrtDNode(C, control(), arg); break; 1721 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1722 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1723 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1724 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1725 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1726 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1727 default: fatal_unexpected_iid(id); break; 1728 } 1729 set_result(_gvn.transform(n)); 1730 return true; 1731 } 1732 1733 //------------------------------inline_math----------------------------------- 1734 // public static float Math.abs(float) 1735 // public static int Math.abs(int) 1736 // public static long Math.abs(long) 1737 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1738 Node* arg = argument(0); 1739 Node* n = nullptr; 1740 switch (id) { 1741 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1742 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1743 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1744 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1745 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1746 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1747 default: fatal_unexpected_iid(id); break; 1748 } 1749 set_result(_gvn.transform(n)); 1750 return true; 1751 } 1752 1753 //------------------------------runtime_math----------------------------- 1754 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1755 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1756 "must be (DD)D or (D)D type"); 1757 1758 // Inputs 1759 Node* a = round_double_node(argument(0)); 1760 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1761 1762 const TypePtr* no_memory_effects = nullptr; 1763 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1764 no_memory_effects, 1765 a, top(), b, b ? top() : nullptr); 1766 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1767 #ifdef ASSERT 1768 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1769 assert(value_top == top(), "second value must be top"); 1770 #endif 1771 1772 set_result(value); 1773 return true; 1774 } 1775 1776 //------------------------------inline_math_pow----------------------------- 1777 bool LibraryCallKit::inline_math_pow() { 1778 Node* exp = round_double_node(argument(2)); 1779 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1780 if (d != nullptr) { 1781 if (d->getd() == 2.0) { 1782 // Special case: pow(x, 2.0) => x * x 1783 Node* base = round_double_node(argument(0)); 1784 set_result(_gvn.transform(new MulDNode(base, base))); 1785 return true; 1786 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1787 // Special case: pow(x, 0.5) => sqrt(x) 1788 Node* base = round_double_node(argument(0)); 1789 Node* zero = _gvn.zerocon(T_DOUBLE); 1790 1791 RegionNode* region = new RegionNode(3); 1792 Node* phi = new PhiNode(region, Type::DOUBLE); 1793 1794 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1795 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1796 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1797 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1798 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1799 1800 Node* if_pow = generate_slow_guard(test, nullptr); 1801 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1802 phi->init_req(1, value_sqrt); 1803 region->init_req(1, control()); 1804 1805 if (if_pow != nullptr) { 1806 set_control(if_pow); 1807 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1808 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1809 const TypePtr* no_memory_effects = nullptr; 1810 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1811 no_memory_effects, base, top(), exp, top()); 1812 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1813 #ifdef ASSERT 1814 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1815 assert(value_top == top(), "second value must be top"); 1816 #endif 1817 phi->init_req(2, value_pow); 1818 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1819 } 1820 1821 C->set_has_split_ifs(true); // Has chance for split-if optimization 1822 set_control(_gvn.transform(region)); 1823 record_for_igvn(region); 1824 set_result(_gvn.transform(phi)); 1825 1826 return true; 1827 } 1828 } 1829 1830 return StubRoutines::dpow() != nullptr ? 1831 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1832 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1833 } 1834 1835 //------------------------------inline_math_native----------------------------- 1836 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1837 switch (id) { 1838 case vmIntrinsics::_dsin: 1839 return StubRoutines::dsin() != nullptr ? 1840 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1841 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1842 case vmIntrinsics::_dcos: 1843 return StubRoutines::dcos() != nullptr ? 1844 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1845 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1846 case vmIntrinsics::_dtan: 1847 return StubRoutines::dtan() != nullptr ? 1848 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1849 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1850 case vmIntrinsics::_dexp: 1851 return StubRoutines::dexp() != nullptr ? 1852 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1853 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1854 case vmIntrinsics::_dlog: 1855 return StubRoutines::dlog() != nullptr ? 1856 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1857 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1858 case vmIntrinsics::_dlog10: 1859 return StubRoutines::dlog10() != nullptr ? 1860 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1861 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1862 1863 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1864 case vmIntrinsics::_ceil: 1865 case vmIntrinsics::_floor: 1866 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1867 1868 case vmIntrinsics::_dsqrt: 1869 case vmIntrinsics::_dsqrt_strict: 1870 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1871 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1872 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1873 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1874 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1875 1876 case vmIntrinsics::_dpow: return inline_math_pow(); 1877 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1878 case vmIntrinsics::_fcopySign: return inline_math(id); 1879 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1880 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1881 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1882 1883 // These intrinsics are not yet correctly implemented 1884 case vmIntrinsics::_datan2: 1885 return false; 1886 1887 default: 1888 fatal_unexpected_iid(id); 1889 return false; 1890 } 1891 } 1892 1893 //----------------------------inline_notify-----------------------------------* 1894 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1895 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1896 address func; 1897 if (id == vmIntrinsics::_notify) { 1898 func = OptoRuntime::monitor_notify_Java(); 1899 } else { 1900 func = OptoRuntime::monitor_notifyAll_Java(); 1901 } 1902 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1903 make_slow_call_ex(call, env()->Throwable_klass(), false); 1904 return true; 1905 } 1906 1907 1908 //----------------------------inline_min_max----------------------------------- 1909 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1910 set_result(generate_min_max(id, argument(0), argument(1))); 1911 return true; 1912 } 1913 1914 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1915 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1916 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1917 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1918 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1919 1920 { 1921 PreserveJVMState pjvms(this); 1922 PreserveReexecuteState preexecs(this); 1923 jvms()->set_should_reexecute(true); 1924 1925 set_control(slow_path); 1926 set_i_o(i_o()); 1927 1928 uncommon_trap(Deoptimization::Reason_intrinsic, 1929 Deoptimization::Action_none); 1930 } 1931 1932 set_control(fast_path); 1933 set_result(math); 1934 } 1935 1936 template <typename OverflowOp> 1937 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1938 typedef typename OverflowOp::MathOp MathOp; 1939 1940 MathOp* mathOp = new MathOp(arg1, arg2); 1941 Node* operation = _gvn.transform( mathOp ); 1942 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1943 inline_math_mathExact(operation, ofcheck); 1944 return true; 1945 } 1946 1947 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1948 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1949 } 1950 1951 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1952 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1953 } 1954 1955 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1956 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1957 } 1958 1959 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1960 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1961 } 1962 1963 bool LibraryCallKit::inline_math_negateExactI() { 1964 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 1965 } 1966 1967 bool LibraryCallKit::inline_math_negateExactL() { 1968 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 1969 } 1970 1971 bool LibraryCallKit::inline_math_multiplyExactI() { 1972 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 1973 } 1974 1975 bool LibraryCallKit::inline_math_multiplyExactL() { 1976 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 1977 } 1978 1979 bool LibraryCallKit::inline_math_multiplyHigh() { 1980 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 1981 return true; 1982 } 1983 1984 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 1985 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 1986 return true; 1987 } 1988 1989 Node* 1990 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 1991 Node* result_val = nullptr; 1992 switch (id) { 1993 case vmIntrinsics::_min: 1994 case vmIntrinsics::_min_strict: 1995 result_val = _gvn.transform(new MinINode(x0, y0)); 1996 break; 1997 case vmIntrinsics::_max: 1998 case vmIntrinsics::_max_strict: 1999 result_val = _gvn.transform(new MaxINode(x0, y0)); 2000 break; 2001 default: 2002 fatal_unexpected_iid(id); 2003 break; 2004 } 2005 return result_val; 2006 } 2007 2008 inline int 2009 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2010 const TypePtr* base_type = TypePtr::NULL_PTR; 2011 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2012 if (base_type == nullptr) { 2013 // Unknown type. 2014 return Type::AnyPtr; 2015 } else if (base_type == TypePtr::NULL_PTR) { 2016 // Since this is a null+long form, we have to switch to a rawptr. 2017 base = _gvn.transform(new CastX2PNode(offset)); 2018 offset = MakeConX(0); 2019 return Type::RawPtr; 2020 } else if (base_type->base() == Type::RawPtr) { 2021 return Type::RawPtr; 2022 } else if (base_type->isa_oopptr()) { 2023 // Base is never null => always a heap address. 2024 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2025 return Type::OopPtr; 2026 } 2027 // Offset is small => always a heap address. 2028 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2029 if (offset_type != nullptr && 2030 base_type->offset() == 0 && // (should always be?) 2031 offset_type->_lo >= 0 && 2032 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2033 return Type::OopPtr; 2034 } else if (type == T_OBJECT) { 2035 // off heap access to an oop doesn't make any sense. Has to be on 2036 // heap. 2037 return Type::OopPtr; 2038 } 2039 // Otherwise, it might either be oop+off or null+addr. 2040 return Type::AnyPtr; 2041 } else { 2042 // No information: 2043 return Type::AnyPtr; 2044 } 2045 } 2046 2047 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2048 Node* uncasted_base = base; 2049 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2050 if (kind == Type::RawPtr) { 2051 return basic_plus_adr(top(), uncasted_base, offset); 2052 } else if (kind == Type::AnyPtr) { 2053 assert(base == uncasted_base, "unexpected base change"); 2054 if (can_cast) { 2055 if (!_gvn.type(base)->speculative_maybe_null() && 2056 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2057 // According to profiling, this access is always on 2058 // heap. Casting the base to not null and thus avoiding membars 2059 // around the access should allow better optimizations 2060 Node* null_ctl = top(); 2061 base = null_check_oop(base, &null_ctl, true, true, true); 2062 assert(null_ctl->is_top(), "no null control here"); 2063 return basic_plus_adr(base, offset); 2064 } else if (_gvn.type(base)->speculative_always_null() && 2065 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2066 // According to profiling, this access is always off 2067 // heap. 2068 base = null_assert(base); 2069 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2070 offset = MakeConX(0); 2071 return basic_plus_adr(top(), raw_base, offset); 2072 } 2073 } 2074 // We don't know if it's an on heap or off heap access. Fall back 2075 // to raw memory access. 2076 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2077 return basic_plus_adr(top(), raw, offset); 2078 } else { 2079 assert(base == uncasted_base, "unexpected base change"); 2080 // We know it's an on heap access so base can't be null 2081 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2082 base = must_be_not_null(base, true); 2083 } 2084 return basic_plus_adr(base, offset); 2085 } 2086 } 2087 2088 //--------------------------inline_number_methods----------------------------- 2089 // inline int Integer.numberOfLeadingZeros(int) 2090 // inline int Long.numberOfLeadingZeros(long) 2091 // 2092 // inline int Integer.numberOfTrailingZeros(int) 2093 // inline int Long.numberOfTrailingZeros(long) 2094 // 2095 // inline int Integer.bitCount(int) 2096 // inline int Long.bitCount(long) 2097 // 2098 // inline char Character.reverseBytes(char) 2099 // inline short Short.reverseBytes(short) 2100 // inline int Integer.reverseBytes(int) 2101 // inline long Long.reverseBytes(long) 2102 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2103 Node* arg = argument(0); 2104 Node* n = nullptr; 2105 switch (id) { 2106 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2107 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2108 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2109 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2110 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2111 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2112 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2113 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2114 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2115 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2116 case vmIntrinsics::_reverse_i: n = new ReverseINode(0, arg); break; 2117 case vmIntrinsics::_reverse_l: n = new ReverseLNode(0, arg); break; 2118 default: fatal_unexpected_iid(id); break; 2119 } 2120 set_result(_gvn.transform(n)); 2121 return true; 2122 } 2123 2124 //--------------------------inline_bitshuffle_methods----------------------------- 2125 // inline int Integer.compress(int, int) 2126 // inline int Integer.expand(int, int) 2127 // inline long Long.compress(long, long) 2128 // inline long Long.expand(long, long) 2129 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2130 Node* n = nullptr; 2131 switch (id) { 2132 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2133 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2134 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2135 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2136 default: fatal_unexpected_iid(id); break; 2137 } 2138 set_result(_gvn.transform(n)); 2139 return true; 2140 } 2141 2142 //--------------------------inline_number_methods----------------------------- 2143 // inline int Integer.compareUnsigned(int, int) 2144 // inline int Long.compareUnsigned(long, long) 2145 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2146 Node* arg1 = argument(0); 2147 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2148 Node* n = nullptr; 2149 switch (id) { 2150 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2151 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2152 default: fatal_unexpected_iid(id); break; 2153 } 2154 set_result(_gvn.transform(n)); 2155 return true; 2156 } 2157 2158 //--------------------------inline_unsigned_divmod_methods----------------------------- 2159 // inline int Integer.divideUnsigned(int, int) 2160 // inline int Integer.remainderUnsigned(int, int) 2161 // inline long Long.divideUnsigned(long, long) 2162 // inline long Long.remainderUnsigned(long, long) 2163 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2164 Node* n = nullptr; 2165 switch (id) { 2166 case vmIntrinsics::_divideUnsigned_i: { 2167 zero_check_int(argument(1)); 2168 // Compile-time detect of null-exception 2169 if (stopped()) { 2170 return true; // keep the graph constructed so far 2171 } 2172 n = new UDivINode(control(), argument(0), argument(1)); 2173 break; 2174 } 2175 case vmIntrinsics::_divideUnsigned_l: { 2176 zero_check_long(argument(2)); 2177 // Compile-time detect of null-exception 2178 if (stopped()) { 2179 return true; // keep the graph constructed so far 2180 } 2181 n = new UDivLNode(control(), argument(0), argument(2)); 2182 break; 2183 } 2184 case vmIntrinsics::_remainderUnsigned_i: { 2185 zero_check_int(argument(1)); 2186 // Compile-time detect of null-exception 2187 if (stopped()) { 2188 return true; // keep the graph constructed so far 2189 } 2190 n = new UModINode(control(), argument(0), argument(1)); 2191 break; 2192 } 2193 case vmIntrinsics::_remainderUnsigned_l: { 2194 zero_check_long(argument(2)); 2195 // Compile-time detect of null-exception 2196 if (stopped()) { 2197 return true; // keep the graph constructed so far 2198 } 2199 n = new UModLNode(control(), argument(0), argument(2)); 2200 break; 2201 } 2202 default: fatal_unexpected_iid(id); break; 2203 } 2204 set_result(_gvn.transform(n)); 2205 return true; 2206 } 2207 2208 //----------------------------inline_unsafe_access---------------------------- 2209 2210 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2211 // Attempt to infer a sharper value type from the offset and base type. 2212 ciKlass* sharpened_klass = nullptr; 2213 2214 // See if it is an instance field, with an object type. 2215 if (alias_type->field() != nullptr) { 2216 if (alias_type->field()->type()->is_klass()) { 2217 sharpened_klass = alias_type->field()->type()->as_klass(); 2218 } 2219 } 2220 2221 const TypeOopPtr* result = nullptr; 2222 // See if it is a narrow oop array. 2223 if (adr_type->isa_aryptr()) { 2224 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2225 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2226 if (elem_type != nullptr && elem_type->is_loaded()) { 2227 // Sharpen the value type. 2228 result = elem_type; 2229 } 2230 } 2231 } 2232 2233 // The sharpened class might be unloaded if there is no class loader 2234 // contraint in place. 2235 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2236 // Sharpen the value type. 2237 result = TypeOopPtr::make_from_klass(sharpened_klass); 2238 } 2239 if (result != nullptr) { 2240 #ifndef PRODUCT 2241 if (C->print_intrinsics() || C->print_inlining()) { 2242 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2243 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2244 } 2245 #endif 2246 } 2247 return result; 2248 } 2249 2250 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2251 switch (kind) { 2252 case Relaxed: 2253 return MO_UNORDERED; 2254 case Opaque: 2255 return MO_RELAXED; 2256 case Acquire: 2257 return MO_ACQUIRE; 2258 case Release: 2259 return MO_RELEASE; 2260 case Volatile: 2261 return MO_SEQ_CST; 2262 default: 2263 ShouldNotReachHere(); 2264 return 0; 2265 } 2266 } 2267 2268 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2269 if (callee()->is_static()) return false; // caller must have the capability! 2270 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2271 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2272 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2273 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2274 2275 if (is_reference_type(type)) { 2276 decorators |= ON_UNKNOWN_OOP_REF; 2277 } 2278 2279 if (unaligned) { 2280 decorators |= C2_UNALIGNED; 2281 } 2282 2283 #ifndef PRODUCT 2284 { 2285 ResourceMark rm; 2286 // Check the signatures. 2287 ciSignature* sig = callee()->signature(); 2288 #ifdef ASSERT 2289 if (!is_store) { 2290 // Object getReference(Object base, int/long offset), etc. 2291 BasicType rtype = sig->return_type()->basic_type(); 2292 assert(rtype == type, "getter must return the expected value"); 2293 assert(sig->count() == 2, "oop getter has 2 arguments"); 2294 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2295 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2296 } else { 2297 // void putReference(Object base, int/long offset, Object x), etc. 2298 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2299 assert(sig->count() == 3, "oop putter has 3 arguments"); 2300 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2301 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2302 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2303 assert(vtype == type, "putter must accept the expected value"); 2304 } 2305 #endif // ASSERT 2306 } 2307 #endif //PRODUCT 2308 2309 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2310 2311 Node* receiver = argument(0); // type: oop 2312 2313 // Build address expression. 2314 Node* heap_base_oop = top(); 2315 2316 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2317 Node* base = argument(1); // type: oop 2318 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2319 Node* offset = argument(2); // type: long 2320 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2321 // to be plain byte offsets, which are also the same as those accepted 2322 // by oopDesc::field_addr. 2323 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2324 "fieldOffset must be byte-scaled"); 2325 // 32-bit machines ignore the high half! 2326 offset = ConvL2X(offset); 2327 2328 // Save state and restore on bailout 2329 uint old_sp = sp(); 2330 SafePointNode* old_map = clone_map(); 2331 2332 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2333 2334 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2335 if (type != T_OBJECT) { 2336 decorators |= IN_NATIVE; // off-heap primitive access 2337 } else { 2338 set_map(old_map); 2339 set_sp(old_sp); 2340 return false; // off-heap oop accesses are not supported 2341 } 2342 } else { 2343 heap_base_oop = base; // on-heap or mixed access 2344 } 2345 2346 // Can base be null? Otherwise, always on-heap access. 2347 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2348 2349 if (!can_access_non_heap) { 2350 decorators |= IN_HEAP; 2351 } 2352 2353 Node* val = is_store ? argument(4) : nullptr; 2354 2355 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2356 if (adr_type == TypePtr::NULL_PTR) { 2357 set_map(old_map); 2358 set_sp(old_sp); 2359 return false; // off-heap access with zero address 2360 } 2361 2362 // Try to categorize the address. 2363 Compile::AliasType* alias_type = C->alias_type(adr_type); 2364 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2365 2366 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2367 alias_type->adr_type() == TypeAryPtr::RANGE) { 2368 set_map(old_map); 2369 set_sp(old_sp); 2370 return false; // not supported 2371 } 2372 2373 bool mismatched = false; 2374 BasicType bt = alias_type->basic_type(); 2375 if (bt != T_ILLEGAL) { 2376 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2377 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2378 // Alias type doesn't differentiate between byte[] and boolean[]). 2379 // Use address type to get the element type. 2380 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2381 } 2382 if (is_reference_type(bt, true)) { 2383 // accessing an array field with getReference is not a mismatch 2384 bt = T_OBJECT; 2385 } 2386 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2387 // Don't intrinsify mismatched object accesses 2388 set_map(old_map); 2389 set_sp(old_sp); 2390 return false; 2391 } 2392 mismatched = (bt != type); 2393 } else if (alias_type->adr_type()->isa_oopptr()) { 2394 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2395 } 2396 2397 destruct_map_clone(old_map); 2398 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2399 2400 if (mismatched) { 2401 decorators |= C2_MISMATCHED; 2402 } 2403 2404 // First guess at the value type. 2405 const Type *value_type = Type::get_const_basic_type(type); 2406 2407 // Figure out the memory ordering. 2408 decorators |= mo_decorator_for_access_kind(kind); 2409 2410 if (!is_store && type == T_OBJECT) { 2411 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2412 if (tjp != nullptr) { 2413 value_type = tjp; 2414 } 2415 } 2416 2417 receiver = null_check(receiver); 2418 if (stopped()) { 2419 return true; 2420 } 2421 // Heap pointers get a null-check from the interpreter, 2422 // as a courtesy. However, this is not guaranteed by Unsafe, 2423 // and it is not possible to fully distinguish unintended nulls 2424 // from intended ones in this API. 2425 2426 if (!is_store) { 2427 Node* p = nullptr; 2428 // Try to constant fold a load from a constant field 2429 ciField* field = alias_type->field(); 2430 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2431 // final or stable field 2432 p = make_constant_from_field(field, heap_base_oop); 2433 } 2434 2435 if (p == nullptr) { // Could not constant fold the load 2436 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2437 // Normalize the value returned by getBoolean in the following cases 2438 if (type == T_BOOLEAN && 2439 (mismatched || 2440 heap_base_oop == top() || // - heap_base_oop is null or 2441 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2442 // and the unsafe access is made to large offset 2443 // (i.e., larger than the maximum offset necessary for any 2444 // field access) 2445 ) { 2446 IdealKit ideal = IdealKit(this); 2447 #define __ ideal. 2448 IdealVariable normalized_result(ideal); 2449 __ declarations_done(); 2450 __ set(normalized_result, p); 2451 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2452 __ set(normalized_result, ideal.ConI(1)); 2453 ideal.end_if(); 2454 final_sync(ideal); 2455 p = __ value(normalized_result); 2456 #undef __ 2457 } 2458 } 2459 if (type == T_ADDRESS) { 2460 p = gvn().transform(new CastP2XNode(nullptr, p)); 2461 p = ConvX2UL(p); 2462 } 2463 // The load node has the control of the preceding MemBarCPUOrder. All 2464 // following nodes will have the control of the MemBarCPUOrder inserted at 2465 // the end of this method. So, pushing the load onto the stack at a later 2466 // point is fine. 2467 set_result(p); 2468 } else { 2469 if (bt == T_ADDRESS) { 2470 // Repackage the long as a pointer. 2471 val = ConvL2X(val); 2472 val = gvn().transform(new CastX2PNode(val)); 2473 } 2474 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2475 } 2476 2477 return true; 2478 } 2479 2480 //----------------------------inline_unsafe_load_store---------------------------- 2481 // This method serves a couple of different customers (depending on LoadStoreKind): 2482 // 2483 // LS_cmp_swap: 2484 // 2485 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2486 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2487 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2488 // 2489 // LS_cmp_swap_weak: 2490 // 2491 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2492 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2493 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2494 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2495 // 2496 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2497 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2498 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2499 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2500 // 2501 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2502 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2503 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2504 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2505 // 2506 // LS_cmp_exchange: 2507 // 2508 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2509 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2510 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2511 // 2512 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2513 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2514 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2515 // 2516 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2517 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2518 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2519 // 2520 // LS_get_add: 2521 // 2522 // int getAndAddInt( Object o, long offset, int delta) 2523 // long getAndAddLong(Object o, long offset, long delta) 2524 // 2525 // LS_get_set: 2526 // 2527 // int getAndSet(Object o, long offset, int newValue) 2528 // long getAndSet(Object o, long offset, long newValue) 2529 // Object getAndSet(Object o, long offset, Object newValue) 2530 // 2531 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2532 // This basic scheme here is the same as inline_unsafe_access, but 2533 // differs in enough details that combining them would make the code 2534 // overly confusing. (This is a true fact! I originally combined 2535 // them, but even I was confused by it!) As much code/comments as 2536 // possible are retained from inline_unsafe_access though to make 2537 // the correspondences clearer. - dl 2538 2539 if (callee()->is_static()) return false; // caller must have the capability! 2540 2541 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2542 decorators |= mo_decorator_for_access_kind(access_kind); 2543 2544 #ifndef PRODUCT 2545 BasicType rtype; 2546 { 2547 ResourceMark rm; 2548 // Check the signatures. 2549 ciSignature* sig = callee()->signature(); 2550 rtype = sig->return_type()->basic_type(); 2551 switch(kind) { 2552 case LS_get_add: 2553 case LS_get_set: { 2554 // Check the signatures. 2555 #ifdef ASSERT 2556 assert(rtype == type, "get and set must return the expected type"); 2557 assert(sig->count() == 3, "get and set has 3 arguments"); 2558 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2559 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2560 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2561 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2562 #endif // ASSERT 2563 break; 2564 } 2565 case LS_cmp_swap: 2566 case LS_cmp_swap_weak: { 2567 // Check the signatures. 2568 #ifdef ASSERT 2569 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2570 assert(sig->count() == 4, "CAS has 4 arguments"); 2571 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2572 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2573 #endif // ASSERT 2574 break; 2575 } 2576 case LS_cmp_exchange: { 2577 // Check the signatures. 2578 #ifdef ASSERT 2579 assert(rtype == type, "CAS must return the expected type"); 2580 assert(sig->count() == 4, "CAS has 4 arguments"); 2581 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2582 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2583 #endif // ASSERT 2584 break; 2585 } 2586 default: 2587 ShouldNotReachHere(); 2588 } 2589 } 2590 #endif //PRODUCT 2591 2592 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2593 2594 // Get arguments: 2595 Node* receiver = nullptr; 2596 Node* base = nullptr; 2597 Node* offset = nullptr; 2598 Node* oldval = nullptr; 2599 Node* newval = nullptr; 2600 switch(kind) { 2601 case LS_cmp_swap: 2602 case LS_cmp_swap_weak: 2603 case LS_cmp_exchange: { 2604 const bool two_slot_type = type2size[type] == 2; 2605 receiver = argument(0); // type: oop 2606 base = argument(1); // type: oop 2607 offset = argument(2); // type: long 2608 oldval = argument(4); // type: oop, int, or long 2609 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2610 break; 2611 } 2612 case LS_get_add: 2613 case LS_get_set: { 2614 receiver = argument(0); // type: oop 2615 base = argument(1); // type: oop 2616 offset = argument(2); // type: long 2617 oldval = nullptr; 2618 newval = argument(4); // type: oop, int, or long 2619 break; 2620 } 2621 default: 2622 ShouldNotReachHere(); 2623 } 2624 2625 // Build field offset expression. 2626 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2627 // to be plain byte offsets, which are also the same as those accepted 2628 // by oopDesc::field_addr. 2629 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2630 // 32-bit machines ignore the high half of long offsets 2631 offset = ConvL2X(offset); 2632 // Save state and restore on bailout 2633 uint old_sp = sp(); 2634 SafePointNode* old_map = clone_map(); 2635 Node* adr = make_unsafe_address(base, offset,type, false); 2636 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2637 2638 Compile::AliasType* alias_type = C->alias_type(adr_type); 2639 BasicType bt = alias_type->basic_type(); 2640 if (bt != T_ILLEGAL && 2641 (is_reference_type(bt) != (type == T_OBJECT))) { 2642 // Don't intrinsify mismatched object accesses. 2643 set_map(old_map); 2644 set_sp(old_sp); 2645 return false; 2646 } 2647 2648 destruct_map_clone(old_map); 2649 2650 // For CAS, unlike inline_unsafe_access, there seems no point in 2651 // trying to refine types. Just use the coarse types here. 2652 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2653 const Type *value_type = Type::get_const_basic_type(type); 2654 2655 switch (kind) { 2656 case LS_get_set: 2657 case LS_cmp_exchange: { 2658 if (type == T_OBJECT) { 2659 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2660 if (tjp != nullptr) { 2661 value_type = tjp; 2662 } 2663 } 2664 break; 2665 } 2666 case LS_cmp_swap: 2667 case LS_cmp_swap_weak: 2668 case LS_get_add: 2669 break; 2670 default: 2671 ShouldNotReachHere(); 2672 } 2673 2674 // Null check receiver. 2675 receiver = null_check(receiver); 2676 if (stopped()) { 2677 return true; 2678 } 2679 2680 int alias_idx = C->get_alias_index(adr_type); 2681 2682 if (is_reference_type(type)) { 2683 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2684 2685 // Transformation of a value which could be null pointer (CastPP #null) 2686 // could be delayed during Parse (for example, in adjust_map_after_if()). 2687 // Execute transformation here to avoid barrier generation in such case. 2688 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2689 newval = _gvn.makecon(TypePtr::NULL_PTR); 2690 2691 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2692 // Refine the value to a null constant, when it is known to be null 2693 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2694 } 2695 } 2696 2697 Node* result = nullptr; 2698 switch (kind) { 2699 case LS_cmp_exchange: { 2700 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2701 oldval, newval, value_type, type, decorators); 2702 break; 2703 } 2704 case LS_cmp_swap_weak: 2705 decorators |= C2_WEAK_CMPXCHG; 2706 case LS_cmp_swap: { 2707 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2708 oldval, newval, value_type, type, decorators); 2709 break; 2710 } 2711 case LS_get_set: { 2712 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2713 newval, value_type, type, decorators); 2714 break; 2715 } 2716 case LS_get_add: { 2717 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2718 newval, value_type, type, decorators); 2719 break; 2720 } 2721 default: 2722 ShouldNotReachHere(); 2723 } 2724 2725 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2726 set_result(result); 2727 return true; 2728 } 2729 2730 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2731 // Regardless of form, don't allow previous ld/st to move down, 2732 // then issue acquire, release, or volatile mem_bar. 2733 insert_mem_bar(Op_MemBarCPUOrder); 2734 switch(id) { 2735 case vmIntrinsics::_loadFence: 2736 insert_mem_bar(Op_LoadFence); 2737 return true; 2738 case vmIntrinsics::_storeFence: 2739 insert_mem_bar(Op_StoreFence); 2740 return true; 2741 case vmIntrinsics::_storeStoreFence: 2742 insert_mem_bar(Op_StoreStoreFence); 2743 return true; 2744 case vmIntrinsics::_fullFence: 2745 insert_mem_bar(Op_MemBarVolatile); 2746 return true; 2747 default: 2748 fatal_unexpected_iid(id); 2749 return false; 2750 } 2751 } 2752 2753 bool LibraryCallKit::inline_onspinwait() { 2754 insert_mem_bar(Op_OnSpinWait); 2755 return true; 2756 } 2757 2758 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2759 if (!kls->is_Con()) { 2760 return true; 2761 } 2762 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2763 if (klsptr == nullptr) { 2764 return true; 2765 } 2766 ciInstanceKlass* ik = klsptr->instance_klass(); 2767 // don't need a guard for a klass that is already initialized 2768 return !ik->is_initialized(); 2769 } 2770 2771 //----------------------------inline_unsafe_writeback0------------------------- 2772 // public native void Unsafe.writeback0(long address) 2773 bool LibraryCallKit::inline_unsafe_writeback0() { 2774 if (!Matcher::has_match_rule(Op_CacheWB)) { 2775 return false; 2776 } 2777 #ifndef PRODUCT 2778 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2779 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2780 ciSignature* sig = callee()->signature(); 2781 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2782 #endif 2783 null_check_receiver(); // null-check, then ignore 2784 Node *addr = argument(1); 2785 addr = new CastX2PNode(addr); 2786 addr = _gvn.transform(addr); 2787 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2788 flush = _gvn.transform(flush); 2789 set_memory(flush, TypeRawPtr::BOTTOM); 2790 return true; 2791 } 2792 2793 //----------------------------inline_unsafe_writeback0------------------------- 2794 // public native void Unsafe.writeback0(long address) 2795 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2796 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2797 return false; 2798 } 2799 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2800 return false; 2801 } 2802 #ifndef PRODUCT 2803 assert(Matcher::has_match_rule(Op_CacheWB), 2804 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2805 : "found match rule for CacheWBPostSync but not CacheWB")); 2806 2807 #endif 2808 null_check_receiver(); // null-check, then ignore 2809 Node *sync; 2810 if (is_pre) { 2811 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2812 } else { 2813 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2814 } 2815 sync = _gvn.transform(sync); 2816 set_memory(sync, TypeRawPtr::BOTTOM); 2817 return true; 2818 } 2819 2820 //----------------------------inline_unsafe_allocate--------------------------- 2821 // public native Object Unsafe.allocateInstance(Class<?> cls); 2822 bool LibraryCallKit::inline_unsafe_allocate() { 2823 2824 #if INCLUDE_JVMTI 2825 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2826 return false; 2827 } 2828 #endif //INCLUDE_JVMTI 2829 2830 if (callee()->is_static()) return false; // caller must have the capability! 2831 2832 null_check_receiver(); // null-check, then ignore 2833 Node* cls = null_check(argument(1)); 2834 if (stopped()) return true; 2835 2836 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2837 kls = null_check(kls); 2838 if (stopped()) return true; // argument was like int.class 2839 2840 #if INCLUDE_JVMTI 2841 // Don't try to access new allocated obj in the intrinsic. 2842 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2843 // Deoptimize and allocate in interpreter instead. 2844 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2845 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2846 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2847 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2848 { 2849 BuildCutout unless(this, tst, PROB_MAX); 2850 uncommon_trap(Deoptimization::Reason_intrinsic, 2851 Deoptimization::Action_make_not_entrant); 2852 } 2853 if (stopped()) { 2854 return true; 2855 } 2856 #endif //INCLUDE_JVMTI 2857 2858 Node* test = nullptr; 2859 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2860 // Note: The argument might still be an illegal value like 2861 // Serializable.class or Object[].class. The runtime will handle it. 2862 // But we must make an explicit check for initialization. 2863 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2864 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2865 // can generate code to load it as unsigned byte. 2866 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2867 Node* bits = intcon(InstanceKlass::fully_initialized); 2868 test = _gvn.transform(new SubINode(inst, bits)); 2869 // The 'test' is non-zero if we need to take a slow path. 2870 } 2871 2872 Node* obj = new_instance(kls, test); 2873 set_result(obj); 2874 return true; 2875 } 2876 2877 //------------------------inline_native_time_funcs-------------- 2878 // inline code for System.currentTimeMillis() and System.nanoTime() 2879 // these have the same type and signature 2880 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2881 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2882 const TypePtr* no_memory_effects = nullptr; 2883 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2884 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2885 #ifdef ASSERT 2886 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2887 assert(value_top == top(), "second value must be top"); 2888 #endif 2889 set_result(value); 2890 return true; 2891 } 2892 2893 2894 #if INCLUDE_JVMTI 2895 2896 // When notifications are disabled then just update the VTMS transition bit and return. 2897 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2898 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2899 if (!DoJVMTIVirtualThreadTransitions) { 2900 return true; 2901 } 2902 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 2903 IdealKit ideal(this); 2904 2905 Node* ONE = ideal.ConI(1); 2906 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 2907 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 2908 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2909 2910 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 2911 sync_kit(ideal); 2912 // if notifyJvmti enabled then make a call to the given SharedRuntime function 2913 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 2914 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 2915 ideal.sync_kit(this); 2916 } ideal.else_(); { 2917 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 2918 Node* thread = ideal.thread(); 2919 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 2920 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 2921 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2922 2923 sync_kit(ideal); 2924 access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2925 access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2926 2927 ideal.sync_kit(this); 2928 } ideal.end_if(); 2929 final_sync(ideal); 2930 2931 return true; 2932 } 2933 2934 // Always update the temporary VTMS transition bit. 2935 bool LibraryCallKit::inline_native_notify_jvmti_hide() { 2936 if (!DoJVMTIVirtualThreadTransitions) { 2937 return true; 2938 } 2939 IdealKit ideal(this); 2940 2941 { 2942 // unconditionally update the temporary VTMS transition bit in current JavaThread 2943 Node* thread = ideal.thread(); 2944 Node* hide = _gvn.transform(argument(1)); // hide argument for temporary VTMS transition notification 2945 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset())); 2946 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2947 2948 sync_kit(ideal); 2949 access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2950 ideal.sync_kit(this); 2951 } 2952 final_sync(ideal); 2953 2954 return true; 2955 } 2956 2957 #endif // INCLUDE_JVMTI 2958 2959 #ifdef JFR_HAVE_INTRINSICS 2960 2961 /** 2962 * if oop->klass != null 2963 * // normal class 2964 * epoch = _epoch_state ? 2 : 1 2965 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 2966 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 2967 * } 2968 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 2969 * else 2970 * // primitive class 2971 * if oop->array_klass != null 2972 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 2973 * else 2974 * id = LAST_TYPE_ID + 1 // void class path 2975 * if (!signaled) 2976 * signaled = true 2977 */ 2978 bool LibraryCallKit::inline_native_classID() { 2979 Node* cls = argument(0); 2980 2981 IdealKit ideal(this); 2982 #define __ ideal. 2983 IdealVariable result(ideal); __ declarations_done(); 2984 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 2985 basic_plus_adr(cls, java_lang_Class::klass_offset()), 2986 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 2987 2988 2989 __ if_then(kls, BoolTest::ne, null()); { 2990 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 2991 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 2992 2993 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 2994 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2995 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 2996 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 2997 mask = _gvn.transform(new OrLNode(mask, epoch)); 2998 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 2999 3000 float unlikely = PROB_UNLIKELY(0.999); 3001 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3002 sync_kit(ideal); 3003 make_runtime_call(RC_LEAF, 3004 OptoRuntime::class_id_load_barrier_Type(), 3005 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3006 "class id load barrier", 3007 TypePtr::BOTTOM, 3008 kls); 3009 ideal.sync_kit(this); 3010 } __ end_if(); 3011 3012 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3013 } __ else_(); { 3014 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3015 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3016 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3017 __ if_then(array_kls, BoolTest::ne, null()); { 3018 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3019 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3020 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3021 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3022 } __ else_(); { 3023 // void class case 3024 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3025 } __ end_if(); 3026 3027 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3028 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3029 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3030 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3031 } __ end_if(); 3032 } __ end_if(); 3033 3034 final_sync(ideal); 3035 set_result(ideal.value(result)); 3036 #undef __ 3037 return true; 3038 } 3039 3040 //------------------------inline_native_jvm_commit------------------ 3041 bool LibraryCallKit::inline_native_jvm_commit() { 3042 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3043 3044 // Save input memory and i_o state. 3045 Node* input_memory_state = reset_memory(); 3046 set_all_memory(input_memory_state); 3047 Node* input_io_state = i_o(); 3048 3049 // TLS. 3050 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3051 // Jfr java buffer. 3052 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3053 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3054 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3055 3056 // Load the current value of the notified field in the JfrThreadLocal. 3057 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3058 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3059 3060 // Test for notification. 3061 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3062 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3063 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3064 3065 // True branch, is notified. 3066 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3067 set_control(is_notified); 3068 3069 // Reset notified state. 3070 Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered); 3071 3072 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3073 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3074 // Convert the machine-word to a long. 3075 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3076 3077 // False branch, not notified. 3078 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3079 set_control(not_notified); 3080 set_all_memory(input_memory_state); 3081 3082 // Arg is the next position as a long. 3083 Node* arg = argument(0); 3084 // Convert long to machine-word. 3085 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3086 3087 // Store the next_position to the underlying jfr java buffer. 3088 Node* commit_memory; 3089 #ifdef _LP64 3090 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release); 3091 #else 3092 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release); 3093 #endif 3094 3095 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3096 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3097 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3098 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3099 3100 // And flags with lease constant. 3101 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3102 3103 // Branch on lease to conditionalize returning the leased java buffer. 3104 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3105 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3106 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3107 3108 // False branch, not a lease. 3109 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3110 3111 // True branch, is lease. 3112 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3113 set_control(is_lease); 3114 3115 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3116 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3117 OptoRuntime::void_void_Type(), 3118 StubRoutines::jfr_return_lease(), 3119 "return_lease", TypePtr::BOTTOM); 3120 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3121 3122 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3123 record_for_igvn(lease_compare_rgn); 3124 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3125 record_for_igvn(lease_compare_mem); 3126 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3127 record_for_igvn(lease_compare_io); 3128 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3129 record_for_igvn(lease_result_value); 3130 3131 // Update control and phi nodes. 3132 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3133 lease_compare_rgn->init_req(_false_path, not_lease); 3134 3135 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3136 lease_compare_mem->init_req(_false_path, commit_memory); 3137 3138 lease_compare_io->init_req(_true_path, i_o()); 3139 lease_compare_io->init_req(_false_path, input_io_state); 3140 3141 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3142 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3143 3144 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3145 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3146 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3147 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3148 3149 // Update control and phi nodes. 3150 result_rgn->init_req(_true_path, is_notified); 3151 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3152 3153 result_mem->init_req(_true_path, notified_reset_memory); 3154 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3155 3156 result_io->init_req(_true_path, input_io_state); 3157 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3158 3159 result_value->init_req(_true_path, current_pos); 3160 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3161 3162 // Set output state. 3163 set_control(_gvn.transform(result_rgn)); 3164 set_all_memory(_gvn.transform(result_mem)); 3165 set_i_o(_gvn.transform(result_io)); 3166 set_result(result_rgn, result_value); 3167 return true; 3168 } 3169 3170 /* 3171 * The intrinsic is a model of this pseudo-code: 3172 * 3173 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3174 * jobject h_event_writer = tl->java_event_writer(); 3175 * if (h_event_writer == nullptr) { 3176 * return nullptr; 3177 * } 3178 * oop threadObj = Thread::threadObj(); 3179 * oop vthread = java_lang_Thread::vthread(threadObj); 3180 * traceid tid; 3181 * bool excluded; 3182 * if (vthread != threadObj) { // i.e. current thread is virtual 3183 * tid = java_lang_Thread::tid(vthread); 3184 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3185 * excluded = vthread_epoch_raw & excluded_mask; 3186 * if (!excluded) { 3187 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3188 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3189 * if (vthread_epoch != current_epoch) { 3190 * write_checkpoint(); 3191 * } 3192 * } 3193 * } else { 3194 * tid = java_lang_Thread::tid(threadObj); 3195 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3196 * excluded = thread_epoch_raw & excluded_mask; 3197 * } 3198 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3199 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3200 * if (tid_in_event_writer != tid) { 3201 * setField(event_writer, "threadID", tid); 3202 * setField(event_writer, "excluded", excluded); 3203 * } 3204 * return event_writer 3205 */ 3206 bool LibraryCallKit::inline_native_getEventWriter() { 3207 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3208 3209 // Save input memory and i_o state. 3210 Node* input_memory_state = reset_memory(); 3211 set_all_memory(input_memory_state); 3212 Node* input_io_state = i_o(); 3213 3214 Node* excluded_mask = _gvn.intcon(32768); 3215 Node* epoch_mask = _gvn.intcon(32767); 3216 3217 // TLS 3218 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3219 3220 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3221 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3222 3223 // Load the eventwriter jobject handle. 3224 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3225 3226 // Null check the jobject handle. 3227 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3228 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3229 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3230 3231 // False path, jobj is null. 3232 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3233 3234 // True path, jobj is not null. 3235 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3236 3237 set_control(jobj_is_not_null); 3238 3239 // Load the threadObj for the CarrierThread. 3240 Node* threadObj = generate_current_thread(tls_ptr); 3241 3242 // Load the vthread. 3243 Node* vthread = generate_virtual_thread(tls_ptr); 3244 3245 // If vthread != threadObj, this is a virtual thread. 3246 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3247 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3248 IfNode* iff_vthread_not_equal_threadObj = 3249 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3250 3251 // False branch, fallback to threadObj. 3252 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3253 set_control(vthread_equal_threadObj); 3254 3255 // Load the tid field from the vthread object. 3256 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3257 3258 // Load the raw epoch value from the threadObj. 3259 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3260 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3261 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3262 3263 // Mask off the excluded information from the epoch. 3264 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3265 3266 // True branch, this is a virtual thread. 3267 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3268 set_control(vthread_not_equal_threadObj); 3269 3270 // Load the tid field from the vthread object. 3271 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3272 3273 // Load the raw epoch value from the vthread. 3274 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3275 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3276 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3277 3278 // Mask off the excluded information from the epoch. 3279 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3280 3281 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3282 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3283 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3284 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3285 3286 // False branch, vthread is excluded, no need to write epoch info. 3287 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3288 3289 // True branch, vthread is included, update epoch info. 3290 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3291 set_control(included); 3292 3293 // Get epoch value. 3294 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3295 3296 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3297 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3298 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3299 3300 // Compare the epoch in the vthread to the current epoch generation. 3301 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3302 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3303 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3304 3305 // False path, epoch is equal, checkpoint information is valid. 3306 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3307 3308 // True path, epoch is not equal, write a checkpoint for the vthread. 3309 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3310 3311 set_control(epoch_is_not_equal); 3312 3313 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3314 // The call also updates the native thread local thread id and the vthread with the current epoch. 3315 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3316 OptoRuntime::jfr_write_checkpoint_Type(), 3317 StubRoutines::jfr_write_checkpoint(), 3318 "write_checkpoint", TypePtr::BOTTOM); 3319 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3320 3321 // vthread epoch != current epoch 3322 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3323 record_for_igvn(epoch_compare_rgn); 3324 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3325 record_for_igvn(epoch_compare_mem); 3326 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3327 record_for_igvn(epoch_compare_io); 3328 3329 // Update control and phi nodes. 3330 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3331 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3332 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3333 epoch_compare_mem->init_req(_false_path, input_memory_state); 3334 epoch_compare_io->init_req(_true_path, i_o()); 3335 epoch_compare_io->init_req(_false_path, input_io_state); 3336 3337 // excluded != true 3338 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3339 record_for_igvn(exclude_compare_rgn); 3340 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3341 record_for_igvn(exclude_compare_mem); 3342 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3343 record_for_igvn(exclude_compare_io); 3344 3345 // Update control and phi nodes. 3346 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3347 exclude_compare_rgn->init_req(_false_path, excluded); 3348 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3349 exclude_compare_mem->init_req(_false_path, input_memory_state); 3350 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3351 exclude_compare_io->init_req(_false_path, input_io_state); 3352 3353 // vthread != threadObj 3354 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3355 record_for_igvn(vthread_compare_rgn); 3356 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3357 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3358 record_for_igvn(vthread_compare_io); 3359 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3360 record_for_igvn(tid); 3361 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3362 record_for_igvn(exclusion); 3363 3364 // Update control and phi nodes. 3365 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3366 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3367 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3368 vthread_compare_mem->init_req(_false_path, input_memory_state); 3369 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3370 vthread_compare_io->init_req(_false_path, input_io_state); 3371 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3372 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3373 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3374 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3375 3376 // Update branch state. 3377 set_control(_gvn.transform(vthread_compare_rgn)); 3378 set_all_memory(_gvn.transform(vthread_compare_mem)); 3379 set_i_o(_gvn.transform(vthread_compare_io)); 3380 3381 // Load the event writer oop by dereferencing the jobject handle. 3382 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3383 assert(klass_EventWriter->is_loaded(), "invariant"); 3384 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3385 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3386 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3387 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3388 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3389 3390 // Load the current thread id from the event writer object. 3391 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3392 // Get the field offset to, conditionally, store an updated tid value later. 3393 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3394 const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); 3395 // Get the field offset to, conditionally, store an updated exclusion value later. 3396 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3397 const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); 3398 3399 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3400 record_for_igvn(event_writer_tid_compare_rgn); 3401 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3402 record_for_igvn(event_writer_tid_compare_mem); 3403 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3404 record_for_igvn(event_writer_tid_compare_io); 3405 3406 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3407 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3408 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3409 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3410 3411 // False path, tids are the same. 3412 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3413 3414 // True path, tid is not equal, need to update the tid in the event writer. 3415 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3416 record_for_igvn(tid_is_not_equal); 3417 3418 // Store the exclusion state to the event writer. 3419 store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); 3420 3421 // Store the tid to the event writer. 3422 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); 3423 3424 // Update control and phi nodes. 3425 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3426 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3427 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3428 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3429 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3430 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3431 3432 // Result of top level CFG, Memory, IO and Value. 3433 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3434 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3435 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3436 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3437 3438 // Result control. 3439 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3440 result_rgn->init_req(_false_path, jobj_is_null); 3441 3442 // Result memory. 3443 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3444 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3445 3446 // Result IO. 3447 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3448 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3449 3450 // Result value. 3451 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3452 result_value->init_req(_false_path, null()); // return null 3453 3454 // Set output state. 3455 set_control(_gvn.transform(result_rgn)); 3456 set_all_memory(_gvn.transform(result_mem)); 3457 set_i_o(_gvn.transform(result_io)); 3458 set_result(result_rgn, result_value); 3459 return true; 3460 } 3461 3462 /* 3463 * The intrinsic is a model of this pseudo-code: 3464 * 3465 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3466 * if (carrierThread != thread) { // is virtual thread 3467 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3468 * bool excluded = vthread_epoch_raw & excluded_mask; 3469 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3470 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3471 * if (!excluded) { 3472 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3473 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3474 * } 3475 * Atomic::release_store(&tl->_vthread, true); 3476 * return; 3477 * } 3478 * Atomic::release_store(&tl->_vthread, false); 3479 */ 3480 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3481 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3482 3483 Node* input_memory_state = reset_memory(); 3484 set_all_memory(input_memory_state); 3485 3486 Node* excluded_mask = _gvn.intcon(32768); 3487 Node* epoch_mask = _gvn.intcon(32767); 3488 3489 Node* const carrierThread = generate_current_thread(jt); 3490 // If thread != carrierThread, this is a virtual thread. 3491 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3492 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3493 IfNode* iff_thread_not_equal_carrierThread = 3494 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3495 3496 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3497 3498 // False branch, is carrierThread. 3499 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3500 // Store release 3501 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3502 3503 set_all_memory(input_memory_state); 3504 3505 // True branch, is virtual thread. 3506 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3507 set_control(thread_not_equal_carrierThread); 3508 3509 // Load the raw epoch value from the vthread. 3510 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3511 Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3512 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3513 3514 // Mask off the excluded information from the epoch. 3515 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3516 3517 // Load the tid field from the thread. 3518 Node* tid = load_field_from_object(thread, "tid", "J"); 3519 3520 // Store the vthread tid to the jfr thread local. 3521 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3522 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); 3523 3524 // Branch is_excluded to conditionalize updating the epoch . 3525 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3526 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3527 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3528 3529 // True branch, vthread is excluded, no need to write epoch info. 3530 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3531 set_control(excluded); 3532 Node* vthread_is_excluded = _gvn.intcon(1); 3533 3534 // False branch, vthread is included, update epoch info. 3535 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3536 set_control(included); 3537 Node* vthread_is_included = _gvn.intcon(0); 3538 3539 // Get epoch value. 3540 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3541 3542 // Store the vthread epoch to the jfr thread local. 3543 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3544 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); 3545 3546 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3547 record_for_igvn(excluded_rgn); 3548 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3549 record_for_igvn(excluded_mem); 3550 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3551 record_for_igvn(exclusion); 3552 3553 // Merge the excluded control and memory. 3554 excluded_rgn->init_req(_true_path, excluded); 3555 excluded_rgn->init_req(_false_path, included); 3556 excluded_mem->init_req(_true_path, tid_memory); 3557 excluded_mem->init_req(_false_path, included_memory); 3558 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3559 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3560 3561 // Set intermediate state. 3562 set_control(_gvn.transform(excluded_rgn)); 3563 set_all_memory(excluded_mem); 3564 3565 // Store the vthread exclusion state to the jfr thread local. 3566 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3567 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); 3568 3569 // Store release 3570 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3571 3572 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3573 record_for_igvn(thread_compare_rgn); 3574 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3575 record_for_igvn(thread_compare_mem); 3576 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3577 record_for_igvn(vthread); 3578 3579 // Merge the thread_compare control and memory. 3580 thread_compare_rgn->init_req(_true_path, control()); 3581 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3582 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3583 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3584 3585 // Set output state. 3586 set_control(_gvn.transform(thread_compare_rgn)); 3587 set_all_memory(_gvn.transform(thread_compare_mem)); 3588 } 3589 3590 #endif // JFR_HAVE_INTRINSICS 3591 3592 //------------------------inline_native_currentCarrierThread------------------ 3593 bool LibraryCallKit::inline_native_currentCarrierThread() { 3594 Node* junk = nullptr; 3595 set_result(generate_current_thread(junk)); 3596 return true; 3597 } 3598 3599 //------------------------inline_native_currentThread------------------ 3600 bool LibraryCallKit::inline_native_currentThread() { 3601 Node* junk = nullptr; 3602 set_result(generate_virtual_thread(junk)); 3603 return true; 3604 } 3605 3606 //------------------------inline_native_setVthread------------------ 3607 bool LibraryCallKit::inline_native_setCurrentThread() { 3608 assert(C->method()->changes_current_thread(), 3609 "method changes current Thread but is not annotated ChangesCurrentThread"); 3610 Node* arr = argument(1); 3611 Node* thread = _gvn.transform(new ThreadLocalNode()); 3612 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3613 Node* thread_obj_handle 3614 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3615 thread_obj_handle = _gvn.transform(thread_obj_handle); 3616 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3617 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3618 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3619 return true; 3620 } 3621 3622 const Type* LibraryCallKit::scopedValueCache_type() { 3623 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3624 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3625 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3626 3627 // Because we create the scopedValue cache lazily we have to make the 3628 // type of the result BotPTR. 3629 bool xk = etype->klass_is_exact(); 3630 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3631 return objects_type; 3632 } 3633 3634 Node* LibraryCallKit::scopedValueCache_helper() { 3635 Node* thread = _gvn.transform(new ThreadLocalNode()); 3636 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3637 // We cannot use immutable_memory() because we might flip onto a 3638 // different carrier thread, at which point we'll need to use that 3639 // carrier thread's cache. 3640 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3641 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3642 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3643 } 3644 3645 //------------------------inline_native_scopedValueCache------------------ 3646 bool LibraryCallKit::inline_native_scopedValueCache() { 3647 Node* cache_obj_handle = scopedValueCache_helper(); 3648 const Type* objects_type = scopedValueCache_type(); 3649 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3650 3651 return true; 3652 } 3653 3654 //------------------------inline_native_setScopedValueCache------------------ 3655 bool LibraryCallKit::inline_native_setScopedValueCache() { 3656 Node* arr = argument(0); 3657 Node* cache_obj_handle = scopedValueCache_helper(); 3658 const Type* objects_type = scopedValueCache_type(); 3659 3660 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3661 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3662 3663 return true; 3664 } 3665 3666 //---------------------------load_mirror_from_klass---------------------------- 3667 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3668 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3669 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3670 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3671 // mirror = ((OopHandle)mirror)->resolve(); 3672 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3673 } 3674 3675 //-----------------------load_klass_from_mirror_common------------------------- 3676 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3677 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3678 // and branch to the given path on the region. 3679 // If never_see_null, take an uncommon trap on null, so we can optimistically 3680 // compile for the non-null case. 3681 // If the region is null, force never_see_null = true. 3682 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3683 bool never_see_null, 3684 RegionNode* region, 3685 int null_path, 3686 int offset) { 3687 if (region == nullptr) never_see_null = true; 3688 Node* p = basic_plus_adr(mirror, offset); 3689 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3690 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3691 Node* null_ctl = top(); 3692 kls = null_check_oop(kls, &null_ctl, never_see_null); 3693 if (region != nullptr) { 3694 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3695 region->init_req(null_path, null_ctl); 3696 } else { 3697 assert(null_ctl == top(), "no loose ends"); 3698 } 3699 return kls; 3700 } 3701 3702 //--------------------(inline_native_Class_query helpers)--------------------- 3703 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3704 // Fall through if (mods & mask) == bits, take the guard otherwise. 3705 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3706 // Branch around if the given klass has the given modifier bit set. 3707 // Like generate_guard, adds a new path onto the region. 3708 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3709 Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered); 3710 Node* mask = intcon(modifier_mask); 3711 Node* bits = intcon(modifier_bits); 3712 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3713 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3714 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3715 return generate_fair_guard(bol, region); 3716 } 3717 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3718 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3719 } 3720 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3721 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3722 } 3723 3724 //-------------------------inline_native_Class_query------------------- 3725 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3726 const Type* return_type = TypeInt::BOOL; 3727 Node* prim_return_value = top(); // what happens if it's a primitive class? 3728 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3729 bool expect_prim = false; // most of these guys expect to work on refs 3730 3731 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3732 3733 Node* mirror = argument(0); 3734 Node* obj = top(); 3735 3736 switch (id) { 3737 case vmIntrinsics::_isInstance: 3738 // nothing is an instance of a primitive type 3739 prim_return_value = intcon(0); 3740 obj = argument(1); 3741 break; 3742 case vmIntrinsics::_getModifiers: 3743 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3744 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3745 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3746 break; 3747 case vmIntrinsics::_isInterface: 3748 prim_return_value = intcon(0); 3749 break; 3750 case vmIntrinsics::_isArray: 3751 prim_return_value = intcon(0); 3752 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3753 break; 3754 case vmIntrinsics::_isPrimitive: 3755 prim_return_value = intcon(1); 3756 expect_prim = true; // obviously 3757 break; 3758 case vmIntrinsics::_isHidden: 3759 prim_return_value = intcon(0); 3760 break; 3761 case vmIntrinsics::_getSuperclass: 3762 prim_return_value = null(); 3763 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3764 break; 3765 case vmIntrinsics::_getClassAccessFlags: 3766 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3767 return_type = TypeInt::INT; // not bool! 6297094 3768 break; 3769 default: 3770 fatal_unexpected_iid(id); 3771 break; 3772 } 3773 3774 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3775 if (mirror_con == nullptr) return false; // cannot happen? 3776 3777 #ifndef PRODUCT 3778 if (C->print_intrinsics() || C->print_inlining()) { 3779 ciType* k = mirror_con->java_mirror_type(); 3780 if (k) { 3781 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3782 k->print_name(); 3783 tty->cr(); 3784 } 3785 } 3786 #endif 3787 3788 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3789 RegionNode* region = new RegionNode(PATH_LIMIT); 3790 record_for_igvn(region); 3791 PhiNode* phi = new PhiNode(region, return_type); 3792 3793 // The mirror will never be null of Reflection.getClassAccessFlags, however 3794 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3795 // if it is. See bug 4774291. 3796 3797 // For Reflection.getClassAccessFlags(), the null check occurs in 3798 // the wrong place; see inline_unsafe_access(), above, for a similar 3799 // situation. 3800 mirror = null_check(mirror); 3801 // If mirror or obj is dead, only null-path is taken. 3802 if (stopped()) return true; 3803 3804 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3805 3806 // Now load the mirror's klass metaobject, and null-check it. 3807 // Side-effects region with the control path if the klass is null. 3808 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3809 // If kls is null, we have a primitive mirror. 3810 phi->init_req(_prim_path, prim_return_value); 3811 if (stopped()) { set_result(region, phi); return true; } 3812 bool safe_for_replace = (region->in(_prim_path) == top()); 3813 3814 Node* p; // handy temp 3815 Node* null_ctl; 3816 3817 // Now that we have the non-null klass, we can perform the real query. 3818 // For constant classes, the query will constant-fold in LoadNode::Value. 3819 Node* query_value = top(); 3820 switch (id) { 3821 case vmIntrinsics::_isInstance: 3822 // nothing is an instance of a primitive type 3823 query_value = gen_instanceof(obj, kls, safe_for_replace); 3824 break; 3825 3826 case vmIntrinsics::_getModifiers: 3827 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3828 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3829 break; 3830 3831 case vmIntrinsics::_isInterface: 3832 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3833 if (generate_interface_guard(kls, region) != nullptr) 3834 // A guard was added. If the guard is taken, it was an interface. 3835 phi->add_req(intcon(1)); 3836 // If we fall through, it's a plain class. 3837 query_value = intcon(0); 3838 break; 3839 3840 case vmIntrinsics::_isArray: 3841 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3842 if (generate_array_guard(kls, region) != nullptr) 3843 // A guard was added. If the guard is taken, it was an array. 3844 phi->add_req(intcon(1)); 3845 // If we fall through, it's a plain class. 3846 query_value = intcon(0); 3847 break; 3848 3849 case vmIntrinsics::_isPrimitive: 3850 query_value = intcon(0); // "normal" path produces false 3851 break; 3852 3853 case vmIntrinsics::_isHidden: 3854 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 3855 if (generate_hidden_class_guard(kls, region) != nullptr) 3856 // A guard was added. If the guard is taken, it was an hidden class. 3857 phi->add_req(intcon(1)); 3858 // If we fall through, it's a plain class. 3859 query_value = intcon(0); 3860 break; 3861 3862 3863 case vmIntrinsics::_getSuperclass: 3864 // The rules here are somewhat unfortunate, but we can still do better 3865 // with random logic than with a JNI call. 3866 // Interfaces store null or Object as _super, but must report null. 3867 // Arrays store an intermediate super as _super, but must report Object. 3868 // Other types can report the actual _super. 3869 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3870 if (generate_interface_guard(kls, region) != nullptr) 3871 // A guard was added. If the guard is taken, it was an interface. 3872 phi->add_req(null()); 3873 if (generate_array_guard(kls, region) != nullptr) 3874 // A guard was added. If the guard is taken, it was an array. 3875 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3876 // If we fall through, it's a plain class. Get its _super. 3877 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3878 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3879 null_ctl = top(); 3880 kls = null_check_oop(kls, &null_ctl); 3881 if (null_ctl != top()) { 3882 // If the guard is taken, Object.superClass is null (both klass and mirror). 3883 region->add_req(null_ctl); 3884 phi ->add_req(null()); 3885 } 3886 if (!stopped()) { 3887 query_value = load_mirror_from_klass(kls); 3888 } 3889 break; 3890 3891 case vmIntrinsics::_getClassAccessFlags: 3892 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3893 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3894 break; 3895 3896 default: 3897 fatal_unexpected_iid(id); 3898 break; 3899 } 3900 3901 // Fall-through is the normal case of a query to a real class. 3902 phi->init_req(1, query_value); 3903 region->init_req(1, control()); 3904 3905 C->set_has_split_ifs(true); // Has chance for split-if optimization 3906 set_result(region, phi); 3907 return true; 3908 } 3909 3910 //-------------------------inline_Class_cast------------------- 3911 bool LibraryCallKit::inline_Class_cast() { 3912 Node* mirror = argument(0); // Class 3913 Node* obj = argument(1); 3914 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3915 if (mirror_con == nullptr) { 3916 return false; // dead path (mirror->is_top()). 3917 } 3918 if (obj == nullptr || obj->is_top()) { 3919 return false; // dead path 3920 } 3921 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3922 3923 // First, see if Class.cast() can be folded statically. 3924 // java_mirror_type() returns non-null for compile-time Class constants. 3925 ciType* tm = mirror_con->java_mirror_type(); 3926 if (tm != nullptr && tm->is_klass() && 3927 tp != nullptr) { 3928 if (!tp->is_loaded()) { 3929 // Don't use intrinsic when class is not loaded. 3930 return false; 3931 } else { 3932 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 3933 if (static_res == Compile::SSC_always_true) { 3934 // isInstance() is true - fold the code. 3935 set_result(obj); 3936 return true; 3937 } else if (static_res == Compile::SSC_always_false) { 3938 // Don't use intrinsic, have to throw ClassCastException. 3939 // If the reference is null, the non-intrinsic bytecode will 3940 // be optimized appropriately. 3941 return false; 3942 } 3943 } 3944 } 3945 3946 // Bailout intrinsic and do normal inlining if exception path is frequent. 3947 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3948 return false; 3949 } 3950 3951 // Generate dynamic checks. 3952 // Class.cast() is java implementation of _checkcast bytecode. 3953 // Do checkcast (Parse::do_checkcast()) optimizations here. 3954 3955 mirror = null_check(mirror); 3956 // If mirror is dead, only null-path is taken. 3957 if (stopped()) { 3958 return true; 3959 } 3960 3961 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 3962 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3963 RegionNode* region = new RegionNode(PATH_LIMIT); 3964 record_for_igvn(region); 3965 3966 // Now load the mirror's klass metaobject, and null-check it. 3967 // If kls is null, we have a primitive mirror and 3968 // nothing is an instance of a primitive type. 3969 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3970 3971 Node* res = top(); 3972 if (!stopped()) { 3973 Node* bad_type_ctrl = top(); 3974 // Do checkcast optimizations. 3975 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3976 region->init_req(_bad_type_path, bad_type_ctrl); 3977 } 3978 if (region->in(_prim_path) != top() || 3979 region->in(_bad_type_path) != top()) { 3980 // Let Interpreter throw ClassCastException. 3981 PreserveJVMState pjvms(this); 3982 set_control(_gvn.transform(region)); 3983 uncommon_trap(Deoptimization::Reason_intrinsic, 3984 Deoptimization::Action_maybe_recompile); 3985 } 3986 if (!stopped()) { 3987 set_result(res); 3988 } 3989 return true; 3990 } 3991 3992 3993 //--------------------------inline_native_subtype_check------------------------ 3994 // This intrinsic takes the JNI calls out of the heart of 3995 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 3996 bool LibraryCallKit::inline_native_subtype_check() { 3997 // Pull both arguments off the stack. 3998 Node* args[2]; // two java.lang.Class mirrors: superc, subc 3999 args[0] = argument(0); 4000 args[1] = argument(1); 4001 Node* klasses[2]; // corresponding Klasses: superk, subk 4002 klasses[0] = klasses[1] = top(); 4003 4004 enum { 4005 // A full decision tree on {superc is prim, subc is prim}: 4006 _prim_0_path = 1, // {P,N} => false 4007 // {P,P} & superc!=subc => false 4008 _prim_same_path, // {P,P} & superc==subc => true 4009 _prim_1_path, // {N,P} => false 4010 _ref_subtype_path, // {N,N} & subtype check wins => true 4011 _both_ref_path, // {N,N} & subtype check loses => false 4012 PATH_LIMIT 4013 }; 4014 4015 RegionNode* region = new RegionNode(PATH_LIMIT); 4016 Node* phi = new PhiNode(region, TypeInt::BOOL); 4017 record_for_igvn(region); 4018 4019 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4020 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4021 int class_klass_offset = java_lang_Class::klass_offset(); 4022 4023 // First null-check both mirrors and load each mirror's klass metaobject. 4024 int which_arg; 4025 for (which_arg = 0; which_arg <= 1; which_arg++) { 4026 Node* arg = args[which_arg]; 4027 arg = null_check(arg); 4028 if (stopped()) break; 4029 args[which_arg] = arg; 4030 4031 Node* p = basic_plus_adr(arg, class_klass_offset); 4032 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 4033 klasses[which_arg] = _gvn.transform(kls); 4034 } 4035 4036 // Having loaded both klasses, test each for null. 4037 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4038 for (which_arg = 0; which_arg <= 1; which_arg++) { 4039 Node* kls = klasses[which_arg]; 4040 Node* null_ctl = top(); 4041 kls = null_check_oop(kls, &null_ctl, never_see_null); 4042 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4043 region->init_req(prim_path, null_ctl); 4044 if (stopped()) break; 4045 klasses[which_arg] = kls; 4046 } 4047 4048 if (!stopped()) { 4049 // now we have two reference types, in klasses[0..1] 4050 Node* subk = klasses[1]; // the argument to isAssignableFrom 4051 Node* superk = klasses[0]; // the receiver 4052 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4053 // now we have a successful reference subtype check 4054 region->set_req(_ref_subtype_path, control()); 4055 } 4056 4057 // If both operands are primitive (both klasses null), then 4058 // we must return true when they are identical primitives. 4059 // It is convenient to test this after the first null klass check. 4060 set_control(region->in(_prim_0_path)); // go back to first null check 4061 if (!stopped()) { 4062 // Since superc is primitive, make a guard for the superc==subc case. 4063 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4064 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4065 generate_guard(bol_eq, region, PROB_FAIR); 4066 if (region->req() == PATH_LIMIT+1) { 4067 // A guard was added. If the added guard is taken, superc==subc. 4068 region->swap_edges(PATH_LIMIT, _prim_same_path); 4069 region->del_req(PATH_LIMIT); 4070 } 4071 region->set_req(_prim_0_path, control()); // Not equal after all. 4072 } 4073 4074 // these are the only paths that produce 'true': 4075 phi->set_req(_prim_same_path, intcon(1)); 4076 phi->set_req(_ref_subtype_path, intcon(1)); 4077 4078 // pull together the cases: 4079 assert(region->req() == PATH_LIMIT, "sane region"); 4080 for (uint i = 1; i < region->req(); i++) { 4081 Node* ctl = region->in(i); 4082 if (ctl == nullptr || ctl == top()) { 4083 region->set_req(i, top()); 4084 phi ->set_req(i, top()); 4085 } else if (phi->in(i) == nullptr) { 4086 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4087 } 4088 } 4089 4090 set_control(_gvn.transform(region)); 4091 set_result(_gvn.transform(phi)); 4092 return true; 4093 } 4094 4095 //---------------------generate_array_guard_common------------------------ 4096 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4097 bool obj_array, bool not_array) { 4098 4099 if (stopped()) { 4100 return nullptr; 4101 } 4102 4103 // If obj_array/non_array==false/false: 4104 // Branch around if the given klass is in fact an array (either obj or prim). 4105 // If obj_array/non_array==false/true: 4106 // Branch around if the given klass is not an array klass of any kind. 4107 // If obj_array/non_array==true/true: 4108 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4109 // If obj_array/non_array==true/false: 4110 // Branch around if the kls is an oop array (Object[] or subtype) 4111 // 4112 // Like generate_guard, adds a new path onto the region. 4113 jint layout_con = 0; 4114 Node* layout_val = get_layout_helper(kls, layout_con); 4115 if (layout_val == nullptr) { 4116 bool query = (obj_array 4117 ? Klass::layout_helper_is_objArray(layout_con) 4118 : Klass::layout_helper_is_array(layout_con)); 4119 if (query == not_array) { 4120 return nullptr; // never a branch 4121 } else { // always a branch 4122 Node* always_branch = control(); 4123 if (region != nullptr) 4124 region->add_req(always_branch); 4125 set_control(top()); 4126 return always_branch; 4127 } 4128 } 4129 // Now test the correct condition. 4130 jint nval = (obj_array 4131 ? (jint)(Klass::_lh_array_tag_type_value 4132 << Klass::_lh_array_tag_shift) 4133 : Klass::_lh_neutral_value); 4134 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4135 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4136 // invert the test if we are looking for a non-array 4137 if (not_array) btest = BoolTest(btest).negate(); 4138 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4139 return generate_fair_guard(bol, region); 4140 } 4141 4142 4143 //-----------------------inline_native_newArray-------------------------- 4144 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4145 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4146 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4147 Node* mirror; 4148 Node* count_val; 4149 if (uninitialized) { 4150 null_check_receiver(); 4151 mirror = argument(1); 4152 count_val = argument(2); 4153 } else { 4154 mirror = argument(0); 4155 count_val = argument(1); 4156 } 4157 4158 mirror = null_check(mirror); 4159 // If mirror or obj is dead, only null-path is taken. 4160 if (stopped()) return true; 4161 4162 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4163 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4164 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4165 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4166 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4167 4168 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4169 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4170 result_reg, _slow_path); 4171 Node* normal_ctl = control(); 4172 Node* no_array_ctl = result_reg->in(_slow_path); 4173 4174 // Generate code for the slow case. We make a call to newArray(). 4175 set_control(no_array_ctl); 4176 if (!stopped()) { 4177 // Either the input type is void.class, or else the 4178 // array klass has not yet been cached. Either the 4179 // ensuing call will throw an exception, or else it 4180 // will cache the array klass for next time. 4181 PreserveJVMState pjvms(this); 4182 CallJavaNode* slow_call = nullptr; 4183 if (uninitialized) { 4184 // Generate optimized virtual call (holder class 'Unsafe' is final) 4185 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4186 } else { 4187 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4188 } 4189 Node* slow_result = set_results_for_java_call(slow_call); 4190 // this->control() comes from set_results_for_java_call 4191 result_reg->set_req(_slow_path, control()); 4192 result_val->set_req(_slow_path, slow_result); 4193 result_io ->set_req(_slow_path, i_o()); 4194 result_mem->set_req(_slow_path, reset_memory()); 4195 } 4196 4197 set_control(normal_ctl); 4198 if (!stopped()) { 4199 // Normal case: The array type has been cached in the java.lang.Class. 4200 // The following call works fine even if the array type is polymorphic. 4201 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4202 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4203 result_reg->init_req(_normal_path, control()); 4204 result_val->init_req(_normal_path, obj); 4205 result_io ->init_req(_normal_path, i_o()); 4206 result_mem->init_req(_normal_path, reset_memory()); 4207 4208 if (uninitialized) { 4209 // Mark the allocation so that zeroing is skipped 4210 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4211 alloc->maybe_set_complete(&_gvn); 4212 } 4213 } 4214 4215 // Return the combined state. 4216 set_i_o( _gvn.transform(result_io) ); 4217 set_all_memory( _gvn.transform(result_mem)); 4218 4219 C->set_has_split_ifs(true); // Has chance for split-if optimization 4220 set_result(result_reg, result_val); 4221 return true; 4222 } 4223 4224 //----------------------inline_native_getLength-------------------------- 4225 // public static native int java.lang.reflect.Array.getLength(Object array); 4226 bool LibraryCallKit::inline_native_getLength() { 4227 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4228 4229 Node* array = null_check(argument(0)); 4230 // If array is dead, only null-path is taken. 4231 if (stopped()) return true; 4232 4233 // Deoptimize if it is a non-array. 4234 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr); 4235 4236 if (non_array != nullptr) { 4237 PreserveJVMState pjvms(this); 4238 set_control(non_array); 4239 uncommon_trap(Deoptimization::Reason_intrinsic, 4240 Deoptimization::Action_maybe_recompile); 4241 } 4242 4243 // If control is dead, only non-array-path is taken. 4244 if (stopped()) return true; 4245 4246 // The works fine even if the array type is polymorphic. 4247 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4248 Node* result = load_array_length(array); 4249 4250 C->set_has_split_ifs(true); // Has chance for split-if optimization 4251 set_result(result); 4252 return true; 4253 } 4254 4255 //------------------------inline_array_copyOf---------------------------- 4256 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4257 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4258 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4259 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4260 4261 // Get the arguments. 4262 Node* original = argument(0); 4263 Node* start = is_copyOfRange? argument(1): intcon(0); 4264 Node* end = is_copyOfRange? argument(2): argument(1); 4265 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4266 4267 Node* newcopy = nullptr; 4268 4269 // Set the original stack and the reexecute bit for the interpreter to reexecute 4270 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4271 { PreserveReexecuteState preexecs(this); 4272 jvms()->set_should_reexecute(true); 4273 4274 array_type_mirror = null_check(array_type_mirror); 4275 original = null_check(original); 4276 4277 // Check if a null path was taken unconditionally. 4278 if (stopped()) return true; 4279 4280 Node* orig_length = load_array_length(original); 4281 4282 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4283 klass_node = null_check(klass_node); 4284 4285 RegionNode* bailout = new RegionNode(1); 4286 record_for_igvn(bailout); 4287 4288 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4289 // Bail out if that is so. 4290 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4291 if (not_objArray != nullptr) { 4292 // Improve the klass node's type from the new optimistic assumption: 4293 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4294 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4295 Node* cast = new CastPPNode(klass_node, akls); 4296 cast->init_req(0, control()); 4297 klass_node = _gvn.transform(cast); 4298 } 4299 4300 // Bail out if either start or end is negative. 4301 generate_negative_guard(start, bailout, &start); 4302 generate_negative_guard(end, bailout, &end); 4303 4304 Node* length = end; 4305 if (_gvn.type(start) != TypeInt::ZERO) { 4306 length = _gvn.transform(new SubINode(end, start)); 4307 } 4308 4309 // Bail out if length is negative. 4310 // Without this the new_array would throw 4311 // NegativeArraySizeException but IllegalArgumentException is what 4312 // should be thrown 4313 generate_negative_guard(length, bailout, &length); 4314 4315 if (bailout->req() > 1) { 4316 PreserveJVMState pjvms(this); 4317 set_control(_gvn.transform(bailout)); 4318 uncommon_trap(Deoptimization::Reason_intrinsic, 4319 Deoptimization::Action_maybe_recompile); 4320 } 4321 4322 if (!stopped()) { 4323 // How many elements will we copy from the original? 4324 // The answer is MinI(orig_length - start, length). 4325 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4326 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4327 4328 // Generate a direct call to the right arraycopy function(s). 4329 // We know the copy is disjoint but we might not know if the 4330 // oop stores need checking. 4331 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4332 // This will fail a store-check if x contains any non-nulls. 4333 4334 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4335 // loads/stores but it is legal only if we're sure the 4336 // Arrays.copyOf would succeed. So we need all input arguments 4337 // to the copyOf to be validated, including that the copy to the 4338 // new array won't trigger an ArrayStoreException. That subtype 4339 // check can be optimized if we know something on the type of 4340 // the input array from type speculation. 4341 if (_gvn.type(klass_node)->singleton()) { 4342 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4343 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4344 4345 int test = C->static_subtype_check(superk, subk); 4346 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4347 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4348 if (t_original->speculative_type() != nullptr) { 4349 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4350 } 4351 } 4352 } 4353 4354 bool validated = false; 4355 // Reason_class_check rather than Reason_intrinsic because we 4356 // want to intrinsify even if this traps. 4357 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4358 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4359 4360 if (not_subtype_ctrl != top()) { 4361 PreserveJVMState pjvms(this); 4362 set_control(not_subtype_ctrl); 4363 uncommon_trap(Deoptimization::Reason_class_check, 4364 Deoptimization::Action_make_not_entrant); 4365 assert(stopped(), "Should be stopped"); 4366 } 4367 validated = true; 4368 } 4369 4370 if (!stopped()) { 4371 newcopy = new_array(klass_node, length, 0); // no arguments to push 4372 4373 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 4374 load_object_klass(original), klass_node); 4375 if (!is_copyOfRange) { 4376 ac->set_copyof(validated); 4377 } else { 4378 ac->set_copyofrange(validated); 4379 } 4380 Node* n = _gvn.transform(ac); 4381 if (n == ac) { 4382 ac->connect_outputs(this); 4383 } else { 4384 assert(validated, "shouldn't transform if all arguments not validated"); 4385 set_all_memory(n); 4386 } 4387 } 4388 } 4389 } // original reexecute is set back here 4390 4391 C->set_has_split_ifs(true); // Has chance for split-if optimization 4392 if (!stopped()) { 4393 set_result(newcopy); 4394 } 4395 return true; 4396 } 4397 4398 4399 //----------------------generate_virtual_guard--------------------------- 4400 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4401 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4402 RegionNode* slow_region) { 4403 ciMethod* method = callee(); 4404 int vtable_index = method->vtable_index(); 4405 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4406 "bad index %d", vtable_index); 4407 // Get the Method* out of the appropriate vtable entry. 4408 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4409 vtable_index*vtableEntry::size_in_bytes() + 4410 in_bytes(vtableEntry::method_offset()); 4411 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4412 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4413 4414 // Compare the target method with the expected method (e.g., Object.hashCode). 4415 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4416 4417 Node* native_call = makecon(native_call_addr); 4418 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4419 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4420 4421 return generate_slow_guard(test_native, slow_region); 4422 } 4423 4424 //-----------------------generate_method_call---------------------------- 4425 // Use generate_method_call to make a slow-call to the real 4426 // method if the fast path fails. An alternative would be to 4427 // use a stub like OptoRuntime::slow_arraycopy_Java. 4428 // This only works for expanding the current library call, 4429 // not another intrinsic. (E.g., don't use this for making an 4430 // arraycopy call inside of the copyOf intrinsic.) 4431 CallJavaNode* 4432 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4433 // When compiling the intrinsic method itself, do not use this technique. 4434 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4435 4436 ciMethod* method = callee(); 4437 // ensure the JVMS we have will be correct for this call 4438 guarantee(method_id == method->intrinsic_id(), "must match"); 4439 4440 const TypeFunc* tf = TypeFunc::make(method); 4441 if (res_not_null) { 4442 assert(tf->return_type() == T_OBJECT, ""); 4443 const TypeTuple* range = tf->range(); 4444 const Type** fields = TypeTuple::fields(range->cnt()); 4445 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4446 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4447 tf = TypeFunc::make(tf->domain(), new_range); 4448 } 4449 CallJavaNode* slow_call; 4450 if (is_static) { 4451 assert(!is_virtual, ""); 4452 slow_call = new CallStaticJavaNode(C, tf, 4453 SharedRuntime::get_resolve_static_call_stub(), method); 4454 } else if (is_virtual) { 4455 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4456 int vtable_index = Method::invalid_vtable_index; 4457 if (UseInlineCaches) { 4458 // Suppress the vtable call 4459 } else { 4460 // hashCode and clone are not a miranda methods, 4461 // so the vtable index is fixed. 4462 // No need to use the linkResolver to get it. 4463 vtable_index = method->vtable_index(); 4464 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4465 "bad index %d", vtable_index); 4466 } 4467 slow_call = new CallDynamicJavaNode(tf, 4468 SharedRuntime::get_resolve_virtual_call_stub(), 4469 method, vtable_index); 4470 } else { // neither virtual nor static: opt_virtual 4471 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4472 slow_call = new CallStaticJavaNode(C, tf, 4473 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4474 slow_call->set_optimized_virtual(true); 4475 } 4476 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4477 // To be able to issue a direct call (optimized virtual or virtual) 4478 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4479 // about the method being invoked should be attached to the call site to 4480 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4481 slow_call->set_override_symbolic_info(true); 4482 } 4483 set_arguments_for_java_call(slow_call); 4484 set_edges_for_java_call(slow_call); 4485 return slow_call; 4486 } 4487 4488 4489 /** 4490 * Build special case code for calls to hashCode on an object. This call may 4491 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4492 * slightly different code. 4493 */ 4494 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4495 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4496 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4497 4498 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4499 4500 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4501 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4502 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4503 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4504 Node* obj = nullptr; 4505 if (!is_static) { 4506 // Check for hashing null object 4507 obj = null_check_receiver(); 4508 if (stopped()) return true; // unconditionally null 4509 result_reg->init_req(_null_path, top()); 4510 result_val->init_req(_null_path, top()); 4511 } else { 4512 // Do a null check, and return zero if null. 4513 // System.identityHashCode(null) == 0 4514 obj = argument(0); 4515 Node* null_ctl = top(); 4516 obj = null_check_oop(obj, &null_ctl); 4517 result_reg->init_req(_null_path, null_ctl); 4518 result_val->init_req(_null_path, _gvn.intcon(0)); 4519 } 4520 4521 // Unconditionally null? Then return right away. 4522 if (stopped()) { 4523 set_control( result_reg->in(_null_path)); 4524 if (!stopped()) 4525 set_result(result_val->in(_null_path)); 4526 return true; 4527 } 4528 4529 // We only go to the fast case code if we pass a number of guards. The 4530 // paths which do not pass are accumulated in the slow_region. 4531 RegionNode* slow_region = new RegionNode(1); 4532 record_for_igvn(slow_region); 4533 4534 // If this is a virtual call, we generate a funny guard. We pull out 4535 // the vtable entry corresponding to hashCode() from the target object. 4536 // If the target method which we are calling happens to be the native 4537 // Object hashCode() method, we pass the guard. We do not need this 4538 // guard for non-virtual calls -- the caller is known to be the native 4539 // Object hashCode(). 4540 if (is_virtual) { 4541 // After null check, get the object's klass. 4542 Node* obj_klass = load_object_klass(obj); 4543 generate_virtual_guard(obj_klass, slow_region); 4544 } 4545 4546 // Get the header out of the object, use LoadMarkNode when available 4547 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4548 // The control of the load must be null. Otherwise, the load can move before 4549 // the null check after castPP removal. 4550 Node* no_ctrl = nullptr; 4551 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4552 4553 // Test the header to see if it is unlocked. 4554 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4555 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4556 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4557 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 4558 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 4559 4560 generate_slow_guard(test_unlocked, slow_region); 4561 4562 // Get the hash value and check to see that it has been properly assigned. 4563 // We depend on hash_mask being at most 32 bits and avoid the use of 4564 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4565 // vm: see markWord.hpp. 4566 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4567 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4568 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4569 // This hack lets the hash bits live anywhere in the mark object now, as long 4570 // as the shift drops the relevant bits into the low 32 bits. Note that 4571 // Java spec says that HashCode is an int so there's no point in capturing 4572 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4573 hshifted_header = ConvX2I(hshifted_header); 4574 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4575 4576 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4577 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4578 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4579 4580 generate_slow_guard(test_assigned, slow_region); 4581 4582 Node* init_mem = reset_memory(); 4583 // fill in the rest of the null path: 4584 result_io ->init_req(_null_path, i_o()); 4585 result_mem->init_req(_null_path, init_mem); 4586 4587 result_val->init_req(_fast_path, hash_val); 4588 result_reg->init_req(_fast_path, control()); 4589 result_io ->init_req(_fast_path, i_o()); 4590 result_mem->init_req(_fast_path, init_mem); 4591 4592 // Generate code for the slow case. We make a call to hashCode(). 4593 set_control(_gvn.transform(slow_region)); 4594 if (!stopped()) { 4595 // No need for PreserveJVMState, because we're using up the present state. 4596 set_all_memory(init_mem); 4597 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4598 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4599 Node* slow_result = set_results_for_java_call(slow_call); 4600 // this->control() comes from set_results_for_java_call 4601 result_reg->init_req(_slow_path, control()); 4602 result_val->init_req(_slow_path, slow_result); 4603 result_io ->set_req(_slow_path, i_o()); 4604 result_mem ->set_req(_slow_path, reset_memory()); 4605 } 4606 4607 // Return the combined state. 4608 set_i_o( _gvn.transform(result_io) ); 4609 set_all_memory( _gvn.transform(result_mem)); 4610 4611 set_result(result_reg, result_val); 4612 return true; 4613 } 4614 4615 //---------------------------inline_native_getClass---------------------------- 4616 // public final native Class<?> java.lang.Object.getClass(); 4617 // 4618 // Build special case code for calls to getClass on an object. 4619 bool LibraryCallKit::inline_native_getClass() { 4620 Node* obj = null_check_receiver(); 4621 if (stopped()) return true; 4622 set_result(load_mirror_from_klass(load_object_klass(obj))); 4623 return true; 4624 } 4625 4626 //-----------------inline_native_Reflection_getCallerClass--------------------- 4627 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4628 // 4629 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4630 // 4631 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4632 // in that it must skip particular security frames and checks for 4633 // caller sensitive methods. 4634 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4635 #ifndef PRODUCT 4636 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4637 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4638 } 4639 #endif 4640 4641 if (!jvms()->has_method()) { 4642 #ifndef PRODUCT 4643 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4644 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4645 } 4646 #endif 4647 return false; 4648 } 4649 4650 // Walk back up the JVM state to find the caller at the required 4651 // depth. 4652 JVMState* caller_jvms = jvms(); 4653 4654 // Cf. JVM_GetCallerClass 4655 // NOTE: Start the loop at depth 1 because the current JVM state does 4656 // not include the Reflection.getCallerClass() frame. 4657 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4658 ciMethod* m = caller_jvms->method(); 4659 switch (n) { 4660 case 0: 4661 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4662 break; 4663 case 1: 4664 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4665 if (!m->caller_sensitive()) { 4666 #ifndef PRODUCT 4667 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4668 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4669 } 4670 #endif 4671 return false; // bail-out; let JVM_GetCallerClass do the work 4672 } 4673 break; 4674 default: 4675 if (!m->is_ignored_by_security_stack_walk()) { 4676 // We have reached the desired frame; return the holder class. 4677 // Acquire method holder as java.lang.Class and push as constant. 4678 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4679 ciInstance* caller_mirror = caller_klass->java_mirror(); 4680 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4681 4682 #ifndef PRODUCT 4683 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4684 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4685 tty->print_cr(" JVM state at this point:"); 4686 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4687 ciMethod* m = jvms()->of_depth(i)->method(); 4688 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4689 } 4690 } 4691 #endif 4692 return true; 4693 } 4694 break; 4695 } 4696 } 4697 4698 #ifndef PRODUCT 4699 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4700 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4701 tty->print_cr(" JVM state at this point:"); 4702 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4703 ciMethod* m = jvms()->of_depth(i)->method(); 4704 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4705 } 4706 } 4707 #endif 4708 4709 return false; // bail-out; let JVM_GetCallerClass do the work 4710 } 4711 4712 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4713 Node* arg = argument(0); 4714 Node* result = nullptr; 4715 4716 switch (id) { 4717 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4718 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4719 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4720 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4721 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4722 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4723 4724 case vmIntrinsics::_doubleToLongBits: { 4725 // two paths (plus control) merge in a wood 4726 RegionNode *r = new RegionNode(3); 4727 Node *phi = new PhiNode(r, TypeLong::LONG); 4728 4729 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4730 // Build the boolean node 4731 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4732 4733 // Branch either way. 4734 // NaN case is less traveled, which makes all the difference. 4735 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4736 Node *opt_isnan = _gvn.transform(ifisnan); 4737 assert( opt_isnan->is_If(), "Expect an IfNode"); 4738 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4739 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4740 4741 set_control(iftrue); 4742 4743 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4744 Node *slow_result = longcon(nan_bits); // return NaN 4745 phi->init_req(1, _gvn.transform( slow_result )); 4746 r->init_req(1, iftrue); 4747 4748 // Else fall through 4749 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4750 set_control(iffalse); 4751 4752 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4753 r->init_req(2, iffalse); 4754 4755 // Post merge 4756 set_control(_gvn.transform(r)); 4757 record_for_igvn(r); 4758 4759 C->set_has_split_ifs(true); // Has chance for split-if optimization 4760 result = phi; 4761 assert(result->bottom_type()->isa_long(), "must be"); 4762 break; 4763 } 4764 4765 case vmIntrinsics::_floatToIntBits: { 4766 // two paths (plus control) merge in a wood 4767 RegionNode *r = new RegionNode(3); 4768 Node *phi = new PhiNode(r, TypeInt::INT); 4769 4770 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4771 // Build the boolean node 4772 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4773 4774 // Branch either way. 4775 // NaN case is less traveled, which makes all the difference. 4776 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4777 Node *opt_isnan = _gvn.transform(ifisnan); 4778 assert( opt_isnan->is_If(), "Expect an IfNode"); 4779 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4780 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4781 4782 set_control(iftrue); 4783 4784 static const jint nan_bits = 0x7fc00000; 4785 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4786 phi->init_req(1, _gvn.transform( slow_result )); 4787 r->init_req(1, iftrue); 4788 4789 // Else fall through 4790 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4791 set_control(iffalse); 4792 4793 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4794 r->init_req(2, iffalse); 4795 4796 // Post merge 4797 set_control(_gvn.transform(r)); 4798 record_for_igvn(r); 4799 4800 C->set_has_split_ifs(true); // Has chance for split-if optimization 4801 result = phi; 4802 assert(result->bottom_type()->isa_int(), "must be"); 4803 break; 4804 } 4805 4806 default: 4807 fatal_unexpected_iid(id); 4808 break; 4809 } 4810 set_result(_gvn.transform(result)); 4811 return true; 4812 } 4813 4814 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 4815 Node* arg = argument(0); 4816 Node* result = nullptr; 4817 4818 switch (id) { 4819 case vmIntrinsics::_floatIsInfinite: 4820 result = new IsInfiniteFNode(arg); 4821 break; 4822 case vmIntrinsics::_floatIsFinite: 4823 result = new IsFiniteFNode(arg); 4824 break; 4825 case vmIntrinsics::_doubleIsInfinite: 4826 result = new IsInfiniteDNode(arg); 4827 break; 4828 case vmIntrinsics::_doubleIsFinite: 4829 result = new IsFiniteDNode(arg); 4830 break; 4831 default: 4832 fatal_unexpected_iid(id); 4833 break; 4834 } 4835 set_result(_gvn.transform(result)); 4836 return true; 4837 } 4838 4839 //----------------------inline_unsafe_copyMemory------------------------- 4840 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4841 4842 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 4843 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 4844 const Type* base_t = gvn.type(base); 4845 4846 bool in_native = (base_t == TypePtr::NULL_PTR); 4847 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 4848 bool is_mixed = !in_heap && !in_native; 4849 4850 if (is_mixed) { 4851 return true; // mixed accesses can touch both on-heap and off-heap memory 4852 } 4853 if (in_heap) { 4854 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 4855 if (!is_prim_array) { 4856 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 4857 // there's not enough type information available to determine proper memory slice for it. 4858 return true; 4859 } 4860 } 4861 return false; 4862 } 4863 4864 bool LibraryCallKit::inline_unsafe_copyMemory() { 4865 if (callee()->is_static()) return false; // caller must have the capability! 4866 null_check_receiver(); // null-check receiver 4867 if (stopped()) return true; 4868 4869 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4870 4871 Node* src_base = argument(1); // type: oop 4872 Node* src_off = ConvL2X(argument(2)); // type: long 4873 Node* dst_base = argument(4); // type: oop 4874 Node* dst_off = ConvL2X(argument(5)); // type: long 4875 Node* size = ConvL2X(argument(7)); // type: long 4876 4877 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4878 "fieldOffset must be byte-scaled"); 4879 4880 Node* src_addr = make_unsafe_address(src_base, src_off); 4881 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 4882 4883 Node* thread = _gvn.transform(new ThreadLocalNode()); 4884 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 4885 BasicType doing_unsafe_access_bt = T_BYTE; 4886 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 4887 4888 // update volatile field 4889 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4890 4891 int flags = RC_LEAF | RC_NO_FP; 4892 4893 const TypePtr* dst_type = TypePtr::BOTTOM; 4894 4895 // Adjust memory effects of the runtime call based on input values. 4896 if (!has_wide_mem(_gvn, src_addr, src_base) && 4897 !has_wide_mem(_gvn, dst_addr, dst_base)) { 4898 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 4899 4900 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 4901 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 4902 flags |= RC_NARROW_MEM; // narrow in memory 4903 } 4904 } 4905 4906 // Call it. Note that the length argument is not scaled. 4907 make_runtime_call(flags, 4908 OptoRuntime::fast_arraycopy_Type(), 4909 StubRoutines::unsafe_arraycopy(), 4910 "unsafe_arraycopy", 4911 dst_type, 4912 src_addr, dst_addr, size XTOP); 4913 4914 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4915 4916 return true; 4917 } 4918 4919 #undef XTOP 4920 4921 //------------------------clone_coping----------------------------------- 4922 // Helper function for inline_native_clone. 4923 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4924 assert(obj_size != nullptr, ""); 4925 Node* raw_obj = alloc_obj->in(1); 4926 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4927 4928 AllocateNode* alloc = nullptr; 4929 if (ReduceBulkZeroing) { 4930 // We will be completely responsible for initializing this object - 4931 // mark Initialize node as complete. 4932 alloc = AllocateNode::Ideal_allocation(alloc_obj); 4933 // The object was just allocated - there should be no any stores! 4934 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 4935 // Mark as complete_with_arraycopy so that on AllocateNode 4936 // expansion, we know this AllocateNode is initialized by an array 4937 // copy and a StoreStore barrier exists after the array copy. 4938 alloc->initialization()->set_complete_with_arraycopy(); 4939 } 4940 4941 Node* size = _gvn.transform(obj_size); 4942 access_clone(obj, alloc_obj, size, is_array); 4943 4944 // Do not let reads from the cloned object float above the arraycopy. 4945 if (alloc != nullptr) { 4946 // Do not let stores that initialize this object be reordered with 4947 // a subsequent store that would make this object accessible by 4948 // other threads. 4949 // Record what AllocateNode this StoreStore protects so that 4950 // escape analysis can go from the MemBarStoreStoreNode to the 4951 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4952 // based on the escape status of the AllocateNode. 4953 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4954 } else { 4955 insert_mem_bar(Op_MemBarCPUOrder); 4956 } 4957 } 4958 4959 //------------------------inline_native_clone---------------------------- 4960 // protected native Object java.lang.Object.clone(); 4961 // 4962 // Here are the simple edge cases: 4963 // null receiver => normal trap 4964 // virtual and clone was overridden => slow path to out-of-line clone 4965 // not cloneable or finalizer => slow path to out-of-line Object.clone 4966 // 4967 // The general case has two steps, allocation and copying. 4968 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4969 // 4970 // Copying also has two cases, oop arrays and everything else. 4971 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4972 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4973 // 4974 // These steps fold up nicely if and when the cloned object's klass 4975 // can be sharply typed as an object array, a type array, or an instance. 4976 // 4977 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4978 PhiNode* result_val; 4979 4980 // Set the reexecute bit for the interpreter to reexecute 4981 // the bytecode that invokes Object.clone if deoptimization happens. 4982 { PreserveReexecuteState preexecs(this); 4983 jvms()->set_should_reexecute(true); 4984 4985 Node* obj = null_check_receiver(); 4986 if (stopped()) return true; 4987 4988 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4989 4990 // If we are going to clone an instance, we need its exact type to 4991 // know the number and types of fields to convert the clone to 4992 // loads/stores. Maybe a speculative type can help us. 4993 if (!obj_type->klass_is_exact() && 4994 obj_type->speculative_type() != nullptr && 4995 obj_type->speculative_type()->is_instance_klass()) { 4996 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 4997 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 4998 !spec_ik->has_injected_fields()) { 4999 if (!obj_type->isa_instptr() || 5000 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5001 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5002 } 5003 } 5004 } 5005 5006 // Conservatively insert a memory barrier on all memory slices. 5007 // Do not let writes into the original float below the clone. 5008 insert_mem_bar(Op_MemBarCPUOrder); 5009 5010 // paths into result_reg: 5011 enum { 5012 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5013 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5014 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5015 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5016 PATH_LIMIT 5017 }; 5018 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5019 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5020 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5021 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5022 record_for_igvn(result_reg); 5023 5024 Node* obj_klass = load_object_klass(obj); 5025 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr); 5026 if (array_ctl != nullptr) { 5027 // It's an array. 5028 PreserveJVMState pjvms(this); 5029 set_control(array_ctl); 5030 Node* obj_length = load_array_length(obj); 5031 Node* array_size = nullptr; // Size of the array without object alignment padding. 5032 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5033 5034 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5035 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5036 // If it is an oop array, it requires very special treatment, 5037 // because gc barriers are required when accessing the array. 5038 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5039 if (is_obja != nullptr) { 5040 PreserveJVMState pjvms2(this); 5041 set_control(is_obja); 5042 // Generate a direct call to the right arraycopy function(s). 5043 // Clones are always tightly coupled. 5044 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5045 ac->set_clone_oop_array(); 5046 Node* n = _gvn.transform(ac); 5047 assert(n == ac, "cannot disappear"); 5048 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5049 5050 result_reg->init_req(_objArray_path, control()); 5051 result_val->init_req(_objArray_path, alloc_obj); 5052 result_i_o ->set_req(_objArray_path, i_o()); 5053 result_mem ->set_req(_objArray_path, reset_memory()); 5054 } 5055 } 5056 // Otherwise, there are no barriers to worry about. 5057 // (We can dispense with card marks if we know the allocation 5058 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5059 // causes the non-eden paths to take compensating steps to 5060 // simulate a fresh allocation, so that no further 5061 // card marks are required in compiled code to initialize 5062 // the object.) 5063 5064 if (!stopped()) { 5065 copy_to_clone(obj, alloc_obj, array_size, true); 5066 5067 // Present the results of the copy. 5068 result_reg->init_req(_array_path, control()); 5069 result_val->init_req(_array_path, alloc_obj); 5070 result_i_o ->set_req(_array_path, i_o()); 5071 result_mem ->set_req(_array_path, reset_memory()); 5072 } 5073 } 5074 5075 // We only go to the instance fast case code if we pass a number of guards. 5076 // The paths which do not pass are accumulated in the slow_region. 5077 RegionNode* slow_region = new RegionNode(1); 5078 record_for_igvn(slow_region); 5079 if (!stopped()) { 5080 // It's an instance (we did array above). Make the slow-path tests. 5081 // If this is a virtual call, we generate a funny guard. We grab 5082 // the vtable entry corresponding to clone() from the target object. 5083 // If the target method which we are calling happens to be the 5084 // Object clone() method, we pass the guard. We do not need this 5085 // guard for non-virtual calls; the caller is known to be the native 5086 // Object clone(). 5087 if (is_virtual) { 5088 generate_virtual_guard(obj_klass, slow_region); 5089 } 5090 5091 // The object must be easily cloneable and must not have a finalizer. 5092 // Both of these conditions may be checked in a single test. 5093 // We could optimize the test further, but we don't care. 5094 generate_access_flags_guard(obj_klass, 5095 // Test both conditions: 5096 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 5097 // Must be cloneable but not finalizer: 5098 JVM_ACC_IS_CLONEABLE_FAST, 5099 slow_region); 5100 } 5101 5102 if (!stopped()) { 5103 // It's an instance, and it passed the slow-path tests. 5104 PreserveJVMState pjvms(this); 5105 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5106 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5107 // is reexecuted if deoptimization occurs and there could be problems when merging 5108 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5109 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5110 5111 copy_to_clone(obj, alloc_obj, obj_size, false); 5112 5113 // Present the results of the slow call. 5114 result_reg->init_req(_instance_path, control()); 5115 result_val->init_req(_instance_path, alloc_obj); 5116 result_i_o ->set_req(_instance_path, i_o()); 5117 result_mem ->set_req(_instance_path, reset_memory()); 5118 } 5119 5120 // Generate code for the slow case. We make a call to clone(). 5121 set_control(_gvn.transform(slow_region)); 5122 if (!stopped()) { 5123 PreserveJVMState pjvms(this); 5124 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5125 // We need to deoptimize on exception (see comment above) 5126 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5127 // this->control() comes from set_results_for_java_call 5128 result_reg->init_req(_slow_path, control()); 5129 result_val->init_req(_slow_path, slow_result); 5130 result_i_o ->set_req(_slow_path, i_o()); 5131 result_mem ->set_req(_slow_path, reset_memory()); 5132 } 5133 5134 // Return the combined state. 5135 set_control( _gvn.transform(result_reg)); 5136 set_i_o( _gvn.transform(result_i_o)); 5137 set_all_memory( _gvn.transform(result_mem)); 5138 } // original reexecute is set back here 5139 5140 set_result(_gvn.transform(result_val)); 5141 return true; 5142 } 5143 5144 // If we have a tightly coupled allocation, the arraycopy may take care 5145 // of the array initialization. If one of the guards we insert between 5146 // the allocation and the arraycopy causes a deoptimization, an 5147 // uninitialized array will escape the compiled method. To prevent that 5148 // we set the JVM state for uncommon traps between the allocation and 5149 // the arraycopy to the state before the allocation so, in case of 5150 // deoptimization, we'll reexecute the allocation and the 5151 // initialization. 5152 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5153 if (alloc != nullptr) { 5154 ciMethod* trap_method = alloc->jvms()->method(); 5155 int trap_bci = alloc->jvms()->bci(); 5156 5157 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5158 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5159 // Make sure there's no store between the allocation and the 5160 // arraycopy otherwise visible side effects could be rexecuted 5161 // in case of deoptimization and cause incorrect execution. 5162 bool no_interfering_store = true; 5163 Node* mem = alloc->in(TypeFunc::Memory); 5164 if (mem->is_MergeMem()) { 5165 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5166 Node* n = mms.memory(); 5167 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5168 assert(n->is_Store(), "what else?"); 5169 no_interfering_store = false; 5170 break; 5171 } 5172 } 5173 } else { 5174 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5175 Node* n = mms.memory(); 5176 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5177 assert(n->is_Store(), "what else?"); 5178 no_interfering_store = false; 5179 break; 5180 } 5181 } 5182 } 5183 5184 if (no_interfering_store) { 5185 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5186 5187 JVMState* saved_jvms = jvms(); 5188 saved_reexecute_sp = _reexecute_sp; 5189 5190 set_jvms(sfpt->jvms()); 5191 _reexecute_sp = jvms()->sp(); 5192 5193 return saved_jvms; 5194 } 5195 } 5196 } 5197 return nullptr; 5198 } 5199 5200 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5201 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5202 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5203 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5204 uint size = alloc->req(); 5205 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5206 old_jvms->set_map(sfpt); 5207 for (uint i = 0; i < size; i++) { 5208 sfpt->init_req(i, alloc->in(i)); 5209 } 5210 // re-push array length for deoptimization 5211 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5212 old_jvms->set_sp(old_jvms->sp()+1); 5213 old_jvms->set_monoff(old_jvms->monoff()+1); 5214 old_jvms->set_scloff(old_jvms->scloff()+1); 5215 old_jvms->set_endoff(old_jvms->endoff()+1); 5216 old_jvms->set_should_reexecute(true); 5217 5218 sfpt->set_i_o(map()->i_o()); 5219 sfpt->set_memory(map()->memory()); 5220 sfpt->set_control(map()->control()); 5221 return sfpt; 5222 } 5223 5224 // In case of a deoptimization, we restart execution at the 5225 // allocation, allocating a new array. We would leave an uninitialized 5226 // array in the heap that GCs wouldn't expect. Move the allocation 5227 // after the traps so we don't allocate the array if we 5228 // deoptimize. This is possible because tightly_coupled_allocation() 5229 // guarantees there's no observer of the allocated array at this point 5230 // and the control flow is simple enough. 5231 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5232 int saved_reexecute_sp, uint new_idx) { 5233 if (saved_jvms_before_guards != nullptr && !stopped()) { 5234 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5235 5236 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5237 // restore JVM state to the state at the arraycopy 5238 saved_jvms_before_guards->map()->set_control(map()->control()); 5239 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5240 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5241 // If we've improved the types of some nodes (null check) while 5242 // emitting the guards, propagate them to the current state 5243 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5244 set_jvms(saved_jvms_before_guards); 5245 _reexecute_sp = saved_reexecute_sp; 5246 5247 // Remove the allocation from above the guards 5248 CallProjections callprojs; 5249 alloc->extract_projections(&callprojs, true); 5250 InitializeNode* init = alloc->initialization(); 5251 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5252 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5253 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5254 5255 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5256 // the allocation (i.e. is only valid if the allocation succeeds): 5257 // 1) replace CastIINode with AllocateArrayNode's length here 5258 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5259 // 5260 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5261 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5262 Node* init_control = init->proj_out(TypeFunc::Control); 5263 Node* alloc_length = alloc->Ideal_length(); 5264 #ifdef ASSERT 5265 Node* prev_cast = nullptr; 5266 #endif 5267 for (uint i = 0; i < init_control->outcnt(); i++) { 5268 Node* init_out = init_control->raw_out(i); 5269 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5270 #ifdef ASSERT 5271 if (prev_cast == nullptr) { 5272 prev_cast = init_out; 5273 } else { 5274 if (prev_cast->cmp(*init_out) == false) { 5275 prev_cast->dump(); 5276 init_out->dump(); 5277 assert(false, "not equal CastIINode"); 5278 } 5279 } 5280 #endif 5281 C->gvn_replace_by(init_out, alloc_length); 5282 } 5283 } 5284 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5285 5286 // move the allocation here (after the guards) 5287 _gvn.hash_delete(alloc); 5288 alloc->set_req(TypeFunc::Control, control()); 5289 alloc->set_req(TypeFunc::I_O, i_o()); 5290 Node *mem = reset_memory(); 5291 set_all_memory(mem); 5292 alloc->set_req(TypeFunc::Memory, mem); 5293 set_control(init->proj_out_or_null(TypeFunc::Control)); 5294 set_i_o(callprojs.fallthrough_ioproj); 5295 5296 // Update memory as done in GraphKit::set_output_for_allocation() 5297 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5298 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5299 if (ary_type->isa_aryptr() && length_type != nullptr) { 5300 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5301 } 5302 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5303 int elemidx = C->get_alias_index(telemref); 5304 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5305 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5306 5307 Node* allocx = _gvn.transform(alloc); 5308 assert(allocx == alloc, "where has the allocation gone?"); 5309 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5310 5311 _gvn.hash_delete(dest); 5312 dest->set_req(0, control()); 5313 Node* destx = _gvn.transform(dest); 5314 assert(destx == dest, "where has the allocation result gone?"); 5315 5316 array_ideal_length(alloc, ary_type, true); 5317 } 5318 } 5319 5320 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5321 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5322 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5323 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5324 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5325 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5326 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5327 JVMState* saved_jvms_before_guards) { 5328 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5329 // There is at least one unrelated uncommon trap which needs to be replaced. 5330 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5331 5332 JVMState* saved_jvms = jvms(); 5333 const int saved_reexecute_sp = _reexecute_sp; 5334 set_jvms(sfpt->jvms()); 5335 _reexecute_sp = jvms()->sp(); 5336 5337 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5338 5339 // Restore state 5340 set_jvms(saved_jvms); 5341 _reexecute_sp = saved_reexecute_sp; 5342 } 5343 } 5344 5345 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5346 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5347 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5348 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5349 while (if_proj->is_IfProj()) { 5350 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5351 if (uncommon_trap != nullptr) { 5352 create_new_uncommon_trap(uncommon_trap); 5353 } 5354 assert(if_proj->in(0)->is_If(), "must be If"); 5355 if_proj = if_proj->in(0)->in(0); 5356 } 5357 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5358 "must have reached control projection of init node"); 5359 } 5360 5361 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5362 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5363 assert(trap_request != 0, "no valid UCT trap request"); 5364 PreserveJVMState pjvms(this); 5365 set_control(uncommon_trap_call->in(0)); 5366 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5367 Deoptimization::trap_request_action(trap_request)); 5368 assert(stopped(), "Should be stopped"); 5369 _gvn.hash_delete(uncommon_trap_call); 5370 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5371 } 5372 5373 //------------------------------inline_arraycopy----------------------- 5374 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5375 // Object dest, int destPos, 5376 // int length); 5377 bool LibraryCallKit::inline_arraycopy() { 5378 // Get the arguments. 5379 Node* src = argument(0); // type: oop 5380 Node* src_offset = argument(1); // type: int 5381 Node* dest = argument(2); // type: oop 5382 Node* dest_offset = argument(3); // type: int 5383 Node* length = argument(4); // type: int 5384 5385 uint new_idx = C->unique(); 5386 5387 // Check for allocation before we add nodes that would confuse 5388 // tightly_coupled_allocation() 5389 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5390 5391 int saved_reexecute_sp = -1; 5392 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5393 // See arraycopy_restore_alloc_state() comment 5394 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5395 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5396 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5397 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5398 5399 // The following tests must be performed 5400 // (1) src and dest are arrays. 5401 // (2) src and dest arrays must have elements of the same BasicType 5402 // (3) src and dest must not be null. 5403 // (4) src_offset must not be negative. 5404 // (5) dest_offset must not be negative. 5405 // (6) length must not be negative. 5406 // (7) src_offset + length must not exceed length of src. 5407 // (8) dest_offset + length must not exceed length of dest. 5408 // (9) each element of an oop array must be assignable 5409 5410 // (3) src and dest must not be null. 5411 // always do this here because we need the JVM state for uncommon traps 5412 Node* null_ctl = top(); 5413 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5414 assert(null_ctl->is_top(), "no null control here"); 5415 dest = null_check(dest, T_ARRAY); 5416 5417 if (!can_emit_guards) { 5418 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5419 // guards but the arraycopy node could still take advantage of a 5420 // tightly allocated allocation. tightly_coupled_allocation() is 5421 // called again to make sure it takes the null check above into 5422 // account: the null check is mandatory and if it caused an 5423 // uncommon trap to be emitted then the allocation can't be 5424 // considered tightly coupled in this context. 5425 alloc = tightly_coupled_allocation(dest); 5426 } 5427 5428 bool validated = false; 5429 5430 const Type* src_type = _gvn.type(src); 5431 const Type* dest_type = _gvn.type(dest); 5432 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5433 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5434 5435 // Do we have the type of src? 5436 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5437 // Do we have the type of dest? 5438 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5439 // Is the type for src from speculation? 5440 bool src_spec = false; 5441 // Is the type for dest from speculation? 5442 bool dest_spec = false; 5443 5444 if ((!has_src || !has_dest) && can_emit_guards) { 5445 // We don't have sufficient type information, let's see if 5446 // speculative types can help. We need to have types for both src 5447 // and dest so that it pays off. 5448 5449 // Do we already have or could we have type information for src 5450 bool could_have_src = has_src; 5451 // Do we already have or could we have type information for dest 5452 bool could_have_dest = has_dest; 5453 5454 ciKlass* src_k = nullptr; 5455 if (!has_src) { 5456 src_k = src_type->speculative_type_not_null(); 5457 if (src_k != nullptr && src_k->is_array_klass()) { 5458 could_have_src = true; 5459 } 5460 } 5461 5462 ciKlass* dest_k = nullptr; 5463 if (!has_dest) { 5464 dest_k = dest_type->speculative_type_not_null(); 5465 if (dest_k != nullptr && dest_k->is_array_klass()) { 5466 could_have_dest = true; 5467 } 5468 } 5469 5470 if (could_have_src && could_have_dest) { 5471 // This is going to pay off so emit the required guards 5472 if (!has_src) { 5473 src = maybe_cast_profiled_obj(src, src_k, true); 5474 src_type = _gvn.type(src); 5475 top_src = src_type->isa_aryptr(); 5476 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5477 src_spec = true; 5478 } 5479 if (!has_dest) { 5480 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5481 dest_type = _gvn.type(dest); 5482 top_dest = dest_type->isa_aryptr(); 5483 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5484 dest_spec = true; 5485 } 5486 } 5487 } 5488 5489 if (has_src && has_dest && can_emit_guards) { 5490 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5491 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5492 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5493 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5494 5495 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5496 // If both arrays are object arrays then having the exact types 5497 // for both will remove the need for a subtype check at runtime 5498 // before the call and may make it possible to pick a faster copy 5499 // routine (without a subtype check on every element) 5500 // Do we have the exact type of src? 5501 bool could_have_src = src_spec; 5502 // Do we have the exact type of dest? 5503 bool could_have_dest = dest_spec; 5504 ciKlass* src_k = nullptr; 5505 ciKlass* dest_k = nullptr; 5506 if (!src_spec) { 5507 src_k = src_type->speculative_type_not_null(); 5508 if (src_k != nullptr && src_k->is_array_klass()) { 5509 could_have_src = true; 5510 } 5511 } 5512 if (!dest_spec) { 5513 dest_k = dest_type->speculative_type_not_null(); 5514 if (dest_k != nullptr && dest_k->is_array_klass()) { 5515 could_have_dest = true; 5516 } 5517 } 5518 if (could_have_src && could_have_dest) { 5519 // If we can have both exact types, emit the missing guards 5520 if (could_have_src && !src_spec) { 5521 src = maybe_cast_profiled_obj(src, src_k, true); 5522 } 5523 if (could_have_dest && !dest_spec) { 5524 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5525 } 5526 } 5527 } 5528 } 5529 5530 ciMethod* trap_method = method(); 5531 int trap_bci = bci(); 5532 if (saved_jvms_before_guards != nullptr) { 5533 trap_method = alloc->jvms()->method(); 5534 trap_bci = alloc->jvms()->bci(); 5535 } 5536 5537 bool negative_length_guard_generated = false; 5538 5539 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5540 can_emit_guards && 5541 !src->is_top() && !dest->is_top()) { 5542 // validate arguments: enables transformation the ArrayCopyNode 5543 validated = true; 5544 5545 RegionNode* slow_region = new RegionNode(1); 5546 record_for_igvn(slow_region); 5547 5548 // (1) src and dest are arrays. 5549 generate_non_array_guard(load_object_klass(src), slow_region); 5550 generate_non_array_guard(load_object_klass(dest), slow_region); 5551 5552 // (2) src and dest arrays must have elements of the same BasicType 5553 // done at macro expansion or at Ideal transformation time 5554 5555 // (4) src_offset must not be negative. 5556 generate_negative_guard(src_offset, slow_region); 5557 5558 // (5) dest_offset must not be negative. 5559 generate_negative_guard(dest_offset, slow_region); 5560 5561 // (7) src_offset + length must not exceed length of src. 5562 generate_limit_guard(src_offset, length, 5563 load_array_length(src), 5564 slow_region); 5565 5566 // (8) dest_offset + length must not exceed length of dest. 5567 generate_limit_guard(dest_offset, length, 5568 load_array_length(dest), 5569 slow_region); 5570 5571 // (6) length must not be negative. 5572 // This is also checked in generate_arraycopy() during macro expansion, but 5573 // we also have to check it here for the case where the ArrayCopyNode will 5574 // be eliminated by Escape Analysis. 5575 if (EliminateAllocations) { 5576 generate_negative_guard(length, slow_region); 5577 negative_length_guard_generated = true; 5578 } 5579 5580 // (9) each element of an oop array must be assignable 5581 Node* dest_klass = load_object_klass(dest); 5582 if (src != dest) { 5583 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5584 5585 if (not_subtype_ctrl != top()) { 5586 PreserveJVMState pjvms(this); 5587 set_control(not_subtype_ctrl); 5588 uncommon_trap(Deoptimization::Reason_intrinsic, 5589 Deoptimization::Action_make_not_entrant); 5590 assert(stopped(), "Should be stopped"); 5591 } 5592 } 5593 { 5594 PreserveJVMState pjvms(this); 5595 set_control(_gvn.transform(slow_region)); 5596 uncommon_trap(Deoptimization::Reason_intrinsic, 5597 Deoptimization::Action_make_not_entrant); 5598 assert(stopped(), "Should be stopped"); 5599 } 5600 5601 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5602 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5603 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5604 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5605 } 5606 5607 if (stopped()) { 5608 return true; 5609 } 5610 5611 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 5612 // Create LoadRange and LoadKlass nodes for use during macro expansion here 5613 // so the compiler has a chance to eliminate them: during macro expansion, 5614 // we have to set their control (CastPP nodes are eliminated). 5615 load_object_klass(src), load_object_klass(dest), 5616 load_array_length(src), load_array_length(dest)); 5617 5618 ac->set_arraycopy(validated); 5619 5620 Node* n = _gvn.transform(ac); 5621 if (n == ac) { 5622 ac->connect_outputs(this); 5623 } else { 5624 assert(validated, "shouldn't transform if all arguments not validated"); 5625 set_all_memory(n); 5626 } 5627 clear_upper_avx(); 5628 5629 5630 return true; 5631 } 5632 5633 5634 // Helper function which determines if an arraycopy immediately follows 5635 // an allocation, with no intervening tests or other escapes for the object. 5636 AllocateArrayNode* 5637 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 5638 if (stopped()) return nullptr; // no fast path 5639 if (!C->do_aliasing()) return nullptr; // no MergeMems around 5640 5641 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 5642 if (alloc == nullptr) return nullptr; 5643 5644 Node* rawmem = memory(Compile::AliasIdxRaw); 5645 // Is the allocation's memory state untouched? 5646 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 5647 // Bail out if there have been raw-memory effects since the allocation. 5648 // (Example: There might have been a call or safepoint.) 5649 return nullptr; 5650 } 5651 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 5652 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 5653 return nullptr; 5654 } 5655 5656 // There must be no unexpected observers of this allocation. 5657 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 5658 Node* obs = ptr->fast_out(i); 5659 if (obs != this->map()) { 5660 return nullptr; 5661 } 5662 } 5663 5664 // This arraycopy must unconditionally follow the allocation of the ptr. 5665 Node* alloc_ctl = ptr->in(0); 5666 Node* ctl = control(); 5667 while (ctl != alloc_ctl) { 5668 // There may be guards which feed into the slow_region. 5669 // Any other control flow means that we might not get a chance 5670 // to finish initializing the allocated object. 5671 // Various low-level checks bottom out in uncommon traps. These 5672 // are considered safe since we've already checked above that 5673 // there is no unexpected observer of this allocation. 5674 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 5675 assert(ctl->in(0)->is_If(), "must be If"); 5676 ctl = ctl->in(0)->in(0); 5677 } else { 5678 return nullptr; 5679 } 5680 } 5681 5682 // If we get this far, we have an allocation which immediately 5683 // precedes the arraycopy, and we can take over zeroing the new object. 5684 // The arraycopy will finish the initialization, and provide 5685 // a new control state to which we will anchor the destination pointer. 5686 5687 return alloc; 5688 } 5689 5690 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 5691 if (node->is_IfProj()) { 5692 Node* other_proj = node->as_IfProj()->other_if_proj(); 5693 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 5694 Node* obs = other_proj->fast_out(j); 5695 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 5696 (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 5697 return obs->as_CallStaticJava(); 5698 } 5699 } 5700 } 5701 return nullptr; 5702 } 5703 5704 //-------------inline_encodeISOArray----------------------------------- 5705 // encode char[] to byte[] in ISO_8859_1 or ASCII 5706 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 5707 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 5708 // no receiver since it is static method 5709 Node *src = argument(0); 5710 Node *src_offset = argument(1); 5711 Node *dst = argument(2); 5712 Node *dst_offset = argument(3); 5713 Node *length = argument(4); 5714 5715 src = must_be_not_null(src, true); 5716 dst = must_be_not_null(dst, true); 5717 5718 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 5719 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 5720 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 5721 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 5722 // failed array check 5723 return false; 5724 } 5725 5726 // Figure out the size and type of the elements we will be copying. 5727 BasicType src_elem = src_type->elem()->array_element_basic_type(); 5728 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 5729 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 5730 return false; 5731 } 5732 5733 Node* src_start = array_element_address(src, src_offset, T_CHAR); 5734 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 5735 // 'src_start' points to src array + scaled offset 5736 // 'dst_start' points to dst array + scaled offset 5737 5738 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 5739 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 5740 enc = _gvn.transform(enc); 5741 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 5742 set_memory(res_mem, mtype); 5743 set_result(enc); 5744 clear_upper_avx(); 5745 5746 return true; 5747 } 5748 5749 //-------------inline_multiplyToLen----------------------------------- 5750 bool LibraryCallKit::inline_multiplyToLen() { 5751 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 5752 5753 address stubAddr = StubRoutines::multiplyToLen(); 5754 if (stubAddr == nullptr) { 5755 return false; // Intrinsic's stub is not implemented on this platform 5756 } 5757 const char* stubName = "multiplyToLen"; 5758 5759 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 5760 5761 // no receiver because it is a static method 5762 Node* x = argument(0); 5763 Node* xlen = argument(1); 5764 Node* y = argument(2); 5765 Node* ylen = argument(3); 5766 Node* z = argument(4); 5767 5768 x = must_be_not_null(x, true); 5769 y = must_be_not_null(y, true); 5770 5771 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5772 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 5773 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5774 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 5775 // failed array check 5776 return false; 5777 } 5778 5779 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5780 BasicType y_elem = y_type->elem()->array_element_basic_type(); 5781 if (x_elem != T_INT || y_elem != T_INT) { 5782 return false; 5783 } 5784 5785 // Set the original stack and the reexecute bit for the interpreter to reexecute 5786 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5787 // on the return from z array allocation in runtime. 5788 { PreserveReexecuteState preexecs(this); 5789 jvms()->set_should_reexecute(true); 5790 5791 Node* x_start = array_element_address(x, intcon(0), x_elem); 5792 Node* y_start = array_element_address(y, intcon(0), y_elem); 5793 // 'x_start' points to x array + scaled xlen 5794 // 'y_start' points to y array + scaled ylen 5795 5796 // Allocate the result array 5797 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 5798 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 5799 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 5800 5801 IdealKit ideal(this); 5802 5803 #define __ ideal. 5804 Node* one = __ ConI(1); 5805 Node* zero = __ ConI(0); 5806 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 5807 __ set(need_alloc, zero); 5808 __ set(z_alloc, z); 5809 __ if_then(z, BoolTest::eq, null()); { 5810 __ increment (need_alloc, one); 5811 } __ else_(); { 5812 // Update graphKit memory and control from IdealKit. 5813 sync_kit(ideal); 5814 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 5815 cast->init_req(0, control()); 5816 _gvn.set_type(cast, cast->bottom_type()); 5817 C->record_for_igvn(cast); 5818 5819 Node* zlen_arg = load_array_length(cast); 5820 // Update IdealKit memory and control from graphKit. 5821 __ sync_kit(this); 5822 __ if_then(zlen_arg, BoolTest::lt, zlen); { 5823 __ increment (need_alloc, one); 5824 } __ end_if(); 5825 } __ end_if(); 5826 5827 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 5828 // Update graphKit memory and control from IdealKit. 5829 sync_kit(ideal); 5830 Node * narr = new_array(klass_node, zlen, 1); 5831 // Update IdealKit memory and control from graphKit. 5832 __ sync_kit(this); 5833 __ set(z_alloc, narr); 5834 } __ end_if(); 5835 5836 sync_kit(ideal); 5837 z = __ value(z_alloc); 5838 // Can't use TypeAryPtr::INTS which uses Bottom offset. 5839 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 5840 // Final sync IdealKit and GraphKit. 5841 final_sync(ideal); 5842 #undef __ 5843 5844 Node* z_start = array_element_address(z, intcon(0), T_INT); 5845 5846 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5847 OptoRuntime::multiplyToLen_Type(), 5848 stubAddr, stubName, TypePtr::BOTTOM, 5849 x_start, xlen, y_start, ylen, z_start, zlen); 5850 } // original reexecute is set back here 5851 5852 C->set_has_split_ifs(true); // Has chance for split-if optimization 5853 set_result(z); 5854 return true; 5855 } 5856 5857 //-------------inline_squareToLen------------------------------------ 5858 bool LibraryCallKit::inline_squareToLen() { 5859 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5860 5861 address stubAddr = StubRoutines::squareToLen(); 5862 if (stubAddr == nullptr) { 5863 return false; // Intrinsic's stub is not implemented on this platform 5864 } 5865 const char* stubName = "squareToLen"; 5866 5867 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5868 5869 Node* x = argument(0); 5870 Node* len = argument(1); 5871 Node* z = argument(2); 5872 Node* zlen = argument(3); 5873 5874 x = must_be_not_null(x, true); 5875 z = must_be_not_null(z, true); 5876 5877 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5878 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 5879 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5880 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 5881 // failed array check 5882 return false; 5883 } 5884 5885 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5886 BasicType z_elem = z_type->elem()->array_element_basic_type(); 5887 if (x_elem != T_INT || z_elem != T_INT) { 5888 return false; 5889 } 5890 5891 5892 Node* x_start = array_element_address(x, intcon(0), x_elem); 5893 Node* z_start = array_element_address(z, intcon(0), z_elem); 5894 5895 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5896 OptoRuntime::squareToLen_Type(), 5897 stubAddr, stubName, TypePtr::BOTTOM, 5898 x_start, len, z_start, zlen); 5899 5900 set_result(z); 5901 return true; 5902 } 5903 5904 //-------------inline_mulAdd------------------------------------------ 5905 bool LibraryCallKit::inline_mulAdd() { 5906 assert(UseMulAddIntrinsic, "not implemented on this platform"); 5907 5908 address stubAddr = StubRoutines::mulAdd(); 5909 if (stubAddr == nullptr) { 5910 return false; // Intrinsic's stub is not implemented on this platform 5911 } 5912 const char* stubName = "mulAdd"; 5913 5914 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 5915 5916 Node* out = argument(0); 5917 Node* in = argument(1); 5918 Node* offset = argument(2); 5919 Node* len = argument(3); 5920 Node* k = argument(4); 5921 5922 in = must_be_not_null(in, true); 5923 out = must_be_not_null(out, true); 5924 5925 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 5926 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 5927 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 5928 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 5929 // failed array check 5930 return false; 5931 } 5932 5933 BasicType out_elem = out_type->elem()->array_element_basic_type(); 5934 BasicType in_elem = in_type->elem()->array_element_basic_type(); 5935 if (out_elem != T_INT || in_elem != T_INT) { 5936 return false; 5937 } 5938 5939 Node* outlen = load_array_length(out); 5940 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 5941 Node* out_start = array_element_address(out, intcon(0), out_elem); 5942 Node* in_start = array_element_address(in, intcon(0), in_elem); 5943 5944 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5945 OptoRuntime::mulAdd_Type(), 5946 stubAddr, stubName, TypePtr::BOTTOM, 5947 out_start,in_start, new_offset, len, k); 5948 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5949 set_result(result); 5950 return true; 5951 } 5952 5953 //-------------inline_montgomeryMultiply----------------------------------- 5954 bool LibraryCallKit::inline_montgomeryMultiply() { 5955 address stubAddr = StubRoutines::montgomeryMultiply(); 5956 if (stubAddr == nullptr) { 5957 return false; // Intrinsic's stub is not implemented on this platform 5958 } 5959 5960 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 5961 const char* stubName = "montgomery_multiply"; 5962 5963 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 5964 5965 Node* a = argument(0); 5966 Node* b = argument(1); 5967 Node* n = argument(2); 5968 Node* len = argument(3); 5969 Node* inv = argument(4); 5970 Node* m = argument(6); 5971 5972 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 5973 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 5974 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 5975 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 5976 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 5977 b_type == nullptr || b_type->elem() == Type::BOTTOM || 5978 n_type == nullptr || n_type->elem() == Type::BOTTOM || 5979 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 5980 // failed array check 5981 return false; 5982 } 5983 5984 BasicType a_elem = a_type->elem()->array_element_basic_type(); 5985 BasicType b_elem = b_type->elem()->array_element_basic_type(); 5986 BasicType n_elem = n_type->elem()->array_element_basic_type(); 5987 BasicType m_elem = m_type->elem()->array_element_basic_type(); 5988 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5989 return false; 5990 } 5991 5992 // Make the call 5993 { 5994 Node* a_start = array_element_address(a, intcon(0), a_elem); 5995 Node* b_start = array_element_address(b, intcon(0), b_elem); 5996 Node* n_start = array_element_address(n, intcon(0), n_elem); 5997 Node* m_start = array_element_address(m, intcon(0), m_elem); 5998 5999 Node* call = make_runtime_call(RC_LEAF, 6000 OptoRuntime::montgomeryMultiply_Type(), 6001 stubAddr, stubName, TypePtr::BOTTOM, 6002 a_start, b_start, n_start, len, inv, top(), 6003 m_start); 6004 set_result(m); 6005 } 6006 6007 return true; 6008 } 6009 6010 bool LibraryCallKit::inline_montgomerySquare() { 6011 address stubAddr = StubRoutines::montgomerySquare(); 6012 if (stubAddr == nullptr) { 6013 return false; // Intrinsic's stub is not implemented on this platform 6014 } 6015 6016 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6017 const char* stubName = "montgomery_square"; 6018 6019 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6020 6021 Node* a = argument(0); 6022 Node* n = argument(1); 6023 Node* len = argument(2); 6024 Node* inv = argument(3); 6025 Node* m = argument(5); 6026 6027 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6028 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6029 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6030 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6031 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6032 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6033 // failed array check 6034 return false; 6035 } 6036 6037 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6038 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6039 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6040 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6041 return false; 6042 } 6043 6044 // Make the call 6045 { 6046 Node* a_start = array_element_address(a, intcon(0), a_elem); 6047 Node* n_start = array_element_address(n, intcon(0), n_elem); 6048 Node* m_start = array_element_address(m, intcon(0), m_elem); 6049 6050 Node* call = make_runtime_call(RC_LEAF, 6051 OptoRuntime::montgomerySquare_Type(), 6052 stubAddr, stubName, TypePtr::BOTTOM, 6053 a_start, n_start, len, inv, top(), 6054 m_start); 6055 set_result(m); 6056 } 6057 6058 return true; 6059 } 6060 6061 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6062 address stubAddr = nullptr; 6063 const char* stubName = nullptr; 6064 6065 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6066 if (stubAddr == nullptr) { 6067 return false; // Intrinsic's stub is not implemented on this platform 6068 } 6069 6070 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6071 6072 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6073 6074 Node* newArr = argument(0); 6075 Node* oldArr = argument(1); 6076 Node* newIdx = argument(2); 6077 Node* shiftCount = argument(3); 6078 Node* numIter = argument(4); 6079 6080 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6081 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6082 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6083 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6084 return false; 6085 } 6086 6087 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6088 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6089 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6090 return false; 6091 } 6092 6093 // Make the call 6094 { 6095 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6096 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6097 6098 Node* call = make_runtime_call(RC_LEAF, 6099 OptoRuntime::bigIntegerShift_Type(), 6100 stubAddr, 6101 stubName, 6102 TypePtr::BOTTOM, 6103 newArr_start, 6104 oldArr_start, 6105 newIdx, 6106 shiftCount, 6107 numIter); 6108 } 6109 6110 return true; 6111 } 6112 6113 //-------------inline_vectorizedMismatch------------------------------ 6114 bool LibraryCallKit::inline_vectorizedMismatch() { 6115 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6116 6117 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6118 Node* obja = argument(0); // Object 6119 Node* aoffset = argument(1); // long 6120 Node* objb = argument(3); // Object 6121 Node* boffset = argument(4); // long 6122 Node* length = argument(6); // int 6123 Node* scale = argument(7); // int 6124 6125 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6126 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6127 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6128 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6129 scale == top()) { 6130 return false; // failed input validation 6131 } 6132 6133 Node* obja_adr = make_unsafe_address(obja, aoffset); 6134 Node* objb_adr = make_unsafe_address(objb, boffset); 6135 6136 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6137 // 6138 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6139 // if (length <= inline_limit) { 6140 // inline_path: 6141 // vmask = VectorMaskGen length 6142 // vload1 = LoadVectorMasked obja, vmask 6143 // vload2 = LoadVectorMasked objb, vmask 6144 // result1 = VectorCmpMasked vload1, vload2, vmask 6145 // } else { 6146 // call_stub_path: 6147 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6148 // } 6149 // exit_block: 6150 // return Phi(result1, result2); 6151 // 6152 enum { inline_path = 1, // input is small enough to process it all at once 6153 stub_path = 2, // input is too large; call into the VM 6154 PATH_LIMIT = 3 6155 }; 6156 6157 Node* exit_block = new RegionNode(PATH_LIMIT); 6158 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6159 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6160 6161 Node* call_stub_path = control(); 6162 6163 BasicType elem_bt = T_ILLEGAL; 6164 6165 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6166 if (scale_t->is_con()) { 6167 switch (scale_t->get_con()) { 6168 case 0: elem_bt = T_BYTE; break; 6169 case 1: elem_bt = T_SHORT; break; 6170 case 2: elem_bt = T_INT; break; 6171 case 3: elem_bt = T_LONG; break; 6172 6173 default: elem_bt = T_ILLEGAL; break; // not supported 6174 } 6175 } 6176 6177 int inline_limit = 0; 6178 bool do_partial_inline = false; 6179 6180 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6181 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6182 do_partial_inline = inline_limit >= 16; 6183 } 6184 6185 if (do_partial_inline) { 6186 assert(elem_bt != T_ILLEGAL, "sanity"); 6187 6188 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6189 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6190 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6191 6192 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6193 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6194 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6195 6196 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6197 6198 if (!stopped()) { 6199 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6200 6201 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6202 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6203 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6204 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6205 6206 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6207 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6208 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6209 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6210 6211 exit_block->init_req(inline_path, control()); 6212 memory_phi->init_req(inline_path, map()->memory()); 6213 result_phi->init_req(inline_path, result); 6214 6215 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6216 clear_upper_avx(); 6217 } 6218 } 6219 } 6220 6221 if (call_stub_path != nullptr) { 6222 set_control(call_stub_path); 6223 6224 Node* call = make_runtime_call(RC_LEAF, 6225 OptoRuntime::vectorizedMismatch_Type(), 6226 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6227 obja_adr, objb_adr, length, scale); 6228 6229 exit_block->init_req(stub_path, control()); 6230 memory_phi->init_req(stub_path, map()->memory()); 6231 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6232 } 6233 6234 exit_block = _gvn.transform(exit_block); 6235 memory_phi = _gvn.transform(memory_phi); 6236 result_phi = _gvn.transform(result_phi); 6237 6238 set_control(exit_block); 6239 set_all_memory(memory_phi); 6240 set_result(result_phi); 6241 6242 return true; 6243 } 6244 6245 //------------------------------inline_vectorizedHashcode---------------------------- 6246 bool LibraryCallKit::inline_vectorizedHashCode() { 6247 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6248 6249 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6250 Node* array = argument(0); 6251 Node* offset = argument(1); 6252 Node* length = argument(2); 6253 Node* initialValue = argument(3); 6254 Node* basic_type = argument(4); 6255 6256 if (basic_type == top()) { 6257 return false; // failed input validation 6258 } 6259 6260 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6261 if (!basic_type_t->is_con()) { 6262 return false; // Only intrinsify if mode argument is constant 6263 } 6264 6265 array = must_be_not_null(array, true); 6266 6267 BasicType bt = (BasicType)basic_type_t->get_con(); 6268 6269 // Resolve address of first element 6270 Node* array_start = array_element_address(array, offset, bt); 6271 6272 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6273 array_start, length, initialValue, basic_type))); 6274 clear_upper_avx(); 6275 6276 return true; 6277 } 6278 6279 /** 6280 * Calculate CRC32 for byte. 6281 * int java.util.zip.CRC32.update(int crc, int b) 6282 */ 6283 bool LibraryCallKit::inline_updateCRC32() { 6284 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6285 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6286 // no receiver since it is static method 6287 Node* crc = argument(0); // type: int 6288 Node* b = argument(1); // type: int 6289 6290 /* 6291 * int c = ~ crc; 6292 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6293 * b = b ^ (c >>> 8); 6294 * crc = ~b; 6295 */ 6296 6297 Node* M1 = intcon(-1); 6298 crc = _gvn.transform(new XorINode(crc, M1)); 6299 Node* result = _gvn.transform(new XorINode(crc, b)); 6300 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6301 6302 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6303 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6304 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6305 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6306 6307 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6308 result = _gvn.transform(new XorINode(crc, result)); 6309 result = _gvn.transform(new XorINode(result, M1)); 6310 set_result(result); 6311 return true; 6312 } 6313 6314 /** 6315 * Calculate CRC32 for byte[] array. 6316 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6317 */ 6318 bool LibraryCallKit::inline_updateBytesCRC32() { 6319 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6320 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6321 // no receiver since it is static method 6322 Node* crc = argument(0); // type: int 6323 Node* src = argument(1); // type: oop 6324 Node* offset = argument(2); // type: int 6325 Node* length = argument(3); // type: int 6326 6327 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6328 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6329 // failed array check 6330 return false; 6331 } 6332 6333 // Figure out the size and type of the elements we will be copying. 6334 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6335 if (src_elem != T_BYTE) { 6336 return false; 6337 } 6338 6339 // 'src_start' points to src array + scaled offset 6340 src = must_be_not_null(src, true); 6341 Node* src_start = array_element_address(src, offset, src_elem); 6342 6343 // We assume that range check is done by caller. 6344 // TODO: generate range check (offset+length < src.length) in debug VM. 6345 6346 // Call the stub. 6347 address stubAddr = StubRoutines::updateBytesCRC32(); 6348 const char *stubName = "updateBytesCRC32"; 6349 6350 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6351 stubAddr, stubName, TypePtr::BOTTOM, 6352 crc, src_start, length); 6353 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6354 set_result(result); 6355 return true; 6356 } 6357 6358 /** 6359 * Calculate CRC32 for ByteBuffer. 6360 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6361 */ 6362 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6363 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6364 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6365 // no receiver since it is static method 6366 Node* crc = argument(0); // type: int 6367 Node* src = argument(1); // type: long 6368 Node* offset = argument(3); // type: int 6369 Node* length = argument(4); // type: int 6370 6371 src = ConvL2X(src); // adjust Java long to machine word 6372 Node* base = _gvn.transform(new CastX2PNode(src)); 6373 offset = ConvI2X(offset); 6374 6375 // 'src_start' points to src array + scaled offset 6376 Node* src_start = basic_plus_adr(top(), base, offset); 6377 6378 // Call the stub. 6379 address stubAddr = StubRoutines::updateBytesCRC32(); 6380 const char *stubName = "updateBytesCRC32"; 6381 6382 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6383 stubAddr, stubName, TypePtr::BOTTOM, 6384 crc, src_start, length); 6385 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6386 set_result(result); 6387 return true; 6388 } 6389 6390 //------------------------------get_table_from_crc32c_class----------------------- 6391 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6392 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6393 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6394 6395 return table; 6396 } 6397 6398 //------------------------------inline_updateBytesCRC32C----------------------- 6399 // 6400 // Calculate CRC32C for byte[] array. 6401 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6402 // 6403 bool LibraryCallKit::inline_updateBytesCRC32C() { 6404 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6405 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6406 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6407 // no receiver since it is a static method 6408 Node* crc = argument(0); // type: int 6409 Node* src = argument(1); // type: oop 6410 Node* offset = argument(2); // type: int 6411 Node* end = argument(3); // type: int 6412 6413 Node* length = _gvn.transform(new SubINode(end, offset)); 6414 6415 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6416 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6417 // failed array check 6418 return false; 6419 } 6420 6421 // Figure out the size and type of the elements we will be copying. 6422 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6423 if (src_elem != T_BYTE) { 6424 return false; 6425 } 6426 6427 // 'src_start' points to src array + scaled offset 6428 src = must_be_not_null(src, true); 6429 Node* src_start = array_element_address(src, offset, src_elem); 6430 6431 // static final int[] byteTable in class CRC32C 6432 Node* table = get_table_from_crc32c_class(callee()->holder()); 6433 table = must_be_not_null(table, true); 6434 Node* table_start = array_element_address(table, intcon(0), T_INT); 6435 6436 // We assume that range check is done by caller. 6437 // TODO: generate range check (offset+length < src.length) in debug VM. 6438 6439 // Call the stub. 6440 address stubAddr = StubRoutines::updateBytesCRC32C(); 6441 const char *stubName = "updateBytesCRC32C"; 6442 6443 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6444 stubAddr, stubName, TypePtr::BOTTOM, 6445 crc, src_start, length, table_start); 6446 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6447 set_result(result); 6448 return true; 6449 } 6450 6451 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6452 // 6453 // Calculate CRC32C for DirectByteBuffer. 6454 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6455 // 6456 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6457 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6458 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6459 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6460 // no receiver since it is a static method 6461 Node* crc = argument(0); // type: int 6462 Node* src = argument(1); // type: long 6463 Node* offset = argument(3); // type: int 6464 Node* end = argument(4); // type: int 6465 6466 Node* length = _gvn.transform(new SubINode(end, offset)); 6467 6468 src = ConvL2X(src); // adjust Java long to machine word 6469 Node* base = _gvn.transform(new CastX2PNode(src)); 6470 offset = ConvI2X(offset); 6471 6472 // 'src_start' points to src array + scaled offset 6473 Node* src_start = basic_plus_adr(top(), base, offset); 6474 6475 // static final int[] byteTable in class CRC32C 6476 Node* table = get_table_from_crc32c_class(callee()->holder()); 6477 table = must_be_not_null(table, true); 6478 Node* table_start = array_element_address(table, intcon(0), T_INT); 6479 6480 // Call the stub. 6481 address stubAddr = StubRoutines::updateBytesCRC32C(); 6482 const char *stubName = "updateBytesCRC32C"; 6483 6484 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6485 stubAddr, stubName, TypePtr::BOTTOM, 6486 crc, src_start, length, table_start); 6487 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6488 set_result(result); 6489 return true; 6490 } 6491 6492 //------------------------------inline_updateBytesAdler32---------------------- 6493 // 6494 // Calculate Adler32 checksum for byte[] array. 6495 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6496 // 6497 bool LibraryCallKit::inline_updateBytesAdler32() { 6498 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6499 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6500 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6501 // no receiver since it is static method 6502 Node* crc = argument(0); // type: int 6503 Node* src = argument(1); // type: oop 6504 Node* offset = argument(2); // type: int 6505 Node* length = argument(3); // type: int 6506 6507 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6508 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6509 // failed array check 6510 return false; 6511 } 6512 6513 // Figure out the size and type of the elements we will be copying. 6514 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6515 if (src_elem != T_BYTE) { 6516 return false; 6517 } 6518 6519 // 'src_start' points to src array + scaled offset 6520 Node* src_start = array_element_address(src, offset, src_elem); 6521 6522 // We assume that range check is done by caller. 6523 // TODO: generate range check (offset+length < src.length) in debug VM. 6524 6525 // Call the stub. 6526 address stubAddr = StubRoutines::updateBytesAdler32(); 6527 const char *stubName = "updateBytesAdler32"; 6528 6529 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6530 stubAddr, stubName, TypePtr::BOTTOM, 6531 crc, src_start, length); 6532 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6533 set_result(result); 6534 return true; 6535 } 6536 6537 //------------------------------inline_updateByteBufferAdler32--------------- 6538 // 6539 // Calculate Adler32 checksum for DirectByteBuffer. 6540 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6541 // 6542 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6543 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6544 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6545 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6546 // no receiver since it is static method 6547 Node* crc = argument(0); // type: int 6548 Node* src = argument(1); // type: long 6549 Node* offset = argument(3); // type: int 6550 Node* length = argument(4); // type: int 6551 6552 src = ConvL2X(src); // adjust Java long to machine word 6553 Node* base = _gvn.transform(new CastX2PNode(src)); 6554 offset = ConvI2X(offset); 6555 6556 // 'src_start' points to src array + scaled offset 6557 Node* src_start = basic_plus_adr(top(), base, offset); 6558 6559 // Call the stub. 6560 address stubAddr = StubRoutines::updateBytesAdler32(); 6561 const char *stubName = "updateBytesAdler32"; 6562 6563 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6564 stubAddr, stubName, TypePtr::BOTTOM, 6565 crc, src_start, length); 6566 6567 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6568 set_result(result); 6569 return true; 6570 } 6571 6572 //----------------------------inline_reference_get---------------------------- 6573 // public T java.lang.ref.Reference.get(); 6574 bool LibraryCallKit::inline_reference_get() { 6575 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6576 6577 // Get the argument: 6578 Node* reference_obj = null_check_receiver(); 6579 if (stopped()) return true; 6580 6581 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6582 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6583 decorators, /*is_static*/ false, nullptr); 6584 if (result == nullptr) return false; 6585 6586 // Add memory barrier to prevent commoning reads from this field 6587 // across safepoint since GC can change its value. 6588 insert_mem_bar(Op_MemBarCPUOrder); 6589 6590 set_result(result); 6591 return true; 6592 } 6593 6594 //----------------------------inline_reference_refersTo0---------------------------- 6595 // bool java.lang.ref.Reference.refersTo0(); 6596 // bool java.lang.ref.PhantomReference.refersTo0(); 6597 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6598 // Get arguments: 6599 Node* reference_obj = null_check_receiver(); 6600 Node* other_obj = argument(1); 6601 if (stopped()) return true; 6602 6603 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6604 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6605 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6606 decorators, /*is_static*/ false, nullptr); 6607 if (referent == nullptr) return false; 6608 6609 // Add memory barrier to prevent commoning reads from this field 6610 // across safepoint since GC can change its value. 6611 insert_mem_bar(Op_MemBarCPUOrder); 6612 6613 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6614 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6615 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6616 6617 RegionNode* region = new RegionNode(3); 6618 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6619 6620 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6621 region->init_req(1, if_true); 6622 phi->init_req(1, intcon(1)); 6623 6624 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6625 region->init_req(2, if_false); 6626 phi->init_req(2, intcon(0)); 6627 6628 set_control(_gvn.transform(region)); 6629 record_for_igvn(region); 6630 set_result(_gvn.transform(phi)); 6631 return true; 6632 } 6633 6634 6635 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 6636 DecoratorSet decorators, bool is_static, 6637 ciInstanceKlass* fromKls) { 6638 if (fromKls == nullptr) { 6639 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6640 assert(tinst != nullptr, "obj is null"); 6641 assert(tinst->is_loaded(), "obj is not loaded"); 6642 fromKls = tinst->instance_klass(); 6643 } else { 6644 assert(is_static, "only for static field access"); 6645 } 6646 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6647 ciSymbol::make(fieldTypeString), 6648 is_static); 6649 6650 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 6651 if (field == nullptr) return (Node *) nullptr; 6652 6653 if (is_static) { 6654 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6655 fromObj = makecon(tip); 6656 } 6657 6658 // Next code copied from Parse::do_get_xxx(): 6659 6660 // Compute address and memory type. 6661 int offset = field->offset_in_bytes(); 6662 bool is_vol = field->is_volatile(); 6663 ciType* field_klass = field->type(); 6664 assert(field_klass->is_loaded(), "should be loaded"); 6665 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 6666 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6667 BasicType bt = field->layout_type(); 6668 6669 // Build the resultant type of the load 6670 const Type *type; 6671 if (bt == T_OBJECT) { 6672 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 6673 } else { 6674 type = Type::get_const_basic_type(bt); 6675 } 6676 6677 if (is_vol) { 6678 decorators |= MO_SEQ_CST; 6679 } 6680 6681 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 6682 } 6683 6684 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 6685 bool is_exact /* true */, bool is_static /* false */, 6686 ciInstanceKlass * fromKls /* nullptr */) { 6687 if (fromKls == nullptr) { 6688 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6689 assert(tinst != nullptr, "obj is null"); 6690 assert(tinst->is_loaded(), "obj is not loaded"); 6691 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 6692 fromKls = tinst->instance_klass(); 6693 } 6694 else { 6695 assert(is_static, "only for static field access"); 6696 } 6697 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6698 ciSymbol::make(fieldTypeString), 6699 is_static); 6700 6701 assert(field != nullptr, "undefined field"); 6702 assert(!field->is_volatile(), "not defined for volatile fields"); 6703 6704 if (is_static) { 6705 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6706 fromObj = makecon(tip); 6707 } 6708 6709 // Next code copied from Parse::do_get_xxx(): 6710 6711 // Compute address and memory type. 6712 int offset = field->offset_in_bytes(); 6713 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6714 6715 return adr; 6716 } 6717 6718 //------------------------------inline_aescrypt_Block----------------------- 6719 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 6720 address stubAddr = nullptr; 6721 const char *stubName; 6722 assert(UseAES, "need AES instruction support"); 6723 6724 switch(id) { 6725 case vmIntrinsics::_aescrypt_encryptBlock: 6726 stubAddr = StubRoutines::aescrypt_encryptBlock(); 6727 stubName = "aescrypt_encryptBlock"; 6728 break; 6729 case vmIntrinsics::_aescrypt_decryptBlock: 6730 stubAddr = StubRoutines::aescrypt_decryptBlock(); 6731 stubName = "aescrypt_decryptBlock"; 6732 break; 6733 default: 6734 break; 6735 } 6736 if (stubAddr == nullptr) return false; 6737 6738 Node* aescrypt_object = argument(0); 6739 Node* src = argument(1); 6740 Node* src_offset = argument(2); 6741 Node* dest = argument(3); 6742 Node* dest_offset = argument(4); 6743 6744 src = must_be_not_null(src, true); 6745 dest = must_be_not_null(dest, true); 6746 6747 // (1) src and dest are arrays. 6748 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6749 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6750 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6751 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6752 6753 // for the quick and dirty code we will skip all the checks. 6754 // we are just trying to get the call to be generated. 6755 Node* src_start = src; 6756 Node* dest_start = dest; 6757 if (src_offset != nullptr || dest_offset != nullptr) { 6758 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6759 src_start = array_element_address(src, src_offset, T_BYTE); 6760 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6761 } 6762 6763 // now need to get the start of its expanded key array 6764 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6765 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6766 if (k_start == nullptr) return false; 6767 6768 // Call the stub. 6769 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 6770 stubAddr, stubName, TypePtr::BOTTOM, 6771 src_start, dest_start, k_start); 6772 6773 return true; 6774 } 6775 6776 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 6777 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 6778 address stubAddr = nullptr; 6779 const char *stubName = nullptr; 6780 6781 assert(UseAES, "need AES instruction support"); 6782 6783 switch(id) { 6784 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 6785 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 6786 stubName = "cipherBlockChaining_encryptAESCrypt"; 6787 break; 6788 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 6789 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 6790 stubName = "cipherBlockChaining_decryptAESCrypt"; 6791 break; 6792 default: 6793 break; 6794 } 6795 if (stubAddr == nullptr) return false; 6796 6797 Node* cipherBlockChaining_object = argument(0); 6798 Node* src = argument(1); 6799 Node* src_offset = argument(2); 6800 Node* len = argument(3); 6801 Node* dest = argument(4); 6802 Node* dest_offset = argument(5); 6803 6804 src = must_be_not_null(src, false); 6805 dest = must_be_not_null(dest, false); 6806 6807 // (1) src and dest are arrays. 6808 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6809 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6810 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6811 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6812 6813 // checks are the responsibility of the caller 6814 Node* src_start = src; 6815 Node* dest_start = dest; 6816 if (src_offset != nullptr || dest_offset != nullptr) { 6817 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6818 src_start = array_element_address(src, src_offset, T_BYTE); 6819 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6820 } 6821 6822 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6823 // (because of the predicated logic executed earlier). 6824 // so we cast it here safely. 6825 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6826 6827 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6828 if (embeddedCipherObj == nullptr) return false; 6829 6830 // cast it to what we know it will be at runtime 6831 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 6832 assert(tinst != nullptr, "CBC obj is null"); 6833 assert(tinst->is_loaded(), "CBC obj is not loaded"); 6834 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6835 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6836 6837 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6838 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6839 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6840 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6841 aescrypt_object = _gvn.transform(aescrypt_object); 6842 6843 // we need to get the start of the aescrypt_object's expanded key array 6844 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6845 if (k_start == nullptr) return false; 6846 6847 // similarly, get the start address of the r vector 6848 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 6849 if (objRvec == nullptr) return false; 6850 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 6851 6852 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6853 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6854 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 6855 stubAddr, stubName, TypePtr::BOTTOM, 6856 src_start, dest_start, k_start, r_start, len); 6857 6858 // return cipher length (int) 6859 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 6860 set_result(retvalue); 6861 return true; 6862 } 6863 6864 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 6865 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 6866 address stubAddr = nullptr; 6867 const char *stubName = nullptr; 6868 6869 assert(UseAES, "need AES instruction support"); 6870 6871 switch (id) { 6872 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 6873 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 6874 stubName = "electronicCodeBook_encryptAESCrypt"; 6875 break; 6876 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 6877 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 6878 stubName = "electronicCodeBook_decryptAESCrypt"; 6879 break; 6880 default: 6881 break; 6882 } 6883 6884 if (stubAddr == nullptr) return false; 6885 6886 Node* electronicCodeBook_object = argument(0); 6887 Node* src = argument(1); 6888 Node* src_offset = argument(2); 6889 Node* len = argument(3); 6890 Node* dest = argument(4); 6891 Node* dest_offset = argument(5); 6892 6893 // (1) src and dest are arrays. 6894 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6895 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6896 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6897 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6898 6899 // checks are the responsibility of the caller 6900 Node* src_start = src; 6901 Node* dest_start = dest; 6902 if (src_offset != nullptr || dest_offset != nullptr) { 6903 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6904 src_start = array_element_address(src, src_offset, T_BYTE); 6905 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6906 } 6907 6908 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6909 // (because of the predicated logic executed earlier). 6910 // so we cast it here safely. 6911 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6912 6913 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6914 if (embeddedCipherObj == nullptr) return false; 6915 6916 // cast it to what we know it will be at runtime 6917 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 6918 assert(tinst != nullptr, "ECB obj is null"); 6919 assert(tinst->is_loaded(), "ECB obj is not loaded"); 6920 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6921 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6922 6923 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6924 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6925 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6926 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6927 aescrypt_object = _gvn.transform(aescrypt_object); 6928 6929 // we need to get the start of the aescrypt_object's expanded key array 6930 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6931 if (k_start == nullptr) return false; 6932 6933 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6934 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 6935 OptoRuntime::electronicCodeBook_aescrypt_Type(), 6936 stubAddr, stubName, TypePtr::BOTTOM, 6937 src_start, dest_start, k_start, len); 6938 6939 // return cipher length (int) 6940 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 6941 set_result(retvalue); 6942 return true; 6943 } 6944 6945 //------------------------------inline_counterMode_AESCrypt----------------------- 6946 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 6947 assert(UseAES, "need AES instruction support"); 6948 if (!UseAESCTRIntrinsics) return false; 6949 6950 address stubAddr = nullptr; 6951 const char *stubName = nullptr; 6952 if (id == vmIntrinsics::_counterMode_AESCrypt) { 6953 stubAddr = StubRoutines::counterMode_AESCrypt(); 6954 stubName = "counterMode_AESCrypt"; 6955 } 6956 if (stubAddr == nullptr) return false; 6957 6958 Node* counterMode_object = argument(0); 6959 Node* src = argument(1); 6960 Node* src_offset = argument(2); 6961 Node* len = argument(3); 6962 Node* dest = argument(4); 6963 Node* dest_offset = argument(5); 6964 6965 // (1) src and dest are arrays. 6966 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6967 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6968 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6969 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6970 6971 // checks are the responsibility of the caller 6972 Node* src_start = src; 6973 Node* dest_start = dest; 6974 if (src_offset != nullptr || dest_offset != nullptr) { 6975 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6976 src_start = array_element_address(src, src_offset, T_BYTE); 6977 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6978 } 6979 6980 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6981 // (because of the predicated logic executed earlier). 6982 // so we cast it here safely. 6983 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6984 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6985 if (embeddedCipherObj == nullptr) return false; 6986 // cast it to what we know it will be at runtime 6987 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 6988 assert(tinst != nullptr, "CTR obj is null"); 6989 assert(tinst->is_loaded(), "CTR obj is not loaded"); 6990 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6991 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6992 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6993 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6994 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6995 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6996 aescrypt_object = _gvn.transform(aescrypt_object); 6997 // we need to get the start of the aescrypt_object's expanded key array 6998 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6999 if (k_start == nullptr) return false; 7000 // similarly, get the start address of the r vector 7001 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7002 if (obj_counter == nullptr) return false; 7003 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7004 7005 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7006 if (saved_encCounter == nullptr) return false; 7007 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7008 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7009 7010 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7011 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7012 OptoRuntime::counterMode_aescrypt_Type(), 7013 stubAddr, stubName, TypePtr::BOTTOM, 7014 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7015 7016 // return cipher length (int) 7017 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7018 set_result(retvalue); 7019 return true; 7020 } 7021 7022 //------------------------------get_key_start_from_aescrypt_object----------------------- 7023 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7024 #if defined(PPC64) || defined(S390) 7025 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7026 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7027 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7028 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7029 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7030 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7031 if (objSessionK == nullptr) { 7032 return (Node *) nullptr; 7033 } 7034 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7035 #else 7036 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7037 #endif // PPC64 7038 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7039 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7040 7041 // now have the array, need to get the start address of the K array 7042 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7043 return k_start; 7044 } 7045 7046 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7047 // Return node representing slow path of predicate check. 7048 // the pseudo code we want to emulate with this predicate is: 7049 // for encryption: 7050 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7051 // for decryption: 7052 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7053 // note cipher==plain is more conservative than the original java code but that's OK 7054 // 7055 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7056 // The receiver was checked for null already. 7057 Node* objCBC = argument(0); 7058 7059 Node* src = argument(1); 7060 Node* dest = argument(4); 7061 7062 // Load embeddedCipher field of CipherBlockChaining object. 7063 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7064 7065 // get AESCrypt klass for instanceOf check 7066 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7067 // will have same classloader as CipherBlockChaining object 7068 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7069 assert(tinst != nullptr, "CBCobj is null"); 7070 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7071 7072 // we want to do an instanceof comparison against the AESCrypt class 7073 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7074 if (!klass_AESCrypt->is_loaded()) { 7075 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7076 Node* ctrl = control(); 7077 set_control(top()); // no regular fast path 7078 return ctrl; 7079 } 7080 7081 src = must_be_not_null(src, true); 7082 dest = must_be_not_null(dest, true); 7083 7084 // Resolve oops to stable for CmpP below. 7085 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7086 7087 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7088 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7089 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7090 7091 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7092 7093 // for encryption, we are done 7094 if (!decrypting) 7095 return instof_false; // even if it is null 7096 7097 // for decryption, we need to add a further check to avoid 7098 // taking the intrinsic path when cipher and plain are the same 7099 // see the original java code for why. 7100 RegionNode* region = new RegionNode(3); 7101 region->init_req(1, instof_false); 7102 7103 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7104 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7105 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7106 region->init_req(2, src_dest_conjoint); 7107 7108 record_for_igvn(region); 7109 return _gvn.transform(region); 7110 } 7111 7112 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7113 // Return node representing slow path of predicate check. 7114 // the pseudo code we want to emulate with this predicate is: 7115 // for encryption: 7116 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7117 // for decryption: 7118 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7119 // note cipher==plain is more conservative than the original java code but that's OK 7120 // 7121 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7122 // The receiver was checked for null already. 7123 Node* objECB = argument(0); 7124 7125 // Load embeddedCipher field of ElectronicCodeBook object. 7126 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7127 7128 // get AESCrypt klass for instanceOf check 7129 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7130 // will have same classloader as ElectronicCodeBook object 7131 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7132 assert(tinst != nullptr, "ECBobj is null"); 7133 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7134 7135 // we want to do an instanceof comparison against the AESCrypt class 7136 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7137 if (!klass_AESCrypt->is_loaded()) { 7138 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7139 Node* ctrl = control(); 7140 set_control(top()); // no regular fast path 7141 return ctrl; 7142 } 7143 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7144 7145 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7146 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7147 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7148 7149 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7150 7151 // for encryption, we are done 7152 if (!decrypting) 7153 return instof_false; // even if it is null 7154 7155 // for decryption, we need to add a further check to avoid 7156 // taking the intrinsic path when cipher and plain are the same 7157 // see the original java code for why. 7158 RegionNode* region = new RegionNode(3); 7159 region->init_req(1, instof_false); 7160 Node* src = argument(1); 7161 Node* dest = argument(4); 7162 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7163 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7164 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7165 region->init_req(2, src_dest_conjoint); 7166 7167 record_for_igvn(region); 7168 return _gvn.transform(region); 7169 } 7170 7171 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7172 // Return node representing slow path of predicate check. 7173 // the pseudo code we want to emulate with this predicate is: 7174 // for encryption: 7175 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7176 // for decryption: 7177 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7178 // note cipher==plain is more conservative than the original java code but that's OK 7179 // 7180 7181 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7182 // The receiver was checked for null already. 7183 Node* objCTR = argument(0); 7184 7185 // Load embeddedCipher field of CipherBlockChaining object. 7186 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7187 7188 // get AESCrypt klass for instanceOf check 7189 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7190 // will have same classloader as CipherBlockChaining object 7191 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7192 assert(tinst != nullptr, "CTRobj is null"); 7193 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7194 7195 // we want to do an instanceof comparison against the AESCrypt class 7196 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7197 if (!klass_AESCrypt->is_loaded()) { 7198 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7199 Node* ctrl = control(); 7200 set_control(top()); // no regular fast path 7201 return ctrl; 7202 } 7203 7204 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7205 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7206 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7207 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7208 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7209 7210 return instof_false; // even if it is null 7211 } 7212 7213 //------------------------------inline_ghash_processBlocks 7214 bool LibraryCallKit::inline_ghash_processBlocks() { 7215 address stubAddr; 7216 const char *stubName; 7217 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7218 7219 stubAddr = StubRoutines::ghash_processBlocks(); 7220 stubName = "ghash_processBlocks"; 7221 7222 Node* data = argument(0); 7223 Node* offset = argument(1); 7224 Node* len = argument(2); 7225 Node* state = argument(3); 7226 Node* subkeyH = argument(4); 7227 7228 state = must_be_not_null(state, true); 7229 subkeyH = must_be_not_null(subkeyH, true); 7230 data = must_be_not_null(data, true); 7231 7232 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7233 assert(state_start, "state is null"); 7234 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7235 assert(subkeyH_start, "subkeyH is null"); 7236 Node* data_start = array_element_address(data, offset, T_BYTE); 7237 assert(data_start, "data is null"); 7238 7239 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7240 OptoRuntime::ghash_processBlocks_Type(), 7241 stubAddr, stubName, TypePtr::BOTTOM, 7242 state_start, subkeyH_start, data_start, len); 7243 return true; 7244 } 7245 7246 //------------------------------inline_chacha20Block 7247 bool LibraryCallKit::inline_chacha20Block() { 7248 address stubAddr; 7249 const char *stubName; 7250 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7251 7252 stubAddr = StubRoutines::chacha20Block(); 7253 stubName = "chacha20Block"; 7254 7255 Node* state = argument(0); 7256 Node* result = argument(1); 7257 7258 state = must_be_not_null(state, true); 7259 result = must_be_not_null(result, true); 7260 7261 Node* state_start = array_element_address(state, intcon(0), T_INT); 7262 assert(state_start, "state is null"); 7263 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7264 assert(result_start, "result is null"); 7265 7266 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7267 OptoRuntime::chacha20Block_Type(), 7268 stubAddr, stubName, TypePtr::BOTTOM, 7269 state_start, result_start); 7270 // return key stream length (int) 7271 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7272 set_result(retvalue); 7273 return true; 7274 } 7275 7276 bool LibraryCallKit::inline_base64_encodeBlock() { 7277 address stubAddr; 7278 const char *stubName; 7279 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7280 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7281 stubAddr = StubRoutines::base64_encodeBlock(); 7282 stubName = "encodeBlock"; 7283 7284 if (!stubAddr) return false; 7285 Node* base64obj = argument(0); 7286 Node* src = argument(1); 7287 Node* offset = argument(2); 7288 Node* len = argument(3); 7289 Node* dest = argument(4); 7290 Node* dp = argument(5); 7291 Node* isURL = argument(6); 7292 7293 src = must_be_not_null(src, true); 7294 dest = must_be_not_null(dest, true); 7295 7296 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7297 assert(src_start, "source array is null"); 7298 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7299 assert(dest_start, "destination array is null"); 7300 7301 Node* base64 = make_runtime_call(RC_LEAF, 7302 OptoRuntime::base64_encodeBlock_Type(), 7303 stubAddr, stubName, TypePtr::BOTTOM, 7304 src_start, offset, len, dest_start, dp, isURL); 7305 return true; 7306 } 7307 7308 bool LibraryCallKit::inline_base64_decodeBlock() { 7309 address stubAddr; 7310 const char *stubName; 7311 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7312 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7313 stubAddr = StubRoutines::base64_decodeBlock(); 7314 stubName = "decodeBlock"; 7315 7316 if (!stubAddr) return false; 7317 Node* base64obj = argument(0); 7318 Node* src = argument(1); 7319 Node* src_offset = argument(2); 7320 Node* len = argument(3); 7321 Node* dest = argument(4); 7322 Node* dest_offset = argument(5); 7323 Node* isURL = argument(6); 7324 Node* isMIME = argument(7); 7325 7326 src = must_be_not_null(src, true); 7327 dest = must_be_not_null(dest, true); 7328 7329 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7330 assert(src_start, "source array is null"); 7331 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7332 assert(dest_start, "destination array is null"); 7333 7334 Node* call = make_runtime_call(RC_LEAF, 7335 OptoRuntime::base64_decodeBlock_Type(), 7336 stubAddr, stubName, TypePtr::BOTTOM, 7337 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7338 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7339 set_result(result); 7340 return true; 7341 } 7342 7343 bool LibraryCallKit::inline_poly1305_processBlocks() { 7344 address stubAddr; 7345 const char *stubName; 7346 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7347 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7348 stubAddr = StubRoutines::poly1305_processBlocks(); 7349 stubName = "poly1305_processBlocks"; 7350 7351 if (!stubAddr) return false; 7352 null_check_receiver(); // null-check receiver 7353 if (stopped()) return true; 7354 7355 Node* input = argument(1); 7356 Node* input_offset = argument(2); 7357 Node* len = argument(3); 7358 Node* alimbs = argument(4); 7359 Node* rlimbs = argument(5); 7360 7361 input = must_be_not_null(input, true); 7362 alimbs = must_be_not_null(alimbs, true); 7363 rlimbs = must_be_not_null(rlimbs, true); 7364 7365 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7366 assert(input_start, "input array is null"); 7367 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7368 assert(acc_start, "acc array is null"); 7369 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7370 assert(r_start, "r array is null"); 7371 7372 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7373 OptoRuntime::poly1305_processBlocks_Type(), 7374 stubAddr, stubName, TypePtr::BOTTOM, 7375 input_start, len, acc_start, r_start); 7376 return true; 7377 } 7378 7379 //------------------------------inline_digestBase_implCompress----------------------- 7380 // 7381 // Calculate MD5 for single-block byte[] array. 7382 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7383 // 7384 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7385 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7386 // 7387 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7388 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7389 // 7390 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7391 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7392 // 7393 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7394 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7395 // 7396 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7397 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7398 7399 Node* digestBase_obj = argument(0); 7400 Node* src = argument(1); // type oop 7401 Node* ofs = argument(2); // type int 7402 7403 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7404 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7405 // failed array check 7406 return false; 7407 } 7408 // Figure out the size and type of the elements we will be copying. 7409 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7410 if (src_elem != T_BYTE) { 7411 return false; 7412 } 7413 // 'src_start' points to src array + offset 7414 src = must_be_not_null(src, true); 7415 Node* src_start = array_element_address(src, ofs, src_elem); 7416 Node* state = nullptr; 7417 Node* block_size = nullptr; 7418 address stubAddr; 7419 const char *stubName; 7420 7421 switch(id) { 7422 case vmIntrinsics::_md5_implCompress: 7423 assert(UseMD5Intrinsics, "need MD5 instruction support"); 7424 state = get_state_from_digest_object(digestBase_obj, T_INT); 7425 stubAddr = StubRoutines::md5_implCompress(); 7426 stubName = "md5_implCompress"; 7427 break; 7428 case vmIntrinsics::_sha_implCompress: 7429 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 7430 state = get_state_from_digest_object(digestBase_obj, T_INT); 7431 stubAddr = StubRoutines::sha1_implCompress(); 7432 stubName = "sha1_implCompress"; 7433 break; 7434 case vmIntrinsics::_sha2_implCompress: 7435 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 7436 state = get_state_from_digest_object(digestBase_obj, T_INT); 7437 stubAddr = StubRoutines::sha256_implCompress(); 7438 stubName = "sha256_implCompress"; 7439 break; 7440 case vmIntrinsics::_sha5_implCompress: 7441 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 7442 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7443 stubAddr = StubRoutines::sha512_implCompress(); 7444 stubName = "sha512_implCompress"; 7445 break; 7446 case vmIntrinsics::_sha3_implCompress: 7447 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 7448 state = get_state_from_digest_object(digestBase_obj, T_BYTE); 7449 stubAddr = StubRoutines::sha3_implCompress(); 7450 stubName = "sha3_implCompress"; 7451 block_size = get_block_size_from_digest_object(digestBase_obj); 7452 if (block_size == nullptr) return false; 7453 break; 7454 default: 7455 fatal_unexpected_iid(id); 7456 return false; 7457 } 7458 if (state == nullptr) return false; 7459 7460 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 7461 if (stubAddr == nullptr) return false; 7462 7463 // Call the stub. 7464 Node* call; 7465 if (block_size == nullptr) { 7466 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 7467 stubAddr, stubName, TypePtr::BOTTOM, 7468 src_start, state); 7469 } else { 7470 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 7471 stubAddr, stubName, TypePtr::BOTTOM, 7472 src_start, state, block_size); 7473 } 7474 7475 return true; 7476 } 7477 7478 //------------------------------inline_digestBase_implCompressMB----------------------- 7479 // 7480 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 7481 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 7482 // 7483 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 7484 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7485 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7486 assert((uint)predicate < 5, "sanity"); 7487 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 7488 7489 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 7490 Node* src = argument(1); // byte[] array 7491 Node* ofs = argument(2); // type int 7492 Node* limit = argument(3); // type int 7493 7494 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7495 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7496 // failed array check 7497 return false; 7498 } 7499 // Figure out the size and type of the elements we will be copying. 7500 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7501 if (src_elem != T_BYTE) { 7502 return false; 7503 } 7504 // 'src_start' points to src array + offset 7505 src = must_be_not_null(src, false); 7506 Node* src_start = array_element_address(src, ofs, src_elem); 7507 7508 const char* klass_digestBase_name = nullptr; 7509 const char* stub_name = nullptr; 7510 address stub_addr = nullptr; 7511 BasicType elem_type = T_INT; 7512 7513 switch (predicate) { 7514 case 0: 7515 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 7516 klass_digestBase_name = "sun/security/provider/MD5"; 7517 stub_name = "md5_implCompressMB"; 7518 stub_addr = StubRoutines::md5_implCompressMB(); 7519 } 7520 break; 7521 case 1: 7522 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 7523 klass_digestBase_name = "sun/security/provider/SHA"; 7524 stub_name = "sha1_implCompressMB"; 7525 stub_addr = StubRoutines::sha1_implCompressMB(); 7526 } 7527 break; 7528 case 2: 7529 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 7530 klass_digestBase_name = "sun/security/provider/SHA2"; 7531 stub_name = "sha256_implCompressMB"; 7532 stub_addr = StubRoutines::sha256_implCompressMB(); 7533 } 7534 break; 7535 case 3: 7536 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 7537 klass_digestBase_name = "sun/security/provider/SHA5"; 7538 stub_name = "sha512_implCompressMB"; 7539 stub_addr = StubRoutines::sha512_implCompressMB(); 7540 elem_type = T_LONG; 7541 } 7542 break; 7543 case 4: 7544 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 7545 klass_digestBase_name = "sun/security/provider/SHA3"; 7546 stub_name = "sha3_implCompressMB"; 7547 stub_addr = StubRoutines::sha3_implCompressMB(); 7548 elem_type = T_BYTE; 7549 } 7550 break; 7551 default: 7552 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 7553 } 7554 if (klass_digestBase_name != nullptr) { 7555 assert(stub_addr != nullptr, "Stub is generated"); 7556 if (stub_addr == nullptr) return false; 7557 7558 // get DigestBase klass to lookup for SHA klass 7559 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 7560 assert(tinst != nullptr, "digestBase_obj is not instance???"); 7561 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7562 7563 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 7564 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 7565 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 7566 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 7567 } 7568 return false; 7569 } 7570 7571 //------------------------------inline_digestBase_implCompressMB----------------------- 7572 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 7573 BasicType elem_type, address stubAddr, const char *stubName, 7574 Node* src_start, Node* ofs, Node* limit) { 7575 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 7576 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7577 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 7578 digest_obj = _gvn.transform(digest_obj); 7579 7580 Node* state = get_state_from_digest_object(digest_obj, elem_type); 7581 if (state == nullptr) return false; 7582 7583 Node* block_size = nullptr; 7584 if (strcmp("sha3_implCompressMB", stubName) == 0) { 7585 block_size = get_block_size_from_digest_object(digest_obj); 7586 if (block_size == nullptr) return false; 7587 } 7588 7589 // Call the stub. 7590 Node* call; 7591 if (block_size == nullptr) { 7592 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7593 OptoRuntime::digestBase_implCompressMB_Type(false), 7594 stubAddr, stubName, TypePtr::BOTTOM, 7595 src_start, state, ofs, limit); 7596 } else { 7597 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7598 OptoRuntime::digestBase_implCompressMB_Type(true), 7599 stubAddr, stubName, TypePtr::BOTTOM, 7600 src_start, state, block_size, ofs, limit); 7601 } 7602 7603 // return ofs (int) 7604 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7605 set_result(result); 7606 7607 return true; 7608 } 7609 7610 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 7611 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 7612 assert(UseAES, "need AES instruction support"); 7613 address stubAddr = nullptr; 7614 const char *stubName = nullptr; 7615 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 7616 stubName = "galoisCounterMode_AESCrypt"; 7617 7618 if (stubAddr == nullptr) return false; 7619 7620 Node* in = argument(0); 7621 Node* inOfs = argument(1); 7622 Node* len = argument(2); 7623 Node* ct = argument(3); 7624 Node* ctOfs = argument(4); 7625 Node* out = argument(5); 7626 Node* outOfs = argument(6); 7627 Node* gctr_object = argument(7); 7628 Node* ghash_object = argument(8); 7629 7630 // (1) in, ct and out are arrays. 7631 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 7632 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 7633 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 7634 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 7635 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 7636 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 7637 7638 // checks are the responsibility of the caller 7639 Node* in_start = in; 7640 Node* ct_start = ct; 7641 Node* out_start = out; 7642 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 7643 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 7644 in_start = array_element_address(in, inOfs, T_BYTE); 7645 ct_start = array_element_address(ct, ctOfs, T_BYTE); 7646 out_start = array_element_address(out, outOfs, T_BYTE); 7647 } 7648 7649 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7650 // (because of the predicated logic executed earlier). 7651 // so we cast it here safely. 7652 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7653 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7654 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 7655 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 7656 Node* state = load_field_from_object(ghash_object, "state", "[J"); 7657 7658 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 7659 return false; 7660 } 7661 // cast it to what we know it will be at runtime 7662 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 7663 assert(tinst != nullptr, "GCTR obj is null"); 7664 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7665 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7666 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7667 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7668 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7669 const TypeOopPtr* xtype = aklass->as_instance_type(); 7670 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7671 aescrypt_object = _gvn.transform(aescrypt_object); 7672 // we need to get the start of the aescrypt_object's expanded key array 7673 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7674 if (k_start == nullptr) return false; 7675 // similarly, get the start address of the r vector 7676 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 7677 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7678 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 7679 7680 7681 // Call the stub, passing params 7682 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7683 OptoRuntime::galoisCounterMode_aescrypt_Type(), 7684 stubAddr, stubName, TypePtr::BOTTOM, 7685 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 7686 7687 // return cipher length (int) 7688 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 7689 set_result(retvalue); 7690 7691 return true; 7692 } 7693 7694 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 7695 // Return node representing slow path of predicate check. 7696 // the pseudo code we want to emulate with this predicate is: 7697 // for encryption: 7698 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7699 // for decryption: 7700 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7701 // note cipher==plain is more conservative than the original java code but that's OK 7702 // 7703 7704 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 7705 // The receiver was checked for null already. 7706 Node* objGCTR = argument(7); 7707 // Load embeddedCipher field of GCTR object. 7708 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7709 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 7710 7711 // get AESCrypt klass for instanceOf check 7712 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7713 // will have same classloader as CipherBlockChaining object 7714 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 7715 assert(tinst != nullptr, "GCTR obj is null"); 7716 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7717 7718 // we want to do an instanceof comparison against the AESCrypt class 7719 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7720 if (!klass_AESCrypt->is_loaded()) { 7721 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7722 Node* ctrl = control(); 7723 set_control(top()); // no regular fast path 7724 return ctrl; 7725 } 7726 7727 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7728 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7729 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7730 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7731 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7732 7733 return instof_false; // even if it is null 7734 } 7735 7736 //------------------------------get_state_from_digest_object----------------------- 7737 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 7738 const char* state_type; 7739 switch (elem_type) { 7740 case T_BYTE: state_type = "[B"; break; 7741 case T_INT: state_type = "[I"; break; 7742 case T_LONG: state_type = "[J"; break; 7743 default: ShouldNotReachHere(); 7744 } 7745 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 7746 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 7747 if (digest_state == nullptr) return (Node *) nullptr; 7748 7749 // now have the array, need to get the start address of the state array 7750 Node* state = array_element_address(digest_state, intcon(0), elem_type); 7751 return state; 7752 } 7753 7754 //------------------------------get_block_size_from_sha3_object---------------------------------- 7755 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 7756 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 7757 assert (block_size != nullptr, "sanity"); 7758 return block_size; 7759 } 7760 7761 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 7762 // Return node representing slow path of predicate check. 7763 // the pseudo code we want to emulate with this predicate is: 7764 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 7765 // 7766 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 7767 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7768 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7769 assert((uint)predicate < 5, "sanity"); 7770 7771 // The receiver was checked for null already. 7772 Node* digestBaseObj = argument(0); 7773 7774 // get DigestBase klass for instanceOf check 7775 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 7776 assert(tinst != nullptr, "digestBaseObj is null"); 7777 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7778 7779 const char* klass_name = nullptr; 7780 switch (predicate) { 7781 case 0: 7782 if (UseMD5Intrinsics) { 7783 // we want to do an instanceof comparison against the MD5 class 7784 klass_name = "sun/security/provider/MD5"; 7785 } 7786 break; 7787 case 1: 7788 if (UseSHA1Intrinsics) { 7789 // we want to do an instanceof comparison against the SHA class 7790 klass_name = "sun/security/provider/SHA"; 7791 } 7792 break; 7793 case 2: 7794 if (UseSHA256Intrinsics) { 7795 // we want to do an instanceof comparison against the SHA2 class 7796 klass_name = "sun/security/provider/SHA2"; 7797 } 7798 break; 7799 case 3: 7800 if (UseSHA512Intrinsics) { 7801 // we want to do an instanceof comparison against the SHA5 class 7802 klass_name = "sun/security/provider/SHA5"; 7803 } 7804 break; 7805 case 4: 7806 if (UseSHA3Intrinsics) { 7807 // we want to do an instanceof comparison against the SHA3 class 7808 klass_name = "sun/security/provider/SHA3"; 7809 } 7810 break; 7811 default: 7812 fatal("unknown SHA intrinsic predicate: %d", predicate); 7813 } 7814 7815 ciKlass* klass = nullptr; 7816 if (klass_name != nullptr) { 7817 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 7818 } 7819 if ((klass == nullptr) || !klass->is_loaded()) { 7820 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 7821 Node* ctrl = control(); 7822 set_control(top()); // no intrinsic path 7823 return ctrl; 7824 } 7825 ciInstanceKlass* instklass = klass->as_instance_klass(); 7826 7827 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 7828 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7829 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7830 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7831 7832 return instof_false; // even if it is null 7833 } 7834 7835 //-------------inline_fma----------------------------------- 7836 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 7837 Node *a = nullptr; 7838 Node *b = nullptr; 7839 Node *c = nullptr; 7840 Node* result = nullptr; 7841 switch (id) { 7842 case vmIntrinsics::_fmaD: 7843 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 7844 // no receiver since it is static method 7845 a = round_double_node(argument(0)); 7846 b = round_double_node(argument(2)); 7847 c = round_double_node(argument(4)); 7848 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 7849 break; 7850 case vmIntrinsics::_fmaF: 7851 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 7852 a = argument(0); 7853 b = argument(1); 7854 c = argument(2); 7855 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 7856 break; 7857 default: 7858 fatal_unexpected_iid(id); break; 7859 } 7860 set_result(result); 7861 return true; 7862 } 7863 7864 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 7865 // argument(0) is receiver 7866 Node* codePoint = argument(1); 7867 Node* n = nullptr; 7868 7869 switch (id) { 7870 case vmIntrinsics::_isDigit : 7871 n = new DigitNode(control(), codePoint); 7872 break; 7873 case vmIntrinsics::_isLowerCase : 7874 n = new LowerCaseNode(control(), codePoint); 7875 break; 7876 case vmIntrinsics::_isUpperCase : 7877 n = new UpperCaseNode(control(), codePoint); 7878 break; 7879 case vmIntrinsics::_isWhitespace : 7880 n = new WhitespaceNode(control(), codePoint); 7881 break; 7882 default: 7883 fatal_unexpected_iid(id); 7884 } 7885 7886 set_result(_gvn.transform(n)); 7887 return true; 7888 } 7889 7890 //------------------------------inline_fp_min_max------------------------------ 7891 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 7892 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 7893 7894 // The intrinsic should be used only when the API branches aren't predictable, 7895 // the last one performing the most important comparison. The following heuristic 7896 // uses the branch statistics to eventually bail out if necessary. 7897 7898 ciMethodData *md = callee()->method_data(); 7899 7900 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 7901 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 7902 7903 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 7904 // Bail out if the call-site didn't contribute enough to the statistics. 7905 return false; 7906 } 7907 7908 uint taken = 0, not_taken = 0; 7909 7910 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 7911 if (p->is_BranchData()) { 7912 taken = ((ciBranchData*)p)->taken(); 7913 not_taken = ((ciBranchData*)p)->not_taken(); 7914 } 7915 } 7916 7917 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 7918 balance = balance < 0 ? -balance : balance; 7919 if ( balance > 0.2 ) { 7920 // Bail out if the most important branch is predictable enough. 7921 return false; 7922 } 7923 } 7924 */ 7925 7926 Node *a = nullptr; 7927 Node *b = nullptr; 7928 Node *n = nullptr; 7929 switch (id) { 7930 case vmIntrinsics::_maxF: 7931 case vmIntrinsics::_minF: 7932 case vmIntrinsics::_maxF_strict: 7933 case vmIntrinsics::_minF_strict: 7934 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 7935 a = argument(0); 7936 b = argument(1); 7937 break; 7938 case vmIntrinsics::_maxD: 7939 case vmIntrinsics::_minD: 7940 case vmIntrinsics::_maxD_strict: 7941 case vmIntrinsics::_minD_strict: 7942 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 7943 a = round_double_node(argument(0)); 7944 b = round_double_node(argument(2)); 7945 break; 7946 default: 7947 fatal_unexpected_iid(id); 7948 break; 7949 } 7950 switch (id) { 7951 case vmIntrinsics::_maxF: 7952 case vmIntrinsics::_maxF_strict: 7953 n = new MaxFNode(a, b); 7954 break; 7955 case vmIntrinsics::_minF: 7956 case vmIntrinsics::_minF_strict: 7957 n = new MinFNode(a, b); 7958 break; 7959 case vmIntrinsics::_maxD: 7960 case vmIntrinsics::_maxD_strict: 7961 n = new MaxDNode(a, b); 7962 break; 7963 case vmIntrinsics::_minD: 7964 case vmIntrinsics::_minD_strict: 7965 n = new MinDNode(a, b); 7966 break; 7967 default: 7968 fatal_unexpected_iid(id); 7969 break; 7970 } 7971 set_result(_gvn.transform(n)); 7972 return true; 7973 } 7974 7975 bool LibraryCallKit::inline_profileBoolean() { 7976 Node* counts = argument(1); 7977 const TypeAryPtr* ary = nullptr; 7978 ciArray* aobj = nullptr; 7979 if (counts->is_Con() 7980 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 7981 && (aobj = ary->const_oop()->as_array()) != nullptr 7982 && (aobj->length() == 2)) { 7983 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 7984 jint false_cnt = aobj->element_value(0).as_int(); 7985 jint true_cnt = aobj->element_value(1).as_int(); 7986 7987 if (C->log() != nullptr) { 7988 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 7989 false_cnt, true_cnt); 7990 } 7991 7992 if (false_cnt + true_cnt == 0) { 7993 // According to profile, never executed. 7994 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 7995 Deoptimization::Action_reinterpret); 7996 return true; 7997 } 7998 7999 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8000 // is a number of each value occurrences. 8001 Node* result = argument(0); 8002 if (false_cnt == 0 || true_cnt == 0) { 8003 // According to profile, one value has been never seen. 8004 int expected_val = (false_cnt == 0) ? 1 : 0; 8005 8006 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8007 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8008 8009 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8010 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8011 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8012 8013 { // Slow path: uncommon trap for never seen value and then reexecute 8014 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8015 // the value has been seen at least once. 8016 PreserveJVMState pjvms(this); 8017 PreserveReexecuteState preexecs(this); 8018 jvms()->set_should_reexecute(true); 8019 8020 set_control(slow_path); 8021 set_i_o(i_o()); 8022 8023 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8024 Deoptimization::Action_reinterpret); 8025 } 8026 // The guard for never seen value enables sharpening of the result and 8027 // returning a constant. It allows to eliminate branches on the same value 8028 // later on. 8029 set_control(fast_path); 8030 result = intcon(expected_val); 8031 } 8032 // Stop profiling. 8033 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8034 // By replacing method body with profile data (represented as ProfileBooleanNode 8035 // on IR level) we effectively disable profiling. 8036 // It enables full speed execution once optimized code is generated. 8037 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8038 C->record_for_igvn(profile); 8039 set_result(profile); 8040 return true; 8041 } else { 8042 // Continue profiling. 8043 // Profile data isn't available at the moment. So, execute method's bytecode version. 8044 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8045 // is compiled and counters aren't available since corresponding MethodHandle 8046 // isn't a compile-time constant. 8047 return false; 8048 } 8049 } 8050 8051 bool LibraryCallKit::inline_isCompileConstant() { 8052 Node* n = argument(0); 8053 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8054 return true; 8055 } 8056 8057 //------------------------------- inline_getObjectSize/sizeOf -------------------------------------- 8058 // 8059 // Calculate the runtime size of the object/array. 8060 // 8061 // long java.lang.Runtime.sizeOf(Object obj) 8062 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8063 // 8064 bool LibraryCallKit::inline_sizeOf() { 8065 Node* obj = argument(0); 8066 return inline_sizeOf_impl(obj); 8067 } 8068 8069 bool LibraryCallKit::inline_getObjectSize() { 8070 Node* obj = argument(3); 8071 return inline_sizeOf_impl(obj); 8072 } 8073 8074 bool LibraryCallKit::inline_sizeOf_impl(Node* obj) { 8075 Node* klass_node = load_object_klass(obj); 8076 8077 jint layout_con = Klass::_lh_neutral_value; 8078 Node* layout_val = get_layout_helper(klass_node, layout_con); 8079 int layout_is_con = (layout_val == nullptr); 8080 8081 if (layout_is_con) { 8082 // Layout helper is constant, can figure out things at compile time. 8083 8084 if (Klass::layout_helper_is_instance(layout_con)) { 8085 // Instance case: layout_con contains the size itself. 8086 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8087 set_result(size); 8088 } else { 8089 // Array case: size is round(header + element_size*arraylength). 8090 // Since arraylength is different for every array instance, we have to 8091 // compute the whole thing at runtime. 8092 8093 Node* arr_length = load_array_length(obj); 8094 8095 int round_mask = MinObjAlignmentInBytes - 1; 8096 int hsize = Klass::layout_helper_header_size(layout_con); 8097 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8098 8099 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8100 round_mask = 0; // strength-reduce it if it goes away completely 8101 } 8102 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8103 Node* header_size = intcon(hsize + round_mask); 8104 8105 Node* lengthx = ConvI2X(arr_length); 8106 Node* headerx = ConvI2X(header_size); 8107 8108 Node* abody = lengthx; 8109 if (eshift != 0) { 8110 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8111 } 8112 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8113 if (round_mask != 0) { 8114 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8115 } 8116 size = ConvX2L(size); 8117 set_result(size); 8118 } 8119 } else { 8120 // Layout helper is not constant, need to test for array-ness at runtime. 8121 8122 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8123 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8124 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8125 record_for_igvn(result_reg); 8126 8127 Node* array_ctl = generate_array_guard(klass_node, nullptr); 8128 if (array_ctl != nullptr) { 8129 // Array case: size is round(header + element_size*arraylength). 8130 // Since arraylength is different for every array instance, we have to 8131 // compute the whole thing at runtime. 8132 8133 PreserveJVMState pjvms(this); 8134 set_control(array_ctl); 8135 Node* arr_length = load_array_length(obj); 8136 8137 int round_mask = MinObjAlignmentInBytes - 1; 8138 Node* mask = intcon(round_mask); 8139 8140 Node* hss = intcon(Klass::_lh_header_size_shift); 8141 Node* hsm = intcon(Klass::_lh_header_size_mask); 8142 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8143 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8144 header_size = _gvn.transform(new AddINode(header_size, mask)); 8145 8146 // There is no need to mask or shift this value. 8147 // The semantics of LShiftINode include an implicit mask to 0x1F. 8148 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8149 Node* elem_shift = layout_val; 8150 8151 Node* lengthx = ConvI2X(arr_length); 8152 Node* headerx = ConvI2X(header_size); 8153 8154 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8155 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8156 if (round_mask != 0) { 8157 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8158 } 8159 size = ConvX2L(size); 8160 8161 result_reg->init_req(_array_path, control()); 8162 result_val->init_req(_array_path, size); 8163 } 8164 8165 if (!stopped()) { 8166 // Instance case: the layout helper gives us instance size almost directly, 8167 // but we need to mask out the _lh_instance_slow_path_bit. 8168 Node* size = ConvI2X(layout_val); 8169 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8170 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8171 size = _gvn.transform(new AndXNode(size, mask)); 8172 size = ConvX2L(size); 8173 8174 result_reg->init_req(_instance_path, control()); 8175 result_val->init_req(_instance_path, size); 8176 } 8177 8178 set_result(result_reg, result_val); 8179 } 8180 8181 return true; 8182 } 8183 8184 //------------------------------- inline_blackhole -------------------------------------- 8185 // 8186 // Make sure all arguments to this node are alive. 8187 // This matches methods that were requested to be blackholed through compile commands. 8188 // 8189 bool LibraryCallKit::inline_blackhole() { 8190 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8191 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8192 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8193 8194 // Blackhole node pinches only the control, not memory. This allows 8195 // the blackhole to be pinned in the loop that computes blackholed 8196 // values, but have no other side effects, like breaking the optimizations 8197 // across the blackhole. 8198 8199 Node* bh = _gvn.transform(new BlackholeNode(control())); 8200 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8201 8202 // Bind call arguments as blackhole arguments to keep them alive 8203 uint nargs = callee()->arg_size(); 8204 for (uint i = 0; i < nargs; i++) { 8205 bh->add_req(argument(i)); 8206 } 8207 8208 return true; 8209 } 8210 8211 bool LibraryCallKit::inline_timestamp(bool serial) { 8212 insert_mem_bar(Op_MemBarCPUOrder); 8213 Node* node = serial ? 8214 _gvn.transform(new TimestampSerialNode(control())) : 8215 _gvn.transform(new TimestampNode(control())); 8216 set_result(node); 8217 insert_mem_bar(Op_MemBarCPUOrder); 8218 return true; 8219 } 8220 8221 bool LibraryCallKit::inline_addressOf() { 8222 Node* obj = argument(0); 8223 Node* raw_val = _gvn.transform(new CastP2XNode(NULL, obj)); 8224 Node* long_val = ConvX2L(raw_val); 8225 set_result(long_val); 8226 return true; 8227 }