1 /*
   2  * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "prims/unsafe.hpp"
  54 #include "runtime/objectMonitor.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "utilities/macros.hpp"
  58 #include "utilities/powerOfTwo.hpp"
  59 
  60 //---------------------------make_vm_intrinsic----------------------------
  61 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  62   vmIntrinsicID id = m->intrinsic_id();
  63   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  64 
  65   if (!m->is_loaded()) {
  66     // Do not attempt to inline unloaded methods.
  67     return NULL;
  68   }
  69 
  70   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  71   bool is_available = false;
  72 
  73   {
  74     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  75     // the compiler must transition to '_thread_in_vm' state because both
  76     // methods access VM-internal data.
  77     VM_ENTRY_MARK;
  78     methodHandle mh(THREAD, m->get_Method());
  79     is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
  80                    !C->directive()->is_intrinsic_disabled(mh) &&
  81                    !vmIntrinsics::is_disabled_by_flags(mh);
  82 
  83   }
  84 
  85   if (is_available) {
  86     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
  87     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
  88     return new LibraryIntrinsic(m, is_virtual,
  89                                 vmIntrinsics::predicates_needed(id),
  90                                 vmIntrinsics::does_virtual_dispatch(id),
  91                                 id);
  92   } else {
  93     return NULL;
  94   }
  95 }
  96 
  97 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
  98   LibraryCallKit kit(jvms, this);
  99   Compile* C = kit.C;
 100   int nodes = C->unique();
 101 #ifndef PRODUCT
 102   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 103     char buf[1000];
 104     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 105     tty->print_cr("Intrinsic %s", str);
 106   }
 107 #endif
 108   ciMethod* callee = kit.callee();
 109   const int bci    = kit.bci();
 110 #ifdef ASSERT
 111   Node* ctrl = kit.control();
 112 #endif
 113   // Try to inline the intrinsic.
 114   if (callee->check_intrinsic_candidate() &&
 115       kit.try_to_inline(_last_predicate)) {
 116     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 117                                           : "(intrinsic)";
 118     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 119     if (C->print_intrinsics() || C->print_inlining()) {
 120       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 121     }
 122     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 123     if (C->log()) {
 124       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 125                      vmIntrinsics::name_at(intrinsic_id()),
 126                      (is_virtual() ? " virtual='1'" : ""),
 127                      C->unique() - nodes);
 128     }
 129     // Push the result from the inlined method onto the stack.
 130     kit.push_result();
 131     C->print_inlining_update(this);
 132     return kit.transfer_exceptions_into_jvms();
 133   }
 134 
 135   // The intrinsic bailed out
 136   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 137   if (jvms->has_method()) {
 138     // Not a root compile.
 139     const char* msg;
 140     if (callee->intrinsic_candidate()) {
 141       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 142     } else {
 143       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 144                          : "failed to inline (intrinsic), method not annotated";
 145     }
 146     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
 147     if (C->print_intrinsics() || C->print_inlining()) {
 148       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 149     }
 150   } else {
 151     // Root compile
 152     ResourceMark rm;
 153     stringStream msg_stream;
 154     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 155                      vmIntrinsics::name_at(intrinsic_id()),
 156                      is_virtual() ? " (virtual)" : "", bci);
 157     const char *msg = msg_stream.as_string();
 158     log_debug(jit, inlining)("%s", msg);
 159     if (C->print_intrinsics() || C->print_inlining()) {
 160       tty->print("%s", msg);
 161     }
 162   }
 163   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 164   C->print_inlining_update(this);
 165 
 166   return NULL;
 167 }
 168 
 169 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 170   LibraryCallKit kit(jvms, this);
 171   Compile* C = kit.C;
 172   int nodes = C->unique();
 173   _last_predicate = predicate;
 174 #ifndef PRODUCT
 175   assert(is_predicated() && predicate < predicates_count(), "sanity");
 176   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 177     char buf[1000];
 178     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 179     tty->print_cr("Predicate for intrinsic %s", str);
 180   }
 181 #endif
 182   ciMethod* callee = kit.callee();
 183   const int bci    = kit.bci();
 184 
 185   Node* slow_ctl = kit.try_to_predicate(predicate);
 186   if (!kit.failing()) {
 187     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 188                                           : "(intrinsic, predicate)";
 189     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 190     if (C->print_intrinsics() || C->print_inlining()) {
 191       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 192     }
 193     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 194     if (C->log()) {
 195       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 196                      vmIntrinsics::name_at(intrinsic_id()),
 197                      (is_virtual() ? " virtual='1'" : ""),
 198                      C->unique() - nodes);
 199     }
 200     return slow_ctl; // Could be NULL if the check folds.
 201   }
 202 
 203   // The intrinsic bailed out
 204   if (jvms->has_method()) {
 205     // Not a root compile.
 206     const char* msg = "failed to generate predicate for intrinsic";
 207     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
 208     if (C->print_intrinsics() || C->print_inlining()) {
 209       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 210     }
 211   } else {
 212     // Root compile
 213     ResourceMark rm;
 214     stringStream msg_stream;
 215     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 216                      vmIntrinsics::name_at(intrinsic_id()),
 217                      is_virtual() ? " (virtual)" : "", bci);
 218     const char *msg = msg_stream.as_string();
 219     log_debug(jit, inlining)("%s", msg);
 220     if (C->print_intrinsics() || C->print_inlining()) {
 221       C->print_inlining_stream()->print("%s", msg);
 222     }
 223   }
 224   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 225   return NULL;
 226 }
 227 
 228 bool LibraryCallKit::try_to_inline(int predicate) {
 229   // Handle symbolic names for otherwise undistinguished boolean switches:
 230   const bool is_store       = true;
 231   const bool is_compress    = true;
 232   const bool is_static      = true;
 233   const bool is_volatile    = true;
 234 
 235   if (!jvms()->has_method()) {
 236     // Root JVMState has a null method.
 237     assert(map()->memory()->Opcode() == Op_Parm, "");
 238     // Insert the memory aliasing node
 239     set_all_memory(reset_memory());
 240   }
 241   assert(merged_memory(), "");
 242 
 243   switch (intrinsic_id()) {
 244   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 245   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 246   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 247 
 248   case vmIntrinsics::_ceil:
 249   case vmIntrinsics::_floor:
 250   case vmIntrinsics::_rint:
 251   case vmIntrinsics::_dsin:
 252   case vmIntrinsics::_dcos:
 253   case vmIntrinsics::_dtan:
 254   case vmIntrinsics::_dabs:
 255   case vmIntrinsics::_fabs:
 256   case vmIntrinsics::_iabs:
 257   case vmIntrinsics::_labs:
 258   case vmIntrinsics::_datan2:
 259   case vmIntrinsics::_dsqrt:
 260   case vmIntrinsics::_dsqrt_strict:
 261   case vmIntrinsics::_dexp:
 262   case vmIntrinsics::_dlog:
 263   case vmIntrinsics::_dlog10:
 264   case vmIntrinsics::_dpow:
 265   case vmIntrinsics::_dcopySign:
 266   case vmIntrinsics::_fcopySign:
 267   case vmIntrinsics::_dsignum:
 268   case vmIntrinsics::_roundF:
 269   case vmIntrinsics::_roundD:
 270   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 271 
 272   case vmIntrinsics::_notify:
 273   case vmIntrinsics::_notifyAll:
 274     return inline_notify(intrinsic_id());
 275 
 276   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 277   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 278   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 279   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 280   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 281   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 282   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 283   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 284   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 285   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 286   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 287   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 288   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 289   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 290 
 291   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 292 
 293   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 294   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 295   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 296   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 297 
 298   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 299   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 300   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 301   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 302   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 303   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 304   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 305   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 306 
 307   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 308   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 309 
 310   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 311   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 312   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 313   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 314 
 315   case vmIntrinsics::_compressStringC:
 316   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 317   case vmIntrinsics::_inflateStringC:
 318   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 319 
 320   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 321   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 322   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 323   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 324   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 325   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 326   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 327   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 328   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 329 
 330   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 331   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 332   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 333   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 334   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 335   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 336   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 337   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 338   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 339 
 340   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 341   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 342   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 343   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 344   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 345   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 346   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 347   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 348   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 349 
 350   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 351   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 352   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 353   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 354   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 355   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 356   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 357   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 358   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 359 
 360   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 361   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 362   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 363   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 364 
 365   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 366   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 367   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 368   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 369 
 370   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 371   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 372   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 373   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 374   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 375   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 376   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 377   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 378   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 379 
 380   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 381   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 382   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 383   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 384   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 385   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 386   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 387   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 388   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 389 
 390   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 391   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 392   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 393   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 394   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 395   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 396   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 397   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 398   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 399 
 400   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 401   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 402   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 403   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 404   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 405   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 406   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 407   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 408   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 409 
 410   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 411   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 412   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 413   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 414   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 415 
 416   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 417   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 418   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 419   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 420   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 421   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 422   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 423   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 424   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 425   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 426   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 427   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 428   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 429   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 430   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 431   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 432   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 433   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 434   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 435   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 436 
 437   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 438   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 439   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 440   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 441   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 442   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 443   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 444   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 445   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 446   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 447   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 448   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 449   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 450   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 451   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 452 
 453   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 454   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 455   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 456   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 457 
 458   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 459   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 460   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 461   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 462   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 463 
 464   case vmIntrinsics::_loadFence:
 465   case vmIntrinsics::_storeFence:
 466   case vmIntrinsics::_storeStoreFence:
 467   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 468 
 469   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 470 
 471   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 472   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 473   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 474 
 475   case vmIntrinsics::_extentLocalCache:          return inline_native_extentLocalCache();
 476   case vmIntrinsics::_setExtentLocalCache:       return inline_native_setExtentLocalCache();
 477 
 478 #ifdef JFR_HAVE_INTRINSICS
 479   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 480   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 481 #endif
 482   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 483   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 484   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 485   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 486   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 487   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 488   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 489   case vmIntrinsics::_getLength:                return inline_native_getLength();
 490   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 491   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 492   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 493   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 494   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 495   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 496   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 497 
 498   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 499   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 500 
 501   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 502 
 503   case vmIntrinsics::_isInstance:
 504   case vmIntrinsics::_getModifiers:
 505   case vmIntrinsics::_isInterface:
 506   case vmIntrinsics::_isArray:
 507   case vmIntrinsics::_isPrimitive:
 508   case vmIntrinsics::_isHidden:
 509   case vmIntrinsics::_getSuperclass:
 510   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 511 
 512   case vmIntrinsics::_floatToRawIntBits:
 513   case vmIntrinsics::_floatToIntBits:
 514   case vmIntrinsics::_intBitsToFloat:
 515   case vmIntrinsics::_doubleToRawLongBits:
 516   case vmIntrinsics::_doubleToLongBits:
 517   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 518 
 519   case vmIntrinsics::_floatIsInfinite:
 520   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 521 
 522   case vmIntrinsics::_numberOfLeadingZeros_i:
 523   case vmIntrinsics::_numberOfLeadingZeros_l:
 524   case vmIntrinsics::_numberOfTrailingZeros_i:
 525   case vmIntrinsics::_numberOfTrailingZeros_l:
 526   case vmIntrinsics::_bitCount_i:
 527   case vmIntrinsics::_bitCount_l:
 528   case vmIntrinsics::_reverse_i:
 529   case vmIntrinsics::_reverse_l:
 530   case vmIntrinsics::_reverseBytes_i:
 531   case vmIntrinsics::_reverseBytes_l:
 532   case vmIntrinsics::_reverseBytes_s:
 533   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 534 
 535   case vmIntrinsics::_compress_i:
 536   case vmIntrinsics::_compress_l:
 537   case vmIntrinsics::_expand_i:
 538   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 539 
 540   case vmIntrinsics::_compareUnsigned_i:
 541   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 542 
 543   case vmIntrinsics::_divideUnsigned_i:
 544   case vmIntrinsics::_divideUnsigned_l:
 545   case vmIntrinsics::_remainderUnsigned_i:
 546   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 547 
 548   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 549 
 550   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 551   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 552   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 553 
 554   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 555 
 556   case vmIntrinsics::_aescrypt_encryptBlock:
 557   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 558 
 559   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 560   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 561     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 562 
 563   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 564   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 565     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 566 
 567   case vmIntrinsics::_counterMode_AESCrypt:
 568     return inline_counterMode_AESCrypt(intrinsic_id());
 569 
 570   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 571     return inline_galoisCounterMode_AESCrypt();
 572 
 573   case vmIntrinsics::_md5_implCompress:
 574   case vmIntrinsics::_sha_implCompress:
 575   case vmIntrinsics::_sha2_implCompress:
 576   case vmIntrinsics::_sha5_implCompress:
 577   case vmIntrinsics::_sha3_implCompress:
 578     return inline_digestBase_implCompress(intrinsic_id());
 579 
 580   case vmIntrinsics::_digestBase_implCompressMB:
 581     return inline_digestBase_implCompressMB(predicate);
 582 
 583   case vmIntrinsics::_multiplyToLen:
 584     return inline_multiplyToLen();
 585 
 586   case vmIntrinsics::_squareToLen:
 587     return inline_squareToLen();
 588 
 589   case vmIntrinsics::_mulAdd:
 590     return inline_mulAdd();
 591 
 592   case vmIntrinsics::_montgomeryMultiply:
 593     return inline_montgomeryMultiply();
 594   case vmIntrinsics::_montgomerySquare:
 595     return inline_montgomerySquare();
 596 
 597   case vmIntrinsics::_bigIntegerRightShiftWorker:
 598     return inline_bigIntegerShift(true);
 599   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 600     return inline_bigIntegerShift(false);
 601 
 602   case vmIntrinsics::_vectorizedMismatch:
 603     return inline_vectorizedMismatch();
 604 
 605   case vmIntrinsics::_ghash_processBlocks:
 606     return inline_ghash_processBlocks();
 607   case vmIntrinsics::_base64_encodeBlock:
 608     return inline_base64_encodeBlock();
 609   case vmIntrinsics::_base64_decodeBlock:
 610     return inline_base64_decodeBlock();
 611 
 612   case vmIntrinsics::_encodeISOArray:
 613   case vmIntrinsics::_encodeByteISOArray:
 614     return inline_encodeISOArray(false);
 615   case vmIntrinsics::_encodeAsciiArray:
 616     return inline_encodeISOArray(true);
 617 
 618   case vmIntrinsics::_updateCRC32:
 619     return inline_updateCRC32();
 620   case vmIntrinsics::_updateBytesCRC32:
 621     return inline_updateBytesCRC32();
 622   case vmIntrinsics::_updateByteBufferCRC32:
 623     return inline_updateByteBufferCRC32();
 624 
 625   case vmIntrinsics::_updateBytesCRC32C:
 626     return inline_updateBytesCRC32C();
 627   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 628     return inline_updateDirectByteBufferCRC32C();
 629 
 630   case vmIntrinsics::_updateBytesAdler32:
 631     return inline_updateBytesAdler32();
 632   case vmIntrinsics::_updateByteBufferAdler32:
 633     return inline_updateByteBufferAdler32();
 634 
 635   case vmIntrinsics::_profileBoolean:
 636     return inline_profileBoolean();
 637   case vmIntrinsics::_isCompileConstant:
 638     return inline_isCompileConstant();
 639 
 640   case vmIntrinsics::_countPositives:
 641     return inline_countPositives();
 642 
 643   case vmIntrinsics::_fmaD:
 644   case vmIntrinsics::_fmaF:
 645     return inline_fma(intrinsic_id());
 646 
 647   case vmIntrinsics::_Continuation_doYield:
 648     return inline_continuation_do_yield();
 649 
 650   case vmIntrinsics::_isDigit:
 651   case vmIntrinsics::_isLowerCase:
 652   case vmIntrinsics::_isUpperCase:
 653   case vmIntrinsics::_isWhitespace:
 654     return inline_character_compare(intrinsic_id());
 655 
 656   case vmIntrinsics::_min:
 657   case vmIntrinsics::_max:
 658   case vmIntrinsics::_min_strict:
 659   case vmIntrinsics::_max_strict:
 660     return inline_min_max(intrinsic_id());
 661 
 662   case vmIntrinsics::_maxF:
 663   case vmIntrinsics::_minF:
 664   case vmIntrinsics::_maxD:
 665   case vmIntrinsics::_minD:
 666   case vmIntrinsics::_maxF_strict:
 667   case vmIntrinsics::_minF_strict:
 668   case vmIntrinsics::_maxD_strict:
 669   case vmIntrinsics::_minD_strict:
 670       return inline_fp_min_max(intrinsic_id());
 671 
 672   case vmIntrinsics::_VectorUnaryOp:
 673     return inline_vector_nary_operation(1);
 674   case vmIntrinsics::_VectorBinaryOp:
 675     return inline_vector_nary_operation(2);
 676   case vmIntrinsics::_VectorTernaryOp:
 677     return inline_vector_nary_operation(3);
 678   case vmIntrinsics::_VectorFromBitsCoerced:
 679     return inline_vector_frombits_coerced();
 680   case vmIntrinsics::_VectorShuffleIota:
 681     return inline_vector_shuffle_iota();
 682   case vmIntrinsics::_VectorMaskOp:
 683     return inline_vector_mask_operation();
 684   case vmIntrinsics::_VectorShuffleToVector:
 685     return inline_vector_shuffle_to_vector();
 686   case vmIntrinsics::_VectorLoadOp:
 687     return inline_vector_mem_operation(/*is_store=*/false);
 688   case vmIntrinsics::_VectorLoadMaskedOp:
 689     return inline_vector_mem_masked_operation(/*is_store*/false);
 690   case vmIntrinsics::_VectorStoreOp:
 691     return inline_vector_mem_operation(/*is_store=*/true);
 692   case vmIntrinsics::_VectorStoreMaskedOp:
 693     return inline_vector_mem_masked_operation(/*is_store=*/true);
 694   case vmIntrinsics::_VectorGatherOp:
 695     return inline_vector_gather_scatter(/*is_scatter*/ false);
 696   case vmIntrinsics::_VectorScatterOp:
 697     return inline_vector_gather_scatter(/*is_scatter*/ true);
 698   case vmIntrinsics::_VectorReductionCoerced:
 699     return inline_vector_reduction();
 700   case vmIntrinsics::_VectorTest:
 701     return inline_vector_test();
 702   case vmIntrinsics::_VectorBlend:
 703     return inline_vector_blend();
 704   case vmIntrinsics::_VectorRearrange:
 705     return inline_vector_rearrange();
 706   case vmIntrinsics::_VectorCompare:
 707     return inline_vector_compare();
 708   case vmIntrinsics::_VectorBroadcastInt:
 709     return inline_vector_broadcast_int();
 710   case vmIntrinsics::_VectorConvert:
 711     return inline_vector_convert();
 712   case vmIntrinsics::_VectorInsert:
 713     return inline_vector_insert();
 714   case vmIntrinsics::_VectorExtract:
 715     return inline_vector_extract();
 716   case vmIntrinsics::_VectorCompressExpand:
 717     return inline_vector_compress_expand();
 718 
 719   case vmIntrinsics::_getObjectSize:
 720     return inline_getObjectSize();
 721 
 722   case vmIntrinsics::_blackhole:
 723     return inline_blackhole();
 724 
 725   case vmIntrinsics::_shipilev_magic_timestamp:
 726     return inline_timestamp(false);
 727   case vmIntrinsics::_shipilev_magic_timestamp_serial:
 728     return inline_timestamp(true);
 729   case vmIntrinsics::_shipilev_magic_sizeOf:
 730     return inline_sizeOf();
 731   case vmIntrinsics::_shipilev_magic_addressOf:
 732     return inline_addressOf();
 733 
 734   default:
 735     // If you get here, it may be that someone has added a new intrinsic
 736     // to the list in vmIntrinsics.hpp without implementing it here.
 737 #ifndef PRODUCT
 738     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 739       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 740                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 741     }
 742 #endif
 743     return false;
 744   }
 745 }
 746 
 747 Node* LibraryCallKit::try_to_predicate(int predicate) {
 748   if (!jvms()->has_method()) {
 749     // Root JVMState has a null method.
 750     assert(map()->memory()->Opcode() == Op_Parm, "");
 751     // Insert the memory aliasing node
 752     set_all_memory(reset_memory());
 753   }
 754   assert(merged_memory(), "");
 755 
 756   switch (intrinsic_id()) {
 757   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 758     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 759   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 760     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 761   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 762     return inline_electronicCodeBook_AESCrypt_predicate(false);
 763   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 764     return inline_electronicCodeBook_AESCrypt_predicate(true);
 765   case vmIntrinsics::_counterMode_AESCrypt:
 766     return inline_counterMode_AESCrypt_predicate();
 767   case vmIntrinsics::_digestBase_implCompressMB:
 768     return inline_digestBase_implCompressMB_predicate(predicate);
 769   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 770     return inline_galoisCounterMode_AESCrypt_predicate();
 771 
 772   default:
 773     // If you get here, it may be that someone has added a new intrinsic
 774     // to the list in vmIntrinsics.hpp without implementing it here.
 775 #ifndef PRODUCT
 776     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 777       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 778                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 779     }
 780 #endif
 781     Node* slow_ctl = control();
 782     set_control(top()); // No fast path intrinsic
 783     return slow_ctl;
 784   }
 785 }
 786 
 787 //------------------------------set_result-------------------------------
 788 // Helper function for finishing intrinsics.
 789 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 790   record_for_igvn(region);
 791   set_control(_gvn.transform(region));
 792   set_result( _gvn.transform(value));
 793   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 794 }
 795 
 796 //------------------------------generate_guard---------------------------
 797 // Helper function for generating guarded fast-slow graph structures.
 798 // The given 'test', if true, guards a slow path.  If the test fails
 799 // then a fast path can be taken.  (We generally hope it fails.)
 800 // In all cases, GraphKit::control() is updated to the fast path.
 801 // The returned value represents the control for the slow path.
 802 // The return value is never 'top'; it is either a valid control
 803 // or NULL if it is obvious that the slow path can never be taken.
 804 // Also, if region and the slow control are not NULL, the slow edge
 805 // is appended to the region.
 806 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 807   if (stopped()) {
 808     // Already short circuited.
 809     return NULL;
 810   }
 811 
 812   // Build an if node and its projections.
 813   // If test is true we take the slow path, which we assume is uncommon.
 814   if (_gvn.type(test) == TypeInt::ZERO) {
 815     // The slow branch is never taken.  No need to build this guard.
 816     return NULL;
 817   }
 818 
 819   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 820 
 821   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 822   if (if_slow == top()) {
 823     // The slow branch is never taken.  No need to build this guard.
 824     return NULL;
 825   }
 826 
 827   if (region != NULL)
 828     region->add_req(if_slow);
 829 
 830   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 831   set_control(if_fast);
 832 
 833   return if_slow;
 834 }
 835 
 836 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 837   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 838 }
 839 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 840   return generate_guard(test, region, PROB_FAIR);
 841 }
 842 
 843 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 844                                                      Node* *pos_index) {
 845   if (stopped())
 846     return NULL;                // already stopped
 847   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 848     return NULL;                // index is already adequately typed
 849   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 850   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 851   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 852   if (is_neg != NULL && pos_index != NULL) {
 853     // Emulate effect of Parse::adjust_map_after_if.
 854     Node* ccast = new CastIINode(index, TypeInt::POS);
 855     ccast->set_req(0, control());
 856     (*pos_index) = _gvn.transform(ccast);
 857   }
 858   return is_neg;
 859 }
 860 
 861 // Make sure that 'position' is a valid limit index, in [0..length].
 862 // There are two equivalent plans for checking this:
 863 //   A. (offset + copyLength)  unsigned<=  arrayLength
 864 //   B. offset  <=  (arrayLength - copyLength)
 865 // We require that all of the values above, except for the sum and
 866 // difference, are already known to be non-negative.
 867 // Plan A is robust in the face of overflow, if offset and copyLength
 868 // are both hugely positive.
 869 //
 870 // Plan B is less direct and intuitive, but it does not overflow at
 871 // all, since the difference of two non-negatives is always
 872 // representable.  Whenever Java methods must perform the equivalent
 873 // check they generally use Plan B instead of Plan A.
 874 // For the moment we use Plan A.
 875 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 876                                                   Node* subseq_length,
 877                                                   Node* array_length,
 878                                                   RegionNode* region) {
 879   if (stopped())
 880     return NULL;                // already stopped
 881   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 882   if (zero_offset && subseq_length->eqv_uncast(array_length))
 883     return NULL;                // common case of whole-array copy
 884   Node* last = subseq_length;
 885   if (!zero_offset)             // last += offset
 886     last = _gvn.transform(new AddINode(last, offset));
 887   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 888   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 889   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 890   return is_over;
 891 }
 892 
 893 // Emit range checks for the given String.value byte array
 894 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 895   if (stopped()) {
 896     return; // already stopped
 897   }
 898   RegionNode* bailout = new RegionNode(1);
 899   record_for_igvn(bailout);
 900   if (char_count) {
 901     // Convert char count to byte count
 902     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 903   }
 904 
 905   // Offset and count must not be negative
 906   generate_negative_guard(offset, bailout);
 907   generate_negative_guard(count, bailout);
 908   // Offset + count must not exceed length of array
 909   generate_limit_guard(offset, count, load_array_length(array), bailout);
 910 
 911   if (bailout->req() > 1) {
 912     PreserveJVMState pjvms(this);
 913     set_control(_gvn.transform(bailout));
 914     uncommon_trap(Deoptimization::Reason_intrinsic,
 915                   Deoptimization::Action_maybe_recompile);
 916   }
 917 }
 918 
 919 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
 920                                             bool is_immutable) {
 921   ciKlass* thread_klass = env()->Thread_klass();
 922   const Type* thread_type
 923     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 924 
 925   Node* thread = _gvn.transform(new ThreadLocalNode());
 926   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
 927   tls_output = thread;
 928 
 929   Node* thread_obj_handle
 930     = (is_immutable
 931       ? LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(),
 932         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
 933       : make_load(NULL, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
 934   thread_obj_handle = _gvn.transform(thread_obj_handle);
 935 
 936   DecoratorSet decorators = IN_NATIVE;
 937   if (is_immutable) {
 938     decorators |= C2_IMMUTABLE_MEMORY;
 939   }
 940   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
 941 }
 942 
 943 //--------------------------generate_current_thread--------------------
 944 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 945   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
 946                                /*is_immutable*/false);
 947 }
 948 
 949 //--------------------------generate_virtual_thread--------------------
 950 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
 951   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
 952                                !C->method()->changes_current_thread());
 953 }
 954 
 955 //------------------------------make_string_method_node------------------------
 956 // Helper method for String intrinsic functions. This version is called with
 957 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 958 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 959 // containing the lengths of str1 and str2.
 960 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 961   Node* result = NULL;
 962   switch (opcode) {
 963   case Op_StrIndexOf:
 964     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 965                                 str1_start, cnt1, str2_start, cnt2, ae);
 966     break;
 967   case Op_StrComp:
 968     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
 969                              str1_start, cnt1, str2_start, cnt2, ae);
 970     break;
 971   case Op_StrEquals:
 972     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
 973     // Use the constant length if there is one because optimized match rule may exist.
 974     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
 975                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
 976     break;
 977   default:
 978     ShouldNotReachHere();
 979     return NULL;
 980   }
 981 
 982   // All these intrinsics have checks.
 983   C->set_has_split_ifs(true); // Has chance for split-if optimization
 984   clear_upper_avx();
 985 
 986   return _gvn.transform(result);
 987 }
 988 
 989 //------------------------------inline_string_compareTo------------------------
 990 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
 991   Node* arg1 = argument(0);
 992   Node* arg2 = argument(1);
 993 
 994   arg1 = must_be_not_null(arg1, true);
 995   arg2 = must_be_not_null(arg2, true);
 996 
 997   // Get start addr and length of first argument
 998   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
 999   Node* arg1_cnt    = load_array_length(arg1);
1000 
1001   // Get start addr and length of second argument
1002   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1003   Node* arg2_cnt    = load_array_length(arg2);
1004 
1005   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1006   set_result(result);
1007   return true;
1008 }
1009 
1010 //------------------------------inline_string_equals------------------------
1011 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1012   Node* arg1 = argument(0);
1013   Node* arg2 = argument(1);
1014 
1015   // paths (plus control) merge
1016   RegionNode* region = new RegionNode(3);
1017   Node* phi = new PhiNode(region, TypeInt::BOOL);
1018 
1019   if (!stopped()) {
1020 
1021     arg1 = must_be_not_null(arg1, true);
1022     arg2 = must_be_not_null(arg2, true);
1023 
1024     // Get start addr and length of first argument
1025     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1026     Node* arg1_cnt    = load_array_length(arg1);
1027 
1028     // Get start addr and length of second argument
1029     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1030     Node* arg2_cnt    = load_array_length(arg2);
1031 
1032     // Check for arg1_cnt != arg2_cnt
1033     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1034     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1035     Node* if_ne = generate_slow_guard(bol, NULL);
1036     if (if_ne != NULL) {
1037       phi->init_req(2, intcon(0));
1038       region->init_req(2, if_ne);
1039     }
1040 
1041     // Check for count == 0 is done by assembler code for StrEquals.
1042 
1043     if (!stopped()) {
1044       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1045       phi->init_req(1, equals);
1046       region->init_req(1, control());
1047     }
1048   }
1049 
1050   // post merge
1051   set_control(_gvn.transform(region));
1052   record_for_igvn(region);
1053 
1054   set_result(_gvn.transform(phi));
1055   return true;
1056 }
1057 
1058 //------------------------------inline_array_equals----------------------------
1059 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1060   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1061   Node* arg1 = argument(0);
1062   Node* arg2 = argument(1);
1063 
1064   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1065   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1066   clear_upper_avx();
1067 
1068   return true;
1069 }
1070 
1071 //------------------------------inline_countPositives------------------------------
1072 bool LibraryCallKit::inline_countPositives() {
1073   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1074     return false;
1075   }
1076 
1077   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1078   // no receiver since it is static method
1079   Node* ba         = argument(0);
1080   Node* offset     = argument(1);
1081   Node* len        = argument(2);
1082 
1083   ba = must_be_not_null(ba, true);
1084 
1085   // Range checks
1086   generate_string_range_check(ba, offset, len, false);
1087   if (stopped()) {
1088     return true;
1089   }
1090   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1091   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1092   set_result(_gvn.transform(result));
1093   return true;
1094 }
1095 
1096 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1097   Node* index = argument(0);
1098   Node* length = bt == T_INT ? argument(1) : argument(2);
1099   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1100     return false;
1101   }
1102 
1103   // check that length is positive
1104   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1105   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1106 
1107   {
1108     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1109     uncommon_trap(Deoptimization::Reason_intrinsic,
1110                   Deoptimization::Action_make_not_entrant);
1111   }
1112 
1113   if (stopped()) {
1114     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1115     return true;
1116   }
1117 
1118   // length is now known positive, add a cast node to make this explicit
1119   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1120   Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt);
1121   casted_length = _gvn.transform(casted_length);
1122   replace_in_map(length, casted_length);
1123   length = casted_length;
1124 
1125   // Use an unsigned comparison for the range check itself
1126   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1127   BoolTest::mask btest = BoolTest::lt;
1128   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1129   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1130   _gvn.set_type(rc, rc->Value(&_gvn));
1131   if (!rc_bool->is_Con()) {
1132     record_for_igvn(rc);
1133   }
1134   set_control(_gvn.transform(new IfTrueNode(rc)));
1135   {
1136     PreserveJVMState pjvms(this);
1137     set_control(_gvn.transform(new IfFalseNode(rc)));
1138     uncommon_trap(Deoptimization::Reason_range_check,
1139                   Deoptimization::Action_make_not_entrant);
1140   }
1141 
1142   if (stopped()) {
1143     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1144     return true;
1145   }
1146 
1147   // index is now known to be >= 0 and < length, cast it
1148   Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt);
1149   result = _gvn.transform(result);
1150   set_result(result);
1151   replace_in_map(index, result);
1152   return true;
1153 }
1154 
1155 //------------------------------inline_string_indexOf------------------------
1156 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1157   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1158     return false;
1159   }
1160   Node* src = argument(0);
1161   Node* tgt = argument(1);
1162 
1163   // Make the merge point
1164   RegionNode* result_rgn = new RegionNode(4);
1165   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1166 
1167   src = must_be_not_null(src, true);
1168   tgt = must_be_not_null(tgt, true);
1169 
1170   // Get start addr and length of source string
1171   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1172   Node* src_count = load_array_length(src);
1173 
1174   // Get start addr and length of substring
1175   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1176   Node* tgt_count = load_array_length(tgt);
1177 
1178   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1179     // Divide src size by 2 if String is UTF16 encoded
1180     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1181   }
1182   if (ae == StrIntrinsicNode::UU) {
1183     // Divide substring size by 2 if String is UTF16 encoded
1184     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1185   }
1186 
1187   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1188   if (result != NULL) {
1189     result_phi->init_req(3, result);
1190     result_rgn->init_req(3, control());
1191   }
1192   set_control(_gvn.transform(result_rgn));
1193   record_for_igvn(result_rgn);
1194   set_result(_gvn.transform(result_phi));
1195 
1196   return true;
1197 }
1198 
1199 //-----------------------------inline_string_indexOf-----------------------
1200 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1201   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1202     return false;
1203   }
1204   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1205     return false;
1206   }
1207   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1208   Node* src         = argument(0); // byte[]
1209   Node* src_count   = argument(1); // char count
1210   Node* tgt         = argument(2); // byte[]
1211   Node* tgt_count   = argument(3); // char count
1212   Node* from_index  = argument(4); // char index
1213 
1214   src = must_be_not_null(src, true);
1215   tgt = must_be_not_null(tgt, true);
1216 
1217   // Multiply byte array index by 2 if String is UTF16 encoded
1218   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1219   src_count = _gvn.transform(new SubINode(src_count, from_index));
1220   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1221   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1222 
1223   // Range checks
1224   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1225   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1226   if (stopped()) {
1227     return true;
1228   }
1229 
1230   RegionNode* region = new RegionNode(5);
1231   Node* phi = new PhiNode(region, TypeInt::INT);
1232 
1233   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1234   if (result != NULL) {
1235     // The result is index relative to from_index if substring was found, -1 otherwise.
1236     // Generate code which will fold into cmove.
1237     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1238     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1239 
1240     Node* if_lt = generate_slow_guard(bol, NULL);
1241     if (if_lt != NULL) {
1242       // result == -1
1243       phi->init_req(3, result);
1244       region->init_req(3, if_lt);
1245     }
1246     if (!stopped()) {
1247       result = _gvn.transform(new AddINode(result, from_index));
1248       phi->init_req(4, result);
1249       region->init_req(4, control());
1250     }
1251   }
1252 
1253   set_control(_gvn.transform(region));
1254   record_for_igvn(region);
1255   set_result(_gvn.transform(phi));
1256   clear_upper_avx();
1257 
1258   return true;
1259 }
1260 
1261 // Create StrIndexOfNode with fast path checks
1262 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1263                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1264   // Check for substr count > string count
1265   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1266   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1267   Node* if_gt = generate_slow_guard(bol, NULL);
1268   if (if_gt != NULL) {
1269     phi->init_req(1, intcon(-1));
1270     region->init_req(1, if_gt);
1271   }
1272   if (!stopped()) {
1273     // Check for substr count == 0
1274     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1275     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1276     Node* if_zero = generate_slow_guard(bol, NULL);
1277     if (if_zero != NULL) {
1278       phi->init_req(2, intcon(0));
1279       region->init_req(2, if_zero);
1280     }
1281   }
1282   if (!stopped()) {
1283     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1284   }
1285   return NULL;
1286 }
1287 
1288 //-----------------------------inline_string_indexOfChar-----------------------
1289 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1290   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1291     return false;
1292   }
1293   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1294     return false;
1295   }
1296   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1297   Node* src         = argument(0); // byte[]
1298   Node* tgt         = argument(1); // tgt is int ch
1299   Node* from_index  = argument(2);
1300   Node* max         = argument(3);
1301 
1302   src = must_be_not_null(src, true);
1303 
1304   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1305   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1306   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1307 
1308   // Range checks
1309   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1310   if (stopped()) {
1311     return true;
1312   }
1313 
1314   RegionNode* region = new RegionNode(3);
1315   Node* phi = new PhiNode(region, TypeInt::INT);
1316 
1317   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, ae);
1318   C->set_has_split_ifs(true); // Has chance for split-if optimization
1319   _gvn.transform(result);
1320 
1321   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1322   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1323 
1324   Node* if_lt = generate_slow_guard(bol, NULL);
1325   if (if_lt != NULL) {
1326     // result == -1
1327     phi->init_req(2, result);
1328     region->init_req(2, if_lt);
1329   }
1330   if (!stopped()) {
1331     result = _gvn.transform(new AddINode(result, from_index));
1332     phi->init_req(1, result);
1333     region->init_req(1, control());
1334   }
1335   set_control(_gvn.transform(region));
1336   record_for_igvn(region);
1337   set_result(_gvn.transform(phi));
1338 
1339   return true;
1340 }
1341 //---------------------------inline_string_copy---------------------
1342 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1343 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1344 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1345 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1346 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1347 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1348 bool LibraryCallKit::inline_string_copy(bool compress) {
1349   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1350     return false;
1351   }
1352   int nargs = 5;  // 2 oops, 3 ints
1353   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1354 
1355   Node* src         = argument(0);
1356   Node* src_offset  = argument(1);
1357   Node* dst         = argument(2);
1358   Node* dst_offset  = argument(3);
1359   Node* length      = argument(4);
1360 
1361   // Check for allocation before we add nodes that would confuse
1362   // tightly_coupled_allocation()
1363   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1364 
1365   // Figure out the size and type of the elements we will be copying.
1366   const Type* src_type = src->Value(&_gvn);
1367   const Type* dst_type = dst->Value(&_gvn);
1368   BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
1369   BasicType dst_elem = dst_type->isa_aryptr()->elem()->array_element_basic_type();
1370   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1371          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1372          "Unsupported array types for inline_string_copy");
1373 
1374   src = must_be_not_null(src, true);
1375   dst = must_be_not_null(dst, true);
1376 
1377   // Convert char[] offsets to byte[] offsets
1378   bool convert_src = (compress && src_elem == T_BYTE);
1379   bool convert_dst = (!compress && dst_elem == T_BYTE);
1380   if (convert_src) {
1381     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1382   } else if (convert_dst) {
1383     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1384   }
1385 
1386   // Range checks
1387   generate_string_range_check(src, src_offset, length, convert_src);
1388   generate_string_range_check(dst, dst_offset, length, convert_dst);
1389   if (stopped()) {
1390     return true;
1391   }
1392 
1393   Node* src_start = array_element_address(src, src_offset, src_elem);
1394   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1395   // 'src_start' points to src array + scaled offset
1396   // 'dst_start' points to dst array + scaled offset
1397   Node* count = NULL;
1398   if (compress) {
1399     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1400   } else {
1401     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1402   }
1403 
1404   if (alloc != NULL) {
1405     if (alloc->maybe_set_complete(&_gvn)) {
1406       // "You break it, you buy it."
1407       InitializeNode* init = alloc->initialization();
1408       assert(init->is_complete(), "we just did this");
1409       init->set_complete_with_arraycopy();
1410       assert(dst->is_CheckCastPP(), "sanity");
1411       assert(dst->in(0)->in(0) == init, "dest pinned");
1412     }
1413     // Do not let stores that initialize this object be reordered with
1414     // a subsequent store that would make this object accessible by
1415     // other threads.
1416     // Record what AllocateNode this StoreStore protects so that
1417     // escape analysis can go from the MemBarStoreStoreNode to the
1418     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1419     // based on the escape status of the AllocateNode.
1420     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1421   }
1422   if (compress) {
1423     set_result(_gvn.transform(count));
1424   }
1425   clear_upper_avx();
1426 
1427   return true;
1428 }
1429 
1430 #ifdef _LP64
1431 #define XTOP ,top() /*additional argument*/
1432 #else  //_LP64
1433 #define XTOP        /*no additional argument*/
1434 #endif //_LP64
1435 
1436 //------------------------inline_string_toBytesU--------------------------
1437 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1438 bool LibraryCallKit::inline_string_toBytesU() {
1439   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1440     return false;
1441   }
1442   // Get the arguments.
1443   Node* value     = argument(0);
1444   Node* offset    = argument(1);
1445   Node* length    = argument(2);
1446 
1447   Node* newcopy = NULL;
1448 
1449   // Set the original stack and the reexecute bit for the interpreter to reexecute
1450   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1451   { PreserveReexecuteState preexecs(this);
1452     jvms()->set_should_reexecute(true);
1453 
1454     // Check if a null path was taken unconditionally.
1455     value = null_check(value);
1456 
1457     RegionNode* bailout = new RegionNode(1);
1458     record_for_igvn(bailout);
1459 
1460     // Range checks
1461     generate_negative_guard(offset, bailout);
1462     generate_negative_guard(length, bailout);
1463     generate_limit_guard(offset, length, load_array_length(value), bailout);
1464     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1465     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1466 
1467     if (bailout->req() > 1) {
1468       PreserveJVMState pjvms(this);
1469       set_control(_gvn.transform(bailout));
1470       uncommon_trap(Deoptimization::Reason_intrinsic,
1471                     Deoptimization::Action_maybe_recompile);
1472     }
1473     if (stopped()) {
1474       return true;
1475     }
1476 
1477     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1478     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1479     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1480     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1481     guarantee(alloc != NULL, "created above");
1482 
1483     // Calculate starting addresses.
1484     Node* src_start = array_element_address(value, offset, T_CHAR);
1485     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1486 
1487     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1488     const TypeInt* toffset = gvn().type(offset)->is_int();
1489     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1490 
1491     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1492     const char* copyfunc_name = "arraycopy";
1493     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1494     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1495                       OptoRuntime::fast_arraycopy_Type(),
1496                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1497                       src_start, dst_start, ConvI2X(length) XTOP);
1498     // Do not let reads from the cloned object float above the arraycopy.
1499     if (alloc->maybe_set_complete(&_gvn)) {
1500       // "You break it, you buy it."
1501       InitializeNode* init = alloc->initialization();
1502       assert(init->is_complete(), "we just did this");
1503       init->set_complete_with_arraycopy();
1504       assert(newcopy->is_CheckCastPP(), "sanity");
1505       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1506     }
1507     // Do not let stores that initialize this object be reordered with
1508     // a subsequent store that would make this object accessible by
1509     // other threads.
1510     // Record what AllocateNode this StoreStore protects so that
1511     // escape analysis can go from the MemBarStoreStoreNode to the
1512     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1513     // based on the escape status of the AllocateNode.
1514     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1515   } // original reexecute is set back here
1516 
1517   C->set_has_split_ifs(true); // Has chance for split-if optimization
1518   if (!stopped()) {
1519     set_result(newcopy);
1520   }
1521   clear_upper_avx();
1522 
1523   return true;
1524 }
1525 
1526 //------------------------inline_string_getCharsU--------------------------
1527 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1528 bool LibraryCallKit::inline_string_getCharsU() {
1529   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1530     return false;
1531   }
1532 
1533   // Get the arguments.
1534   Node* src       = argument(0);
1535   Node* src_begin = argument(1);
1536   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1537   Node* dst       = argument(3);
1538   Node* dst_begin = argument(4);
1539 
1540   // Check for allocation before we add nodes that would confuse
1541   // tightly_coupled_allocation()
1542   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1543 
1544   // Check if a null path was taken unconditionally.
1545   src = null_check(src);
1546   dst = null_check(dst);
1547   if (stopped()) {
1548     return true;
1549   }
1550 
1551   // Get length and convert char[] offset to byte[] offset
1552   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1553   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1554 
1555   // Range checks
1556   generate_string_range_check(src, src_begin, length, true);
1557   generate_string_range_check(dst, dst_begin, length, false);
1558   if (stopped()) {
1559     return true;
1560   }
1561 
1562   if (!stopped()) {
1563     // Calculate starting addresses.
1564     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1565     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1566 
1567     // Check if array addresses are aligned to HeapWordSize
1568     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1569     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1570     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1571                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1572 
1573     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1574     const char* copyfunc_name = "arraycopy";
1575     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1576     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1577                       OptoRuntime::fast_arraycopy_Type(),
1578                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1579                       src_start, dst_start, ConvI2X(length) XTOP);
1580     // Do not let reads from the cloned object float above the arraycopy.
1581     if (alloc != NULL) {
1582       if (alloc->maybe_set_complete(&_gvn)) {
1583         // "You break it, you buy it."
1584         InitializeNode* init = alloc->initialization();
1585         assert(init->is_complete(), "we just did this");
1586         init->set_complete_with_arraycopy();
1587         assert(dst->is_CheckCastPP(), "sanity");
1588         assert(dst->in(0)->in(0) == init, "dest pinned");
1589       }
1590       // Do not let stores that initialize this object be reordered with
1591       // a subsequent store that would make this object accessible by
1592       // other threads.
1593       // Record what AllocateNode this StoreStore protects so that
1594       // escape analysis can go from the MemBarStoreStoreNode to the
1595       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1596       // based on the escape status of the AllocateNode.
1597       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1598     } else {
1599       insert_mem_bar(Op_MemBarCPUOrder);
1600     }
1601   }
1602 
1603   C->set_has_split_ifs(true); // Has chance for split-if optimization
1604   return true;
1605 }
1606 
1607 //----------------------inline_string_char_access----------------------------
1608 // Store/Load char to/from byte[] array.
1609 // static void StringUTF16.putChar(byte[] val, int index, int c)
1610 // static char StringUTF16.getChar(byte[] val, int index)
1611 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1612   Node* value  = argument(0);
1613   Node* index  = argument(1);
1614   Node* ch = is_store ? argument(2) : NULL;
1615 
1616   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1617   // correctly requires matched array shapes.
1618   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1619           "sanity: byte[] and char[] bases agree");
1620   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1621           "sanity: byte[] and char[] scales agree");
1622 
1623   // Bail when getChar over constants is requested: constant folding would
1624   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1625   // Java method would constant fold nicely instead.
1626   if (!is_store && value->is_Con() && index->is_Con()) {
1627     return false;
1628   }
1629 
1630   value = must_be_not_null(value, true);
1631 
1632   Node* adr = array_element_address(value, index, T_CHAR);
1633   if (adr->is_top()) {
1634     return false;
1635   }
1636   if (is_store) {
1637     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1638   } else {
1639     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1640     set_result(ch);
1641   }
1642   return true;
1643 }
1644 
1645 //--------------------------round_double_node--------------------------------
1646 // Round a double node if necessary.
1647 Node* LibraryCallKit::round_double_node(Node* n) {
1648   if (Matcher::strict_fp_requires_explicit_rounding) {
1649 #ifdef IA32
1650     if (UseSSE < 2) {
1651       n = _gvn.transform(new RoundDoubleNode(NULL, n));
1652     }
1653 #else
1654     Unimplemented();
1655 #endif // IA32
1656   }
1657   return n;
1658 }
1659 
1660 //------------------------------inline_math-----------------------------------
1661 // public static double Math.abs(double)
1662 // public static double Math.sqrt(double)
1663 // public static double Math.log(double)
1664 // public static double Math.log10(double)
1665 // public static double Math.round(double)
1666 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1667   Node* arg = round_double_node(argument(0));
1668   Node* n = NULL;
1669   switch (id) {
1670   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1671   case vmIntrinsics::_dsqrt:
1672   case vmIntrinsics::_dsqrt_strict:
1673                               n = new SqrtDNode(C, control(),  arg);  break;
1674   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1675   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1676   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1677   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1678   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break;
1679   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1680   default:  fatal_unexpected_iid(id);  break;
1681   }
1682   set_result(_gvn.transform(n));
1683   return true;
1684 }
1685 
1686 //------------------------------inline_math-----------------------------------
1687 // public static float Math.abs(float)
1688 // public static int Math.abs(int)
1689 // public static long Math.abs(long)
1690 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1691   Node* arg = argument(0);
1692   Node* n = NULL;
1693   switch (id) {
1694   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1695   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1696   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1697   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1698   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1699   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1700   default:  fatal_unexpected_iid(id);  break;
1701   }
1702   set_result(_gvn.transform(n));
1703   return true;
1704 }
1705 
1706 //------------------------------runtime_math-----------------------------
1707 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1708   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1709          "must be (DD)D or (D)D type");
1710 
1711   // Inputs
1712   Node* a = round_double_node(argument(0));
1713   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1714 
1715   const TypePtr* no_memory_effects = NULL;
1716   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1717                                  no_memory_effects,
1718                                  a, top(), b, b ? top() : NULL);
1719   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1720 #ifdef ASSERT
1721   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1722   assert(value_top == top(), "second value must be top");
1723 #endif
1724 
1725   set_result(value);
1726   return true;
1727 }
1728 
1729 //------------------------------inline_math_pow-----------------------------
1730 bool LibraryCallKit::inline_math_pow() {
1731   Node* exp = round_double_node(argument(2));
1732   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1733   if (d != NULL) {
1734     if (d->getd() == 2.0) {
1735       // Special case: pow(x, 2.0) => x * x
1736       Node* base = round_double_node(argument(0));
1737       set_result(_gvn.transform(new MulDNode(base, base)));
1738       return true;
1739     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1740       // Special case: pow(x, 0.5) => sqrt(x)
1741       Node* base = round_double_node(argument(0));
1742       Node* zero = _gvn.zerocon(T_DOUBLE);
1743 
1744       RegionNode* region = new RegionNode(3);
1745       Node* phi = new PhiNode(region, Type::DOUBLE);
1746 
1747       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1748       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1749       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1750       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1751       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1752 
1753       Node* if_pow = generate_slow_guard(test, NULL);
1754       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1755       phi->init_req(1, value_sqrt);
1756       region->init_req(1, control());
1757 
1758       if (if_pow != NULL) {
1759         set_control(if_pow);
1760         address target = StubRoutines::dpow() != NULL ? StubRoutines::dpow() :
1761                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1762         const TypePtr* no_memory_effects = NULL;
1763         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1764                                        no_memory_effects, base, top(), exp, top());
1765         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1766 #ifdef ASSERT
1767         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1768         assert(value_top == top(), "second value must be top");
1769 #endif
1770         phi->init_req(2, value_pow);
1771         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1772       }
1773 
1774       C->set_has_split_ifs(true); // Has chance for split-if optimization
1775       set_control(_gvn.transform(region));
1776       record_for_igvn(region);
1777       set_result(_gvn.transform(phi));
1778 
1779       return true;
1780     }
1781   }
1782 
1783   return StubRoutines::dpow() != NULL ?
1784     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1785     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1786 }
1787 
1788 //------------------------------inline_math_native-----------------------------
1789 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1790 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1791   switch (id) {
1792     // These intrinsics are not properly supported on all hardware
1793   case vmIntrinsics::_dsin:
1794     return StubRoutines::dsin() != NULL ?
1795       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1796       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1797   case vmIntrinsics::_dcos:
1798     return StubRoutines::dcos() != NULL ?
1799       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1800       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1801   case vmIntrinsics::_dtan:
1802     return StubRoutines::dtan() != NULL ?
1803       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1804       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1805   case vmIntrinsics::_dlog:
1806     return StubRoutines::dlog() != NULL ?
1807       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1808       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1809   case vmIntrinsics::_dlog10:
1810     return StubRoutines::dlog10() != NULL ?
1811       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1812       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1813 
1814     // These intrinsics are supported on all hardware
1815   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1816   case vmIntrinsics::_ceil:
1817   case vmIntrinsics::_floor:
1818   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1819 
1820   case vmIntrinsics::_dsqrt:
1821   case vmIntrinsics::_dsqrt_strict:
1822                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1823   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1824   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1825   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1826   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1827 
1828   case vmIntrinsics::_dexp:
1829     return StubRoutines::dexp() != NULL ?
1830       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1831       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1832 #undef FN_PTR
1833 
1834   case vmIntrinsics::_dpow:      return inline_math_pow();
1835   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1836   case vmIntrinsics::_fcopySign: return inline_math(id);
1837   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1838   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1839   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1840 
1841    // These intrinsics are not yet correctly implemented
1842   case vmIntrinsics::_datan2:
1843     return false;
1844 
1845   default:
1846     fatal_unexpected_iid(id);
1847     return false;
1848   }
1849 }
1850 
1851 //----------------------------inline_notify-----------------------------------*
1852 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1853   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1854   address func;
1855   if (id == vmIntrinsics::_notify) {
1856     func = OptoRuntime::monitor_notify_Java();
1857   } else {
1858     func = OptoRuntime::monitor_notifyAll_Java();
1859   }
1860   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1861   make_slow_call_ex(call, env()->Throwable_klass(), false);
1862   return true;
1863 }
1864 
1865 
1866 //----------------------------inline_min_max-----------------------------------
1867 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1868   set_result(generate_min_max(id, argument(0), argument(1)));
1869   return true;
1870 }
1871 
1872 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1873   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1874   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1875   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1876   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1877 
1878   {
1879     PreserveJVMState pjvms(this);
1880     PreserveReexecuteState preexecs(this);
1881     jvms()->set_should_reexecute(true);
1882 
1883     set_control(slow_path);
1884     set_i_o(i_o());
1885 
1886     uncommon_trap(Deoptimization::Reason_intrinsic,
1887                   Deoptimization::Action_none);
1888   }
1889 
1890   set_control(fast_path);
1891   set_result(math);
1892 }
1893 
1894 template <typename OverflowOp>
1895 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1896   typedef typename OverflowOp::MathOp MathOp;
1897 
1898   MathOp* mathOp = new MathOp(arg1, arg2);
1899   Node* operation = _gvn.transform( mathOp );
1900   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1901   inline_math_mathExact(operation, ofcheck);
1902   return true;
1903 }
1904 
1905 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1906   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1907 }
1908 
1909 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1910   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1911 }
1912 
1913 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1914   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1915 }
1916 
1917 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1918   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1919 }
1920 
1921 bool LibraryCallKit::inline_math_negateExactI() {
1922   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1923 }
1924 
1925 bool LibraryCallKit::inline_math_negateExactL() {
1926   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1927 }
1928 
1929 bool LibraryCallKit::inline_math_multiplyExactI() {
1930   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1931 }
1932 
1933 bool LibraryCallKit::inline_math_multiplyExactL() {
1934   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1935 }
1936 
1937 bool LibraryCallKit::inline_math_multiplyHigh() {
1938   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
1939   return true;
1940 }
1941 
1942 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
1943   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
1944   return true;
1945 }
1946 
1947 Node*
1948 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1949   Node* result_val = NULL;
1950   switch (id) {
1951   case vmIntrinsics::_min:
1952   case vmIntrinsics::_min_strict:
1953     result_val = _gvn.transform(new MinINode(x0, y0));
1954     break;
1955   case vmIntrinsics::_max:
1956   case vmIntrinsics::_max_strict:
1957     result_val = _gvn.transform(new MaxINode(x0, y0));
1958     break;
1959   default:
1960     fatal_unexpected_iid(id);
1961     break;
1962   }
1963   return result_val;
1964 }
1965 
1966 inline int
1967 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
1968   const TypePtr* base_type = TypePtr::NULL_PTR;
1969   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1970   if (base_type == NULL) {
1971     // Unknown type.
1972     return Type::AnyPtr;
1973   } else if (base_type == TypePtr::NULL_PTR) {
1974     // Since this is a NULL+long form, we have to switch to a rawptr.
1975     base   = _gvn.transform(new CastX2PNode(offset));
1976     offset = MakeConX(0);
1977     return Type::RawPtr;
1978   } else if (base_type->base() == Type::RawPtr) {
1979     return Type::RawPtr;
1980   } else if (base_type->isa_oopptr()) {
1981     // Base is never null => always a heap address.
1982     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
1983       return Type::OopPtr;
1984     }
1985     // Offset is small => always a heap address.
1986     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1987     if (offset_type != NULL &&
1988         base_type->offset() == 0 &&     // (should always be?)
1989         offset_type->_lo >= 0 &&
1990         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1991       return Type::OopPtr;
1992     } else if (type == T_OBJECT) {
1993       // off heap access to an oop doesn't make any sense. Has to be on
1994       // heap.
1995       return Type::OopPtr;
1996     }
1997     // Otherwise, it might either be oop+off or NULL+addr.
1998     return Type::AnyPtr;
1999   } else {
2000     // No information:
2001     return Type::AnyPtr;
2002   }
2003 }
2004 
2005 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2006   Node* uncasted_base = base;
2007   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2008   if (kind == Type::RawPtr) {
2009     return basic_plus_adr(top(), uncasted_base, offset);
2010   } else if (kind == Type::AnyPtr) {
2011     assert(base == uncasted_base, "unexpected base change");
2012     if (can_cast) {
2013       if (!_gvn.type(base)->speculative_maybe_null() &&
2014           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2015         // According to profiling, this access is always on
2016         // heap. Casting the base to not null and thus avoiding membars
2017         // around the access should allow better optimizations
2018         Node* null_ctl = top();
2019         base = null_check_oop(base, &null_ctl, true, true, true);
2020         assert(null_ctl->is_top(), "no null control here");
2021         return basic_plus_adr(base, offset);
2022       } else if (_gvn.type(base)->speculative_always_null() &&
2023                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2024         // According to profiling, this access is always off
2025         // heap.
2026         base = null_assert(base);
2027         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2028         offset = MakeConX(0);
2029         return basic_plus_adr(top(), raw_base, offset);
2030       }
2031     }
2032     // We don't know if it's an on heap or off heap access. Fall back
2033     // to raw memory access.
2034     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2035     return basic_plus_adr(top(), raw, offset);
2036   } else {
2037     assert(base == uncasted_base, "unexpected base change");
2038     // We know it's an on heap access so base can't be null
2039     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2040       base = must_be_not_null(base, true);
2041     }
2042     return basic_plus_adr(base, offset);
2043   }
2044 }
2045 
2046 //--------------------------inline_number_methods-----------------------------
2047 // inline int     Integer.numberOfLeadingZeros(int)
2048 // inline int        Long.numberOfLeadingZeros(long)
2049 //
2050 // inline int     Integer.numberOfTrailingZeros(int)
2051 // inline int        Long.numberOfTrailingZeros(long)
2052 //
2053 // inline int     Integer.bitCount(int)
2054 // inline int        Long.bitCount(long)
2055 //
2056 // inline char  Character.reverseBytes(char)
2057 // inline short     Short.reverseBytes(short)
2058 // inline int     Integer.reverseBytes(int)
2059 // inline long       Long.reverseBytes(long)
2060 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2061   Node* arg = argument(0);
2062   Node* n = NULL;
2063   switch (id) {
2064   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2065   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2066   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2067   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2068   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2069   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2070   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2071   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2072   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2073   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2074   case vmIntrinsics::_reverse_i:                n = new ReverseINode(0, arg); break;
2075   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(0, arg); break;
2076   default:  fatal_unexpected_iid(id);  break;
2077   }
2078   set_result(_gvn.transform(n));
2079   return true;
2080 }
2081 
2082 //--------------------------inline_bitshuffle_methods-----------------------------
2083 // inline int Integer.compress(int, int)
2084 // inline int Integer.expand(int, int)
2085 // inline long Long.compress(long, long)
2086 // inline long Long.expand(long, long)
2087 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2088   Node* n = NULL;
2089   switch (id) {
2090     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2091     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2092     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2093     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2094     default:  fatal_unexpected_iid(id);  break;
2095   }
2096   set_result(_gvn.transform(n));
2097   return true;
2098 }
2099 
2100 //--------------------------inline_number_methods-----------------------------
2101 // inline int Integer.compareUnsigned(int, int)
2102 // inline int    Long.compareUnsigned(long, long)
2103 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2104   Node* arg1 = argument(0);
2105   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2106   Node* n = NULL;
2107   switch (id) {
2108     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2109     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2110     default:  fatal_unexpected_iid(id);  break;
2111   }
2112   set_result(_gvn.transform(n));
2113   return true;
2114 }
2115 
2116 //--------------------------inline_unsigned_divmod_methods-----------------------------
2117 // inline int Integer.divideUnsigned(int, int)
2118 // inline int Integer.remainderUnsigned(int, int)
2119 // inline long Long.divideUnsigned(long, long)
2120 // inline long Long.remainderUnsigned(long, long)
2121 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2122   Node* n = NULL;
2123   switch (id) {
2124     case vmIntrinsics::_divideUnsigned_i: {
2125       zero_check_int(argument(1));
2126       // Compile-time detect of null-exception
2127       if (stopped()) {
2128         return true; // keep the graph constructed so far
2129       }
2130       n = new UDivINode(control(), argument(0), argument(1));
2131       break;
2132     }
2133     case vmIntrinsics::_divideUnsigned_l: {
2134       zero_check_long(argument(2));
2135       // Compile-time detect of null-exception
2136       if (stopped()) {
2137         return true; // keep the graph constructed so far
2138       }
2139       n = new UDivLNode(control(), argument(0), argument(2));
2140       break;
2141     }
2142     case vmIntrinsics::_remainderUnsigned_i: {
2143       zero_check_int(argument(1));
2144       // Compile-time detect of null-exception
2145       if (stopped()) {
2146         return true; // keep the graph constructed so far
2147       }
2148       n = new UModINode(control(), argument(0), argument(1));
2149       break;
2150     }
2151     case vmIntrinsics::_remainderUnsigned_l: {
2152       zero_check_long(argument(2));
2153       // Compile-time detect of null-exception
2154       if (stopped()) {
2155         return true; // keep the graph constructed so far
2156       }
2157       n = new UModLNode(control(), argument(0), argument(2));
2158       break;
2159     }
2160     default:  fatal_unexpected_iid(id);  break;
2161   }
2162   set_result(_gvn.transform(n));
2163   return true;
2164 }
2165 
2166 //----------------------------inline_unsafe_access----------------------------
2167 
2168 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2169   // Attempt to infer a sharper value type from the offset and base type.
2170   ciKlass* sharpened_klass = NULL;
2171 
2172   // See if it is an instance field, with an object type.
2173   if (alias_type->field() != NULL) {
2174     if (alias_type->field()->type()->is_klass()) {
2175       sharpened_klass = alias_type->field()->type()->as_klass();
2176     }
2177   }
2178 
2179   const TypeOopPtr* result = NULL;
2180   // See if it is a narrow oop array.
2181   if (adr_type->isa_aryptr()) {
2182     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2183       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2184       if (elem_type != NULL && elem_type->is_loaded()) {
2185         // Sharpen the value type.
2186         result = elem_type;
2187       }
2188     }
2189   }
2190 
2191   // The sharpened class might be unloaded if there is no class loader
2192   // contraint in place.
2193   if (result == NULL && sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2194     // Sharpen the value type.
2195     result = TypeOopPtr::make_from_klass(sharpened_klass);
2196   }
2197   if (result != NULL) {
2198 #ifndef PRODUCT
2199     if (C->print_intrinsics() || C->print_inlining()) {
2200       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2201       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2202     }
2203 #endif
2204   }
2205   return result;
2206 }
2207 
2208 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2209   switch (kind) {
2210       case Relaxed:
2211         return MO_UNORDERED;
2212       case Opaque:
2213         return MO_RELAXED;
2214       case Acquire:
2215         return MO_ACQUIRE;
2216       case Release:
2217         return MO_RELEASE;
2218       case Volatile:
2219         return MO_SEQ_CST;
2220       default:
2221         ShouldNotReachHere();
2222         return 0;
2223   }
2224 }
2225 
2226 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2227   if (callee()->is_static())  return false;  // caller must have the capability!
2228   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2229   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2230   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2231   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2232 
2233   if (is_reference_type(type)) {
2234     decorators |= ON_UNKNOWN_OOP_REF;
2235   }
2236 
2237   if (unaligned) {
2238     decorators |= C2_UNALIGNED;
2239   }
2240 
2241 #ifndef PRODUCT
2242   {
2243     ResourceMark rm;
2244     // Check the signatures.
2245     ciSignature* sig = callee()->signature();
2246 #ifdef ASSERT
2247     if (!is_store) {
2248       // Object getReference(Object base, int/long offset), etc.
2249       BasicType rtype = sig->return_type()->basic_type();
2250       assert(rtype == type, "getter must return the expected value");
2251       assert(sig->count() == 2, "oop getter has 2 arguments");
2252       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2253       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2254     } else {
2255       // void putReference(Object base, int/long offset, Object x), etc.
2256       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2257       assert(sig->count() == 3, "oop putter has 3 arguments");
2258       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2259       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2260       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2261       assert(vtype == type, "putter must accept the expected value");
2262     }
2263 #endif // ASSERT
2264  }
2265 #endif //PRODUCT
2266 
2267   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2268 
2269   Node* receiver = argument(0);  // type: oop
2270 
2271   // Build address expression.
2272   Node* heap_base_oop = top();
2273 
2274   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2275   Node* base = argument(1);  // type: oop
2276   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2277   Node* offset = argument(2);  // type: long
2278   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2279   // to be plain byte offsets, which are also the same as those accepted
2280   // by oopDesc::field_addr.
2281   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2282          "fieldOffset must be byte-scaled");
2283   // 32-bit machines ignore the high half!
2284   offset = ConvL2X(offset);
2285 
2286   // Save state and restore on bailout
2287   uint old_sp = sp();
2288   SafePointNode* old_map = clone_map();
2289 
2290   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2291 
2292   if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) {
2293     if (type != T_OBJECT) {
2294       decorators |= IN_NATIVE; // off-heap primitive access
2295     } else {
2296       set_map(old_map);
2297       set_sp(old_sp);
2298       return false; // off-heap oop accesses are not supported
2299     }
2300   } else {
2301     heap_base_oop = base; // on-heap or mixed access
2302   }
2303 
2304   // Can base be NULL? Otherwise, always on-heap access.
2305   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2306 
2307   if (!can_access_non_heap) {
2308     decorators |= IN_HEAP;
2309   }
2310 
2311   Node* val = is_store ? argument(4) : NULL;
2312 
2313   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2314   if (adr_type == TypePtr::NULL_PTR) {
2315     set_map(old_map);
2316     set_sp(old_sp);
2317     return false; // off-heap access with zero address
2318   }
2319 
2320   // Try to categorize the address.
2321   Compile::AliasType* alias_type = C->alias_type(adr_type);
2322   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2323 
2324   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2325       alias_type->adr_type() == TypeAryPtr::RANGE) {
2326     set_map(old_map);
2327     set_sp(old_sp);
2328     return false; // not supported
2329   }
2330 
2331   bool mismatched = false;
2332   BasicType bt = alias_type->basic_type();
2333   if (bt != T_ILLEGAL) {
2334     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2335     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2336       // Alias type doesn't differentiate between byte[] and boolean[]).
2337       // Use address type to get the element type.
2338       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2339     }
2340     if (is_reference_type(bt, true)) {
2341       // accessing an array field with getReference is not a mismatch
2342       bt = T_OBJECT;
2343     }
2344     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2345       // Don't intrinsify mismatched object accesses
2346       set_map(old_map);
2347       set_sp(old_sp);
2348       return false;
2349     }
2350     mismatched = (bt != type);
2351   } else if (alias_type->adr_type()->isa_oopptr()) {
2352     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2353   }
2354 
2355   old_map->destruct(&_gvn);
2356   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2357 
2358   if (mismatched) {
2359     decorators |= C2_MISMATCHED;
2360   }
2361 
2362   // First guess at the value type.
2363   const Type *value_type = Type::get_const_basic_type(type);
2364 
2365   // Figure out the memory ordering.
2366   decorators |= mo_decorator_for_access_kind(kind);
2367 
2368   if (!is_store && type == T_OBJECT) {
2369     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2370     if (tjp != NULL) {
2371       value_type = tjp;
2372     }
2373   }
2374 
2375   receiver = null_check(receiver);
2376   if (stopped()) {
2377     return true;
2378   }
2379   // Heap pointers get a null-check from the interpreter,
2380   // as a courtesy.  However, this is not guaranteed by Unsafe,
2381   // and it is not possible to fully distinguish unintended nulls
2382   // from intended ones in this API.
2383 
2384   if (!is_store) {
2385     Node* p = NULL;
2386     // Try to constant fold a load from a constant field
2387     ciField* field = alias_type->field();
2388     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2389       // final or stable field
2390       p = make_constant_from_field(field, heap_base_oop);
2391     }
2392 
2393     if (p == NULL) { // Could not constant fold the load
2394       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2395       // Normalize the value returned by getBoolean in the following cases
2396       if (type == T_BOOLEAN &&
2397           (mismatched ||
2398            heap_base_oop == top() ||                  // - heap_base_oop is NULL or
2399            (can_access_non_heap && field == NULL))    // - heap_base_oop is potentially NULL
2400                                                       //   and the unsafe access is made to large offset
2401                                                       //   (i.e., larger than the maximum offset necessary for any
2402                                                       //   field access)
2403             ) {
2404           IdealKit ideal = IdealKit(this);
2405 #define __ ideal.
2406           IdealVariable normalized_result(ideal);
2407           __ declarations_done();
2408           __ set(normalized_result, p);
2409           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2410           __ set(normalized_result, ideal.ConI(1));
2411           ideal.end_if();
2412           final_sync(ideal);
2413           p = __ value(normalized_result);
2414 #undef __
2415       }
2416     }
2417     if (type == T_ADDRESS) {
2418       p = gvn().transform(new CastP2XNode(NULL, p));
2419       p = ConvX2UL(p);
2420     }
2421     // The load node has the control of the preceding MemBarCPUOrder.  All
2422     // following nodes will have the control of the MemBarCPUOrder inserted at
2423     // the end of this method.  So, pushing the load onto the stack at a later
2424     // point is fine.
2425     set_result(p);
2426   } else {
2427     if (bt == T_ADDRESS) {
2428       // Repackage the long as a pointer.
2429       val = ConvL2X(val);
2430       val = gvn().transform(new CastX2PNode(val));
2431     }
2432     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2433   }
2434 
2435   return true;
2436 }
2437 
2438 //----------------------------inline_unsafe_load_store----------------------------
2439 // This method serves a couple of different customers (depending on LoadStoreKind):
2440 //
2441 // LS_cmp_swap:
2442 //
2443 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2444 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2445 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2446 //
2447 // LS_cmp_swap_weak:
2448 //
2449 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2450 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2451 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2452 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2453 //
2454 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2455 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2456 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2457 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2458 //
2459 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2460 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2461 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2462 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2463 //
2464 // LS_cmp_exchange:
2465 //
2466 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2467 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2468 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2469 //
2470 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2471 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2472 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2473 //
2474 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2475 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2476 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2477 //
2478 // LS_get_add:
2479 //
2480 //   int  getAndAddInt( Object o, long offset, int  delta)
2481 //   long getAndAddLong(Object o, long offset, long delta)
2482 //
2483 // LS_get_set:
2484 //
2485 //   int    getAndSet(Object o, long offset, int    newValue)
2486 //   long   getAndSet(Object o, long offset, long   newValue)
2487 //   Object getAndSet(Object o, long offset, Object newValue)
2488 //
2489 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2490   // This basic scheme here is the same as inline_unsafe_access, but
2491   // differs in enough details that combining them would make the code
2492   // overly confusing.  (This is a true fact! I originally combined
2493   // them, but even I was confused by it!) As much code/comments as
2494   // possible are retained from inline_unsafe_access though to make
2495   // the correspondences clearer. - dl
2496 
2497   if (callee()->is_static())  return false;  // caller must have the capability!
2498 
2499   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2500   decorators |= mo_decorator_for_access_kind(access_kind);
2501 
2502 #ifndef PRODUCT
2503   BasicType rtype;
2504   {
2505     ResourceMark rm;
2506     // Check the signatures.
2507     ciSignature* sig = callee()->signature();
2508     rtype = sig->return_type()->basic_type();
2509     switch(kind) {
2510       case LS_get_add:
2511       case LS_get_set: {
2512       // Check the signatures.
2513 #ifdef ASSERT
2514       assert(rtype == type, "get and set must return the expected type");
2515       assert(sig->count() == 3, "get and set has 3 arguments");
2516       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2517       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2518       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2519       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2520 #endif // ASSERT
2521         break;
2522       }
2523       case LS_cmp_swap:
2524       case LS_cmp_swap_weak: {
2525       // Check the signatures.
2526 #ifdef ASSERT
2527       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2528       assert(sig->count() == 4, "CAS has 4 arguments");
2529       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2530       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2531 #endif // ASSERT
2532         break;
2533       }
2534       case LS_cmp_exchange: {
2535       // Check the signatures.
2536 #ifdef ASSERT
2537       assert(rtype == type, "CAS must return the expected type");
2538       assert(sig->count() == 4, "CAS has 4 arguments");
2539       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2540       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2541 #endif // ASSERT
2542         break;
2543       }
2544       default:
2545         ShouldNotReachHere();
2546     }
2547   }
2548 #endif //PRODUCT
2549 
2550   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2551 
2552   // Get arguments:
2553   Node* receiver = NULL;
2554   Node* base     = NULL;
2555   Node* offset   = NULL;
2556   Node* oldval   = NULL;
2557   Node* newval   = NULL;
2558   switch(kind) {
2559     case LS_cmp_swap:
2560     case LS_cmp_swap_weak:
2561     case LS_cmp_exchange: {
2562       const bool two_slot_type = type2size[type] == 2;
2563       receiver = argument(0);  // type: oop
2564       base     = argument(1);  // type: oop
2565       offset   = argument(2);  // type: long
2566       oldval   = argument(4);  // type: oop, int, or long
2567       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2568       break;
2569     }
2570     case LS_get_add:
2571     case LS_get_set: {
2572       receiver = argument(0);  // type: oop
2573       base     = argument(1);  // type: oop
2574       offset   = argument(2);  // type: long
2575       oldval   = NULL;
2576       newval   = argument(4);  // type: oop, int, or long
2577       break;
2578     }
2579     default:
2580       ShouldNotReachHere();
2581   }
2582 
2583   // Build field offset expression.
2584   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2585   // to be plain byte offsets, which are also the same as those accepted
2586   // by oopDesc::field_addr.
2587   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2588   // 32-bit machines ignore the high half of long offsets
2589   offset = ConvL2X(offset);
2590   // Save state and restore on bailout
2591   uint old_sp = sp();
2592   SafePointNode* old_map = clone_map();
2593   Node* adr = make_unsafe_address(base, offset,type, false);
2594   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2595 
2596   Compile::AliasType* alias_type = C->alias_type(adr_type);
2597   BasicType bt = alias_type->basic_type();
2598   if (bt != T_ILLEGAL &&
2599       (is_reference_type(bt) != (type == T_OBJECT))) {
2600     // Don't intrinsify mismatched object accesses.
2601     set_map(old_map);
2602     set_sp(old_sp);
2603     return false;
2604   }
2605 
2606   old_map->destruct(&_gvn);
2607 
2608   // For CAS, unlike inline_unsafe_access, there seems no point in
2609   // trying to refine types. Just use the coarse types here.
2610   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2611   const Type *value_type = Type::get_const_basic_type(type);
2612 
2613   switch (kind) {
2614     case LS_get_set:
2615     case LS_cmp_exchange: {
2616       if (type == T_OBJECT) {
2617         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2618         if (tjp != NULL) {
2619           value_type = tjp;
2620         }
2621       }
2622       break;
2623     }
2624     case LS_cmp_swap:
2625     case LS_cmp_swap_weak:
2626     case LS_get_add:
2627       break;
2628     default:
2629       ShouldNotReachHere();
2630   }
2631 
2632   // Null check receiver.
2633   receiver = null_check(receiver);
2634   if (stopped()) {
2635     return true;
2636   }
2637 
2638   int alias_idx = C->get_alias_index(adr_type);
2639 
2640   if (is_reference_type(type)) {
2641     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2642 
2643     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2644     // could be delayed during Parse (for example, in adjust_map_after_if()).
2645     // Execute transformation here to avoid barrier generation in such case.
2646     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2647       newval = _gvn.makecon(TypePtr::NULL_PTR);
2648 
2649     if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2650       // Refine the value to a null constant, when it is known to be null
2651       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2652     }
2653   }
2654 
2655   Node* result = NULL;
2656   switch (kind) {
2657     case LS_cmp_exchange: {
2658       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2659                                             oldval, newval, value_type, type, decorators);
2660       break;
2661     }
2662     case LS_cmp_swap_weak:
2663       decorators |= C2_WEAK_CMPXCHG;
2664     case LS_cmp_swap: {
2665       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2666                                              oldval, newval, value_type, type, decorators);
2667       break;
2668     }
2669     case LS_get_set: {
2670       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2671                                      newval, value_type, type, decorators);
2672       break;
2673     }
2674     case LS_get_add: {
2675       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2676                                     newval, value_type, type, decorators);
2677       break;
2678     }
2679     default:
2680       ShouldNotReachHere();
2681   }
2682 
2683   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2684   set_result(result);
2685   return true;
2686 }
2687 
2688 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2689   // Regardless of form, don't allow previous ld/st to move down,
2690   // then issue acquire, release, or volatile mem_bar.
2691   insert_mem_bar(Op_MemBarCPUOrder);
2692   switch(id) {
2693     case vmIntrinsics::_loadFence:
2694       insert_mem_bar(Op_LoadFence);
2695       return true;
2696     case vmIntrinsics::_storeFence:
2697       insert_mem_bar(Op_StoreFence);
2698       return true;
2699     case vmIntrinsics::_storeStoreFence:
2700       insert_mem_bar(Op_StoreStoreFence);
2701       return true;
2702     case vmIntrinsics::_fullFence:
2703       insert_mem_bar(Op_MemBarVolatile);
2704       return true;
2705     default:
2706       fatal_unexpected_iid(id);
2707       return false;
2708   }
2709 }
2710 
2711 bool LibraryCallKit::inline_onspinwait() {
2712   insert_mem_bar(Op_OnSpinWait);
2713   return true;
2714 }
2715 
2716 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2717   if (!kls->is_Con()) {
2718     return true;
2719   }
2720   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2721   if (klsptr == NULL) {
2722     return true;
2723   }
2724   ciInstanceKlass* ik = klsptr->instance_klass();
2725   // don't need a guard for a klass that is already initialized
2726   return !ik->is_initialized();
2727 }
2728 
2729 //----------------------------inline_unsafe_writeback0-------------------------
2730 // public native void Unsafe.writeback0(long address)
2731 bool LibraryCallKit::inline_unsafe_writeback0() {
2732   if (!Matcher::has_match_rule(Op_CacheWB)) {
2733     return false;
2734   }
2735 #ifndef PRODUCT
2736   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2737   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2738   ciSignature* sig = callee()->signature();
2739   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2740 #endif
2741   null_check_receiver();  // null-check, then ignore
2742   Node *addr = argument(1);
2743   addr = new CastX2PNode(addr);
2744   addr = _gvn.transform(addr);
2745   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2746   flush = _gvn.transform(flush);
2747   set_memory(flush, TypeRawPtr::BOTTOM);
2748   return true;
2749 }
2750 
2751 //----------------------------inline_unsafe_writeback0-------------------------
2752 // public native void Unsafe.writeback0(long address)
2753 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2754   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2755     return false;
2756   }
2757   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2758     return false;
2759   }
2760 #ifndef PRODUCT
2761   assert(Matcher::has_match_rule(Op_CacheWB),
2762          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2763                 : "found match rule for CacheWBPostSync but not CacheWB"));
2764 
2765 #endif
2766   null_check_receiver();  // null-check, then ignore
2767   Node *sync;
2768   if (is_pre) {
2769     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2770   } else {
2771     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2772   }
2773   sync = _gvn.transform(sync);
2774   set_memory(sync, TypeRawPtr::BOTTOM);
2775   return true;
2776 }
2777 
2778 //----------------------------inline_unsafe_allocate---------------------------
2779 // public native Object Unsafe.allocateInstance(Class<?> cls);
2780 bool LibraryCallKit::inline_unsafe_allocate() {
2781   if (callee()->is_static())  return false;  // caller must have the capability!
2782 
2783   null_check_receiver();  // null-check, then ignore
2784   Node* cls = null_check(argument(1));
2785   if (stopped())  return true;
2786 
2787   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2788   kls = null_check(kls);
2789   if (stopped())  return true;  // argument was like int.class
2790 
2791   Node* test = NULL;
2792   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2793     // Note:  The argument might still be an illegal value like
2794     // Serializable.class or Object[].class.   The runtime will handle it.
2795     // But we must make an explicit check for initialization.
2796     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2797     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2798     // can generate code to load it as unsigned byte.
2799     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2800     Node* bits = intcon(InstanceKlass::fully_initialized);
2801     test = _gvn.transform(new SubINode(inst, bits));
2802     // The 'test' is non-zero if we need to take a slow path.
2803   }
2804 
2805   Node* obj = new_instance(kls, test);
2806   set_result(obj);
2807   return true;
2808 }
2809 
2810 //------------------------inline_native_time_funcs--------------
2811 // inline code for System.currentTimeMillis() and System.nanoTime()
2812 // these have the same type and signature
2813 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2814   const TypeFunc* tf = OptoRuntime::void_long_Type();
2815   const TypePtr* no_memory_effects = NULL;
2816   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2817   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2818 #ifdef ASSERT
2819   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2820   assert(value_top == top(), "second value must be top");
2821 #endif
2822   set_result(value);
2823   return true;
2824 }
2825 
2826 #ifdef JFR_HAVE_INTRINSICS
2827 
2828 /**
2829  * if oop->klass != null
2830  *   // normal class
2831  *   epoch = _epoch_state ? 2 : 1
2832  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
2833  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
2834  *   }
2835  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
2836  * else
2837  *   // primitive class
2838  *   if oop->array_klass != null
2839  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
2840  *   else
2841  *     id = LAST_TYPE_ID + 1 // void class path
2842  *   if (!signaled)
2843  *     signaled = true
2844  */
2845 bool LibraryCallKit::inline_native_classID() {
2846   Node* cls = argument(0);
2847 
2848   IdealKit ideal(this);
2849 #define __ ideal.
2850   IdealVariable result(ideal); __ declarations_done();
2851   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(),
2852                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
2853                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
2854 
2855 
2856   __ if_then(kls, BoolTest::ne, null()); {
2857     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
2858     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
2859 
2860     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
2861     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
2862     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
2863     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
2864     mask = _gvn.transform(new OrLNode(mask, epoch));
2865     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
2866 
2867     float unlikely  = PROB_UNLIKELY(0.999);
2868     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
2869       sync_kit(ideal);
2870       make_runtime_call(RC_LEAF,
2871                         OptoRuntime::class_id_load_barrier_Type(),
2872                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
2873                         "class id load barrier",
2874                         TypePtr::BOTTOM,
2875                         kls);
2876       ideal.sync_kit(this);
2877     } __ end_if();
2878 
2879     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
2880   } __ else_(); {
2881     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(),
2882                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
2883                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
2884     __ if_then(array_kls, BoolTest::ne, null()); {
2885       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
2886       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
2887       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
2888       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
2889     } __ else_(); {
2890       // void class case
2891       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
2892     } __ end_if();
2893 
2894     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
2895     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
2896     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
2897       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
2898     } __ end_if();
2899   } __ end_if();
2900 
2901   final_sync(ideal);
2902   set_result(ideal.value(result));
2903 #undef __
2904   return true;
2905 }
2906 
2907 /*
2908  * The intrinsic is a model of this pseudo-code:
2909  *
2910  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
2911  * jobject h_event_writer = tl->java_event_writer();
2912  * if (h_event_writer == NULL) {
2913  *   return NULL;
2914  * }
2915  * oop threadObj = Thread::threadObj();
2916  * oop vthread = java_lang_Thread::vthread(threadObj);
2917  * traceid tid;
2918  * bool excluded;
2919  * if (vthread != threadObj) {  // i.e. current thread is virtual
2920  *   tid = java_lang_Thread::tid(vthread);
2921  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
2922  *   excluded = vthread_epoch_raw & excluded_mask;
2923  *   if (!excluded) {
2924  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
2925  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
2926  *     if (vthread_epoch != current_epoch) {
2927  *       write_checkpoint();
2928  *     }
2929  *   }
2930  * } else {
2931  *   tid = java_lang_Thread::tid(threadObj);
2932  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
2933  *   excluded = thread_epoch_raw & excluded_mask;
2934  * }
2935  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
2936  * traceid tid_in_event_writer = getField(event_writer, "threadID");
2937  * if (tid_in_event_writer != tid) {
2938  *   setField(event_writer, "threadID", tid);
2939  *   setField(event_writer, "excluded", excluded);
2940  * }
2941  * return event_writer
2942  */
2943 bool LibraryCallKit::inline_native_getEventWriter() {
2944   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
2945 
2946   // Save input memory and i_o state.
2947   Node* input_memory_state = reset_memory();
2948   set_all_memory(input_memory_state);
2949   Node* input_io_state = i_o();
2950 
2951   Node* excluded_mask = _gvn.intcon(32768);
2952   Node* epoch_mask = _gvn.intcon(32767);
2953 
2954   // TLS
2955   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
2956 
2957   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
2958   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
2959 
2960   // Load the eventwriter jobject handle.
2961   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
2962 
2963   // Null check the jobject handle.
2964   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
2965   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
2966   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
2967 
2968   // False path, jobj is null.
2969   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
2970 
2971   // True path, jobj is not null.
2972   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
2973 
2974   set_control(jobj_is_not_null);
2975 
2976   // Load the threadObj for the CarrierThread.
2977   Node* threadObj = generate_current_thread(tls_ptr);
2978 
2979   // Load the vthread.
2980   Node* vthread = generate_virtual_thread(tls_ptr);
2981 
2982   // If vthread != threadObj, this is a virtual thread.
2983   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
2984   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
2985   IfNode* iff_vthread_not_equal_threadObj =
2986     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
2987 
2988   // False branch, fallback to threadObj.
2989   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
2990   set_control(vthread_equal_threadObj);
2991 
2992   // Load the tid field from the vthread object.
2993   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
2994 
2995   // Load the raw epoch value from the threadObj.
2996   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
2997   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
2998                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
2999 
3000   // Mask off the excluded information from the epoch.
3001   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3002 
3003   // True branch, this is a virtual thread.
3004   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3005   set_control(vthread_not_equal_threadObj);
3006 
3007   // Load the tid field from the vthread object.
3008   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3009 
3010   // Load the raw epoch value from the vthread.
3011   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3012   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3013                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3014 
3015   // Mask off the excluded information from the epoch.
3016   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3017 
3018   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3019   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3020   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3021   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3022 
3023   // False branch, vthread is excluded, no need to write epoch info.
3024   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3025 
3026   // True branch, vthread is included, update epoch info.
3027   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3028   set_control(included);
3029 
3030   // Get epoch value.
3031   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3032 
3033   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3034   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3035   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3036 
3037   // Compare the epoch in the vthread to the current epoch generation.
3038   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3039   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3040   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3041 
3042   // False path, epoch is equal, checkpoint information is valid.
3043   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3044 
3045   // True path, epoch is not equal, write a checkpoint for the vthread.
3046   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3047 
3048   set_control(epoch_is_not_equal);
3049 
3050   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3051   // The call also updates the native thread local thread id and the vthread with the current epoch.
3052   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3053                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3054                                                   StubRoutines::jfr_write_checkpoint(),
3055                                                   "write_checkpoint", TypePtr::BOTTOM);
3056   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3057 
3058   // vthread epoch != current epoch
3059   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3060   record_for_igvn(epoch_compare_rgn);
3061   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3062   record_for_igvn(epoch_compare_mem);
3063   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3064   record_for_igvn(epoch_compare_io);
3065 
3066   // Update control and phi nodes.
3067   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3068   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3069   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3070   epoch_compare_mem->init_req(_false_path, input_memory_state);
3071   epoch_compare_io->init_req(_true_path, i_o());
3072   epoch_compare_io->init_req(_false_path, input_io_state);
3073 
3074   // excluded != true
3075   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3076   record_for_igvn(exclude_compare_rgn);
3077   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3078   record_for_igvn(exclude_compare_mem);
3079   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3080   record_for_igvn(exclude_compare_io);
3081 
3082   // Update control and phi nodes.
3083   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3084   exclude_compare_rgn->init_req(_false_path, excluded);
3085   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3086   exclude_compare_mem->init_req(_false_path, input_memory_state);
3087   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3088   exclude_compare_io->init_req(_false_path, input_io_state);
3089 
3090   // vthread != threadObj
3091   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3092   record_for_igvn(vthread_compare_rgn);
3093   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3094   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3095   record_for_igvn(vthread_compare_io);
3096   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3097   record_for_igvn(tid);
3098   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3099   record_for_igvn(exclusion);
3100 
3101   // Update control and phi nodes.
3102   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3103   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3104   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3105   vthread_compare_mem->init_req(_false_path, input_memory_state);
3106   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3107   vthread_compare_io->init_req(_false_path, input_io_state);
3108   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3109   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3110   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3111   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3112 
3113   // Update branch state.
3114   set_control(_gvn.transform(vthread_compare_rgn));
3115   set_all_memory(_gvn.transform(vthread_compare_mem));
3116   set_i_o(_gvn.transform(vthread_compare_io));
3117 
3118   // Load the event writer oop by dereferencing the jobject handle.
3119   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3120   assert(klass_EventWriter->is_loaded(), "invariant");
3121   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3122   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3123   const TypeOopPtr* const xtype = aklass->as_instance_type();
3124   Node* event_writer = access_load(jobj, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3125 
3126   // Load the current thread id from the event writer object.
3127   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3128   // Get the field offset to, conditionally, store an updated tid value later.
3129   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3130   const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr();
3131   // Get the field offset to, conditionally, store an updated exclusion value later.
3132   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3133   const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr();
3134 
3135   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3136   record_for_igvn(event_writer_tid_compare_rgn);
3137   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3138   record_for_igvn(event_writer_tid_compare_mem);
3139   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3140   record_for_igvn(event_writer_tid_compare_io);
3141 
3142   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3143   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3144   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3145   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3146 
3147   // False path, tids are the same.
3148   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3149 
3150   // True path, tid is not equal, need to update the tid in the event writer.
3151   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3152   record_for_igvn(tid_is_not_equal);
3153 
3154   // Store the exclusion state to the event writer.
3155   store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered);
3156 
3157   // Store the tid to the event writer.
3158   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered);
3159 
3160   // Update control and phi nodes.
3161   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3162   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3163   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3164   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3165   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3166   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3167 
3168   // Result of top level CFG, Memory, IO and Value.
3169   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3170   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3171   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3172   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3173 
3174   // Result control.
3175   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3176   result_rgn->init_req(_false_path, jobj_is_null);
3177 
3178   // Result memory.
3179   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3180   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3181 
3182   // Result IO.
3183   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3184   result_io->init_req(_false_path, _gvn.transform(input_io_state));
3185 
3186   // Result value.
3187   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3188   result_value->init_req(_false_path, null()); // return NULL
3189 
3190   // Set output state.
3191   set_control(_gvn.transform(result_rgn));
3192   set_all_memory(_gvn.transform(result_mem));
3193   set_i_o(_gvn.transform(result_io));
3194   set_result(result_rgn, result_value);
3195   return true;
3196 }
3197 
3198 /*
3199  * The intrinsic is a model of this pseudo-code:
3200  *
3201  * JfrThreadLocal* const tl = thread->jfr_thread_local();
3202  * if (carrierThread != thread) { // is virtual thread
3203  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3204  *   bool excluded = vthread_epoch_raw & excluded_mask;
3205  *   Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3206  *   Atomic::store(&tl->_contextual_thread_excluded, is_excluded);
3207  *   if (!excluded) {
3208  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3209  *     Atomic::store(&tl->_vthread_epoch, vthread_epoch);
3210  *   }
3211  *   Atomic::release_store(&tl->_vthread, true);
3212  *   return;
3213  * }
3214  * Atomic::release_store(&tl->_vthread, false);
3215  */
3216 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3217   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3218 
3219   Node* input_memory_state = reset_memory();
3220   set_all_memory(input_memory_state);
3221 
3222   Node* excluded_mask = _gvn.intcon(32768);
3223   Node* epoch_mask = _gvn.intcon(32767);
3224 
3225   Node* const carrierThread = generate_current_thread(jt);
3226   // If thread != carrierThread, this is a virtual thread.
3227   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3228   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
3229   IfNode* iff_thread_not_equal_carrierThread =
3230     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
3231 
3232   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
3233 
3234   // False branch, is carrierThread.
3235   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
3236   // Store release
3237   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3238 
3239   set_all_memory(input_memory_state);
3240 
3241   // True branch, is virtual thread.
3242   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
3243   set_control(thread_not_equal_carrierThread);
3244 
3245   // Load the raw epoch value from the vthread.
3246   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
3247   Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3248                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3249 
3250   // Mask off the excluded information from the epoch.
3251   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
3252 
3253   // Load the tid field from the thread.
3254   Node* tid = load_field_from_object(thread, "tid", "J");
3255 
3256   // Store the vthread tid to the jfr thread local.
3257   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
3258   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true);
3259 
3260   // Branch is_excluded to conditionalize updating the epoch .
3261   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
3262   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
3263   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
3264 
3265   // True branch, vthread is excluded, no need to write epoch info.
3266   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
3267   set_control(excluded);
3268   Node* vthread_is_excluded = _gvn.intcon(1);
3269 
3270   // False branch, vthread is included, update epoch info.
3271   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
3272   set_control(included);
3273   Node* vthread_is_included = _gvn.intcon(0);
3274 
3275   // Get epoch value.
3276   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
3277 
3278   // Store the vthread epoch to the jfr thread local.
3279   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
3280   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true);
3281 
3282   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
3283   record_for_igvn(excluded_rgn);
3284   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
3285   record_for_igvn(excluded_mem);
3286   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
3287   record_for_igvn(exclusion);
3288 
3289   // Merge the excluded control and memory.
3290   excluded_rgn->init_req(_true_path, excluded);
3291   excluded_rgn->init_req(_false_path, included);
3292   excluded_mem->init_req(_true_path, tid_memory);
3293   excluded_mem->init_req(_false_path, included_memory);
3294   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3295   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
3296 
3297   // Set intermediate state.
3298   set_control(_gvn.transform(excluded_rgn));
3299   set_all_memory(excluded_mem);
3300 
3301   // Store the vthread exclusion state to the jfr thread local.
3302   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
3303   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true);
3304 
3305   // Store release
3306   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3307 
3308   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
3309   record_for_igvn(thread_compare_rgn);
3310   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3311   record_for_igvn(thread_compare_mem);
3312   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
3313   record_for_igvn(vthread);
3314 
3315   // Merge the thread_compare control and memory.
3316   thread_compare_rgn->init_req(_true_path, control());
3317   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
3318   thread_compare_mem->init_req(_true_path, vthread_true_memory);
3319   thread_compare_mem->init_req(_false_path, vthread_false_memory);
3320 
3321   // Set output state.
3322   set_control(_gvn.transform(thread_compare_rgn));
3323   set_all_memory(_gvn.transform(thread_compare_mem));
3324 }
3325 
3326 #endif // JFR_HAVE_INTRINSICS
3327 
3328 //------------------------inline_native_currentCarrierThread------------------
3329 bool LibraryCallKit::inline_native_currentCarrierThread() {
3330   Node* junk = NULL;
3331   set_result(generate_current_thread(junk));
3332   return true;
3333 }
3334 
3335 //------------------------inline_native_currentThread------------------
3336 bool LibraryCallKit::inline_native_currentThread() {
3337   Node* junk = NULL;
3338   set_result(generate_virtual_thread(junk));
3339   return true;
3340 }
3341 
3342 //------------------------inline_native_setVthread------------------
3343 bool LibraryCallKit::inline_native_setCurrentThread() {
3344   assert(C->method()->changes_current_thread(),
3345          "method changes current Thread but is not annotated ChangesCurrentThread");
3346   Node* arr = argument(1);
3347   Node* thread = _gvn.transform(new ThreadLocalNode());
3348   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3349   Node* thread_obj_handle
3350     = make_load(NULL, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3351   thread_obj_handle = _gvn.transform(thread_obj_handle);
3352   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3353   // Stores of oops to native memory not supported yet by BarrierSetC2::store_at_resolved
3354   // access_store_at(NULL, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3355   store_to_memory(control(), thread_obj_handle, arr, T_OBJECT, adr_type, MemNode::unordered);
3356   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3357   return true;
3358 }
3359 
3360 Node* LibraryCallKit::extentLocalCache_helper() {
3361   ciKlass *objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3362   const TypeOopPtr *etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3363 
3364   bool xk = etype->klass_is_exact();
3365 
3366   Node* thread = _gvn.transform(new ThreadLocalNode());
3367   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::extentLocalCache_offset()));
3368   return _gvn.transform(LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(),
3369         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3370 }
3371 
3372 //------------------------inline_native_extentLocalCache------------------
3373 bool LibraryCallKit::inline_native_extentLocalCache() {
3374   ciKlass *objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3375   const TypeOopPtr *etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3376   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3377 
3378   // Because we create the extentLocal cache lazily we have to make the
3379   // type of the result BotPTR.
3380   bool xk = etype->klass_is_exact();
3381   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3382   Node* cache_obj_handle = extentLocalCache_helper();
3383   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3384 
3385   return true;
3386 }
3387 
3388 //------------------------inline_native_setExtentLocalCache------------------
3389 bool LibraryCallKit::inline_native_setExtentLocalCache() {
3390   Node* arr = argument(0);
3391   Node* cache_obj_handle = extentLocalCache_helper();
3392 
3393   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3394   store_to_memory(control(), cache_obj_handle, arr, T_OBJECT, adr_type,
3395                   MemNode::unordered);
3396 
3397   return true;
3398 }
3399 
3400 //---------------------------load_mirror_from_klass----------------------------
3401 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3402 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3403   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3404   Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3405   // mirror = ((OopHandle)mirror)->resolve();
3406   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3407 }
3408 
3409 //-----------------------load_klass_from_mirror_common-------------------------
3410 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3411 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3412 // and branch to the given path on the region.
3413 // If never_see_null, take an uncommon trap on null, so we can optimistically
3414 // compile for the non-null case.
3415 // If the region is NULL, force never_see_null = true.
3416 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3417                                                     bool never_see_null,
3418                                                     RegionNode* region,
3419                                                     int null_path,
3420                                                     int offset) {
3421   if (region == NULL)  never_see_null = true;
3422   Node* p = basic_plus_adr(mirror, offset);
3423   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3424   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3425   Node* null_ctl = top();
3426   kls = null_check_oop(kls, &null_ctl, never_see_null);
3427   if (region != NULL) {
3428     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3429     region->init_req(null_path, null_ctl);
3430   } else {
3431     assert(null_ctl == top(), "no loose ends");
3432   }
3433   return kls;
3434 }
3435 
3436 //--------------------(inline_native_Class_query helpers)---------------------
3437 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3438 // Fall through if (mods & mask) == bits, take the guard otherwise.
3439 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3440   // Branch around if the given klass has the given modifier bit set.
3441   // Like generate_guard, adds a new path onto the region.
3442   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3443   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3444   Node* mask = intcon(modifier_mask);
3445   Node* bits = intcon(modifier_bits);
3446   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3447   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3448   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3449   return generate_fair_guard(bol, region);
3450 }
3451 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3452   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3453 }
3454 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3455   return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region);
3456 }
3457 
3458 //-------------------------inline_native_Class_query-------------------
3459 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3460   const Type* return_type = TypeInt::BOOL;
3461   Node* prim_return_value = top();  // what happens if it's a primitive class?
3462   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3463   bool expect_prim = false;     // most of these guys expect to work on refs
3464 
3465   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3466 
3467   Node* mirror = argument(0);
3468   Node* obj    = top();
3469 
3470   switch (id) {
3471   case vmIntrinsics::_isInstance:
3472     // nothing is an instance of a primitive type
3473     prim_return_value = intcon(0);
3474     obj = argument(1);
3475     break;
3476   case vmIntrinsics::_getModifiers:
3477     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3478     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3479     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3480     break;
3481   case vmIntrinsics::_isInterface:
3482     prim_return_value = intcon(0);
3483     break;
3484   case vmIntrinsics::_isArray:
3485     prim_return_value = intcon(0);
3486     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3487     break;
3488   case vmIntrinsics::_isPrimitive:
3489     prim_return_value = intcon(1);
3490     expect_prim = true;  // obviously
3491     break;
3492   case vmIntrinsics::_isHidden:
3493     prim_return_value = intcon(0);
3494     break;
3495   case vmIntrinsics::_getSuperclass:
3496     prim_return_value = null();
3497     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3498     break;
3499   case vmIntrinsics::_getClassAccessFlags:
3500     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3501     return_type = TypeInt::INT;  // not bool!  6297094
3502     break;
3503   default:
3504     fatal_unexpected_iid(id);
3505     break;
3506   }
3507 
3508   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3509   if (mirror_con == NULL)  return false;  // cannot happen?
3510 
3511 #ifndef PRODUCT
3512   if (C->print_intrinsics() || C->print_inlining()) {
3513     ciType* k = mirror_con->java_mirror_type();
3514     if (k) {
3515       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3516       k->print_name();
3517       tty->cr();
3518     }
3519   }
3520 #endif
3521 
3522   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3523   RegionNode* region = new RegionNode(PATH_LIMIT);
3524   record_for_igvn(region);
3525   PhiNode* phi = new PhiNode(region, return_type);
3526 
3527   // The mirror will never be null of Reflection.getClassAccessFlags, however
3528   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3529   // if it is. See bug 4774291.
3530 
3531   // For Reflection.getClassAccessFlags(), the null check occurs in
3532   // the wrong place; see inline_unsafe_access(), above, for a similar
3533   // situation.
3534   mirror = null_check(mirror);
3535   // If mirror or obj is dead, only null-path is taken.
3536   if (stopped())  return true;
3537 
3538   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3539 
3540   // Now load the mirror's klass metaobject, and null-check it.
3541   // Side-effects region with the control path if the klass is null.
3542   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3543   // If kls is null, we have a primitive mirror.
3544   phi->init_req(_prim_path, prim_return_value);
3545   if (stopped()) { set_result(region, phi); return true; }
3546   bool safe_for_replace = (region->in(_prim_path) == top());
3547 
3548   Node* p;  // handy temp
3549   Node* null_ctl;
3550 
3551   // Now that we have the non-null klass, we can perform the real query.
3552   // For constant classes, the query will constant-fold in LoadNode::Value.
3553   Node* query_value = top();
3554   switch (id) {
3555   case vmIntrinsics::_isInstance:
3556     // nothing is an instance of a primitive type
3557     query_value = gen_instanceof(obj, kls, safe_for_replace);
3558     break;
3559 
3560   case vmIntrinsics::_getModifiers:
3561     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3562     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3563     break;
3564 
3565   case vmIntrinsics::_isInterface:
3566     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3567     if (generate_interface_guard(kls, region) != NULL)
3568       // A guard was added.  If the guard is taken, it was an interface.
3569       phi->add_req(intcon(1));
3570     // If we fall through, it's a plain class.
3571     query_value = intcon(0);
3572     break;
3573 
3574   case vmIntrinsics::_isArray:
3575     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3576     if (generate_array_guard(kls, region) != NULL)
3577       // A guard was added.  If the guard is taken, it was an array.
3578       phi->add_req(intcon(1));
3579     // If we fall through, it's a plain class.
3580     query_value = intcon(0);
3581     break;
3582 
3583   case vmIntrinsics::_isPrimitive:
3584     query_value = intcon(0); // "normal" path produces false
3585     break;
3586 
3587   case vmIntrinsics::_isHidden:
3588     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
3589     if (generate_hidden_class_guard(kls, region) != NULL)
3590       // A guard was added.  If the guard is taken, it was an hidden class.
3591       phi->add_req(intcon(1));
3592     // If we fall through, it's a plain class.
3593     query_value = intcon(0);
3594     break;
3595 
3596 
3597   case vmIntrinsics::_getSuperclass:
3598     // The rules here are somewhat unfortunate, but we can still do better
3599     // with random logic than with a JNI call.
3600     // Interfaces store null or Object as _super, but must report null.
3601     // Arrays store an intermediate super as _super, but must report Object.
3602     // Other types can report the actual _super.
3603     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3604     if (generate_interface_guard(kls, region) != NULL)
3605       // A guard was added.  If the guard is taken, it was an interface.
3606       phi->add_req(null());
3607     if (generate_array_guard(kls, region) != NULL)
3608       // A guard was added.  If the guard is taken, it was an array.
3609       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3610     // If we fall through, it's a plain class.  Get its _super.
3611     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3612     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3613     null_ctl = top();
3614     kls = null_check_oop(kls, &null_ctl);
3615     if (null_ctl != top()) {
3616       // If the guard is taken, Object.superClass is null (both klass and mirror).
3617       region->add_req(null_ctl);
3618       phi   ->add_req(null());
3619     }
3620     if (!stopped()) {
3621       query_value = load_mirror_from_klass(kls);
3622     }
3623     break;
3624 
3625   case vmIntrinsics::_getClassAccessFlags:
3626     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3627     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3628     break;
3629 
3630   default:
3631     fatal_unexpected_iid(id);
3632     break;
3633   }
3634 
3635   // Fall-through is the normal case of a query to a real class.
3636   phi->init_req(1, query_value);
3637   region->init_req(1, control());
3638 
3639   C->set_has_split_ifs(true); // Has chance for split-if optimization
3640   set_result(region, phi);
3641   return true;
3642 }
3643 
3644 //-------------------------inline_Class_cast-------------------
3645 bool LibraryCallKit::inline_Class_cast() {
3646   Node* mirror = argument(0); // Class
3647   Node* obj    = argument(1);
3648   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3649   if (mirror_con == NULL) {
3650     return false;  // dead path (mirror->is_top()).
3651   }
3652   if (obj == NULL || obj->is_top()) {
3653     return false;  // dead path
3654   }
3655   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3656 
3657   // First, see if Class.cast() can be folded statically.
3658   // java_mirror_type() returns non-null for compile-time Class constants.
3659   ciType* tm = mirror_con->java_mirror_type();
3660   if (tm != NULL && tm->is_klass() &&
3661       tp != NULL) {
3662     if (!tp->is_loaded()) {
3663       // Don't use intrinsic when class is not loaded.
3664       return false;
3665     } else {
3666       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass()), tp->as_klass_type());
3667       if (static_res == Compile::SSC_always_true) {
3668         // isInstance() is true - fold the code.
3669         set_result(obj);
3670         return true;
3671       } else if (static_res == Compile::SSC_always_false) {
3672         // Don't use intrinsic, have to throw ClassCastException.
3673         // If the reference is null, the non-intrinsic bytecode will
3674         // be optimized appropriately.
3675         return false;
3676       }
3677     }
3678   }
3679 
3680   // Bailout intrinsic and do normal inlining if exception path is frequent.
3681   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3682     return false;
3683   }
3684 
3685   // Generate dynamic checks.
3686   // Class.cast() is java implementation of _checkcast bytecode.
3687   // Do checkcast (Parse::do_checkcast()) optimizations here.
3688 
3689   mirror = null_check(mirror);
3690   // If mirror is dead, only null-path is taken.
3691   if (stopped()) {
3692     return true;
3693   }
3694 
3695   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3696   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3697   RegionNode* region = new RegionNode(PATH_LIMIT);
3698   record_for_igvn(region);
3699 
3700   // Now load the mirror's klass metaobject, and null-check it.
3701   // If kls is null, we have a primitive mirror and
3702   // nothing is an instance of a primitive type.
3703   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3704 
3705   Node* res = top();
3706   if (!stopped()) {
3707     Node* bad_type_ctrl = top();
3708     // Do checkcast optimizations.
3709     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3710     region->init_req(_bad_type_path, bad_type_ctrl);
3711   }
3712   if (region->in(_prim_path) != top() ||
3713       region->in(_bad_type_path) != top()) {
3714     // Let Interpreter throw ClassCastException.
3715     PreserveJVMState pjvms(this);
3716     set_control(_gvn.transform(region));
3717     uncommon_trap(Deoptimization::Reason_intrinsic,
3718                   Deoptimization::Action_maybe_recompile);
3719   }
3720   if (!stopped()) {
3721     set_result(res);
3722   }
3723   return true;
3724 }
3725 
3726 
3727 //--------------------------inline_native_subtype_check------------------------
3728 // This intrinsic takes the JNI calls out of the heart of
3729 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3730 bool LibraryCallKit::inline_native_subtype_check() {
3731   // Pull both arguments off the stack.
3732   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3733   args[0] = argument(0);
3734   args[1] = argument(1);
3735   Node* klasses[2];             // corresponding Klasses: superk, subk
3736   klasses[0] = klasses[1] = top();
3737 
3738   enum {
3739     // A full decision tree on {superc is prim, subc is prim}:
3740     _prim_0_path = 1,           // {P,N} => false
3741                                 // {P,P} & superc!=subc => false
3742     _prim_same_path,            // {P,P} & superc==subc => true
3743     _prim_1_path,               // {N,P} => false
3744     _ref_subtype_path,          // {N,N} & subtype check wins => true
3745     _both_ref_path,             // {N,N} & subtype check loses => false
3746     PATH_LIMIT
3747   };
3748 
3749   RegionNode* region = new RegionNode(PATH_LIMIT);
3750   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3751   record_for_igvn(region);
3752 
3753   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3754   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3755   int class_klass_offset = java_lang_Class::klass_offset();
3756 
3757   // First null-check both mirrors and load each mirror's klass metaobject.
3758   int which_arg;
3759   for (which_arg = 0; which_arg <= 1; which_arg++) {
3760     Node* arg = args[which_arg];
3761     arg = null_check(arg);
3762     if (stopped())  break;
3763     args[which_arg] = arg;
3764 
3765     Node* p = basic_plus_adr(arg, class_klass_offset);
3766     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3767     klasses[which_arg] = _gvn.transform(kls);
3768   }
3769 
3770   // Having loaded both klasses, test each for null.
3771   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3772   for (which_arg = 0; which_arg <= 1; which_arg++) {
3773     Node* kls = klasses[which_arg];
3774     Node* null_ctl = top();
3775     kls = null_check_oop(kls, &null_ctl, never_see_null);
3776     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3777     region->init_req(prim_path, null_ctl);
3778     if (stopped())  break;
3779     klasses[which_arg] = kls;
3780   }
3781 
3782   if (!stopped()) {
3783     // now we have two reference types, in klasses[0..1]
3784     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3785     Node* superk = klasses[0];  // the receiver
3786     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3787     // now we have a successful reference subtype check
3788     region->set_req(_ref_subtype_path, control());
3789   }
3790 
3791   // If both operands are primitive (both klasses null), then
3792   // we must return true when they are identical primitives.
3793   // It is convenient to test this after the first null klass check.
3794   set_control(region->in(_prim_0_path)); // go back to first null check
3795   if (!stopped()) {
3796     // Since superc is primitive, make a guard for the superc==subc case.
3797     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3798     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3799     generate_guard(bol_eq, region, PROB_FAIR);
3800     if (region->req() == PATH_LIMIT+1) {
3801       // A guard was added.  If the added guard is taken, superc==subc.
3802       region->swap_edges(PATH_LIMIT, _prim_same_path);
3803       region->del_req(PATH_LIMIT);
3804     }
3805     region->set_req(_prim_0_path, control()); // Not equal after all.
3806   }
3807 
3808   // these are the only paths that produce 'true':
3809   phi->set_req(_prim_same_path,   intcon(1));
3810   phi->set_req(_ref_subtype_path, intcon(1));
3811 
3812   // pull together the cases:
3813   assert(region->req() == PATH_LIMIT, "sane region");
3814   for (uint i = 1; i < region->req(); i++) {
3815     Node* ctl = region->in(i);
3816     if (ctl == NULL || ctl == top()) {
3817       region->set_req(i, top());
3818       phi   ->set_req(i, top());
3819     } else if (phi->in(i) == NULL) {
3820       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3821     }
3822   }
3823 
3824   set_control(_gvn.transform(region));
3825   set_result(_gvn.transform(phi));
3826   return true;
3827 }
3828 
3829 //---------------------generate_array_guard_common------------------------
3830 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3831                                                   bool obj_array, bool not_array) {
3832 
3833   if (stopped()) {
3834     return NULL;
3835   }
3836 
3837   // If obj_array/non_array==false/false:
3838   // Branch around if the given klass is in fact an array (either obj or prim).
3839   // If obj_array/non_array==false/true:
3840   // Branch around if the given klass is not an array klass of any kind.
3841   // If obj_array/non_array==true/true:
3842   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3843   // If obj_array/non_array==true/false:
3844   // Branch around if the kls is an oop array (Object[] or subtype)
3845   //
3846   // Like generate_guard, adds a new path onto the region.
3847   jint  layout_con = 0;
3848   Node* layout_val = get_layout_helper(kls, layout_con);
3849   if (layout_val == NULL) {
3850     bool query = (obj_array
3851                   ? Klass::layout_helper_is_objArray(layout_con)
3852                   : Klass::layout_helper_is_array(layout_con));
3853     if (query == not_array) {
3854       return NULL;                       // never a branch
3855     } else {                             // always a branch
3856       Node* always_branch = control();
3857       if (region != NULL)
3858         region->add_req(always_branch);
3859       set_control(top());
3860       return always_branch;
3861     }
3862   }
3863   // Now test the correct condition.
3864   jint  nval = (obj_array
3865                 ? (jint)(Klass::_lh_array_tag_type_value
3866                    <<    Klass::_lh_array_tag_shift)
3867                 : Klass::_lh_neutral_value);
3868   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3869   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3870   // invert the test if we are looking for a non-array
3871   if (not_array)  btest = BoolTest(btest).negate();
3872   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3873   return generate_fair_guard(bol, region);
3874 }
3875 
3876 
3877 //-----------------------inline_native_newArray--------------------------
3878 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3879 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3880 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3881   Node* mirror;
3882   Node* count_val;
3883   if (uninitialized) {
3884     mirror    = argument(1);
3885     count_val = argument(2);
3886   } else {
3887     mirror    = argument(0);
3888     count_val = argument(1);
3889   }
3890 
3891   mirror = null_check(mirror);
3892   // If mirror or obj is dead, only null-path is taken.
3893   if (stopped())  return true;
3894 
3895   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3896   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3897   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3898   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3899   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3900 
3901   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3902   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3903                                                   result_reg, _slow_path);
3904   Node* normal_ctl   = control();
3905   Node* no_array_ctl = result_reg->in(_slow_path);
3906 
3907   // Generate code for the slow case.  We make a call to newArray().
3908   set_control(no_array_ctl);
3909   if (!stopped()) {
3910     // Either the input type is void.class, or else the
3911     // array klass has not yet been cached.  Either the
3912     // ensuing call will throw an exception, or else it
3913     // will cache the array klass for next time.
3914     PreserveJVMState pjvms(this);
3915     CallJavaNode* slow_call = NULL;
3916     if (uninitialized) {
3917       // Generate optimized virtual call (holder class 'Unsafe' is final)
3918       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false);
3919     } else {
3920       slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3921     }
3922     Node* slow_result = set_results_for_java_call(slow_call);
3923     // this->control() comes from set_results_for_java_call
3924     result_reg->set_req(_slow_path, control());
3925     result_val->set_req(_slow_path, slow_result);
3926     result_io ->set_req(_slow_path, i_o());
3927     result_mem->set_req(_slow_path, reset_memory());
3928   }
3929 
3930   set_control(normal_ctl);
3931   if (!stopped()) {
3932     // Normal case:  The array type has been cached in the java.lang.Class.
3933     // The following call works fine even if the array type is polymorphic.
3934     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3935     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3936     result_reg->init_req(_normal_path, control());
3937     result_val->init_req(_normal_path, obj);
3938     result_io ->init_req(_normal_path, i_o());
3939     result_mem->init_req(_normal_path, reset_memory());
3940 
3941     if (uninitialized) {
3942       // Mark the allocation so that zeroing is skipped
3943       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3944       alloc->maybe_set_complete(&_gvn);
3945     }
3946   }
3947 
3948   // Return the combined state.
3949   set_i_o(        _gvn.transform(result_io)  );
3950   set_all_memory( _gvn.transform(result_mem));
3951 
3952   C->set_has_split_ifs(true); // Has chance for split-if optimization
3953   set_result(result_reg, result_val);
3954   return true;
3955 }
3956 
3957 //----------------------inline_native_getLength--------------------------
3958 // public static native int java.lang.reflect.Array.getLength(Object array);
3959 bool LibraryCallKit::inline_native_getLength() {
3960   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3961 
3962   Node* array = null_check(argument(0));
3963   // If array is dead, only null-path is taken.
3964   if (stopped())  return true;
3965 
3966   // Deoptimize if it is a non-array.
3967   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3968 
3969   if (non_array != NULL) {
3970     PreserveJVMState pjvms(this);
3971     set_control(non_array);
3972     uncommon_trap(Deoptimization::Reason_intrinsic,
3973                   Deoptimization::Action_maybe_recompile);
3974   }
3975 
3976   // If control is dead, only non-array-path is taken.
3977   if (stopped())  return true;
3978 
3979   // The works fine even if the array type is polymorphic.
3980   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3981   Node* result = load_array_length(array);
3982 
3983   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3984   set_result(result);
3985   return true;
3986 }
3987 
3988 //------------------------inline_array_copyOf----------------------------
3989 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3990 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3991 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3992   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3993 
3994   // Get the arguments.
3995   Node* original          = argument(0);
3996   Node* start             = is_copyOfRange? argument(1): intcon(0);
3997   Node* end               = is_copyOfRange? argument(2): argument(1);
3998   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3999 
4000   Node* newcopy = NULL;
4001 
4002   // Set the original stack and the reexecute bit for the interpreter to reexecute
4003   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4004   { PreserveReexecuteState preexecs(this);
4005     jvms()->set_should_reexecute(true);
4006 
4007     array_type_mirror = null_check(array_type_mirror);
4008     original          = null_check(original);
4009 
4010     // Check if a null path was taken unconditionally.
4011     if (stopped())  return true;
4012 
4013     Node* orig_length = load_array_length(original);
4014 
4015     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
4016     klass_node = null_check(klass_node);
4017 
4018     RegionNode* bailout = new RegionNode(1);
4019     record_for_igvn(bailout);
4020 
4021     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4022     // Bail out if that is so.
4023     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4024     if (not_objArray != NULL) {
4025       // Improve the klass node's type from the new optimistic assumption:
4026       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4027       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4028       Node* cast = new CastPPNode(klass_node, akls);
4029       cast->init_req(0, control());
4030       klass_node = _gvn.transform(cast);
4031     }
4032 
4033     // Bail out if either start or end is negative.
4034     generate_negative_guard(start, bailout, &start);
4035     generate_negative_guard(end,   bailout, &end);
4036 
4037     Node* length = end;
4038     if (_gvn.type(start) != TypeInt::ZERO) {
4039       length = _gvn.transform(new SubINode(end, start));
4040     }
4041 
4042     // Bail out if length is negative.
4043     // Without this the new_array would throw
4044     // NegativeArraySizeException but IllegalArgumentException is what
4045     // should be thrown
4046     generate_negative_guard(length, bailout, &length);
4047 
4048     if (bailout->req() > 1) {
4049       PreserveJVMState pjvms(this);
4050       set_control(_gvn.transform(bailout));
4051       uncommon_trap(Deoptimization::Reason_intrinsic,
4052                     Deoptimization::Action_maybe_recompile);
4053     }
4054 
4055     if (!stopped()) {
4056       // How many elements will we copy from the original?
4057       // The answer is MinI(orig_length - start, length).
4058       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4059       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4060 
4061       // Generate a direct call to the right arraycopy function(s).
4062       // We know the copy is disjoint but we might not know if the
4063       // oop stores need checking.
4064       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4065       // This will fail a store-check if x contains any non-nulls.
4066 
4067       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4068       // loads/stores but it is legal only if we're sure the
4069       // Arrays.copyOf would succeed. So we need all input arguments
4070       // to the copyOf to be validated, including that the copy to the
4071       // new array won't trigger an ArrayStoreException. That subtype
4072       // check can be optimized if we know something on the type of
4073       // the input array from type speculation.
4074       if (_gvn.type(klass_node)->singleton()) {
4075         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4076         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4077 
4078         int test = C->static_subtype_check(superk, subk);
4079         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4080           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4081           if (t_original->speculative_type() != NULL) {
4082             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4083           }
4084         }
4085       }
4086 
4087       bool validated = false;
4088       // Reason_class_check rather than Reason_intrinsic because we
4089       // want to intrinsify even if this traps.
4090       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4091         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4092 
4093         if (not_subtype_ctrl != top()) {
4094           PreserveJVMState pjvms(this);
4095           set_control(not_subtype_ctrl);
4096           uncommon_trap(Deoptimization::Reason_class_check,
4097                         Deoptimization::Action_make_not_entrant);
4098           assert(stopped(), "Should be stopped");
4099         }
4100         validated = true;
4101       }
4102 
4103       if (!stopped()) {
4104         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4105 
4106         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
4107                                                 load_object_klass(original), klass_node);
4108         if (!is_copyOfRange) {
4109           ac->set_copyof(validated);
4110         } else {
4111           ac->set_copyofrange(validated);
4112         }
4113         Node* n = _gvn.transform(ac);
4114         if (n == ac) {
4115           ac->connect_outputs(this);
4116         } else {
4117           assert(validated, "shouldn't transform if all arguments not validated");
4118           set_all_memory(n);
4119         }
4120       }
4121     }
4122   } // original reexecute is set back here
4123 
4124   C->set_has_split_ifs(true); // Has chance for split-if optimization
4125   if (!stopped()) {
4126     set_result(newcopy);
4127   }
4128   return true;
4129 }
4130 
4131 
4132 //----------------------generate_virtual_guard---------------------------
4133 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4134 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4135                                              RegionNode* slow_region) {
4136   ciMethod* method = callee();
4137   int vtable_index = method->vtable_index();
4138   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4139          "bad index %d", vtable_index);
4140   // Get the Method* out of the appropriate vtable entry.
4141   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4142                      vtable_index*vtableEntry::size_in_bytes() +
4143                      vtableEntry::method_offset_in_bytes();
4144   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4145   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4146 
4147   // Compare the target method with the expected method (e.g., Object.hashCode).
4148   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4149 
4150   Node* native_call = makecon(native_call_addr);
4151   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4152   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4153 
4154   return generate_slow_guard(test_native, slow_region);
4155 }
4156 
4157 //-----------------------generate_method_call----------------------------
4158 // Use generate_method_call to make a slow-call to the real
4159 // method if the fast path fails.  An alternative would be to
4160 // use a stub like OptoRuntime::slow_arraycopy_Java.
4161 // This only works for expanding the current library call,
4162 // not another intrinsic.  (E.g., don't use this for making an
4163 // arraycopy call inside of the copyOf intrinsic.)
4164 CallJavaNode*
4165 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4166   // When compiling the intrinsic method itself, do not use this technique.
4167   guarantee(callee() != C->method(), "cannot make slow-call to self");
4168 
4169   ciMethod* method = callee();
4170   // ensure the JVMS we have will be correct for this call
4171   guarantee(method_id == method->intrinsic_id(), "must match");
4172 
4173   const TypeFunc* tf = TypeFunc::make(method);
4174   CallJavaNode* slow_call;
4175   if (is_static) {
4176     assert(!is_virtual, "");
4177     slow_call = new CallStaticJavaNode(C, tf,
4178                            SharedRuntime::get_resolve_static_call_stub(), method);
4179   } else if (is_virtual) {
4180     null_check_receiver();
4181     int vtable_index = Method::invalid_vtable_index;
4182     if (UseInlineCaches) {
4183       // Suppress the vtable call
4184     } else {
4185       // hashCode and clone are not a miranda methods,
4186       // so the vtable index is fixed.
4187       // No need to use the linkResolver to get it.
4188        vtable_index = method->vtable_index();
4189        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4190               "bad index %d", vtable_index);
4191     }
4192     slow_call = new CallDynamicJavaNode(tf,
4193                           SharedRuntime::get_resolve_virtual_call_stub(),
4194                           method, vtable_index);
4195   } else {  // neither virtual nor static:  opt_virtual
4196     null_check_receiver();
4197     slow_call = new CallStaticJavaNode(C, tf,
4198                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
4199     slow_call->set_optimized_virtual(true);
4200   }
4201   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
4202     // To be able to issue a direct call (optimized virtual or virtual)
4203     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
4204     // about the method being invoked should be attached to the call site to
4205     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
4206     slow_call->set_override_symbolic_info(true);
4207   }
4208   set_arguments_for_java_call(slow_call);
4209   set_edges_for_java_call(slow_call);
4210   return slow_call;
4211 }
4212 
4213 
4214 /**
4215  * Build special case code for calls to hashCode on an object. This call may
4216  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4217  * slightly different code.
4218  */
4219 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4220   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4221   assert(!(is_virtual && is_static), "either virtual, special, or static");
4222 
4223   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4224 
4225   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4226   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4227   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4228   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4229   Node* obj = NULL;
4230   if (!is_static) {
4231     // Check for hashing null object
4232     obj = null_check_receiver();
4233     if (stopped())  return true;        // unconditionally null
4234     result_reg->init_req(_null_path, top());
4235     result_val->init_req(_null_path, top());
4236   } else {
4237     // Do a null check, and return zero if null.
4238     // System.identityHashCode(null) == 0
4239     obj = argument(0);
4240     Node* null_ctl = top();
4241     obj = null_check_oop(obj, &null_ctl);
4242     result_reg->init_req(_null_path, null_ctl);
4243     result_val->init_req(_null_path, _gvn.intcon(0));
4244   }
4245 
4246   // Unconditionally null?  Then return right away.
4247   if (stopped()) {
4248     set_control( result_reg->in(_null_path));
4249     if (!stopped())
4250       set_result(result_val->in(_null_path));
4251     return true;
4252   }
4253 
4254   // We only go to the fast case code if we pass a number of guards.  The
4255   // paths which do not pass are accumulated in the slow_region.
4256   RegionNode* slow_region = new RegionNode(1);
4257   record_for_igvn(slow_region);
4258 
4259   // If this is a virtual call, we generate a funny guard.  We pull out
4260   // the vtable entry corresponding to hashCode() from the target object.
4261   // If the target method which we are calling happens to be the native
4262   // Object hashCode() method, we pass the guard.  We do not need this
4263   // guard for non-virtual calls -- the caller is known to be the native
4264   // Object hashCode().
4265   if (is_virtual) {
4266     // After null check, get the object's klass.
4267     Node* obj_klass = load_object_klass(obj);
4268     generate_virtual_guard(obj_klass, slow_region);
4269   }
4270 
4271   // Get the header out of the object, use LoadMarkNode when available
4272   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4273   // The control of the load must be NULL. Otherwise, the load can move before
4274   // the null check after castPP removal.
4275   Node* no_ctrl = NULL;
4276   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4277 
4278   // Test the header to see if it is unlocked.
4279   Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
4280   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4281   Node *unlocked_val   = _gvn.MakeConX(markWord::unlocked_value);
4282   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4283   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4284 
4285   generate_slow_guard(test_unlocked, slow_region);
4286 
4287   // Get the hash value and check to see that it has been properly assigned.
4288   // We depend on hash_mask being at most 32 bits and avoid the use of
4289   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4290   // vm: see markWord.hpp.
4291   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4292   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4293   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4294   // This hack lets the hash bits live anywhere in the mark object now, as long
4295   // as the shift drops the relevant bits into the low 32 bits.  Note that
4296   // Java spec says that HashCode is an int so there's no point in capturing
4297   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4298   hshifted_header      = ConvX2I(hshifted_header);
4299   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4300 
4301   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
4302   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4303   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4304 
4305   generate_slow_guard(test_assigned, slow_region);
4306 
4307   Node* init_mem = reset_memory();
4308   // fill in the rest of the null path:
4309   result_io ->init_req(_null_path, i_o());
4310   result_mem->init_req(_null_path, init_mem);
4311 
4312   result_val->init_req(_fast_path, hash_val);
4313   result_reg->init_req(_fast_path, control());
4314   result_io ->init_req(_fast_path, i_o());
4315   result_mem->init_req(_fast_path, init_mem);
4316 
4317   // Generate code for the slow case.  We make a call to hashCode().
4318   set_control(_gvn.transform(slow_region));
4319   if (!stopped()) {
4320     // No need for PreserveJVMState, because we're using up the present state.
4321     set_all_memory(init_mem);
4322     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4323     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4324     Node* slow_result = set_results_for_java_call(slow_call);
4325     // this->control() comes from set_results_for_java_call
4326     result_reg->init_req(_slow_path, control());
4327     result_val->init_req(_slow_path, slow_result);
4328     result_io  ->set_req(_slow_path, i_o());
4329     result_mem ->set_req(_slow_path, reset_memory());
4330   }
4331 
4332   // Return the combined state.
4333   set_i_o(        _gvn.transform(result_io)  );
4334   set_all_memory( _gvn.transform(result_mem));
4335 
4336   set_result(result_reg, result_val);
4337   return true;
4338 }
4339 
4340 //---------------------------inline_native_getClass----------------------------
4341 // public final native Class<?> java.lang.Object.getClass();
4342 //
4343 // Build special case code for calls to getClass on an object.
4344 bool LibraryCallKit::inline_native_getClass() {
4345   Node* obj = null_check_receiver();
4346   if (stopped())  return true;
4347   set_result(load_mirror_from_klass(load_object_klass(obj)));
4348   return true;
4349 }
4350 
4351 //-----------------inline_native_Reflection_getCallerClass---------------------
4352 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4353 //
4354 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4355 //
4356 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4357 // in that it must skip particular security frames and checks for
4358 // caller sensitive methods.
4359 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4360 #ifndef PRODUCT
4361   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4362     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4363   }
4364 #endif
4365 
4366   if (!jvms()->has_method()) {
4367 #ifndef PRODUCT
4368     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4369       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4370     }
4371 #endif
4372     return false;
4373   }
4374 
4375   // Walk back up the JVM state to find the caller at the required
4376   // depth.
4377   JVMState* caller_jvms = jvms();
4378 
4379   // Cf. JVM_GetCallerClass
4380   // NOTE: Start the loop at depth 1 because the current JVM state does
4381   // not include the Reflection.getCallerClass() frame.
4382   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4383     ciMethod* m = caller_jvms->method();
4384     switch (n) {
4385     case 0:
4386       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4387       break;
4388     case 1:
4389       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4390       if (!m->caller_sensitive()) {
4391 #ifndef PRODUCT
4392         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4393           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4394         }
4395 #endif
4396         return false;  // bail-out; let JVM_GetCallerClass do the work
4397       }
4398       break;
4399     default:
4400       if (!m->is_ignored_by_security_stack_walk()) {
4401         // We have reached the desired frame; return the holder class.
4402         // Acquire method holder as java.lang.Class and push as constant.
4403         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4404         ciInstance* caller_mirror = caller_klass->java_mirror();
4405         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4406 
4407 #ifndef PRODUCT
4408         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4409           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4410           tty->print_cr("  JVM state at this point:");
4411           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4412             ciMethod* m = jvms()->of_depth(i)->method();
4413             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4414           }
4415         }
4416 #endif
4417         return true;
4418       }
4419       break;
4420     }
4421   }
4422 
4423 #ifndef PRODUCT
4424   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4425     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4426     tty->print_cr("  JVM state at this point:");
4427     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4428       ciMethod* m = jvms()->of_depth(i)->method();
4429       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4430     }
4431   }
4432 #endif
4433 
4434   return false;  // bail-out; let JVM_GetCallerClass do the work
4435 }
4436 
4437 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4438   Node* arg = argument(0);
4439   Node* result = NULL;
4440 
4441   switch (id) {
4442   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4443   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4444   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4445   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4446 
4447   case vmIntrinsics::_doubleToLongBits: {
4448     // two paths (plus control) merge in a wood
4449     RegionNode *r = new RegionNode(3);
4450     Node *phi = new PhiNode(r, TypeLong::LONG);
4451 
4452     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4453     // Build the boolean node
4454     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4455 
4456     // Branch either way.
4457     // NaN case is less traveled, which makes all the difference.
4458     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4459     Node *opt_isnan = _gvn.transform(ifisnan);
4460     assert( opt_isnan->is_If(), "Expect an IfNode");
4461     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4462     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4463 
4464     set_control(iftrue);
4465 
4466     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4467     Node *slow_result = longcon(nan_bits); // return NaN
4468     phi->init_req(1, _gvn.transform( slow_result ));
4469     r->init_req(1, iftrue);
4470 
4471     // Else fall through
4472     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4473     set_control(iffalse);
4474 
4475     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4476     r->init_req(2, iffalse);
4477 
4478     // Post merge
4479     set_control(_gvn.transform(r));
4480     record_for_igvn(r);
4481 
4482     C->set_has_split_ifs(true); // Has chance for split-if optimization
4483     result = phi;
4484     assert(result->bottom_type()->isa_long(), "must be");
4485     break;
4486   }
4487 
4488   case vmIntrinsics::_floatToIntBits: {
4489     // two paths (plus control) merge in a wood
4490     RegionNode *r = new RegionNode(3);
4491     Node *phi = new PhiNode(r, TypeInt::INT);
4492 
4493     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4494     // Build the boolean node
4495     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4496 
4497     // Branch either way.
4498     // NaN case is less traveled, which makes all the difference.
4499     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4500     Node *opt_isnan = _gvn.transform(ifisnan);
4501     assert( opt_isnan->is_If(), "Expect an IfNode");
4502     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4503     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4504 
4505     set_control(iftrue);
4506 
4507     static const jint nan_bits = 0x7fc00000;
4508     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4509     phi->init_req(1, _gvn.transform( slow_result ));
4510     r->init_req(1, iftrue);
4511 
4512     // Else fall through
4513     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4514     set_control(iffalse);
4515 
4516     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4517     r->init_req(2, iffalse);
4518 
4519     // Post merge
4520     set_control(_gvn.transform(r));
4521     record_for_igvn(r);
4522 
4523     C->set_has_split_ifs(true); // Has chance for split-if optimization
4524     result = phi;
4525     assert(result->bottom_type()->isa_int(), "must be");
4526     break;
4527   }
4528 
4529   default:
4530     fatal_unexpected_iid(id);
4531     break;
4532   }
4533   set_result(_gvn.transform(result));
4534   return true;
4535 }
4536 
4537 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
4538   Node* arg = argument(0);
4539   Node* result = NULL;
4540 
4541   switch (id) {
4542   case vmIntrinsics::_floatIsInfinite:
4543     result = new IsInfiniteFNode(arg);
4544     break;
4545   case vmIntrinsics::_doubleIsInfinite:
4546     result = new IsInfiniteDNode(arg);
4547     break;
4548   default:
4549     fatal_unexpected_iid(id);
4550     break;
4551   }
4552   set_result(_gvn.transform(result));
4553   return true;
4554 }
4555 
4556 //----------------------inline_unsafe_copyMemory-------------------------
4557 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4558 
4559 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
4560   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
4561   const Type*       base_t = gvn.type(base);
4562 
4563   bool in_native = (base_t == TypePtr::NULL_PTR);
4564   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
4565   bool is_mixed  = !in_heap && !in_native;
4566 
4567   if (is_mixed) {
4568     return true; // mixed accesses can touch both on-heap and off-heap memory
4569   }
4570   if (in_heap) {
4571     bool is_prim_array = (addr_t != NULL) && (addr_t->elem() != Type::BOTTOM);
4572     if (!is_prim_array) {
4573       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
4574       // there's not enough type information available to determine proper memory slice for it.
4575       return true;
4576     }
4577   }
4578   return false;
4579 }
4580 
4581 bool LibraryCallKit::inline_unsafe_copyMemory() {
4582   if (callee()->is_static())  return false;  // caller must have the capability!
4583   null_check_receiver();  // null-check receiver
4584   if (stopped())  return true;
4585 
4586   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4587 
4588   Node* src_base =         argument(1);  // type: oop
4589   Node* src_off  = ConvL2X(argument(2)); // type: long
4590   Node* dst_base =         argument(4);  // type: oop
4591   Node* dst_off  = ConvL2X(argument(5)); // type: long
4592   Node* size     = ConvL2X(argument(7)); // type: long
4593 
4594   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4595          "fieldOffset must be byte-scaled");
4596 
4597   Node* src_addr = make_unsafe_address(src_base, src_off);
4598   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
4599 
4600   Node* thread = _gvn.transform(new ThreadLocalNode());
4601   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
4602   BasicType doing_unsafe_access_bt = T_BYTE;
4603   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
4604 
4605   // update volatile field
4606   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4607 
4608   int flags = RC_LEAF | RC_NO_FP;
4609 
4610   const TypePtr* dst_type = TypePtr::BOTTOM;
4611 
4612   // Adjust memory effects of the runtime call based on input values.
4613   if (!has_wide_mem(_gvn, src_addr, src_base) &&
4614       !has_wide_mem(_gvn, dst_addr, dst_base)) {
4615     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
4616 
4617     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
4618     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
4619       flags |= RC_NARROW_MEM; // narrow in memory
4620     }
4621   }
4622 
4623   // Call it.  Note that the length argument is not scaled.
4624   make_runtime_call(flags,
4625                     OptoRuntime::fast_arraycopy_Type(),
4626                     StubRoutines::unsafe_arraycopy(),
4627                     "unsafe_arraycopy",
4628                     dst_type,
4629                     src_addr, dst_addr, size XTOP);
4630 
4631   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4632 
4633   return true;
4634 }
4635 
4636 #undef XTOP
4637 
4638 //------------------------clone_coping-----------------------------------
4639 // Helper function for inline_native_clone.
4640 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
4641   assert(obj_size != NULL, "");
4642   Node* raw_obj = alloc_obj->in(1);
4643   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4644 
4645   AllocateNode* alloc = NULL;
4646   if (ReduceBulkZeroing) {
4647     // We will be completely responsible for initializing this object -
4648     // mark Initialize node as complete.
4649     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4650     // The object was just allocated - there should be no any stores!
4651     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4652     // Mark as complete_with_arraycopy so that on AllocateNode
4653     // expansion, we know this AllocateNode is initialized by an array
4654     // copy and a StoreStore barrier exists after the array copy.
4655     alloc->initialization()->set_complete_with_arraycopy();
4656   }
4657 
4658   Node* size = _gvn.transform(obj_size);
4659   access_clone(obj, alloc_obj, size, is_array);
4660 
4661   // Do not let reads from the cloned object float above the arraycopy.
4662   if (alloc != NULL) {
4663     // Do not let stores that initialize this object be reordered with
4664     // a subsequent store that would make this object accessible by
4665     // other threads.
4666     // Record what AllocateNode this StoreStore protects so that
4667     // escape analysis can go from the MemBarStoreStoreNode to the
4668     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4669     // based on the escape status of the AllocateNode.
4670     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
4671   } else {
4672     insert_mem_bar(Op_MemBarCPUOrder);
4673   }
4674 }
4675 
4676 //------------------------inline_native_clone----------------------------
4677 // protected native Object java.lang.Object.clone();
4678 //
4679 // Here are the simple edge cases:
4680 //  null receiver => normal trap
4681 //  virtual and clone was overridden => slow path to out-of-line clone
4682 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4683 //
4684 // The general case has two steps, allocation and copying.
4685 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4686 //
4687 // Copying also has two cases, oop arrays and everything else.
4688 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4689 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4690 //
4691 // These steps fold up nicely if and when the cloned object's klass
4692 // can be sharply typed as an object array, a type array, or an instance.
4693 //
4694 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4695   PhiNode* result_val;
4696 
4697   // Set the reexecute bit for the interpreter to reexecute
4698   // the bytecode that invokes Object.clone if deoptimization happens.
4699   { PreserveReexecuteState preexecs(this);
4700     jvms()->set_should_reexecute(true);
4701 
4702     Node* obj = null_check_receiver();
4703     if (stopped())  return true;
4704 
4705     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4706 
4707     // If we are going to clone an instance, we need its exact type to
4708     // know the number and types of fields to convert the clone to
4709     // loads/stores. Maybe a speculative type can help us.
4710     if (!obj_type->klass_is_exact() &&
4711         obj_type->speculative_type() != NULL &&
4712         obj_type->speculative_type()->is_instance_klass()) {
4713       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4714       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4715           !spec_ik->has_injected_fields()) {
4716         if (!obj_type->isa_instptr() ||
4717             obj_type->is_instptr()->instance_klass()->has_subklass()) {
4718           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4719         }
4720       }
4721     }
4722 
4723     // Conservatively insert a memory barrier on all memory slices.
4724     // Do not let writes into the original float below the clone.
4725     insert_mem_bar(Op_MemBarCPUOrder);
4726 
4727     // paths into result_reg:
4728     enum {
4729       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4730       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4731       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4732       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4733       PATH_LIMIT
4734     };
4735     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4736     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4737     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4738     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4739     record_for_igvn(result_reg);
4740 
4741     Node* obj_klass = load_object_klass(obj);
4742     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4743     if (array_ctl != NULL) {
4744       // It's an array.
4745       PreserveJVMState pjvms(this);
4746       set_control(array_ctl);
4747       Node* obj_length = load_array_length(obj);
4748       Node* obj_size  = NULL;
4749       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size, /*deoptimize_on_exception=*/true);
4750 
4751       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4752       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
4753         // If it is an oop array, it requires very special treatment,
4754         // because gc barriers are required when accessing the array.
4755         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4756         if (is_obja != NULL) {
4757           PreserveJVMState pjvms2(this);
4758           set_control(is_obja);
4759           // Generate a direct call to the right arraycopy function(s).
4760           // Clones are always tightly coupled.
4761           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
4762           ac->set_clone_oop_array();
4763           Node* n = _gvn.transform(ac);
4764           assert(n == ac, "cannot disappear");
4765           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
4766 
4767           result_reg->init_req(_objArray_path, control());
4768           result_val->init_req(_objArray_path, alloc_obj);
4769           result_i_o ->set_req(_objArray_path, i_o());
4770           result_mem ->set_req(_objArray_path, reset_memory());
4771         }
4772       }
4773       // Otherwise, there are no barriers to worry about.
4774       // (We can dispense with card marks if we know the allocation
4775       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4776       //  causes the non-eden paths to take compensating steps to
4777       //  simulate a fresh allocation, so that no further
4778       //  card marks are required in compiled code to initialize
4779       //  the object.)
4780 
4781       if (!stopped()) {
4782         copy_to_clone(obj, alloc_obj, obj_size, true);
4783 
4784         // Present the results of the copy.
4785         result_reg->init_req(_array_path, control());
4786         result_val->init_req(_array_path, alloc_obj);
4787         result_i_o ->set_req(_array_path, i_o());
4788         result_mem ->set_req(_array_path, reset_memory());
4789       }
4790     }
4791 
4792     // We only go to the instance fast case code if we pass a number of guards.
4793     // The paths which do not pass are accumulated in the slow_region.
4794     RegionNode* slow_region = new RegionNode(1);
4795     record_for_igvn(slow_region);
4796     if (!stopped()) {
4797       // It's an instance (we did array above).  Make the slow-path tests.
4798       // If this is a virtual call, we generate a funny guard.  We grab
4799       // the vtable entry corresponding to clone() from the target object.
4800       // If the target method which we are calling happens to be the
4801       // Object clone() method, we pass the guard.  We do not need this
4802       // guard for non-virtual calls; the caller is known to be the native
4803       // Object clone().
4804       if (is_virtual) {
4805         generate_virtual_guard(obj_klass, slow_region);
4806       }
4807 
4808       // The object must be easily cloneable and must not have a finalizer.
4809       // Both of these conditions may be checked in a single test.
4810       // We could optimize the test further, but we don't care.
4811       generate_access_flags_guard(obj_klass,
4812                                   // Test both conditions:
4813                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4814                                   // Must be cloneable but not finalizer:
4815                                   JVM_ACC_IS_CLONEABLE_FAST,
4816                                   slow_region);
4817     }
4818 
4819     if (!stopped()) {
4820       // It's an instance, and it passed the slow-path tests.
4821       PreserveJVMState pjvms(this);
4822       Node* obj_size  = NULL;
4823       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4824       // is reexecuted if deoptimization occurs and there could be problems when merging
4825       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4826       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4827 
4828       copy_to_clone(obj, alloc_obj, obj_size, false);
4829 
4830       // Present the results of the slow call.
4831       result_reg->init_req(_instance_path, control());
4832       result_val->init_req(_instance_path, alloc_obj);
4833       result_i_o ->set_req(_instance_path, i_o());
4834       result_mem ->set_req(_instance_path, reset_memory());
4835     }
4836 
4837     // Generate code for the slow case.  We make a call to clone().
4838     set_control(_gvn.transform(slow_region));
4839     if (!stopped()) {
4840       PreserveJVMState pjvms(this);
4841       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4842       // We need to deoptimize on exception (see comment above)
4843       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
4844       // this->control() comes from set_results_for_java_call
4845       result_reg->init_req(_slow_path, control());
4846       result_val->init_req(_slow_path, slow_result);
4847       result_i_o ->set_req(_slow_path, i_o());
4848       result_mem ->set_req(_slow_path, reset_memory());
4849     }
4850 
4851     // Return the combined state.
4852     set_control(    _gvn.transform(result_reg));
4853     set_i_o(        _gvn.transform(result_i_o));
4854     set_all_memory( _gvn.transform(result_mem));
4855   } // original reexecute is set back here
4856 
4857   set_result(_gvn.transform(result_val));
4858   return true;
4859 }
4860 
4861 // If we have a tightly coupled allocation, the arraycopy may take care
4862 // of the array initialization. If one of the guards we insert between
4863 // the allocation and the arraycopy causes a deoptimization, an
4864 // uninitialized array will escape the compiled method. To prevent that
4865 // we set the JVM state for uncommon traps between the allocation and
4866 // the arraycopy to the state before the allocation so, in case of
4867 // deoptimization, we'll reexecute the allocation and the
4868 // initialization.
4869 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4870   if (alloc != NULL) {
4871     ciMethod* trap_method = alloc->jvms()->method();
4872     int trap_bci = alloc->jvms()->bci();
4873 
4874     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4875         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4876       // Make sure there's no store between the allocation and the
4877       // arraycopy otherwise visible side effects could be rexecuted
4878       // in case of deoptimization and cause incorrect execution.
4879       bool no_interfering_store = true;
4880       Node* mem = alloc->in(TypeFunc::Memory);
4881       if (mem->is_MergeMem()) {
4882         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4883           Node* n = mms.memory();
4884           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4885             assert(n->is_Store(), "what else?");
4886             no_interfering_store = false;
4887             break;
4888           }
4889         }
4890       } else {
4891         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4892           Node* n = mms.memory();
4893           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4894             assert(n->is_Store(), "what else?");
4895             no_interfering_store = false;
4896             break;
4897           }
4898         }
4899       }
4900 
4901       if (no_interfering_store) {
4902         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4903         uint size = alloc->req();
4904         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4905         old_jvms->set_map(sfpt);
4906         for (uint i = 0; i < size; i++) {
4907           sfpt->init_req(i, alloc->in(i));
4908         }
4909         // re-push array length for deoptimization
4910         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4911         old_jvms->set_sp(old_jvms->sp()+1);
4912         old_jvms->set_monoff(old_jvms->monoff()+1);
4913         old_jvms->set_scloff(old_jvms->scloff()+1);
4914         old_jvms->set_endoff(old_jvms->endoff()+1);
4915         old_jvms->set_should_reexecute(true);
4916 
4917         sfpt->set_i_o(map()->i_o());
4918         sfpt->set_memory(map()->memory());
4919         sfpt->set_control(map()->control());
4920 
4921         JVMState* saved_jvms = jvms();
4922         saved_reexecute_sp = _reexecute_sp;
4923 
4924         set_jvms(sfpt->jvms());
4925         _reexecute_sp = jvms()->sp();
4926 
4927         return saved_jvms;
4928       }
4929     }
4930   }
4931   return NULL;
4932 }
4933 
4934 // In case of a deoptimization, we restart execution at the
4935 // allocation, allocating a new array. We would leave an uninitialized
4936 // array in the heap that GCs wouldn't expect. Move the allocation
4937 // after the traps so we don't allocate the array if we
4938 // deoptimize. This is possible because tightly_coupled_allocation()
4939 // guarantees there's no observer of the allocated array at this point
4940 // and the control flow is simple enough.
4941 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4942                                                     int saved_reexecute_sp, uint new_idx) {
4943   if (saved_jvms != NULL && !stopped()) {
4944     assert(alloc != NULL, "only with a tightly coupled allocation");
4945     // restore JVM state to the state at the arraycopy
4946     saved_jvms->map()->set_control(map()->control());
4947     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4948     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4949     // If we've improved the types of some nodes (null check) while
4950     // emitting the guards, propagate them to the current state
4951     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4952     set_jvms(saved_jvms);
4953     _reexecute_sp = saved_reexecute_sp;
4954 
4955     // Remove the allocation from above the guards
4956     CallProjections callprojs;
4957     alloc->extract_projections(&callprojs, true);
4958     InitializeNode* init = alloc->initialization();
4959     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4960     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4961     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4962 
4963     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
4964     // the allocation (i.e. is only valid if the allocation succeeds):
4965     // 1) replace CastIINode with AllocateArrayNode's length here
4966     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
4967     //
4968     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
4969     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
4970     Node* init_control = init->proj_out(TypeFunc::Control);
4971     Node* alloc_length = alloc->Ideal_length();
4972 #ifdef ASSERT
4973     Node* prev_cast = NULL;
4974 #endif
4975     for (uint i = 0; i < init_control->outcnt(); i++) {
4976       Node* init_out = init_control->raw_out(i);
4977       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
4978 #ifdef ASSERT
4979         if (prev_cast == NULL) {
4980           prev_cast = init_out;
4981         } else {
4982           if (prev_cast->cmp(*init_out) == false) {
4983             prev_cast->dump();
4984             init_out->dump();
4985             assert(false, "not equal CastIINode");
4986           }
4987         }
4988 #endif
4989         C->gvn_replace_by(init_out, alloc_length);
4990       }
4991     }
4992     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4993 
4994     // move the allocation here (after the guards)
4995     _gvn.hash_delete(alloc);
4996     alloc->set_req(TypeFunc::Control, control());
4997     alloc->set_req(TypeFunc::I_O, i_o());
4998     Node *mem = reset_memory();
4999     set_all_memory(mem);
5000     alloc->set_req(TypeFunc::Memory, mem);
5001     set_control(init->proj_out_or_null(TypeFunc::Control));
5002     set_i_o(callprojs.fallthrough_ioproj);
5003 
5004     // Update memory as done in GraphKit::set_output_for_allocation()
5005     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5006     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5007     if (ary_type->isa_aryptr() && length_type != NULL) {
5008       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5009     }
5010     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5011     int            elemidx  = C->get_alias_index(telemref);
5012     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5013     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5014 
5015     Node* allocx = _gvn.transform(alloc);
5016     assert(allocx == alloc, "where has the allocation gone?");
5017     assert(dest->is_CheckCastPP(), "not an allocation result?");
5018 
5019     _gvn.hash_delete(dest);
5020     dest->set_req(0, control());
5021     Node* destx = _gvn.transform(dest);
5022     assert(destx == dest, "where has the allocation result gone?");
5023 
5024     array_ideal_length(alloc, ary_type, true);
5025   }
5026 }
5027 
5028 
5029 //------------------------------inline_arraycopy-----------------------
5030 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5031 //                                                      Object dest, int destPos,
5032 //                                                      int length);
5033 bool LibraryCallKit::inline_arraycopy() {
5034   // Get the arguments.
5035   Node* src         = argument(0);  // type: oop
5036   Node* src_offset  = argument(1);  // type: int
5037   Node* dest        = argument(2);  // type: oop
5038   Node* dest_offset = argument(3);  // type: int
5039   Node* length      = argument(4);  // type: int
5040 
5041   uint new_idx = C->unique();
5042 
5043   // Check for allocation before we add nodes that would confuse
5044   // tightly_coupled_allocation()
5045   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
5046 
5047   int saved_reexecute_sp = -1;
5048   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5049   // See arraycopy_restore_alloc_state() comment
5050   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5051   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
5052   // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
5053   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
5054 
5055   // The following tests must be performed
5056   // (1) src and dest are arrays.
5057   // (2) src and dest arrays must have elements of the same BasicType
5058   // (3) src and dest must not be null.
5059   // (4) src_offset must not be negative.
5060   // (5) dest_offset must not be negative.
5061   // (6) length must not be negative.
5062   // (7) src_offset + length must not exceed length of src.
5063   // (8) dest_offset + length must not exceed length of dest.
5064   // (9) each element of an oop array must be assignable
5065 
5066   // (3) src and dest must not be null.
5067   // always do this here because we need the JVM state for uncommon traps
5068   Node* null_ctl = top();
5069   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
5070   assert(null_ctl->is_top(), "no null control here");
5071   dest = null_check(dest, T_ARRAY);
5072 
5073   if (!can_emit_guards) {
5074     // if saved_jvms == NULL and alloc != NULL, we don't emit any
5075     // guards but the arraycopy node could still take advantage of a
5076     // tightly allocated allocation. tightly_coupled_allocation() is
5077     // called again to make sure it takes the null check above into
5078     // account: the null check is mandatory and if it caused an
5079     // uncommon trap to be emitted then the allocation can't be
5080     // considered tightly coupled in this context.
5081     alloc = tightly_coupled_allocation(dest);
5082   }
5083 
5084   bool validated = false;
5085 
5086   const Type* src_type  = _gvn.type(src);
5087   const Type* dest_type = _gvn.type(dest);
5088   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5089   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5090 
5091   // Do we have the type of src?
5092   bool has_src = (top_src != NULL && top_src->elem() != Type::BOTTOM);
5093   // Do we have the type of dest?
5094   bool has_dest = (top_dest != NULL && top_dest->elem() != Type::BOTTOM);
5095   // Is the type for src from speculation?
5096   bool src_spec = false;
5097   // Is the type for dest from speculation?
5098   bool dest_spec = false;
5099 
5100   if ((!has_src || !has_dest) && can_emit_guards) {
5101     // We don't have sufficient type information, let's see if
5102     // speculative types can help. We need to have types for both src
5103     // and dest so that it pays off.
5104 
5105     // Do we already have or could we have type information for src
5106     bool could_have_src = has_src;
5107     // Do we already have or could we have type information for dest
5108     bool could_have_dest = has_dest;
5109 
5110     ciKlass* src_k = NULL;
5111     if (!has_src) {
5112       src_k = src_type->speculative_type_not_null();
5113       if (src_k != NULL && src_k->is_array_klass()) {
5114         could_have_src = true;
5115       }
5116     }
5117 
5118     ciKlass* dest_k = NULL;
5119     if (!has_dest) {
5120       dest_k = dest_type->speculative_type_not_null();
5121       if (dest_k != NULL && dest_k->is_array_klass()) {
5122         could_have_dest = true;
5123       }
5124     }
5125 
5126     if (could_have_src && could_have_dest) {
5127       // This is going to pay off so emit the required guards
5128       if (!has_src) {
5129         src = maybe_cast_profiled_obj(src, src_k, true);
5130         src_type  = _gvn.type(src);
5131         top_src  = src_type->isa_aryptr();
5132         has_src = (top_src != NULL && top_src->elem() != Type::BOTTOM);
5133         src_spec = true;
5134       }
5135       if (!has_dest) {
5136         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5137         dest_type  = _gvn.type(dest);
5138         top_dest  = dest_type->isa_aryptr();
5139         has_dest = (top_dest != NULL && top_dest->elem() != Type::BOTTOM);
5140         dest_spec = true;
5141       }
5142     }
5143   }
5144 
5145   if (has_src && has_dest && can_emit_guards) {
5146     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5147     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5148     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5149     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5150 
5151     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5152       // If both arrays are object arrays then having the exact types
5153       // for both will remove the need for a subtype check at runtime
5154       // before the call and may make it possible to pick a faster copy
5155       // routine (without a subtype check on every element)
5156       // Do we have the exact type of src?
5157       bool could_have_src = src_spec;
5158       // Do we have the exact type of dest?
5159       bool could_have_dest = dest_spec;
5160       ciKlass* src_k = NULL;
5161       ciKlass* dest_k = NULL;
5162       if (!src_spec) {
5163         src_k = src_type->speculative_type_not_null();
5164         if (src_k != NULL && src_k->is_array_klass()) {
5165           could_have_src = true;
5166         }
5167       }
5168       if (!dest_spec) {
5169         dest_k = dest_type->speculative_type_not_null();
5170         if (dest_k != NULL && dest_k->is_array_klass()) {
5171           could_have_dest = true;
5172         }
5173       }
5174       if (could_have_src && could_have_dest) {
5175         // If we can have both exact types, emit the missing guards
5176         if (could_have_src && !src_spec) {
5177           src = maybe_cast_profiled_obj(src, src_k, true);
5178         }
5179         if (could_have_dest && !dest_spec) {
5180           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5181         }
5182       }
5183     }
5184   }
5185 
5186   ciMethod* trap_method = method();
5187   int trap_bci = bci();
5188   if (saved_jvms != NULL) {
5189     trap_method = alloc->jvms()->method();
5190     trap_bci = alloc->jvms()->bci();
5191   }
5192 
5193   bool negative_length_guard_generated = false;
5194 
5195   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5196       can_emit_guards &&
5197       !src->is_top() && !dest->is_top()) {
5198     // validate arguments: enables transformation the ArrayCopyNode
5199     validated = true;
5200 
5201     RegionNode* slow_region = new RegionNode(1);
5202     record_for_igvn(slow_region);
5203 
5204     // (1) src and dest are arrays.
5205     generate_non_array_guard(load_object_klass(src), slow_region);
5206     generate_non_array_guard(load_object_klass(dest), slow_region);
5207 
5208     // (2) src and dest arrays must have elements of the same BasicType
5209     // done at macro expansion or at Ideal transformation time
5210 
5211     // (4) src_offset must not be negative.
5212     generate_negative_guard(src_offset, slow_region);
5213 
5214     // (5) dest_offset must not be negative.
5215     generate_negative_guard(dest_offset, slow_region);
5216 
5217     // (7) src_offset + length must not exceed length of src.
5218     generate_limit_guard(src_offset, length,
5219                          load_array_length(src),
5220                          slow_region);
5221 
5222     // (8) dest_offset + length must not exceed length of dest.
5223     generate_limit_guard(dest_offset, length,
5224                          load_array_length(dest),
5225                          slow_region);
5226 
5227     // (6) length must not be negative.
5228     // This is also checked in generate_arraycopy() during macro expansion, but
5229     // we also have to check it here for the case where the ArrayCopyNode will
5230     // be eliminated by Escape Analysis.
5231     if (EliminateAllocations) {
5232       generate_negative_guard(length, slow_region);
5233       negative_length_guard_generated = true;
5234     }
5235 
5236     // (9) each element of an oop array must be assignable
5237     Node* dest_klass = load_object_klass(dest);
5238     if (src != dest) {
5239       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
5240 
5241       if (not_subtype_ctrl != top()) {
5242         PreserveJVMState pjvms(this);
5243         set_control(not_subtype_ctrl);
5244         uncommon_trap(Deoptimization::Reason_intrinsic,
5245                       Deoptimization::Action_make_not_entrant);
5246         assert(stopped(), "Should be stopped");
5247       }
5248     }
5249     {
5250       PreserveJVMState pjvms(this);
5251       set_control(_gvn.transform(slow_region));
5252       uncommon_trap(Deoptimization::Reason_intrinsic,
5253                     Deoptimization::Action_make_not_entrant);
5254       assert(stopped(), "Should be stopped");
5255     }
5256 
5257     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5258     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5259     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5260   }
5261 
5262   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
5263 
5264   if (stopped()) {
5265     return true;
5266   }
5267 
5268   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
5269                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5270                                           // so the compiler has a chance to eliminate them: during macro expansion,
5271                                           // we have to set their control (CastPP nodes are eliminated).
5272                                           load_object_klass(src), load_object_klass(dest),
5273                                           load_array_length(src), load_array_length(dest));
5274 
5275   ac->set_arraycopy(validated);
5276 
5277   Node* n = _gvn.transform(ac);
5278   if (n == ac) {
5279     ac->connect_outputs(this);
5280   } else {
5281     assert(validated, "shouldn't transform if all arguments not validated");
5282     set_all_memory(n);
5283   }
5284   clear_upper_avx();
5285 
5286 
5287   return true;
5288 }
5289 
5290 
5291 // Helper function which determines if an arraycopy immediately follows
5292 // an allocation, with no intervening tests or other escapes for the object.
5293 AllocateArrayNode*
5294 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
5295   if (stopped())             return NULL;  // no fast path
5296   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5297 
5298   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5299   if (alloc == NULL)  return NULL;
5300 
5301   Node* rawmem = memory(Compile::AliasIdxRaw);
5302   // Is the allocation's memory state untouched?
5303   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5304     // Bail out if there have been raw-memory effects since the allocation.
5305     // (Example:  There might have been a call or safepoint.)
5306     return NULL;
5307   }
5308   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5309   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5310     return NULL;
5311   }
5312 
5313   // There must be no unexpected observers of this allocation.
5314   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5315     Node* obs = ptr->fast_out(i);
5316     if (obs != this->map()) {
5317       return NULL;
5318     }
5319   }
5320 
5321   // This arraycopy must unconditionally follow the allocation of the ptr.
5322   Node* alloc_ctl = ptr->in(0);
5323   Node* ctl = control();
5324   while (ctl != alloc_ctl) {
5325     // There may be guards which feed into the slow_region.
5326     // Any other control flow means that we might not get a chance
5327     // to finish initializing the allocated object.
5328     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5329       IfNode* iff = ctl->in(0)->as_If();
5330       Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con);
5331       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5332       // One more try:  Various low-level checks bottom out in
5333       // uncommon traps.  If the debug-info of the trap omits
5334       // any reference to the allocation, as we've already
5335       // observed, then there can be no objection to the trap.
5336       bool found_trap = false;
5337       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5338         Node* obs = not_ctl->fast_out(j);
5339         if (obs->in(0) == not_ctl && obs->is_Call() &&
5340             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5341           found_trap = true; break;
5342         }
5343       }
5344       if (found_trap) {
5345         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5346         continue;
5347       }
5348     }
5349     return NULL;
5350   }
5351 
5352   // If we get this far, we have an allocation which immediately
5353   // precedes the arraycopy, and we can take over zeroing the new object.
5354   // The arraycopy will finish the initialization, and provide
5355   // a new control state to which we will anchor the destination pointer.
5356 
5357   return alloc;
5358 }
5359 
5360 //-------------inline_encodeISOArray-----------------------------------
5361 // encode char[] to byte[] in ISO_8859_1 or ASCII
5362 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
5363   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5364   // no receiver since it is static method
5365   Node *src         = argument(0);
5366   Node *src_offset  = argument(1);
5367   Node *dst         = argument(2);
5368   Node *dst_offset  = argument(3);
5369   Node *length      = argument(4);
5370 
5371   src = must_be_not_null(src, true);
5372   dst = must_be_not_null(dst, true);
5373 
5374   const Type* src_type = src->Value(&_gvn);
5375   const Type* dst_type = dst->Value(&_gvn);
5376   const TypeAryPtr* top_src = src_type->isa_aryptr();
5377   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5378   if (top_src  == NULL || top_src->elem()  == Type::BOTTOM ||
5379       top_dest == NULL || top_dest->elem() == Type::BOTTOM) {
5380     // failed array check
5381     return false;
5382   }
5383 
5384   // Figure out the size and type of the elements we will be copying.
5385   BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
5386   BasicType dst_elem = dst_type->isa_aryptr()->elem()->array_element_basic_type();
5387   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5388     return false;
5389   }
5390 
5391   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5392   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5393   // 'src_start' points to src array + scaled offset
5394   // 'dst_start' points to dst array + scaled offset
5395 
5396   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5397   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
5398   enc = _gvn.transform(enc);
5399   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5400   set_memory(res_mem, mtype);
5401   set_result(enc);
5402   clear_upper_avx();
5403 
5404   return true;
5405 }
5406 
5407 //-------------inline_multiplyToLen-----------------------------------
5408 bool LibraryCallKit::inline_multiplyToLen() {
5409   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5410 
5411   address stubAddr = StubRoutines::multiplyToLen();
5412   if (stubAddr == NULL) {
5413     return false; // Intrinsic's stub is not implemented on this platform
5414   }
5415   const char* stubName = "multiplyToLen";
5416 
5417   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5418 
5419   // no receiver because it is a static method
5420   Node* x    = argument(0);
5421   Node* xlen = argument(1);
5422   Node* y    = argument(2);
5423   Node* ylen = argument(3);
5424   Node* z    = argument(4);
5425 
5426   x = must_be_not_null(x, true);
5427   y = must_be_not_null(y, true);
5428 
5429   const Type* x_type = x->Value(&_gvn);
5430   const Type* y_type = y->Value(&_gvn);
5431   const TypeAryPtr* top_x = x_type->isa_aryptr();
5432   const TypeAryPtr* top_y = y_type->isa_aryptr();
5433   if (top_x  == NULL || top_x->elem()  == Type::BOTTOM ||
5434       top_y == NULL || top_y->elem() == Type::BOTTOM) {
5435     // failed array check
5436     return false;
5437   }
5438 
5439   BasicType x_elem = x_type->isa_aryptr()->elem()->array_element_basic_type();
5440   BasicType y_elem = y_type->isa_aryptr()->elem()->array_element_basic_type();
5441   if (x_elem != T_INT || y_elem != T_INT) {
5442     return false;
5443   }
5444 
5445   // Set the original stack and the reexecute bit for the interpreter to reexecute
5446   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5447   // on the return from z array allocation in runtime.
5448   { PreserveReexecuteState preexecs(this);
5449     jvms()->set_should_reexecute(true);
5450 
5451     Node* x_start = array_element_address(x, intcon(0), x_elem);
5452     Node* y_start = array_element_address(y, intcon(0), y_elem);
5453     // 'x_start' points to x array + scaled xlen
5454     // 'y_start' points to y array + scaled ylen
5455 
5456     // Allocate the result array
5457     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5458     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5459     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5460 
5461     IdealKit ideal(this);
5462 
5463 #define __ ideal.
5464      Node* one = __ ConI(1);
5465      Node* zero = __ ConI(0);
5466      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5467      __ set(need_alloc, zero);
5468      __ set(z_alloc, z);
5469      __ if_then(z, BoolTest::eq, null()); {
5470        __ increment (need_alloc, one);
5471      } __ else_(); {
5472        // Update graphKit memory and control from IdealKit.
5473        sync_kit(ideal);
5474        Node *cast = new CastPPNode(z, TypePtr::NOTNULL);
5475        cast->init_req(0, control());
5476        _gvn.set_type(cast, cast->bottom_type());
5477        C->record_for_igvn(cast);
5478 
5479        Node* zlen_arg = load_array_length(cast);
5480        // Update IdealKit memory and control from graphKit.
5481        __ sync_kit(this);
5482        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5483          __ increment (need_alloc, one);
5484        } __ end_if();
5485      } __ end_if();
5486 
5487      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5488        // Update graphKit memory and control from IdealKit.
5489        sync_kit(ideal);
5490        Node * narr = new_array(klass_node, zlen, 1);
5491        // Update IdealKit memory and control from graphKit.
5492        __ sync_kit(this);
5493        __ set(z_alloc, narr);
5494      } __ end_if();
5495 
5496      sync_kit(ideal);
5497      z = __ value(z_alloc);
5498      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5499      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5500      // Final sync IdealKit and GraphKit.
5501      final_sync(ideal);
5502 #undef __
5503 
5504     Node* z_start = array_element_address(z, intcon(0), T_INT);
5505 
5506     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5507                                    OptoRuntime::multiplyToLen_Type(),
5508                                    stubAddr, stubName, TypePtr::BOTTOM,
5509                                    x_start, xlen, y_start, ylen, z_start, zlen);
5510   } // original reexecute is set back here
5511 
5512   C->set_has_split_ifs(true); // Has chance for split-if optimization
5513   set_result(z);
5514   return true;
5515 }
5516 
5517 //-------------inline_squareToLen------------------------------------
5518 bool LibraryCallKit::inline_squareToLen() {
5519   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5520 
5521   address stubAddr = StubRoutines::squareToLen();
5522   if (stubAddr == NULL) {
5523     return false; // Intrinsic's stub is not implemented on this platform
5524   }
5525   const char* stubName = "squareToLen";
5526 
5527   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5528 
5529   Node* x    = argument(0);
5530   Node* len  = argument(1);
5531   Node* z    = argument(2);
5532   Node* zlen = argument(3);
5533 
5534   x = must_be_not_null(x, true);
5535   z = must_be_not_null(z, true);
5536 
5537   const Type* x_type = x->Value(&_gvn);
5538   const Type* z_type = z->Value(&_gvn);
5539   const TypeAryPtr* top_x = x_type->isa_aryptr();
5540   const TypeAryPtr* top_z = z_type->isa_aryptr();
5541   if (top_x  == NULL || top_x->elem()  == Type::BOTTOM ||
5542       top_z  == NULL || top_z->elem()  == Type::BOTTOM) {
5543     // failed array check
5544     return false;
5545   }
5546 
5547   BasicType x_elem = x_type->isa_aryptr()->elem()->array_element_basic_type();
5548   BasicType z_elem = z_type->isa_aryptr()->elem()->array_element_basic_type();
5549   if (x_elem != T_INT || z_elem != T_INT) {
5550     return false;
5551   }
5552 
5553 
5554   Node* x_start = array_element_address(x, intcon(0), x_elem);
5555   Node* z_start = array_element_address(z, intcon(0), z_elem);
5556 
5557   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5558                                   OptoRuntime::squareToLen_Type(),
5559                                   stubAddr, stubName, TypePtr::BOTTOM,
5560                                   x_start, len, z_start, zlen);
5561 
5562   set_result(z);
5563   return true;
5564 }
5565 
5566 //-------------inline_mulAdd------------------------------------------
5567 bool LibraryCallKit::inline_mulAdd() {
5568   assert(UseMulAddIntrinsic, "not implemented on this platform");
5569 
5570   address stubAddr = StubRoutines::mulAdd();
5571   if (stubAddr == NULL) {
5572     return false; // Intrinsic's stub is not implemented on this platform
5573   }
5574   const char* stubName = "mulAdd";
5575 
5576   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5577 
5578   Node* out      = argument(0);
5579   Node* in       = argument(1);
5580   Node* offset   = argument(2);
5581   Node* len      = argument(3);
5582   Node* k        = argument(4);
5583 
5584   out = must_be_not_null(out, true);
5585 
5586   const Type* out_type = out->Value(&_gvn);
5587   const Type* in_type = in->Value(&_gvn);
5588   const TypeAryPtr* top_out = out_type->isa_aryptr();
5589   const TypeAryPtr* top_in = in_type->isa_aryptr();
5590   if (top_out  == NULL || top_out->elem()  == Type::BOTTOM ||
5591       top_in == NULL || top_in->elem() == Type::BOTTOM) {
5592     // failed array check
5593     return false;
5594   }
5595 
5596   BasicType out_elem = out_type->isa_aryptr()->elem()->array_element_basic_type();
5597   BasicType in_elem = in_type->isa_aryptr()->elem()->array_element_basic_type();
5598   if (out_elem != T_INT || in_elem != T_INT) {
5599     return false;
5600   }
5601 
5602   Node* outlen = load_array_length(out);
5603   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5604   Node* out_start = array_element_address(out, intcon(0), out_elem);
5605   Node* in_start = array_element_address(in, intcon(0), in_elem);
5606 
5607   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5608                                   OptoRuntime::mulAdd_Type(),
5609                                   stubAddr, stubName, TypePtr::BOTTOM,
5610                                   out_start,in_start, new_offset, len, k);
5611   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5612   set_result(result);
5613   return true;
5614 }
5615 
5616 //-------------inline_montgomeryMultiply-----------------------------------
5617 bool LibraryCallKit::inline_montgomeryMultiply() {
5618   address stubAddr = StubRoutines::montgomeryMultiply();
5619   if (stubAddr == NULL) {
5620     return false; // Intrinsic's stub is not implemented on this platform
5621   }
5622 
5623   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5624   const char* stubName = "montgomery_multiply";
5625 
5626   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5627 
5628   Node* a    = argument(0);
5629   Node* b    = argument(1);
5630   Node* n    = argument(2);
5631   Node* len  = argument(3);
5632   Node* inv  = argument(4);
5633   Node* m    = argument(6);
5634 
5635   const Type* a_type = a->Value(&_gvn);
5636   const TypeAryPtr* top_a = a_type->isa_aryptr();
5637   const Type* b_type = b->Value(&_gvn);
5638   const TypeAryPtr* top_b = b_type->isa_aryptr();
5639   const Type* n_type = a->Value(&_gvn);
5640   const TypeAryPtr* top_n = n_type->isa_aryptr();
5641   const Type* m_type = a->Value(&_gvn);
5642   const TypeAryPtr* top_m = m_type->isa_aryptr();
5643   if (top_a  == NULL || top_a->elem()  == Type::BOTTOM ||
5644       top_b == NULL || top_b->elem()  == Type::BOTTOM ||
5645       top_n == NULL || top_n->elem()  == Type::BOTTOM ||
5646       top_m == NULL || top_m->elem()  == Type::BOTTOM) {
5647     // failed array check
5648     return false;
5649   }
5650 
5651   BasicType a_elem = a_type->isa_aryptr()->elem()->array_element_basic_type();
5652   BasicType b_elem = b_type->isa_aryptr()->elem()->array_element_basic_type();
5653   BasicType n_elem = n_type->isa_aryptr()->elem()->array_element_basic_type();
5654   BasicType m_elem = m_type->isa_aryptr()->elem()->array_element_basic_type();
5655   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5656     return false;
5657   }
5658 
5659   // Make the call
5660   {
5661     Node* a_start = array_element_address(a, intcon(0), a_elem);
5662     Node* b_start = array_element_address(b, intcon(0), b_elem);
5663     Node* n_start = array_element_address(n, intcon(0), n_elem);
5664     Node* m_start = array_element_address(m, intcon(0), m_elem);
5665 
5666     Node* call = make_runtime_call(RC_LEAF,
5667                                    OptoRuntime::montgomeryMultiply_Type(),
5668                                    stubAddr, stubName, TypePtr::BOTTOM,
5669                                    a_start, b_start, n_start, len, inv, top(),
5670                                    m_start);
5671     set_result(m);
5672   }
5673 
5674   return true;
5675 }
5676 
5677 bool LibraryCallKit::inline_montgomerySquare() {
5678   address stubAddr = StubRoutines::montgomerySquare();
5679   if (stubAddr == NULL) {
5680     return false; // Intrinsic's stub is not implemented on this platform
5681   }
5682 
5683   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5684   const char* stubName = "montgomery_square";
5685 
5686   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5687 
5688   Node* a    = argument(0);
5689   Node* n    = argument(1);
5690   Node* len  = argument(2);
5691   Node* inv  = argument(3);
5692   Node* m    = argument(5);
5693 
5694   const Type* a_type = a->Value(&_gvn);
5695   const TypeAryPtr* top_a = a_type->isa_aryptr();
5696   const Type* n_type = a->Value(&_gvn);
5697   const TypeAryPtr* top_n = n_type->isa_aryptr();
5698   const Type* m_type = a->Value(&_gvn);
5699   const TypeAryPtr* top_m = m_type->isa_aryptr();
5700   if (top_a  == NULL || top_a->elem()  == Type::BOTTOM ||
5701       top_n == NULL || top_n->elem()  == Type::BOTTOM ||
5702       top_m == NULL || top_m->elem()  == Type::BOTTOM) {
5703     // failed array check
5704     return false;
5705   }
5706 
5707   BasicType a_elem = a_type->isa_aryptr()->elem()->array_element_basic_type();
5708   BasicType n_elem = n_type->isa_aryptr()->elem()->array_element_basic_type();
5709   BasicType m_elem = m_type->isa_aryptr()->elem()->array_element_basic_type();
5710   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5711     return false;
5712   }
5713 
5714   // Make the call
5715   {
5716     Node* a_start = array_element_address(a, intcon(0), a_elem);
5717     Node* n_start = array_element_address(n, intcon(0), n_elem);
5718     Node* m_start = array_element_address(m, intcon(0), m_elem);
5719 
5720     Node* call = make_runtime_call(RC_LEAF,
5721                                    OptoRuntime::montgomerySquare_Type(),
5722                                    stubAddr, stubName, TypePtr::BOTTOM,
5723                                    a_start, n_start, len, inv, top(),
5724                                    m_start);
5725     set_result(m);
5726   }
5727 
5728   return true;
5729 }
5730 
5731 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
5732   address stubAddr = NULL;
5733   const char* stubName = NULL;
5734 
5735   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
5736   if (stubAddr == NULL) {
5737     return false; // Intrinsic's stub is not implemented on this platform
5738   }
5739 
5740   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
5741 
5742   assert(callee()->signature()->size() == 5, "expected 5 arguments");
5743 
5744   Node* newArr = argument(0);
5745   Node* oldArr = argument(1);
5746   Node* newIdx = argument(2);
5747   Node* shiftCount = argument(3);
5748   Node* numIter = argument(4);
5749 
5750   const Type* newArr_type = newArr->Value(&_gvn);
5751   const TypeAryPtr* top_newArr = newArr_type->isa_aryptr();
5752   const Type* oldArr_type = oldArr->Value(&_gvn);
5753   const TypeAryPtr* top_oldArr = oldArr_type->isa_aryptr();
5754   if (top_newArr == NULL || top_newArr->elem() == Type::BOTTOM || top_oldArr == NULL
5755       || top_oldArr->elem() == Type::BOTTOM) {
5756     return false;
5757   }
5758 
5759   BasicType newArr_elem = newArr_type->isa_aryptr()->elem()->array_element_basic_type();
5760   BasicType oldArr_elem = oldArr_type->isa_aryptr()->elem()->array_element_basic_type();
5761   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
5762     return false;
5763   }
5764 
5765   // Make the call
5766   {
5767     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
5768     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
5769 
5770     Node* call = make_runtime_call(RC_LEAF,
5771                                    OptoRuntime::bigIntegerShift_Type(),
5772                                    stubAddr,
5773                                    stubName,
5774                                    TypePtr::BOTTOM,
5775                                    newArr_start,
5776                                    oldArr_start,
5777                                    newIdx,
5778                                    shiftCount,
5779                                    numIter);
5780   }
5781 
5782   return true;
5783 }
5784 
5785 //-------------inline_vectorizedMismatch------------------------------
5786 bool LibraryCallKit::inline_vectorizedMismatch() {
5787   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
5788 
5789   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5790   Node* obja    = argument(0); // Object
5791   Node* aoffset = argument(1); // long
5792   Node* objb    = argument(3); // Object
5793   Node* boffset = argument(4); // long
5794   Node* length  = argument(6); // int
5795   Node* scale   = argument(7); // int
5796 
5797   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
5798   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
5799   if (obja_t == NULL || obja_t->elem() == Type::BOTTOM ||
5800       objb_t == NULL || objb_t->elem() == Type::BOTTOM ||
5801       scale == top()) {
5802     return false; // failed input validation
5803   }
5804 
5805   Node* obja_adr = make_unsafe_address(obja, aoffset);
5806   Node* objb_adr = make_unsafe_address(objb, boffset);
5807 
5808   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
5809   //
5810   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
5811   //    if (length <= inline_limit) {
5812   //      inline_path:
5813   //        vmask   = VectorMaskGen length
5814   //        vload1  = LoadVectorMasked obja, vmask
5815   //        vload2  = LoadVectorMasked objb, vmask
5816   //        result1 = VectorCmpMasked vload1, vload2, vmask
5817   //    } else {
5818   //      call_stub_path:
5819   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
5820   //    }
5821   //    exit_block:
5822   //      return Phi(result1, result2);
5823   //
5824   enum { inline_path = 1,  // input is small enough to process it all at once
5825          stub_path   = 2,  // input is too large; call into the VM
5826          PATH_LIMIT  = 3
5827   };
5828 
5829   Node* exit_block = new RegionNode(PATH_LIMIT);
5830   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
5831   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
5832 
5833   Node* call_stub_path = control();
5834 
5835   BasicType elem_bt = T_ILLEGAL;
5836 
5837   const TypeInt* scale_t = _gvn.type(scale)->is_int();
5838   if (scale_t->is_con()) {
5839     switch (scale_t->get_con()) {
5840       case 0: elem_bt = T_BYTE;  break;
5841       case 1: elem_bt = T_SHORT; break;
5842       case 2: elem_bt = T_INT;   break;
5843       case 3: elem_bt = T_LONG;  break;
5844 
5845       default: elem_bt = T_ILLEGAL; break; // not supported
5846     }
5847   }
5848 
5849   int inline_limit = 0;
5850   bool do_partial_inline = false;
5851 
5852   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
5853     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
5854     do_partial_inline = inline_limit >= 16;
5855   }
5856 
5857   if (do_partial_inline) {
5858     assert(elem_bt != T_ILLEGAL, "sanity");
5859 
5860     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
5861         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
5862         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
5863 
5864       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
5865       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
5866       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
5867 
5868       call_stub_path = generate_guard(bol_gt, NULL, PROB_MIN);
5869 
5870       if (!stopped()) {
5871         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
5872 
5873         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
5874         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
5875         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
5876         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
5877 
5878         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
5879         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
5880         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
5881         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
5882 
5883         exit_block->init_req(inline_path, control());
5884         memory_phi->init_req(inline_path, map()->memory());
5885         result_phi->init_req(inline_path, result);
5886 
5887         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
5888         clear_upper_avx();
5889       }
5890     }
5891   }
5892 
5893   if (call_stub_path != NULL) {
5894     set_control(call_stub_path);
5895 
5896     Node* call = make_runtime_call(RC_LEAF,
5897                                    OptoRuntime::vectorizedMismatch_Type(),
5898                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
5899                                    obja_adr, objb_adr, length, scale);
5900 
5901     exit_block->init_req(stub_path, control());
5902     memory_phi->init_req(stub_path, map()->memory());
5903     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
5904   }
5905 
5906   exit_block = _gvn.transform(exit_block);
5907   memory_phi = _gvn.transform(memory_phi);
5908   result_phi = _gvn.transform(result_phi);
5909 
5910   set_control(exit_block);
5911   set_all_memory(memory_phi);
5912   set_result(result_phi);
5913 
5914   return true;
5915 }
5916 
5917 /**
5918  * Calculate CRC32 for byte.
5919  * int java.util.zip.CRC32.update(int crc, int b)
5920  */
5921 bool LibraryCallKit::inline_updateCRC32() {
5922   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5923   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5924   // no receiver since it is static method
5925   Node* crc  = argument(0); // type: int
5926   Node* b    = argument(1); // type: int
5927 
5928   /*
5929    *    int c = ~ crc;
5930    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5931    *    b = b ^ (c >>> 8);
5932    *    crc = ~b;
5933    */
5934 
5935   Node* M1 = intcon(-1);
5936   crc = _gvn.transform(new XorINode(crc, M1));
5937   Node* result = _gvn.transform(new XorINode(crc, b));
5938   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5939 
5940   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5941   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5942   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5943   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5944 
5945   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5946   result = _gvn.transform(new XorINode(crc, result));
5947   result = _gvn.transform(new XorINode(result, M1));
5948   set_result(result);
5949   return true;
5950 }
5951 
5952 /**
5953  * Calculate CRC32 for byte[] array.
5954  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5955  */
5956 bool LibraryCallKit::inline_updateBytesCRC32() {
5957   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5958   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5959   // no receiver since it is static method
5960   Node* crc     = argument(0); // type: int
5961   Node* src     = argument(1); // type: oop
5962   Node* offset  = argument(2); // type: int
5963   Node* length  = argument(3); // type: int
5964 
5965   const Type* src_type = src->Value(&_gvn);
5966   const TypeAryPtr* top_src = src_type->isa_aryptr();
5967   if (top_src  == NULL || top_src->elem()  == Type::BOTTOM) {
5968     // failed array check
5969     return false;
5970   }
5971 
5972   // Figure out the size and type of the elements we will be copying.
5973   BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
5974   if (src_elem != T_BYTE) {
5975     return false;
5976   }
5977 
5978   // 'src_start' points to src array + scaled offset
5979   src = must_be_not_null(src, true);
5980   Node* src_start = array_element_address(src, offset, src_elem);
5981 
5982   // We assume that range check is done by caller.
5983   // TODO: generate range check (offset+length < src.length) in debug VM.
5984 
5985   // Call the stub.
5986   address stubAddr = StubRoutines::updateBytesCRC32();
5987   const char *stubName = "updateBytesCRC32";
5988 
5989   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5990                                  stubAddr, stubName, TypePtr::BOTTOM,
5991                                  crc, src_start, length);
5992   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5993   set_result(result);
5994   return true;
5995 }
5996 
5997 /**
5998  * Calculate CRC32 for ByteBuffer.
5999  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6000  */
6001 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6002   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6003   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6004   // no receiver since it is static method
6005   Node* crc     = argument(0); // type: int
6006   Node* src     = argument(1); // type: long
6007   Node* offset  = argument(3); // type: int
6008   Node* length  = argument(4); // type: int
6009 
6010   src = ConvL2X(src);  // adjust Java long to machine word
6011   Node* base = _gvn.transform(new CastX2PNode(src));
6012   offset = ConvI2X(offset);
6013 
6014   // 'src_start' points to src array + scaled offset
6015   Node* src_start = basic_plus_adr(top(), base, offset);
6016 
6017   // Call the stub.
6018   address stubAddr = StubRoutines::updateBytesCRC32();
6019   const char *stubName = "updateBytesCRC32";
6020 
6021   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6022                                  stubAddr, stubName, TypePtr::BOTTOM,
6023                                  crc, src_start, length);
6024   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6025   set_result(result);
6026   return true;
6027 }
6028 
6029 //------------------------------get_table_from_crc32c_class-----------------------
6030 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
6031   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
6032   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
6033 
6034   return table;
6035 }
6036 
6037 //------------------------------inline_updateBytesCRC32C-----------------------
6038 //
6039 // Calculate CRC32C for byte[] array.
6040 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
6041 //
6042 bool LibraryCallKit::inline_updateBytesCRC32C() {
6043   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6044   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6045   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6046   // no receiver since it is a static method
6047   Node* crc     = argument(0); // type: int
6048   Node* src     = argument(1); // type: oop
6049   Node* offset  = argument(2); // type: int
6050   Node* end     = argument(3); // type: int
6051 
6052   Node* length = _gvn.transform(new SubINode(end, offset));
6053 
6054   const Type* src_type = src->Value(&_gvn);
6055   const TypeAryPtr* top_src = src_type->isa_aryptr();
6056   if (top_src  == NULL || top_src->elem()  == Type::BOTTOM) {
6057     // failed array check
6058     return false;
6059   }
6060 
6061   // Figure out the size and type of the elements we will be copying.
6062   BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
6063   if (src_elem != T_BYTE) {
6064     return false;
6065   }
6066 
6067   // 'src_start' points to src array + scaled offset
6068   src = must_be_not_null(src, true);
6069   Node* src_start = array_element_address(src, offset, src_elem);
6070 
6071   // static final int[] byteTable in class CRC32C
6072   Node* table = get_table_from_crc32c_class(callee()->holder());
6073   table = must_be_not_null(table, true);
6074   Node* table_start = array_element_address(table, intcon(0), T_INT);
6075 
6076   // We assume that range check is done by caller.
6077   // TODO: generate range check (offset+length < src.length) in debug VM.
6078 
6079   // Call the stub.
6080   address stubAddr = StubRoutines::updateBytesCRC32C();
6081   const char *stubName = "updateBytesCRC32C";
6082 
6083   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6084                                  stubAddr, stubName, TypePtr::BOTTOM,
6085                                  crc, src_start, length, table_start);
6086   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6087   set_result(result);
6088   return true;
6089 }
6090 
6091 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
6092 //
6093 // Calculate CRC32C for DirectByteBuffer.
6094 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
6095 //
6096 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
6097   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6098   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
6099   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6100   // no receiver since it is a static method
6101   Node* crc     = argument(0); // type: int
6102   Node* src     = argument(1); // type: long
6103   Node* offset  = argument(3); // type: int
6104   Node* end     = argument(4); // type: int
6105 
6106   Node* length = _gvn.transform(new SubINode(end, offset));
6107 
6108   src = ConvL2X(src);  // adjust Java long to machine word
6109   Node* base = _gvn.transform(new CastX2PNode(src));
6110   offset = ConvI2X(offset);
6111 
6112   // 'src_start' points to src array + scaled offset
6113   Node* src_start = basic_plus_adr(top(), base, offset);
6114 
6115   // static final int[] byteTable in class CRC32C
6116   Node* table = get_table_from_crc32c_class(callee()->holder());
6117   table = must_be_not_null(table, true);
6118   Node* table_start = array_element_address(table, intcon(0), T_INT);
6119 
6120   // Call the stub.
6121   address stubAddr = StubRoutines::updateBytesCRC32C();
6122   const char *stubName = "updateBytesCRC32C";
6123 
6124   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6125                                  stubAddr, stubName, TypePtr::BOTTOM,
6126                                  crc, src_start, length, table_start);
6127   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6128   set_result(result);
6129   return true;
6130 }
6131 
6132 //------------------------------inline_updateBytesAdler32----------------------
6133 //
6134 // Calculate Adler32 checksum for byte[] array.
6135 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6136 //
6137 bool LibraryCallKit::inline_updateBytesAdler32() {
6138   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6139   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6140   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6141   // no receiver since it is static method
6142   Node* crc     = argument(0); // type: int
6143   Node* src     = argument(1); // type: oop
6144   Node* offset  = argument(2); // type: int
6145   Node* length  = argument(3); // type: int
6146 
6147   const Type* src_type = src->Value(&_gvn);
6148   const TypeAryPtr* top_src = src_type->isa_aryptr();
6149   if (top_src  == NULL || top_src->elem()  == Type::BOTTOM) {
6150     // failed array check
6151     return false;
6152   }
6153 
6154   // Figure out the size and type of the elements we will be copying.
6155   BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
6156   if (src_elem != T_BYTE) {
6157     return false;
6158   }
6159 
6160   // 'src_start' points to src array + scaled offset
6161   Node* src_start = array_element_address(src, offset, src_elem);
6162 
6163   // We assume that range check is done by caller.
6164   // TODO: generate range check (offset+length < src.length) in debug VM.
6165 
6166   // Call the stub.
6167   address stubAddr = StubRoutines::updateBytesAdler32();
6168   const char *stubName = "updateBytesAdler32";
6169 
6170   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6171                                  stubAddr, stubName, TypePtr::BOTTOM,
6172                                  crc, src_start, length);
6173   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6174   set_result(result);
6175   return true;
6176 }
6177 
6178 //------------------------------inline_updateByteBufferAdler32---------------
6179 //
6180 // Calculate Adler32 checksum for DirectByteBuffer.
6181 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6182 //
6183 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6184   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6185   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6186   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6187   // no receiver since it is static method
6188   Node* crc     = argument(0); // type: int
6189   Node* src     = argument(1); // type: long
6190   Node* offset  = argument(3); // type: int
6191   Node* length  = argument(4); // type: int
6192 
6193   src = ConvL2X(src);  // adjust Java long to machine word
6194   Node* base = _gvn.transform(new CastX2PNode(src));
6195   offset = ConvI2X(offset);
6196 
6197   // 'src_start' points to src array + scaled offset
6198   Node* src_start = basic_plus_adr(top(), base, offset);
6199 
6200   // Call the stub.
6201   address stubAddr = StubRoutines::updateBytesAdler32();
6202   const char *stubName = "updateBytesAdler32";
6203 
6204   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6205                                  stubAddr, stubName, TypePtr::BOTTOM,
6206                                  crc, src_start, length);
6207 
6208   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6209   set_result(result);
6210   return true;
6211 }
6212 
6213 //----------------------------inline_reference_get----------------------------
6214 // public T java.lang.ref.Reference.get();
6215 bool LibraryCallKit::inline_reference_get() {
6216   const int referent_offset = java_lang_ref_Reference::referent_offset();
6217 
6218   // Get the argument:
6219   Node* reference_obj = null_check_receiver();
6220   if (stopped()) return true;
6221 
6222   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
6223   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6224                                         decorators, /*is_static*/ false, NULL);
6225   if (result == NULL) return false;
6226 
6227   // Add memory barrier to prevent commoning reads from this field
6228   // across safepoint since GC can change its value.
6229   insert_mem_bar(Op_MemBarCPUOrder);
6230 
6231   set_result(result);
6232   return true;
6233 }
6234 
6235 //----------------------------inline_reference_refersTo0----------------------------
6236 // bool java.lang.ref.Reference.refersTo0();
6237 // bool java.lang.ref.PhantomReference.refersTo0();
6238 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
6239   // Get arguments:
6240   Node* reference_obj = null_check_receiver();
6241   Node* other_obj = argument(1);
6242   if (stopped()) return true;
6243 
6244   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6245   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6246   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6247                                           decorators, /*is_static*/ false, NULL);
6248   if (referent == NULL) return false;
6249 
6250   // Add memory barrier to prevent commoning reads from this field
6251   // across safepoint since GC can change its value.
6252   insert_mem_bar(Op_MemBarCPUOrder);
6253 
6254   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
6255   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6256   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
6257 
6258   RegionNode* region = new RegionNode(3);
6259   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
6260 
6261   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
6262   region->init_req(1, if_true);
6263   phi->init_req(1, intcon(1));
6264 
6265   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
6266   region->init_req(2, if_false);
6267   phi->init_req(2, intcon(0));
6268 
6269   set_control(_gvn.transform(region));
6270   record_for_igvn(region);
6271   set_result(_gvn.transform(phi));
6272   return true;
6273 }
6274 
6275 
6276 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
6277                                              DecoratorSet decorators, bool is_static,
6278                                              ciInstanceKlass* fromKls) {
6279   if (fromKls == NULL) {
6280     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6281     assert(tinst != NULL, "obj is null");
6282     assert(tinst->is_loaded(), "obj is not loaded");
6283     fromKls = tinst->instance_klass();
6284   } else {
6285     assert(is_static, "only for static field access");
6286   }
6287   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6288                                               ciSymbol::make(fieldTypeString),
6289                                               is_static);
6290 
6291   assert(field != NULL, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
6292   if (field == NULL) return (Node *) NULL;
6293 
6294   if (is_static) {
6295     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6296     fromObj = makecon(tip);
6297   }
6298 
6299   // Next code  copied from Parse::do_get_xxx():
6300 
6301   // Compute address and memory type.
6302   int offset  = field->offset_in_bytes();
6303   bool is_vol = field->is_volatile();
6304   ciType* field_klass = field->type();
6305   assert(field_klass->is_loaded(), "should be loaded");
6306   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6307   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6308   BasicType bt = field->layout_type();
6309 
6310   // Build the resultant type of the load
6311   const Type *type;
6312   if (bt == T_OBJECT) {
6313     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6314   } else {
6315     type = Type::get_const_basic_type(bt);
6316   }
6317 
6318   if (is_vol) {
6319     decorators |= MO_SEQ_CST;
6320   }
6321 
6322   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
6323 }
6324 
6325 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6326                                                  bool is_exact /* true */, bool is_static /* false */,
6327                                                  ciInstanceKlass * fromKls /* NULL */) {
6328   if (fromKls == NULL) {
6329     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6330     assert(tinst != NULL, "obj is null");
6331     assert(tinst->is_loaded(), "obj is not loaded");
6332     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6333     fromKls = tinst->instance_klass();
6334   }
6335   else {
6336     assert(is_static, "only for static field access");
6337   }
6338   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6339     ciSymbol::make(fieldTypeString),
6340     is_static);
6341 
6342   assert(field != NULL, "undefined field");
6343   assert(!field->is_volatile(), "not defined for volatile fields");
6344 
6345   if (is_static) {
6346     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6347     fromObj = makecon(tip);
6348   }
6349 
6350   // Next code  copied from Parse::do_get_xxx():
6351 
6352   // Compute address and memory type.
6353   int offset = field->offset_in_bytes();
6354   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6355 
6356   return adr;
6357 }
6358 
6359 //------------------------------inline_aescrypt_Block-----------------------
6360 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6361   address stubAddr = NULL;
6362   const char *stubName;
6363   assert(UseAES, "need AES instruction support");
6364 
6365   switch(id) {
6366   case vmIntrinsics::_aescrypt_encryptBlock:
6367     stubAddr = StubRoutines::aescrypt_encryptBlock();
6368     stubName = "aescrypt_encryptBlock";
6369     break;
6370   case vmIntrinsics::_aescrypt_decryptBlock:
6371     stubAddr = StubRoutines::aescrypt_decryptBlock();
6372     stubName = "aescrypt_decryptBlock";
6373     break;
6374   default:
6375     break;
6376   }
6377   if (stubAddr == NULL) return false;
6378 
6379   Node* aescrypt_object = argument(0);
6380   Node* src             = argument(1);
6381   Node* src_offset      = argument(2);
6382   Node* dest            = argument(3);
6383   Node* dest_offset     = argument(4);
6384 
6385   src = must_be_not_null(src, true);
6386   dest = must_be_not_null(dest, true);
6387 
6388   // (1) src and dest are arrays.
6389   const Type* src_type = src->Value(&_gvn);
6390   const Type* dest_type = dest->Value(&_gvn);
6391   const TypeAryPtr* top_src = src_type->isa_aryptr();
6392   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6393   assert (top_src  != NULL && top_src->elem()  != Type::BOTTOM &&  top_dest != NULL && top_dest->elem() != Type::BOTTOM, "args are strange");
6394 
6395   // for the quick and dirty code we will skip all the checks.
6396   // we are just trying to get the call to be generated.
6397   Node* src_start  = src;
6398   Node* dest_start = dest;
6399   if (src_offset != NULL || dest_offset != NULL) {
6400     assert(src_offset != NULL && dest_offset != NULL, "");
6401     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6402     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6403   }
6404 
6405   // now need to get the start of its expanded key array
6406   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6407   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6408   if (k_start == NULL) return false;
6409 
6410   // Call the stub.
6411   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6412                     stubAddr, stubName, TypePtr::BOTTOM,
6413                     src_start, dest_start, k_start);
6414 
6415   return true;
6416 }
6417 
6418 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6419 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6420   address stubAddr = NULL;
6421   const char *stubName = NULL;
6422 
6423   assert(UseAES, "need AES instruction support");
6424 
6425   switch(id) {
6426   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6427     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6428     stubName = "cipherBlockChaining_encryptAESCrypt";
6429     break;
6430   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6431     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6432     stubName = "cipherBlockChaining_decryptAESCrypt";
6433     break;
6434   default:
6435     break;
6436   }
6437   if (stubAddr == NULL) return false;
6438 
6439   Node* cipherBlockChaining_object = argument(0);
6440   Node* src                        = argument(1);
6441   Node* src_offset                 = argument(2);
6442   Node* len                        = argument(3);
6443   Node* dest                       = argument(4);
6444   Node* dest_offset                = argument(5);
6445 
6446   src = must_be_not_null(src, false);
6447   dest = must_be_not_null(dest, false);
6448 
6449   // (1) src and dest are arrays.
6450   const Type* src_type = src->Value(&_gvn);
6451   const Type* dest_type = dest->Value(&_gvn);
6452   const TypeAryPtr* top_src = src_type->isa_aryptr();
6453   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6454   assert (top_src  != NULL && top_src->elem()  != Type::BOTTOM
6455           &&  top_dest != NULL && top_dest->elem() != Type::BOTTOM, "args are strange");
6456 
6457   // checks are the responsibility of the caller
6458   Node* src_start  = src;
6459   Node* dest_start = dest;
6460   if (src_offset != NULL || dest_offset != NULL) {
6461     assert(src_offset != NULL && dest_offset != NULL, "");
6462     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6463     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6464   }
6465 
6466   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6467   // (because of the predicated logic executed earlier).
6468   // so we cast it here safely.
6469   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6470 
6471   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
6472   if (embeddedCipherObj == NULL) return false;
6473 
6474   // cast it to what we know it will be at runtime
6475   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6476   assert(tinst != NULL, "CBC obj is null");
6477   assert(tinst->is_loaded(), "CBC obj is not loaded");
6478   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6479   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6480 
6481   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6482   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6483   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
6484   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6485   aescrypt_object = _gvn.transform(aescrypt_object);
6486 
6487   // we need to get the start of the aescrypt_object's expanded key array
6488   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6489   if (k_start == NULL) return false;
6490 
6491   // similarly, get the start address of the r vector
6492   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
6493   if (objRvec == NULL) return false;
6494   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6495 
6496   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6497   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6498                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6499                                      stubAddr, stubName, TypePtr::BOTTOM,
6500                                      src_start, dest_start, k_start, r_start, len);
6501 
6502   // return cipher length (int)
6503   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6504   set_result(retvalue);
6505   return true;
6506 }
6507 
6508 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
6509 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
6510   address stubAddr = NULL;
6511   const char *stubName = NULL;
6512 
6513   assert(UseAES, "need AES instruction support");
6514 
6515   switch (id) {
6516   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
6517     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
6518     stubName = "electronicCodeBook_encryptAESCrypt";
6519     break;
6520   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
6521     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
6522     stubName = "electronicCodeBook_decryptAESCrypt";
6523     break;
6524   default:
6525     break;
6526   }
6527 
6528   if (stubAddr == NULL) return false;
6529 
6530   Node* electronicCodeBook_object = argument(0);
6531   Node* src                       = argument(1);
6532   Node* src_offset                = argument(2);
6533   Node* len                       = argument(3);
6534   Node* dest                      = argument(4);
6535   Node* dest_offset               = argument(5);
6536 
6537   // (1) src and dest are arrays.
6538   const Type* src_type = src->Value(&_gvn);
6539   const Type* dest_type = dest->Value(&_gvn);
6540   const TypeAryPtr* top_src = src_type->isa_aryptr();
6541   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6542   assert(top_src != NULL && top_src->elem() != Type::BOTTOM
6543          &&  top_dest != NULL && top_dest->elem() != Type::BOTTOM, "args are strange");
6544 
6545   // checks are the responsibility of the caller
6546   Node* src_start = src;
6547   Node* dest_start = dest;
6548   if (src_offset != NULL || dest_offset != NULL) {
6549     assert(src_offset != NULL && dest_offset != NULL, "");
6550     src_start = array_element_address(src, src_offset, T_BYTE);
6551     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6552   }
6553 
6554   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6555   // (because of the predicated logic executed earlier).
6556   // so we cast it here safely.
6557   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6558 
6559   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
6560   if (embeddedCipherObj == NULL) return false;
6561 
6562   // cast it to what we know it will be at runtime
6563   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
6564   assert(tinst != NULL, "ECB obj is null");
6565   assert(tinst->is_loaded(), "ECB obj is not loaded");
6566   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6567   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6568 
6569   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6570   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6571   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
6572   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6573   aescrypt_object = _gvn.transform(aescrypt_object);
6574 
6575   // we need to get the start of the aescrypt_object's expanded key array
6576   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6577   if (k_start == NULL) return false;
6578 
6579   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6580   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
6581                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
6582                                      stubAddr, stubName, TypePtr::BOTTOM,
6583                                      src_start, dest_start, k_start, len);
6584 
6585   // return cipher length (int)
6586   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
6587   set_result(retvalue);
6588   return true;
6589 }
6590 
6591 //------------------------------inline_counterMode_AESCrypt-----------------------
6592 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6593   assert(UseAES, "need AES instruction support");
6594   if (!UseAESCTRIntrinsics) return false;
6595 
6596   address stubAddr = NULL;
6597   const char *stubName = NULL;
6598   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6599     stubAddr = StubRoutines::counterMode_AESCrypt();
6600     stubName = "counterMode_AESCrypt";
6601   }
6602   if (stubAddr == NULL) return false;
6603 
6604   Node* counterMode_object = argument(0);
6605   Node* src = argument(1);
6606   Node* src_offset = argument(2);
6607   Node* len = argument(3);
6608   Node* dest = argument(4);
6609   Node* dest_offset = argument(5);
6610 
6611   // (1) src and dest are arrays.
6612   const Type* src_type = src->Value(&_gvn);
6613   const Type* dest_type = dest->Value(&_gvn);
6614   const TypeAryPtr* top_src = src_type->isa_aryptr();
6615   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6616   assert(top_src != NULL && top_src->elem() != Type::BOTTOM &&
6617          top_dest != NULL && top_dest->elem() != Type::BOTTOM, "args are strange");
6618 
6619   // checks are the responsibility of the caller
6620   Node* src_start = src;
6621   Node* dest_start = dest;
6622   if (src_offset != NULL || dest_offset != NULL) {
6623     assert(src_offset != NULL && dest_offset != NULL, "");
6624     src_start = array_element_address(src, src_offset, T_BYTE);
6625     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6626   }
6627 
6628   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6629   // (because of the predicated logic executed earlier).
6630   // so we cast it here safely.
6631   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6632   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
6633   if (embeddedCipherObj == NULL) return false;
6634   // cast it to what we know it will be at runtime
6635   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6636   assert(tinst != NULL, "CTR obj is null");
6637   assert(tinst->is_loaded(), "CTR obj is not loaded");
6638   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6639   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6640   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6641   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6642   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
6643   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6644   aescrypt_object = _gvn.transform(aescrypt_object);
6645   // we need to get the start of the aescrypt_object's expanded key array
6646   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6647   if (k_start == NULL) return false;
6648   // similarly, get the start address of the r vector
6649   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
6650   if (obj_counter == NULL) return false;
6651   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6652 
6653   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
6654   if (saved_encCounter == NULL) return false;
6655   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6656   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6657 
6658   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6659   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6660                                      OptoRuntime::counterMode_aescrypt_Type(),
6661                                      stubAddr, stubName, TypePtr::BOTTOM,
6662                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6663 
6664   // return cipher length (int)
6665   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6666   set_result(retvalue);
6667   return true;
6668 }
6669 
6670 //------------------------------get_key_start_from_aescrypt_object-----------------------
6671 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6672 #if defined(PPC64) || defined(S390)
6673   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6674   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6675   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6676   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6677   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
6678   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6679   if (objSessionK == NULL) {
6680     return (Node *) NULL;
6681   }
6682   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
6683 #else
6684   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
6685 #endif // PPC64
6686   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6687   if (objAESCryptKey == NULL) return (Node *) NULL;
6688 
6689   // now have the array, need to get the start address of the K array
6690   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6691   return k_start;
6692 }
6693 
6694 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6695 // Return node representing slow path of predicate check.
6696 // the pseudo code we want to emulate with this predicate is:
6697 // for encryption:
6698 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6699 // for decryption:
6700 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6701 //    note cipher==plain is more conservative than the original java code but that's OK
6702 //
6703 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6704   // The receiver was checked for NULL already.
6705   Node* objCBC = argument(0);
6706 
6707   Node* src = argument(1);
6708   Node* dest = argument(4);
6709 
6710   // Load embeddedCipher field of CipherBlockChaining object.
6711   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
6712 
6713   // get AESCrypt klass for instanceOf check
6714   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6715   // will have same classloader as CipherBlockChaining object
6716   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6717   assert(tinst != NULL, "CBCobj is null");
6718   assert(tinst->is_loaded(), "CBCobj is not loaded");
6719 
6720   // we want to do an instanceof comparison against the AESCrypt class
6721   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6722   if (!klass_AESCrypt->is_loaded()) {
6723     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6724     Node* ctrl = control();
6725     set_control(top()); // no regular fast path
6726     return ctrl;
6727   }
6728 
6729   src = must_be_not_null(src, true);
6730   dest = must_be_not_null(dest, true);
6731 
6732   // Resolve oops to stable for CmpP below.
6733   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6734 
6735   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6736   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6737   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6738 
6739   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6740 
6741   // for encryption, we are done
6742   if (!decrypting)
6743     return instof_false;  // even if it is NULL
6744 
6745   // for decryption, we need to add a further check to avoid
6746   // taking the intrinsic path when cipher and plain are the same
6747   // see the original java code for why.
6748   RegionNode* region = new RegionNode(3);
6749   region->init_req(1, instof_false);
6750 
6751   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6752   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6753   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6754   region->init_req(2, src_dest_conjoint);
6755 
6756   record_for_igvn(region);
6757   return _gvn.transform(region);
6758 }
6759 
6760 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
6761 // Return node representing slow path of predicate check.
6762 // the pseudo code we want to emulate with this predicate is:
6763 // for encryption:
6764 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6765 // for decryption:
6766 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6767 //    note cipher==plain is more conservative than the original java code but that's OK
6768 //
6769 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
6770   // The receiver was checked for NULL already.
6771   Node* objECB = argument(0);
6772 
6773   // Load embeddedCipher field of ElectronicCodeBook object.
6774   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
6775 
6776   // get AESCrypt klass for instanceOf check
6777   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6778   // will have same classloader as ElectronicCodeBook object
6779   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
6780   assert(tinst != NULL, "ECBobj is null");
6781   assert(tinst->is_loaded(), "ECBobj is not loaded");
6782 
6783   // we want to do an instanceof comparison against the AESCrypt class
6784   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6785   if (!klass_AESCrypt->is_loaded()) {
6786     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6787     Node* ctrl = control();
6788     set_control(top()); // no regular fast path
6789     return ctrl;
6790   }
6791   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6792 
6793   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6794   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6795   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6796 
6797   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6798 
6799   // for encryption, we are done
6800   if (!decrypting)
6801     return instof_false;  // even if it is NULL
6802 
6803   // for decryption, we need to add a further check to avoid
6804   // taking the intrinsic path when cipher and plain are the same
6805   // see the original java code for why.
6806   RegionNode* region = new RegionNode(3);
6807   region->init_req(1, instof_false);
6808   Node* src = argument(1);
6809   Node* dest = argument(4);
6810   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6811   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6812   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6813   region->init_req(2, src_dest_conjoint);
6814 
6815   record_for_igvn(region);
6816   return _gvn.transform(region);
6817 }
6818 
6819 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6820 // Return node representing slow path of predicate check.
6821 // the pseudo code we want to emulate with this predicate is:
6822 // for encryption:
6823 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6824 // for decryption:
6825 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6826 //    note cipher==plain is more conservative than the original java code but that's OK
6827 //
6828 
6829 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6830   // The receiver was checked for NULL already.
6831   Node* objCTR = argument(0);
6832 
6833   // Load embeddedCipher field of CipherBlockChaining object.
6834   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
6835 
6836   // get AESCrypt klass for instanceOf check
6837   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6838   // will have same classloader as CipherBlockChaining object
6839   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6840   assert(tinst != NULL, "CTRobj is null");
6841   assert(tinst->is_loaded(), "CTRobj is not loaded");
6842 
6843   // we want to do an instanceof comparison against the AESCrypt class
6844   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6845   if (!klass_AESCrypt->is_loaded()) {
6846     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6847     Node* ctrl = control();
6848     set_control(top()); // no regular fast path
6849     return ctrl;
6850   }
6851 
6852   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6853   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6854   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6855   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6856   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6857 
6858   return instof_false; // even if it is NULL
6859 }
6860 
6861 //------------------------------inline_ghash_processBlocks
6862 bool LibraryCallKit::inline_ghash_processBlocks() {
6863   address stubAddr;
6864   const char *stubName;
6865   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6866 
6867   stubAddr = StubRoutines::ghash_processBlocks();
6868   stubName = "ghash_processBlocks";
6869 
6870   Node* data           = argument(0);
6871   Node* offset         = argument(1);
6872   Node* len            = argument(2);
6873   Node* state          = argument(3);
6874   Node* subkeyH        = argument(4);
6875 
6876   state = must_be_not_null(state, true);
6877   subkeyH = must_be_not_null(subkeyH, true);
6878   data = must_be_not_null(data, true);
6879 
6880   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6881   assert(state_start, "state is NULL");
6882   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6883   assert(subkeyH_start, "subkeyH is NULL");
6884   Node* data_start  = array_element_address(data, offset, T_BYTE);
6885   assert(data_start, "data is NULL");
6886 
6887   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6888                                   OptoRuntime::ghash_processBlocks_Type(),
6889                                   stubAddr, stubName, TypePtr::BOTTOM,
6890                                   state_start, subkeyH_start, data_start, len);
6891   return true;
6892 }
6893 
6894 bool LibraryCallKit::inline_base64_encodeBlock() {
6895   address stubAddr;
6896   const char *stubName;
6897   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
6898   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
6899   stubAddr = StubRoutines::base64_encodeBlock();
6900   stubName = "encodeBlock";
6901 
6902   if (!stubAddr) return false;
6903   Node* base64obj = argument(0);
6904   Node* src = argument(1);
6905   Node* offset = argument(2);
6906   Node* len = argument(3);
6907   Node* dest = argument(4);
6908   Node* dp = argument(5);
6909   Node* isURL = argument(6);
6910 
6911   src = must_be_not_null(src, true);
6912   dest = must_be_not_null(dest, true);
6913 
6914   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
6915   assert(src_start, "source array is NULL");
6916   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
6917   assert(dest_start, "destination array is NULL");
6918 
6919   Node* base64 = make_runtime_call(RC_LEAF,
6920                                    OptoRuntime::base64_encodeBlock_Type(),
6921                                    stubAddr, stubName, TypePtr::BOTTOM,
6922                                    src_start, offset, len, dest_start, dp, isURL);
6923   return true;
6924 }
6925 
6926 bool LibraryCallKit::inline_base64_decodeBlock() {
6927   address stubAddr;
6928   const char *stubName;
6929   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
6930   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
6931   stubAddr = StubRoutines::base64_decodeBlock();
6932   stubName = "decodeBlock";
6933 
6934   if (!stubAddr) return false;
6935   Node* base64obj = argument(0);
6936   Node* src = argument(1);
6937   Node* src_offset = argument(2);
6938   Node* len = argument(3);
6939   Node* dest = argument(4);
6940   Node* dest_offset = argument(5);
6941   Node* isURL = argument(6);
6942   Node* isMIME = argument(7);
6943 
6944   src = must_be_not_null(src, true);
6945   dest = must_be_not_null(dest, true);
6946 
6947   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
6948   assert(src_start, "source array is NULL");
6949   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
6950   assert(dest_start, "destination array is NULL");
6951 
6952   Node* call = make_runtime_call(RC_LEAF,
6953                                  OptoRuntime::base64_decodeBlock_Type(),
6954                                  stubAddr, stubName, TypePtr::BOTTOM,
6955                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
6956   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6957   set_result(result);
6958   return true;
6959 }
6960 
6961 //------------------------------inline_digestBase_implCompress-----------------------
6962 //
6963 // Calculate MD5 for single-block byte[] array.
6964 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
6965 //
6966 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6967 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6968 //
6969 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6970 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6971 //
6972 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6973 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6974 //
6975 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
6976 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
6977 //
6978 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
6979   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6980 
6981   Node* digestBase_obj = argument(0);
6982   Node* src            = argument(1); // type oop
6983   Node* ofs            = argument(2); // type int
6984 
6985   const Type* src_type = src->Value(&_gvn);
6986   const TypeAryPtr* top_src = src_type->isa_aryptr();
6987   if (top_src  == NULL || top_src->elem()  == Type::BOTTOM) {
6988     // failed array check
6989     return false;
6990   }
6991   // Figure out the size and type of the elements we will be copying.
6992   BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
6993   if (src_elem != T_BYTE) {
6994     return false;
6995   }
6996   // 'src_start' points to src array + offset
6997   src = must_be_not_null(src, true);
6998   Node* src_start = array_element_address(src, ofs, src_elem);
6999   Node* state = NULL;
7000   Node* digest_length = NULL;
7001   address stubAddr;
7002   const char *stubName;
7003 
7004   switch(id) {
7005   case vmIntrinsics::_md5_implCompress:
7006     assert(UseMD5Intrinsics, "need MD5 instruction support");
7007     state = get_state_from_digest_object(digestBase_obj, T_INT);
7008     stubAddr = StubRoutines::md5_implCompress();
7009     stubName = "md5_implCompress";
7010     break;
7011   case vmIntrinsics::_sha_implCompress:
7012     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
7013     state = get_state_from_digest_object(digestBase_obj, T_INT);
7014     stubAddr = StubRoutines::sha1_implCompress();
7015     stubName = "sha1_implCompress";
7016     break;
7017   case vmIntrinsics::_sha2_implCompress:
7018     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
7019     state = get_state_from_digest_object(digestBase_obj, T_INT);
7020     stubAddr = StubRoutines::sha256_implCompress();
7021     stubName = "sha256_implCompress";
7022     break;
7023   case vmIntrinsics::_sha5_implCompress:
7024     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
7025     state = get_state_from_digest_object(digestBase_obj, T_LONG);
7026     stubAddr = StubRoutines::sha512_implCompress();
7027     stubName = "sha512_implCompress";
7028     break;
7029   case vmIntrinsics::_sha3_implCompress:
7030     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
7031     state = get_state_from_digest_object(digestBase_obj, T_BYTE);
7032     stubAddr = StubRoutines::sha3_implCompress();
7033     stubName = "sha3_implCompress";
7034     digest_length = get_digest_length_from_digest_object(digestBase_obj);
7035     if (digest_length == NULL) return false;
7036     break;
7037   default:
7038     fatal_unexpected_iid(id);
7039     return false;
7040   }
7041   if (state == NULL) return false;
7042 
7043   assert(stubAddr != NULL, "Stub is generated");
7044   if (stubAddr == NULL) return false;
7045 
7046   // Call the stub.
7047   Node* call;
7048   if (digest_length == NULL) {
7049     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
7050                              stubAddr, stubName, TypePtr::BOTTOM,
7051                              src_start, state);
7052   } else {
7053     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
7054                              stubAddr, stubName, TypePtr::BOTTOM,
7055                              src_start, state, digest_length);
7056   }
7057 
7058   return true;
7059 }
7060 
7061 //------------------------------inline_digestBase_implCompressMB-----------------------
7062 //
7063 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
7064 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
7065 //
7066 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
7067   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
7068          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
7069   assert((uint)predicate < 5, "sanity");
7070   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
7071 
7072   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
7073   Node* src            = argument(1); // byte[] array
7074   Node* ofs            = argument(2); // type int
7075   Node* limit          = argument(3); // type int
7076 
7077   const Type* src_type = src->Value(&_gvn);
7078   const TypeAryPtr* top_src = src_type->isa_aryptr();
7079   if (top_src  == NULL || top_src->elem()  == Type::BOTTOM) {
7080     // failed array check
7081     return false;
7082   }
7083   // Figure out the size and type of the elements we will be copying.
7084   BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
7085   if (src_elem != T_BYTE) {
7086     return false;
7087   }
7088   // 'src_start' points to src array + offset
7089   src = must_be_not_null(src, false);
7090   Node* src_start = array_element_address(src, ofs, src_elem);
7091 
7092   const char* klass_digestBase_name = NULL;
7093   const char* stub_name = NULL;
7094   address     stub_addr = NULL;
7095   BasicType elem_type = T_INT;
7096 
7097   switch (predicate) {
7098   case 0:
7099     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
7100       klass_digestBase_name = "sun/security/provider/MD5";
7101       stub_name = "md5_implCompressMB";
7102       stub_addr = StubRoutines::md5_implCompressMB();
7103     }
7104     break;
7105   case 1:
7106     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
7107       klass_digestBase_name = "sun/security/provider/SHA";
7108       stub_name = "sha1_implCompressMB";
7109       stub_addr = StubRoutines::sha1_implCompressMB();
7110     }
7111     break;
7112   case 2:
7113     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
7114       klass_digestBase_name = "sun/security/provider/SHA2";
7115       stub_name = "sha256_implCompressMB";
7116       stub_addr = StubRoutines::sha256_implCompressMB();
7117     }
7118     break;
7119   case 3:
7120     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
7121       klass_digestBase_name = "sun/security/provider/SHA5";
7122       stub_name = "sha512_implCompressMB";
7123       stub_addr = StubRoutines::sha512_implCompressMB();
7124       elem_type = T_LONG;
7125     }
7126     break;
7127   case 4:
7128     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
7129       klass_digestBase_name = "sun/security/provider/SHA3";
7130       stub_name = "sha3_implCompressMB";
7131       stub_addr = StubRoutines::sha3_implCompressMB();
7132       elem_type = T_BYTE;
7133     }
7134     break;
7135   default:
7136     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
7137   }
7138   if (klass_digestBase_name != NULL) {
7139     assert(stub_addr != NULL, "Stub is generated");
7140     if (stub_addr == NULL) return false;
7141 
7142     // get DigestBase klass to lookup for SHA klass
7143     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
7144     assert(tinst != NULL, "digestBase_obj is not instance???");
7145     assert(tinst->is_loaded(), "DigestBase is not loaded");
7146 
7147     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
7148     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
7149     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
7150     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
7151   }
7152   return false;
7153 }
7154 
7155 //------------------------------inline_digestBase_implCompressMB-----------------------
7156 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
7157                                                       BasicType elem_type, address stubAddr, const char *stubName,
7158                                                       Node* src_start, Node* ofs, Node* limit) {
7159   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
7160   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7161   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
7162   digest_obj = _gvn.transform(digest_obj);
7163 
7164   Node* state = get_state_from_digest_object(digest_obj, elem_type);
7165   if (state == NULL) return false;
7166 
7167   Node* digest_length = NULL;
7168   if (strcmp("sha3_implCompressMB", stubName) == 0) {
7169     digest_length = get_digest_length_from_digest_object(digest_obj);
7170     if (digest_length == NULL) return false;
7171   }
7172 
7173   // Call the stub.
7174   Node* call;
7175   if (digest_length == NULL) {
7176     call = make_runtime_call(RC_LEAF|RC_NO_FP,
7177                              OptoRuntime::digestBase_implCompressMB_Type(false),
7178                              stubAddr, stubName, TypePtr::BOTTOM,
7179                              src_start, state, ofs, limit);
7180   } else {
7181      call = make_runtime_call(RC_LEAF|RC_NO_FP,
7182                              OptoRuntime::digestBase_implCompressMB_Type(true),
7183                              stubAddr, stubName, TypePtr::BOTTOM,
7184                              src_start, state, digest_length, ofs, limit);
7185   }
7186 
7187   // return ofs (int)
7188   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7189   set_result(result);
7190 
7191   return true;
7192 }
7193 
7194 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
7195 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
7196   assert(UseAES, "need AES instruction support");
7197   address stubAddr = NULL;
7198   const char *stubName = NULL;
7199   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
7200   stubName = "galoisCounterMode_AESCrypt";
7201 
7202   if (stubAddr == NULL) return false;
7203 
7204   Node* in      = argument(0);
7205   Node* inOfs   = argument(1);
7206   Node* len     = argument(2);
7207   Node* ct      = argument(3);
7208   Node* ctOfs   = argument(4);
7209   Node* out     = argument(5);
7210   Node* outOfs  = argument(6);
7211   Node* gctr_object = argument(7);
7212   Node* ghash_object = argument(8);
7213 
7214   // (1) in, ct and out are arrays.
7215   const Type* in_type = in->Value(&_gvn);
7216   const Type* ct_type = ct->Value(&_gvn);
7217   const Type* out_type = out->Value(&_gvn);
7218   const TypeAryPtr* top_in = in_type->isa_aryptr();
7219   const TypeAryPtr* top_ct = ct_type->isa_aryptr();
7220   const TypeAryPtr* top_out = out_type->isa_aryptr();
7221   assert(top_in != NULL && top_in->elem() != Type::BOTTOM &&
7222          top_ct != NULL && top_ct->elem() != Type::BOTTOM &&
7223          top_out != NULL && top_out->elem() != Type::BOTTOM, "args are strange");
7224 
7225   // checks are the responsibility of the caller
7226   Node* in_start = in;
7227   Node* ct_start = ct;
7228   Node* out_start = out;
7229   if (inOfs != NULL || ctOfs != NULL || outOfs != NULL) {
7230     assert(inOfs != NULL && ctOfs != NULL && outOfs != NULL, "");
7231     in_start = array_element_address(in, inOfs, T_BYTE);
7232     ct_start = array_element_address(ct, ctOfs, T_BYTE);
7233     out_start = array_element_address(out, outOfs, T_BYTE);
7234   }
7235 
7236   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7237   // (because of the predicated logic executed earlier).
7238   // so we cast it here safely.
7239   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7240   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7241   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
7242   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
7243   Node* state = load_field_from_object(ghash_object, "state", "[J");
7244 
7245   if (embeddedCipherObj == NULL || counter == NULL || subkeyHtbl == NULL || state == NULL) {
7246     return false;
7247   }
7248   // cast it to what we know it will be at runtime
7249   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
7250   assert(tinst != NULL, "GCTR obj is null");
7251   assert(tinst->is_loaded(), "GCTR obj is not loaded");
7252   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7253   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7254   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7255   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7256   const TypeOopPtr* xtype = aklass->as_instance_type();
7257   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7258   aescrypt_object = _gvn.transform(aescrypt_object);
7259   // we need to get the start of the aescrypt_object's expanded key array
7260   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7261   if (k_start == NULL) return false;
7262   // similarly, get the start address of the r vector
7263   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
7264   Node* state_start = array_element_address(state, intcon(0), T_LONG);
7265   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
7266 
7267 
7268   // Call the stub, passing params
7269   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7270                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
7271                                stubAddr, stubName, TypePtr::BOTTOM,
7272                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
7273 
7274   // return cipher length (int)
7275   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
7276   set_result(retvalue);
7277 
7278   return true;
7279 }
7280 
7281 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
7282 // Return node representing slow path of predicate check.
7283 // the pseudo code we want to emulate with this predicate is:
7284 // for encryption:
7285 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7286 // for decryption:
7287 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7288 //    note cipher==plain is more conservative than the original java code but that's OK
7289 //
7290 
7291 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
7292   // The receiver was checked for NULL already.
7293   Node* objGCTR = argument(7);
7294   // Load embeddedCipher field of GCTR object.
7295   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7296   assert(embeddedCipherObj != NULL, "embeddedCipherObj is null");
7297 
7298   // get AESCrypt klass for instanceOf check
7299   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7300   // will have same classloader as CipherBlockChaining object
7301   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
7302   assert(tinst != NULL, "GCTR obj is null");
7303   assert(tinst->is_loaded(), "GCTR obj is not loaded");
7304 
7305   // we want to do an instanceof comparison against the AESCrypt class
7306   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7307   if (!klass_AESCrypt->is_loaded()) {
7308     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7309     Node* ctrl = control();
7310     set_control(top()); // no regular fast path
7311     return ctrl;
7312   }
7313 
7314   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7315   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7316   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7317   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7318   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
7319 
7320   return instof_false; // even if it is NULL
7321 }
7322 
7323 //------------------------------get_state_from_digest_object-----------------------
7324 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
7325   const char* state_type;
7326   switch (elem_type) {
7327     case T_BYTE: state_type = "[B"; break;
7328     case T_INT:  state_type = "[I"; break;
7329     case T_LONG: state_type = "[J"; break;
7330     default: ShouldNotReachHere();
7331   }
7332   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
7333   assert (digest_state != NULL, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
7334   if (digest_state == NULL) return (Node *) NULL;
7335 
7336   // now have the array, need to get the start address of the state array
7337   Node* state = array_element_address(digest_state, intcon(0), elem_type);
7338   return state;
7339 }
7340 
7341 //------------------------------get_digest_length_from_sha3_object----------------------------------
7342 Node * LibraryCallKit::get_digest_length_from_digest_object(Node *digest_object) {
7343   Node* digest_length = load_field_from_object(digest_object, "digestLength", "I");
7344   assert (digest_length != NULL, "sanity");
7345   return digest_length;
7346 }
7347 
7348 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
7349 // Return node representing slow path of predicate check.
7350 // the pseudo code we want to emulate with this predicate is:
7351 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
7352 //
7353 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
7354   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
7355          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
7356   assert((uint)predicate < 5, "sanity");
7357 
7358   // The receiver was checked for NULL already.
7359   Node* digestBaseObj = argument(0);
7360 
7361   // get DigestBase klass for instanceOf check
7362   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
7363   assert(tinst != NULL, "digestBaseObj is null");
7364   assert(tinst->is_loaded(), "DigestBase is not loaded");
7365 
7366   const char* klass_name = NULL;
7367   switch (predicate) {
7368   case 0:
7369     if (UseMD5Intrinsics) {
7370       // we want to do an instanceof comparison against the MD5 class
7371       klass_name = "sun/security/provider/MD5";
7372     }
7373     break;
7374   case 1:
7375     if (UseSHA1Intrinsics) {
7376       // we want to do an instanceof comparison against the SHA class
7377       klass_name = "sun/security/provider/SHA";
7378     }
7379     break;
7380   case 2:
7381     if (UseSHA256Intrinsics) {
7382       // we want to do an instanceof comparison against the SHA2 class
7383       klass_name = "sun/security/provider/SHA2";
7384     }
7385     break;
7386   case 3:
7387     if (UseSHA512Intrinsics) {
7388       // we want to do an instanceof comparison against the SHA5 class
7389       klass_name = "sun/security/provider/SHA5";
7390     }
7391     break;
7392   case 4:
7393     if (UseSHA3Intrinsics) {
7394       // we want to do an instanceof comparison against the SHA3 class
7395       klass_name = "sun/security/provider/SHA3";
7396     }
7397     break;
7398   default:
7399     fatal("unknown SHA intrinsic predicate: %d", predicate);
7400   }
7401 
7402   ciKlass* klass = NULL;
7403   if (klass_name != NULL) {
7404     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
7405   }
7406   if ((klass == NULL) || !klass->is_loaded()) {
7407     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
7408     Node* ctrl = control();
7409     set_control(top()); // no intrinsic path
7410     return ctrl;
7411   }
7412   ciInstanceKlass* instklass = klass->as_instance_klass();
7413 
7414   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
7415   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7416   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7417   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
7418 
7419   return instof_false;  // even if it is NULL
7420 }
7421 
7422 bool LibraryCallKit::inline_continuation_do_yield() {
7423   address call_addr = StubRoutines::cont_doYield();
7424   const TypeFunc* tf = OptoRuntime::continuation_doYield_Type();
7425   Node* call = make_runtime_call(RC_NO_LEAF, tf, call_addr, "doYield", TypeRawPtr::BOTTOM);
7426   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7427   set_result(result);
7428   return true;
7429 }
7430 
7431 //-------------inline_fma-----------------------------------
7432 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
7433   Node *a = NULL;
7434   Node *b = NULL;
7435   Node *c = NULL;
7436   Node* result = NULL;
7437   switch (id) {
7438   case vmIntrinsics::_fmaD:
7439     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
7440     // no receiver since it is static method
7441     a = round_double_node(argument(0));
7442     b = round_double_node(argument(2));
7443     c = round_double_node(argument(4));
7444     result = _gvn.transform(new FmaDNode(control(), a, b, c));
7445     break;
7446   case vmIntrinsics::_fmaF:
7447     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
7448     a = argument(0);
7449     b = argument(1);
7450     c = argument(2);
7451     result = _gvn.transform(new FmaFNode(control(), a, b, c));
7452     break;
7453   default:
7454     fatal_unexpected_iid(id);  break;
7455   }
7456   set_result(result);
7457   return true;
7458 }
7459 
7460 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
7461   // argument(0) is receiver
7462   Node* codePoint = argument(1);
7463   Node* n = NULL;
7464 
7465   switch (id) {
7466     case vmIntrinsics::_isDigit :
7467       n = new DigitNode(control(), codePoint);
7468       break;
7469     case vmIntrinsics::_isLowerCase :
7470       n = new LowerCaseNode(control(), codePoint);
7471       break;
7472     case vmIntrinsics::_isUpperCase :
7473       n = new UpperCaseNode(control(), codePoint);
7474       break;
7475     case vmIntrinsics::_isWhitespace :
7476       n = new WhitespaceNode(control(), codePoint);
7477       break;
7478     default:
7479       fatal_unexpected_iid(id);
7480   }
7481 
7482   set_result(_gvn.transform(n));
7483   return true;
7484 }
7485 
7486 //------------------------------inline_fp_min_max------------------------------
7487 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
7488 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
7489 
7490   // The intrinsic should be used only when the API branches aren't predictable,
7491   // the last one performing the most important comparison. The following heuristic
7492   // uses the branch statistics to eventually bail out if necessary.
7493 
7494   ciMethodData *md = callee()->method_data();
7495 
7496   if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) {
7497     ciCallProfile cp = caller()->call_profile_at_bci(bci());
7498 
7499     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
7500       // Bail out if the call-site didn't contribute enough to the statistics.
7501       return false;
7502     }
7503 
7504     uint taken = 0, not_taken = 0;
7505 
7506     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
7507       if (p->is_BranchData()) {
7508         taken = ((ciBranchData*)p)->taken();
7509         not_taken = ((ciBranchData*)p)->not_taken();
7510       }
7511     }
7512 
7513     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
7514     balance = balance < 0 ? -balance : balance;
7515     if ( balance > 0.2 ) {
7516       // Bail out if the most important branch is predictable enough.
7517       return false;
7518     }
7519   }
7520 */
7521 
7522   Node *a = NULL;
7523   Node *b = NULL;
7524   Node *n = NULL;
7525   switch (id) {
7526   case vmIntrinsics::_maxF:
7527   case vmIntrinsics::_minF:
7528   case vmIntrinsics::_maxF_strict:
7529   case vmIntrinsics::_minF_strict:
7530     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
7531     a = argument(0);
7532     b = argument(1);
7533     break;
7534   case vmIntrinsics::_maxD:
7535   case vmIntrinsics::_minD:
7536   case vmIntrinsics::_maxD_strict:
7537   case vmIntrinsics::_minD_strict:
7538     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
7539     a = round_double_node(argument(0));
7540     b = round_double_node(argument(2));
7541     break;
7542   default:
7543     fatal_unexpected_iid(id);
7544     break;
7545   }
7546   switch (id) {
7547   case vmIntrinsics::_maxF:
7548   case vmIntrinsics::_maxF_strict:
7549     n = new MaxFNode(a, b);
7550     break;
7551   case vmIntrinsics::_minF:
7552   case vmIntrinsics::_minF_strict:
7553     n = new MinFNode(a, b);
7554     break;
7555   case vmIntrinsics::_maxD:
7556   case vmIntrinsics::_maxD_strict:
7557     n = new MaxDNode(a, b);
7558     break;
7559   case vmIntrinsics::_minD:
7560   case vmIntrinsics::_minD_strict:
7561     n = new MinDNode(a, b);
7562     break;
7563   default:
7564     fatal_unexpected_iid(id);
7565     break;
7566   }
7567   set_result(_gvn.transform(n));
7568   return true;
7569 }
7570 
7571 bool LibraryCallKit::inline_profileBoolean() {
7572   Node* counts = argument(1);
7573   const TypeAryPtr* ary = NULL;
7574   ciArray* aobj = NULL;
7575   if (counts->is_Con()
7576       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
7577       && (aobj = ary->const_oop()->as_array()) != NULL
7578       && (aobj->length() == 2)) {
7579     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
7580     jint false_cnt = aobj->element_value(0).as_int();
7581     jint  true_cnt = aobj->element_value(1).as_int();
7582 
7583     if (C->log() != NULL) {
7584       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
7585                      false_cnt, true_cnt);
7586     }
7587 
7588     if (false_cnt + true_cnt == 0) {
7589       // According to profile, never executed.
7590       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
7591                           Deoptimization::Action_reinterpret);
7592       return true;
7593     }
7594 
7595     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
7596     // is a number of each value occurrences.
7597     Node* result = argument(0);
7598     if (false_cnt == 0 || true_cnt == 0) {
7599       // According to profile, one value has been never seen.
7600       int expected_val = (false_cnt == 0) ? 1 : 0;
7601 
7602       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
7603       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
7604 
7605       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
7606       Node* fast_path = _gvn.transform(new IfTrueNode(check));
7607       Node* slow_path = _gvn.transform(new IfFalseNode(check));
7608 
7609       { // Slow path: uncommon trap for never seen value and then reexecute
7610         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
7611         // the value has been seen at least once.
7612         PreserveJVMState pjvms(this);
7613         PreserveReexecuteState preexecs(this);
7614         jvms()->set_should_reexecute(true);
7615 
7616         set_control(slow_path);
7617         set_i_o(i_o());
7618 
7619         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
7620                             Deoptimization::Action_reinterpret);
7621       }
7622       // The guard for never seen value enables sharpening of the result and
7623       // returning a constant. It allows to eliminate branches on the same value
7624       // later on.
7625       set_control(fast_path);
7626       result = intcon(expected_val);
7627     }
7628     // Stop profiling.
7629     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
7630     // By replacing method body with profile data (represented as ProfileBooleanNode
7631     // on IR level) we effectively disable profiling.
7632     // It enables full speed execution once optimized code is generated.
7633     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
7634     C->record_for_igvn(profile);
7635     set_result(profile);
7636     return true;
7637   } else {
7638     // Continue profiling.
7639     // Profile data isn't available at the moment. So, execute method's bytecode version.
7640     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
7641     // is compiled and counters aren't available since corresponding MethodHandle
7642     // isn't a compile-time constant.
7643     return false;
7644   }
7645 }
7646 
7647 bool LibraryCallKit::inline_isCompileConstant() {
7648   Node* n = argument(0);
7649   set_result(n->is_Con() ? intcon(1) : intcon(0));
7650   return true;
7651 }
7652 
7653 //------------------------------- inline_getObjectSize/sizeOf --------------------------------------
7654 //
7655 // Calculate the runtime size of the object/array.
7656 //
7657 //   long java.lang.Runtime.sizeOf(Object obj)
7658 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
7659 //
7660 bool LibraryCallKit::inline_sizeOf() {
7661   Node* obj = argument(0);
7662   return inline_sizeOf_impl(obj);
7663 }
7664 
7665 bool LibraryCallKit::inline_getObjectSize() {
7666   Node* obj = argument(3);
7667   return inline_sizeOf_impl(obj);
7668 }
7669 
7670 bool LibraryCallKit::inline_sizeOf_impl(Node* obj) {
7671   Node* klass_node = load_object_klass(obj);
7672 
7673   jint  layout_con = Klass::_lh_neutral_value;
7674   Node* layout_val = get_layout_helper(klass_node, layout_con);
7675   int   layout_is_con = (layout_val == NULL);
7676 
7677   if (layout_is_con) {
7678     // Layout helper is constant, can figure out things at compile time.
7679 
7680     if (Klass::layout_helper_is_instance(layout_con)) {
7681       // Instance case:  layout_con contains the size itself.
7682       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
7683       set_result(size);
7684     } else {
7685       // Array case: size is round(header + element_size*arraylength).
7686       // Since arraylength is different for every array instance, we have to
7687       // compute the whole thing at runtime.
7688 
7689       Node* arr_length = load_array_length(obj);
7690 
7691       int round_mask = MinObjAlignmentInBytes - 1;
7692       int hsize  = Klass::layout_helper_header_size(layout_con);
7693       int eshift = Klass::layout_helper_log2_element_size(layout_con);
7694 
7695       if ((round_mask & ~right_n_bits(eshift)) == 0) {
7696         round_mask = 0;  // strength-reduce it if it goes away completely
7697       }
7698       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
7699       Node* header_size = intcon(hsize + round_mask);
7700 
7701       Node* lengthx = ConvI2X(arr_length);
7702       Node* headerx = ConvI2X(header_size);
7703 
7704       Node* abody = lengthx;
7705       if (eshift != 0) {
7706         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
7707       }
7708       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
7709       if (round_mask != 0) {
7710         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
7711       }
7712       size = ConvX2L(size);
7713       set_result(size);
7714     }
7715   } else {
7716     // Layout helper is not constant, need to test for array-ness at runtime.
7717 
7718     enum { _instance_path = 1, _array_path, PATH_LIMIT };
7719     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
7720     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
7721     record_for_igvn(result_reg);
7722 
7723     Node* array_ctl = generate_array_guard(klass_node, NULL);
7724     if (array_ctl != NULL) {
7725       // Array case: size is round(header + element_size*arraylength).
7726       // Since arraylength is different for every array instance, we have to
7727       // compute the whole thing at runtime.
7728 
7729       PreserveJVMState pjvms(this);
7730       set_control(array_ctl);
7731       Node* arr_length = load_array_length(obj);
7732 
7733       int round_mask = MinObjAlignmentInBytes - 1;
7734       Node* mask = intcon(round_mask);
7735 
7736       Node* hss = intcon(Klass::_lh_header_size_shift);
7737       Node* hsm = intcon(Klass::_lh_header_size_mask);
7738       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
7739       header_size = _gvn.transform(new AndINode(header_size, hsm));
7740       header_size = _gvn.transform(new AddINode(header_size, mask));
7741 
7742       // There is no need to mask or shift this value.
7743       // The semantics of LShiftINode include an implicit mask to 0x1F.
7744       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
7745       Node* elem_shift = layout_val;
7746 
7747       Node* lengthx = ConvI2X(arr_length);
7748       Node* headerx = ConvI2X(header_size);
7749 
7750       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
7751       Node* size = _gvn.transform(new AddXNode(headerx, abody));
7752       if (round_mask != 0) {
7753         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
7754       }
7755       size = ConvX2L(size);
7756 
7757       result_reg->init_req(_array_path, control());
7758       result_val->init_req(_array_path, size);
7759     }
7760 
7761     if (!stopped()) {
7762       // Instance case: the layout helper gives us instance size almost directly,
7763       // but we need to mask out the _lh_instance_slow_path_bit.
7764       Node* size = ConvI2X(layout_val);
7765       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
7766       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
7767       size = _gvn.transform(new AndXNode(size, mask));
7768       size = ConvX2L(size);
7769 
7770       result_reg->init_req(_instance_path, control());
7771       result_val->init_req(_instance_path, size);
7772     }
7773 
7774     set_result(result_reg, result_val);
7775   }
7776 
7777   return true;
7778 }
7779 
7780 //------------------------------- inline_blackhole --------------------------------------
7781 //
7782 // Make sure all arguments to this node are alive.
7783 // This matches methods that were requested to be blackholed through compile commands.
7784 //
7785 bool LibraryCallKit::inline_blackhole() {
7786   assert(callee()->is_static(), "Should have been checked before: only static methods here");
7787   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
7788   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
7789 
7790   // Bind call arguments as blackhole arguments to keep them alive
7791   Node* bh = insert_mem_bar(Op_Blackhole);
7792   uint nargs = callee()->arg_size();
7793   for (uint i = 0; i < nargs; i++) {
7794     bh->add_req(argument(i));
7795   }
7796 
7797   return true;
7798 }
7799 
7800 bool LibraryCallKit::inline_timestamp(bool serial) {
7801   insert_mem_bar(Op_MemBarCPUOrder);
7802   Node* node = serial ?
7803           _gvn.transform(new TimestampSerialNode(control())) :
7804           _gvn.transform(new TimestampNode(control()));
7805   set_result(node);
7806   insert_mem_bar(Op_MemBarCPUOrder);
7807   return true;
7808 }
7809 
7810 bool LibraryCallKit::inline_addressOf() {
7811   Node* obj = argument(0);
7812   Node* raw_val = _gvn.transform(new CastP2XNode(NULL, obj));
7813   Node* long_val = ConvX2L(raw_val);
7814   set_result(long_val);
7815   return true;
7816 }