1 /*
2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "asm/macroAssembler.hpp"
26 #include "ci/ciSymbols.hpp"
27 #include "ci/ciUtilities.inline.hpp"
28 #include "classfile/vmIntrinsics.hpp"
29 #include "compiler/compileBroker.hpp"
30 #include "compiler/compileLog.hpp"
31 #include "gc/shared/barrierSet.hpp"
32 #include "jfr/support/jfrIntrinsics.hpp"
33 #include "memory/resourceArea.hpp"
34 #include "oops/klass.inline.hpp"
35 #include "oops/objArrayKlass.hpp"
36 #include "opto/addnode.hpp"
37 #include "opto/arraycopynode.hpp"
38 #include "opto/c2compiler.hpp"
39 #include "opto/castnode.hpp"
40 #include "opto/cfgnode.hpp"
41 #include "opto/convertnode.hpp"
42 #include "opto/countbitsnode.hpp"
43 #include "opto/idealKit.hpp"
44 #include "opto/library_call.hpp"
45 #include "opto/mathexactnode.hpp"
46 #include "opto/mulnode.hpp"
47 #include "opto/narrowptrnode.hpp"
48 #include "opto/opaquenode.hpp"
49 #include "opto/parse.hpp"
50 #include "opto/rootnode.hpp"
51 #include "opto/runtime.hpp"
52 #include "opto/subnode.hpp"
53 #include "opto/vectornode.hpp"
54 #include "prims/jvmtiExport.hpp"
55 #include "prims/jvmtiThreadState.hpp"
56 #include "prims/unsafe.hpp"
57 #include "runtime/jniHandles.inline.hpp"
58 #include "runtime/objectMonitor.hpp"
59 #include "runtime/sharedRuntime.hpp"
60 #include "runtime/stubRoutines.hpp"
61 #include "utilities/macros.hpp"
62 #include "utilities/powerOfTwo.hpp"
63
64 //---------------------------make_vm_intrinsic----------------------------
65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
66 vmIntrinsicID id = m->intrinsic_id();
67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
68
69 if (!m->is_loaded()) {
70 // Do not attempt to inline unloaded methods.
71 return nullptr;
72 }
73
74 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
75 bool is_available = false;
76
77 {
78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
79 // the compiler must transition to '_thread_in_vm' state because both
80 // methods access VM-internal data.
81 VM_ENTRY_MARK;
82 methodHandle mh(THREAD, m->get_Method());
83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
84 if (is_available && is_virtual) {
85 is_available = vmIntrinsics::does_virtual_dispatch(id);
86 }
87 }
88
89 if (is_available) {
90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
92 return new LibraryIntrinsic(m, is_virtual,
93 vmIntrinsics::predicates_needed(id),
94 vmIntrinsics::does_virtual_dispatch(id),
95 id);
96 } else {
97 return nullptr;
98 }
99 }
100
101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
102 LibraryCallKit kit(jvms, this);
103 Compile* C = kit.C;
104 int nodes = C->unique();
105 #ifndef PRODUCT
106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
107 char buf[1000];
108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
109 tty->print_cr("Intrinsic %s", str);
110 }
111 #endif
112 ciMethod* callee = kit.callee();
113 const int bci = kit.bci();
114 #ifdef ASSERT
115 Node* ctrl = kit.control();
116 #endif
117 // Try to inline the intrinsic.
118 if (callee->check_intrinsic_candidate() &&
119 kit.try_to_inline(_last_predicate)) {
120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
121 : "(intrinsic)";
122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
123 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg);
124 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
125 if (C->log()) {
126 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
127 vmIntrinsics::name_at(intrinsic_id()),
128 (is_virtual() ? " virtual='1'" : ""),
129 C->unique() - nodes);
130 }
131 // Push the result from the inlined method onto the stack.
132 kit.push_result();
133 return kit.transfer_exceptions_into_jvms();
134 }
135
136 // The intrinsic bailed out
137 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
138 assert(jvms->map() == kit.map(), "Out of sync JVM state");
139 if (jvms->has_method()) {
140 // Not a root compile.
141 const char* msg;
142 if (callee->intrinsic_candidate()) {
143 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
144 } else {
145 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
146 : "failed to inline (intrinsic), method not annotated";
147 }
148 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
149 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg);
150 } else {
151 // Root compile
152 ResourceMark rm;
153 stringStream msg_stream;
154 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
155 vmIntrinsics::name_at(intrinsic_id()),
156 is_virtual() ? " (virtual)" : "", bci);
157 const char *msg = msg_stream.freeze();
158 log_debug(jit, inlining)("%s", msg);
159 if (C->print_intrinsics() || C->print_inlining()) {
160 tty->print("%s", msg);
161 }
162 }
163 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
164
165 return nullptr;
166 }
167
168 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
169 LibraryCallKit kit(jvms, this);
170 Compile* C = kit.C;
171 int nodes = C->unique();
172 _last_predicate = predicate;
173 #ifndef PRODUCT
174 assert(is_predicated() && predicate < predicates_count(), "sanity");
175 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
176 char buf[1000];
177 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
178 tty->print_cr("Predicate for intrinsic %s", str);
179 }
180 #endif
181 ciMethod* callee = kit.callee();
182 const int bci = kit.bci();
183
184 Node* slow_ctl = kit.try_to_predicate(predicate);
185 if (!kit.failing()) {
186 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
187 : "(intrinsic, predicate)";
188 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
189 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg);
190
191 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
192 if (C->log()) {
193 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
194 vmIntrinsics::name_at(intrinsic_id()),
195 (is_virtual() ? " virtual='1'" : ""),
196 C->unique() - nodes);
197 }
198 return slow_ctl; // Could be null if the check folds.
199 }
200
201 // The intrinsic bailed out
202 if (jvms->has_method()) {
203 // Not a root compile.
204 const char* msg = "failed to generate predicate for intrinsic";
205 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
206 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg);
207 } else {
208 // Root compile
209 ResourceMark rm;
210 stringStream msg_stream;
211 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
212 vmIntrinsics::name_at(intrinsic_id()),
213 is_virtual() ? " (virtual)" : "", bci);
214 const char *msg = msg_stream.freeze();
215 log_debug(jit, inlining)("%s", msg);
216 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg);
217 }
218 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
219 return nullptr;
220 }
221
222 bool LibraryCallKit::try_to_inline(int predicate) {
223 // Handle symbolic names for otherwise undistinguished boolean switches:
224 const bool is_store = true;
225 const bool is_compress = true;
226 const bool is_static = true;
227 const bool is_volatile = true;
228
229 if (!jvms()->has_method()) {
230 // Root JVMState has a null method.
231 assert(map()->memory()->Opcode() == Op_Parm, "");
232 // Insert the memory aliasing node
233 set_all_memory(reset_memory());
234 }
235 assert(merged_memory(), "");
236
237 switch (intrinsic_id()) {
238 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
239 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static);
240 case vmIntrinsics::_getClass: return inline_native_getClass();
241
242 case vmIntrinsics::_ceil:
243 case vmIntrinsics::_floor:
244 case vmIntrinsics::_rint:
245 case vmIntrinsics::_dsin:
246 case vmIntrinsics::_dcos:
247 case vmIntrinsics::_dtan:
248 case vmIntrinsics::_dsinh:
249 case vmIntrinsics::_dtanh:
250 case vmIntrinsics::_dcbrt:
251 case vmIntrinsics::_dabs:
252 case vmIntrinsics::_fabs:
253 case vmIntrinsics::_iabs:
254 case vmIntrinsics::_labs:
255 case vmIntrinsics::_datan2:
256 case vmIntrinsics::_dsqrt:
257 case vmIntrinsics::_dsqrt_strict:
258 case vmIntrinsics::_dexp:
259 case vmIntrinsics::_dlog:
260 case vmIntrinsics::_dlog10:
261 case vmIntrinsics::_dpow:
262 case vmIntrinsics::_dcopySign:
263 case vmIntrinsics::_fcopySign:
264 case vmIntrinsics::_dsignum:
265 case vmIntrinsics::_roundF:
266 case vmIntrinsics::_roundD:
267 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id());
268
269 case vmIntrinsics::_notify:
270 case vmIntrinsics::_notifyAll:
271 return inline_notify(intrinsic_id());
272
273 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */);
274 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */);
275 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */);
276 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */);
277 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */);
278 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */);
279 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI();
280 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL();
281 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh();
282 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh();
283 case vmIntrinsics::_negateExactI: return inline_math_negateExactI();
284 case vmIntrinsics::_negateExactL: return inline_math_negateExactL();
285 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */);
286 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */);
287
288 case vmIntrinsics::_arraycopy: return inline_arraycopy();
289
290 case vmIntrinsics::_arraySort: return inline_array_sort();
291 case vmIntrinsics::_arrayPartition: return inline_array_partition();
292
293 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL);
294 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU);
295 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU);
296 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL);
297
298 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL);
299 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU);
300 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL);
301 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL);
302 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU);
303 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL);
304 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U);
305 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L);
306
307 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL);
308
309 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode();
310
311 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU();
312 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU();
313 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store);
314 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store);
315
316 case vmIntrinsics::_compressStringC:
317 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress);
318 case vmIntrinsics::_inflateStringC:
319 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress);
320
321 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false);
322 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false);
323 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false);
324 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false);
325 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false);
326 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false);
327 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false);
328 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false);
329 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false);
330
331 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false);
332 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false);
333 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false);
334 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false);
335 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false);
336 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false);
337 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false);
338 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false);
339 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false);
340
341 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false);
342 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false);
343 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false);
344 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false);
345 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false);
346 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false);
347 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false);
348 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false);
349 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false);
350
351 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false);
352 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false);
353 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false);
354 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false);
355 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false);
356 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false);
357 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false);
358 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false);
359 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false);
360
361 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true);
362 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true);
363 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true);
364 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true);
365
366 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true);
367 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true);
368 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true);
369 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true);
370
371 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false);
372 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false);
373 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false);
374 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false);
375 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false);
376 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false);
377 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false);
378 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false);
379 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false);
380
381 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false);
382 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false);
383 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false);
384 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false);
385 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false);
386 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false);
387 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false);
388 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false);
389 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false);
390
391 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false);
392 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false);
393 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false);
394 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false);
395 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false);
396 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false);
397 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false);
398 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false);
399 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false);
400
401 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false);
402 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false);
403 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false);
404 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false);
405 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false);
406 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false);
407 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false);
408 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false);
409 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false);
410
411 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile);
412 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile);
413 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile);
414 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile);
415 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile);
416
417 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
418 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
419 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
420 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
421 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed);
422 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire);
423 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release);
424 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile);
425 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed);
426 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire);
427 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release);
428 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile);
429 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed);
430 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire);
431 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release);
432 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile);
433 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed);
434 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire);
435 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release);
436 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile);
437
438 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile);
439 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire);
440 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release);
441 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile);
442 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire);
443 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release);
444 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile);
445 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire);
446 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release);
447 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile);
448 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire);
449 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release);
450 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile);
451 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire);
452 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release);
453
454 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile);
455 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile);
456 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile);
457 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile);
458
459 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile);
460 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile);
461 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile);
462 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile);
463 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile);
464
465 case vmIntrinsics::_loadFence:
466 case vmIntrinsics::_storeFence:
467 case vmIntrinsics::_storeStoreFence:
468 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id());
469
470 case vmIntrinsics::_onSpinWait: return inline_onspinwait();
471
472 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread();
473 case vmIntrinsics::_currentThread: return inline_native_currentThread();
474 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread();
475
476 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache();
477 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache();
478
479 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false);
480 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true);
481
482 #if INCLUDE_JVMTI
483 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
484 "notifyJvmtiStart", true, false);
485 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
486 "notifyJvmtiEnd", false, true);
487 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
488 "notifyJvmtiMount", false, false);
489 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
490 "notifyJvmtiUnmount", false, false);
491 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
492 #endif
493
494 #ifdef JFR_HAVE_INTRINSICS
495 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
496 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter();
497 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit();
498 #endif
499 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
500 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
501 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0();
502 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true);
503 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false);
504 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate();
505 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory();
506 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory();
507 case vmIntrinsics::_getLength: return inline_native_getLength();
508 case vmIntrinsics::_copyOf: return inline_array_copyOf(false);
509 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true);
510 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL);
511 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU);
512 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
513 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
514 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual());
515
516 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
517 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false);
518
519 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check();
520
521 case vmIntrinsics::_isInstance:
522 case vmIntrinsics::_isHidden:
523 case vmIntrinsics::_getSuperclass: return inline_native_Class_query(intrinsic_id());
524
525 case vmIntrinsics::_floatToRawIntBits:
526 case vmIntrinsics::_floatToIntBits:
527 case vmIntrinsics::_intBitsToFloat:
528 case vmIntrinsics::_doubleToRawLongBits:
529 case vmIntrinsics::_doubleToLongBits:
530 case vmIntrinsics::_longBitsToDouble:
531 case vmIntrinsics::_floatToFloat16:
532 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id());
533 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1);
534 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3);
535 case vmIntrinsics::_floatIsFinite:
536 case vmIntrinsics::_floatIsInfinite:
537 case vmIntrinsics::_doubleIsFinite:
538 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id());
539
540 case vmIntrinsics::_numberOfLeadingZeros_i:
541 case vmIntrinsics::_numberOfLeadingZeros_l:
542 case vmIntrinsics::_numberOfTrailingZeros_i:
543 case vmIntrinsics::_numberOfTrailingZeros_l:
544 case vmIntrinsics::_bitCount_i:
545 case vmIntrinsics::_bitCount_l:
546 case vmIntrinsics::_reverse_i:
547 case vmIntrinsics::_reverse_l:
548 case vmIntrinsics::_reverseBytes_i:
549 case vmIntrinsics::_reverseBytes_l:
550 case vmIntrinsics::_reverseBytes_s:
551 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id());
552
553 case vmIntrinsics::_compress_i:
554 case vmIntrinsics::_compress_l:
555 case vmIntrinsics::_expand_i:
556 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id());
557
558 case vmIntrinsics::_compareUnsigned_i:
559 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id());
560
561 case vmIntrinsics::_divideUnsigned_i:
562 case vmIntrinsics::_divideUnsigned_l:
563 case vmIntrinsics::_remainderUnsigned_i:
564 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id());
565
566 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass();
567
568 case vmIntrinsics::_Reference_get0: return inline_reference_get0();
569 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false);
570 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
571 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false);
572 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true);
573
574 case vmIntrinsics::_Class_cast: return inline_Class_cast();
575
576 case vmIntrinsics::_aescrypt_encryptBlock:
577 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id());
578
579 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
580 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
581 return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
582
583 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
584 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
585 return inline_electronicCodeBook_AESCrypt(intrinsic_id());
586
587 case vmIntrinsics::_counterMode_AESCrypt:
588 return inline_counterMode_AESCrypt(intrinsic_id());
589
590 case vmIntrinsics::_galoisCounterMode_AESCrypt:
591 return inline_galoisCounterMode_AESCrypt();
592
593 case vmIntrinsics::_md5_implCompress:
594 case vmIntrinsics::_sha_implCompress:
595 case vmIntrinsics::_sha2_implCompress:
596 case vmIntrinsics::_sha5_implCompress:
597 case vmIntrinsics::_sha3_implCompress:
598 return inline_digestBase_implCompress(intrinsic_id());
599 case vmIntrinsics::_double_keccak:
600 return inline_double_keccak();
601
602 case vmIntrinsics::_digestBase_implCompressMB:
603 return inline_digestBase_implCompressMB(predicate);
604
605 case vmIntrinsics::_multiplyToLen:
606 return inline_multiplyToLen();
607
608 case vmIntrinsics::_squareToLen:
609 return inline_squareToLen();
610
611 case vmIntrinsics::_mulAdd:
612 return inline_mulAdd();
613
614 case vmIntrinsics::_montgomeryMultiply:
615 return inline_montgomeryMultiply();
616 case vmIntrinsics::_montgomerySquare:
617 return inline_montgomerySquare();
618
619 case vmIntrinsics::_bigIntegerRightShiftWorker:
620 return inline_bigIntegerShift(true);
621 case vmIntrinsics::_bigIntegerLeftShiftWorker:
622 return inline_bigIntegerShift(false);
623
624 case vmIntrinsics::_vectorizedMismatch:
625 return inline_vectorizedMismatch();
626
627 case vmIntrinsics::_ghash_processBlocks:
628 return inline_ghash_processBlocks();
629 case vmIntrinsics::_chacha20Block:
630 return inline_chacha20Block();
631 case vmIntrinsics::_kyberNtt:
632 return inline_kyberNtt();
633 case vmIntrinsics::_kyberInverseNtt:
634 return inline_kyberInverseNtt();
635 case vmIntrinsics::_kyberNttMult:
636 return inline_kyberNttMult();
637 case vmIntrinsics::_kyberAddPoly_2:
638 return inline_kyberAddPoly_2();
639 case vmIntrinsics::_kyberAddPoly_3:
640 return inline_kyberAddPoly_3();
641 case vmIntrinsics::_kyber12To16:
642 return inline_kyber12To16();
643 case vmIntrinsics::_kyberBarrettReduce:
644 return inline_kyberBarrettReduce();
645 case vmIntrinsics::_dilithiumAlmostNtt:
646 return inline_dilithiumAlmostNtt();
647 case vmIntrinsics::_dilithiumAlmostInverseNtt:
648 return inline_dilithiumAlmostInverseNtt();
649 case vmIntrinsics::_dilithiumNttMult:
650 return inline_dilithiumNttMult();
651 case vmIntrinsics::_dilithiumMontMulByConstant:
652 return inline_dilithiumMontMulByConstant();
653 case vmIntrinsics::_dilithiumDecomposePoly:
654 return inline_dilithiumDecomposePoly();
655 case vmIntrinsics::_base64_encodeBlock:
656 return inline_base64_encodeBlock();
657 case vmIntrinsics::_base64_decodeBlock:
658 return inline_base64_decodeBlock();
659 case vmIntrinsics::_poly1305_processBlocks:
660 return inline_poly1305_processBlocks();
661 case vmIntrinsics::_intpoly_montgomeryMult_P256:
662 return inline_intpoly_montgomeryMult_P256();
663 case vmIntrinsics::_intpoly_assign:
664 return inline_intpoly_assign();
665 case vmIntrinsics::_encodeISOArray:
666 case vmIntrinsics::_encodeByteISOArray:
667 return inline_encodeISOArray(false);
668 case vmIntrinsics::_encodeAsciiArray:
669 return inline_encodeISOArray(true);
670
671 case vmIntrinsics::_updateCRC32:
672 return inline_updateCRC32();
673 case vmIntrinsics::_updateBytesCRC32:
674 return inline_updateBytesCRC32();
675 case vmIntrinsics::_updateByteBufferCRC32:
676 return inline_updateByteBufferCRC32();
677
678 case vmIntrinsics::_updateBytesCRC32C:
679 return inline_updateBytesCRC32C();
680 case vmIntrinsics::_updateDirectByteBufferCRC32C:
681 return inline_updateDirectByteBufferCRC32C();
682
683 case vmIntrinsics::_updateBytesAdler32:
684 return inline_updateBytesAdler32();
685 case vmIntrinsics::_updateByteBufferAdler32:
686 return inline_updateByteBufferAdler32();
687
688 case vmIntrinsics::_profileBoolean:
689 return inline_profileBoolean();
690 case vmIntrinsics::_isCompileConstant:
691 return inline_isCompileConstant();
692
693 case vmIntrinsics::_countPositives:
694 return inline_countPositives();
695
696 case vmIntrinsics::_fmaD:
697 case vmIntrinsics::_fmaF:
698 return inline_fma(intrinsic_id());
699
700 case vmIntrinsics::_isDigit:
701 case vmIntrinsics::_isLowerCase:
702 case vmIntrinsics::_isUpperCase:
703 case vmIntrinsics::_isWhitespace:
704 return inline_character_compare(intrinsic_id());
705
706 case vmIntrinsics::_min:
707 case vmIntrinsics::_max:
708 case vmIntrinsics::_min_strict:
709 case vmIntrinsics::_max_strict:
710 case vmIntrinsics::_minL:
711 case vmIntrinsics::_maxL:
712 case vmIntrinsics::_minF:
713 case vmIntrinsics::_maxF:
714 case vmIntrinsics::_minD:
715 case vmIntrinsics::_maxD:
716 case vmIntrinsics::_minF_strict:
717 case vmIntrinsics::_maxF_strict:
718 case vmIntrinsics::_minD_strict:
719 case vmIntrinsics::_maxD_strict:
720 return inline_min_max(intrinsic_id());
721
722 case vmIntrinsics::_VectorUnaryOp:
723 return inline_vector_nary_operation(1);
724 case vmIntrinsics::_VectorBinaryOp:
725 return inline_vector_nary_operation(2);
726 case vmIntrinsics::_VectorUnaryLibOp:
727 return inline_vector_call(1);
728 case vmIntrinsics::_VectorBinaryLibOp:
729 return inline_vector_call(2);
730 case vmIntrinsics::_VectorTernaryOp:
731 return inline_vector_nary_operation(3);
732 case vmIntrinsics::_VectorFromBitsCoerced:
733 return inline_vector_frombits_coerced();
734 case vmIntrinsics::_VectorMaskOp:
735 return inline_vector_mask_operation();
736 case vmIntrinsics::_VectorLoadOp:
737 return inline_vector_mem_operation(/*is_store=*/false);
738 case vmIntrinsics::_VectorLoadMaskedOp:
739 return inline_vector_mem_masked_operation(/*is_store*/false);
740 case vmIntrinsics::_VectorStoreOp:
741 return inline_vector_mem_operation(/*is_store=*/true);
742 case vmIntrinsics::_VectorStoreMaskedOp:
743 return inline_vector_mem_masked_operation(/*is_store=*/true);
744 case vmIntrinsics::_VectorGatherOp:
745 return inline_vector_gather_scatter(/*is_scatter*/ false);
746 case vmIntrinsics::_VectorScatterOp:
747 return inline_vector_gather_scatter(/*is_scatter*/ true);
748 case vmIntrinsics::_VectorReductionCoerced:
749 return inline_vector_reduction();
750 case vmIntrinsics::_VectorTest:
751 return inline_vector_test();
752 case vmIntrinsics::_VectorBlend:
753 return inline_vector_blend();
754 case vmIntrinsics::_VectorRearrange:
755 return inline_vector_rearrange();
756 case vmIntrinsics::_VectorSelectFrom:
757 return inline_vector_select_from();
758 case vmIntrinsics::_VectorCompare:
759 return inline_vector_compare();
760 case vmIntrinsics::_VectorBroadcastInt:
761 return inline_vector_broadcast_int();
762 case vmIntrinsics::_VectorConvert:
763 return inline_vector_convert();
764 case vmIntrinsics::_VectorInsert:
765 return inline_vector_insert();
766 case vmIntrinsics::_VectorExtract:
767 return inline_vector_extract();
768 case vmIntrinsics::_VectorCompressExpand:
769 return inline_vector_compress_expand();
770 case vmIntrinsics::_VectorSelectFromTwoVectorOp:
771 return inline_vector_select_from_two_vectors();
772 case vmIntrinsics::_IndexVector:
773 return inline_index_vector();
774 case vmIntrinsics::_IndexPartiallyInUpperRange:
775 return inline_index_partially_in_upper_range();
776
777 case vmIntrinsics::_getObjectSize:
778 return inline_getObjectSize();
779
780 case vmIntrinsics::_blackhole:
781 return inline_blackhole();
782
783 case vmIntrinsics::_shipilev_magic_timestamp:
784 return inline_timestamp(false);
785 case vmIntrinsics::_shipilev_magic_timestamp_serial:
786 return inline_timestamp(true);
787 case vmIntrinsics::_shipilev_magic_sizeOf:
788 return inline_sizeOf();
789 case vmIntrinsics::_shipilev_magic_addressOf:
790 return inline_addressOf();
791
792 default:
793 // If you get here, it may be that someone has added a new intrinsic
794 // to the list in vmIntrinsics.hpp without implementing it here.
795 #ifndef PRODUCT
796 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
797 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
798 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
799 }
800 #endif
801 return false;
802 }
803 }
804
805 Node* LibraryCallKit::try_to_predicate(int predicate) {
806 if (!jvms()->has_method()) {
807 // Root JVMState has a null method.
808 assert(map()->memory()->Opcode() == Op_Parm, "");
809 // Insert the memory aliasing node
810 set_all_memory(reset_memory());
811 }
812 assert(merged_memory(), "");
813
814 switch (intrinsic_id()) {
815 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
816 return inline_cipherBlockChaining_AESCrypt_predicate(false);
817 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
818 return inline_cipherBlockChaining_AESCrypt_predicate(true);
819 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
820 return inline_electronicCodeBook_AESCrypt_predicate(false);
821 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
822 return inline_electronicCodeBook_AESCrypt_predicate(true);
823 case vmIntrinsics::_counterMode_AESCrypt:
824 return inline_counterMode_AESCrypt_predicate();
825 case vmIntrinsics::_digestBase_implCompressMB:
826 return inline_digestBase_implCompressMB_predicate(predicate);
827 case vmIntrinsics::_galoisCounterMode_AESCrypt:
828 return inline_galoisCounterMode_AESCrypt_predicate();
829
830 default:
831 // If you get here, it may be that someone has added a new intrinsic
832 // to the list in vmIntrinsics.hpp without implementing it here.
833 #ifndef PRODUCT
834 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
835 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
836 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
837 }
838 #endif
839 Node* slow_ctl = control();
840 set_control(top()); // No fast path intrinsic
841 return slow_ctl;
842 }
843 }
844
845 //------------------------------set_result-------------------------------
846 // Helper function for finishing intrinsics.
847 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
848 record_for_igvn(region);
849 set_control(_gvn.transform(region));
850 set_result( _gvn.transform(value));
851 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
852 }
853
854 //------------------------------generate_guard---------------------------
855 // Helper function for generating guarded fast-slow graph structures.
856 // The given 'test', if true, guards a slow path. If the test fails
857 // then a fast path can be taken. (We generally hope it fails.)
858 // In all cases, GraphKit::control() is updated to the fast path.
859 // The returned value represents the control for the slow path.
860 // The return value is never 'top'; it is either a valid control
861 // or null if it is obvious that the slow path can never be taken.
862 // Also, if region and the slow control are not null, the slow edge
863 // is appended to the region.
864 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
865 if (stopped()) {
866 // Already short circuited.
867 return nullptr;
868 }
869
870 // Build an if node and its projections.
871 // If test is true we take the slow path, which we assume is uncommon.
872 if (_gvn.type(test) == TypeInt::ZERO) {
873 // The slow branch is never taken. No need to build this guard.
874 return nullptr;
875 }
876
877 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
878
879 Node* if_slow = _gvn.transform(new IfTrueNode(iff));
880 if (if_slow == top()) {
881 // The slow branch is never taken. No need to build this guard.
882 return nullptr;
883 }
884
885 if (region != nullptr)
886 region->add_req(if_slow);
887
888 Node* if_fast = _gvn.transform(new IfFalseNode(iff));
889 set_control(if_fast);
890
891 return if_slow;
892 }
893
894 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
895 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
896 }
897 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
898 return generate_guard(test, region, PROB_FAIR);
899 }
900
901 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
902 Node* *pos_index) {
903 if (stopped())
904 return nullptr; // already stopped
905 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
906 return nullptr; // index is already adequately typed
907 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
908 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
909 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
910 if (is_neg != nullptr && pos_index != nullptr) {
911 // Emulate effect of Parse::adjust_map_after_if.
912 Node* ccast = new CastIINode(control(), index, TypeInt::POS);
913 (*pos_index) = _gvn.transform(ccast);
914 }
915 return is_neg;
916 }
917
918 // Make sure that 'position' is a valid limit index, in [0..length].
919 // There are two equivalent plans for checking this:
920 // A. (offset + copyLength) unsigned<= arrayLength
921 // B. offset <= (arrayLength - copyLength)
922 // We require that all of the values above, except for the sum and
923 // difference, are already known to be non-negative.
924 // Plan A is robust in the face of overflow, if offset and copyLength
925 // are both hugely positive.
926 //
927 // Plan B is less direct and intuitive, but it does not overflow at
928 // all, since the difference of two non-negatives is always
929 // representable. Whenever Java methods must perform the equivalent
930 // check they generally use Plan B instead of Plan A.
931 // For the moment we use Plan A.
932 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
933 Node* subseq_length,
934 Node* array_length,
935 RegionNode* region) {
936 if (stopped())
937 return nullptr; // already stopped
938 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
939 if (zero_offset && subseq_length->eqv_uncast(array_length))
940 return nullptr; // common case of whole-array copy
941 Node* last = subseq_length;
942 if (!zero_offset) // last += offset
943 last = _gvn.transform(new AddINode(last, offset));
944 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
945 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
946 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
947 return is_over;
948 }
949
950 // Emit range checks for the given String.value byte array
951 void LibraryCallKit::generate_string_range_check(Node* array,
952 Node* offset,
953 Node* count,
954 bool char_count,
955 bool halt_on_oob) {
956 if (stopped()) {
957 return; // already stopped
958 }
959 RegionNode* bailout = new RegionNode(1);
960 record_for_igvn(bailout);
961 if (char_count) {
962 // Convert char count to byte count
963 count = _gvn.transform(new LShiftINode(count, intcon(1)));
964 }
965
966 // Offset and count must not be negative
967 generate_negative_guard(offset, bailout);
968 generate_negative_guard(count, bailout);
969 // Offset + count must not exceed length of array
970 generate_limit_guard(offset, count, load_array_length(array), bailout);
971
972 if (bailout->req() > 1) {
973 if (halt_on_oob) {
974 bailout = _gvn.transform(bailout)->as_Region();
975 Node* frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
976 Node* halt = _gvn.transform(new HaltNode(bailout, frame, "unexpected guard failure in intrinsic"));
977 C->root()->add_req(halt);
978 } else {
979 PreserveJVMState pjvms(this);
980 set_control(_gvn.transform(bailout));
981 uncommon_trap(Deoptimization::Reason_intrinsic,
982 Deoptimization::Action_maybe_recompile);
983 }
984 }
985 }
986
987 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
988 bool is_immutable) {
989 ciKlass* thread_klass = env()->Thread_klass();
990 const Type* thread_type
991 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
992
993 Node* thread = _gvn.transform(new ThreadLocalNode());
994 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
995 tls_output = thread;
996
997 Node* thread_obj_handle
998 = (is_immutable
999 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
1000 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
1001 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
1002 thread_obj_handle = _gvn.transform(thread_obj_handle);
1003
1004 DecoratorSet decorators = IN_NATIVE;
1005 if (is_immutable) {
1006 decorators |= C2_IMMUTABLE_MEMORY;
1007 }
1008 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
1009 }
1010
1011 //--------------------------generate_current_thread--------------------
1012 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1013 return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
1014 /*is_immutable*/false);
1015 }
1016
1017 //--------------------------generate_virtual_thread--------------------
1018 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
1019 return current_thread_helper(tls_output, JavaThread::vthread_offset(),
1020 !C->method()->changes_current_thread());
1021 }
1022
1023 //------------------------------make_string_method_node------------------------
1024 // Helper method for String intrinsic functions. This version is called with
1025 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1026 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1027 // containing the lengths of str1 and str2.
1028 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1029 Node* result = nullptr;
1030 switch (opcode) {
1031 case Op_StrIndexOf:
1032 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1033 str1_start, cnt1, str2_start, cnt2, ae);
1034 break;
1035 case Op_StrComp:
1036 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1037 str1_start, cnt1, str2_start, cnt2, ae);
1038 break;
1039 case Op_StrEquals:
1040 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1041 // Use the constant length if there is one because optimized match rule may exist.
1042 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1043 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1044 break;
1045 default:
1046 ShouldNotReachHere();
1047 return nullptr;
1048 }
1049
1050 // All these intrinsics have checks.
1051 C->set_has_split_ifs(true); // Has chance for split-if optimization
1052 clear_upper_avx();
1053
1054 return _gvn.transform(result);
1055 }
1056
1057 //------------------------------inline_string_compareTo------------------------
1058 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1059 Node* arg1 = argument(0);
1060 Node* arg2 = argument(1);
1061
1062 arg1 = must_be_not_null(arg1, true);
1063 arg2 = must_be_not_null(arg2, true);
1064
1065 // Get start addr and length of first argument
1066 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE);
1067 Node* arg1_cnt = load_array_length(arg1);
1068
1069 // Get start addr and length of second argument
1070 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE);
1071 Node* arg2_cnt = load_array_length(arg2);
1072
1073 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1074 set_result(result);
1075 return true;
1076 }
1077
1078 //------------------------------inline_string_equals------------------------
1079 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1080 Node* arg1 = argument(0);
1081 Node* arg2 = argument(1);
1082
1083 // paths (plus control) merge
1084 RegionNode* region = new RegionNode(3);
1085 Node* phi = new PhiNode(region, TypeInt::BOOL);
1086
1087 if (!stopped()) {
1088
1089 arg1 = must_be_not_null(arg1, true);
1090 arg2 = must_be_not_null(arg2, true);
1091
1092 // Get start addr and length of first argument
1093 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE);
1094 Node* arg1_cnt = load_array_length(arg1);
1095
1096 // Get start addr and length of second argument
1097 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE);
1098 Node* arg2_cnt = load_array_length(arg2);
1099
1100 // Check for arg1_cnt != arg2_cnt
1101 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1102 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1103 Node* if_ne = generate_slow_guard(bol, nullptr);
1104 if (if_ne != nullptr) {
1105 phi->init_req(2, intcon(0));
1106 region->init_req(2, if_ne);
1107 }
1108
1109 // Check for count == 0 is done by assembler code for StrEquals.
1110
1111 if (!stopped()) {
1112 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1113 phi->init_req(1, equals);
1114 region->init_req(1, control());
1115 }
1116 }
1117
1118 // post merge
1119 set_control(_gvn.transform(region));
1120 record_for_igvn(region);
1121
1122 set_result(_gvn.transform(phi));
1123 return true;
1124 }
1125
1126 //------------------------------inline_array_equals----------------------------
1127 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1128 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1129 Node* arg1 = argument(0);
1130 Node* arg2 = argument(1);
1131
1132 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1133 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1134 clear_upper_avx();
1135
1136 return true;
1137 }
1138
1139
1140 //------------------------------inline_countPositives------------------------------
1141 // int java.lang.StringCoding#countPositives0(byte[] ba, int off, int len)
1142 bool LibraryCallKit::inline_countPositives() {
1143 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1144 return false;
1145 }
1146
1147 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1148 // no receiver since it is static method
1149 Node* ba = argument(0);
1150 Node* offset = argument(1);
1151 Node* len = argument(2);
1152
1153 if (VerifyIntrinsicChecks) {
1154 ba = must_be_not_null(ba, true);
1155 generate_string_range_check(ba, offset, len, false, true);
1156 if (stopped()) {
1157 return true;
1158 }
1159 }
1160
1161 Node* ba_start = array_element_address(ba, offset, T_BYTE);
1162 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1163 set_result(_gvn.transform(result));
1164 clear_upper_avx();
1165 return true;
1166 }
1167
1168 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1169 Node* index = argument(0);
1170 Node* length = bt == T_INT ? argument(1) : argument(2);
1171 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1172 return false;
1173 }
1174
1175 // check that length is positive
1176 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1177 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1178
1179 {
1180 BuildCutout unless(this, len_pos_bol, PROB_MAX);
1181 uncommon_trap(Deoptimization::Reason_intrinsic,
1182 Deoptimization::Action_make_not_entrant);
1183 }
1184
1185 if (stopped()) {
1186 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1187 return true;
1188 }
1189
1190 // length is now known positive, add a cast node to make this explicit
1191 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1192 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type(
1193 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1194 ConstraintCastNode::RegularDependency, bt);
1195 casted_length = _gvn.transform(casted_length);
1196 replace_in_map(length, casted_length);
1197 length = casted_length;
1198
1199 // Use an unsigned comparison for the range check itself
1200 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1201 BoolTest::mask btest = BoolTest::lt;
1202 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1203 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1204 _gvn.set_type(rc, rc->Value(&_gvn));
1205 if (!rc_bool->is_Con()) {
1206 record_for_igvn(rc);
1207 }
1208 set_control(_gvn.transform(new IfTrueNode(rc)));
1209 {
1210 PreserveJVMState pjvms(this);
1211 set_control(_gvn.transform(new IfFalseNode(rc)));
1212 uncommon_trap(Deoptimization::Reason_range_check,
1213 Deoptimization::Action_make_not_entrant);
1214 }
1215
1216 if (stopped()) {
1217 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1218 return true;
1219 }
1220
1221 // index is now known to be >= 0 and < length, cast it
1222 Node* result = ConstraintCastNode::make_cast_for_basic_type(
1223 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1224 ConstraintCastNode::RegularDependency, bt);
1225 result = _gvn.transform(result);
1226 set_result(result);
1227 replace_in_map(index, result);
1228 return true;
1229 }
1230
1231 //------------------------------inline_string_indexOf------------------------
1232 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1233 if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1234 return false;
1235 }
1236 Node* src = argument(0);
1237 Node* tgt = argument(1);
1238
1239 // Make the merge point
1240 RegionNode* result_rgn = new RegionNode(4);
1241 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT);
1242
1243 src = must_be_not_null(src, true);
1244 tgt = must_be_not_null(tgt, true);
1245
1246 // Get start addr and length of source string
1247 Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1248 Node* src_count = load_array_length(src);
1249
1250 // Get start addr and length of substring
1251 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1252 Node* tgt_count = load_array_length(tgt);
1253
1254 Node* result = nullptr;
1255 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1256
1257 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1258 // Divide src size by 2 if String is UTF16 encoded
1259 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1260 }
1261 if (ae == StrIntrinsicNode::UU) {
1262 // Divide substring size by 2 if String is UTF16 encoded
1263 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1264 }
1265
1266 if (call_opt_stub) {
1267 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1268 StubRoutines::_string_indexof_array[ae],
1269 "stringIndexOf", TypePtr::BOTTOM, src_start,
1270 src_count, tgt_start, tgt_count);
1271 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1272 } else {
1273 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1274 result_rgn, result_phi, ae);
1275 }
1276 if (result != nullptr) {
1277 result_phi->init_req(3, result);
1278 result_rgn->init_req(3, control());
1279 }
1280 set_control(_gvn.transform(result_rgn));
1281 record_for_igvn(result_rgn);
1282 set_result(_gvn.transform(result_phi));
1283
1284 return true;
1285 }
1286
1287 //-----------------------------inline_string_indexOfI-----------------------
1288 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1289 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1290 return false;
1291 }
1292 if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1293 return false;
1294 }
1295
1296 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1297 Node* src = argument(0); // byte[]
1298 Node* src_count = argument(1); // char count
1299 Node* tgt = argument(2); // byte[]
1300 Node* tgt_count = argument(3); // char count
1301 Node* from_index = argument(4); // char index
1302
1303 src = must_be_not_null(src, true);
1304 tgt = must_be_not_null(tgt, true);
1305
1306 // Multiply byte array index by 2 if String is UTF16 encoded
1307 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1308 src_count = _gvn.transform(new SubINode(src_count, from_index));
1309 Node* src_start = array_element_address(src, src_offset, T_BYTE);
1310 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1311
1312 // Range checks
1313 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1314 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1315 if (stopped()) {
1316 return true;
1317 }
1318
1319 RegionNode* region = new RegionNode(5);
1320 Node* phi = new PhiNode(region, TypeInt::INT);
1321 Node* result = nullptr;
1322
1323 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1324
1325 if (call_opt_stub) {
1326 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1327 StubRoutines::_string_indexof_array[ae],
1328 "stringIndexOf", TypePtr::BOTTOM, src_start,
1329 src_count, tgt_start, tgt_count);
1330 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1331 } else {
1332 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1333 region, phi, ae);
1334 }
1335 if (result != nullptr) {
1336 // The result is index relative to from_index if substring was found, -1 otherwise.
1337 // Generate code which will fold into cmove.
1338 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1339 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1340
1341 Node* if_lt = generate_slow_guard(bol, nullptr);
1342 if (if_lt != nullptr) {
1343 // result == -1
1344 phi->init_req(3, result);
1345 region->init_req(3, if_lt);
1346 }
1347 if (!stopped()) {
1348 result = _gvn.transform(new AddINode(result, from_index));
1349 phi->init_req(4, result);
1350 region->init_req(4, control());
1351 }
1352 }
1353
1354 set_control(_gvn.transform(region));
1355 record_for_igvn(region);
1356 set_result(_gvn.transform(phi));
1357 clear_upper_avx();
1358
1359 return true;
1360 }
1361
1362 // Create StrIndexOfNode with fast path checks
1363 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1364 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1365 // Check for substr count > string count
1366 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1367 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1368 Node* if_gt = generate_slow_guard(bol, nullptr);
1369 if (if_gt != nullptr) {
1370 phi->init_req(1, intcon(-1));
1371 region->init_req(1, if_gt);
1372 }
1373 if (!stopped()) {
1374 // Check for substr count == 0
1375 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1376 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1377 Node* if_zero = generate_slow_guard(bol, nullptr);
1378 if (if_zero != nullptr) {
1379 phi->init_req(2, intcon(0));
1380 region->init_req(2, if_zero);
1381 }
1382 }
1383 if (!stopped()) {
1384 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1385 }
1386 return nullptr;
1387 }
1388
1389 //-----------------------------inline_string_indexOfChar-----------------------
1390 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1391 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1392 return false;
1393 }
1394 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1395 return false;
1396 }
1397 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1398 Node* src = argument(0); // byte[]
1399 Node* int_ch = argument(1);
1400 Node* from_index = argument(2);
1401 Node* max = argument(3);
1402
1403 src = must_be_not_null(src, true);
1404
1405 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1406 Node* src_start = array_element_address(src, src_offset, T_BYTE);
1407 Node* src_count = _gvn.transform(new SubINode(max, from_index));
1408
1409 // Range checks
1410 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1411
1412 // Check for int_ch >= 0
1413 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1414 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1415 {
1416 BuildCutout unless(this, int_ch_bol, PROB_MAX);
1417 uncommon_trap(Deoptimization::Reason_intrinsic,
1418 Deoptimization::Action_maybe_recompile);
1419 }
1420 if (stopped()) {
1421 return true;
1422 }
1423
1424 RegionNode* region = new RegionNode(3);
1425 Node* phi = new PhiNode(region, TypeInt::INT);
1426
1427 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1428 C->set_has_split_ifs(true); // Has chance for split-if optimization
1429 _gvn.transform(result);
1430
1431 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1432 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1433
1434 Node* if_lt = generate_slow_guard(bol, nullptr);
1435 if (if_lt != nullptr) {
1436 // result == -1
1437 phi->init_req(2, result);
1438 region->init_req(2, if_lt);
1439 }
1440 if (!stopped()) {
1441 result = _gvn.transform(new AddINode(result, from_index));
1442 phi->init_req(1, result);
1443 region->init_req(1, control());
1444 }
1445 set_control(_gvn.transform(region));
1446 record_for_igvn(region);
1447 set_result(_gvn.transform(phi));
1448 clear_upper_avx();
1449
1450 return true;
1451 }
1452 //---------------------------inline_string_copy---------------------
1453 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1454 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1455 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1456 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1457 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1458 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1459 bool LibraryCallKit::inline_string_copy(bool compress) {
1460 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1461 return false;
1462 }
1463 int nargs = 5; // 2 oops, 3 ints
1464 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1465
1466 Node* src = argument(0);
1467 Node* src_offset = argument(1);
1468 Node* dst = argument(2);
1469 Node* dst_offset = argument(3);
1470 Node* length = argument(4);
1471
1472 // Check for allocation before we add nodes that would confuse
1473 // tightly_coupled_allocation()
1474 AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1475
1476 // Figure out the size and type of the elements we will be copying.
1477 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1478 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1479 if (src_type == nullptr || dst_type == nullptr) {
1480 return false;
1481 }
1482 BasicType src_elem = src_type->elem()->array_element_basic_type();
1483 BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1484 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1485 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1486 "Unsupported array types for inline_string_copy");
1487
1488 src = must_be_not_null(src, true);
1489 dst = must_be_not_null(dst, true);
1490
1491 // Convert char[] offsets to byte[] offsets
1492 bool convert_src = (compress && src_elem == T_BYTE);
1493 bool convert_dst = (!compress && dst_elem == T_BYTE);
1494 if (convert_src) {
1495 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1496 } else if (convert_dst) {
1497 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1498 }
1499
1500 // Range checks
1501 generate_string_range_check(src, src_offset, length, convert_src);
1502 generate_string_range_check(dst, dst_offset, length, convert_dst);
1503 if (stopped()) {
1504 return true;
1505 }
1506
1507 Node* src_start = array_element_address(src, src_offset, src_elem);
1508 Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1509 // 'src_start' points to src array + scaled offset
1510 // 'dst_start' points to dst array + scaled offset
1511 Node* count = nullptr;
1512 if (compress) {
1513 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1514 } else {
1515 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1516 }
1517
1518 if (alloc != nullptr) {
1519 if (alloc->maybe_set_complete(&_gvn)) {
1520 // "You break it, you buy it."
1521 InitializeNode* init = alloc->initialization();
1522 assert(init->is_complete(), "we just did this");
1523 init->set_complete_with_arraycopy();
1524 assert(dst->is_CheckCastPP(), "sanity");
1525 assert(dst->in(0)->in(0) == init, "dest pinned");
1526 }
1527 // Do not let stores that initialize this object be reordered with
1528 // a subsequent store that would make this object accessible by
1529 // other threads.
1530 // Record what AllocateNode this StoreStore protects so that
1531 // escape analysis can go from the MemBarStoreStoreNode to the
1532 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1533 // based on the escape status of the AllocateNode.
1534 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1535 }
1536 if (compress) {
1537 set_result(_gvn.transform(count));
1538 }
1539 clear_upper_avx();
1540
1541 return true;
1542 }
1543
1544 #ifdef _LP64
1545 #define XTOP ,top() /*additional argument*/
1546 #else //_LP64
1547 #define XTOP /*no additional argument*/
1548 #endif //_LP64
1549
1550 //------------------------inline_string_toBytesU--------------------------
1551 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1552 bool LibraryCallKit::inline_string_toBytesU() {
1553 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1554 return false;
1555 }
1556 // Get the arguments.
1557 Node* value = argument(0);
1558 Node* offset = argument(1);
1559 Node* length = argument(2);
1560
1561 Node* newcopy = nullptr;
1562
1563 // Set the original stack and the reexecute bit for the interpreter to reexecute
1564 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1565 { PreserveReexecuteState preexecs(this);
1566 jvms()->set_should_reexecute(true);
1567
1568 // Check if a null path was taken unconditionally.
1569 value = null_check(value);
1570
1571 RegionNode* bailout = new RegionNode(1);
1572 record_for_igvn(bailout);
1573
1574 // Range checks
1575 generate_negative_guard(offset, bailout);
1576 generate_negative_guard(length, bailout);
1577 generate_limit_guard(offset, length, load_array_length(value), bailout);
1578 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1579 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1580
1581 if (bailout->req() > 1) {
1582 PreserveJVMState pjvms(this);
1583 set_control(_gvn.transform(bailout));
1584 uncommon_trap(Deoptimization::Reason_intrinsic,
1585 Deoptimization::Action_maybe_recompile);
1586 }
1587 if (stopped()) {
1588 return true;
1589 }
1590
1591 Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1592 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1593 newcopy = new_array(klass_node, size, 0); // no arguments to push
1594 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1595 guarantee(alloc != nullptr, "created above");
1596
1597 // Calculate starting addresses.
1598 Node* src_start = array_element_address(value, offset, T_CHAR);
1599 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1600
1601 // Check if dst array address is aligned to HeapWordSize
1602 bool aligned = (arrayOopDesc::base_offset_in_bytes(T_BYTE) % HeapWordSize == 0);
1603 // If true, then check if src array address is aligned to HeapWordSize
1604 if (aligned) {
1605 const TypeInt* toffset = gvn().type(offset)->is_int();
1606 aligned = toffset->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_CHAR) +
1607 toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1608 }
1609
1610 // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1611 const char* copyfunc_name = "arraycopy";
1612 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1613 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1614 OptoRuntime::fast_arraycopy_Type(),
1615 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1616 src_start, dst_start, ConvI2X(length) XTOP);
1617 // Do not let reads from the cloned object float above the arraycopy.
1618 if (alloc->maybe_set_complete(&_gvn)) {
1619 // "You break it, you buy it."
1620 InitializeNode* init = alloc->initialization();
1621 assert(init->is_complete(), "we just did this");
1622 init->set_complete_with_arraycopy();
1623 assert(newcopy->is_CheckCastPP(), "sanity");
1624 assert(newcopy->in(0)->in(0) == init, "dest pinned");
1625 }
1626 // Do not let stores that initialize this object be reordered with
1627 // a subsequent store that would make this object accessible by
1628 // other threads.
1629 // Record what AllocateNode this StoreStore protects so that
1630 // escape analysis can go from the MemBarStoreStoreNode to the
1631 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1632 // based on the escape status of the AllocateNode.
1633 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1634 } // original reexecute is set back here
1635
1636 C->set_has_split_ifs(true); // Has chance for split-if optimization
1637 if (!stopped()) {
1638 set_result(newcopy);
1639 }
1640 clear_upper_avx();
1641
1642 return true;
1643 }
1644
1645 //------------------------inline_string_getCharsU--------------------------
1646 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1647 bool LibraryCallKit::inline_string_getCharsU() {
1648 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1649 return false;
1650 }
1651
1652 // Get the arguments.
1653 Node* src = argument(0);
1654 Node* src_begin = argument(1);
1655 Node* src_end = argument(2); // exclusive offset (i < src_end)
1656 Node* dst = argument(3);
1657 Node* dst_begin = argument(4);
1658
1659 // Check for allocation before we add nodes that would confuse
1660 // tightly_coupled_allocation()
1661 AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1662
1663 // Check if a null path was taken unconditionally.
1664 src = null_check(src);
1665 dst = null_check(dst);
1666 if (stopped()) {
1667 return true;
1668 }
1669
1670 // Get length and convert char[] offset to byte[] offset
1671 Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1672 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1673
1674 // Range checks
1675 generate_string_range_check(src, src_begin, length, true);
1676 generate_string_range_check(dst, dst_begin, length, false);
1677 if (stopped()) {
1678 return true;
1679 }
1680
1681 if (!stopped()) {
1682 // Calculate starting addresses.
1683 Node* src_start = array_element_address(src, src_begin, T_BYTE);
1684 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1685
1686 // Check if array addresses are aligned to HeapWordSize
1687 const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1688 const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1689 bool aligned = tsrc->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_BYTE) + tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1690 tdst->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_CHAR) + tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1691
1692 // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1693 const char* copyfunc_name = "arraycopy";
1694 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1695 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1696 OptoRuntime::fast_arraycopy_Type(),
1697 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1698 src_start, dst_start, ConvI2X(length) XTOP);
1699 // Do not let reads from the cloned object float above the arraycopy.
1700 if (alloc != nullptr) {
1701 if (alloc->maybe_set_complete(&_gvn)) {
1702 // "You break it, you buy it."
1703 InitializeNode* init = alloc->initialization();
1704 assert(init->is_complete(), "we just did this");
1705 init->set_complete_with_arraycopy();
1706 assert(dst->is_CheckCastPP(), "sanity");
1707 assert(dst->in(0)->in(0) == init, "dest pinned");
1708 }
1709 // Do not let stores that initialize this object be reordered with
1710 // a subsequent store that would make this object accessible by
1711 // other threads.
1712 // Record what AllocateNode this StoreStore protects so that
1713 // escape analysis can go from the MemBarStoreStoreNode to the
1714 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1715 // based on the escape status of the AllocateNode.
1716 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1717 } else {
1718 insert_mem_bar(Op_MemBarCPUOrder);
1719 }
1720 }
1721
1722 C->set_has_split_ifs(true); // Has chance for split-if optimization
1723 return true;
1724 }
1725
1726 //----------------------inline_string_char_access----------------------------
1727 // Store/Load char to/from byte[] array.
1728 // static void StringUTF16.putChar(byte[] val, int index, int c)
1729 // static char StringUTF16.getChar(byte[] val, int index)
1730 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1731 Node* value = argument(0);
1732 Node* index = argument(1);
1733 Node* ch = is_store ? argument(2) : nullptr;
1734
1735 // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1736 // correctly requires matched array shapes.
1737 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1738 "sanity: byte[] and char[] bases agree");
1739 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1740 "sanity: byte[] and char[] scales agree");
1741
1742 // Bail when getChar over constants is requested: constant folding would
1743 // reject folding mismatched char access over byte[]. A normal inlining for getChar
1744 // Java method would constant fold nicely instead.
1745 if (!is_store && value->is_Con() && index->is_Con()) {
1746 return false;
1747 }
1748
1749 // Save state and restore on bailout
1750 SavedState old_state(this);
1751
1752 value = must_be_not_null(value, true);
1753
1754 Node* adr = array_element_address(value, index, T_CHAR);
1755 if (adr->is_top()) {
1756 return false;
1757 }
1758 old_state.discard();
1759 if (is_store) {
1760 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1761 } else {
1762 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1763 set_result(ch);
1764 }
1765 return true;
1766 }
1767
1768
1769 //------------------------------inline_math-----------------------------------
1770 // public static double Math.abs(double)
1771 // public static double Math.sqrt(double)
1772 // public static double Math.log(double)
1773 // public static double Math.log10(double)
1774 // public static double Math.round(double)
1775 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1776 Node* arg = argument(0);
1777 Node* n = nullptr;
1778 switch (id) {
1779 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break;
1780 case vmIntrinsics::_dsqrt:
1781 case vmIntrinsics::_dsqrt_strict:
1782 n = new SqrtDNode(C, control(), arg); break;
1783 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1784 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1785 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1786 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1787 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break;
1788 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1789 default: fatal_unexpected_iid(id); break;
1790 }
1791 set_result(_gvn.transform(n));
1792 return true;
1793 }
1794
1795 //------------------------------inline_math-----------------------------------
1796 // public static float Math.abs(float)
1797 // public static int Math.abs(int)
1798 // public static long Math.abs(long)
1799 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1800 Node* arg = argument(0);
1801 Node* n = nullptr;
1802 switch (id) {
1803 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break;
1804 case vmIntrinsics::_iabs: n = new AbsINode( arg); break;
1805 case vmIntrinsics::_labs: n = new AbsLNode( arg); break;
1806 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1807 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1808 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1809 default: fatal_unexpected_iid(id); break;
1810 }
1811 set_result(_gvn.transform(n));
1812 return true;
1813 }
1814
1815 //------------------------------runtime_math-----------------------------
1816 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1817 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1818 "must be (DD)D or (D)D type");
1819
1820 // Inputs
1821 Node* a = argument(0);
1822 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr;
1823
1824 const TypePtr* no_memory_effects = nullptr;
1825 Node* trig = make_runtime_call(RC_LEAF | RC_PURE, call_type, funcAddr, funcName,
1826 no_memory_effects,
1827 a, top(), b, b ? top() : nullptr);
1828 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1829 #ifdef ASSERT
1830 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1831 assert(value_top == top(), "second value must be top");
1832 #endif
1833
1834 set_result(value);
1835 return true;
1836 }
1837
1838 //------------------------------inline_math_pow-----------------------------
1839 bool LibraryCallKit::inline_math_pow() {
1840 Node* exp = argument(2);
1841 const TypeD* d = _gvn.type(exp)->isa_double_constant();
1842 if (d != nullptr) {
1843 if (d->getd() == 2.0) {
1844 // Special case: pow(x, 2.0) => x * x
1845 Node* base = argument(0);
1846 set_result(_gvn.transform(new MulDNode(base, base)));
1847 return true;
1848 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1849 // Special case: pow(x, 0.5) => sqrt(x)
1850 Node* base = argument(0);
1851 Node* zero = _gvn.zerocon(T_DOUBLE);
1852
1853 RegionNode* region = new RegionNode(3);
1854 Node* phi = new PhiNode(region, Type::DOUBLE);
1855
1856 Node* cmp = _gvn.transform(new CmpDNode(base, zero));
1857 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1858 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1859 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1860 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1861
1862 Node* if_pow = generate_slow_guard(test, nullptr);
1863 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1864 phi->init_req(1, value_sqrt);
1865 region->init_req(1, control());
1866
1867 if (if_pow != nullptr) {
1868 set_control(if_pow);
1869 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1870 CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1871 const TypePtr* no_memory_effects = nullptr;
1872 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1873 no_memory_effects, base, top(), exp, top());
1874 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1875 #ifdef ASSERT
1876 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1877 assert(value_top == top(), "second value must be top");
1878 #endif
1879 phi->init_req(2, value_pow);
1880 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1881 }
1882
1883 C->set_has_split_ifs(true); // Has chance for split-if optimization
1884 set_control(_gvn.transform(region));
1885 record_for_igvn(region);
1886 set_result(_gvn.transform(phi));
1887
1888 return true;
1889 }
1890 }
1891
1892 return StubRoutines::dpow() != nullptr ?
1893 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1894 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1895 }
1896
1897 //------------------------------inline_math_native-----------------------------
1898 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1899 switch (id) {
1900 case vmIntrinsics::_dsin:
1901 return StubRoutines::dsin() != nullptr ?
1902 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1903 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1904 case vmIntrinsics::_dcos:
1905 return StubRoutines::dcos() != nullptr ?
1906 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1907 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1908 case vmIntrinsics::_dtan:
1909 return StubRoutines::dtan() != nullptr ?
1910 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1911 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1912 case vmIntrinsics::_dsinh:
1913 return StubRoutines::dsinh() != nullptr ?
1914 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsinh(), "dsinh") : false;
1915 case vmIntrinsics::_dtanh:
1916 return StubRoutines::dtanh() != nullptr ?
1917 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false;
1918 case vmIntrinsics::_dcbrt:
1919 return StubRoutines::dcbrt() != nullptr ?
1920 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcbrt(), "dcbrt") : false;
1921 case vmIntrinsics::_dexp:
1922 return StubRoutines::dexp() != nullptr ?
1923 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") :
1924 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1925 case vmIntrinsics::_dlog:
1926 return StubRoutines::dlog() != nullptr ?
1927 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1928 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1929 case vmIntrinsics::_dlog10:
1930 return StubRoutines::dlog10() != nullptr ?
1931 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1932 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1933
1934 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1935 case vmIntrinsics::_ceil:
1936 case vmIntrinsics::_floor:
1937 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1938
1939 case vmIntrinsics::_dsqrt:
1940 case vmIntrinsics::_dsqrt_strict:
1941 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1942 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false;
1943 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false;
1944 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false;
1945 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false;
1946
1947 case vmIntrinsics::_dpow: return inline_math_pow();
1948 case vmIntrinsics::_dcopySign: return inline_double_math(id);
1949 case vmIntrinsics::_fcopySign: return inline_math(id);
1950 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1951 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1952 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1953
1954 // These intrinsics are not yet correctly implemented
1955 case vmIntrinsics::_datan2:
1956 return false;
1957
1958 default:
1959 fatal_unexpected_iid(id);
1960 return false;
1961 }
1962 }
1963
1964 //----------------------------inline_notify-----------------------------------*
1965 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1966 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1967 address func;
1968 if (id == vmIntrinsics::_notify) {
1969 func = OptoRuntime::monitor_notify_Java();
1970 } else {
1971 func = OptoRuntime::monitor_notifyAll_Java();
1972 }
1973 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1974 make_slow_call_ex(call, env()->Throwable_klass(), false);
1975 return true;
1976 }
1977
1978
1979 //----------------------------inline_min_max-----------------------------------
1980 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1981 Node* a = nullptr;
1982 Node* b = nullptr;
1983 Node* n = nullptr;
1984 switch (id) {
1985 case vmIntrinsics::_min:
1986 case vmIntrinsics::_max:
1987 case vmIntrinsics::_minF:
1988 case vmIntrinsics::_maxF:
1989 case vmIntrinsics::_minF_strict:
1990 case vmIntrinsics::_maxF_strict:
1991 case vmIntrinsics::_min_strict:
1992 case vmIntrinsics::_max_strict:
1993 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
1994 a = argument(0);
1995 b = argument(1);
1996 break;
1997 case vmIntrinsics::_minD:
1998 case vmIntrinsics::_maxD:
1999 case vmIntrinsics::_minD_strict:
2000 case vmIntrinsics::_maxD_strict:
2001 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
2002 a = argument(0);
2003 b = argument(2);
2004 break;
2005 case vmIntrinsics::_minL:
2006 case vmIntrinsics::_maxL:
2007 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each.");
2008 a = argument(0);
2009 b = argument(2);
2010 break;
2011 default:
2012 fatal_unexpected_iid(id);
2013 break;
2014 }
2015
2016 switch (id) {
2017 case vmIntrinsics::_min:
2018 case vmIntrinsics::_min_strict:
2019 n = new MinINode(a, b);
2020 break;
2021 case vmIntrinsics::_max:
2022 case vmIntrinsics::_max_strict:
2023 n = new MaxINode(a, b);
2024 break;
2025 case vmIntrinsics::_minF:
2026 case vmIntrinsics::_minF_strict:
2027 n = new MinFNode(a, b);
2028 break;
2029 case vmIntrinsics::_maxF:
2030 case vmIntrinsics::_maxF_strict:
2031 n = new MaxFNode(a, b);
2032 break;
2033 case vmIntrinsics::_minD:
2034 case vmIntrinsics::_minD_strict:
2035 n = new MinDNode(a, b);
2036 break;
2037 case vmIntrinsics::_maxD:
2038 case vmIntrinsics::_maxD_strict:
2039 n = new MaxDNode(a, b);
2040 break;
2041 case vmIntrinsics::_minL:
2042 n = new MinLNode(_gvn.C, a, b);
2043 break;
2044 case vmIntrinsics::_maxL:
2045 n = new MaxLNode(_gvn.C, a, b);
2046 break;
2047 default:
2048 fatal_unexpected_iid(id);
2049 break;
2050 }
2051
2052 set_result(_gvn.transform(n));
2053 return true;
2054 }
2055
2056 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) {
2057 if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic,
2058 env()->ArithmeticException_instance())) {
2059 // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces),
2060 // so let's bail out intrinsic rather than risking deopting again.
2061 return false;
2062 }
2063
2064 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2065 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2066 Node* fast_path = _gvn.transform( new IfFalseNode(check));
2067 Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2068
2069 {
2070 PreserveJVMState pjvms(this);
2071 PreserveReexecuteState preexecs(this);
2072 jvms()->set_should_reexecute(true);
2073
2074 set_control(slow_path);
2075 set_i_o(i_o());
2076
2077 builtin_throw(Deoptimization::Reason_intrinsic,
2078 env()->ArithmeticException_instance(),
2079 /*allow_too_many_traps*/ false);
2080 }
2081
2082 set_control(fast_path);
2083 set_result(math);
2084 return true;
2085 }
2086
2087 template <typename OverflowOp>
2088 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2089 typedef typename OverflowOp::MathOp MathOp;
2090
2091 MathOp* mathOp = new MathOp(arg1, arg2);
2092 Node* operation = _gvn.transform( mathOp );
2093 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2094 return inline_math_mathExact(operation, ofcheck);
2095 }
2096
2097 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2098 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2099 }
2100
2101 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2102 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2103 }
2104
2105 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2106 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2107 }
2108
2109 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2110 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2111 }
2112
2113 bool LibraryCallKit::inline_math_negateExactI() {
2114 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2115 }
2116
2117 bool LibraryCallKit::inline_math_negateExactL() {
2118 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2119 }
2120
2121 bool LibraryCallKit::inline_math_multiplyExactI() {
2122 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2123 }
2124
2125 bool LibraryCallKit::inline_math_multiplyExactL() {
2126 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2127 }
2128
2129 bool LibraryCallKit::inline_math_multiplyHigh() {
2130 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2131 return true;
2132 }
2133
2134 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
2135 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
2136 return true;
2137 }
2138
2139 inline int
2140 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2141 const TypePtr* base_type = TypePtr::NULL_PTR;
2142 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr();
2143 if (base_type == nullptr) {
2144 // Unknown type.
2145 return Type::AnyPtr;
2146 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) {
2147 // Since this is a null+long form, we have to switch to a rawptr.
2148 base = _gvn.transform(new CastX2PNode(offset));
2149 offset = MakeConX(0);
2150 return Type::RawPtr;
2151 } else if (base_type->base() == Type::RawPtr) {
2152 return Type::RawPtr;
2153 } else if (base_type->isa_oopptr()) {
2154 // Base is never null => always a heap address.
2155 if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2156 return Type::OopPtr;
2157 }
2158 // Offset is small => always a heap address.
2159 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2160 if (offset_type != nullptr &&
2161 base_type->offset() == 0 && // (should always be?)
2162 offset_type->_lo >= 0 &&
2163 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2164 return Type::OopPtr;
2165 } else if (type == T_OBJECT) {
2166 // off heap access to an oop doesn't make any sense. Has to be on
2167 // heap.
2168 return Type::OopPtr;
2169 }
2170 // Otherwise, it might either be oop+off or null+addr.
2171 return Type::AnyPtr;
2172 } else {
2173 // No information:
2174 return Type::AnyPtr;
2175 }
2176 }
2177
2178 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2179 Node* uncasted_base = base;
2180 int kind = classify_unsafe_addr(uncasted_base, offset, type);
2181 if (kind == Type::RawPtr) {
2182 return basic_plus_adr(top(), uncasted_base, offset);
2183 } else if (kind == Type::AnyPtr) {
2184 assert(base == uncasted_base, "unexpected base change");
2185 if (can_cast) {
2186 if (!_gvn.type(base)->speculative_maybe_null() &&
2187 !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2188 // According to profiling, this access is always on
2189 // heap. Casting the base to not null and thus avoiding membars
2190 // around the access should allow better optimizations
2191 Node* null_ctl = top();
2192 base = null_check_oop(base, &null_ctl, true, true, true);
2193 assert(null_ctl->is_top(), "no null control here");
2194 return basic_plus_adr(base, offset);
2195 } else if (_gvn.type(base)->speculative_always_null() &&
2196 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2197 // According to profiling, this access is always off
2198 // heap.
2199 base = null_assert(base);
2200 Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2201 offset = MakeConX(0);
2202 return basic_plus_adr(top(), raw_base, offset);
2203 }
2204 }
2205 // We don't know if it's an on heap or off heap access. Fall back
2206 // to raw memory access.
2207 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2208 return basic_plus_adr(top(), raw, offset);
2209 } else {
2210 assert(base == uncasted_base, "unexpected base change");
2211 // We know it's an on heap access so base can't be null
2212 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2213 base = must_be_not_null(base, true);
2214 }
2215 return basic_plus_adr(base, offset);
2216 }
2217 }
2218
2219 //--------------------------inline_number_methods-----------------------------
2220 // inline int Integer.numberOfLeadingZeros(int)
2221 // inline int Long.numberOfLeadingZeros(long)
2222 //
2223 // inline int Integer.numberOfTrailingZeros(int)
2224 // inline int Long.numberOfTrailingZeros(long)
2225 //
2226 // inline int Integer.bitCount(int)
2227 // inline int Long.bitCount(long)
2228 //
2229 // inline char Character.reverseBytes(char)
2230 // inline short Short.reverseBytes(short)
2231 // inline int Integer.reverseBytes(int)
2232 // inline long Long.reverseBytes(long)
2233 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2234 Node* arg = argument(0);
2235 Node* n = nullptr;
2236 switch (id) {
2237 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break;
2238 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break;
2239 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break;
2240 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break;
2241 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break;
2242 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break;
2243 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break;
2244 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break;
2245 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break;
2246 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break;
2247 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break;
2248 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break;
2249 default: fatal_unexpected_iid(id); break;
2250 }
2251 set_result(_gvn.transform(n));
2252 return true;
2253 }
2254
2255 //--------------------------inline_bitshuffle_methods-----------------------------
2256 // inline int Integer.compress(int, int)
2257 // inline int Integer.expand(int, int)
2258 // inline long Long.compress(long, long)
2259 // inline long Long.expand(long, long)
2260 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2261 Node* n = nullptr;
2262 switch (id) {
2263 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2264 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break;
2265 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2266 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2267 default: fatal_unexpected_iid(id); break;
2268 }
2269 set_result(_gvn.transform(n));
2270 return true;
2271 }
2272
2273 //--------------------------inline_number_methods-----------------------------
2274 // inline int Integer.compareUnsigned(int, int)
2275 // inline int Long.compareUnsigned(long, long)
2276 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2277 Node* arg1 = argument(0);
2278 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2279 Node* n = nullptr;
2280 switch (id) {
2281 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break;
2282 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break;
2283 default: fatal_unexpected_iid(id); break;
2284 }
2285 set_result(_gvn.transform(n));
2286 return true;
2287 }
2288
2289 //--------------------------inline_unsigned_divmod_methods-----------------------------
2290 // inline int Integer.divideUnsigned(int, int)
2291 // inline int Integer.remainderUnsigned(int, int)
2292 // inline long Long.divideUnsigned(long, long)
2293 // inline long Long.remainderUnsigned(long, long)
2294 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2295 Node* n = nullptr;
2296 switch (id) {
2297 case vmIntrinsics::_divideUnsigned_i: {
2298 zero_check_int(argument(1));
2299 // Compile-time detect of null-exception
2300 if (stopped()) {
2301 return true; // keep the graph constructed so far
2302 }
2303 n = new UDivINode(control(), argument(0), argument(1));
2304 break;
2305 }
2306 case vmIntrinsics::_divideUnsigned_l: {
2307 zero_check_long(argument(2));
2308 // Compile-time detect of null-exception
2309 if (stopped()) {
2310 return true; // keep the graph constructed so far
2311 }
2312 n = new UDivLNode(control(), argument(0), argument(2));
2313 break;
2314 }
2315 case vmIntrinsics::_remainderUnsigned_i: {
2316 zero_check_int(argument(1));
2317 // Compile-time detect of null-exception
2318 if (stopped()) {
2319 return true; // keep the graph constructed so far
2320 }
2321 n = new UModINode(control(), argument(0), argument(1));
2322 break;
2323 }
2324 case vmIntrinsics::_remainderUnsigned_l: {
2325 zero_check_long(argument(2));
2326 // Compile-time detect of null-exception
2327 if (stopped()) {
2328 return true; // keep the graph constructed so far
2329 }
2330 n = new UModLNode(control(), argument(0), argument(2));
2331 break;
2332 }
2333 default: fatal_unexpected_iid(id); break;
2334 }
2335 set_result(_gvn.transform(n));
2336 return true;
2337 }
2338
2339 //----------------------------inline_unsafe_access----------------------------
2340
2341 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2342 // Attempt to infer a sharper value type from the offset and base type.
2343 ciKlass* sharpened_klass = nullptr;
2344
2345 // See if it is an instance field, with an object type.
2346 if (alias_type->field() != nullptr) {
2347 if (alias_type->field()->type()->is_klass()) {
2348 sharpened_klass = alias_type->field()->type()->as_klass();
2349 }
2350 }
2351
2352 const TypeOopPtr* result = nullptr;
2353 // See if it is a narrow oop array.
2354 if (adr_type->isa_aryptr()) {
2355 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2356 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2357 if (elem_type != nullptr && elem_type->is_loaded()) {
2358 // Sharpen the value type.
2359 result = elem_type;
2360 }
2361 }
2362 }
2363
2364 // The sharpened class might be unloaded if there is no class loader
2365 // contraint in place.
2366 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2367 // Sharpen the value type.
2368 result = TypeOopPtr::make_from_klass(sharpened_klass);
2369 }
2370 if (result != nullptr) {
2371 #ifndef PRODUCT
2372 if (C->print_intrinsics() || C->print_inlining()) {
2373 tty->print(" from base type: "); adr_type->dump(); tty->cr();
2374 tty->print(" sharpened value: "); result->dump(); tty->cr();
2375 }
2376 #endif
2377 }
2378 return result;
2379 }
2380
2381 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2382 switch (kind) {
2383 case Relaxed:
2384 return MO_UNORDERED;
2385 case Opaque:
2386 return MO_RELAXED;
2387 case Acquire:
2388 return MO_ACQUIRE;
2389 case Release:
2390 return MO_RELEASE;
2391 case Volatile:
2392 return MO_SEQ_CST;
2393 default:
2394 ShouldNotReachHere();
2395 return 0;
2396 }
2397 }
2398
2399 LibraryCallKit::SavedState::SavedState(LibraryCallKit* kit) :
2400 _kit(kit),
2401 _sp(kit->sp()),
2402 _jvms(kit->jvms()),
2403 _map(kit->clone_map()),
2404 _discarded(false)
2405 {
2406 for (DUIterator_Fast imax, i = kit->control()->fast_outs(imax); i < imax; i++) {
2407 Node* out = kit->control()->fast_out(i);
2408 if (out->is_CFG()) {
2409 _ctrl_succ.push(out);
2410 }
2411 }
2412 }
2413
2414 LibraryCallKit::SavedState::~SavedState() {
2415 if (_discarded) {
2416 _kit->destruct_map_clone(_map);
2417 return;
2418 }
2419 _kit->jvms()->set_map(_map);
2420 _kit->jvms()->set_sp(_sp);
2421 _map->set_jvms(_kit->jvms());
2422 _kit->set_map(_map);
2423 _kit->set_sp(_sp);
2424 for (DUIterator_Fast imax, i = _kit->control()->fast_outs(imax); i < imax; i++) {
2425 Node* out = _kit->control()->fast_out(i);
2426 if (out->is_CFG() && out->in(0) == _kit->control() && out != _kit->map() && !_ctrl_succ.member(out)) {
2427 _kit->_gvn.hash_delete(out);
2428 out->set_req(0, _kit->C->top());
2429 _kit->C->record_for_igvn(out);
2430 --i; --imax;
2431 _kit->_gvn.hash_find_insert(out);
2432 }
2433 }
2434 }
2435
2436 void LibraryCallKit::SavedState::discard() {
2437 _discarded = true;
2438 }
2439
2440 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2441 if (callee()->is_static()) return false; // caller must have the capability!
2442 DecoratorSet decorators = C2_UNSAFE_ACCESS;
2443 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2444 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2445 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2446
2447 if (is_reference_type(type)) {
2448 decorators |= ON_UNKNOWN_OOP_REF;
2449 }
2450
2451 if (unaligned) {
2452 decorators |= C2_UNALIGNED;
2453 }
2454
2455 #ifndef PRODUCT
2456 {
2457 ResourceMark rm;
2458 // Check the signatures.
2459 ciSignature* sig = callee()->signature();
2460 #ifdef ASSERT
2461 if (!is_store) {
2462 // Object getReference(Object base, int/long offset), etc.
2463 BasicType rtype = sig->return_type()->basic_type();
2464 assert(rtype == type, "getter must return the expected value");
2465 assert(sig->count() == 2, "oop getter has 2 arguments");
2466 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2467 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2468 } else {
2469 // void putReference(Object base, int/long offset, Object x), etc.
2470 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2471 assert(sig->count() == 3, "oop putter has 3 arguments");
2472 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2473 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2474 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2475 assert(vtype == type, "putter must accept the expected value");
2476 }
2477 #endif // ASSERT
2478 }
2479 #endif //PRODUCT
2480
2481 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
2482
2483 Node* receiver = argument(0); // type: oop
2484
2485 // Build address expression.
2486 Node* heap_base_oop = top();
2487
2488 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2489 Node* base = argument(1); // type: oop
2490 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2491 Node* offset = argument(2); // type: long
2492 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2493 // to be plain byte offsets, which are also the same as those accepted
2494 // by oopDesc::field_addr.
2495 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2496 "fieldOffset must be byte-scaled");
2497 // 32-bit machines ignore the high half!
2498 offset = ConvL2X(offset);
2499
2500 // Save state and restore on bailout
2501 SavedState old_state(this);
2502
2503 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2504 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2505
2506 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2507 if (type != T_OBJECT) {
2508 decorators |= IN_NATIVE; // off-heap primitive access
2509 } else {
2510 return false; // off-heap oop accesses are not supported
2511 }
2512 } else {
2513 heap_base_oop = base; // on-heap or mixed access
2514 }
2515
2516 // Can base be null? Otherwise, always on-heap access.
2517 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2518
2519 if (!can_access_non_heap) {
2520 decorators |= IN_HEAP;
2521 }
2522
2523 Node* val = is_store ? argument(4) : nullptr;
2524
2525 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2526 if (adr_type == TypePtr::NULL_PTR) {
2527 return false; // off-heap access with zero address
2528 }
2529
2530 // Try to categorize the address.
2531 Compile::AliasType* alias_type = C->alias_type(adr_type);
2532 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2533
2534 if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2535 alias_type->adr_type() == TypeAryPtr::RANGE) {
2536 return false; // not supported
2537 }
2538
2539 bool mismatched = false;
2540 BasicType bt = alias_type->basic_type();
2541 if (bt != T_ILLEGAL) {
2542 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2543 if (bt == T_BYTE && adr_type->isa_aryptr()) {
2544 // Alias type doesn't differentiate between byte[] and boolean[]).
2545 // Use address type to get the element type.
2546 bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2547 }
2548 if (is_reference_type(bt, true)) {
2549 // accessing an array field with getReference is not a mismatch
2550 bt = T_OBJECT;
2551 }
2552 if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2553 // Don't intrinsify mismatched object accesses
2554 return false;
2555 }
2556 mismatched = (bt != type);
2557 } else if (alias_type->adr_type()->isa_oopptr()) {
2558 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2559 }
2560
2561 old_state.discard();
2562 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2563
2564 if (mismatched) {
2565 decorators |= C2_MISMATCHED;
2566 }
2567
2568 // First guess at the value type.
2569 const Type *value_type = Type::get_const_basic_type(type);
2570
2571 // Figure out the memory ordering.
2572 decorators |= mo_decorator_for_access_kind(kind);
2573
2574 if (!is_store && type == T_OBJECT) {
2575 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2576 if (tjp != nullptr) {
2577 value_type = tjp;
2578 }
2579 }
2580
2581 receiver = null_check(receiver);
2582 if (stopped()) {
2583 return true;
2584 }
2585 // Heap pointers get a null-check from the interpreter,
2586 // as a courtesy. However, this is not guaranteed by Unsafe,
2587 // and it is not possible to fully distinguish unintended nulls
2588 // from intended ones in this API.
2589
2590 if (!is_store) {
2591 Node* p = nullptr;
2592 // Try to constant fold a load from a constant field
2593 ciField* field = alias_type->field();
2594 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2595 // final or stable field
2596 p = make_constant_from_field(field, heap_base_oop);
2597 }
2598
2599 if (p == nullptr) { // Could not constant fold the load
2600 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2601 // Normalize the value returned by getBoolean in the following cases
2602 if (type == T_BOOLEAN &&
2603 (mismatched ||
2604 heap_base_oop == top() || // - heap_base_oop is null or
2605 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2606 // and the unsafe access is made to large offset
2607 // (i.e., larger than the maximum offset necessary for any
2608 // field access)
2609 ) {
2610 IdealKit ideal = IdealKit(this);
2611 #define __ ideal.
2612 IdealVariable normalized_result(ideal);
2613 __ declarations_done();
2614 __ set(normalized_result, p);
2615 __ if_then(p, BoolTest::ne, ideal.ConI(0));
2616 __ set(normalized_result, ideal.ConI(1));
2617 ideal.end_if();
2618 final_sync(ideal);
2619 p = __ value(normalized_result);
2620 #undef __
2621 }
2622 }
2623 if (type == T_ADDRESS) {
2624 p = gvn().transform(new CastP2XNode(nullptr, p));
2625 p = ConvX2UL(p);
2626 }
2627 // The load node has the control of the preceding MemBarCPUOrder. All
2628 // following nodes will have the control of the MemBarCPUOrder inserted at
2629 // the end of this method. So, pushing the load onto the stack at a later
2630 // point is fine.
2631 set_result(p);
2632 } else {
2633 if (bt == T_ADDRESS) {
2634 // Repackage the long as a pointer.
2635 val = ConvL2X(val);
2636 val = gvn().transform(new CastX2PNode(val));
2637 }
2638 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2639 }
2640
2641 return true;
2642 }
2643
2644 //----------------------------inline_unsafe_load_store----------------------------
2645 // This method serves a couple of different customers (depending on LoadStoreKind):
2646 //
2647 // LS_cmp_swap:
2648 //
2649 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2650 // boolean compareAndSetInt( Object o, long offset, int expected, int x);
2651 // boolean compareAndSetLong( Object o, long offset, long expected, long x);
2652 //
2653 // LS_cmp_swap_weak:
2654 //
2655 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x);
2656 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x);
2657 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2658 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2659 //
2660 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x);
2661 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x);
2662 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x);
2663 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x);
2664 //
2665 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x);
2666 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x);
2667 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x);
2668 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x);
2669 //
2670 // LS_cmp_exchange:
2671 //
2672 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2673 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2674 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2675 //
2676 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x);
2677 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x);
2678 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x);
2679 //
2680 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x);
2681 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x);
2682 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x);
2683 //
2684 // LS_get_add:
2685 //
2686 // int getAndAddInt( Object o, long offset, int delta)
2687 // long getAndAddLong(Object o, long offset, long delta)
2688 //
2689 // LS_get_set:
2690 //
2691 // int getAndSet(Object o, long offset, int newValue)
2692 // long getAndSet(Object o, long offset, long newValue)
2693 // Object getAndSet(Object o, long offset, Object newValue)
2694 //
2695 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2696 // This basic scheme here is the same as inline_unsafe_access, but
2697 // differs in enough details that combining them would make the code
2698 // overly confusing. (This is a true fact! I originally combined
2699 // them, but even I was confused by it!) As much code/comments as
2700 // possible are retained from inline_unsafe_access though to make
2701 // the correspondences clearer. - dl
2702
2703 if (callee()->is_static()) return false; // caller must have the capability!
2704
2705 DecoratorSet decorators = C2_UNSAFE_ACCESS;
2706 decorators |= mo_decorator_for_access_kind(access_kind);
2707
2708 #ifndef PRODUCT
2709 BasicType rtype;
2710 {
2711 ResourceMark rm;
2712 // Check the signatures.
2713 ciSignature* sig = callee()->signature();
2714 rtype = sig->return_type()->basic_type();
2715 switch(kind) {
2716 case LS_get_add:
2717 case LS_get_set: {
2718 // Check the signatures.
2719 #ifdef ASSERT
2720 assert(rtype == type, "get and set must return the expected type");
2721 assert(sig->count() == 3, "get and set has 3 arguments");
2722 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2723 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2724 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2725 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2726 #endif // ASSERT
2727 break;
2728 }
2729 case LS_cmp_swap:
2730 case LS_cmp_swap_weak: {
2731 // Check the signatures.
2732 #ifdef ASSERT
2733 assert(rtype == T_BOOLEAN, "CAS must return boolean");
2734 assert(sig->count() == 4, "CAS has 4 arguments");
2735 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2736 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2737 #endif // ASSERT
2738 break;
2739 }
2740 case LS_cmp_exchange: {
2741 // Check the signatures.
2742 #ifdef ASSERT
2743 assert(rtype == type, "CAS must return the expected type");
2744 assert(sig->count() == 4, "CAS has 4 arguments");
2745 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2746 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2747 #endif // ASSERT
2748 break;
2749 }
2750 default:
2751 ShouldNotReachHere();
2752 }
2753 }
2754 #endif //PRODUCT
2755
2756 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
2757
2758 // Get arguments:
2759 Node* receiver = nullptr;
2760 Node* base = nullptr;
2761 Node* offset = nullptr;
2762 Node* oldval = nullptr;
2763 Node* newval = nullptr;
2764 switch(kind) {
2765 case LS_cmp_swap:
2766 case LS_cmp_swap_weak:
2767 case LS_cmp_exchange: {
2768 const bool two_slot_type = type2size[type] == 2;
2769 receiver = argument(0); // type: oop
2770 base = argument(1); // type: oop
2771 offset = argument(2); // type: long
2772 oldval = argument(4); // type: oop, int, or long
2773 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long
2774 break;
2775 }
2776 case LS_get_add:
2777 case LS_get_set: {
2778 receiver = argument(0); // type: oop
2779 base = argument(1); // type: oop
2780 offset = argument(2); // type: long
2781 oldval = nullptr;
2782 newval = argument(4); // type: oop, int, or long
2783 break;
2784 }
2785 default:
2786 ShouldNotReachHere();
2787 }
2788
2789 // Build field offset expression.
2790 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2791 // to be plain byte offsets, which are also the same as those accepted
2792 // by oopDesc::field_addr.
2793 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2794 // 32-bit machines ignore the high half of long offsets
2795 offset = ConvL2X(offset);
2796 // Save state and restore on bailout
2797 SavedState old_state(this);
2798 Node* adr = make_unsafe_address(base, offset,type, false);
2799 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2800
2801 Compile::AliasType* alias_type = C->alias_type(adr_type);
2802 BasicType bt = alias_type->basic_type();
2803 if (bt != T_ILLEGAL &&
2804 (is_reference_type(bt) != (type == T_OBJECT))) {
2805 // Don't intrinsify mismatched object accesses.
2806 return false;
2807 }
2808
2809 old_state.discard();
2810
2811 // For CAS, unlike inline_unsafe_access, there seems no point in
2812 // trying to refine types. Just use the coarse types here.
2813 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2814 const Type *value_type = Type::get_const_basic_type(type);
2815
2816 switch (kind) {
2817 case LS_get_set:
2818 case LS_cmp_exchange: {
2819 if (type == T_OBJECT) {
2820 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2821 if (tjp != nullptr) {
2822 value_type = tjp;
2823 }
2824 }
2825 break;
2826 }
2827 case LS_cmp_swap:
2828 case LS_cmp_swap_weak:
2829 case LS_get_add:
2830 break;
2831 default:
2832 ShouldNotReachHere();
2833 }
2834
2835 // Null check receiver.
2836 receiver = null_check(receiver);
2837 if (stopped()) {
2838 return true;
2839 }
2840
2841 int alias_idx = C->get_alias_index(adr_type);
2842
2843 if (is_reference_type(type)) {
2844 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2845
2846 // Transformation of a value which could be null pointer (CastPP #null)
2847 // could be delayed during Parse (for example, in adjust_map_after_if()).
2848 // Execute transformation here to avoid barrier generation in such case.
2849 if (_gvn.type(newval) == TypePtr::NULL_PTR)
2850 newval = _gvn.makecon(TypePtr::NULL_PTR);
2851
2852 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2853 // Refine the value to a null constant, when it is known to be null
2854 oldval = _gvn.makecon(TypePtr::NULL_PTR);
2855 }
2856 }
2857
2858 Node* result = nullptr;
2859 switch (kind) {
2860 case LS_cmp_exchange: {
2861 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2862 oldval, newval, value_type, type, decorators);
2863 break;
2864 }
2865 case LS_cmp_swap_weak:
2866 decorators |= C2_WEAK_CMPXCHG;
2867 case LS_cmp_swap: {
2868 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2869 oldval, newval, value_type, type, decorators);
2870 break;
2871 }
2872 case LS_get_set: {
2873 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2874 newval, value_type, type, decorators);
2875 break;
2876 }
2877 case LS_get_add: {
2878 result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2879 newval, value_type, type, decorators);
2880 break;
2881 }
2882 default:
2883 ShouldNotReachHere();
2884 }
2885
2886 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2887 set_result(result);
2888 return true;
2889 }
2890
2891 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2892 // Regardless of form, don't allow previous ld/st to move down,
2893 // then issue acquire, release, or volatile mem_bar.
2894 insert_mem_bar(Op_MemBarCPUOrder);
2895 switch(id) {
2896 case vmIntrinsics::_loadFence:
2897 insert_mem_bar(Op_LoadFence);
2898 return true;
2899 case vmIntrinsics::_storeFence:
2900 insert_mem_bar(Op_StoreFence);
2901 return true;
2902 case vmIntrinsics::_storeStoreFence:
2903 insert_mem_bar(Op_StoreStoreFence);
2904 return true;
2905 case vmIntrinsics::_fullFence:
2906 insert_mem_bar(Op_MemBarVolatile);
2907 return true;
2908 default:
2909 fatal_unexpected_iid(id);
2910 return false;
2911 }
2912 }
2913
2914 bool LibraryCallKit::inline_onspinwait() {
2915 insert_mem_bar(Op_OnSpinWait);
2916 return true;
2917 }
2918
2919 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2920 if (!kls->is_Con()) {
2921 return true;
2922 }
2923 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2924 if (klsptr == nullptr) {
2925 return true;
2926 }
2927 ciInstanceKlass* ik = klsptr->instance_klass();
2928 // don't need a guard for a klass that is already initialized
2929 return !ik->is_initialized();
2930 }
2931
2932 //----------------------------inline_unsafe_writeback0-------------------------
2933 // public native void Unsafe.writeback0(long address)
2934 bool LibraryCallKit::inline_unsafe_writeback0() {
2935 if (!Matcher::has_match_rule(Op_CacheWB)) {
2936 return false;
2937 }
2938 #ifndef PRODUCT
2939 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2940 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2941 ciSignature* sig = callee()->signature();
2942 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2943 #endif
2944 null_check_receiver(); // null-check, then ignore
2945 Node *addr = argument(1);
2946 addr = new CastX2PNode(addr);
2947 addr = _gvn.transform(addr);
2948 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2949 flush = _gvn.transform(flush);
2950 set_memory(flush, TypeRawPtr::BOTTOM);
2951 return true;
2952 }
2953
2954 //----------------------------inline_unsafe_writeback0-------------------------
2955 // public native void Unsafe.writeback0(long address)
2956 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2957 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2958 return false;
2959 }
2960 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2961 return false;
2962 }
2963 #ifndef PRODUCT
2964 assert(Matcher::has_match_rule(Op_CacheWB),
2965 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2966 : "found match rule for CacheWBPostSync but not CacheWB"));
2967
2968 #endif
2969 null_check_receiver(); // null-check, then ignore
2970 Node *sync;
2971 if (is_pre) {
2972 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2973 } else {
2974 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2975 }
2976 sync = _gvn.transform(sync);
2977 set_memory(sync, TypeRawPtr::BOTTOM);
2978 return true;
2979 }
2980
2981 //----------------------------inline_unsafe_allocate---------------------------
2982 // public native Object Unsafe.allocateInstance(Class<?> cls);
2983 bool LibraryCallKit::inline_unsafe_allocate() {
2984
2985 #if INCLUDE_JVMTI
2986 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
2987 return false;
2988 }
2989 #endif //INCLUDE_JVMTI
2990
2991 if (callee()->is_static()) return false; // caller must have the capability!
2992
2993 null_check_receiver(); // null-check, then ignore
2994 Node* cls = null_check(argument(1));
2995 if (stopped()) return true;
2996
2997 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
2998 kls = null_check(kls);
2999 if (stopped()) return true; // argument was like int.class
3000
3001 #if INCLUDE_JVMTI
3002 // Don't try to access new allocated obj in the intrinsic.
3003 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
3004 // Deoptimize and allocate in interpreter instead.
3005 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
3006 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
3007 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
3008 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3009 {
3010 BuildCutout unless(this, tst, PROB_MAX);
3011 uncommon_trap(Deoptimization::Reason_intrinsic,
3012 Deoptimization::Action_make_not_entrant);
3013 }
3014 if (stopped()) {
3015 return true;
3016 }
3017 #endif //INCLUDE_JVMTI
3018
3019 Node* test = nullptr;
3020 if (LibraryCallKit::klass_needs_init_guard(kls)) {
3021 // Note: The argument might still be an illegal value like
3022 // Serializable.class or Object[].class. The runtime will handle it.
3023 // But we must make an explicit check for initialization.
3024 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3025 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3026 // can generate code to load it as unsigned byte.
3027 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3028 Node* bits = intcon(InstanceKlass::fully_initialized);
3029 test = _gvn.transform(new SubINode(inst, bits));
3030 // The 'test' is non-zero if we need to take a slow path.
3031 }
3032
3033 Node* obj = new_instance(kls, test);
3034 set_result(obj);
3035 return true;
3036 }
3037
3038 //------------------------inline_native_time_funcs--------------
3039 // inline code for System.currentTimeMillis() and System.nanoTime()
3040 // these have the same type and signature
3041 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3042 const TypeFunc* tf = OptoRuntime::void_long_Type();
3043 const TypePtr* no_memory_effects = nullptr;
3044 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3045 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3046 #ifdef ASSERT
3047 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3048 assert(value_top == top(), "second value must be top");
3049 #endif
3050 set_result(value);
3051 return true;
3052 }
3053
3054
3055 #if INCLUDE_JVMTI
3056
3057 // When notifications are disabled then just update the VTMS transition bit and return.
3058 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
3059 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
3060 if (!DoJVMTIVirtualThreadTransitions) {
3061 return true;
3062 }
3063 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
3064 IdealKit ideal(this);
3065
3066 Node* ONE = ideal.ConI(1);
3067 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
3068 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
3069 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3070
3071 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
3072 sync_kit(ideal);
3073 // if notifyJvmti enabled then make a call to the given SharedRuntime function
3074 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
3075 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
3076 ideal.sync_kit(this);
3077 } ideal.else_(); {
3078 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
3079 Node* thread = ideal.thread();
3080 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
3081 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
3082
3083 sync_kit(ideal);
3084 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3085 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3086
3087 ideal.sync_kit(this);
3088 } ideal.end_if();
3089 final_sync(ideal);
3090
3091 return true;
3092 }
3093
3094 // Always update the is_disable_suspend bit.
3095 bool LibraryCallKit::inline_native_notify_jvmti_sync() {
3096 if (!DoJVMTIVirtualThreadTransitions) {
3097 return true;
3098 }
3099 IdealKit ideal(this);
3100
3101 {
3102 // unconditionally update the is_disable_suspend bit in current JavaThread
3103 Node* thread = ideal.thread();
3104 Node* arg = _gvn.transform(argument(0)); // argument for notification
3105 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset()));
3106 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3107
3108 sync_kit(ideal);
3109 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3110 ideal.sync_kit(this);
3111 }
3112 final_sync(ideal);
3113
3114 return true;
3115 }
3116
3117 #endif // INCLUDE_JVMTI
3118
3119 #ifdef JFR_HAVE_INTRINSICS
3120
3121 /**
3122 * if oop->klass != null
3123 * // normal class
3124 * epoch = _epoch_state ? 2 : 1
3125 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
3126 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
3127 * }
3128 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
3129 * else
3130 * // primitive class
3131 * if oop->array_klass != null
3132 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
3133 * else
3134 * id = LAST_TYPE_ID + 1 // void class path
3135 * if (!signaled)
3136 * signaled = true
3137 */
3138 bool LibraryCallKit::inline_native_classID() {
3139 Node* cls = argument(0);
3140
3141 IdealKit ideal(this);
3142 #define __ ideal.
3143 IdealVariable result(ideal); __ declarations_done();
3144 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(),
3145 basic_plus_adr(cls, java_lang_Class::klass_offset()),
3146 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3147
3148
3149 __ if_then(kls, BoolTest::ne, null()); {
3150 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3151 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3152
3153 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
3154 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3155 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
3156 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
3157 mask = _gvn.transform(new OrLNode(mask, epoch));
3158 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
3159
3160 float unlikely = PROB_UNLIKELY(0.999);
3161 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
3162 sync_kit(ideal);
3163 make_runtime_call(RC_LEAF,
3164 OptoRuntime::class_id_load_barrier_Type(),
3165 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3166 "class id load barrier",
3167 TypePtr::BOTTOM,
3168 kls);
3169 ideal.sync_kit(this);
3170 } __ end_if();
3171
3172 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3173 } __ else_(); {
3174 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(),
3175 basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3176 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3177 __ if_then(array_kls, BoolTest::ne, null()); {
3178 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3179 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3180 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3181 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3182 } __ else_(); {
3183 // void class case
3184 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3185 } __ end_if();
3186
3187 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3188 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3189 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3190 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3191 } __ end_if();
3192 } __ end_if();
3193
3194 final_sync(ideal);
3195 set_result(ideal.value(result));
3196 #undef __
3197 return true;
3198 }
3199
3200 //------------------------inline_native_jvm_commit------------------
3201 bool LibraryCallKit::inline_native_jvm_commit() {
3202 enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3203
3204 // Save input memory and i_o state.
3205 Node* input_memory_state = reset_memory();
3206 set_all_memory(input_memory_state);
3207 Node* input_io_state = i_o();
3208
3209 // TLS.
3210 Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3211 // Jfr java buffer.
3212 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3213 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3214 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3215
3216 // Load the current value of the notified field in the JfrThreadLocal.
3217 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3218 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3219
3220 // Test for notification.
3221 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3222 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3223 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3224
3225 // True branch, is notified.
3226 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3227 set_control(is_notified);
3228
3229 // Reset notified state.
3230 store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered);
3231 Node* notified_reset_memory = reset_memory();
3232
3233 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3234 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3235 // Convert the machine-word to a long.
3236 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3237
3238 // False branch, not notified.
3239 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3240 set_control(not_notified);
3241 set_all_memory(input_memory_state);
3242
3243 // Arg is the next position as a long.
3244 Node* arg = argument(0);
3245 // Convert long to machine-word.
3246 Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3247
3248 // Store the next_position to the underlying jfr java buffer.
3249 store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release);
3250
3251 Node* commit_memory = reset_memory();
3252 set_all_memory(commit_memory);
3253
3254 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3255 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3256 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3257 Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3258
3259 // And flags with lease constant.
3260 Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3261
3262 // Branch on lease to conditionalize returning the leased java buffer.
3263 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3264 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3265 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3266
3267 // False branch, not a lease.
3268 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3269
3270 // True branch, is lease.
3271 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3272 set_control(is_lease);
3273
3274 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3275 Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3276 OptoRuntime::void_void_Type(),
3277 SharedRuntime::jfr_return_lease(),
3278 "return_lease", TypePtr::BOTTOM);
3279 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3280
3281 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3282 record_for_igvn(lease_compare_rgn);
3283 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3284 record_for_igvn(lease_compare_mem);
3285 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3286 record_for_igvn(lease_compare_io);
3287 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3288 record_for_igvn(lease_result_value);
3289
3290 // Update control and phi nodes.
3291 lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3292 lease_compare_rgn->init_req(_false_path, not_lease);
3293
3294 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3295 lease_compare_mem->init_req(_false_path, commit_memory);
3296
3297 lease_compare_io->init_req(_true_path, i_o());
3298 lease_compare_io->init_req(_false_path, input_io_state);
3299
3300 lease_result_value->init_req(_true_path, _gvn.longcon(0)); // if the lease was returned, return 0L.
3301 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3302
3303 RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3304 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3305 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3306 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3307
3308 // Update control and phi nodes.
3309 result_rgn->init_req(_true_path, is_notified);
3310 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3311
3312 result_mem->init_req(_true_path, notified_reset_memory);
3313 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3314
3315 result_io->init_req(_true_path, input_io_state);
3316 result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3317
3318 result_value->init_req(_true_path, current_pos);
3319 result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3320
3321 // Set output state.
3322 set_control(_gvn.transform(result_rgn));
3323 set_all_memory(_gvn.transform(result_mem));
3324 set_i_o(_gvn.transform(result_io));
3325 set_result(result_rgn, result_value);
3326 return true;
3327 }
3328
3329 /*
3330 * The intrinsic is a model of this pseudo-code:
3331 *
3332 * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3333 * jobject h_event_writer = tl->java_event_writer();
3334 * if (h_event_writer == nullptr) {
3335 * return nullptr;
3336 * }
3337 * oop threadObj = Thread::threadObj();
3338 * oop vthread = java_lang_Thread::vthread(threadObj);
3339 * traceid tid;
3340 * bool pinVirtualThread;
3341 * bool excluded;
3342 * if (vthread != threadObj) { // i.e. current thread is virtual
3343 * tid = java_lang_Thread::tid(vthread);
3344 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3345 * pinVirtualThread = VMContinuations;
3346 * excluded = vthread_epoch_raw & excluded_mask;
3347 * if (!excluded) {
3348 * traceid current_epoch = JfrTraceIdEpoch::current_generation();
3349 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3350 * if (vthread_epoch != current_epoch) {
3351 * write_checkpoint();
3352 * }
3353 * }
3354 * } else {
3355 * tid = java_lang_Thread::tid(threadObj);
3356 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3357 * pinVirtualThread = false;
3358 * excluded = thread_epoch_raw & excluded_mask;
3359 * }
3360 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3361 * traceid tid_in_event_writer = getField(event_writer, "threadID");
3362 * if (tid_in_event_writer != tid) {
3363 * setField(event_writer, "pinVirtualThread", pinVirtualThread);
3364 * setField(event_writer, "excluded", excluded);
3365 * setField(event_writer, "threadID", tid);
3366 * }
3367 * return event_writer
3368 */
3369 bool LibraryCallKit::inline_native_getEventWriter() {
3370 enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3371
3372 // Save input memory and i_o state.
3373 Node* input_memory_state = reset_memory();
3374 set_all_memory(input_memory_state);
3375 Node* input_io_state = i_o();
3376
3377 // The most significant bit of the u2 is used to denote thread exclusion
3378 Node* excluded_shift = _gvn.intcon(15);
3379 Node* excluded_mask = _gvn.intcon(1 << 15);
3380 // The epoch generation is the range [1-32767]
3381 Node* epoch_mask = _gvn.intcon(32767);
3382
3383 // TLS
3384 Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3385
3386 // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3387 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3388
3389 // Load the eventwriter jobject handle.
3390 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3391
3392 // Null check the jobject handle.
3393 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3394 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3395 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3396
3397 // False path, jobj is null.
3398 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3399
3400 // True path, jobj is not null.
3401 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3402
3403 set_control(jobj_is_not_null);
3404
3405 // Load the threadObj for the CarrierThread.
3406 Node* threadObj = generate_current_thread(tls_ptr);
3407
3408 // Load the vthread.
3409 Node* vthread = generate_virtual_thread(tls_ptr);
3410
3411 // If vthread != threadObj, this is a virtual thread.
3412 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3413 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3414 IfNode* iff_vthread_not_equal_threadObj =
3415 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3416
3417 // False branch, fallback to threadObj.
3418 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3419 set_control(vthread_equal_threadObj);
3420
3421 // Load the tid field from the vthread object.
3422 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3423
3424 // Load the raw epoch value from the threadObj.
3425 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3426 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset,
3427 _gvn.type(threadObj_epoch_offset)->isa_ptr(),
3428 TypeInt::CHAR, T_CHAR,
3429 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3430
3431 // Mask off the excluded information from the epoch.
3432 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3433
3434 // True branch, this is a virtual thread.
3435 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3436 set_control(vthread_not_equal_threadObj);
3437
3438 // Load the tid field from the vthread object.
3439 Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3440
3441 // Continuation support determines if a virtual thread should be pinned.
3442 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations));
3443 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3444
3445 // Load the raw epoch value from the vthread.
3446 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3447 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(),
3448 TypeInt::CHAR, T_CHAR,
3449 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3450
3451 // Mask off the excluded information from the epoch.
3452 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3453
3454 // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3455 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3456 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3457 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3458
3459 // False branch, vthread is excluded, no need to write epoch info.
3460 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3461
3462 // True branch, vthread is included, update epoch info.
3463 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3464 set_control(included);
3465
3466 // Get epoch value.
3467 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3468
3469 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3470 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3471 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3472
3473 // Compare the epoch in the vthread to the current epoch generation.
3474 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3475 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3476 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3477
3478 // False path, epoch is equal, checkpoint information is valid.
3479 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3480
3481 // True path, epoch is not equal, write a checkpoint for the vthread.
3482 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3483
3484 set_control(epoch_is_not_equal);
3485
3486 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3487 // The call also updates the native thread local thread id and the vthread with the current epoch.
3488 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3489 OptoRuntime::jfr_write_checkpoint_Type(),
3490 SharedRuntime::jfr_write_checkpoint(),
3491 "write_checkpoint", TypePtr::BOTTOM);
3492 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3493
3494 // vthread epoch != current epoch
3495 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3496 record_for_igvn(epoch_compare_rgn);
3497 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3498 record_for_igvn(epoch_compare_mem);
3499 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3500 record_for_igvn(epoch_compare_io);
3501
3502 // Update control and phi nodes.
3503 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3504 epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3505 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3506 epoch_compare_mem->init_req(_false_path, input_memory_state);
3507 epoch_compare_io->init_req(_true_path, i_o());
3508 epoch_compare_io->init_req(_false_path, input_io_state);
3509
3510 // excluded != true
3511 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3512 record_for_igvn(exclude_compare_rgn);
3513 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3514 record_for_igvn(exclude_compare_mem);
3515 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3516 record_for_igvn(exclude_compare_io);
3517
3518 // Update control and phi nodes.
3519 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3520 exclude_compare_rgn->init_req(_false_path, excluded);
3521 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3522 exclude_compare_mem->init_req(_false_path, input_memory_state);
3523 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3524 exclude_compare_io->init_req(_false_path, input_io_state);
3525
3526 // vthread != threadObj
3527 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3528 record_for_igvn(vthread_compare_rgn);
3529 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3530 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3531 record_for_igvn(vthread_compare_io);
3532 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3533 record_for_igvn(tid);
3534 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR);
3535 record_for_igvn(exclusion);
3536 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3537 record_for_igvn(pinVirtualThread);
3538
3539 // Update control and phi nodes.
3540 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3541 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3542 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3543 vthread_compare_mem->init_req(_false_path, input_memory_state);
3544 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3545 vthread_compare_io->init_req(_false_path, input_io_state);
3546 tid->init_req(_true_path, _gvn.transform(vthread_tid));
3547 tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3548 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3549 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3550 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support));
3551 pinVirtualThread->init_req(_false_path, _gvn.intcon(0));
3552
3553 // Update branch state.
3554 set_control(_gvn.transform(vthread_compare_rgn));
3555 set_all_memory(_gvn.transform(vthread_compare_mem));
3556 set_i_o(_gvn.transform(vthread_compare_io));
3557
3558 // Load the event writer oop by dereferencing the jobject handle.
3559 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3560 assert(klass_EventWriter->is_loaded(), "invariant");
3561 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3562 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3563 const TypeOopPtr* const xtype = aklass->as_instance_type();
3564 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3565 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3566
3567 // Load the current thread id from the event writer object.
3568 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3569 // Get the field offset to, conditionally, store an updated tid value later.
3570 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3571 // Get the field offset to, conditionally, store an updated exclusion value later.
3572 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3573 // Get the field offset to, conditionally, store an updated pinVirtualThread value later.
3574 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false);
3575
3576 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3577 record_for_igvn(event_writer_tid_compare_rgn);
3578 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3579 record_for_igvn(event_writer_tid_compare_mem);
3580 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3581 record_for_igvn(event_writer_tid_compare_io);
3582
3583 // Compare the current tid from the thread object to what is currently stored in the event writer object.
3584 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3585 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3586 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3587
3588 // False path, tids are the same.
3589 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3590
3591 // True path, tid is not equal, need to update the tid in the event writer.
3592 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3593 record_for_igvn(tid_is_not_equal);
3594
3595 // Store the pin state to the event writer.
3596 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered);
3597
3598 // Store the exclusion state to the event writer.
3599 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift));
3600 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered);
3601
3602 // Store the tid to the event writer.
3603 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered);
3604
3605 // Update control and phi nodes.
3606 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3607 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3608 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3609 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3610 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3611 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3612
3613 // Result of top level CFG, Memory, IO and Value.
3614 RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3615 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3616 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3617 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3618
3619 // Result control.
3620 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3621 result_rgn->init_req(_false_path, jobj_is_null);
3622
3623 // Result memory.
3624 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3625 result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3626
3627 // Result IO.
3628 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3629 result_io->init_req(_false_path, _gvn.transform(input_io_state));
3630
3631 // Result value.
3632 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3633 result_value->init_req(_false_path, null()); // return null
3634
3635 // Set output state.
3636 set_control(_gvn.transform(result_rgn));
3637 set_all_memory(_gvn.transform(result_mem));
3638 set_i_o(_gvn.transform(result_io));
3639 set_result(result_rgn, result_value);
3640 return true;
3641 }
3642
3643 /*
3644 * The intrinsic is a model of this pseudo-code:
3645 *
3646 * JfrThreadLocal* const tl = thread->jfr_thread_local();
3647 * if (carrierThread != thread) { // is virtual thread
3648 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3649 * bool excluded = vthread_epoch_raw & excluded_mask;
3650 * AtomicAccess::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3651 * AtomicAccess::store(&tl->_contextual_thread_excluded, is_excluded);
3652 * if (!excluded) {
3653 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3654 * AtomicAccess::store(&tl->_vthread_epoch, vthread_epoch);
3655 * }
3656 * AtomicAccess::release_store(&tl->_vthread, true);
3657 * return;
3658 * }
3659 * AtomicAccess::release_store(&tl->_vthread, false);
3660 */
3661 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3662 enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3663
3664 Node* input_memory_state = reset_memory();
3665 set_all_memory(input_memory_state);
3666
3667 // The most significant bit of the u2 is used to denote thread exclusion
3668 Node* excluded_mask = _gvn.intcon(1 << 15);
3669 // The epoch generation is the range [1-32767]
3670 Node* epoch_mask = _gvn.intcon(32767);
3671
3672 Node* const carrierThread = generate_current_thread(jt);
3673 // If thread != carrierThread, this is a virtual thread.
3674 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3675 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
3676 IfNode* iff_thread_not_equal_carrierThread =
3677 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
3678
3679 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
3680
3681 // False branch, is carrierThread.
3682 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
3683 // Store release
3684 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true);
3685
3686 set_all_memory(input_memory_state);
3687
3688 // True branch, is virtual thread.
3689 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
3690 set_control(thread_not_equal_carrierThread);
3691
3692 // Load the raw epoch value from the vthread.
3693 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
3694 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR,
3695 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3696
3697 // Mask off the excluded information from the epoch.
3698 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
3699
3700 // Load the tid field from the thread.
3701 Node* tid = load_field_from_object(thread, "tid", "J");
3702
3703 // Store the vthread tid to the jfr thread local.
3704 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
3705 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true);
3706
3707 // Branch is_excluded to conditionalize updating the epoch .
3708 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
3709 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
3710 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
3711
3712 // True branch, vthread is excluded, no need to write epoch info.
3713 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
3714 set_control(excluded);
3715 Node* vthread_is_excluded = _gvn.intcon(1);
3716
3717 // False branch, vthread is included, update epoch info.
3718 Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
3719 set_control(included);
3720 Node* vthread_is_included = _gvn.intcon(0);
3721
3722 // Get epoch value.
3723 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
3724
3725 // Store the vthread epoch to the jfr thread local.
3726 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
3727 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true);
3728
3729 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
3730 record_for_igvn(excluded_rgn);
3731 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
3732 record_for_igvn(excluded_mem);
3733 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
3734 record_for_igvn(exclusion);
3735
3736 // Merge the excluded control and memory.
3737 excluded_rgn->init_req(_true_path, excluded);
3738 excluded_rgn->init_req(_false_path, included);
3739 excluded_mem->init_req(_true_path, tid_memory);
3740 excluded_mem->init_req(_false_path, included_memory);
3741 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3742 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
3743
3744 // Set intermediate state.
3745 set_control(_gvn.transform(excluded_rgn));
3746 set_all_memory(excluded_mem);
3747
3748 // Store the vthread exclusion state to the jfr thread local.
3749 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
3750 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true);
3751
3752 // Store release
3753 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true);
3754
3755 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
3756 record_for_igvn(thread_compare_rgn);
3757 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3758 record_for_igvn(thread_compare_mem);
3759 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
3760 record_for_igvn(vthread);
3761
3762 // Merge the thread_compare control and memory.
3763 thread_compare_rgn->init_req(_true_path, control());
3764 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
3765 thread_compare_mem->init_req(_true_path, vthread_true_memory);
3766 thread_compare_mem->init_req(_false_path, vthread_false_memory);
3767
3768 // Set output state.
3769 set_control(_gvn.transform(thread_compare_rgn));
3770 set_all_memory(_gvn.transform(thread_compare_mem));
3771 }
3772
3773 #endif // JFR_HAVE_INTRINSICS
3774
3775 //------------------------inline_native_currentCarrierThread------------------
3776 bool LibraryCallKit::inline_native_currentCarrierThread() {
3777 Node* junk = nullptr;
3778 set_result(generate_current_thread(junk));
3779 return true;
3780 }
3781
3782 //------------------------inline_native_currentThread------------------
3783 bool LibraryCallKit::inline_native_currentThread() {
3784 Node* junk = nullptr;
3785 set_result(generate_virtual_thread(junk));
3786 return true;
3787 }
3788
3789 //------------------------inline_native_setVthread------------------
3790 bool LibraryCallKit::inline_native_setCurrentThread() {
3791 assert(C->method()->changes_current_thread(),
3792 "method changes current Thread but is not annotated ChangesCurrentThread");
3793 Node* arr = argument(1);
3794 Node* thread = _gvn.transform(new ThreadLocalNode());
3795 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3796 Node* thread_obj_handle
3797 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3798 thread_obj_handle = _gvn.transform(thread_obj_handle);
3799 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3800 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3801
3802 // Change the _monitor_owner_id of the JavaThread
3803 Node* tid = load_field_from_object(arr, "tid", "J");
3804 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3805 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3806
3807 JFR_ONLY(extend_setCurrentThread(thread, arr);)
3808 return true;
3809 }
3810
3811 const Type* LibraryCallKit::scopedValueCache_type() {
3812 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3813 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3814 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3815
3816 // Because we create the scopedValue cache lazily we have to make the
3817 // type of the result BotPTR.
3818 bool xk = etype->klass_is_exact();
3819 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3820 return objects_type;
3821 }
3822
3823 Node* LibraryCallKit::scopedValueCache_helper() {
3824 Node* thread = _gvn.transform(new ThreadLocalNode());
3825 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3826 // We cannot use immutable_memory() because we might flip onto a
3827 // different carrier thread, at which point we'll need to use that
3828 // carrier thread's cache.
3829 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3830 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3831 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3832 }
3833
3834 //------------------------inline_native_scopedValueCache------------------
3835 bool LibraryCallKit::inline_native_scopedValueCache() {
3836 Node* cache_obj_handle = scopedValueCache_helper();
3837 const Type* objects_type = scopedValueCache_type();
3838 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3839
3840 return true;
3841 }
3842
3843 //------------------------inline_native_setScopedValueCache------------------
3844 bool LibraryCallKit::inline_native_setScopedValueCache() {
3845 Node* arr = argument(0);
3846 Node* cache_obj_handle = scopedValueCache_helper();
3847 const Type* objects_type = scopedValueCache_type();
3848
3849 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3850 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3851
3852 return true;
3853 }
3854
3855 //------------------------inline_native_Continuation_pin and unpin-----------
3856
3857 // Shared implementation routine for both pin and unpin.
3858 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) {
3859 enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3860
3861 // Save input memory.
3862 Node* input_memory_state = reset_memory();
3863 set_all_memory(input_memory_state);
3864
3865 // TLS
3866 Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3867 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset()));
3868 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered);
3869
3870 // Null check the last continuation object.
3871 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null()));
3872 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne));
3873 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3874
3875 // False path, last continuation is null.
3876 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null));
3877
3878 // True path, last continuation is not null.
3879 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null));
3880
3881 set_control(continuation_is_not_null);
3882
3883 // Load the pin count from the last continuation.
3884 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset()));
3885 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered);
3886
3887 // The loaded pin count is compared against a context specific rhs for over/underflow detection.
3888 Node* pin_count_rhs;
3889 if (unpin) {
3890 pin_count_rhs = _gvn.intcon(0);
3891 } else {
3892 pin_count_rhs = _gvn.intcon(UINT32_MAX);
3893 }
3894 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs));
3895 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq));
3896 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN);
3897
3898 // True branch, pin count over/underflow.
3899 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow));
3900 {
3901 // Trap (but not deoptimize (Action_none)) and continue in the interpreter
3902 // which will throw IllegalStateException for pin count over/underflow.
3903 // No memory changed so far - we can use memory create by reset_memory()
3904 // at the beginning of this intrinsic. No need to call reset_memory() again.
3905 PreserveJVMState pjvms(this);
3906 set_control(pin_count_over_underflow);
3907 uncommon_trap(Deoptimization::Reason_intrinsic,
3908 Deoptimization::Action_none);
3909 assert(stopped(), "invariant");
3910 }
3911
3912 // False branch, no pin count over/underflow. Increment or decrement pin count and store back.
3913 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow));
3914 set_control(valid_pin_count);
3915
3916 Node* next_pin_count;
3917 if (unpin) {
3918 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1)));
3919 } else {
3920 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1)));
3921 }
3922
3923 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
3924
3925 // Result of top level CFG and Memory.
3926 RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3927 record_for_igvn(result_rgn);
3928 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3929 record_for_igvn(result_mem);
3930
3931 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3932 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3933 result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3934 result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3935
3936 // Set output state.
3937 set_control(_gvn.transform(result_rgn));
3938 set_all_memory(_gvn.transform(result_mem));
3939
3940 return true;
3941 }
3942
3943 //---------------------------load_mirror_from_klass----------------------------
3944 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3945 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3946 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3947 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3948 // mirror = ((OopHandle)mirror)->resolve();
3949 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3950 }
3951
3952 //-----------------------load_klass_from_mirror_common-------------------------
3953 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3954 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3955 // and branch to the given path on the region.
3956 // If never_see_null, take an uncommon trap on null, so we can optimistically
3957 // compile for the non-null case.
3958 // If the region is null, force never_see_null = true.
3959 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3960 bool never_see_null,
3961 RegionNode* region,
3962 int null_path,
3963 int offset) {
3964 if (region == nullptr) never_see_null = true;
3965 Node* p = basic_plus_adr(mirror, offset);
3966 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3967 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3968 Node* null_ctl = top();
3969 kls = null_check_oop(kls, &null_ctl, never_see_null);
3970 if (region != nullptr) {
3971 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3972 region->init_req(null_path, null_ctl);
3973 } else {
3974 assert(null_ctl == top(), "no loose ends");
3975 }
3976 return kls;
3977 }
3978
3979 //--------------------(inline_native_Class_query helpers)---------------------
3980 // Use this for JVM_ACC_INTERFACE.
3981 // Fall through if (mods & mask) == bits, take the guard otherwise.
3982 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3983 ByteSize offset, const Type* type, BasicType bt) {
3984 // Branch around if the given klass has the given modifier bit set.
3985 // Like generate_guard, adds a new path onto the region.
3986 Node* modp = basic_plus_adr(kls, in_bytes(offset));
3987 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3988 Node* mask = intcon(modifier_mask);
3989 Node* bits = intcon(modifier_bits);
3990 Node* mbit = _gvn.transform(new AndINode(mods, mask));
3991 Node* cmp = _gvn.transform(new CmpINode(mbit, bits));
3992 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3993 return generate_fair_guard(bol, region);
3994 }
3995 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3996 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3997 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
3998 }
3999
4000 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4001 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4002 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4003 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4004 }
4005
4006 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4007 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4008 }
4009
4010 //-------------------------inline_native_Class_query-------------------
4011 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4012 const Type* return_type = TypeInt::BOOL;
4013 Node* prim_return_value = top(); // what happens if it's a primitive class?
4014 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4015 bool expect_prim = false; // most of these guys expect to work on refs
4016
4017 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
4018
4019 Node* mirror = argument(0);
4020 Node* obj = top();
4021
4022 switch (id) {
4023 case vmIntrinsics::_isInstance:
4024 // nothing is an instance of a primitive type
4025 prim_return_value = intcon(0);
4026 obj = argument(1);
4027 break;
4028 case vmIntrinsics::_isHidden:
4029 prim_return_value = intcon(0);
4030 break;
4031 case vmIntrinsics::_getSuperclass:
4032 prim_return_value = null();
4033 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
4034 break;
4035 default:
4036 fatal_unexpected_iid(id);
4037 break;
4038 }
4039
4040 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4041 if (mirror_con == nullptr) return false; // cannot happen?
4042
4043 #ifndef PRODUCT
4044 if (C->print_intrinsics() || C->print_inlining()) {
4045 ciType* k = mirror_con->java_mirror_type();
4046 if (k) {
4047 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
4048 k->print_name();
4049 tty->cr();
4050 }
4051 }
4052 #endif
4053
4054 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
4055 RegionNode* region = new RegionNode(PATH_LIMIT);
4056 record_for_igvn(region);
4057 PhiNode* phi = new PhiNode(region, return_type);
4058
4059 // The mirror will never be null of Reflection.getClassAccessFlags, however
4060 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
4061 // if it is. See bug 4774291.
4062
4063 // For Reflection.getClassAccessFlags(), the null check occurs in
4064 // the wrong place; see inline_unsafe_access(), above, for a similar
4065 // situation.
4066 mirror = null_check(mirror);
4067 // If mirror or obj is dead, only null-path is taken.
4068 if (stopped()) return true;
4069
4070 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
4071
4072 // Now load the mirror's klass metaobject, and null-check it.
4073 // Side-effects region with the control path if the klass is null.
4074 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
4075 // If kls is null, we have a primitive mirror.
4076 phi->init_req(_prim_path, prim_return_value);
4077 if (stopped()) { set_result(region, phi); return true; }
4078 bool safe_for_replace = (region->in(_prim_path) == top());
4079
4080 Node* p; // handy temp
4081 Node* null_ctl;
4082
4083 // Now that we have the non-null klass, we can perform the real query.
4084 // For constant classes, the query will constant-fold in LoadNode::Value.
4085 Node* query_value = top();
4086 switch (id) {
4087 case vmIntrinsics::_isInstance:
4088 // nothing is an instance of a primitive type
4089 query_value = gen_instanceof(obj, kls, safe_for_replace);
4090 break;
4091
4092 case vmIntrinsics::_isHidden:
4093 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
4094 if (generate_hidden_class_guard(kls, region) != nullptr)
4095 // A guard was added. If the guard is taken, it was an hidden class.
4096 phi->add_req(intcon(1));
4097 // If we fall through, it's a plain class.
4098 query_value = intcon(0);
4099 break;
4100
4101
4102 case vmIntrinsics::_getSuperclass:
4103 // The rules here are somewhat unfortunate, but we can still do better
4104 // with random logic than with a JNI call.
4105 // Interfaces store null or Object as _super, but must report null.
4106 // Arrays store an intermediate super as _super, but must report Object.
4107 // Other types can report the actual _super.
4108 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4109 if (generate_interface_guard(kls, region) != nullptr)
4110 // A guard was added. If the guard is taken, it was an interface.
4111 phi->add_req(null());
4112 if (generate_array_guard(kls, region) != nullptr)
4113 // A guard was added. If the guard is taken, it was an array.
4114 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4115 // If we fall through, it's a plain class. Get its _super.
4116 p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4117 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4118 null_ctl = top();
4119 kls = null_check_oop(kls, &null_ctl);
4120 if (null_ctl != top()) {
4121 // If the guard is taken, Object.superClass is null (both klass and mirror).
4122 region->add_req(null_ctl);
4123 phi ->add_req(null());
4124 }
4125 if (!stopped()) {
4126 query_value = load_mirror_from_klass(kls);
4127 }
4128 break;
4129
4130 default:
4131 fatal_unexpected_iid(id);
4132 break;
4133 }
4134
4135 // Fall-through is the normal case of a query to a real class.
4136 phi->init_req(1, query_value);
4137 region->init_req(1, control());
4138
4139 C->set_has_split_ifs(true); // Has chance for split-if optimization
4140 set_result(region, phi);
4141 return true;
4142 }
4143
4144 //-------------------------inline_Class_cast-------------------
4145 bool LibraryCallKit::inline_Class_cast() {
4146 Node* mirror = argument(0); // Class
4147 Node* obj = argument(1);
4148 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4149 if (mirror_con == nullptr) {
4150 return false; // dead path (mirror->is_top()).
4151 }
4152 if (obj == nullptr || obj->is_top()) {
4153 return false; // dead path
4154 }
4155 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4156
4157 // First, see if Class.cast() can be folded statically.
4158 // java_mirror_type() returns non-null for compile-time Class constants.
4159 ciType* tm = mirror_con->java_mirror_type();
4160 if (tm != nullptr && tm->is_klass() &&
4161 tp != nullptr) {
4162 if (!tp->is_loaded()) {
4163 // Don't use intrinsic when class is not loaded.
4164 return false;
4165 } else {
4166 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());
4167 if (static_res == Compile::SSC_always_true) {
4168 // isInstance() is true - fold the code.
4169 set_result(obj);
4170 return true;
4171 } else if (static_res == Compile::SSC_always_false) {
4172 // Don't use intrinsic, have to throw ClassCastException.
4173 // If the reference is null, the non-intrinsic bytecode will
4174 // be optimized appropriately.
4175 return false;
4176 }
4177 }
4178 }
4179
4180 // Bailout intrinsic and do normal inlining if exception path is frequent.
4181 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4182 return false;
4183 }
4184
4185 // Generate dynamic checks.
4186 // Class.cast() is java implementation of _checkcast bytecode.
4187 // Do checkcast (Parse::do_checkcast()) optimizations here.
4188
4189 mirror = null_check(mirror);
4190 // If mirror is dead, only null-path is taken.
4191 if (stopped()) {
4192 return true;
4193 }
4194
4195 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4196 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4197 RegionNode* region = new RegionNode(PATH_LIMIT);
4198 record_for_igvn(region);
4199
4200 // Now load the mirror's klass metaobject, and null-check it.
4201 // If kls is null, we have a primitive mirror and
4202 // nothing is an instance of a primitive type.
4203 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4204
4205 Node* res = top();
4206 if (!stopped()) {
4207 Node* bad_type_ctrl = top();
4208 // Do checkcast optimizations.
4209 res = gen_checkcast(obj, kls, &bad_type_ctrl);
4210 region->init_req(_bad_type_path, bad_type_ctrl);
4211 }
4212 if (region->in(_prim_path) != top() ||
4213 region->in(_bad_type_path) != top()) {
4214 // Let Interpreter throw ClassCastException.
4215 PreserveJVMState pjvms(this);
4216 set_control(_gvn.transform(region));
4217 uncommon_trap(Deoptimization::Reason_intrinsic,
4218 Deoptimization::Action_maybe_recompile);
4219 }
4220 if (!stopped()) {
4221 set_result(res);
4222 }
4223 return true;
4224 }
4225
4226
4227 //--------------------------inline_native_subtype_check------------------------
4228 // This intrinsic takes the JNI calls out of the heart of
4229 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4230 bool LibraryCallKit::inline_native_subtype_check() {
4231 // Pull both arguments off the stack.
4232 Node* args[2]; // two java.lang.Class mirrors: superc, subc
4233 args[0] = argument(0);
4234 args[1] = argument(1);
4235 Node* klasses[2]; // corresponding Klasses: superk, subk
4236 klasses[0] = klasses[1] = top();
4237
4238 enum {
4239 // A full decision tree on {superc is prim, subc is prim}:
4240 _prim_0_path = 1, // {P,N} => false
4241 // {P,P} & superc!=subc => false
4242 _prim_same_path, // {P,P} & superc==subc => true
4243 _prim_1_path, // {N,P} => false
4244 _ref_subtype_path, // {N,N} & subtype check wins => true
4245 _both_ref_path, // {N,N} & subtype check loses => false
4246 PATH_LIMIT
4247 };
4248
4249 RegionNode* region = new RegionNode(PATH_LIMIT);
4250 Node* phi = new PhiNode(region, TypeInt::BOOL);
4251 record_for_igvn(region);
4252
4253 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
4254 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4255 int class_klass_offset = java_lang_Class::klass_offset();
4256
4257 // First null-check both mirrors and load each mirror's klass metaobject.
4258 int which_arg;
4259 for (which_arg = 0; which_arg <= 1; which_arg++) {
4260 Node* arg = args[which_arg];
4261 arg = null_check(arg);
4262 if (stopped()) break;
4263 args[which_arg] = arg;
4264
4265 Node* p = basic_plus_adr(arg, class_klass_offset);
4266 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4267 klasses[which_arg] = _gvn.transform(kls);
4268 }
4269
4270 // Having loaded both klasses, test each for null.
4271 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4272 for (which_arg = 0; which_arg <= 1; which_arg++) {
4273 Node* kls = klasses[which_arg];
4274 Node* null_ctl = top();
4275 kls = null_check_oop(kls, &null_ctl, never_see_null);
4276 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4277 region->init_req(prim_path, null_ctl);
4278 if (stopped()) break;
4279 klasses[which_arg] = kls;
4280 }
4281
4282 if (!stopped()) {
4283 // now we have two reference types, in klasses[0..1]
4284 Node* subk = klasses[1]; // the argument to isAssignableFrom
4285 Node* superk = klasses[0]; // the receiver
4286 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4287 // now we have a successful reference subtype check
4288 region->set_req(_ref_subtype_path, control());
4289 }
4290
4291 // If both operands are primitive (both klasses null), then
4292 // we must return true when they are identical primitives.
4293 // It is convenient to test this after the first null klass check.
4294 set_control(region->in(_prim_0_path)); // go back to first null check
4295 if (!stopped()) {
4296 // Since superc is primitive, make a guard for the superc==subc case.
4297 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4298 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4299 generate_guard(bol_eq, region, PROB_FAIR);
4300 if (region->req() == PATH_LIMIT+1) {
4301 // A guard was added. If the added guard is taken, superc==subc.
4302 region->swap_edges(PATH_LIMIT, _prim_same_path);
4303 region->del_req(PATH_LIMIT);
4304 }
4305 region->set_req(_prim_0_path, control()); // Not equal after all.
4306 }
4307
4308 // these are the only paths that produce 'true':
4309 phi->set_req(_prim_same_path, intcon(1));
4310 phi->set_req(_ref_subtype_path, intcon(1));
4311
4312 // pull together the cases:
4313 assert(region->req() == PATH_LIMIT, "sane region");
4314 for (uint i = 1; i < region->req(); i++) {
4315 Node* ctl = region->in(i);
4316 if (ctl == nullptr || ctl == top()) {
4317 region->set_req(i, top());
4318 phi ->set_req(i, top());
4319 } else if (phi->in(i) == nullptr) {
4320 phi->set_req(i, intcon(0)); // all other paths produce 'false'
4321 }
4322 }
4323
4324 set_control(_gvn.transform(region));
4325 set_result(_gvn.transform(phi));
4326 return true;
4327 }
4328
4329 //---------------------generate_array_guard_common------------------------
4330 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4331 bool obj_array, bool not_array, Node** obj) {
4332
4333 if (stopped()) {
4334 return nullptr;
4335 }
4336
4337 // If obj_array/non_array==false/false:
4338 // Branch around if the given klass is in fact an array (either obj or prim).
4339 // If obj_array/non_array==false/true:
4340 // Branch around if the given klass is not an array klass of any kind.
4341 // If obj_array/non_array==true/true:
4342 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4343 // If obj_array/non_array==true/false:
4344 // Branch around if the kls is an oop array (Object[] or subtype)
4345 //
4346 // Like generate_guard, adds a new path onto the region.
4347 jint layout_con = 0;
4348 Node* layout_val = get_layout_helper(kls, layout_con);
4349 if (layout_val == nullptr) {
4350 bool query = (obj_array
4351 ? Klass::layout_helper_is_objArray(layout_con)
4352 : Klass::layout_helper_is_array(layout_con));
4353 if (query == not_array) {
4354 return nullptr; // never a branch
4355 } else { // always a branch
4356 Node* always_branch = control();
4357 if (region != nullptr)
4358 region->add_req(always_branch);
4359 set_control(top());
4360 return always_branch;
4361 }
4362 }
4363 // Now test the correct condition.
4364 jint nval = (obj_array
4365 ? (jint)(Klass::_lh_array_tag_type_value
4366 << Klass::_lh_array_tag_shift)
4367 : Klass::_lh_neutral_value);
4368 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4369 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
4370 // invert the test if we are looking for a non-array
4371 if (not_array) btest = BoolTest(btest).negate();
4372 Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4373 Node* ctrl = generate_fair_guard(bol, region);
4374 Node* is_array_ctrl = not_array ? control() : ctrl;
4375 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4376 // Keep track of the fact that 'obj' is an array to prevent
4377 // array specific accesses from floating above the guard.
4378 *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4379 }
4380 return ctrl;
4381 }
4382
4383
4384 //-----------------------inline_native_newArray--------------------------
4385 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4386 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4387 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4388 Node* mirror;
4389 Node* count_val;
4390 if (uninitialized) {
4391 null_check_receiver();
4392 mirror = argument(1);
4393 count_val = argument(2);
4394 } else {
4395 mirror = argument(0);
4396 count_val = argument(1);
4397 }
4398
4399 mirror = null_check(mirror);
4400 // If mirror or obj is dead, only null-path is taken.
4401 if (stopped()) return true;
4402
4403 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4404 RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4405 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4406 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO);
4407 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4408
4409 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4410 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4411 result_reg, _slow_path);
4412 Node* normal_ctl = control();
4413 Node* no_array_ctl = result_reg->in(_slow_path);
4414
4415 // Generate code for the slow case. We make a call to newArray().
4416 set_control(no_array_ctl);
4417 if (!stopped()) {
4418 // Either the input type is void.class, or else the
4419 // array klass has not yet been cached. Either the
4420 // ensuing call will throw an exception, or else it
4421 // will cache the array klass for next time.
4422 PreserveJVMState pjvms(this);
4423 CallJavaNode* slow_call = nullptr;
4424 if (uninitialized) {
4425 // Generate optimized virtual call (holder class 'Unsafe' is final)
4426 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4427 } else {
4428 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4429 }
4430 Node* slow_result = set_results_for_java_call(slow_call);
4431 // this->control() comes from set_results_for_java_call
4432 result_reg->set_req(_slow_path, control());
4433 result_val->set_req(_slow_path, slow_result);
4434 result_io ->set_req(_slow_path, i_o());
4435 result_mem->set_req(_slow_path, reset_memory());
4436 }
4437
4438 set_control(normal_ctl);
4439 if (!stopped()) {
4440 // Normal case: The array type has been cached in the java.lang.Class.
4441 // The following call works fine even if the array type is polymorphic.
4442 // It could be a dynamic mix of int[], boolean[], Object[], etc.
4443 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push
4444 result_reg->init_req(_normal_path, control());
4445 result_val->init_req(_normal_path, obj);
4446 result_io ->init_req(_normal_path, i_o());
4447 result_mem->init_req(_normal_path, reset_memory());
4448
4449 if (uninitialized) {
4450 // Mark the allocation so that zeroing is skipped
4451 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4452 alloc->maybe_set_complete(&_gvn);
4453 }
4454 }
4455
4456 // Return the combined state.
4457 set_i_o( _gvn.transform(result_io) );
4458 set_all_memory( _gvn.transform(result_mem));
4459
4460 C->set_has_split_ifs(true); // Has chance for split-if optimization
4461 set_result(result_reg, result_val);
4462 return true;
4463 }
4464
4465 //----------------------inline_native_getLength--------------------------
4466 // public static native int java.lang.reflect.Array.getLength(Object array);
4467 bool LibraryCallKit::inline_native_getLength() {
4468 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
4469
4470 Node* array = null_check(argument(0));
4471 // If array is dead, only null-path is taken.
4472 if (stopped()) return true;
4473
4474 // Deoptimize if it is a non-array.
4475 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array);
4476
4477 if (non_array != nullptr) {
4478 PreserveJVMState pjvms(this);
4479 set_control(non_array);
4480 uncommon_trap(Deoptimization::Reason_intrinsic,
4481 Deoptimization::Action_maybe_recompile);
4482 }
4483
4484 // If control is dead, only non-array-path is taken.
4485 if (stopped()) return true;
4486
4487 // The works fine even if the array type is polymorphic.
4488 // It could be a dynamic mix of int[], boolean[], Object[], etc.
4489 Node* result = load_array_length(array);
4490
4491 C->set_has_split_ifs(true); // Has chance for split-if optimization
4492 set_result(result);
4493 return true;
4494 }
4495
4496 //------------------------inline_array_copyOf----------------------------
4497 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType);
4498 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType);
4499 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4500 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
4501
4502 // Get the arguments.
4503 Node* original = argument(0);
4504 Node* start = is_copyOfRange? argument(1): intcon(0);
4505 Node* end = is_copyOfRange? argument(2): argument(1);
4506 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4507
4508 Node* newcopy = nullptr;
4509
4510 // Set the original stack and the reexecute bit for the interpreter to reexecute
4511 // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4512 { PreserveReexecuteState preexecs(this);
4513 jvms()->set_should_reexecute(true);
4514
4515 array_type_mirror = null_check(array_type_mirror);
4516 original = null_check(original);
4517
4518 // Check if a null path was taken unconditionally.
4519 if (stopped()) return true;
4520
4521 Node* orig_length = load_array_length(original);
4522
4523 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4524 klass_node = null_check(klass_node);
4525
4526 RegionNode* bailout = new RegionNode(1);
4527 record_for_igvn(bailout);
4528
4529 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4530 // Bail out if that is so.
4531 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4532 if (not_objArray != nullptr) {
4533 // Improve the klass node's type from the new optimistic assumption:
4534 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4535 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4536 Node* cast = new CastPPNode(control(), klass_node, akls);
4537 klass_node = _gvn.transform(cast);
4538 }
4539
4540 // Bail out if either start or end is negative.
4541 generate_negative_guard(start, bailout, &start);
4542 generate_negative_guard(end, bailout, &end);
4543
4544 Node* length = end;
4545 if (_gvn.type(start) != TypeInt::ZERO) {
4546 length = _gvn.transform(new SubINode(end, start));
4547 }
4548
4549 // Bail out if length is negative (i.e., if start > end).
4550 // Without this the new_array would throw
4551 // NegativeArraySizeException but IllegalArgumentException is what
4552 // should be thrown
4553 generate_negative_guard(length, bailout, &length);
4554
4555 // Bail out if start is larger than the original length
4556 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4557 generate_negative_guard(orig_tail, bailout, &orig_tail);
4558
4559 if (bailout->req() > 1) {
4560 PreserveJVMState pjvms(this);
4561 set_control(_gvn.transform(bailout));
4562 uncommon_trap(Deoptimization::Reason_intrinsic,
4563 Deoptimization::Action_maybe_recompile);
4564 }
4565
4566 if (!stopped()) {
4567 // How many elements will we copy from the original?
4568 // The answer is MinI(orig_tail, length).
4569 Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4570
4571 // Generate a direct call to the right arraycopy function(s).
4572 // We know the copy is disjoint but we might not know if the
4573 // oop stores need checking.
4574 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
4575 // This will fail a store-check if x contains any non-nulls.
4576
4577 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4578 // loads/stores but it is legal only if we're sure the
4579 // Arrays.copyOf would succeed. So we need all input arguments
4580 // to the copyOf to be validated, including that the copy to the
4581 // new array won't trigger an ArrayStoreException. That subtype
4582 // check can be optimized if we know something on the type of
4583 // the input array from type speculation.
4584 if (_gvn.type(klass_node)->singleton()) {
4585 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4586 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4587
4588 int test = C->static_subtype_check(superk, subk);
4589 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4590 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4591 if (t_original->speculative_type() != nullptr) {
4592 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4593 }
4594 }
4595 }
4596
4597 bool validated = false;
4598 // Reason_class_check rather than Reason_intrinsic because we
4599 // want to intrinsify even if this traps.
4600 if (!too_many_traps(Deoptimization::Reason_class_check)) {
4601 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4602
4603 if (not_subtype_ctrl != top()) {
4604 PreserveJVMState pjvms(this);
4605 set_control(not_subtype_ctrl);
4606 uncommon_trap(Deoptimization::Reason_class_check,
4607 Deoptimization::Action_make_not_entrant);
4608 assert(stopped(), "Should be stopped");
4609 }
4610 validated = true;
4611 }
4612
4613 if (!stopped()) {
4614 newcopy = new_array(klass_node, length, 0); // no arguments to push
4615
4616 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4617 load_object_klass(original), klass_node);
4618 if (!is_copyOfRange) {
4619 ac->set_copyof(validated);
4620 } else {
4621 ac->set_copyofrange(validated);
4622 }
4623 Node* n = _gvn.transform(ac);
4624 if (n == ac) {
4625 ac->connect_outputs(this);
4626 } else {
4627 assert(validated, "shouldn't transform if all arguments not validated");
4628 set_all_memory(n);
4629 }
4630 }
4631 }
4632 } // original reexecute is set back here
4633
4634 C->set_has_split_ifs(true); // Has chance for split-if optimization
4635 if (!stopped()) {
4636 set_result(newcopy);
4637 }
4638 return true;
4639 }
4640
4641
4642 //----------------------generate_virtual_guard---------------------------
4643 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
4644 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4645 RegionNode* slow_region) {
4646 ciMethod* method = callee();
4647 int vtable_index = method->vtable_index();
4648 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4649 "bad index %d", vtable_index);
4650 // Get the Method* out of the appropriate vtable entry.
4651 int entry_offset = in_bytes(Klass::vtable_start_offset()) +
4652 vtable_index*vtableEntry::size_in_bytes() +
4653 in_bytes(vtableEntry::method_offset());
4654 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
4655 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4656
4657 // Compare the target method with the expected method (e.g., Object.hashCode).
4658 const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4659
4660 Node* native_call = makecon(native_call_addr);
4661 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call));
4662 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4663
4664 return generate_slow_guard(test_native, slow_region);
4665 }
4666
4667 //-----------------------generate_method_call----------------------------
4668 // Use generate_method_call to make a slow-call to the real
4669 // method if the fast path fails. An alternative would be to
4670 // use a stub like OptoRuntime::slow_arraycopy_Java.
4671 // This only works for expanding the current library call,
4672 // not another intrinsic. (E.g., don't use this for making an
4673 // arraycopy call inside of the copyOf intrinsic.)
4674 CallJavaNode*
4675 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4676 // When compiling the intrinsic method itself, do not use this technique.
4677 guarantee(callee() != C->method(), "cannot make slow-call to self");
4678
4679 ciMethod* method = callee();
4680 // ensure the JVMS we have will be correct for this call
4681 guarantee(method_id == method->intrinsic_id(), "must match");
4682
4683 const TypeFunc* tf = TypeFunc::make(method);
4684 if (res_not_null) {
4685 assert(tf->return_type() == T_OBJECT, "");
4686 const TypeTuple* range = tf->range();
4687 const Type** fields = TypeTuple::fields(range->cnt());
4688 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4689 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4690 tf = TypeFunc::make(tf->domain(), new_range);
4691 }
4692 CallJavaNode* slow_call;
4693 if (is_static) {
4694 assert(!is_virtual, "");
4695 slow_call = new CallStaticJavaNode(C, tf,
4696 SharedRuntime::get_resolve_static_call_stub(), method);
4697 } else if (is_virtual) {
4698 assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4699 int vtable_index = Method::invalid_vtable_index;
4700 if (UseInlineCaches) {
4701 // Suppress the vtable call
4702 } else {
4703 // hashCode and clone are not a miranda methods,
4704 // so the vtable index is fixed.
4705 // No need to use the linkResolver to get it.
4706 vtable_index = method->vtable_index();
4707 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4708 "bad index %d", vtable_index);
4709 }
4710 slow_call = new CallDynamicJavaNode(tf,
4711 SharedRuntime::get_resolve_virtual_call_stub(),
4712 method, vtable_index);
4713 } else { // neither virtual nor static: opt_virtual
4714 assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4715 slow_call = new CallStaticJavaNode(C, tf,
4716 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
4717 slow_call->set_optimized_virtual(true);
4718 }
4719 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
4720 // To be able to issue a direct call (optimized virtual or virtual)
4721 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
4722 // about the method being invoked should be attached to the call site to
4723 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
4724 slow_call->set_override_symbolic_info(true);
4725 }
4726 set_arguments_for_java_call(slow_call);
4727 set_edges_for_java_call(slow_call);
4728 return slow_call;
4729 }
4730
4731
4732 /**
4733 * Build special case code for calls to hashCode on an object. This call may
4734 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4735 * slightly different code.
4736 */
4737 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4738 assert(is_static == callee()->is_static(), "correct intrinsic selection");
4739 assert(!(is_virtual && is_static), "either virtual, special, or static");
4740
4741 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4742
4743 RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4744 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT);
4745 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO);
4746 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4747 Node* obj = nullptr;
4748 if (!is_static) {
4749 // Check for hashing null object
4750 obj = null_check_receiver();
4751 if (stopped()) return true; // unconditionally null
4752 result_reg->init_req(_null_path, top());
4753 result_val->init_req(_null_path, top());
4754 } else {
4755 // Do a null check, and return zero if null.
4756 // System.identityHashCode(null) == 0
4757 obj = argument(0);
4758 Node* null_ctl = top();
4759 obj = null_check_oop(obj, &null_ctl);
4760 result_reg->init_req(_null_path, null_ctl);
4761 result_val->init_req(_null_path, _gvn.intcon(0));
4762 }
4763
4764 // Unconditionally null? Then return right away.
4765 if (stopped()) {
4766 set_control( result_reg->in(_null_path));
4767 if (!stopped())
4768 set_result(result_val->in(_null_path));
4769 return true;
4770 }
4771
4772 // We only go to the fast case code if we pass a number of guards. The
4773 // paths which do not pass are accumulated in the slow_region.
4774 RegionNode* slow_region = new RegionNode(1);
4775 record_for_igvn(slow_region);
4776
4777 // If this is a virtual call, we generate a funny guard. We pull out
4778 // the vtable entry corresponding to hashCode() from the target object.
4779 // If the target method which we are calling happens to be the native
4780 // Object hashCode() method, we pass the guard. We do not need this
4781 // guard for non-virtual calls -- the caller is known to be the native
4782 // Object hashCode().
4783 if (is_virtual) {
4784 // After null check, get the object's klass.
4785 Node* obj_klass = load_object_klass(obj);
4786 generate_virtual_guard(obj_klass, slow_region);
4787 }
4788
4789 // Get the header out of the object, use LoadMarkNode when available
4790 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4791 // The control of the load must be null. Otherwise, the load can move before
4792 // the null check after castPP removal.
4793 Node* no_ctrl = nullptr;
4794 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4795
4796 if (!UseObjectMonitorTable) {
4797 // Test the header to see if it is safe to read w.r.t. locking.
4798 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place);
4799 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4800 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value);
4801 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4802 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4803
4804 generate_slow_guard(test_monitor, slow_region);
4805 }
4806
4807 // Get the hash value and check to see that it has been properly assigned.
4808 // We depend on hash_mask being at most 32 bits and avoid the use of
4809 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4810 // vm: see markWord.hpp.
4811 Node *hash_mask = _gvn.intcon(markWord::hash_mask);
4812 Node *hash_shift = _gvn.intcon(markWord::hash_shift);
4813 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4814 // This hack lets the hash bits live anywhere in the mark object now, as long
4815 // as the shift drops the relevant bits into the low 32 bits. Note that
4816 // Java spec says that HashCode is an int so there's no point in capturing
4817 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4818 hshifted_header = ConvX2I(hshifted_header);
4819 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4820
4821 Node *no_hash_val = _gvn.intcon(markWord::no_hash);
4822 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4823 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4824
4825 generate_slow_guard(test_assigned, slow_region);
4826
4827 Node* init_mem = reset_memory();
4828 // fill in the rest of the null path:
4829 result_io ->init_req(_null_path, i_o());
4830 result_mem->init_req(_null_path, init_mem);
4831
4832 result_val->init_req(_fast_path, hash_val);
4833 result_reg->init_req(_fast_path, control());
4834 result_io ->init_req(_fast_path, i_o());
4835 result_mem->init_req(_fast_path, init_mem);
4836
4837 // Generate code for the slow case. We make a call to hashCode().
4838 set_control(_gvn.transform(slow_region));
4839 if (!stopped()) {
4840 // No need for PreserveJVMState, because we're using up the present state.
4841 set_all_memory(init_mem);
4842 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4843 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
4844 Node* slow_result = set_results_for_java_call(slow_call);
4845 // this->control() comes from set_results_for_java_call
4846 result_reg->init_req(_slow_path, control());
4847 result_val->init_req(_slow_path, slow_result);
4848 result_io ->set_req(_slow_path, i_o());
4849 result_mem ->set_req(_slow_path, reset_memory());
4850 }
4851
4852 // Return the combined state.
4853 set_i_o( _gvn.transform(result_io) );
4854 set_all_memory( _gvn.transform(result_mem));
4855
4856 set_result(result_reg, result_val);
4857 return true;
4858 }
4859
4860 //---------------------------inline_native_getClass----------------------------
4861 // public final native Class<?> java.lang.Object.getClass();
4862 //
4863 // Build special case code for calls to getClass on an object.
4864 bool LibraryCallKit::inline_native_getClass() {
4865 Node* obj = null_check_receiver();
4866 if (stopped()) return true;
4867 set_result(load_mirror_from_klass(load_object_klass(obj)));
4868 return true;
4869 }
4870
4871 //-----------------inline_native_Reflection_getCallerClass---------------------
4872 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4873 //
4874 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4875 //
4876 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4877 // in that it must skip particular security frames and checks for
4878 // caller sensitive methods.
4879 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4880 #ifndef PRODUCT
4881 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4882 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4883 }
4884 #endif
4885
4886 if (!jvms()->has_method()) {
4887 #ifndef PRODUCT
4888 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4889 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
4890 }
4891 #endif
4892 return false;
4893 }
4894
4895 // Walk back up the JVM state to find the caller at the required
4896 // depth.
4897 JVMState* caller_jvms = jvms();
4898
4899 // Cf. JVM_GetCallerClass
4900 // NOTE: Start the loop at depth 1 because the current JVM state does
4901 // not include the Reflection.getCallerClass() frame.
4902 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
4903 ciMethod* m = caller_jvms->method();
4904 switch (n) {
4905 case 0:
4906 fatal("current JVM state does not include the Reflection.getCallerClass frame");
4907 break;
4908 case 1:
4909 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4910 if (!m->caller_sensitive()) {
4911 #ifndef PRODUCT
4912 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4913 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n);
4914 }
4915 #endif
4916 return false; // bail-out; let JVM_GetCallerClass do the work
4917 }
4918 break;
4919 default:
4920 if (!m->is_ignored_by_security_stack_walk()) {
4921 // We have reached the desired frame; return the holder class.
4922 // Acquire method holder as java.lang.Class and push as constant.
4923 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4924 ciInstance* caller_mirror = caller_klass->java_mirror();
4925 set_result(makecon(TypeInstPtr::make(caller_mirror)));
4926
4927 #ifndef PRODUCT
4928 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4929 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4930 tty->print_cr(" JVM state at this point:");
4931 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4932 ciMethod* m = jvms()->of_depth(i)->method();
4933 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4934 }
4935 }
4936 #endif
4937 return true;
4938 }
4939 break;
4940 }
4941 }
4942
4943 #ifndef PRODUCT
4944 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4945 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4946 tty->print_cr(" JVM state at this point:");
4947 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4948 ciMethod* m = jvms()->of_depth(i)->method();
4949 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4950 }
4951 }
4952 #endif
4953
4954 return false; // bail-out; let JVM_GetCallerClass do the work
4955 }
4956
4957 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4958 Node* arg = argument(0);
4959 Node* result = nullptr;
4960
4961 switch (id) {
4962 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break;
4963 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break;
4964 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break;
4965 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break;
4966 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break;
4967 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break;
4968
4969 case vmIntrinsics::_doubleToLongBits: {
4970 // two paths (plus control) merge in a wood
4971 RegionNode *r = new RegionNode(3);
4972 Node *phi = new PhiNode(r, TypeLong::LONG);
4973
4974 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4975 // Build the boolean node
4976 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4977
4978 // Branch either way.
4979 // NaN case is less traveled, which makes all the difference.
4980 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4981 Node *opt_isnan = _gvn.transform(ifisnan);
4982 assert( opt_isnan->is_If(), "Expect an IfNode");
4983 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4984 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4985
4986 set_control(iftrue);
4987
4988 static const jlong nan_bits = CONST64(0x7ff8000000000000);
4989 Node *slow_result = longcon(nan_bits); // return NaN
4990 phi->init_req(1, _gvn.transform( slow_result ));
4991 r->init_req(1, iftrue);
4992
4993 // Else fall through
4994 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4995 set_control(iffalse);
4996
4997 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4998 r->init_req(2, iffalse);
4999
5000 // Post merge
5001 set_control(_gvn.transform(r));
5002 record_for_igvn(r);
5003
5004 C->set_has_split_ifs(true); // Has chance for split-if optimization
5005 result = phi;
5006 assert(result->bottom_type()->isa_long(), "must be");
5007 break;
5008 }
5009
5010 case vmIntrinsics::_floatToIntBits: {
5011 // two paths (plus control) merge in a wood
5012 RegionNode *r = new RegionNode(3);
5013 Node *phi = new PhiNode(r, TypeInt::INT);
5014
5015 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
5016 // Build the boolean node
5017 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
5018
5019 // Branch either way.
5020 // NaN case is less traveled, which makes all the difference.
5021 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
5022 Node *opt_isnan = _gvn.transform(ifisnan);
5023 assert( opt_isnan->is_If(), "Expect an IfNode");
5024 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
5025 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
5026
5027 set_control(iftrue);
5028
5029 static const jint nan_bits = 0x7fc00000;
5030 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
5031 phi->init_req(1, _gvn.transform( slow_result ));
5032 r->init_req(1, iftrue);
5033
5034 // Else fall through
5035 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
5036 set_control(iffalse);
5037
5038 phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
5039 r->init_req(2, iffalse);
5040
5041 // Post merge
5042 set_control(_gvn.transform(r));
5043 record_for_igvn(r);
5044
5045 C->set_has_split_ifs(true); // Has chance for split-if optimization
5046 result = phi;
5047 assert(result->bottom_type()->isa_int(), "must be");
5048 break;
5049 }
5050
5051 default:
5052 fatal_unexpected_iid(id);
5053 break;
5054 }
5055 set_result(_gvn.transform(result));
5056 return true;
5057 }
5058
5059 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
5060 Node* arg = argument(0);
5061 Node* result = nullptr;
5062
5063 switch (id) {
5064 case vmIntrinsics::_floatIsInfinite:
5065 result = new IsInfiniteFNode(arg);
5066 break;
5067 case vmIntrinsics::_floatIsFinite:
5068 result = new IsFiniteFNode(arg);
5069 break;
5070 case vmIntrinsics::_doubleIsInfinite:
5071 result = new IsInfiniteDNode(arg);
5072 break;
5073 case vmIntrinsics::_doubleIsFinite:
5074 result = new IsFiniteDNode(arg);
5075 break;
5076 default:
5077 fatal_unexpected_iid(id);
5078 break;
5079 }
5080 set_result(_gvn.transform(result));
5081 return true;
5082 }
5083
5084 //----------------------inline_unsafe_copyMemory-------------------------
5085 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
5086
5087 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
5088 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
5089 const Type* base_t = gvn.type(base);
5090
5091 bool in_native = (base_t == TypePtr::NULL_PTR);
5092 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t);
5093 bool is_mixed = !in_heap && !in_native;
5094
5095 if (is_mixed) {
5096 return true; // mixed accesses can touch both on-heap and off-heap memory
5097 }
5098 if (in_heap) {
5099 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
5100 if (!is_prim_array) {
5101 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
5102 // there's not enough type information available to determine proper memory slice for it.
5103 return true;
5104 }
5105 }
5106 return false;
5107 }
5108
5109 bool LibraryCallKit::inline_unsafe_copyMemory() {
5110 if (callee()->is_static()) return false; // caller must have the capability!
5111 null_check_receiver(); // null-check receiver
5112 if (stopped()) return true;
5113
5114 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
5115
5116 Node* src_base = argument(1); // type: oop
5117 Node* src_off = ConvL2X(argument(2)); // type: long
5118 Node* dst_base = argument(4); // type: oop
5119 Node* dst_off = ConvL2X(argument(5)); // type: long
5120 Node* size = ConvL2X(argument(7)); // type: long
5121
5122 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5123 "fieldOffset must be byte-scaled");
5124
5125 Node* src_addr = make_unsafe_address(src_base, src_off);
5126 Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5127
5128 Node* thread = _gvn.transform(new ThreadLocalNode());
5129 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5130 BasicType doing_unsafe_access_bt = T_BYTE;
5131 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5132
5133 // update volatile field
5134 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5135
5136 int flags = RC_LEAF | RC_NO_FP;
5137
5138 const TypePtr* dst_type = TypePtr::BOTTOM;
5139
5140 // Adjust memory effects of the runtime call based on input values.
5141 if (!has_wide_mem(_gvn, src_addr, src_base) &&
5142 !has_wide_mem(_gvn, dst_addr, dst_base)) {
5143 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5144
5145 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
5146 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
5147 flags |= RC_NARROW_MEM; // narrow in memory
5148 }
5149 }
5150
5151 // Call it. Note that the length argument is not scaled.
5152 make_runtime_call(flags,
5153 OptoRuntime::fast_arraycopy_Type(),
5154 StubRoutines::unsafe_arraycopy(),
5155 "unsafe_arraycopy",
5156 dst_type,
5157 src_addr, dst_addr, size XTOP);
5158
5159 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5160
5161 return true;
5162 }
5163
5164 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value);
5165 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value'
5166 bool LibraryCallKit::inline_unsafe_setMemory() {
5167 if (callee()->is_static()) return false; // caller must have the capability!
5168 null_check_receiver(); // null-check receiver
5169 if (stopped()) return true;
5170
5171 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
5172
5173 Node* dst_base = argument(1); // type: oop
5174 Node* dst_off = ConvL2X(argument(2)); // type: long
5175 Node* size = ConvL2X(argument(4)); // type: long
5176 Node* byte = argument(6); // type: byte
5177
5178 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5179 "fieldOffset must be byte-scaled");
5180
5181 Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5182
5183 Node* thread = _gvn.transform(new ThreadLocalNode());
5184 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5185 BasicType doing_unsafe_access_bt = T_BYTE;
5186 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5187
5188 // update volatile field
5189 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5190
5191 int flags = RC_LEAF | RC_NO_FP;
5192
5193 const TypePtr* dst_type = TypePtr::BOTTOM;
5194
5195 // Adjust memory effects of the runtime call based on input values.
5196 if (!has_wide_mem(_gvn, dst_addr, dst_base)) {
5197 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5198
5199 flags |= RC_NARROW_MEM; // narrow in memory
5200 }
5201
5202 // Call it. Note that the length argument is not scaled.
5203 make_runtime_call(flags,
5204 OptoRuntime::unsafe_setmemory_Type(),
5205 StubRoutines::unsafe_setmemory(),
5206 "unsafe_setmemory",
5207 dst_type,
5208 dst_addr, size XTOP, byte);
5209
5210 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5211
5212 return true;
5213 }
5214
5215 #undef XTOP
5216
5217 //------------------------clone_coping-----------------------------------
5218 // Helper function for inline_native_clone.
5219 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5220 assert(obj_size != nullptr, "");
5221 Node* raw_obj = alloc_obj->in(1);
5222 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5223
5224 AllocateNode* alloc = nullptr;
5225 if (ReduceBulkZeroing &&
5226 // If we are implementing an array clone without knowing its source type
5227 // (can happen when compiling the array-guarded branch of a reflective
5228 // Object.clone() invocation), initialize the array within the allocation.
5229 // This is needed because some GCs (e.g. ZGC) might fall back in this case
5230 // to a runtime clone call that assumes fully initialized source arrays.
5231 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5232 // We will be completely responsible for initializing this object -
5233 // mark Initialize node as complete.
5234 alloc = AllocateNode::Ideal_allocation(alloc_obj);
5235 // The object was just allocated - there should be no any stores!
5236 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5237 // Mark as complete_with_arraycopy so that on AllocateNode
5238 // expansion, we know this AllocateNode is initialized by an array
5239 // copy and a StoreStore barrier exists after the array copy.
5240 alloc->initialization()->set_complete_with_arraycopy();
5241 }
5242
5243 Node* size = _gvn.transform(obj_size);
5244 access_clone(obj, alloc_obj, size, is_array);
5245
5246 // Do not let reads from the cloned object float above the arraycopy.
5247 if (alloc != nullptr) {
5248 // Do not let stores that initialize this object be reordered with
5249 // a subsequent store that would make this object accessible by
5250 // other threads.
5251 // Record what AllocateNode this StoreStore protects so that
5252 // escape analysis can go from the MemBarStoreStoreNode to the
5253 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5254 // based on the escape status of the AllocateNode.
5255 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
5256 } else {
5257 insert_mem_bar(Op_MemBarCPUOrder);
5258 }
5259 }
5260
5261 //------------------------inline_native_clone----------------------------
5262 // protected native Object java.lang.Object.clone();
5263 //
5264 // Here are the simple edge cases:
5265 // null receiver => normal trap
5266 // virtual and clone was overridden => slow path to out-of-line clone
5267 // not cloneable or finalizer => slow path to out-of-line Object.clone
5268 //
5269 // The general case has two steps, allocation and copying.
5270 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5271 //
5272 // Copying also has two cases, oop arrays and everything else.
5273 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5274 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5275 //
5276 // These steps fold up nicely if and when the cloned object's klass
5277 // can be sharply typed as an object array, a type array, or an instance.
5278 //
5279 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5280 PhiNode* result_val;
5281
5282 // Set the reexecute bit for the interpreter to reexecute
5283 // the bytecode that invokes Object.clone if deoptimization happens.
5284 { PreserveReexecuteState preexecs(this);
5285 jvms()->set_should_reexecute(true);
5286
5287 Node* obj = null_check_receiver();
5288 if (stopped()) return true;
5289
5290 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5291
5292 // If we are going to clone an instance, we need its exact type to
5293 // know the number and types of fields to convert the clone to
5294 // loads/stores. Maybe a speculative type can help us.
5295 if (!obj_type->klass_is_exact() &&
5296 obj_type->speculative_type() != nullptr &&
5297 obj_type->speculative_type()->is_instance_klass()) {
5298 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5299 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5300 !spec_ik->has_injected_fields()) {
5301 if (!obj_type->isa_instptr() ||
5302 obj_type->is_instptr()->instance_klass()->has_subklass()) {
5303 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5304 }
5305 }
5306 }
5307
5308 // Conservatively insert a memory barrier on all memory slices.
5309 // Do not let writes into the original float below the clone.
5310 insert_mem_bar(Op_MemBarCPUOrder);
5311
5312 // paths into result_reg:
5313 enum {
5314 _slow_path = 1, // out-of-line call to clone method (virtual or not)
5315 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
5316 _array_path, // plain array allocation, plus arrayof_long_arraycopy
5317 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
5318 PATH_LIMIT
5319 };
5320 RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5321 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5322 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO);
5323 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5324 record_for_igvn(result_reg);
5325
5326 Node* obj_klass = load_object_klass(obj);
5327 Node* array_obj = obj;
5328 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5329 if (array_ctl != nullptr) {
5330 // It's an array.
5331 PreserveJVMState pjvms(this);
5332 set_control(array_ctl);
5333 Node* obj_length = load_array_length(array_obj);
5334 Node* array_size = nullptr; // Size of the array without object alignment padding.
5335 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5336
5337 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5338 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5339 // If it is an oop array, it requires very special treatment,
5340 // because gc barriers are required when accessing the array.
5341 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5342 if (is_obja != nullptr) {
5343 PreserveJVMState pjvms2(this);
5344 set_control(is_obja);
5345 // Generate a direct call to the right arraycopy function(s).
5346 // Clones are always tightly coupled.
5347 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5348 ac->set_clone_oop_array();
5349 Node* n = _gvn.transform(ac);
5350 assert(n == ac, "cannot disappear");
5351 ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5352
5353 result_reg->init_req(_objArray_path, control());
5354 result_val->init_req(_objArray_path, alloc_obj);
5355 result_i_o ->set_req(_objArray_path, i_o());
5356 result_mem ->set_req(_objArray_path, reset_memory());
5357 }
5358 }
5359 // Otherwise, there are no barriers to worry about.
5360 // (We can dispense with card marks if we know the allocation
5361 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
5362 // causes the non-eden paths to take compensating steps to
5363 // simulate a fresh allocation, so that no further
5364 // card marks are required in compiled code to initialize
5365 // the object.)
5366
5367 if (!stopped()) {
5368 copy_to_clone(array_obj, alloc_obj, array_size, true);
5369
5370 // Present the results of the copy.
5371 result_reg->init_req(_array_path, control());
5372 result_val->init_req(_array_path, alloc_obj);
5373 result_i_o ->set_req(_array_path, i_o());
5374 result_mem ->set_req(_array_path, reset_memory());
5375 }
5376 }
5377
5378 // We only go to the instance fast case code if we pass a number of guards.
5379 // The paths which do not pass are accumulated in the slow_region.
5380 RegionNode* slow_region = new RegionNode(1);
5381 record_for_igvn(slow_region);
5382 if (!stopped()) {
5383 // It's an instance (we did array above). Make the slow-path tests.
5384 // If this is a virtual call, we generate a funny guard. We grab
5385 // the vtable entry corresponding to clone() from the target object.
5386 // If the target method which we are calling happens to be the
5387 // Object clone() method, we pass the guard. We do not need this
5388 // guard for non-virtual calls; the caller is known to be the native
5389 // Object clone().
5390 if (is_virtual) {
5391 generate_virtual_guard(obj_klass, slow_region);
5392 }
5393
5394 // The object must be easily cloneable and must not have a finalizer.
5395 // Both of these conditions may be checked in a single test.
5396 // We could optimize the test further, but we don't care.
5397 generate_misc_flags_guard(obj_klass,
5398 // Test both conditions:
5399 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5400 // Must be cloneable but not finalizer:
5401 KlassFlags::_misc_is_cloneable_fast,
5402 slow_region);
5403 }
5404
5405 if (!stopped()) {
5406 // It's an instance, and it passed the slow-path tests.
5407 PreserveJVMState pjvms(this);
5408 Node* obj_size = nullptr; // Total object size, including object alignment padding.
5409 // Need to deoptimize on exception from allocation since Object.clone intrinsic
5410 // is reexecuted if deoptimization occurs and there could be problems when merging
5411 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
5412 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
5413
5414 copy_to_clone(obj, alloc_obj, obj_size, false);
5415
5416 // Present the results of the slow call.
5417 result_reg->init_req(_instance_path, control());
5418 result_val->init_req(_instance_path, alloc_obj);
5419 result_i_o ->set_req(_instance_path, i_o());
5420 result_mem ->set_req(_instance_path, reset_memory());
5421 }
5422
5423 // Generate code for the slow case. We make a call to clone().
5424 set_control(_gvn.transform(slow_region));
5425 if (!stopped()) {
5426 PreserveJVMState pjvms(this);
5427 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
5428 // We need to deoptimize on exception (see comment above)
5429 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
5430 // this->control() comes from set_results_for_java_call
5431 result_reg->init_req(_slow_path, control());
5432 result_val->init_req(_slow_path, slow_result);
5433 result_i_o ->set_req(_slow_path, i_o());
5434 result_mem ->set_req(_slow_path, reset_memory());
5435 }
5436
5437 // Return the combined state.
5438 set_control( _gvn.transform(result_reg));
5439 set_i_o( _gvn.transform(result_i_o));
5440 set_all_memory( _gvn.transform(result_mem));
5441 } // original reexecute is set back here
5442
5443 set_result(_gvn.transform(result_val));
5444 return true;
5445 }
5446
5447 // If we have a tightly coupled allocation, the arraycopy may take care
5448 // of the array initialization. If one of the guards we insert between
5449 // the allocation and the arraycopy causes a deoptimization, an
5450 // uninitialized array will escape the compiled method. To prevent that
5451 // we set the JVM state for uncommon traps between the allocation and
5452 // the arraycopy to the state before the allocation so, in case of
5453 // deoptimization, we'll reexecute the allocation and the
5454 // initialization.
5455 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
5456 if (alloc != nullptr) {
5457 ciMethod* trap_method = alloc->jvms()->method();
5458 int trap_bci = alloc->jvms()->bci();
5459
5460 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5461 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
5462 // Make sure there's no store between the allocation and the
5463 // arraycopy otherwise visible side effects could be rexecuted
5464 // in case of deoptimization and cause incorrect execution.
5465 bool no_interfering_store = true;
5466 Node* mem = alloc->in(TypeFunc::Memory);
5467 if (mem->is_MergeMem()) {
5468 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
5469 Node* n = mms.memory();
5470 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5471 assert(n->is_Store(), "what else?");
5472 no_interfering_store = false;
5473 break;
5474 }
5475 }
5476 } else {
5477 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
5478 Node* n = mms.memory();
5479 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5480 assert(n->is_Store(), "what else?");
5481 no_interfering_store = false;
5482 break;
5483 }
5484 }
5485 }
5486
5487 if (no_interfering_store) {
5488 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5489
5490 JVMState* saved_jvms = jvms();
5491 saved_reexecute_sp = _reexecute_sp;
5492
5493 set_jvms(sfpt->jvms());
5494 _reexecute_sp = jvms()->sp();
5495
5496 return saved_jvms;
5497 }
5498 }
5499 }
5500 return nullptr;
5501 }
5502
5503 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5504 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5505 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5506 JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5507 uint size = alloc->req();
5508 SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5509 old_jvms->set_map(sfpt);
5510 for (uint i = 0; i < size; i++) {
5511 sfpt->init_req(i, alloc->in(i));
5512 }
5513 // re-push array length for deoptimization
5514 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5515 old_jvms->set_sp(old_jvms->sp()+1);
5516 old_jvms->set_monoff(old_jvms->monoff()+1);
5517 old_jvms->set_scloff(old_jvms->scloff()+1);
5518 old_jvms->set_endoff(old_jvms->endoff()+1);
5519 old_jvms->set_should_reexecute(true);
5520
5521 sfpt->set_i_o(map()->i_o());
5522 sfpt->set_memory(map()->memory());
5523 sfpt->set_control(map()->control());
5524 return sfpt;
5525 }
5526
5527 // In case of a deoptimization, we restart execution at the
5528 // allocation, allocating a new array. We would leave an uninitialized
5529 // array in the heap that GCs wouldn't expect. Move the allocation
5530 // after the traps so we don't allocate the array if we
5531 // deoptimize. This is possible because tightly_coupled_allocation()
5532 // guarantees there's no observer of the allocated array at this point
5533 // and the control flow is simple enough.
5534 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5535 int saved_reexecute_sp, uint new_idx) {
5536 if (saved_jvms_before_guards != nullptr && !stopped()) {
5537 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5538
5539 assert(alloc != nullptr, "only with a tightly coupled allocation");
5540 // restore JVM state to the state at the arraycopy
5541 saved_jvms_before_guards->map()->set_control(map()->control());
5542 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5543 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5544 // If we've improved the types of some nodes (null check) while
5545 // emitting the guards, propagate them to the current state
5546 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5547 set_jvms(saved_jvms_before_guards);
5548 _reexecute_sp = saved_reexecute_sp;
5549
5550 // Remove the allocation from above the guards
5551 CallProjections callprojs;
5552 alloc->extract_projections(&callprojs, true);
5553 InitializeNode* init = alloc->initialization();
5554 Node* alloc_mem = alloc->in(TypeFunc::Memory);
5555 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5556 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5557
5558 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5559 // the allocation (i.e. is only valid if the allocation succeeds):
5560 // 1) replace CastIINode with AllocateArrayNode's length here
5561 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5562 //
5563 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5564 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5565 Node* init_control = init->proj_out(TypeFunc::Control);
5566 Node* alloc_length = alloc->Ideal_length();
5567 #ifdef ASSERT
5568 Node* prev_cast = nullptr;
5569 #endif
5570 for (uint i = 0; i < init_control->outcnt(); i++) {
5571 Node* init_out = init_control->raw_out(i);
5572 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5573 #ifdef ASSERT
5574 if (prev_cast == nullptr) {
5575 prev_cast = init_out;
5576 } else {
5577 if (prev_cast->cmp(*init_out) == false) {
5578 prev_cast->dump();
5579 init_out->dump();
5580 assert(false, "not equal CastIINode");
5581 }
5582 }
5583 #endif
5584 C->gvn_replace_by(init_out, alloc_length);
5585 }
5586 }
5587 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5588
5589 // move the allocation here (after the guards)
5590 _gvn.hash_delete(alloc);
5591 alloc->set_req(TypeFunc::Control, control());
5592 alloc->set_req(TypeFunc::I_O, i_o());
5593 Node *mem = reset_memory();
5594 set_all_memory(mem);
5595 alloc->set_req(TypeFunc::Memory, mem);
5596 set_control(init->proj_out_or_null(TypeFunc::Control));
5597 set_i_o(callprojs.fallthrough_ioproj);
5598
5599 // Update memory as done in GraphKit::set_output_for_allocation()
5600 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5601 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5602 if (ary_type->isa_aryptr() && length_type != nullptr) {
5603 ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5604 }
5605 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5606 int elemidx = C->get_alias_index(telemref);
5607 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5608 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5609
5610 Node* allocx = _gvn.transform(alloc);
5611 assert(allocx == alloc, "where has the allocation gone?");
5612 assert(dest->is_CheckCastPP(), "not an allocation result?");
5613
5614 _gvn.hash_delete(dest);
5615 dest->set_req(0, control());
5616 Node* destx = _gvn.transform(dest);
5617 assert(destx == dest, "where has the allocation result gone?");
5618
5619 array_ideal_length(alloc, ary_type, true);
5620 }
5621 }
5622
5623 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
5624 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
5625 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
5626 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
5627 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
5628 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
5629 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
5630 JVMState* saved_jvms_before_guards) {
5631 if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
5632 // There is at least one unrelated uncommon trap which needs to be replaced.
5633 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5634
5635 JVMState* saved_jvms = jvms();
5636 const int saved_reexecute_sp = _reexecute_sp;
5637 set_jvms(sfpt->jvms());
5638 _reexecute_sp = jvms()->sp();
5639
5640 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
5641
5642 // Restore state
5643 set_jvms(saved_jvms);
5644 _reexecute_sp = saved_reexecute_sp;
5645 }
5646 }
5647
5648 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
5649 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
5650 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
5651 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
5652 while (if_proj->is_IfProj()) {
5653 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
5654 if (uncommon_trap != nullptr) {
5655 create_new_uncommon_trap(uncommon_trap);
5656 }
5657 assert(if_proj->in(0)->is_If(), "must be If");
5658 if_proj = if_proj->in(0)->in(0);
5659 }
5660 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
5661 "must have reached control projection of init node");
5662 }
5663
5664 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
5665 const int trap_request = uncommon_trap_call->uncommon_trap_request();
5666 assert(trap_request != 0, "no valid UCT trap request");
5667 PreserveJVMState pjvms(this);
5668 set_control(uncommon_trap_call->in(0));
5669 uncommon_trap(Deoptimization::trap_request_reason(trap_request),
5670 Deoptimization::trap_request_action(trap_request));
5671 assert(stopped(), "Should be stopped");
5672 _gvn.hash_delete(uncommon_trap_call);
5673 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
5674 }
5675
5676 // Common checks for array sorting intrinsics arguments.
5677 // Returns `true` if checks passed.
5678 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) {
5679 // check address of the class
5680 if (elementType == nullptr || elementType->is_top()) {
5681 return false; // dead path
5682 }
5683 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
5684 if (elem_klass == nullptr) {
5685 return false; // dead path
5686 }
5687 // java_mirror_type() returns non-null for compile-time Class constants only
5688 ciType* elem_type = elem_klass->java_mirror_type();
5689 if (elem_type == nullptr) {
5690 return false;
5691 }
5692 bt = elem_type->basic_type();
5693 // Disable the intrinsic if the CPU does not support SIMD sort
5694 if (!Matcher::supports_simd_sort(bt)) {
5695 return false;
5696 }
5697 // check address of the array
5698 if (obj == nullptr || obj->is_top()) {
5699 return false; // dead path
5700 }
5701 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
5702 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) {
5703 return false; // failed input validation
5704 }
5705 return true;
5706 }
5707
5708 //------------------------------inline_array_partition-----------------------
5709 bool LibraryCallKit::inline_array_partition() {
5710 address stubAddr = StubRoutines::select_array_partition_function();
5711 if (stubAddr == nullptr) {
5712 return false; // Intrinsic's stub is not implemented on this platform
5713 }
5714 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)");
5715
5716 // no receiver because it is a static method
5717 Node* elementType = argument(0);
5718 Node* obj = argument(1);
5719 Node* offset = argument(2); // long
5720 Node* fromIndex = argument(4);
5721 Node* toIndex = argument(5);
5722 Node* indexPivot1 = argument(6);
5723 Node* indexPivot2 = argument(7);
5724 // PartitionOperation: argument(8) is ignored
5725
5726 Node* pivotIndices = nullptr;
5727 BasicType bt = T_ILLEGAL;
5728
5729 if (!check_array_sort_arguments(elementType, obj, bt)) {
5730 return false;
5731 }
5732 null_check(obj);
5733 // If obj is dead, only null-path is taken.
5734 if (stopped()) {
5735 return true;
5736 }
5737 // Set the original stack and the reexecute bit for the interpreter to reexecute
5738 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
5739 { PreserveReexecuteState preexecs(this);
5740 jvms()->set_should_reexecute(true);
5741
5742 Node* obj_adr = make_unsafe_address(obj, offset);
5743
5744 // create the pivotIndices array of type int and size = 2
5745 Node* size = intcon(2);
5746 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
5747 pivotIndices = new_array(klass_node, size, 0); // no arguments to push
5748 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
5749 guarantee(alloc != nullptr, "created above");
5750 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
5751
5752 // pass the basic type enum to the stub
5753 Node* elemType = intcon(bt);
5754
5755 // Call the stub
5756 const char *stubName = "array_partition_stub";
5757 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
5758 stubAddr, stubName, TypePtr::BOTTOM,
5759 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
5760 indexPivot1, indexPivot2);
5761
5762 } // original reexecute is set back here
5763
5764 if (!stopped()) {
5765 set_result(pivotIndices);
5766 }
5767
5768 return true;
5769 }
5770
5771
5772 //------------------------------inline_array_sort-----------------------
5773 bool LibraryCallKit::inline_array_sort() {
5774 address stubAddr = StubRoutines::select_arraysort_function();
5775 if (stubAddr == nullptr) {
5776 return false; // Intrinsic's stub is not implemented on this platform
5777 }
5778 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)");
5779
5780 // no receiver because it is a static method
5781 Node* elementType = argument(0);
5782 Node* obj = argument(1);
5783 Node* offset = argument(2); // long
5784 Node* fromIndex = argument(4);
5785 Node* toIndex = argument(5);
5786 // SortOperation: argument(6) is ignored
5787
5788 BasicType bt = T_ILLEGAL;
5789
5790 if (!check_array_sort_arguments(elementType, obj, bt)) {
5791 return false;
5792 }
5793 null_check(obj);
5794 // If obj is dead, only null-path is taken.
5795 if (stopped()) {
5796 return true;
5797 }
5798 Node* obj_adr = make_unsafe_address(obj, offset);
5799
5800 // pass the basic type enum to the stub
5801 Node* elemType = intcon(bt);
5802
5803 // Call the stub.
5804 const char *stubName = "arraysort_stub";
5805 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
5806 stubAddr, stubName, TypePtr::BOTTOM,
5807 obj_adr, elemType, fromIndex, toIndex);
5808
5809 return true;
5810 }
5811
5812
5813 //------------------------------inline_arraycopy-----------------------
5814 // public static native void java.lang.System.arraycopy(Object src, int srcPos,
5815 // Object dest, int destPos,
5816 // int length);
5817 bool LibraryCallKit::inline_arraycopy() {
5818 // Get the arguments.
5819 Node* src = argument(0); // type: oop
5820 Node* src_offset = argument(1); // type: int
5821 Node* dest = argument(2); // type: oop
5822 Node* dest_offset = argument(3); // type: int
5823 Node* length = argument(4); // type: int
5824
5825 uint new_idx = C->unique();
5826
5827 // Check for allocation before we add nodes that would confuse
5828 // tightly_coupled_allocation()
5829 AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
5830
5831 int saved_reexecute_sp = -1;
5832 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5833 // See arraycopy_restore_alloc_state() comment
5834 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5835 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
5836 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
5837 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
5838
5839 // The following tests must be performed
5840 // (1) src and dest are arrays.
5841 // (2) src and dest arrays must have elements of the same BasicType
5842 // (3) src and dest must not be null.
5843 // (4) src_offset must not be negative.
5844 // (5) dest_offset must not be negative.
5845 // (6) length must not be negative.
5846 // (7) src_offset + length must not exceed length of src.
5847 // (8) dest_offset + length must not exceed length of dest.
5848 // (9) each element of an oop array must be assignable
5849
5850 // (3) src and dest must not be null.
5851 // always do this here because we need the JVM state for uncommon traps
5852 Node* null_ctl = top();
5853 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
5854 assert(null_ctl->is_top(), "no null control here");
5855 dest = null_check(dest, T_ARRAY);
5856
5857 if (!can_emit_guards) {
5858 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
5859 // guards but the arraycopy node could still take advantage of a
5860 // tightly allocated allocation. tightly_coupled_allocation() is
5861 // called again to make sure it takes the null check above into
5862 // account: the null check is mandatory and if it caused an
5863 // uncommon trap to be emitted then the allocation can't be
5864 // considered tightly coupled in this context.
5865 alloc = tightly_coupled_allocation(dest);
5866 }
5867
5868 bool validated = false;
5869
5870 const Type* src_type = _gvn.type(src);
5871 const Type* dest_type = _gvn.type(dest);
5872 const TypeAryPtr* top_src = src_type->isa_aryptr();
5873 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5874
5875 // Do we have the type of src?
5876 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5877 // Do we have the type of dest?
5878 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5879 // Is the type for src from speculation?
5880 bool src_spec = false;
5881 // Is the type for dest from speculation?
5882 bool dest_spec = false;
5883
5884 if ((!has_src || !has_dest) && can_emit_guards) {
5885 // We don't have sufficient type information, let's see if
5886 // speculative types can help. We need to have types for both src
5887 // and dest so that it pays off.
5888
5889 // Do we already have or could we have type information for src
5890 bool could_have_src = has_src;
5891 // Do we already have or could we have type information for dest
5892 bool could_have_dest = has_dest;
5893
5894 ciKlass* src_k = nullptr;
5895 if (!has_src) {
5896 src_k = src_type->speculative_type_not_null();
5897 if (src_k != nullptr && src_k->is_array_klass()) {
5898 could_have_src = true;
5899 }
5900 }
5901
5902 ciKlass* dest_k = nullptr;
5903 if (!has_dest) {
5904 dest_k = dest_type->speculative_type_not_null();
5905 if (dest_k != nullptr && dest_k->is_array_klass()) {
5906 could_have_dest = true;
5907 }
5908 }
5909
5910 if (could_have_src && could_have_dest) {
5911 // This is going to pay off so emit the required guards
5912 if (!has_src) {
5913 src = maybe_cast_profiled_obj(src, src_k, true);
5914 src_type = _gvn.type(src);
5915 top_src = src_type->isa_aryptr();
5916 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5917 src_spec = true;
5918 }
5919 if (!has_dest) {
5920 dest = maybe_cast_profiled_obj(dest, dest_k, true);
5921 dest_type = _gvn.type(dest);
5922 top_dest = dest_type->isa_aryptr();
5923 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5924 dest_spec = true;
5925 }
5926 }
5927 }
5928
5929 if (has_src && has_dest && can_emit_guards) {
5930 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5931 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5932 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5933 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5934
5935 if (src_elem == dest_elem && src_elem == T_OBJECT) {
5936 // If both arrays are object arrays then having the exact types
5937 // for both will remove the need for a subtype check at runtime
5938 // before the call and may make it possible to pick a faster copy
5939 // routine (without a subtype check on every element)
5940 // Do we have the exact type of src?
5941 bool could_have_src = src_spec;
5942 // Do we have the exact type of dest?
5943 bool could_have_dest = dest_spec;
5944 ciKlass* src_k = nullptr;
5945 ciKlass* dest_k = nullptr;
5946 if (!src_spec) {
5947 src_k = src_type->speculative_type_not_null();
5948 if (src_k != nullptr && src_k->is_array_klass()) {
5949 could_have_src = true;
5950 }
5951 }
5952 if (!dest_spec) {
5953 dest_k = dest_type->speculative_type_not_null();
5954 if (dest_k != nullptr && dest_k->is_array_klass()) {
5955 could_have_dest = true;
5956 }
5957 }
5958 if (could_have_src && could_have_dest) {
5959 // If we can have both exact types, emit the missing guards
5960 if (could_have_src && !src_spec) {
5961 src = maybe_cast_profiled_obj(src, src_k, true);
5962 }
5963 if (could_have_dest && !dest_spec) {
5964 dest = maybe_cast_profiled_obj(dest, dest_k, true);
5965 }
5966 }
5967 }
5968 }
5969
5970 ciMethod* trap_method = method();
5971 int trap_bci = bci();
5972 if (saved_jvms_before_guards != nullptr) {
5973 trap_method = alloc->jvms()->method();
5974 trap_bci = alloc->jvms()->bci();
5975 }
5976
5977 bool negative_length_guard_generated = false;
5978
5979 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5980 can_emit_guards &&
5981 !src->is_top() && !dest->is_top()) {
5982 // validate arguments: enables transformation the ArrayCopyNode
5983 validated = true;
5984
5985 RegionNode* slow_region = new RegionNode(1);
5986 record_for_igvn(slow_region);
5987
5988 // (1) src and dest are arrays.
5989 generate_non_array_guard(load_object_klass(src), slow_region, &src);
5990 generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
5991
5992 // (2) src and dest arrays must have elements of the same BasicType
5993 // done at macro expansion or at Ideal transformation time
5994
5995 // (4) src_offset must not be negative.
5996 generate_negative_guard(src_offset, slow_region);
5997
5998 // (5) dest_offset must not be negative.
5999 generate_negative_guard(dest_offset, slow_region);
6000
6001 // (7) src_offset + length must not exceed length of src.
6002 generate_limit_guard(src_offset, length,
6003 load_array_length(src),
6004 slow_region);
6005
6006 // (8) dest_offset + length must not exceed length of dest.
6007 generate_limit_guard(dest_offset, length,
6008 load_array_length(dest),
6009 slow_region);
6010
6011 // (6) length must not be negative.
6012 // This is also checked in generate_arraycopy() during macro expansion, but
6013 // we also have to check it here for the case where the ArrayCopyNode will
6014 // be eliminated by Escape Analysis.
6015 if (EliminateAllocations) {
6016 generate_negative_guard(length, slow_region);
6017 negative_length_guard_generated = true;
6018 }
6019
6020 // (9) each element of an oop array must be assignable
6021 Node* dest_klass = load_object_klass(dest);
6022 if (src != dest) {
6023 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6024
6025 if (not_subtype_ctrl != top()) {
6026 PreserveJVMState pjvms(this);
6027 set_control(not_subtype_ctrl);
6028 uncommon_trap(Deoptimization::Reason_intrinsic,
6029 Deoptimization::Action_make_not_entrant);
6030 assert(stopped(), "Should be stopped");
6031 }
6032 }
6033 {
6034 PreserveJVMState pjvms(this);
6035 set_control(_gvn.transform(slow_region));
6036 uncommon_trap(Deoptimization::Reason_intrinsic,
6037 Deoptimization::Action_make_not_entrant);
6038 assert(stopped(), "Should be stopped");
6039 }
6040
6041 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6042 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6043 src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6044 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6045 }
6046
6047 if (stopped()) {
6048 return true;
6049 }
6050
6051 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6052 // Create LoadRange and LoadKlass nodes for use during macro expansion here
6053 // so the compiler has a chance to eliminate them: during macro expansion,
6054 // we have to set their control (CastPP nodes are eliminated).
6055 load_object_klass(src), load_object_klass(dest),
6056 load_array_length(src), load_array_length(dest));
6057
6058 ac->set_arraycopy(validated);
6059
6060 Node* n = _gvn.transform(ac);
6061 if (n == ac) {
6062 ac->connect_outputs(this);
6063 } else {
6064 assert(validated, "shouldn't transform if all arguments not validated");
6065 set_all_memory(n);
6066 }
6067 clear_upper_avx();
6068
6069
6070 return true;
6071 }
6072
6073
6074 // Helper function which determines if an arraycopy immediately follows
6075 // an allocation, with no intervening tests or other escapes for the object.
6076 AllocateArrayNode*
6077 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
6078 if (stopped()) return nullptr; // no fast path
6079 if (!C->do_aliasing()) return nullptr; // no MergeMems around
6080
6081 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
6082 if (alloc == nullptr) return nullptr;
6083
6084 Node* rawmem = memory(Compile::AliasIdxRaw);
6085 // Is the allocation's memory state untouched?
6086 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
6087 // Bail out if there have been raw-memory effects since the allocation.
6088 // (Example: There might have been a call or safepoint.)
6089 return nullptr;
6090 }
6091 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
6092 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
6093 return nullptr;
6094 }
6095
6096 // There must be no unexpected observers of this allocation.
6097 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
6098 Node* obs = ptr->fast_out(i);
6099 if (obs != this->map()) {
6100 return nullptr;
6101 }
6102 }
6103
6104 // This arraycopy must unconditionally follow the allocation of the ptr.
6105 Node* alloc_ctl = ptr->in(0);
6106 Node* ctl = control();
6107 while (ctl != alloc_ctl) {
6108 // There may be guards which feed into the slow_region.
6109 // Any other control flow means that we might not get a chance
6110 // to finish initializing the allocated object.
6111 // Various low-level checks bottom out in uncommon traps. These
6112 // are considered safe since we've already checked above that
6113 // there is no unexpected observer of this allocation.
6114 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
6115 assert(ctl->in(0)->is_If(), "must be If");
6116 ctl = ctl->in(0)->in(0);
6117 } else {
6118 return nullptr;
6119 }
6120 }
6121
6122 // If we get this far, we have an allocation which immediately
6123 // precedes the arraycopy, and we can take over zeroing the new object.
6124 // The arraycopy will finish the initialization, and provide
6125 // a new control state to which we will anchor the destination pointer.
6126
6127 return alloc;
6128 }
6129
6130 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
6131 if (node->is_IfProj()) {
6132 Node* other_proj = node->as_IfProj()->other_if_proj();
6133 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
6134 Node* obs = other_proj->fast_out(j);
6135 if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
6136 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) {
6137 return obs->as_CallStaticJava();
6138 }
6139 }
6140 }
6141 return nullptr;
6142 }
6143
6144 //-------------inline_encodeISOArray-----------------------------------
6145 // int sun.nio.cs.ISO_8859_1.Encoder#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len)
6146 // int java.lang.StringCoding#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len)
6147 // int java.lang.StringCoding#encodeAsciiArray0(char[] sa, int sp, byte[] da, int dp, int len)
6148 // encode char[] to byte[] in ISO_8859_1 or ASCII
6149 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
6150 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
6151 // no receiver since it is static method
6152 Node *src = argument(0);
6153 Node *src_offset = argument(1);
6154 Node *dst = argument(2);
6155 Node *dst_offset = argument(3);
6156 Node *length = argument(4);
6157
6158 // Cast source & target arrays to not-null
6159 if (VerifyIntrinsicChecks) {
6160 src = must_be_not_null(src, true);
6161 dst = must_be_not_null(dst, true);
6162 if (stopped()) {
6163 return true;
6164 }
6165 }
6166
6167 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6168 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
6169 if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
6170 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
6171 // failed array check
6172 return false;
6173 }
6174
6175 // Figure out the size and type of the elements we will be copying.
6176 BasicType src_elem = src_type->elem()->array_element_basic_type();
6177 BasicType dst_elem = dst_type->elem()->array_element_basic_type();
6178 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
6179 return false;
6180 }
6181
6182 // Check source & target bounds
6183 if (VerifyIntrinsicChecks) {
6184 generate_string_range_check(src, src_offset, length, src_elem == T_BYTE, true);
6185 generate_string_range_check(dst, dst_offset, length, false, true);
6186 if (stopped()) {
6187 return true;
6188 }
6189 }
6190
6191 Node* src_start = array_element_address(src, src_offset, T_CHAR);
6192 Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
6193 // 'src_start' points to src array + scaled offset
6194 // 'dst_start' points to dst array + scaled offset
6195
6196 const TypeAryPtr* mtype = TypeAryPtr::BYTES;
6197 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
6198 enc = _gvn.transform(enc);
6199 Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
6200 set_memory(res_mem, mtype);
6201 set_result(enc);
6202 clear_upper_avx();
6203
6204 return true;
6205 }
6206
6207 //-------------inline_multiplyToLen-----------------------------------
6208 bool LibraryCallKit::inline_multiplyToLen() {
6209 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
6210
6211 address stubAddr = StubRoutines::multiplyToLen();
6212 if (stubAddr == nullptr) {
6213 return false; // Intrinsic's stub is not implemented on this platform
6214 }
6215 const char* stubName = "multiplyToLen";
6216
6217 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
6218
6219 // no receiver because it is a static method
6220 Node* x = argument(0);
6221 Node* xlen = argument(1);
6222 Node* y = argument(2);
6223 Node* ylen = argument(3);
6224 Node* z = argument(4);
6225
6226 x = must_be_not_null(x, true);
6227 y = must_be_not_null(y, true);
6228
6229 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6230 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
6231 if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6232 y_type == nullptr || y_type->elem() == Type::BOTTOM) {
6233 // failed array check
6234 return false;
6235 }
6236
6237 BasicType x_elem = x_type->elem()->array_element_basic_type();
6238 BasicType y_elem = y_type->elem()->array_element_basic_type();
6239 if (x_elem != T_INT || y_elem != T_INT) {
6240 return false;
6241 }
6242
6243 Node* x_start = array_element_address(x, intcon(0), x_elem);
6244 Node* y_start = array_element_address(y, intcon(0), y_elem);
6245 // 'x_start' points to x array + scaled xlen
6246 // 'y_start' points to y array + scaled ylen
6247
6248 Node* z_start = array_element_address(z, intcon(0), T_INT);
6249
6250 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6251 OptoRuntime::multiplyToLen_Type(),
6252 stubAddr, stubName, TypePtr::BOTTOM,
6253 x_start, xlen, y_start, ylen, z_start);
6254
6255 C->set_has_split_ifs(true); // Has chance for split-if optimization
6256 set_result(z);
6257 return true;
6258 }
6259
6260 //-------------inline_squareToLen------------------------------------
6261 bool LibraryCallKit::inline_squareToLen() {
6262 assert(UseSquareToLenIntrinsic, "not implemented on this platform");
6263
6264 address stubAddr = StubRoutines::squareToLen();
6265 if (stubAddr == nullptr) {
6266 return false; // Intrinsic's stub is not implemented on this platform
6267 }
6268 const char* stubName = "squareToLen";
6269
6270 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6271
6272 Node* x = argument(0);
6273 Node* len = argument(1);
6274 Node* z = argument(2);
6275 Node* zlen = argument(3);
6276
6277 x = must_be_not_null(x, true);
6278 z = must_be_not_null(z, true);
6279
6280 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6281 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
6282 if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6283 z_type == nullptr || z_type->elem() == Type::BOTTOM) {
6284 // failed array check
6285 return false;
6286 }
6287
6288 BasicType x_elem = x_type->elem()->array_element_basic_type();
6289 BasicType z_elem = z_type->elem()->array_element_basic_type();
6290 if (x_elem != T_INT || z_elem != T_INT) {
6291 return false;
6292 }
6293
6294
6295 Node* x_start = array_element_address(x, intcon(0), x_elem);
6296 Node* z_start = array_element_address(z, intcon(0), z_elem);
6297
6298 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6299 OptoRuntime::squareToLen_Type(),
6300 stubAddr, stubName, TypePtr::BOTTOM,
6301 x_start, len, z_start, zlen);
6302
6303 set_result(z);
6304 return true;
6305 }
6306
6307 //-------------inline_mulAdd------------------------------------------
6308 bool LibraryCallKit::inline_mulAdd() {
6309 assert(UseMulAddIntrinsic, "not implemented on this platform");
6310
6311 address stubAddr = StubRoutines::mulAdd();
6312 if (stubAddr == nullptr) {
6313 return false; // Intrinsic's stub is not implemented on this platform
6314 }
6315 const char* stubName = "mulAdd";
6316
6317 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6318
6319 Node* out = argument(0);
6320 Node* in = argument(1);
6321 Node* offset = argument(2);
6322 Node* len = argument(3);
6323 Node* k = argument(4);
6324
6325 in = must_be_not_null(in, true);
6326 out = must_be_not_null(out, true);
6327
6328 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6329 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6330 if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6331 in_type == nullptr || in_type->elem() == Type::BOTTOM) {
6332 // failed array check
6333 return false;
6334 }
6335
6336 BasicType out_elem = out_type->elem()->array_element_basic_type();
6337 BasicType in_elem = in_type->elem()->array_element_basic_type();
6338 if (out_elem != T_INT || in_elem != T_INT) {
6339 return false;
6340 }
6341
6342 Node* outlen = load_array_length(out);
6343 Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
6344 Node* out_start = array_element_address(out, intcon(0), out_elem);
6345 Node* in_start = array_element_address(in, intcon(0), in_elem);
6346
6347 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6348 OptoRuntime::mulAdd_Type(),
6349 stubAddr, stubName, TypePtr::BOTTOM,
6350 out_start,in_start, new_offset, len, k);
6351 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6352 set_result(result);
6353 return true;
6354 }
6355
6356 //-------------inline_montgomeryMultiply-----------------------------------
6357 bool LibraryCallKit::inline_montgomeryMultiply() {
6358 address stubAddr = StubRoutines::montgomeryMultiply();
6359 if (stubAddr == nullptr) {
6360 return false; // Intrinsic's stub is not implemented on this platform
6361 }
6362
6363 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6364 const char* stubName = "montgomery_multiply";
6365
6366 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6367
6368 Node* a = argument(0);
6369 Node* b = argument(1);
6370 Node* n = argument(2);
6371 Node* len = argument(3);
6372 Node* inv = argument(4);
6373 Node* m = argument(6);
6374
6375 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6376 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
6377 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6378 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6379 if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6380 b_type == nullptr || b_type->elem() == Type::BOTTOM ||
6381 n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6382 m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6383 // failed array check
6384 return false;
6385 }
6386
6387 BasicType a_elem = a_type->elem()->array_element_basic_type();
6388 BasicType b_elem = b_type->elem()->array_element_basic_type();
6389 BasicType n_elem = n_type->elem()->array_element_basic_type();
6390 BasicType m_elem = m_type->elem()->array_element_basic_type();
6391 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6392 return false;
6393 }
6394
6395 // Make the call
6396 {
6397 Node* a_start = array_element_address(a, intcon(0), a_elem);
6398 Node* b_start = array_element_address(b, intcon(0), b_elem);
6399 Node* n_start = array_element_address(n, intcon(0), n_elem);
6400 Node* m_start = array_element_address(m, intcon(0), m_elem);
6401
6402 Node* call = make_runtime_call(RC_LEAF,
6403 OptoRuntime::montgomeryMultiply_Type(),
6404 stubAddr, stubName, TypePtr::BOTTOM,
6405 a_start, b_start, n_start, len, inv, top(),
6406 m_start);
6407 set_result(m);
6408 }
6409
6410 return true;
6411 }
6412
6413 bool LibraryCallKit::inline_montgomerySquare() {
6414 address stubAddr = StubRoutines::montgomerySquare();
6415 if (stubAddr == nullptr) {
6416 return false; // Intrinsic's stub is not implemented on this platform
6417 }
6418
6419 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6420 const char* stubName = "montgomery_square";
6421
6422 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6423
6424 Node* a = argument(0);
6425 Node* n = argument(1);
6426 Node* len = argument(2);
6427 Node* inv = argument(3);
6428 Node* m = argument(5);
6429
6430 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6431 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6432 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6433 if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6434 n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6435 m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6436 // failed array check
6437 return false;
6438 }
6439
6440 BasicType a_elem = a_type->elem()->array_element_basic_type();
6441 BasicType n_elem = n_type->elem()->array_element_basic_type();
6442 BasicType m_elem = m_type->elem()->array_element_basic_type();
6443 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6444 return false;
6445 }
6446
6447 // Make the call
6448 {
6449 Node* a_start = array_element_address(a, intcon(0), a_elem);
6450 Node* n_start = array_element_address(n, intcon(0), n_elem);
6451 Node* m_start = array_element_address(m, intcon(0), m_elem);
6452
6453 Node* call = make_runtime_call(RC_LEAF,
6454 OptoRuntime::montgomerySquare_Type(),
6455 stubAddr, stubName, TypePtr::BOTTOM,
6456 a_start, n_start, len, inv, top(),
6457 m_start);
6458 set_result(m);
6459 }
6460
6461 return true;
6462 }
6463
6464 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
6465 address stubAddr = nullptr;
6466 const char* stubName = nullptr;
6467
6468 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
6469 if (stubAddr == nullptr) {
6470 return false; // Intrinsic's stub is not implemented on this platform
6471 }
6472
6473 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
6474
6475 assert(callee()->signature()->size() == 5, "expected 5 arguments");
6476
6477 Node* newArr = argument(0);
6478 Node* oldArr = argument(1);
6479 Node* newIdx = argument(2);
6480 Node* shiftCount = argument(3);
6481 Node* numIter = argument(4);
6482
6483 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
6484 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
6485 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
6486 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
6487 return false;
6488 }
6489
6490 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
6491 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
6492 if (newArr_elem != T_INT || oldArr_elem != T_INT) {
6493 return false;
6494 }
6495
6496 // Make the call
6497 {
6498 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
6499 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
6500
6501 Node* call = make_runtime_call(RC_LEAF,
6502 OptoRuntime::bigIntegerShift_Type(),
6503 stubAddr,
6504 stubName,
6505 TypePtr::BOTTOM,
6506 newArr_start,
6507 oldArr_start,
6508 newIdx,
6509 shiftCount,
6510 numIter);
6511 }
6512
6513 return true;
6514 }
6515
6516 //-------------inline_vectorizedMismatch------------------------------
6517 bool LibraryCallKit::inline_vectorizedMismatch() {
6518 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
6519
6520 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
6521 Node* obja = argument(0); // Object
6522 Node* aoffset = argument(1); // long
6523 Node* objb = argument(3); // Object
6524 Node* boffset = argument(4); // long
6525 Node* length = argument(6); // int
6526 Node* scale = argument(7); // int
6527
6528 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
6529 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
6530 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
6531 objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
6532 scale == top()) {
6533 return false; // failed input validation
6534 }
6535
6536 Node* obja_adr = make_unsafe_address(obja, aoffset);
6537 Node* objb_adr = make_unsafe_address(objb, boffset);
6538
6539 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
6540 //
6541 // inline_limit = ArrayOperationPartialInlineSize / element_size;
6542 // if (length <= inline_limit) {
6543 // inline_path:
6544 // vmask = VectorMaskGen length
6545 // vload1 = LoadVectorMasked obja, vmask
6546 // vload2 = LoadVectorMasked objb, vmask
6547 // result1 = VectorCmpMasked vload1, vload2, vmask
6548 // } else {
6549 // call_stub_path:
6550 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
6551 // }
6552 // exit_block:
6553 // return Phi(result1, result2);
6554 //
6555 enum { inline_path = 1, // input is small enough to process it all at once
6556 stub_path = 2, // input is too large; call into the VM
6557 PATH_LIMIT = 3
6558 };
6559
6560 Node* exit_block = new RegionNode(PATH_LIMIT);
6561 Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
6562 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
6563
6564 Node* call_stub_path = control();
6565
6566 BasicType elem_bt = T_ILLEGAL;
6567
6568 const TypeInt* scale_t = _gvn.type(scale)->is_int();
6569 if (scale_t->is_con()) {
6570 switch (scale_t->get_con()) {
6571 case 0: elem_bt = T_BYTE; break;
6572 case 1: elem_bt = T_SHORT; break;
6573 case 2: elem_bt = T_INT; break;
6574 case 3: elem_bt = T_LONG; break;
6575
6576 default: elem_bt = T_ILLEGAL; break; // not supported
6577 }
6578 }
6579
6580 int inline_limit = 0;
6581 bool do_partial_inline = false;
6582
6583 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
6584 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
6585 do_partial_inline = inline_limit >= 16;
6586 }
6587
6588 if (do_partial_inline) {
6589 assert(elem_bt != T_ILLEGAL, "sanity");
6590
6591 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) &&
6592 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
6593 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) {
6594
6595 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
6596 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
6597 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
6598
6599 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
6600
6601 if (!stopped()) {
6602 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
6603
6604 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
6605 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
6606 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
6607 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
6608
6609 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
6610 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
6611 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
6612 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
6613
6614 exit_block->init_req(inline_path, control());
6615 memory_phi->init_req(inline_path, map()->memory());
6616 result_phi->init_req(inline_path, result);
6617
6618 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
6619 clear_upper_avx();
6620 }
6621 }
6622 }
6623
6624 if (call_stub_path != nullptr) {
6625 set_control(call_stub_path);
6626
6627 Node* call = make_runtime_call(RC_LEAF,
6628 OptoRuntime::vectorizedMismatch_Type(),
6629 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
6630 obja_adr, objb_adr, length, scale);
6631
6632 exit_block->init_req(stub_path, control());
6633 memory_phi->init_req(stub_path, map()->memory());
6634 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
6635 }
6636
6637 exit_block = _gvn.transform(exit_block);
6638 memory_phi = _gvn.transform(memory_phi);
6639 result_phi = _gvn.transform(result_phi);
6640
6641 record_for_igvn(exit_block);
6642 record_for_igvn(memory_phi);
6643 record_for_igvn(result_phi);
6644
6645 set_control(exit_block);
6646 set_all_memory(memory_phi);
6647 set_result(result_phi);
6648
6649 return true;
6650 }
6651
6652 //------------------------------inline_vectorizedHashcode----------------------------
6653 bool LibraryCallKit::inline_vectorizedHashCode() {
6654 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
6655
6656 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
6657 Node* array = argument(0);
6658 Node* offset = argument(1);
6659 Node* length = argument(2);
6660 Node* initialValue = argument(3);
6661 Node* basic_type = argument(4);
6662
6663 if (basic_type == top()) {
6664 return false; // failed input validation
6665 }
6666
6667 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
6668 if (!basic_type_t->is_con()) {
6669 return false; // Only intrinsify if mode argument is constant
6670 }
6671
6672 array = must_be_not_null(array, true);
6673
6674 BasicType bt = (BasicType)basic_type_t->get_con();
6675
6676 // Resolve address of first element
6677 Node* array_start = array_element_address(array, offset, bt);
6678
6679 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
6680 array_start, length, initialValue, basic_type)));
6681 clear_upper_avx();
6682
6683 return true;
6684 }
6685
6686 /**
6687 * Calculate CRC32 for byte.
6688 * int java.util.zip.CRC32.update(int crc, int b)
6689 */
6690 bool LibraryCallKit::inline_updateCRC32() {
6691 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
6692 assert(callee()->signature()->size() == 2, "update has 2 parameters");
6693 // no receiver since it is static method
6694 Node* crc = argument(0); // type: int
6695 Node* b = argument(1); // type: int
6696
6697 /*
6698 * int c = ~ crc;
6699 * b = timesXtoThe32[(b ^ c) & 0xFF];
6700 * b = b ^ (c >>> 8);
6701 * crc = ~b;
6702 */
6703
6704 Node* M1 = intcon(-1);
6705 crc = _gvn.transform(new XorINode(crc, M1));
6706 Node* result = _gvn.transform(new XorINode(crc, b));
6707 result = _gvn.transform(new AndINode(result, intcon(0xFF)));
6708
6709 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6710 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
6711 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6712 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6713
6714 crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
6715 result = _gvn.transform(new XorINode(crc, result));
6716 result = _gvn.transform(new XorINode(result, M1));
6717 set_result(result);
6718 return true;
6719 }
6720
6721 /**
6722 * Calculate CRC32 for byte[] array.
6723 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6724 */
6725 bool LibraryCallKit::inline_updateBytesCRC32() {
6726 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
6727 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6728 // no receiver since it is static method
6729 Node* crc = argument(0); // type: int
6730 Node* src = argument(1); // type: oop
6731 Node* offset = argument(2); // type: int
6732 Node* length = argument(3); // type: int
6733
6734 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6735 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6736 // failed array check
6737 return false;
6738 }
6739
6740 // Figure out the size and type of the elements we will be copying.
6741 BasicType src_elem = src_type->elem()->array_element_basic_type();
6742 if (src_elem != T_BYTE) {
6743 return false;
6744 }
6745
6746 // 'src_start' points to src array + scaled offset
6747 src = must_be_not_null(src, true);
6748 Node* src_start = array_element_address(src, offset, src_elem);
6749
6750 // We assume that range check is done by caller.
6751 // TODO: generate range check (offset+length < src.length) in debug VM.
6752
6753 // Call the stub.
6754 address stubAddr = StubRoutines::updateBytesCRC32();
6755 const char *stubName = "updateBytesCRC32";
6756
6757 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6758 stubAddr, stubName, TypePtr::BOTTOM,
6759 crc, src_start, length);
6760 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6761 set_result(result);
6762 return true;
6763 }
6764
6765 /**
6766 * Calculate CRC32 for ByteBuffer.
6767 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6768 */
6769 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6770 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
6771 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6772 // no receiver since it is static method
6773 Node* crc = argument(0); // type: int
6774 Node* src = argument(1); // type: long
6775 Node* offset = argument(3); // type: int
6776 Node* length = argument(4); // type: int
6777
6778 src = ConvL2X(src); // adjust Java long to machine word
6779 Node* base = _gvn.transform(new CastX2PNode(src));
6780 offset = ConvI2X(offset);
6781
6782 // 'src_start' points to src array + scaled offset
6783 Node* src_start = basic_plus_adr(top(), base, offset);
6784
6785 // Call the stub.
6786 address stubAddr = StubRoutines::updateBytesCRC32();
6787 const char *stubName = "updateBytesCRC32";
6788
6789 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6790 stubAddr, stubName, TypePtr::BOTTOM,
6791 crc, src_start, length);
6792 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6793 set_result(result);
6794 return true;
6795 }
6796
6797 //------------------------------get_table_from_crc32c_class-----------------------
6798 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
6799 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
6800 assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
6801
6802 return table;
6803 }
6804
6805 //------------------------------inline_updateBytesCRC32C-----------------------
6806 //
6807 // Calculate CRC32C for byte[] array.
6808 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
6809 //
6810 bool LibraryCallKit::inline_updateBytesCRC32C() {
6811 assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6812 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6813 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6814 // no receiver since it is a static method
6815 Node* crc = argument(0); // type: int
6816 Node* src = argument(1); // type: oop
6817 Node* offset = argument(2); // type: int
6818 Node* end = argument(3); // type: int
6819
6820 Node* length = _gvn.transform(new SubINode(end, offset));
6821
6822 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6823 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6824 // failed array check
6825 return false;
6826 }
6827
6828 // Figure out the size and type of the elements we will be copying.
6829 BasicType src_elem = src_type->elem()->array_element_basic_type();
6830 if (src_elem != T_BYTE) {
6831 return false;
6832 }
6833
6834 // 'src_start' points to src array + scaled offset
6835 src = must_be_not_null(src, true);
6836 Node* src_start = array_element_address(src, offset, src_elem);
6837
6838 // static final int[] byteTable in class CRC32C
6839 Node* table = get_table_from_crc32c_class(callee()->holder());
6840 table = must_be_not_null(table, true);
6841 Node* table_start = array_element_address(table, intcon(0), T_INT);
6842
6843 // We assume that range check is done by caller.
6844 // TODO: generate range check (offset+length < src.length) in debug VM.
6845
6846 // Call the stub.
6847 address stubAddr = StubRoutines::updateBytesCRC32C();
6848 const char *stubName = "updateBytesCRC32C";
6849
6850 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6851 stubAddr, stubName, TypePtr::BOTTOM,
6852 crc, src_start, length, table_start);
6853 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6854 set_result(result);
6855 return true;
6856 }
6857
6858 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
6859 //
6860 // Calculate CRC32C for DirectByteBuffer.
6861 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
6862 //
6863 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
6864 assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6865 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
6866 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6867 // no receiver since it is a static method
6868 Node* crc = argument(0); // type: int
6869 Node* src = argument(1); // type: long
6870 Node* offset = argument(3); // type: int
6871 Node* end = argument(4); // type: int
6872
6873 Node* length = _gvn.transform(new SubINode(end, offset));
6874
6875 src = ConvL2X(src); // adjust Java long to machine word
6876 Node* base = _gvn.transform(new CastX2PNode(src));
6877 offset = ConvI2X(offset);
6878
6879 // 'src_start' points to src array + scaled offset
6880 Node* src_start = basic_plus_adr(top(), base, offset);
6881
6882 // static final int[] byteTable in class CRC32C
6883 Node* table = get_table_from_crc32c_class(callee()->holder());
6884 table = must_be_not_null(table, true);
6885 Node* table_start = array_element_address(table, intcon(0), T_INT);
6886
6887 // Call the stub.
6888 address stubAddr = StubRoutines::updateBytesCRC32C();
6889 const char *stubName = "updateBytesCRC32C";
6890
6891 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6892 stubAddr, stubName, TypePtr::BOTTOM,
6893 crc, src_start, length, table_start);
6894 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6895 set_result(result);
6896 return true;
6897 }
6898
6899 //------------------------------inline_updateBytesAdler32----------------------
6900 //
6901 // Calculate Adler32 checksum for byte[] array.
6902 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6903 //
6904 bool LibraryCallKit::inline_updateBytesAdler32() {
6905 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6906 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6907 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6908 // no receiver since it is static method
6909 Node* crc = argument(0); // type: int
6910 Node* src = argument(1); // type: oop
6911 Node* offset = argument(2); // type: int
6912 Node* length = argument(3); // type: int
6913
6914 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6915 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6916 // failed array check
6917 return false;
6918 }
6919
6920 // Figure out the size and type of the elements we will be copying.
6921 BasicType src_elem = src_type->elem()->array_element_basic_type();
6922 if (src_elem != T_BYTE) {
6923 return false;
6924 }
6925
6926 // 'src_start' points to src array + scaled offset
6927 Node* src_start = array_element_address(src, offset, src_elem);
6928
6929 // We assume that range check is done by caller.
6930 // TODO: generate range check (offset+length < src.length) in debug VM.
6931
6932 // Call the stub.
6933 address stubAddr = StubRoutines::updateBytesAdler32();
6934 const char *stubName = "updateBytesAdler32";
6935
6936 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6937 stubAddr, stubName, TypePtr::BOTTOM,
6938 crc, src_start, length);
6939 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6940 set_result(result);
6941 return true;
6942 }
6943
6944 //------------------------------inline_updateByteBufferAdler32---------------
6945 //
6946 // Calculate Adler32 checksum for DirectByteBuffer.
6947 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6948 //
6949 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6950 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6951 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6952 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6953 // no receiver since it is static method
6954 Node* crc = argument(0); // type: int
6955 Node* src = argument(1); // type: long
6956 Node* offset = argument(3); // type: int
6957 Node* length = argument(4); // type: int
6958
6959 src = ConvL2X(src); // adjust Java long to machine word
6960 Node* base = _gvn.transform(new CastX2PNode(src));
6961 offset = ConvI2X(offset);
6962
6963 // 'src_start' points to src array + scaled offset
6964 Node* src_start = basic_plus_adr(top(), base, offset);
6965
6966 // Call the stub.
6967 address stubAddr = StubRoutines::updateBytesAdler32();
6968 const char *stubName = "updateBytesAdler32";
6969
6970 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6971 stubAddr, stubName, TypePtr::BOTTOM,
6972 crc, src_start, length);
6973
6974 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6975 set_result(result);
6976 return true;
6977 }
6978
6979 //----------------------------inline_reference_get0----------------------------
6980 // public T java.lang.ref.Reference.get();
6981 bool LibraryCallKit::inline_reference_get0() {
6982 const int referent_offset = java_lang_ref_Reference::referent_offset();
6983
6984 // Get the argument:
6985 Node* reference_obj = null_check_receiver();
6986 if (stopped()) return true;
6987
6988 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
6989 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6990 decorators, /*is_static*/ false, nullptr);
6991 if (result == nullptr) return false;
6992
6993 // Add memory barrier to prevent commoning reads from this field
6994 // across safepoint since GC can change its value.
6995 insert_mem_bar(Op_MemBarCPUOrder);
6996
6997 set_result(result);
6998 return true;
6999 }
7000
7001 //----------------------------inline_reference_refersTo0----------------------------
7002 // bool java.lang.ref.Reference.refersTo0();
7003 // bool java.lang.ref.PhantomReference.refersTo0();
7004 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
7005 // Get arguments:
7006 Node* reference_obj = null_check_receiver();
7007 Node* other_obj = argument(1);
7008 if (stopped()) return true;
7009
7010 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
7011 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
7012 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
7013 decorators, /*is_static*/ false, nullptr);
7014 if (referent == nullptr) return false;
7015
7016 // Add memory barrier to prevent commoning reads from this field
7017 // across safepoint since GC can change its value.
7018 insert_mem_bar(Op_MemBarCPUOrder);
7019
7020 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
7021 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
7022 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
7023
7024 RegionNode* region = new RegionNode(3);
7025 PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
7026
7027 Node* if_true = _gvn.transform(new IfTrueNode(if_node));
7028 region->init_req(1, if_true);
7029 phi->init_req(1, intcon(1));
7030
7031 Node* if_false = _gvn.transform(new IfFalseNode(if_node));
7032 region->init_req(2, if_false);
7033 phi->init_req(2, intcon(0));
7034
7035 set_control(_gvn.transform(region));
7036 record_for_igvn(region);
7037 set_result(_gvn.transform(phi));
7038 return true;
7039 }
7040
7041 //----------------------------inline_reference_clear0----------------------------
7042 // void java.lang.ref.Reference.clear0();
7043 // void java.lang.ref.PhantomReference.clear0();
7044 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) {
7045 // This matches the implementation in JVM_ReferenceClear, see the comments there.
7046
7047 // Get arguments
7048 Node* reference_obj = null_check_receiver();
7049 if (stopped()) return true;
7050
7051 // Common access parameters
7052 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
7053 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
7054 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset());
7055 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr();
7056 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass());
7057
7058 Node* referent = access_load_at(reference_obj,
7059 referent_field_addr,
7060 referent_field_addr_type,
7061 val_type,
7062 T_OBJECT,
7063 decorators);
7064
7065 IdealKit ideal(this);
7066 #define __ ideal.
7067 __ if_then(referent, BoolTest::ne, null());
7068 sync_kit(ideal);
7069 access_store_at(reference_obj,
7070 referent_field_addr,
7071 referent_field_addr_type,
7072 null(),
7073 val_type,
7074 T_OBJECT,
7075 decorators);
7076 __ sync_kit(this);
7077 __ end_if();
7078 final_sync(ideal);
7079 #undef __
7080
7081 return true;
7082 }
7083
7084 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
7085 DecoratorSet decorators, bool is_static,
7086 ciInstanceKlass* fromKls) {
7087 if (fromKls == nullptr) {
7088 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7089 assert(tinst != nullptr, "obj is null");
7090 assert(tinst->is_loaded(), "obj is not loaded");
7091 fromKls = tinst->instance_klass();
7092 } else {
7093 assert(is_static, "only for static field access");
7094 }
7095 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7096 ciSymbol::make(fieldTypeString),
7097 is_static);
7098
7099 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
7100 if (field == nullptr) return (Node *) nullptr;
7101
7102 if (is_static) {
7103 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7104 fromObj = makecon(tip);
7105 }
7106
7107 // Next code copied from Parse::do_get_xxx():
7108
7109 // Compute address and memory type.
7110 int offset = field->offset_in_bytes();
7111 bool is_vol = field->is_volatile();
7112 ciType* field_klass = field->type();
7113 assert(field_klass->is_loaded(), "should be loaded");
7114 const TypePtr* adr_type = C->alias_type(field)->adr_type();
7115 Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7116 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()),
7117 "slice of address and input slice don't match");
7118 BasicType bt = field->layout_type();
7119
7120 // Build the resultant type of the load
7121 const Type *type;
7122 if (bt == T_OBJECT) {
7123 type = TypeOopPtr::make_from_klass(field_klass->as_klass());
7124 } else {
7125 type = Type::get_const_basic_type(bt);
7126 }
7127
7128 if (is_vol) {
7129 decorators |= MO_SEQ_CST;
7130 }
7131
7132 return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
7133 }
7134
7135 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
7136 bool is_exact /* true */, bool is_static /* false */,
7137 ciInstanceKlass * fromKls /* nullptr */) {
7138 if (fromKls == nullptr) {
7139 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7140 assert(tinst != nullptr, "obj is null");
7141 assert(tinst->is_loaded(), "obj is not loaded");
7142 assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
7143 fromKls = tinst->instance_klass();
7144 }
7145 else {
7146 assert(is_static, "only for static field access");
7147 }
7148 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7149 ciSymbol::make(fieldTypeString),
7150 is_static);
7151
7152 assert(field != nullptr, "undefined field");
7153 assert(!field->is_volatile(), "not defined for volatile fields");
7154
7155 if (is_static) {
7156 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7157 fromObj = makecon(tip);
7158 }
7159
7160 // Next code copied from Parse::do_get_xxx():
7161
7162 // Compute address and memory type.
7163 int offset = field->offset_in_bytes();
7164 Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7165
7166 return adr;
7167 }
7168
7169 //------------------------------inline_aescrypt_Block-----------------------
7170 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
7171 address stubAddr = nullptr;
7172 const char *stubName;
7173 assert(UseAES, "need AES instruction support");
7174
7175 switch(id) {
7176 case vmIntrinsics::_aescrypt_encryptBlock:
7177 stubAddr = StubRoutines::aescrypt_encryptBlock();
7178 stubName = "aescrypt_encryptBlock";
7179 break;
7180 case vmIntrinsics::_aescrypt_decryptBlock:
7181 stubAddr = StubRoutines::aescrypt_decryptBlock();
7182 stubName = "aescrypt_decryptBlock";
7183 break;
7184 default:
7185 break;
7186 }
7187 if (stubAddr == nullptr) return false;
7188
7189 Node* aescrypt_object = argument(0);
7190 Node* src = argument(1);
7191 Node* src_offset = argument(2);
7192 Node* dest = argument(3);
7193 Node* dest_offset = argument(4);
7194
7195 src = must_be_not_null(src, true);
7196 dest = must_be_not_null(dest, true);
7197
7198 // (1) src and dest are arrays.
7199 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7200 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7201 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM &&
7202 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7203
7204 // for the quick and dirty code we will skip all the checks.
7205 // we are just trying to get the call to be generated.
7206 Node* src_start = src;
7207 Node* dest_start = dest;
7208 if (src_offset != nullptr || dest_offset != nullptr) {
7209 assert(src_offset != nullptr && dest_offset != nullptr, "");
7210 src_start = array_element_address(src, src_offset, T_BYTE);
7211 dest_start = array_element_address(dest, dest_offset, T_BYTE);
7212 }
7213
7214 // now need to get the start of its expanded key array
7215 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7216 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7217 if (k_start == nullptr) return false;
7218
7219 // Call the stub.
7220 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
7221 stubAddr, stubName, TypePtr::BOTTOM,
7222 src_start, dest_start, k_start);
7223
7224 return true;
7225 }
7226
7227 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
7228 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
7229 address stubAddr = nullptr;
7230 const char *stubName = nullptr;
7231
7232 assert(UseAES, "need AES instruction support");
7233
7234 switch(id) {
7235 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
7236 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
7237 stubName = "cipherBlockChaining_encryptAESCrypt";
7238 break;
7239 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
7240 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
7241 stubName = "cipherBlockChaining_decryptAESCrypt";
7242 break;
7243 default:
7244 break;
7245 }
7246 if (stubAddr == nullptr) return false;
7247
7248 Node* cipherBlockChaining_object = argument(0);
7249 Node* src = argument(1);
7250 Node* src_offset = argument(2);
7251 Node* len = argument(3);
7252 Node* dest = argument(4);
7253 Node* dest_offset = argument(5);
7254
7255 src = must_be_not_null(src, false);
7256 dest = must_be_not_null(dest, false);
7257
7258 // (1) src and dest are arrays.
7259 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7260 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7261 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM &&
7262 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7263
7264 // checks are the responsibility of the caller
7265 Node* src_start = src;
7266 Node* dest_start = dest;
7267 if (src_offset != nullptr || dest_offset != nullptr) {
7268 assert(src_offset != nullptr && dest_offset != nullptr, "");
7269 src_start = array_element_address(src, src_offset, T_BYTE);
7270 dest_start = array_element_address(dest, dest_offset, T_BYTE);
7271 }
7272
7273 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7274 // (because of the predicated logic executed earlier).
7275 // so we cast it here safely.
7276 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7277
7278 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7279 if (embeddedCipherObj == nullptr) return false;
7280
7281 // cast it to what we know it will be at runtime
7282 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
7283 assert(tinst != nullptr, "CBC obj is null");
7284 assert(tinst->is_loaded(), "CBC obj is not loaded");
7285 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7286 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7287
7288 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7289 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7290 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7291 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7292 aescrypt_object = _gvn.transform(aescrypt_object);
7293
7294 // we need to get the start of the aescrypt_object's expanded key array
7295 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7296 if (k_start == nullptr) return false;
7297
7298 // similarly, get the start address of the r vector
7299 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
7300 if (objRvec == nullptr) return false;
7301 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
7302
7303 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7304 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7305 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
7306 stubAddr, stubName, TypePtr::BOTTOM,
7307 src_start, dest_start, k_start, r_start, len);
7308
7309 // return cipher length (int)
7310 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
7311 set_result(retvalue);
7312 return true;
7313 }
7314
7315 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
7316 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
7317 address stubAddr = nullptr;
7318 const char *stubName = nullptr;
7319
7320 assert(UseAES, "need AES instruction support");
7321
7322 switch (id) {
7323 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
7324 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
7325 stubName = "electronicCodeBook_encryptAESCrypt";
7326 break;
7327 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
7328 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
7329 stubName = "electronicCodeBook_decryptAESCrypt";
7330 break;
7331 default:
7332 break;
7333 }
7334
7335 if (stubAddr == nullptr) return false;
7336
7337 Node* electronicCodeBook_object = argument(0);
7338 Node* src = argument(1);
7339 Node* src_offset = argument(2);
7340 Node* len = argument(3);
7341 Node* dest = argument(4);
7342 Node* dest_offset = argument(5);
7343
7344 // (1) src and dest are arrays.
7345 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7346 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7347 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM &&
7348 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7349
7350 // checks are the responsibility of the caller
7351 Node* src_start = src;
7352 Node* dest_start = dest;
7353 if (src_offset != nullptr || dest_offset != nullptr) {
7354 assert(src_offset != nullptr && dest_offset != nullptr, "");
7355 src_start = array_element_address(src, src_offset, T_BYTE);
7356 dest_start = array_element_address(dest, dest_offset, T_BYTE);
7357 }
7358
7359 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7360 // (because of the predicated logic executed earlier).
7361 // so we cast it here safely.
7362 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7363
7364 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7365 if (embeddedCipherObj == nullptr) return false;
7366
7367 // cast it to what we know it will be at runtime
7368 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
7369 assert(tinst != nullptr, "ECB obj is null");
7370 assert(tinst->is_loaded(), "ECB obj is not loaded");
7371 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7372 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7373
7374 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7375 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7376 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7377 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7378 aescrypt_object = _gvn.transform(aescrypt_object);
7379
7380 // we need to get the start of the aescrypt_object's expanded key array
7381 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7382 if (k_start == nullptr) return false;
7383
7384 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7385 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
7386 OptoRuntime::electronicCodeBook_aescrypt_Type(),
7387 stubAddr, stubName, TypePtr::BOTTOM,
7388 src_start, dest_start, k_start, len);
7389
7390 // return cipher length (int)
7391 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
7392 set_result(retvalue);
7393 return true;
7394 }
7395
7396 //------------------------------inline_counterMode_AESCrypt-----------------------
7397 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
7398 assert(UseAES, "need AES instruction support");
7399 if (!UseAESCTRIntrinsics) return false;
7400
7401 address stubAddr = nullptr;
7402 const char *stubName = nullptr;
7403 if (id == vmIntrinsics::_counterMode_AESCrypt) {
7404 stubAddr = StubRoutines::counterMode_AESCrypt();
7405 stubName = "counterMode_AESCrypt";
7406 }
7407 if (stubAddr == nullptr) return false;
7408
7409 Node* counterMode_object = argument(0);
7410 Node* src = argument(1);
7411 Node* src_offset = argument(2);
7412 Node* len = argument(3);
7413 Node* dest = argument(4);
7414 Node* dest_offset = argument(5);
7415
7416 // (1) src and dest are arrays.
7417 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7418 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7419 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM &&
7420 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7421
7422 // checks are the responsibility of the caller
7423 Node* src_start = src;
7424 Node* dest_start = dest;
7425 if (src_offset != nullptr || dest_offset != nullptr) {
7426 assert(src_offset != nullptr && dest_offset != nullptr, "");
7427 src_start = array_element_address(src, src_offset, T_BYTE);
7428 dest_start = array_element_address(dest, dest_offset, T_BYTE);
7429 }
7430
7431 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7432 // (because of the predicated logic executed earlier).
7433 // so we cast it here safely.
7434 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7435 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7436 if (embeddedCipherObj == nullptr) return false;
7437 // cast it to what we know it will be at runtime
7438 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
7439 assert(tinst != nullptr, "CTR obj is null");
7440 assert(tinst->is_loaded(), "CTR obj is not loaded");
7441 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7442 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7443 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7444 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7445 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7446 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7447 aescrypt_object = _gvn.transform(aescrypt_object);
7448 // we need to get the start of the aescrypt_object's expanded key array
7449 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7450 if (k_start == nullptr) return false;
7451 // similarly, get the start address of the r vector
7452 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
7453 if (obj_counter == nullptr) return false;
7454 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
7455
7456 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
7457 if (saved_encCounter == nullptr) return false;
7458 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
7459 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
7460
7461 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7462 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7463 OptoRuntime::counterMode_aescrypt_Type(),
7464 stubAddr, stubName, TypePtr::BOTTOM,
7465 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
7466
7467 // return cipher length (int)
7468 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
7469 set_result(retvalue);
7470 return true;
7471 }
7472
7473 //------------------------------get_key_start_from_aescrypt_object-----------------------
7474 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
7475 #if defined(PPC64) || defined(S390) || defined(RISCV64)
7476 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
7477 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
7478 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
7479 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]).
7480 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
7481 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7482 if (objSessionK == nullptr) {
7483 return (Node *) nullptr;
7484 }
7485 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
7486 #else
7487 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
7488 #endif // PPC64
7489 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7490 if (objAESCryptKey == nullptr) return (Node *) nullptr;
7491
7492 // now have the array, need to get the start address of the K array
7493 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
7494 return k_start;
7495 }
7496
7497 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
7498 // Return node representing slow path of predicate check.
7499 // the pseudo code we want to emulate with this predicate is:
7500 // for encryption:
7501 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7502 // for decryption:
7503 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7504 // note cipher==plain is more conservative than the original java code but that's OK
7505 //
7506 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
7507 // The receiver was checked for null already.
7508 Node* objCBC = argument(0);
7509
7510 Node* src = argument(1);
7511 Node* dest = argument(4);
7512
7513 // Load embeddedCipher field of CipherBlockChaining object.
7514 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7515
7516 // get AESCrypt klass for instanceOf check
7517 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7518 // will have same classloader as CipherBlockChaining object
7519 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
7520 assert(tinst != nullptr, "CBCobj is null");
7521 assert(tinst->is_loaded(), "CBCobj is not loaded");
7522
7523 // we want to do an instanceof comparison against the AESCrypt class
7524 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7525 if (!klass_AESCrypt->is_loaded()) {
7526 // if AESCrypt is not even loaded, we never take the intrinsic fast path
7527 Node* ctrl = control();
7528 set_control(top()); // no regular fast path
7529 return ctrl;
7530 }
7531
7532 src = must_be_not_null(src, true);
7533 dest = must_be_not_null(dest, true);
7534
7535 // Resolve oops to stable for CmpP below.
7536 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7537
7538 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7539 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7540 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7541
7542 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7543
7544 // for encryption, we are done
7545 if (!decrypting)
7546 return instof_false; // even if it is null
7547
7548 // for decryption, we need to add a further check to avoid
7549 // taking the intrinsic path when cipher and plain are the same
7550 // see the original java code for why.
7551 RegionNode* region = new RegionNode(3);
7552 region->init_req(1, instof_false);
7553
7554 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7555 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7556 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7557 region->init_req(2, src_dest_conjoint);
7558
7559 record_for_igvn(region);
7560 return _gvn.transform(region);
7561 }
7562
7563 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
7564 // Return node representing slow path of predicate check.
7565 // the pseudo code we want to emulate with this predicate is:
7566 // for encryption:
7567 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7568 // for decryption:
7569 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7570 // note cipher==plain is more conservative than the original java code but that's OK
7571 //
7572 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
7573 // The receiver was checked for null already.
7574 Node* objECB = argument(0);
7575
7576 // Load embeddedCipher field of ElectronicCodeBook object.
7577 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7578
7579 // get AESCrypt klass for instanceOf check
7580 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7581 // will have same classloader as ElectronicCodeBook object
7582 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
7583 assert(tinst != nullptr, "ECBobj is null");
7584 assert(tinst->is_loaded(), "ECBobj is not loaded");
7585
7586 // we want to do an instanceof comparison against the AESCrypt class
7587 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7588 if (!klass_AESCrypt->is_loaded()) {
7589 // if AESCrypt is not even loaded, we never take the intrinsic fast path
7590 Node* ctrl = control();
7591 set_control(top()); // no regular fast path
7592 return ctrl;
7593 }
7594 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7595
7596 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7597 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7598 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7599
7600 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7601
7602 // for encryption, we are done
7603 if (!decrypting)
7604 return instof_false; // even if it is null
7605
7606 // for decryption, we need to add a further check to avoid
7607 // taking the intrinsic path when cipher and plain are the same
7608 // see the original java code for why.
7609 RegionNode* region = new RegionNode(3);
7610 region->init_req(1, instof_false);
7611 Node* src = argument(1);
7612 Node* dest = argument(4);
7613 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7614 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7615 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7616 region->init_req(2, src_dest_conjoint);
7617
7618 record_for_igvn(region);
7619 return _gvn.transform(region);
7620 }
7621
7622 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
7623 // Return node representing slow path of predicate check.
7624 // the pseudo code we want to emulate with this predicate is:
7625 // for encryption:
7626 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7627 // for decryption:
7628 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7629 // note cipher==plain is more conservative than the original java code but that's OK
7630 //
7631
7632 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
7633 // The receiver was checked for null already.
7634 Node* objCTR = argument(0);
7635
7636 // Load embeddedCipher field of CipherBlockChaining object.
7637 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7638
7639 // get AESCrypt klass for instanceOf check
7640 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7641 // will have same classloader as CipherBlockChaining object
7642 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
7643 assert(tinst != nullptr, "CTRobj is null");
7644 assert(tinst->is_loaded(), "CTRobj is not loaded");
7645
7646 // we want to do an instanceof comparison against the AESCrypt class
7647 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7648 if (!klass_AESCrypt->is_loaded()) {
7649 // if AESCrypt is not even loaded, we never take the intrinsic fast path
7650 Node* ctrl = control();
7651 set_control(top()); // no regular fast path
7652 return ctrl;
7653 }
7654
7655 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7656 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7657 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7658 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7659 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7660
7661 return instof_false; // even if it is null
7662 }
7663
7664 //------------------------------inline_ghash_processBlocks
7665 bool LibraryCallKit::inline_ghash_processBlocks() {
7666 address stubAddr;
7667 const char *stubName;
7668 assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
7669
7670 stubAddr = StubRoutines::ghash_processBlocks();
7671 stubName = "ghash_processBlocks";
7672
7673 Node* data = argument(0);
7674 Node* offset = argument(1);
7675 Node* len = argument(2);
7676 Node* state = argument(3);
7677 Node* subkeyH = argument(4);
7678
7679 state = must_be_not_null(state, true);
7680 subkeyH = must_be_not_null(subkeyH, true);
7681 data = must_be_not_null(data, true);
7682
7683 Node* state_start = array_element_address(state, intcon(0), T_LONG);
7684 assert(state_start, "state is null");
7685 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG);
7686 assert(subkeyH_start, "subkeyH is null");
7687 Node* data_start = array_element_address(data, offset, T_BYTE);
7688 assert(data_start, "data is null");
7689
7690 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
7691 OptoRuntime::ghash_processBlocks_Type(),
7692 stubAddr, stubName, TypePtr::BOTTOM,
7693 state_start, subkeyH_start, data_start, len);
7694 return true;
7695 }
7696
7697 //------------------------------inline_chacha20Block
7698 bool LibraryCallKit::inline_chacha20Block() {
7699 address stubAddr;
7700 const char *stubName;
7701 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
7702
7703 stubAddr = StubRoutines::chacha20Block();
7704 stubName = "chacha20Block";
7705
7706 Node* state = argument(0);
7707 Node* result = argument(1);
7708
7709 state = must_be_not_null(state, true);
7710 result = must_be_not_null(result, true);
7711
7712 Node* state_start = array_element_address(state, intcon(0), T_INT);
7713 assert(state_start, "state is null");
7714 Node* result_start = array_element_address(result, intcon(0), T_BYTE);
7715 assert(result_start, "result is null");
7716
7717 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
7718 OptoRuntime::chacha20Block_Type(),
7719 stubAddr, stubName, TypePtr::BOTTOM,
7720 state_start, result_start);
7721 // return key stream length (int)
7722 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
7723 set_result(retvalue);
7724 return true;
7725 }
7726
7727 //------------------------------inline_kyberNtt
7728 bool LibraryCallKit::inline_kyberNtt() {
7729 address stubAddr;
7730 const char *stubName;
7731 assert(UseKyberIntrinsics, "need Kyber intrinsics support");
7732 assert(callee()->signature()->size() == 2, "kyberNtt has 2 parameters");
7733
7734 stubAddr = StubRoutines::kyberNtt();
7735 stubName = "kyberNtt";
7736 if (!stubAddr) return false;
7737
7738 Node* coeffs = argument(0);
7739 Node* ntt_zetas = argument(1);
7740
7741 coeffs = must_be_not_null(coeffs, true);
7742 ntt_zetas = must_be_not_null(ntt_zetas, true);
7743
7744 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT);
7745 assert(coeffs_start, "coeffs is null");
7746 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_SHORT);
7747 assert(ntt_zetas_start, "ntt_zetas is null");
7748 Node* kyberNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
7749 OptoRuntime::kyberNtt_Type(),
7750 stubAddr, stubName, TypePtr::BOTTOM,
7751 coeffs_start, ntt_zetas_start);
7752 // return an int
7753 Node* retvalue = _gvn.transform(new ProjNode(kyberNtt, TypeFunc::Parms));
7754 set_result(retvalue);
7755 return true;
7756 }
7757
7758 //------------------------------inline_kyberInverseNtt
7759 bool LibraryCallKit::inline_kyberInverseNtt() {
7760 address stubAddr;
7761 const char *stubName;
7762 assert(UseKyberIntrinsics, "need Kyber intrinsics support");
7763 assert(callee()->signature()->size() == 2, "kyberInverseNtt has 2 parameters");
7764
7765 stubAddr = StubRoutines::kyberInverseNtt();
7766 stubName = "kyberInverseNtt";
7767 if (!stubAddr) return false;
7768
7769 Node* coeffs = argument(0);
7770 Node* zetas = argument(1);
7771
7772 coeffs = must_be_not_null(coeffs, true);
7773 zetas = must_be_not_null(zetas, true);
7774
7775 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT);
7776 assert(coeffs_start, "coeffs is null");
7777 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT);
7778 assert(zetas_start, "inverseNtt_zetas is null");
7779 Node* kyberInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
7780 OptoRuntime::kyberInverseNtt_Type(),
7781 stubAddr, stubName, TypePtr::BOTTOM,
7782 coeffs_start, zetas_start);
7783
7784 // return an int
7785 Node* retvalue = _gvn.transform(new ProjNode(kyberInverseNtt, TypeFunc::Parms));
7786 set_result(retvalue);
7787 return true;
7788 }
7789
7790 //------------------------------inline_kyberNttMult
7791 bool LibraryCallKit::inline_kyberNttMult() {
7792 address stubAddr;
7793 const char *stubName;
7794 assert(UseKyberIntrinsics, "need Kyber intrinsics support");
7795 assert(callee()->signature()->size() == 4, "kyberNttMult has 4 parameters");
7796
7797 stubAddr = StubRoutines::kyberNttMult();
7798 stubName = "kyberNttMult";
7799 if (!stubAddr) return false;
7800
7801 Node* result = argument(0);
7802 Node* ntta = argument(1);
7803 Node* nttb = argument(2);
7804 Node* zetas = argument(3);
7805
7806 result = must_be_not_null(result, true);
7807 ntta = must_be_not_null(ntta, true);
7808 nttb = must_be_not_null(nttb, true);
7809 zetas = must_be_not_null(zetas, true);
7810
7811 Node* result_start = array_element_address(result, intcon(0), T_SHORT);
7812 assert(result_start, "result is null");
7813 Node* ntta_start = array_element_address(ntta, intcon(0), T_SHORT);
7814 assert(ntta_start, "ntta is null");
7815 Node* nttb_start = array_element_address(nttb, intcon(0), T_SHORT);
7816 assert(nttb_start, "nttb is null");
7817 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT);
7818 assert(zetas_start, "nttMult_zetas is null");
7819 Node* kyberNttMult = make_runtime_call(RC_LEAF|RC_NO_FP,
7820 OptoRuntime::kyberNttMult_Type(),
7821 stubAddr, stubName, TypePtr::BOTTOM,
7822 result_start, ntta_start, nttb_start,
7823 zetas_start);
7824
7825 // return an int
7826 Node* retvalue = _gvn.transform(new ProjNode(kyberNttMult, TypeFunc::Parms));
7827 set_result(retvalue);
7828
7829 return true;
7830 }
7831
7832 //------------------------------inline_kyberAddPoly_2
7833 bool LibraryCallKit::inline_kyberAddPoly_2() {
7834 address stubAddr;
7835 const char *stubName;
7836 assert(UseKyberIntrinsics, "need Kyber intrinsics support");
7837 assert(callee()->signature()->size() == 3, "kyberAddPoly_2 has 3 parameters");
7838
7839 stubAddr = StubRoutines::kyberAddPoly_2();
7840 stubName = "kyberAddPoly_2";
7841 if (!stubAddr) return false;
7842
7843 Node* result = argument(0);
7844 Node* a = argument(1);
7845 Node* b = argument(2);
7846
7847 result = must_be_not_null(result, true);
7848 a = must_be_not_null(a, true);
7849 b = must_be_not_null(b, true);
7850
7851 Node* result_start = array_element_address(result, intcon(0), T_SHORT);
7852 assert(result_start, "result is null");
7853 Node* a_start = array_element_address(a, intcon(0), T_SHORT);
7854 assert(a_start, "a is null");
7855 Node* b_start = array_element_address(b, intcon(0), T_SHORT);
7856 assert(b_start, "b is null");
7857 Node* kyberAddPoly_2 = make_runtime_call(RC_LEAF|RC_NO_FP,
7858 OptoRuntime::kyberAddPoly_2_Type(),
7859 stubAddr, stubName, TypePtr::BOTTOM,
7860 result_start, a_start, b_start);
7861 // return an int
7862 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_2, TypeFunc::Parms));
7863 set_result(retvalue);
7864 return true;
7865 }
7866
7867 //------------------------------inline_kyberAddPoly_3
7868 bool LibraryCallKit::inline_kyberAddPoly_3() {
7869 address stubAddr;
7870 const char *stubName;
7871 assert(UseKyberIntrinsics, "need Kyber intrinsics support");
7872 assert(callee()->signature()->size() == 4, "kyberAddPoly_3 has 4 parameters");
7873
7874 stubAddr = StubRoutines::kyberAddPoly_3();
7875 stubName = "kyberAddPoly_3";
7876 if (!stubAddr) return false;
7877
7878 Node* result = argument(0);
7879 Node* a = argument(1);
7880 Node* b = argument(2);
7881 Node* c = argument(3);
7882
7883 result = must_be_not_null(result, true);
7884 a = must_be_not_null(a, true);
7885 b = must_be_not_null(b, true);
7886 c = must_be_not_null(c, true);
7887
7888 Node* result_start = array_element_address(result, intcon(0), T_SHORT);
7889 assert(result_start, "result is null");
7890 Node* a_start = array_element_address(a, intcon(0), T_SHORT);
7891 assert(a_start, "a is null");
7892 Node* b_start = array_element_address(b, intcon(0), T_SHORT);
7893 assert(b_start, "b is null");
7894 Node* c_start = array_element_address(c, intcon(0), T_SHORT);
7895 assert(c_start, "c is null");
7896 Node* kyberAddPoly_3 = make_runtime_call(RC_LEAF|RC_NO_FP,
7897 OptoRuntime::kyberAddPoly_3_Type(),
7898 stubAddr, stubName, TypePtr::BOTTOM,
7899 result_start, a_start, b_start, c_start);
7900 // return an int
7901 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_3, TypeFunc::Parms));
7902 set_result(retvalue);
7903 return true;
7904 }
7905
7906 //------------------------------inline_kyber12To16
7907 bool LibraryCallKit::inline_kyber12To16() {
7908 address stubAddr;
7909 const char *stubName;
7910 assert(UseKyberIntrinsics, "need Kyber intrinsics support");
7911 assert(callee()->signature()->size() == 4, "kyber12To16 has 4 parameters");
7912
7913 stubAddr = StubRoutines::kyber12To16();
7914 stubName = "kyber12To16";
7915 if (!stubAddr) return false;
7916
7917 Node* condensed = argument(0);
7918 Node* condensedOffs = argument(1);
7919 Node* parsed = argument(2);
7920 Node* parsedLength = argument(3);
7921
7922 condensed = must_be_not_null(condensed, true);
7923 parsed = must_be_not_null(parsed, true);
7924
7925 Node* condensed_start = array_element_address(condensed, intcon(0), T_BYTE);
7926 assert(condensed_start, "condensed is null");
7927 Node* parsed_start = array_element_address(parsed, intcon(0), T_SHORT);
7928 assert(parsed_start, "parsed is null");
7929 Node* kyber12To16 = make_runtime_call(RC_LEAF|RC_NO_FP,
7930 OptoRuntime::kyber12To16_Type(),
7931 stubAddr, stubName, TypePtr::BOTTOM,
7932 condensed_start, condensedOffs, parsed_start, parsedLength);
7933 // return an int
7934 Node* retvalue = _gvn.transform(new ProjNode(kyber12To16, TypeFunc::Parms));
7935 set_result(retvalue);
7936 return true;
7937
7938 }
7939
7940 //------------------------------inline_kyberBarrettReduce
7941 bool LibraryCallKit::inline_kyberBarrettReduce() {
7942 address stubAddr;
7943 const char *stubName;
7944 assert(UseKyberIntrinsics, "need Kyber intrinsics support");
7945 assert(callee()->signature()->size() == 1, "kyberBarrettReduce has 1 parameters");
7946
7947 stubAddr = StubRoutines::kyberBarrettReduce();
7948 stubName = "kyberBarrettReduce";
7949 if (!stubAddr) return false;
7950
7951 Node* coeffs = argument(0);
7952
7953 coeffs = must_be_not_null(coeffs, true);
7954
7955 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT);
7956 assert(coeffs_start, "coeffs is null");
7957 Node* kyberBarrettReduce = make_runtime_call(RC_LEAF|RC_NO_FP,
7958 OptoRuntime::kyberBarrettReduce_Type(),
7959 stubAddr, stubName, TypePtr::BOTTOM,
7960 coeffs_start);
7961 // return an int
7962 Node* retvalue = _gvn.transform(new ProjNode(kyberBarrettReduce, TypeFunc::Parms));
7963 set_result(retvalue);
7964 return true;
7965 }
7966
7967 //------------------------------inline_dilithiumAlmostNtt
7968 bool LibraryCallKit::inline_dilithiumAlmostNtt() {
7969 address stubAddr;
7970 const char *stubName;
7971 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
7972 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters");
7973
7974 stubAddr = StubRoutines::dilithiumAlmostNtt();
7975 stubName = "dilithiumAlmostNtt";
7976 if (!stubAddr) return false;
7977
7978 Node* coeffs = argument(0);
7979 Node* ntt_zetas = argument(1);
7980
7981 coeffs = must_be_not_null(coeffs, true);
7982 ntt_zetas = must_be_not_null(ntt_zetas, true);
7983
7984 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT);
7985 assert(coeffs_start, "coeffs is null");
7986 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT);
7987 assert(ntt_zetas_start, "ntt_zetas is null");
7988 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
7989 OptoRuntime::dilithiumAlmostNtt_Type(),
7990 stubAddr, stubName, TypePtr::BOTTOM,
7991 coeffs_start, ntt_zetas_start);
7992 // return an int
7993 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms));
7994 set_result(retvalue);
7995 return true;
7996 }
7997
7998 //------------------------------inline_dilithiumAlmostInverseNtt
7999 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() {
8000 address stubAddr;
8001 const char *stubName;
8002 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8003 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters");
8004
8005 stubAddr = StubRoutines::dilithiumAlmostInverseNtt();
8006 stubName = "dilithiumAlmostInverseNtt";
8007 if (!stubAddr) return false;
8008
8009 Node* coeffs = argument(0);
8010 Node* zetas = argument(1);
8011
8012 coeffs = must_be_not_null(coeffs, true);
8013 zetas = must_be_not_null(zetas, true);
8014
8015 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT);
8016 assert(coeffs_start, "coeffs is null");
8017 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT);
8018 assert(zetas_start, "inverseNtt_zetas is null");
8019 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
8020 OptoRuntime::dilithiumAlmostInverseNtt_Type(),
8021 stubAddr, stubName, TypePtr::BOTTOM,
8022 coeffs_start, zetas_start);
8023 // return an int
8024 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms));
8025 set_result(retvalue);
8026 return true;
8027 }
8028
8029 //------------------------------inline_dilithiumNttMult
8030 bool LibraryCallKit::inline_dilithiumNttMult() {
8031 address stubAddr;
8032 const char *stubName;
8033 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8034 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters");
8035
8036 stubAddr = StubRoutines::dilithiumNttMult();
8037 stubName = "dilithiumNttMult";
8038 if (!stubAddr) return false;
8039
8040 Node* result = argument(0);
8041 Node* ntta = argument(1);
8042 Node* nttb = argument(2);
8043 Node* zetas = argument(3);
8044
8045 result = must_be_not_null(result, true);
8046 ntta = must_be_not_null(ntta, true);
8047 nttb = must_be_not_null(nttb, true);
8048 zetas = must_be_not_null(zetas, true);
8049
8050 Node* result_start = array_element_address(result, intcon(0), T_INT);
8051 assert(result_start, "result is null");
8052 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT);
8053 assert(ntta_start, "ntta is null");
8054 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT);
8055 assert(nttb_start, "nttb is null");
8056 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP,
8057 OptoRuntime::dilithiumNttMult_Type(),
8058 stubAddr, stubName, TypePtr::BOTTOM,
8059 result_start, ntta_start, nttb_start);
8060
8061 // return an int
8062 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms));
8063 set_result(retvalue);
8064
8065 return true;
8066 }
8067
8068 //------------------------------inline_dilithiumMontMulByConstant
8069 bool LibraryCallKit::inline_dilithiumMontMulByConstant() {
8070 address stubAddr;
8071 const char *stubName;
8072 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8073 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters");
8074
8075 stubAddr = StubRoutines::dilithiumMontMulByConstant();
8076 stubName = "dilithiumMontMulByConstant";
8077 if (!stubAddr) return false;
8078
8079 Node* coeffs = argument(0);
8080 Node* constant = argument(1);
8081
8082 coeffs = must_be_not_null(coeffs, true);
8083
8084 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT);
8085 assert(coeffs_start, "coeffs is null");
8086 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP,
8087 OptoRuntime::dilithiumMontMulByConstant_Type(),
8088 stubAddr, stubName, TypePtr::BOTTOM,
8089 coeffs_start, constant);
8090
8091 // return an int
8092 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms));
8093 set_result(retvalue);
8094 return true;
8095 }
8096
8097
8098 //------------------------------inline_dilithiumDecomposePoly
8099 bool LibraryCallKit::inline_dilithiumDecomposePoly() {
8100 address stubAddr;
8101 const char *stubName;
8102 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8103 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters");
8104
8105 stubAddr = StubRoutines::dilithiumDecomposePoly();
8106 stubName = "dilithiumDecomposePoly";
8107 if (!stubAddr) return false;
8108
8109 Node* input = argument(0);
8110 Node* lowPart = argument(1);
8111 Node* highPart = argument(2);
8112 Node* twoGamma2 = argument(3);
8113 Node* multiplier = argument(4);
8114
8115 input = must_be_not_null(input, true);
8116 lowPart = must_be_not_null(lowPart, true);
8117 highPart = must_be_not_null(highPart, true);
8118
8119 Node* input_start = array_element_address(input, intcon(0), T_INT);
8120 assert(input_start, "input is null");
8121 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT);
8122 assert(lowPart_start, "lowPart is null");
8123 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT);
8124 assert(highPart_start, "highPart is null");
8125
8126 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP,
8127 OptoRuntime::dilithiumDecomposePoly_Type(),
8128 stubAddr, stubName, TypePtr::BOTTOM,
8129 input_start, lowPart_start, highPart_start,
8130 twoGamma2, multiplier);
8131
8132 // return an int
8133 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms));
8134 set_result(retvalue);
8135 return true;
8136 }
8137
8138 bool LibraryCallKit::inline_base64_encodeBlock() {
8139 address stubAddr;
8140 const char *stubName;
8141 assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
8142 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
8143 stubAddr = StubRoutines::base64_encodeBlock();
8144 stubName = "encodeBlock";
8145
8146 if (!stubAddr) return false;
8147 Node* base64obj = argument(0);
8148 Node* src = argument(1);
8149 Node* offset = argument(2);
8150 Node* len = argument(3);
8151 Node* dest = argument(4);
8152 Node* dp = argument(5);
8153 Node* isURL = argument(6);
8154
8155 src = must_be_not_null(src, true);
8156 dest = must_be_not_null(dest, true);
8157
8158 Node* src_start = array_element_address(src, intcon(0), T_BYTE);
8159 assert(src_start, "source array is null");
8160 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
8161 assert(dest_start, "destination array is null");
8162
8163 Node* base64 = make_runtime_call(RC_LEAF,
8164 OptoRuntime::base64_encodeBlock_Type(),
8165 stubAddr, stubName, TypePtr::BOTTOM,
8166 src_start, offset, len, dest_start, dp, isURL);
8167 return true;
8168 }
8169
8170 bool LibraryCallKit::inline_base64_decodeBlock() {
8171 address stubAddr;
8172 const char *stubName;
8173 assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
8174 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
8175 stubAddr = StubRoutines::base64_decodeBlock();
8176 stubName = "decodeBlock";
8177
8178 if (!stubAddr) return false;
8179 Node* base64obj = argument(0);
8180 Node* src = argument(1);
8181 Node* src_offset = argument(2);
8182 Node* len = argument(3);
8183 Node* dest = argument(4);
8184 Node* dest_offset = argument(5);
8185 Node* isURL = argument(6);
8186 Node* isMIME = argument(7);
8187
8188 src = must_be_not_null(src, true);
8189 dest = must_be_not_null(dest, true);
8190
8191 Node* src_start = array_element_address(src, intcon(0), T_BYTE);
8192 assert(src_start, "source array is null");
8193 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
8194 assert(dest_start, "destination array is null");
8195
8196 Node* call = make_runtime_call(RC_LEAF,
8197 OptoRuntime::base64_decodeBlock_Type(),
8198 stubAddr, stubName, TypePtr::BOTTOM,
8199 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
8200 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8201 set_result(result);
8202 return true;
8203 }
8204
8205 bool LibraryCallKit::inline_poly1305_processBlocks() {
8206 address stubAddr;
8207 const char *stubName;
8208 assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
8209 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
8210 stubAddr = StubRoutines::poly1305_processBlocks();
8211 stubName = "poly1305_processBlocks";
8212
8213 if (!stubAddr) return false;
8214 null_check_receiver(); // null-check receiver
8215 if (stopped()) return true;
8216
8217 Node* input = argument(1);
8218 Node* input_offset = argument(2);
8219 Node* len = argument(3);
8220 Node* alimbs = argument(4);
8221 Node* rlimbs = argument(5);
8222
8223 input = must_be_not_null(input, true);
8224 alimbs = must_be_not_null(alimbs, true);
8225 rlimbs = must_be_not_null(rlimbs, true);
8226
8227 Node* input_start = array_element_address(input, input_offset, T_BYTE);
8228 assert(input_start, "input array is null");
8229 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
8230 assert(acc_start, "acc array is null");
8231 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
8232 assert(r_start, "r array is null");
8233
8234 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8235 OptoRuntime::poly1305_processBlocks_Type(),
8236 stubAddr, stubName, TypePtr::BOTTOM,
8237 input_start, len, acc_start, r_start);
8238 return true;
8239 }
8240
8241 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
8242 address stubAddr;
8243 const char *stubName;
8244 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
8245 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
8246 stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
8247 stubName = "intpoly_montgomeryMult_P256";
8248
8249 if (!stubAddr) return false;
8250 null_check_receiver(); // null-check receiver
8251 if (stopped()) return true;
8252
8253 Node* a = argument(1);
8254 Node* b = argument(2);
8255 Node* r = argument(3);
8256
8257 a = must_be_not_null(a, true);
8258 b = must_be_not_null(b, true);
8259 r = must_be_not_null(r, true);
8260
8261 Node* a_start = array_element_address(a, intcon(0), T_LONG);
8262 assert(a_start, "a array is null");
8263 Node* b_start = array_element_address(b, intcon(0), T_LONG);
8264 assert(b_start, "b array is null");
8265 Node* r_start = array_element_address(r, intcon(0), T_LONG);
8266 assert(r_start, "r array is null");
8267
8268 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8269 OptoRuntime::intpoly_montgomeryMult_P256_Type(),
8270 stubAddr, stubName, TypePtr::BOTTOM,
8271 a_start, b_start, r_start);
8272 return true;
8273 }
8274
8275 bool LibraryCallKit::inline_intpoly_assign() {
8276 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
8277 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
8278 const char *stubName = "intpoly_assign";
8279 address stubAddr = StubRoutines::intpoly_assign();
8280 if (!stubAddr) return false;
8281
8282 Node* set = argument(0);
8283 Node* a = argument(1);
8284 Node* b = argument(2);
8285 Node* arr_length = load_array_length(a);
8286
8287 a = must_be_not_null(a, true);
8288 b = must_be_not_null(b, true);
8289
8290 Node* a_start = array_element_address(a, intcon(0), T_LONG);
8291 assert(a_start, "a array is null");
8292 Node* b_start = array_element_address(b, intcon(0), T_LONG);
8293 assert(b_start, "b array is null");
8294
8295 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8296 OptoRuntime::intpoly_assign_Type(),
8297 stubAddr, stubName, TypePtr::BOTTOM,
8298 set, a_start, b_start, arr_length);
8299 return true;
8300 }
8301
8302 //------------------------------inline_digestBase_implCompress-----------------------
8303 //
8304 // Calculate MD5 for single-block byte[] array.
8305 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
8306 //
8307 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
8308 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
8309 //
8310 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
8311 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
8312 //
8313 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
8314 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
8315 //
8316 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
8317 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
8318 //
8319 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
8320 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
8321
8322 Node* digestBase_obj = argument(0);
8323 Node* src = argument(1); // type oop
8324 Node* ofs = argument(2); // type int
8325
8326 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8327 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
8328 // failed array check
8329 return false;
8330 }
8331 // Figure out the size and type of the elements we will be copying.
8332 BasicType src_elem = src_type->elem()->array_element_basic_type();
8333 if (src_elem != T_BYTE) {
8334 return false;
8335 }
8336 // 'src_start' points to src array + offset
8337 src = must_be_not_null(src, true);
8338 Node* src_start = array_element_address(src, ofs, src_elem);
8339 Node* state = nullptr;
8340 Node* block_size = nullptr;
8341 address stubAddr;
8342 const char *stubName;
8343
8344 switch(id) {
8345 case vmIntrinsics::_md5_implCompress:
8346 assert(UseMD5Intrinsics, "need MD5 instruction support");
8347 state = get_state_from_digest_object(digestBase_obj, T_INT);
8348 stubAddr = StubRoutines::md5_implCompress();
8349 stubName = "md5_implCompress";
8350 break;
8351 case vmIntrinsics::_sha_implCompress:
8352 assert(UseSHA1Intrinsics, "need SHA1 instruction support");
8353 state = get_state_from_digest_object(digestBase_obj, T_INT);
8354 stubAddr = StubRoutines::sha1_implCompress();
8355 stubName = "sha1_implCompress";
8356 break;
8357 case vmIntrinsics::_sha2_implCompress:
8358 assert(UseSHA256Intrinsics, "need SHA256 instruction support");
8359 state = get_state_from_digest_object(digestBase_obj, T_INT);
8360 stubAddr = StubRoutines::sha256_implCompress();
8361 stubName = "sha256_implCompress";
8362 break;
8363 case vmIntrinsics::_sha5_implCompress:
8364 assert(UseSHA512Intrinsics, "need SHA512 instruction support");
8365 state = get_state_from_digest_object(digestBase_obj, T_LONG);
8366 stubAddr = StubRoutines::sha512_implCompress();
8367 stubName = "sha512_implCompress";
8368 break;
8369 case vmIntrinsics::_sha3_implCompress:
8370 assert(UseSHA3Intrinsics, "need SHA3 instruction support");
8371 state = get_state_from_digest_object(digestBase_obj, T_LONG);
8372 stubAddr = StubRoutines::sha3_implCompress();
8373 stubName = "sha3_implCompress";
8374 block_size = get_block_size_from_digest_object(digestBase_obj);
8375 if (block_size == nullptr) return false;
8376 break;
8377 default:
8378 fatal_unexpected_iid(id);
8379 return false;
8380 }
8381 if (state == nullptr) return false;
8382
8383 assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
8384 if (stubAddr == nullptr) return false;
8385
8386 // Call the stub.
8387 Node* call;
8388 if (block_size == nullptr) {
8389 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
8390 stubAddr, stubName, TypePtr::BOTTOM,
8391 src_start, state);
8392 } else {
8393 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
8394 stubAddr, stubName, TypePtr::BOTTOM,
8395 src_start, state, block_size);
8396 }
8397
8398 return true;
8399 }
8400
8401 //------------------------------inline_double_keccak
8402 bool LibraryCallKit::inline_double_keccak() {
8403 address stubAddr;
8404 const char *stubName;
8405 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support");
8406 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters");
8407
8408 stubAddr = StubRoutines::double_keccak();
8409 stubName = "double_keccak";
8410 if (!stubAddr) return false;
8411
8412 Node* status0 = argument(0);
8413 Node* status1 = argument(1);
8414
8415 status0 = must_be_not_null(status0, true);
8416 status1 = must_be_not_null(status1, true);
8417
8418 Node* status0_start = array_element_address(status0, intcon(0), T_LONG);
8419 assert(status0_start, "status0 is null");
8420 Node* status1_start = array_element_address(status1, intcon(0), T_LONG);
8421 assert(status1_start, "status1 is null");
8422 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP,
8423 OptoRuntime::double_keccak_Type(),
8424 stubAddr, stubName, TypePtr::BOTTOM,
8425 status0_start, status1_start);
8426 // return an int
8427 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms));
8428 set_result(retvalue);
8429 return true;
8430 }
8431
8432
8433 //------------------------------inline_digestBase_implCompressMB-----------------------
8434 //
8435 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
8436 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
8437 //
8438 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
8439 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8440 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8441 assert((uint)predicate < 5, "sanity");
8442 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
8443
8444 Node* digestBase_obj = argument(0); // The receiver was checked for null already.
8445 Node* src = argument(1); // byte[] array
8446 Node* ofs = argument(2); // type int
8447 Node* limit = argument(3); // type int
8448
8449 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8450 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
8451 // failed array check
8452 return false;
8453 }
8454 // Figure out the size and type of the elements we will be copying.
8455 BasicType src_elem = src_type->elem()->array_element_basic_type();
8456 if (src_elem != T_BYTE) {
8457 return false;
8458 }
8459 // 'src_start' points to src array + offset
8460 src = must_be_not_null(src, false);
8461 Node* src_start = array_element_address(src, ofs, src_elem);
8462
8463 const char* klass_digestBase_name = nullptr;
8464 const char* stub_name = nullptr;
8465 address stub_addr = nullptr;
8466 BasicType elem_type = T_INT;
8467
8468 switch (predicate) {
8469 case 0:
8470 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
8471 klass_digestBase_name = "sun/security/provider/MD5";
8472 stub_name = "md5_implCompressMB";
8473 stub_addr = StubRoutines::md5_implCompressMB();
8474 }
8475 break;
8476 case 1:
8477 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
8478 klass_digestBase_name = "sun/security/provider/SHA";
8479 stub_name = "sha1_implCompressMB";
8480 stub_addr = StubRoutines::sha1_implCompressMB();
8481 }
8482 break;
8483 case 2:
8484 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
8485 klass_digestBase_name = "sun/security/provider/SHA2";
8486 stub_name = "sha256_implCompressMB";
8487 stub_addr = StubRoutines::sha256_implCompressMB();
8488 }
8489 break;
8490 case 3:
8491 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
8492 klass_digestBase_name = "sun/security/provider/SHA5";
8493 stub_name = "sha512_implCompressMB";
8494 stub_addr = StubRoutines::sha512_implCompressMB();
8495 elem_type = T_LONG;
8496 }
8497 break;
8498 case 4:
8499 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
8500 klass_digestBase_name = "sun/security/provider/SHA3";
8501 stub_name = "sha3_implCompressMB";
8502 stub_addr = StubRoutines::sha3_implCompressMB();
8503 elem_type = T_LONG;
8504 }
8505 break;
8506 default:
8507 fatal("unknown DigestBase intrinsic predicate: %d", predicate);
8508 }
8509 if (klass_digestBase_name != nullptr) {
8510 assert(stub_addr != nullptr, "Stub is generated");
8511 if (stub_addr == nullptr) return false;
8512
8513 // get DigestBase klass to lookup for SHA klass
8514 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
8515 assert(tinst != nullptr, "digestBase_obj is not instance???");
8516 assert(tinst->is_loaded(), "DigestBase is not loaded");
8517
8518 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
8519 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
8520 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
8521 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
8522 }
8523 return false;
8524 }
8525
8526 //------------------------------inline_digestBase_implCompressMB-----------------------
8527 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
8528 BasicType elem_type, address stubAddr, const char *stubName,
8529 Node* src_start, Node* ofs, Node* limit) {
8530 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
8531 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
8532 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
8533 digest_obj = _gvn.transform(digest_obj);
8534
8535 Node* state = get_state_from_digest_object(digest_obj, elem_type);
8536 if (state == nullptr) return false;
8537
8538 Node* block_size = nullptr;
8539 if (strcmp("sha3_implCompressMB", stubName) == 0) {
8540 block_size = get_block_size_from_digest_object(digest_obj);
8541 if (block_size == nullptr) return false;
8542 }
8543
8544 // Call the stub.
8545 Node* call;
8546 if (block_size == nullptr) {
8547 call = make_runtime_call(RC_LEAF|RC_NO_FP,
8548 OptoRuntime::digestBase_implCompressMB_Type(false),
8549 stubAddr, stubName, TypePtr::BOTTOM,
8550 src_start, state, ofs, limit);
8551 } else {
8552 call = make_runtime_call(RC_LEAF|RC_NO_FP,
8553 OptoRuntime::digestBase_implCompressMB_Type(true),
8554 stubAddr, stubName, TypePtr::BOTTOM,
8555 src_start, state, block_size, ofs, limit);
8556 }
8557
8558 // return ofs (int)
8559 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8560 set_result(result);
8561
8562 return true;
8563 }
8564
8565 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
8566 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
8567 assert(UseAES, "need AES instruction support");
8568 address stubAddr = nullptr;
8569 const char *stubName = nullptr;
8570 stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
8571 stubName = "galoisCounterMode_AESCrypt";
8572
8573 if (stubAddr == nullptr) return false;
8574
8575 Node* in = argument(0);
8576 Node* inOfs = argument(1);
8577 Node* len = argument(2);
8578 Node* ct = argument(3);
8579 Node* ctOfs = argument(4);
8580 Node* out = argument(5);
8581 Node* outOfs = argument(6);
8582 Node* gctr_object = argument(7);
8583 Node* ghash_object = argument(8);
8584
8585 // (1) in, ct and out are arrays.
8586 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
8587 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
8588 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
8589 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM &&
8590 ct_type != nullptr && ct_type->elem() != Type::BOTTOM &&
8591 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
8592
8593 // checks are the responsibility of the caller
8594 Node* in_start = in;
8595 Node* ct_start = ct;
8596 Node* out_start = out;
8597 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
8598 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
8599 in_start = array_element_address(in, inOfs, T_BYTE);
8600 ct_start = array_element_address(ct, ctOfs, T_BYTE);
8601 out_start = array_element_address(out, outOfs, T_BYTE);
8602 }
8603
8604 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
8605 // (because of the predicated logic executed earlier).
8606 // so we cast it here safely.
8607 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
8608 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8609 Node* counter = load_field_from_object(gctr_object, "counter", "[B");
8610 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
8611 Node* state = load_field_from_object(ghash_object, "state", "[J");
8612
8613 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
8614 return false;
8615 }
8616 // cast it to what we know it will be at runtime
8617 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
8618 assert(tinst != nullptr, "GCTR obj is null");
8619 assert(tinst->is_loaded(), "GCTR obj is not loaded");
8620 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8621 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
8622 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8623 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
8624 const TypeOopPtr* xtype = aklass->as_instance_type();
8625 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
8626 aescrypt_object = _gvn.transform(aescrypt_object);
8627 // we need to get the start of the aescrypt_object's expanded key array
8628 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
8629 if (k_start == nullptr) return false;
8630 // similarly, get the start address of the r vector
8631 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
8632 Node* state_start = array_element_address(state, intcon(0), T_LONG);
8633 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
8634
8635
8636 // Call the stub, passing params
8637 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
8638 OptoRuntime::galoisCounterMode_aescrypt_Type(),
8639 stubAddr, stubName, TypePtr::BOTTOM,
8640 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
8641
8642 // return cipher length (int)
8643 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
8644 set_result(retvalue);
8645
8646 return true;
8647 }
8648
8649 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
8650 // Return node representing slow path of predicate check.
8651 // the pseudo code we want to emulate with this predicate is:
8652 // for encryption:
8653 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8654 // for decryption:
8655 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8656 // note cipher==plain is more conservative than the original java code but that's OK
8657 //
8658
8659 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
8660 // The receiver was checked for null already.
8661 Node* objGCTR = argument(7);
8662 // Load embeddedCipher field of GCTR object.
8663 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8664 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
8665
8666 // get AESCrypt klass for instanceOf check
8667 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8668 // will have same classloader as CipherBlockChaining object
8669 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
8670 assert(tinst != nullptr, "GCTR obj is null");
8671 assert(tinst->is_loaded(), "GCTR obj is not loaded");
8672
8673 // we want to do an instanceof comparison against the AESCrypt class
8674 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8675 if (!klass_AESCrypt->is_loaded()) {
8676 // if AESCrypt is not even loaded, we never take the intrinsic fast path
8677 Node* ctrl = control();
8678 set_control(top()); // no regular fast path
8679 return ctrl;
8680 }
8681
8682 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8683 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8684 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8685 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8686 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8687
8688 return instof_false; // even if it is null
8689 }
8690
8691 //------------------------------get_state_from_digest_object-----------------------
8692 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
8693 const char* state_type;
8694 switch (elem_type) {
8695 case T_BYTE: state_type = "[B"; break;
8696 case T_INT: state_type = "[I"; break;
8697 case T_LONG: state_type = "[J"; break;
8698 default: ShouldNotReachHere();
8699 }
8700 Node* digest_state = load_field_from_object(digest_object, "state", state_type);
8701 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
8702 if (digest_state == nullptr) return (Node *) nullptr;
8703
8704 // now have the array, need to get the start address of the state array
8705 Node* state = array_element_address(digest_state, intcon(0), elem_type);
8706 return state;
8707 }
8708
8709 //------------------------------get_block_size_from_sha3_object----------------------------------
8710 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
8711 Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
8712 assert (block_size != nullptr, "sanity");
8713 return block_size;
8714 }
8715
8716 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
8717 // Return node representing slow path of predicate check.
8718 // the pseudo code we want to emulate with this predicate is:
8719 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
8720 //
8721 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
8722 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8723 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8724 assert((uint)predicate < 5, "sanity");
8725
8726 // The receiver was checked for null already.
8727 Node* digestBaseObj = argument(0);
8728
8729 // get DigestBase klass for instanceOf check
8730 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
8731 assert(tinst != nullptr, "digestBaseObj is null");
8732 assert(tinst->is_loaded(), "DigestBase is not loaded");
8733
8734 const char* klass_name = nullptr;
8735 switch (predicate) {
8736 case 0:
8737 if (UseMD5Intrinsics) {
8738 // we want to do an instanceof comparison against the MD5 class
8739 klass_name = "sun/security/provider/MD5";
8740 }
8741 break;
8742 case 1:
8743 if (UseSHA1Intrinsics) {
8744 // we want to do an instanceof comparison against the SHA class
8745 klass_name = "sun/security/provider/SHA";
8746 }
8747 break;
8748 case 2:
8749 if (UseSHA256Intrinsics) {
8750 // we want to do an instanceof comparison against the SHA2 class
8751 klass_name = "sun/security/provider/SHA2";
8752 }
8753 break;
8754 case 3:
8755 if (UseSHA512Intrinsics) {
8756 // we want to do an instanceof comparison against the SHA5 class
8757 klass_name = "sun/security/provider/SHA5";
8758 }
8759 break;
8760 case 4:
8761 if (UseSHA3Intrinsics) {
8762 // we want to do an instanceof comparison against the SHA3 class
8763 klass_name = "sun/security/provider/SHA3";
8764 }
8765 break;
8766 default:
8767 fatal("unknown SHA intrinsic predicate: %d", predicate);
8768 }
8769
8770 ciKlass* klass = nullptr;
8771 if (klass_name != nullptr) {
8772 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
8773 }
8774 if ((klass == nullptr) || !klass->is_loaded()) {
8775 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
8776 Node* ctrl = control();
8777 set_control(top()); // no intrinsic path
8778 return ctrl;
8779 }
8780 ciInstanceKlass* instklass = klass->as_instance_klass();
8781
8782 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
8783 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8784 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8785 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8786
8787 return instof_false; // even if it is null
8788 }
8789
8790 //-------------inline_fma-----------------------------------
8791 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
8792 Node *a = nullptr;
8793 Node *b = nullptr;
8794 Node *c = nullptr;
8795 Node* result = nullptr;
8796 switch (id) {
8797 case vmIntrinsics::_fmaD:
8798 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
8799 // no receiver since it is static method
8800 a = argument(0);
8801 b = argument(2);
8802 c = argument(4);
8803 result = _gvn.transform(new FmaDNode(a, b, c));
8804 break;
8805 case vmIntrinsics::_fmaF:
8806 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
8807 a = argument(0);
8808 b = argument(1);
8809 c = argument(2);
8810 result = _gvn.transform(new FmaFNode(a, b, c));
8811 break;
8812 default:
8813 fatal_unexpected_iid(id); break;
8814 }
8815 set_result(result);
8816 return true;
8817 }
8818
8819 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
8820 // argument(0) is receiver
8821 Node* codePoint = argument(1);
8822 Node* n = nullptr;
8823
8824 switch (id) {
8825 case vmIntrinsics::_isDigit :
8826 n = new DigitNode(control(), codePoint);
8827 break;
8828 case vmIntrinsics::_isLowerCase :
8829 n = new LowerCaseNode(control(), codePoint);
8830 break;
8831 case vmIntrinsics::_isUpperCase :
8832 n = new UpperCaseNode(control(), codePoint);
8833 break;
8834 case vmIntrinsics::_isWhitespace :
8835 n = new WhitespaceNode(control(), codePoint);
8836 break;
8837 default:
8838 fatal_unexpected_iid(id);
8839 }
8840
8841 set_result(_gvn.transform(n));
8842 return true;
8843 }
8844
8845 bool LibraryCallKit::inline_profileBoolean() {
8846 Node* counts = argument(1);
8847 const TypeAryPtr* ary = nullptr;
8848 ciArray* aobj = nullptr;
8849 if (counts->is_Con()
8850 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
8851 && (aobj = ary->const_oop()->as_array()) != nullptr
8852 && (aobj->length() == 2)) {
8853 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
8854 jint false_cnt = aobj->element_value(0).as_int();
8855 jint true_cnt = aobj->element_value(1).as_int();
8856
8857 if (C->log() != nullptr) {
8858 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
8859 false_cnt, true_cnt);
8860 }
8861
8862 if (false_cnt + true_cnt == 0) {
8863 // According to profile, never executed.
8864 uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8865 Deoptimization::Action_reinterpret);
8866 return true;
8867 }
8868
8869 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
8870 // is a number of each value occurrences.
8871 Node* result = argument(0);
8872 if (false_cnt == 0 || true_cnt == 0) {
8873 // According to profile, one value has been never seen.
8874 int expected_val = (false_cnt == 0) ? 1 : 0;
8875
8876 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val)));
8877 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
8878
8879 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
8880 Node* fast_path = _gvn.transform(new IfTrueNode(check));
8881 Node* slow_path = _gvn.transform(new IfFalseNode(check));
8882
8883 { // Slow path: uncommon trap for never seen value and then reexecute
8884 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
8885 // the value has been seen at least once.
8886 PreserveJVMState pjvms(this);
8887 PreserveReexecuteState preexecs(this);
8888 jvms()->set_should_reexecute(true);
8889
8890 set_control(slow_path);
8891 set_i_o(i_o());
8892
8893 uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8894 Deoptimization::Action_reinterpret);
8895 }
8896 // The guard for never seen value enables sharpening of the result and
8897 // returning a constant. It allows to eliminate branches on the same value
8898 // later on.
8899 set_control(fast_path);
8900 result = intcon(expected_val);
8901 }
8902 // Stop profiling.
8903 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
8904 // By replacing method body with profile data (represented as ProfileBooleanNode
8905 // on IR level) we effectively disable profiling.
8906 // It enables full speed execution once optimized code is generated.
8907 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
8908 C->record_for_igvn(profile);
8909 set_result(profile);
8910 return true;
8911 } else {
8912 // Continue profiling.
8913 // Profile data isn't available at the moment. So, execute method's bytecode version.
8914 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
8915 // is compiled and counters aren't available since corresponding MethodHandle
8916 // isn't a compile-time constant.
8917 return false;
8918 }
8919 }
8920
8921 bool LibraryCallKit::inline_isCompileConstant() {
8922 Node* n = argument(0);
8923 set_result(n->is_Con() ? intcon(1) : intcon(0));
8924 return true;
8925 }
8926
8927 //------------------------------- inline_getObjectSize/sizeOf --------------------------------------
8928 //
8929 // Calculate the runtime size of the object/array.
8930 //
8931 // long java.lang.Runtime.sizeOf(Object obj)
8932 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
8933 //
8934 bool LibraryCallKit::inline_sizeOf() {
8935 Node* obj = argument(0);
8936 return inline_sizeOf_impl(obj);
8937 }
8938
8939 bool LibraryCallKit::inline_getObjectSize() {
8940 Node* obj = argument(3);
8941 return inline_sizeOf_impl(obj);
8942 }
8943
8944 bool LibraryCallKit::inline_sizeOf_impl(Node* obj) {
8945 Node* klass_node = load_object_klass(obj);
8946
8947 jint layout_con = Klass::_lh_neutral_value;
8948 Node* layout_val = get_layout_helper(klass_node, layout_con);
8949 int layout_is_con = (layout_val == nullptr);
8950
8951 if (layout_is_con) {
8952 // Layout helper is constant, can figure out things at compile time.
8953
8954 if (Klass::layout_helper_is_instance(layout_con)) {
8955 // Instance case: layout_con contains the size itself.
8956 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
8957 set_result(size);
8958 } else {
8959 // Array case: size is round(header + element_size*arraylength).
8960 // Since arraylength is different for every array instance, we have to
8961 // compute the whole thing at runtime.
8962
8963 Node* arr_length = load_array_length(obj);
8964
8965 int round_mask = MinObjAlignmentInBytes - 1;
8966 int hsize = Klass::layout_helper_header_size(layout_con);
8967 int eshift = Klass::layout_helper_log2_element_size(layout_con);
8968
8969 if ((round_mask & ~right_n_bits(eshift)) == 0) {
8970 round_mask = 0; // strength-reduce it if it goes away completely
8971 }
8972 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
8973 Node* header_size = intcon(hsize + round_mask);
8974
8975 Node* lengthx = ConvI2X(arr_length);
8976 Node* headerx = ConvI2X(header_size);
8977
8978 Node* abody = lengthx;
8979 if (eshift != 0) {
8980 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
8981 }
8982 Node* size = _gvn.transform( new AddXNode(headerx, abody) );
8983 if (round_mask != 0) {
8984 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
8985 }
8986 size = ConvX2L(size);
8987 set_result(size);
8988 }
8989 } else {
8990 // Layout helper is not constant, need to test for array-ness at runtime.
8991
8992 enum { _instance_path = 1, _array_path, PATH_LIMIT };
8993 RegionNode* result_reg = new RegionNode(PATH_LIMIT);
8994 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
8995 record_for_igvn(result_reg);
8996
8997 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj);
8998 if (array_ctl != nullptr) {
8999 // Array case: size is round(header + element_size*arraylength).
9000 // Since arraylength is different for every array instance, we have to
9001 // compute the whole thing at runtime.
9002
9003 PreserveJVMState pjvms(this);
9004 set_control(array_ctl);
9005 Node* arr_length = load_array_length(obj);
9006
9007 int round_mask = MinObjAlignmentInBytes - 1;
9008 Node* mask = intcon(round_mask);
9009
9010 Node* hss = intcon(Klass::_lh_header_size_shift);
9011 Node* hsm = intcon(Klass::_lh_header_size_mask);
9012 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
9013 header_size = _gvn.transform(new AndINode(header_size, hsm));
9014 header_size = _gvn.transform(new AddINode(header_size, mask));
9015
9016 // There is no need to mask or shift this value.
9017 // The semantics of LShiftINode include an implicit mask to 0x1F.
9018 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
9019 Node* elem_shift = layout_val;
9020
9021 Node* lengthx = ConvI2X(arr_length);
9022 Node* headerx = ConvI2X(header_size);
9023
9024 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
9025 Node* size = _gvn.transform(new AddXNode(headerx, abody));
9026 if (round_mask != 0) {
9027 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
9028 }
9029 size = ConvX2L(size);
9030
9031 result_reg->init_req(_array_path, control());
9032 result_val->init_req(_array_path, size);
9033 }
9034
9035 if (!stopped()) {
9036 // Instance case: the layout helper gives us instance size almost directly,
9037 // but we need to mask out the _lh_instance_slow_path_bit.
9038 Node* size = ConvI2X(layout_val);
9039 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
9040 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
9041 size = _gvn.transform(new AndXNode(size, mask));
9042 size = ConvX2L(size);
9043
9044 result_reg->init_req(_instance_path, control());
9045 result_val->init_req(_instance_path, size);
9046 }
9047
9048 set_result(result_reg, result_val);
9049 }
9050
9051 return true;
9052 }
9053
9054 //------------------------------- inline_blackhole --------------------------------------
9055 //
9056 // Make sure all arguments to this node are alive.
9057 // This matches methods that were requested to be blackholed through compile commands.
9058 //
9059 bool LibraryCallKit::inline_blackhole() {
9060 assert(callee()->is_static(), "Should have been checked before: only static methods here");
9061 assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
9062 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
9063
9064 // Blackhole node pinches only the control, not memory. This allows
9065 // the blackhole to be pinned in the loop that computes blackholed
9066 // values, but have no other side effects, like breaking the optimizations
9067 // across the blackhole.
9068
9069 Node* bh = _gvn.transform(new BlackholeNode(control()));
9070 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
9071
9072 // Bind call arguments as blackhole arguments to keep them alive
9073 uint nargs = callee()->arg_size();
9074 for (uint i = 0; i < nargs; i++) {
9075 bh->add_req(argument(i));
9076 }
9077
9078 return true;
9079 }
9080
9081 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) {
9082 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr();
9083 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) {
9084 return nullptr; // box klass is not Float16
9085 }
9086
9087 // Null check; get notnull casted pointer
9088 Node* null_ctl = top();
9089 Node* not_null_box = null_check_oop(box, &null_ctl, true);
9090 // If not_null_box is dead, only null-path is taken
9091 if (stopped()) {
9092 set_control(null_ctl);
9093 return nullptr;
9094 }
9095 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, "");
9096 const TypePtr* adr_type = C->alias_type(field)->adr_type();
9097 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes());
9098 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP);
9099 }
9100
9101 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) {
9102 PreserveReexecuteState preexecs(this);
9103 jvms()->set_should_reexecute(true);
9104
9105 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type();
9106 Node* klass_node = makecon(klass_type);
9107 Node* box = new_instance(klass_node);
9108
9109 Node* value_field = basic_plus_adr(box, field->offset_in_bytes());
9110 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr();
9111
9112 Node* field_store = _gvn.transform(access_store_at(box,
9113 value_field,
9114 value_adr_type,
9115 value,
9116 TypeInt::SHORT,
9117 T_SHORT,
9118 IN_HEAP));
9119 set_memory(field_store, value_adr_type);
9120 return box;
9121 }
9122
9123 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) {
9124 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) ||
9125 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) {
9126 return false;
9127 }
9128
9129 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr();
9130 if (box_type == nullptr || box_type->const_oop() == nullptr) {
9131 return false;
9132 }
9133
9134 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
9135 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass);
9136 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(),
9137 ciSymbols::short_signature(),
9138 false);
9139 assert(field != nullptr, "");
9140
9141 // Transformed nodes
9142 Node* fld1 = nullptr;
9143 Node* fld2 = nullptr;
9144 Node* fld3 = nullptr;
9145 switch(num_args) {
9146 case 3:
9147 fld3 = unbox_fp16_value(float16_box_type, field, argument(3));
9148 if (fld3 == nullptr) {
9149 return false;
9150 }
9151 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3));
9152 // fall-through
9153 case 2:
9154 fld2 = unbox_fp16_value(float16_box_type, field, argument(2));
9155 if (fld2 == nullptr) {
9156 return false;
9157 }
9158 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2));
9159 // fall-through
9160 case 1:
9161 fld1 = unbox_fp16_value(float16_box_type, field, argument(1));
9162 if (fld1 == nullptr) {
9163 return false;
9164 }
9165 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1));
9166 break;
9167 default: fatal("Unsupported number of arguments %d", num_args);
9168 }
9169
9170 Node* result = nullptr;
9171 switch (id) {
9172 // Unary operations
9173 case vmIntrinsics::_sqrt_float16:
9174 result = _gvn.transform(new SqrtHFNode(C, control(), fld1));
9175 break;
9176 // Ternary operations
9177 case vmIntrinsics::_fma_float16:
9178 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3));
9179 break;
9180 default:
9181 fatal_unexpected_iid(id);
9182 break;
9183 }
9184 result = _gvn.transform(new ReinterpretHF2SNode(result));
9185 set_result(box_fp16_value(float16_box_type, field, result));
9186 return true;
9187 }
9188
9189 bool LibraryCallKit::inline_timestamp(bool serial) {
9190 insert_mem_bar(Op_MemBarCPUOrder);
9191 Node* node = serial ?
9192 _gvn.transform(new TimestampSerialNode(control())) :
9193 _gvn.transform(new TimestampNode(control()));
9194 set_result(node);
9195 insert_mem_bar(Op_MemBarCPUOrder);
9196 return true;
9197 }
9198
9199 bool LibraryCallKit::inline_addressOf() {
9200 Node* obj = argument(0);
9201 Node* raw_val = _gvn.transform(new CastP2XNode(nullptr, obj));
9202 Node* long_val = ConvX2L(raw_val);
9203 set_result(long_val);
9204 return true;
9205 }