1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include <sys/types.h> 27 28 #include "precompiled.hpp" 29 #include "jvm.h" 30 #include "asm/assembler.hpp" 31 #include "asm/assembler.inline.hpp" 32 #include "ci/ciEnv.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "gc/shared/cardTableBarrierSet.hpp" 37 #include "gc/shared/cardTable.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "interpreter/bytecodeHistogram.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "compiler/compileTask.hpp" 43 #include "compiler/disassembler.hpp" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "nativeInst_aarch64.hpp" 47 #include "oops/accessDecorators.hpp" 48 #include "oops/compressedOops.inline.hpp" 49 #include "oops/klass.inline.hpp" 50 #include "runtime/icache.hpp" 51 #include "runtime/interfaceSupport.inline.hpp" 52 #include "runtime/jniHandles.inline.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/thread.hpp" 56 #include "utilities/powerOfTwo.hpp" 57 #ifdef COMPILER1 58 #include "c1/c1_LIRAssembler.hpp" 59 #endif 60 #ifdef COMPILER2 61 #include "oops/oop.hpp" 62 #include "opto/compile.hpp" 63 #include "opto/node.hpp" 64 #include "opto/output.hpp" 65 #endif 66 67 #ifdef PRODUCT 68 #define BLOCK_COMMENT(str) /* nothing */ 69 #else 70 #define BLOCK_COMMENT(str) block_comment(str) 71 #endif 72 #define STOP(str) stop(str); 73 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 74 75 // Patch any kind of instruction; there may be several instructions. 76 // Return the total length (in bytes) of the instructions. 77 int MacroAssembler::pd_patch_instruction_size(address branch, address target) { 78 int instructions = 1; 79 assert((uint64_t)target < (1ull << 48), "48-bit overflow in address constant"); 80 intptr_t offset = (target - branch) >> 2; 81 unsigned insn = *(unsigned*)branch; 82 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) { 83 // Load register (literal) 84 Instruction_aarch64::spatch(branch, 23, 5, offset); 85 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 86 // Unconditional branch (immediate) 87 Instruction_aarch64::spatch(branch, 25, 0, offset); 88 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 89 // Conditional branch (immediate) 90 Instruction_aarch64::spatch(branch, 23, 5, offset); 91 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 92 // Compare & branch (immediate) 93 Instruction_aarch64::spatch(branch, 23, 5, offset); 94 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 95 // Test & branch (immediate) 96 Instruction_aarch64::spatch(branch, 18, 5, offset); 97 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 98 // PC-rel. addressing 99 offset = target-branch; 100 int shift = Instruction_aarch64::extract(insn, 31, 31); 101 if (shift) { 102 uint64_t dest = (uint64_t)target; 103 uint64_t pc_page = (uint64_t)branch >> 12; 104 uint64_t adr_page = (uint64_t)target >> 12; 105 unsigned offset_lo = dest & 0xfff; 106 offset = adr_page - pc_page; 107 108 // We handle 4 types of PC relative addressing 109 // 1 - adrp Rx, target_page 110 // ldr/str Ry, [Rx, #offset_in_page] 111 // 2 - adrp Rx, target_page 112 // add Ry, Rx, #offset_in_page 113 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 114 // movk Rx, #imm16<<32 115 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 116 // In the first 3 cases we must check that Rx is the same in the adrp and the 117 // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end 118 // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened 119 // to be followed by a random unrelated ldr/str, add or movk instruction. 120 // 121 unsigned insn2 = ((unsigned*)branch)[1]; 122 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 123 Instruction_aarch64::extract(insn, 4, 0) == 124 Instruction_aarch64::extract(insn2, 9, 5)) { 125 // Load/store register (unsigned immediate) 126 unsigned size = Instruction_aarch64::extract(insn2, 31, 30); 127 Instruction_aarch64::patch(branch + sizeof (unsigned), 128 21, 10, offset_lo >> size); 129 guarantee(((dest >> size) << size) == dest, "misaligned target"); 130 instructions = 2; 131 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 132 Instruction_aarch64::extract(insn, 4, 0) == 133 Instruction_aarch64::extract(insn2, 4, 0)) { 134 // add (immediate) 135 Instruction_aarch64::patch(branch + sizeof (unsigned), 136 21, 10, offset_lo); 137 instructions = 2; 138 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 139 Instruction_aarch64::extract(insn, 4, 0) == 140 Instruction_aarch64::extract(insn2, 4, 0)) { 141 // movk #imm16<<32 142 Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32); 143 uintptr_t dest = ((uintptr_t)target & 0xffffffffULL) | ((uintptr_t)branch & 0xffff00000000ULL); 144 uintptr_t pc_page = (uintptr_t)branch >> 12; 145 uintptr_t adr_page = (uintptr_t)dest >> 12; 146 offset = adr_page - pc_page; 147 instructions = 2; 148 } 149 } 150 int offset_lo = offset & 3; 151 offset >>= 2; 152 Instruction_aarch64::spatch(branch, 23, 5, offset); 153 Instruction_aarch64::patch(branch, 30, 29, offset_lo); 154 } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) { 155 uint64_t dest = (uint64_t)target; 156 // Move wide constant 157 assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch"); 158 assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch"); 159 Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff); 160 Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff); 161 Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff); 162 assert(target_addr_for_insn(branch) == target, "should be"); 163 instructions = 3; 164 } else if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 165 // nothing to do 166 assert(target == 0, "did not expect to relocate target for polling page load"); 167 } else { 168 ShouldNotReachHere(); 169 } 170 return instructions * NativeInstruction::instruction_size; 171 } 172 173 int MacroAssembler::patch_oop(address insn_addr, address o) { 174 int instructions; 175 unsigned insn = *(unsigned*)insn_addr; 176 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 177 178 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 179 // narrow OOPs by setting the upper 16 bits in the first 180 // instruction. 181 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 182 // Move narrow OOP 183 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 184 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 185 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 186 instructions = 2; 187 } else { 188 // Move wide OOP 189 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 190 uintptr_t dest = (uintptr_t)o; 191 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 192 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 193 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 194 instructions = 3; 195 } 196 return instructions * NativeInstruction::instruction_size; 197 } 198 199 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 200 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 201 // We encode narrow ones by setting the upper 16 bits in the first 202 // instruction. 203 NativeInstruction *insn = nativeInstruction_at(insn_addr); 204 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 205 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 206 207 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 208 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 209 return 2 * NativeInstruction::instruction_size; 210 } 211 212 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) { 213 intptr_t offset = 0; 214 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) { 215 // Load register (literal) 216 offset = Instruction_aarch64::sextract(insn, 23, 5); 217 return address(((uint64_t)insn_addr + (offset << 2))); 218 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 219 // Unconditional branch (immediate) 220 offset = Instruction_aarch64::sextract(insn, 25, 0); 221 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 222 // Conditional branch (immediate) 223 offset = Instruction_aarch64::sextract(insn, 23, 5); 224 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 225 // Compare & branch (immediate) 226 offset = Instruction_aarch64::sextract(insn, 23, 5); 227 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 228 // Test & branch (immediate) 229 offset = Instruction_aarch64::sextract(insn, 18, 5); 230 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 231 // PC-rel. addressing 232 offset = Instruction_aarch64::extract(insn, 30, 29); 233 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 234 int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0; 235 if (shift) { 236 offset <<= shift; 237 uint64_t target_page = ((uint64_t)insn_addr) + offset; 238 target_page &= ((uint64_t)-1) << shift; 239 // Return the target address for the following sequences 240 // 1 - adrp Rx, target_page 241 // ldr/str Ry, [Rx, #offset_in_page] 242 // 2 - adrp Rx, target_page 243 // add Ry, Rx, #offset_in_page 244 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 245 // movk Rx, #imm12<<32 246 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 247 // 248 // In the first two cases we check that the register is the same and 249 // return the target_page + the offset within the page. 250 // Otherwise we assume it is a page aligned relocation and return 251 // the target page only. 252 // 253 unsigned insn2 = ((unsigned*)insn_addr)[1]; 254 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 255 Instruction_aarch64::extract(insn, 4, 0) == 256 Instruction_aarch64::extract(insn2, 9, 5)) { 257 // Load/store register (unsigned immediate) 258 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 259 unsigned int size = Instruction_aarch64::extract(insn2, 31, 30); 260 return address(target_page + (byte_offset << size)); 261 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 262 Instruction_aarch64::extract(insn, 4, 0) == 263 Instruction_aarch64::extract(insn2, 4, 0)) { 264 // add (immediate) 265 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 266 return address(target_page + byte_offset); 267 } else { 268 if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 269 Instruction_aarch64::extract(insn, 4, 0) == 270 Instruction_aarch64::extract(insn2, 4, 0)) { 271 target_page = (target_page & 0xffffffff) | 272 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 273 } 274 return (address)target_page; 275 } 276 } else { 277 ShouldNotReachHere(); 278 } 279 } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) { 280 uint32_t *insns = (uint32_t *)insn_addr; 281 // Move wide constant: movz, movk, movk. See movptr(). 282 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 283 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 284 return address(uint64_t(Instruction_aarch64::extract(insns[0], 20, 5)) 285 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 286 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 287 } else { 288 ShouldNotReachHere(); 289 } 290 return address(((uint64_t)insn_addr + (offset << 2))); 291 } 292 293 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 294 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 295 return 0; 296 } 297 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 298 } 299 300 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 301 if (acquire) { 302 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 303 ldar(tmp, tmp); 304 } else { 305 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 306 } 307 if (at_return) { 308 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 309 // we may safely use the sp instead to perform the stack watermark check. 310 cmp(in_nmethod ? sp : rfp, tmp); 311 br(Assembler::HI, slow_path); 312 } else { 313 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 314 } 315 } 316 317 void MacroAssembler::rt_call(address dest, Register tmp) { 318 CodeBlob *cb = CodeCache::find_blob(dest); 319 if (cb) { 320 far_call(RuntimeAddress(dest)); 321 } else { 322 lea(tmp, RuntimeAddress(dest)); 323 blr(tmp); 324 } 325 } 326 327 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 328 // we must set sp to zero to clear frame 329 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 330 331 // must clear fp, so that compiled frames are not confused; it is 332 // possible that we need it only for debugging 333 if (clear_fp) { 334 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 335 } 336 337 // Always clear the pc because it could have been set by make_walkable() 338 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 339 } 340 341 // Calls to C land 342 // 343 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 344 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 345 // has to be reset to 0. This is required to allow proper stack traversal. 346 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 347 Register last_java_fp, 348 Register last_java_pc, 349 Register scratch) { 350 351 if (last_java_pc->is_valid()) { 352 str(last_java_pc, Address(rthread, 353 JavaThread::frame_anchor_offset() 354 + JavaFrameAnchor::last_Java_pc_offset())); 355 } 356 357 // determine last_java_sp register 358 if (last_java_sp == sp) { 359 mov(scratch, sp); 360 last_java_sp = scratch; 361 } else if (!last_java_sp->is_valid()) { 362 last_java_sp = esp; 363 } 364 365 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 366 367 // last_java_fp is optional 368 if (last_java_fp->is_valid()) { 369 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 370 } 371 } 372 373 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 374 Register last_java_fp, 375 address last_java_pc, 376 Register scratch) { 377 assert(last_java_pc != NULL, "must provide a valid PC"); 378 379 adr(scratch, last_java_pc); 380 str(scratch, Address(rthread, 381 JavaThread::frame_anchor_offset() 382 + JavaFrameAnchor::last_Java_pc_offset())); 383 384 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 385 } 386 387 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 388 Register last_java_fp, 389 Label &L, 390 Register scratch) { 391 if (L.is_bound()) { 392 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 393 } else { 394 InstructionMark im(this); 395 L.add_patch_at(code(), locator()); 396 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 397 } 398 } 399 400 static inline bool target_needs_far_branch(address addr) { 401 // codecache size <= 128M 402 if (!MacroAssembler::far_branches()) { 403 return false; 404 } 405 // codecache size > 240M 406 if (MacroAssembler::codestub_branch_needs_far_jump()) { 407 return true; 408 } 409 // codecache size: 128M..240M 410 return !CodeCache::is_non_nmethod(addr); 411 } 412 413 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) { 414 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 415 assert(CodeCache::find_blob(entry.target()) != NULL, 416 "destination of far call not found in code cache"); 417 assert(entry.rspec().type() == relocInfo::external_word_type 418 || entry.rspec().type() == relocInfo::runtime_call_type 419 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 420 if (target_needs_far_branch(entry.target())) { 421 uint64_t offset; 422 // We can use ADRP here because we know that the total size of 423 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 424 adrp(tmp, entry, offset); 425 add(tmp, tmp, offset); 426 if (cbuf) cbuf->set_insts_mark(); 427 blr(tmp); 428 } else { 429 if (cbuf) cbuf->set_insts_mark(); 430 bl(entry); 431 } 432 } 433 434 int MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) { 435 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 436 assert(CodeCache::find_blob(entry.target()) != NULL, 437 "destination of far call not found in code cache"); 438 assert(entry.rspec().type() == relocInfo::external_word_type 439 || entry.rspec().type() == relocInfo::runtime_call_type 440 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 441 address start = pc(); 442 if (target_needs_far_branch(entry.target())) { 443 uint64_t offset; 444 // We can use ADRP here because we know that the total size of 445 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 446 adrp(tmp, entry, offset); 447 add(tmp, tmp, offset); 448 if (cbuf) cbuf->set_insts_mark(); 449 br(tmp); 450 } else { 451 if (cbuf) cbuf->set_insts_mark(); 452 b(entry); 453 } 454 return pc() - start; 455 } 456 457 void MacroAssembler::reserved_stack_check() { 458 // testing if reserved zone needs to be enabled 459 Label no_reserved_zone_enabling; 460 461 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 462 cmp(sp, rscratch1); 463 br(Assembler::LO, no_reserved_zone_enabling); 464 465 enter(); // LR and FP are live. 466 lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)); 467 mov(c_rarg0, rthread); 468 blr(rscratch1); 469 leave(); 470 471 // We have already removed our own frame. 472 // throw_delayed_StackOverflowError will think that it's been 473 // called by our caller. 474 lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 475 br(rscratch1); 476 should_not_reach_here(); 477 478 bind(no_reserved_zone_enabling); 479 } 480 481 static void pass_arg0(MacroAssembler* masm, Register arg) { 482 if (c_rarg0 != arg ) { 483 masm->mov(c_rarg0, arg); 484 } 485 } 486 487 static void pass_arg1(MacroAssembler* masm, Register arg) { 488 if (c_rarg1 != arg ) { 489 masm->mov(c_rarg1, arg); 490 } 491 } 492 493 static void pass_arg2(MacroAssembler* masm, Register arg) { 494 if (c_rarg2 != arg ) { 495 masm->mov(c_rarg2, arg); 496 } 497 } 498 499 static void pass_arg3(MacroAssembler* masm, Register arg) { 500 if (c_rarg3 != arg ) { 501 masm->mov(c_rarg3, arg); 502 } 503 } 504 505 void MacroAssembler::call_VM_base(Register oop_result, 506 Register java_thread, 507 Register last_java_sp, 508 address entry_point, 509 int number_of_arguments, 510 bool check_exceptions) { 511 // determine java_thread register 512 if (!java_thread->is_valid()) { 513 java_thread = rthread; 514 } 515 516 // determine last_java_sp register 517 if (!last_java_sp->is_valid()) { 518 last_java_sp = esp; 519 } 520 521 // debugging support 522 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 523 assert(java_thread == rthread, "unexpected register"); 524 #ifdef ASSERT 525 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 526 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 527 #endif // ASSERT 528 529 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 530 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 531 532 // push java thread (becomes first argument of C function) 533 534 mov(c_rarg0, java_thread); 535 536 // set last Java frame before call 537 assert(last_java_sp != rfp, "can't use rfp"); 538 539 Label l; 540 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 541 542 // do the call, remove parameters 543 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 544 545 // lr could be poisoned with PAC signature during throw_pending_exception 546 // if it was tail-call optimized by compiler, since lr is not callee-saved 547 // reload it with proper value 548 adr(lr, l); 549 550 // reset last Java frame 551 // Only interpreter should have to clear fp 552 reset_last_Java_frame(true); 553 554 // C++ interp handles this in the interpreter 555 check_and_handle_popframe(java_thread); 556 check_and_handle_earlyret(java_thread); 557 558 if (check_exceptions) { 559 // check for pending exceptions (java_thread is set upon return) 560 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 561 Label ok; 562 cbz(rscratch1, ok); 563 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 564 br(rscratch1); 565 bind(ok); 566 } 567 568 // get oop result if there is one and reset the value in the thread 569 if (oop_result->is_valid()) { 570 get_vm_result(oop_result, java_thread); 571 } 572 } 573 574 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 575 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 576 } 577 578 // Maybe emit a call via a trampoline. If the code cache is small 579 // trampolines won't be emitted. 580 581 address MacroAssembler::trampoline_call(Address entry, CodeBuffer* cbuf) { 582 assert(JavaThread::current()->is_Compiler_thread(), "just checking"); 583 assert(entry.rspec().type() == relocInfo::runtime_call_type 584 || entry.rspec().type() == relocInfo::opt_virtual_call_type 585 || entry.rspec().type() == relocInfo::static_call_type 586 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 587 588 // We need a trampoline if branches are far. 589 if (far_branches()) { 590 bool in_scratch_emit_size = false; 591 #ifdef COMPILER2 592 // We don't want to emit a trampoline if C2 is generating dummy 593 // code during its branch shortening phase. 594 CompileTask* task = ciEnv::current()->task(); 595 in_scratch_emit_size = 596 (task != NULL && is_c2_compile(task->comp_level()) && 597 Compile::current()->output()->in_scratch_emit_size()); 598 #endif 599 if (!in_scratch_emit_size) { 600 address stub = emit_trampoline_stub(offset(), entry.target()); 601 if (stub == NULL) { 602 postcond(pc() == badAddress); 603 return NULL; // CodeCache is full 604 } 605 } 606 } 607 608 if (cbuf) cbuf->set_insts_mark(); 609 relocate(entry.rspec()); 610 if (!far_branches()) { 611 bl(entry.target()); 612 } else { 613 bl(pc()); 614 } 615 // just need to return a non-null address 616 postcond(pc() != badAddress); 617 return pc(); 618 } 619 620 621 // Emit a trampoline stub for a call to a target which is too far away. 622 // 623 // code sequences: 624 // 625 // call-site: 626 // branch-and-link to <destination> or <trampoline stub> 627 // 628 // Related trampoline stub for this call site in the stub section: 629 // load the call target from the constant pool 630 // branch (LR still points to the call site above) 631 632 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 633 address dest) { 634 // Max stub size: alignment nop, TrampolineStub. 635 address stub = start_a_stub(NativeInstruction::instruction_size 636 + NativeCallTrampolineStub::instruction_size); 637 if (stub == NULL) { 638 return NULL; // CodeBuffer::expand failed 639 } 640 641 // Create a trampoline stub relocation which relates this trampoline stub 642 // with the call instruction at insts_call_instruction_offset in the 643 // instructions code-section. 644 align(wordSize); 645 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 646 + insts_call_instruction_offset)); 647 const int stub_start_offset = offset(); 648 649 // Now, create the trampoline stub's code: 650 // - load the call 651 // - call 652 Label target; 653 ldr(rscratch1, target); 654 br(rscratch1); 655 bind(target); 656 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 657 "should be"); 658 emit_int64((int64_t)dest); 659 660 const address stub_start_addr = addr_at(stub_start_offset); 661 662 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 663 664 end_a_stub(); 665 return stub_start_addr; 666 } 667 668 void MacroAssembler::emit_static_call_stub() { 669 // CompiledDirectStaticCall::set_to_interpreted knows the 670 // exact layout of this stub. 671 672 isb(); 673 mov_metadata(rmethod, (Metadata*)NULL); 674 675 // Jump to the entry point of the i2c stub. 676 movptr(rscratch1, 0); 677 br(rscratch1); 678 } 679 680 void MacroAssembler::c2bool(Register x) { 681 // implements x == 0 ? 0 : 1 682 // note: must only look at least-significant byte of x 683 // since C-style booleans are stored in one byte 684 // only! (was bug) 685 tst(x, 0xff); 686 cset(x, Assembler::NE); 687 } 688 689 address MacroAssembler::ic_call(address entry, jint method_index) { 690 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 691 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 692 // uintptr_t offset; 693 // ldr_constant(rscratch2, const_ptr); 694 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 695 return trampoline_call(Address(entry, rh)); 696 } 697 698 // Implementation of call_VM versions 699 700 void MacroAssembler::call_VM(Register oop_result, 701 address entry_point, 702 bool check_exceptions) { 703 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 704 } 705 706 void MacroAssembler::call_VM(Register oop_result, 707 address entry_point, 708 Register arg_1, 709 bool check_exceptions) { 710 pass_arg1(this, arg_1); 711 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 712 } 713 714 void MacroAssembler::call_VM(Register oop_result, 715 address entry_point, 716 Register arg_1, 717 Register arg_2, 718 bool check_exceptions) { 719 assert(arg_1 != c_rarg2, "smashed arg"); 720 pass_arg2(this, arg_2); 721 pass_arg1(this, arg_1); 722 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 723 } 724 725 void MacroAssembler::call_VM(Register oop_result, 726 address entry_point, 727 Register arg_1, 728 Register arg_2, 729 Register arg_3, 730 bool check_exceptions) { 731 assert(arg_1 != c_rarg3, "smashed arg"); 732 assert(arg_2 != c_rarg3, "smashed arg"); 733 pass_arg3(this, arg_3); 734 735 assert(arg_1 != c_rarg2, "smashed arg"); 736 pass_arg2(this, arg_2); 737 738 pass_arg1(this, arg_1); 739 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 740 } 741 742 void MacroAssembler::call_VM(Register oop_result, 743 Register last_java_sp, 744 address entry_point, 745 int number_of_arguments, 746 bool check_exceptions) { 747 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 748 } 749 750 void MacroAssembler::call_VM(Register oop_result, 751 Register last_java_sp, 752 address entry_point, 753 Register arg_1, 754 bool check_exceptions) { 755 pass_arg1(this, arg_1); 756 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 757 } 758 759 void MacroAssembler::call_VM(Register oop_result, 760 Register last_java_sp, 761 address entry_point, 762 Register arg_1, 763 Register arg_2, 764 bool check_exceptions) { 765 766 assert(arg_1 != c_rarg2, "smashed arg"); 767 pass_arg2(this, arg_2); 768 pass_arg1(this, arg_1); 769 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 770 } 771 772 void MacroAssembler::call_VM(Register oop_result, 773 Register last_java_sp, 774 address entry_point, 775 Register arg_1, 776 Register arg_2, 777 Register arg_3, 778 bool check_exceptions) { 779 assert(arg_1 != c_rarg3, "smashed arg"); 780 assert(arg_2 != c_rarg3, "smashed arg"); 781 pass_arg3(this, arg_3); 782 assert(arg_1 != c_rarg2, "smashed arg"); 783 pass_arg2(this, arg_2); 784 pass_arg1(this, arg_1); 785 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 786 } 787 788 789 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 790 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 791 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 792 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 793 } 794 795 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 796 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 797 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 798 } 799 800 void MacroAssembler::align(int modulus) { 801 while (offset() % modulus != 0) nop(); 802 } 803 804 // these are no-ops overridden by InterpreterMacroAssembler 805 806 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 807 808 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 809 810 // Look up the method for a megamorphic invokeinterface call. 811 // The target method is determined by <intf_klass, itable_index>. 812 // The receiver klass is in recv_klass. 813 // On success, the result will be in method_result, and execution falls through. 814 // On failure, execution transfers to the given label. 815 void MacroAssembler::lookup_interface_method(Register recv_klass, 816 Register intf_klass, 817 RegisterOrConstant itable_index, 818 Register method_result, 819 Register scan_temp, 820 Label& L_no_such_interface, 821 bool return_method) { 822 assert_different_registers(recv_klass, intf_klass, scan_temp); 823 assert_different_registers(method_result, intf_klass, scan_temp); 824 assert(recv_klass != method_result || !return_method, 825 "recv_klass can be destroyed when method isn't needed"); 826 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 827 "caller must use same register for non-constant itable index as for method"); 828 829 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 830 int vtable_base = in_bytes(Klass::vtable_start_offset()); 831 int itentry_off = itableMethodEntry::method_offset_in_bytes(); 832 int scan_step = itableOffsetEntry::size() * wordSize; 833 int vte_size = vtableEntry::size_in_bytes(); 834 assert(vte_size == wordSize, "else adjust times_vte_scale"); 835 836 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 837 838 // %%% Could store the aligned, prescaled offset in the klassoop. 839 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 840 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 841 add(scan_temp, scan_temp, vtable_base); 842 843 if (return_method) { 844 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 845 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 846 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 847 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 848 if (itentry_off) 849 add(recv_klass, recv_klass, itentry_off); 850 } 851 852 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { 853 // if (scan->interface() == intf) { 854 // result = (klass + scan->offset() + itable_index); 855 // } 856 // } 857 Label search, found_method; 858 859 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 860 cmp(intf_klass, method_result); 861 br(Assembler::EQ, found_method); 862 bind(search); 863 // Check that the previous entry is non-null. A null entry means that 864 // the receiver class doesn't implement the interface, and wasn't the 865 // same as when the caller was compiled. 866 cbz(method_result, L_no_such_interface); 867 if (itableOffsetEntry::interface_offset_in_bytes() != 0) { 868 add(scan_temp, scan_temp, scan_step); 869 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 870 } else { 871 ldr(method_result, Address(pre(scan_temp, scan_step))); 872 } 873 cmp(intf_klass, method_result); 874 br(Assembler::NE, search); 875 876 bind(found_method); 877 878 // Got a hit. 879 if (return_method) { 880 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); 881 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 882 } 883 } 884 885 // virtual method calling 886 void MacroAssembler::lookup_virtual_method(Register recv_klass, 887 RegisterOrConstant vtable_index, 888 Register method_result) { 889 const int base = in_bytes(Klass::vtable_start_offset()); 890 assert(vtableEntry::size() * wordSize == 8, 891 "adjust the scaling in the code below"); 892 int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes(); 893 894 if (vtable_index.is_register()) { 895 lea(method_result, Address(recv_klass, 896 vtable_index.as_register(), 897 Address::lsl(LogBytesPerWord))); 898 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 899 } else { 900 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 901 ldr(method_result, 902 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 903 } 904 } 905 906 void MacroAssembler::check_klass_subtype(Register sub_klass, 907 Register super_klass, 908 Register temp_reg, 909 Label& L_success) { 910 Label L_failure; 911 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); 912 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); 913 bind(L_failure); 914 } 915 916 917 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 918 Register super_klass, 919 Register temp_reg, 920 Label* L_success, 921 Label* L_failure, 922 Label* L_slow_path, 923 RegisterOrConstant super_check_offset) { 924 assert_different_registers(sub_klass, super_klass, temp_reg); 925 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 926 if (super_check_offset.is_register()) { 927 assert_different_registers(sub_klass, super_klass, 928 super_check_offset.as_register()); 929 } else if (must_load_sco) { 930 assert(temp_reg != noreg, "supply either a temp or a register offset"); 931 } 932 933 Label L_fallthrough; 934 int label_nulls = 0; 935 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 936 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 937 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } 938 assert(label_nulls <= 1, "at most one NULL in the batch"); 939 940 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 941 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 942 Address super_check_offset_addr(super_klass, sco_offset); 943 944 // Hacked jmp, which may only be used just before L_fallthrough. 945 #define final_jmp(label) \ 946 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 947 else b(label) /*omit semi*/ 948 949 // If the pointers are equal, we are done (e.g., String[] elements). 950 // This self-check enables sharing of secondary supertype arrays among 951 // non-primary types such as array-of-interface. Otherwise, each such 952 // type would need its own customized SSA. 953 // We move this check to the front of the fast path because many 954 // type checks are in fact trivially successful in this manner, 955 // so we get a nicely predicted branch right at the start of the check. 956 cmp(sub_klass, super_klass); 957 br(Assembler::EQ, *L_success); 958 959 // Check the supertype display: 960 if (must_load_sco) { 961 ldrw(temp_reg, super_check_offset_addr); 962 super_check_offset = RegisterOrConstant(temp_reg); 963 } 964 Address super_check_addr(sub_klass, super_check_offset); 965 ldr(rscratch1, super_check_addr); 966 cmp(super_klass, rscratch1); // load displayed supertype 967 968 // This check has worked decisively for primary supers. 969 // Secondary supers are sought in the super_cache ('super_cache_addr'). 970 // (Secondary supers are interfaces and very deeply nested subtypes.) 971 // This works in the same check above because of a tricky aliasing 972 // between the super_cache and the primary super display elements. 973 // (The 'super_check_addr' can address either, as the case requires.) 974 // Note that the cache is updated below if it does not help us find 975 // what we need immediately. 976 // So if it was a primary super, we can just fail immediately. 977 // Otherwise, it's the slow path for us (no success at this point). 978 979 if (super_check_offset.is_register()) { 980 br(Assembler::EQ, *L_success); 981 subs(zr, super_check_offset.as_register(), sc_offset); 982 if (L_failure == &L_fallthrough) { 983 br(Assembler::EQ, *L_slow_path); 984 } else { 985 br(Assembler::NE, *L_failure); 986 final_jmp(*L_slow_path); 987 } 988 } else if (super_check_offset.as_constant() == sc_offset) { 989 // Need a slow path; fast failure is impossible. 990 if (L_slow_path == &L_fallthrough) { 991 br(Assembler::EQ, *L_success); 992 } else { 993 br(Assembler::NE, *L_slow_path); 994 final_jmp(*L_success); 995 } 996 } else { 997 // No slow path; it's a fast decision. 998 if (L_failure == &L_fallthrough) { 999 br(Assembler::EQ, *L_success); 1000 } else { 1001 br(Assembler::NE, *L_failure); 1002 final_jmp(*L_success); 1003 } 1004 } 1005 1006 bind(L_fallthrough); 1007 1008 #undef final_jmp 1009 } 1010 1011 // These two are taken from x86, but they look generally useful 1012 1013 // scans count pointer sized words at [addr] for occurrence of value, 1014 // generic 1015 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1016 Register scratch) { 1017 Label Lloop, Lexit; 1018 cbz(count, Lexit); 1019 bind(Lloop); 1020 ldr(scratch, post(addr, wordSize)); 1021 cmp(value, scratch); 1022 br(EQ, Lexit); 1023 sub(count, count, 1); 1024 cbnz(count, Lloop); 1025 bind(Lexit); 1026 } 1027 1028 // scans count 4 byte words at [addr] for occurrence of value, 1029 // generic 1030 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1031 Register scratch) { 1032 Label Lloop, Lexit; 1033 cbz(count, Lexit); 1034 bind(Lloop); 1035 ldrw(scratch, post(addr, wordSize)); 1036 cmpw(value, scratch); 1037 br(EQ, Lexit); 1038 sub(count, count, 1); 1039 cbnz(count, Lloop); 1040 bind(Lexit); 1041 } 1042 1043 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1044 Register super_klass, 1045 Register temp_reg, 1046 Register temp2_reg, 1047 Label* L_success, 1048 Label* L_failure, 1049 bool set_cond_codes) { 1050 assert_different_registers(sub_klass, super_klass, temp_reg); 1051 if (temp2_reg != noreg) 1052 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1053 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1054 1055 Label L_fallthrough; 1056 int label_nulls = 0; 1057 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1058 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1059 assert(label_nulls <= 1, "at most one NULL in the batch"); 1060 1061 // a couple of useful fields in sub_klass: 1062 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1063 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1064 Address secondary_supers_addr(sub_klass, ss_offset); 1065 Address super_cache_addr( sub_klass, sc_offset); 1066 1067 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1068 1069 // Do a linear scan of the secondary super-klass chain. 1070 // This code is rarely used, so simplicity is a virtue here. 1071 // The repne_scan instruction uses fixed registers, which we must spill. 1072 // Don't worry too much about pre-existing connections with the input regs. 1073 1074 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1075 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1076 1077 RegSet pushed_registers; 1078 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1079 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1080 1081 if (super_klass != r0 || UseCompressedOops) { 1082 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1083 } 1084 1085 push(pushed_registers, sp); 1086 1087 // Get super_klass value into r0 (even if it was in r5 or r2). 1088 if (super_klass != r0) { 1089 mov(r0, super_klass); 1090 } 1091 1092 #ifndef PRODUCT 1093 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1094 Address pst_counter_addr(rscratch2); 1095 ldr(rscratch1, pst_counter_addr); 1096 add(rscratch1, rscratch1, 1); 1097 str(rscratch1, pst_counter_addr); 1098 #endif //PRODUCT 1099 1100 // We will consult the secondary-super array. 1101 ldr(r5, secondary_supers_addr); 1102 // Load the array length. 1103 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1104 // Skip to start of data. 1105 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1106 1107 cmp(sp, zr); // Clear Z flag; SP is never zero 1108 // Scan R2 words at [R5] for an occurrence of R0. 1109 // Set NZ/Z based on last compare. 1110 repne_scan(r5, r0, r2, rscratch1); 1111 1112 // Unspill the temp. registers: 1113 pop(pushed_registers, sp); 1114 1115 br(Assembler::NE, *L_failure); 1116 1117 // Success. Cache the super we found and proceed in triumph. 1118 str(super_klass, super_cache_addr); 1119 1120 if (L_success != &L_fallthrough) { 1121 b(*L_success); 1122 } 1123 1124 #undef IS_A_TEMP 1125 1126 bind(L_fallthrough); 1127 } 1128 1129 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 1130 assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required"); 1131 assert_different_registers(klass, rthread, scratch); 1132 1133 Label L_fallthrough, L_tmp; 1134 if (L_fast_path == NULL) { 1135 L_fast_path = &L_fallthrough; 1136 } else if (L_slow_path == NULL) { 1137 L_slow_path = &L_fallthrough; 1138 } 1139 // Fast path check: class is fully initialized 1140 ldrb(scratch, Address(klass, InstanceKlass::init_state_offset())); 1141 subs(zr, scratch, InstanceKlass::fully_initialized); 1142 br(Assembler::EQ, *L_fast_path); 1143 1144 // Fast path check: current thread is initializer thread 1145 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 1146 cmp(rthread, scratch); 1147 1148 if (L_slow_path == &L_fallthrough) { 1149 br(Assembler::EQ, *L_fast_path); 1150 bind(*L_slow_path); 1151 } else if (L_fast_path == &L_fallthrough) { 1152 br(Assembler::NE, *L_slow_path); 1153 bind(*L_fast_path); 1154 } else { 1155 Unimplemented(); 1156 } 1157 } 1158 1159 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 1160 if (!VerifyOops) return; 1161 1162 // Pass register number to verify_oop_subroutine 1163 const char* b = NULL; 1164 { 1165 ResourceMark rm; 1166 stringStream ss; 1167 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 1168 b = code_string(ss.as_string()); 1169 } 1170 BLOCK_COMMENT("verify_oop {"); 1171 1172 strip_return_address(); // This might happen within a stack frame. 1173 protect_return_address(); 1174 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1175 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1176 1177 mov(r0, reg); 1178 movptr(rscratch1, (uintptr_t)(address)b); 1179 1180 // call indirectly to solve generation ordering problem 1181 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1182 ldr(rscratch2, Address(rscratch2)); 1183 blr(rscratch2); 1184 1185 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1186 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1187 authenticate_return_address(); 1188 1189 BLOCK_COMMENT("} verify_oop"); 1190 } 1191 1192 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 1193 if (!VerifyOops) return; 1194 1195 const char* b = NULL; 1196 { 1197 ResourceMark rm; 1198 stringStream ss; 1199 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 1200 b = code_string(ss.as_string()); 1201 } 1202 BLOCK_COMMENT("verify_oop_addr {"); 1203 1204 strip_return_address(); // This might happen within a stack frame. 1205 protect_return_address(); 1206 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1207 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1208 1209 // addr may contain sp so we will have to adjust it based on the 1210 // pushes that we just did. 1211 if (addr.uses(sp)) { 1212 lea(r0, addr); 1213 ldr(r0, Address(r0, 4 * wordSize)); 1214 } else { 1215 ldr(r0, addr); 1216 } 1217 movptr(rscratch1, (uintptr_t)(address)b); 1218 1219 // call indirectly to solve generation ordering problem 1220 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1221 ldr(rscratch2, Address(rscratch2)); 1222 blr(rscratch2); 1223 1224 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1225 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1226 authenticate_return_address(); 1227 1228 BLOCK_COMMENT("} verify_oop_addr"); 1229 } 1230 1231 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1232 int extra_slot_offset) { 1233 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1234 int stackElementSize = Interpreter::stackElementSize; 1235 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1236 #ifdef ASSERT 1237 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1238 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1239 #endif 1240 if (arg_slot.is_constant()) { 1241 return Address(esp, arg_slot.as_constant() * stackElementSize 1242 + offset); 1243 } else { 1244 add(rscratch1, esp, arg_slot.as_register(), 1245 ext::uxtx, exact_log2(stackElementSize)); 1246 return Address(rscratch1, offset); 1247 } 1248 } 1249 1250 void MacroAssembler::call_VM_leaf_base(address entry_point, 1251 int number_of_arguments, 1252 Label *retaddr) { 1253 Label E, L; 1254 1255 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1256 1257 mov(rscratch1, entry_point); 1258 blr(rscratch1); 1259 if (retaddr) 1260 bind(*retaddr); 1261 1262 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1263 } 1264 1265 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1266 call_VM_leaf_base(entry_point, number_of_arguments); 1267 } 1268 1269 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1270 pass_arg0(this, arg_0); 1271 call_VM_leaf_base(entry_point, 1); 1272 } 1273 1274 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1275 pass_arg0(this, arg_0); 1276 pass_arg1(this, arg_1); 1277 call_VM_leaf_base(entry_point, 2); 1278 } 1279 1280 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1281 Register arg_1, Register arg_2) { 1282 pass_arg0(this, arg_0); 1283 pass_arg1(this, arg_1); 1284 pass_arg2(this, arg_2); 1285 call_VM_leaf_base(entry_point, 3); 1286 } 1287 1288 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1289 pass_arg0(this, arg_0); 1290 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1291 } 1292 1293 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1294 1295 assert(arg_0 != c_rarg1, "smashed arg"); 1296 pass_arg1(this, arg_1); 1297 pass_arg0(this, arg_0); 1298 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1299 } 1300 1301 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1302 assert(arg_0 != c_rarg2, "smashed arg"); 1303 assert(arg_1 != c_rarg2, "smashed arg"); 1304 pass_arg2(this, arg_2); 1305 assert(arg_0 != c_rarg1, "smashed arg"); 1306 pass_arg1(this, arg_1); 1307 pass_arg0(this, arg_0); 1308 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1309 } 1310 1311 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1312 assert(arg_0 != c_rarg3, "smashed arg"); 1313 assert(arg_1 != c_rarg3, "smashed arg"); 1314 assert(arg_2 != c_rarg3, "smashed arg"); 1315 pass_arg3(this, arg_3); 1316 assert(arg_0 != c_rarg2, "smashed arg"); 1317 assert(arg_1 != c_rarg2, "smashed arg"); 1318 pass_arg2(this, arg_2); 1319 assert(arg_0 != c_rarg1, "smashed arg"); 1320 pass_arg1(this, arg_1); 1321 pass_arg0(this, arg_0); 1322 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1323 } 1324 1325 void MacroAssembler::null_check(Register reg, int offset) { 1326 if (needs_explicit_null_check(offset)) { 1327 // provoke OS NULL exception if reg = NULL by 1328 // accessing M[reg] w/o changing any registers 1329 // NOTE: this is plenty to provoke a segv 1330 ldr(zr, Address(reg)); 1331 } else { 1332 // nothing to do, (later) access of M[reg + offset] 1333 // will provoke OS NULL exception if reg = NULL 1334 } 1335 } 1336 1337 // MacroAssembler protected routines needed to implement 1338 // public methods 1339 1340 void MacroAssembler::mov(Register r, Address dest) { 1341 code_section()->relocate(pc(), dest.rspec()); 1342 uint64_t imm64 = (uint64_t)dest.target(); 1343 movptr(r, imm64); 1344 } 1345 1346 // Move a constant pointer into r. In AArch64 mode the virtual 1347 // address space is 48 bits in size, so we only need three 1348 // instructions to create a patchable instruction sequence that can 1349 // reach anywhere. 1350 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1351 #ifndef PRODUCT 1352 { 1353 char buffer[64]; 1354 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 1355 block_comment(buffer); 1356 } 1357 #endif 1358 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 1359 movz(r, imm64 & 0xffff); 1360 imm64 >>= 16; 1361 movk(r, imm64 & 0xffff, 16); 1362 imm64 >>= 16; 1363 movk(r, imm64 & 0xffff, 32); 1364 } 1365 1366 // Macro to mov replicated immediate to vector register. 1367 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 1368 // the upper 56/48/32 bits must be zeros for B/H/S type. 1369 // Vd will get the following values for different arrangements in T 1370 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 1371 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 1372 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 1373 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 1374 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 1375 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 1376 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 1377 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 1378 // Clobbers rscratch1 1379 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 1380 assert(T != T1Q, "unsupported"); 1381 if (T == T1D || T == T2D) { 1382 int imm = operand_valid_for_movi_immediate(imm64, T); 1383 if (-1 != imm) { 1384 movi(Vd, T, imm); 1385 } else { 1386 mov(rscratch1, imm64); 1387 dup(Vd, T, rscratch1); 1388 } 1389 return; 1390 } 1391 1392 #ifdef ASSERT 1393 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 1394 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 1395 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 1396 #endif 1397 int shift = operand_valid_for_movi_immediate(imm64, T); 1398 uint32_t imm32 = imm64 & 0xffffffffULL; 1399 if (shift >= 0) { 1400 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 1401 } else { 1402 movw(rscratch1, imm32); 1403 dup(Vd, T, rscratch1); 1404 } 1405 } 1406 1407 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 1408 { 1409 #ifndef PRODUCT 1410 { 1411 char buffer[64]; 1412 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 1413 block_comment(buffer); 1414 } 1415 #endif 1416 if (operand_valid_for_logical_immediate(false, imm64)) { 1417 orr(dst, zr, imm64); 1418 } else { 1419 // we can use a combination of MOVZ or MOVN with 1420 // MOVK to build up the constant 1421 uint64_t imm_h[4]; 1422 int zero_count = 0; 1423 int neg_count = 0; 1424 int i; 1425 for (i = 0; i < 4; i++) { 1426 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1427 if (imm_h[i] == 0) { 1428 zero_count++; 1429 } else if (imm_h[i] == 0xffffL) { 1430 neg_count++; 1431 } 1432 } 1433 if (zero_count == 4) { 1434 // one MOVZ will do 1435 movz(dst, 0); 1436 } else if (neg_count == 4) { 1437 // one MOVN will do 1438 movn(dst, 0); 1439 } else if (zero_count == 3) { 1440 for (i = 0; i < 4; i++) { 1441 if (imm_h[i] != 0L) { 1442 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1443 break; 1444 } 1445 } 1446 } else if (neg_count == 3) { 1447 // one MOVN will do 1448 for (int i = 0; i < 4; i++) { 1449 if (imm_h[i] != 0xffffL) { 1450 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1451 break; 1452 } 1453 } 1454 } else if (zero_count == 2) { 1455 // one MOVZ and one MOVK will do 1456 for (i = 0; i < 3; i++) { 1457 if (imm_h[i] != 0L) { 1458 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1459 i++; 1460 break; 1461 } 1462 } 1463 for (;i < 4; i++) { 1464 if (imm_h[i] != 0L) { 1465 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1466 } 1467 } 1468 } else if (neg_count == 2) { 1469 // one MOVN and one MOVK will do 1470 for (i = 0; i < 4; i++) { 1471 if (imm_h[i] != 0xffffL) { 1472 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1473 i++; 1474 break; 1475 } 1476 } 1477 for (;i < 4; i++) { 1478 if (imm_h[i] != 0xffffL) { 1479 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1480 } 1481 } 1482 } else if (zero_count == 1) { 1483 // one MOVZ and two MOVKs will do 1484 for (i = 0; i < 4; i++) { 1485 if (imm_h[i] != 0L) { 1486 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1487 i++; 1488 break; 1489 } 1490 } 1491 for (;i < 4; i++) { 1492 if (imm_h[i] != 0x0L) { 1493 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1494 } 1495 } 1496 } else if (neg_count == 1) { 1497 // one MOVN and two MOVKs will do 1498 for (i = 0; i < 4; i++) { 1499 if (imm_h[i] != 0xffffL) { 1500 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1501 i++; 1502 break; 1503 } 1504 } 1505 for (;i < 4; i++) { 1506 if (imm_h[i] != 0xffffL) { 1507 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1508 } 1509 } 1510 } else { 1511 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1512 movz(dst, (uint32_t)imm_h[0], 0); 1513 for (i = 1; i < 4; i++) { 1514 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1515 } 1516 } 1517 } 1518 } 1519 1520 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 1521 { 1522 #ifndef PRODUCT 1523 { 1524 char buffer[64]; 1525 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 1526 block_comment(buffer); 1527 } 1528 #endif 1529 if (operand_valid_for_logical_immediate(true, imm32)) { 1530 orrw(dst, zr, imm32); 1531 } else { 1532 // we can use MOVZ, MOVN or two calls to MOVK to build up the 1533 // constant 1534 uint32_t imm_h[2]; 1535 imm_h[0] = imm32 & 0xffff; 1536 imm_h[1] = ((imm32 >> 16) & 0xffff); 1537 if (imm_h[0] == 0) { 1538 movzw(dst, imm_h[1], 16); 1539 } else if (imm_h[0] == 0xffff) { 1540 movnw(dst, imm_h[1] ^ 0xffff, 16); 1541 } else if (imm_h[1] == 0) { 1542 movzw(dst, imm_h[0], 0); 1543 } else if (imm_h[1] == 0xffff) { 1544 movnw(dst, imm_h[0] ^ 0xffff, 0); 1545 } else { 1546 // use a MOVZ and MOVK (makes it easier to debug) 1547 movzw(dst, imm_h[0], 0); 1548 movkw(dst, imm_h[1], 16); 1549 } 1550 } 1551 } 1552 1553 // Form an address from base + offset in Rd. Rd may or may 1554 // not actually be used: you must use the Address that is returned. 1555 // It is up to you to ensure that the shift provided matches the size 1556 // of your data. 1557 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 1558 if (Address::offset_ok_for_immed(byte_offset, shift)) 1559 // It fits; no need for any heroics 1560 return Address(base, byte_offset); 1561 1562 // Don't do anything clever with negative or misaligned offsets 1563 unsigned mask = (1 << shift) - 1; 1564 if (byte_offset < 0 || byte_offset & mask) { 1565 mov(Rd, byte_offset); 1566 add(Rd, base, Rd); 1567 return Address(Rd); 1568 } 1569 1570 // See if we can do this with two 12-bit offsets 1571 { 1572 uint64_t word_offset = byte_offset >> shift; 1573 uint64_t masked_offset = word_offset & 0xfff000; 1574 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 1575 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 1576 add(Rd, base, masked_offset << shift); 1577 word_offset -= masked_offset; 1578 return Address(Rd, word_offset << shift); 1579 } 1580 } 1581 1582 // Do it the hard way 1583 mov(Rd, byte_offset); 1584 add(Rd, base, Rd); 1585 return Address(Rd); 1586 } 1587 1588 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) { 1589 if (UseLSE) { 1590 mov(tmp, 1); 1591 ldadd(Assembler::word, tmp, zr, counter_addr); 1592 return; 1593 } 1594 Label retry_load; 1595 if (VM_Version::supports_stxr_prefetch()) 1596 prfm(Address(counter_addr), PSTL1STRM); 1597 bind(retry_load); 1598 // flush and load exclusive from the memory location 1599 ldxrw(tmp, counter_addr); 1600 addw(tmp, tmp, 1); 1601 // if we store+flush with no intervening write tmp will be zero 1602 stxrw(tmp2, tmp, counter_addr); 1603 cbnzw(tmp2, retry_load); 1604 } 1605 1606 1607 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 1608 bool want_remainder, Register scratch) 1609 { 1610 // Full implementation of Java idiv and irem. The function 1611 // returns the (pc) offset of the div instruction - may be needed 1612 // for implicit exceptions. 1613 // 1614 // constraint : ra/rb =/= scratch 1615 // normal case 1616 // 1617 // input : ra: dividend 1618 // rb: divisor 1619 // 1620 // result: either 1621 // quotient (= ra idiv rb) 1622 // remainder (= ra irem rb) 1623 1624 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1625 1626 int idivl_offset = offset(); 1627 if (! want_remainder) { 1628 sdivw(result, ra, rb); 1629 } else { 1630 sdivw(scratch, ra, rb); 1631 Assembler::msubw(result, scratch, rb, ra); 1632 } 1633 1634 return idivl_offset; 1635 } 1636 1637 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 1638 bool want_remainder, Register scratch) 1639 { 1640 // Full implementation of Java ldiv and lrem. The function 1641 // returns the (pc) offset of the div instruction - may be needed 1642 // for implicit exceptions. 1643 // 1644 // constraint : ra/rb =/= scratch 1645 // normal case 1646 // 1647 // input : ra: dividend 1648 // rb: divisor 1649 // 1650 // result: either 1651 // quotient (= ra idiv rb) 1652 // remainder (= ra irem rb) 1653 1654 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1655 1656 int idivq_offset = offset(); 1657 if (! want_remainder) { 1658 sdiv(result, ra, rb); 1659 } else { 1660 sdiv(scratch, ra, rb); 1661 Assembler::msub(result, scratch, rb, ra); 1662 } 1663 1664 return idivq_offset; 1665 } 1666 1667 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 1668 address prev = pc() - NativeMembar::instruction_size; 1669 address last = code()->last_insn(); 1670 if (last != NULL && nativeInstruction_at(last)->is_Membar() && prev == last) { 1671 NativeMembar *bar = NativeMembar_at(prev); 1672 // We are merging two memory barrier instructions. On AArch64 we 1673 // can do this simply by ORing them together. 1674 bar->set_kind(bar->get_kind() | order_constraint); 1675 BLOCK_COMMENT("merged membar"); 1676 } else { 1677 code()->set_last_insn(pc()); 1678 dmb(Assembler::barrier(order_constraint)); 1679 } 1680 } 1681 1682 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 1683 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 1684 merge_ldst(rt, adr, size_in_bytes, is_store); 1685 code()->clear_last_insn(); 1686 return true; 1687 } else { 1688 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 1689 const uint64_t mask = size_in_bytes - 1; 1690 if (adr.getMode() == Address::base_plus_offset && 1691 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 1692 code()->set_last_insn(pc()); 1693 } 1694 return false; 1695 } 1696 } 1697 1698 void MacroAssembler::ldr(Register Rx, const Address &adr) { 1699 // We always try to merge two adjacent loads into one ldp. 1700 if (!try_merge_ldst(Rx, adr, 8, false)) { 1701 Assembler::ldr(Rx, adr); 1702 } 1703 } 1704 1705 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 1706 // We always try to merge two adjacent loads into one ldp. 1707 if (!try_merge_ldst(Rw, adr, 4, false)) { 1708 Assembler::ldrw(Rw, adr); 1709 } 1710 } 1711 1712 void MacroAssembler::str(Register Rx, const Address &adr) { 1713 // We always try to merge two adjacent stores into one stp. 1714 if (!try_merge_ldst(Rx, adr, 8, true)) { 1715 Assembler::str(Rx, adr); 1716 } 1717 } 1718 1719 void MacroAssembler::strw(Register Rw, const Address &adr) { 1720 // We always try to merge two adjacent stores into one stp. 1721 if (!try_merge_ldst(Rw, adr, 4, true)) { 1722 Assembler::strw(Rw, adr); 1723 } 1724 } 1725 1726 // MacroAssembler routines found actually to be needed 1727 1728 void MacroAssembler::push(Register src) 1729 { 1730 str(src, Address(pre(esp, -1 * wordSize))); 1731 } 1732 1733 void MacroAssembler::pop(Register dst) 1734 { 1735 ldr(dst, Address(post(esp, 1 * wordSize))); 1736 } 1737 1738 // Note: load_unsigned_short used to be called load_unsigned_word. 1739 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1740 int off = offset(); 1741 ldrh(dst, src); 1742 return off; 1743 } 1744 1745 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1746 int off = offset(); 1747 ldrb(dst, src); 1748 return off; 1749 } 1750 1751 int MacroAssembler::load_signed_short(Register dst, Address src) { 1752 int off = offset(); 1753 ldrsh(dst, src); 1754 return off; 1755 } 1756 1757 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1758 int off = offset(); 1759 ldrsb(dst, src); 1760 return off; 1761 } 1762 1763 int MacroAssembler::load_signed_short32(Register dst, Address src) { 1764 int off = offset(); 1765 ldrshw(dst, src); 1766 return off; 1767 } 1768 1769 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 1770 int off = offset(); 1771 ldrsbw(dst, src); 1772 return off; 1773 } 1774 1775 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1776 switch (size_in_bytes) { 1777 case 8: ldr(dst, src); break; 1778 case 4: ldrw(dst, src); break; 1779 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1780 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1781 default: ShouldNotReachHere(); 1782 } 1783 } 1784 1785 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1786 switch (size_in_bytes) { 1787 case 8: str(src, dst); break; 1788 case 4: strw(src, dst); break; 1789 case 2: strh(src, dst); break; 1790 case 1: strb(src, dst); break; 1791 default: ShouldNotReachHere(); 1792 } 1793 } 1794 1795 void MacroAssembler::decrementw(Register reg, int value) 1796 { 1797 if (value < 0) { incrementw(reg, -value); return; } 1798 if (value == 0) { return; } 1799 if (value < (1 << 12)) { subw(reg, reg, value); return; } 1800 /* else */ { 1801 guarantee(reg != rscratch2, "invalid dst for register decrement"); 1802 movw(rscratch2, (unsigned)value); 1803 subw(reg, reg, rscratch2); 1804 } 1805 } 1806 1807 void MacroAssembler::decrement(Register reg, int value) 1808 { 1809 if (value < 0) { increment(reg, -value); return; } 1810 if (value == 0) { return; } 1811 if (value < (1 << 12)) { sub(reg, reg, value); return; } 1812 /* else */ { 1813 assert(reg != rscratch2, "invalid dst for register decrement"); 1814 mov(rscratch2, (uint64_t)value); 1815 sub(reg, reg, rscratch2); 1816 } 1817 } 1818 1819 void MacroAssembler::decrementw(Address dst, int value) 1820 { 1821 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 1822 if (dst.getMode() == Address::literal) { 1823 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 1824 lea(rscratch2, dst); 1825 dst = Address(rscratch2); 1826 } 1827 ldrw(rscratch1, dst); 1828 decrementw(rscratch1, value); 1829 strw(rscratch1, dst); 1830 } 1831 1832 void MacroAssembler::decrement(Address dst, int value) 1833 { 1834 assert(!dst.uses(rscratch1), "invalid address for decrement"); 1835 if (dst.getMode() == Address::literal) { 1836 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 1837 lea(rscratch2, dst); 1838 dst = Address(rscratch2); 1839 } 1840 ldr(rscratch1, dst); 1841 decrement(rscratch1, value); 1842 str(rscratch1, dst); 1843 } 1844 1845 void MacroAssembler::incrementw(Register reg, int value) 1846 { 1847 if (value < 0) { decrementw(reg, -value); return; } 1848 if (value == 0) { return; } 1849 if (value < (1 << 12)) { addw(reg, reg, value); return; } 1850 /* else */ { 1851 assert(reg != rscratch2, "invalid dst for register increment"); 1852 movw(rscratch2, (unsigned)value); 1853 addw(reg, reg, rscratch2); 1854 } 1855 } 1856 1857 void MacroAssembler::increment(Register reg, int value) 1858 { 1859 if (value < 0) { decrement(reg, -value); return; } 1860 if (value == 0) { return; } 1861 if (value < (1 << 12)) { add(reg, reg, value); return; } 1862 /* else */ { 1863 assert(reg != rscratch2, "invalid dst for register increment"); 1864 movw(rscratch2, (unsigned)value); 1865 add(reg, reg, rscratch2); 1866 } 1867 } 1868 1869 void MacroAssembler::incrementw(Address dst, int value) 1870 { 1871 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 1872 if (dst.getMode() == Address::literal) { 1873 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 1874 lea(rscratch2, dst); 1875 dst = Address(rscratch2); 1876 } 1877 ldrw(rscratch1, dst); 1878 incrementw(rscratch1, value); 1879 strw(rscratch1, dst); 1880 } 1881 1882 void MacroAssembler::increment(Address dst, int value) 1883 { 1884 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 1885 if (dst.getMode() == Address::literal) { 1886 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 1887 lea(rscratch2, dst); 1888 dst = Address(rscratch2); 1889 } 1890 ldr(rscratch1, dst); 1891 increment(rscratch1, value); 1892 str(rscratch1, dst); 1893 } 1894 1895 // Push lots of registers in the bit set supplied. Don't push sp. 1896 // Return the number of words pushed 1897 int MacroAssembler::push(unsigned int bitset, Register stack) { 1898 int words_pushed = 0; 1899 1900 // Scan bitset to accumulate register pairs 1901 unsigned char regs[32]; 1902 int count = 0; 1903 for (int reg = 0; reg <= 30; reg++) { 1904 if (1 & bitset) 1905 regs[count++] = reg; 1906 bitset >>= 1; 1907 } 1908 regs[count++] = zr->encoding_nocheck(); 1909 count &= ~1; // Only push an even number of regs 1910 1911 if (count) { 1912 stp(as_Register(regs[0]), as_Register(regs[1]), 1913 Address(pre(stack, -count * wordSize))); 1914 words_pushed += 2; 1915 } 1916 for (int i = 2; i < count; i += 2) { 1917 stp(as_Register(regs[i]), as_Register(regs[i+1]), 1918 Address(stack, i * wordSize)); 1919 words_pushed += 2; 1920 } 1921 1922 assert(words_pushed == count, "oops, pushed != count"); 1923 1924 return count; 1925 } 1926 1927 int MacroAssembler::pop(unsigned int bitset, Register stack) { 1928 int words_pushed = 0; 1929 1930 // Scan bitset to accumulate register pairs 1931 unsigned char regs[32]; 1932 int count = 0; 1933 for (int reg = 0; reg <= 30; reg++) { 1934 if (1 & bitset) 1935 regs[count++] = reg; 1936 bitset >>= 1; 1937 } 1938 regs[count++] = zr->encoding_nocheck(); 1939 count &= ~1; 1940 1941 for (int i = 2; i < count; i += 2) { 1942 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 1943 Address(stack, i * wordSize)); 1944 words_pushed += 2; 1945 } 1946 if (count) { 1947 ldp(as_Register(regs[0]), as_Register(regs[1]), 1948 Address(post(stack, count * wordSize))); 1949 words_pushed += 2; 1950 } 1951 1952 assert(words_pushed == count, "oops, pushed != count"); 1953 1954 return count; 1955 } 1956 1957 // Push lots of registers in the bit set supplied. Don't push sp. 1958 // Return the number of dwords pushed 1959 int MacroAssembler::push_fp(unsigned int bitset, Register stack) { 1960 int words_pushed = 0; 1961 bool use_sve = false; 1962 int sve_vector_size_in_bytes = 0; 1963 1964 #ifdef COMPILER2 1965 use_sve = Matcher::supports_scalable_vector(); 1966 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 1967 #endif 1968 1969 // Scan bitset to accumulate register pairs 1970 unsigned char regs[32]; 1971 int count = 0; 1972 for (int reg = 0; reg <= 31; reg++) { 1973 if (1 & bitset) 1974 regs[count++] = reg; 1975 bitset >>= 1; 1976 } 1977 1978 if (count == 0) { 1979 return 0; 1980 } 1981 1982 // SVE 1983 if (use_sve && sve_vector_size_in_bytes > 16) { 1984 sub(stack, stack, sve_vector_size_in_bytes * count); 1985 for (int i = 0; i < count; i++) { 1986 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 1987 } 1988 return count * sve_vector_size_in_bytes / 8; 1989 } 1990 1991 // NEON 1992 if (count == 1) { 1993 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 1994 return 2; 1995 } 1996 1997 bool odd = (count & 1) == 1; 1998 int push_slots = count + (odd ? 1 : 0); 1999 2000 // Always pushing full 128 bit registers. 2001 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2002 words_pushed += 2; 2003 2004 for (int i = 2; i + 1 < count; i += 2) { 2005 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2006 words_pushed += 2; 2007 } 2008 2009 if (odd) { 2010 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2011 words_pushed++; 2012 } 2013 2014 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2015 return count * 2; 2016 } 2017 2018 // Return the number of dwords popped 2019 int MacroAssembler::pop_fp(unsigned int bitset, Register stack) { 2020 int words_pushed = 0; 2021 bool use_sve = false; 2022 int sve_vector_size_in_bytes = 0; 2023 2024 #ifdef COMPILER2 2025 use_sve = Matcher::supports_scalable_vector(); 2026 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2027 #endif 2028 // Scan bitset to accumulate register pairs 2029 unsigned char regs[32]; 2030 int count = 0; 2031 for (int reg = 0; reg <= 31; reg++) { 2032 if (1 & bitset) 2033 regs[count++] = reg; 2034 bitset >>= 1; 2035 } 2036 2037 if (count == 0) { 2038 return 0; 2039 } 2040 2041 // SVE 2042 if (use_sve && sve_vector_size_in_bytes > 16) { 2043 for (int i = count - 1; i >= 0; i--) { 2044 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 2045 } 2046 add(stack, stack, sve_vector_size_in_bytes * count); 2047 return count * sve_vector_size_in_bytes / 8; 2048 } 2049 2050 // NEON 2051 if (count == 1) { 2052 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 2053 return 2; 2054 } 2055 2056 bool odd = (count & 1) == 1; 2057 int push_slots = count + (odd ? 1 : 0); 2058 2059 if (odd) { 2060 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2061 words_pushed++; 2062 } 2063 2064 for (int i = 2; i + 1 < count; i += 2) { 2065 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2066 words_pushed += 2; 2067 } 2068 2069 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 2070 words_pushed += 2; 2071 2072 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2073 2074 return count * 2; 2075 } 2076 2077 // Return the number of dwords pushed 2078 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 2079 bool use_sve = false; 2080 int sve_predicate_size_in_slots = 0; 2081 2082 #ifdef COMPILER2 2083 use_sve = Matcher::supports_scalable_vector(); 2084 if (use_sve) { 2085 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 2086 } 2087 #endif 2088 2089 if (!use_sve) { 2090 return 0; 2091 } 2092 2093 unsigned char regs[PRegisterImpl::number_of_saved_registers]; 2094 int count = 0; 2095 for (int reg = 0; reg < PRegisterImpl::number_of_saved_registers; reg++) { 2096 if (1 & bitset) 2097 regs[count++] = reg; 2098 bitset >>= 1; 2099 } 2100 2101 if (count == 0) { 2102 return 0; 2103 } 2104 2105 int total_push_bytes = align_up(sve_predicate_size_in_slots * 2106 VMRegImpl::stack_slot_size * count, 16); 2107 sub(stack, stack, total_push_bytes); 2108 for (int i = 0; i < count; i++) { 2109 sve_str(as_PRegister(regs[i]), Address(stack, i)); 2110 } 2111 return total_push_bytes / 8; 2112 } 2113 2114 // Return the number of dwords popped 2115 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 2116 bool use_sve = false; 2117 int sve_predicate_size_in_slots = 0; 2118 2119 #ifdef COMPILER2 2120 use_sve = Matcher::supports_scalable_vector(); 2121 if (use_sve) { 2122 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 2123 } 2124 #endif 2125 2126 if (!use_sve) { 2127 return 0; 2128 } 2129 2130 unsigned char regs[PRegisterImpl::number_of_saved_registers]; 2131 int count = 0; 2132 for (int reg = 0; reg < PRegisterImpl::number_of_saved_registers; reg++) { 2133 if (1 & bitset) 2134 regs[count++] = reg; 2135 bitset >>= 1; 2136 } 2137 2138 if (count == 0) { 2139 return 0; 2140 } 2141 2142 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 2143 VMRegImpl::stack_slot_size * count, 16); 2144 for (int i = count - 1; i >= 0; i--) { 2145 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 2146 } 2147 add(stack, stack, total_pop_bytes); 2148 return total_pop_bytes / 8; 2149 } 2150 2151 #ifdef ASSERT 2152 void MacroAssembler::verify_heapbase(const char* msg) { 2153 #if 0 2154 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 2155 assert (Universe::heap() != NULL, "java heap should be initialized"); 2156 if (!UseCompressedOops || Universe::ptr_base() == NULL) { 2157 // rheapbase is allocated as general register 2158 return; 2159 } 2160 if (CheckCompressedOops) { 2161 Label ok; 2162 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 2163 cmpptr(rheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); 2164 br(Assembler::EQ, ok); 2165 stop(msg); 2166 bind(ok); 2167 pop(1 << rscratch1->encoding(), sp); 2168 } 2169 #endif 2170 } 2171 #endif 2172 2173 void MacroAssembler::resolve_jobject(Register value, Register thread, Register tmp) { 2174 Label done, not_weak; 2175 cbz(value, done); // Use NULL as-is. 2176 2177 STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u); 2178 tbz(value, 0, not_weak); // Test for jweak tag. 2179 2180 // Resolve jweak. 2181 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, value, 2182 Address(value, -JNIHandles::weak_tag_value), tmp, thread); 2183 verify_oop(value); 2184 b(done); 2185 2186 bind(not_weak); 2187 // Resolve (untagged) jobject. 2188 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread); 2189 verify_oop(value); 2190 bind(done); 2191 } 2192 2193 void MacroAssembler::stop(const char* msg) { 2194 BLOCK_COMMENT(msg); 2195 dcps1(0xdeae); 2196 emit_int64((uintptr_t)msg); 2197 } 2198 2199 void MacroAssembler::unimplemented(const char* what) { 2200 const char* buf = NULL; 2201 { 2202 ResourceMark rm; 2203 stringStream ss; 2204 ss.print("unimplemented: %s", what); 2205 buf = code_string(ss.as_string()); 2206 } 2207 stop(buf); 2208 } 2209 2210 // If a constant does not fit in an immediate field, generate some 2211 // number of MOV instructions and then perform the operation. 2212 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm, 2213 add_sub_imm_insn insn1, 2214 add_sub_reg_insn insn2) { 2215 assert(Rd != zr, "Rd = zr and not setting flags?"); 2216 if (operand_valid_for_add_sub_immediate((int)imm)) { 2217 (this->*insn1)(Rd, Rn, imm); 2218 } else { 2219 if (uabs(imm) < (1 << 24)) { 2220 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 2221 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 2222 } else { 2223 assert_different_registers(Rd, Rn); 2224 mov(Rd, (uint64_t)imm); 2225 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2226 } 2227 } 2228 } 2229 2230 // Separate vsn which sets the flags. Optimisations are more restricted 2231 // because we must set the flags correctly. 2232 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm, 2233 add_sub_imm_insn insn1, 2234 add_sub_reg_insn insn2) { 2235 if (operand_valid_for_add_sub_immediate((int)imm)) { 2236 (this->*insn1)(Rd, Rn, imm); 2237 } else { 2238 assert_different_registers(Rd, Rn); 2239 assert(Rd != zr, "overflow in immediate operand"); 2240 mov(Rd, (uint64_t)imm); 2241 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2242 } 2243 } 2244 2245 2246 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 2247 if (increment.is_register()) { 2248 add(Rd, Rn, increment.as_register()); 2249 } else { 2250 add(Rd, Rn, increment.as_constant()); 2251 } 2252 } 2253 2254 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 2255 if (increment.is_register()) { 2256 addw(Rd, Rn, increment.as_register()); 2257 } else { 2258 addw(Rd, Rn, increment.as_constant()); 2259 } 2260 } 2261 2262 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 2263 if (decrement.is_register()) { 2264 sub(Rd, Rn, decrement.as_register()); 2265 } else { 2266 sub(Rd, Rn, decrement.as_constant()); 2267 } 2268 } 2269 2270 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 2271 if (decrement.is_register()) { 2272 subw(Rd, Rn, decrement.as_register()); 2273 } else { 2274 subw(Rd, Rn, decrement.as_constant()); 2275 } 2276 } 2277 2278 void MacroAssembler::reinit_heapbase() 2279 { 2280 if (UseCompressedOops) { 2281 if (Universe::is_fully_initialized()) { 2282 mov(rheapbase, CompressedOops::ptrs_base()); 2283 } else { 2284 lea(rheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); 2285 ldr(rheapbase, Address(rheapbase)); 2286 } 2287 } 2288 } 2289 2290 // this simulates the behaviour of the x86 cmpxchg instruction using a 2291 // load linked/store conditional pair. we use the acquire/release 2292 // versions of these instructions so that we flush pending writes as 2293 // per Java semantics. 2294 2295 // n.b the x86 version assumes the old value to be compared against is 2296 // in rax and updates rax with the value located in memory if the 2297 // cmpxchg fails. we supply a register for the old value explicitly 2298 2299 // the aarch64 load linked/store conditional instructions do not 2300 // accept an offset. so, unlike x86, we must provide a plain register 2301 // to identify the memory word to be compared/exchanged rather than a 2302 // register+offset Address. 2303 2304 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2305 Label &succeed, Label *fail) { 2306 // oldv holds comparison value 2307 // newv holds value to write in exchange 2308 // addr identifies memory word to compare against/update 2309 if (UseLSE) { 2310 mov(tmp, oldv); 2311 casal(Assembler::xword, oldv, newv, addr); 2312 cmp(tmp, oldv); 2313 br(Assembler::EQ, succeed); 2314 membar(AnyAny); 2315 } else { 2316 Label retry_load, nope; 2317 if (VM_Version::supports_stxr_prefetch()) 2318 prfm(Address(addr), PSTL1STRM); 2319 bind(retry_load); 2320 // flush and load exclusive from the memory location 2321 // and fail if it is not what we expect 2322 ldaxr(tmp, addr); 2323 cmp(tmp, oldv); 2324 br(Assembler::NE, nope); 2325 // if we store+flush with no intervening write tmp will be zero 2326 stlxr(tmp, newv, addr); 2327 cbzw(tmp, succeed); 2328 // retry so we only ever return after a load fails to compare 2329 // ensures we don't return a stale value after a failed write. 2330 b(retry_load); 2331 // if the memory word differs we return it in oldv and signal a fail 2332 bind(nope); 2333 membar(AnyAny); 2334 mov(oldv, tmp); 2335 } 2336 if (fail) 2337 b(*fail); 2338 } 2339 2340 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 2341 Label &succeed, Label *fail) { 2342 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 2343 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 2344 } 2345 2346 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2347 Label &succeed, Label *fail) { 2348 // oldv holds comparison value 2349 // newv holds value to write in exchange 2350 // addr identifies memory word to compare against/update 2351 // tmp returns 0/1 for success/failure 2352 if (UseLSE) { 2353 mov(tmp, oldv); 2354 casal(Assembler::word, oldv, newv, addr); 2355 cmp(tmp, oldv); 2356 br(Assembler::EQ, succeed); 2357 membar(AnyAny); 2358 } else { 2359 Label retry_load, nope; 2360 if (VM_Version::supports_stxr_prefetch()) 2361 prfm(Address(addr), PSTL1STRM); 2362 bind(retry_load); 2363 // flush and load exclusive from the memory location 2364 // and fail if it is not what we expect 2365 ldaxrw(tmp, addr); 2366 cmp(tmp, oldv); 2367 br(Assembler::NE, nope); 2368 // if we store+flush with no intervening write tmp will be zero 2369 stlxrw(tmp, newv, addr); 2370 cbzw(tmp, succeed); 2371 // retry so we only ever return after a load fails to compare 2372 // ensures we don't return a stale value after a failed write. 2373 b(retry_load); 2374 // if the memory word differs we return it in oldv and signal a fail 2375 bind(nope); 2376 membar(AnyAny); 2377 mov(oldv, tmp); 2378 } 2379 if (fail) 2380 b(*fail); 2381 } 2382 2383 // A generic CAS; success or failure is in the EQ flag. A weak CAS 2384 // doesn't retry and may fail spuriously. If the oldval is wanted, 2385 // Pass a register for the result, otherwise pass noreg. 2386 2387 // Clobbers rscratch1 2388 void MacroAssembler::cmpxchg(Register addr, Register expected, 2389 Register new_val, 2390 enum operand_size size, 2391 bool acquire, bool release, 2392 bool weak, 2393 Register result) { 2394 if (result == noreg) result = rscratch1; 2395 BLOCK_COMMENT("cmpxchg {"); 2396 if (UseLSE) { 2397 mov(result, expected); 2398 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 2399 compare_eq(result, expected, size); 2400 } else { 2401 Label retry_load, done; 2402 if (VM_Version::supports_stxr_prefetch()) 2403 prfm(Address(addr), PSTL1STRM); 2404 bind(retry_load); 2405 load_exclusive(result, addr, size, acquire); 2406 compare_eq(result, expected, size); 2407 br(Assembler::NE, done); 2408 store_exclusive(rscratch1, new_val, addr, size, release); 2409 if (weak) { 2410 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 2411 } else { 2412 cbnzw(rscratch1, retry_load); 2413 } 2414 bind(done); 2415 } 2416 BLOCK_COMMENT("} cmpxchg"); 2417 } 2418 2419 // A generic comparison. Only compares for equality, clobbers rscratch1. 2420 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 2421 if (size == xword) { 2422 cmp(rm, rn); 2423 } else if (size == word) { 2424 cmpw(rm, rn); 2425 } else if (size == halfword) { 2426 eorw(rscratch1, rm, rn); 2427 ands(zr, rscratch1, 0xffff); 2428 } else if (size == byte) { 2429 eorw(rscratch1, rm, rn); 2430 ands(zr, rscratch1, 0xff); 2431 } else { 2432 ShouldNotReachHere(); 2433 } 2434 } 2435 2436 2437 static bool different(Register a, RegisterOrConstant b, Register c) { 2438 if (b.is_constant()) 2439 return a != c; 2440 else 2441 return a != b.as_register() && a != c && b.as_register() != c; 2442 } 2443 2444 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 2445 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 2446 if (UseLSE) { \ 2447 prev = prev->is_valid() ? prev : zr; \ 2448 if (incr.is_register()) { \ 2449 AOP(sz, incr.as_register(), prev, addr); \ 2450 } else { \ 2451 mov(rscratch2, incr.as_constant()); \ 2452 AOP(sz, rscratch2, prev, addr); \ 2453 } \ 2454 return; \ 2455 } \ 2456 Register result = rscratch2; \ 2457 if (prev->is_valid()) \ 2458 result = different(prev, incr, addr) ? prev : rscratch2; \ 2459 \ 2460 Label retry_load; \ 2461 if (VM_Version::supports_stxr_prefetch()) \ 2462 prfm(Address(addr), PSTL1STRM); \ 2463 bind(retry_load); \ 2464 LDXR(result, addr); \ 2465 OP(rscratch1, result, incr); \ 2466 STXR(rscratch2, rscratch1, addr); \ 2467 cbnzw(rscratch2, retry_load); \ 2468 if (prev->is_valid() && prev != result) { \ 2469 IOP(prev, rscratch1, incr); \ 2470 } \ 2471 } 2472 2473 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 2474 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 2475 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 2476 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 2477 2478 #undef ATOMIC_OP 2479 2480 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 2481 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2482 if (UseLSE) { \ 2483 prev = prev->is_valid() ? prev : zr; \ 2484 AOP(sz, newv, prev, addr); \ 2485 return; \ 2486 } \ 2487 Register result = rscratch2; \ 2488 if (prev->is_valid()) \ 2489 result = different(prev, newv, addr) ? prev : rscratch2; \ 2490 \ 2491 Label retry_load; \ 2492 if (VM_Version::supports_stxr_prefetch()) \ 2493 prfm(Address(addr), PSTL1STRM); \ 2494 bind(retry_load); \ 2495 LDXR(result, addr); \ 2496 STXR(rscratch1, newv, addr); \ 2497 cbnzw(rscratch1, retry_load); \ 2498 if (prev->is_valid() && prev != result) \ 2499 mov(prev, result); \ 2500 } 2501 2502 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 2503 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 2504 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 2505 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 2506 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 2507 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 2508 2509 #undef ATOMIC_XCHG 2510 2511 #ifndef PRODUCT 2512 extern "C" void findpc(intptr_t x); 2513 #endif 2514 2515 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 2516 { 2517 // In order to get locks to work, we need to fake a in_VM state 2518 if (ShowMessageBoxOnError ) { 2519 JavaThread* thread = JavaThread::current(); 2520 JavaThreadState saved_state = thread->thread_state(); 2521 thread->set_thread_state(_thread_in_vm); 2522 #ifndef PRODUCT 2523 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 2524 ttyLocker ttyl; 2525 BytecodeCounter::print(); 2526 } 2527 #endif 2528 if (os::message_box(msg, "Execution stopped, print registers?")) { 2529 ttyLocker ttyl; 2530 tty->print_cr(" pc = 0x%016" PRIx64, pc); 2531 #ifndef PRODUCT 2532 tty->cr(); 2533 findpc(pc); 2534 tty->cr(); 2535 #endif 2536 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 2537 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 2538 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 2539 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 2540 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 2541 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 2542 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 2543 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 2544 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 2545 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 2546 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 2547 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 2548 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 2549 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 2550 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 2551 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 2552 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 2553 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 2554 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 2555 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 2556 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 2557 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 2558 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 2559 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 2560 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 2561 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 2562 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 2563 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 2564 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 2565 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 2566 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 2567 BREAKPOINT; 2568 } 2569 } 2570 fatal("DEBUG MESSAGE: %s", msg); 2571 } 2572 2573 RegSet MacroAssembler::call_clobbered_gp_registers() { 2574 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 2575 #ifndef R18_RESERVED 2576 regs += r18_tls; 2577 #endif 2578 return regs; 2579 } 2580 2581 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 2582 int step = 4 * wordSize; 2583 push(call_clobbered_gp_registers() - exclude, sp); 2584 sub(sp, sp, step); 2585 mov(rscratch1, -step); 2586 // Push v0-v7, v16-v31. 2587 for (int i = 31; i>= 4; i -= 4) { 2588 if (i <= v7->encoding() || i >= v16->encoding()) 2589 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 2590 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 2591 } 2592 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 2593 as_FloatRegister(3), T1D, Address(sp)); 2594 } 2595 2596 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 2597 for (int i = 0; i < 32; i += 4) { 2598 if (i <= v7->encoding() || i >= v16->encoding()) 2599 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2600 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 2601 } 2602 2603 reinitialize_ptrue(); 2604 2605 pop(call_clobbered_gp_registers() - exclude, sp); 2606 } 2607 2608 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 2609 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 2610 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 2611 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 2612 sub(sp, sp, sve_vector_size_in_bytes * FloatRegisterImpl::number_of_registers); 2613 for (int i = 0; i < FloatRegisterImpl::number_of_registers; i++) { 2614 sve_str(as_FloatRegister(i), Address(sp, i)); 2615 } 2616 } else { 2617 int step = (save_vectors ? 8 : 4) * wordSize; 2618 mov(rscratch1, -step); 2619 sub(sp, sp, step); 2620 for (int i = 28; i >= 4; i -= 4) { 2621 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2622 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 2623 } 2624 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 2625 } 2626 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 2627 sub(sp, sp, total_predicate_in_bytes); 2628 for (int i = 0; i < PRegisterImpl::number_of_saved_registers; i++) { 2629 sve_str(as_PRegister(i), Address(sp, i)); 2630 } 2631 } 2632 } 2633 2634 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 2635 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 2636 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 2637 for (int i = PRegisterImpl::number_of_saved_registers - 1; i >= 0; i--) { 2638 sve_ldr(as_PRegister(i), Address(sp, i)); 2639 } 2640 add(sp, sp, total_predicate_in_bytes); 2641 } 2642 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 2643 for (int i = FloatRegisterImpl::number_of_registers - 1; i >= 0; i--) { 2644 sve_ldr(as_FloatRegister(i), Address(sp, i)); 2645 } 2646 add(sp, sp, sve_vector_size_in_bytes * FloatRegisterImpl::number_of_registers); 2647 } else { 2648 int step = (restore_vectors ? 8 : 4) * wordSize; 2649 for (int i = 0; i <= 28; i += 4) 2650 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2651 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 2652 } 2653 2654 // We may use predicate registers and rely on ptrue with SVE, 2655 // regardless of wide vector (> 8 bytes) used or not. 2656 if (use_sve) { 2657 reinitialize_ptrue(); 2658 } 2659 2660 // integer registers except lr & sp 2661 pop(RegSet::range(r0, r17), sp); 2662 #ifdef R18_RESERVED 2663 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 2664 pop(RegSet::range(r20, r29), sp); 2665 #else 2666 pop(RegSet::range(r18_tls, r29), sp); 2667 #endif 2668 } 2669 2670 /** 2671 * Helpers for multiply_to_len(). 2672 */ 2673 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 2674 Register src1, Register src2) { 2675 adds(dest_lo, dest_lo, src1); 2676 adc(dest_hi, dest_hi, zr); 2677 adds(dest_lo, dest_lo, src2); 2678 adc(final_dest_hi, dest_hi, zr); 2679 } 2680 2681 // Generate an address from (r + r1 extend offset). "size" is the 2682 // size of the operand. The result may be in rscratch2. 2683 Address MacroAssembler::offsetted_address(Register r, Register r1, 2684 Address::extend ext, int offset, int size) { 2685 if (offset || (ext.shift() % size != 0)) { 2686 lea(rscratch2, Address(r, r1, ext)); 2687 return Address(rscratch2, offset); 2688 } else { 2689 return Address(r, r1, ext); 2690 } 2691 } 2692 2693 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 2694 { 2695 assert(offset >= 0, "spill to negative address?"); 2696 // Offset reachable ? 2697 // Not aligned - 9 bits signed offset 2698 // Aligned - 12 bits unsigned offset shifted 2699 Register base = sp; 2700 if ((offset & (size-1)) && offset >= (1<<8)) { 2701 add(tmp, base, offset & ((1<<12)-1)); 2702 base = tmp; 2703 offset &= -1u<<12; 2704 } 2705 2706 if (offset >= (1<<12) * size) { 2707 add(tmp, base, offset & (((1<<12)-1)<<12)); 2708 base = tmp; 2709 offset &= ~(((1<<12)-1)<<12); 2710 } 2711 2712 return Address(base, offset); 2713 } 2714 2715 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 2716 assert(offset >= 0, "spill to negative address?"); 2717 2718 Register base = sp; 2719 2720 // An immediate offset in the range 0 to 255 which is multiplied 2721 // by the current vector or predicate register size in bytes. 2722 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 2723 return Address(base, offset / sve_reg_size_in_bytes); 2724 } 2725 2726 add(tmp, base, offset); 2727 return Address(tmp); 2728 } 2729 2730 // Checks whether offset is aligned. 2731 // Returns true if it is, else false. 2732 bool MacroAssembler::merge_alignment_check(Register base, 2733 size_t size, 2734 int64_t cur_offset, 2735 int64_t prev_offset) const { 2736 if (AvoidUnalignedAccesses) { 2737 if (base == sp) { 2738 // Checks whether low offset if aligned to pair of registers. 2739 int64_t pair_mask = size * 2 - 1; 2740 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 2741 return (offset & pair_mask) == 0; 2742 } else { // If base is not sp, we can't guarantee the access is aligned. 2743 return false; 2744 } 2745 } else { 2746 int64_t mask = size - 1; 2747 // Load/store pair instruction only supports element size aligned offset. 2748 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 2749 } 2750 } 2751 2752 // Checks whether current and previous loads/stores can be merged. 2753 // Returns true if it can be merged, else false. 2754 bool MacroAssembler::ldst_can_merge(Register rt, 2755 const Address &adr, 2756 size_t cur_size_in_bytes, 2757 bool is_store) const { 2758 address prev = pc() - NativeInstruction::instruction_size; 2759 address last = code()->last_insn(); 2760 2761 if (last == NULL || !nativeInstruction_at(last)->is_Imm_LdSt()) { 2762 return false; 2763 } 2764 2765 if (adr.getMode() != Address::base_plus_offset || prev != last) { 2766 return false; 2767 } 2768 2769 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 2770 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 2771 2772 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 2773 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 2774 2775 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 2776 return false; 2777 } 2778 2779 int64_t max_offset = 63 * prev_size_in_bytes; 2780 int64_t min_offset = -64 * prev_size_in_bytes; 2781 2782 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 2783 2784 // Only same base can be merged. 2785 if (adr.base() != prev_ldst->base()) { 2786 return false; 2787 } 2788 2789 int64_t cur_offset = adr.offset(); 2790 int64_t prev_offset = prev_ldst->offset(); 2791 size_t diff = abs(cur_offset - prev_offset); 2792 if (diff != prev_size_in_bytes) { 2793 return false; 2794 } 2795 2796 // Following cases can not be merged: 2797 // ldr x2, [x2, #8] 2798 // ldr x3, [x2, #16] 2799 // or: 2800 // ldr x2, [x3, #8] 2801 // ldr x2, [x3, #16] 2802 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 2803 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 2804 return false; 2805 } 2806 2807 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 2808 // Offset range must be in ldp/stp instruction's range. 2809 if (low_offset > max_offset || low_offset < min_offset) { 2810 return false; 2811 } 2812 2813 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 2814 return true; 2815 } 2816 2817 return false; 2818 } 2819 2820 // Merge current load/store with previous load/store into ldp/stp. 2821 void MacroAssembler::merge_ldst(Register rt, 2822 const Address &adr, 2823 size_t cur_size_in_bytes, 2824 bool is_store) { 2825 2826 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 2827 2828 Register rt_low, rt_high; 2829 address prev = pc() - NativeInstruction::instruction_size; 2830 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 2831 2832 int64_t offset; 2833 2834 if (adr.offset() < prev_ldst->offset()) { 2835 offset = adr.offset(); 2836 rt_low = rt; 2837 rt_high = prev_ldst->target(); 2838 } else { 2839 offset = prev_ldst->offset(); 2840 rt_low = prev_ldst->target(); 2841 rt_high = rt; 2842 } 2843 2844 Address adr_p = Address(prev_ldst->base(), offset); 2845 // Overwrite previous generated binary. 2846 code_section()->set_end(prev); 2847 2848 const size_t sz = prev_ldst->size_in_bytes(); 2849 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 2850 if (!is_store) { 2851 BLOCK_COMMENT("merged ldr pair"); 2852 if (sz == 8) { 2853 ldp(rt_low, rt_high, adr_p); 2854 } else { 2855 ldpw(rt_low, rt_high, adr_p); 2856 } 2857 } else { 2858 BLOCK_COMMENT("merged str pair"); 2859 if (sz == 8) { 2860 stp(rt_low, rt_high, adr_p); 2861 } else { 2862 stpw(rt_low, rt_high, adr_p); 2863 } 2864 } 2865 } 2866 2867 /** 2868 * Multiply 64 bit by 64 bit first loop. 2869 */ 2870 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 2871 Register y, Register y_idx, Register z, 2872 Register carry, Register product, 2873 Register idx, Register kdx) { 2874 // 2875 // jlong carry, x[], y[], z[]; 2876 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2877 // huge_128 product = y[idx] * x[xstart] + carry; 2878 // z[kdx] = (jlong)product; 2879 // carry = (jlong)(product >>> 64); 2880 // } 2881 // z[xstart] = carry; 2882 // 2883 2884 Label L_first_loop, L_first_loop_exit; 2885 Label L_one_x, L_one_y, L_multiply; 2886 2887 subsw(xstart, xstart, 1); 2888 br(Assembler::MI, L_one_x); 2889 2890 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 2891 ldr(x_xstart, Address(rscratch1)); 2892 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 2893 2894 bind(L_first_loop); 2895 subsw(idx, idx, 1); 2896 br(Assembler::MI, L_first_loop_exit); 2897 subsw(idx, idx, 1); 2898 br(Assembler::MI, L_one_y); 2899 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2900 ldr(y_idx, Address(rscratch1)); 2901 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 2902 bind(L_multiply); 2903 2904 // AArch64 has a multiply-accumulate instruction that we can't use 2905 // here because it has no way to process carries, so we have to use 2906 // separate add and adc instructions. Bah. 2907 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 2908 mul(product, x_xstart, y_idx); 2909 adds(product, product, carry); 2910 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 2911 2912 subw(kdx, kdx, 2); 2913 ror(product, product, 32); // back to big-endian 2914 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 2915 2916 b(L_first_loop); 2917 2918 bind(L_one_y); 2919 ldrw(y_idx, Address(y, 0)); 2920 b(L_multiply); 2921 2922 bind(L_one_x); 2923 ldrw(x_xstart, Address(x, 0)); 2924 b(L_first_loop); 2925 2926 bind(L_first_loop_exit); 2927 } 2928 2929 /** 2930 * Multiply 128 bit by 128. Unrolled inner loop. 2931 * 2932 */ 2933 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 2934 Register carry, Register carry2, 2935 Register idx, Register jdx, 2936 Register yz_idx1, Register yz_idx2, 2937 Register tmp, Register tmp3, Register tmp4, 2938 Register tmp6, Register product_hi) { 2939 2940 // jlong carry, x[], y[], z[]; 2941 // int kdx = ystart+1; 2942 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 2943 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 2944 // jlong carry2 = (jlong)(tmp3 >>> 64); 2945 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 2946 // carry = (jlong)(tmp4 >>> 64); 2947 // z[kdx+idx+1] = (jlong)tmp3; 2948 // z[kdx+idx] = (jlong)tmp4; 2949 // } 2950 // idx += 2; 2951 // if (idx > 0) { 2952 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 2953 // z[kdx+idx] = (jlong)yz_idx1; 2954 // carry = (jlong)(yz_idx1 >>> 64); 2955 // } 2956 // 2957 2958 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 2959 2960 lsrw(jdx, idx, 2); 2961 2962 bind(L_third_loop); 2963 2964 subsw(jdx, jdx, 1); 2965 br(Assembler::MI, L_third_loop_exit); 2966 subw(idx, idx, 4); 2967 2968 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2969 2970 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 2971 2972 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2973 2974 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 2975 ror(yz_idx2, yz_idx2, 32); 2976 2977 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 2978 2979 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 2980 umulh(tmp4, product_hi, yz_idx1); 2981 2982 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 2983 ror(rscratch2, rscratch2, 32); 2984 2985 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 2986 umulh(carry2, product_hi, yz_idx2); 2987 2988 // propagate sum of both multiplications into carry:tmp4:tmp3 2989 adds(tmp3, tmp3, carry); 2990 adc(tmp4, tmp4, zr); 2991 adds(tmp3, tmp3, rscratch1); 2992 adcs(tmp4, tmp4, tmp); 2993 adc(carry, carry2, zr); 2994 adds(tmp4, tmp4, rscratch2); 2995 adc(carry, carry, zr); 2996 2997 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 2998 ror(tmp4, tmp4, 32); 2999 stp(tmp4, tmp3, Address(tmp6, 0)); 3000 3001 b(L_third_loop); 3002 bind (L_third_loop_exit); 3003 3004 andw (idx, idx, 0x3); 3005 cbz(idx, L_post_third_loop_done); 3006 3007 Label L_check_1; 3008 subsw(idx, idx, 2); 3009 br(Assembler::MI, L_check_1); 3010 3011 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3012 ldr(yz_idx1, Address(rscratch1, 0)); 3013 ror(yz_idx1, yz_idx1, 32); 3014 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3015 umulh(tmp4, product_hi, yz_idx1); 3016 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3017 ldr(yz_idx2, Address(rscratch1, 0)); 3018 ror(yz_idx2, yz_idx2, 32); 3019 3020 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 3021 3022 ror(tmp3, tmp3, 32); 3023 str(tmp3, Address(rscratch1, 0)); 3024 3025 bind (L_check_1); 3026 3027 andw (idx, idx, 0x1); 3028 subsw(idx, idx, 1); 3029 br(Assembler::MI, L_post_third_loop_done); 3030 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3031 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 3032 umulh(carry2, tmp4, product_hi); 3033 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3034 3035 add2_with_carry(carry2, tmp3, tmp4, carry); 3036 3037 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3038 extr(carry, carry2, tmp3, 32); 3039 3040 bind(L_post_third_loop_done); 3041 } 3042 3043 /** 3044 * Code for BigInteger::multiplyToLen() intrinsic. 3045 * 3046 * r0: x 3047 * r1: xlen 3048 * r2: y 3049 * r3: ylen 3050 * r4: z 3051 * r5: zlen 3052 * r10: tmp1 3053 * r11: tmp2 3054 * r12: tmp3 3055 * r13: tmp4 3056 * r14: tmp5 3057 * r15: tmp6 3058 * r16: tmp7 3059 * 3060 */ 3061 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 3062 Register z, Register zlen, 3063 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 3064 Register tmp5, Register tmp6, Register product_hi) { 3065 3066 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 3067 3068 const Register idx = tmp1; 3069 const Register kdx = tmp2; 3070 const Register xstart = tmp3; 3071 3072 const Register y_idx = tmp4; 3073 const Register carry = tmp5; 3074 const Register product = xlen; 3075 const Register x_xstart = zlen; // reuse register 3076 3077 // First Loop. 3078 // 3079 // final static long LONG_MASK = 0xffffffffL; 3080 // int xstart = xlen - 1; 3081 // int ystart = ylen - 1; 3082 // long carry = 0; 3083 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3084 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 3085 // z[kdx] = (int)product; 3086 // carry = product >>> 32; 3087 // } 3088 // z[xstart] = (int)carry; 3089 // 3090 3091 movw(idx, ylen); // idx = ylen; 3092 movw(kdx, zlen); // kdx = xlen+ylen; 3093 mov(carry, zr); // carry = 0; 3094 3095 Label L_done; 3096 3097 movw(xstart, xlen); 3098 subsw(xstart, xstart, 1); 3099 br(Assembler::MI, L_done); 3100 3101 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 3102 3103 Label L_second_loop; 3104 cbzw(kdx, L_second_loop); 3105 3106 Label L_carry; 3107 subw(kdx, kdx, 1); 3108 cbzw(kdx, L_carry); 3109 3110 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3111 lsr(carry, carry, 32); 3112 subw(kdx, kdx, 1); 3113 3114 bind(L_carry); 3115 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3116 3117 // Second and third (nested) loops. 3118 // 3119 // for (int i = xstart-1; i >= 0; i--) { // Second loop 3120 // carry = 0; 3121 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 3122 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 3123 // (z[k] & LONG_MASK) + carry; 3124 // z[k] = (int)product; 3125 // carry = product >>> 32; 3126 // } 3127 // z[i] = (int)carry; 3128 // } 3129 // 3130 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 3131 3132 const Register jdx = tmp1; 3133 3134 bind(L_second_loop); 3135 mov(carry, zr); // carry = 0; 3136 movw(jdx, ylen); // j = ystart+1 3137 3138 subsw(xstart, xstart, 1); // i = xstart-1; 3139 br(Assembler::MI, L_done); 3140 3141 str(z, Address(pre(sp, -4 * wordSize))); 3142 3143 Label L_last_x; 3144 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 3145 subsw(xstart, xstart, 1); // i = xstart-1; 3146 br(Assembler::MI, L_last_x); 3147 3148 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 3149 ldr(product_hi, Address(rscratch1)); 3150 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 3151 3152 Label L_third_loop_prologue; 3153 bind(L_third_loop_prologue); 3154 3155 str(ylen, Address(sp, wordSize)); 3156 stp(x, xstart, Address(sp, 2 * wordSize)); 3157 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 3158 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 3159 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 3160 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 3161 3162 addw(tmp3, xlen, 1); 3163 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3164 subsw(tmp3, tmp3, 1); 3165 br(Assembler::MI, L_done); 3166 3167 lsr(carry, carry, 32); 3168 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3169 b(L_second_loop); 3170 3171 // Next infrequent code is moved outside loops. 3172 bind(L_last_x); 3173 ldrw(product_hi, Address(x, 0)); 3174 b(L_third_loop_prologue); 3175 3176 bind(L_done); 3177 } 3178 3179 // Code for BigInteger::mulAdd intrinsic 3180 // out = r0 3181 // in = r1 3182 // offset = r2 (already out.length-offset) 3183 // len = r3 3184 // k = r4 3185 // 3186 // pseudo code from java implementation: 3187 // carry = 0; 3188 // offset = out.length-offset - 1; 3189 // for (int j=len-1; j >= 0; j--) { 3190 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 3191 // out[offset--] = (int)product; 3192 // carry = product >>> 32; 3193 // } 3194 // return (int)carry; 3195 void MacroAssembler::mul_add(Register out, Register in, Register offset, 3196 Register len, Register k) { 3197 Label LOOP, END; 3198 // pre-loop 3199 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 3200 csel(out, zr, out, Assembler::EQ); 3201 br(Assembler::EQ, END); 3202 add(in, in, len, LSL, 2); // in[j+1] address 3203 add(offset, out, offset, LSL, 2); // out[offset + 1] address 3204 mov(out, zr); // used to keep carry now 3205 BIND(LOOP); 3206 ldrw(rscratch1, Address(pre(in, -4))); 3207 madd(rscratch1, rscratch1, k, out); 3208 ldrw(rscratch2, Address(pre(offset, -4))); 3209 add(rscratch1, rscratch1, rscratch2); 3210 strw(rscratch1, Address(offset)); 3211 lsr(out, rscratch1, 32); 3212 subs(len, len, 1); 3213 br(Assembler::NE, LOOP); 3214 BIND(END); 3215 } 3216 3217 /** 3218 * Emits code to update CRC-32 with a byte value according to constants in table 3219 * 3220 * @param [in,out]crc Register containing the crc. 3221 * @param [in]val Register containing the byte to fold into the CRC. 3222 * @param [in]table Register containing the table of crc constants. 3223 * 3224 * uint32_t crc; 3225 * val = crc_table[(val ^ crc) & 0xFF]; 3226 * crc = val ^ (crc >> 8); 3227 * 3228 */ 3229 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 3230 eor(val, val, crc); 3231 andr(val, val, 0xff); 3232 ldrw(val, Address(table, val, Address::lsl(2))); 3233 eor(crc, val, crc, Assembler::LSR, 8); 3234 } 3235 3236 /** 3237 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 3238 * 3239 * @param [in,out]crc Register containing the crc. 3240 * @param [in]v Register containing the 32-bit to fold into the CRC. 3241 * @param [in]table0 Register containing table 0 of crc constants. 3242 * @param [in]table1 Register containing table 1 of crc constants. 3243 * @param [in]table2 Register containing table 2 of crc constants. 3244 * @param [in]table3 Register containing table 3 of crc constants. 3245 * 3246 * uint32_t crc; 3247 * v = crc ^ v 3248 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 3249 * 3250 */ 3251 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 3252 Register table0, Register table1, Register table2, Register table3, 3253 bool upper) { 3254 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 3255 uxtb(tmp, v); 3256 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 3257 ubfx(tmp, v, 8, 8); 3258 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 3259 eor(crc, crc, tmp); 3260 ubfx(tmp, v, 16, 8); 3261 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 3262 eor(crc, crc, tmp); 3263 ubfx(tmp, v, 24, 8); 3264 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 3265 eor(crc, crc, tmp); 3266 } 3267 3268 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 3269 Register len, Register tmp0, Register tmp1, Register tmp2, 3270 Register tmp3) { 3271 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3272 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3273 3274 mvnw(crc, crc); 3275 3276 subs(len, len, 128); 3277 br(Assembler::GE, CRC_by64_pre); 3278 BIND(CRC_less64); 3279 adds(len, len, 128-32); 3280 br(Assembler::GE, CRC_by32_loop); 3281 BIND(CRC_less32); 3282 adds(len, len, 32-4); 3283 br(Assembler::GE, CRC_by4_loop); 3284 adds(len, len, 4); 3285 br(Assembler::GT, CRC_by1_loop); 3286 b(L_exit); 3287 3288 BIND(CRC_by32_loop); 3289 ldp(tmp0, tmp1, Address(post(buf, 16))); 3290 subs(len, len, 32); 3291 crc32x(crc, crc, tmp0); 3292 ldr(tmp2, Address(post(buf, 8))); 3293 crc32x(crc, crc, tmp1); 3294 ldr(tmp3, Address(post(buf, 8))); 3295 crc32x(crc, crc, tmp2); 3296 crc32x(crc, crc, tmp3); 3297 br(Assembler::GE, CRC_by32_loop); 3298 cmn(len, 32); 3299 br(Assembler::NE, CRC_less32); 3300 b(L_exit); 3301 3302 BIND(CRC_by4_loop); 3303 ldrw(tmp0, Address(post(buf, 4))); 3304 subs(len, len, 4); 3305 crc32w(crc, crc, tmp0); 3306 br(Assembler::GE, CRC_by4_loop); 3307 adds(len, len, 4); 3308 br(Assembler::LE, L_exit); 3309 BIND(CRC_by1_loop); 3310 ldrb(tmp0, Address(post(buf, 1))); 3311 subs(len, len, 1); 3312 crc32b(crc, crc, tmp0); 3313 br(Assembler::GT, CRC_by1_loop); 3314 b(L_exit); 3315 3316 BIND(CRC_by64_pre); 3317 sub(buf, buf, 8); 3318 ldp(tmp0, tmp1, Address(buf, 8)); 3319 crc32x(crc, crc, tmp0); 3320 ldr(tmp2, Address(buf, 24)); 3321 crc32x(crc, crc, tmp1); 3322 ldr(tmp3, Address(buf, 32)); 3323 crc32x(crc, crc, tmp2); 3324 ldr(tmp0, Address(buf, 40)); 3325 crc32x(crc, crc, tmp3); 3326 ldr(tmp1, Address(buf, 48)); 3327 crc32x(crc, crc, tmp0); 3328 ldr(tmp2, Address(buf, 56)); 3329 crc32x(crc, crc, tmp1); 3330 ldr(tmp3, Address(pre(buf, 64))); 3331 3332 b(CRC_by64_loop); 3333 3334 align(CodeEntryAlignment); 3335 BIND(CRC_by64_loop); 3336 subs(len, len, 64); 3337 crc32x(crc, crc, tmp2); 3338 ldr(tmp0, Address(buf, 8)); 3339 crc32x(crc, crc, tmp3); 3340 ldr(tmp1, Address(buf, 16)); 3341 crc32x(crc, crc, tmp0); 3342 ldr(tmp2, Address(buf, 24)); 3343 crc32x(crc, crc, tmp1); 3344 ldr(tmp3, Address(buf, 32)); 3345 crc32x(crc, crc, tmp2); 3346 ldr(tmp0, Address(buf, 40)); 3347 crc32x(crc, crc, tmp3); 3348 ldr(tmp1, Address(buf, 48)); 3349 crc32x(crc, crc, tmp0); 3350 ldr(tmp2, Address(buf, 56)); 3351 crc32x(crc, crc, tmp1); 3352 ldr(tmp3, Address(pre(buf, 64))); 3353 br(Assembler::GE, CRC_by64_loop); 3354 3355 // post-loop 3356 crc32x(crc, crc, tmp2); 3357 crc32x(crc, crc, tmp3); 3358 3359 sub(len, len, 64); 3360 add(buf, buf, 8); 3361 cmn(len, 128); 3362 br(Assembler::NE, CRC_less64); 3363 BIND(L_exit); 3364 mvnw(crc, crc); 3365 } 3366 3367 /** 3368 * @param crc register containing existing CRC (32-bit) 3369 * @param buf register pointing to input byte buffer (byte*) 3370 * @param len register containing number of bytes 3371 * @param table register that will contain address of CRC table 3372 * @param tmp scratch register 3373 */ 3374 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 3375 Register table0, Register table1, Register table2, Register table3, 3376 Register tmp, Register tmp2, Register tmp3) { 3377 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 3378 uint64_t offset; 3379 3380 if (UseCRC32) { 3381 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 3382 return; 3383 } 3384 3385 mvnw(crc, crc); 3386 3387 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 3388 if (offset) add(table0, table0, offset); 3389 add(table1, table0, 1*256*sizeof(juint)); 3390 add(table2, table0, 2*256*sizeof(juint)); 3391 add(table3, table0, 3*256*sizeof(juint)); 3392 3393 if (UseNeon) { 3394 cmp(len, (u1)64); 3395 br(Assembler::LT, L_by16); 3396 eor(v16, T16B, v16, v16); 3397 3398 Label L_fold; 3399 3400 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 3401 3402 ld1(v0, v1, T2D, post(buf, 32)); 3403 ld1r(v4, T2D, post(tmp, 8)); 3404 ld1r(v5, T2D, post(tmp, 8)); 3405 ld1r(v6, T2D, post(tmp, 8)); 3406 ld1r(v7, T2D, post(tmp, 8)); 3407 mov(v16, S, 0, crc); 3408 3409 eor(v0, T16B, v0, v16); 3410 sub(len, len, 64); 3411 3412 BIND(L_fold); 3413 pmull(v22, T8H, v0, v5, T8B); 3414 pmull(v20, T8H, v0, v7, T8B); 3415 pmull(v23, T8H, v0, v4, T8B); 3416 pmull(v21, T8H, v0, v6, T8B); 3417 3418 pmull2(v18, T8H, v0, v5, T16B); 3419 pmull2(v16, T8H, v0, v7, T16B); 3420 pmull2(v19, T8H, v0, v4, T16B); 3421 pmull2(v17, T8H, v0, v6, T16B); 3422 3423 uzp1(v24, T8H, v20, v22); 3424 uzp2(v25, T8H, v20, v22); 3425 eor(v20, T16B, v24, v25); 3426 3427 uzp1(v26, T8H, v16, v18); 3428 uzp2(v27, T8H, v16, v18); 3429 eor(v16, T16B, v26, v27); 3430 3431 ushll2(v22, T4S, v20, T8H, 8); 3432 ushll(v20, T4S, v20, T4H, 8); 3433 3434 ushll2(v18, T4S, v16, T8H, 8); 3435 ushll(v16, T4S, v16, T4H, 8); 3436 3437 eor(v22, T16B, v23, v22); 3438 eor(v18, T16B, v19, v18); 3439 eor(v20, T16B, v21, v20); 3440 eor(v16, T16B, v17, v16); 3441 3442 uzp1(v17, T2D, v16, v20); 3443 uzp2(v21, T2D, v16, v20); 3444 eor(v17, T16B, v17, v21); 3445 3446 ushll2(v20, T2D, v17, T4S, 16); 3447 ushll(v16, T2D, v17, T2S, 16); 3448 3449 eor(v20, T16B, v20, v22); 3450 eor(v16, T16B, v16, v18); 3451 3452 uzp1(v17, T2D, v20, v16); 3453 uzp2(v21, T2D, v20, v16); 3454 eor(v28, T16B, v17, v21); 3455 3456 pmull(v22, T8H, v1, v5, T8B); 3457 pmull(v20, T8H, v1, v7, T8B); 3458 pmull(v23, T8H, v1, v4, T8B); 3459 pmull(v21, T8H, v1, v6, T8B); 3460 3461 pmull2(v18, T8H, v1, v5, T16B); 3462 pmull2(v16, T8H, v1, v7, T16B); 3463 pmull2(v19, T8H, v1, v4, T16B); 3464 pmull2(v17, T8H, v1, v6, T16B); 3465 3466 ld1(v0, v1, T2D, post(buf, 32)); 3467 3468 uzp1(v24, T8H, v20, v22); 3469 uzp2(v25, T8H, v20, v22); 3470 eor(v20, T16B, v24, v25); 3471 3472 uzp1(v26, T8H, v16, v18); 3473 uzp2(v27, T8H, v16, v18); 3474 eor(v16, T16B, v26, v27); 3475 3476 ushll2(v22, T4S, v20, T8H, 8); 3477 ushll(v20, T4S, v20, T4H, 8); 3478 3479 ushll2(v18, T4S, v16, T8H, 8); 3480 ushll(v16, T4S, v16, T4H, 8); 3481 3482 eor(v22, T16B, v23, v22); 3483 eor(v18, T16B, v19, v18); 3484 eor(v20, T16B, v21, v20); 3485 eor(v16, T16B, v17, v16); 3486 3487 uzp1(v17, T2D, v16, v20); 3488 uzp2(v21, T2D, v16, v20); 3489 eor(v16, T16B, v17, v21); 3490 3491 ushll2(v20, T2D, v16, T4S, 16); 3492 ushll(v16, T2D, v16, T2S, 16); 3493 3494 eor(v20, T16B, v22, v20); 3495 eor(v16, T16B, v16, v18); 3496 3497 uzp1(v17, T2D, v20, v16); 3498 uzp2(v21, T2D, v20, v16); 3499 eor(v20, T16B, v17, v21); 3500 3501 shl(v16, T2D, v28, 1); 3502 shl(v17, T2D, v20, 1); 3503 3504 eor(v0, T16B, v0, v16); 3505 eor(v1, T16B, v1, v17); 3506 3507 subs(len, len, 32); 3508 br(Assembler::GE, L_fold); 3509 3510 mov(crc, 0); 3511 mov(tmp, v0, D, 0); 3512 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3513 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3514 mov(tmp, v0, D, 1); 3515 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3516 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3517 mov(tmp, v1, D, 0); 3518 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3519 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3520 mov(tmp, v1, D, 1); 3521 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3522 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3523 3524 add(len, len, 32); 3525 } 3526 3527 BIND(L_by16); 3528 subs(len, len, 16); 3529 br(Assembler::GE, L_by16_loop); 3530 adds(len, len, 16-4); 3531 br(Assembler::GE, L_by4_loop); 3532 adds(len, len, 4); 3533 br(Assembler::GT, L_by1_loop); 3534 b(L_exit); 3535 3536 BIND(L_by4_loop); 3537 ldrw(tmp, Address(post(buf, 4))); 3538 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 3539 subs(len, len, 4); 3540 br(Assembler::GE, L_by4_loop); 3541 adds(len, len, 4); 3542 br(Assembler::LE, L_exit); 3543 BIND(L_by1_loop); 3544 subs(len, len, 1); 3545 ldrb(tmp, Address(post(buf, 1))); 3546 update_byte_crc32(crc, tmp, table0); 3547 br(Assembler::GT, L_by1_loop); 3548 b(L_exit); 3549 3550 align(CodeEntryAlignment); 3551 BIND(L_by16_loop); 3552 subs(len, len, 16); 3553 ldp(tmp, tmp3, Address(post(buf, 16))); 3554 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3555 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3556 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 3557 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 3558 br(Assembler::GE, L_by16_loop); 3559 adds(len, len, 16-4); 3560 br(Assembler::GE, L_by4_loop); 3561 adds(len, len, 4); 3562 br(Assembler::GT, L_by1_loop); 3563 BIND(L_exit); 3564 mvnw(crc, crc); 3565 } 3566 3567 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 3568 Register len, Register tmp0, Register tmp1, Register tmp2, 3569 Register tmp3) { 3570 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3571 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3572 3573 subs(len, len, 128); 3574 br(Assembler::GE, CRC_by64_pre); 3575 BIND(CRC_less64); 3576 adds(len, len, 128-32); 3577 br(Assembler::GE, CRC_by32_loop); 3578 BIND(CRC_less32); 3579 adds(len, len, 32-4); 3580 br(Assembler::GE, CRC_by4_loop); 3581 adds(len, len, 4); 3582 br(Assembler::GT, CRC_by1_loop); 3583 b(L_exit); 3584 3585 BIND(CRC_by32_loop); 3586 ldp(tmp0, tmp1, Address(post(buf, 16))); 3587 subs(len, len, 32); 3588 crc32cx(crc, crc, tmp0); 3589 ldr(tmp2, Address(post(buf, 8))); 3590 crc32cx(crc, crc, tmp1); 3591 ldr(tmp3, Address(post(buf, 8))); 3592 crc32cx(crc, crc, tmp2); 3593 crc32cx(crc, crc, tmp3); 3594 br(Assembler::GE, CRC_by32_loop); 3595 cmn(len, 32); 3596 br(Assembler::NE, CRC_less32); 3597 b(L_exit); 3598 3599 BIND(CRC_by4_loop); 3600 ldrw(tmp0, Address(post(buf, 4))); 3601 subs(len, len, 4); 3602 crc32cw(crc, crc, tmp0); 3603 br(Assembler::GE, CRC_by4_loop); 3604 adds(len, len, 4); 3605 br(Assembler::LE, L_exit); 3606 BIND(CRC_by1_loop); 3607 ldrb(tmp0, Address(post(buf, 1))); 3608 subs(len, len, 1); 3609 crc32cb(crc, crc, tmp0); 3610 br(Assembler::GT, CRC_by1_loop); 3611 b(L_exit); 3612 3613 BIND(CRC_by64_pre); 3614 sub(buf, buf, 8); 3615 ldp(tmp0, tmp1, Address(buf, 8)); 3616 crc32cx(crc, crc, tmp0); 3617 ldr(tmp2, Address(buf, 24)); 3618 crc32cx(crc, crc, tmp1); 3619 ldr(tmp3, Address(buf, 32)); 3620 crc32cx(crc, crc, tmp2); 3621 ldr(tmp0, Address(buf, 40)); 3622 crc32cx(crc, crc, tmp3); 3623 ldr(tmp1, Address(buf, 48)); 3624 crc32cx(crc, crc, tmp0); 3625 ldr(tmp2, Address(buf, 56)); 3626 crc32cx(crc, crc, tmp1); 3627 ldr(tmp3, Address(pre(buf, 64))); 3628 3629 b(CRC_by64_loop); 3630 3631 align(CodeEntryAlignment); 3632 BIND(CRC_by64_loop); 3633 subs(len, len, 64); 3634 crc32cx(crc, crc, tmp2); 3635 ldr(tmp0, Address(buf, 8)); 3636 crc32cx(crc, crc, tmp3); 3637 ldr(tmp1, Address(buf, 16)); 3638 crc32cx(crc, crc, tmp0); 3639 ldr(tmp2, Address(buf, 24)); 3640 crc32cx(crc, crc, tmp1); 3641 ldr(tmp3, Address(buf, 32)); 3642 crc32cx(crc, crc, tmp2); 3643 ldr(tmp0, Address(buf, 40)); 3644 crc32cx(crc, crc, tmp3); 3645 ldr(tmp1, Address(buf, 48)); 3646 crc32cx(crc, crc, tmp0); 3647 ldr(tmp2, Address(buf, 56)); 3648 crc32cx(crc, crc, tmp1); 3649 ldr(tmp3, Address(pre(buf, 64))); 3650 br(Assembler::GE, CRC_by64_loop); 3651 3652 // post-loop 3653 crc32cx(crc, crc, tmp2); 3654 crc32cx(crc, crc, tmp3); 3655 3656 sub(len, len, 64); 3657 add(buf, buf, 8); 3658 cmn(len, 128); 3659 br(Assembler::NE, CRC_less64); 3660 BIND(L_exit); 3661 } 3662 3663 /** 3664 * @param crc register containing existing CRC (32-bit) 3665 * @param buf register pointing to input byte buffer (byte*) 3666 * @param len register containing number of bytes 3667 * @param table register that will contain address of CRC table 3668 * @param tmp scratch register 3669 */ 3670 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 3671 Register table0, Register table1, Register table2, Register table3, 3672 Register tmp, Register tmp2, Register tmp3) { 3673 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 3674 } 3675 3676 3677 SkipIfEqual::SkipIfEqual( 3678 MacroAssembler* masm, const bool* flag_addr, bool value) { 3679 _masm = masm; 3680 uint64_t offset; 3681 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 3682 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 3683 _masm->cbzw(rscratch1, _label); 3684 } 3685 3686 SkipIfEqual::~SkipIfEqual() { 3687 _masm->bind(_label); 3688 } 3689 3690 void MacroAssembler::addptr(const Address &dst, int32_t src) { 3691 Address adr; 3692 switch(dst.getMode()) { 3693 case Address::base_plus_offset: 3694 // This is the expected mode, although we allow all the other 3695 // forms below. 3696 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 3697 break; 3698 default: 3699 lea(rscratch2, dst); 3700 adr = Address(rscratch2); 3701 break; 3702 } 3703 ldr(rscratch1, adr); 3704 add(rscratch1, rscratch1, src); 3705 str(rscratch1, adr); 3706 } 3707 3708 void MacroAssembler::cmpptr(Register src1, Address src2) { 3709 uint64_t offset; 3710 adrp(rscratch1, src2, offset); 3711 ldr(rscratch1, Address(rscratch1, offset)); 3712 cmp(src1, rscratch1); 3713 } 3714 3715 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 3716 cmp(obj1, obj2); 3717 } 3718 3719 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 3720 load_method_holder(rresult, rmethod); 3721 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 3722 } 3723 3724 void MacroAssembler::load_method_holder(Register holder, Register method) { 3725 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 3726 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 3727 ldr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass* 3728 } 3729 3730 void MacroAssembler::load_klass(Register dst, Register src) { 3731 if (UseCompressedClassPointers) { 3732 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3733 decode_klass_not_null(dst); 3734 } else { 3735 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3736 } 3737 } 3738 3739 // ((OopHandle)result).resolve(); 3740 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 3741 // OopHandle::resolve is an indirection. 3742 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp, noreg); 3743 } 3744 3745 // ((WeakHandle)result).resolve(); 3746 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 3747 assert_different_registers(rresult, rtmp); 3748 Label resolved; 3749 3750 // A null weak handle resolves to null. 3751 cbz(rresult, resolved); 3752 3753 // Only 64 bit platforms support GCs that require a tmp register 3754 // Only IN_HEAP loads require a thread_tmp register 3755 // WeakHandle::resolve is an indirection like jweak. 3756 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3757 rresult, Address(rresult), rtmp, /*tmp_thread*/noreg); 3758 bind(resolved); 3759 } 3760 3761 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp) { 3762 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 3763 ldr(dst, Address(rmethod, Method::const_offset())); 3764 ldr(dst, Address(dst, ConstMethod::constants_offset())); 3765 ldr(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes())); 3766 ldr(dst, Address(dst, mirror_offset)); 3767 resolve_oop_handle(dst, tmp); 3768 } 3769 3770 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 3771 if (UseCompressedClassPointers) { 3772 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3773 if (CompressedKlassPointers::base() == NULL) { 3774 cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); 3775 return; 3776 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 3777 && CompressedKlassPointers::shift() == 0) { 3778 // Only the bottom 32 bits matter 3779 cmpw(trial_klass, tmp); 3780 return; 3781 } 3782 decode_klass_not_null(tmp); 3783 } else { 3784 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3785 } 3786 cmp(trial_klass, tmp); 3787 } 3788 3789 void MacroAssembler::store_klass(Register dst, Register src) { 3790 // FIXME: Should this be a store release? concurrent gcs assumes 3791 // klass length is valid if klass field is not null. 3792 if (UseCompressedClassPointers) { 3793 encode_klass_not_null(src); 3794 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3795 } else { 3796 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3797 } 3798 } 3799 3800 void MacroAssembler::store_klass_gap(Register dst, Register src) { 3801 if (UseCompressedClassPointers) { 3802 // Store to klass gap in destination 3803 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 3804 } 3805 } 3806 3807 // Algorithm must match CompressedOops::encode. 3808 void MacroAssembler::encode_heap_oop(Register d, Register s) { 3809 #ifdef ASSERT 3810 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 3811 #endif 3812 verify_oop_msg(s, "broken oop in encode_heap_oop"); 3813 if (CompressedOops::base() == NULL) { 3814 if (CompressedOops::shift() != 0) { 3815 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3816 lsr(d, s, LogMinObjAlignmentInBytes); 3817 } else { 3818 mov(d, s); 3819 } 3820 } else { 3821 subs(d, s, rheapbase); 3822 csel(d, d, zr, Assembler::HS); 3823 lsr(d, d, LogMinObjAlignmentInBytes); 3824 3825 /* Old algorithm: is this any worse? 3826 Label nonnull; 3827 cbnz(r, nonnull); 3828 sub(r, r, rheapbase); 3829 bind(nonnull); 3830 lsr(r, r, LogMinObjAlignmentInBytes); 3831 */ 3832 } 3833 } 3834 3835 void MacroAssembler::encode_heap_oop_not_null(Register r) { 3836 #ifdef ASSERT 3837 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 3838 if (CheckCompressedOops) { 3839 Label ok; 3840 cbnz(r, ok); 3841 stop("null oop passed to encode_heap_oop_not_null"); 3842 bind(ok); 3843 } 3844 #endif 3845 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 3846 if (CompressedOops::base() != NULL) { 3847 sub(r, r, rheapbase); 3848 } 3849 if (CompressedOops::shift() != 0) { 3850 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3851 lsr(r, r, LogMinObjAlignmentInBytes); 3852 } 3853 } 3854 3855 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 3856 #ifdef ASSERT 3857 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 3858 if (CheckCompressedOops) { 3859 Label ok; 3860 cbnz(src, ok); 3861 stop("null oop passed to encode_heap_oop_not_null2"); 3862 bind(ok); 3863 } 3864 #endif 3865 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 3866 3867 Register data = src; 3868 if (CompressedOops::base() != NULL) { 3869 sub(dst, src, rheapbase); 3870 data = dst; 3871 } 3872 if (CompressedOops::shift() != 0) { 3873 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3874 lsr(dst, data, LogMinObjAlignmentInBytes); 3875 data = dst; 3876 } 3877 if (data == src) 3878 mov(dst, src); 3879 } 3880 3881 void MacroAssembler::decode_heap_oop(Register d, Register s) { 3882 #ifdef ASSERT 3883 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 3884 #endif 3885 if (CompressedOops::base() == NULL) { 3886 if (CompressedOops::shift() != 0 || d != s) { 3887 lsl(d, s, CompressedOops::shift()); 3888 } 3889 } else { 3890 Label done; 3891 if (d != s) 3892 mov(d, s); 3893 cbz(s, done); 3894 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 3895 bind(done); 3896 } 3897 verify_oop_msg(d, "broken oop in decode_heap_oop"); 3898 } 3899 3900 void MacroAssembler::decode_heap_oop_not_null(Register r) { 3901 assert (UseCompressedOops, "should only be used for compressed headers"); 3902 assert (Universe::heap() != NULL, "java heap should be initialized"); 3903 // Cannot assert, unverified entry point counts instructions (see .ad file) 3904 // vtableStubs also counts instructions in pd_code_size_limit. 3905 // Also do not verify_oop as this is called by verify_oop. 3906 if (CompressedOops::shift() != 0) { 3907 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3908 if (CompressedOops::base() != NULL) { 3909 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3910 } else { 3911 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3912 } 3913 } else { 3914 assert (CompressedOops::base() == NULL, "sanity"); 3915 } 3916 } 3917 3918 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 3919 assert (UseCompressedOops, "should only be used for compressed headers"); 3920 assert (Universe::heap() != NULL, "java heap should be initialized"); 3921 // Cannot assert, unverified entry point counts instructions (see .ad file) 3922 // vtableStubs also counts instructions in pd_code_size_limit. 3923 // Also do not verify_oop as this is called by verify_oop. 3924 if (CompressedOops::shift() != 0) { 3925 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3926 if (CompressedOops::base() != NULL) { 3927 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 3928 } else { 3929 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 3930 } 3931 } else { 3932 assert (CompressedOops::base() == NULL, "sanity"); 3933 if (dst != src) { 3934 mov(dst, src); 3935 } 3936 } 3937 } 3938 3939 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 3940 3941 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 3942 assert(UseCompressedClassPointers, "not using compressed class pointers"); 3943 assert(Metaspace::initialized(), "metaspace not initialized yet"); 3944 3945 if (_klass_decode_mode != KlassDecodeNone) { 3946 return _klass_decode_mode; 3947 } 3948 3949 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() 3950 || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); 3951 3952 if (CompressedKlassPointers::base() == NULL) { 3953 return (_klass_decode_mode = KlassDecodeZero); 3954 } 3955 3956 if (operand_valid_for_logical_immediate( 3957 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 3958 const uint64_t range_mask = 3959 (1ULL << log2i(CompressedKlassPointers::range())) - 1; 3960 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 3961 return (_klass_decode_mode = KlassDecodeXor); 3962 } 3963 } 3964 3965 const uint64_t shifted_base = 3966 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 3967 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 3968 "compressed class base bad alignment"); 3969 3970 return (_klass_decode_mode = KlassDecodeMovk); 3971 } 3972 3973 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 3974 switch (klass_decode_mode()) { 3975 case KlassDecodeZero: 3976 if (CompressedKlassPointers::shift() != 0) { 3977 lsr(dst, src, LogKlassAlignmentInBytes); 3978 } else { 3979 if (dst != src) mov(dst, src); 3980 } 3981 break; 3982 3983 case KlassDecodeXor: 3984 if (CompressedKlassPointers::shift() != 0) { 3985 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 3986 lsr(dst, dst, LogKlassAlignmentInBytes); 3987 } else { 3988 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 3989 } 3990 break; 3991 3992 case KlassDecodeMovk: 3993 if (CompressedKlassPointers::shift() != 0) { 3994 ubfx(dst, src, LogKlassAlignmentInBytes, 32); 3995 } else { 3996 movw(dst, src); 3997 } 3998 break; 3999 4000 case KlassDecodeNone: 4001 ShouldNotReachHere(); 4002 break; 4003 } 4004 } 4005 4006 void MacroAssembler::encode_klass_not_null(Register r) { 4007 encode_klass_not_null(r, r); 4008 } 4009 4010 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 4011 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4012 4013 switch (klass_decode_mode()) { 4014 case KlassDecodeZero: 4015 if (CompressedKlassPointers::shift() != 0) { 4016 lsl(dst, src, LogKlassAlignmentInBytes); 4017 } else { 4018 if (dst != src) mov(dst, src); 4019 } 4020 break; 4021 4022 case KlassDecodeXor: 4023 if (CompressedKlassPointers::shift() != 0) { 4024 lsl(dst, src, LogKlassAlignmentInBytes); 4025 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 4026 } else { 4027 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4028 } 4029 break; 4030 4031 case KlassDecodeMovk: { 4032 const uint64_t shifted_base = 4033 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4034 4035 if (dst != src) movw(dst, src); 4036 movk(dst, shifted_base >> 32, 32); 4037 4038 if (CompressedKlassPointers::shift() != 0) { 4039 lsl(dst, dst, LogKlassAlignmentInBytes); 4040 } 4041 4042 break; 4043 } 4044 4045 case KlassDecodeNone: 4046 ShouldNotReachHere(); 4047 break; 4048 } 4049 } 4050 4051 void MacroAssembler::decode_klass_not_null(Register r) { 4052 decode_klass_not_null(r, r); 4053 } 4054 4055 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 4056 #ifdef ASSERT 4057 { 4058 ThreadInVMfromUnknown tiv; 4059 assert (UseCompressedOops, "should only be used for compressed oops"); 4060 assert (Universe::heap() != NULL, "java heap should be initialized"); 4061 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4062 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4063 } 4064 #endif 4065 int oop_index = oop_recorder()->find_index(obj); 4066 InstructionMark im(this); 4067 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4068 code_section()->relocate(inst_mark(), rspec); 4069 movz(dst, 0xDEAD, 16); 4070 movk(dst, 0xBEEF); 4071 } 4072 4073 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 4074 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4075 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4076 int index = oop_recorder()->find_index(k); 4077 assert(! Universe::heap()->is_in(k), "should not be an oop"); 4078 4079 InstructionMark im(this); 4080 RelocationHolder rspec = metadata_Relocation::spec(index); 4081 code_section()->relocate(inst_mark(), rspec); 4082 narrowKlass nk = CompressedKlassPointers::encode(k); 4083 movz(dst, (nk >> 16), 16); 4084 movk(dst, nk & 0xffff); 4085 } 4086 4087 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 4088 Register dst, Address src, 4089 Register tmp1, Register thread_tmp) { 4090 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4091 decorators = AccessInternal::decorator_fixup(decorators); 4092 bool as_raw = (decorators & AS_RAW) != 0; 4093 if (as_raw) { 4094 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4095 } else { 4096 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4097 } 4098 } 4099 4100 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 4101 Address dst, Register src, 4102 Register tmp1, Register thread_tmp) { 4103 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4104 decorators = AccessInternal::decorator_fixup(decorators); 4105 bool as_raw = (decorators & AS_RAW) != 0; 4106 if (as_raw) { 4107 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4108 } else { 4109 bs->store_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4110 } 4111 } 4112 4113 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 4114 Register thread_tmp, DecoratorSet decorators) { 4115 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 4116 } 4117 4118 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 4119 Register thread_tmp, DecoratorSet decorators) { 4120 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 4121 } 4122 4123 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1, 4124 Register thread_tmp, DecoratorSet decorators) { 4125 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 4126 } 4127 4128 // Used for storing NULLs. 4129 void MacroAssembler::store_heap_oop_null(Address dst) { 4130 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg); 4131 } 4132 4133 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 4134 assert(oop_recorder() != NULL, "this assembler needs a Recorder"); 4135 int index = oop_recorder()->allocate_metadata_index(obj); 4136 RelocationHolder rspec = metadata_Relocation::spec(index); 4137 return Address((address)obj, rspec); 4138 } 4139 4140 // Move an oop into a register. immediate is true if we want 4141 // immediate instructions and nmethod entry barriers are not enabled. 4142 // i.e. we are not going to patch this instruction while the code is being 4143 // executed by another thread. 4144 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) { 4145 int oop_index; 4146 if (obj == NULL) { 4147 oop_index = oop_recorder()->allocate_oop_index(obj); 4148 } else { 4149 #ifdef ASSERT 4150 { 4151 ThreadInVMfromUnknown tiv; 4152 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4153 } 4154 #endif 4155 oop_index = oop_recorder()->find_index(obj); 4156 } 4157 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4158 4159 // nmethod entry barrier necessitate using the constant pool. They have to be 4160 // ordered with respected to oop accesses. 4161 // Using immediate literals would necessitate ISBs. 4162 if (BarrierSet::barrier_set()->barrier_set_nmethod() != NULL || !immediate) { 4163 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 4164 ldr_constant(dst, Address(dummy, rspec)); 4165 } else 4166 mov(dst, Address((address)obj, rspec)); 4167 4168 } 4169 4170 // Move a metadata address into a register. 4171 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 4172 int oop_index; 4173 if (obj == NULL) { 4174 oop_index = oop_recorder()->allocate_metadata_index(obj); 4175 } else { 4176 oop_index = oop_recorder()->find_index(obj); 4177 } 4178 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 4179 mov(dst, Address((address)obj, rspec)); 4180 } 4181 4182 Address MacroAssembler::constant_oop_address(jobject obj) { 4183 #ifdef ASSERT 4184 { 4185 ThreadInVMfromUnknown tiv; 4186 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4187 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 4188 } 4189 #endif 4190 int oop_index = oop_recorder()->find_index(obj); 4191 return Address((address)obj, oop_Relocation::spec(oop_index)); 4192 } 4193 4194 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4195 void MacroAssembler::tlab_allocate(Register obj, 4196 Register var_size_in_bytes, 4197 int con_size_in_bytes, 4198 Register t1, 4199 Register t2, 4200 Label& slow_case) { 4201 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4202 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4203 } 4204 4205 // Defines obj, preserves var_size_in_bytes 4206 void MacroAssembler::eden_allocate(Register obj, 4207 Register var_size_in_bytes, 4208 int con_size_in_bytes, 4209 Register t1, 4210 Label& slow_case) { 4211 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4212 bs->eden_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case); 4213 } 4214 4215 void MacroAssembler::verify_tlab() { 4216 #ifdef ASSERT 4217 if (UseTLAB && VerifyOops) { 4218 Label next, ok; 4219 4220 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 4221 4222 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4223 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 4224 cmp(rscratch2, rscratch1); 4225 br(Assembler::HS, next); 4226 STOP("assert(top >= start)"); 4227 should_not_reach_here(); 4228 4229 bind(next); 4230 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 4231 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4232 cmp(rscratch2, rscratch1); 4233 br(Assembler::HS, ok); 4234 STOP("assert(top <= end)"); 4235 should_not_reach_here(); 4236 4237 bind(ok); 4238 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 4239 } 4240 #endif 4241 } 4242 4243 // Writes to stack successive pages until offset reached to check for 4244 // stack overflow + shadow pages. This clobbers tmp. 4245 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 4246 assert_different_registers(tmp, size, rscratch1); 4247 mov(tmp, sp); 4248 // Bang stack for total size given plus shadow page size. 4249 // Bang one page at a time because large size can bang beyond yellow and 4250 // red zones. 4251 Label loop; 4252 mov(rscratch1, os::vm_page_size()); 4253 bind(loop); 4254 lea(tmp, Address(tmp, -os::vm_page_size())); 4255 subsw(size, size, rscratch1); 4256 str(size, Address(tmp)); 4257 br(Assembler::GT, loop); 4258 4259 // Bang down shadow pages too. 4260 // At this point, (tmp-0) is the last address touched, so don't 4261 // touch it again. (It was touched as (tmp-pagesize) but then tmp 4262 // was post-decremented.) Skip this address by starting at i=1, and 4263 // touch a few more pages below. N.B. It is important to touch all 4264 // the way down to and including i=StackShadowPages. 4265 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) { 4266 // this could be any sized move but this is can be a debugging crumb 4267 // so the bigger the better. 4268 lea(tmp, Address(tmp, -os::vm_page_size())); 4269 str(size, Address(tmp)); 4270 } 4271 } 4272 4273 // Move the address of the polling page into dest. 4274 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 4275 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 4276 } 4277 4278 // Read the polling page. The address of the polling page must 4279 // already be in r. 4280 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 4281 address mark; 4282 { 4283 InstructionMark im(this); 4284 code_section()->relocate(inst_mark(), rtype); 4285 ldrw(zr, Address(r, 0)); 4286 mark = inst_mark(); 4287 } 4288 verify_cross_modify_fence_not_required(); 4289 return mark; 4290 } 4291 4292 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 4293 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 4294 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 4295 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 4296 uint64_t dest_page = (uint64_t)dest.target() >> 12; 4297 int64_t offset_low = dest_page - low_page; 4298 int64_t offset_high = dest_page - high_page; 4299 4300 assert(is_valid_AArch64_address(dest.target()), "bad address"); 4301 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 4302 4303 InstructionMark im(this); 4304 code_section()->relocate(inst_mark(), dest.rspec()); 4305 // 8143067: Ensure that the adrp can reach the dest from anywhere within 4306 // the code cache so that if it is relocated we know it will still reach 4307 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 4308 _adrp(reg1, dest.target()); 4309 } else { 4310 uint64_t target = (uint64_t)dest.target(); 4311 uint64_t adrp_target 4312 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 4313 4314 _adrp(reg1, (address)adrp_target); 4315 movk(reg1, target >> 32, 32); 4316 } 4317 byte_offset = (uint64_t)dest.target() & 0xfff; 4318 } 4319 4320 void MacroAssembler::load_byte_map_base(Register reg) { 4321 CardTable::CardValue* byte_map_base = 4322 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 4323 4324 // Strictly speaking the byte_map_base isn't an address at all, and it might 4325 // even be negative. It is thus materialised as a constant. 4326 mov(reg, (uint64_t)byte_map_base); 4327 } 4328 4329 void MacroAssembler::build_frame(int framesize) { 4330 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 4331 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 4332 protect_return_address(); 4333 if (framesize < ((1 << 9) + 2 * wordSize)) { 4334 sub(sp, sp, framesize); 4335 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4336 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 4337 } else { 4338 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 4339 if (PreserveFramePointer) mov(rfp, sp); 4340 if (framesize < ((1 << 12) + 2 * wordSize)) 4341 sub(sp, sp, framesize - 2 * wordSize); 4342 else { 4343 mov(rscratch1, framesize - 2 * wordSize); 4344 sub(sp, sp, rscratch1); 4345 } 4346 } 4347 verify_cross_modify_fence_not_required(); 4348 } 4349 4350 void MacroAssembler::remove_frame(int framesize) { 4351 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 4352 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 4353 if (framesize < ((1 << 9) + 2 * wordSize)) { 4354 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4355 add(sp, sp, framesize); 4356 } else { 4357 if (framesize < ((1 << 12) + 2 * wordSize)) 4358 add(sp, sp, framesize - 2 * wordSize); 4359 else { 4360 mov(rscratch1, framesize - 2 * wordSize); 4361 add(sp, sp, rscratch1); 4362 } 4363 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 4364 } 4365 authenticate_return_address(); 4366 } 4367 4368 4369 // This method counts leading positive bytes (highest bit not set) in provided byte array 4370 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 4371 // Simple and most common case of aligned small array which is not at the 4372 // end of memory page is placed here. All other cases are in stub. 4373 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 4374 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 4375 assert_different_registers(ary1, len, result); 4376 4377 mov(result, len); 4378 cmpw(len, 0); 4379 br(LE, DONE); 4380 cmpw(len, 4 * wordSize); 4381 br(GE, STUB_LONG); // size > 32 then go to stub 4382 4383 int shift = 64 - exact_log2(os::vm_page_size()); 4384 lsl(rscratch1, ary1, shift); 4385 mov(rscratch2, (size_t)(4 * wordSize) << shift); 4386 adds(rscratch2, rscratch1, rscratch2); // At end of page? 4387 br(CS, STUB); // at the end of page then go to stub 4388 subs(len, len, wordSize); 4389 br(LT, END); 4390 4391 BIND(LOOP); 4392 ldr(rscratch1, Address(post(ary1, wordSize))); 4393 tst(rscratch1, UPPER_BIT_MASK); 4394 br(NE, SET_RESULT); 4395 subs(len, len, wordSize); 4396 br(GE, LOOP); 4397 cmpw(len, -wordSize); 4398 br(EQ, DONE); 4399 4400 BIND(END); 4401 ldr(rscratch1, Address(ary1)); 4402 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 4403 lslv(rscratch1, rscratch1, rscratch2); 4404 tst(rscratch1, UPPER_BIT_MASK); 4405 br(NE, SET_RESULT); 4406 b(DONE); 4407 4408 BIND(STUB); 4409 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 4410 assert(count_pos.target() != NULL, "count_positives stub has not been generated"); 4411 address tpc1 = trampoline_call(count_pos); 4412 if (tpc1 == NULL) { 4413 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 4414 postcond(pc() == badAddress); 4415 return NULL; 4416 } 4417 b(DONE); 4418 4419 BIND(STUB_LONG); 4420 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 4421 assert(count_pos_long.target() != NULL, "count_positives_long stub has not been generated"); 4422 address tpc2 = trampoline_call(count_pos_long); 4423 if (tpc2 == NULL) { 4424 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 4425 postcond(pc() == badAddress); 4426 return NULL; 4427 } 4428 b(DONE); 4429 4430 BIND(SET_RESULT); 4431 4432 add(len, len, wordSize); 4433 sub(result, result, len); 4434 4435 BIND(DONE); 4436 postcond(pc() != badAddress); 4437 return pc(); 4438 } 4439 4440 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 4441 Register tmp4, Register tmp5, Register result, 4442 Register cnt1, int elem_size) { 4443 Label DONE, SAME; 4444 Register tmp1 = rscratch1; 4445 Register tmp2 = rscratch2; 4446 Register cnt2 = tmp2; // cnt2 only used in array length compare 4447 int elem_per_word = wordSize/elem_size; 4448 int log_elem_size = exact_log2(elem_size); 4449 int length_offset = arrayOopDesc::length_offset_in_bytes(); 4450 int base_offset 4451 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 4452 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 4453 4454 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 4455 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 4456 4457 #ifndef PRODUCT 4458 { 4459 const char kind = (elem_size == 2) ? 'U' : 'L'; 4460 char comment[64]; 4461 snprintf(comment, sizeof comment, "array_equals%c{", kind); 4462 BLOCK_COMMENT(comment); 4463 } 4464 #endif 4465 4466 // if (a1 == a2) 4467 // return true; 4468 cmpoop(a1, a2); // May have read barriers for a1 and a2. 4469 br(EQ, SAME); 4470 4471 if (UseSimpleArrayEquals) { 4472 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 4473 // if (a1 == null || a2 == null) 4474 // return false; 4475 // a1 & a2 == 0 means (some-pointer is null) or 4476 // (very-rare-or-even-probably-impossible-pointer-values) 4477 // so, we can save one branch in most cases 4478 tst(a1, a2); 4479 mov(result, false); 4480 br(EQ, A_MIGHT_BE_NULL); 4481 // if (a1.length != a2.length) 4482 // return false; 4483 bind(A_IS_NOT_NULL); 4484 ldrw(cnt1, Address(a1, length_offset)); 4485 ldrw(cnt2, Address(a2, length_offset)); 4486 eorw(tmp5, cnt1, cnt2); 4487 cbnzw(tmp5, DONE); 4488 lea(a1, Address(a1, base_offset)); 4489 lea(a2, Address(a2, base_offset)); 4490 // Check for short strings, i.e. smaller than wordSize. 4491 subs(cnt1, cnt1, elem_per_word); 4492 br(Assembler::LT, SHORT); 4493 // Main 8 byte comparison loop. 4494 bind(NEXT_WORD); { 4495 ldr(tmp1, Address(post(a1, wordSize))); 4496 ldr(tmp2, Address(post(a2, wordSize))); 4497 subs(cnt1, cnt1, elem_per_word); 4498 eor(tmp5, tmp1, tmp2); 4499 cbnz(tmp5, DONE); 4500 } br(GT, NEXT_WORD); 4501 // Last longword. In the case where length == 4 we compare the 4502 // same longword twice, but that's still faster than another 4503 // conditional branch. 4504 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 4505 // length == 4. 4506 if (log_elem_size > 0) 4507 lsl(cnt1, cnt1, log_elem_size); 4508 ldr(tmp3, Address(a1, cnt1)); 4509 ldr(tmp4, Address(a2, cnt1)); 4510 eor(tmp5, tmp3, tmp4); 4511 cbnz(tmp5, DONE); 4512 b(SAME); 4513 bind(A_MIGHT_BE_NULL); 4514 // in case both a1 and a2 are not-null, proceed with loads 4515 cbz(a1, DONE); 4516 cbz(a2, DONE); 4517 b(A_IS_NOT_NULL); 4518 bind(SHORT); 4519 4520 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 4521 { 4522 ldrw(tmp1, Address(post(a1, 4))); 4523 ldrw(tmp2, Address(post(a2, 4))); 4524 eorw(tmp5, tmp1, tmp2); 4525 cbnzw(tmp5, DONE); 4526 } 4527 bind(TAIL03); 4528 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 4529 { 4530 ldrh(tmp3, Address(post(a1, 2))); 4531 ldrh(tmp4, Address(post(a2, 2))); 4532 eorw(tmp5, tmp3, tmp4); 4533 cbnzw(tmp5, DONE); 4534 } 4535 bind(TAIL01); 4536 if (elem_size == 1) { // Only needed when comparing byte arrays. 4537 tbz(cnt1, 0, SAME); // 0-1 bytes left. 4538 { 4539 ldrb(tmp1, a1); 4540 ldrb(tmp2, a2); 4541 eorw(tmp5, tmp1, tmp2); 4542 cbnzw(tmp5, DONE); 4543 } 4544 } 4545 } else { 4546 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 4547 CSET_EQ, LAST_CHECK; 4548 mov(result, false); 4549 cbz(a1, DONE); 4550 ldrw(cnt1, Address(a1, length_offset)); 4551 cbz(a2, DONE); 4552 ldrw(cnt2, Address(a2, length_offset)); 4553 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 4554 // faster to perform another branch before comparing a1 and a2 4555 cmp(cnt1, (u1)elem_per_word); 4556 br(LE, SHORT); // short or same 4557 ldr(tmp3, Address(pre(a1, base_offset))); 4558 subs(zr, cnt1, stubBytesThreshold); 4559 br(GE, STUB); 4560 ldr(tmp4, Address(pre(a2, base_offset))); 4561 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 4562 cmp(cnt2, cnt1); 4563 br(NE, DONE); 4564 4565 // Main 16 byte comparison loop with 2 exits 4566 bind(NEXT_DWORD); { 4567 ldr(tmp1, Address(pre(a1, wordSize))); 4568 ldr(tmp2, Address(pre(a2, wordSize))); 4569 subs(cnt1, cnt1, 2 * elem_per_word); 4570 br(LE, TAIL); 4571 eor(tmp4, tmp3, tmp4); 4572 cbnz(tmp4, DONE); 4573 ldr(tmp3, Address(pre(a1, wordSize))); 4574 ldr(tmp4, Address(pre(a2, wordSize))); 4575 cmp(cnt1, (u1)elem_per_word); 4576 br(LE, TAIL2); 4577 cmp(tmp1, tmp2); 4578 } br(EQ, NEXT_DWORD); 4579 b(DONE); 4580 4581 bind(TAIL); 4582 eor(tmp4, tmp3, tmp4); 4583 eor(tmp2, tmp1, tmp2); 4584 lslv(tmp2, tmp2, tmp5); 4585 orr(tmp5, tmp4, tmp2); 4586 cmp(tmp5, zr); 4587 b(CSET_EQ); 4588 4589 bind(TAIL2); 4590 eor(tmp2, tmp1, tmp2); 4591 cbnz(tmp2, DONE); 4592 b(LAST_CHECK); 4593 4594 bind(STUB); 4595 ldr(tmp4, Address(pre(a2, base_offset))); 4596 cmp(cnt2, cnt1); 4597 br(NE, DONE); 4598 if (elem_size == 2) { // convert to byte counter 4599 lsl(cnt1, cnt1, 1); 4600 } 4601 eor(tmp5, tmp3, tmp4); 4602 cbnz(tmp5, DONE); 4603 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 4604 assert(stub.target() != NULL, "array_equals_long stub has not been generated"); 4605 address tpc = trampoline_call(stub); 4606 if (tpc == NULL) { 4607 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 4608 postcond(pc() == badAddress); 4609 return NULL; 4610 } 4611 b(DONE); 4612 4613 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 4614 // so, if a2 == null => return false(0), else return true, so we can return a2 4615 mov(result, a2); 4616 b(DONE); 4617 bind(SHORT); 4618 cmp(cnt2, cnt1); 4619 br(NE, DONE); 4620 cbz(cnt1, SAME); 4621 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 4622 ldr(tmp3, Address(a1, base_offset)); 4623 ldr(tmp4, Address(a2, base_offset)); 4624 bind(LAST_CHECK); 4625 eor(tmp4, tmp3, tmp4); 4626 lslv(tmp5, tmp4, tmp5); 4627 cmp(tmp5, zr); 4628 bind(CSET_EQ); 4629 cset(result, EQ); 4630 b(DONE); 4631 } 4632 4633 bind(SAME); 4634 mov(result, true); 4635 // That's it. 4636 bind(DONE); 4637 4638 BLOCK_COMMENT("} array_equals"); 4639 postcond(pc() != badAddress); 4640 return pc(); 4641 } 4642 4643 // Compare Strings 4644 4645 // For Strings we're passed the address of the first characters in a1 4646 // and a2 and the length in cnt1. 4647 // elem_size is the element size in bytes: either 1 or 2. 4648 // There are two implementations. For arrays >= 8 bytes, all 4649 // comparisons (including the final one, which may overlap) are 4650 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 4651 // halfword, then a short, and then a byte. 4652 4653 void MacroAssembler::string_equals(Register a1, Register a2, 4654 Register result, Register cnt1, int elem_size) 4655 { 4656 Label SAME, DONE, SHORT, NEXT_WORD; 4657 Register tmp1 = rscratch1; 4658 Register tmp2 = rscratch2; 4659 Register cnt2 = tmp2; // cnt2 only used in array length compare 4660 4661 assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte"); 4662 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 4663 4664 #ifndef PRODUCT 4665 { 4666 const char kind = (elem_size == 2) ? 'U' : 'L'; 4667 char comment[64]; 4668 snprintf(comment, sizeof comment, "{string_equals%c", kind); 4669 BLOCK_COMMENT(comment); 4670 } 4671 #endif 4672 4673 mov(result, false); 4674 4675 // Check for short strings, i.e. smaller than wordSize. 4676 subs(cnt1, cnt1, wordSize); 4677 br(Assembler::LT, SHORT); 4678 // Main 8 byte comparison loop. 4679 bind(NEXT_WORD); { 4680 ldr(tmp1, Address(post(a1, wordSize))); 4681 ldr(tmp2, Address(post(a2, wordSize))); 4682 subs(cnt1, cnt1, wordSize); 4683 eor(tmp1, tmp1, tmp2); 4684 cbnz(tmp1, DONE); 4685 } br(GT, NEXT_WORD); 4686 // Last longword. In the case where length == 4 we compare the 4687 // same longword twice, but that's still faster than another 4688 // conditional branch. 4689 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 4690 // length == 4. 4691 ldr(tmp1, Address(a1, cnt1)); 4692 ldr(tmp2, Address(a2, cnt1)); 4693 eor(tmp2, tmp1, tmp2); 4694 cbnz(tmp2, DONE); 4695 b(SAME); 4696 4697 bind(SHORT); 4698 Label TAIL03, TAIL01; 4699 4700 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 4701 { 4702 ldrw(tmp1, Address(post(a1, 4))); 4703 ldrw(tmp2, Address(post(a2, 4))); 4704 eorw(tmp1, tmp1, tmp2); 4705 cbnzw(tmp1, DONE); 4706 } 4707 bind(TAIL03); 4708 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 4709 { 4710 ldrh(tmp1, Address(post(a1, 2))); 4711 ldrh(tmp2, Address(post(a2, 2))); 4712 eorw(tmp1, tmp1, tmp2); 4713 cbnzw(tmp1, DONE); 4714 } 4715 bind(TAIL01); 4716 if (elem_size == 1) { // Only needed when comparing 1-byte elements 4717 tbz(cnt1, 0, SAME); // 0-1 bytes left. 4718 { 4719 ldrb(tmp1, a1); 4720 ldrb(tmp2, a2); 4721 eorw(tmp1, tmp1, tmp2); 4722 cbnzw(tmp1, DONE); 4723 } 4724 } 4725 // Arrays are equal. 4726 bind(SAME); 4727 mov(result, true); 4728 4729 // That's it. 4730 bind(DONE); 4731 BLOCK_COMMENT("} string_equals"); 4732 } 4733 4734 4735 // The size of the blocks erased by the zero_blocks stub. We must 4736 // handle anything smaller than this ourselves in zero_words(). 4737 const int MacroAssembler::zero_words_block_size = 8; 4738 4739 // zero_words() is used by C2 ClearArray patterns and by 4740 // C1_MacroAssembler. It is as small as possible, handling small word 4741 // counts locally and delegating anything larger to the zero_blocks 4742 // stub. It is expanded many times in compiled code, so it is 4743 // important to keep it short. 4744 4745 // ptr: Address of a buffer to be zeroed. 4746 // cnt: Count in HeapWords. 4747 // 4748 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 4749 address MacroAssembler::zero_words(Register ptr, Register cnt) 4750 { 4751 assert(is_power_of_2(zero_words_block_size), "adjust this"); 4752 4753 BLOCK_COMMENT("zero_words {"); 4754 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 4755 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 4756 assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); 4757 4758 subs(rscratch1, cnt, zero_words_block_size); 4759 Label around; 4760 br(LO, around); 4761 { 4762 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 4763 assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); 4764 // Make sure this is a C2 compilation. C1 allocates space only for 4765 // trampoline stubs generated by Call LIR ops, and in any case it 4766 // makes sense for a C1 compilation task to proceed as quickly as 4767 // possible. 4768 CompileTask* task; 4769 if (StubRoutines::aarch64::complete() 4770 && Thread::current()->is_Compiler_thread() 4771 && (task = ciEnv::current()->task()) 4772 && is_c2_compile(task->comp_level())) { 4773 address tpc = trampoline_call(zero_blocks); 4774 if (tpc == NULL) { 4775 DEBUG_ONLY(reset_labels(around)); 4776 assert(false, "failed to allocate space for trampoline"); 4777 return NULL; 4778 } 4779 } else { 4780 far_call(zero_blocks); 4781 } 4782 } 4783 bind(around); 4784 4785 // We have a few words left to do. zero_blocks has adjusted r10 and r11 4786 // for us. 4787 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 4788 Label l; 4789 tbz(cnt, exact_log2(i), l); 4790 for (int j = 0; j < i; j += 2) { 4791 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 4792 } 4793 bind(l); 4794 } 4795 { 4796 Label l; 4797 tbz(cnt, 0, l); 4798 str(zr, Address(ptr)); 4799 bind(l); 4800 } 4801 4802 BLOCK_COMMENT("} zero_words"); 4803 return pc(); 4804 } 4805 4806 // base: Address of a buffer to be zeroed, 8 bytes aligned. 4807 // cnt: Immediate count in HeapWords. 4808 // 4809 // r10, r11, rscratch1, and rscratch2 are clobbered. 4810 void MacroAssembler::zero_words(Register base, uint64_t cnt) 4811 { 4812 guarantee(zero_words_block_size < BlockZeroingLowLimit, 4813 "increase BlockZeroingLowLimit"); 4814 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 4815 #ifndef PRODUCT 4816 { 4817 char buf[64]; 4818 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 4819 BLOCK_COMMENT(buf); 4820 } 4821 #endif 4822 if (cnt >= 16) { 4823 uint64_t loops = cnt/16; 4824 if (loops > 1) { 4825 mov(rscratch2, loops - 1); 4826 } 4827 { 4828 Label loop; 4829 bind(loop); 4830 for (int i = 0; i < 16; i += 2) { 4831 stp(zr, zr, Address(base, i * BytesPerWord)); 4832 } 4833 add(base, base, 16 * BytesPerWord); 4834 if (loops > 1) { 4835 subs(rscratch2, rscratch2, 1); 4836 br(GE, loop); 4837 } 4838 } 4839 } 4840 cnt %= 16; 4841 int i = cnt & 1; // store any odd word to start 4842 if (i) str(zr, Address(base)); 4843 for (; i < (int)cnt; i += 2) { 4844 stp(zr, zr, Address(base, i * wordSize)); 4845 } 4846 BLOCK_COMMENT("} zero_words"); 4847 } else { 4848 mov(r10, base); mov(r11, cnt); 4849 zero_words(r10, r11); 4850 } 4851 } 4852 4853 // Zero blocks of memory by using DC ZVA. 4854 // 4855 // Aligns the base address first sufficiently for DC ZVA, then uses 4856 // DC ZVA repeatedly for every full block. cnt is the size to be 4857 // zeroed in HeapWords. Returns the count of words left to be zeroed 4858 // in cnt. 4859 // 4860 // NOTE: This is intended to be used in the zero_blocks() stub. If 4861 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 4862 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 4863 Register tmp = rscratch1; 4864 Register tmp2 = rscratch2; 4865 int zva_length = VM_Version::zva_length(); 4866 Label initial_table_end, loop_zva; 4867 Label fini; 4868 4869 // Base must be 16 byte aligned. If not just return and let caller handle it 4870 tst(base, 0x0f); 4871 br(Assembler::NE, fini); 4872 // Align base with ZVA length. 4873 neg(tmp, base); 4874 andr(tmp, tmp, zva_length - 1); 4875 4876 // tmp: the number of bytes to be filled to align the base with ZVA length. 4877 add(base, base, tmp); 4878 sub(cnt, cnt, tmp, Assembler::ASR, 3); 4879 adr(tmp2, initial_table_end); 4880 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 4881 br(tmp2); 4882 4883 for (int i = -zva_length + 16; i < 0; i += 16) 4884 stp(zr, zr, Address(base, i)); 4885 bind(initial_table_end); 4886 4887 sub(cnt, cnt, zva_length >> 3); 4888 bind(loop_zva); 4889 dc(Assembler::ZVA, base); 4890 subs(cnt, cnt, zva_length >> 3); 4891 add(base, base, zva_length); 4892 br(Assembler::GE, loop_zva); 4893 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 4894 bind(fini); 4895 } 4896 4897 // base: Address of a buffer to be filled, 8 bytes aligned. 4898 // cnt: Count in 8-byte unit. 4899 // value: Value to be filled with. 4900 // base will point to the end of the buffer after filling. 4901 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 4902 { 4903 // Algorithm: 4904 // 4905 // if (cnt == 0) { 4906 // return; 4907 // } 4908 // if ((p & 8) != 0) { 4909 // *p++ = v; 4910 // } 4911 // 4912 // scratch1 = cnt & 14; 4913 // cnt -= scratch1; 4914 // p += scratch1; 4915 // switch (scratch1 / 2) { 4916 // do { 4917 // cnt -= 16; 4918 // p[-16] = v; 4919 // p[-15] = v; 4920 // case 7: 4921 // p[-14] = v; 4922 // p[-13] = v; 4923 // case 6: 4924 // p[-12] = v; 4925 // p[-11] = v; 4926 // // ... 4927 // case 1: 4928 // p[-2] = v; 4929 // p[-1] = v; 4930 // case 0: 4931 // p += 16; 4932 // } while (cnt); 4933 // } 4934 // if ((cnt & 1) == 1) { 4935 // *p++ = v; 4936 // } 4937 4938 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 4939 4940 Label fini, skip, entry, loop; 4941 const int unroll = 8; // Number of stp instructions we'll unroll 4942 4943 cbz(cnt, fini); 4944 tbz(base, 3, skip); 4945 str(value, Address(post(base, 8))); 4946 sub(cnt, cnt, 1); 4947 bind(skip); 4948 4949 andr(rscratch1, cnt, (unroll-1) * 2); 4950 sub(cnt, cnt, rscratch1); 4951 add(base, base, rscratch1, Assembler::LSL, 3); 4952 adr(rscratch2, entry); 4953 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 4954 br(rscratch2); 4955 4956 bind(loop); 4957 add(base, base, unroll * 16); 4958 for (int i = -unroll; i < 0; i++) 4959 stp(value, value, Address(base, i * 16)); 4960 bind(entry); 4961 subs(cnt, cnt, unroll * 2); 4962 br(Assembler::GE, loop); 4963 4964 tbz(cnt, 0, fini); 4965 str(value, Address(post(base, 8))); 4966 bind(fini); 4967 } 4968 4969 // Intrinsic for 4970 // 4971 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 4972 // return the number of characters copied. 4973 // - java/lang/StringUTF16.compress 4974 // return zero (0) if copy fails, otherwise 'len'. 4975 // 4976 // This version always returns the number of characters copied, and does not 4977 // clobber the 'len' register. A successful copy will complete with the post- 4978 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 4979 // post-condition: 0 <= 'res' < 'len'. 4980 // 4981 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 4982 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 4983 // beyond the acceptable, even though the footprint would be smaller. 4984 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 4985 // avoid additional bloat. 4986 // 4987 void MacroAssembler::encode_iso_array(Register src, Register dst, 4988 Register len, Register res, bool ascii, 4989 FloatRegister vtmp0, FloatRegister vtmp1, 4990 FloatRegister vtmp2, FloatRegister vtmp3) 4991 { 4992 Register cnt = res; 4993 Register max = rscratch1; 4994 Register chk = rscratch2; 4995 4996 prfm(Address(src), PLDL1STRM); 4997 movw(cnt, len); 4998 4999 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 5000 5001 Label LOOP_32, DONE_32, FAIL_32; 5002 5003 BIND(LOOP_32); 5004 { 5005 cmpw(cnt, 32); 5006 br(LT, DONE_32); 5007 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 5008 // Extract lower bytes. 5009 FloatRegister vlo0 = v4; 5010 FloatRegister vlo1 = v5; 5011 uzp1(vlo0, T16B, vtmp0, vtmp1); 5012 uzp1(vlo1, T16B, vtmp2, vtmp3); 5013 // Merge bits... 5014 orr(vtmp0, T16B, vtmp0, vtmp1); 5015 orr(vtmp2, T16B, vtmp2, vtmp3); 5016 // Extract merged upper bytes. 5017 FloatRegister vhix = vtmp0; 5018 uzp2(vhix, T16B, vtmp0, vtmp2); 5019 // ISO-check on hi-parts (all zero). 5020 // ASCII-check on lo-parts (no sign). 5021 FloatRegister vlox = vtmp1; // Merge lower bytes. 5022 ASCII(orr(vlox, T16B, vlo0, vlo1)); 5023 umov(chk, vhix, D, 1); ASCII(cmlt(vlox, T16B, vlox)); 5024 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 5025 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 5026 ASCII(orr(chk, chk, max)); 5027 cbnz(chk, FAIL_32); 5028 subw(cnt, cnt, 32); 5029 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 5030 b(LOOP_32); 5031 } 5032 BIND(FAIL_32); 5033 sub(src, src, 64); 5034 BIND(DONE_32); 5035 5036 Label LOOP_8, SKIP_8; 5037 5038 BIND(LOOP_8); 5039 { 5040 cmpw(cnt, 8); 5041 br(LT, SKIP_8); 5042 FloatRegister vhi = vtmp0; 5043 FloatRegister vlo = vtmp1; 5044 ld1(vtmp3, T8H, src); 5045 uzp1(vlo, T16B, vtmp3, vtmp3); 5046 uzp2(vhi, T16B, vtmp3, vtmp3); 5047 // ISO-check on hi-parts (all zero). 5048 // ASCII-check on lo-parts (no sign). 5049 ASCII(cmlt(vtmp2, T16B, vlo)); 5050 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 5051 ASCII(umov(max, vtmp2, B, 0)); 5052 ASCII(orr(chk, chk, max)); 5053 cbnz(chk, SKIP_8); 5054 5055 strd(vlo, Address(post(dst, 8))); 5056 subw(cnt, cnt, 8); 5057 add(src, src, 16); 5058 b(LOOP_8); 5059 } 5060 BIND(SKIP_8); 5061 5062 #undef ASCII 5063 5064 Label LOOP, DONE; 5065 5066 cbz(cnt, DONE); 5067 BIND(LOOP); 5068 { 5069 Register chr = rscratch1; 5070 ldrh(chr, Address(post(src, 2))); 5071 tst(chr, ascii ? 0xff80 : 0xff00); 5072 br(NE, DONE); 5073 strb(chr, Address(post(dst, 1))); 5074 subs(cnt, cnt, 1); 5075 br(GT, LOOP); 5076 } 5077 BIND(DONE); 5078 // Return index where we stopped. 5079 subw(res, len, cnt); 5080 } 5081 5082 // Inflate byte[] array to char[]. 5083 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 5084 FloatRegister vtmp1, FloatRegister vtmp2, 5085 FloatRegister vtmp3, Register tmp4) { 5086 Label big, done, after_init, to_stub; 5087 5088 assert_different_registers(src, dst, len, tmp4, rscratch1); 5089 5090 fmovd(vtmp1, 0.0); 5091 lsrw(tmp4, len, 3); 5092 bind(after_init); 5093 cbnzw(tmp4, big); 5094 // Short string: less than 8 bytes. 5095 { 5096 Label loop, tiny; 5097 5098 cmpw(len, 4); 5099 br(LT, tiny); 5100 // Use SIMD to do 4 bytes. 5101 ldrs(vtmp2, post(src, 4)); 5102 zip1(vtmp3, T8B, vtmp2, vtmp1); 5103 subw(len, len, 4); 5104 strd(vtmp3, post(dst, 8)); 5105 5106 cbzw(len, done); 5107 5108 // Do the remaining bytes by steam. 5109 bind(loop); 5110 ldrb(tmp4, post(src, 1)); 5111 strh(tmp4, post(dst, 2)); 5112 subw(len, len, 1); 5113 5114 bind(tiny); 5115 cbnz(len, loop); 5116 5117 b(done); 5118 } 5119 5120 if (SoftwarePrefetchHintDistance >= 0) { 5121 bind(to_stub); 5122 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 5123 assert(stub.target() != NULL, "large_byte_array_inflate stub has not been generated"); 5124 address tpc = trampoline_call(stub); 5125 if (tpc == NULL) { 5126 DEBUG_ONLY(reset_labels(big, done)); 5127 postcond(pc() == badAddress); 5128 return NULL; 5129 } 5130 b(after_init); 5131 } 5132 5133 // Unpack the bytes 8 at a time. 5134 bind(big); 5135 { 5136 Label loop, around, loop_last, loop_start; 5137 5138 if (SoftwarePrefetchHintDistance >= 0) { 5139 const int large_loop_threshold = (64 + 16)/8; 5140 ldrd(vtmp2, post(src, 8)); 5141 andw(len, len, 7); 5142 cmp(tmp4, (u1)large_loop_threshold); 5143 br(GE, to_stub); 5144 b(loop_start); 5145 5146 bind(loop); 5147 ldrd(vtmp2, post(src, 8)); 5148 bind(loop_start); 5149 subs(tmp4, tmp4, 1); 5150 br(EQ, loop_last); 5151 zip1(vtmp2, T16B, vtmp2, vtmp1); 5152 ldrd(vtmp3, post(src, 8)); 5153 st1(vtmp2, T8H, post(dst, 16)); 5154 subs(tmp4, tmp4, 1); 5155 zip1(vtmp3, T16B, vtmp3, vtmp1); 5156 st1(vtmp3, T8H, post(dst, 16)); 5157 br(NE, loop); 5158 b(around); 5159 bind(loop_last); 5160 zip1(vtmp2, T16B, vtmp2, vtmp1); 5161 st1(vtmp2, T8H, post(dst, 16)); 5162 bind(around); 5163 cbz(len, done); 5164 } else { 5165 andw(len, len, 7); 5166 bind(loop); 5167 ldrd(vtmp2, post(src, 8)); 5168 sub(tmp4, tmp4, 1); 5169 zip1(vtmp3, T16B, vtmp2, vtmp1); 5170 st1(vtmp3, T8H, post(dst, 16)); 5171 cbnz(tmp4, loop); 5172 } 5173 } 5174 5175 // Do the tail of up to 8 bytes. 5176 add(src, src, len); 5177 ldrd(vtmp3, Address(src, -8)); 5178 add(dst, dst, len, ext::uxtw, 1); 5179 zip1(vtmp3, T16B, vtmp3, vtmp1); 5180 strq(vtmp3, Address(dst, -16)); 5181 5182 bind(done); 5183 postcond(pc() != badAddress); 5184 return pc(); 5185 } 5186 5187 // Compress char[] array to byte[]. 5188 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 5189 Register res, 5190 FloatRegister tmp0, FloatRegister tmp1, 5191 FloatRegister tmp2, FloatRegister tmp3) { 5192 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3); 5193 // Adjust result: res == len ? len : 0 5194 cmp(len, res); 5195 csel(res, res, zr, EQ); 5196 } 5197 5198 // java.math.round(double a) 5199 // Returns the closest long to the argument, with ties rounding to 5200 // positive infinity. This requires some fiddling for corner 5201 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 5202 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 5203 FloatRegister ftmp) { 5204 Label DONE; 5205 BLOCK_COMMENT("java_round_double: { "); 5206 fmovd(rscratch1, src); 5207 // Use RoundToNearestTiesAway unless src small and -ve. 5208 fcvtasd(dst, src); 5209 // Test if src >= 0 || abs(src) >= 0x1.0p52 5210 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 5211 mov(rscratch2, julong_cast(0x1.0p52)); 5212 cmp(rscratch1, rscratch2); 5213 br(HS, DONE); { 5214 // src < 0 && abs(src) < 0x1.0p52 5215 // src may have a fractional part, so add 0.5 5216 fmovd(ftmp, 0.5); 5217 faddd(ftmp, src, ftmp); 5218 // Convert double to jlong, use RoundTowardsNegative 5219 fcvtmsd(dst, ftmp); 5220 } 5221 bind(DONE); 5222 BLOCK_COMMENT("} java_round_double"); 5223 } 5224 5225 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 5226 FloatRegister ftmp) { 5227 Label DONE; 5228 BLOCK_COMMENT("java_round_float: { "); 5229 fmovs(rscratch1, src); 5230 // Use RoundToNearestTiesAway unless src small and -ve. 5231 fcvtassw(dst, src); 5232 // Test if src >= 0 || abs(src) >= 0x1.0p23 5233 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 5234 mov(rscratch2, jint_cast(0x1.0p23f)); 5235 cmp(rscratch1, rscratch2); 5236 br(HS, DONE); { 5237 // src < 0 && |src| < 0x1.0p23 5238 // src may have a fractional part, so add 0.5 5239 fmovs(ftmp, 0.5f); 5240 fadds(ftmp, src, ftmp); 5241 // Convert float to jint, use RoundTowardsNegative 5242 fcvtmssw(dst, ftmp); 5243 } 5244 bind(DONE); 5245 BLOCK_COMMENT("} java_round_float"); 5246 } 5247 5248 // get_thread() can be called anywhere inside generated code so we 5249 // need to save whatever non-callee save context might get clobbered 5250 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 5251 // the call setup code. 5252 // 5253 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 5254 // On other systems, the helper is a usual C function. 5255 // 5256 void MacroAssembler::get_thread(Register dst) { 5257 RegSet saved_regs = 5258 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 5259 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 5260 5261 protect_return_address(); 5262 push(saved_regs, sp); 5263 5264 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 5265 blr(lr); 5266 if (dst != c_rarg0) { 5267 mov(dst, c_rarg0); 5268 } 5269 5270 pop(saved_regs, sp); 5271 authenticate_return_address(); 5272 } 5273 5274 void MacroAssembler::cache_wb(Address line) { 5275 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 5276 assert(line.index() == noreg, "index should be noreg"); 5277 assert(line.offset() == 0, "offset should be 0"); 5278 // would like to assert this 5279 // assert(line._ext.shift == 0, "shift should be zero"); 5280 if (VM_Version::supports_dcpop()) { 5281 // writeback using clear virtual address to point of persistence 5282 dc(Assembler::CVAP, line.base()); 5283 } else { 5284 // no need to generate anything as Unsafe.writebackMemory should 5285 // never invoke this stub 5286 } 5287 } 5288 5289 void MacroAssembler::cache_wbsync(bool is_pre) { 5290 // we only need a barrier post sync 5291 if (!is_pre) { 5292 membar(Assembler::AnyAny); 5293 } 5294 } 5295 5296 void MacroAssembler::verify_sve_vector_length(Register tmp) { 5297 // Make sure that native code does not change SVE vector length. 5298 if (!UseSVE) return; 5299 Label verify_ok; 5300 movw(tmp, zr); 5301 sve_inc(tmp, B); 5302 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 5303 br(EQ, verify_ok); 5304 stop("Error: SVE vector length has changed since jvm startup"); 5305 bind(verify_ok); 5306 } 5307 5308 void MacroAssembler::verify_ptrue() { 5309 Label verify_ok; 5310 if (!UseSVE) { 5311 return; 5312 } 5313 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 5314 sve_dec(rscratch1, B); 5315 cbz(rscratch1, verify_ok); 5316 stop("Error: the preserved predicate register (p7) elements are not all true"); 5317 bind(verify_ok); 5318 } 5319 5320 void MacroAssembler::safepoint_isb() { 5321 isb(); 5322 #ifndef PRODUCT 5323 if (VerifyCrossModifyFence) { 5324 // Clear the thread state. 5325 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 5326 } 5327 #endif 5328 } 5329 5330 #ifndef PRODUCT 5331 void MacroAssembler::verify_cross_modify_fence_not_required() { 5332 if (VerifyCrossModifyFence) { 5333 // Check if thread needs a cross modify fence. 5334 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 5335 Label fence_not_required; 5336 cbz(rscratch1, fence_not_required); 5337 // If it does then fail. 5338 lea(rscratch1, CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure)); 5339 mov(c_rarg0, rthread); 5340 blr(rscratch1); 5341 bind(fence_not_required); 5342 } 5343 } 5344 #endif 5345 5346 void MacroAssembler::spin_wait() { 5347 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 5348 switch (VM_Version::spin_wait_desc().inst()) { 5349 case SpinWait::NOP: 5350 nop(); 5351 break; 5352 case SpinWait::ISB: 5353 isb(); 5354 break; 5355 case SpinWait::YIELD: 5356 yield(); 5357 break; 5358 default: 5359 ShouldNotReachHere(); 5360 } 5361 } 5362 } 5363 5364 // Stack frame creation/removal 5365 5366 void MacroAssembler::enter(bool strip_ret_addr) { 5367 if (strip_ret_addr) { 5368 // Addresses can only be signed once. If there are multiple nested frames being created 5369 // in the same function, then the return address needs stripping first. 5370 strip_return_address(); 5371 } 5372 protect_return_address(); 5373 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5374 mov(rfp, sp); 5375 } 5376 5377 void MacroAssembler::leave() { 5378 mov(sp, rfp); 5379 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5380 authenticate_return_address(); 5381 } 5382 5383 // ROP Protection 5384 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 5385 // destroying stack frames or whenever directly loading/storing the LR to memory. 5386 // If ROP protection is not set then these functions are no-ops. 5387 // For more details on PAC see pauth_aarch64.hpp. 5388 5389 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 5390 // Uses the FP as the modifier. 5391 // 5392 void MacroAssembler::protect_return_address() { 5393 if (VM_Version::use_rop_protection()) { 5394 check_return_address(); 5395 // The standard convention for C code is to use paciasp, which uses SP as the modifier. This 5396 // works because in C code, FP and SP match on function entry. In the JDK, SP and FP may not 5397 // match, so instead explicitly use the FP. 5398 pacia(lr, rfp); 5399 } 5400 } 5401 5402 // Sign the return value in the given register. Use before updating the LR in the existing stack 5403 // frame for the current function. 5404 // Uses the FP from the start of the function as the modifier - which is stored at the address of 5405 // the current FP. 5406 // 5407 void MacroAssembler::protect_return_address(Register return_reg, Register temp_reg) { 5408 if (VM_Version::use_rop_protection()) { 5409 assert(PreserveFramePointer, "PreserveFramePointer must be set for ROP protection"); 5410 check_return_address(return_reg); 5411 ldr(temp_reg, Address(rfp)); 5412 pacia(return_reg, temp_reg); 5413 } 5414 } 5415 5416 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 5417 // 5418 void MacroAssembler::authenticate_return_address(Register return_reg) { 5419 if (VM_Version::use_rop_protection()) { 5420 autia(return_reg, rfp); 5421 check_return_address(return_reg); 5422 } 5423 } 5424 5425 // Authenticate the return value in the given register. Use before updating the LR in the existing 5426 // stack frame for the current function. 5427 // Uses the FP from the start of the function as the modifier - which is stored at the address of 5428 // the current FP. 5429 // 5430 void MacroAssembler::authenticate_return_address(Register return_reg, Register temp_reg) { 5431 if (VM_Version::use_rop_protection()) { 5432 assert(PreserveFramePointer, "PreserveFramePointer must be set for ROP protection"); 5433 ldr(temp_reg, Address(rfp)); 5434 autia(return_reg, temp_reg); 5435 check_return_address(return_reg); 5436 } 5437 } 5438 5439 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 5440 // there is no guaranteed way of authenticating the LR. 5441 // 5442 void MacroAssembler::strip_return_address() { 5443 if (VM_Version::use_rop_protection()) { 5444 xpaclri(); 5445 } 5446 } 5447 5448 #ifndef PRODUCT 5449 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 5450 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 5451 // it is difficult to debug back to the callee function. 5452 // This function simply loads from the address in the given register. 5453 // Use directly after authentication to catch authentication failures. 5454 // Also use before signing to check that the pointer is valid and hasn't already been signed. 5455 // 5456 void MacroAssembler::check_return_address(Register return_reg) { 5457 if (VM_Version::use_rop_protection()) { 5458 ldr(zr, Address(return_reg)); 5459 } 5460 } 5461 #endif 5462 5463 // The java_calling_convention describes stack locations as ideal slots on 5464 // a frame with no abi restrictions. Since we must observe abi restrictions 5465 // (like the placement of the register window) the slots must be biased by 5466 // the following value. 5467 static int reg2offset_in(VMReg r) { 5468 // Account for saved rfp and lr 5469 // This should really be in_preserve_stack_slots 5470 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 5471 } 5472 5473 static int reg2offset_out(VMReg r) { 5474 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 5475 } 5476 5477 // On 64 bit we will store integer like items to the stack as 5478 // 64 bits items (Aarch64 abi) even though java would only store 5479 // 32bits for a parameter. On 32bit it will simply be 32 bits 5480 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 5481 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 5482 if (src.first()->is_stack()) { 5483 if (dst.first()->is_stack()) { 5484 // stack to stack 5485 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 5486 str(tmp, Address(sp, reg2offset_out(dst.first()))); 5487 } else { 5488 // stack to reg 5489 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 5490 } 5491 } else if (dst.first()->is_stack()) { 5492 // reg to stack 5493 // Do we really have to sign extend??? 5494 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 5495 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 5496 } else { 5497 if (dst.first() != src.first()) { 5498 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 5499 } 5500 } 5501 } 5502 5503 // An oop arg. Must pass a handle not the oop itself 5504 void MacroAssembler::object_move( 5505 OopMap* map, 5506 int oop_handle_offset, 5507 int framesize_in_slots, 5508 VMRegPair src, 5509 VMRegPair dst, 5510 bool is_receiver, 5511 int* receiver_offset) { 5512 5513 // must pass a handle. First figure out the location we use as a handle 5514 5515 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 5516 5517 // See if oop is NULL if it is we need no handle 5518 5519 if (src.first()->is_stack()) { 5520 5521 // Oop is already on the stack as an argument 5522 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 5523 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 5524 if (is_receiver) { 5525 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 5526 } 5527 5528 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 5529 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 5530 // conditionally move a NULL 5531 cmp(rscratch1, zr); 5532 csel(rHandle, zr, rHandle, Assembler::EQ); 5533 } else { 5534 5535 // Oop is in an a register we must store it to the space we reserve 5536 // on the stack for oop_handles and pass a handle if oop is non-NULL 5537 5538 const Register rOop = src.first()->as_Register(); 5539 int oop_slot; 5540 if (rOop == j_rarg0) 5541 oop_slot = 0; 5542 else if (rOop == j_rarg1) 5543 oop_slot = 1; 5544 else if (rOop == j_rarg2) 5545 oop_slot = 2; 5546 else if (rOop == j_rarg3) 5547 oop_slot = 3; 5548 else if (rOop == j_rarg4) 5549 oop_slot = 4; 5550 else if (rOop == j_rarg5) 5551 oop_slot = 5; 5552 else if (rOop == j_rarg6) 5553 oop_slot = 6; 5554 else { 5555 assert(rOop == j_rarg7, "wrong register"); 5556 oop_slot = 7; 5557 } 5558 5559 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 5560 int offset = oop_slot*VMRegImpl::stack_slot_size; 5561 5562 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 5563 // Store oop in handle area, may be NULL 5564 str(rOop, Address(sp, offset)); 5565 if (is_receiver) { 5566 *receiver_offset = offset; 5567 } 5568 5569 cmp(rOop, zr); 5570 lea(rHandle, Address(sp, offset)); 5571 // conditionally move a NULL 5572 csel(rHandle, zr, rHandle, Assembler::EQ); 5573 } 5574 5575 // If arg is on the stack then place it otherwise it is already in correct reg. 5576 if (dst.first()->is_stack()) { 5577 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 5578 } 5579 } 5580 5581 // A float arg may have to do float reg int reg conversion 5582 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 5583 if (src.first()->is_stack()) { 5584 if (dst.first()->is_stack()) { 5585 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 5586 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 5587 } else { 5588 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 5589 } 5590 } else if (src.first() != dst.first()) { 5591 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 5592 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 5593 else 5594 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 5595 } 5596 } 5597 5598 // A long move 5599 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 5600 if (src.first()->is_stack()) { 5601 if (dst.first()->is_stack()) { 5602 // stack to stack 5603 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 5604 str(tmp, Address(sp, reg2offset_out(dst.first()))); 5605 } else { 5606 // stack to reg 5607 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 5608 } 5609 } else if (dst.first()->is_stack()) { 5610 // reg to stack 5611 // Do we really have to sign extend??? 5612 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 5613 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 5614 } else { 5615 if (dst.first() != src.first()) { 5616 mov(dst.first()->as_Register(), src.first()->as_Register()); 5617 } 5618 } 5619 } 5620 5621 5622 // A double move 5623 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 5624 if (src.first()->is_stack()) { 5625 if (dst.first()->is_stack()) { 5626 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 5627 str(tmp, Address(sp, reg2offset_out(dst.first()))); 5628 } else { 5629 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 5630 } 5631 } else if (src.first() != dst.first()) { 5632 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 5633 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 5634 else 5635 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 5636 } 5637 }