1 /* 2 * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/debugInfo.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "compiler/compilerDirectives.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSet.hpp" 36 #include "gc/shared/c2/barrierSetC2.hpp" 37 #include "memory/allocation.inline.hpp" 38 #include "memory/allocation.hpp" 39 #include "opto/ad.hpp" 40 #include "opto/block.hpp" 41 #include "opto/c2compiler.hpp" 42 #include "opto/callnode.hpp" 43 #include "opto/cfgnode.hpp" 44 #include "opto/locknode.hpp" 45 #include "opto/machnode.hpp" 46 #include "opto/node.hpp" 47 #include "opto/optoreg.hpp" 48 #include "opto/output.hpp" 49 #include "opto/regalloc.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/subnode.hpp" 52 #include "opto/type.hpp" 53 #include "runtime/handles.inline.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "utilities/macros.hpp" 56 #include "utilities/powerOfTwo.hpp" 57 #include "utilities/xmlstream.hpp" 58 59 #ifndef PRODUCT 60 #define DEBUG_ARG(x) , x 61 #else 62 #define DEBUG_ARG(x) 63 #endif 64 65 //------------------------------Scheduling---------------------------------- 66 // This class contains all the information necessary to implement instruction 67 // scheduling and bundling. 68 class Scheduling { 69 70 private: 71 // Arena to use 72 Arena *_arena; 73 74 // Control-Flow Graph info 75 PhaseCFG *_cfg; 76 77 // Register Allocation info 78 PhaseRegAlloc *_regalloc; 79 80 // Number of nodes in the method 81 uint _node_bundling_limit; 82 83 // List of scheduled nodes. Generated in reverse order 84 Node_List _scheduled; 85 86 // List of nodes currently available for choosing for scheduling 87 Node_List _available; 88 89 // For each instruction beginning a bundle, the number of following 90 // nodes to be bundled with it. 91 Bundle *_node_bundling_base; 92 93 // Mapping from register to Node 94 Node_List _reg_node; 95 96 // Free list for pinch nodes. 97 Node_List _pinch_free_list; 98 99 // Number of uses of this node within the containing basic block. 100 short *_uses; 101 102 // Schedulable portion of current block. Skips Region/Phi/CreateEx up 103 // front, branch+proj at end. Also skips Catch/CProj (same as 104 // branch-at-end), plus just-prior exception-throwing call. 105 uint _bb_start, _bb_end; 106 107 // Latency from the end of the basic block as scheduled 108 unsigned short *_current_latency; 109 110 // Remember the next node 111 Node *_next_node; 112 113 // Use this for an unconditional branch delay slot 114 Node *_unconditional_delay_slot; 115 116 // Pointer to a Nop 117 MachNopNode *_nop; 118 119 // Length of the current bundle, in instructions 120 uint _bundle_instr_count; 121 122 // Current Cycle number, for computing latencies and bundling 123 uint _bundle_cycle_number; 124 125 // Bundle information 126 Pipeline_Use_Element _bundle_use_elements[resource_count]; 127 Pipeline_Use _bundle_use; 128 129 // Dump the available list 130 void dump_available() const; 131 132 public: 133 Scheduling(Arena *arena, Compile &compile); 134 135 // Destructor 136 NOT_PRODUCT( ~Scheduling(); ) 137 138 // Step ahead "i" cycles 139 void step(uint i); 140 141 // Step ahead 1 cycle, and clear the bundle state (for example, 142 // at a branch target) 143 void step_and_clear(); 144 145 Bundle* node_bundling(const Node *n) { 146 assert(valid_bundle_info(n), "oob"); 147 return (&_node_bundling_base[n->_idx]); 148 } 149 150 bool valid_bundle_info(const Node *n) const { 151 return (_node_bundling_limit > n->_idx); 152 } 153 154 bool starts_bundle(const Node *n) const { 155 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); 156 } 157 158 // Do the scheduling 159 void DoScheduling(); 160 161 // Compute the register antidependencies within a basic block 162 void ComputeRegisterAntidependencies(Block *bb); 163 void verify_do_def( Node *n, OptoReg::Name def, const char *msg ); 164 void verify_good_schedule( Block *b, const char *msg ); 165 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ); 166 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ); 167 168 // Add a node to the current bundle 169 void AddNodeToBundle(Node *n, const Block *bb); 170 171 // Add a node to the list of available nodes 172 void AddNodeToAvailableList(Node *n); 173 174 // Compute the local use count for the nodes in a block, and compute 175 // the list of instructions with no uses in the block as available 176 void ComputeUseCount(const Block *bb); 177 178 // Choose an instruction from the available list to add to the bundle 179 Node * ChooseNodeToBundle(); 180 181 // See if this Node fits into the currently accumulating bundle 182 bool NodeFitsInBundle(Node *n); 183 184 // Decrement the use count for a node 185 void DecrementUseCounts(Node *n, const Block *bb); 186 187 // Garbage collect pinch nodes for reuse by other blocks. 188 void garbage_collect_pinch_nodes(); 189 // Clean up a pinch node for reuse (helper for above). 190 void cleanup_pinch( Node *pinch ); 191 192 // Information for statistics gathering 193 #ifndef PRODUCT 194 private: 195 // Gather information on size of nops relative to total 196 uint _branches, _unconditional_delays; 197 198 static uint _total_nop_size, _total_method_size; 199 static uint _total_branches, _total_unconditional_delays; 200 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 201 202 public: 203 static void print_statistics(); 204 205 static void increment_instructions_per_bundle(uint i) { 206 _total_instructions_per_bundle[i]++; 207 } 208 209 static void increment_nop_size(uint s) { 210 _total_nop_size += s; 211 } 212 213 static void increment_method_size(uint s) { 214 _total_method_size += s; 215 } 216 #endif 217 218 }; 219 220 volatile int C2SafepointPollStubTable::_stub_size = 0; 221 222 Label& C2SafepointPollStubTable::add_safepoint(uintptr_t safepoint_offset) { 223 C2SafepointPollStub* entry = new (Compile::current()->comp_arena()) C2SafepointPollStub(safepoint_offset); 224 _safepoints.append(entry); 225 return entry->_stub_label; 226 } 227 228 void C2SafepointPollStubTable::emit(CodeBuffer& cb) { 229 MacroAssembler masm(&cb); 230 for (int i = _safepoints.length() - 1; i >= 0; i--) { 231 // Make sure there is enough space in the code buffer 232 if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == NULL) { 233 ciEnv::current()->record_failure("CodeCache is full"); 234 return; 235 } 236 237 C2SafepointPollStub* entry = _safepoints.at(i); 238 emit_stub(masm, entry); 239 } 240 } 241 242 int C2SafepointPollStubTable::stub_size_lazy() const { 243 int size = Atomic::load(&_stub_size); 244 245 if (size != 0) { 246 return size; 247 } 248 249 Compile* const C = Compile::current(); 250 BufferBlob* const blob = C->output()->scratch_buffer_blob(); 251 CodeBuffer cb(blob->content_begin(), C->output()->scratch_buffer_code_size()); 252 MacroAssembler masm(&cb); 253 C2SafepointPollStub* entry = _safepoints.at(0); 254 emit_stub(masm, entry); 255 size += cb.insts_size(); 256 257 Atomic::store(&_stub_size, size); 258 259 return size; 260 } 261 262 int C2SafepointPollStubTable::estimate_stub_size() const { 263 if (_safepoints.length() == 0) { 264 return 0; 265 } 266 267 int result = stub_size_lazy() * _safepoints.length(); 268 269 #ifdef ASSERT 270 Compile* const C = Compile::current(); 271 BufferBlob* const blob = C->output()->scratch_buffer_blob(); 272 int size = 0; 273 274 for (int i = _safepoints.length() - 1; i >= 0; i--) { 275 CodeBuffer cb(blob->content_begin(), C->output()->scratch_buffer_code_size()); 276 MacroAssembler masm(&cb); 277 C2SafepointPollStub* entry = _safepoints.at(i); 278 emit_stub(masm, entry); 279 size += cb.insts_size(); 280 } 281 assert(size == result, "stubs should not have variable size"); 282 #endif 283 284 return result; 285 } 286 287 PhaseOutput::PhaseOutput() 288 : Phase(Phase::Output), 289 _code_buffer("Compile::Fill_buffer"), 290 _first_block_size(0), 291 _handler_table(), 292 _inc_table(), 293 _oop_map_set(NULL), 294 _scratch_buffer_blob(NULL), 295 _scratch_locs_memory(NULL), 296 _scratch_const_size(-1), 297 _in_scratch_emit_size(false), 298 _frame_slots(0), 299 _code_offsets(), 300 _node_bundling_limit(0), 301 _node_bundling_base(NULL), 302 _orig_pc_slot(0), 303 _orig_pc_slot_offset_in_bytes(0), 304 _buf_sizes(), 305 _block(NULL), 306 _index(0) { 307 C->set_output(this); 308 if (C->stub_name() == NULL) { 309 _orig_pc_slot = C->fixed_slots() - (sizeof(address) / VMRegImpl::stack_slot_size); 310 } 311 } 312 313 PhaseOutput::~PhaseOutput() { 314 C->set_output(NULL); 315 if (_scratch_buffer_blob != NULL) { 316 BufferBlob::free(_scratch_buffer_blob); 317 } 318 } 319 320 void PhaseOutput::perform_mach_node_analysis() { 321 // Late barrier analysis must be done after schedule and bundle 322 // Otherwise liveness based spilling will fail 323 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 324 bs->late_barrier_analysis(); 325 326 pd_perform_mach_node_analysis(); 327 328 C->print_method(CompilerPhaseType::PHASE_MACHANALYSIS, 4); 329 } 330 331 // Convert Nodes to instruction bits and pass off to the VM 332 void PhaseOutput::Output() { 333 // RootNode goes 334 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" ); 335 336 // The number of new nodes (mostly MachNop) is proportional to 337 // the number of java calls and inner loops which are aligned. 338 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 339 C->inner_loops()*(OptoLoopAlignment-1)), 340 "out of nodes before code generation" ) ) { 341 return; 342 } 343 // Make sure I can find the Start Node 344 Block *entry = C->cfg()->get_block(1); 345 Block *broot = C->cfg()->get_root_block(); 346 347 const StartNode *start = entry->head()->as_Start(); 348 349 // Replace StartNode with prolog 350 MachPrologNode *prolog = new MachPrologNode(); 351 entry->map_node(prolog, 0); 352 C->cfg()->map_node_to_block(prolog, entry); 353 C->cfg()->unmap_node_from_block(start); // start is no longer in any block 354 355 // Virtual methods need an unverified entry point 356 357 if( C->is_osr_compilation() ) { 358 if( PoisonOSREntry ) { 359 // TODO: Should use a ShouldNotReachHereNode... 360 C->cfg()->insert( broot, 0, new MachBreakpointNode() ); 361 } 362 } else { 363 if( C->method() && !C->method()->flags().is_static() ) { 364 // Insert unvalidated entry point 365 C->cfg()->insert( broot, 0, new MachUEPNode() ); 366 } 367 368 } 369 370 // Break before main entry point 371 if ((C->method() && C->directive()->BreakAtExecuteOption) || 372 (OptoBreakpoint && C->is_method_compilation()) || 373 (OptoBreakpointOSR && C->is_osr_compilation()) || 374 (OptoBreakpointC2R && !C->method()) ) { 375 // checking for C->method() means that OptoBreakpoint does not apply to 376 // runtime stubs or frame converters 377 C->cfg()->insert( entry, 1, new MachBreakpointNode() ); 378 } 379 380 // Insert epilogs before every return 381 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 382 Block* block = C->cfg()->get_block(i); 383 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point? 384 Node* m = block->end(); 385 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { 386 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 387 block->add_inst(epilog); 388 C->cfg()->map_node_to_block(epilog, block); 389 } 390 } 391 } 392 393 // Keeper of sizing aspects 394 _buf_sizes = BufferSizingData(); 395 396 // Initialize code buffer 397 estimate_buffer_size(_buf_sizes._const); 398 if (C->failing()) return; 399 400 // Pre-compute the length of blocks and replace 401 // long branches with short if machine supports it. 402 // Must be done before ScheduleAndBundle due to SPARC delay slots 403 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1); 404 blk_starts[0] = 0; 405 shorten_branches(blk_starts); 406 407 ScheduleAndBundle(); 408 if (C->failing()) { 409 return; 410 } 411 412 perform_mach_node_analysis(); 413 414 // Complete sizing of codebuffer 415 CodeBuffer* cb = init_buffer(); 416 if (cb == NULL || C->failing()) { 417 return; 418 } 419 420 BuildOopMaps(); 421 422 if (C->failing()) { 423 return; 424 } 425 426 fill_buffer(cb, blk_starts); 427 } 428 429 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const { 430 // Determine if we need to generate a stack overflow check. 431 // Do it if the method is not a stub function and 432 // has java calls or has frame size > vm_page_size/8. 433 // The debug VM checks that deoptimization doesn't trigger an 434 // unexpected stack overflow (compiled method stack banging should 435 // guarantee it doesn't happen) so we always need the stack bang in 436 // a debug VM. 437 return (C->stub_function() == NULL && 438 (C->has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3 439 DEBUG_ONLY(|| true))); 440 } 441 442 bool PhaseOutput::need_register_stack_bang() const { 443 // Determine if we need to generate a register stack overflow check. 444 // This is only used on architectures which have split register 445 // and memory stacks (ie. IA64). 446 // Bang if the method is not a stub function and has java calls 447 return (C->stub_function() == NULL && C->has_java_calls()); 448 } 449 450 451 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 452 // of a loop. When aligning a loop we need to provide enough instructions 453 // in cpu's fetch buffer to feed decoders. The loop alignment could be 454 // avoided if we have enough instructions in fetch buffer at the head of a loop. 455 // By default, the size is set to 999999 by Block's constructor so that 456 // a loop will be aligned if the size is not reset here. 457 // 458 // Note: Mach instructions could contain several HW instructions 459 // so the size is estimated only. 460 // 461 void PhaseOutput::compute_loop_first_inst_sizes() { 462 // The next condition is used to gate the loop alignment optimization. 463 // Don't aligned a loop if there are enough instructions at the head of a loop 464 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 465 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 466 // equal to 11 bytes which is the largest address NOP instruction. 467 if (MaxLoopPad < OptoLoopAlignment - 1) { 468 uint last_block = C->cfg()->number_of_blocks() - 1; 469 for (uint i = 1; i <= last_block; i++) { 470 Block* block = C->cfg()->get_block(i); 471 // Check the first loop's block which requires an alignment. 472 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { 473 uint sum_size = 0; 474 uint inst_cnt = NumberOfLoopInstrToAlign; 475 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 476 477 // Check subsequent fallthrough blocks if the loop's first 478 // block(s) does not have enough instructions. 479 Block *nb = block; 480 while(inst_cnt > 0 && 481 i < last_block && 482 !C->cfg()->get_block(i + 1)->has_loop_alignment() && 483 !nb->has_successor(block)) { 484 i++; 485 nb = C->cfg()->get_block(i); 486 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 487 } // while( inst_cnt > 0 && i < last_block ) 488 489 block->set_first_inst_size(sum_size); 490 } // f( b->head()->is_Loop() ) 491 } // for( i <= last_block ) 492 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 493 } 494 495 // The architecture description provides short branch variants for some long 496 // branch instructions. Replace eligible long branches with short branches. 497 void PhaseOutput::shorten_branches(uint* blk_starts) { 498 499 Compile::TracePhase tp("shorten branches", &timers[_t_shortenBranches]); 500 501 // Compute size of each block, method size, and relocation information size 502 uint nblocks = C->cfg()->number_of_blocks(); 503 504 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 505 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 506 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 507 508 // Collect worst case block paddings 509 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); 510 memset(block_worst_case_pad, 0, nblocks * sizeof(int)); 511 512 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 513 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) 514 515 bool has_short_branch_candidate = false; 516 517 // Initialize the sizes to 0 518 int code_size = 0; // Size in bytes of generated code 519 int stub_size = 0; // Size in bytes of all stub entries 520 // Size in bytes of all relocation entries, including those in local stubs. 521 // Start with 2-bytes of reloc info for the unvalidated entry point 522 int reloc_size = 1; // Number of relocation entries 523 524 // Make three passes. The first computes pessimistic blk_starts, 525 // relative jmp_offset and reloc_size information. The second performs 526 // short branch substitution using the pessimistic sizing. The 527 // third inserts nops where needed. 528 529 // Step one, perform a pessimistic sizing pass. 530 uint last_call_adr = max_juint; 531 uint last_avoid_back_to_back_adr = max_juint; 532 uint nop_size = (new MachNopNode())->size(C->regalloc()); 533 for (uint i = 0; i < nblocks; i++) { // For all blocks 534 Block* block = C->cfg()->get_block(i); 535 _block = block; 536 537 // During short branch replacement, we store the relative (to blk_starts) 538 // offset of jump in jmp_offset, rather than the absolute offset of jump. 539 // This is so that we do not need to recompute sizes of all nodes when 540 // we compute correct blk_starts in our next sizing pass. 541 jmp_offset[i] = 0; 542 jmp_size[i] = 0; 543 jmp_nidx[i] = -1; 544 DEBUG_ONLY( jmp_target[i] = 0; ) 545 DEBUG_ONLY( jmp_rule[i] = 0; ) 546 547 // Sum all instruction sizes to compute block size 548 uint last_inst = block->number_of_nodes(); 549 uint blk_size = 0; 550 for (uint j = 0; j < last_inst; j++) { 551 _index = j; 552 Node* nj = block->get_node(_index); 553 // Handle machine instruction nodes 554 if (nj->is_Mach()) { 555 MachNode* mach = nj->as_Mach(); 556 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 557 reloc_size += mach->reloc(); 558 if (mach->is_MachCall()) { 559 // add size information for trampoline stub 560 // class CallStubImpl is platform-specific and defined in the *.ad files. 561 stub_size += CallStubImpl::size_call_trampoline(); 562 reloc_size += CallStubImpl::reloc_call_trampoline(); 563 564 MachCallNode *mcall = mach->as_MachCall(); 565 // This destination address is NOT PC-relative 566 567 mcall->method_set((intptr_t)mcall->entry_point()); 568 569 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { 570 stub_size += CompiledStaticCall::to_interp_stub_size(); 571 reloc_size += CompiledStaticCall::reloc_to_interp_stub(); 572 } 573 } else if (mach->is_MachSafePoint()) { 574 // If call/safepoint are adjacent, account for possible 575 // nop to disambiguate the two safepoints. 576 // ScheduleAndBundle() can rearrange nodes in a block, 577 // check for all offsets inside this block. 578 if (last_call_adr >= blk_starts[i]) { 579 blk_size += nop_size; 580 } 581 } 582 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 583 // Nop is inserted between "avoid back to back" instructions. 584 // ScheduleAndBundle() can rearrange nodes in a block, 585 // check for all offsets inside this block. 586 if (last_avoid_back_to_back_adr >= blk_starts[i]) { 587 blk_size += nop_size; 588 } 589 } 590 if (mach->may_be_short_branch()) { 591 if (!nj->is_MachBranch()) { 592 #ifndef PRODUCT 593 nj->dump(3); 594 #endif 595 Unimplemented(); 596 } 597 assert(jmp_nidx[i] == -1, "block should have only one branch"); 598 jmp_offset[i] = blk_size; 599 jmp_size[i] = nj->size(C->regalloc()); 600 jmp_nidx[i] = j; 601 has_short_branch_candidate = true; 602 } 603 } 604 blk_size += nj->size(C->regalloc()); 605 // Remember end of call offset 606 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { 607 last_call_adr = blk_starts[i]+blk_size; 608 } 609 // Remember end of avoid_back_to_back offset 610 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 611 last_avoid_back_to_back_adr = blk_starts[i]+blk_size; 612 } 613 } 614 615 // When the next block starts a loop, we may insert pad NOP 616 // instructions. Since we cannot know our future alignment, 617 // assume the worst. 618 if (i < nblocks - 1) { 619 Block* nb = C->cfg()->get_block(i + 1); 620 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 621 if (max_loop_pad > 0) { 622 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 623 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 624 // If either is the last instruction in this block, bump by 625 // max_loop_pad in lock-step with blk_size, so sizing 626 // calculations in subsequent blocks still can conservatively 627 // detect that it may the last instruction in this block. 628 if (last_call_adr == blk_starts[i]+blk_size) { 629 last_call_adr += max_loop_pad; 630 } 631 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { 632 last_avoid_back_to_back_adr += max_loop_pad; 633 } 634 blk_size += max_loop_pad; 635 block_worst_case_pad[i + 1] = max_loop_pad; 636 } 637 } 638 639 // Save block size; update total method size 640 blk_starts[i+1] = blk_starts[i]+blk_size; 641 } 642 643 // Step two, replace eligible long jumps. 644 bool progress = true; 645 uint last_may_be_short_branch_adr = max_juint; 646 while (has_short_branch_candidate && progress) { 647 progress = false; 648 has_short_branch_candidate = false; 649 int adjust_block_start = 0; 650 for (uint i = 0; i < nblocks; i++) { 651 Block* block = C->cfg()->get_block(i); 652 int idx = jmp_nidx[i]; 653 MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach(); 654 if (mach != NULL && mach->may_be_short_branch()) { 655 #ifdef ASSERT 656 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 657 int j; 658 // Find the branch; ignore trailing NOPs. 659 for (j = block->number_of_nodes()-1; j>=0; j--) { 660 Node* n = block->get_node(j); 661 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 662 break; 663 } 664 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity"); 665 #endif 666 int br_size = jmp_size[i]; 667 int br_offs = blk_starts[i] + jmp_offset[i]; 668 669 // This requires the TRUE branch target be in succs[0] 670 uint bnum = block->non_connector_successor(0)->_pre_order; 671 int offset = blk_starts[bnum] - br_offs; 672 if (bnum > i) { // adjust following block's offset 673 offset -= adjust_block_start; 674 } 675 676 // This block can be a loop header, account for the padding 677 // in the previous block. 678 int block_padding = block_worst_case_pad[i]; 679 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top"); 680 // In the following code a nop could be inserted before 681 // the branch which will increase the backward distance. 682 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); 683 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block"); 684 685 if (needs_padding && offset <= 0) 686 offset -= nop_size; 687 688 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 689 // We've got a winner. Replace this branch. 690 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 691 692 // Update the jmp_size. 693 int new_size = replacement->size(C->regalloc()); 694 int diff = br_size - new_size; 695 assert(diff >= (int)nop_size, "short_branch size should be smaller"); 696 // Conservatively take into account padding between 697 // avoid_back_to_back branches. Previous branch could be 698 // converted into avoid_back_to_back branch during next 699 // rounds. 700 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 701 jmp_offset[i] += nop_size; 702 diff -= nop_size; 703 } 704 adjust_block_start += diff; 705 block->map_node(replacement, idx); 706 mach->subsume_by(replacement, C); 707 mach = replacement; 708 progress = true; 709 710 jmp_size[i] = new_size; 711 DEBUG_ONLY( jmp_target[i] = bnum; ); 712 DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); 713 } else { 714 // The jump distance is not short, try again during next iteration. 715 has_short_branch_candidate = true; 716 } 717 } // (mach->may_be_short_branch()) 718 if (mach != NULL && (mach->may_be_short_branch() || 719 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { 720 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; 721 } 722 blk_starts[i+1] -= adjust_block_start; 723 } 724 } 725 726 #ifdef ASSERT 727 for (uint i = 0; i < nblocks; i++) { // For all blocks 728 if (jmp_target[i] != 0) { 729 int br_size = jmp_size[i]; 730 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 731 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 732 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 733 } 734 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp"); 735 } 736 } 737 #endif 738 739 // Step 3, compute the offsets of all blocks, will be done in fill_buffer() 740 // after ScheduleAndBundle(). 741 742 // ------------------ 743 // Compute size for code buffer 744 code_size = blk_starts[nblocks]; 745 746 // Relocation records 747 reloc_size += 1; // Relo entry for exception handler 748 749 // Adjust reloc_size to number of record of relocation info 750 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for 751 // a relocation index. 752 // The CodeBuffer will expand the locs array if this estimate is too low. 753 reloc_size *= 10 / sizeof(relocInfo); 754 755 _buf_sizes._reloc = reloc_size; 756 _buf_sizes._code = code_size; 757 _buf_sizes._stub = stub_size; 758 } 759 760 //------------------------------FillLocArray----------------------------------- 761 // Create a bit of debug info and append it to the array. The mapping is from 762 // Java local or expression stack to constant, register or stack-slot. For 763 // doubles, insert 2 mappings and return 1 (to tell the caller that the next 764 // entry has been taken care of and caller should skip it). 765 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { 766 // This should never have accepted Bad before 767 assert(OptoReg::is_valid(regnum), "location must be valid"); 768 return (OptoReg::is_reg(regnum)) 769 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) 770 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); 771 } 772 773 774 ObjectValue* 775 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { 776 for (int i = 0; i < objs->length(); i++) { 777 assert(objs->at(i)->is_object(), "corrupt object cache"); 778 ObjectValue* sv = (ObjectValue*) objs->at(i); 779 if (sv->id() == id) { 780 return sv; 781 } 782 } 783 // Otherwise.. 784 return NULL; 785 } 786 787 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, 788 ObjectValue* sv ) { 789 assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition"); 790 objs->append(sv); 791 } 792 793 794 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, 795 GrowableArray<ScopeValue*> *array, 796 GrowableArray<ScopeValue*> *objs ) { 797 assert( local, "use _top instead of null" ); 798 if (array->length() != idx) { 799 assert(array->length() == idx + 1, "Unexpected array count"); 800 // Old functionality: 801 // return 802 // New functionality: 803 // Assert if the local is not top. In product mode let the new node 804 // override the old entry. 805 assert(local == C->top(), "LocArray collision"); 806 if (local == C->top()) { 807 return; 808 } 809 array->pop(); 810 } 811 const Type *t = local->bottom_type(); 812 813 // Is it a safepoint scalar object node? 814 if (local->is_SafePointScalarObject()) { 815 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); 816 817 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx); 818 if (sv == NULL) { 819 ciKlass* cik = t->is_oopptr()->klass(); 820 assert(cik->is_instance_klass() || 821 cik->is_array_klass(), "Not supported allocation."); 822 sv = new ObjectValue(spobj->_idx, 823 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 824 set_sv_for_object_node(objs, sv); 825 826 uint first_ind = spobj->first_index(sfpt->jvms()); 827 for (uint i = 0; i < spobj->n_fields(); i++) { 828 Node* fld_node = sfpt->in(first_ind+i); 829 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 830 } 831 } 832 array->append(sv); 833 return; 834 } 835 836 // Grab the register number for the local 837 OptoReg::Name regnum = C->regalloc()->get_reg_first(local); 838 if( OptoReg::is_valid(regnum) ) {// Got a register/stack? 839 // Record the double as two float registers. 840 // The register mask for such a value always specifies two adjacent 841 // float registers, with the lower register number even. 842 // Normally, the allocation of high and low words to these registers 843 // is irrelevant, because nearly all operations on register pairs 844 // (e.g., StoreD) treat them as a single unit. 845 // Here, we assume in addition that the words in these two registers 846 // stored "naturally" (by operations like StoreD and double stores 847 // within the interpreter) such that the lower-numbered register 848 // is written to the lower memory address. This may seem like 849 // a machine dependency, but it is not--it is a requirement on 850 // the author of the <arch>.ad file to ensure that, for every 851 // even/odd double-register pair to which a double may be allocated, 852 // the word in the even single-register is stored to the first 853 // memory word. (Note that register numbers are completely 854 // arbitrary, and are not tied to any machine-level encodings.) 855 #ifdef _LP64 856 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { 857 array->append(new ConstantIntValue((jint)0)); 858 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl )); 859 } else if ( t->base() == Type::Long ) { 860 array->append(new ConstantIntValue((jint)0)); 861 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 862 } else if ( t->base() == Type::RawPtr ) { 863 // jsr/ret return address which must be restored into a the full 864 // width 64-bit stack slot. 865 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 866 } 867 #else //_LP64 868 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { 869 // Repack the double/long as two jints. 870 // The convention the interpreter uses is that the second local 871 // holds the first raw word of the native double representation. 872 // This is actually reasonable, since locals and stack arrays 873 // grow downwards in all implementations. 874 // (If, on some machine, the interpreter's Java locals or stack 875 // were to grow upwards, the embedded doubles would be word-swapped.) 876 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal )); 877 array->append(new_loc_value( C->regalloc(), regnum , Location::normal )); 878 } 879 #endif //_LP64 880 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && 881 OptoReg::is_reg(regnum) ) { 882 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double() 883 ? Location::float_in_dbl : Location::normal )); 884 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { 885 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long 886 ? Location::int_in_long : Location::normal )); 887 } else if( t->base() == Type::NarrowOop ) { 888 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop )); 889 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS || 890 t->base() == Type::VectorD || t->base() == Type::VectorX || 891 t->base() == Type::VectorY || t->base() == Type::VectorZ) { 892 array->append(new_loc_value( C->regalloc(), regnum, Location::vector )); 893 } else { 894 array->append(new_loc_value( C->regalloc(), regnum, C->regalloc()->is_oop(local) ? Location::oop : Location::normal )); 895 } 896 return; 897 } 898 899 // No register. It must be constant data. 900 switch (t->base()) { 901 case Type::Half: // Second half of a double 902 ShouldNotReachHere(); // Caller should skip 2nd halves 903 break; 904 case Type::AnyPtr: 905 array->append(new ConstantOopWriteValue(NULL)); 906 break; 907 case Type::AryPtr: 908 case Type::InstPtr: // fall through 909 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); 910 break; 911 case Type::NarrowOop: 912 if (t == TypeNarrowOop::NULL_PTR) { 913 array->append(new ConstantOopWriteValue(NULL)); 914 } else { 915 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); 916 } 917 break; 918 case Type::Int: 919 array->append(new ConstantIntValue(t->is_int()->get_con())); 920 break; 921 case Type::RawPtr: 922 // A return address (T_ADDRESS). 923 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); 924 #ifdef _LP64 925 // Must be restored to the full-width 64-bit stack slot. 926 array->append(new ConstantLongValue(t->is_ptr()->get_con())); 927 #else 928 array->append(new ConstantIntValue(t->is_ptr()->get_con())); 929 #endif 930 break; 931 case Type::FloatCon: { 932 float f = t->is_float_constant()->getf(); 933 array->append(new ConstantIntValue(jint_cast(f))); 934 break; 935 } 936 case Type::DoubleCon: { 937 jdouble d = t->is_double_constant()->getd(); 938 #ifdef _LP64 939 array->append(new ConstantIntValue((jint)0)); 940 array->append(new ConstantDoubleValue(d)); 941 #else 942 // Repack the double as two jints. 943 // The convention the interpreter uses is that the second local 944 // holds the first raw word of the native double representation. 945 // This is actually reasonable, since locals and stack arrays 946 // grow downwards in all implementations. 947 // (If, on some machine, the interpreter's Java locals or stack 948 // were to grow upwards, the embedded doubles would be word-swapped.) 949 jlong_accessor acc; 950 acc.long_value = jlong_cast(d); 951 array->append(new ConstantIntValue(acc.words[1])); 952 array->append(new ConstantIntValue(acc.words[0])); 953 #endif 954 break; 955 } 956 case Type::Long: { 957 jlong d = t->is_long()->get_con(); 958 #ifdef _LP64 959 array->append(new ConstantIntValue((jint)0)); 960 array->append(new ConstantLongValue(d)); 961 #else 962 // Repack the long as two jints. 963 // The convention the interpreter uses is that the second local 964 // holds the first raw word of the native double representation. 965 // This is actually reasonable, since locals and stack arrays 966 // grow downwards in all implementations. 967 // (If, on some machine, the interpreter's Java locals or stack 968 // were to grow upwards, the embedded doubles would be word-swapped.) 969 jlong_accessor acc; 970 acc.long_value = d; 971 array->append(new ConstantIntValue(acc.words[1])); 972 array->append(new ConstantIntValue(acc.words[0])); 973 #endif 974 break; 975 } 976 case Type::Top: // Add an illegal value here 977 array->append(new LocationValue(Location())); 978 break; 979 default: 980 ShouldNotReachHere(); 981 break; 982 } 983 } 984 985 // Determine if this node starts a bundle 986 bool PhaseOutput::starts_bundle(const Node *n) const { 987 return (_node_bundling_limit > n->_idx && 988 _node_bundling_base[n->_idx].starts_bundle()); 989 } 990 991 //--------------------------Process_OopMap_Node-------------------------------- 992 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) { 993 // Handle special safepoint nodes for synchronization 994 MachSafePointNode *sfn = mach->as_MachSafePoint(); 995 MachCallNode *mcall; 996 997 int safepoint_pc_offset = current_offset; 998 bool is_method_handle_invoke = false; 999 bool is_opt_native = false; 1000 bool return_oop = false; 1001 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope; 1002 bool arg_escape = false; 1003 1004 // Add the safepoint in the DebugInfoRecorder 1005 if( !mach->is_MachCall() ) { 1006 mcall = NULL; 1007 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); 1008 } else { 1009 mcall = mach->as_MachCall(); 1010 1011 // Is the call a MethodHandle call? 1012 if (mcall->is_MachCallJava()) { 1013 if (mcall->as_MachCallJava()->_method_handle_invoke) { 1014 assert(C->has_method_handle_invokes(), "must have been set during call generation"); 1015 is_method_handle_invoke = true; 1016 } 1017 arg_escape = mcall->as_MachCallJava()->_arg_escape; 1018 } else if (mcall->is_MachCallNative()) { 1019 is_opt_native = true; 1020 } 1021 1022 // Check if a call returns an object. 1023 if (mcall->returns_pointer()) { 1024 return_oop = true; 1025 } 1026 safepoint_pc_offset += mcall->ret_addr_offset(); 1027 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); 1028 } 1029 1030 // Loop over the JVMState list to add scope information 1031 // Do not skip safepoints with a NULL method, they need monitor info 1032 JVMState* youngest_jvms = sfn->jvms(); 1033 int max_depth = youngest_jvms->depth(); 1034 1035 // Allocate the object pool for scalar-replaced objects -- the map from 1036 // small-integer keys (which can be recorded in the local and ostack 1037 // arrays) to descriptions of the object state. 1038 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); 1039 1040 // Visit scopes from oldest to youngest. 1041 for (int depth = 1; depth <= max_depth; depth++) { 1042 JVMState* jvms = youngest_jvms->of_depth(depth); 1043 int idx; 1044 ciMethod* method = jvms->has_method() ? jvms->method() : NULL; 1045 // Safepoints that do not have method() set only provide oop-map and monitor info 1046 // to support GC; these do not support deoptimization. 1047 int num_locs = (method == NULL) ? 0 : jvms->loc_size(); 1048 int num_exps = (method == NULL) ? 0 : jvms->stk_size(); 1049 int num_mon = jvms->nof_monitors(); 1050 assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(), 1051 "JVMS local count must match that of the method"); 1052 1053 // Add Local and Expression Stack Information 1054 1055 // Insert locals into the locarray 1056 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); 1057 for( idx = 0; idx < num_locs; idx++ ) { 1058 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); 1059 } 1060 1061 // Insert expression stack entries into the exparray 1062 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); 1063 for( idx = 0; idx < num_exps; idx++ ) { 1064 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); 1065 } 1066 1067 // Add in mappings of the monitors 1068 assert( !method || 1069 !method->is_synchronized() || 1070 method->is_native() || 1071 num_mon > 0 || 1072 !GenerateSynchronizationCode, 1073 "monitors must always exist for synchronized methods"); 1074 1075 // Build the growable array of ScopeValues for exp stack 1076 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 1077 1078 // Loop over monitors and insert into array 1079 for (idx = 0; idx < num_mon; idx++) { 1080 // Grab the node that defines this monitor 1081 Node* box_node = sfn->monitor_box(jvms, idx); 1082 Node* obj_node = sfn->monitor_obj(jvms, idx); 1083 1084 // Create ScopeValue for object 1085 ScopeValue *scval = NULL; 1086 1087 if (obj_node->is_SafePointScalarObject()) { 1088 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 1089 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx); 1090 if (scval == NULL) { 1091 const Type *t = spobj->bottom_type(); 1092 ciKlass* cik = t->is_oopptr()->klass(); 1093 assert(cik->is_instance_klass() || 1094 cik->is_array_klass(), "Not supported allocation."); 1095 ObjectValue* sv = new ObjectValue(spobj->_idx, 1096 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 1097 PhaseOutput::set_sv_for_object_node(objs, sv); 1098 1099 uint first_ind = spobj->first_index(youngest_jvms); 1100 for (uint i = 0; i < spobj->n_fields(); i++) { 1101 Node* fld_node = sfn->in(first_ind+i); 1102 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 1103 } 1104 scval = sv; 1105 } 1106 } else if (!obj_node->is_Con()) { 1107 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node); 1108 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 1109 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop ); 1110 } else { 1111 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop ); 1112 } 1113 } else { 1114 const TypePtr *tp = obj_node->get_ptr_type(); 1115 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); 1116 } 1117 1118 OptoReg::Name box_reg = BoxLockNode::reg(box_node); 1119 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg)); 1120 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); 1121 monarray->append(new MonitorValue(scval, basic_lock, eliminated)); 1122 } 1123 1124 // We dump the object pool first, since deoptimization reads it in first. 1125 C->debug_info()->dump_object_pool(objs); 1126 1127 // Build first class objects to pass to scope 1128 DebugToken *locvals = C->debug_info()->create_scope_values(locarray); 1129 DebugToken *expvals = C->debug_info()->create_scope_values(exparray); 1130 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray); 1131 1132 // Make method available for all Safepoints 1133 ciMethod* scope_method = method ? method : C->method(); 1134 // Describe the scope here 1135 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); 1136 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest"); 1137 // Now we can describe the scope. 1138 methodHandle null_mh; 1139 bool rethrow_exception = false; 1140 C->debug_info()->describe_scope( 1141 safepoint_pc_offset, 1142 null_mh, 1143 scope_method, 1144 jvms->bci(), 1145 jvms->should_reexecute(), 1146 rethrow_exception, 1147 is_method_handle_invoke, 1148 is_opt_native, 1149 return_oop, 1150 has_ea_local_in_scope, 1151 arg_escape, 1152 locvals, 1153 expvals, 1154 monvals 1155 ); 1156 } // End jvms loop 1157 1158 // Mark the end of the scope set. 1159 C->debug_info()->end_safepoint(safepoint_pc_offset); 1160 } 1161 1162 1163 1164 // A simplified version of Process_OopMap_Node, to handle non-safepoints. 1165 class NonSafepointEmitter { 1166 Compile* C; 1167 JVMState* _pending_jvms; 1168 int _pending_offset; 1169 1170 void emit_non_safepoint(); 1171 1172 public: 1173 NonSafepointEmitter(Compile* compile) { 1174 this->C = compile; 1175 _pending_jvms = NULL; 1176 _pending_offset = 0; 1177 } 1178 1179 void observe_instruction(Node* n, int pc_offset) { 1180 if (!C->debug_info()->recording_non_safepoints()) return; 1181 1182 Node_Notes* nn = C->node_notes_at(n->_idx); 1183 if (nn == NULL || nn->jvms() == NULL) return; 1184 if (_pending_jvms != NULL && 1185 _pending_jvms->same_calls_as(nn->jvms())) { 1186 // Repeated JVMS? Stretch it up here. 1187 _pending_offset = pc_offset; 1188 } else { 1189 if (_pending_jvms != NULL && 1190 _pending_offset < pc_offset) { 1191 emit_non_safepoint(); 1192 } 1193 _pending_jvms = NULL; 1194 if (pc_offset > C->debug_info()->last_pc_offset()) { 1195 // This is the only way _pending_jvms can become non-NULL: 1196 _pending_jvms = nn->jvms(); 1197 _pending_offset = pc_offset; 1198 } 1199 } 1200 } 1201 1202 // Stay out of the way of real safepoints: 1203 void observe_safepoint(JVMState* jvms, int pc_offset) { 1204 if (_pending_jvms != NULL && 1205 !_pending_jvms->same_calls_as(jvms) && 1206 _pending_offset < pc_offset) { 1207 emit_non_safepoint(); 1208 } 1209 _pending_jvms = NULL; 1210 } 1211 1212 void flush_at_end() { 1213 if (_pending_jvms != NULL) { 1214 emit_non_safepoint(); 1215 } 1216 _pending_jvms = NULL; 1217 } 1218 }; 1219 1220 void NonSafepointEmitter::emit_non_safepoint() { 1221 JVMState* youngest_jvms = _pending_jvms; 1222 int pc_offset = _pending_offset; 1223 1224 // Clear it now: 1225 _pending_jvms = NULL; 1226 1227 DebugInformationRecorder* debug_info = C->debug_info(); 1228 assert(debug_info->recording_non_safepoints(), "sanity"); 1229 1230 debug_info->add_non_safepoint(pc_offset); 1231 int max_depth = youngest_jvms->depth(); 1232 1233 // Visit scopes from oldest to youngest. 1234 for (int depth = 1; depth <= max_depth; depth++) { 1235 JVMState* jvms = youngest_jvms->of_depth(depth); 1236 ciMethod* method = jvms->has_method() ? jvms->method() : NULL; 1237 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest"); 1238 methodHandle null_mh; 1239 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); 1240 } 1241 1242 // Mark the end of the scope set. 1243 debug_info->end_non_safepoint(pc_offset); 1244 } 1245 1246 //------------------------------init_buffer------------------------------------ 1247 void PhaseOutput::estimate_buffer_size(int& const_req) { 1248 1249 // Set the initially allocated size 1250 const_req = initial_const_capacity; 1251 1252 // The extra spacing after the code is necessary on some platforms. 1253 // Sometimes we need to patch in a jump after the last instruction, 1254 // if the nmethod has been deoptimized. (See 4932387, 4894843.) 1255 1256 // Compute the byte offset where we can store the deopt pc. 1257 if (C->fixed_slots() != 0) { 1258 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); 1259 } 1260 1261 // Compute prolog code size 1262 _method_size = 0; 1263 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize; 1264 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1265 1266 if (C->has_mach_constant_base_node()) { 1267 uint add_size = 0; 1268 // Fill the constant table. 1269 // Note: This must happen before shorten_branches. 1270 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1271 Block* b = C->cfg()->get_block(i); 1272 1273 for (uint j = 0; j < b->number_of_nodes(); j++) { 1274 Node* n = b->get_node(j); 1275 1276 // If the node is a MachConstantNode evaluate the constant 1277 // value section. 1278 if (n->is_MachConstant()) { 1279 MachConstantNode* machcon = n->as_MachConstant(); 1280 machcon->eval_constant(C); 1281 } else if (n->is_Mach()) { 1282 // On Power there are more nodes that issue constants. 1283 add_size += (n->as_Mach()->ins_num_consts() * 8); 1284 } 1285 } 1286 } 1287 1288 // Calculate the offsets of the constants and the size of the 1289 // constant table (including the padding to the next section). 1290 constant_table().calculate_offsets_and_size(); 1291 const_req = constant_table().size() + add_size; 1292 } 1293 1294 // Initialize the space for the BufferBlob used to find and verify 1295 // instruction size in MachNode::emit_size() 1296 init_scratch_buffer_blob(const_req); 1297 } 1298 1299 CodeBuffer* PhaseOutput::init_buffer() { 1300 int stub_req = _buf_sizes._stub; 1301 int code_req = _buf_sizes._code; 1302 int const_req = _buf_sizes._const; 1303 1304 int pad_req = NativeCall::instruction_size; 1305 1306 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1307 stub_req += bs->estimate_stub_size(); 1308 stub_req += safepoint_poll_table()->estimate_stub_size(); 1309 1310 // nmethod and CodeBuffer count stubs & constants as part of method's code. 1311 // class HandlerImpl is platform-specific and defined in the *.ad files. 1312 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler 1313 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler 1314 stub_req += MAX_stubs_size; // ensure per-stub margin 1315 code_req += MAX_inst_size; // ensure per-instruction margin 1316 1317 if (StressCodeBuffers) 1318 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion 1319 1320 int total_req = 1321 const_req + 1322 code_req + 1323 pad_req + 1324 stub_req + 1325 exception_handler_req + 1326 deopt_handler_req; // deopt handler 1327 1328 if (C->has_method_handle_invokes()) 1329 total_req += deopt_handler_req; // deopt MH handler 1330 1331 CodeBuffer* cb = code_buffer(); 1332 cb->initialize(total_req, _buf_sizes._reloc); 1333 1334 // Have we run out of code space? 1335 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { 1336 C->record_failure("CodeCache is full"); 1337 return NULL; 1338 } 1339 // Configure the code buffer. 1340 cb->initialize_consts_size(const_req); 1341 cb->initialize_stubs_size(stub_req); 1342 cb->initialize_oop_recorder(C->env()->oop_recorder()); 1343 1344 // fill in the nop array for bundling computations 1345 MachNode *_nop_list[Bundle::_nop_count]; 1346 Bundle::initialize_nops(_nop_list); 1347 1348 return cb; 1349 } 1350 1351 //------------------------------fill_buffer------------------------------------ 1352 void PhaseOutput::fill_buffer(CodeBuffer* cb, uint* blk_starts) { 1353 // blk_starts[] contains offsets calculated during short branches processing, 1354 // offsets should not be increased during following steps. 1355 1356 // Compute the size of first NumberOfLoopInstrToAlign instructions at head 1357 // of a loop. It is used to determine the padding for loop alignment. 1358 Compile::TracePhase tp("fill buffer", &timers[_t_fillBuffer]); 1359 1360 compute_loop_first_inst_sizes(); 1361 1362 // Create oopmap set. 1363 _oop_map_set = new OopMapSet(); 1364 1365 // !!!!! This preserves old handling of oopmaps for now 1366 C->debug_info()->set_oopmaps(_oop_map_set); 1367 1368 uint nblocks = C->cfg()->number_of_blocks(); 1369 // Count and start of implicit null check instructions 1370 uint inct_cnt = 0; 1371 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1372 1373 // Count and start of calls 1374 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1375 1376 uint return_offset = 0; 1377 int nop_size = (new MachNopNode())->size(C->regalloc()); 1378 1379 int previous_offset = 0; 1380 int current_offset = 0; 1381 int last_call_offset = -1; 1382 int last_avoid_back_to_back_offset = -1; 1383 #ifdef ASSERT 1384 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); 1385 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 1386 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 1387 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); 1388 #endif 1389 1390 // Create an array of unused labels, one for each basic block, if printing is enabled 1391 #if defined(SUPPORT_OPTO_ASSEMBLY) 1392 int* node_offsets = NULL; 1393 uint node_offset_limit = C->unique(); 1394 1395 if (C->print_assembly()) { 1396 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); 1397 } 1398 if (node_offsets != NULL) { 1399 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. 1400 memset(node_offsets, 0, node_offset_limit*sizeof(int)); 1401 } 1402 #endif 1403 1404 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily 1405 1406 // Emit the constant table. 1407 if (C->has_mach_constant_base_node()) { 1408 if (!constant_table().emit(*cb)) { 1409 C->record_failure("consts section overflow"); 1410 return; 1411 } 1412 } 1413 1414 // Create an array of labels, one for each basic block 1415 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); 1416 for (uint i = 0; i <= nblocks; i++) { 1417 blk_labels[i].init(); 1418 } 1419 1420 // Now fill in the code buffer 1421 Node* delay_slot = NULL; 1422 for (uint i = 0; i < nblocks; i++) { 1423 Block* block = C->cfg()->get_block(i); 1424 _block = block; 1425 Node* head = block->head(); 1426 1427 // If this block needs to start aligned (i.e, can be reached other 1428 // than by falling-thru from the previous block), then force the 1429 // start of a new bundle. 1430 if (Pipeline::requires_bundling() && starts_bundle(head)) { 1431 cb->flush_bundle(true); 1432 } 1433 1434 #ifdef ASSERT 1435 if (!block->is_connector()) { 1436 stringStream st; 1437 block->dump_head(C->cfg(), &st); 1438 MacroAssembler(cb).block_comment(st.as_string()); 1439 } 1440 jmp_target[i] = 0; 1441 jmp_offset[i] = 0; 1442 jmp_size[i] = 0; 1443 jmp_rule[i] = 0; 1444 #endif 1445 int blk_offset = current_offset; 1446 1447 // Define the label at the beginning of the basic block 1448 MacroAssembler(cb).bind(blk_labels[block->_pre_order]); 1449 1450 uint last_inst = block->number_of_nodes(); 1451 1452 // Emit block normally, except for last instruction. 1453 // Emit means "dump code bits into code buffer". 1454 for (uint j = 0; j<last_inst; j++) { 1455 _index = j; 1456 1457 // Get the node 1458 Node* n = block->get_node(j); 1459 1460 // See if delay slots are supported 1461 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { 1462 assert(delay_slot == NULL, "no use of delay slot node"); 1463 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); 1464 1465 delay_slot = n; 1466 continue; 1467 } 1468 1469 // If this starts a new instruction group, then flush the current one 1470 // (but allow split bundles) 1471 if (Pipeline::requires_bundling() && starts_bundle(n)) 1472 cb->flush_bundle(false); 1473 1474 // Special handling for SafePoint/Call Nodes 1475 bool is_mcall = false; 1476 if (n->is_Mach()) { 1477 MachNode *mach = n->as_Mach(); 1478 is_mcall = n->is_MachCall(); 1479 bool is_sfn = n->is_MachSafePoint(); 1480 1481 // If this requires all previous instructions be flushed, then do so 1482 if (is_sfn || is_mcall || mach->alignment_required() != 1) { 1483 cb->flush_bundle(true); 1484 current_offset = cb->insts_size(); 1485 } 1486 1487 // A padding may be needed again since a previous instruction 1488 // could be moved to delay slot. 1489 1490 // align the instruction if necessary 1491 int padding = mach->compute_padding(current_offset); 1492 // Make sure safepoint node for polling is distinct from a call's 1493 // return by adding a nop if needed. 1494 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { 1495 padding = nop_size; 1496 } 1497 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && 1498 current_offset == last_avoid_back_to_back_offset) { 1499 // Avoid back to back some instructions. 1500 padding = nop_size; 1501 } 1502 1503 if (padding > 0) { 1504 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1505 int nops_cnt = padding / nop_size; 1506 MachNode *nop = new MachNopNode(nops_cnt); 1507 block->insert_node(nop, j++); 1508 last_inst++; 1509 C->cfg()->map_node_to_block(nop, block); 1510 // Ensure enough space. 1511 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1512 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { 1513 C->record_failure("CodeCache is full"); 1514 return; 1515 } 1516 nop->emit(*cb, C->regalloc()); 1517 cb->flush_bundle(true); 1518 current_offset = cb->insts_size(); 1519 } 1520 1521 bool observe_safepoint = is_sfn; 1522 // Remember the start of the last call in a basic block 1523 if (is_mcall) { 1524 MachCallNode *mcall = mach->as_MachCall(); 1525 1526 // This destination address is NOT PC-relative 1527 mcall->method_set((intptr_t)mcall->entry_point()); 1528 1529 // Save the return address 1530 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); 1531 1532 observe_safepoint = mcall->guaranteed_safepoint(); 1533 } 1534 1535 // sfn will be valid whenever mcall is valid now because of inheritance 1536 if (observe_safepoint) { 1537 // Handle special safepoint nodes for synchronization 1538 if (!is_mcall) { 1539 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1540 // !!!!! Stubs only need an oopmap right now, so bail out 1541 if (sfn->jvms()->method() == NULL) { 1542 // Write the oopmap directly to the code blob??!! 1543 continue; 1544 } 1545 } // End synchronization 1546 1547 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1548 current_offset); 1549 Process_OopMap_Node(mach, current_offset); 1550 } // End if safepoint 1551 1552 // If this is a null check, then add the start of the previous instruction to the list 1553 else if( mach->is_MachNullCheck() ) { 1554 inct_starts[inct_cnt++] = previous_offset; 1555 } 1556 1557 // If this is a branch, then fill in the label with the target BB's label 1558 else if (mach->is_MachBranch()) { 1559 // This requires the TRUE branch target be in succs[0] 1560 uint block_num = block->non_connector_successor(0)->_pre_order; 1561 1562 // Try to replace long branch if delay slot is not used, 1563 // it is mostly for back branches since forward branch's 1564 // distance is not updated yet. 1565 bool delay_slot_is_used = valid_bundle_info(n) && 1566 C->output()->node_bundling(n)->use_unconditional_delay(); 1567 if (!delay_slot_is_used && mach->may_be_short_branch()) { 1568 assert(delay_slot == NULL, "not expecting delay slot node"); 1569 int br_size = n->size(C->regalloc()); 1570 int offset = blk_starts[block_num] - current_offset; 1571 if (block_num >= i) { 1572 // Current and following block's offset are not 1573 // finalized yet, adjust distance by the difference 1574 // between calculated and final offsets of current block. 1575 offset -= (blk_starts[i] - blk_offset); 1576 } 1577 // In the following code a nop could be inserted before 1578 // the branch which will increase the backward distance. 1579 bool needs_padding = (current_offset == last_avoid_back_to_back_offset); 1580 if (needs_padding && offset <= 0) 1581 offset -= nop_size; 1582 1583 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 1584 // We've got a winner. Replace this branch. 1585 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 1586 1587 // Update the jmp_size. 1588 int new_size = replacement->size(C->regalloc()); 1589 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1590 // Insert padding between avoid_back_to_back branches. 1591 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 1592 MachNode *nop = new MachNopNode(); 1593 block->insert_node(nop, j++); 1594 C->cfg()->map_node_to_block(nop, block); 1595 last_inst++; 1596 nop->emit(*cb, C->regalloc()); 1597 cb->flush_bundle(true); 1598 current_offset = cb->insts_size(); 1599 } 1600 #ifdef ASSERT 1601 jmp_target[i] = block_num; 1602 jmp_offset[i] = current_offset - blk_offset; 1603 jmp_size[i] = new_size; 1604 jmp_rule[i] = mach->rule(); 1605 #endif 1606 block->map_node(replacement, j); 1607 mach->subsume_by(replacement, C); 1608 n = replacement; 1609 mach = replacement; 1610 } 1611 } 1612 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1613 } else if (mach->ideal_Opcode() == Op_Jump) { 1614 for (uint h = 0; h < block->_num_succs; h++) { 1615 Block* succs_block = block->_succs[h]; 1616 for (uint j = 1; j < succs_block->num_preds(); j++) { 1617 Node* jpn = succs_block->pred(j); 1618 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1619 uint block_num = succs_block->non_connector()->_pre_order; 1620 Label *blkLabel = &blk_labels[block_num]; 1621 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1622 } 1623 } 1624 } 1625 } 1626 #ifdef ASSERT 1627 // Check that oop-store precedes the card-mark 1628 else if (mach->ideal_Opcode() == Op_StoreCM) { 1629 uint storeCM_idx = j; 1630 int count = 0; 1631 for (uint prec = mach->req(); prec < mach->len(); prec++) { 1632 Node *oop_store = mach->in(prec); // Precedence edge 1633 if (oop_store == NULL) continue; 1634 count++; 1635 uint i4; 1636 for (i4 = 0; i4 < last_inst; ++i4) { 1637 if (block->get_node(i4) == oop_store) { 1638 break; 1639 } 1640 } 1641 // Note: This test can provide a false failure if other precedence 1642 // edges have been added to the storeCMNode. 1643 assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store"); 1644 } 1645 assert(count > 0, "storeCM expects at least one precedence edge"); 1646 } 1647 #endif 1648 else if (!n->is_Proj()) { 1649 // Remember the beginning of the previous instruction, in case 1650 // it's followed by a flag-kill and a null-check. Happens on 1651 // Intel all the time, with add-to-memory kind of opcodes. 1652 previous_offset = current_offset; 1653 } 1654 1655 // Not an else-if! 1656 // If this is a trap based cmp then add its offset to the list. 1657 if (mach->is_TrapBasedCheckNode()) { 1658 inct_starts[inct_cnt++] = current_offset; 1659 } 1660 } 1661 1662 // Verify that there is sufficient space remaining 1663 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1664 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { 1665 C->record_failure("CodeCache is full"); 1666 return; 1667 } 1668 1669 // Save the offset for the listing 1670 #if defined(SUPPORT_OPTO_ASSEMBLY) 1671 if ((node_offsets != NULL) && (n->_idx < node_offset_limit)) { 1672 node_offsets[n->_idx] = cb->insts_size(); 1673 } 1674 #endif 1675 assert(!C->failing(), "Should not reach here if failing."); 1676 1677 // "Normal" instruction case 1678 DEBUG_ONLY(uint instr_offset = cb->insts_size()); 1679 n->emit(*cb, C->regalloc()); 1680 current_offset = cb->insts_size(); 1681 1682 // Above we only verified that there is enough space in the instruction section. 1683 // However, the instruction may emit stubs that cause code buffer expansion. 1684 // Bail out here if expansion failed due to a lack of code cache space. 1685 if (C->failing()) { 1686 return; 1687 } 1688 1689 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset), 1690 "ret_addr_offset() not within emitted code"); 1691 1692 #ifdef ASSERT 1693 uint n_size = n->size(C->regalloc()); 1694 if (n_size < (current_offset-instr_offset)) { 1695 MachNode* mach = n->as_Mach(); 1696 n->dump(); 1697 mach->dump_format(C->regalloc(), tty); 1698 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset); 1699 Disassembler::decode(cb->insts_begin() + instr_offset, cb->insts_begin() + current_offset + 1, tty); 1700 tty->print_cr(" ------------------- "); 1701 BufferBlob* blob = this->scratch_buffer_blob(); 1702 address blob_begin = blob->content_begin(); 1703 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty); 1704 assert(false, "wrong size of mach node"); 1705 } 1706 #endif 1707 non_safepoints.observe_instruction(n, current_offset); 1708 1709 // mcall is last "call" that can be a safepoint 1710 // record it so we can see if a poll will directly follow it 1711 // in which case we'll need a pad to make the PcDesc sites unique 1712 // see 5010568. This can be slightly inaccurate but conservative 1713 // in the case that return address is not actually at current_offset. 1714 // This is a small price to pay. 1715 1716 if (is_mcall) { 1717 last_call_offset = current_offset; 1718 } 1719 1720 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 1721 // Avoid back to back some instructions. 1722 last_avoid_back_to_back_offset = current_offset; 1723 } 1724 1725 // See if this instruction has a delay slot 1726 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 1727 guarantee(delay_slot != NULL, "expecting delay slot node"); 1728 1729 // Back up 1 instruction 1730 cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size()); 1731 1732 // Save the offset for the listing 1733 #if defined(SUPPORT_OPTO_ASSEMBLY) 1734 if ((node_offsets != NULL) && (delay_slot->_idx < node_offset_limit)) { 1735 node_offsets[delay_slot->_idx] = cb->insts_size(); 1736 } 1737 #endif 1738 1739 // Support a SafePoint in the delay slot 1740 if (delay_slot->is_MachSafePoint()) { 1741 MachNode *mach = delay_slot->as_Mach(); 1742 // !!!!! Stubs only need an oopmap right now, so bail out 1743 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) { 1744 // Write the oopmap directly to the code blob??!! 1745 delay_slot = NULL; 1746 continue; 1747 } 1748 1749 int adjusted_offset = current_offset - Pipeline::instr_unit_size(); 1750 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1751 adjusted_offset); 1752 // Generate an OopMap entry 1753 Process_OopMap_Node(mach, adjusted_offset); 1754 } 1755 1756 // Insert the delay slot instruction 1757 delay_slot->emit(*cb, C->regalloc()); 1758 1759 // Don't reuse it 1760 delay_slot = NULL; 1761 } 1762 1763 } // End for all instructions in block 1764 1765 // If the next block is the top of a loop, pad this block out to align 1766 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1767 if (i < nblocks-1) { 1768 Block *nb = C->cfg()->get_block(i + 1); 1769 int padding = nb->alignment_padding(current_offset); 1770 if( padding > 0 ) { 1771 MachNode *nop = new MachNopNode(padding / nop_size); 1772 block->insert_node(nop, block->number_of_nodes()); 1773 C->cfg()->map_node_to_block(nop, block); 1774 nop->emit(*cb, C->regalloc()); 1775 current_offset = cb->insts_size(); 1776 } 1777 } 1778 // Verify that the distance for generated before forward 1779 // short branches is still valid. 1780 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size"); 1781 1782 // Save new block start offset 1783 blk_starts[i] = blk_offset; 1784 } // End of for all blocks 1785 blk_starts[nblocks] = current_offset; 1786 1787 non_safepoints.flush_at_end(); 1788 1789 // Offset too large? 1790 if (C->failing()) return; 1791 1792 // Define a pseudo-label at the end of the code 1793 MacroAssembler(cb).bind( blk_labels[nblocks] ); 1794 1795 // Compute the size of the first block 1796 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); 1797 1798 #ifdef ASSERT 1799 for (uint i = 0; i < nblocks; i++) { // For all blocks 1800 if (jmp_target[i] != 0) { 1801 int br_size = jmp_size[i]; 1802 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 1803 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 1804 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 1805 assert(false, "Displacement too large for short jmp"); 1806 } 1807 } 1808 } 1809 #endif 1810 1811 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1812 bs->emit_stubs(*cb); 1813 if (C->failing()) return; 1814 1815 // Fill in stubs for calling the runtime from safepoint polls. 1816 safepoint_poll_table()->emit(*cb); 1817 if (C->failing()) return; 1818 1819 #ifndef PRODUCT 1820 // Information on the size of the method, without the extraneous code 1821 Scheduling::increment_method_size(cb->insts_size()); 1822 #endif 1823 1824 // ------------------ 1825 // Fill in exception table entries. 1826 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); 1827 1828 // Only java methods have exception handlers and deopt handlers 1829 // class HandlerImpl is platform-specific and defined in the *.ad files. 1830 if (C->method()) { 1831 // Emit the exception handler code. 1832 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb)); 1833 if (C->failing()) { 1834 return; // CodeBuffer::expand failed 1835 } 1836 // Emit the deopt handler code. 1837 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb)); 1838 1839 // Emit the MethodHandle deopt handler code (if required). 1840 if (C->has_method_handle_invokes() && !C->failing()) { 1841 // We can use the same code as for the normal deopt handler, we 1842 // just need a different entry point address. 1843 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb)); 1844 } 1845 } 1846 1847 // One last check for failed CodeBuffer::expand: 1848 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { 1849 C->record_failure("CodeCache is full"); 1850 return; 1851 } 1852 1853 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) 1854 if (C->print_assembly()) { 1855 tty->cr(); 1856 tty->print_cr("============================= C2-compiled nmethod =============================="); 1857 } 1858 #endif 1859 1860 #if defined(SUPPORT_OPTO_ASSEMBLY) 1861 // Dump the assembly code, including basic-block numbers 1862 if (C->print_assembly()) { 1863 ttyLocker ttyl; // keep the following output all in one block 1864 if (!VMThread::should_terminate()) { // test this under the tty lock 1865 // print_metadata and dump_asm may safepoint which makes us loose the ttylock. 1866 // We call them first and write to a stringStream, then we retake the lock to 1867 // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe. 1868 ResourceMark rm; 1869 stringStream method_metadata_str; 1870 if (C->method() != NULL) { 1871 C->method()->print_metadata(&method_metadata_str); 1872 } 1873 stringStream dump_asm_str; 1874 dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit); 1875 1876 NoSafepointVerifier nsv; 1877 ttyLocker ttyl2; 1878 // This output goes directly to the tty, not the compiler log. 1879 // To enable tools to match it up with the compilation activity, 1880 // be sure to tag this tty output with the compile ID. 1881 if (xtty != NULL) { 1882 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(), 1883 C->is_osr_compilation() ? " compile_kind='osr'" : ""); 1884 } 1885 if (C->method() != NULL) { 1886 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id()); 1887 tty->print_raw(method_metadata_str.as_string()); 1888 } else if (C->stub_name() != NULL) { 1889 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name()); 1890 } 1891 tty->cr(); 1892 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id()); 1893 tty->print_raw(dump_asm_str.as_string()); 1894 tty->print_cr("--------------------------------------------------------------------------------"); 1895 if (xtty != NULL) { 1896 xtty->tail("opto_assembly"); 1897 } 1898 } 1899 } 1900 #endif 1901 } 1902 1903 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 1904 _inc_table.set_size(cnt); 1905 1906 uint inct_cnt = 0; 1907 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1908 Block* block = C->cfg()->get_block(i); 1909 Node *n = NULL; 1910 int j; 1911 1912 // Find the branch; ignore trailing NOPs. 1913 for (j = block->number_of_nodes() - 1; j >= 0; j--) { 1914 n = block->get_node(j); 1915 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { 1916 break; 1917 } 1918 } 1919 1920 // If we didn't find anything, continue 1921 if (j < 0) { 1922 continue; 1923 } 1924 1925 // Compute ExceptionHandlerTable subtable entry and add it 1926 // (skip empty blocks) 1927 if (n->is_Catch()) { 1928 1929 // Get the offset of the return from the call 1930 uint call_return = call_returns[block->_pre_order]; 1931 #ifdef ASSERT 1932 assert( call_return > 0, "no call seen for this basic block" ); 1933 while (block->get_node(--j)->is_MachProj()) ; 1934 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call"); 1935 #endif 1936 // last instruction is a CatchNode, find it's CatchProjNodes 1937 int nof_succs = block->_num_succs; 1938 // allocate space 1939 GrowableArray<intptr_t> handler_bcis(nof_succs); 1940 GrowableArray<intptr_t> handler_pcos(nof_succs); 1941 // iterate through all successors 1942 for (int j = 0; j < nof_succs; j++) { 1943 Block* s = block->_succs[j]; 1944 bool found_p = false; 1945 for (uint k = 1; k < s->num_preds(); k++) { 1946 Node* pk = s->pred(k); 1947 if (pk->is_CatchProj() && pk->in(0) == n) { 1948 const CatchProjNode* p = pk->as_CatchProj(); 1949 found_p = true; 1950 // add the corresponding handler bci & pco information 1951 if (p->_con != CatchProjNode::fall_through_index) { 1952 // p leads to an exception handler (and is not fall through) 1953 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering"); 1954 // no duplicates, please 1955 if (!handler_bcis.contains(p->handler_bci())) { 1956 uint block_num = s->non_connector()->_pre_order; 1957 handler_bcis.append(p->handler_bci()); 1958 handler_pcos.append(blk_labels[block_num].loc_pos()); 1959 } 1960 } 1961 } 1962 } 1963 assert(found_p, "no matching predecessor found"); 1964 // Note: Due to empty block removal, one block may have 1965 // several CatchProj inputs, from the same Catch. 1966 } 1967 1968 // Set the offset of the return from the call 1969 assert(handler_bcis.find(-1) != -1, "must have default handler"); 1970 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos); 1971 continue; 1972 } 1973 1974 // Handle implicit null exception table updates 1975 if (n->is_MachNullCheck()) { 1976 uint block_num = block->non_connector_successor(0)->_pre_order; 1977 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 1978 continue; 1979 } 1980 // Handle implicit exception table updates: trap instructions. 1981 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { 1982 uint block_num = block->non_connector_successor(0)->_pre_order; 1983 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 1984 continue; 1985 } 1986 } // End of for all blocks fill in exception table entries 1987 } 1988 1989 // Static Variables 1990 #ifndef PRODUCT 1991 uint Scheduling::_total_nop_size = 0; 1992 uint Scheduling::_total_method_size = 0; 1993 uint Scheduling::_total_branches = 0; 1994 uint Scheduling::_total_unconditional_delays = 0; 1995 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 1996 #endif 1997 1998 // Initializer for class Scheduling 1999 2000 Scheduling::Scheduling(Arena *arena, Compile &compile) 2001 : _arena(arena), 2002 _cfg(compile.cfg()), 2003 _regalloc(compile.regalloc()), 2004 _scheduled(arena), 2005 _available(arena), 2006 _reg_node(arena), 2007 _pinch_free_list(arena), 2008 _next_node(NULL), 2009 _bundle_instr_count(0), 2010 _bundle_cycle_number(0), 2011 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) 2012 #ifndef PRODUCT 2013 , _branches(0) 2014 , _unconditional_delays(0) 2015 #endif 2016 { 2017 // Create a MachNopNode 2018 _nop = new MachNopNode(); 2019 2020 // Now that the nops are in the array, save the count 2021 // (but allow entries for the nops) 2022 _node_bundling_limit = compile.unique(); 2023 uint node_max = _regalloc->node_regs_max_index(); 2024 2025 compile.output()->set_node_bundling_limit(_node_bundling_limit); 2026 2027 // This one is persistent within the Compile class 2028 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); 2029 2030 // Allocate space for fixed-size arrays 2031 _uses = NEW_ARENA_ARRAY(arena, short, node_max); 2032 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 2033 2034 // Clear the arrays 2035 for (uint i = 0; i < node_max; i++) { 2036 ::new (&_node_bundling_base[i]) Bundle(); 2037 } 2038 memset(_uses, 0, node_max * sizeof(short)); 2039 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 2040 2041 // Clear the bundling information 2042 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); 2043 2044 // Get the last node 2045 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); 2046 2047 _next_node = block->get_node(block->number_of_nodes() - 1); 2048 } 2049 2050 #ifndef PRODUCT 2051 // Scheduling destructor 2052 Scheduling::~Scheduling() { 2053 _total_branches += _branches; 2054 _total_unconditional_delays += _unconditional_delays; 2055 } 2056 #endif 2057 2058 // Step ahead "i" cycles 2059 void Scheduling::step(uint i) { 2060 2061 Bundle *bundle = node_bundling(_next_node); 2062 bundle->set_starts_bundle(); 2063 2064 // Update the bundle record, but leave the flags information alone 2065 if (_bundle_instr_count > 0) { 2066 bundle->set_instr_count(_bundle_instr_count); 2067 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2068 } 2069 2070 // Update the state information 2071 _bundle_instr_count = 0; 2072 _bundle_cycle_number += i; 2073 _bundle_use.step(i); 2074 } 2075 2076 void Scheduling::step_and_clear() { 2077 Bundle *bundle = node_bundling(_next_node); 2078 bundle->set_starts_bundle(); 2079 2080 // Update the bundle record 2081 if (_bundle_instr_count > 0) { 2082 bundle->set_instr_count(_bundle_instr_count); 2083 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2084 2085 _bundle_cycle_number += 1; 2086 } 2087 2088 // Clear the bundling information 2089 _bundle_instr_count = 0; 2090 _bundle_use.reset(); 2091 2092 memcpy(_bundle_use_elements, 2093 Pipeline_Use::elaborated_elements, 2094 sizeof(Pipeline_Use::elaborated_elements)); 2095 } 2096 2097 // Perform instruction scheduling and bundling over the sequence of 2098 // instructions in backwards order. 2099 void PhaseOutput::ScheduleAndBundle() { 2100 2101 // Don't optimize this if it isn't a method 2102 if (!C->method()) 2103 return; 2104 2105 // Don't optimize this if scheduling is disabled 2106 if (!C->do_scheduling()) 2107 return; 2108 2109 // Scheduling code works only with pairs (8 bytes) maximum. 2110 // And when the scalable vector register is used, we may spill/unspill 2111 // the whole reg regardless of the max vector size. 2112 if (C->max_vector_size() > 8 || 2113 (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) { 2114 return; 2115 } 2116 2117 Compile::TracePhase tp("isched", &timers[_t_instrSched]); 2118 2119 // Create a data structure for all the scheduling information 2120 Scheduling scheduling(Thread::current()->resource_area(), *C); 2121 2122 // Walk backwards over each basic block, computing the needed alignment 2123 // Walk over all the basic blocks 2124 scheduling.DoScheduling(); 2125 2126 #ifndef PRODUCT 2127 if (C->trace_opto_output()) { 2128 tty->print("\n---- After ScheduleAndBundle ----\n"); 2129 print_scheduling(); 2130 } 2131 #endif 2132 } 2133 2134 #ifndef PRODUCT 2135 // Separated out so that it can be called directly from debugger 2136 void PhaseOutput::print_scheduling() { 2137 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2138 tty->print("\nBB#%03d:\n", i); 2139 Block* block = C->cfg()->get_block(i); 2140 for (uint j = 0; j < block->number_of_nodes(); j++) { 2141 Node* n = block->get_node(j); 2142 OptoReg::Name reg = C->regalloc()->get_reg_first(n); 2143 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 2144 n->dump(); 2145 } 2146 } 2147 } 2148 #endif 2149 2150 // See if this node fits into the present instruction bundle 2151 bool Scheduling::NodeFitsInBundle(Node *n) { 2152 uint n_idx = n->_idx; 2153 2154 // If this is the unconditional delay instruction, then it fits 2155 if (n == _unconditional_delay_slot) { 2156 #ifndef PRODUCT 2157 if (_cfg->C->trace_opto_output()) 2158 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); 2159 #endif 2160 return (true); 2161 } 2162 2163 // If the node cannot be scheduled this cycle, skip it 2164 if (_current_latency[n_idx] > _bundle_cycle_number) { 2165 #ifndef PRODUCT 2166 if (_cfg->C->trace_opto_output()) 2167 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", 2168 n->_idx, _current_latency[n_idx], _bundle_cycle_number); 2169 #endif 2170 return (false); 2171 } 2172 2173 const Pipeline *node_pipeline = n->pipeline(); 2174 2175 uint instruction_count = node_pipeline->instructionCount(); 2176 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2177 instruction_count = 0; 2178 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2179 instruction_count++; 2180 2181 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { 2182 #ifndef PRODUCT 2183 if (_cfg->C->trace_opto_output()) 2184 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", 2185 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); 2186 #endif 2187 return (false); 2188 } 2189 2190 // Don't allow non-machine nodes to be handled this way 2191 if (!n->is_Mach() && instruction_count == 0) 2192 return (false); 2193 2194 // See if there is any overlap 2195 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); 2196 2197 if (delay > 0) { 2198 #ifndef PRODUCT 2199 if (_cfg->C->trace_opto_output()) 2200 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); 2201 #endif 2202 return false; 2203 } 2204 2205 #ifndef PRODUCT 2206 if (_cfg->C->trace_opto_output()) 2207 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); 2208 #endif 2209 2210 return true; 2211 } 2212 2213 Node * Scheduling::ChooseNodeToBundle() { 2214 uint siz = _available.size(); 2215 2216 if (siz == 0) { 2217 2218 #ifndef PRODUCT 2219 if (_cfg->C->trace_opto_output()) 2220 tty->print("# ChooseNodeToBundle: NULL\n"); 2221 #endif 2222 return (NULL); 2223 } 2224 2225 // Fast path, if only 1 instruction in the bundle 2226 if (siz == 1) { 2227 #ifndef PRODUCT 2228 if (_cfg->C->trace_opto_output()) { 2229 tty->print("# ChooseNodeToBundle (only 1): "); 2230 _available[0]->dump(); 2231 } 2232 #endif 2233 return (_available[0]); 2234 } 2235 2236 // Don't bother, if the bundle is already full 2237 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { 2238 for ( uint i = 0; i < siz; i++ ) { 2239 Node *n = _available[i]; 2240 2241 // Skip projections, we'll handle them another way 2242 if (n->is_Proj()) 2243 continue; 2244 2245 // This presupposed that instructions are inserted into the 2246 // available list in a legality order; i.e. instructions that 2247 // must be inserted first are at the head of the list 2248 if (NodeFitsInBundle(n)) { 2249 #ifndef PRODUCT 2250 if (_cfg->C->trace_opto_output()) { 2251 tty->print("# ChooseNodeToBundle: "); 2252 n->dump(); 2253 } 2254 #endif 2255 return (n); 2256 } 2257 } 2258 } 2259 2260 // Nothing fits in this bundle, choose the highest priority 2261 #ifndef PRODUCT 2262 if (_cfg->C->trace_opto_output()) { 2263 tty->print("# ChooseNodeToBundle: "); 2264 _available[0]->dump(); 2265 } 2266 #endif 2267 2268 return _available[0]; 2269 } 2270 2271 void Scheduling::AddNodeToAvailableList(Node *n) { 2272 assert( !n->is_Proj(), "projections never directly made available" ); 2273 #ifndef PRODUCT 2274 if (_cfg->C->trace_opto_output()) { 2275 tty->print("# AddNodeToAvailableList: "); 2276 n->dump(); 2277 } 2278 #endif 2279 2280 int latency = _current_latency[n->_idx]; 2281 2282 // Insert in latency order (insertion sort) 2283 uint i; 2284 for ( i=0; i < _available.size(); i++ ) 2285 if (_current_latency[_available[i]->_idx] > latency) 2286 break; 2287 2288 // Special Check for compares following branches 2289 if( n->is_Mach() && _scheduled.size() > 0 ) { 2290 int op = n->as_Mach()->ideal_Opcode(); 2291 Node *last = _scheduled[0]; 2292 if( last->is_MachIf() && last->in(1) == n && 2293 ( op == Op_CmpI || 2294 op == Op_CmpU || 2295 op == Op_CmpUL || 2296 op == Op_CmpP || 2297 op == Op_CmpF || 2298 op == Op_CmpD || 2299 op == Op_CmpL ) ) { 2300 2301 // Recalculate position, moving to front of same latency 2302 for ( i=0 ; i < _available.size(); i++ ) 2303 if (_current_latency[_available[i]->_idx] >= latency) 2304 break; 2305 } 2306 } 2307 2308 // Insert the node in the available list 2309 _available.insert(i, n); 2310 2311 #ifndef PRODUCT 2312 if (_cfg->C->trace_opto_output()) 2313 dump_available(); 2314 #endif 2315 } 2316 2317 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2318 for ( uint i=0; i < n->len(); i++ ) { 2319 Node *def = n->in(i); 2320 if (!def) continue; 2321 if( def->is_Proj() ) // If this is a machine projection, then 2322 def = def->in(0); // propagate usage thru to the base instruction 2323 2324 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local 2325 continue; 2326 } 2327 2328 // Compute the latency 2329 uint l = _bundle_cycle_number + n->latency(i); 2330 if (_current_latency[def->_idx] < l) 2331 _current_latency[def->_idx] = l; 2332 2333 // If this does not have uses then schedule it 2334 if ((--_uses[def->_idx]) == 0) 2335 AddNodeToAvailableList(def); 2336 } 2337 } 2338 2339 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2340 #ifndef PRODUCT 2341 if (_cfg->C->trace_opto_output()) { 2342 tty->print("# AddNodeToBundle: "); 2343 n->dump(); 2344 } 2345 #endif 2346 2347 // Remove this from the available list 2348 uint i; 2349 for (i = 0; i < _available.size(); i++) 2350 if (_available[i] == n) 2351 break; 2352 assert(i < _available.size(), "entry in _available list not found"); 2353 _available.remove(i); 2354 2355 // See if this fits in the current bundle 2356 const Pipeline *node_pipeline = n->pipeline(); 2357 const Pipeline_Use& node_usage = node_pipeline->resourceUse(); 2358 2359 // Check for instructions to be placed in the delay slot. We 2360 // do this before we actually schedule the current instruction, 2361 // because the delay slot follows the current instruction. 2362 if (Pipeline::_branch_has_delay_slot && 2363 node_pipeline->hasBranchDelay() && 2364 !_unconditional_delay_slot) { 2365 2366 uint siz = _available.size(); 2367 2368 // Conditional branches can support an instruction that 2369 // is unconditionally executed and not dependent by the 2370 // branch, OR a conditionally executed instruction if 2371 // the branch is taken. In practice, this means that 2372 // the first instruction at the branch target is 2373 // copied to the delay slot, and the branch goes to 2374 // the instruction after that at the branch target 2375 if ( n->is_MachBranch() ) { 2376 2377 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); 2378 assert( !n->is_Catch(), "should not look for delay slot for Catch" ); 2379 2380 #ifndef PRODUCT 2381 _branches++; 2382 #endif 2383 2384 // At least 1 instruction is on the available list 2385 // that is not dependent on the branch 2386 for (uint i = 0; i < siz; i++) { 2387 Node *d = _available[i]; 2388 const Pipeline *avail_pipeline = d->pipeline(); 2389 2390 // Don't allow safepoints in the branch shadow, that will 2391 // cause a number of difficulties 2392 if ( avail_pipeline->instructionCount() == 1 && 2393 !avail_pipeline->hasMultipleBundles() && 2394 !avail_pipeline->hasBranchDelay() && 2395 Pipeline::instr_has_unit_size() && 2396 d->size(_regalloc) == Pipeline::instr_unit_size() && 2397 NodeFitsInBundle(d) && 2398 !node_bundling(d)->used_in_delay()) { 2399 2400 if (d->is_Mach() && !d->is_MachSafePoint()) { 2401 // A node that fits in the delay slot was found, so we need to 2402 // set the appropriate bits in the bundle pipeline information so 2403 // that it correctly indicates resource usage. Later, when we 2404 // attempt to add this instruction to the bundle, we will skip 2405 // setting the resource usage. 2406 _unconditional_delay_slot = d; 2407 node_bundling(n)->set_use_unconditional_delay(); 2408 node_bundling(d)->set_used_in_unconditional_delay(); 2409 _bundle_use.add_usage(avail_pipeline->resourceUse()); 2410 _current_latency[d->_idx] = _bundle_cycle_number; 2411 _next_node = d; 2412 ++_bundle_instr_count; 2413 #ifndef PRODUCT 2414 _unconditional_delays++; 2415 #endif 2416 break; 2417 } 2418 } 2419 } 2420 } 2421 2422 // No delay slot, add a nop to the usage 2423 if (!_unconditional_delay_slot) { 2424 // See if adding an instruction in the delay slot will overflow 2425 // the bundle. 2426 if (!NodeFitsInBundle(_nop)) { 2427 #ifndef PRODUCT 2428 if (_cfg->C->trace_opto_output()) 2429 tty->print("# *** STEP(1 instruction for delay slot) ***\n"); 2430 #endif 2431 step(1); 2432 } 2433 2434 _bundle_use.add_usage(_nop->pipeline()->resourceUse()); 2435 _next_node = _nop; 2436 ++_bundle_instr_count; 2437 } 2438 2439 // See if the instruction in the delay slot requires a 2440 // step of the bundles 2441 if (!NodeFitsInBundle(n)) { 2442 #ifndef PRODUCT 2443 if (_cfg->C->trace_opto_output()) 2444 tty->print("# *** STEP(branch won't fit) ***\n"); 2445 #endif 2446 // Update the state information 2447 _bundle_instr_count = 0; 2448 _bundle_cycle_number += 1; 2449 _bundle_use.step(1); 2450 } 2451 } 2452 2453 // Get the number of instructions 2454 uint instruction_count = node_pipeline->instructionCount(); 2455 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2456 instruction_count = 0; 2457 2458 // Compute the latency information 2459 uint delay = 0; 2460 2461 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { 2462 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; 2463 if (relative_latency < 0) 2464 relative_latency = 0; 2465 2466 delay = _bundle_use.full_latency(relative_latency, node_usage); 2467 2468 // Does not fit in this bundle, start a new one 2469 if (delay > 0) { 2470 step(delay); 2471 2472 #ifndef PRODUCT 2473 if (_cfg->C->trace_opto_output()) 2474 tty->print("# *** STEP(%d) ***\n", delay); 2475 #endif 2476 } 2477 } 2478 2479 // If this was placed in the delay slot, ignore it 2480 if (n != _unconditional_delay_slot) { 2481 2482 if (delay == 0) { 2483 if (node_pipeline->hasMultipleBundles()) { 2484 #ifndef PRODUCT 2485 if (_cfg->C->trace_opto_output()) 2486 tty->print("# *** STEP(multiple instructions) ***\n"); 2487 #endif 2488 step(1); 2489 } 2490 2491 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { 2492 #ifndef PRODUCT 2493 if (_cfg->C->trace_opto_output()) 2494 tty->print("# *** STEP(%d >= %d instructions) ***\n", 2495 instruction_count + _bundle_instr_count, 2496 Pipeline::_max_instrs_per_cycle); 2497 #endif 2498 step(1); 2499 } 2500 } 2501 2502 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2503 _bundle_instr_count++; 2504 2505 // Set the node's latency 2506 _current_latency[n->_idx] = _bundle_cycle_number; 2507 2508 // Now merge the functional unit information 2509 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) 2510 _bundle_use.add_usage(node_usage); 2511 2512 // Increment the number of instructions in this bundle 2513 _bundle_instr_count += instruction_count; 2514 2515 // Remember this node for later 2516 if (n->is_Mach()) 2517 _next_node = n; 2518 } 2519 2520 // It's possible to have a BoxLock in the graph and in the _bbs mapping but 2521 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. 2522 // 'Schedule' them (basically ignore in the schedule) but do not insert them 2523 // into the block. All other scheduled nodes get put in the schedule here. 2524 int op = n->Opcode(); 2525 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR 2526 (op != Op_Node && // Not an unused antidepedence node and 2527 // not an unallocated boxlock 2528 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2529 2530 // Push any trailing projections 2531 if( bb->get_node(bb->number_of_nodes()-1) != n ) { 2532 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2533 Node *foi = n->fast_out(i); 2534 if( foi->is_Proj() ) 2535 _scheduled.push(foi); 2536 } 2537 } 2538 2539 // Put the instruction in the schedule list 2540 _scheduled.push(n); 2541 } 2542 2543 #ifndef PRODUCT 2544 if (_cfg->C->trace_opto_output()) 2545 dump_available(); 2546 #endif 2547 2548 // Walk all the definitions, decrementing use counts, and 2549 // if a definition has a 0 use count, place it in the available list. 2550 DecrementUseCounts(n,bb); 2551 } 2552 2553 // This method sets the use count within a basic block. We will ignore all 2554 // uses outside the current basic block. As we are doing a backwards walk, 2555 // any node we reach that has a use count of 0 may be scheduled. This also 2556 // avoids the problem of cyclic references from phi nodes, as long as phi 2557 // nodes are at the front of the basic block. This method also initializes 2558 // the available list to the set of instructions that have no uses within this 2559 // basic block. 2560 void Scheduling::ComputeUseCount(const Block *bb) { 2561 #ifndef PRODUCT 2562 if (_cfg->C->trace_opto_output()) 2563 tty->print("# -> ComputeUseCount\n"); 2564 #endif 2565 2566 // Clear the list of available and scheduled instructions, just in case 2567 _available.clear(); 2568 _scheduled.clear(); 2569 2570 // No delay slot specified 2571 _unconditional_delay_slot = NULL; 2572 2573 #ifdef ASSERT 2574 for( uint i=0; i < bb->number_of_nodes(); i++ ) 2575 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); 2576 #endif 2577 2578 // Force the _uses count to never go to zero for unscheduable pieces 2579 // of the block 2580 for( uint k = 0; k < _bb_start; k++ ) 2581 _uses[bb->get_node(k)->_idx] = 1; 2582 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) 2583 _uses[bb->get_node(l)->_idx] = 1; 2584 2585 // Iterate backwards over the instructions in the block. Don't count the 2586 // branch projections at end or the block header instructions. 2587 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2588 Node *n = bb->get_node(j); 2589 if( n->is_Proj() ) continue; // Projections handled another way 2590 2591 // Account for all uses 2592 for ( uint k = 0; k < n->len(); k++ ) { 2593 Node *inp = n->in(k); 2594 if (!inp) continue; 2595 assert(inp != n, "no cycles allowed" ); 2596 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? 2597 if (inp->is_Proj()) { // Skip through Proj's 2598 inp = inp->in(0); 2599 } 2600 ++_uses[inp->_idx]; // Count 1 block-local use 2601 } 2602 } 2603 2604 // If this instruction has a 0 use count, then it is available 2605 if (!_uses[n->_idx]) { 2606 _current_latency[n->_idx] = _bundle_cycle_number; 2607 AddNodeToAvailableList(n); 2608 } 2609 2610 #ifndef PRODUCT 2611 if (_cfg->C->trace_opto_output()) { 2612 tty->print("# uses: %3d: ", _uses[n->_idx]); 2613 n->dump(); 2614 } 2615 #endif 2616 } 2617 2618 #ifndef PRODUCT 2619 if (_cfg->C->trace_opto_output()) 2620 tty->print("# <- ComputeUseCount\n"); 2621 #endif 2622 } 2623 2624 // This routine performs scheduling on each basic block in reverse order, 2625 // using instruction latencies and taking into account function unit 2626 // availability. 2627 void Scheduling::DoScheduling() { 2628 #ifndef PRODUCT 2629 if (_cfg->C->trace_opto_output()) 2630 tty->print("# -> DoScheduling\n"); 2631 #endif 2632 2633 Block *succ_bb = NULL; 2634 Block *bb; 2635 Compile* C = Compile::current(); 2636 2637 // Walk over all the basic blocks in reverse order 2638 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { 2639 bb = _cfg->get_block(i); 2640 2641 #ifndef PRODUCT 2642 if (_cfg->C->trace_opto_output()) { 2643 tty->print("# Schedule BB#%03d (initial)\n", i); 2644 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2645 bb->get_node(j)->dump(); 2646 } 2647 } 2648 #endif 2649 2650 // On the head node, skip processing 2651 if (bb == _cfg->get_root_block()) { 2652 continue; 2653 } 2654 2655 // Skip empty, connector blocks 2656 if (bb->is_connector()) 2657 continue; 2658 2659 // If the following block is not the sole successor of 2660 // this one, then reset the pipeline information 2661 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { 2662 #ifndef PRODUCT 2663 if (_cfg->C->trace_opto_output()) { 2664 tty->print("*** bundle start of next BB, node %d, for %d instructions\n", 2665 _next_node->_idx, _bundle_instr_count); 2666 } 2667 #endif 2668 step_and_clear(); 2669 } 2670 2671 // Leave untouched the starting instruction, any Phis, a CreateEx node 2672 // or Top. bb->get_node(_bb_start) is the first schedulable instruction. 2673 _bb_end = bb->number_of_nodes()-1; 2674 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2675 Node *n = bb->get_node(_bb_start); 2676 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2677 // Also, MachIdealNodes do not get scheduled 2678 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2679 MachNode *mach = n->as_Mach(); 2680 int iop = mach->ideal_Opcode(); 2681 if( iop == Op_CreateEx ) continue; // CreateEx is pinned 2682 if( iop == Op_Con ) continue; // Do not schedule Top 2683 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes 2684 mach->pipeline() == MachNode::pipeline_class() && 2685 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc 2686 continue; 2687 break; // Funny loop structure to be sure... 2688 } 2689 // Compute last "interesting" instruction in block - last instruction we 2690 // might schedule. _bb_end points just after last schedulable inst. We 2691 // normally schedule conditional branches (despite them being forced last 2692 // in the block), because they have delay slots we can fill. Calls all 2693 // have their delay slots filled in the template expansions, so we don't 2694 // bother scheduling them. 2695 Node *last = bb->get_node(_bb_end); 2696 // Ignore trailing NOPs. 2697 while (_bb_end > 0 && last->is_Mach() && 2698 last->as_Mach()->ideal_Opcode() == Op_Con) { 2699 last = bb->get_node(--_bb_end); 2700 } 2701 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2702 if( last->is_Catch() || 2703 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2704 // There might be a prior call. Skip it. 2705 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); 2706 } else if( last->is_MachNullCheck() ) { 2707 // Backup so the last null-checked memory instruction is 2708 // outside the schedulable range. Skip over the nullcheck, 2709 // projection, and the memory nodes. 2710 Node *mem = last->in(1); 2711 do { 2712 _bb_end--; 2713 } while (mem != bb->get_node(_bb_end)); 2714 } else { 2715 // Set _bb_end to point after last schedulable inst. 2716 _bb_end++; 2717 } 2718 2719 assert( _bb_start <= _bb_end, "inverted block ends" ); 2720 2721 // Compute the register antidependencies for the basic block 2722 ComputeRegisterAntidependencies(bb); 2723 if (C->failing()) return; // too many D-U pinch points 2724 2725 // Compute the usage within the block, and set the list of all nodes 2726 // in the block that have no uses within the block. 2727 ComputeUseCount(bb); 2728 2729 // Schedule the remaining instructions in the block 2730 while ( _available.size() > 0 ) { 2731 Node *n = ChooseNodeToBundle(); 2732 guarantee(n != NULL, "no nodes available"); 2733 AddNodeToBundle(n,bb); 2734 } 2735 2736 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2737 #ifdef ASSERT 2738 for( uint l = _bb_start; l < _bb_end; l++ ) { 2739 Node *n = bb->get_node(l); 2740 uint m; 2741 for( m = 0; m < _bb_end-_bb_start; m++ ) 2742 if( _scheduled[m] == n ) 2743 break; 2744 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2745 } 2746 #endif 2747 2748 // Now copy the instructions (in reverse order) back to the block 2749 for ( uint k = _bb_start; k < _bb_end; k++ ) 2750 bb->map_node(_scheduled[_bb_end-k-1], k); 2751 2752 #ifndef PRODUCT 2753 if (_cfg->C->trace_opto_output()) { 2754 tty->print("# Schedule BB#%03d (final)\n", i); 2755 uint current = 0; 2756 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2757 Node *n = bb->get_node(j); 2758 if( valid_bundle_info(n) ) { 2759 Bundle *bundle = node_bundling(n); 2760 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2761 tty->print("*** Bundle: "); 2762 bundle->dump(); 2763 } 2764 n->dump(); 2765 } 2766 } 2767 } 2768 #endif 2769 #ifdef ASSERT 2770 verify_good_schedule(bb,"after block local scheduling"); 2771 #endif 2772 } 2773 2774 #ifndef PRODUCT 2775 if (_cfg->C->trace_opto_output()) 2776 tty->print("# <- DoScheduling\n"); 2777 #endif 2778 2779 // Record final node-bundling array location 2780 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base); 2781 2782 } // end DoScheduling 2783 2784 // Verify that no live-range used in the block is killed in the block by a 2785 // wrong DEF. This doesn't verify live-ranges that span blocks. 2786 2787 // Check for edge existence. Used to avoid adding redundant precedence edges. 2788 static bool edge_from_to( Node *from, Node *to ) { 2789 for( uint i=0; i<from->len(); i++ ) 2790 if( from->in(i) == to ) 2791 return true; 2792 return false; 2793 } 2794 2795 #ifdef ASSERT 2796 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2797 // Check for bad kills 2798 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2799 Node *prior_use = _reg_node[def]; 2800 if( prior_use && !edge_from_to(prior_use,n) ) { 2801 tty->print("%s = ",OptoReg::as_VMReg(def)->name()); 2802 n->dump(); 2803 tty->print_cr("..."); 2804 prior_use->dump(); 2805 assert(edge_from_to(prior_use,n), "%s", msg); 2806 } 2807 _reg_node.map(def,NULL); // Kill live USEs 2808 } 2809 } 2810 2811 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2812 2813 // Zap to something reasonable for the verify code 2814 _reg_node.clear(); 2815 2816 // Walk over the block backwards. Check to make sure each DEF doesn't 2817 // kill a live value (other than the one it's supposed to). Add each 2818 // USE to the live set. 2819 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { 2820 Node *n = b->get_node(i); 2821 int n_op = n->Opcode(); 2822 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 2823 // Fat-proj kills a slew of registers 2824 RegMaskIterator rmi(n->out_RegMask()); 2825 while (rmi.has_next()) { 2826 OptoReg::Name kill = rmi.next(); 2827 verify_do_def(n, kill, msg); 2828 } 2829 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes 2830 // Get DEF'd registers the normal way 2831 verify_do_def( n, _regalloc->get_reg_first(n), msg ); 2832 verify_do_def( n, _regalloc->get_reg_second(n), msg ); 2833 } 2834 2835 // Now make all USEs live 2836 for( uint i=1; i<n->req(); i++ ) { 2837 Node *def = n->in(i); 2838 assert(def != 0, "input edge required"); 2839 OptoReg::Name reg_lo = _regalloc->get_reg_first(def); 2840 OptoReg::Name reg_hi = _regalloc->get_reg_second(def); 2841 if( OptoReg::is_valid(reg_lo) ) { 2842 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg); 2843 _reg_node.map(reg_lo,n); 2844 } 2845 if( OptoReg::is_valid(reg_hi) ) { 2846 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg); 2847 _reg_node.map(reg_hi,n); 2848 } 2849 } 2850 2851 } 2852 2853 // Zap to something reasonable for the Antidependence code 2854 _reg_node.clear(); 2855 } 2856 #endif 2857 2858 // Conditionally add precedence edges. Avoid putting edges on Projs. 2859 static void add_prec_edge_from_to( Node *from, Node *to ) { 2860 if( from->is_Proj() ) { // Put precedence edge on Proj's input 2861 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" ); 2862 from = from->in(0); 2863 } 2864 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 2865 !edge_from_to( from, to ) ) // Avoid duplicate edge 2866 from->add_prec(to); 2867 } 2868 2869 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 2870 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 2871 return; 2872 2873 if (OptoReg::is_reg(def_reg)) { 2874 VMReg vmreg = OptoReg::as_VMReg(def_reg); 2875 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) { 2876 // This is one of the high slots of a vector register. 2877 // ScheduleAndBundle already checked there are no live wide 2878 // vectors in this method so it can be safely ignored. 2879 return; 2880 } 2881 } 2882 2883 Node *pinch = _reg_node[def_reg]; // Get pinch point 2884 if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? 2885 is_def ) { // Check for a true def (not a kill) 2886 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point 2887 return; 2888 } 2889 2890 Node *kill = def; // Rename 'def' to more descriptive 'kill' 2891 debug_only( def = (Node*)((intptr_t)0xdeadbeef); ) 2892 2893 // After some number of kills there _may_ be a later def 2894 Node *later_def = NULL; 2895 2896 Compile* C = Compile::current(); 2897 2898 // Finding a kill requires a real pinch-point. 2899 // Check for not already having a pinch-point. 2900 // Pinch points are Op_Node's. 2901 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? 2902 later_def = pinch; // Must be def/kill as optimistic pinch-point 2903 if ( _pinch_free_list.size() > 0) { 2904 pinch = _pinch_free_list.pop(); 2905 } else { 2906 pinch = new Node(1); // Pinch point to-be 2907 } 2908 if (pinch->_idx >= _regalloc->node_regs_max_index()) { 2909 _cfg->C->record_method_not_compilable("too many D-U pinch points"); 2910 return; 2911 } 2912 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) 2913 _reg_node.map(def_reg,pinch); // Record pinch-point 2914 //regalloc()->set_bad(pinch->_idx); // Already initialized this way. 2915 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill 2916 pinch->init_req(0, C->top()); // set not NULL for the next call 2917 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch 2918 later_def = NULL; // and no later def 2919 } 2920 pinch->set_req(0,later_def); // Hook later def so we can find it 2921 } else { // Else have valid pinch point 2922 if( pinch->in(0) ) // If there is a later-def 2923 later_def = pinch->in(0); // Get it 2924 } 2925 2926 // Add output-dependence edge from later def to kill 2927 if( later_def ) // If there is some original def 2928 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill 2929 2930 // See if current kill is also a use, and so is forced to be the pinch-point. 2931 if( pinch->Opcode() == Op_Node ) { 2932 Node *uses = kill->is_Proj() ? kill->in(0) : kill; 2933 for( uint i=1; i<uses->req(); i++ ) { 2934 if( _regalloc->get_reg_first(uses->in(i)) == def_reg || 2935 _regalloc->get_reg_second(uses->in(i)) == def_reg ) { 2936 // Yes, found a use/kill pinch-point 2937 pinch->set_req(0,NULL); // 2938 pinch->replace_by(kill); // Move anti-dep edges up 2939 pinch = kill; 2940 _reg_node.map(def_reg,pinch); 2941 return; 2942 } 2943 } 2944 } 2945 2946 // Add edge from kill to pinch-point 2947 add_prec_edge_from_to(kill,pinch); 2948 } 2949 2950 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 2951 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 2952 return; 2953 Node *pinch = _reg_node[use_reg]; // Get pinch point 2954 // Check for no later def_reg/kill in block 2955 if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b && 2956 // Use has to be block-local as well 2957 _cfg->get_block_for_node(use) == b) { 2958 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 2959 pinch->req() == 1 ) { // pinch not yet in block? 2960 pinch->del_req(0); // yank pointer to later-def, also set flag 2961 // Insert the pinch-point in the block just after the last use 2962 b->insert_node(pinch, b->find_node(use) + 1); 2963 _bb_end++; // Increase size scheduled region in block 2964 } 2965 2966 add_prec_edge_from_to(pinch,use); 2967 } 2968 } 2969 2970 // We insert antidependences between the reads and following write of 2971 // allocated registers to prevent illegal code motion. Hopefully, the 2972 // number of added references should be fairly small, especially as we 2973 // are only adding references within the current basic block. 2974 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 2975 2976 #ifdef ASSERT 2977 verify_good_schedule(b,"before block local scheduling"); 2978 #endif 2979 2980 // A valid schedule, for each register independently, is an endless cycle 2981 // of: a def, then some uses (connected to the def by true dependencies), 2982 // then some kills (defs with no uses), finally the cycle repeats with a new 2983 // def. The uses are allowed to float relative to each other, as are the 2984 // kills. No use is allowed to slide past a kill (or def). This requires 2985 // antidependencies between all uses of a single def and all kills that 2986 // follow, up to the next def. More edges are redundant, because later defs 2987 // & kills are already serialized with true or antidependencies. To keep 2988 // the edge count down, we add a 'pinch point' node if there's more than 2989 // one use or more than one kill/def. 2990 2991 // We add dependencies in one bottom-up pass. 2992 2993 // For each instruction we handle it's DEFs/KILLs, then it's USEs. 2994 2995 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this 2996 // register. If not, we record the DEF/KILL in _reg_node, the 2997 // register-to-def mapping. If there is a prior DEF/KILL, we insert a 2998 // "pinch point", a new Node that's in the graph but not in the block. 2999 // We put edges from the prior and current DEF/KILLs to the pinch point. 3000 // We put the pinch point in _reg_node. If there's already a pinch point 3001 // we merely add an edge from the current DEF/KILL to the pinch point. 3002 3003 // After doing the DEF/KILLs, we handle USEs. For each used register, we 3004 // put an edge from the pinch point to the USE. 3005 3006 // To be expedient, the _reg_node array is pre-allocated for the whole 3007 // compilation. _reg_node is lazily initialized; it either contains a NULL, 3008 // or a valid def/kill/pinch-point, or a leftover node from some prior 3009 // block. Leftover node from some prior block is treated like a NULL (no 3010 // prior def, so no anti-dependence needed). Valid def is distinguished by 3011 // it being in the current block. 3012 bool fat_proj_seen = false; 3013 uint last_safept = _bb_end-1; 3014 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL; 3015 Node* last_safept_node = end_node; 3016 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 3017 Node *n = b->get_node(i); 3018 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 3019 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 3020 // Fat-proj kills a slew of registers 3021 // This can add edges to 'n' and obscure whether or not it was a def, 3022 // hence the is_def flag. 3023 fat_proj_seen = true; 3024 RegMaskIterator rmi(n->out_RegMask()); 3025 while (rmi.has_next()) { 3026 OptoReg::Name kill = rmi.next(); 3027 anti_do_def(b, n, kill, is_def); 3028 } 3029 } else { 3030 // Get DEF'd registers the normal way 3031 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); 3032 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); 3033 } 3034 3035 // Kill projections on a branch should appear to occur on the 3036 // branch, not afterwards, so grab the masks from the projections 3037 // and process them. 3038 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { 3039 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3040 Node* use = n->fast_out(i); 3041 if (use->is_Proj()) { 3042 RegMaskIterator rmi(use->out_RegMask()); 3043 while (rmi.has_next()) { 3044 OptoReg::Name kill = rmi.next(); 3045 anti_do_def(b, n, kill, false); 3046 } 3047 } 3048 } 3049 } 3050 3051 // Check each register used by this instruction for a following DEF/KILL 3052 // that must occur afterward and requires an anti-dependence edge. 3053 for( uint j=0; j<n->req(); j++ ) { 3054 Node *def = n->in(j); 3055 if( def ) { 3056 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); 3057 anti_do_use( b, n, _regalloc->get_reg_first(def) ); 3058 anti_do_use( b, n, _regalloc->get_reg_second(def) ); 3059 } 3060 } 3061 // Do not allow defs of new derived values to float above GC 3062 // points unless the base is definitely available at the GC point. 3063 3064 Node *m = b->get_node(i); 3065 3066 // Add precedence edge from following safepoint to use of derived pointer 3067 if( last_safept_node != end_node && 3068 m != last_safept_node) { 3069 for (uint k = 1; k < m->req(); k++) { 3070 const Type *t = m->in(k)->bottom_type(); 3071 if( t->isa_oop_ptr() && 3072 t->is_ptr()->offset() != 0 ) { 3073 last_safept_node->add_prec( m ); 3074 break; 3075 } 3076 } 3077 } 3078 3079 if( n->jvms() ) { // Precedence edge from derived to safept 3080 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 3081 if( b->get_node(last_safept) != last_safept_node ) { 3082 last_safept = b->find_node(last_safept_node); 3083 } 3084 for( uint j=last_safept; j > i; j-- ) { 3085 Node *mach = b->get_node(j); 3086 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 3087 mach->add_prec( n ); 3088 } 3089 last_safept = i; 3090 last_safept_node = m; 3091 } 3092 } 3093 3094 if (fat_proj_seen) { 3095 // Garbage collect pinch nodes that were not consumed. 3096 // They are usually created by a fat kill MachProj for a call. 3097 garbage_collect_pinch_nodes(); 3098 } 3099 } 3100 3101 // Garbage collect pinch nodes for reuse by other blocks. 3102 // 3103 // The block scheduler's insertion of anti-dependence 3104 // edges creates many pinch nodes when the block contains 3105 // 2 or more Calls. A pinch node is used to prevent a 3106 // combinatorial explosion of edges. If a set of kills for a 3107 // register is anti-dependent on a set of uses (or defs), rather 3108 // than adding an edge in the graph between each pair of kill 3109 // and use (or def), a pinch is inserted between them: 3110 // 3111 // use1 use2 use3 3112 // \ | / 3113 // \ | / 3114 // pinch 3115 // / | \ 3116 // / | \ 3117 // kill1 kill2 kill3 3118 // 3119 // One pinch node is created per register killed when 3120 // the second call is encountered during a backwards pass 3121 // over the block. Most of these pinch nodes are never 3122 // wired into the graph because the register is never 3123 // used or def'ed in the block. 3124 // 3125 void Scheduling::garbage_collect_pinch_nodes() { 3126 #ifndef PRODUCT 3127 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); 3128 #endif 3129 int trace_cnt = 0; 3130 for (uint k = 0; k < _reg_node.Size(); k++) { 3131 Node* pinch = _reg_node[k]; 3132 if ((pinch != NULL) && pinch->Opcode() == Op_Node && 3133 // no predecence input edges 3134 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) { 3135 cleanup_pinch(pinch); 3136 _pinch_free_list.push(pinch); 3137 _reg_node.map(k, NULL); 3138 #ifndef PRODUCT 3139 if (_cfg->C->trace_opto_output()) { 3140 trace_cnt++; 3141 if (trace_cnt > 40) { 3142 tty->print("\n"); 3143 trace_cnt = 0; 3144 } 3145 tty->print(" %d", pinch->_idx); 3146 } 3147 #endif 3148 } 3149 } 3150 #ifndef PRODUCT 3151 if (_cfg->C->trace_opto_output()) tty->print("\n"); 3152 #endif 3153 } 3154 3155 // Clean up a pinch node for reuse. 3156 void Scheduling::cleanup_pinch( Node *pinch ) { 3157 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); 3158 3159 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { 3160 Node* use = pinch->last_out(i); 3161 uint uses_found = 0; 3162 for (uint j = use->req(); j < use->len(); j++) { 3163 if (use->in(j) == pinch) { 3164 use->rm_prec(j); 3165 uses_found++; 3166 } 3167 } 3168 assert(uses_found > 0, "must be a precedence edge"); 3169 i -= uses_found; // we deleted 1 or more copies of this edge 3170 } 3171 // May have a later_def entry 3172 pinch->set_req(0, NULL); 3173 } 3174 3175 #ifndef PRODUCT 3176 3177 void Scheduling::dump_available() const { 3178 tty->print("#Availist "); 3179 for (uint i = 0; i < _available.size(); i++) 3180 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); 3181 tty->cr(); 3182 } 3183 3184 // Print Scheduling Statistics 3185 void Scheduling::print_statistics() { 3186 // Print the size added by nops for bundling 3187 tty->print("Nops added %d bytes to total of %d bytes", 3188 _total_nop_size, _total_method_size); 3189 if (_total_method_size > 0) 3190 tty->print(", for %.2f%%", 3191 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); 3192 tty->print("\n"); 3193 3194 // Print the number of branch shadows filled 3195 if (Pipeline::_branch_has_delay_slot) { 3196 tty->print("Of %d branches, %d had unconditional delay slots filled", 3197 _total_branches, _total_unconditional_delays); 3198 if (_total_branches > 0) 3199 tty->print(", for %.2f%%", 3200 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); 3201 tty->print("\n"); 3202 } 3203 3204 uint total_instructions = 0, total_bundles = 0; 3205 3206 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { 3207 uint bundle_count = _total_instructions_per_bundle[i]; 3208 total_instructions += bundle_count * i; 3209 total_bundles += bundle_count; 3210 } 3211 3212 if (total_bundles > 0) 3213 tty->print("Average ILP (excluding nops) is %.2f\n", 3214 ((double)total_instructions) / ((double)total_bundles)); 3215 } 3216 #endif 3217 3218 //-----------------------init_scratch_buffer_blob------------------------------ 3219 // Construct a temporary BufferBlob and cache it for this compile. 3220 void PhaseOutput::init_scratch_buffer_blob(int const_size) { 3221 // If there is already a scratch buffer blob allocated and the 3222 // constant section is big enough, use it. Otherwise free the 3223 // current and allocate a new one. 3224 BufferBlob* blob = scratch_buffer_blob(); 3225 if ((blob != NULL) && (const_size <= _scratch_const_size)) { 3226 // Use the current blob. 3227 } else { 3228 if (blob != NULL) { 3229 BufferBlob::free(blob); 3230 } 3231 3232 ResourceMark rm; 3233 _scratch_const_size = const_size; 3234 int size = C2Compiler::initial_code_buffer_size(const_size); 3235 blob = BufferBlob::create("Compile::scratch_buffer", size); 3236 // Record the buffer blob for next time. 3237 set_scratch_buffer_blob(blob); 3238 // Have we run out of code space? 3239 if (scratch_buffer_blob() == NULL) { 3240 // Let CompilerBroker disable further compilations. 3241 C->record_failure("Not enough space for scratch buffer in CodeCache"); 3242 return; 3243 } 3244 } 3245 3246 // Initialize the relocation buffers 3247 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 3248 set_scratch_locs_memory(locs_buf); 3249 } 3250 3251 3252 //-----------------------scratch_emit_size------------------------------------- 3253 // Helper function that computes size by emitting code 3254 uint PhaseOutput::scratch_emit_size(const Node* n) { 3255 // Start scratch_emit_size section. 3256 set_in_scratch_emit_size(true); 3257 3258 // Emit into a trash buffer and count bytes emitted. 3259 // This is a pretty expensive way to compute a size, 3260 // but it works well enough if seldom used. 3261 // All common fixed-size instructions are given a size 3262 // method by the AD file. 3263 // Note that the scratch buffer blob and locs memory are 3264 // allocated at the beginning of the compile task, and 3265 // may be shared by several calls to scratch_emit_size. 3266 // The allocation of the scratch buffer blob is particularly 3267 // expensive, since it has to grab the code cache lock. 3268 BufferBlob* blob = this->scratch_buffer_blob(); 3269 assert(blob != NULL, "Initialize BufferBlob at start"); 3270 assert(blob->size() > MAX_inst_size, "sanity"); 3271 relocInfo* locs_buf = scratch_locs_memory(); 3272 address blob_begin = blob->content_begin(); 3273 address blob_end = (address)locs_buf; 3274 assert(blob->contains(blob_end), "sanity"); 3275 CodeBuffer buf(blob_begin, blob_end - blob_begin); 3276 buf.initialize_consts_size(_scratch_const_size); 3277 buf.initialize_stubs_size(MAX_stubs_size); 3278 assert(locs_buf != NULL, "sanity"); 3279 int lsize = MAX_locs_size / 3; 3280 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 3281 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 3282 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 3283 // Mark as scratch buffer. 3284 buf.consts()->set_scratch_emit(); 3285 buf.insts()->set_scratch_emit(); 3286 buf.stubs()->set_scratch_emit(); 3287 3288 // Do the emission. 3289 3290 Label fakeL; // Fake label for branch instructions. 3291 Label* saveL = NULL; 3292 uint save_bnum = 0; 3293 bool is_branch = n->is_MachBranch(); 3294 if (is_branch) { 3295 MacroAssembler masm(&buf); 3296 masm.bind(fakeL); 3297 n->as_MachBranch()->save_label(&saveL, &save_bnum); 3298 n->as_MachBranch()->label_set(&fakeL, 0); 3299 } 3300 n->emit(buf, C->regalloc()); 3301 3302 // Emitting into the scratch buffer should not fail 3303 assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason()); 3304 3305 if (is_branch) // Restore label. 3306 n->as_MachBranch()->label_set(saveL, save_bnum); 3307 3308 // End scratch_emit_size section. 3309 set_in_scratch_emit_size(false); 3310 3311 return buf.insts_size(); 3312 } 3313 3314 void PhaseOutput::install() { 3315 if (!C->should_install_code()) { 3316 return; 3317 } else if (C->stub_function() != NULL) { 3318 install_stub(C->stub_name()); 3319 } else { 3320 install_code(C->method(), 3321 C->entry_bci(), 3322 CompileBroker::compiler2(), 3323 C->has_unsafe_access(), 3324 SharedRuntime::is_wide_vector(C->max_vector_size()), 3325 C->rtm_state()); 3326 } 3327 } 3328 3329 void PhaseOutput::install_code(ciMethod* target, 3330 int entry_bci, 3331 AbstractCompiler* compiler, 3332 bool has_unsafe_access, 3333 bool has_wide_vectors, 3334 RTMState rtm_state) { 3335 // Check if we want to skip execution of all compiled code. 3336 { 3337 #ifndef PRODUCT 3338 if (OptoNoExecute) { 3339 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed 3340 return; 3341 } 3342 #endif 3343 Compile::TracePhase tp("install_code", &timers[_t_registerMethod]); 3344 3345 if (C->is_osr_compilation()) { 3346 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 3347 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 3348 } else { 3349 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 3350 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 3351 } 3352 3353 C->env()->register_method(target, 3354 entry_bci, 3355 &_code_offsets, 3356 _orig_pc_slot_offset_in_bytes, 3357 code_buffer(), 3358 frame_size_in_words(), 3359 oop_map_set(), 3360 &_handler_table, 3361 inc_table(), 3362 compiler, 3363 has_unsafe_access, 3364 SharedRuntime::is_wide_vector(C->max_vector_size()), 3365 C->rtm_state()); 3366 3367 if (C->log() != NULL) { // Print code cache state into compiler log 3368 C->log()->code_cache_state(); 3369 } 3370 } 3371 } 3372 void PhaseOutput::install_stub(const char* stub_name) { 3373 // Entry point will be accessed using stub_entry_point(); 3374 if (code_buffer() == NULL) { 3375 Matcher::soft_match_failure(); 3376 } else { 3377 if (PrintAssembly && (WizardMode || Verbose)) 3378 tty->print_cr("### Stub::%s", stub_name); 3379 3380 if (!C->failing()) { 3381 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs"); 3382 3383 // Make the NMethod 3384 // For now we mark the frame as never safe for profile stackwalking 3385 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 3386 code_buffer(), 3387 CodeOffsets::frame_never_safe, 3388 // _code_offsets.value(CodeOffsets::Frame_Complete), 3389 frame_size_in_words(), 3390 oop_map_set(), 3391 false); 3392 assert(rs != NULL && rs->is_runtime_stub(), "sanity check"); 3393 3394 C->set_stub_entry_point(rs->entry_point()); 3395 } 3396 } 3397 } 3398 3399 // Support for bundling info 3400 Bundle* PhaseOutput::node_bundling(const Node *n) { 3401 assert(valid_bundle_info(n), "oob"); 3402 return &_node_bundling_base[n->_idx]; 3403 } 3404 3405 bool PhaseOutput::valid_bundle_info(const Node *n) { 3406 return (_node_bundling_limit > n->_idx); 3407 } 3408 3409 //------------------------------frame_size_in_words----------------------------- 3410 // frame_slots in units of words 3411 int PhaseOutput::frame_size_in_words() const { 3412 // shift is 0 in LP32 and 1 in LP64 3413 const int shift = (LogBytesPerWord - LogBytesPerInt); 3414 int words = _frame_slots >> shift; 3415 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 3416 return words; 3417 } 3418 3419 // To bang the stack of this compiled method we use the stack size 3420 // that the interpreter would need in case of a deoptimization. This 3421 // removes the need to bang the stack in the deoptimization blob which 3422 // in turn simplifies stack overflow handling. 3423 int PhaseOutput::bang_size_in_bytes() const { 3424 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size()); 3425 } 3426 3427 //------------------------------dump_asm--------------------------------------- 3428 // Dump formatted assembly 3429 #if defined(SUPPORT_OPTO_ASSEMBLY) 3430 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) { 3431 3432 int pc_digits = 3; // #chars required for pc 3433 int sb_chars = 3; // #chars for "start bundle" indicator 3434 int tab_size = 8; 3435 if (pcs != NULL) { 3436 int max_pc = 0; 3437 for (uint i = 0; i < pc_limit; i++) { 3438 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc; 3439 } 3440 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc 3441 } 3442 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size; 3443 3444 bool cut_short = false; 3445 st->print_cr("#"); 3446 st->print("# "); C->tf()->dump_on(st); st->cr(); 3447 st->print_cr("#"); 3448 3449 // For all blocks 3450 int pc = 0x0; // Program counter 3451 char starts_bundle = ' '; 3452 C->regalloc()->dump_frame(); 3453 3454 Node *n = NULL; 3455 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 3456 if (VMThread::should_terminate()) { 3457 cut_short = true; 3458 break; 3459 } 3460 Block* block = C->cfg()->get_block(i); 3461 if (block->is_connector() && !Verbose) { 3462 continue; 3463 } 3464 n = block->head(); 3465 if ((pcs != NULL) && (n->_idx < pc_limit)) { 3466 pc = pcs[n->_idx]; 3467 st->print("%*.*x", pc_digits, pc_digits, pc); 3468 } 3469 st->fill_to(prefix_len); 3470 block->dump_head(C->cfg(), st); 3471 if (block->is_connector()) { 3472 st->fill_to(prefix_len); 3473 st->print_cr("# Empty connector block"); 3474 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3475 st->fill_to(prefix_len); 3476 st->print_cr("# Block is sole successor of call"); 3477 } 3478 3479 // For all instructions 3480 Node *delay = NULL; 3481 for (uint j = 0; j < block->number_of_nodes(); j++) { 3482 if (VMThread::should_terminate()) { 3483 cut_short = true; 3484 break; 3485 } 3486 n = block->get_node(j); 3487 if (valid_bundle_info(n)) { 3488 Bundle* bundle = node_bundling(n); 3489 if (bundle->used_in_unconditional_delay()) { 3490 delay = n; 3491 continue; 3492 } 3493 if (bundle->starts_bundle()) { 3494 starts_bundle = '+'; 3495 } 3496 } 3497 3498 if (WizardMode) { 3499 n->dump(); 3500 } 3501 3502 if( !n->is_Region() && // Dont print in the Assembly 3503 !n->is_Phi() && // a few noisely useless nodes 3504 !n->is_Proj() && 3505 !n->is_MachTemp() && 3506 !n->is_SafePointScalarObject() && 3507 !n->is_Catch() && // Would be nice to print exception table targets 3508 !n->is_MergeMem() && // Not very interesting 3509 !n->is_top() && // Debug info table constants 3510 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3511 ) { 3512 if ((pcs != NULL) && (n->_idx < pc_limit)) { 3513 pc = pcs[n->_idx]; 3514 st->print("%*.*x", pc_digits, pc_digits, pc); 3515 } else { 3516 st->fill_to(pc_digits); 3517 } 3518 st->print(" %c ", starts_bundle); 3519 starts_bundle = ' '; 3520 st->fill_to(prefix_len); 3521 n->format(C->regalloc(), st); 3522 st->cr(); 3523 } 3524 3525 // If we have an instruction with a delay slot, and have seen a delay, 3526 // then back up and print it 3527 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3528 // Coverity finding - Explicit null dereferenced. 3529 guarantee(delay != NULL, "no unconditional delay instruction"); 3530 if (WizardMode) delay->dump(); 3531 3532 if (node_bundling(delay)->starts_bundle()) 3533 starts_bundle = '+'; 3534 if ((pcs != NULL) && (n->_idx < pc_limit)) { 3535 pc = pcs[n->_idx]; 3536 st->print("%*.*x", pc_digits, pc_digits, pc); 3537 } else { 3538 st->fill_to(pc_digits); 3539 } 3540 st->print(" %c ", starts_bundle); 3541 starts_bundle = ' '; 3542 st->fill_to(prefix_len); 3543 delay->format(C->regalloc(), st); 3544 st->cr(); 3545 delay = NULL; 3546 } 3547 3548 // Dump the exception table as well 3549 if( n->is_Catch() && (Verbose || WizardMode) ) { 3550 // Print the exception table for this offset 3551 _handler_table.print_subtable_for(pc); 3552 } 3553 st->bol(); // Make sure we start on a new line 3554 } 3555 st->cr(); // one empty line between blocks 3556 assert(cut_short || delay == NULL, "no unconditional delay branch"); 3557 } // End of per-block dump 3558 3559 if (cut_short) st->print_cr("*** disassembly is cut short ***"); 3560 } 3561 #endif 3562 3563 #ifndef PRODUCT 3564 void PhaseOutput::print_statistics() { 3565 Scheduling::print_statistics(); 3566 } 3567 #endif