1 /* 2 * Copyright (c) 2008, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang.invoke; 27 28 import jdk.internal.access.SharedSecrets; 29 import jdk.internal.foreign.Utils; 30 import jdk.internal.javac.PreviewFeature; 31 import jdk.internal.misc.Unsafe; 32 import jdk.internal.misc.VM; 33 import jdk.internal.org.objectweb.asm.ClassReader; 34 import jdk.internal.org.objectweb.asm.Opcodes; 35 import jdk.internal.org.objectweb.asm.Type; 36 import jdk.internal.reflect.CallerSensitive; 37 import jdk.internal.reflect.CallerSensitiveAdapter; 38 import jdk.internal.reflect.Reflection; 39 import jdk.internal.util.ClassFileDumper; 40 import jdk.internal.vm.annotation.ForceInline; 41 import sun.invoke.util.ValueConversions; 42 import sun.invoke.util.VerifyAccess; 43 import sun.invoke.util.Wrapper; 44 import sun.reflect.misc.ReflectUtil; 45 import sun.security.util.SecurityConstants; 46 47 import java.lang.constant.ConstantDescs; 48 import java.lang.foreign.GroupLayout; 49 import java.lang.foreign.MemoryLayout; 50 import java.lang.foreign.MemorySegment; 51 import java.lang.foreign.ValueLayout; 52 import java.lang.invoke.LambdaForm.BasicType; 53 import java.lang.reflect.Constructor; 54 import java.lang.reflect.Field; 55 import java.lang.reflect.Member; 56 import java.lang.reflect.Method; 57 import java.lang.reflect.Modifier; 58 import java.nio.ByteOrder; 59 import java.security.ProtectionDomain; 60 import java.util.ArrayList; 61 import java.util.Arrays; 62 import java.util.BitSet; 63 import java.util.Comparator; 64 import java.util.Iterator; 65 import java.util.List; 66 import java.util.Objects; 67 import java.util.Set; 68 import java.util.concurrent.ConcurrentHashMap; 69 import java.util.stream.Stream; 70 71 import static java.lang.invoke.LambdaForm.BasicType.V_TYPE; 72 import static java.lang.invoke.MethodHandleImpl.Intrinsic; 73 import static java.lang.invoke.MethodHandleNatives.Constants.*; 74 import static java.lang.invoke.MethodHandleStatics.UNSAFE; 75 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException; 76 import static java.lang.invoke.MethodHandleStatics.newInternalError; 77 import static java.lang.invoke.MethodType.methodType; 78 79 /** 80 * This class consists exclusively of static methods that operate on or return 81 * method handles. They fall into several categories: 82 * <ul> 83 * <li>Lookup methods which help create method handles for methods and fields. 84 * <li>Combinator methods, which combine or transform pre-existing method handles into new ones. 85 * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns. 86 * </ul> 87 * A lookup, combinator, or factory method will fail and throw an 88 * {@code IllegalArgumentException} if the created method handle's type 89 * would have <a href="MethodHandle.html#maxarity">too many parameters</a>. 90 * 91 * @author John Rose, JSR 292 EG 92 * @since 1.7 93 */ 94 public class MethodHandles { 95 96 private MethodHandles() { } // do not instantiate 97 98 static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); 99 100 // See IMPL_LOOKUP below. 101 102 //// Method handle creation from ordinary methods. 103 104 /** 105 * Returns a {@link Lookup lookup object} with 106 * full capabilities to emulate all supported bytecode behaviors of the caller. 107 * These capabilities include {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} to the caller. 108 * Factory methods on the lookup object can create 109 * <a href="MethodHandleInfo.html#directmh">direct method handles</a> 110 * for any member that the caller has access to via bytecodes, 111 * including protected and private fields and methods. 112 * This lookup object is created by the original lookup class 113 * and has the {@link Lookup#ORIGINAL ORIGINAL} bit set. 114 * This lookup object is a <em>capability</em> which may be delegated to trusted agents. 115 * Do not store it in place where untrusted code can access it. 116 * <p> 117 * This method is caller sensitive, which means that it may return different 118 * values to different callers. 119 * In cases where {@code MethodHandles.lookup} is called from a context where 120 * there is no caller frame on the stack (e.g. when called directly 121 * from a JNI attached thread), {@code IllegalCallerException} is thrown. 122 * To obtain a {@link Lookup lookup object} in such a context, use an auxiliary class that will 123 * implicitly be identified as the caller, or use {@link MethodHandles#publicLookup()} 124 * to obtain a low-privileged lookup instead. 125 * @return a lookup object for the caller of this method, with 126 * {@linkplain Lookup#ORIGINAL original} and 127 * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access}. 128 * @throws IllegalCallerException if there is no caller frame on the stack. 129 */ 130 @CallerSensitive 131 @ForceInline // to ensure Reflection.getCallerClass optimization 132 public static Lookup lookup() { 133 final Class<?> c = Reflection.getCallerClass(); 134 if (c == null) { 135 throw new IllegalCallerException("no caller frame"); 136 } 137 return new Lookup(c); 138 } 139 140 /** 141 * This lookup method is the alternate implementation of 142 * the lookup method with a leading caller class argument which is 143 * non-caller-sensitive. This method is only invoked by reflection 144 * and method handle. 145 */ 146 @CallerSensitiveAdapter 147 private static Lookup lookup(Class<?> caller) { 148 if (caller.getClassLoader() == null) { 149 throw newInternalError("calling lookup() reflectively is not supported: "+caller); 150 } 151 return new Lookup(caller); 152 } 153 154 /** 155 * Returns a {@link Lookup lookup object} which is trusted minimally. 156 * The lookup has the {@code UNCONDITIONAL} mode. 157 * It can only be used to create method handles to public members of 158 * public classes in packages that are exported unconditionally. 159 * <p> 160 * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class} 161 * of this lookup object will be {@link java.lang.Object}. 162 * 163 * @apiNote The use of Object is conventional, and because the lookup modes are 164 * limited, there is no special access provided to the internals of Object, its package 165 * or its module. This public lookup object or other lookup object with 166 * {@code UNCONDITIONAL} mode assumes readability. Consequently, the lookup class 167 * is not used to determine the lookup context. 168 * 169 * <p style="font-size:smaller;"> 170 * <em>Discussion:</em> 171 * The lookup class can be changed to any other class {@code C} using an expression of the form 172 * {@link Lookup#in publicLookup().in(C.class)}. 173 * A public lookup object is always subject to 174 * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>. 175 * Also, it cannot access 176 * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>. 177 * @return a lookup object which is trusted minimally 178 */ 179 public static Lookup publicLookup() { 180 return Lookup.PUBLIC_LOOKUP; 181 } 182 183 /** 184 * Returns a {@link Lookup lookup} object on a target class to emulate all supported 185 * bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">private access</a>. 186 * The returned lookup object can provide access to classes in modules and packages, 187 * and members of those classes, outside the normal rules of Java access control, 188 * instead conforming to the more permissive rules for modular <em>deep reflection</em>. 189 * <p> 190 * A caller, specified as a {@code Lookup} object, in module {@code M1} is 191 * allowed to do deep reflection on module {@code M2} and package of the target class 192 * if and only if all of the following conditions are {@code true}: 193 * <ul> 194 * <li>If there is a security manager, its {@code checkPermission} method is 195 * called to check {@code ReflectPermission("suppressAccessChecks")} and 196 * that must return normally. 197 * <li>The caller lookup object must have {@linkplain Lookup#hasFullPrivilegeAccess() 198 * full privilege access}. Specifically: 199 * <ul> 200 * <li>The caller lookup object must have the {@link Lookup#MODULE MODULE} lookup mode. 201 * (This is because otherwise there would be no way to ensure the original lookup 202 * creator was a member of any particular module, and so any subsequent checks 203 * for readability and qualified exports would become ineffective.) 204 * <li>The caller lookup object must have {@link Lookup#PRIVATE PRIVATE} access. 205 * (This is because an application intending to share intra-module access 206 * using {@link Lookup#MODULE MODULE} alone will inadvertently also share 207 * deep reflection to its own module.) 208 * </ul> 209 * <li>The target class must be a proper class, not a primitive or array class. 210 * (Thus, {@code M2} is well-defined.) 211 * <li>If the caller module {@code M1} differs from 212 * the target module {@code M2} then both of the following must be true: 213 * <ul> 214 * <li>{@code M1} {@link Module#canRead reads} {@code M2}.</li> 215 * <li>{@code M2} {@link Module#isOpen(String,Module) opens} the package 216 * containing the target class to at least {@code M1}.</li> 217 * </ul> 218 * </ul> 219 * <p> 220 * If any of the above checks is violated, this method fails with an 221 * exception. 222 * <p> 223 * Otherwise, if {@code M1} and {@code M2} are the same module, this method 224 * returns a {@code Lookup} on {@code targetClass} with 225 * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} 226 * with {@code null} previous lookup class. 227 * <p> 228 * Otherwise, {@code M1} and {@code M2} are two different modules. This method 229 * returns a {@code Lookup} on {@code targetClass} that records 230 * the lookup class of the caller as the new previous lookup class with 231 * {@code PRIVATE} access but no {@code MODULE} access. 232 * <p> 233 * The resulting {@code Lookup} object has no {@code ORIGINAL} access. 234 * 235 * @apiNote The {@code Lookup} object returned by this method is allowed to 236 * {@linkplain Lookup#defineClass(byte[]) define classes} in the runtime package 237 * of {@code targetClass}. Extreme caution should be taken when opening a package 238 * to another module as such defined classes have the same full privilege 239 * access as other members in {@code targetClass}'s module. 240 * 241 * @param targetClass the target class 242 * @param caller the caller lookup object 243 * @return a lookup object for the target class, with private access 244 * @throws IllegalArgumentException if {@code targetClass} is a primitive type or void or array class 245 * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null} 246 * @throws SecurityException if denied by the security manager 247 * @throws IllegalAccessException if any of the other access checks specified above fails 248 * @since 9 249 * @see Lookup#dropLookupMode 250 * @see <a href="MethodHandles.Lookup.html#cross-module-lookup">Cross-module lookups</a> 251 */ 252 public static Lookup privateLookupIn(Class<?> targetClass, Lookup caller) throws IllegalAccessException { 253 if (caller.allowedModes == Lookup.TRUSTED) { 254 return new Lookup(targetClass); 255 } 256 257 @SuppressWarnings("removal") 258 SecurityManager sm = System.getSecurityManager(); 259 if (sm != null) sm.checkPermission(SecurityConstants.ACCESS_PERMISSION); 260 if (targetClass.isPrimitive()) 261 throw new IllegalArgumentException(targetClass + " is a primitive class"); 262 if (targetClass.isArray()) 263 throw new IllegalArgumentException(targetClass + " is an array class"); 264 // Ensure that we can reason accurately about private and module access. 265 int requireAccess = Lookup.PRIVATE|Lookup.MODULE; 266 if ((caller.lookupModes() & requireAccess) != requireAccess) 267 throw new IllegalAccessException("caller does not have PRIVATE and MODULE lookup mode"); 268 269 // previous lookup class is never set if it has MODULE access 270 assert caller.previousLookupClass() == null; 271 272 Class<?> callerClass = caller.lookupClass(); 273 Module callerModule = callerClass.getModule(); // M1 274 Module targetModule = targetClass.getModule(); // M2 275 Class<?> newPreviousClass = null; 276 int newModes = Lookup.FULL_POWER_MODES & ~Lookup.ORIGINAL; 277 278 if (targetModule != callerModule) { 279 if (!callerModule.canRead(targetModule)) 280 throw new IllegalAccessException(callerModule + " does not read " + targetModule); 281 if (targetModule.isNamed()) { 282 String pn = targetClass.getPackageName(); 283 assert !pn.isEmpty() : "unnamed package cannot be in named module"; 284 if (!targetModule.isOpen(pn, callerModule)) 285 throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule); 286 } 287 288 // M2 != M1, set previous lookup class to M1 and drop MODULE access 289 newPreviousClass = callerClass; 290 newModes &= ~Lookup.MODULE; 291 } 292 return Lookup.newLookup(targetClass, newPreviousClass, newModes); 293 } 294 295 /** 296 * Returns the <em>class data</em> associated with the lookup class 297 * of the given {@code caller} lookup object, or {@code null}. 298 * 299 * <p> A hidden class with class data can be created by calling 300 * {@link Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...) 301 * Lookup::defineHiddenClassWithClassData}. 302 * This method will cause the static class initializer of the lookup 303 * class of the given {@code caller} lookup object be executed if 304 * it has not been initialized. 305 * 306 * <p> A hidden class created by {@link Lookup#defineHiddenClass(byte[], boolean, Lookup.ClassOption...) 307 * Lookup::defineHiddenClass} and non-hidden classes have no class data. 308 * {@code null} is returned if this method is called on the lookup object 309 * on these classes. 310 * 311 * <p> The {@linkplain Lookup#lookupModes() lookup modes} for this lookup 312 * must have {@linkplain Lookup#ORIGINAL original access} 313 * in order to retrieve the class data. 314 * 315 * @apiNote 316 * This method can be called as a bootstrap method for a dynamically computed 317 * constant. A framework can create a hidden class with class data, for 318 * example that can be {@code Class} or {@code MethodHandle} object. 319 * The class data is accessible only to the lookup object 320 * created by the original caller but inaccessible to other members 321 * in the same nest. If a framework passes security sensitive objects 322 * to a hidden class via class data, it is recommended to load the value 323 * of class data as a dynamically computed constant instead of storing 324 * the class data in private static field(s) which are accessible to 325 * other nestmates. 326 * 327 * @param <T> the type to cast the class data object to 328 * @param caller the lookup context describing the class performing the 329 * operation (normally stacked by the JVM) 330 * @param name must be {@link ConstantDescs#DEFAULT_NAME} 331 * ({@code "_"}) 332 * @param type the type of the class data 333 * @return the value of the class data if present in the lookup class; 334 * otherwise {@code null} 335 * @throws IllegalArgumentException if name is not {@code "_"} 336 * @throws IllegalAccessException if the lookup context does not have 337 * {@linkplain Lookup#ORIGINAL original} access 338 * @throws ClassCastException if the class data cannot be converted to 339 * the given {@code type} 340 * @throws NullPointerException if {@code caller} or {@code type} argument 341 * is {@code null} 342 * @see Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...) 343 * @see MethodHandles#classDataAt(Lookup, String, Class, int) 344 * @since 16 345 * @jvms 5.5 Initialization 346 */ 347 public static <T> T classData(Lookup caller, String name, Class<T> type) throws IllegalAccessException { 348 Objects.requireNonNull(caller); 349 Objects.requireNonNull(type); 350 if (!ConstantDescs.DEFAULT_NAME.equals(name)) { 351 throw new IllegalArgumentException("name must be \"_\": " + name); 352 } 353 354 if ((caller.lookupModes() & Lookup.ORIGINAL) != Lookup.ORIGINAL) { 355 throw new IllegalAccessException(caller + " does not have ORIGINAL access"); 356 } 357 358 Object classdata = classData(caller.lookupClass()); 359 if (classdata == null) return null; 360 361 try { 362 return BootstrapMethodInvoker.widenAndCast(classdata, type); 363 } catch (RuntimeException|Error e) { 364 throw e; // let CCE and other runtime exceptions through 365 } catch (Throwable e) { 366 throw new InternalError(e); 367 } 368 } 369 370 /* 371 * Returns the class data set by the VM in the Class::classData field. 372 * 373 * This is also invoked by LambdaForms as it cannot use condy via 374 * MethodHandles::classData due to bootstrapping issue. 375 */ 376 static Object classData(Class<?> c) { 377 UNSAFE.ensureClassInitialized(c); 378 return SharedSecrets.getJavaLangAccess().classData(c); 379 } 380 381 /** 382 * Returns the element at the specified index in the 383 * {@linkplain #classData(Lookup, String, Class) class data}, 384 * if the class data associated with the lookup class 385 * of the given {@code caller} lookup object is a {@code List}. 386 * If the class data is not present in this lookup class, this method 387 * returns {@code null}. 388 * 389 * <p> A hidden class with class data can be created by calling 390 * {@link Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...) 391 * Lookup::defineHiddenClassWithClassData}. 392 * This method will cause the static class initializer of the lookup 393 * class of the given {@code caller} lookup object be executed if 394 * it has not been initialized. 395 * 396 * <p> A hidden class created by {@link Lookup#defineHiddenClass(byte[], boolean, Lookup.ClassOption...) 397 * Lookup::defineHiddenClass} and non-hidden classes have no class data. 398 * {@code null} is returned if this method is called on the lookup object 399 * on these classes. 400 * 401 * <p> The {@linkplain Lookup#lookupModes() lookup modes} for this lookup 402 * must have {@linkplain Lookup#ORIGINAL original access} 403 * in order to retrieve the class data. 404 * 405 * @apiNote 406 * This method can be called as a bootstrap method for a dynamically computed 407 * constant. A framework can create a hidden class with class data, for 408 * example that can be {@code List.of(o1, o2, o3....)} containing more than 409 * one object and use this method to load one element at a specific index. 410 * The class data is accessible only to the lookup object 411 * created by the original caller but inaccessible to other members 412 * in the same nest. If a framework passes security sensitive objects 413 * to a hidden class via class data, it is recommended to load the value 414 * of class data as a dynamically computed constant instead of storing 415 * the class data in private static field(s) which are accessible to other 416 * nestmates. 417 * 418 * @param <T> the type to cast the result object to 419 * @param caller the lookup context describing the class performing the 420 * operation (normally stacked by the JVM) 421 * @param name must be {@link java.lang.constant.ConstantDescs#DEFAULT_NAME} 422 * ({@code "_"}) 423 * @param type the type of the element at the given index in the class data 424 * @param index index of the element in the class data 425 * @return the element at the given index in the class data 426 * if the class data is present; otherwise {@code null} 427 * @throws IllegalArgumentException if name is not {@code "_"} 428 * @throws IllegalAccessException if the lookup context does not have 429 * {@linkplain Lookup#ORIGINAL original} access 430 * @throws ClassCastException if the class data cannot be converted to {@code List} 431 * or the element at the specified index cannot be converted to the given type 432 * @throws IndexOutOfBoundsException if the index is out of range 433 * @throws NullPointerException if {@code caller} or {@code type} argument is 434 * {@code null}; or if unboxing operation fails because 435 * the element at the given index is {@code null} 436 * 437 * @since 16 438 * @see #classData(Lookup, String, Class) 439 * @see Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...) 440 */ 441 public static <T> T classDataAt(Lookup caller, String name, Class<T> type, int index) 442 throws IllegalAccessException 443 { 444 @SuppressWarnings("unchecked") 445 List<Object> classdata = (List<Object>)classData(caller, name, List.class); 446 if (classdata == null) return null; 447 448 try { 449 Object element = classdata.get(index); 450 return BootstrapMethodInvoker.widenAndCast(element, type); 451 } catch (RuntimeException|Error e) { 452 throw e; // let specified exceptions and other runtime exceptions/errors through 453 } catch (Throwable e) { 454 throw new InternalError(e); 455 } 456 } 457 458 /** 459 * Performs an unchecked "crack" of a 460 * <a href="MethodHandleInfo.html#directmh">direct method handle</a>. 461 * The result is as if the user had obtained a lookup object capable enough 462 * to crack the target method handle, called 463 * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect} 464 * on the target to obtain its symbolic reference, and then called 465 * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs} 466 * to resolve the symbolic reference to a member. 467 * <p> 468 * If there is a security manager, its {@code checkPermission} method 469 * is called with a {@code ReflectPermission("suppressAccessChecks")} permission. 470 * @param <T> the desired type of the result, either {@link Member} or a subtype 471 * @param target a direct method handle to crack into symbolic reference components 472 * @param expected a class object representing the desired result type {@code T} 473 * @return a reference to the method, constructor, or field object 474 * @throws SecurityException if the caller is not privileged to call {@code setAccessible} 475 * @throws NullPointerException if either argument is {@code null} 476 * @throws IllegalArgumentException if the target is not a direct method handle 477 * @throws ClassCastException if the member is not of the expected type 478 * @since 1.8 479 */ 480 public static <T extends Member> T reflectAs(Class<T> expected, MethodHandle target) { 481 @SuppressWarnings("removal") 482 SecurityManager smgr = System.getSecurityManager(); 483 if (smgr != null) smgr.checkPermission(SecurityConstants.ACCESS_PERMISSION); 484 Lookup lookup = Lookup.IMPL_LOOKUP; // use maximally privileged lookup 485 return lookup.revealDirect(target).reflectAs(expected, lookup); 486 } 487 488 /** 489 * A <em>lookup object</em> is a factory for creating method handles, 490 * when the creation requires access checking. 491 * Method handles do not perform 492 * access checks when they are called, but rather when they are created. 493 * Therefore, method handle access 494 * restrictions must be enforced when a method handle is created. 495 * The caller class against which those restrictions are enforced 496 * is known as the {@linkplain #lookupClass() lookup class}. 497 * <p> 498 * A lookup class which needs to create method handles will call 499 * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself. 500 * When the {@code Lookup} factory object is created, the identity of the lookup class is 501 * determined, and securely stored in the {@code Lookup} object. 502 * The lookup class (or its delegates) may then use factory methods 503 * on the {@code Lookup} object to create method handles for access-checked members. 504 * This includes all methods, constructors, and fields which are allowed to the lookup class, 505 * even private ones. 506 * 507 * <h2><a id="lookups"></a>Lookup Factory Methods</h2> 508 * The factory methods on a {@code Lookup} object correspond to all major 509 * use cases for methods, constructors, and fields. 510 * Each method handle created by a factory method is the functional 511 * equivalent of a particular <em>bytecode behavior</em>. 512 * (Bytecode behaviors are described in section {@jvms 5.4.3.5} of 513 * the Java Virtual Machine Specification.) 514 * Here is a summary of the correspondence between these factory methods and 515 * the behavior of the resulting method handles: 516 * <table class="striped"> 517 * <caption style="display:none">lookup method behaviors</caption> 518 * <thead> 519 * <tr> 520 * <th scope="col"><a id="equiv"></a>lookup expression</th> 521 * <th scope="col">member</th> 522 * <th scope="col">bytecode behavior</th> 523 * </tr> 524 * </thead> 525 * <tbody> 526 * <tr> 527 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th> 528 * <td>{@code FT f;}</td><td>{@code (T) this.f;}</td> 529 * </tr> 530 * <tr> 531 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th> 532 * <td>{@code static}<br>{@code FT f;}</td><td>{@code (FT) C.f;}</td> 533 * </tr> 534 * <tr> 535 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th> 536 * <td>{@code FT f;}</td><td>{@code this.f = x;}</td> 537 * </tr> 538 * <tr> 539 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th> 540 * <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td> 541 * </tr> 542 * <tr> 543 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th> 544 * <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td> 545 * </tr> 546 * <tr> 547 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th> 548 * <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td> 549 * </tr> 550 * <tr> 551 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th> 552 * <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td> 553 * </tr> 554 * <tr> 555 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th> 556 * <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td> 557 * </tr> 558 * <tr> 559 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th> 560 * <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td> 561 * </tr> 562 * <tr> 563 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th> 564 * <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td> 565 * </tr> 566 * <tr> 567 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th> 568 * <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td> 569 * </tr> 570 * <tr> 571 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th> 572 * <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td> 573 * </tr> 574 * <tr> 575 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSpecial lookup.unreflectSpecial(aMethod,this.class)}</th> 576 * <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td> 577 * </tr> 578 * <tr> 579 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th> 580 * <td>{@code class C { ... }}</td><td>{@code C.class;}</td> 581 * </tr> 582 * </tbody> 583 * </table> 584 * 585 * Here, the type {@code C} is the class or interface being searched for a member, 586 * documented as a parameter named {@code refc} in the lookup methods. 587 * The method type {@code MT} is composed from the return type {@code T} 588 * and the sequence of argument types {@code A*}. 589 * The constructor also has a sequence of argument types {@code A*} and 590 * is deemed to return the newly-created object of type {@code C}. 591 * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}. 592 * The formal parameter {@code this} stands for the self-reference of type {@code C}; 593 * if it is present, it is always the leading argument to the method handle invocation. 594 * (In the case of some {@code protected} members, {@code this} may be 595 * restricted in type to the lookup class; see below.) 596 * The name {@code arg} stands for all the other method handle arguments. 597 * In the code examples for the Core Reflection API, the name {@code thisOrNull} 598 * stands for a null reference if the accessed method or field is static, 599 * and {@code this} otherwise. 600 * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand 601 * for reflective objects corresponding to the given members declared in type {@code C}. 602 * <p> 603 * The bytecode behavior for a {@code findClass} operation is a load of a constant class, 604 * as if by {@code ldc CONSTANT_Class}. 605 * The behavior is represented, not as a method handle, but directly as a {@code Class} constant. 606 * <p> 607 * In cases where the given member is of variable arity (i.e., a method or constructor) 608 * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}. 609 * In all other cases, the returned method handle will be of fixed arity. 610 * <p style="font-size:smaller;"> 611 * <em>Discussion:</em> 612 * The equivalence between looked-up method handles and underlying 613 * class members and bytecode behaviors 614 * can break down in a few ways: 615 * <ul style="font-size:smaller;"> 616 * <li>If {@code C} is not symbolically accessible from the lookup class's loader, 617 * the lookup can still succeed, even when there is no equivalent 618 * Java expression or bytecoded constant. 619 * <li>Likewise, if {@code T} or {@code MT} 620 * is not symbolically accessible from the lookup class's loader, 621 * the lookup can still succeed. 622 * For example, lookups for {@code MethodHandle.invokeExact} and 623 * {@code MethodHandle.invoke} will always succeed, regardless of requested type. 624 * <li>If there is a security manager installed, it can forbid the lookup 625 * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>). 626 * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle} 627 * constant is not subject to security manager checks. 628 * <li>If the looked-up method has a 629 * <a href="MethodHandle.html#maxarity">very large arity</a>, 630 * the method handle creation may fail with an 631 * {@code IllegalArgumentException}, due to the method handle type having 632 * <a href="MethodHandle.html#maxarity">too many parameters.</a> 633 * </ul> 634 * 635 * <h2><a id="access"></a>Access checking</h2> 636 * Access checks are applied in the factory methods of {@code Lookup}, 637 * when a method handle is created. 638 * This is a key difference from the Core Reflection API, since 639 * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} 640 * performs access checking against every caller, on every call. 641 * <p> 642 * All access checks start from a {@code Lookup} object, which 643 * compares its recorded lookup class against all requests to 644 * create method handles. 645 * A single {@code Lookup} object can be used to create any number 646 * of access-checked method handles, all checked against a single 647 * lookup class. 648 * <p> 649 * A {@code Lookup} object can be shared with other trusted code, 650 * such as a metaobject protocol. 651 * A shared {@code Lookup} object delegates the capability 652 * to create method handles on private members of the lookup class. 653 * Even if privileged code uses the {@code Lookup} object, 654 * the access checking is confined to the privileges of the 655 * original lookup class. 656 * <p> 657 * A lookup can fail, because 658 * the containing class is not accessible to the lookup class, or 659 * because the desired class member is missing, or because the 660 * desired class member is not accessible to the lookup class, or 661 * because the lookup object is not trusted enough to access the member. 662 * In the case of a field setter function on a {@code final} field, 663 * finality enforcement is treated as a kind of access control, 664 * and the lookup will fail, except in special cases of 665 * {@link Lookup#unreflectSetter Lookup.unreflectSetter}. 666 * In any of these cases, a {@code ReflectiveOperationException} will be 667 * thrown from the attempted lookup. The exact class will be one of 668 * the following: 669 * <ul> 670 * <li>NoSuchMethodException — if a method is requested but does not exist 671 * <li>NoSuchFieldException — if a field is requested but does not exist 672 * <li>IllegalAccessException — if the member exists but an access check fails 673 * </ul> 674 * <p> 675 * In general, the conditions under which a method handle may be 676 * looked up for a method {@code M} are no more restrictive than the conditions 677 * under which the lookup class could have compiled, verified, and resolved a call to {@code M}. 678 * Where the JVM would raise exceptions like {@code NoSuchMethodError}, 679 * a method handle lookup will generally raise a corresponding 680 * checked exception, such as {@code NoSuchMethodException}. 681 * And the effect of invoking the method handle resulting from the lookup 682 * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a> 683 * to executing the compiled, verified, and resolved call to {@code M}. 684 * The same point is true of fields and constructors. 685 * <p style="font-size:smaller;"> 686 * <em>Discussion:</em> 687 * Access checks only apply to named and reflected methods, 688 * constructors, and fields. 689 * Other method handle creation methods, such as 690 * {@link MethodHandle#asType MethodHandle.asType}, 691 * do not require any access checks, and are used 692 * independently of any {@code Lookup} object. 693 * <p> 694 * If the desired member is {@code protected}, the usual JVM rules apply, 695 * including the requirement that the lookup class must either be in the 696 * same package as the desired member, or must inherit that member. 697 * (See the Java Virtual Machine Specification, sections {@jvms 698 * 4.9.2}, {@jvms 5.4.3.5}, and {@jvms 6.4}.) 699 * In addition, if the desired member is a non-static field or method 700 * in a different package, the resulting method handle may only be applied 701 * to objects of the lookup class or one of its subclasses. 702 * This requirement is enforced by narrowing the type of the leading 703 * {@code this} parameter from {@code C} 704 * (which will necessarily be a superclass of the lookup class) 705 * to the lookup class itself. 706 * <p> 707 * The JVM imposes a similar requirement on {@code invokespecial} instruction, 708 * that the receiver argument must match both the resolved method <em>and</em> 709 * the current class. Again, this requirement is enforced by narrowing the 710 * type of the leading parameter to the resulting method handle. 711 * (See the Java Virtual Machine Specification, section {@jvms 4.10.1.9}.) 712 * <p> 713 * The JVM represents constructors and static initializer blocks as internal methods 714 * with special names ({@value ConstantDescs#INIT_NAME} and {@value 715 * ConstantDescs#CLASS_INIT_NAME}). 716 * The internal syntax of invocation instructions allows them to refer to such internal 717 * methods as if they were normal methods, but the JVM bytecode verifier rejects them. 718 * A lookup of such an internal method will produce a {@code NoSuchMethodException}. 719 * <p> 720 * If the relationship between nested types is expressed directly through the 721 * {@code NestHost} and {@code NestMembers} attributes 722 * (see the Java Virtual Machine Specification, sections {@jvms 723 * 4.7.28} and {@jvms 4.7.29}), 724 * then the associated {@code Lookup} object provides direct access to 725 * the lookup class and all of its nestmates 726 * (see {@link java.lang.Class#getNestHost Class.getNestHost}). 727 * Otherwise, access between nested classes is obtained by the Java compiler creating 728 * a wrapper method to access a private method of another class in the same nest. 729 * For example, a nested class {@code C.D} 730 * can access private members within other related classes such as 731 * {@code C}, {@code C.D.E}, or {@code C.B}, 732 * but the Java compiler may need to generate wrapper methods in 733 * those related classes. In such cases, a {@code Lookup} object on 734 * {@code C.E} would be unable to access those private members. 735 * A workaround for this limitation is the {@link Lookup#in Lookup.in} method, 736 * which can transform a lookup on {@code C.E} into one on any of those other 737 * classes, without special elevation of privilege. 738 * <p> 739 * The accesses permitted to a given lookup object may be limited, 740 * according to its set of {@link #lookupModes lookupModes}, 741 * to a subset of members normally accessible to the lookup class. 742 * For example, the {@link MethodHandles#publicLookup publicLookup} 743 * method produces a lookup object which is only allowed to access 744 * public members in public classes of exported packages. 745 * The caller sensitive method {@link MethodHandles#lookup lookup} 746 * produces a lookup object with full capabilities relative to 747 * its caller class, to emulate all supported bytecode behaviors. 748 * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object 749 * with fewer access modes than the original lookup object. 750 * 751 * <p style="font-size:smaller;"> 752 * <a id="privacc"></a> 753 * <em>Discussion of private and module access:</em> 754 * We say that a lookup has <em>private access</em> 755 * if its {@linkplain #lookupModes lookup modes} 756 * include the possibility of accessing {@code private} members 757 * (which includes the private members of nestmates). 758 * As documented in the relevant methods elsewhere, 759 * only lookups with private access possess the following capabilities: 760 * <ul style="font-size:smaller;"> 761 * <li>access private fields, methods, and constructors of the lookup class and its nestmates 762 * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions 763 * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a> 764 * for classes accessible to the lookup class 765 * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes 766 * within the same package member 767 * </ul> 768 * <p style="font-size:smaller;"> 769 * Similarly, a lookup with module access ensures that the original lookup creator was 770 * a member in the same module as the lookup class. 771 * <p style="font-size:smaller;"> 772 * Private and module access are independently determined modes; a lookup may have 773 * either or both or neither. A lookup which possesses both access modes is said to 774 * possess {@linkplain #hasFullPrivilegeAccess() full privilege access}. 775 * <p style="font-size:smaller;"> 776 * A lookup with <em>original access</em> ensures that this lookup is created by 777 * the original lookup class and the bootstrap method invoked by the VM. 778 * Such a lookup with original access also has private and module access 779 * which has the following additional capability: 780 * <ul style="font-size:smaller;"> 781 * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods, 782 * such as {@code Class.forName} 783 * <li>obtain the {@linkplain MethodHandles#classData(Lookup, String, Class) 784 * class data} associated with the lookup class</li> 785 * </ul> 786 * <p style="font-size:smaller;"> 787 * Each of these permissions is a consequence of the fact that a lookup object 788 * with private access can be securely traced back to an originating class, 789 * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions 790 * can be reliably determined and emulated by method handles. 791 * 792 * <h2><a id="cross-module-lookup"></a>Cross-module lookups</h2> 793 * When a lookup class in one module {@code M1} accesses a class in another module 794 * {@code M2}, extra access checking is performed beyond the access mode bits. 795 * A {@code Lookup} with {@link #PUBLIC} mode and a lookup class in {@code M1} 796 * can access public types in {@code M2} when {@code M2} is readable to {@code M1} 797 * and when the type is in a package of {@code M2} that is exported to 798 * at least {@code M1}. 799 * <p> 800 * A {@code Lookup} on {@code C} can also <em>teleport</em> to a target class 801 * via {@link #in(Class) Lookup.in} and {@link MethodHandles#privateLookupIn(Class, Lookup) 802 * MethodHandles.privateLookupIn} methods. 803 * Teleporting across modules will always record the original lookup class as 804 * the <em>{@linkplain #previousLookupClass() previous lookup class}</em> 805 * and drops {@link Lookup#MODULE MODULE} access. 806 * If the target class is in the same module as the lookup class {@code C}, 807 * then the target class becomes the new lookup class 808 * and there is no change to the previous lookup class. 809 * If the target class is in a different module from {@code M1} ({@code C}'s module), 810 * {@code C} becomes the new previous lookup class 811 * and the target class becomes the new lookup class. 812 * In that case, if there was already a previous lookup class in {@code M0}, 813 * and it differs from {@code M1} and {@code M2}, then the resulting lookup 814 * drops all privileges. 815 * For example, 816 * {@snippet lang="java" : 817 * Lookup lookup = MethodHandles.lookup(); // in class C 818 * Lookup lookup2 = lookup.in(D.class); 819 * MethodHandle mh = lookup2.findStatic(E.class, "m", MT); 820 * } 821 * <p> 822 * The {@link #lookup()} factory method produces a {@code Lookup} object 823 * with {@code null} previous lookup class. 824 * {@link Lookup#in lookup.in(D.class)} transforms the {@code lookup} on class {@code C} 825 * to class {@code D} without elevation of privileges. 826 * If {@code C} and {@code D} are in the same module, 827 * {@code lookup2} records {@code D} as the new lookup class and keeps the 828 * same previous lookup class as the original {@code lookup}, or 829 * {@code null} if not present. 830 * <p> 831 * When a {@code Lookup} teleports from a class 832 * in one nest to another nest, {@code PRIVATE} access is dropped. 833 * When a {@code Lookup} teleports from a class in one package to 834 * another package, {@code PACKAGE} access is dropped. 835 * When a {@code Lookup} teleports from a class in one module to another module, 836 * {@code MODULE} access is dropped. 837 * Teleporting across modules drops the ability to access non-exported classes 838 * in both the module of the new lookup class and the module of the old lookup class 839 * and the resulting {@code Lookup} remains only {@code PUBLIC} access. 840 * A {@code Lookup} can teleport back and forth to a class in the module of 841 * the lookup class and the module of the previous class lookup. 842 * Teleporting across modules can only decrease access but cannot increase it. 843 * Teleporting to some third module drops all accesses. 844 * <p> 845 * In the above example, if {@code C} and {@code D} are in different modules, 846 * {@code lookup2} records {@code D} as its lookup class and 847 * {@code C} as its previous lookup class and {@code lookup2} has only 848 * {@code PUBLIC} access. {@code lookup2} can teleport to other class in 849 * {@code C}'s module and {@code D}'s module. 850 * If class {@code E} is in a third module, {@code lookup2.in(E.class)} creates 851 * a {@code Lookup} on {@code E} with no access and {@code lookup2}'s lookup 852 * class {@code D} is recorded as its previous lookup class. 853 * <p> 854 * Teleporting across modules restricts access to the public types that 855 * both the lookup class and the previous lookup class can equally access 856 * (see below). 857 * <p> 858 * {@link MethodHandles#privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn(T.class, lookup)} 859 * can be used to teleport a {@code lookup} from class {@code C} to class {@code T} 860 * and produce a new {@code Lookup} with <a href="#privacc">private access</a> 861 * if the lookup class is allowed to do <em>deep reflection</em> on {@code T}. 862 * The {@code lookup} must have {@link #MODULE} and {@link #PRIVATE} access 863 * to call {@code privateLookupIn}. 864 * A {@code lookup} on {@code C} in module {@code M1} is allowed to do deep reflection 865 * on all classes in {@code M1}. If {@code T} is in {@code M1}, {@code privateLookupIn} 866 * produces a new {@code Lookup} on {@code T} with full capabilities. 867 * A {@code lookup} on {@code C} is also allowed 868 * to do deep reflection on {@code T} in another module {@code M2} if 869 * {@code M1} reads {@code M2} and {@code M2} {@link Module#isOpen(String,Module) opens} 870 * the package containing {@code T} to at least {@code M1}. 871 * {@code T} becomes the new lookup class and {@code C} becomes the new previous 872 * lookup class and {@code MODULE} access is dropped from the resulting {@code Lookup}. 873 * The resulting {@code Lookup} can be used to do member lookup or teleport 874 * to another lookup class by calling {@link #in Lookup::in}. But 875 * it cannot be used to obtain another private {@code Lookup} by calling 876 * {@link MethodHandles#privateLookupIn(Class, Lookup) privateLookupIn} 877 * because it has no {@code MODULE} access. 878 * <p> 879 * The {@code Lookup} object returned by {@code privateLookupIn} is allowed to 880 * {@linkplain Lookup#defineClass(byte[]) define classes} in the runtime package 881 * of {@code T}. Extreme caution should be taken when opening a package 882 * to another module as such defined classes have the same full privilege 883 * access as other members in {@code M2}. 884 * 885 * <h2><a id="module-access-check"></a>Cross-module access checks</h2> 886 * 887 * A {@code Lookup} with {@link #PUBLIC} or with {@link #UNCONDITIONAL} mode 888 * allows cross-module access. The access checking is performed with respect 889 * to both the lookup class and the previous lookup class if present. 890 * <p> 891 * A {@code Lookup} with {@link #UNCONDITIONAL} mode can access public type 892 * in all modules when the type is in a package that is {@linkplain Module#isExported(String) 893 * exported unconditionally}. 894 * <p> 895 * If a {@code Lookup} on {@code LC} in {@code M1} has no previous lookup class, 896 * the lookup with {@link #PUBLIC} mode can access all public types in modules 897 * that are readable to {@code M1} and the type is in a package that is exported 898 * at least to {@code M1}. 899 * <p> 900 * If a {@code Lookup} on {@code LC} in {@code M1} has a previous lookup class 901 * {@code PLC} on {@code M0}, the lookup with {@link #PUBLIC} mode can access 902 * the intersection of all public types that are accessible to {@code M1} 903 * with all public types that are accessible to {@code M0}. {@code M0} 904 * reads {@code M1} and hence the set of accessible types includes: 905 * 906 * <ul> 907 * <li>unconditional-exported packages from {@code M1}</li> 908 * <li>unconditional-exported packages from {@code M0} if {@code M1} reads {@code M0}</li> 909 * <li> 910 * unconditional-exported packages from a third module {@code M2}if both {@code M0} 911 * and {@code M1} read {@code M2} 912 * </li> 913 * <li>qualified-exported packages from {@code M1} to {@code M0}</li> 914 * <li>qualified-exported packages from {@code M0} to {@code M1} if {@code M1} reads {@code M0}</li> 915 * <li> 916 * qualified-exported packages from a third module {@code M2} to both {@code M0} and 917 * {@code M1} if both {@code M0} and {@code M1} read {@code M2} 918 * </li> 919 * </ul> 920 * 921 * <h2><a id="access-modes"></a>Access modes</h2> 922 * 923 * The table below shows the access modes of a {@code Lookup} produced by 924 * any of the following factory or transformation methods: 925 * <ul> 926 * <li>{@link #lookup() MethodHandles::lookup}</li> 927 * <li>{@link #publicLookup() MethodHandles::publicLookup}</li> 928 * <li>{@link #privateLookupIn(Class, Lookup) MethodHandles::privateLookupIn}</li> 929 * <li>{@link Lookup#in Lookup::in}</li> 930 * <li>{@link Lookup#dropLookupMode(int) Lookup::dropLookupMode}</li> 931 * </ul> 932 * 933 * <table class="striped"> 934 * <caption style="display:none"> 935 * Access mode summary 936 * </caption> 937 * <thead> 938 * <tr> 939 * <th scope="col">Lookup object</th> 940 * <th style="text-align:center">original</th> 941 * <th style="text-align:center">protected</th> 942 * <th style="text-align:center">private</th> 943 * <th style="text-align:center">package</th> 944 * <th style="text-align:center">module</th> 945 * <th style="text-align:center">public</th> 946 * </tr> 947 * </thead> 948 * <tbody> 949 * <tr> 950 * <th scope="row" style="text-align:left">{@code CL = MethodHandles.lookup()} in {@code C}</th> 951 * <td style="text-align:center">ORI</td> 952 * <td style="text-align:center">PRO</td> 953 * <td style="text-align:center">PRI</td> 954 * <td style="text-align:center">PAC</td> 955 * <td style="text-align:center">MOD</td> 956 * <td style="text-align:center">1R</td> 957 * </tr> 958 * <tr> 959 * <th scope="row" style="text-align:left">{@code CL.in(C1)} same package</th> 960 * <td></td> 961 * <td></td> 962 * <td></td> 963 * <td style="text-align:center">PAC</td> 964 * <td style="text-align:center">MOD</td> 965 * <td style="text-align:center">1R</td> 966 * </tr> 967 * <tr> 968 * <th scope="row" style="text-align:left">{@code CL.in(C1)} same module</th> 969 * <td></td> 970 * <td></td> 971 * <td></td> 972 * <td></td> 973 * <td style="text-align:center">MOD</td> 974 * <td style="text-align:center">1R</td> 975 * </tr> 976 * <tr> 977 * <th scope="row" style="text-align:left">{@code CL.in(D)} different module</th> 978 * <td></td> 979 * <td></td> 980 * <td></td> 981 * <td></td> 982 * <td></td> 983 * <td style="text-align:center">2R</td> 984 * </tr> 985 * <tr> 986 * <th scope="row" style="text-align:left">{@code CL.in(D).in(C)} hop back to module</th> 987 * <td></td> 988 * <td></td> 989 * <td></td> 990 * <td></td> 991 * <td></td> 992 * <td style="text-align:center">2R</td> 993 * </tr> 994 * <tr> 995 * <th scope="row" style="text-align:left">{@code PRI1 = privateLookupIn(C1,CL)}</th> 996 * <td></td> 997 * <td style="text-align:center">PRO</td> 998 * <td style="text-align:center">PRI</td> 999 * <td style="text-align:center">PAC</td> 1000 * <td style="text-align:center">MOD</td> 1001 * <td style="text-align:center">1R</td> 1002 * </tr> 1003 * <tr> 1004 * <th scope="row" style="text-align:left">{@code PRI1a = privateLookupIn(C,PRI1)}</th> 1005 * <td></td> 1006 * <td style="text-align:center">PRO</td> 1007 * <td style="text-align:center">PRI</td> 1008 * <td style="text-align:center">PAC</td> 1009 * <td style="text-align:center">MOD</td> 1010 * <td style="text-align:center">1R</td> 1011 * </tr> 1012 * <tr> 1013 * <th scope="row" style="text-align:left">{@code PRI1.in(C1)} same package</th> 1014 * <td></td> 1015 * <td></td> 1016 * <td></td> 1017 * <td style="text-align:center">PAC</td> 1018 * <td style="text-align:center">MOD</td> 1019 * <td style="text-align:center">1R</td> 1020 * </tr> 1021 * <tr> 1022 * <th scope="row" style="text-align:left">{@code PRI1.in(C1)} different package</th> 1023 * <td></td> 1024 * <td></td> 1025 * <td></td> 1026 * <td></td> 1027 * <td style="text-align:center">MOD</td> 1028 * <td style="text-align:center">1R</td> 1029 * </tr> 1030 * <tr> 1031 * <th scope="row" style="text-align:left">{@code PRI1.in(D)} different module</th> 1032 * <td></td> 1033 * <td></td> 1034 * <td></td> 1035 * <td></td> 1036 * <td></td> 1037 * <td style="text-align:center">2R</td> 1038 * </tr> 1039 * <tr> 1040 * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PROTECTED)}</th> 1041 * <td></td> 1042 * <td></td> 1043 * <td style="text-align:center">PRI</td> 1044 * <td style="text-align:center">PAC</td> 1045 * <td style="text-align:center">MOD</td> 1046 * <td style="text-align:center">1R</td> 1047 * </tr> 1048 * <tr> 1049 * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PRIVATE)}</th> 1050 * <td></td> 1051 * <td></td> 1052 * <td></td> 1053 * <td style="text-align:center">PAC</td> 1054 * <td style="text-align:center">MOD</td> 1055 * <td style="text-align:center">1R</td> 1056 * </tr> 1057 * <tr> 1058 * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PACKAGE)}</th> 1059 * <td></td> 1060 * <td></td> 1061 * <td></td> 1062 * <td></td> 1063 * <td style="text-align:center">MOD</td> 1064 * <td style="text-align:center">1R</td> 1065 * </tr> 1066 * <tr> 1067 * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(MODULE)}</th> 1068 * <td></td> 1069 * <td></td> 1070 * <td></td> 1071 * <td></td> 1072 * <td></td> 1073 * <td style="text-align:center">1R</td> 1074 * </tr> 1075 * <tr> 1076 * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PUBLIC)}</th> 1077 * <td></td> 1078 * <td></td> 1079 * <td></td> 1080 * <td></td> 1081 * <td></td> 1082 * <td style="text-align:center">none</td> 1083 * <tr> 1084 * <th scope="row" style="text-align:left">{@code PRI2 = privateLookupIn(D,CL)}</th> 1085 * <td></td> 1086 * <td style="text-align:center">PRO</td> 1087 * <td style="text-align:center">PRI</td> 1088 * <td style="text-align:center">PAC</td> 1089 * <td></td> 1090 * <td style="text-align:center">2R</td> 1091 * </tr> 1092 * <tr> 1093 * <th scope="row" style="text-align:left">{@code privateLookupIn(D,PRI1)}</th> 1094 * <td></td> 1095 * <td style="text-align:center">PRO</td> 1096 * <td style="text-align:center">PRI</td> 1097 * <td style="text-align:center">PAC</td> 1098 * <td></td> 1099 * <td style="text-align:center">2R</td> 1100 * </tr> 1101 * <tr> 1102 * <th scope="row" style="text-align:left">{@code privateLookupIn(C,PRI2)} fails</th> 1103 * <td></td> 1104 * <td></td> 1105 * <td></td> 1106 * <td></td> 1107 * <td></td> 1108 * <td style="text-align:center">IAE</td> 1109 * </tr> 1110 * <tr> 1111 * <th scope="row" style="text-align:left">{@code PRI2.in(D2)} same package</th> 1112 * <td></td> 1113 * <td></td> 1114 * <td></td> 1115 * <td style="text-align:center">PAC</td> 1116 * <td></td> 1117 * <td style="text-align:center">2R</td> 1118 * </tr> 1119 * <tr> 1120 * <th scope="row" style="text-align:left">{@code PRI2.in(D2)} different package</th> 1121 * <td></td> 1122 * <td></td> 1123 * <td></td> 1124 * <td></td> 1125 * <td></td> 1126 * <td style="text-align:center">2R</td> 1127 * </tr> 1128 * <tr> 1129 * <th scope="row" style="text-align:left">{@code PRI2.in(C1)} hop back to module</th> 1130 * <td></td> 1131 * <td></td> 1132 * <td></td> 1133 * <td></td> 1134 * <td></td> 1135 * <td style="text-align:center">2R</td> 1136 * </tr> 1137 * <tr> 1138 * <th scope="row" style="text-align:left">{@code PRI2.in(E)} hop to third module</th> 1139 * <td></td> 1140 * <td></td> 1141 * <td></td> 1142 * <td></td> 1143 * <td></td> 1144 * <td style="text-align:center">none</td> 1145 * </tr> 1146 * <tr> 1147 * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PROTECTED)}</th> 1148 * <td></td> 1149 * <td></td> 1150 * <td style="text-align:center">PRI</td> 1151 * <td style="text-align:center">PAC</td> 1152 * <td></td> 1153 * <td style="text-align:center">2R</td> 1154 * </tr> 1155 * <tr> 1156 * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PRIVATE)}</th> 1157 * <td></td> 1158 * <td></td> 1159 * <td></td> 1160 * <td style="text-align:center">PAC</td> 1161 * <td></td> 1162 * <td style="text-align:center">2R</td> 1163 * </tr> 1164 * <tr> 1165 * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PACKAGE)}</th> 1166 * <td></td> 1167 * <td></td> 1168 * <td></td> 1169 * <td></td> 1170 * <td></td> 1171 * <td style="text-align:center">2R</td> 1172 * </tr> 1173 * <tr> 1174 * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(MODULE)}</th> 1175 * <td></td> 1176 * <td></td> 1177 * <td></td> 1178 * <td></td> 1179 * <td></td> 1180 * <td style="text-align:center">2R</td> 1181 * </tr> 1182 * <tr> 1183 * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PUBLIC)}</th> 1184 * <td></td> 1185 * <td></td> 1186 * <td></td> 1187 * <td></td> 1188 * <td></td> 1189 * <td style="text-align:center">none</td> 1190 * </tr> 1191 * <tr> 1192 * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PROTECTED)}</th> 1193 * <td></td> 1194 * <td></td> 1195 * <td style="text-align:center">PRI</td> 1196 * <td style="text-align:center">PAC</td> 1197 * <td style="text-align:center">MOD</td> 1198 * <td style="text-align:center">1R</td> 1199 * </tr> 1200 * <tr> 1201 * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PRIVATE)}</th> 1202 * <td></td> 1203 * <td></td> 1204 * <td></td> 1205 * <td style="text-align:center">PAC</td> 1206 * <td style="text-align:center">MOD</td> 1207 * <td style="text-align:center">1R</td> 1208 * </tr> 1209 * <tr> 1210 * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PACKAGE)}</th> 1211 * <td></td> 1212 * <td></td> 1213 * <td></td> 1214 * <td></td> 1215 * <td style="text-align:center">MOD</td> 1216 * <td style="text-align:center">1R</td> 1217 * </tr> 1218 * <tr> 1219 * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(MODULE)}</th> 1220 * <td></td> 1221 * <td></td> 1222 * <td></td> 1223 * <td></td> 1224 * <td></td> 1225 * <td style="text-align:center">1R</td> 1226 * </tr> 1227 * <tr> 1228 * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PUBLIC)}</th> 1229 * <td></td> 1230 * <td></td> 1231 * <td></td> 1232 * <td></td> 1233 * <td></td> 1234 * <td style="text-align:center">none</td> 1235 * </tr> 1236 * <tr> 1237 * <th scope="row" style="text-align:left">{@code PUB = publicLookup()}</th> 1238 * <td></td> 1239 * <td></td> 1240 * <td></td> 1241 * <td></td> 1242 * <td></td> 1243 * <td style="text-align:center">U</td> 1244 * </tr> 1245 * <tr> 1246 * <th scope="row" style="text-align:left">{@code PUB.in(D)} different module</th> 1247 * <td></td> 1248 * <td></td> 1249 * <td></td> 1250 * <td></td> 1251 * <td></td> 1252 * <td style="text-align:center">U</td> 1253 * </tr> 1254 * <tr> 1255 * <th scope="row" style="text-align:left">{@code PUB.in(D).in(E)} third module</th> 1256 * <td></td> 1257 * <td></td> 1258 * <td></td> 1259 * <td></td> 1260 * <td></td> 1261 * <td style="text-align:center">U</td> 1262 * </tr> 1263 * <tr> 1264 * <th scope="row" style="text-align:left">{@code PUB.dropLookupMode(UNCONDITIONAL)}</th> 1265 * <td></td> 1266 * <td></td> 1267 * <td></td> 1268 * <td></td> 1269 * <td></td> 1270 * <td style="text-align:center">none</td> 1271 * </tr> 1272 * <tr> 1273 * <th scope="row" style="text-align:left">{@code privateLookupIn(C1,PUB)} fails</th> 1274 * <td></td> 1275 * <td></td> 1276 * <td></td> 1277 * <td></td> 1278 * <td></td> 1279 * <td style="text-align:center">IAE</td> 1280 * </tr> 1281 * <tr> 1282 * <th scope="row" style="text-align:left">{@code ANY.in(X)}, for inaccessible {@code X}</th> 1283 * <td></td> 1284 * <td></td> 1285 * <td></td> 1286 * <td></td> 1287 * <td></td> 1288 * <td style="text-align:center">none</td> 1289 * </tr> 1290 * </tbody> 1291 * </table> 1292 * 1293 * <p> 1294 * Notes: 1295 * <ul> 1296 * <li>Class {@code C} and class {@code C1} are in module {@code M1}, 1297 * but {@code D} and {@code D2} are in module {@code M2}, and {@code E} 1298 * is in module {@code M3}. {@code X} stands for class which is inaccessible 1299 * to the lookup. {@code ANY} stands for any of the example lookups.</li> 1300 * <li>{@code ORI} indicates {@link #ORIGINAL} bit set, 1301 * {@code PRO} indicates {@link #PROTECTED} bit set, 1302 * {@code PRI} indicates {@link #PRIVATE} bit set, 1303 * {@code PAC} indicates {@link #PACKAGE} bit set, 1304 * {@code MOD} indicates {@link #MODULE} bit set, 1305 * {@code 1R} and {@code 2R} indicate {@link #PUBLIC} bit set, 1306 * {@code U} indicates {@link #UNCONDITIONAL} bit set, 1307 * {@code IAE} indicates {@code IllegalAccessException} thrown.</li> 1308 * <li>Public access comes in three kinds: 1309 * <ul> 1310 * <li>unconditional ({@code U}): the lookup assumes readability. 1311 * The lookup has {@code null} previous lookup class. 1312 * <li>one-module-reads ({@code 1R}): the module access checking is 1313 * performed with respect to the lookup class. The lookup has {@code null} 1314 * previous lookup class. 1315 * <li>two-module-reads ({@code 2R}): the module access checking is 1316 * performed with respect to the lookup class and the previous lookup class. 1317 * The lookup has a non-null previous lookup class which is in a 1318 * different module from the current lookup class. 1319 * </ul> 1320 * <li>Any attempt to reach a third module loses all access.</li> 1321 * <li>If a target class {@code X} is not accessible to {@code Lookup::in} 1322 * all access modes are dropped.</li> 1323 * </ul> 1324 * 1325 * <h2><a id="secmgr"></a>Security manager interactions</h2> 1326 * Although bytecode instructions can only refer to classes in 1327 * a related class loader, this API can search for methods in any 1328 * class, as long as a reference to its {@code Class} object is 1329 * available. Such cross-loader references are also possible with the 1330 * Core Reflection API, and are impossible to bytecode instructions 1331 * such as {@code invokestatic} or {@code getfield}. 1332 * There is a {@linkplain java.lang.SecurityManager security manager API} 1333 * to allow applications to check such cross-loader references. 1334 * These checks apply to both the {@code MethodHandles.Lookup} API 1335 * and the Core Reflection API 1336 * (as found on {@link java.lang.Class Class}). 1337 * <p> 1338 * If a security manager is present, member and class lookups are subject to 1339 * additional checks. 1340 * From one to three calls are made to the security manager. 1341 * Any of these calls can refuse access by throwing a 1342 * {@link java.lang.SecurityException SecurityException}. 1343 * Define {@code smgr} as the security manager, 1344 * {@code lookc} as the lookup class of the current lookup object, 1345 * {@code refc} as the containing class in which the member 1346 * is being sought, and {@code defc} as the class in which the 1347 * member is actually defined. 1348 * (If a class or other type is being accessed, 1349 * the {@code refc} and {@code defc} values are the class itself.) 1350 * The value {@code lookc} is defined as <em>not present</em> 1351 * if the current lookup object does not have 1352 * {@linkplain #hasFullPrivilegeAccess() full privilege access}. 1353 * The calls are made according to the following rules: 1354 * <ul> 1355 * <li><b>Step 1:</b> 1356 * If {@code lookc} is not present, or if its class loader is not 1357 * the same as or an ancestor of the class loader of {@code refc}, 1358 * then {@link SecurityManager#checkPackageAccess 1359 * smgr.checkPackageAccess(refcPkg)} is called, 1360 * where {@code refcPkg} is the package of {@code refc}. 1361 * <li><b>Step 2a:</b> 1362 * If the retrieved member is not public and 1363 * {@code lookc} is not present, then 1364 * {@link SecurityManager#checkPermission smgr.checkPermission} 1365 * with {@code RuntimePermission("accessDeclaredMembers")} is called. 1366 * <li><b>Step 2b:</b> 1367 * If the retrieved class has a {@code null} class loader, 1368 * and {@code lookc} is not present, then 1369 * {@link SecurityManager#checkPermission smgr.checkPermission} 1370 * with {@code RuntimePermission("getClassLoader")} is called. 1371 * <li><b>Step 3:</b> 1372 * If the retrieved member is not public, 1373 * and if {@code lookc} is not present, 1374 * and if {@code defc} and {@code refc} are different, 1375 * then {@link SecurityManager#checkPackageAccess 1376 * smgr.checkPackageAccess(defcPkg)} is called, 1377 * where {@code defcPkg} is the package of {@code defc}. 1378 * </ul> 1379 * Security checks are performed after other access checks have passed. 1380 * Therefore, the above rules presuppose a member or class that is public, 1381 * or else that is being accessed from a lookup class that has 1382 * rights to access the member or class. 1383 * <p> 1384 * If a security manager is present and the current lookup object does not have 1385 * {@linkplain #hasFullPrivilegeAccess() full privilege access}, then 1386 * {@link #defineClass(byte[]) defineClass}, 1387 * {@link #defineHiddenClass(byte[], boolean, ClassOption...) defineHiddenClass}, 1388 * {@link #defineHiddenClassWithClassData(byte[], Object, boolean, ClassOption...) 1389 * defineHiddenClassWithClassData} 1390 * calls {@link SecurityManager#checkPermission smgr.checkPermission} 1391 * with {@code RuntimePermission("defineClass")}. 1392 * 1393 * <h2><a id="callsens"></a>Caller sensitive methods</h2> 1394 * A small number of Java methods have a special property called caller sensitivity. 1395 * A <em>caller-sensitive</em> method can behave differently depending on the 1396 * identity of its immediate caller. 1397 * <p> 1398 * If a method handle for a caller-sensitive method is requested, 1399 * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply, 1400 * but they take account of the lookup class in a special way. 1401 * The resulting method handle behaves as if it were called 1402 * from an instruction contained in the lookup class, 1403 * so that the caller-sensitive method detects the lookup class. 1404 * (By contrast, the invoker of the method handle is disregarded.) 1405 * Thus, in the case of caller-sensitive methods, 1406 * different lookup classes may give rise to 1407 * differently behaving method handles. 1408 * <p> 1409 * In cases where the lookup object is 1410 * {@link MethodHandles#publicLookup() publicLookup()}, 1411 * or some other lookup object without the 1412 * {@linkplain #ORIGINAL original access}, 1413 * the lookup class is disregarded. 1414 * In such cases, no caller-sensitive method handle can be created, 1415 * access is forbidden, and the lookup fails with an 1416 * {@code IllegalAccessException}. 1417 * <p style="font-size:smaller;"> 1418 * <em>Discussion:</em> 1419 * For example, the caller-sensitive method 1420 * {@link java.lang.Class#forName(String) Class.forName(x)} 1421 * can return varying classes or throw varying exceptions, 1422 * depending on the class loader of the class that calls it. 1423 * A public lookup of {@code Class.forName} will fail, because 1424 * there is no reasonable way to determine its bytecode behavior. 1425 * <p style="font-size:smaller;"> 1426 * If an application caches method handles for broad sharing, 1427 * it should use {@code publicLookup()} to create them. 1428 * If there is a lookup of {@code Class.forName}, it will fail, 1429 * and the application must take appropriate action in that case. 1430 * It may be that a later lookup, perhaps during the invocation of a 1431 * bootstrap method, can incorporate the specific identity 1432 * of the caller, making the method accessible. 1433 * <p style="font-size:smaller;"> 1434 * The function {@code MethodHandles.lookup} is caller sensitive 1435 * so that there can be a secure foundation for lookups. 1436 * Nearly all other methods in the JSR 292 API rely on lookup 1437 * objects to check access requests. 1438 */ 1439 public static final 1440 class Lookup { 1441 /** The class on behalf of whom the lookup is being performed. */ 1442 private final Class<?> lookupClass; 1443 1444 /** previous lookup class */ 1445 private final Class<?> prevLookupClass; 1446 1447 /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */ 1448 private final int allowedModes; 1449 1450 static { 1451 Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes")); 1452 } 1453 1454 /** A single-bit mask representing {@code public} access, 1455 * which may contribute to the result of {@link #lookupModes lookupModes}. 1456 * The value, {@code 0x01}, happens to be the same as the value of the 1457 * {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}. 1458 * <p> 1459 * A {@code Lookup} with this lookup mode performs cross-module access check 1460 * with respect to the {@linkplain #lookupClass() lookup class} and 1461 * {@linkplain #previousLookupClass() previous lookup class} if present. 1462 */ 1463 public static final int PUBLIC = Modifier.PUBLIC; 1464 1465 /** A single-bit mask representing {@code private} access, 1466 * which may contribute to the result of {@link #lookupModes lookupModes}. 1467 * The value, {@code 0x02}, happens to be the same as the value of the 1468 * {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}. 1469 */ 1470 public static final int PRIVATE = Modifier.PRIVATE; 1471 1472 /** A single-bit mask representing {@code protected} access, 1473 * which may contribute to the result of {@link #lookupModes lookupModes}. 1474 * The value, {@code 0x04}, happens to be the same as the value of the 1475 * {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}. 1476 */ 1477 public static final int PROTECTED = Modifier.PROTECTED; 1478 1479 /** A single-bit mask representing {@code package} access (default access), 1480 * which may contribute to the result of {@link #lookupModes lookupModes}. 1481 * The value is {@code 0x08}, which does not correspond meaningfully to 1482 * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. 1483 */ 1484 public static final int PACKAGE = Modifier.STATIC; 1485 1486 /** A single-bit mask representing {@code module} access, 1487 * which may contribute to the result of {@link #lookupModes lookupModes}. 1488 * The value is {@code 0x10}, which does not correspond meaningfully to 1489 * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. 1490 * In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup} 1491 * with this lookup mode can access all public types in the module of the 1492 * lookup class and public types in packages exported by other modules 1493 * to the module of the lookup class. 1494 * <p> 1495 * If this lookup mode is set, the {@linkplain #previousLookupClass() 1496 * previous lookup class} is always {@code null}. 1497 * 1498 * @since 9 1499 */ 1500 public static final int MODULE = PACKAGE << 1; 1501 1502 /** A single-bit mask representing {@code unconditional} access 1503 * which may contribute to the result of {@link #lookupModes lookupModes}. 1504 * The value is {@code 0x20}, which does not correspond meaningfully to 1505 * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. 1506 * A {@code Lookup} with this lookup mode assumes {@linkplain 1507 * java.lang.Module#canRead(java.lang.Module) readability}. 1508 * This lookup mode can access all public members of public types 1509 * of all modules when the type is in a package that is {@link 1510 * java.lang.Module#isExported(String) exported unconditionally}. 1511 * 1512 * <p> 1513 * If this lookup mode is set, the {@linkplain #previousLookupClass() 1514 * previous lookup class} is always {@code null}. 1515 * 1516 * @since 9 1517 * @see #publicLookup() 1518 */ 1519 public static final int UNCONDITIONAL = PACKAGE << 2; 1520 1521 /** A single-bit mask representing {@code original} access 1522 * which may contribute to the result of {@link #lookupModes lookupModes}. 1523 * The value is {@code 0x40}, which does not correspond meaningfully to 1524 * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. 1525 * 1526 * <p> 1527 * If this lookup mode is set, the {@code Lookup} object must be 1528 * created by the original lookup class by calling 1529 * {@link MethodHandles#lookup()} method or by a bootstrap method 1530 * invoked by the VM. The {@code Lookup} object with this lookup 1531 * mode has {@linkplain #hasFullPrivilegeAccess() full privilege access}. 1532 * 1533 * @since 16 1534 */ 1535 public static final int ORIGINAL = PACKAGE << 3; 1536 1537 private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL | ORIGINAL); 1538 private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL); // with original access 1539 private static final int TRUSTED = -1; 1540 1541 /* 1542 * Adjust PUBLIC => PUBLIC|MODULE|ORIGINAL|UNCONDITIONAL 1543 * Adjust 0 => PACKAGE 1544 */ 1545 private static int fixmods(int mods) { 1546 mods &= (ALL_MODES - PACKAGE - MODULE - ORIGINAL - UNCONDITIONAL); 1547 if (Modifier.isPublic(mods)) 1548 mods |= UNCONDITIONAL; 1549 return (mods != 0) ? mods : PACKAGE; 1550 } 1551 1552 /** Tells which class is performing the lookup. It is this class against 1553 * which checks are performed for visibility and access permissions. 1554 * <p> 1555 * If this lookup object has a {@linkplain #previousLookupClass() previous lookup class}, 1556 * access checks are performed against both the lookup class and the previous lookup class. 1557 * <p> 1558 * The class implies a maximum level of access permission, 1559 * but the permissions may be additionally limited by the bitmask 1560 * {@link #lookupModes lookupModes}, which controls whether non-public members 1561 * can be accessed. 1562 * @return the lookup class, on behalf of which this lookup object finds members 1563 * @see <a href="#cross-module-lookup">Cross-module lookups</a> 1564 */ 1565 public Class<?> lookupClass() { 1566 return lookupClass; 1567 } 1568 1569 /** Reports a lookup class in another module that this lookup object 1570 * was previously teleported from, or {@code null}. 1571 * <p> 1572 * A {@code Lookup} object produced by the factory methods, such as the 1573 * {@link #lookup() lookup()} and {@link #publicLookup() publicLookup()} method, 1574 * has {@code null} previous lookup class. 1575 * A {@code Lookup} object has a non-null previous lookup class 1576 * when this lookup was teleported from an old lookup class 1577 * in one module to a new lookup class in another module. 1578 * 1579 * @return the lookup class in another module that this lookup object was 1580 * previously teleported from, or {@code null} 1581 * @since 14 1582 * @see #in(Class) 1583 * @see MethodHandles#privateLookupIn(Class, Lookup) 1584 * @see <a href="#cross-module-lookup">Cross-module lookups</a> 1585 */ 1586 public Class<?> previousLookupClass() { 1587 return prevLookupClass; 1588 } 1589 1590 // This is just for calling out to MethodHandleImpl. 1591 private Class<?> lookupClassOrNull() { 1592 return (allowedModes == TRUSTED) ? null : lookupClass; 1593 } 1594 1595 /** Tells which access-protection classes of members this lookup object can produce. 1596 * The result is a bit-mask of the bits 1597 * {@linkplain #PUBLIC PUBLIC (0x01)}, 1598 * {@linkplain #PRIVATE PRIVATE (0x02)}, 1599 * {@linkplain #PROTECTED PROTECTED (0x04)}, 1600 * {@linkplain #PACKAGE PACKAGE (0x08)}, 1601 * {@linkplain #MODULE MODULE (0x10)}, 1602 * {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}, 1603 * and {@linkplain #ORIGINAL ORIGINAL (0x40)}. 1604 * <p> 1605 * A freshly-created lookup object 1606 * on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has 1607 * all possible bits set, except {@code UNCONDITIONAL}. 1608 * A lookup object on a new lookup class 1609 * {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object} 1610 * may have some mode bits set to zero. 1611 * Mode bits can also be 1612 * {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}. 1613 * Once cleared, mode bits cannot be restored from the downgraded lookup object. 1614 * The purpose of this is to restrict access via the new lookup object, 1615 * so that it can access only names which can be reached by the original 1616 * lookup object, and also by the new lookup class. 1617 * @return the lookup modes, which limit the kinds of access performed by this lookup object 1618 * @see #in 1619 * @see #dropLookupMode 1620 */ 1621 public int lookupModes() { 1622 return allowedModes & ALL_MODES; 1623 } 1624 1625 /** Embody the current class (the lookupClass) as a lookup class 1626 * for method handle creation. 1627 * Must be called by from a method in this package, 1628 * which in turn is called by a method not in this package. 1629 */ 1630 Lookup(Class<?> lookupClass) { 1631 this(lookupClass, null, FULL_POWER_MODES); 1632 } 1633 1634 private Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) { 1635 assert prevLookupClass == null || ((allowedModes & MODULE) == 0 1636 && prevLookupClass.getModule() != lookupClass.getModule()); 1637 assert !lookupClass.isArray() && !lookupClass.isPrimitive(); 1638 this.lookupClass = lookupClass; 1639 this.prevLookupClass = prevLookupClass; 1640 this.allowedModes = allowedModes; 1641 } 1642 1643 private static Lookup newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) { 1644 // make sure we haven't accidentally picked up a privileged class: 1645 checkUnprivilegedlookupClass(lookupClass); 1646 return new Lookup(lookupClass, prevLookupClass, allowedModes); 1647 } 1648 1649 /** 1650 * Creates a lookup on the specified new lookup class. 1651 * The resulting object will report the specified 1652 * class as its own {@link #lookupClass() lookupClass}. 1653 * 1654 * <p> 1655 * However, the resulting {@code Lookup} object is guaranteed 1656 * to have no more access capabilities than the original. 1657 * In particular, access capabilities can be lost as follows:<ul> 1658 * <li>If the new lookup class is different from the old lookup class, 1659 * i.e. {@link #ORIGINAL ORIGINAL} access is lost. 1660 * <li>If the new lookup class is in a different module from the old one, 1661 * i.e. {@link #MODULE MODULE} access is lost. 1662 * <li>If the new lookup class is in a different package 1663 * than the old one, protected and default (package) members will not be accessible, 1664 * i.e. {@link #PROTECTED PROTECTED} and {@link #PACKAGE PACKAGE} access are lost. 1665 * <li>If the new lookup class is not within the same package member 1666 * as the old one, private members will not be accessible, and protected members 1667 * will not be accessible by virtue of inheritance, 1668 * i.e. {@link #PRIVATE PRIVATE} access is lost. 1669 * (Protected members may continue to be accessible because of package sharing.) 1670 * <li>If the new lookup class is not 1671 * {@linkplain #accessClass(Class) accessible} to this lookup, 1672 * then no members, not even public members, will be accessible 1673 * i.e. all access modes are lost. 1674 * <li>If the new lookup class, the old lookup class and the previous lookup class 1675 * are all in different modules i.e. teleporting to a third module, 1676 * all access modes are lost. 1677 * </ul> 1678 * <p> 1679 * The new previous lookup class is chosen as follows: 1680 * <ul> 1681 * <li>If the new lookup object has {@link #UNCONDITIONAL UNCONDITIONAL} bit, 1682 * the new previous lookup class is {@code null}. 1683 * <li>If the new lookup class is in the same module as the old lookup class, 1684 * the new previous lookup class is the old previous lookup class. 1685 * <li>If the new lookup class is in a different module from the old lookup class, 1686 * the new previous lookup class is the old lookup class. 1687 *</ul> 1688 * <p> 1689 * The resulting lookup's capabilities for loading classes 1690 * (used during {@link #findClass} invocations) 1691 * are determined by the lookup class' loader, 1692 * which may change due to this operation. 1693 * 1694 * @param requestedLookupClass the desired lookup class for the new lookup object 1695 * @return a lookup object which reports the desired lookup class, or the same object 1696 * if there is no change 1697 * @throws IllegalArgumentException if {@code requestedLookupClass} is a primitive type or void or array class 1698 * @throws NullPointerException if the argument is null 1699 * 1700 * @see #accessClass(Class) 1701 * @see <a href="#cross-module-lookup">Cross-module lookups</a> 1702 */ 1703 public Lookup in(Class<?> requestedLookupClass) { 1704 Objects.requireNonNull(requestedLookupClass); 1705 if (requestedLookupClass.isPrimitive()) 1706 throw new IllegalArgumentException(requestedLookupClass + " is a primitive class"); 1707 if (requestedLookupClass.isArray()) 1708 throw new IllegalArgumentException(requestedLookupClass + " is an array class"); 1709 1710 if (allowedModes == TRUSTED) // IMPL_LOOKUP can make any lookup at all 1711 return new Lookup(requestedLookupClass, null, FULL_POWER_MODES); 1712 if (requestedLookupClass == this.lookupClass) 1713 return this; // keep same capabilities 1714 int newModes = (allowedModes & FULL_POWER_MODES) & ~ORIGINAL; 1715 Module fromModule = this.lookupClass.getModule(); 1716 Module targetModule = requestedLookupClass.getModule(); 1717 Class<?> plc = this.previousLookupClass(); 1718 if ((this.allowedModes & UNCONDITIONAL) != 0) { 1719 assert plc == null; 1720 newModes = UNCONDITIONAL; 1721 } else if (fromModule != targetModule) { 1722 if (plc != null && !VerifyAccess.isSameModule(plc, requestedLookupClass)) { 1723 // allow hopping back and forth between fromModule and plc's module 1724 // but not the third module 1725 newModes = 0; 1726 } 1727 // drop MODULE access 1728 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED); 1729 // teleport from this lookup class 1730 plc = this.lookupClass; 1731 } 1732 if ((newModes & PACKAGE) != 0 1733 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) { 1734 newModes &= ~(PACKAGE|PRIVATE|PROTECTED); 1735 } 1736 // Allow nestmate lookups to be created without special privilege: 1737 if ((newModes & PRIVATE) != 0 1738 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) { 1739 newModes &= ~(PRIVATE|PROTECTED); 1740 } 1741 if ((newModes & (PUBLIC|UNCONDITIONAL)) != 0 1742 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, this.prevLookupClass, allowedModes)) { 1743 // The requested class it not accessible from the lookup class. 1744 // No permissions. 1745 newModes = 0; 1746 } 1747 return newLookup(requestedLookupClass, plc, newModes); 1748 } 1749 1750 /** 1751 * Creates a lookup on the same lookup class which this lookup object 1752 * finds members, but with a lookup mode that has lost the given lookup mode. 1753 * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE 1754 * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED}, 1755 * {@link #PRIVATE PRIVATE}, {@link #ORIGINAL ORIGINAL}, or 1756 * {@link #UNCONDITIONAL UNCONDITIONAL}. 1757 * 1758 * <p> If this lookup is a {@linkplain MethodHandles#publicLookup() public lookup}, 1759 * this lookup has {@code UNCONDITIONAL} mode set and it has no other mode set. 1760 * When dropping {@code UNCONDITIONAL} on a public lookup then the resulting 1761 * lookup has no access. 1762 * 1763 * <p> If this lookup is not a public lookup, then the following applies 1764 * regardless of its {@linkplain #lookupModes() lookup modes}. 1765 * {@link #PROTECTED PROTECTED} and {@link #ORIGINAL ORIGINAL} are always 1766 * dropped and so the resulting lookup mode will never have these access 1767 * capabilities. When dropping {@code PACKAGE} 1768 * then the resulting lookup will not have {@code PACKAGE} or {@code PRIVATE} 1769 * access. When dropping {@code MODULE} then the resulting lookup will not 1770 * have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. 1771 * When dropping {@code PUBLIC} then the resulting lookup has no access. 1772 * 1773 * @apiNote 1774 * A lookup with {@code PACKAGE} but not {@code PRIVATE} mode can safely 1775 * delegate non-public access within the package of the lookup class without 1776 * conferring <a href="MethodHandles.Lookup.html#privacc">private access</a>. 1777 * A lookup with {@code MODULE} but not 1778 * {@code PACKAGE} mode can safely delegate {@code PUBLIC} access within 1779 * the module of the lookup class without conferring package access. 1780 * A lookup with a {@linkplain #previousLookupClass() previous lookup class} 1781 * (and {@code PUBLIC} but not {@code MODULE} mode) can safely delegate access 1782 * to public classes accessible to both the module of the lookup class 1783 * and the module of the previous lookup class. 1784 * 1785 * @param modeToDrop the lookup mode to drop 1786 * @return a lookup object which lacks the indicated mode, or the same object if there is no change 1787 * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC}, 1788 * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE}, {@code ORIGINAL} 1789 * or {@code UNCONDITIONAL} 1790 * @see MethodHandles#privateLookupIn 1791 * @since 9 1792 */ 1793 public Lookup dropLookupMode(int modeToDrop) { 1794 int oldModes = lookupModes(); 1795 int newModes = oldModes & ~(modeToDrop | PROTECTED | ORIGINAL); 1796 switch (modeToDrop) { 1797 case PUBLIC: newModes &= ~(FULL_POWER_MODES); break; 1798 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break; 1799 case PACKAGE: newModes &= ~(PRIVATE); break; 1800 case PROTECTED: 1801 case PRIVATE: 1802 case ORIGINAL: 1803 case UNCONDITIONAL: break; 1804 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop"); 1805 } 1806 if (newModes == oldModes) return this; // return self if no change 1807 return newLookup(lookupClass(), previousLookupClass(), newModes); 1808 } 1809 1810 /** 1811 * Creates and links a class or interface from {@code bytes} 1812 * with the same class loader and in the same runtime package and 1813 * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's 1814 * {@linkplain #lookupClass() lookup class} as if calling 1815 * {@link ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain) 1816 * ClassLoader::defineClass}. 1817 * 1818 * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include 1819 * {@link #PACKAGE PACKAGE} access as default (package) members will be 1820 * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate 1821 * that the lookup object was created by a caller in the runtime package (or derived 1822 * from a lookup originally created by suitably privileged code to a target class in 1823 * the runtime package). </p> 1824 * 1825 * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined 1826 * by the <em>The Java Virtual Machine Specification</em>) with a class name in the 1827 * same package as the lookup class. </p> 1828 * 1829 * <p> This method does not run the class initializer. The class initializer may 1830 * run at a later time, as detailed in section 12.4 of the <em>The Java Language 1831 * Specification</em>. </p> 1832 * 1833 * <p> If there is a security manager and this lookup does not have {@linkplain 1834 * #hasFullPrivilegeAccess() full privilege access}, its {@code checkPermission} method 1835 * is first called to check {@code RuntimePermission("defineClass")}. </p> 1836 * 1837 * @param bytes the class bytes 1838 * @return the {@code Class} object for the class 1839 * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access 1840 * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure 1841 * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package 1842 * than the lookup class or {@code bytes} is not a class or interface 1843 * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item) 1844 * @throws VerifyError if the newly created class cannot be verified 1845 * @throws LinkageError if the newly created class cannot be linked for any other reason 1846 * @throws SecurityException if a security manager is present and it 1847 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1848 * @throws NullPointerException if {@code bytes} is {@code null} 1849 * @since 9 1850 * @see Lookup#privateLookupIn 1851 * @see Lookup#dropLookupMode 1852 * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain) 1853 */ 1854 public Class<?> defineClass(byte[] bytes) throws IllegalAccessException { 1855 ensureDefineClassPermission(); 1856 if ((lookupModes() & PACKAGE) == 0) 1857 throw new IllegalAccessException("Lookup does not have PACKAGE access"); 1858 return makeClassDefiner(bytes.clone()).defineClass(false); 1859 } 1860 1861 private void ensureDefineClassPermission() { 1862 if (allowedModes == TRUSTED) return; 1863 1864 if (!hasFullPrivilegeAccess()) { 1865 @SuppressWarnings("removal") 1866 SecurityManager sm = System.getSecurityManager(); 1867 if (sm != null) 1868 sm.checkPermission(new RuntimePermission("defineClass")); 1869 } 1870 } 1871 1872 /** 1873 * The set of class options that specify whether a hidden class created by 1874 * {@link Lookup#defineHiddenClass(byte[], boolean, ClassOption...) 1875 * Lookup::defineHiddenClass} method is dynamically added as a new member 1876 * to the nest of a lookup class and/or whether a hidden class has 1877 * a strong relationship with the class loader marked as its defining loader. 1878 * 1879 * @since 15 1880 */ 1881 public enum ClassOption { 1882 /** 1883 * Specifies that a hidden class be added to {@linkplain Class#getNestHost nest} 1884 * of a lookup class as a nestmate. 1885 * 1886 * <p> A hidden nestmate class has access to the private members of all 1887 * classes and interfaces in the same nest. 1888 * 1889 * @see Class#getNestHost() 1890 */ 1891 NESTMATE(NESTMATE_CLASS), 1892 1893 /** 1894 * Specifies that a hidden class has a <em>strong</em> 1895 * relationship with the class loader marked as its defining loader, 1896 * as a normal class or interface has with its own defining loader. 1897 * This means that the hidden class may be unloaded if and only if 1898 * its defining loader is not reachable and thus may be reclaimed 1899 * by a garbage collector (JLS {@jls 12.7}). 1900 * 1901 * <p> By default, a hidden class or interface may be unloaded 1902 * even if the class loader that is marked as its defining loader is 1903 * <a href="../ref/package-summary.html#reachability">reachable</a>. 1904 1905 * 1906 * @jls 12.7 Unloading of Classes and Interfaces 1907 */ 1908 STRONG(STRONG_LOADER_LINK); 1909 1910 /* the flag value is used by VM at define class time */ 1911 private final int flag; 1912 ClassOption(int flag) { 1913 this.flag = flag; 1914 } 1915 1916 static int optionsToFlag(Set<ClassOption> options) { 1917 int flags = 0; 1918 for (ClassOption cp : options) { 1919 flags |= cp.flag; 1920 } 1921 return flags; 1922 } 1923 } 1924 1925 /** 1926 * Creates a <em>hidden</em> class or interface from {@code bytes}, 1927 * returning a {@code Lookup} on the newly created class or interface. 1928 * 1929 * <p> Ordinarily, a class or interface {@code C} is created by a class loader, 1930 * which either defines {@code C} directly or delegates to another class loader. 1931 * A class loader defines {@code C} directly by invoking 1932 * {@link ClassLoader#defineClass(String, byte[], int, int, ProtectionDomain) 1933 * ClassLoader::defineClass}, which causes the Java Virtual Machine 1934 * to derive {@code C} from a purported representation in {@code class} file format. 1935 * In situations where use of a class loader is undesirable, a class or interface 1936 * {@code C} can be created by this method instead. This method is capable of 1937 * defining {@code C}, and thereby creating it, without invoking 1938 * {@code ClassLoader::defineClass}. 1939 * Instead, this method defines {@code C} as if by arranging for 1940 * the Java Virtual Machine to derive a nonarray class or interface {@code C} 1941 * from a purported representation in {@code class} file format 1942 * using the following rules: 1943 * 1944 * <ol> 1945 * <li> The {@linkplain #lookupModes() lookup modes} for this {@code Lookup} 1946 * must include {@linkplain #hasFullPrivilegeAccess() full privilege} access. 1947 * This level of access is needed to create {@code C} in the module 1948 * of the lookup class of this {@code Lookup}.</li> 1949 * 1950 * <li> The purported representation in {@code bytes} must be a {@code ClassFile} 1951 * structure (JVMS {@jvms 4.1}) of a supported major and minor version. 1952 * The major and minor version may differ from the {@code class} file version 1953 * of the lookup class of this {@code Lookup}.</li> 1954 * 1955 * <li> The value of {@code this_class} must be a valid index in the 1956 * {@code constant_pool} table, and the entry at that index must be a valid 1957 * {@code CONSTANT_Class_info} structure. Let {@code N} be the binary name 1958 * encoded in internal form that is specified by this structure. {@code N} must 1959 * denote a class or interface in the same package as the lookup class.</li> 1960 * 1961 * <li> Let {@code CN} be the string {@code N + "." + <suffix>}, 1962 * where {@code <suffix>} is an unqualified name. 1963 * 1964 * <p> Let {@code newBytes} be the {@code ClassFile} structure given by 1965 * {@code bytes} with an additional entry in the {@code constant_pool} table, 1966 * indicating a {@code CONSTANT_Utf8_info} structure for {@code CN}, and 1967 * where the {@code CONSTANT_Class_info} structure indicated by {@code this_class} 1968 * refers to the new {@code CONSTANT_Utf8_info} structure. 1969 * 1970 * <p> Let {@code L} be the defining class loader of the lookup class of this {@code Lookup}. 1971 * 1972 * <p> {@code C} is derived with name {@code CN}, class loader {@code L}, and 1973 * purported representation {@code newBytes} as if by the rules of JVMS {@jvms 5.3.5}, 1974 * with the following adjustments: 1975 * <ul> 1976 * <li> The constant indicated by {@code this_class} is permitted to specify a name 1977 * that includes a single {@code "."} character, even though this is not a valid 1978 * binary class or interface name in internal form.</li> 1979 * 1980 * <li> The Java Virtual Machine marks {@code L} as the defining class loader of {@code C}, 1981 * but no class loader is recorded as an initiating class loader of {@code C}.</li> 1982 * 1983 * <li> {@code C} is considered to have the same runtime 1984 * {@linkplain Class#getPackage() package}, {@linkplain Class#getModule() module} 1985 * and {@linkplain java.security.ProtectionDomain protection domain} 1986 * as the lookup class of this {@code Lookup}. 1987 * <li> Let {@code GN} be the binary name obtained by taking {@code N} 1988 * (a binary name encoded in internal form) and replacing ASCII forward slashes with 1989 * ASCII periods. For the instance of {@link java.lang.Class} representing {@code C}: 1990 * <ul> 1991 * <li> {@link Class#getName()} returns the string {@code GN + "/" + <suffix>}, 1992 * even though this is not a valid binary class or interface name.</li> 1993 * <li> {@link Class#descriptorString()} returns the string 1994 * {@code "L" + N + "." + <suffix> + ";"}, 1995 * even though this is not a valid type descriptor name.</li> 1996 * <li> {@link Class#describeConstable()} returns an empty optional as {@code C} 1997 * cannot be described in {@linkplain java.lang.constant.ClassDesc nominal form}.</li> 1998 * </ul> 1999 * </ul> 2000 * </li> 2001 * </ol> 2002 * 2003 * <p> After {@code C} is derived, it is linked by the Java Virtual Machine. 2004 * Linkage occurs as specified in JVMS {@jvms 5.4.3}, with the following adjustments: 2005 * <ul> 2006 * <li> During verification, whenever it is necessary to load the class named 2007 * {@code CN}, the attempt succeeds, producing class {@code C}. No request is 2008 * made of any class loader.</li> 2009 * 2010 * <li> On any attempt to resolve the entry in the run-time constant pool indicated 2011 * by {@code this_class}, the symbolic reference is considered to be resolved to 2012 * {@code C} and resolution always succeeds immediately.</li> 2013 * </ul> 2014 * 2015 * <p> If the {@code initialize} parameter is {@code true}, 2016 * then {@code C} is initialized by the Java Virtual Machine. 2017 * 2018 * <p> The newly created class or interface {@code C} serves as the 2019 * {@linkplain #lookupClass() lookup class} of the {@code Lookup} object 2020 * returned by this method. {@code C} is <em>hidden</em> in the sense that 2021 * no other class or interface can refer to {@code C} via a constant pool entry. 2022 * That is, a hidden class or interface cannot be named as a supertype, a field type, 2023 * a method parameter type, or a method return type by any other class. 2024 * This is because a hidden class or interface does not have a binary name, so 2025 * there is no internal form available to record in any class's constant pool. 2026 * A hidden class or interface is not discoverable by {@link Class#forName(String, boolean, ClassLoader)}, 2027 * {@link ClassLoader#loadClass(String, boolean)}, or {@link #findClass(String)}, and 2028 * is not {@linkplain java.instrument/java.lang.instrument.Instrumentation#isModifiableClass(Class) 2029 * modifiable} by Java agents or tool agents using the <a href="{@docRoot}/../specs/jvmti.html"> 2030 * JVM Tool Interface</a>. 2031 * 2032 * <p> A class or interface created by 2033 * {@linkplain ClassLoader#defineClass(String, byte[], int, int, ProtectionDomain) 2034 * a class loader} has a strong relationship with that class loader. 2035 * That is, every {@code Class} object contains a reference to the {@code ClassLoader} 2036 * that {@linkplain Class#getClassLoader() defined it}. 2037 * This means that a class created by a class loader may be unloaded if and 2038 * only if its defining loader is not reachable and thus may be reclaimed 2039 * by a garbage collector (JLS {@jls 12.7}). 2040 * 2041 * By default, however, a hidden class or interface may be unloaded even if 2042 * the class loader that is marked as its defining loader is 2043 * <a href="../ref/package-summary.html#reachability">reachable</a>. 2044 * This behavior is useful when a hidden class or interface serves multiple 2045 * classes defined by arbitrary class loaders. In other cases, a hidden 2046 * class or interface may be linked to a single class (or a small number of classes) 2047 * with the same defining loader as the hidden class or interface. 2048 * In such cases, where the hidden class or interface must be coterminous 2049 * with a normal class or interface, the {@link ClassOption#STRONG STRONG} 2050 * option may be passed in {@code options}. 2051 * This arranges for a hidden class to have the same strong relationship 2052 * with the class loader marked as its defining loader, 2053 * as a normal class or interface has with its own defining loader. 2054 * 2055 * If {@code STRONG} is not used, then the invoker of {@code defineHiddenClass} 2056 * may still prevent a hidden class or interface from being 2057 * unloaded by ensuring that the {@code Class} object is reachable. 2058 * 2059 * <p> The unloading characteristics are set for each hidden class when it is 2060 * defined, and cannot be changed later. An advantage of allowing hidden classes 2061 * to be unloaded independently of the class loader marked as their defining loader 2062 * is that a very large number of hidden classes may be created by an application. 2063 * In contrast, if {@code STRONG} is used, then the JVM may run out of memory, 2064 * just as if normal classes were created by class loaders. 2065 * 2066 * <p> Classes and interfaces in a nest are allowed to have mutual access to 2067 * their private members. The nest relationship is determined by 2068 * the {@code NestHost} attribute (JVMS {@jvms 4.7.28}) and 2069 * the {@code NestMembers} attribute (JVMS {@jvms 4.7.29}) in a {@code class} file. 2070 * By default, a hidden class belongs to a nest consisting only of itself 2071 * because a hidden class has no binary name. 2072 * The {@link ClassOption#NESTMATE NESTMATE} option can be passed in {@code options} 2073 * to create a hidden class or interface {@code C} as a member of a nest. 2074 * The nest to which {@code C} belongs is not based on any {@code NestHost} attribute 2075 * in the {@code ClassFile} structure from which {@code C} was derived. 2076 * Instead, the following rules determine the nest host of {@code C}: 2077 * <ul> 2078 * <li>If the nest host of the lookup class of this {@code Lookup} has previously 2079 * been determined, then let {@code H} be the nest host of the lookup class. 2080 * Otherwise, the nest host of the lookup class is determined using the 2081 * algorithm in JVMS {@jvms 5.4.4}, yielding {@code H}.</li> 2082 * <li>The nest host of {@code C} is determined to be {@code H}, 2083 * the nest host of the lookup class.</li> 2084 * </ul> 2085 * 2086 * <p> A hidden class or interface may be serializable, but this requires a custom 2087 * serialization mechanism in order to ensure that instances are properly serialized 2088 * and deserialized. The default serialization mechanism supports only classes and 2089 * interfaces that are discoverable by their class name. 2090 * 2091 * @param bytes the bytes that make up the class data, 2092 * in the format of a valid {@code class} file as defined by 2093 * <cite>The Java Virtual Machine Specification</cite>. 2094 * @param initialize if {@code true} the class will be initialized. 2095 * @param options {@linkplain ClassOption class options} 2096 * @return the {@code Lookup} object on the hidden class, 2097 * with {@linkplain #ORIGINAL original} and 2098 * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege} access 2099 * 2100 * @throws IllegalAccessException if this {@code Lookup} does not have 2101 * {@linkplain #hasFullPrivilegeAccess() full privilege} access 2102 * @throws SecurityException if a security manager is present and it 2103 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 2104 * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure 2105 * @throws UnsupportedClassVersionError if {@code bytes} is not of a supported major or minor version 2106 * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package 2107 * than the lookup class or {@code bytes} is not a class or interface 2108 * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item) 2109 * @throws IncompatibleClassChangeError if the class or interface named as 2110 * the direct superclass of {@code C} is in fact an interface, or if any of the classes 2111 * or interfaces named as direct superinterfaces of {@code C} are not in fact interfaces 2112 * @throws ClassCircularityError if any of the superclasses or superinterfaces of 2113 * {@code C} is {@code C} itself 2114 * @throws VerifyError if the newly created class cannot be verified 2115 * @throws LinkageError if the newly created class cannot be linked for any other reason 2116 * @throws NullPointerException if any parameter is {@code null} 2117 * 2118 * @since 15 2119 * @see Class#isHidden() 2120 * @jvms 4.2.1 Binary Class and Interface Names 2121 * @jvms 4.2.2 Unqualified Names 2122 * @jvms 4.7.28 The {@code NestHost} Attribute 2123 * @jvms 4.7.29 The {@code NestMembers} Attribute 2124 * @jvms 5.4.3.1 Class and Interface Resolution 2125 * @jvms 5.4.4 Access Control 2126 * @jvms 5.3.5 Deriving a {@code Class} from a {@code class} File Representation 2127 * @jvms 5.4 Linking 2128 * @jvms 5.5 Initialization 2129 * @jls 12.7 Unloading of Classes and Interfaces 2130 */ 2131 @SuppressWarnings("doclint:reference") // cross-module links 2132 public Lookup defineHiddenClass(byte[] bytes, boolean initialize, ClassOption... options) 2133 throws IllegalAccessException 2134 { 2135 Objects.requireNonNull(bytes); 2136 Objects.requireNonNull(options); 2137 2138 ensureDefineClassPermission(); 2139 if (!hasFullPrivilegeAccess()) { 2140 throw new IllegalAccessException(this + " does not have full privilege access"); 2141 } 2142 2143 return makeHiddenClassDefiner(bytes.clone(), Set.of(options), false).defineClassAsLookup(initialize); 2144 } 2145 2146 /** 2147 * Creates a <em>hidden</em> class or interface from {@code bytes} with associated 2148 * {@linkplain MethodHandles#classData(Lookup, String, Class) class data}, 2149 * returning a {@code Lookup} on the newly created class or interface. 2150 * 2151 * <p> This method is equivalent to calling 2152 * {@link #defineHiddenClass(byte[], boolean, ClassOption...) defineHiddenClass(bytes, initialize, options)} 2153 * as if the hidden class is injected with a private static final <i>unnamed</i> 2154 * field which is initialized with the given {@code classData} at 2155 * the first instruction of the class initializer. 2156 * The newly created class is linked by the Java Virtual Machine. 2157 * 2158 * <p> The {@link MethodHandles#classData(Lookup, String, Class) MethodHandles::classData} 2159 * and {@link MethodHandles#classDataAt(Lookup, String, Class, int) MethodHandles::classDataAt} 2160 * methods can be used to retrieve the {@code classData}. 2161 * 2162 * @apiNote 2163 * A framework can create a hidden class with class data with one or more 2164 * objects and load the class data as dynamically-computed constant(s) 2165 * via a bootstrap method. {@link MethodHandles#classData(Lookup, String, Class) 2166 * Class data} is accessible only to the lookup object created by the newly 2167 * defined hidden class but inaccessible to other members in the same nest 2168 * (unlike private static fields that are accessible to nestmates). 2169 * Care should be taken w.r.t. mutability for example when passing 2170 * an array or other mutable structure through the class data. 2171 * Changing any value stored in the class data at runtime may lead to 2172 * unpredictable behavior. 2173 * If the class data is a {@code List}, it is good practice to make it 2174 * unmodifiable for example via {@link List#of List::of}. 2175 * 2176 * @param bytes the class bytes 2177 * @param classData pre-initialized class data 2178 * @param initialize if {@code true} the class will be initialized. 2179 * @param options {@linkplain ClassOption class options} 2180 * @return the {@code Lookup} object on the hidden class, 2181 * with {@linkplain #ORIGINAL original} and 2182 * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege} access 2183 * 2184 * @throws IllegalAccessException if this {@code Lookup} does not have 2185 * {@linkplain #hasFullPrivilegeAccess() full privilege} access 2186 * @throws SecurityException if a security manager is present and it 2187 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 2188 * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure 2189 * @throws UnsupportedClassVersionError if {@code bytes} is not of a supported major or minor version 2190 * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package 2191 * than the lookup class or {@code bytes} is not a class or interface 2192 * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item) 2193 * @throws IncompatibleClassChangeError if the class or interface named as 2194 * the direct superclass of {@code C} is in fact an interface, or if any of the classes 2195 * or interfaces named as direct superinterfaces of {@code C} are not in fact interfaces 2196 * @throws ClassCircularityError if any of the superclasses or superinterfaces of 2197 * {@code C} is {@code C} itself 2198 * @throws VerifyError if the newly created class cannot be verified 2199 * @throws LinkageError if the newly created class cannot be linked for any other reason 2200 * @throws NullPointerException if any parameter is {@code null} 2201 * 2202 * @since 16 2203 * @see Lookup#defineHiddenClass(byte[], boolean, ClassOption...) 2204 * @see Class#isHidden() 2205 * @see MethodHandles#classData(Lookup, String, Class) 2206 * @see MethodHandles#classDataAt(Lookup, String, Class, int) 2207 * @jvms 4.2.1 Binary Class and Interface Names 2208 * @jvms 4.2.2 Unqualified Names 2209 * @jvms 4.7.28 The {@code NestHost} Attribute 2210 * @jvms 4.7.29 The {@code NestMembers} Attribute 2211 * @jvms 5.4.3.1 Class and Interface Resolution 2212 * @jvms 5.4.4 Access Control 2213 * @jvms 5.3.5 Deriving a {@code Class} from a {@code class} File Representation 2214 * @jvms 5.4 Linking 2215 * @jvms 5.5 Initialization 2216 * @jls 12.7 Unloading of Classes and Interface 2217 */ 2218 public Lookup defineHiddenClassWithClassData(byte[] bytes, Object classData, boolean initialize, ClassOption... options) 2219 throws IllegalAccessException 2220 { 2221 Objects.requireNonNull(bytes); 2222 Objects.requireNonNull(classData); 2223 Objects.requireNonNull(options); 2224 2225 ensureDefineClassPermission(); 2226 if (!hasFullPrivilegeAccess()) { 2227 throw new IllegalAccessException(this + " does not have full privilege access"); 2228 } 2229 2230 return makeHiddenClassDefiner(bytes.clone(), Set.of(options), false) 2231 .defineClassAsLookup(initialize, classData); 2232 } 2233 2234 // A default dumper for writing class files passed to Lookup::defineClass 2235 // and Lookup::defineHiddenClass to disk for debugging purposes. To enable, 2236 // set -Djdk.invoke.MethodHandle.dumpHiddenClassFiles or 2237 // -Djdk.invoke.MethodHandle.dumpHiddenClassFiles=true 2238 // 2239 // This default dumper does not dump hidden classes defined by LambdaMetafactory 2240 // and LambdaForms and method handle internals. They are dumped via 2241 // different ClassFileDumpers. 2242 private static ClassFileDumper defaultDumper() { 2243 return DEFAULT_DUMPER; 2244 } 2245 2246 private static final ClassFileDumper DEFAULT_DUMPER = ClassFileDumper.getInstance( 2247 "jdk.invoke.MethodHandle.dumpClassFiles", "DUMP_CLASS_FILES"); 2248 2249 static class ClassFile { 2250 final String name; // internal name 2251 final int accessFlags; 2252 final byte[] bytes; 2253 ClassFile(String name, int accessFlags, byte[] bytes) { 2254 this.name = name; 2255 this.accessFlags = accessFlags; 2256 this.bytes = bytes; 2257 } 2258 2259 static ClassFile newInstanceNoCheck(String name, byte[] bytes) { 2260 return new ClassFile(name, 0, bytes); 2261 } 2262 2263 /** 2264 * This method checks the class file version and the structure of `this_class`. 2265 * and checks if the bytes is a class or interface (ACC_MODULE flag not set) 2266 * that is in the named package. 2267 * 2268 * @throws IllegalArgumentException if ACC_MODULE flag is set in access flags 2269 * or the class is not in the given package name. 2270 */ 2271 static ClassFile newInstance(byte[] bytes, String pkgName) { 2272 var cf = readClassFile(bytes); 2273 2274 // check if it's in the named package 2275 int index = cf.name.lastIndexOf('/'); 2276 String pn = (index == -1) ? "" : cf.name.substring(0, index).replace('/', '.'); 2277 if (!pn.equals(pkgName)) { 2278 throw newIllegalArgumentException(cf.name + " not in same package as lookup class"); 2279 } 2280 return cf; 2281 } 2282 2283 private static ClassFile readClassFile(byte[] bytes) { 2284 int magic = readInt(bytes, 0); 2285 if (magic != 0xCAFEBABE) { 2286 throw new ClassFormatError("Incompatible magic value: " + magic); 2287 } 2288 int minor = readUnsignedShort(bytes, 4); 2289 int major = readUnsignedShort(bytes, 6); 2290 if (!VM.isSupportedClassFileVersion(major, minor)) { 2291 throw new UnsupportedClassVersionError("Unsupported class file version " + major + "." + minor); 2292 } 2293 2294 String name; 2295 int accessFlags; 2296 try { 2297 ClassReader reader = new ClassReader(bytes); 2298 // ClassReader does not check if `this_class` is CONSTANT_Class_info 2299 // workaround to read `this_class` using readConst and validate the value 2300 int thisClass = reader.readUnsignedShort(reader.header + 2); 2301 Object constant = reader.readConst(thisClass, new char[reader.getMaxStringLength()]); 2302 if (!(constant instanceof Type type)) { 2303 throw new ClassFormatError("this_class item: #" + thisClass + " not a CONSTANT_Class_info"); 2304 } 2305 if (!type.getDescriptor().startsWith("L")) { 2306 throw new ClassFormatError("this_class item: #" + thisClass + " not a CONSTANT_Class_info"); 2307 } 2308 name = type.getInternalName(); 2309 accessFlags = reader.readUnsignedShort(reader.header); 2310 } catch (RuntimeException e) { 2311 // ASM exceptions are poorly specified 2312 ClassFormatError cfe = new ClassFormatError(); 2313 cfe.initCause(e); 2314 throw cfe; 2315 } 2316 // must be a class or interface 2317 if ((accessFlags & Opcodes.ACC_MODULE) != 0) { 2318 throw newIllegalArgumentException("Not a class or interface: ACC_MODULE flag is set"); 2319 } 2320 return new ClassFile(name, accessFlags, bytes); 2321 } 2322 2323 private static int readInt(byte[] bytes, int offset) { 2324 if ((offset+4) > bytes.length) { 2325 throw new ClassFormatError("Invalid ClassFile structure"); 2326 } 2327 return ((bytes[offset] & 0xFF) << 24) 2328 | ((bytes[offset + 1] & 0xFF) << 16) 2329 | ((bytes[offset + 2] & 0xFF) << 8) 2330 | (bytes[offset + 3] & 0xFF); 2331 } 2332 2333 private static int readUnsignedShort(byte[] bytes, int offset) { 2334 if ((offset+2) > bytes.length) { 2335 throw new ClassFormatError("Invalid ClassFile structure"); 2336 } 2337 return ((bytes[offset] & 0xFF) << 8) | (bytes[offset + 1] & 0xFF); 2338 } 2339 } 2340 2341 /* 2342 * Returns a ClassDefiner that creates a {@code Class} object of a normal class 2343 * from the given bytes. 2344 * 2345 * Caller should make a defensive copy of the arguments if needed 2346 * before calling this factory method. 2347 * 2348 * @throws IllegalArgumentException if {@code bytes} is not a class or interface or 2349 * {@code bytes} denotes a class in a different package than the lookup class 2350 */ 2351 private ClassDefiner makeClassDefiner(byte[] bytes) { 2352 ClassFile cf = ClassFile.newInstance(bytes, lookupClass().getPackageName()); 2353 return new ClassDefiner(this, cf, STRONG_LOADER_LINK, defaultDumper()); 2354 } 2355 2356 /** 2357 * Returns a ClassDefiner that creates a {@code Class} object of a normal class 2358 * from the given bytes. No package name check on the given bytes. 2359 * 2360 * @param name internal name 2361 * @param bytes class bytes 2362 * @param dumper dumper to write the given bytes to the dumper's output directory 2363 * @return ClassDefiner that defines a normal class of the given bytes. 2364 */ 2365 ClassDefiner makeClassDefiner(String name, byte[] bytes, ClassFileDumper dumper) { 2366 // skip package name validation 2367 ClassFile cf = ClassFile.newInstanceNoCheck(name, bytes); 2368 return new ClassDefiner(this, cf, STRONG_LOADER_LINK, dumper); 2369 } 2370 2371 /** 2372 * Returns a ClassDefiner that creates a {@code Class} object of a hidden class 2373 * from the given bytes. The name must be in the same package as the lookup class. 2374 * 2375 * Caller should make a defensive copy of the arguments if needed 2376 * before calling this factory method. 2377 * 2378 * @param bytes class bytes 2379 * @param dumper dumper to write the given bytes to the dumper's output directory 2380 * @return ClassDefiner that defines a hidden class of the given bytes. 2381 * 2382 * @throws IllegalArgumentException if {@code bytes} is not a class or interface or 2383 * {@code bytes} denotes a class in a different package than the lookup class 2384 */ 2385 ClassDefiner makeHiddenClassDefiner(byte[] bytes, ClassFileDumper dumper) { 2386 ClassFile cf = ClassFile.newInstance(bytes, lookupClass().getPackageName()); 2387 return makeHiddenClassDefiner(cf, Set.of(), false, dumper); 2388 } 2389 2390 /** 2391 * Returns a ClassDefiner that creates a {@code Class} object of a hidden class 2392 * from the given bytes and options. 2393 * The name must be in the same package as the lookup class. 2394 * 2395 * Caller should make a defensive copy of the arguments if needed 2396 * before calling this factory method. 2397 * 2398 * @param bytes class bytes 2399 * @param options class options 2400 * @param accessVmAnnotations true to give the hidden class access to VM annotations 2401 * @return ClassDefiner that defines a hidden class of the given bytes and options 2402 * 2403 * @throws IllegalArgumentException if {@code bytes} is not a class or interface or 2404 * {@code bytes} denotes a class in a different package than the lookup class 2405 */ 2406 private ClassDefiner makeHiddenClassDefiner(byte[] bytes, 2407 Set<ClassOption> options, 2408 boolean accessVmAnnotations) { 2409 ClassFile cf = ClassFile.newInstance(bytes, lookupClass().getPackageName()); 2410 return makeHiddenClassDefiner(cf, options, accessVmAnnotations, defaultDumper()); 2411 } 2412 2413 /** 2414 * Returns a ClassDefiner that creates a {@code Class} object of a hidden class 2415 * from the given bytes and the given options. No package name check on the given bytes. 2416 * 2417 * @param name internal name that specifies the prefix of the hidden class 2418 * @param bytes class bytes 2419 * @param options class options 2420 * @param dumper dumper to write the given bytes to the dumper's output directory 2421 * @return ClassDefiner that defines a hidden class of the given bytes and options. 2422 */ 2423 ClassDefiner makeHiddenClassDefiner(String name, byte[] bytes, Set<ClassOption> options, ClassFileDumper dumper) { 2424 Objects.requireNonNull(dumper); 2425 // skip name and access flags validation 2426 return makeHiddenClassDefiner(ClassFile.newInstanceNoCheck(name, bytes), options, false, dumper); 2427 } 2428 2429 /** 2430 * Returns a ClassDefiner that creates a {@code Class} object of a hidden class 2431 * from the given class file and options. 2432 * 2433 * @param cf ClassFile 2434 * @param options class options 2435 * @param accessVmAnnotations true to give the hidden class access to VM annotations 2436 * @param dumper dumper to write the given bytes to the dumper's output directory 2437 */ 2438 private ClassDefiner makeHiddenClassDefiner(ClassFile cf, 2439 Set<ClassOption> options, 2440 boolean accessVmAnnotations, 2441 ClassFileDumper dumper) { 2442 int flags = HIDDEN_CLASS | ClassOption.optionsToFlag(options); 2443 if (accessVmAnnotations | VM.isSystemDomainLoader(lookupClass.getClassLoader())) { 2444 // jdk.internal.vm.annotations are permitted for classes 2445 // defined to boot loader and platform loader 2446 flags |= ACCESS_VM_ANNOTATIONS; 2447 } 2448 2449 return new ClassDefiner(this, cf, flags, dumper); 2450 } 2451 2452 static class ClassDefiner { 2453 private final Lookup lookup; 2454 private final String name; // internal name 2455 private final byte[] bytes; 2456 private final int classFlags; 2457 private final ClassFileDumper dumper; 2458 2459 private ClassDefiner(Lookup lookup, ClassFile cf, int flags, ClassFileDumper dumper) { 2460 assert ((flags & HIDDEN_CLASS) != 0 || (flags & STRONG_LOADER_LINK) == STRONG_LOADER_LINK); 2461 this.lookup = lookup; 2462 this.bytes = cf.bytes; 2463 this.name = cf.name; 2464 this.classFlags = flags; 2465 this.dumper = dumper; 2466 } 2467 2468 String internalName() { 2469 return name; 2470 } 2471 2472 Class<?> defineClass(boolean initialize) { 2473 return defineClass(initialize, null); 2474 } 2475 2476 Lookup defineClassAsLookup(boolean initialize) { 2477 Class<?> c = defineClass(initialize, null); 2478 return new Lookup(c, null, FULL_POWER_MODES); 2479 } 2480 2481 /** 2482 * Defines the class of the given bytes and the given classData. 2483 * If {@code initialize} parameter is true, then the class will be initialized. 2484 * 2485 * @param initialize true if the class to be initialized 2486 * @param classData classData or null 2487 * @return the class 2488 * 2489 * @throws LinkageError linkage error 2490 */ 2491 Class<?> defineClass(boolean initialize, Object classData) { 2492 Class<?> lookupClass = lookup.lookupClass(); 2493 ClassLoader loader = lookupClass.getClassLoader(); 2494 ProtectionDomain pd = (loader != null) ? lookup.lookupClassProtectionDomain() : null; 2495 Class<?> c = null; 2496 try { 2497 c = SharedSecrets.getJavaLangAccess() 2498 .defineClass(loader, lookupClass, name, bytes, pd, initialize, classFlags, classData); 2499 assert !isNestmate() || c.getNestHost() == lookupClass.getNestHost(); 2500 return c; 2501 } finally { 2502 // dump the classfile for debugging 2503 if (dumper.isEnabled()) { 2504 String name = internalName(); 2505 if (c != null) { 2506 dumper.dumpClass(name, c, bytes); 2507 } else { 2508 dumper.dumpFailedClass(name, bytes); 2509 } 2510 } 2511 } 2512 } 2513 2514 /** 2515 * Defines the class of the given bytes and the given classData. 2516 * If {@code initialize} parameter is true, then the class will be initialized. 2517 * 2518 * @param initialize true if the class to be initialized 2519 * @param classData classData or null 2520 * @return a Lookup for the defined class 2521 * 2522 * @throws LinkageError linkage error 2523 */ 2524 Lookup defineClassAsLookup(boolean initialize, Object classData) { 2525 Class<?> c = defineClass(initialize, classData); 2526 return new Lookup(c, null, FULL_POWER_MODES); 2527 } 2528 2529 private boolean isNestmate() { 2530 return (classFlags & NESTMATE_CLASS) != 0; 2531 } 2532 } 2533 2534 private ProtectionDomain lookupClassProtectionDomain() { 2535 ProtectionDomain pd = cachedProtectionDomain; 2536 if (pd == null) { 2537 cachedProtectionDomain = pd = SharedSecrets.getJavaLangAccess().protectionDomain(lookupClass); 2538 } 2539 return pd; 2540 } 2541 2542 // cached protection domain 2543 private volatile ProtectionDomain cachedProtectionDomain; 2544 2545 // Make sure outer class is initialized first. 2546 static { IMPL_NAMES.getClass(); } 2547 2548 /** Package-private version of lookup which is trusted. */ 2549 static final Lookup IMPL_LOOKUP = new Lookup(Object.class, null, TRUSTED); 2550 2551 /** Version of lookup which is trusted minimally. 2552 * It can only be used to create method handles to publicly accessible 2553 * members in packages that are exported unconditionally. 2554 */ 2555 static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, null, UNCONDITIONAL); 2556 2557 private static void checkUnprivilegedlookupClass(Class<?> lookupClass) { 2558 String name = lookupClass.getName(); 2559 if (name.startsWith("java.lang.invoke.")) 2560 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass); 2561 } 2562 2563 /** 2564 * Displays the name of the class from which lookups are to be made, 2565 * followed by "/" and the name of the {@linkplain #previousLookupClass() 2566 * previous lookup class} if present. 2567 * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.) 2568 * If there are restrictions on the access permitted to this lookup, 2569 * this is indicated by adding a suffix to the class name, consisting 2570 * of a slash and a keyword. The keyword represents the strongest 2571 * allowed access, and is chosen as follows: 2572 * <ul> 2573 * <li>If no access is allowed, the suffix is "/noaccess". 2574 * <li>If only unconditional access is allowed, the suffix is "/publicLookup". 2575 * <li>If only public access to types in exported packages is allowed, the suffix is "/public". 2576 * <li>If only public and module access are allowed, the suffix is "/module". 2577 * <li>If public and package access are allowed, the suffix is "/package". 2578 * <li>If public, package, and private access are allowed, the suffix is "/private". 2579 * </ul> 2580 * If none of the above cases apply, it is the case that 2581 * {@linkplain #hasFullPrivilegeAccess() full privilege access} 2582 * (public, module, package, private, and protected) is allowed. 2583 * In this case, no suffix is added. 2584 * This is true only of an object obtained originally from 2585 * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}. 2586 * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in} 2587 * always have restricted access, and will display a suffix. 2588 * <p> 2589 * (It may seem strange that protected access should be 2590 * stronger than private access. Viewed independently from 2591 * package access, protected access is the first to be lost, 2592 * because it requires a direct subclass relationship between 2593 * caller and callee.) 2594 * @see #in 2595 */ 2596 @Override 2597 public String toString() { 2598 String cname = lookupClass.getName(); 2599 if (prevLookupClass != null) 2600 cname += "/" + prevLookupClass.getName(); 2601 switch (allowedModes) { 2602 case 0: // no privileges 2603 return cname + "/noaccess"; 2604 case UNCONDITIONAL: 2605 return cname + "/publicLookup"; 2606 case PUBLIC: 2607 return cname + "/public"; 2608 case PUBLIC|MODULE: 2609 return cname + "/module"; 2610 case PUBLIC|PACKAGE: 2611 case PUBLIC|MODULE|PACKAGE: 2612 return cname + "/package"; 2613 case PUBLIC|PACKAGE|PRIVATE: 2614 case PUBLIC|MODULE|PACKAGE|PRIVATE: 2615 return cname + "/private"; 2616 case PUBLIC|PACKAGE|PRIVATE|PROTECTED: 2617 case PUBLIC|MODULE|PACKAGE|PRIVATE|PROTECTED: 2618 case FULL_POWER_MODES: 2619 return cname; 2620 case TRUSTED: 2621 return "/trusted"; // internal only; not exported 2622 default: // Should not happen, but it's a bitfield... 2623 cname = cname + "/" + Integer.toHexString(allowedModes); 2624 assert(false) : cname; 2625 return cname; 2626 } 2627 } 2628 2629 /** 2630 * Produces a method handle for a static method. 2631 * The type of the method handle will be that of the method. 2632 * (Since static methods do not take receivers, there is no 2633 * additional receiver argument inserted into the method handle type, 2634 * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.) 2635 * The method and all its argument types must be accessible to the lookup object. 2636 * <p> 2637 * The returned method handle will have 2638 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 2639 * the method's variable arity modifier bit ({@code 0x0080}) is set. 2640 * <p> 2641 * If the returned method handle is invoked, the method's class will 2642 * be initialized, if it has not already been initialized. 2643 * <p><b>Example:</b> 2644 * {@snippet lang="java" : 2645 import static java.lang.invoke.MethodHandles.*; 2646 import static java.lang.invoke.MethodType.*; 2647 ... 2648 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class, 2649 "asList", methodType(List.class, Object[].class)); 2650 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString()); 2651 * } 2652 * @param refc the class from which the method is accessed 2653 * @param name the name of the method 2654 * @param type the type of the method 2655 * @return the desired method handle 2656 * @throws NoSuchMethodException if the method does not exist 2657 * @throws IllegalAccessException if access checking fails, 2658 * or if the method is not {@code static}, 2659 * or if the method's variable arity modifier bit 2660 * is set and {@code asVarargsCollector} fails 2661 * @throws SecurityException if a security manager is present and it 2662 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 2663 * @throws NullPointerException if any argument is null 2664 */ 2665 public MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 2666 MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type); 2667 return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerLookup(method)); 2668 } 2669 2670 /** 2671 * Produces a method handle for a virtual method. 2672 * The type of the method handle will be that of the method, 2673 * with the receiver type (usually {@code refc}) prepended. 2674 * The method and all its argument types must be accessible to the lookup object. 2675 * <p> 2676 * When called, the handle will treat the first argument as a receiver 2677 * and, for non-private methods, dispatch on the receiver's type to determine which method 2678 * implementation to enter. 2679 * For private methods the named method in {@code refc} will be invoked on the receiver. 2680 * (The dispatching action is identical with that performed by an 2681 * {@code invokevirtual} or {@code invokeinterface} instruction.) 2682 * <p> 2683 * The first argument will be of type {@code refc} if the lookup 2684 * class has full privileges to access the member. Otherwise 2685 * the member must be {@code protected} and the first argument 2686 * will be restricted in type to the lookup class. 2687 * <p> 2688 * The returned method handle will have 2689 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 2690 * the method's variable arity modifier bit ({@code 0x0080}) is set. 2691 * <p> 2692 * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual} 2693 * instructions and method handles produced by {@code findVirtual}, 2694 * if the class is {@code MethodHandle} and the name string is 2695 * {@code invokeExact} or {@code invoke}, the resulting 2696 * method handle is equivalent to one produced by 2697 * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or 2698 * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker} 2699 * with the same {@code type} argument. 2700 * <p> 2701 * If the class is {@code VarHandle} and the name string corresponds to 2702 * the name of a signature-polymorphic access mode method, the resulting 2703 * method handle is equivalent to one produced by 2704 * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with 2705 * the access mode corresponding to the name string and with the same 2706 * {@code type} arguments. 2707 * <p> 2708 * <b>Example:</b> 2709 * {@snippet lang="java" : 2710 import static java.lang.invoke.MethodHandles.*; 2711 import static java.lang.invoke.MethodType.*; 2712 ... 2713 MethodHandle MH_concat = publicLookup().findVirtual(String.class, 2714 "concat", methodType(String.class, String.class)); 2715 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class, 2716 "hashCode", methodType(int.class)); 2717 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class, 2718 "hashCode", methodType(int.class)); 2719 assertEquals("xy", (String) MH_concat.invokeExact("x", "y")); 2720 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy")); 2721 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy")); 2722 // interface method: 2723 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class, 2724 "subSequence", methodType(CharSequence.class, int.class, int.class)); 2725 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString()); 2726 // constructor "internal method" must be accessed differently: 2727 MethodType MT_newString = methodType(void.class); //()V for new String() 2728 try { assertEquals("impossible", lookup() 2729 .findVirtual(String.class, "<init>", MT_newString)); 2730 } catch (NoSuchMethodException ex) { } // OK 2731 MethodHandle MH_newString = publicLookup() 2732 .findConstructor(String.class, MT_newString); 2733 assertEquals("", (String) MH_newString.invokeExact()); 2734 * } 2735 * 2736 * @param refc the class or interface from which the method is accessed 2737 * @param name the name of the method 2738 * @param type the type of the method, with the receiver argument omitted 2739 * @return the desired method handle 2740 * @throws NoSuchMethodException if the method does not exist 2741 * @throws IllegalAccessException if access checking fails, 2742 * or if the method is {@code static}, 2743 * or if the method's variable arity modifier bit 2744 * is set and {@code asVarargsCollector} fails 2745 * @throws SecurityException if a security manager is present and it 2746 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 2747 * @throws NullPointerException if any argument is null 2748 */ 2749 public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 2750 if (refc == MethodHandle.class) { 2751 MethodHandle mh = findVirtualForMH(name, type); 2752 if (mh != null) return mh; 2753 } else if (refc == VarHandle.class) { 2754 MethodHandle mh = findVirtualForVH(name, type); 2755 if (mh != null) return mh; 2756 } 2757 byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual); 2758 MemberName method = resolveOrFail(refKind, refc, name, type); 2759 return getDirectMethod(refKind, refc, method, findBoundCallerLookup(method)); 2760 } 2761 private MethodHandle findVirtualForMH(String name, MethodType type) { 2762 // these names require special lookups because of the implicit MethodType argument 2763 if ("invoke".equals(name)) 2764 return invoker(type); 2765 if ("invokeExact".equals(name)) 2766 return exactInvoker(type); 2767 assert(!MemberName.isMethodHandleInvokeName(name)); 2768 return null; 2769 } 2770 private MethodHandle findVirtualForVH(String name, MethodType type) { 2771 try { 2772 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type); 2773 } catch (IllegalArgumentException e) { 2774 return null; 2775 } 2776 } 2777 2778 /** 2779 * Produces a method handle which creates an object and initializes it, using 2780 * the constructor of the specified type. 2781 * The parameter types of the method handle will be those of the constructor, 2782 * while the return type will be a reference to the constructor's class. 2783 * The constructor and all its argument types must be accessible to the lookup object. 2784 * <p> 2785 * The requested type must have a return type of {@code void}. 2786 * (This is consistent with the JVM's treatment of constructor type descriptors.) 2787 * <p> 2788 * The returned method handle will have 2789 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 2790 * the constructor's variable arity modifier bit ({@code 0x0080}) is set. 2791 * <p> 2792 * If the returned method handle is invoked, the constructor's class will 2793 * be initialized, if it has not already been initialized. 2794 * <p><b>Example:</b> 2795 * {@snippet lang="java" : 2796 import static java.lang.invoke.MethodHandles.*; 2797 import static java.lang.invoke.MethodType.*; 2798 ... 2799 MethodHandle MH_newArrayList = publicLookup().findConstructor( 2800 ArrayList.class, methodType(void.class, Collection.class)); 2801 Collection orig = Arrays.asList("x", "y"); 2802 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig); 2803 assert(orig != copy); 2804 assertEquals(orig, copy); 2805 // a variable-arity constructor: 2806 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor( 2807 ProcessBuilder.class, methodType(void.class, String[].class)); 2808 ProcessBuilder pb = (ProcessBuilder) 2809 MH_newProcessBuilder.invoke("x", "y", "z"); 2810 assertEquals("[x, y, z]", pb.command().toString()); 2811 * } 2812 * @param refc the class or interface from which the method is accessed 2813 * @param type the type of the method, with the receiver argument omitted, and a void return type 2814 * @return the desired method handle 2815 * @throws NoSuchMethodException if the constructor does not exist 2816 * @throws IllegalAccessException if access checking fails 2817 * or if the method's variable arity modifier bit 2818 * is set and {@code asVarargsCollector} fails 2819 * @throws SecurityException if a security manager is present and it 2820 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 2821 * @throws NullPointerException if any argument is null 2822 */ 2823 public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException { 2824 if (refc.isArray()) { 2825 throw new NoSuchMethodException("no constructor for array class: " + refc.getName()); 2826 } 2827 String name = ConstantDescs.INIT_NAME; 2828 MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type); 2829 return getDirectConstructor(refc, ctor); 2830 } 2831 2832 /** 2833 * Looks up a class by name from the lookup context defined by this {@code Lookup} object, 2834 * <a href="MethodHandles.Lookup.html#equiv">as if resolved</a> by an {@code ldc} instruction. 2835 * Such a resolution, as specified in JVMS {@jvms 5.4.3.1}, attempts to locate and load the class, 2836 * and then determines whether the class is accessible to this lookup object. 2837 * <p> 2838 * For a class or an interface, the name is the {@linkplain ClassLoader##binary-name binary name}. 2839 * For an array class of {@code n} dimensions, the name begins with {@code n} occurrences 2840 * of {@code '['} and followed by the element type as encoded in the 2841 * {@linkplain Class##nameFormat table} specified in {@link Class#getName}. 2842 * <p> 2843 * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, 2844 * its class loader, and the {@linkplain #lookupModes() lookup modes}. 2845 * 2846 * @param targetName the {@linkplain ClassLoader##binary-name binary name} of the class 2847 * or the string representing an array class 2848 * @return the requested class. 2849 * @throws SecurityException if a security manager is present and it 2850 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 2851 * @throws LinkageError if the linkage fails 2852 * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader. 2853 * @throws IllegalAccessException if the class is not accessible, using the allowed access 2854 * modes. 2855 * @throws NullPointerException if {@code targetName} is null 2856 * @since 9 2857 * @jvms 5.4.3.1 Class and Interface Resolution 2858 */ 2859 public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException { 2860 Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader()); 2861 return accessClass(targetClass); 2862 } 2863 2864 /** 2865 * Ensures that {@code targetClass} has been initialized. The class 2866 * to be initialized must be {@linkplain #accessClass accessible} 2867 * to this {@code Lookup} object. This method causes {@code targetClass} 2868 * to be initialized if it has not been already initialized, 2869 * as specified in JVMS {@jvms 5.5}. 2870 * 2871 * <p> 2872 * This method returns when {@code targetClass} is fully initialized, or 2873 * when {@code targetClass} is being initialized by the current thread. 2874 * 2875 * @param <T> the type of the class to be initialized 2876 * @param targetClass the class to be initialized 2877 * @return {@code targetClass} that has been initialized, or that is being 2878 * initialized by the current thread. 2879 * 2880 * @throws IllegalArgumentException if {@code targetClass} is a primitive type or {@code void} 2881 * or array class 2882 * @throws IllegalAccessException if {@code targetClass} is not 2883 * {@linkplain #accessClass accessible} to this lookup 2884 * @throws ExceptionInInitializerError if the class initialization provoked 2885 * by this method fails 2886 * @throws SecurityException if a security manager is present and it 2887 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 2888 * @since 15 2889 * @jvms 5.5 Initialization 2890 */ 2891 public <T> Class<T> ensureInitialized(Class<T> targetClass) throws IllegalAccessException { 2892 if (targetClass.isPrimitive()) 2893 throw new IllegalArgumentException(targetClass + " is a primitive class"); 2894 if (targetClass.isArray()) 2895 throw new IllegalArgumentException(targetClass + " is an array class"); 2896 2897 if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) { 2898 throw makeAccessException(targetClass); 2899 } 2900 checkSecurityManager(targetClass); 2901 2902 // ensure class initialization 2903 Unsafe.getUnsafe().ensureClassInitialized(targetClass); 2904 return targetClass; 2905 } 2906 2907 /* 2908 * Returns IllegalAccessException due to access violation to the given targetClass. 2909 * 2910 * This method is called by {@link Lookup#accessClass} and {@link Lookup#ensureInitialized} 2911 * which verifies access to a class rather a member. 2912 */ 2913 private IllegalAccessException makeAccessException(Class<?> targetClass) { 2914 String message = "access violation: "+ targetClass; 2915 if (this == MethodHandles.publicLookup()) { 2916 message += ", from public Lookup"; 2917 } else { 2918 Module m = lookupClass().getModule(); 2919 message += ", from " + lookupClass() + " (" + m + ")"; 2920 if (prevLookupClass != null) { 2921 message += ", previous lookup " + 2922 prevLookupClass.getName() + " (" + prevLookupClass.getModule() + ")"; 2923 } 2924 } 2925 return new IllegalAccessException(message); 2926 } 2927 2928 /** 2929 * Determines if a class can be accessed from the lookup context defined by 2930 * this {@code Lookup} object. The static initializer of the class is not run. 2931 * If {@code targetClass} is an array class, {@code targetClass} is accessible 2932 * if the element type of the array class is accessible. Otherwise, 2933 * {@code targetClass} is determined as accessible as follows. 2934 * 2935 * <p> 2936 * If {@code targetClass} is in the same module as the lookup class, 2937 * the lookup class is {@code LC} in module {@code M1} and 2938 * the previous lookup class is in module {@code M0} or 2939 * {@code null} if not present, 2940 * {@code targetClass} is accessible if and only if one of the following is true: 2941 * <ul> 2942 * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is 2943 * {@code LC} or other class in the same nest of {@code LC}.</li> 2944 * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is 2945 * in the same runtime package of {@code LC}.</li> 2946 * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is 2947 * a public type in {@code M1}.</li> 2948 * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is 2949 * a public type in a package exported by {@code M1} to at least {@code M0} 2950 * if the previous lookup class is present; otherwise, {@code targetClass} 2951 * is a public type in a package exported by {@code M1} unconditionally.</li> 2952 * </ul> 2953 * 2954 * <p> 2955 * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup 2956 * can access public types in all modules when the type is in a package 2957 * that is exported unconditionally. 2958 * <p> 2959 * Otherwise, {@code targetClass} is in a different module from {@code lookupClass}, 2960 * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass} 2961 * is inaccessible. 2962 * <p> 2963 * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class}, 2964 * {@code M1} is the module containing {@code lookupClass} and 2965 * {@code M2} is the module containing {@code targetClass}, 2966 * then {@code targetClass} is accessible if and only if 2967 * <ul> 2968 * <li>{@code M1} reads {@code M2}, and 2969 * <li>{@code targetClass} is public and in a package exported by 2970 * {@code M2} at least to {@code M1}. 2971 * </ul> 2972 * <p> 2973 * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class}, 2974 * {@code M1} and {@code M2} are as before, and {@code M0} is the module 2975 * containing the previous lookup class, then {@code targetClass} is accessible 2976 * if and only if one of the following is true: 2977 * <ul> 2978 * <li>{@code targetClass} is in {@code M0} and {@code M1} 2979 * {@linkplain Module#reads reads} {@code M0} and the type is 2980 * in a package that is exported to at least {@code M1}. 2981 * <li>{@code targetClass} is in {@code M1} and {@code M0} 2982 * {@linkplain Module#reads reads} {@code M1} and the type is 2983 * in a package that is exported to at least {@code M0}. 2984 * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0} 2985 * and {@code M1} reads {@code M2} and the type is in a package 2986 * that is exported to at least both {@code M0} and {@code M2}. 2987 * </ul> 2988 * <p> 2989 * Otherwise, {@code targetClass} is not accessible. 2990 * 2991 * @param <T> the type of the class to be access-checked 2992 * @param targetClass the class to be access-checked 2993 * @return {@code targetClass} that has been access-checked 2994 * @throws IllegalAccessException if the class is not accessible from the lookup class 2995 * and previous lookup class, if present, using the allowed access modes. 2996 * @throws SecurityException if a security manager is present and it 2997 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 2998 * @throws NullPointerException if {@code targetClass} is {@code null} 2999 * @since 9 3000 * @see <a href="#cross-module-lookup">Cross-module lookups</a> 3001 */ 3002 public <T> Class<T> accessClass(Class<T> targetClass) throws IllegalAccessException { 3003 if (!isClassAccessible(targetClass)) { 3004 throw makeAccessException(targetClass); 3005 } 3006 checkSecurityManager(targetClass); 3007 return targetClass; 3008 } 3009 3010 /** 3011 * Produces an early-bound method handle for a virtual method. 3012 * It will bypass checks for overriding methods on the receiver, 3013 * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial} 3014 * instruction from within the explicitly specified {@code specialCaller}. 3015 * The type of the method handle will be that of the method, 3016 * with a suitably restricted receiver type prepended. 3017 * (The receiver type will be {@code specialCaller} or a subtype.) 3018 * The method and all its argument types must be accessible 3019 * to the lookup object. 3020 * <p> 3021 * Before method resolution, 3022 * if the explicitly specified caller class is not identical with the 3023 * lookup class, or if this lookup object does not have 3024 * <a href="MethodHandles.Lookup.html#privacc">private access</a> 3025 * privileges, the access fails. 3026 * <p> 3027 * The returned method handle will have 3028 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 3029 * the method's variable arity modifier bit ({@code 0x0080}) is set. 3030 * <p style="font-size:smaller;"> 3031 * <em>(Note: JVM internal methods named {@value ConstantDescs#INIT_NAME} 3032 * are not visible to this API, 3033 * even though the {@code invokespecial} instruction can refer to them 3034 * in special circumstances. Use {@link #findConstructor findConstructor} 3035 * to access instance initialization methods in a safe manner.)</em> 3036 * <p><b>Example:</b> 3037 * {@snippet lang="java" : 3038 import static java.lang.invoke.MethodHandles.*; 3039 import static java.lang.invoke.MethodType.*; 3040 ... 3041 static class Listie extends ArrayList { 3042 public String toString() { return "[wee Listie]"; } 3043 static Lookup lookup() { return MethodHandles.lookup(); } 3044 } 3045 ... 3046 // no access to constructor via invokeSpecial: 3047 MethodHandle MH_newListie = Listie.lookup() 3048 .findConstructor(Listie.class, methodType(void.class)); 3049 Listie l = (Listie) MH_newListie.invokeExact(); 3050 try { assertEquals("impossible", Listie.lookup().findSpecial( 3051 Listie.class, "<init>", methodType(void.class), Listie.class)); 3052 } catch (NoSuchMethodException ex) { } // OK 3053 // access to super and self methods via invokeSpecial: 3054 MethodHandle MH_super = Listie.lookup().findSpecial( 3055 ArrayList.class, "toString" , methodType(String.class), Listie.class); 3056 MethodHandle MH_this = Listie.lookup().findSpecial( 3057 Listie.class, "toString" , methodType(String.class), Listie.class); 3058 MethodHandle MH_duper = Listie.lookup().findSpecial( 3059 Object.class, "toString" , methodType(String.class), Listie.class); 3060 assertEquals("[]", (String) MH_super.invokeExact(l)); 3061 assertEquals(""+l, (String) MH_this.invokeExact(l)); 3062 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method 3063 try { assertEquals("inaccessible", Listie.lookup().findSpecial( 3064 String.class, "toString", methodType(String.class), Listie.class)); 3065 } catch (IllegalAccessException ex) { } // OK 3066 Listie subl = new Listie() { public String toString() { return "[subclass]"; } }; 3067 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method 3068 * } 3069 * 3070 * @param refc the class or interface from which the method is accessed 3071 * @param name the name of the method (which must not be "<init>") 3072 * @param type the type of the method, with the receiver argument omitted 3073 * @param specialCaller the proposed calling class to perform the {@code invokespecial} 3074 * @return the desired method handle 3075 * @throws NoSuchMethodException if the method does not exist 3076 * @throws IllegalAccessException if access checking fails, 3077 * or if the method is {@code static}, 3078 * or if the method's variable arity modifier bit 3079 * is set and {@code asVarargsCollector} fails 3080 * @throws SecurityException if a security manager is present and it 3081 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 3082 * @throws NullPointerException if any argument is null 3083 */ 3084 public MethodHandle findSpecial(Class<?> refc, String name, MethodType type, 3085 Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException { 3086 checkSpecialCaller(specialCaller, refc); 3087 Lookup specialLookup = this.in(specialCaller); 3088 MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type); 3089 return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerLookup(method)); 3090 } 3091 3092 /** 3093 * Produces a method handle giving read access to a non-static field. 3094 * The type of the method handle will have a return type of the field's 3095 * value type. 3096 * The method handle's single argument will be the instance containing 3097 * the field. 3098 * Access checking is performed immediately on behalf of the lookup class. 3099 * @param refc the class or interface from which the method is accessed 3100 * @param name the field's name 3101 * @param type the field's type 3102 * @return a method handle which can load values from the field 3103 * @throws NoSuchFieldException if the field does not exist 3104 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} 3105 * @throws SecurityException if a security manager is present and it 3106 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 3107 * @throws NullPointerException if any argument is null 3108 * @see #findVarHandle(Class, String, Class) 3109 */ 3110 public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 3111 MemberName field = resolveOrFail(REF_getField, refc, name, type); 3112 return getDirectField(REF_getField, refc, field); 3113 } 3114 3115 /** 3116 * Produces a method handle giving write access to a non-static field. 3117 * The type of the method handle will have a void return type. 3118 * The method handle will take two arguments, the instance containing 3119 * the field, and the value to be stored. 3120 * The second argument will be of the field's value type. 3121 * Access checking is performed immediately on behalf of the lookup class. 3122 * @param refc the class or interface from which the method is accessed 3123 * @param name the field's name 3124 * @param type the field's type 3125 * @return a method handle which can store values into the field 3126 * @throws NoSuchFieldException if the field does not exist 3127 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} 3128 * or {@code final} 3129 * @throws SecurityException if a security manager is present and it 3130 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 3131 * @throws NullPointerException if any argument is null 3132 * @see #findVarHandle(Class, String, Class) 3133 */ 3134 public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 3135 MemberName field = resolveOrFail(REF_putField, refc, name, type); 3136 return getDirectField(REF_putField, refc, field); 3137 } 3138 3139 /** 3140 * Produces a VarHandle giving access to a non-static field {@code name} 3141 * of type {@code type} declared in a class of type {@code recv}. 3142 * The VarHandle's variable type is {@code type} and it has one 3143 * coordinate type, {@code recv}. 3144 * <p> 3145 * Access checking is performed immediately on behalf of the lookup 3146 * class. 3147 * <p> 3148 * Certain access modes of the returned VarHandle are unsupported under 3149 * the following conditions: 3150 * <ul> 3151 * <li>if the field is declared {@code final}, then the write, atomic 3152 * update, numeric atomic update, and bitwise atomic update access 3153 * modes are unsupported. 3154 * <li>if the field type is anything other than {@code byte}, 3155 * {@code short}, {@code char}, {@code int}, {@code long}, 3156 * {@code float}, or {@code double} then numeric atomic update 3157 * access modes are unsupported. 3158 * <li>if the field type is anything other than {@code boolean}, 3159 * {@code byte}, {@code short}, {@code char}, {@code int} or 3160 * {@code long} then bitwise atomic update access modes are 3161 * unsupported. 3162 * </ul> 3163 * <p> 3164 * If the field is declared {@code volatile} then the returned VarHandle 3165 * will override access to the field (effectively ignore the 3166 * {@code volatile} declaration) in accordance to its specified 3167 * access modes. 3168 * <p> 3169 * If the field type is {@code float} or {@code double} then numeric 3170 * and atomic update access modes compare values using their bitwise 3171 * representation (see {@link Float#floatToRawIntBits} and 3172 * {@link Double#doubleToRawLongBits}, respectively). 3173 * @apiNote 3174 * Bitwise comparison of {@code float} values or {@code double} values, 3175 * as performed by the numeric and atomic update access modes, differ 3176 * from the primitive {@code ==} operator and the {@link Float#equals} 3177 * and {@link Double#equals} methods, specifically with respect to 3178 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 3179 * Care should be taken when performing a compare and set or a compare 3180 * and exchange operation with such values since the operation may 3181 * unexpectedly fail. 3182 * There are many possible NaN values that are considered to be 3183 * {@code NaN} in Java, although no IEEE 754 floating-point operation 3184 * provided by Java can distinguish between them. Operation failure can 3185 * occur if the expected or witness value is a NaN value and it is 3186 * transformed (perhaps in a platform specific manner) into another NaN 3187 * value, and thus has a different bitwise representation (see 3188 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 3189 * details). 3190 * The values {@code -0.0} and {@code +0.0} have different bitwise 3191 * representations but are considered equal when using the primitive 3192 * {@code ==} operator. Operation failure can occur if, for example, a 3193 * numeric algorithm computes an expected value to be say {@code -0.0} 3194 * and previously computed the witness value to be say {@code +0.0}. 3195 * @param recv the receiver class, of type {@code R}, that declares the 3196 * non-static field 3197 * @param name the field's name 3198 * @param type the field's type, of type {@code T} 3199 * @return a VarHandle giving access to non-static fields. 3200 * @throws NoSuchFieldException if the field does not exist 3201 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} 3202 * @throws SecurityException if a security manager is present and it 3203 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 3204 * @throws NullPointerException if any argument is null 3205 * @since 9 3206 */ 3207 public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 3208 MemberName getField = resolveOrFail(REF_getField, recv, name, type); 3209 MemberName putField = resolveOrFail(REF_putField, recv, name, type); 3210 return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField); 3211 } 3212 3213 /** 3214 * Produces a method handle giving read access to a static field. 3215 * The type of the method handle will have a return type of the field's 3216 * value type. 3217 * The method handle will take no arguments. 3218 * Access checking is performed immediately on behalf of the lookup class. 3219 * <p> 3220 * If the returned method handle is invoked, the field's class will 3221 * be initialized, if it has not already been initialized. 3222 * @param refc the class or interface from which the method is accessed 3223 * @param name the field's name 3224 * @param type the field's type 3225 * @return a method handle which can load values from the field 3226 * @throws NoSuchFieldException if the field does not exist 3227 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} 3228 * @throws SecurityException if a security manager is present and it 3229 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 3230 * @throws NullPointerException if any argument is null 3231 */ 3232 public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 3233 MemberName field = resolveOrFail(REF_getStatic, refc, name, type); 3234 return getDirectField(REF_getStatic, refc, field); 3235 } 3236 3237 /** 3238 * Produces a method handle giving write access to a static field. 3239 * The type of the method handle will have a void return type. 3240 * The method handle will take a single 3241 * argument, of the field's value type, the value to be stored. 3242 * Access checking is performed immediately on behalf of the lookup class. 3243 * <p> 3244 * If the returned method handle is invoked, the field's class will 3245 * be initialized, if it has not already been initialized. 3246 * @param refc the class or interface from which the method is accessed 3247 * @param name the field's name 3248 * @param type the field's type 3249 * @return a method handle which can store values into the field 3250 * @throws NoSuchFieldException if the field does not exist 3251 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} 3252 * or is {@code final} 3253 * @throws SecurityException if a security manager is present and it 3254 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 3255 * @throws NullPointerException if any argument is null 3256 */ 3257 public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 3258 MemberName field = resolveOrFail(REF_putStatic, refc, name, type); 3259 return getDirectField(REF_putStatic, refc, field); 3260 } 3261 3262 /** 3263 * Produces a VarHandle giving access to a static field {@code name} of 3264 * type {@code type} declared in a class of type {@code decl}. 3265 * The VarHandle's variable type is {@code type} and it has no 3266 * coordinate types. 3267 * <p> 3268 * Access checking is performed immediately on behalf of the lookup 3269 * class. 3270 * <p> 3271 * If the returned VarHandle is operated on, the declaring class will be 3272 * initialized, if it has not already been initialized. 3273 * <p> 3274 * Certain access modes of the returned VarHandle are unsupported under 3275 * the following conditions: 3276 * <ul> 3277 * <li>if the field is declared {@code final}, then the write, atomic 3278 * update, numeric atomic update, and bitwise atomic update access 3279 * modes are unsupported. 3280 * <li>if the field type is anything other than {@code byte}, 3281 * {@code short}, {@code char}, {@code int}, {@code long}, 3282 * {@code float}, or {@code double}, then numeric atomic update 3283 * access modes are unsupported. 3284 * <li>if the field type is anything other than {@code boolean}, 3285 * {@code byte}, {@code short}, {@code char}, {@code int} or 3286 * {@code long} then bitwise atomic update access modes are 3287 * unsupported. 3288 * </ul> 3289 * <p> 3290 * If the field is declared {@code volatile} then the returned VarHandle 3291 * will override access to the field (effectively ignore the 3292 * {@code volatile} declaration) in accordance to its specified 3293 * access modes. 3294 * <p> 3295 * If the field type is {@code float} or {@code double} then numeric 3296 * and atomic update access modes compare values using their bitwise 3297 * representation (see {@link Float#floatToRawIntBits} and 3298 * {@link Double#doubleToRawLongBits}, respectively). 3299 * @apiNote 3300 * Bitwise comparison of {@code float} values or {@code double} values, 3301 * as performed by the numeric and atomic update access modes, differ 3302 * from the primitive {@code ==} operator and the {@link Float#equals} 3303 * and {@link Double#equals} methods, specifically with respect to 3304 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 3305 * Care should be taken when performing a compare and set or a compare 3306 * and exchange operation with such values since the operation may 3307 * unexpectedly fail. 3308 * There are many possible NaN values that are considered to be 3309 * {@code NaN} in Java, although no IEEE 754 floating-point operation 3310 * provided by Java can distinguish between them. Operation failure can 3311 * occur if the expected or witness value is a NaN value and it is 3312 * transformed (perhaps in a platform specific manner) into another NaN 3313 * value, and thus has a different bitwise representation (see 3314 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 3315 * details). 3316 * The values {@code -0.0} and {@code +0.0} have different bitwise 3317 * representations but are considered equal when using the primitive 3318 * {@code ==} operator. Operation failure can occur if, for example, a 3319 * numeric algorithm computes an expected value to be say {@code -0.0} 3320 * and previously computed the witness value to be say {@code +0.0}. 3321 * @param decl the class that declares the static field 3322 * @param name the field's name 3323 * @param type the field's type, of type {@code T} 3324 * @return a VarHandle giving access to a static field 3325 * @throws NoSuchFieldException if the field does not exist 3326 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} 3327 * @throws SecurityException if a security manager is present and it 3328 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 3329 * @throws NullPointerException if any argument is null 3330 * @since 9 3331 */ 3332 public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 3333 MemberName getField = resolveOrFail(REF_getStatic, decl, name, type); 3334 MemberName putField = resolveOrFail(REF_putStatic, decl, name, type); 3335 return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField); 3336 } 3337 3338 /** 3339 * Produces an early-bound method handle for a non-static method. 3340 * The receiver must have a supertype {@code defc} in which a method 3341 * of the given name and type is accessible to the lookup class. 3342 * The method and all its argument types must be accessible to the lookup object. 3343 * The type of the method handle will be that of the method, 3344 * without any insertion of an additional receiver parameter. 3345 * The given receiver will be bound into the method handle, 3346 * so that every call to the method handle will invoke the 3347 * requested method on the given receiver. 3348 * <p> 3349 * The returned method handle will have 3350 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 3351 * the method's variable arity modifier bit ({@code 0x0080}) is set 3352 * <em>and</em> the trailing array argument is not the only argument. 3353 * (If the trailing array argument is the only argument, 3354 * the given receiver value will be bound to it.) 3355 * <p> 3356 * This is almost equivalent to the following code, with some differences noted below: 3357 * {@snippet lang="java" : 3358 import static java.lang.invoke.MethodHandles.*; 3359 import static java.lang.invoke.MethodType.*; 3360 ... 3361 MethodHandle mh0 = lookup().findVirtual(defc, name, type); 3362 MethodHandle mh1 = mh0.bindTo(receiver); 3363 mh1 = mh1.withVarargs(mh0.isVarargsCollector()); 3364 return mh1; 3365 * } 3366 * where {@code defc} is either {@code receiver.getClass()} or a super 3367 * type of that class, in which the requested method is accessible 3368 * to the lookup class. 3369 * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity. 3370 * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would 3371 * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and 3372 * the receiver is restricted by {@code findVirtual} to the lookup class.) 3373 * @param receiver the object from which the method is accessed 3374 * @param name the name of the method 3375 * @param type the type of the method, with the receiver argument omitted 3376 * @return the desired method handle 3377 * @throws NoSuchMethodException if the method does not exist 3378 * @throws IllegalAccessException if access checking fails 3379 * or if the method's variable arity modifier bit 3380 * is set and {@code asVarargsCollector} fails 3381 * @throws SecurityException if a security manager is present and it 3382 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 3383 * @throws NullPointerException if any argument is null 3384 * @see MethodHandle#bindTo 3385 * @see #findVirtual 3386 */ 3387 public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 3388 Class<? extends Object> refc = receiver.getClass(); // may get NPE 3389 MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type); 3390 MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerLookup(method)); 3391 if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) { 3392 throw new IllegalAccessException("The restricted defining class " + 3393 mh.type().leadingReferenceParameter().getName() + 3394 " is not assignable from receiver class " + 3395 receiver.getClass().getName()); 3396 } 3397 return mh.bindArgumentL(0, receiver).setVarargs(method); 3398 } 3399 3400 /** 3401 * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a> 3402 * to <i>m</i>, if the lookup class has permission. 3403 * If <i>m</i> is non-static, the receiver argument is treated as an initial argument. 3404 * If <i>m</i> is virtual, overriding is respected on every call. 3405 * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped. 3406 * The type of the method handle will be that of the method, 3407 * with the receiver type prepended (but only if it is non-static). 3408 * If the method's {@code accessible} flag is not set, 3409 * access checking is performed immediately on behalf of the lookup class. 3410 * If <i>m</i> is not public, do not share the resulting handle with untrusted parties. 3411 * <p> 3412 * The returned method handle will have 3413 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 3414 * the method's variable arity modifier bit ({@code 0x0080}) is set. 3415 * <p> 3416 * If <i>m</i> is static, and 3417 * if the returned method handle is invoked, the method's class will 3418 * be initialized, if it has not already been initialized. 3419 * @param m the reflected method 3420 * @return a method handle which can invoke the reflected method 3421 * @throws IllegalAccessException if access checking fails 3422 * or if the method's variable arity modifier bit 3423 * is set and {@code asVarargsCollector} fails 3424 * @throws NullPointerException if the argument is null 3425 */ 3426 public MethodHandle unreflect(Method m) throws IllegalAccessException { 3427 if (m.getDeclaringClass() == MethodHandle.class) { 3428 MethodHandle mh = unreflectForMH(m); 3429 if (mh != null) return mh; 3430 } 3431 if (m.getDeclaringClass() == VarHandle.class) { 3432 MethodHandle mh = unreflectForVH(m); 3433 if (mh != null) return mh; 3434 } 3435 MemberName method = new MemberName(m); 3436 byte refKind = method.getReferenceKind(); 3437 if (refKind == REF_invokeSpecial) 3438 refKind = REF_invokeVirtual; 3439 assert(method.isMethod()); 3440 @SuppressWarnings("deprecation") 3441 Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this; 3442 return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerLookup(method)); 3443 } 3444 private MethodHandle unreflectForMH(Method m) { 3445 // these names require special lookups because they throw UnsupportedOperationException 3446 if (MemberName.isMethodHandleInvokeName(m.getName())) 3447 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m)); 3448 return null; 3449 } 3450 private MethodHandle unreflectForVH(Method m) { 3451 // these names require special lookups because they throw UnsupportedOperationException 3452 if (MemberName.isVarHandleMethodInvokeName(m.getName())) 3453 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m)); 3454 return null; 3455 } 3456 3457 /** 3458 * Produces a method handle for a reflected method. 3459 * It will bypass checks for overriding methods on the receiver, 3460 * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial} 3461 * instruction from within the explicitly specified {@code specialCaller}. 3462 * The type of the method handle will be that of the method, 3463 * with a suitably restricted receiver type prepended. 3464 * (The receiver type will be {@code specialCaller} or a subtype.) 3465 * If the method's {@code accessible} flag is not set, 3466 * access checking is performed immediately on behalf of the lookup class, 3467 * as if {@code invokespecial} instruction were being linked. 3468 * <p> 3469 * Before method resolution, 3470 * if the explicitly specified caller class is not identical with the 3471 * lookup class, or if this lookup object does not have 3472 * <a href="MethodHandles.Lookup.html#privacc">private access</a> 3473 * privileges, the access fails. 3474 * <p> 3475 * The returned method handle will have 3476 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 3477 * the method's variable arity modifier bit ({@code 0x0080}) is set. 3478 * @param m the reflected method 3479 * @param specialCaller the class nominally calling the method 3480 * @return a method handle which can invoke the reflected method 3481 * @throws IllegalAccessException if access checking fails, 3482 * or if the method is {@code static}, 3483 * or if the method's variable arity modifier bit 3484 * is set and {@code asVarargsCollector} fails 3485 * @throws NullPointerException if any argument is null 3486 */ 3487 public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException { 3488 checkSpecialCaller(specialCaller, m.getDeclaringClass()); 3489 Lookup specialLookup = this.in(specialCaller); 3490 MemberName method = new MemberName(m, true); 3491 assert(method.isMethod()); 3492 // ignore m.isAccessible: this is a new kind of access 3493 return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerLookup(method)); 3494 } 3495 3496 /** 3497 * Produces a method handle for a reflected constructor. 3498 * The type of the method handle will be that of the constructor, 3499 * with the return type changed to the declaring class. 3500 * The method handle will perform a {@code newInstance} operation, 3501 * creating a new instance of the constructor's class on the 3502 * arguments passed to the method handle. 3503 * <p> 3504 * If the constructor's {@code accessible} flag is not set, 3505 * access checking is performed immediately on behalf of the lookup class. 3506 * <p> 3507 * The returned method handle will have 3508 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 3509 * the constructor's variable arity modifier bit ({@code 0x0080}) is set. 3510 * <p> 3511 * If the returned method handle is invoked, the constructor's class will 3512 * be initialized, if it has not already been initialized. 3513 * @param c the reflected constructor 3514 * @return a method handle which can invoke the reflected constructor 3515 * @throws IllegalAccessException if access checking fails 3516 * or if the method's variable arity modifier bit 3517 * is set and {@code asVarargsCollector} fails 3518 * @throws NullPointerException if the argument is null 3519 */ 3520 public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException { 3521 MemberName ctor = new MemberName(c); 3522 assert(ctor.isConstructor()); 3523 @SuppressWarnings("deprecation") 3524 Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this; 3525 return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor); 3526 } 3527 3528 /* 3529 * Produces a method handle that is capable of creating instances of the given class 3530 * and instantiated by the given constructor. No security manager check. 3531 * 3532 * This method should only be used by ReflectionFactory::newConstructorForSerialization. 3533 */ 3534 /* package-private */ MethodHandle serializableConstructor(Class<?> decl, Constructor<?> c) throws IllegalAccessException { 3535 MemberName ctor = new MemberName(c); 3536 assert(ctor.isConstructor() && constructorInSuperclass(decl, c)); 3537 checkAccess(REF_newInvokeSpecial, decl, ctor); 3538 assert(!MethodHandleNatives.isCallerSensitive(ctor)); // maybeBindCaller not relevant here 3539 return DirectMethodHandle.makeAllocator(decl, ctor).setVarargs(ctor); 3540 } 3541 3542 private static boolean constructorInSuperclass(Class<?> decl, Constructor<?> ctor) { 3543 if (decl == ctor.getDeclaringClass()) 3544 return true; 3545 3546 Class<?> cl = decl; 3547 while ((cl = cl.getSuperclass()) != null) { 3548 if (cl == ctor.getDeclaringClass()) { 3549 return true; 3550 } 3551 } 3552 return false; 3553 } 3554 3555 /** 3556 * Produces a method handle giving read access to a reflected field. 3557 * The type of the method handle will have a return type of the field's 3558 * value type. 3559 * If the field is {@code static}, the method handle will take no arguments. 3560 * Otherwise, its single argument will be the instance containing 3561 * the field. 3562 * If the {@code Field} object's {@code accessible} flag is not set, 3563 * access checking is performed immediately on behalf of the lookup class. 3564 * <p> 3565 * If the field is static, and 3566 * if the returned method handle is invoked, the field's class will 3567 * be initialized, if it has not already been initialized. 3568 * @param f the reflected field 3569 * @return a method handle which can load values from the reflected field 3570 * @throws IllegalAccessException if access checking fails 3571 * @throws NullPointerException if the argument is null 3572 */ 3573 public MethodHandle unreflectGetter(Field f) throws IllegalAccessException { 3574 return unreflectField(f, false); 3575 } 3576 3577 /** 3578 * Produces a method handle giving write access to a reflected field. 3579 * The type of the method handle will have a void return type. 3580 * If the field is {@code static}, the method handle will take a single 3581 * argument, of the field's value type, the value to be stored. 3582 * Otherwise, the two arguments will be the instance containing 3583 * the field, and the value to be stored. 3584 * If the {@code Field} object's {@code accessible} flag is not set, 3585 * access checking is performed immediately on behalf of the lookup class. 3586 * <p> 3587 * If the field is {@code final}, write access will not be 3588 * allowed and access checking will fail, except under certain 3589 * narrow circumstances documented for {@link Field#set Field.set}. 3590 * A method handle is returned only if a corresponding call to 3591 * the {@code Field} object's {@code set} method could return 3592 * normally. In particular, fields which are both {@code static} 3593 * and {@code final} may never be set. 3594 * <p> 3595 * If the field is {@code static}, and 3596 * if the returned method handle is invoked, the field's class will 3597 * be initialized, if it has not already been initialized. 3598 * @param f the reflected field 3599 * @return a method handle which can store values into the reflected field 3600 * @throws IllegalAccessException if access checking fails, 3601 * or if the field is {@code final} and write access 3602 * is not enabled on the {@code Field} object 3603 * @throws NullPointerException if the argument is null 3604 */ 3605 public MethodHandle unreflectSetter(Field f) throws IllegalAccessException { 3606 return unreflectField(f, true); 3607 } 3608 3609 private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException { 3610 MemberName field = new MemberName(f, isSetter); 3611 if (isSetter && field.isFinal()) { 3612 if (field.isTrustedFinalField()) { 3613 String msg = field.isStatic() ? "static final field has no write access" 3614 : "final field has no write access"; 3615 throw field.makeAccessException(msg, this); 3616 } 3617 } 3618 assert(isSetter 3619 ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind()) 3620 : MethodHandleNatives.refKindIsGetter(field.getReferenceKind())); 3621 @SuppressWarnings("deprecation") 3622 Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this; 3623 return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field); 3624 } 3625 3626 /** 3627 * Produces a VarHandle giving access to a reflected field {@code f} 3628 * of type {@code T} declared in a class of type {@code R}. 3629 * The VarHandle's variable type is {@code T}. 3630 * If the field is non-static the VarHandle has one coordinate type, 3631 * {@code R}. Otherwise, the field is static, and the VarHandle has no 3632 * coordinate types. 3633 * <p> 3634 * Access checking is performed immediately on behalf of the lookup 3635 * class, regardless of the value of the field's {@code accessible} 3636 * flag. 3637 * <p> 3638 * If the field is static, and if the returned VarHandle is operated 3639 * on, the field's declaring class will be initialized, if it has not 3640 * already been initialized. 3641 * <p> 3642 * Certain access modes of the returned VarHandle are unsupported under 3643 * the following conditions: 3644 * <ul> 3645 * <li>if the field is declared {@code final}, then the write, atomic 3646 * update, numeric atomic update, and bitwise atomic update access 3647 * modes are unsupported. 3648 * <li>if the field type is anything other than {@code byte}, 3649 * {@code short}, {@code char}, {@code int}, {@code long}, 3650 * {@code float}, or {@code double} then numeric atomic update 3651 * access modes are unsupported. 3652 * <li>if the field type is anything other than {@code boolean}, 3653 * {@code byte}, {@code short}, {@code char}, {@code int} or 3654 * {@code long} then bitwise atomic update access modes are 3655 * unsupported. 3656 * </ul> 3657 * <p> 3658 * If the field is declared {@code volatile} then the returned VarHandle 3659 * will override access to the field (effectively ignore the 3660 * {@code volatile} declaration) in accordance to its specified 3661 * access modes. 3662 * <p> 3663 * If the field type is {@code float} or {@code double} then numeric 3664 * and atomic update access modes compare values using their bitwise 3665 * representation (see {@link Float#floatToRawIntBits} and 3666 * {@link Double#doubleToRawLongBits}, respectively). 3667 * @apiNote 3668 * Bitwise comparison of {@code float} values or {@code double} values, 3669 * as performed by the numeric and atomic update access modes, differ 3670 * from the primitive {@code ==} operator and the {@link Float#equals} 3671 * and {@link Double#equals} methods, specifically with respect to 3672 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 3673 * Care should be taken when performing a compare and set or a compare 3674 * and exchange operation with such values since the operation may 3675 * unexpectedly fail. 3676 * There are many possible NaN values that are considered to be 3677 * {@code NaN} in Java, although no IEEE 754 floating-point operation 3678 * provided by Java can distinguish between them. Operation failure can 3679 * occur if the expected or witness value is a NaN value and it is 3680 * transformed (perhaps in a platform specific manner) into another NaN 3681 * value, and thus has a different bitwise representation (see 3682 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 3683 * details). 3684 * The values {@code -0.0} and {@code +0.0} have different bitwise 3685 * representations but are considered equal when using the primitive 3686 * {@code ==} operator. Operation failure can occur if, for example, a 3687 * numeric algorithm computes an expected value to be say {@code -0.0} 3688 * and previously computed the witness value to be say {@code +0.0}. 3689 * @param f the reflected field, with a field of type {@code T}, and 3690 * a declaring class of type {@code R} 3691 * @return a VarHandle giving access to non-static fields or a static 3692 * field 3693 * @throws IllegalAccessException if access checking fails 3694 * @throws NullPointerException if the argument is null 3695 * @since 9 3696 */ 3697 public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException { 3698 MemberName getField = new MemberName(f, false); 3699 MemberName putField = new MemberName(f, true); 3700 return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(), 3701 f.getDeclaringClass(), getField, putField); 3702 } 3703 3704 /** 3705 * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a> 3706 * created by this lookup object or a similar one. 3707 * Security and access checks are performed to ensure that this lookup object 3708 * is capable of reproducing the target method handle. 3709 * This means that the cracking may fail if target is a direct method handle 3710 * but was created by an unrelated lookup object. 3711 * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> 3712 * and was created by a lookup object for a different class. 3713 * @param target a direct method handle to crack into symbolic reference components 3714 * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object 3715 * @throws SecurityException if a security manager is present and it 3716 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 3717 * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails 3718 * @throws NullPointerException if the target is {@code null} 3719 * @see MethodHandleInfo 3720 * @since 1.8 3721 */ 3722 public MethodHandleInfo revealDirect(MethodHandle target) { 3723 if (!target.isCrackable()) { 3724 throw newIllegalArgumentException("not a direct method handle"); 3725 } 3726 MemberName member = target.internalMemberName(); 3727 Class<?> defc = member.getDeclaringClass(); 3728 byte refKind = member.getReferenceKind(); 3729 assert(MethodHandleNatives.refKindIsValid(refKind)); 3730 if (refKind == REF_invokeSpecial && !target.isInvokeSpecial()) 3731 // Devirtualized method invocation is usually formally virtual. 3732 // To avoid creating extra MemberName objects for this common case, 3733 // we encode this extra degree of freedom using MH.isInvokeSpecial. 3734 refKind = REF_invokeVirtual; 3735 if (refKind == REF_invokeVirtual && defc.isInterface()) 3736 // Symbolic reference is through interface but resolves to Object method (toString, etc.) 3737 refKind = REF_invokeInterface; 3738 // Check SM permissions and member access before cracking. 3739 try { 3740 checkAccess(refKind, defc, member); 3741 checkSecurityManager(defc, member); 3742 } catch (IllegalAccessException ex) { 3743 throw new IllegalArgumentException(ex); 3744 } 3745 if (allowedModes != TRUSTED && member.isCallerSensitive()) { 3746 Class<?> callerClass = target.internalCallerClass(); 3747 if ((lookupModes() & ORIGINAL) == 0 || callerClass != lookupClass()) 3748 throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass); 3749 } 3750 // Produce the handle to the results. 3751 return new InfoFromMemberName(this, member, refKind); 3752 } 3753 3754 /// Helper methods, all package-private. 3755 3756 MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 3757 checkSymbolicClass(refc); // do this before attempting to resolve 3758 Objects.requireNonNull(name); 3759 Objects.requireNonNull(type); 3760 return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), allowedModes, 3761 NoSuchFieldException.class); 3762 } 3763 3764 MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 3765 checkSymbolicClass(refc); // do this before attempting to resolve 3766 Objects.requireNonNull(type); 3767 checkMethodName(refKind, name); // implicit null-check of name 3768 return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), allowedModes, 3769 NoSuchMethodException.class); 3770 } 3771 3772 MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException { 3773 checkSymbolicClass(member.getDeclaringClass()); // do this before attempting to resolve 3774 Objects.requireNonNull(member.getName()); 3775 Objects.requireNonNull(member.getType()); 3776 return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(), allowedModes, 3777 ReflectiveOperationException.class); 3778 } 3779 3780 MemberName resolveOrNull(byte refKind, MemberName member) { 3781 // do this before attempting to resolve 3782 if (!isClassAccessible(member.getDeclaringClass())) { 3783 return null; 3784 } 3785 Objects.requireNonNull(member.getName()); 3786 Objects.requireNonNull(member.getType()); 3787 return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull(), allowedModes); 3788 } 3789 3790 MemberName resolveOrNull(byte refKind, Class<?> refc, String name, MethodType type) { 3791 // do this before attempting to resolve 3792 if (!isClassAccessible(refc)) { 3793 return null; 3794 } 3795 Objects.requireNonNull(type); 3796 // implicit null-check of name 3797 if (name.startsWith("<") && refKind != REF_newInvokeSpecial) { 3798 return null; 3799 } 3800 return IMPL_NAMES.resolveOrNull(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), allowedModes); 3801 } 3802 3803 void checkSymbolicClass(Class<?> refc) throws IllegalAccessException { 3804 if (!isClassAccessible(refc)) { 3805 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this); 3806 } 3807 } 3808 3809 boolean isClassAccessible(Class<?> refc) { 3810 Objects.requireNonNull(refc); 3811 Class<?> caller = lookupClassOrNull(); 3812 Class<?> type = refc; 3813 while (type.isArray()) { 3814 type = type.getComponentType(); 3815 } 3816 return caller == null || VerifyAccess.isClassAccessible(type, caller, prevLookupClass, allowedModes); 3817 } 3818 3819 /** Check name for an illegal leading "<" character. */ 3820 void checkMethodName(byte refKind, String name) throws NoSuchMethodException { 3821 if (name.startsWith("<") && refKind != REF_newInvokeSpecial) 3822 throw new NoSuchMethodException("illegal method name: "+name); 3823 } 3824 3825 /** 3826 * Find my trustable caller class if m is a caller sensitive method. 3827 * If this lookup object has original full privilege access, then the caller class is the lookupClass. 3828 * Otherwise, if m is caller-sensitive, throw IllegalAccessException. 3829 */ 3830 Lookup findBoundCallerLookup(MemberName m) throws IllegalAccessException { 3831 if (MethodHandleNatives.isCallerSensitive(m) && (lookupModes() & ORIGINAL) == 0) { 3832 // Only lookups with full privilege access are allowed to resolve caller-sensitive methods 3833 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object"); 3834 } 3835 return this; 3836 } 3837 3838 /** 3839 * Returns {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access. 3840 * @return {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access. 3841 * 3842 * @deprecated This method was originally designed to test {@code PRIVATE} access 3843 * that implies full privilege access but {@code MODULE} access has since become 3844 * independent of {@code PRIVATE} access. It is recommended to call 3845 * {@link #hasFullPrivilegeAccess()} instead. 3846 * @since 9 3847 */ 3848 @Deprecated(since="14") 3849 public boolean hasPrivateAccess() { 3850 return hasFullPrivilegeAccess(); 3851 } 3852 3853 /** 3854 * Returns {@code true} if this lookup has <em>full privilege access</em>, 3855 * i.e. {@code PRIVATE} and {@code MODULE} access. 3856 * A {@code Lookup} object must have full privilege access in order to 3857 * access all members that are allowed to the 3858 * {@linkplain #lookupClass() lookup class}. 3859 * 3860 * @return {@code true} if this lookup has full privilege access. 3861 * @since 14 3862 * @see <a href="MethodHandles.Lookup.html#privacc">private and module access</a> 3863 */ 3864 public boolean hasFullPrivilegeAccess() { 3865 return (allowedModes & (PRIVATE|MODULE)) == (PRIVATE|MODULE); 3866 } 3867 3868 /** 3869 * Perform steps 1 and 2b <a href="MethodHandles.Lookup.html#secmgr">access checks</a> 3870 * for ensureInitialized, findClass or accessClass. 3871 */ 3872 void checkSecurityManager(Class<?> refc) { 3873 if (allowedModes == TRUSTED) return; 3874 3875 @SuppressWarnings("removal") 3876 SecurityManager smgr = System.getSecurityManager(); 3877 if (smgr == null) return; 3878 3879 // Step 1: 3880 boolean fullPrivilegeLookup = hasFullPrivilegeAccess(); 3881 if (!fullPrivilegeLookup || 3882 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) { 3883 ReflectUtil.checkPackageAccess(refc); 3884 } 3885 3886 // Step 2b: 3887 if (!fullPrivilegeLookup) { 3888 smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION); 3889 } 3890 } 3891 3892 /** 3893 * Perform steps 1, 2a and 3 <a href="MethodHandles.Lookup.html#secmgr">access checks</a>. 3894 * Determines a trustable caller class to compare with refc, the symbolic reference class. 3895 * If this lookup object has full privilege access except original access, 3896 * then the caller class is the lookupClass. 3897 * 3898 * Lookup object created by {@link MethodHandles#privateLookupIn(Class, Lookup)} 3899 * from the same module skips the security permission check. 3900 */ 3901 void checkSecurityManager(Class<?> refc, MemberName m) { 3902 Objects.requireNonNull(refc); 3903 Objects.requireNonNull(m); 3904 3905 if (allowedModes == TRUSTED) return; 3906 3907 @SuppressWarnings("removal") 3908 SecurityManager smgr = System.getSecurityManager(); 3909 if (smgr == null) return; 3910 3911 // Step 1: 3912 boolean fullPrivilegeLookup = hasFullPrivilegeAccess(); 3913 if (!fullPrivilegeLookup || 3914 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) { 3915 ReflectUtil.checkPackageAccess(refc); 3916 } 3917 3918 // Step 2a: 3919 if (m.isPublic()) return; 3920 if (!fullPrivilegeLookup) { 3921 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION); 3922 } 3923 3924 // Step 3: 3925 Class<?> defc = m.getDeclaringClass(); 3926 if (!fullPrivilegeLookup && defc != refc) { 3927 ReflectUtil.checkPackageAccess(defc); 3928 } 3929 } 3930 3931 void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException { 3932 boolean wantStatic = (refKind == REF_invokeStatic); 3933 String message; 3934 if (m.isConstructor()) 3935 message = "expected a method, not a constructor"; 3936 else if (!m.isMethod()) 3937 message = "expected a method"; 3938 else if (wantStatic != m.isStatic()) 3939 message = wantStatic ? "expected a static method" : "expected a non-static method"; 3940 else 3941 { checkAccess(refKind, refc, m); return; } 3942 throw m.makeAccessException(message, this); 3943 } 3944 3945 void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException { 3946 boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind); 3947 String message; 3948 if (wantStatic != m.isStatic()) 3949 message = wantStatic ? "expected a static field" : "expected a non-static field"; 3950 else 3951 { checkAccess(refKind, refc, m); return; } 3952 throw m.makeAccessException(message, this); 3953 } 3954 3955 private boolean isArrayClone(byte refKind, Class<?> refc, MemberName m) { 3956 return Modifier.isProtected(m.getModifiers()) && 3957 refKind == REF_invokeVirtual && 3958 m.getDeclaringClass() == Object.class && 3959 m.getName().equals("clone") && 3960 refc.isArray(); 3961 } 3962 3963 /** Check public/protected/private bits on the symbolic reference class and its member. */ 3964 void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException { 3965 assert(m.referenceKindIsConsistentWith(refKind) && 3966 MethodHandleNatives.refKindIsValid(refKind) && 3967 (MethodHandleNatives.refKindIsField(refKind) == m.isField())); 3968 int allowedModes = this.allowedModes; 3969 if (allowedModes == TRUSTED) return; 3970 int mods = m.getModifiers(); 3971 if (isArrayClone(refKind, refc, m)) { 3972 // The JVM does this hack also. 3973 // (See ClassVerifier::verify_invoke_instructions 3974 // and LinkResolver::check_method_accessability.) 3975 // Because the JVM does not allow separate methods on array types, 3976 // there is no separate method for int[].clone. 3977 // All arrays simply inherit Object.clone. 3978 // But for access checking logic, we make Object.clone 3979 // (normally protected) appear to be public. 3980 // Later on, when the DirectMethodHandle is created, 3981 // its leading argument will be restricted to the 3982 // requested array type. 3983 // N.B. The return type is not adjusted, because 3984 // that is *not* the bytecode behavior. 3985 mods ^= Modifier.PROTECTED | Modifier.PUBLIC; 3986 } 3987 if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) { 3988 // cannot "new" a protected ctor in a different package 3989 mods ^= Modifier.PROTECTED; 3990 } 3991 if (Modifier.isFinal(mods) && 3992 MethodHandleNatives.refKindIsSetter(refKind)) 3993 throw m.makeAccessException("unexpected set of a final field", this); 3994 int requestedModes = fixmods(mods); // adjust 0 => PACKAGE 3995 if ((requestedModes & allowedModes) != 0) { 3996 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(), 3997 mods, lookupClass(), previousLookupClass(), allowedModes)) 3998 return; 3999 } else { 4000 // Protected members can also be checked as if they were package-private. 4001 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0 4002 && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass())) 4003 return; 4004 } 4005 throw m.makeAccessException(accessFailedMessage(refc, m), this); 4006 } 4007 4008 String accessFailedMessage(Class<?> refc, MemberName m) { 4009 Class<?> defc = m.getDeclaringClass(); 4010 int mods = m.getModifiers(); 4011 // check the class first: 4012 boolean classOK = (Modifier.isPublic(defc.getModifiers()) && 4013 (defc == refc || 4014 Modifier.isPublic(refc.getModifiers()))); 4015 if (!classOK && (allowedModes & PACKAGE) != 0) { 4016 // ignore previous lookup class to check if default package access 4017 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), null, FULL_POWER_MODES) && 4018 (defc == refc || 4019 VerifyAccess.isClassAccessible(refc, lookupClass(), null, FULL_POWER_MODES))); 4020 } 4021 if (!classOK) 4022 return "class is not public"; 4023 if (Modifier.isPublic(mods)) 4024 return "access to public member failed"; // (how?, module not readable?) 4025 if (Modifier.isPrivate(mods)) 4026 return "member is private"; 4027 if (Modifier.isProtected(mods)) 4028 return "member is protected"; 4029 return "member is private to package"; 4030 } 4031 4032 private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException { 4033 int allowedModes = this.allowedModes; 4034 if (allowedModes == TRUSTED) return; 4035 if ((lookupModes() & PRIVATE) == 0 4036 || (specialCaller != lookupClass() 4037 // ensure non-abstract methods in superinterfaces can be special-invoked 4038 && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller)))) 4039 throw new MemberName(specialCaller). 4040 makeAccessException("no private access for invokespecial", this); 4041 } 4042 4043 private boolean restrictProtectedReceiver(MemberName method) { 4044 // The accessing class only has the right to use a protected member 4045 // on itself or a subclass. Enforce that restriction, from JVMS 5.4.4, etc. 4046 if (!method.isProtected() || method.isStatic() 4047 || allowedModes == TRUSTED 4048 || method.getDeclaringClass() == lookupClass() 4049 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())) 4050 return false; 4051 return true; 4052 } 4053 private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException { 4054 assert(!method.isStatic()); 4055 // receiver type of mh is too wide; narrow to caller 4056 if (!method.getDeclaringClass().isAssignableFrom(caller)) { 4057 throw method.makeAccessException("caller class must be a subclass below the method", caller); 4058 } 4059 MethodType rawType = mh.type(); 4060 if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow 4061 MethodType narrowType = rawType.changeParameterType(0, caller); 4062 assert(!mh.isVarargsCollector()); // viewAsType will lose varargs-ness 4063 assert(mh.viewAsTypeChecks(narrowType, true)); 4064 return mh.copyWith(narrowType, mh.form); 4065 } 4066 4067 /** Check access and get the requested method. */ 4068 private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException { 4069 final boolean doRestrict = true; 4070 final boolean checkSecurity = true; 4071 return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup); 4072 } 4073 /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */ 4074 private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException { 4075 final boolean doRestrict = false; 4076 final boolean checkSecurity = true; 4077 return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, callerLookup); 4078 } 4079 /** Check access and get the requested method, eliding security manager checks. */ 4080 private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException { 4081 final boolean doRestrict = true; 4082 final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants 4083 return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup); 4084 } 4085 /** Common code for all methods; do not call directly except from immediately above. */ 4086 private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method, 4087 boolean checkSecurity, 4088 boolean doRestrict, 4089 Lookup boundCaller) throws IllegalAccessException { 4090 checkMethod(refKind, refc, method); 4091 // Optionally check with the security manager; this isn't needed for unreflect* calls. 4092 if (checkSecurity) 4093 checkSecurityManager(refc, method); 4094 assert(!method.isMethodHandleInvoke()); 4095 4096 if (refKind == REF_invokeSpecial && 4097 refc != lookupClass() && 4098 !refc.isInterface() && !lookupClass().isInterface() && 4099 refc != lookupClass().getSuperclass() && 4100 refc.isAssignableFrom(lookupClass())) { 4101 assert(!method.getName().equals(ConstantDescs.INIT_NAME)); // not this code path 4102 4103 // Per JVMS 6.5, desc. of invokespecial instruction: 4104 // If the method is in a superclass of the LC, 4105 // and if our original search was above LC.super, 4106 // repeat the search (symbolic lookup) from LC.super 4107 // and continue with the direct superclass of that class, 4108 // and so forth, until a match is found or no further superclasses exist. 4109 // FIXME: MemberName.resolve should handle this instead. 4110 Class<?> refcAsSuper = lookupClass(); 4111 MemberName m2; 4112 do { 4113 refcAsSuper = refcAsSuper.getSuperclass(); 4114 m2 = new MemberName(refcAsSuper, 4115 method.getName(), 4116 method.getMethodType(), 4117 REF_invokeSpecial); 4118 m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull(), allowedModes); 4119 } while (m2 == null && // no method is found yet 4120 refc != refcAsSuper); // search up to refc 4121 if (m2 == null) throw new InternalError(method.toString()); 4122 method = m2; 4123 refc = refcAsSuper; 4124 // redo basic checks 4125 checkMethod(refKind, refc, method); 4126 } 4127 DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass()); 4128 MethodHandle mh = dmh; 4129 // Optionally narrow the receiver argument to lookupClass using restrictReceiver. 4130 if ((doRestrict && refKind == REF_invokeSpecial) || 4131 (MethodHandleNatives.refKindHasReceiver(refKind) && 4132 restrictProtectedReceiver(method) && 4133 // All arrays simply inherit the protected Object.clone method. 4134 // The leading argument is already restricted to the requested 4135 // array type (not the lookup class). 4136 !isArrayClone(refKind, refc, method))) { 4137 mh = restrictReceiver(method, dmh, lookupClass()); 4138 } 4139 mh = maybeBindCaller(method, mh, boundCaller); 4140 mh = mh.setVarargs(method); 4141 return mh; 4142 } 4143 private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, Lookup boundCaller) 4144 throws IllegalAccessException { 4145 if (boundCaller.allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method)) 4146 return mh; 4147 4148 // boundCaller must have full privilege access. 4149 // It should have been checked by findBoundCallerLookup. Safe to check this again. 4150 if ((boundCaller.lookupModes() & ORIGINAL) == 0) 4151 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object"); 4152 4153 assert boundCaller.hasFullPrivilegeAccess(); 4154 4155 MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, boundCaller.lookupClass); 4156 // Note: caller will apply varargs after this step happens. 4157 return cbmh; 4158 } 4159 4160 /** Check access and get the requested field. */ 4161 private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException { 4162 final boolean checkSecurity = true; 4163 return getDirectFieldCommon(refKind, refc, field, checkSecurity); 4164 } 4165 /** Check access and get the requested field, eliding security manager checks. */ 4166 private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException { 4167 final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants 4168 return getDirectFieldCommon(refKind, refc, field, checkSecurity); 4169 } 4170 /** Common code for all fields; do not call directly except from immediately above. */ 4171 private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field, 4172 boolean checkSecurity) throws IllegalAccessException { 4173 checkField(refKind, refc, field); 4174 // Optionally check with the security manager; this isn't needed for unreflect* calls. 4175 if (checkSecurity) 4176 checkSecurityManager(refc, field); 4177 DirectMethodHandle dmh = DirectMethodHandle.make(refc, field); 4178 boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) && 4179 restrictProtectedReceiver(field)); 4180 if (doRestrict) 4181 return restrictReceiver(field, dmh, lookupClass()); 4182 return dmh; 4183 } 4184 private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind, 4185 Class<?> refc, MemberName getField, MemberName putField) 4186 throws IllegalAccessException { 4187 final boolean checkSecurity = true; 4188 return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity); 4189 } 4190 private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind, 4191 Class<?> refc, MemberName getField, MemberName putField) 4192 throws IllegalAccessException { 4193 final boolean checkSecurity = false; 4194 return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity); 4195 } 4196 private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind, 4197 Class<?> refc, MemberName getField, MemberName putField, 4198 boolean checkSecurity) throws IllegalAccessException { 4199 assert getField.isStatic() == putField.isStatic(); 4200 assert getField.isGetter() && putField.isSetter(); 4201 assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind); 4202 assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind); 4203 4204 checkField(getRefKind, refc, getField); 4205 if (checkSecurity) 4206 checkSecurityManager(refc, getField); 4207 4208 if (!putField.isFinal()) { 4209 // A VarHandle does not support updates to final fields, any 4210 // such VarHandle to a final field will be read-only and 4211 // therefore the following write-based accessibility checks are 4212 // only required for non-final fields 4213 checkField(putRefKind, refc, putField); 4214 if (checkSecurity) 4215 checkSecurityManager(refc, putField); 4216 } 4217 4218 boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) && 4219 restrictProtectedReceiver(getField)); 4220 if (doRestrict) { 4221 assert !getField.isStatic(); 4222 // receiver type of VarHandle is too wide; narrow to caller 4223 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) { 4224 throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass()); 4225 } 4226 refc = lookupClass(); 4227 } 4228 return VarHandles.makeFieldHandle(getField, refc, 4229 this.allowedModes == TRUSTED && !getField.isTrustedFinalField()); 4230 } 4231 /** Check access and get the requested constructor. */ 4232 private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException { 4233 final boolean checkSecurity = true; 4234 return getDirectConstructorCommon(refc, ctor, checkSecurity); 4235 } 4236 /** Check access and get the requested constructor, eliding security manager checks. */ 4237 private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException { 4238 final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants 4239 return getDirectConstructorCommon(refc, ctor, checkSecurity); 4240 } 4241 /** Common code for all constructors; do not call directly except from immediately above. */ 4242 private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor, 4243 boolean checkSecurity) throws IllegalAccessException { 4244 assert(ctor.isConstructor()); 4245 checkAccess(REF_newInvokeSpecial, refc, ctor); 4246 // Optionally check with the security manager; this isn't needed for unreflect* calls. 4247 if (checkSecurity) 4248 checkSecurityManager(refc, ctor); 4249 assert(!MethodHandleNatives.isCallerSensitive(ctor)); // maybeBindCaller not relevant here 4250 return DirectMethodHandle.make(ctor).setVarargs(ctor); 4251 } 4252 4253 /** Hook called from the JVM (via MethodHandleNatives) to link MH constants: 4254 */ 4255 /*non-public*/ 4256 MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) 4257 throws ReflectiveOperationException { 4258 if (!(type instanceof Class || type instanceof MethodType)) 4259 throw new InternalError("unresolved MemberName"); 4260 MemberName member = new MemberName(refKind, defc, name, type); 4261 MethodHandle mh = LOOKASIDE_TABLE.get(member); 4262 if (mh != null) { 4263 checkSymbolicClass(defc); 4264 return mh; 4265 } 4266 if (defc == MethodHandle.class && refKind == REF_invokeVirtual) { 4267 // Treat MethodHandle.invoke and invokeExact specially. 4268 mh = findVirtualForMH(member.getName(), member.getMethodType()); 4269 if (mh != null) { 4270 return mh; 4271 } 4272 } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) { 4273 // Treat signature-polymorphic methods on VarHandle specially. 4274 mh = findVirtualForVH(member.getName(), member.getMethodType()); 4275 if (mh != null) { 4276 return mh; 4277 } 4278 } 4279 MemberName resolved = resolveOrFail(refKind, member); 4280 mh = getDirectMethodForConstant(refKind, defc, resolved); 4281 if (mh instanceof DirectMethodHandle dmh 4282 && canBeCached(refKind, defc, resolved)) { 4283 MemberName key = mh.internalMemberName(); 4284 if (key != null) { 4285 key = key.asNormalOriginal(); 4286 } 4287 if (member.equals(key)) { // better safe than sorry 4288 LOOKASIDE_TABLE.put(key, dmh); 4289 } 4290 } 4291 return mh; 4292 } 4293 private boolean canBeCached(byte refKind, Class<?> defc, MemberName member) { 4294 if (refKind == REF_invokeSpecial) { 4295 return false; 4296 } 4297 if (!Modifier.isPublic(defc.getModifiers()) || 4298 !Modifier.isPublic(member.getDeclaringClass().getModifiers()) || 4299 !member.isPublic() || 4300 member.isCallerSensitive()) { 4301 return false; 4302 } 4303 ClassLoader loader = defc.getClassLoader(); 4304 if (loader != null) { 4305 ClassLoader sysl = ClassLoader.getSystemClassLoader(); 4306 boolean found = false; 4307 while (sysl != null) { 4308 if (loader == sysl) { found = true; break; } 4309 sysl = sysl.getParent(); 4310 } 4311 if (!found) { 4312 return false; 4313 } 4314 } 4315 try { 4316 MemberName resolved2 = publicLookup().resolveOrNull(refKind, 4317 new MemberName(refKind, defc, member.getName(), member.getType())); 4318 if (resolved2 == null) { 4319 return false; 4320 } 4321 checkSecurityManager(defc, resolved2); 4322 } catch (SecurityException ex) { 4323 return false; 4324 } 4325 return true; 4326 } 4327 private MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member) 4328 throws ReflectiveOperationException { 4329 if (MethodHandleNatives.refKindIsField(refKind)) { 4330 return getDirectFieldNoSecurityManager(refKind, defc, member); 4331 } else if (MethodHandleNatives.refKindIsMethod(refKind)) { 4332 return getDirectMethodNoSecurityManager(refKind, defc, member, findBoundCallerLookup(member)); 4333 } else if (refKind == REF_newInvokeSpecial) { 4334 return getDirectConstructorNoSecurityManager(defc, member); 4335 } 4336 // oops 4337 throw newIllegalArgumentException("bad MethodHandle constant #"+member); 4338 } 4339 4340 static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>(); 4341 } 4342 4343 /** 4344 * Produces a method handle constructing arrays of a desired type, 4345 * as if by the {@code anewarray} bytecode. 4346 * The return type of the method handle will be the array type. 4347 * The type of its sole argument will be {@code int}, which specifies the size of the array. 4348 * 4349 * <p> If the returned method handle is invoked with a negative 4350 * array size, a {@code NegativeArraySizeException} will be thrown. 4351 * 4352 * @param arrayClass an array type 4353 * @return a method handle which can create arrays of the given type 4354 * @throws NullPointerException if the argument is {@code null} 4355 * @throws IllegalArgumentException if {@code arrayClass} is not an array type 4356 * @see java.lang.reflect.Array#newInstance(Class, int) 4357 * @jvms 6.5 {@code anewarray} Instruction 4358 * @since 9 4359 */ 4360 public static MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException { 4361 if (!arrayClass.isArray()) { 4362 throw newIllegalArgumentException("not an array class: " + arrayClass.getName()); 4363 } 4364 MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance). 4365 bindTo(arrayClass.getComponentType()); 4366 return ani.asType(ani.type().changeReturnType(arrayClass)); 4367 } 4368 4369 /** 4370 * Produces a method handle returning the length of an array, 4371 * as if by the {@code arraylength} bytecode. 4372 * The type of the method handle will have {@code int} as return type, 4373 * and its sole argument will be the array type. 4374 * 4375 * <p> If the returned method handle is invoked with a {@code null} 4376 * array reference, a {@code NullPointerException} will be thrown. 4377 * 4378 * @param arrayClass an array type 4379 * @return a method handle which can retrieve the length of an array of the given array type 4380 * @throws NullPointerException if the argument is {@code null} 4381 * @throws IllegalArgumentException if arrayClass is not an array type 4382 * @jvms 6.5 {@code arraylength} Instruction 4383 * @since 9 4384 */ 4385 public static MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException { 4386 return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH); 4387 } 4388 4389 /** 4390 * Produces a method handle giving read access to elements of an array, 4391 * as if by the {@code aaload} bytecode. 4392 * The type of the method handle will have a return type of the array's 4393 * element type. Its first argument will be the array type, 4394 * and the second will be {@code int}. 4395 * 4396 * <p> When the returned method handle is invoked, 4397 * the array reference and array index are checked. 4398 * A {@code NullPointerException} will be thrown if the array reference 4399 * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be 4400 * thrown if the index is negative or if it is greater than or equal to 4401 * the length of the array. 4402 * 4403 * @param arrayClass an array type 4404 * @return a method handle which can load values from the given array type 4405 * @throws NullPointerException if the argument is null 4406 * @throws IllegalArgumentException if arrayClass is not an array type 4407 * @jvms 6.5 {@code aaload} Instruction 4408 */ 4409 public static MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException { 4410 return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET); 4411 } 4412 4413 /** 4414 * Produces a method handle giving write access to elements of an array, 4415 * as if by the {@code astore} bytecode. 4416 * The type of the method handle will have a void return type. 4417 * Its last argument will be the array's element type. 4418 * The first and second arguments will be the array type and int. 4419 * 4420 * <p> When the returned method handle is invoked, 4421 * the array reference and array index are checked. 4422 * A {@code NullPointerException} will be thrown if the array reference 4423 * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be 4424 * thrown if the index is negative or if it is greater than or equal to 4425 * the length of the array. 4426 * 4427 * @param arrayClass the class of an array 4428 * @return a method handle which can store values into the array type 4429 * @throws NullPointerException if the argument is null 4430 * @throws IllegalArgumentException if arrayClass is not an array type 4431 * @jvms 6.5 {@code aastore} Instruction 4432 */ 4433 public static MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException { 4434 return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET); 4435 } 4436 4437 /** 4438 * Produces a VarHandle giving access to elements of an array of type 4439 * {@code arrayClass}. The VarHandle's variable type is the component type 4440 * of {@code arrayClass} and the list of coordinate types is 4441 * {@code (arrayClass, int)}, where the {@code int} coordinate type 4442 * corresponds to an argument that is an index into an array. 4443 * <p> 4444 * Certain access modes of the returned VarHandle are unsupported under 4445 * the following conditions: 4446 * <ul> 4447 * <li>if the component type is anything other than {@code byte}, 4448 * {@code short}, {@code char}, {@code int}, {@code long}, 4449 * {@code float}, or {@code double} then numeric atomic update access 4450 * modes are unsupported. 4451 * <li>if the component type is anything other than {@code boolean}, 4452 * {@code byte}, {@code short}, {@code char}, {@code int} or 4453 * {@code long} then bitwise atomic update access modes are 4454 * unsupported. 4455 * </ul> 4456 * <p> 4457 * If the component type is {@code float} or {@code double} then numeric 4458 * and atomic update access modes compare values using their bitwise 4459 * representation (see {@link Float#floatToRawIntBits} and 4460 * {@link Double#doubleToRawLongBits}, respectively). 4461 * 4462 * <p> When the returned {@code VarHandle} is invoked, 4463 * the array reference and array index are checked. 4464 * A {@code NullPointerException} will be thrown if the array reference 4465 * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be 4466 * thrown if the index is negative or if it is greater than or equal to 4467 * the length of the array. 4468 * 4469 * @apiNote 4470 * Bitwise comparison of {@code float} values or {@code double} values, 4471 * as performed by the numeric and atomic update access modes, differ 4472 * from the primitive {@code ==} operator and the {@link Float#equals} 4473 * and {@link Double#equals} methods, specifically with respect to 4474 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 4475 * Care should be taken when performing a compare and set or a compare 4476 * and exchange operation with such values since the operation may 4477 * unexpectedly fail. 4478 * There are many possible NaN values that are considered to be 4479 * {@code NaN} in Java, although no IEEE 754 floating-point operation 4480 * provided by Java can distinguish between them. Operation failure can 4481 * occur if the expected or witness value is a NaN value and it is 4482 * transformed (perhaps in a platform specific manner) into another NaN 4483 * value, and thus has a different bitwise representation (see 4484 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 4485 * details). 4486 * The values {@code -0.0} and {@code +0.0} have different bitwise 4487 * representations but are considered equal when using the primitive 4488 * {@code ==} operator. Operation failure can occur if, for example, a 4489 * numeric algorithm computes an expected value to be say {@code -0.0} 4490 * and previously computed the witness value to be say {@code +0.0}. 4491 * @param arrayClass the class of an array, of type {@code T[]} 4492 * @return a VarHandle giving access to elements of an array 4493 * @throws NullPointerException if the arrayClass is null 4494 * @throws IllegalArgumentException if arrayClass is not an array type 4495 * @since 9 4496 */ 4497 public static VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException { 4498 return VarHandles.makeArrayElementHandle(arrayClass); 4499 } 4500 4501 /** 4502 * Produces a VarHandle giving access to elements of a {@code byte[]} array 4503 * viewed as if it were a different primitive array type, such as 4504 * {@code int[]} or {@code long[]}. 4505 * The VarHandle's variable type is the component type of 4506 * {@code viewArrayClass} and the list of coordinate types is 4507 * {@code (byte[], int)}, where the {@code int} coordinate type 4508 * corresponds to an argument that is an index into a {@code byte[]} array. 4509 * The returned VarHandle accesses bytes at an index in a {@code byte[]} 4510 * array, composing bytes to or from a value of the component type of 4511 * {@code viewArrayClass} according to the given endianness. 4512 * <p> 4513 * The supported component types (variables types) are {@code short}, 4514 * {@code char}, {@code int}, {@code long}, {@code float} and 4515 * {@code double}. 4516 * <p> 4517 * Access of bytes at a given index will result in an 4518 * {@code ArrayIndexOutOfBoundsException} if the index is less than {@code 0} 4519 * or greater than the {@code byte[]} array length minus the size (in bytes) 4520 * of {@code T}. 4521 * <p> 4522 * Access of bytes at an index may be aligned or misaligned for {@code T}, 4523 * with respect to the underlying memory address, {@code A} say, associated 4524 * with the array and index. 4525 * If access is misaligned then access for anything other than the 4526 * {@code get} and {@code set} access modes will result in an 4527 * {@code IllegalStateException}. In such cases atomic access is only 4528 * guaranteed with respect to the largest power of two that divides the GCD 4529 * of {@code A} and the size (in bytes) of {@code T}. 4530 * If access is aligned then following access modes are supported and are 4531 * guaranteed to support atomic access: 4532 * <ul> 4533 * <li>read write access modes for all {@code T}, with the exception of 4534 * access modes {@code get} and {@code set} for {@code long} and 4535 * {@code double} on 32-bit platforms. 4536 * <li>atomic update access modes for {@code int}, {@code long}, 4537 * {@code float} or {@code double}. 4538 * (Future major platform releases of the JDK may support additional 4539 * types for certain currently unsupported access modes.) 4540 * <li>numeric atomic update access modes for {@code int} and {@code long}. 4541 * (Future major platform releases of the JDK may support additional 4542 * numeric types for certain currently unsupported access modes.) 4543 * <li>bitwise atomic update access modes for {@code int} and {@code long}. 4544 * (Future major platform releases of the JDK may support additional 4545 * numeric types for certain currently unsupported access modes.) 4546 * </ul> 4547 * <p> 4548 * Misaligned access, and therefore atomicity guarantees, may be determined 4549 * for {@code byte[]} arrays without operating on a specific array. Given 4550 * an {@code index}, {@code T} and its corresponding boxed type, 4551 * {@code T_BOX}, misalignment may be determined as follows: 4552 * <pre>{@code 4553 * int sizeOfT = T_BOX.BYTES; // size in bytes of T 4554 * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]). 4555 * alignmentOffset(0, sizeOfT); 4556 * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT; 4557 * boolean isMisaligned = misalignedAtIndex != 0; 4558 * }</pre> 4559 * <p> 4560 * If the variable type is {@code float} or {@code double} then atomic 4561 * update access modes compare values using their bitwise representation 4562 * (see {@link Float#floatToRawIntBits} and 4563 * {@link Double#doubleToRawLongBits}, respectively). 4564 * @param viewArrayClass the view array class, with a component type of 4565 * type {@code T} 4566 * @param byteOrder the endianness of the view array elements, as 4567 * stored in the underlying {@code byte} array 4568 * @return a VarHandle giving access to elements of a {@code byte[]} array 4569 * viewed as if elements corresponding to the components type of the view 4570 * array class 4571 * @throws NullPointerException if viewArrayClass or byteOrder is null 4572 * @throws IllegalArgumentException if viewArrayClass is not an array type 4573 * @throws UnsupportedOperationException if the component type of 4574 * viewArrayClass is not supported as a variable type 4575 * @since 9 4576 */ 4577 public static VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass, 4578 ByteOrder byteOrder) throws IllegalArgumentException { 4579 Objects.requireNonNull(byteOrder); 4580 return VarHandles.byteArrayViewHandle(viewArrayClass, 4581 byteOrder == ByteOrder.BIG_ENDIAN); 4582 } 4583 4584 /** 4585 * Produces a VarHandle giving access to elements of a {@code ByteBuffer} 4586 * viewed as if it were an array of elements of a different primitive 4587 * component type to that of {@code byte}, such as {@code int[]} or 4588 * {@code long[]}. 4589 * The VarHandle's variable type is the component type of 4590 * {@code viewArrayClass} and the list of coordinate types is 4591 * {@code (ByteBuffer, int)}, where the {@code int} coordinate type 4592 * corresponds to an argument that is an index into a {@code byte[]} array. 4593 * The returned VarHandle accesses bytes at an index in a 4594 * {@code ByteBuffer}, composing bytes to or from a value of the component 4595 * type of {@code viewArrayClass} according to the given endianness. 4596 * <p> 4597 * The supported component types (variables types) are {@code short}, 4598 * {@code char}, {@code int}, {@code long}, {@code float} and 4599 * {@code double}. 4600 * <p> 4601 * Access will result in a {@code ReadOnlyBufferException} for anything 4602 * other than the read access modes if the {@code ByteBuffer} is read-only. 4603 * <p> 4604 * Access of bytes at a given index will result in an 4605 * {@code IndexOutOfBoundsException} if the index is less than {@code 0} 4606 * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of 4607 * {@code T}. 4608 * <p> 4609 * Access of bytes at an index may be aligned or misaligned for {@code T}, 4610 * with respect to the underlying memory address, {@code A} say, associated 4611 * with the {@code ByteBuffer} and index. 4612 * If access is misaligned then access for anything other than the 4613 * {@code get} and {@code set} access modes will result in an 4614 * {@code IllegalStateException}. In such cases atomic access is only 4615 * guaranteed with respect to the largest power of two that divides the GCD 4616 * of {@code A} and the size (in bytes) of {@code T}. 4617 * If access is aligned then following access modes are supported and are 4618 * guaranteed to support atomic access: 4619 * <ul> 4620 * <li>read write access modes for all {@code T}, with the exception of 4621 * access modes {@code get} and {@code set} for {@code long} and 4622 * {@code double} on 32-bit platforms. 4623 * <li>atomic update access modes for {@code int}, {@code long}, 4624 * {@code float} or {@code double}. 4625 * (Future major platform releases of the JDK may support additional 4626 * types for certain currently unsupported access modes.) 4627 * <li>numeric atomic update access modes for {@code int} and {@code long}. 4628 * (Future major platform releases of the JDK may support additional 4629 * numeric types for certain currently unsupported access modes.) 4630 * <li>bitwise atomic update access modes for {@code int} and {@code long}. 4631 * (Future major platform releases of the JDK may support additional 4632 * numeric types for certain currently unsupported access modes.) 4633 * </ul> 4634 * <p> 4635 * Misaligned access, and therefore atomicity guarantees, may be determined 4636 * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an 4637 * {@code index}, {@code T} and its corresponding boxed type, 4638 * {@code T_BOX}, as follows: 4639 * <pre>{@code 4640 * int sizeOfT = T_BOX.BYTES; // size in bytes of T 4641 * ByteBuffer bb = ... 4642 * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT); 4643 * boolean isMisaligned = misalignedAtIndex != 0; 4644 * }</pre> 4645 * <p> 4646 * If the variable type is {@code float} or {@code double} then atomic 4647 * update access modes compare values using their bitwise representation 4648 * (see {@link Float#floatToRawIntBits} and 4649 * {@link Double#doubleToRawLongBits}, respectively). 4650 * @param viewArrayClass the view array class, with a component type of 4651 * type {@code T} 4652 * @param byteOrder the endianness of the view array elements, as 4653 * stored in the underlying {@code ByteBuffer} (Note this overrides the 4654 * endianness of a {@code ByteBuffer}) 4655 * @return a VarHandle giving access to elements of a {@code ByteBuffer} 4656 * viewed as if elements corresponding to the components type of the view 4657 * array class 4658 * @throws NullPointerException if viewArrayClass or byteOrder is null 4659 * @throws IllegalArgumentException if viewArrayClass is not an array type 4660 * @throws UnsupportedOperationException if the component type of 4661 * viewArrayClass is not supported as a variable type 4662 * @since 9 4663 */ 4664 public static VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass, 4665 ByteOrder byteOrder) throws IllegalArgumentException { 4666 Objects.requireNonNull(byteOrder); 4667 return VarHandles.makeByteBufferViewHandle(viewArrayClass, 4668 byteOrder == ByteOrder.BIG_ENDIAN); 4669 } 4670 4671 4672 /// method handle invocation (reflective style) 4673 4674 /** 4675 * Produces a method handle which will invoke any method handle of the 4676 * given {@code type}, with a given number of trailing arguments replaced by 4677 * a single trailing {@code Object[]} array. 4678 * The resulting invoker will be a method handle with the following 4679 * arguments: 4680 * <ul> 4681 * <li>a single {@code MethodHandle} target 4682 * <li>zero or more leading values (counted by {@code leadingArgCount}) 4683 * <li>an {@code Object[]} array containing trailing arguments 4684 * </ul> 4685 * <p> 4686 * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with 4687 * the indicated {@code type}. 4688 * That is, if the target is exactly of the given {@code type}, it will behave 4689 * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType} 4690 * is used to convert the target to the required {@code type}. 4691 * <p> 4692 * The type of the returned invoker will not be the given {@code type}, but rather 4693 * will have all parameters except the first {@code leadingArgCount} 4694 * replaced by a single array of type {@code Object[]}, which will be 4695 * the final parameter. 4696 * <p> 4697 * Before invoking its target, the invoker will spread the final array, apply 4698 * reference casts as necessary, and unbox and widen primitive arguments. 4699 * If, when the invoker is called, the supplied array argument does 4700 * not have the correct number of elements, the invoker will throw 4701 * an {@link IllegalArgumentException} instead of invoking the target. 4702 * <p> 4703 * This method is equivalent to the following code (though it may be more efficient): 4704 * {@snippet lang="java" : 4705 MethodHandle invoker = MethodHandles.invoker(type); 4706 int spreadArgCount = type.parameterCount() - leadingArgCount; 4707 invoker = invoker.asSpreader(Object[].class, spreadArgCount); 4708 return invoker; 4709 * } 4710 * This method throws no reflective or security exceptions. 4711 * @param type the desired target type 4712 * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target 4713 * @return a method handle suitable for invoking any method handle of the given type 4714 * @throws NullPointerException if {@code type} is null 4715 * @throws IllegalArgumentException if {@code leadingArgCount} is not in 4716 * the range from 0 to {@code type.parameterCount()} inclusive, 4717 * or if the resulting method handle's type would have 4718 * <a href="MethodHandle.html#maxarity">too many parameters</a> 4719 */ 4720 public static MethodHandle spreadInvoker(MethodType type, int leadingArgCount) { 4721 if (leadingArgCount < 0 || leadingArgCount > type.parameterCount()) 4722 throw newIllegalArgumentException("bad argument count", leadingArgCount); 4723 type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount); 4724 return type.invokers().spreadInvoker(leadingArgCount); 4725 } 4726 4727 /** 4728 * Produces a special <em>invoker method handle</em> which can be used to 4729 * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}. 4730 * The resulting invoker will have a type which is 4731 * exactly equal to the desired type, except that it will accept 4732 * an additional leading argument of type {@code MethodHandle}. 4733 * <p> 4734 * This method is equivalent to the following code (though it may be more efficient): 4735 * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)} 4736 * 4737 * <p style="font-size:smaller;"> 4738 * <em>Discussion:</em> 4739 * Invoker method handles can be useful when working with variable method handles 4740 * of unknown types. 4741 * For example, to emulate an {@code invokeExact} call to a variable method 4742 * handle {@code M}, extract its type {@code T}, 4743 * look up the invoker method {@code X} for {@code T}, 4744 * and call the invoker method, as {@code X.invoke(T, A...)}. 4745 * (It would not work to call {@code X.invokeExact}, since the type {@code T} 4746 * is unknown.) 4747 * If spreading, collecting, or other argument transformations are required, 4748 * they can be applied once to the invoker {@code X} and reused on many {@code M} 4749 * method handle values, as long as they are compatible with the type of {@code X}. 4750 * <p style="font-size:smaller;"> 4751 * <em>(Note: The invoker method is not available via the Core Reflection API. 4752 * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} 4753 * on the declared {@code invokeExact} or {@code invoke} method will raise an 4754 * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> 4755 * <p> 4756 * This method throws no reflective or security exceptions. 4757 * @param type the desired target type 4758 * @return a method handle suitable for invoking any method handle of the given type 4759 * @throws IllegalArgumentException if the resulting method handle's type would have 4760 * <a href="MethodHandle.html#maxarity">too many parameters</a> 4761 */ 4762 public static MethodHandle exactInvoker(MethodType type) { 4763 return type.invokers().exactInvoker(); 4764 } 4765 4766 /** 4767 * Produces a special <em>invoker method handle</em> which can be used to 4768 * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}. 4769 * The resulting invoker will have a type which is 4770 * exactly equal to the desired type, except that it will accept 4771 * an additional leading argument of type {@code MethodHandle}. 4772 * <p> 4773 * Before invoking its target, if the target differs from the expected type, 4774 * the invoker will apply reference casts as 4775 * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}. 4776 * Similarly, the return value will be converted as necessary. 4777 * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle}, 4778 * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}. 4779 * <p> 4780 * This method is equivalent to the following code (though it may be more efficient): 4781 * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)} 4782 * <p style="font-size:smaller;"> 4783 * <em>Discussion:</em> 4784 * A {@linkplain MethodType#genericMethodType general method type} is one which 4785 * mentions only {@code Object} arguments and return values. 4786 * An invoker for such a type is capable of calling any method handle 4787 * of the same arity as the general type. 4788 * <p style="font-size:smaller;"> 4789 * <em>(Note: The invoker method is not available via the Core Reflection API. 4790 * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} 4791 * on the declared {@code invokeExact} or {@code invoke} method will raise an 4792 * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> 4793 * <p> 4794 * This method throws no reflective or security exceptions. 4795 * @param type the desired target type 4796 * @return a method handle suitable for invoking any method handle convertible to the given type 4797 * @throws IllegalArgumentException if the resulting method handle's type would have 4798 * <a href="MethodHandle.html#maxarity">too many parameters</a> 4799 */ 4800 public static MethodHandle invoker(MethodType type) { 4801 return type.invokers().genericInvoker(); 4802 } 4803 4804 /** 4805 * Produces a special <em>invoker method handle</em> which can be used to 4806 * invoke a signature-polymorphic access mode method on any VarHandle whose 4807 * associated access mode type is compatible with the given type. 4808 * The resulting invoker will have a type which is exactly equal to the 4809 * desired given type, except that it will accept an additional leading 4810 * argument of type {@code VarHandle}. 4811 * 4812 * @param accessMode the VarHandle access mode 4813 * @param type the desired target type 4814 * @return a method handle suitable for invoking an access mode method of 4815 * any VarHandle whose access mode type is of the given type. 4816 * @since 9 4817 */ 4818 public static MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) { 4819 return type.invokers().varHandleMethodExactInvoker(accessMode); 4820 } 4821 4822 /** 4823 * Produces a special <em>invoker method handle</em> which can be used to 4824 * invoke a signature-polymorphic access mode method on any VarHandle whose 4825 * associated access mode type is compatible with the given type. 4826 * The resulting invoker will have a type which is exactly equal to the 4827 * desired given type, except that it will accept an additional leading 4828 * argument of type {@code VarHandle}. 4829 * <p> 4830 * Before invoking its target, if the access mode type differs from the 4831 * desired given type, the invoker will apply reference casts as necessary 4832 * and box, unbox, or widen primitive values, as if by 4833 * {@link MethodHandle#asType asType}. Similarly, the return value will be 4834 * converted as necessary. 4835 * <p> 4836 * This method is equivalent to the following code (though it may be more 4837 * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)} 4838 * 4839 * @param accessMode the VarHandle access mode 4840 * @param type the desired target type 4841 * @return a method handle suitable for invoking an access mode method of 4842 * any VarHandle whose access mode type is convertible to the given 4843 * type. 4844 * @since 9 4845 */ 4846 public static MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) { 4847 return type.invokers().varHandleMethodInvoker(accessMode); 4848 } 4849 4850 /*non-public*/ 4851 static MethodHandle basicInvoker(MethodType type) { 4852 return type.invokers().basicInvoker(); 4853 } 4854 4855 /// method handle modification (creation from other method handles) 4856 4857 /** 4858 * Produces a method handle which adapts the type of the 4859 * given method handle to a new type by pairwise argument and return type conversion. 4860 * The original type and new type must have the same number of arguments. 4861 * The resulting method handle is guaranteed to report a type 4862 * which is equal to the desired new type. 4863 * <p> 4864 * If the original type and new type are equal, returns target. 4865 * <p> 4866 * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType}, 4867 * and some additional conversions are also applied if those conversions fail. 4868 * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied 4869 * if possible, before or instead of any conversions done by {@code asType}: 4870 * <ul> 4871 * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type, 4872 * then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast. 4873 * (This treatment of interfaces follows the usage of the bytecode verifier.) 4874 * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive, 4875 * the boolean is converted to a byte value, 1 for true, 0 for false. 4876 * (This treatment follows the usage of the bytecode verifier.) 4877 * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive, 4878 * <em>T0</em> is converted to byte via Java casting conversion (JLS {@jls 5.5}), 4879 * and the low order bit of the result is tested, as if by {@code (x & 1) != 0}. 4880 * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean, 4881 * then a Java casting conversion (JLS {@jls 5.5}) is applied. 4882 * (Specifically, <em>T0</em> will convert to <em>T1</em> by 4883 * widening and/or narrowing.) 4884 * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing 4885 * conversion will be applied at runtime, possibly followed 4886 * by a Java casting conversion (JLS {@jls 5.5}) on the primitive value, 4887 * possibly followed by a conversion from byte to boolean by testing 4888 * the low-order bit. 4889 * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, 4890 * and if the reference is null at runtime, a zero value is introduced. 4891 * </ul> 4892 * @param target the method handle to invoke after arguments are retyped 4893 * @param newType the expected type of the new method handle 4894 * @return a method handle which delegates to the target after performing 4895 * any necessary argument conversions, and arranges for any 4896 * necessary return value conversions 4897 * @throws NullPointerException if either argument is null 4898 * @throws WrongMethodTypeException if the conversion cannot be made 4899 * @see MethodHandle#asType 4900 */ 4901 public static MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) { 4902 explicitCastArgumentsChecks(target, newType); 4903 // use the asTypeCache when possible: 4904 MethodType oldType = target.type(); 4905 if (oldType == newType) return target; 4906 if (oldType.explicitCastEquivalentToAsType(newType)) { 4907 return target.asFixedArity().asType(newType); 4908 } 4909 return MethodHandleImpl.makePairwiseConvert(target, newType, false); 4910 } 4911 4912 private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) { 4913 if (target.type().parameterCount() != newType.parameterCount()) { 4914 throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType); 4915 } 4916 } 4917 4918 /** 4919 * Produces a method handle which adapts the calling sequence of the 4920 * given method handle to a new type, by reordering the arguments. 4921 * The resulting method handle is guaranteed to report a type 4922 * which is equal to the desired new type. 4923 * <p> 4924 * The given array controls the reordering. 4925 * Call {@code #I} the number of incoming parameters (the value 4926 * {@code newType.parameterCount()}, and call {@code #O} the number 4927 * of outgoing parameters (the value {@code target.type().parameterCount()}). 4928 * Then the length of the reordering array must be {@code #O}, 4929 * and each element must be a non-negative number less than {@code #I}. 4930 * For every {@code N} less than {@code #O}, the {@code N}-th 4931 * outgoing argument will be taken from the {@code I}-th incoming 4932 * argument, where {@code I} is {@code reorder[N]}. 4933 * <p> 4934 * No argument or return value conversions are applied. 4935 * The type of each incoming argument, as determined by {@code newType}, 4936 * must be identical to the type of the corresponding outgoing parameter 4937 * or parameters in the target method handle. 4938 * The return type of {@code newType} must be identical to the return 4939 * type of the original target. 4940 * <p> 4941 * The reordering array need not specify an actual permutation. 4942 * An incoming argument will be duplicated if its index appears 4943 * more than once in the array, and an incoming argument will be dropped 4944 * if its index does not appear in the array. 4945 * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments}, 4946 * incoming arguments which are not mentioned in the reordering array 4947 * may be of any type, as determined only by {@code newType}. 4948 * {@snippet lang="java" : 4949 import static java.lang.invoke.MethodHandles.*; 4950 import static java.lang.invoke.MethodType.*; 4951 ... 4952 MethodType intfn1 = methodType(int.class, int.class); 4953 MethodType intfn2 = methodType(int.class, int.class, int.class); 4954 MethodHandle sub = ... (int x, int y) -> (x-y) ...; 4955 assert(sub.type().equals(intfn2)); 4956 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1); 4957 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0); 4958 assert((int)rsub.invokeExact(1, 100) == 99); 4959 MethodHandle add = ... (int x, int y) -> (x+y) ...; 4960 assert(add.type().equals(intfn2)); 4961 MethodHandle twice = permuteArguments(add, intfn1, 0, 0); 4962 assert(twice.type().equals(intfn1)); 4963 assert((int)twice.invokeExact(21) == 42); 4964 * } 4965 * <p> 4966 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 4967 * variable-arity method handle}, even if the original target method handle was. 4968 * @param target the method handle to invoke after arguments are reordered 4969 * @param newType the expected type of the new method handle 4970 * @param reorder an index array which controls the reordering 4971 * @return a method handle which delegates to the target after it 4972 * drops unused arguments and moves and/or duplicates the other arguments 4973 * @throws NullPointerException if any argument is null 4974 * @throws IllegalArgumentException if the index array length is not equal to 4975 * the arity of the target, or if any index array element 4976 * not a valid index for a parameter of {@code newType}, 4977 * or if two corresponding parameter types in 4978 * {@code target.type()} and {@code newType} are not identical, 4979 */ 4980 public static MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) { 4981 reorder = reorder.clone(); // get a private copy 4982 MethodType oldType = target.type(); 4983 permuteArgumentChecks(reorder, newType, oldType); 4984 // first detect dropped arguments and handle them separately 4985 int[] originalReorder = reorder; 4986 BoundMethodHandle result = target.rebind(); 4987 LambdaForm form = result.form; 4988 int newArity = newType.parameterCount(); 4989 // Normalize the reordering into a real permutation, 4990 // by removing duplicates and adding dropped elements. 4991 // This somewhat improves lambda form caching, as well 4992 // as simplifying the transform by breaking it up into steps. 4993 for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) { 4994 if (ddIdx > 0) { 4995 // We found a duplicated entry at reorder[ddIdx]. 4996 // Example: (x,y,z)->asList(x,y,z) 4997 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1) 4998 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0) 4999 // The starred element corresponds to the argument 5000 // deleted by the dupArgumentForm transform. 5001 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos]; 5002 boolean killFirst = false; 5003 for (int val; (val = reorder[--dstPos]) != dupVal; ) { 5004 // Set killFirst if the dup is larger than an intervening position. 5005 // This will remove at least one inversion from the permutation. 5006 if (dupVal > val) killFirst = true; 5007 } 5008 if (!killFirst) { 5009 srcPos = dstPos; 5010 dstPos = ddIdx; 5011 } 5012 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos); 5013 assert (reorder[srcPos] == reorder[dstPos]); 5014 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1); 5015 // contract the reordering by removing the element at dstPos 5016 int tailPos = dstPos + 1; 5017 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos); 5018 reorder = Arrays.copyOf(reorder, reorder.length - 1); 5019 } else { 5020 int dropVal = ~ddIdx, insPos = 0; 5021 while (insPos < reorder.length && reorder[insPos] < dropVal) { 5022 // Find first element of reorder larger than dropVal. 5023 // This is where we will insert the dropVal. 5024 insPos += 1; 5025 } 5026 Class<?> ptype = newType.parameterType(dropVal); 5027 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype)); 5028 oldType = oldType.insertParameterTypes(insPos, ptype); 5029 // expand the reordering by inserting an element at insPos 5030 int tailPos = insPos + 1; 5031 reorder = Arrays.copyOf(reorder, reorder.length + 1); 5032 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos); 5033 reorder[insPos] = dropVal; 5034 } 5035 assert (permuteArgumentChecks(reorder, newType, oldType)); 5036 } 5037 assert (reorder.length == newArity); // a perfect permutation 5038 // Note: This may cache too many distinct LFs. Consider backing off to varargs code. 5039 form = form.editor().permuteArgumentsForm(1, reorder); 5040 if (newType == result.type() && form == result.internalForm()) 5041 return result; 5042 return result.copyWith(newType, form); 5043 } 5044 5045 /** 5046 * Return an indication of any duplicate or omission in reorder. 5047 * If the reorder contains a duplicate entry, return the index of the second occurrence. 5048 * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder. 5049 * Otherwise, return zero. 5050 * If an element not in [0..newArity-1] is encountered, return reorder.length. 5051 */ 5052 private static int findFirstDupOrDrop(int[] reorder, int newArity) { 5053 final int BIT_LIMIT = 63; // max number of bits in bit mask 5054 if (newArity < BIT_LIMIT) { 5055 long mask = 0; 5056 for (int i = 0; i < reorder.length; i++) { 5057 int arg = reorder[i]; 5058 if (arg >= newArity) { 5059 return reorder.length; 5060 } 5061 long bit = 1L << arg; 5062 if ((mask & bit) != 0) { 5063 return i; // >0 indicates a dup 5064 } 5065 mask |= bit; 5066 } 5067 if (mask == (1L << newArity) - 1) { 5068 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity); 5069 return 0; 5070 } 5071 // find first zero 5072 long zeroBit = Long.lowestOneBit(~mask); 5073 int zeroPos = Long.numberOfTrailingZeros(zeroBit); 5074 assert(zeroPos <= newArity); 5075 if (zeroPos == newArity) { 5076 return 0; 5077 } 5078 return ~zeroPos; 5079 } else { 5080 // same algorithm, different bit set 5081 BitSet mask = new BitSet(newArity); 5082 for (int i = 0; i < reorder.length; i++) { 5083 int arg = reorder[i]; 5084 if (arg >= newArity) { 5085 return reorder.length; 5086 } 5087 if (mask.get(arg)) { 5088 return i; // >0 indicates a dup 5089 } 5090 mask.set(arg); 5091 } 5092 int zeroPos = mask.nextClearBit(0); 5093 assert(zeroPos <= newArity); 5094 if (zeroPos == newArity) { 5095 return 0; 5096 } 5097 return ~zeroPos; 5098 } 5099 } 5100 5101 static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) { 5102 if (newType.returnType() != oldType.returnType()) 5103 throw newIllegalArgumentException("return types do not match", 5104 oldType, newType); 5105 if (reorder.length != oldType.parameterCount()) 5106 throw newIllegalArgumentException("old type parameter count and reorder array length do not match", 5107 oldType, Arrays.toString(reorder)); 5108 5109 int limit = newType.parameterCount(); 5110 for (int j = 0; j < reorder.length; j++) { 5111 int i = reorder[j]; 5112 if (i < 0 || i >= limit) { 5113 throw newIllegalArgumentException("index is out of bounds for new type", 5114 i, newType); 5115 } 5116 Class<?> src = newType.parameterType(i); 5117 Class<?> dst = oldType.parameterType(j); 5118 if (src != dst) 5119 throw newIllegalArgumentException("parameter types do not match after reorder", 5120 oldType, newType); 5121 } 5122 return true; 5123 } 5124 5125 /** 5126 * Produces a method handle of the requested return type which returns the given 5127 * constant value every time it is invoked. 5128 * <p> 5129 * Before the method handle is returned, the passed-in value is converted to the requested type. 5130 * If the requested type is primitive, widening primitive conversions are attempted, 5131 * else reference conversions are attempted. 5132 * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}. 5133 * @param type the return type of the desired method handle 5134 * @param value the value to return 5135 * @return a method handle of the given return type and no arguments, which always returns the given value 5136 * @throws NullPointerException if the {@code type} argument is null 5137 * @throws ClassCastException if the value cannot be converted to the required return type 5138 * @throws IllegalArgumentException if the given type is {@code void.class} 5139 */ 5140 public static MethodHandle constant(Class<?> type, Object value) { 5141 if (type.isPrimitive()) { 5142 if (type == void.class) 5143 throw newIllegalArgumentException("void type"); 5144 Wrapper w = Wrapper.forPrimitiveType(type); 5145 value = w.convert(value, type); 5146 if (w.zero().equals(value)) 5147 return zero(w, type); 5148 return insertArguments(identity(type), 0, value); 5149 } else { 5150 if (value == null) 5151 return zero(Wrapper.OBJECT, type); 5152 return identity(type).bindTo(value); 5153 } 5154 } 5155 5156 /** 5157 * Produces a method handle which returns its sole argument when invoked. 5158 * @param type the type of the sole parameter and return value of the desired method handle 5159 * @return a unary method handle which accepts and returns the given type 5160 * @throws NullPointerException if the argument is null 5161 * @throws IllegalArgumentException if the given type is {@code void.class} 5162 */ 5163 public static MethodHandle identity(Class<?> type) { 5164 Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT); 5165 int pos = btw.ordinal(); 5166 MethodHandle ident = IDENTITY_MHS[pos]; 5167 if (ident == null) { 5168 ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType())); 5169 } 5170 if (ident.type().returnType() == type) 5171 return ident; 5172 // something like identity(Foo.class); do not bother to intern these 5173 assert (btw == Wrapper.OBJECT); 5174 return makeIdentity(type); 5175 } 5176 5177 /** 5178 * Produces a constant method handle of the requested return type which 5179 * returns the default value for that type every time it is invoked. 5180 * The resulting constant method handle will have no side effects. 5181 * <p>The returned method handle is equivalent to {@code empty(methodType(type))}. 5182 * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))}, 5183 * since {@code explicitCastArguments} converts {@code null} to default values. 5184 * @param type the expected return type of the desired method handle 5185 * @return a constant method handle that takes no arguments 5186 * and returns the default value of the given type (or void, if the type is void) 5187 * @throws NullPointerException if the argument is null 5188 * @see MethodHandles#constant 5189 * @see MethodHandles#empty 5190 * @see MethodHandles#explicitCastArguments 5191 * @since 9 5192 */ 5193 public static MethodHandle zero(Class<?> type) { 5194 Objects.requireNonNull(type); 5195 return type.isPrimitive() ? zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type); 5196 } 5197 5198 private static MethodHandle identityOrVoid(Class<?> type) { 5199 return type == void.class ? zero(type) : identity(type); 5200 } 5201 5202 /** 5203 * Produces a method handle of the requested type which ignores any arguments, does nothing, 5204 * and returns a suitable default depending on the return type. 5205 * That is, it returns a zero primitive value, a {@code null}, or {@code void}. 5206 * <p>The returned method handle is equivalent to 5207 * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}. 5208 * 5209 * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as 5210 * {@code guardWithTest(pred, target, empty(target.type())}. 5211 * @param type the type of the desired method handle 5212 * @return a constant method handle of the given type, which returns a default value of the given return type 5213 * @throws NullPointerException if the argument is null 5214 * @see MethodHandles#zero 5215 * @see MethodHandles#constant 5216 * @since 9 5217 */ 5218 public static MethodHandle empty(MethodType type) { 5219 Objects.requireNonNull(type); 5220 return dropArgumentsTrusted(zero(type.returnType()), 0, type.ptypes()); 5221 } 5222 5223 private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT]; 5224 private static MethodHandle makeIdentity(Class<?> ptype) { 5225 MethodType mtype = methodType(ptype, ptype); 5226 LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype)); 5227 return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY); 5228 } 5229 5230 private static MethodHandle zero(Wrapper btw, Class<?> rtype) { 5231 int pos = btw.ordinal(); 5232 MethodHandle zero = ZERO_MHS[pos]; 5233 if (zero == null) { 5234 zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType())); 5235 } 5236 if (zero.type().returnType() == rtype) 5237 return zero; 5238 assert(btw == Wrapper.OBJECT); 5239 return makeZero(rtype); 5240 } 5241 private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT]; 5242 private static MethodHandle makeZero(Class<?> rtype) { 5243 MethodType mtype = methodType(rtype); 5244 LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype)); 5245 return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO); 5246 } 5247 5248 private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) { 5249 // Simulate a CAS, to avoid racy duplication of results. 5250 MethodHandle prev = cache[pos]; 5251 if (prev != null) return prev; 5252 return cache[pos] = value; 5253 } 5254 5255 /** 5256 * Provides a target method handle with one or more <em>bound arguments</em> 5257 * in advance of the method handle's invocation. 5258 * The formal parameters to the target corresponding to the bound 5259 * arguments are called <em>bound parameters</em>. 5260 * Returns a new method handle which saves away the bound arguments. 5261 * When it is invoked, it receives arguments for any non-bound parameters, 5262 * binds the saved arguments to their corresponding parameters, 5263 * and calls the original target. 5264 * <p> 5265 * The type of the new method handle will drop the types for the bound 5266 * parameters from the original target type, since the new method handle 5267 * will no longer require those arguments to be supplied by its callers. 5268 * <p> 5269 * Each given argument object must match the corresponding bound parameter type. 5270 * If a bound parameter type is a primitive, the argument object 5271 * must be a wrapper, and will be unboxed to produce the primitive value. 5272 * <p> 5273 * The {@code pos} argument selects which parameters are to be bound. 5274 * It may range between zero and <i>N-L</i> (inclusively), 5275 * where <i>N</i> is the arity of the target method handle 5276 * and <i>L</i> is the length of the values array. 5277 * <p> 5278 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 5279 * variable-arity method handle}, even if the original target method handle was. 5280 * @param target the method handle to invoke after the argument is inserted 5281 * @param pos where to insert the argument (zero for the first) 5282 * @param values the series of arguments to insert 5283 * @return a method handle which inserts an additional argument, 5284 * before calling the original method handle 5285 * @throws NullPointerException if the target or the {@code values} array is null 5286 * @throws IllegalArgumentException if {@code pos} is less than {@code 0} or greater than 5287 * {@code N - L} where {@code N} is the arity of the target method handle and {@code L} 5288 * is the length of the values array. 5289 * @throws ClassCastException if an argument does not match the corresponding bound parameter 5290 * type. 5291 * @see MethodHandle#bindTo 5292 */ 5293 public static MethodHandle insertArguments(MethodHandle target, int pos, Object... values) { 5294 int insCount = values.length; 5295 Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos); 5296 if (insCount == 0) return target; 5297 BoundMethodHandle result = target.rebind(); 5298 for (int i = 0; i < insCount; i++) { 5299 Object value = values[i]; 5300 Class<?> ptype = ptypes[pos+i]; 5301 if (ptype.isPrimitive()) { 5302 result = insertArgumentPrimitive(result, pos, ptype, value); 5303 } else { 5304 value = ptype.cast(value); // throw CCE if needed 5305 result = result.bindArgumentL(pos, value); 5306 } 5307 } 5308 return result; 5309 } 5310 5311 private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos, 5312 Class<?> ptype, Object value) { 5313 Wrapper w = Wrapper.forPrimitiveType(ptype); 5314 // perform unboxing and/or primitive conversion 5315 value = w.convert(value, ptype); 5316 return switch (w) { 5317 case INT -> result.bindArgumentI(pos, (int) value); 5318 case LONG -> result.bindArgumentJ(pos, (long) value); 5319 case FLOAT -> result.bindArgumentF(pos, (float) value); 5320 case DOUBLE -> result.bindArgumentD(pos, (double) value); 5321 default -> result.bindArgumentI(pos, ValueConversions.widenSubword(value)); 5322 }; 5323 } 5324 5325 private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException { 5326 MethodType oldType = target.type(); 5327 int outargs = oldType.parameterCount(); 5328 int inargs = outargs - insCount; 5329 if (inargs < 0) 5330 throw newIllegalArgumentException("too many values to insert"); 5331 if (pos < 0 || pos > inargs) 5332 throw newIllegalArgumentException("no argument type to append"); 5333 return oldType.ptypes(); 5334 } 5335 5336 /** 5337 * Produces a method handle which will discard some dummy arguments 5338 * before calling some other specified <i>target</i> method handle. 5339 * The type of the new method handle will be the same as the target's type, 5340 * except it will also include the dummy argument types, 5341 * at some given position. 5342 * <p> 5343 * The {@code pos} argument may range between zero and <i>N</i>, 5344 * where <i>N</i> is the arity of the target. 5345 * If {@code pos} is zero, the dummy arguments will precede 5346 * the target's real arguments; if {@code pos} is <i>N</i> 5347 * they will come after. 5348 * <p> 5349 * <b>Example:</b> 5350 * {@snippet lang="java" : 5351 import static java.lang.invoke.MethodHandles.*; 5352 import static java.lang.invoke.MethodType.*; 5353 ... 5354 MethodHandle cat = lookup().findVirtual(String.class, 5355 "concat", methodType(String.class, String.class)); 5356 assertEquals("xy", (String) cat.invokeExact("x", "y")); 5357 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class); 5358 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2)); 5359 assertEquals(bigType, d0.type()); 5360 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z")); 5361 * } 5362 * <p> 5363 * This method is also equivalent to the following code: 5364 * <blockquote><pre> 5365 * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))} 5366 * </pre></blockquote> 5367 * @param target the method handle to invoke after the arguments are dropped 5368 * @param pos position of first argument to drop (zero for the leftmost) 5369 * @param valueTypes the type(s) of the argument(s) to drop 5370 * @return a method handle which drops arguments of the given types, 5371 * before calling the original method handle 5372 * @throws NullPointerException if the target is null, 5373 * or if the {@code valueTypes} list or any of its elements is null 5374 * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, 5375 * or if {@code pos} is negative or greater than the arity of the target, 5376 * or if the new method handle's type would have too many parameters 5377 */ 5378 public static MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) { 5379 return dropArgumentsTrusted(target, pos, valueTypes.toArray(new Class<?>[0]).clone()); 5380 } 5381 5382 static MethodHandle dropArgumentsTrusted(MethodHandle target, int pos, Class<?>[] valueTypes) { 5383 MethodType oldType = target.type(); // get NPE 5384 int dropped = dropArgumentChecks(oldType, pos, valueTypes); 5385 MethodType newType = oldType.insertParameterTypes(pos, valueTypes); 5386 if (dropped == 0) return target; 5387 BoundMethodHandle result = target.rebind(); 5388 LambdaForm lform = result.form; 5389 int insertFormArg = 1 + pos; 5390 for (Class<?> ptype : valueTypes) { 5391 lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype)); 5392 } 5393 result = result.copyWith(newType, lform); 5394 return result; 5395 } 5396 5397 private static int dropArgumentChecks(MethodType oldType, int pos, Class<?>[] valueTypes) { 5398 int dropped = valueTypes.length; 5399 MethodType.checkSlotCount(dropped); 5400 int outargs = oldType.parameterCount(); 5401 int inargs = outargs + dropped; 5402 if (pos < 0 || pos > outargs) 5403 throw newIllegalArgumentException("no argument type to remove" 5404 + Arrays.asList(oldType, pos, valueTypes, inargs, outargs) 5405 ); 5406 return dropped; 5407 } 5408 5409 /** 5410 * Produces a method handle which will discard some dummy arguments 5411 * before calling some other specified <i>target</i> method handle. 5412 * The type of the new method handle will be the same as the target's type, 5413 * except it will also include the dummy argument types, 5414 * at some given position. 5415 * <p> 5416 * The {@code pos} argument may range between zero and <i>N</i>, 5417 * where <i>N</i> is the arity of the target. 5418 * If {@code pos} is zero, the dummy arguments will precede 5419 * the target's real arguments; if {@code pos} is <i>N</i> 5420 * they will come after. 5421 * @apiNote 5422 * {@snippet lang="java" : 5423 import static java.lang.invoke.MethodHandles.*; 5424 import static java.lang.invoke.MethodType.*; 5425 ... 5426 MethodHandle cat = lookup().findVirtual(String.class, 5427 "concat", methodType(String.class, String.class)); 5428 assertEquals("xy", (String) cat.invokeExact("x", "y")); 5429 MethodHandle d0 = dropArguments(cat, 0, String.class); 5430 assertEquals("yz", (String) d0.invokeExact("x", "y", "z")); 5431 MethodHandle d1 = dropArguments(cat, 1, String.class); 5432 assertEquals("xz", (String) d1.invokeExact("x", "y", "z")); 5433 MethodHandle d2 = dropArguments(cat, 2, String.class); 5434 assertEquals("xy", (String) d2.invokeExact("x", "y", "z")); 5435 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class); 5436 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z")); 5437 * } 5438 * <p> 5439 * This method is also equivalent to the following code: 5440 * <blockquote><pre> 5441 * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))} 5442 * </pre></blockquote> 5443 * @param target the method handle to invoke after the arguments are dropped 5444 * @param pos position of first argument to drop (zero for the leftmost) 5445 * @param valueTypes the type(s) of the argument(s) to drop 5446 * @return a method handle which drops arguments of the given types, 5447 * before calling the original method handle 5448 * @throws NullPointerException if the target is null, 5449 * or if the {@code valueTypes} array or any of its elements is null 5450 * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, 5451 * or if {@code pos} is negative or greater than the arity of the target, 5452 * or if the new method handle's type would have 5453 * <a href="MethodHandle.html#maxarity">too many parameters</a> 5454 */ 5455 public static MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) { 5456 return dropArgumentsTrusted(target, pos, valueTypes.clone()); 5457 } 5458 5459 /* Convenience overloads for trusting internal low-arity call-sites */ 5460 static MethodHandle dropArguments(MethodHandle target, int pos, Class<?> valueType1) { 5461 return dropArgumentsTrusted(target, pos, new Class<?>[] { valueType1 }); 5462 } 5463 static MethodHandle dropArguments(MethodHandle target, int pos, Class<?> valueType1, Class<?> valueType2) { 5464 return dropArgumentsTrusted(target, pos, new Class<?>[] { valueType1, valueType2 }); 5465 } 5466 5467 // private version which allows caller some freedom with error handling 5468 private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, Class<?>[] newTypes, int pos, 5469 boolean nullOnFailure) { 5470 Class<?>[] oldTypes = target.type().ptypes(); 5471 int match = oldTypes.length; 5472 if (skip != 0) { 5473 if (skip < 0 || skip > match) { 5474 throw newIllegalArgumentException("illegal skip", skip, target); 5475 } 5476 oldTypes = Arrays.copyOfRange(oldTypes, skip, match); 5477 match -= skip; 5478 } 5479 Class<?>[] addTypes = newTypes; 5480 int add = addTypes.length; 5481 if (pos != 0) { 5482 if (pos < 0 || pos > add) { 5483 throw newIllegalArgumentException("illegal pos", pos, Arrays.toString(newTypes)); 5484 } 5485 addTypes = Arrays.copyOfRange(addTypes, pos, add); 5486 add -= pos; 5487 assert(addTypes.length == add); 5488 } 5489 // Do not add types which already match the existing arguments. 5490 if (match > add || !Arrays.equals(oldTypes, 0, oldTypes.length, addTypes, 0, match)) { 5491 if (nullOnFailure) { 5492 return null; 5493 } 5494 throw newIllegalArgumentException("argument lists do not match", 5495 Arrays.toString(oldTypes), Arrays.toString(newTypes)); 5496 } 5497 addTypes = Arrays.copyOfRange(addTypes, match, add); 5498 add -= match; 5499 assert(addTypes.length == add); 5500 // newTypes: ( P*[pos], M*[match], A*[add] ) 5501 // target: ( S*[skip], M*[match] ) 5502 MethodHandle adapter = target; 5503 if (add > 0) { 5504 adapter = dropArgumentsTrusted(adapter, skip+ match, addTypes); 5505 } 5506 // adapter: (S*[skip], M*[match], A*[add] ) 5507 if (pos > 0) { 5508 adapter = dropArgumentsTrusted(adapter, skip, Arrays.copyOfRange(newTypes, 0, pos)); 5509 } 5510 // adapter: (S*[skip], P*[pos], M*[match], A*[add] ) 5511 return adapter; 5512 } 5513 5514 /** 5515 * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some 5516 * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter 5517 * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The 5518 * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before 5519 * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by 5520 * {@link #dropArguments(MethodHandle, int, Class[])}. 5521 * <p> 5522 * The resulting handle will have the same return type as the target handle. 5523 * <p> 5524 * In more formal terms, assume these two type lists:<ul> 5525 * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as 5526 * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list, 5527 * {@code newTypes}. 5528 * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as 5529 * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's 5530 * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching 5531 * sub-list. 5532 * </ul> 5533 * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type 5534 * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by 5535 * {@link #dropArguments(MethodHandle, int, Class[])}. 5536 * 5537 * @apiNote 5538 * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be 5539 * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows: 5540 * {@snippet lang="java" : 5541 import static java.lang.invoke.MethodHandles.*; 5542 import static java.lang.invoke.MethodType.*; 5543 ... 5544 ... 5545 MethodHandle h0 = constant(boolean.class, true); 5546 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); 5547 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class); 5548 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList()); 5549 if (h1.type().parameterCount() < h2.type().parameterCount()) 5550 h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0); // lengthen h1 5551 else 5552 h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0); // lengthen h2 5553 MethodHandle h3 = guardWithTest(h0, h1, h2); 5554 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c")); 5555 * } 5556 * @param target the method handle to adapt 5557 * @param skip number of targets parameters to disregard (they will be unchanged) 5558 * @param newTypes the list of types to match {@code target}'s parameter type list to 5559 * @param pos place in {@code newTypes} where the non-skipped target parameters must occur 5560 * @return a possibly adapted method handle 5561 * @throws NullPointerException if either argument is null 5562 * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class}, 5563 * or if {@code skip} is negative or greater than the arity of the target, 5564 * or if {@code pos} is negative or greater than the newTypes list size, 5565 * or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position 5566 * {@code pos}. 5567 * @since 9 5568 */ 5569 public static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) { 5570 Objects.requireNonNull(target); 5571 Objects.requireNonNull(newTypes); 5572 return dropArgumentsToMatch(target, skip, newTypes.toArray(new Class<?>[0]).clone(), pos, false); 5573 } 5574 5575 /** 5576 * Drop the return value of the target handle (if any). 5577 * The returned method handle will have a {@code void} return type. 5578 * 5579 * @param target the method handle to adapt 5580 * @return a possibly adapted method handle 5581 * @throws NullPointerException if {@code target} is null 5582 * @since 16 5583 */ 5584 public static MethodHandle dropReturn(MethodHandle target) { 5585 Objects.requireNonNull(target); 5586 MethodType oldType = target.type(); 5587 Class<?> oldReturnType = oldType.returnType(); 5588 if (oldReturnType == void.class) 5589 return target; 5590 MethodType newType = oldType.changeReturnType(void.class); 5591 BoundMethodHandle result = target.rebind(); 5592 LambdaForm lform = result.editor().filterReturnForm(V_TYPE, true); 5593 result = result.copyWith(newType, lform); 5594 return result; 5595 } 5596 5597 /** 5598 * Adapts a target method handle by pre-processing 5599 * one or more of its arguments, each with its own unary filter function, 5600 * and then calling the target with each pre-processed argument 5601 * replaced by the result of its corresponding filter function. 5602 * <p> 5603 * The pre-processing is performed by one or more method handles, 5604 * specified in the elements of the {@code filters} array. 5605 * The first element of the filter array corresponds to the {@code pos} 5606 * argument of the target, and so on in sequence. 5607 * The filter functions are invoked in left to right order. 5608 * <p> 5609 * Null arguments in the array are treated as identity functions, 5610 * and the corresponding arguments left unchanged. 5611 * (If there are no non-null elements in the array, the original target is returned.) 5612 * Each filter is applied to the corresponding argument of the adapter. 5613 * <p> 5614 * If a filter {@code F} applies to the {@code N}th argument of 5615 * the target, then {@code F} must be a method handle which 5616 * takes exactly one argument. The type of {@code F}'s sole argument 5617 * replaces the corresponding argument type of the target 5618 * in the resulting adapted method handle. 5619 * The return type of {@code F} must be identical to the corresponding 5620 * parameter type of the target. 5621 * <p> 5622 * It is an error if there are elements of {@code filters} 5623 * (null or not) 5624 * which do not correspond to argument positions in the target. 5625 * <p><b>Example:</b> 5626 * {@snippet lang="java" : 5627 import static java.lang.invoke.MethodHandles.*; 5628 import static java.lang.invoke.MethodType.*; 5629 ... 5630 MethodHandle cat = lookup().findVirtual(String.class, 5631 "concat", methodType(String.class, String.class)); 5632 MethodHandle upcase = lookup().findVirtual(String.class, 5633 "toUpperCase", methodType(String.class)); 5634 assertEquals("xy", (String) cat.invokeExact("x", "y")); 5635 MethodHandle f0 = filterArguments(cat, 0, upcase); 5636 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy 5637 MethodHandle f1 = filterArguments(cat, 1, upcase); 5638 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY 5639 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase); 5640 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY 5641 * } 5642 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 5643 * denotes the return type of both the {@code target} and resulting adapter. 5644 * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values 5645 * of the parameters and arguments that precede and follow the filter position 5646 * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and 5647 * values of the filtered parameters and arguments; they also represent the 5648 * return types of the {@code filter[i]} handles. The latter accept arguments 5649 * {@code v[i]} of type {@code V[i]}, which also appear in the signature of 5650 * the resulting adapter. 5651 * {@snippet lang="java" : 5652 * T target(P... p, A[i]... a[i], B... b); 5653 * A[i] filter[i](V[i]); 5654 * T adapter(P... p, V[i]... v[i], B... b) { 5655 * return target(p..., filter[i](v[i])..., b...); 5656 * } 5657 * } 5658 * <p> 5659 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 5660 * variable-arity method handle}, even if the original target method handle was. 5661 * 5662 * @param target the method handle to invoke after arguments are filtered 5663 * @param pos the position of the first argument to filter 5664 * @param filters method handles to call initially on filtered arguments 5665 * @return method handle which incorporates the specified argument filtering logic 5666 * @throws NullPointerException if the target is null 5667 * or if the {@code filters} array is null 5668 * @throws IllegalArgumentException if a non-null element of {@code filters} 5669 * does not match a corresponding argument type of target as described above, 5670 * or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}, 5671 * or if the resulting method handle's type would have 5672 * <a href="MethodHandle.html#maxarity">too many parameters</a> 5673 */ 5674 public static MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) { 5675 // In method types arguments start at index 0, while the LF 5676 // editor have the MH receiver at position 0 - adjust appropriately. 5677 final int MH_RECEIVER_OFFSET = 1; 5678 filterArgumentsCheckArity(target, pos, filters); 5679 MethodHandle adapter = target; 5680 5681 // keep track of currently matched filters, as to optimize repeated filters 5682 int index = 0; 5683 int[] positions = new int[filters.length]; 5684 MethodHandle filter = null; 5685 5686 // process filters in reverse order so that the invocation of 5687 // the resulting adapter will invoke the filters in left-to-right order 5688 for (int i = filters.length - 1; i >= 0; --i) { 5689 MethodHandle newFilter = filters[i]; 5690 if (newFilter == null) continue; // ignore null elements of filters 5691 5692 // flush changes on update 5693 if (filter != newFilter) { 5694 if (filter != null) { 5695 if (index > 1) { 5696 adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index)); 5697 } else { 5698 adapter = filterArgument(adapter, positions[0] - 1, filter); 5699 } 5700 } 5701 filter = newFilter; 5702 index = 0; 5703 } 5704 5705 filterArgumentChecks(target, pos + i, newFilter); 5706 positions[index++] = pos + i + MH_RECEIVER_OFFSET; 5707 } 5708 if (index > 1) { 5709 adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index)); 5710 } else if (index == 1) { 5711 adapter = filterArgument(adapter, positions[0] - 1, filter); 5712 } 5713 return adapter; 5714 } 5715 5716 private static MethodHandle filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions) { 5717 MethodType targetType = adapter.type(); 5718 MethodType filterType = filter.type(); 5719 BoundMethodHandle result = adapter.rebind(); 5720 Class<?> newParamType = filterType.parameterType(0); 5721 5722 Class<?>[] ptypes = targetType.ptypes().clone(); 5723 for (int pos : positions) { 5724 ptypes[pos - 1] = newParamType; 5725 } 5726 MethodType newType = MethodType.methodType(targetType.rtype(), ptypes, true); 5727 5728 LambdaForm lform = result.editor().filterRepeatedArgumentForm(BasicType.basicType(newParamType), positions); 5729 return result.copyWithExtendL(newType, lform, filter); 5730 } 5731 5732 /*non-public*/ 5733 static MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) { 5734 filterArgumentChecks(target, pos, filter); 5735 MethodType targetType = target.type(); 5736 MethodType filterType = filter.type(); 5737 BoundMethodHandle result = target.rebind(); 5738 Class<?> newParamType = filterType.parameterType(0); 5739 LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType)); 5740 MethodType newType = targetType.changeParameterType(pos, newParamType); 5741 result = result.copyWithExtendL(newType, lform, filter); 5742 return result; 5743 } 5744 5745 private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) { 5746 MethodType targetType = target.type(); 5747 int maxPos = targetType.parameterCount(); 5748 if (pos + filters.length > maxPos) 5749 throw newIllegalArgumentException("too many filters"); 5750 } 5751 5752 private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { 5753 MethodType targetType = target.type(); 5754 MethodType filterType = filter.type(); 5755 if (filterType.parameterCount() != 1 5756 || filterType.returnType() != targetType.parameterType(pos)) 5757 throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); 5758 } 5759 5760 /** 5761 * Adapts a target method handle by pre-processing 5762 * a sub-sequence of its arguments with a filter (another method handle). 5763 * The pre-processed arguments are replaced by the result (if any) of the 5764 * filter function. 5765 * The target is then called on the modified (usually shortened) argument list. 5766 * <p> 5767 * If the filter returns a value, the target must accept that value as 5768 * its argument in position {@code pos}, preceded and/or followed by 5769 * any arguments not passed to the filter. 5770 * If the filter returns void, the target must accept all arguments 5771 * not passed to the filter. 5772 * No arguments are reordered, and a result returned from the filter 5773 * replaces (in order) the whole subsequence of arguments originally 5774 * passed to the adapter. 5775 * <p> 5776 * The argument types (if any) of the filter 5777 * replace zero or one argument types of the target, at position {@code pos}, 5778 * in the resulting adapted method handle. 5779 * The return type of the filter (if any) must be identical to the 5780 * argument type of the target at position {@code pos}, and that target argument 5781 * is supplied by the return value of the filter. 5782 * <p> 5783 * In all cases, {@code pos} must be greater than or equal to zero, and 5784 * {@code pos} must also be less than or equal to the target's arity. 5785 * <p><b>Example:</b> 5786 * {@snippet lang="java" : 5787 import static java.lang.invoke.MethodHandles.*; 5788 import static java.lang.invoke.MethodType.*; 5789 ... 5790 MethodHandle deepToString = publicLookup() 5791 .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class)); 5792 5793 MethodHandle ts1 = deepToString.asCollector(String[].class, 1); 5794 assertEquals("[strange]", (String) ts1.invokeExact("strange")); 5795 5796 MethodHandle ts2 = deepToString.asCollector(String[].class, 2); 5797 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down")); 5798 5799 MethodHandle ts3 = deepToString.asCollector(String[].class, 3); 5800 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2); 5801 assertEquals("[top, [up, down], strange]", 5802 (String) ts3_ts2.invokeExact("top", "up", "down", "strange")); 5803 5804 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1); 5805 assertEquals("[top, [up, down], [strange]]", 5806 (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange")); 5807 5808 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3); 5809 assertEquals("[top, [[up, down, strange], charm], bottom]", 5810 (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom")); 5811 * } 5812 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 5813 * represents the return type of the {@code target} and resulting adapter. 5814 * {@code V}/{@code v} stand for the return type and value of the 5815 * {@code filter}, which are also found in the signature and arguments of 5816 * the {@code target}, respectively, unless {@code V} is {@code void}. 5817 * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types 5818 * and values preceding and following the collection position, {@code pos}, 5819 * in the {@code target}'s signature. They also turn up in the resulting 5820 * adapter's signature and arguments, where they surround 5821 * {@code B}/{@code b}, which represent the parameter types and arguments 5822 * to the {@code filter} (if any). 5823 * {@snippet lang="java" : 5824 * T target(A...,V,C...); 5825 * V filter(B...); 5826 * T adapter(A... a,B... b,C... c) { 5827 * V v = filter(b...); 5828 * return target(a...,v,c...); 5829 * } 5830 * // and if the filter has no arguments: 5831 * T target2(A...,V,C...); 5832 * V filter2(); 5833 * T adapter2(A... a,C... c) { 5834 * V v = filter2(); 5835 * return target2(a...,v,c...); 5836 * } 5837 * // and if the filter has a void return: 5838 * T target3(A...,C...); 5839 * void filter3(B...); 5840 * T adapter3(A... a,B... b,C... c) { 5841 * filter3(b...); 5842 * return target3(a...,c...); 5843 * } 5844 * } 5845 * <p> 5846 * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to 5847 * one which first "folds" the affected arguments, and then drops them, in separate 5848 * steps as follows: 5849 * {@snippet lang="java" : 5850 * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2 5851 * mh = MethodHandles.foldArguments(mh, coll); //step 1 5852 * } 5853 * If the target method handle consumes no arguments besides than the result 5854 * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)} 5855 * is equivalent to {@code filterReturnValue(coll, mh)}. 5856 * If the filter method handle {@code coll} consumes one argument and produces 5857 * a non-void result, then {@code collectArguments(mh, N, coll)} 5858 * is equivalent to {@code filterArguments(mh, N, coll)}. 5859 * Other equivalences are possible but would require argument permutation. 5860 * <p> 5861 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 5862 * variable-arity method handle}, even if the original target method handle was. 5863 * 5864 * @param target the method handle to invoke after filtering the subsequence of arguments 5865 * @param pos the position of the first adapter argument to pass to the filter, 5866 * and/or the target argument which receives the result of the filter 5867 * @param filter method handle to call on the subsequence of arguments 5868 * @return method handle which incorporates the specified argument subsequence filtering logic 5869 * @throws NullPointerException if either argument is null 5870 * @throws IllegalArgumentException if the return type of {@code filter} 5871 * is non-void and is not the same as the {@code pos} argument of the target, 5872 * or if {@code pos} is not between 0 and the target's arity, inclusive, 5873 * or if the resulting method handle's type would have 5874 * <a href="MethodHandle.html#maxarity">too many parameters</a> 5875 * @see MethodHandles#foldArguments 5876 * @see MethodHandles#filterArguments 5877 * @see MethodHandles#filterReturnValue 5878 */ 5879 public static MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) { 5880 MethodType newType = collectArgumentsChecks(target, pos, filter); 5881 MethodType collectorType = filter.type(); 5882 BoundMethodHandle result = target.rebind(); 5883 LambdaForm lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType()); 5884 return result.copyWithExtendL(newType, lform, filter); 5885 } 5886 5887 private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { 5888 MethodType targetType = target.type(); 5889 MethodType filterType = filter.type(); 5890 Class<?> rtype = filterType.returnType(); 5891 Class<?>[] filterArgs = filterType.ptypes(); 5892 if (pos < 0 || (rtype == void.class && pos > targetType.parameterCount()) || 5893 (rtype != void.class && pos >= targetType.parameterCount())) { 5894 throw newIllegalArgumentException("position is out of range for target", target, pos); 5895 } 5896 if (rtype == void.class) { 5897 return targetType.insertParameterTypes(pos, filterArgs); 5898 } 5899 if (rtype != targetType.parameterType(pos)) { 5900 throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); 5901 } 5902 return targetType.dropParameterTypes(pos, pos + 1).insertParameterTypes(pos, filterArgs); 5903 } 5904 5905 /** 5906 * Adapts a target method handle by post-processing 5907 * its return value (if any) with a filter (another method handle). 5908 * The result of the filter is returned from the adapter. 5909 * <p> 5910 * If the target returns a value, the filter must accept that value as 5911 * its only argument. 5912 * If the target returns void, the filter must accept no arguments. 5913 * <p> 5914 * The return type of the filter 5915 * replaces the return type of the target 5916 * in the resulting adapted method handle. 5917 * The argument type of the filter (if any) must be identical to the 5918 * return type of the target. 5919 * <p><b>Example:</b> 5920 * {@snippet lang="java" : 5921 import static java.lang.invoke.MethodHandles.*; 5922 import static java.lang.invoke.MethodType.*; 5923 ... 5924 MethodHandle cat = lookup().findVirtual(String.class, 5925 "concat", methodType(String.class, String.class)); 5926 MethodHandle length = lookup().findVirtual(String.class, 5927 "length", methodType(int.class)); 5928 System.out.println((String) cat.invokeExact("x", "y")); // xy 5929 MethodHandle f0 = filterReturnValue(cat, length); 5930 System.out.println((int) f0.invokeExact("x", "y")); // 2 5931 * } 5932 * <p>Here is pseudocode for the resulting adapter. In the code, 5933 * {@code T}/{@code t} represent the result type and value of the 5934 * {@code target}; {@code V}, the result type of the {@code filter}; and 5935 * {@code A}/{@code a}, the types and values of the parameters and arguments 5936 * of the {@code target} as well as the resulting adapter. 5937 * {@snippet lang="java" : 5938 * T target(A...); 5939 * V filter(T); 5940 * V adapter(A... a) { 5941 * T t = target(a...); 5942 * return filter(t); 5943 * } 5944 * // and if the target has a void return: 5945 * void target2(A...); 5946 * V filter2(); 5947 * V adapter2(A... a) { 5948 * target2(a...); 5949 * return filter2(); 5950 * } 5951 * // and if the filter has a void return: 5952 * T target3(A...); 5953 * void filter3(V); 5954 * void adapter3(A... a) { 5955 * T t = target3(a...); 5956 * filter3(t); 5957 * } 5958 * } 5959 * <p> 5960 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 5961 * variable-arity method handle}, even if the original target method handle was. 5962 * @param target the method handle to invoke before filtering the return value 5963 * @param filter method handle to call on the return value 5964 * @return method handle which incorporates the specified return value filtering logic 5965 * @throws NullPointerException if either argument is null 5966 * @throws IllegalArgumentException if the argument list of {@code filter} 5967 * does not match the return type of target as described above 5968 */ 5969 public static MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) { 5970 MethodType targetType = target.type(); 5971 MethodType filterType = filter.type(); 5972 filterReturnValueChecks(targetType, filterType); 5973 BoundMethodHandle result = target.rebind(); 5974 BasicType rtype = BasicType.basicType(filterType.returnType()); 5975 LambdaForm lform = result.editor().filterReturnForm(rtype, false); 5976 MethodType newType = targetType.changeReturnType(filterType.returnType()); 5977 result = result.copyWithExtendL(newType, lform, filter); 5978 return result; 5979 } 5980 5981 private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException { 5982 Class<?> rtype = targetType.returnType(); 5983 int filterValues = filterType.parameterCount(); 5984 if (filterValues == 0 5985 ? (rtype != void.class) 5986 : (rtype != filterType.parameterType(0) || filterValues != 1)) 5987 throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); 5988 } 5989 5990 /** 5991 * Filter the return value of a target method handle with a filter function. The filter function is 5992 * applied to the return value of the original handle; if the filter specifies more than one parameters, 5993 * then any remaining parameter is appended to the adapter handle. In other words, the adaptation works 5994 * as follows: 5995 * {@snippet lang="java" : 5996 * T target(A...) 5997 * V filter(B... , T) 5998 * V adapter(A... a, B... b) { 5999 * T t = target(a...); 6000 * return filter(b..., t); 6001 * } 6002 * } 6003 * <p> 6004 * If the filter handle is a unary function, then this method behaves like {@link #filterReturnValue(MethodHandle, MethodHandle)}. 6005 * 6006 * @param target the target method handle 6007 * @param filter the filter method handle 6008 * @return the adapter method handle 6009 */ 6010 /* package */ static MethodHandle collectReturnValue(MethodHandle target, MethodHandle filter) { 6011 MethodType targetType = target.type(); 6012 MethodType filterType = filter.type(); 6013 BoundMethodHandle result = target.rebind(); 6014 LambdaForm lform = result.editor().collectReturnValueForm(filterType.basicType()); 6015 MethodType newType = targetType.changeReturnType(filterType.returnType()); 6016 if (filterType.parameterCount() > 1) { 6017 for (int i = 0 ; i < filterType.parameterCount() - 1 ; i++) { 6018 newType = newType.appendParameterTypes(filterType.parameterType(i)); 6019 } 6020 } 6021 result = result.copyWithExtendL(newType, lform, filter); 6022 return result; 6023 } 6024 6025 /** 6026 * Adapts a target method handle by pre-processing 6027 * some of its arguments, and then calling the target with 6028 * the result of the pre-processing, inserted into the original 6029 * sequence of arguments. 6030 * <p> 6031 * The pre-processing is performed by {@code combiner}, a second method handle. 6032 * Of the arguments passed to the adapter, the first {@code N} arguments 6033 * are copied to the combiner, which is then called. 6034 * (Here, {@code N} is defined as the parameter count of the combiner.) 6035 * After this, control passes to the target, with any result 6036 * from the combiner inserted before the original {@code N} incoming 6037 * arguments. 6038 * <p> 6039 * If the combiner returns a value, the first parameter type of the target 6040 * must be identical with the return type of the combiner, and the next 6041 * {@code N} parameter types of the target must exactly match the parameters 6042 * of the combiner. 6043 * <p> 6044 * If the combiner has a void return, no result will be inserted, 6045 * and the first {@code N} parameter types of the target 6046 * must exactly match the parameters of the combiner. 6047 * <p> 6048 * The resulting adapter is the same type as the target, except that the 6049 * first parameter type is dropped, 6050 * if it corresponds to the result of the combiner. 6051 * <p> 6052 * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments 6053 * that either the combiner or the target does not wish to receive. 6054 * If some of the incoming arguments are destined only for the combiner, 6055 * consider using {@link MethodHandle#asCollector asCollector} instead, since those 6056 * arguments will not need to be live on the stack on entry to the 6057 * target.) 6058 * <p><b>Example:</b> 6059 * {@snippet lang="java" : 6060 import static java.lang.invoke.MethodHandles.*; 6061 import static java.lang.invoke.MethodType.*; 6062 ... 6063 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, 6064 "println", methodType(void.class, String.class)) 6065 .bindTo(System.out); 6066 MethodHandle cat = lookup().findVirtual(String.class, 6067 "concat", methodType(String.class, String.class)); 6068 assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); 6069 MethodHandle catTrace = foldArguments(cat, trace); 6070 // also prints "boo": 6071 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum")); 6072 * } 6073 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 6074 * represents the result type of the {@code target} and resulting adapter. 6075 * {@code V}/{@code v} represent the type and value of the parameter and argument 6076 * of {@code target} that precedes the folding position; {@code V} also is 6077 * the result type of the {@code combiner}. {@code A}/{@code a} denote the 6078 * types and values of the {@code N} parameters and arguments at the folding 6079 * position. {@code B}/{@code b} represent the types and values of the 6080 * {@code target} parameters and arguments that follow the folded parameters 6081 * and arguments. 6082 * {@snippet lang="java" : 6083 * // there are N arguments in A... 6084 * T target(V, A[N]..., B...); 6085 * V combiner(A...); 6086 * T adapter(A... a, B... b) { 6087 * V v = combiner(a...); 6088 * return target(v, a..., b...); 6089 * } 6090 * // and if the combiner has a void return: 6091 * T target2(A[N]..., B...); 6092 * void combiner2(A...); 6093 * T adapter2(A... a, B... b) { 6094 * combiner2(a...); 6095 * return target2(a..., b...); 6096 * } 6097 * } 6098 * <p> 6099 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 6100 * variable-arity method handle}, even if the original target method handle was. 6101 * @param target the method handle to invoke after arguments are combined 6102 * @param combiner method handle to call initially on the incoming arguments 6103 * @return method handle which incorporates the specified argument folding logic 6104 * @throws NullPointerException if either argument is null 6105 * @throws IllegalArgumentException if {@code combiner}'s return type 6106 * is non-void and not the same as the first argument type of 6107 * the target, or if the initial {@code N} argument types 6108 * of the target 6109 * (skipping one matching the {@code combiner}'s return type) 6110 * are not identical with the argument types of {@code combiner} 6111 */ 6112 public static MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) { 6113 return foldArguments(target, 0, combiner); 6114 } 6115 6116 /** 6117 * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then 6118 * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just 6119 * before the folded arguments. 6120 * <p> 6121 * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the 6122 * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a 6123 * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position 6124 * 0. 6125 * 6126 * @apiNote Example: 6127 * {@snippet lang="java" : 6128 import static java.lang.invoke.MethodHandles.*; 6129 import static java.lang.invoke.MethodType.*; 6130 ... 6131 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, 6132 "println", methodType(void.class, String.class)) 6133 .bindTo(System.out); 6134 MethodHandle cat = lookup().findVirtual(String.class, 6135 "concat", methodType(String.class, String.class)); 6136 assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); 6137 MethodHandle catTrace = foldArguments(cat, 1, trace); 6138 // also prints "jum": 6139 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum")); 6140 * } 6141 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 6142 * represents the result type of the {@code target} and resulting adapter. 6143 * {@code V}/{@code v} represent the type and value of the parameter and argument 6144 * of {@code target} that precedes the folding position; {@code V} also is 6145 * the result type of the {@code combiner}. {@code A}/{@code a} denote the 6146 * types and values of the {@code N} parameters and arguments at the folding 6147 * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types 6148 * and values of the {@code target} parameters and arguments that precede and 6149 * follow the folded parameters and arguments starting at {@code pos}, 6150 * respectively. 6151 * {@snippet lang="java" : 6152 * // there are N arguments in A... 6153 * T target(Z..., V, A[N]..., B...); 6154 * V combiner(A...); 6155 * T adapter(Z... z, A... a, B... b) { 6156 * V v = combiner(a...); 6157 * return target(z..., v, a..., b...); 6158 * } 6159 * // and if the combiner has a void return: 6160 * T target2(Z..., A[N]..., B...); 6161 * void combiner2(A...); 6162 * T adapter2(Z... z, A... a, B... b) { 6163 * combiner2(a...); 6164 * return target2(z..., a..., b...); 6165 * } 6166 * } 6167 * <p> 6168 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 6169 * variable-arity method handle}, even if the original target method handle was. 6170 * 6171 * @param target the method handle to invoke after arguments are combined 6172 * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code 6173 * 0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}. 6174 * @param combiner method handle to call initially on the incoming arguments 6175 * @return method handle which incorporates the specified argument folding logic 6176 * @throws NullPointerException if either argument is null 6177 * @throws IllegalArgumentException if either of the following two conditions holds: 6178 * (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position 6179 * {@code pos} of the target signature; 6180 * (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching 6181 * the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}. 6182 * 6183 * @see #foldArguments(MethodHandle, MethodHandle) 6184 * @since 9 6185 */ 6186 public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) { 6187 MethodType targetType = target.type(); 6188 MethodType combinerType = combiner.type(); 6189 Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType); 6190 BoundMethodHandle result = target.rebind(); 6191 boolean dropResult = rtype == void.class; 6192 LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType()); 6193 MethodType newType = targetType; 6194 if (!dropResult) { 6195 newType = newType.dropParameterTypes(pos, pos + 1); 6196 } 6197 result = result.copyWithExtendL(newType, lform, combiner); 6198 return result; 6199 } 6200 6201 private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) { 6202 int foldArgs = combinerType.parameterCount(); 6203 Class<?> rtype = combinerType.returnType(); 6204 int foldVals = rtype == void.class ? 0 : 1; 6205 int afterInsertPos = foldPos + foldVals; 6206 boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs); 6207 if (ok) { 6208 for (int i = 0; i < foldArgs; i++) { 6209 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) { 6210 ok = false; 6211 break; 6212 } 6213 } 6214 } 6215 if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) 6216 ok = false; 6217 if (!ok) 6218 throw misMatchedTypes("target and combiner types", targetType, combinerType); 6219 return rtype; 6220 } 6221 6222 /** 6223 * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result 6224 * of the pre-processing replacing the argument at the given position. 6225 * 6226 * @param target the method handle to invoke after arguments are combined 6227 * @param position the position at which to start folding and at which to insert the folding result; if this is {@code 6228 * 0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}. 6229 * @param combiner method handle to call initially on the incoming arguments 6230 * @param argPositions indexes of the target to pick arguments sent to the combiner from 6231 * @return method handle which incorporates the specified argument folding logic 6232 * @throws NullPointerException if either argument is null 6233 * @throws IllegalArgumentException if either of the following two conditions holds: 6234 * (1) {@code combiner}'s return type is not the same as the argument type at position 6235 * {@code pos} of the target signature; 6236 * (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are 6237 * not identical with the argument types of {@code combiner}. 6238 */ 6239 /*non-public*/ 6240 static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) { 6241 return argumentsWithCombiner(true, target, position, combiner, argPositions); 6242 } 6243 6244 /** 6245 * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of 6246 * the pre-processing inserted into the original sequence of arguments at the given position. 6247 * 6248 * @param target the method handle to invoke after arguments are combined 6249 * @param position the position at which to start folding and at which to insert the folding result; if this is {@code 6250 * 0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}. 6251 * @param combiner method handle to call initially on the incoming arguments 6252 * @param argPositions indexes of the target to pick arguments sent to the combiner from 6253 * @return method handle which incorporates the specified argument folding logic 6254 * @throws NullPointerException if either argument is null 6255 * @throws IllegalArgumentException if either of the following two conditions holds: 6256 * (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position 6257 * {@code pos} of the target signature; 6258 * (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature 6259 * (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical 6260 * with the argument types of {@code combiner}. 6261 */ 6262 /*non-public*/ 6263 static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) { 6264 return argumentsWithCombiner(false, target, position, combiner, argPositions); 6265 } 6266 6267 private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) { 6268 MethodType targetType = target.type(); 6269 MethodType combinerType = combiner.type(); 6270 Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions); 6271 BoundMethodHandle result = target.rebind(); 6272 6273 MethodType newType = targetType; 6274 LambdaForm lform; 6275 if (filter) { 6276 lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions); 6277 } else { 6278 boolean dropResult = rtype == void.class; 6279 lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions); 6280 if (!dropResult) { 6281 newType = newType.dropParameterTypes(position, position + 1); 6282 } 6283 } 6284 result = result.copyWithExtendL(newType, lform, combiner); 6285 return result; 6286 } 6287 6288 private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) { 6289 int combinerArgs = combinerType.parameterCount(); 6290 if (argPos.length != combinerArgs) { 6291 throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length); 6292 } 6293 Class<?> rtype = combinerType.returnType(); 6294 6295 for (int i = 0; i < combinerArgs; i++) { 6296 int arg = argPos[i]; 6297 if (arg < 0 || arg > targetType.parameterCount()) { 6298 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg); 6299 } 6300 if (combinerType.parameterType(i) != targetType.parameterType(arg)) { 6301 throw newIllegalArgumentException("target argument type at position " + arg 6302 + " must match combiner argument type at index " + i + ": " + targetType 6303 + " -> " + combinerType + ", map: " + Arrays.toString(argPos)); 6304 } 6305 } 6306 if (filter && combinerType.returnType() != targetType.parameterType(position)) { 6307 throw misMatchedTypes("target and combiner types", targetType, combinerType); 6308 } 6309 return rtype; 6310 } 6311 6312 /** 6313 * Makes a method handle which adapts a target method handle, 6314 * by guarding it with a test, a boolean-valued method handle. 6315 * If the guard fails, a fallback handle is called instead. 6316 * All three method handles must have the same corresponding 6317 * argument and return types, except that the return type 6318 * of the test must be boolean, and the test is allowed 6319 * to have fewer arguments than the other two method handles. 6320 * <p> 6321 * Here is pseudocode for the resulting adapter. In the code, {@code T} 6322 * represents the uniform result type of the three involved handles; 6323 * {@code A}/{@code a}, the types and values of the {@code target} 6324 * parameters and arguments that are consumed by the {@code test}; and 6325 * {@code B}/{@code b}, those types and values of the {@code target} 6326 * parameters and arguments that are not consumed by the {@code test}. 6327 * {@snippet lang="java" : 6328 * boolean test(A...); 6329 * T target(A...,B...); 6330 * T fallback(A...,B...); 6331 * T adapter(A... a,B... b) { 6332 * if (test(a...)) 6333 * return target(a..., b...); 6334 * else 6335 * return fallback(a..., b...); 6336 * } 6337 * } 6338 * Note that the test arguments ({@code a...} in the pseudocode) cannot 6339 * be modified by execution of the test, and so are passed unchanged 6340 * from the caller to the target or fallback as appropriate. 6341 * @param test method handle used for test, must return boolean 6342 * @param target method handle to call if test passes 6343 * @param fallback method handle to call if test fails 6344 * @return method handle which incorporates the specified if/then/else logic 6345 * @throws NullPointerException if any argument is null 6346 * @throws IllegalArgumentException if {@code test} does not return boolean, 6347 * or if all three method types do not match (with the return 6348 * type of {@code test} changed to match that of the target). 6349 */ 6350 public static MethodHandle guardWithTest(MethodHandle test, 6351 MethodHandle target, 6352 MethodHandle fallback) { 6353 MethodType gtype = test.type(); 6354 MethodType ttype = target.type(); 6355 MethodType ftype = fallback.type(); 6356 if (!ttype.equals(ftype)) 6357 throw misMatchedTypes("target and fallback types", ttype, ftype); 6358 if (gtype.returnType() != boolean.class) 6359 throw newIllegalArgumentException("guard type is not a predicate "+gtype); 6360 6361 test = dropArgumentsToMatch(test, 0, ttype.ptypes(), 0, true); 6362 if (test == null) { 6363 throw misMatchedTypes("target and test types", ttype, gtype); 6364 } 6365 return MethodHandleImpl.makeGuardWithTest(test, target, fallback); 6366 } 6367 6368 static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) { 6369 return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2); 6370 } 6371 6372 /** 6373 * Makes a method handle which adapts a target method handle, 6374 * by running it inside an exception handler. 6375 * If the target returns normally, the adapter returns that value. 6376 * If an exception matching the specified type is thrown, the fallback 6377 * handle is called instead on the exception, plus the original arguments. 6378 * <p> 6379 * The target and handler must have the same corresponding 6380 * argument and return types, except that handler may omit trailing arguments 6381 * (similarly to the predicate in {@link #guardWithTest guardWithTest}). 6382 * Also, the handler must have an extra leading parameter of {@code exType} or a supertype. 6383 * <p> 6384 * Here is pseudocode for the resulting adapter. In the code, {@code T} 6385 * represents the return type of the {@code target} and {@code handler}, 6386 * and correspondingly that of the resulting adapter; {@code A}/{@code a}, 6387 * the types and values of arguments to the resulting handle consumed by 6388 * {@code handler}; and {@code B}/{@code b}, those of arguments to the 6389 * resulting handle discarded by {@code handler}. 6390 * {@snippet lang="java" : 6391 * T target(A..., B...); 6392 * T handler(ExType, A...); 6393 * T adapter(A... a, B... b) { 6394 * try { 6395 * return target(a..., b...); 6396 * } catch (ExType ex) { 6397 * return handler(ex, a...); 6398 * } 6399 * } 6400 * } 6401 * Note that the saved arguments ({@code a...} in the pseudocode) cannot 6402 * be modified by execution of the target, and so are passed unchanged 6403 * from the caller to the handler, if the handler is invoked. 6404 * <p> 6405 * The target and handler must return the same type, even if the handler 6406 * always throws. (This might happen, for instance, because the handler 6407 * is simulating a {@code finally} clause). 6408 * To create such a throwing handler, compose the handler creation logic 6409 * with {@link #throwException throwException}, 6410 * in order to create a method handle of the correct return type. 6411 * @param target method handle to call 6412 * @param exType the type of exception which the handler will catch 6413 * @param handler method handle to call if a matching exception is thrown 6414 * @return method handle which incorporates the specified try/catch logic 6415 * @throws NullPointerException if any argument is null 6416 * @throws IllegalArgumentException if {@code handler} does not accept 6417 * the given exception type, or if the method handle types do 6418 * not match in their return types and their 6419 * corresponding parameters 6420 * @see MethodHandles#tryFinally(MethodHandle, MethodHandle) 6421 */ 6422 public static MethodHandle catchException(MethodHandle target, 6423 Class<? extends Throwable> exType, 6424 MethodHandle handler) { 6425 MethodType ttype = target.type(); 6426 MethodType htype = handler.type(); 6427 if (!Throwable.class.isAssignableFrom(exType)) 6428 throw new ClassCastException(exType.getName()); 6429 if (htype.parameterCount() < 1 || 6430 !htype.parameterType(0).isAssignableFrom(exType)) 6431 throw newIllegalArgumentException("handler does not accept exception type "+exType); 6432 if (htype.returnType() != ttype.returnType()) 6433 throw misMatchedTypes("target and handler return types", ttype, htype); 6434 handler = dropArgumentsToMatch(handler, 1, ttype.ptypes(), 0, true); 6435 if (handler == null) { 6436 throw misMatchedTypes("target and handler types", ttype, htype); 6437 } 6438 return MethodHandleImpl.makeGuardWithCatch(target, exType, handler); 6439 } 6440 6441 /** 6442 * Produces a method handle which will throw exceptions of the given {@code exType}. 6443 * The method handle will accept a single argument of {@code exType}, 6444 * and immediately throw it as an exception. 6445 * The method type will nominally specify a return of {@code returnType}. 6446 * The return type may be anything convenient: It doesn't matter to the 6447 * method handle's behavior, since it will never return normally. 6448 * @param returnType the return type of the desired method handle 6449 * @param exType the parameter type of the desired method handle 6450 * @return method handle which can throw the given exceptions 6451 * @throws NullPointerException if either argument is null 6452 */ 6453 public static MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) { 6454 if (!Throwable.class.isAssignableFrom(exType)) 6455 throw new ClassCastException(exType.getName()); 6456 return MethodHandleImpl.throwException(methodType(returnType, exType)); 6457 } 6458 6459 /** 6460 * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each 6461 * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and 6462 * delivers the loop's result, which is the return value of the resulting handle. 6463 * <p> 6464 * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop 6465 * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration 6466 * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in 6467 * terms of method handles, each clause will specify up to four independent actions:<ul> 6468 * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}. 6469 * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}. 6470 * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit. 6471 * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value. 6472 * </ul> 6473 * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}. 6474 * The values themselves will be {@code (v...)}. When we speak of "parameter lists", we will usually 6475 * be referring to types, but in some contexts (describing execution) the lists will be of actual values. 6476 * <p> 6477 * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in 6478 * this case. See below for a detailed description. 6479 * <p> 6480 * <em>Parameters optional everywhere:</em> 6481 * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}. 6482 * As an exception, the init functions cannot take any {@code v} parameters, 6483 * because those values are not yet computed when the init functions are executed. 6484 * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take. 6485 * In fact, any clause function may take no arguments at all. 6486 * <p> 6487 * <em>Loop parameters:</em> 6488 * A clause function may take all the iteration variable values it is entitled to, in which case 6489 * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>, 6490 * with their types and values notated as {@code (A...)} and {@code (a...)}. 6491 * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed. 6492 * (Since init functions do not accept iteration variables {@code v}, any parameter to an 6493 * init function is automatically a loop parameter {@code a}.) 6494 * As with iteration variables, clause functions are allowed but not required to accept loop parameters. 6495 * These loop parameters act as loop-invariant values visible across the whole loop. 6496 * <p> 6497 * <em>Parameters visible everywhere:</em> 6498 * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full 6499 * list {@code (v... a...)} of current iteration variable values and incoming loop parameters. 6500 * The init functions can observe initial pre-loop state, in the form {@code (a...)}. 6501 * Most clause functions will not need all of this information, but they will be formally connected to it 6502 * as if by {@link #dropArguments}. 6503 * <a id="astar"></a> 6504 * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full 6505 * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}). 6506 * In that notation, the general form of an init function parameter list 6507 * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}. 6508 * <p> 6509 * <em>Checking clause structure:</em> 6510 * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the 6511 * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must" 6512 * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not 6513 * met by the inputs to the loop combinator. 6514 * <p> 6515 * <em>Effectively identical sequences:</em> 6516 * <a id="effid"></a> 6517 * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B} 6518 * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}. 6519 * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical" 6520 * as a whole if the set contains a longest list, and all members of the set are effectively identical to 6521 * that longest list. 6522 * For example, any set of type sequences of the form {@code (V*)} is effectively identical, 6523 * and the same is true if more sequences of the form {@code (V... A*)} are added. 6524 * <p> 6525 * <em>Step 0: Determine clause structure.</em><ol type="a"> 6526 * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element. 6527 * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements. 6528 * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length 6529 * four. Padding takes place by appending elements to the array. 6530 * <li>Clauses with all {@code null}s are disregarded. 6531 * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini". 6532 * </ol> 6533 * <p> 6534 * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a"> 6535 * <li>The iteration variable type for each clause is determined using the clause's init and step return types. 6536 * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is 6537 * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's 6538 * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's 6539 * iteration variable type. 6540 * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}. 6541 * <li>This list of types is called the "iteration variable types" ({@code (V...)}). 6542 * </ol> 6543 * <p> 6544 * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul> 6545 * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}). 6546 * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types. 6547 * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.) 6548 * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types. 6549 * (These types will be checked in step 2, along with all the clause function types.) 6550 * <li>Omitted clause functions are ignored. (Equivalently, they are deemed to have empty parameter lists.) 6551 * <li>All of the collected parameter lists must be effectively identical. 6552 * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}). 6553 * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence. 6554 * <li>The combined list consisting of iteration variable types followed by the external parameter types is called 6555 * the "internal parameter list". 6556 * </ul> 6557 * <p> 6558 * <em>Step 1C: Determine loop return type.</em><ol type="a"> 6559 * <li>Examine fini function return types, disregarding omitted fini functions. 6560 * <li>If there are no fini functions, the loop return type is {@code void}. 6561 * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return 6562 * type. 6563 * </ol> 6564 * <p> 6565 * <em>Step 1D: Check other types.</em><ol type="a"> 6566 * <li>There must be at least one non-omitted pred function. 6567 * <li>Every non-omitted pred function must have a {@code boolean} return type. 6568 * </ol> 6569 * <p> 6570 * <em>Step 2: Determine parameter lists.</em><ol type="a"> 6571 * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}. 6572 * <li>The parameter list for init functions will be adjusted to the external parameter list. 6573 * (Note that their parameter lists are already effectively identical to this list.) 6574 * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be 6575 * effectively identical to the internal parameter list {@code (V... A...)}. 6576 * </ol> 6577 * <p> 6578 * <em>Step 3: Fill in omitted functions.</em><ol type="a"> 6579 * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable 6580 * type. 6581 * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration 6582 * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void} 6583 * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.) 6584 * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far 6585 * as this clause is concerned. Note that in such cases the corresponding fini function is unreachable.) 6586 * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the 6587 * loop return type. 6588 * </ol> 6589 * <p> 6590 * <em>Step 4: Fill in missing parameter types.</em><ol type="a"> 6591 * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)}, 6592 * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list. 6593 * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter 6594 * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list, 6595 * pad out the end of the list. 6596 * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}. 6597 * </ol> 6598 * <p> 6599 * <em>Final observations.</em><ol type="a"> 6600 * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments. 6601 * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have. 6602 * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have. 6603 * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of 6604 * (non-{@code void}) iteration variables {@code V} followed by loop parameters. 6605 * <li>Each pair of init and step functions agrees in their return type {@code V}. 6606 * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables. 6607 * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters. 6608 * </ol> 6609 * <p> 6610 * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property: 6611 * <ul> 6612 * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}. 6613 * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters. 6614 * (Only one {@code Pn} has to be non-{@code null}.) 6615 * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}. 6616 * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types. 6617 * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}. 6618 * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}. 6619 * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine 6620 * the resulting loop handle's parameter types {@code (A...)}. 6621 * </ul> 6622 * In this example, the loop handle parameters {@code (A...)} were derived from the step functions, 6623 * which is natural if most of the loop computation happens in the steps. For some loops, 6624 * the burden of computation might be heaviest in the pred functions, and so the pred functions 6625 * might need to accept the loop parameter values. For loops with complex exit logic, the fini 6626 * functions might need to accept loop parameters, and likewise for loops with complex entry logic, 6627 * where the init functions will need the extra parameters. For such reasons, the rules for 6628 * determining these parameters are as symmetric as possible, across all clause parts. 6629 * In general, the loop parameters function as common invariant values across the whole 6630 * loop, while the iteration variables function as common variant values, or (if there is 6631 * no step function) as internal loop invariant temporaries. 6632 * <p> 6633 * <em>Loop execution.</em><ol type="a"> 6634 * <li>When the loop is called, the loop input values are saved in locals, to be passed to 6635 * every clause function. These locals are loop invariant. 6636 * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)}) 6637 * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals. 6638 * These locals will be loop varying (unless their steps behave as identity functions, as noted above). 6639 * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of 6640 * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)} 6641 * (in argument order). 6642 * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function 6643 * returns {@code false}. 6644 * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the 6645 * sequence {@code (v...)} of loop variables. 6646 * The updated value is immediately visible to all subsequent function calls. 6647 * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value 6648 * (of type {@code R}) is returned from the loop as a whole. 6649 * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit 6650 * except by throwing an exception. 6651 * </ol> 6652 * <p> 6653 * <em>Usage tips.</em> 6654 * <ul> 6655 * <li>Although each step function will receive the current values of <em>all</em> the loop variables, 6656 * sometimes a step function only needs to observe the current value of its own variable. 6657 * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}. 6658 * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}. 6659 * <li>Loop variables are not required to vary; they can be loop invariant. A clause can create 6660 * a loop invariant by a suitable init function with no step, pred, or fini function. This may be 6661 * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable. 6662 * <li>If some of the clause functions are virtual methods on an instance, the instance 6663 * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause 6664 * like {@code new MethodHandle[]{identity(ObjType.class)}}. In that case, the instance reference 6665 * will be the first iteration variable value, and it will be easy to use virtual 6666 * methods as clause parts, since all of them will take a leading instance reference matching that value. 6667 * </ul> 6668 * <p> 6669 * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types 6670 * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop; 6671 * and {@code R} is the common result type of all finalizers as well as of the resulting loop. 6672 * {@snippet lang="java" : 6673 * V... init...(A...); 6674 * boolean pred...(V..., A...); 6675 * V... step...(V..., A...); 6676 * R fini...(V..., A...); 6677 * R loop(A... a) { 6678 * V... v... = init...(a...); 6679 * for (;;) { 6680 * for ((v, p, s, f) in (v..., pred..., step..., fini...)) { 6681 * v = s(v..., a...); 6682 * if (!p(v..., a...)) { 6683 * return f(v..., a...); 6684 * } 6685 * } 6686 * } 6687 * } 6688 * } 6689 * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded 6690 * to their full length, even though individual clause functions may neglect to take them all. 6691 * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}. 6692 * 6693 * @apiNote Example: 6694 * {@snippet lang="java" : 6695 * // iterative implementation of the factorial function as a loop handle 6696 * static int one(int k) { return 1; } 6697 * static int inc(int i, int acc, int k) { return i + 1; } 6698 * static int mult(int i, int acc, int k) { return i * acc; } 6699 * static boolean pred(int i, int acc, int k) { return i < k; } 6700 * static int fin(int i, int acc, int k) { return acc; } 6701 * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods 6702 * // null initializer for counter, should initialize to 0 6703 * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; 6704 * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; 6705 * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); 6706 * assertEquals(120, loop.invoke(5)); 6707 * } 6708 * The same example, dropping arguments and using combinators: 6709 * {@snippet lang="java" : 6710 * // simplified implementation of the factorial function as a loop handle 6711 * static int inc(int i) { return i + 1; } // drop acc, k 6712 * static int mult(int i, int acc) { return i * acc; } //drop k 6713 * static boolean cmp(int i, int k) { return i < k; } 6714 * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods 6715 * // null initializer for counter, should initialize to 0 6716 * MethodHandle MH_one = MethodHandles.constant(int.class, 1); 6717 * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc 6718 * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i 6719 * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; 6720 * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; 6721 * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); 6722 * assertEquals(720, loop.invoke(6)); 6723 * } 6724 * A similar example, using a helper object to hold a loop parameter: 6725 * {@snippet lang="java" : 6726 * // instance-based implementation of the factorial function as a loop handle 6727 * static class FacLoop { 6728 * final int k; 6729 * FacLoop(int k) { this.k = k; } 6730 * int inc(int i) { return i + 1; } 6731 * int mult(int i, int acc) { return i * acc; } 6732 * boolean pred(int i) { return i < k; } 6733 * int fin(int i, int acc) { return acc; } 6734 * } 6735 * // assume MH_FacLoop is a handle to the constructor 6736 * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods 6737 * // null initializer for counter, should initialize to 0 6738 * MethodHandle MH_one = MethodHandles.constant(int.class, 1); 6739 * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop}; 6740 * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; 6741 * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; 6742 * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause); 6743 * assertEquals(5040, loop.invoke(7)); 6744 * } 6745 * 6746 * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above. 6747 * 6748 * @return a method handle embodying the looping behavior as defined by the arguments. 6749 * 6750 * @throws IllegalArgumentException in case any of the constraints described above is violated. 6751 * 6752 * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle) 6753 * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle) 6754 * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle) 6755 * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle) 6756 * @since 9 6757 */ 6758 public static MethodHandle loop(MethodHandle[]... clauses) { 6759 // Step 0: determine clause structure. 6760 loopChecks0(clauses); 6761 6762 List<MethodHandle> init = new ArrayList<>(); 6763 List<MethodHandle> step = new ArrayList<>(); 6764 List<MethodHandle> pred = new ArrayList<>(); 6765 List<MethodHandle> fini = new ArrayList<>(); 6766 6767 Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> { 6768 init.add(clause[0]); // all clauses have at least length 1 6769 step.add(clause.length <= 1 ? null : clause[1]); 6770 pred.add(clause.length <= 2 ? null : clause[2]); 6771 fini.add(clause.length <= 3 ? null : clause[3]); 6772 }); 6773 6774 assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1; 6775 final int nclauses = init.size(); 6776 6777 // Step 1A: determine iteration variables (V...). 6778 final List<Class<?>> iterationVariableTypes = new ArrayList<>(); 6779 for (int i = 0; i < nclauses; ++i) { 6780 MethodHandle in = init.get(i); 6781 MethodHandle st = step.get(i); 6782 if (in == null && st == null) { 6783 iterationVariableTypes.add(void.class); 6784 } else if (in != null && st != null) { 6785 loopChecks1a(i, in, st); 6786 iterationVariableTypes.add(in.type().returnType()); 6787 } else { 6788 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType()); 6789 } 6790 } 6791 final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).toList(); 6792 6793 // Step 1B: determine loop parameters (A...). 6794 final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size()); 6795 loopChecks1b(init, commonSuffix); 6796 6797 // Step 1C: determine loop return type. 6798 // Step 1D: check other types. 6799 // local variable required here; see JDK-8223553 6800 Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type) 6801 .map(MethodType::returnType); 6802 final Class<?> loopReturnType = cstream.findFirst().orElse(void.class); 6803 loopChecks1cd(pred, fini, loopReturnType); 6804 6805 // Step 2: determine parameter lists. 6806 final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix); 6807 commonParameterSequence.addAll(commonSuffix); 6808 loopChecks2(step, pred, fini, commonParameterSequence); 6809 // Step 3: fill in omitted functions. 6810 for (int i = 0; i < nclauses; ++i) { 6811 Class<?> t = iterationVariableTypes.get(i); 6812 if (init.get(i) == null) { 6813 init.set(i, empty(methodType(t, commonSuffix))); 6814 } 6815 if (step.get(i) == null) { 6816 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i)); 6817 } 6818 if (pred.get(i) == null) { 6819 pred.set(i, dropArguments(constant(boolean.class, true), 0, commonParameterSequence)); 6820 } 6821 if (fini.get(i) == null) { 6822 fini.set(i, empty(methodType(t, commonParameterSequence))); 6823 } 6824 } 6825 6826 // Step 4: fill in missing parameter types. 6827 // Also convert all handles to fixed-arity handles. 6828 List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix)); 6829 List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence)); 6830 List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence)); 6831 List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence)); 6832 6833 assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList). 6834 allMatch(pl -> pl.equals(commonSuffix)); 6835 assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList). 6836 allMatch(pl -> pl.equals(commonParameterSequence)); 6837 6838 return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini); 6839 } 6840 6841 private static void loopChecks0(MethodHandle[][] clauses) { 6842 if (clauses == null || clauses.length == 0) { 6843 throw newIllegalArgumentException("null or no clauses passed"); 6844 } 6845 if (Stream.of(clauses).anyMatch(Objects::isNull)) { 6846 throw newIllegalArgumentException("null clauses are not allowed"); 6847 } 6848 if (Stream.of(clauses).anyMatch(c -> c.length > 4)) { 6849 throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements."); 6850 } 6851 } 6852 6853 private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) { 6854 if (in.type().returnType() != st.type().returnType()) { 6855 throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(), 6856 st.type().returnType()); 6857 } 6858 } 6859 6860 private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) { 6861 return mhs.filter(Objects::nonNull) 6862 // take only those that can contribute to a common suffix because they are longer than the prefix 6863 .map(MethodHandle::type) 6864 .filter(t -> t.parameterCount() > skipSize) 6865 .max(Comparator.comparingInt(MethodType::parameterCount)) 6866 .map(methodType -> List.of(Arrays.copyOfRange(methodType.ptypes(), skipSize, methodType.parameterCount()))) 6867 .orElse(List.of()); 6868 } 6869 6870 private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) { 6871 final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize); 6872 final List<Class<?>> longest2 = longestParameterList(init.stream(), 0); 6873 return longest1.size() >= longest2.size() ? longest1 : longest2; 6874 } 6875 6876 private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) { 6877 if (init.stream().filter(Objects::nonNull).map(MethodHandle::type). 6878 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) { 6879 throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init + 6880 " (common suffix: " + commonSuffix + ")"); 6881 } 6882 } 6883 6884 private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) { 6885 if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). 6886 anyMatch(t -> t != loopReturnType)) { 6887 throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " + 6888 loopReturnType + ")"); 6889 } 6890 6891 if (pred.stream().noneMatch(Objects::nonNull)) { 6892 throw newIllegalArgumentException("no predicate found", pred); 6893 } 6894 if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). 6895 anyMatch(t -> t != boolean.class)) { 6896 throw newIllegalArgumentException("predicates must have boolean return type", pred); 6897 } 6898 } 6899 6900 private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) { 6901 if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type). 6902 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) { 6903 throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step + 6904 "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")"); 6905 } 6906 } 6907 6908 private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) { 6909 return hs.stream().map(h -> { 6910 int pc = h.type().parameterCount(); 6911 int tpsize = targetParams.size(); 6912 return pc < tpsize ? dropArguments(h, pc, targetParams.subList(pc, tpsize)) : h; 6913 }).toList(); 6914 } 6915 6916 private static List<MethodHandle> fixArities(List<MethodHandle> hs) { 6917 return hs.stream().map(MethodHandle::asFixedArity).toList(); 6918 } 6919 6920 /** 6921 * Constructs a {@code while} loop from an initializer, a body, and a predicate. 6922 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 6923 * <p> 6924 * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this 6925 * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate 6926 * evaluates to {@code true}). 6927 * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case). 6928 * <p> 6929 * The {@code init} handle describes the initial value of an additional optional loop-local variable. 6930 * In each iteration, this loop-local variable, if present, will be passed to the {@code body} 6931 * and updated with the value returned from its invocation. The result of loop execution will be 6932 * the final value of the additional loop-local variable (if present). 6933 * <p> 6934 * The following rules hold for these argument handles:<ul> 6935 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 6936 * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. 6937 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 6938 * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} 6939 * is quietly dropped from the parameter list, leaving {@code (A...)V}.) 6940 * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>. 6941 * It will constrain the parameter lists of the other loop parts. 6942 * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter 6943 * list {@code (A...)} is called the <em>external parameter list</em>. 6944 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 6945 * additional state variable of the loop. 6946 * The body must both accept and return a value of this type {@code V}. 6947 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 6948 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 6949 * <a href="MethodHandles.html#effid">effectively identical</a> 6950 * to the external parameter list {@code (A...)}. 6951 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 6952 * {@linkplain #empty default value}. 6953 * <li>The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. 6954 * Its parameter list (either empty or of the form {@code (V A*)}) must be 6955 * effectively identical to the internal parameter list. 6956 * </ul> 6957 * <p> 6958 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 6959 * <li>The loop handle's result type is the result type {@code V} of the body. 6960 * <li>The loop handle's parameter types are the types {@code (A...)}, 6961 * from the external parameter list. 6962 * </ul> 6963 * <p> 6964 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 6965 * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument 6966 * passed to the loop. 6967 * {@snippet lang="java" : 6968 * V init(A...); 6969 * boolean pred(V, A...); 6970 * V body(V, A...); 6971 * V whileLoop(A... a...) { 6972 * V v = init(a...); 6973 * while (pred(v, a...)) { 6974 * v = body(v, a...); 6975 * } 6976 * return v; 6977 * } 6978 * } 6979 * 6980 * @apiNote Example: 6981 * {@snippet lang="java" : 6982 * // implement the zip function for lists as a loop handle 6983 * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); } 6984 * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); } 6985 * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) { 6986 * zip.add(a.next()); 6987 * zip.add(b.next()); 6988 * return zip; 6989 * } 6990 * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods 6991 * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep); 6992 * List<String> a = Arrays.asList("a", "b", "c", "d"); 6993 * List<String> b = Arrays.asList("e", "f", "g", "h"); 6994 * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h"); 6995 * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator())); 6996 * } 6997 * 6998 * 6999 * @apiNote The implementation of this method can be expressed as follows: 7000 * {@snippet lang="java" : 7001 * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { 7002 * MethodHandle fini = (body.type().returnType() == void.class 7003 * ? null : identity(body.type().returnType())); 7004 * MethodHandle[] 7005 * checkExit = { null, null, pred, fini }, 7006 * varBody = { init, body }; 7007 * return loop(checkExit, varBody); 7008 * } 7009 * } 7010 * 7011 * @param init optional initializer, providing the initial value of the loop variable. 7012 * May be {@code null}, implying a default initial value. See above for other constraints. 7013 * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See 7014 * above for other constraints. 7015 * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. 7016 * See above for other constraints. 7017 * 7018 * @return a method handle implementing the {@code while} loop as described by the arguments. 7019 * @throws IllegalArgumentException if the rules for the arguments are violated. 7020 * @throws NullPointerException if {@code pred} or {@code body} are {@code null}. 7021 * 7022 * @see #loop(MethodHandle[][]) 7023 * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle) 7024 * @since 9 7025 */ 7026 public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { 7027 whileLoopChecks(init, pred, body); 7028 MethodHandle fini = identityOrVoid(body.type().returnType()); 7029 MethodHandle[] checkExit = { null, null, pred, fini }; 7030 MethodHandle[] varBody = { init, body }; 7031 return loop(checkExit, varBody); 7032 } 7033 7034 /** 7035 * Constructs a {@code do-while} loop from an initializer, a body, and a predicate. 7036 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 7037 * <p> 7038 * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this 7039 * method will, in each iteration, first execute its body and then evaluate the predicate. 7040 * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body. 7041 * <p> 7042 * The {@code init} handle describes the initial value of an additional optional loop-local variable. 7043 * In each iteration, this loop-local variable, if present, will be passed to the {@code body} 7044 * and updated with the value returned from its invocation. The result of loop execution will be 7045 * the final value of the additional loop-local variable (if present). 7046 * <p> 7047 * The following rules hold for these argument handles:<ul> 7048 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 7049 * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. 7050 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 7051 * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} 7052 * is quietly dropped from the parameter list, leaving {@code (A...)V}.) 7053 * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>. 7054 * It will constrain the parameter lists of the other loop parts. 7055 * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter 7056 * list {@code (A...)} is called the <em>external parameter list</em>. 7057 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 7058 * additional state variable of the loop. 7059 * The body must both accept and return a value of this type {@code V}. 7060 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 7061 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 7062 * <a href="MethodHandles.html#effid">effectively identical</a> 7063 * to the external parameter list {@code (A...)}. 7064 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 7065 * {@linkplain #empty default value}. 7066 * <li>The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. 7067 * Its parameter list (either empty or of the form {@code (V A*)}) must be 7068 * effectively identical to the internal parameter list. 7069 * </ul> 7070 * <p> 7071 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 7072 * <li>The loop handle's result type is the result type {@code V} of the body. 7073 * <li>The loop handle's parameter types are the types {@code (A...)}, 7074 * from the external parameter list. 7075 * </ul> 7076 * <p> 7077 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 7078 * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument 7079 * passed to the loop. 7080 * {@snippet lang="java" : 7081 * V init(A...); 7082 * boolean pred(V, A...); 7083 * V body(V, A...); 7084 * V doWhileLoop(A... a...) { 7085 * V v = init(a...); 7086 * do { 7087 * v = body(v, a...); 7088 * } while (pred(v, a...)); 7089 * return v; 7090 * } 7091 * } 7092 * 7093 * @apiNote Example: 7094 * {@snippet lang="java" : 7095 * // int i = 0; while (i < limit) { ++i; } return i; => limit 7096 * static int zero(int limit) { return 0; } 7097 * static int step(int i, int limit) { return i + 1; } 7098 * static boolean pred(int i, int limit) { return i < limit; } 7099 * // assume MH_zero, MH_step, and MH_pred are handles to the above methods 7100 * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred); 7101 * assertEquals(23, loop.invoke(23)); 7102 * } 7103 * 7104 * 7105 * @apiNote The implementation of this method can be expressed as follows: 7106 * {@snippet lang="java" : 7107 * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { 7108 * MethodHandle fini = (body.type().returnType() == void.class 7109 * ? null : identity(body.type().returnType())); 7110 * MethodHandle[] clause = { init, body, pred, fini }; 7111 * return loop(clause); 7112 * } 7113 * } 7114 * 7115 * @param init optional initializer, providing the initial value of the loop variable. 7116 * May be {@code null}, implying a default initial value. See above for other constraints. 7117 * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. 7118 * See above for other constraints. 7119 * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See 7120 * above for other constraints. 7121 * 7122 * @return a method handle implementing the {@code while} loop as described by the arguments. 7123 * @throws IllegalArgumentException if the rules for the arguments are violated. 7124 * @throws NullPointerException if {@code pred} or {@code body} are {@code null}. 7125 * 7126 * @see #loop(MethodHandle[][]) 7127 * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle) 7128 * @since 9 7129 */ 7130 public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { 7131 whileLoopChecks(init, pred, body); 7132 MethodHandle fini = identityOrVoid(body.type().returnType()); 7133 MethodHandle[] clause = {init, body, pred, fini }; 7134 return loop(clause); 7135 } 7136 7137 private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) { 7138 Objects.requireNonNull(pred); 7139 Objects.requireNonNull(body); 7140 MethodType bodyType = body.type(); 7141 Class<?> returnType = bodyType.returnType(); 7142 List<Class<?>> innerList = bodyType.parameterList(); 7143 List<Class<?>> outerList = innerList; 7144 if (returnType == void.class) { 7145 // OK 7146 } else if (innerList.isEmpty() || innerList.get(0) != returnType) { 7147 // leading V argument missing => error 7148 MethodType expected = bodyType.insertParameterTypes(0, returnType); 7149 throw misMatchedTypes("body function", bodyType, expected); 7150 } else { 7151 outerList = innerList.subList(1, innerList.size()); 7152 } 7153 MethodType predType = pred.type(); 7154 if (predType.returnType() != boolean.class || 7155 !predType.effectivelyIdenticalParameters(0, innerList)) { 7156 throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList)); 7157 } 7158 if (init != null) { 7159 MethodType initType = init.type(); 7160 if (initType.returnType() != returnType || 7161 !initType.effectivelyIdenticalParameters(0, outerList)) { 7162 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); 7163 } 7164 } 7165 } 7166 7167 /** 7168 * Constructs a loop that runs a given number of iterations. 7169 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 7170 * <p> 7171 * The number of iterations is determined by the {@code iterations} handle evaluation result. 7172 * The loop counter {@code i} is an extra loop iteration variable of type {@code int}. 7173 * It will be initialized to 0 and incremented by 1 in each iteration. 7174 * <p> 7175 * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable 7176 * of that type is also present. This variable is initialized using the optional {@code init} handle, 7177 * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. 7178 * <p> 7179 * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. 7180 * A non-{@code void} value returned from the body (of type {@code V}) updates the leading 7181 * iteration variable. 7182 * The result of the loop handle execution will be the final {@code V} value of that variable 7183 * (or {@code void} if there is no {@code V} variable). 7184 * <p> 7185 * The following rules hold for the argument handles:<ul> 7186 * <li>The {@code iterations} handle must not be {@code null}, and must return 7187 * the type {@code int}, referred to here as {@code I} in parameter type lists. 7188 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 7189 * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. 7190 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 7191 * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} 7192 * is quietly dropped from the parameter list, leaving {@code (I A...)V}.) 7193 * <li>The parameter list {@code (V I A...)} of the body contributes to a list 7194 * of types called the <em>internal parameter list</em>. 7195 * It will constrain the parameter lists of the other loop parts. 7196 * <li>As a special case, if the body contributes only {@code V} and {@code I} types, 7197 * with no additional {@code A} types, then the internal parameter list is extended by 7198 * the argument types {@code A...} of the {@code iterations} handle. 7199 * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter 7200 * list {@code (A...)} is called the <em>external parameter list</em>. 7201 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 7202 * additional state variable of the loop. 7203 * The body must both accept a leading parameter and return a value of this type {@code V}. 7204 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 7205 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 7206 * <a href="MethodHandles.html#effid">effectively identical</a> 7207 * to the external parameter list {@code (A...)}. 7208 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 7209 * {@linkplain #empty default value}. 7210 * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be 7211 * effectively identical to the external parameter list {@code (A...)}. 7212 * </ul> 7213 * <p> 7214 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 7215 * <li>The loop handle's result type is the result type {@code V} of the body. 7216 * <li>The loop handle's parameter types are the types {@code (A...)}, 7217 * from the external parameter list. 7218 * </ul> 7219 * <p> 7220 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 7221 * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent 7222 * arguments passed to the loop. 7223 * {@snippet lang="java" : 7224 * int iterations(A...); 7225 * V init(A...); 7226 * V body(V, int, A...); 7227 * V countedLoop(A... a...) { 7228 * int end = iterations(a...); 7229 * V v = init(a...); 7230 * for (int i = 0; i < end; ++i) { 7231 * v = body(v, i, a...); 7232 * } 7233 * return v; 7234 * } 7235 * } 7236 * 7237 * @apiNote Example with a fully conformant body method: 7238 * {@snippet lang="java" : 7239 * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; 7240 * // => a variation on a well known theme 7241 * static String step(String v, int counter, String init) { return "na " + v; } 7242 * // assume MH_step is a handle to the method above 7243 * MethodHandle fit13 = MethodHandles.constant(int.class, 13); 7244 * MethodHandle start = MethodHandles.identity(String.class); 7245 * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step); 7246 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!")); 7247 * } 7248 * 7249 * @apiNote Example with the simplest possible body method type, 7250 * and passing the number of iterations to the loop invocation: 7251 * {@snippet lang="java" : 7252 * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; 7253 * // => a variation on a well known theme 7254 * static String step(String v, int counter ) { return "na " + v; } 7255 * // assume MH_step is a handle to the method above 7256 * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class); 7257 * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class); 7258 * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i) -> "na " + v 7259 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!")); 7260 * } 7261 * 7262 * @apiNote Example that treats the number of iterations, string to append to, and string to append 7263 * as loop parameters: 7264 * {@snippet lang="java" : 7265 * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; 7266 * // => a variation on a well known theme 7267 * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; } 7268 * // assume MH_step is a handle to the method above 7269 * MethodHandle count = MethodHandles.identity(int.class); 7270 * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class); 7271 * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i, _, pre, _) -> pre + " " + v 7272 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!")); 7273 * } 7274 * 7275 * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)} 7276 * to enforce a loop type: 7277 * {@snippet lang="java" : 7278 * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; 7279 * // => a variation on a well known theme 7280 * static String step(String v, int counter, String pre) { return pre + " " + v; } 7281 * // assume MH_step is a handle to the method above 7282 * MethodType loopType = methodType(String.class, String.class, int.class, String.class); 7283 * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class), 0, loopType.parameterList(), 1); 7284 * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2); 7285 * MethodHandle body = MethodHandles.dropArgumentsToMatch(MH_step, 2, loopType.parameterList(), 0); 7286 * MethodHandle loop = MethodHandles.countedLoop(count, start, body); // (v, i, pre, _, _) -> pre + " " + v 7287 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!")); 7288 * } 7289 * 7290 * @apiNote The implementation of this method can be expressed as follows: 7291 * {@snippet lang="java" : 7292 * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { 7293 * return countedLoop(empty(iterations.type()), iterations, init, body); 7294 * } 7295 * } 7296 * 7297 * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's 7298 * result type must be {@code int}. See above for other constraints. 7299 * @param init optional initializer, providing the initial value of the loop variable. 7300 * May be {@code null}, implying a default initial value. See above for other constraints. 7301 * @param body body of the loop, which may not be {@code null}. 7302 * It controls the loop parameters and result type in the standard case (see above for details). 7303 * It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), 7304 * and may accept any number of additional types. 7305 * See above for other constraints. 7306 * 7307 * @return a method handle representing the loop. 7308 * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}. 7309 * @throws IllegalArgumentException if any argument violates the rules formulated above. 7310 * 7311 * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle) 7312 * @since 9 7313 */ 7314 public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { 7315 return countedLoop(empty(iterations.type()), iterations, init, body); 7316 } 7317 7318 /** 7319 * Constructs a loop that counts over a range of numbers. 7320 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 7321 * <p> 7322 * The loop counter {@code i} is a loop iteration variable of type {@code int}. 7323 * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive) 7324 * values of the loop counter. 7325 * The loop counter will be initialized to the {@code int} value returned from the evaluation of the 7326 * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1. 7327 * <p> 7328 * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable 7329 * of that type is also present. This variable is initialized using the optional {@code init} handle, 7330 * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. 7331 * <p> 7332 * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. 7333 * A non-{@code void} value returned from the body (of type {@code V}) updates the leading 7334 * iteration variable. 7335 * The result of the loop handle execution will be the final {@code V} value of that variable 7336 * (or {@code void} if there is no {@code V} variable). 7337 * <p> 7338 * The following rules hold for the argument handles:<ul> 7339 * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return 7340 * the common type {@code int}, referred to here as {@code I} in parameter type lists. 7341 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 7342 * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. 7343 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 7344 * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} 7345 * is quietly dropped from the parameter list, leaving {@code (I A...)V}.) 7346 * <li>The parameter list {@code (V I A...)} of the body contributes to a list 7347 * of types called the <em>internal parameter list</em>. 7348 * It will constrain the parameter lists of the other loop parts. 7349 * <li>As a special case, if the body contributes only {@code V} and {@code I} types, 7350 * with no additional {@code A} types, then the internal parameter list is extended by 7351 * the argument types {@code A...} of the {@code end} handle. 7352 * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter 7353 * list {@code (A...)} is called the <em>external parameter list</em>. 7354 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 7355 * additional state variable of the loop. 7356 * The body must both accept a leading parameter and return a value of this type {@code V}. 7357 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 7358 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 7359 * <a href="MethodHandles.html#effid">effectively identical</a> 7360 * to the external parameter list {@code (A...)}. 7361 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 7362 * {@linkplain #empty default value}. 7363 * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be 7364 * effectively identical to the external parameter list {@code (A...)}. 7365 * <li>Likewise, the parameter list of {@code end} must be effectively identical 7366 * to the external parameter list. 7367 * </ul> 7368 * <p> 7369 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 7370 * <li>The loop handle's result type is the result type {@code V} of the body. 7371 * <li>The loop handle's parameter types are the types {@code (A...)}, 7372 * from the external parameter list. 7373 * </ul> 7374 * <p> 7375 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 7376 * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent 7377 * arguments passed to the loop. 7378 * {@snippet lang="java" : 7379 * int start(A...); 7380 * int end(A...); 7381 * V init(A...); 7382 * V body(V, int, A...); 7383 * V countedLoop(A... a...) { 7384 * int e = end(a...); 7385 * int s = start(a...); 7386 * V v = init(a...); 7387 * for (int i = s; i < e; ++i) { 7388 * v = body(v, i, a...); 7389 * } 7390 * return v; 7391 * } 7392 * } 7393 * 7394 * @apiNote The implementation of this method can be expressed as follows: 7395 * {@snippet lang="java" : 7396 * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { 7397 * MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class); 7398 * // assume MH_increment and MH_predicate are handles to implementation-internal methods with 7399 * // the following semantics: 7400 * // MH_increment: (int limit, int counter) -> counter + 1 7401 * // MH_predicate: (int limit, int counter) -> counter < limit 7402 * Class<?> counterType = start.type().returnType(); // int 7403 * Class<?> returnType = body.type().returnType(); 7404 * MethodHandle incr = MH_increment, pred = MH_predicate, retv = null; 7405 * if (returnType != void.class) { // ignore the V variable 7406 * incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) 7407 * pred = dropArguments(pred, 1, returnType); // ditto 7408 * retv = dropArguments(identity(returnType), 0, counterType); // ignore limit 7409 * } 7410 * body = dropArguments(body, 0, counterType); // ignore the limit variable 7411 * MethodHandle[] 7412 * loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v 7413 * bodyClause = { init, body }, // v = init(); v = body(v, i) 7414 * indexVar = { start, incr }; // i = start(); i = i + 1 7415 * return loop(loopLimit, bodyClause, indexVar); 7416 * } 7417 * } 7418 * 7419 * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}. 7420 * See above for other constraints. 7421 * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to 7422 * {@code end-1}). The result type must be {@code int}. See above for other constraints. 7423 * @param init optional initializer, providing the initial value of the loop variable. 7424 * May be {@code null}, implying a default initial value. See above for other constraints. 7425 * @param body body of the loop, which may not be {@code null}. 7426 * It controls the loop parameters and result type in the standard case (see above for details). 7427 * It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), 7428 * and may accept any number of additional types. 7429 * See above for other constraints. 7430 * 7431 * @return a method handle representing the loop. 7432 * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}. 7433 * @throws IllegalArgumentException if any argument violates the rules formulated above. 7434 * 7435 * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle) 7436 * @since 9 7437 */ 7438 public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { 7439 countedLoopChecks(start, end, init, body); 7440 Class<?> counterType = start.type().returnType(); // int, but who's counting? 7441 Class<?> limitType = end.type().returnType(); // yes, int again 7442 Class<?> returnType = body.type().returnType(); 7443 MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep); 7444 MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred); 7445 MethodHandle retv = null; 7446 if (returnType != void.class) { 7447 incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) 7448 pred = dropArguments(pred, 1, returnType); // ditto 7449 retv = dropArguments(identity(returnType), 0, counterType); 7450 } 7451 body = dropArguments(body, 0, counterType); // ignore the limit variable 7452 MethodHandle[] 7453 loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v 7454 bodyClause = { init, body }, // v = init(); v = body(v, i) 7455 indexVar = { start, incr }; // i = start(); i = i + 1 7456 return loop(loopLimit, bodyClause, indexVar); 7457 } 7458 7459 private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { 7460 Objects.requireNonNull(start); 7461 Objects.requireNonNull(end); 7462 Objects.requireNonNull(body); 7463 Class<?> counterType = start.type().returnType(); 7464 if (counterType != int.class) { 7465 MethodType expected = start.type().changeReturnType(int.class); 7466 throw misMatchedTypes("start function", start.type(), expected); 7467 } else if (end.type().returnType() != counterType) { 7468 MethodType expected = end.type().changeReturnType(counterType); 7469 throw misMatchedTypes("end function", end.type(), expected); 7470 } 7471 MethodType bodyType = body.type(); 7472 Class<?> returnType = bodyType.returnType(); 7473 List<Class<?>> innerList = bodyType.parameterList(); 7474 // strip leading V value if present 7475 int vsize = (returnType == void.class ? 0 : 1); 7476 if (vsize != 0 && (innerList.isEmpty() || innerList.get(0) != returnType)) { 7477 // argument list has no "V" => error 7478 MethodType expected = bodyType.insertParameterTypes(0, returnType); 7479 throw misMatchedTypes("body function", bodyType, expected); 7480 } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) { 7481 // missing I type => error 7482 MethodType expected = bodyType.insertParameterTypes(vsize, counterType); 7483 throw misMatchedTypes("body function", bodyType, expected); 7484 } 7485 List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size()); 7486 if (outerList.isEmpty()) { 7487 // special case; take lists from end handle 7488 outerList = end.type().parameterList(); 7489 innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList(); 7490 } 7491 MethodType expected = methodType(counterType, outerList); 7492 if (!start.type().effectivelyIdenticalParameters(0, outerList)) { 7493 throw misMatchedTypes("start parameter types", start.type(), expected); 7494 } 7495 if (end.type() != start.type() && 7496 !end.type().effectivelyIdenticalParameters(0, outerList)) { 7497 throw misMatchedTypes("end parameter types", end.type(), expected); 7498 } 7499 if (init != null) { 7500 MethodType initType = init.type(); 7501 if (initType.returnType() != returnType || 7502 !initType.effectivelyIdenticalParameters(0, outerList)) { 7503 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); 7504 } 7505 } 7506 } 7507 7508 /** 7509 * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}. 7510 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 7511 * <p> 7512 * The iterator itself will be determined by the evaluation of the {@code iterator} handle. 7513 * Each value it produces will be stored in a loop iteration variable of type {@code T}. 7514 * <p> 7515 * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable 7516 * of that type is also present. This variable is initialized using the optional {@code init} handle, 7517 * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. 7518 * <p> 7519 * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. 7520 * A non-{@code void} value returned from the body (of type {@code V}) updates the leading 7521 * iteration variable. 7522 * The result of the loop handle execution will be the final {@code V} value of that variable 7523 * (or {@code void} if there is no {@code V} variable). 7524 * <p> 7525 * The following rules hold for the argument handles:<ul> 7526 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 7527 * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}. 7528 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 7529 * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V} 7530 * is quietly dropped from the parameter list, leaving {@code (T A...)V}.) 7531 * <li>The parameter list {@code (V T A...)} of the body contributes to a list 7532 * of types called the <em>internal parameter list</em>. 7533 * It will constrain the parameter lists of the other loop parts. 7534 * <li>As a special case, if the body contributes only {@code V} and {@code T} types, 7535 * with no additional {@code A} types, then the internal parameter list is extended by 7536 * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the 7537 * single type {@code Iterable} is added and constitutes the {@code A...} list. 7538 * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter 7539 * list {@code (A...)} is called the <em>external parameter list</em>. 7540 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 7541 * additional state variable of the loop. 7542 * The body must both accept a leading parameter and return a value of this type {@code V}. 7543 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 7544 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 7545 * <a href="MethodHandles.html#effid">effectively identical</a> 7546 * to the external parameter list {@code (A...)}. 7547 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 7548 * {@linkplain #empty default value}. 7549 * <li>If the {@code iterator} handle is non-{@code null}, it must have the return 7550 * type {@code java.util.Iterator} or a subtype thereof. 7551 * The iterator it produces when the loop is executed will be assumed 7552 * to yield values which can be converted to type {@code T}. 7553 * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be 7554 * effectively identical to the external parameter list {@code (A...)}. 7555 * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves 7556 * like {@link java.lang.Iterable#iterator()}. In that case, the internal parameter list 7557 * {@code (V T A...)} must have at least one {@code A} type, and the default iterator 7558 * handle parameter is adjusted to accept the leading {@code A} type, as if by 7559 * the {@link MethodHandle#asType asType} conversion method. 7560 * The leading {@code A} type must be {@code Iterable} or a subtype thereof. 7561 * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}. 7562 * </ul> 7563 * <p> 7564 * The type {@code T} may be either a primitive or reference. 7565 * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator}, 7566 * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object} 7567 * as if by the {@link MethodHandle#asType asType} conversion method. 7568 * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur 7569 * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}. 7570 * <p> 7571 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 7572 * <li>The loop handle's result type is the result type {@code V} of the body. 7573 * <li>The loop handle's parameter types are the types {@code (A...)}, 7574 * from the external parameter list. 7575 * </ul> 7576 * <p> 7577 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 7578 * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the 7579 * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop. 7580 * {@snippet lang="java" : 7581 * Iterator<T> iterator(A...); // defaults to Iterable::iterator 7582 * V init(A...); 7583 * V body(V,T,A...); 7584 * V iteratedLoop(A... a...) { 7585 * Iterator<T> it = iterator(a...); 7586 * V v = init(a...); 7587 * while (it.hasNext()) { 7588 * T t = it.next(); 7589 * v = body(v, t, a...); 7590 * } 7591 * return v; 7592 * } 7593 * } 7594 * 7595 * @apiNote Example: 7596 * {@snippet lang="java" : 7597 * // get an iterator from a list 7598 * static List<String> reverseStep(List<String> r, String e) { 7599 * r.add(0, e); 7600 * return r; 7601 * } 7602 * static List<String> newArrayList() { return new ArrayList<>(); } 7603 * // assume MH_reverseStep and MH_newArrayList are handles to the above methods 7604 * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep); 7605 * List<String> list = Arrays.asList("a", "b", "c", "d", "e"); 7606 * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a"); 7607 * assertEquals(reversedList, (List<String>) loop.invoke(list)); 7608 * } 7609 * 7610 * @apiNote The implementation of this method can be expressed approximately as follows: 7611 * {@snippet lang="java" : 7612 * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { 7613 * // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable 7614 * Class<?> returnType = body.type().returnType(); 7615 * Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); 7616 * MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype)); 7617 * MethodHandle retv = null, step = body, startIter = iterator; 7618 * if (returnType != void.class) { 7619 * // the simple thing first: in (I V A...), drop the I to get V 7620 * retv = dropArguments(identity(returnType), 0, Iterator.class); 7621 * // body type signature (V T A...), internal loop types (I V A...) 7622 * step = swapArguments(body, 0, 1); // swap V <-> T 7623 * } 7624 * if (startIter == null) startIter = MH_getIter; 7625 * MethodHandle[] 7626 * iterVar = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext()) 7627 * bodyClause = { init, filterArguments(step, 0, nextVal) }; // v = body(v, t, a) 7628 * return loop(iterVar, bodyClause); 7629 * } 7630 * } 7631 * 7632 * @param iterator an optional handle to return the iterator to start the loop. 7633 * If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype. 7634 * See above for other constraints. 7635 * @param init optional initializer, providing the initial value of the loop variable. 7636 * May be {@code null}, implying a default initial value. See above for other constraints. 7637 * @param body body of the loop, which may not be {@code null}. 7638 * It controls the loop parameters and result type in the standard case (see above for details). 7639 * It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values), 7640 * and may accept any number of additional types. 7641 * See above for other constraints. 7642 * 7643 * @return a method handle embodying the iteration loop functionality. 7644 * @throws NullPointerException if the {@code body} handle is {@code null}. 7645 * @throws IllegalArgumentException if any argument violates the above requirements. 7646 * 7647 * @since 9 7648 */ 7649 public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { 7650 Class<?> iterableType = iteratedLoopChecks(iterator, init, body); 7651 Class<?> returnType = body.type().returnType(); 7652 MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred); 7653 MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext); 7654 MethodHandle startIter; 7655 MethodHandle nextVal; 7656 { 7657 MethodType iteratorType; 7658 if (iterator == null) { 7659 // derive argument type from body, if available, else use Iterable 7660 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator); 7661 iteratorType = startIter.type().changeParameterType(0, iterableType); 7662 } else { 7663 // force return type to the internal iterator class 7664 iteratorType = iterator.type().changeReturnType(Iterator.class); 7665 startIter = iterator; 7666 } 7667 Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); 7668 MethodType nextValType = nextRaw.type().changeReturnType(ttype); 7669 7670 // perform the asType transforms under an exception transformer, as per spec.: 7671 try { 7672 startIter = startIter.asType(iteratorType); 7673 nextVal = nextRaw.asType(nextValType); 7674 } catch (WrongMethodTypeException ex) { 7675 throw new IllegalArgumentException(ex); 7676 } 7677 } 7678 7679 MethodHandle retv = null, step = body; 7680 if (returnType != void.class) { 7681 // the simple thing first: in (I V A...), drop the I to get V 7682 retv = dropArguments(identity(returnType), 0, Iterator.class); 7683 // body type signature (V T A...), internal loop types (I V A...) 7684 step = swapArguments(body, 0, 1); // swap V <-> T 7685 } 7686 7687 MethodHandle[] 7688 iterVar = { startIter, null, hasNext, retv }, 7689 bodyClause = { init, filterArgument(step, 0, nextVal) }; 7690 return loop(iterVar, bodyClause); 7691 } 7692 7693 private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) { 7694 Objects.requireNonNull(body); 7695 MethodType bodyType = body.type(); 7696 Class<?> returnType = bodyType.returnType(); 7697 List<Class<?>> internalParamList = bodyType.parameterList(); 7698 // strip leading V value if present 7699 int vsize = (returnType == void.class ? 0 : 1); 7700 if (vsize != 0 && (internalParamList.isEmpty() || internalParamList.get(0) != returnType)) { 7701 // argument list has no "V" => error 7702 MethodType expected = bodyType.insertParameterTypes(0, returnType); 7703 throw misMatchedTypes("body function", bodyType, expected); 7704 } else if (internalParamList.size() <= vsize) { 7705 // missing T type => error 7706 MethodType expected = bodyType.insertParameterTypes(vsize, Object.class); 7707 throw misMatchedTypes("body function", bodyType, expected); 7708 } 7709 List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size()); 7710 Class<?> iterableType = null; 7711 if (iterator != null) { 7712 // special case; if the body handle only declares V and T then 7713 // the external parameter list is obtained from iterator handle 7714 if (externalParamList.isEmpty()) { 7715 externalParamList = iterator.type().parameterList(); 7716 } 7717 MethodType itype = iterator.type(); 7718 if (!Iterator.class.isAssignableFrom(itype.returnType())) { 7719 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type"); 7720 } 7721 if (!itype.effectivelyIdenticalParameters(0, externalParamList)) { 7722 MethodType expected = methodType(itype.returnType(), externalParamList); 7723 throw misMatchedTypes("iterator parameters", itype, expected); 7724 } 7725 } else { 7726 if (externalParamList.isEmpty()) { 7727 // special case; if the iterator handle is null and the body handle 7728 // only declares V and T then the external parameter list consists 7729 // of Iterable 7730 externalParamList = List.of(Iterable.class); 7731 iterableType = Iterable.class; 7732 } else { 7733 // special case; if the iterator handle is null and the external 7734 // parameter list is not empty then the first parameter must be 7735 // assignable to Iterable 7736 iterableType = externalParamList.get(0); 7737 if (!Iterable.class.isAssignableFrom(iterableType)) { 7738 throw newIllegalArgumentException( 7739 "inferred first loop argument must inherit from Iterable: " + iterableType); 7740 } 7741 } 7742 } 7743 if (init != null) { 7744 MethodType initType = init.type(); 7745 if (initType.returnType() != returnType || 7746 !initType.effectivelyIdenticalParameters(0, externalParamList)) { 7747 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList)); 7748 } 7749 } 7750 return iterableType; // help the caller a bit 7751 } 7752 7753 /*non-public*/ 7754 static MethodHandle swapArguments(MethodHandle mh, int i, int j) { 7755 // there should be a better way to uncross my wires 7756 int arity = mh.type().parameterCount(); 7757 int[] order = new int[arity]; 7758 for (int k = 0; k < arity; k++) order[k] = k; 7759 order[i] = j; order[j] = i; 7760 Class<?>[] types = mh.type().parameterArray(); 7761 Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti; 7762 MethodType swapType = methodType(mh.type().returnType(), types); 7763 return permuteArguments(mh, swapType, order); 7764 } 7765 7766 /** 7767 * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block. 7768 * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception 7769 * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The 7770 * exception will be rethrown, unless {@code cleanup} handle throws an exception first. The 7771 * value returned from the {@code cleanup} handle's execution will be the result of the execution of the 7772 * {@code try-finally} handle. 7773 * <p> 7774 * The {@code cleanup} handle will be passed one or two additional leading arguments. 7775 * The first is the exception thrown during the 7776 * execution of the {@code target} handle, or {@code null} if no exception was thrown. 7777 * The second is the result of the execution of the {@code target} handle, or, if it throws an exception, 7778 * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder. 7779 * The second argument is not present if the {@code target} handle has a {@code void} return type. 7780 * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists 7781 * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.) 7782 * <p> 7783 * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except 7784 * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or 7785 * two extra leading parameters:<ul> 7786 * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and 7787 * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry 7788 * the result from the execution of the {@code target} handle. 7789 * This parameter is not present if the {@code target} returns {@code void}. 7790 * </ul> 7791 * <p> 7792 * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of 7793 * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting 7794 * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by 7795 * the cleanup. 7796 * {@snippet lang="java" : 7797 * V target(A..., B...); 7798 * V cleanup(Throwable, V, A...); 7799 * V adapter(A... a, B... b) { 7800 * V result = (zero value for V); 7801 * Throwable throwable = null; 7802 * try { 7803 * result = target(a..., b...); 7804 * } catch (Throwable t) { 7805 * throwable = t; 7806 * throw t; 7807 * } finally { 7808 * result = cleanup(throwable, result, a...); 7809 * } 7810 * return result; 7811 * } 7812 * } 7813 * <p> 7814 * Note that the saved arguments ({@code a...} in the pseudocode) cannot 7815 * be modified by execution of the target, and so are passed unchanged 7816 * from the caller to the cleanup, if it is invoked. 7817 * <p> 7818 * The target and cleanup must return the same type, even if the cleanup 7819 * always throws. 7820 * To create such a throwing cleanup, compose the cleanup logic 7821 * with {@link #throwException throwException}, 7822 * in order to create a method handle of the correct return type. 7823 * <p> 7824 * Note that {@code tryFinally} never converts exceptions into normal returns. 7825 * In rare cases where exceptions must be converted in that way, first wrap 7826 * the target with {@link #catchException(MethodHandle, Class, MethodHandle)} 7827 * to capture an outgoing exception, and then wrap with {@code tryFinally}. 7828 * <p> 7829 * It is recommended that the first parameter type of {@code cleanup} be 7830 * declared {@code Throwable} rather than a narrower subtype. This ensures 7831 * {@code cleanup} will always be invoked with whatever exception that 7832 * {@code target} throws. Declaring a narrower type may result in a 7833 * {@code ClassCastException} being thrown by the {@code try-finally} 7834 * handle if the type of the exception thrown by {@code target} is not 7835 * assignable to the first parameter type of {@code cleanup}. Note that 7836 * various exception types of {@code VirtualMachineError}, 7837 * {@code LinkageError}, and {@code RuntimeException} can in principle be 7838 * thrown by almost any kind of Java code, and a finally clause that 7839 * catches (say) only {@code IOException} would mask any of the others 7840 * behind a {@code ClassCastException}. 7841 * 7842 * @param target the handle whose execution is to be wrapped in a {@code try} block. 7843 * @param cleanup the handle that is invoked in the finally block. 7844 * 7845 * @return a method handle embodying the {@code try-finally} block composed of the two arguments. 7846 * @throws NullPointerException if any argument is null 7847 * @throws IllegalArgumentException if {@code cleanup} does not accept 7848 * the required leading arguments, or if the method handle types do 7849 * not match in their return types and their 7850 * corresponding trailing parameters 7851 * 7852 * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle) 7853 * @since 9 7854 */ 7855 public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) { 7856 Class<?>[] targetParamTypes = target.type().ptypes(); 7857 Class<?> rtype = target.type().returnType(); 7858 7859 tryFinallyChecks(target, cleanup); 7860 7861 // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments. 7862 // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the 7863 // target parameter list. 7864 cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0, false); 7865 7866 // Ensure that the intrinsic type checks the instance thrown by the 7867 // target against the first parameter of cleanup 7868 cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class)); 7869 7870 // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case. 7871 return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes); 7872 } 7873 7874 private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) { 7875 Class<?> rtype = target.type().returnType(); 7876 if (rtype != cleanup.type().returnType()) { 7877 throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype); 7878 } 7879 MethodType cleanupType = cleanup.type(); 7880 if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) { 7881 throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class); 7882 } 7883 if (rtype != void.class && cleanupType.parameterType(1) != rtype) { 7884 throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype); 7885 } 7886 // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the 7887 // target parameter list. 7888 int cleanupArgIndex = rtype == void.class ? 1 : 2; 7889 if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) { 7890 throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix", 7891 cleanup.type(), target.type()); 7892 } 7893 } 7894 7895 /** 7896 * Creates a table switch method handle, which can be used to switch over a set of target 7897 * method handles, based on a given target index, called selector. 7898 * <p> 7899 * For a selector value of {@code n}, where {@code n} falls in the range {@code [0, N)}, 7900 * and where {@code N} is the number of target method handles, the table switch method 7901 * handle will invoke the n-th target method handle from the list of target method handles. 7902 * <p> 7903 * For a selector value that does not fall in the range {@code [0, N)}, the table switch 7904 * method handle will invoke the given fallback method handle. 7905 * <p> 7906 * All method handles passed to this method must have the same type, with the additional 7907 * requirement that the leading parameter be of type {@code int}. The leading parameter 7908 * represents the selector. 7909 * <p> 7910 * Any trailing parameters present in the type will appear on the returned table switch 7911 * method handle as well. Any arguments assigned to these parameters will be forwarded, 7912 * together with the selector value, to the selected method handle when invoking it. 7913 * 7914 * @apiNote Example: 7915 * The cases each drop the {@code selector} value they are given, and take an additional 7916 * {@code String} argument, which is concatenated (using {@link String#concat(String)}) 7917 * to a specific constant label string for each case: 7918 * {@snippet lang="java" : 7919 * MethodHandles.Lookup lookup = MethodHandles.lookup(); 7920 * MethodHandle caseMh = lookup.findVirtual(String.class, "concat", 7921 * MethodType.methodType(String.class, String.class)); 7922 * caseMh = MethodHandles.dropArguments(caseMh, 0, int.class); 7923 * 7924 * MethodHandle caseDefault = MethodHandles.insertArguments(caseMh, 1, "default: "); 7925 * MethodHandle case0 = MethodHandles.insertArguments(caseMh, 1, "case 0: "); 7926 * MethodHandle case1 = MethodHandles.insertArguments(caseMh, 1, "case 1: "); 7927 * 7928 * MethodHandle mhSwitch = MethodHandles.tableSwitch( 7929 * caseDefault, 7930 * case0, 7931 * case1 7932 * ); 7933 * 7934 * assertEquals("default: data", (String) mhSwitch.invokeExact(-1, "data")); 7935 * assertEquals("case 0: data", (String) mhSwitch.invokeExact(0, "data")); 7936 * assertEquals("case 1: data", (String) mhSwitch.invokeExact(1, "data")); 7937 * assertEquals("default: data", (String) mhSwitch.invokeExact(2, "data")); 7938 * } 7939 * 7940 * @param fallback the fallback method handle that is called when the selector is not 7941 * within the range {@code [0, N)}. 7942 * @param targets array of target method handles. 7943 * @return the table switch method handle. 7944 * @throws NullPointerException if {@code fallback}, the {@code targets} array, or any 7945 * any of the elements of the {@code targets} array are 7946 * {@code null}. 7947 * @throws IllegalArgumentException if the {@code targets} array is empty, if the leading 7948 * parameter of the fallback handle or any of the target 7949 * handles is not {@code int}, or if the types of 7950 * the fallback handle and all of target handles are 7951 * not the same. 7952 */ 7953 public static MethodHandle tableSwitch(MethodHandle fallback, MethodHandle... targets) { 7954 Objects.requireNonNull(fallback); 7955 Objects.requireNonNull(targets); 7956 targets = targets.clone(); 7957 MethodType type = tableSwitchChecks(fallback, targets); 7958 return MethodHandleImpl.makeTableSwitch(type, fallback, targets); 7959 } 7960 7961 private static MethodType tableSwitchChecks(MethodHandle defaultCase, MethodHandle[] caseActions) { 7962 if (caseActions.length == 0) 7963 throw new IllegalArgumentException("Not enough cases: " + Arrays.toString(caseActions)); 7964 7965 MethodType expectedType = defaultCase.type(); 7966 7967 if (!(expectedType.parameterCount() >= 1) || expectedType.parameterType(0) != int.class) 7968 throw new IllegalArgumentException( 7969 "Case actions must have int as leading parameter: " + Arrays.toString(caseActions)); 7970 7971 for (MethodHandle mh : caseActions) { 7972 Objects.requireNonNull(mh); 7973 if (mh.type() != expectedType) 7974 throw new IllegalArgumentException( 7975 "Case actions must have the same type: " + Arrays.toString(caseActions)); 7976 } 7977 7978 return expectedType; 7979 } 7980 7981 /** 7982 * Creates a var handle object, which can be used to dereference a {@linkplain java.lang.foreign.MemorySegment memory segment} 7983 * at a given byte offset, using the provided value layout. 7984 * 7985 * <p>The provided layout specifies the {@linkplain ValueLayout#carrier() carrier type}, 7986 * the {@linkplain ValueLayout#byteSize() byte size}, 7987 * the {@linkplain ValueLayout#byteAlignment() byte alignment} and the {@linkplain ValueLayout#order() byte order} 7988 * associated with the returned var handle. 7989 * 7990 * <p>The list of coordinate types associated with the returned var handle is {@code (MemorySegment, long)}, 7991 * where the {@code long} coordinate type corresponds to byte offset into the given memory segment coordinate. 7992 * Thus, the returned var handle accesses bytes at an offset in a given memory segment, composing bytes to or from 7993 * a value of the var handle type. Moreover, the access operation will honor the endianness and the 7994 * alignment constraints expressed in the provided layout. 7995 * 7996 * <p>As an example, consider the memory layout expressed by a {@link GroupLayout} instance constructed as follows: 7997 * {@snippet lang="java" : 7998 * GroupLayout seq = java.lang.foreign.MemoryLayout.structLayout( 7999 * MemoryLayout.paddingLayout(4), 8000 * ValueLayout.JAVA_INT.withOrder(ByteOrder.BIG_ENDIAN).withName("value") 8001 * ); 8002 * } 8003 * To access the member layout named {@code value}, we can construct a memory segment view var handle as follows: 8004 * {@snippet lang="java" : 8005 * VarHandle handle = MethodHandles.memorySegmentViewVarHandle(ValueLayout.JAVA_INT.withOrder(ByteOrder.BIG_ENDIAN)); //(MemorySegment, long) -> int 8006 * handle = MethodHandles.insertCoordinates(handle, 1, 4); //(MemorySegment) -> int 8007 * } 8008 * 8009 * @apiNote The resulting var handle features certain <i>access mode restrictions</i>, 8010 * which are common to all memory segment view var handles. A memory segment view var handle is associated 8011 * with an access size {@code S} and an alignment constraint {@code B} 8012 * (both expressed in bytes). We say that a memory access operation is <em>fully aligned</em> if it occurs 8013 * at a memory address {@code A} which is compatible with both alignment constraints {@code S} and {@code B}. 8014 * If access is fully aligned then following access modes are supported and are 8015 * guaranteed to support atomic access: 8016 * <ul> 8017 * <li>read write access modes for all {@code T}, with the exception of 8018 * access modes {@code get} and {@code set} for {@code long} and 8019 * {@code double} on 32-bit platforms. 8020 * <li>atomic update access modes for {@code int}, {@code long}, 8021 * {@code float}, {@code double} or {@link MemorySegment}. 8022 * (Future major platform releases of the JDK may support additional 8023 * types for certain currently unsupported access modes.) 8024 * <li>numeric atomic update access modes for {@code int}, {@code long} and {@link MemorySegment}. 8025 * (Future major platform releases of the JDK may support additional 8026 * numeric types for certain currently unsupported access modes.) 8027 * <li>bitwise atomic update access modes for {@code int}, {@code long} and {@link MemorySegment}. 8028 * (Future major platform releases of the JDK may support additional 8029 * numeric types for certain currently unsupported access modes.) 8030 * </ul> 8031 * 8032 * If {@code T} is {@code float}, {@code double} or {@link MemorySegment} then atomic 8033 * update access modes compare values using their bitwise representation 8034 * (see {@link Float#floatToRawIntBits}, 8035 * {@link Double#doubleToRawLongBits} and {@link MemorySegment#address()}, respectively). 8036 * <p> 8037 * Alternatively, a memory access operation is <em>partially aligned</em> if it occurs at a memory address {@code A} 8038 * which is only compatible with the alignment constraint {@code B}; in such cases, access for anything other than the 8039 * {@code get} and {@code set} access modes will result in an {@code IllegalStateException}. If access is partially aligned, 8040 * atomic access is only guaranteed with respect to the largest power of two that divides the GCD of {@code A} and {@code S}. 8041 * <p> 8042 * In all other cases, we say that a memory access operation is <em>misaligned</em>; in such cases an 8043 * {@code IllegalStateException} is thrown, irrespective of the access mode being used. 8044 * <p> 8045 * Finally, if {@code T} is {@code MemorySegment} all write access modes throw {@link IllegalArgumentException} 8046 * unless the value to be written is a {@linkplain MemorySegment#isNative() native} memory segment. 8047 * 8048 * @param layout the value layout for which a memory access handle is to be obtained. 8049 * @return the new memory segment view var handle. 8050 * @throws NullPointerException if {@code layout} is {@code null}. 8051 * @see MemoryLayout#varHandle(MemoryLayout.PathElement...) 8052 * @since 19 8053 */ 8054 @PreviewFeature(feature=PreviewFeature.Feature.FOREIGN) 8055 public static VarHandle memorySegmentViewVarHandle(ValueLayout layout) { 8056 Objects.requireNonNull(layout); 8057 return Utils.makeSegmentViewVarHandle(layout); 8058 } 8059 8060 /** 8061 * Adapts a target var handle by pre-processing incoming and outgoing values using a pair of filter functions. 8062 * <p> 8063 * When calling e.g. {@link VarHandle#set(Object...)} on the resulting var handle, the incoming value (of type {@code T}, where 8064 * {@code T} is the <em>last</em> parameter type of the first filter function) is processed using the first filter and then passed 8065 * to the target var handle. 8066 * Conversely, when calling e.g. {@link VarHandle#get(Object...)} on the resulting var handle, the return value obtained from 8067 * the target var handle (of type {@code T}, where {@code T} is the <em>last</em> parameter type of the second filter function) 8068 * is processed using the second filter and returned to the caller. More advanced access mode types, such as 8069 * {@link VarHandle.AccessMode#COMPARE_AND_EXCHANGE} might apply both filters at the same time. 8070 * <p> 8071 * For the boxing and unboxing filters to be well-formed, their types must be of the form {@code (A... , S) -> T} and 8072 * {@code (A... , T) -> S}, respectively, where {@code T} is the type of the target var handle. If this is the case, 8073 * the resulting var handle will have type {@code S} and will feature the additional coordinates {@code A...} (which 8074 * will be appended to the coordinates of the target var handle). 8075 * <p> 8076 * If the boxing and unboxing filters throw any checked exceptions when invoked, the resulting var handle will 8077 * throw an {@link IllegalStateException}. 8078 * <p> 8079 * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and 8080 * atomic access guarantees as those featured by the target var handle. 8081 * 8082 * @param target the target var handle 8083 * @param filterToTarget a filter to convert some type {@code S} into the type of {@code target} 8084 * @param filterFromTarget a filter to convert the type of {@code target} to some type {@code S} 8085 * @return an adapter var handle which accepts a new type, performing the provided boxing/unboxing conversions. 8086 * @throws IllegalArgumentException if {@code filterFromTarget} and {@code filterToTarget} are not well-formed, that is, they have types 8087 * other than {@code (A... , S) -> T} and {@code (A... , T) -> S}, respectively, where {@code T} is the type of the target var handle, 8088 * or if it's determined that either {@code filterFromTarget} or {@code filterToTarget} throws any checked exceptions. 8089 * @throws NullPointerException if any of the arguments is {@code null}. 8090 * @since 19 8091 */ 8092 @PreviewFeature(feature=PreviewFeature.Feature.FOREIGN) 8093 public static VarHandle filterValue(VarHandle target, MethodHandle filterToTarget, MethodHandle filterFromTarget) { 8094 return VarHandles.filterValue(target, filterToTarget, filterFromTarget); 8095 } 8096 8097 /** 8098 * Adapts a target var handle by pre-processing incoming coordinate values using unary filter functions. 8099 * <p> 8100 * When calling e.g. {@link VarHandle#get(Object...)} on the resulting var handle, the incoming coordinate values 8101 * starting at position {@code pos} (of type {@code C1, C2 ... Cn}, where {@code C1, C2 ... Cn} are the return types 8102 * of the unary filter functions) are transformed into new values (of type {@code S1, S2 ... Sn}, where {@code S1, S2 ... Sn} are the 8103 * parameter types of the unary filter functions), and then passed (along with any coordinate that was left unaltered 8104 * by the adaptation) to the target var handle. 8105 * <p> 8106 * For the coordinate filters to be well-formed, their types must be of the form {@code S1 -> T1, S2 -> T1 ... Sn -> Tn}, 8107 * where {@code T1, T2 ... Tn} are the coordinate types starting at position {@code pos} of the target var handle. 8108 * <p> 8109 * If any of the filters throws a checked exception when invoked, the resulting var handle will 8110 * throw an {@link IllegalStateException}. 8111 * <p> 8112 * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and 8113 * atomic access guarantees as those featured by the target var handle. 8114 * 8115 * @param target the target var handle 8116 * @param pos the position of the first coordinate to be transformed 8117 * @param filters the unary functions which are used to transform coordinates starting at position {@code pos} 8118 * @return an adapter var handle which accepts new coordinate types, applying the provided transformation 8119 * to the new coordinate values. 8120 * @throws IllegalArgumentException if the handles in {@code filters} are not well-formed, that is, they have types 8121 * other than {@code S1 -> T1, S2 -> T2, ... Sn -> Tn} where {@code T1, T2 ... Tn} are the coordinate types starting 8122 * at position {@code pos} of the target var handle, if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive, 8123 * or if more filters are provided than the actual number of coordinate types available starting at {@code pos}, 8124 * or if it's determined that any of the filters throws any checked exceptions. 8125 * @throws NullPointerException if any of the arguments is {@code null} or {@code filters} contains {@code null}. 8126 * @since 19 8127 */ 8128 @PreviewFeature(feature=PreviewFeature.Feature.FOREIGN) 8129 public static VarHandle filterCoordinates(VarHandle target, int pos, MethodHandle... filters) { 8130 return VarHandles.filterCoordinates(target, pos, filters); 8131 } 8132 8133 /** 8134 * Provides a target var handle with one or more <em>bound coordinates</em> 8135 * in advance of the var handle's invocation. As a consequence, the resulting var handle will feature less 8136 * coordinate types than the target var handle. 8137 * <p> 8138 * When calling e.g. {@link VarHandle#get(Object...)} on the resulting var handle, incoming coordinate values 8139 * are joined with bound coordinate values, and then passed to the target var handle. 8140 * <p> 8141 * For the bound coordinates to be well-formed, their types must be {@code T1, T2 ... Tn }, 8142 * where {@code T1, T2 ... Tn} are the coordinate types starting at position {@code pos} of the target var handle. 8143 * <p> 8144 * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and 8145 * atomic access guarantees as those featured by the target var handle. 8146 * 8147 * @param target the var handle to invoke after the bound coordinates are inserted 8148 * @param pos the position of the first coordinate to be inserted 8149 * @param values the series of bound coordinates to insert 8150 * @return an adapter var handle which inserts additional coordinates, 8151 * before calling the target var handle 8152 * @throws IllegalArgumentException if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive, 8153 * or if more values are provided than the actual number of coordinate types available starting at {@code pos}. 8154 * @throws ClassCastException if the bound coordinates in {@code values} are not well-formed, that is, they have types 8155 * other than {@code T1, T2 ... Tn }, where {@code T1, T2 ... Tn} are the coordinate types starting at position {@code pos} 8156 * of the target var handle. 8157 * @throws NullPointerException if any of the arguments is {@code null} or {@code values} contains {@code null}. 8158 * @since 19 8159 */ 8160 @PreviewFeature(feature=PreviewFeature.Feature.FOREIGN) 8161 public static VarHandle insertCoordinates(VarHandle target, int pos, Object... values) { 8162 return VarHandles.insertCoordinates(target, pos, values); 8163 } 8164 8165 /** 8166 * Provides a var handle which adapts the coordinate values of the target var handle, by re-arranging them 8167 * so that the new coordinates match the provided ones. 8168 * <p> 8169 * The given array controls the reordering. 8170 * Call {@code #I} the number of incoming coordinates (the value 8171 * {@code newCoordinates.size()}), and call {@code #O} the number 8172 * of outgoing coordinates (the number of coordinates associated with the target var handle). 8173 * Then the length of the reordering array must be {@code #O}, 8174 * and each element must be a non-negative number less than {@code #I}. 8175 * For every {@code N} less than {@code #O}, the {@code N}-th 8176 * outgoing coordinate will be taken from the {@code I}-th incoming 8177 * coordinate, where {@code I} is {@code reorder[N]}. 8178 * <p> 8179 * No coordinate value conversions are applied. 8180 * The type of each incoming coordinate, as determined by {@code newCoordinates}, 8181 * must be identical to the type of the corresponding outgoing coordinate 8182 * in the target var handle. 8183 * <p> 8184 * The reordering array need not specify an actual permutation. 8185 * An incoming coordinate will be duplicated if its index appears 8186 * more than once in the array, and an incoming coordinate will be dropped 8187 * if its index does not appear in the array. 8188 * <p> 8189 * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and 8190 * atomic access guarantees as those featured by the target var handle. 8191 * @param target the var handle to invoke after the coordinates have been reordered 8192 * @param newCoordinates the new coordinate types 8193 * @param reorder an index array which controls the reordering 8194 * @return an adapter var handle which re-arranges the incoming coordinate values, 8195 * before calling the target var handle 8196 * @throws IllegalArgumentException if the index array length is not equal to 8197 * the number of coordinates of the target var handle, or if any index array element is not a valid index for 8198 * a coordinate of {@code newCoordinates}, or if two corresponding coordinate types in 8199 * the target var handle and in {@code newCoordinates} are not identical. 8200 * @throws NullPointerException if any of the arguments is {@code null} or {@code newCoordinates} contains {@code null}. 8201 * @since 19 8202 */ 8203 @PreviewFeature(feature=PreviewFeature.Feature.FOREIGN) 8204 public static VarHandle permuteCoordinates(VarHandle target, List<Class<?>> newCoordinates, int... reorder) { 8205 return VarHandles.permuteCoordinates(target, newCoordinates, reorder); 8206 } 8207 8208 /** 8209 * Adapts a target var handle by pre-processing 8210 * a sub-sequence of its coordinate values with a filter (a method handle). 8211 * The pre-processed coordinates are replaced by the result (if any) of the 8212 * filter function and the target var handle is then called on the modified (usually shortened) 8213 * coordinate list. 8214 * <p> 8215 * If {@code R} is the return type of the filter, then: 8216 * <ul> 8217 * <li>if {@code R} <em>is not</em> {@code void}, the target var handle must have a coordinate of type {@code R} in 8218 * position {@code pos}. The parameter types of the filter will replace the coordinate type at position {@code pos} 8219 * of the target var handle. When the returned var handle is invoked, it will be as if the filter is invoked first, 8220 * and its result is passed in place of the coordinate at position {@code pos} in a downstream invocation of the 8221 * target var handle.</li> 8222 * <li> if {@code R} <em>is</em> {@code void}, the parameter types (if any) of the filter will be inserted in the 8223 * coordinate type list of the target var handle at position {@code pos}. In this case, when the returned var handle 8224 * is invoked, the filter essentially acts as a side effect, consuming some of the coordinate values, before a 8225 * downstream invocation of the target var handle.</li> 8226 * </ul> 8227 * <p> 8228 * If any of the filters throws a checked exception when invoked, the resulting var handle will 8229 * throw an {@link IllegalStateException}. 8230 * <p> 8231 * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and 8232 * atomic access guarantees as those featured by the target var handle. 8233 * 8234 * @param target the var handle to invoke after the coordinates have been filtered 8235 * @param pos the position in the coordinate list of the target var handle where the filter is to be inserted 8236 * @param filter the filter method handle 8237 * @return an adapter var handle which filters the incoming coordinate values, 8238 * before calling the target var handle 8239 * @throws IllegalArgumentException if the return type of {@code filter} 8240 * is not void, and it is not the same as the {@code pos} coordinate of the target var handle, 8241 * if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive, 8242 * if the resulting var handle's type would have <a href="MethodHandle.html#maxarity">too many coordinates</a>, 8243 * or if it's determined that {@code filter} throws any checked exceptions. 8244 * @throws NullPointerException if any of the arguments is {@code null}. 8245 * @since 19 8246 */ 8247 @PreviewFeature(feature=PreviewFeature.Feature.FOREIGN) 8248 public static VarHandle collectCoordinates(VarHandle target, int pos, MethodHandle filter) { 8249 return VarHandles.collectCoordinates(target, pos, filter); 8250 } 8251 8252 /** 8253 * Returns a var handle which will discard some dummy coordinates before delegating to the 8254 * target var handle. As a consequence, the resulting var handle will feature more 8255 * coordinate types than the target var handle. 8256 * <p> 8257 * The {@code pos} argument may range between zero and <i>N</i>, where <i>N</i> is the arity of the 8258 * target var handle's coordinate types. If {@code pos} is zero, the dummy coordinates will precede 8259 * the target's real arguments; if {@code pos} is <i>N</i> they will come after. 8260 * <p> 8261 * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and 8262 * atomic access guarantees as those featured by the target var handle. 8263 * 8264 * @param target the var handle to invoke after the dummy coordinates are dropped 8265 * @param pos position of the first coordinate to drop (zero for the leftmost) 8266 * @param valueTypes the type(s) of the coordinate(s) to drop 8267 * @return an adapter var handle which drops some dummy coordinates, 8268 * before calling the target var handle 8269 * @throws IllegalArgumentException if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive. 8270 * @throws NullPointerException if any of the arguments is {@code null} or {@code valueTypes} contains {@code null}. 8271 * @since 19 8272 */ 8273 @PreviewFeature(feature=PreviewFeature.Feature.FOREIGN) 8274 public static VarHandle dropCoordinates(VarHandle target, int pos, Class<?>... valueTypes) { 8275 return VarHandles.dropCoordinates(target, pos, valueTypes); 8276 } 8277 }