1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 #include "precompiled.hpp" 25 #include "jvm_io.h" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/javaClasses.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compileLog.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSet.hpp" 37 #include "gc/shared/c2/barrierSetC2.hpp" 38 #include "jfr/jfrEvents.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "opto/addnode.hpp" 41 #include "opto/block.hpp" 42 #include "opto/c2compiler.hpp" 43 #include "opto/callGenerator.hpp" 44 #include "opto/callnode.hpp" 45 #include "opto/castnode.hpp" 46 #include "opto/cfgnode.hpp" 47 #include "opto/chaitin.hpp" 48 #include "opto/compile.hpp" 49 #include "opto/connode.hpp" 50 #include "opto/convertnode.hpp" 51 #include "opto/divnode.hpp" 52 #include "opto/escape.hpp" 53 #include "opto/idealGraphPrinter.hpp" 54 #include "opto/loopnode.hpp" 55 #include "opto/machnode.hpp" 56 #include "opto/macro.hpp" 57 #include "opto/matcher.hpp" 58 #include "opto/mathexactnode.hpp" 59 #include "opto/memnode.hpp" 60 #include "opto/mulnode.hpp" 61 #include "opto/narrowptrnode.hpp" 62 #include "opto/node.hpp" 63 #include "opto/opcodes.hpp" 64 #include "opto/output.hpp" 65 #include "opto/parse.hpp" 66 #include "opto/phaseX.hpp" 67 #include "opto/rootnode.hpp" 68 #include "opto/runtime.hpp" 69 #include "opto/stringopts.hpp" 70 #include "opto/type.hpp" 71 #include "opto/vector.hpp" 72 #include "opto/vectornode.hpp" 73 #include "runtime/globals_extension.hpp" 74 #include "runtime/sharedRuntime.hpp" 75 #include "runtime/signature.hpp" 76 #include "runtime/stubRoutines.hpp" 77 #include "runtime/timer.hpp" 78 #include "utilities/align.hpp" 79 #include "utilities/copy.hpp" 80 #include "utilities/macros.hpp" 81 #include "utilities/resourceHash.hpp" 82 83 84 // -------------------- Compile::mach_constant_base_node ----------------------- 85 // Constant table base node singleton. 86 MachConstantBaseNode* Compile::mach_constant_base_node() { 87 if (_mach_constant_base_node == NULL) { 88 _mach_constant_base_node = new MachConstantBaseNode(); 89 _mach_constant_base_node->add_req(C->root()); 90 } 91 return _mach_constant_base_node; 92 } 93 94 95 /// Support for intrinsics. 96 97 // Return the index at which m must be inserted (or already exists). 98 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 99 class IntrinsicDescPair { 100 private: 101 ciMethod* _m; 102 bool _is_virtual; 103 public: 104 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 105 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 106 ciMethod* m= elt->method(); 107 ciMethod* key_m = key->_m; 108 if (key_m < m) return -1; 109 else if (key_m > m) return 1; 110 else { 111 bool is_virtual = elt->is_virtual(); 112 bool key_virtual = key->_is_virtual; 113 if (key_virtual < is_virtual) return -1; 114 else if (key_virtual > is_virtual) return 1; 115 else return 0; 116 } 117 } 118 }; 119 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 120 #ifdef ASSERT 121 for (int i = 1; i < _intrinsics.length(); i++) { 122 CallGenerator* cg1 = _intrinsics.at(i-1); 123 CallGenerator* cg2 = _intrinsics.at(i); 124 assert(cg1->method() != cg2->method() 125 ? cg1->method() < cg2->method() 126 : cg1->is_virtual() < cg2->is_virtual(), 127 "compiler intrinsics list must stay sorted"); 128 } 129 #endif 130 IntrinsicDescPair pair(m, is_virtual); 131 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 132 } 133 134 void Compile::register_intrinsic(CallGenerator* cg) { 135 bool found = false; 136 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 137 assert(!found, "registering twice"); 138 _intrinsics.insert_before(index, cg); 139 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 140 } 141 142 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 143 assert(m->is_loaded(), "don't try this on unloaded methods"); 144 if (_intrinsics.length() > 0) { 145 bool found = false; 146 int index = intrinsic_insertion_index(m, is_virtual, found); 147 if (found) { 148 return _intrinsics.at(index); 149 } 150 } 151 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 152 if (m->intrinsic_id() != vmIntrinsics::_none && 153 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 154 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 155 if (cg != NULL) { 156 // Save it for next time: 157 register_intrinsic(cg); 158 return cg; 159 } else { 160 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 161 } 162 } 163 return NULL; 164 } 165 166 // Compile::make_vm_intrinsic is defined in library_call.cpp. 167 168 #ifndef PRODUCT 169 // statistics gathering... 170 171 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 172 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 173 174 inline int as_int(vmIntrinsics::ID id) { 175 return vmIntrinsics::as_int(id); 176 } 177 178 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 179 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 180 int oflags = _intrinsic_hist_flags[as_int(id)]; 181 assert(flags != 0, "what happened?"); 182 if (is_virtual) { 183 flags |= _intrinsic_virtual; 184 } 185 bool changed = (flags != oflags); 186 if ((flags & _intrinsic_worked) != 0) { 187 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 188 if (count == 1) { 189 changed = true; // first time 190 } 191 // increment the overall count also: 192 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 193 } 194 if (changed) { 195 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 196 // Something changed about the intrinsic's virtuality. 197 if ((flags & _intrinsic_virtual) != 0) { 198 // This is the first use of this intrinsic as a virtual call. 199 if (oflags != 0) { 200 // We already saw it as a non-virtual, so note both cases. 201 flags |= _intrinsic_both; 202 } 203 } else if ((oflags & _intrinsic_both) == 0) { 204 // This is the first use of this intrinsic as a non-virtual 205 flags |= _intrinsic_both; 206 } 207 } 208 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 209 } 210 // update the overall flags also: 211 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 212 return changed; 213 } 214 215 static char* format_flags(int flags, char* buf) { 216 buf[0] = 0; 217 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 218 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 219 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 220 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 221 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 222 if (buf[0] == 0) strcat(buf, ","); 223 assert(buf[0] == ',', "must be"); 224 return &buf[1]; 225 } 226 227 void Compile::print_intrinsic_statistics() { 228 char flagsbuf[100]; 229 ttyLocker ttyl; 230 if (xtty != NULL) xtty->head("statistics type='intrinsic'"); 231 tty->print_cr("Compiler intrinsic usage:"); 232 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 233 if (total == 0) total = 1; // avoid div0 in case of no successes 234 #define PRINT_STAT_LINE(name, c, f) \ 235 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 236 for (auto id : EnumRange<vmIntrinsicID>{}) { 237 int flags = _intrinsic_hist_flags[as_int(id)]; 238 juint count = _intrinsic_hist_count[as_int(id)]; 239 if ((flags | count) != 0) { 240 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 241 } 242 } 243 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 244 if (xtty != NULL) xtty->tail("statistics"); 245 } 246 247 void Compile::print_statistics() { 248 { ttyLocker ttyl; 249 if (xtty != NULL) xtty->head("statistics type='opto'"); 250 Parse::print_statistics(); 251 PhaseStringOpts::print_statistics(); 252 PhaseCCP::print_statistics(); 253 PhaseRegAlloc::print_statistics(); 254 PhaseOutput::print_statistics(); 255 PhasePeephole::print_statistics(); 256 PhaseIdealLoop::print_statistics(); 257 if (xtty != NULL) xtty->tail("statistics"); 258 } 259 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 260 // put this under its own <statistics> element. 261 print_intrinsic_statistics(); 262 } 263 } 264 #endif //PRODUCT 265 266 void Compile::gvn_replace_by(Node* n, Node* nn) { 267 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 268 Node* use = n->last_out(i); 269 bool is_in_table = initial_gvn()->hash_delete(use); 270 uint uses_found = 0; 271 for (uint j = 0; j < use->len(); j++) { 272 if (use->in(j) == n) { 273 if (j < use->req()) 274 use->set_req(j, nn); 275 else 276 use->set_prec(j, nn); 277 uses_found++; 278 } 279 } 280 if (is_in_table) { 281 // reinsert into table 282 initial_gvn()->hash_find_insert(use); 283 } 284 record_for_igvn(use); 285 i -= uses_found; // we deleted 1 or more copies of this edge 286 } 287 } 288 289 290 // Identify all nodes that are reachable from below, useful. 291 // Use breadth-first pass that records state in a Unique_Node_List, 292 // recursive traversal is slower. 293 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 294 int estimated_worklist_size = live_nodes(); 295 useful.map( estimated_worklist_size, NULL ); // preallocate space 296 297 // Initialize worklist 298 if (root() != NULL) { useful.push(root()); } 299 // If 'top' is cached, declare it useful to preserve cached node 300 if( cached_top_node() ) { useful.push(cached_top_node()); } 301 302 // Push all useful nodes onto the list, breadthfirst 303 for( uint next = 0; next < useful.size(); ++next ) { 304 assert( next < unique(), "Unique useful nodes < total nodes"); 305 Node *n = useful.at(next); 306 uint max = n->len(); 307 for( uint i = 0; i < max; ++i ) { 308 Node *m = n->in(i); 309 if (not_a_node(m)) continue; 310 useful.push(m); 311 } 312 } 313 } 314 315 // Update dead_node_list with any missing dead nodes using useful 316 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 317 void Compile::update_dead_node_list(Unique_Node_List &useful) { 318 uint max_idx = unique(); 319 VectorSet& useful_node_set = useful.member_set(); 320 321 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 322 // If node with index node_idx is not in useful set, 323 // mark it as dead in dead node list. 324 if (!useful_node_set.test(node_idx)) { 325 record_dead_node(node_idx); 326 } 327 } 328 } 329 330 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 331 int shift = 0; 332 for (int i = 0; i < inlines->length(); i++) { 333 CallGenerator* cg = inlines->at(i); 334 if (useful.member(cg->call_node())) { 335 if (shift > 0) { 336 inlines->at_put(i - shift, cg); 337 } 338 } else { 339 shift++; // skip over the dead element 340 } 341 } 342 if (shift > 0) { 343 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 344 } 345 } 346 347 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 348 assert(dead != NULL && dead->is_Call(), "sanity"); 349 int found = 0; 350 for (int i = 0; i < inlines->length(); i++) { 351 if (inlines->at(i)->call_node() == dead) { 352 inlines->remove_at(i); 353 found++; 354 NOT_DEBUG( break; ) // elements are unique, so exit early 355 } 356 } 357 assert(found <= 1, "not unique"); 358 } 359 360 void Compile::remove_useless_nodes(GrowableArray<Node*>& node_list, Unique_Node_List& useful) { 361 for (int i = node_list.length() - 1; i >= 0; i--) { 362 Node* n = node_list.at(i); 363 if (!useful.member(n)) { 364 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 365 } 366 } 367 } 368 369 void Compile::remove_useless_node(Node* dead) { 370 remove_modified_node(dead); 371 372 // Constant node that has no out-edges and has only one in-edge from 373 // root is usually dead. However, sometimes reshaping walk makes 374 // it reachable by adding use edges. So, we will NOT count Con nodes 375 // as dead to be conservative about the dead node count at any 376 // given time. 377 if (!dead->is_Con()) { 378 record_dead_node(dead->_idx); 379 } 380 if (dead->is_macro()) { 381 remove_macro_node(dead); 382 } 383 if (dead->is_expensive()) { 384 remove_expensive_node(dead); 385 } 386 if (dead->Opcode() == Op_Opaque4) { 387 remove_skeleton_predicate_opaq(dead); 388 } 389 if (dead->for_post_loop_opts_igvn()) { 390 remove_from_post_loop_opts_igvn(dead); 391 } 392 if (dead->is_Call()) { 393 remove_useless_late_inlines( &_late_inlines, dead); 394 remove_useless_late_inlines( &_string_late_inlines, dead); 395 remove_useless_late_inlines( &_boxing_late_inlines, dead); 396 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 397 } 398 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 399 bs->unregister_potential_barrier_node(dead); 400 } 401 402 // Disconnect all useless nodes by disconnecting those at the boundary. 403 void Compile::remove_useless_nodes(Unique_Node_List &useful) { 404 uint next = 0; 405 while (next < useful.size()) { 406 Node *n = useful.at(next++); 407 if (n->is_SafePoint()) { 408 // We're done with a parsing phase. Replaced nodes are not valid 409 // beyond that point. 410 n->as_SafePoint()->delete_replaced_nodes(); 411 } 412 // Use raw traversal of out edges since this code removes out edges 413 int max = n->outcnt(); 414 for (int j = 0; j < max; ++j) { 415 Node* child = n->raw_out(j); 416 if (!useful.member(child)) { 417 assert(!child->is_top() || child != top(), 418 "If top is cached in Compile object it is in useful list"); 419 // Only need to remove this out-edge to the useless node 420 n->raw_del_out(j); 421 --j; 422 --max; 423 } 424 } 425 if (n->outcnt() == 1 && n->has_special_unique_user()) { 426 record_for_igvn(n->unique_out()); 427 } 428 } 429 430 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 431 remove_useless_nodes(_predicate_opaqs, useful); // remove useless predicate opaque nodes 432 remove_useless_nodes(_skeleton_predicate_opaqs, useful); 433 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 434 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 435 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 436 437 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 438 bs->eliminate_useless_gc_barriers(useful, this); 439 // clean up the late inline lists 440 remove_useless_late_inlines( &_late_inlines, useful); 441 remove_useless_late_inlines( &_string_late_inlines, useful); 442 remove_useless_late_inlines( &_boxing_late_inlines, useful); 443 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 444 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 445 } 446 447 // ============================================================================ 448 //------------------------------CompileWrapper--------------------------------- 449 class CompileWrapper : public StackObj { 450 Compile *const _compile; 451 public: 452 CompileWrapper(Compile* compile); 453 454 ~CompileWrapper(); 455 }; 456 457 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 458 // the Compile* pointer is stored in the current ciEnv: 459 ciEnv* env = compile->env(); 460 assert(env == ciEnv::current(), "must already be a ciEnv active"); 461 assert(env->compiler_data() == NULL, "compile already active?"); 462 env->set_compiler_data(compile); 463 assert(compile == Compile::current(), "sanity"); 464 465 compile->set_type_dict(NULL); 466 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 467 compile->clone_map().set_clone_idx(0); 468 compile->set_type_last_size(0); 469 compile->set_last_tf(NULL, NULL); 470 compile->set_indexSet_arena(NULL); 471 compile->set_indexSet_free_block_list(NULL); 472 compile->init_type_arena(); 473 Type::Initialize(compile); 474 _compile->begin_method(); 475 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 476 } 477 CompileWrapper::~CompileWrapper() { 478 // simulate crash during compilation 479 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 480 481 _compile->end_method(); 482 _compile->env()->set_compiler_data(NULL); 483 } 484 485 486 //----------------------------print_compile_messages--------------------------- 487 void Compile::print_compile_messages() { 488 #ifndef PRODUCT 489 // Check if recompiling 490 if (!subsume_loads() && PrintOpto) { 491 // Recompiling without allowing machine instructions to subsume loads 492 tty->print_cr("*********************************************************"); 493 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 494 tty->print_cr("*********************************************************"); 495 } 496 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 497 // Recompiling without escape analysis 498 tty->print_cr("*********************************************************"); 499 tty->print_cr("** Bailout: Recompile without escape analysis **"); 500 tty->print_cr("*********************************************************"); 501 } 502 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 503 // Recompiling without iterative escape analysis 504 tty->print_cr("*********************************************************"); 505 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 506 tty->print_cr("*********************************************************"); 507 } 508 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 509 // Recompiling without boxing elimination 510 tty->print_cr("*********************************************************"); 511 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 512 tty->print_cr("*********************************************************"); 513 } 514 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 515 // Recompiling without locks coarsening 516 tty->print_cr("*********************************************************"); 517 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 518 tty->print_cr("*********************************************************"); 519 } 520 if (env()->break_at_compile()) { 521 // Open the debugger when compiling this method. 522 tty->print("### Breaking when compiling: "); 523 method()->print_short_name(); 524 tty->cr(); 525 BREAKPOINT; 526 } 527 528 if( PrintOpto ) { 529 if (is_osr_compilation()) { 530 tty->print("[OSR]%3d", _compile_id); 531 } else { 532 tty->print("%3d", _compile_id); 533 } 534 } 535 #endif 536 } 537 538 #ifndef PRODUCT 539 void Compile::print_ideal_ir(const char* phase_name) { 540 ttyLocker ttyl; 541 // keep the following output all in one block 542 // This output goes directly to the tty, not the compiler log. 543 // To enable tools to match it up with the compilation activity, 544 // be sure to tag this tty output with the compile ID. 545 if (xtty != NULL) { 546 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 547 compile_id(), 548 is_osr_compilation() ? " compile_kind='osr'" : "", 549 phase_name); 550 } 551 if (_output == nullptr) { 552 root()->dump(9999); 553 } else { 554 // Dump the node blockwise if we have a scheduling 555 _output->print_scheduling(); 556 } 557 558 if (xtty != NULL) { 559 xtty->tail("ideal"); 560 } 561 } 562 #endif 563 564 // ============================================================================ 565 //------------------------------Compile standard------------------------------- 566 debug_only( int Compile::_debug_idx = 100000; ) 567 568 // Compile a method. entry_bci is -1 for normal compilations and indicates 569 // the continuation bci for on stack replacement. 570 571 572 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci, 573 Options options, DirectiveSet* directive) 574 : Phase(Compiler), 575 _compile_id(ci_env->compile_id()), 576 _options(options), 577 _method(target), 578 _entry_bci(osr_bci), 579 _ilt(NULL), 580 _stub_function(NULL), 581 _stub_name(NULL), 582 _stub_entry_point(NULL), 583 _max_node_limit(MaxNodeLimit), 584 _post_loop_opts_phase(false), 585 _inlining_progress(false), 586 _inlining_incrementally(false), 587 _do_cleanup(false), 588 _has_reserved_stack_access(target->has_reserved_stack_access()), 589 #ifndef PRODUCT 590 _igv_idx(0), 591 _trace_opto_output(directive->TraceOptoOutputOption), 592 #endif 593 _has_method_handle_invokes(false), 594 _clinit_barrier_on_entry(false), 595 _stress_seed(0), 596 _comp_arena(mtCompiler), 597 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 598 _env(ci_env), 599 _directive(directive), 600 _log(ci_env->log()), 601 _failure_reason(NULL), 602 _intrinsics (comp_arena(), 0, 0, NULL), 603 _macro_nodes (comp_arena(), 8, 0, NULL), 604 _predicate_opaqs (comp_arena(), 8, 0, NULL), 605 _skeleton_predicate_opaqs (comp_arena(), 8, 0, NULL), 606 _expensive_nodes (comp_arena(), 8, 0, NULL), 607 _for_post_loop_igvn(comp_arena(), 8, 0, NULL), 608 _coarsened_locks (comp_arena(), 8, 0, NULL), 609 _congraph(NULL), 610 NOT_PRODUCT(_igv_printer(NULL) COMMA) 611 _dead_node_list(comp_arena()), 612 _dead_node_count(0), 613 _node_arena(mtCompiler), 614 _old_arena(mtCompiler), 615 _mach_constant_base_node(NULL), 616 _Compile_types(mtCompiler), 617 _initial_gvn(NULL), 618 _for_igvn(NULL), 619 _late_inlines(comp_arena(), 2, 0, NULL), 620 _string_late_inlines(comp_arena(), 2, 0, NULL), 621 _boxing_late_inlines(comp_arena(), 2, 0, NULL), 622 _vector_reboxing_late_inlines(comp_arena(), 2, 0, NULL), 623 _late_inlines_pos(0), 624 _number_of_mh_late_inlines(0), 625 _native_invokers(comp_arena(), 1, 0, NULL), 626 _print_inlining_stream(NULL), 627 _print_inlining_list(NULL), 628 _print_inlining_idx(0), 629 _print_inlining_output(NULL), 630 _replay_inline_data(NULL), 631 _java_calls(0), 632 _inner_loops(0), 633 _interpreter_frame_size(0), 634 _output(NULL) 635 #ifndef PRODUCT 636 , _in_dump_cnt(0) 637 #endif 638 { 639 C = this; 640 CompileWrapper cw(this); 641 642 if (CITimeVerbose) { 643 tty->print(" "); 644 target->holder()->name()->print(); 645 tty->print("."); 646 target->print_short_name(); 647 tty->print(" "); 648 } 649 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 650 TraceTime t2(NULL, &_t_methodCompilation, CITime, false); 651 652 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 653 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 654 // We can always print a disassembly, either abstract (hex dump) or 655 // with the help of a suitable hsdis library. Thus, we should not 656 // couple print_assembly and print_opto_assembly controls. 657 // But: always print opto and regular assembly on compile command 'print'. 658 bool print_assembly = directive->PrintAssemblyOption; 659 set_print_assembly(print_opto_assembly || print_assembly); 660 #else 661 set_print_assembly(false); // must initialize. 662 #endif 663 664 #ifndef PRODUCT 665 set_parsed_irreducible_loop(false); 666 667 if (directive->ReplayInlineOption) { 668 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 669 } 670 #endif 671 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 672 set_print_intrinsics(directive->PrintIntrinsicsOption); 673 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 674 675 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) { 676 // Make sure the method being compiled gets its own MDO, 677 // so we can at least track the decompile_count(). 678 // Need MDO to record RTM code generation state. 679 method()->ensure_method_data(); 680 } 681 682 Init(::AliasLevel); 683 684 685 print_compile_messages(); 686 687 _ilt = InlineTree::build_inline_tree_root(); 688 689 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 690 assert(num_alias_types() >= AliasIdxRaw, ""); 691 692 #define MINIMUM_NODE_HASH 1023 693 // Node list that Iterative GVN will start with 694 Unique_Node_List for_igvn(comp_arena()); 695 set_for_igvn(&for_igvn); 696 697 // GVN that will be run immediately on new nodes 698 uint estimated_size = method()->code_size()*4+64; 699 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 700 PhaseGVN gvn(node_arena(), estimated_size); 701 set_initial_gvn(&gvn); 702 703 print_inlining_init(); 704 { // Scope for timing the parser 705 TracePhase tp("parse", &timers[_t_parser]); 706 707 // Put top into the hash table ASAP. 708 initial_gvn()->transform_no_reclaim(top()); 709 710 // Set up tf(), start(), and find a CallGenerator. 711 CallGenerator* cg = NULL; 712 if (is_osr_compilation()) { 713 const TypeTuple *domain = StartOSRNode::osr_domain(); 714 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 715 init_tf(TypeFunc::make(domain, range)); 716 StartNode* s = new StartOSRNode(root(), domain); 717 initial_gvn()->set_type_bottom(s); 718 init_start(s); 719 cg = CallGenerator::for_osr(method(), entry_bci()); 720 } else { 721 // Normal case. 722 init_tf(TypeFunc::make(method())); 723 StartNode* s = new StartNode(root(), tf()->domain()); 724 initial_gvn()->set_type_bottom(s); 725 init_start(s); 726 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 727 // With java.lang.ref.reference.get() we must go through the 728 // intrinsic - even when get() is the root 729 // method of the compile - so that, if necessary, the value in 730 // the referent field of the reference object gets recorded by 731 // the pre-barrier code. 732 cg = find_intrinsic(method(), false); 733 } 734 if (cg == NULL) { 735 float past_uses = method()->interpreter_invocation_count(); 736 float expected_uses = past_uses; 737 cg = CallGenerator::for_inline(method(), expected_uses); 738 } 739 } 740 if (failing()) return; 741 if (cg == NULL) { 742 record_method_not_compilable("cannot parse method"); 743 return; 744 } 745 JVMState* jvms = build_start_state(start(), tf()); 746 if ((jvms = cg->generate(jvms)) == NULL) { 747 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) { 748 record_method_not_compilable("method parse failed"); 749 } 750 return; 751 } 752 GraphKit kit(jvms); 753 754 if (!kit.stopped()) { 755 // Accept return values, and transfer control we know not where. 756 // This is done by a special, unique ReturnNode bound to root. 757 return_values(kit.jvms()); 758 } 759 760 if (kit.has_exceptions()) { 761 // Any exceptions that escape from this call must be rethrown 762 // to whatever caller is dynamically above us on the stack. 763 // This is done by a special, unique RethrowNode bound to root. 764 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 765 } 766 767 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 768 769 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 770 inline_string_calls(true); 771 } 772 773 if (failing()) return; 774 775 print_method(PHASE_BEFORE_REMOVEUSELESS, 3); 776 777 // Remove clutter produced by parsing. 778 if (!failing()) { 779 ResourceMark rm; 780 PhaseRemoveUseless pru(initial_gvn(), &for_igvn); 781 } 782 } 783 784 // Note: Large methods are capped off in do_one_bytecode(). 785 if (failing()) return; 786 787 // After parsing, node notes are no longer automagic. 788 // They must be propagated by register_new_node_with_optimizer(), 789 // clone(), or the like. 790 set_default_node_notes(NULL); 791 792 #ifndef PRODUCT 793 if (should_print_igv(1)) { 794 _igv_printer->print_inlining(); 795 } 796 #endif 797 798 if (failing()) return; 799 NOT_PRODUCT( verify_graph_edges(); ) 800 801 // If any phase is randomized for stress testing, seed random number 802 // generation and log the seed for repeatability. 803 if (StressLCM || StressGCM || StressIGVN || StressCCP) { 804 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && RepeatCompilation)) { 805 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 806 FLAG_SET_ERGO(StressSeed, _stress_seed); 807 } else { 808 _stress_seed = StressSeed; 809 } 810 if (_log != NULL) { 811 _log->elem("stress_test seed='%u'", _stress_seed); 812 } 813 } 814 815 // Now optimize 816 Optimize(); 817 if (failing()) return; 818 NOT_PRODUCT( verify_graph_edges(); ) 819 820 #ifndef PRODUCT 821 if (should_print_ideal()) { 822 print_ideal_ir("print_ideal"); 823 } 824 #endif 825 826 #ifdef ASSERT 827 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 828 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 829 #endif 830 831 // Dump compilation data to replay it. 832 if (directive->DumpReplayOption) { 833 env()->dump_replay_data(_compile_id); 834 } 835 if (directive->DumpInlineOption && (ilt() != NULL)) { 836 env()->dump_inline_data(_compile_id); 837 } 838 839 // Now that we know the size of all the monitors we can add a fixed slot 840 // for the original deopt pc. 841 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 842 set_fixed_slots(next_slot); 843 844 // Compute when to use implicit null checks. Used by matching trap based 845 // nodes and NullCheck optimization. 846 set_allowed_deopt_reasons(); 847 848 // Now generate code 849 Code_Gen(); 850 } 851 852 //------------------------------Compile---------------------------------------- 853 // Compile a runtime stub 854 Compile::Compile( ciEnv* ci_env, 855 TypeFunc_generator generator, 856 address stub_function, 857 const char *stub_name, 858 int is_fancy_jump, 859 bool pass_tls, 860 bool return_pc, 861 DirectiveSet* directive) 862 : Phase(Compiler), 863 _compile_id(0), 864 _options(Options::for_runtime_stub()), 865 _method(NULL), 866 _entry_bci(InvocationEntryBci), 867 _stub_function(stub_function), 868 _stub_name(stub_name), 869 _stub_entry_point(NULL), 870 _max_node_limit(MaxNodeLimit), 871 _post_loop_opts_phase(false), 872 _inlining_progress(false), 873 _inlining_incrementally(false), 874 _has_reserved_stack_access(false), 875 #ifndef PRODUCT 876 _igv_idx(0), 877 _trace_opto_output(directive->TraceOptoOutputOption), 878 #endif 879 _has_method_handle_invokes(false), 880 _clinit_barrier_on_entry(false), 881 _stress_seed(0), 882 _comp_arena(mtCompiler), 883 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 884 _env(ci_env), 885 _directive(directive), 886 _log(ci_env->log()), 887 _failure_reason(NULL), 888 _congraph(NULL), 889 NOT_PRODUCT(_igv_printer(NULL) COMMA) 890 _dead_node_list(comp_arena()), 891 _dead_node_count(0), 892 _node_arena(mtCompiler), 893 _old_arena(mtCompiler), 894 _mach_constant_base_node(NULL), 895 _Compile_types(mtCompiler), 896 _initial_gvn(NULL), 897 _for_igvn(NULL), 898 _number_of_mh_late_inlines(0), 899 _native_invokers(), 900 _print_inlining_stream(NULL), 901 _print_inlining_list(NULL), 902 _print_inlining_idx(0), 903 _print_inlining_output(NULL), 904 _replay_inline_data(NULL), 905 _java_calls(0), 906 _inner_loops(0), 907 _interpreter_frame_size(0), 908 _output(NULL), 909 #ifndef PRODUCT 910 _in_dump_cnt(0), 911 #endif 912 _allowed_reasons(0) { 913 C = this; 914 915 TraceTime t1(NULL, &_t_totalCompilation, CITime, false); 916 TraceTime t2(NULL, &_t_stubCompilation, CITime, false); 917 918 #ifndef PRODUCT 919 set_print_assembly(PrintFrameConverterAssembly); 920 set_parsed_irreducible_loop(false); 921 #else 922 set_print_assembly(false); // Must initialize. 923 #endif 924 set_has_irreducible_loop(false); // no loops 925 926 CompileWrapper cw(this); 927 Init(/*AliasLevel=*/ 0); 928 init_tf((*generator)()); 929 930 { 931 // The following is a dummy for the sake of GraphKit::gen_stub 932 Unique_Node_List for_igvn(comp_arena()); 933 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this 934 PhaseGVN gvn(Thread::current()->resource_area(),255); 935 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 936 gvn.transform_no_reclaim(top()); 937 938 GraphKit kit; 939 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 940 } 941 942 NOT_PRODUCT( verify_graph_edges(); ) 943 944 Code_Gen(); 945 } 946 947 //------------------------------Init------------------------------------------- 948 // Prepare for a single compilation 949 void Compile::Init(int aliaslevel) { 950 _unique = 0; 951 _regalloc = NULL; 952 953 _tf = NULL; // filled in later 954 _top = NULL; // cached later 955 _matcher = NULL; // filled in later 956 _cfg = NULL; // filled in later 957 958 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 959 960 _node_note_array = NULL; 961 _default_node_notes = NULL; 962 DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize() 963 964 _immutable_memory = NULL; // filled in at first inquiry 965 966 // Globally visible Nodes 967 // First set TOP to NULL to give safe behavior during creation of RootNode 968 set_cached_top_node(NULL); 969 set_root(new RootNode()); 970 // Now that you have a Root to point to, create the real TOP 971 set_cached_top_node( new ConNode(Type::TOP) ); 972 set_recent_alloc(NULL, NULL); 973 974 // Create Debug Information Recorder to record scopes, oopmaps, etc. 975 env()->set_oop_recorder(new OopRecorder(env()->arena())); 976 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 977 env()->set_dependencies(new Dependencies(env())); 978 979 _fixed_slots = 0; 980 set_has_split_ifs(false); 981 set_has_loops(false); // first approximation 982 set_has_stringbuilder(false); 983 set_has_boxed_value(false); 984 _trap_can_recompile = false; // no traps emitted yet 985 _major_progress = true; // start out assuming good things will happen 986 set_has_unsafe_access(false); 987 set_max_vector_size(0); 988 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 989 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 990 set_decompile_count(0); 991 992 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 993 _loop_opts_cnt = LoopOptsCount; 994 set_do_inlining(Inline); 995 set_max_inline_size(MaxInlineSize); 996 set_freq_inline_size(FreqInlineSize); 997 set_do_scheduling(OptoScheduling); 998 999 set_do_vector_loop(false); 1000 1001 if (AllowVectorizeOnDemand) { 1002 if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) { 1003 set_do_vector_loop(true); 1004 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1005 } else if (has_method() && method()->name() != 0 && 1006 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1007 set_do_vector_loop(true); 1008 } 1009 } 1010 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1011 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1012 1013 set_age_code(has_method() && method()->profile_aging()); 1014 set_rtm_state(NoRTM); // No RTM lock eliding by default 1015 _max_node_limit = _directive->MaxNodeLimitOption; 1016 1017 #if INCLUDE_RTM_OPT 1018 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) { 1019 int rtm_state = method()->method_data()->rtm_state(); 1020 if (method_has_option(CompileCommand::NoRTMLockEliding) || ((rtm_state & NoRTM) != 0)) { 1021 // Don't generate RTM lock eliding code. 1022 set_rtm_state(NoRTM); 1023 } else if (method_has_option(CompileCommand::UseRTMLockEliding) || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) { 1024 // Generate RTM lock eliding code without abort ratio calculation code. 1025 set_rtm_state(UseRTM); 1026 } else if (UseRTMDeopt) { 1027 // Generate RTM lock eliding code and include abort ratio calculation 1028 // code if UseRTMDeopt is on. 1029 set_rtm_state(ProfileRTM); 1030 } 1031 } 1032 #endif 1033 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1034 set_clinit_barrier_on_entry(true); 1035 } 1036 if (debug_info()->recording_non_safepoints()) { 1037 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1038 (comp_arena(), 8, 0, NULL)); 1039 set_default_node_notes(Node_Notes::make(this)); 1040 } 1041 1042 // // -- Initialize types before each compile -- 1043 // // Update cached type information 1044 // if( _method && _method->constants() ) 1045 // Type::update_loaded_types(_method, _method->constants()); 1046 1047 // Init alias_type map. 1048 if (!do_escape_analysis() && aliaslevel == 3) { 1049 aliaslevel = 2; // No unique types without escape analysis 1050 } 1051 _AliasLevel = aliaslevel; 1052 const int grow_ats = 16; 1053 _max_alias_types = grow_ats; 1054 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1055 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1056 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1057 { 1058 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1059 } 1060 // Initialize the first few types. 1061 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL); 1062 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1063 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1064 _num_alias_types = AliasIdxRaw+1; 1065 // Zero out the alias type cache. 1066 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1067 // A NULL adr_type hits in the cache right away. Preload the right answer. 1068 probe_alias_cache(NULL)->_index = AliasIdxTop; 1069 1070 #ifdef ASSERT 1071 _type_verify_symmetry = true; 1072 _phase_optimize_finished = false; 1073 _exception_backedge = false; 1074 #endif 1075 } 1076 1077 //---------------------------init_start---------------------------------------- 1078 // Install the StartNode on this compile object. 1079 void Compile::init_start(StartNode* s) { 1080 if (failing()) 1081 return; // already failing 1082 assert(s == start(), ""); 1083 } 1084 1085 /** 1086 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1087 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1088 * the ideal graph. 1089 */ 1090 StartNode* Compile::start() const { 1091 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 1092 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1093 Node* start = root()->fast_out(i); 1094 if (start->is_Start()) { 1095 return start->as_Start(); 1096 } 1097 } 1098 fatal("Did not find Start node!"); 1099 return NULL; 1100 } 1101 1102 //-------------------------------immutable_memory------------------------------------- 1103 // Access immutable memory 1104 Node* Compile::immutable_memory() { 1105 if (_immutable_memory != NULL) { 1106 return _immutable_memory; 1107 } 1108 StartNode* s = start(); 1109 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1110 Node *p = s->fast_out(i); 1111 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1112 _immutable_memory = p; 1113 return _immutable_memory; 1114 } 1115 } 1116 ShouldNotReachHere(); 1117 return NULL; 1118 } 1119 1120 //----------------------set_cached_top_node------------------------------------ 1121 // Install the cached top node, and make sure Node::is_top works correctly. 1122 void Compile::set_cached_top_node(Node* tn) { 1123 if (tn != NULL) verify_top(tn); 1124 Node* old_top = _top; 1125 _top = tn; 1126 // Calling Node::setup_is_top allows the nodes the chance to adjust 1127 // their _out arrays. 1128 if (_top != NULL) _top->setup_is_top(); 1129 if (old_top != NULL) old_top->setup_is_top(); 1130 assert(_top == NULL || top()->is_top(), ""); 1131 } 1132 1133 #ifdef ASSERT 1134 uint Compile::count_live_nodes_by_graph_walk() { 1135 Unique_Node_List useful(comp_arena()); 1136 // Get useful node list by walking the graph. 1137 identify_useful_nodes(useful); 1138 return useful.size(); 1139 } 1140 1141 void Compile::print_missing_nodes() { 1142 1143 // Return if CompileLog is NULL and PrintIdealNodeCount is false. 1144 if ((_log == NULL) && (! PrintIdealNodeCount)) { 1145 return; 1146 } 1147 1148 // This is an expensive function. It is executed only when the user 1149 // specifies VerifyIdealNodeCount option or otherwise knows the 1150 // additional work that needs to be done to identify reachable nodes 1151 // by walking the flow graph and find the missing ones using 1152 // _dead_node_list. 1153 1154 Unique_Node_List useful(comp_arena()); 1155 // Get useful node list by walking the graph. 1156 identify_useful_nodes(useful); 1157 1158 uint l_nodes = C->live_nodes(); 1159 uint l_nodes_by_walk = useful.size(); 1160 1161 if (l_nodes != l_nodes_by_walk) { 1162 if (_log != NULL) { 1163 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1164 _log->stamp(); 1165 _log->end_head(); 1166 } 1167 VectorSet& useful_member_set = useful.member_set(); 1168 int last_idx = l_nodes_by_walk; 1169 for (int i = 0; i < last_idx; i++) { 1170 if (useful_member_set.test(i)) { 1171 if (_dead_node_list.test(i)) { 1172 if (_log != NULL) { 1173 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1174 } 1175 if (PrintIdealNodeCount) { 1176 // Print the log message to tty 1177 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1178 useful.at(i)->dump(); 1179 } 1180 } 1181 } 1182 else if (! _dead_node_list.test(i)) { 1183 if (_log != NULL) { 1184 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1185 } 1186 if (PrintIdealNodeCount) { 1187 // Print the log message to tty 1188 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1189 } 1190 } 1191 } 1192 if (_log != NULL) { 1193 _log->tail("mismatched_nodes"); 1194 } 1195 } 1196 } 1197 void Compile::record_modified_node(Node* n) { 1198 if (_modified_nodes != NULL && !_inlining_incrementally && !n->is_Con()) { 1199 _modified_nodes->push(n); 1200 } 1201 } 1202 1203 void Compile::remove_modified_node(Node* n) { 1204 if (_modified_nodes != NULL) { 1205 _modified_nodes->remove(n); 1206 } 1207 } 1208 #endif 1209 1210 #ifndef PRODUCT 1211 void Compile::verify_top(Node* tn) const { 1212 if (tn != NULL) { 1213 assert(tn->is_Con(), "top node must be a constant"); 1214 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1215 assert(tn->in(0) != NULL, "must have live top node"); 1216 } 1217 } 1218 #endif 1219 1220 1221 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1222 1223 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1224 guarantee(arr != NULL, ""); 1225 int num_blocks = arr->length(); 1226 if (grow_by < num_blocks) grow_by = num_blocks; 1227 int num_notes = grow_by * _node_notes_block_size; 1228 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1229 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1230 while (num_notes > 0) { 1231 arr->append(notes); 1232 notes += _node_notes_block_size; 1233 num_notes -= _node_notes_block_size; 1234 } 1235 assert(num_notes == 0, "exact multiple, please"); 1236 } 1237 1238 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1239 if (source == NULL || dest == NULL) return false; 1240 1241 if (dest->is_Con()) 1242 return false; // Do not push debug info onto constants. 1243 1244 #ifdef ASSERT 1245 // Leave a bread crumb trail pointing to the original node: 1246 if (dest != NULL && dest != source && dest->debug_orig() == NULL) { 1247 dest->set_debug_orig(source); 1248 } 1249 #endif 1250 1251 if (node_note_array() == NULL) 1252 return false; // Not collecting any notes now. 1253 1254 // This is a copy onto a pre-existing node, which may already have notes. 1255 // If both nodes have notes, do not overwrite any pre-existing notes. 1256 Node_Notes* source_notes = node_notes_at(source->_idx); 1257 if (source_notes == NULL || source_notes->is_clear()) return false; 1258 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1259 if (dest_notes == NULL || dest_notes->is_clear()) { 1260 return set_node_notes_at(dest->_idx, source_notes); 1261 } 1262 1263 Node_Notes merged_notes = (*source_notes); 1264 // The order of operations here ensures that dest notes will win... 1265 merged_notes.update_from(dest_notes); 1266 return set_node_notes_at(dest->_idx, &merged_notes); 1267 } 1268 1269 1270 //--------------------------allow_range_check_smearing------------------------- 1271 // Gating condition for coalescing similar range checks. 1272 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1273 // single covering check that is at least as strong as any of them. 1274 // If the optimization succeeds, the simplified (strengthened) range check 1275 // will always succeed. If it fails, we will deopt, and then give up 1276 // on the optimization. 1277 bool Compile::allow_range_check_smearing() const { 1278 // If this method has already thrown a range-check, 1279 // assume it was because we already tried range smearing 1280 // and it failed. 1281 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1282 return !already_trapped; 1283 } 1284 1285 1286 //------------------------------flatten_alias_type----------------------------- 1287 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1288 int offset = tj->offset(); 1289 TypePtr::PTR ptr = tj->ptr(); 1290 1291 // Known instance (scalarizable allocation) alias only with itself. 1292 bool is_known_inst = tj->isa_oopptr() != NULL && 1293 tj->is_oopptr()->is_known_instance(); 1294 1295 // Process weird unsafe references. 1296 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1297 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1298 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1299 tj = TypeOopPtr::BOTTOM; 1300 ptr = tj->ptr(); 1301 offset = tj->offset(); 1302 } 1303 1304 // Array pointers need some flattening 1305 const TypeAryPtr *ta = tj->isa_aryptr(); 1306 if (ta && ta->is_stable()) { 1307 // Erase stability property for alias analysis. 1308 tj = ta = ta->cast_to_stable(false); 1309 } 1310 if( ta && is_known_inst ) { 1311 if ( offset != Type::OffsetBot && 1312 offset > arrayOopDesc::length_offset_in_bytes() ) { 1313 offset = Type::OffsetBot; // Flatten constant access into array body only 1314 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id()); 1315 } 1316 } else if( ta && _AliasLevel >= 2 ) { 1317 // For arrays indexed by constant indices, we flatten the alias 1318 // space to include all of the array body. Only the header, klass 1319 // and array length can be accessed un-aliased. 1320 if( offset != Type::OffsetBot ) { 1321 if( ta->const_oop() ) { // MethodData* or Method* 1322 offset = Type::OffsetBot; // Flatten constant access into array body 1323 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset); 1324 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1325 // range is OK as-is. 1326 tj = ta = TypeAryPtr::RANGE; 1327 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1328 tj = TypeInstPtr::KLASS; // all klass loads look alike 1329 ta = TypeAryPtr::RANGE; // generic ignored junk 1330 ptr = TypePtr::BotPTR; 1331 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1332 tj = TypeInstPtr::MARK; 1333 ta = TypeAryPtr::RANGE; // generic ignored junk 1334 ptr = TypePtr::BotPTR; 1335 } else { // Random constant offset into array body 1336 offset = Type::OffsetBot; // Flatten constant access into array body 1337 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset); 1338 } 1339 } 1340 // Arrays of fixed size alias with arrays of unknown size. 1341 if (ta->size() != TypeInt::POS) { 1342 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1343 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset); 1344 } 1345 // Arrays of known objects become arrays of unknown objects. 1346 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1347 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1348 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1349 } 1350 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1351 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1352 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1353 } 1354 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1355 // cannot be distinguished by bytecode alone. 1356 if (ta->elem() == TypeInt::BOOL) { 1357 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1358 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1359 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1360 } 1361 // During the 2nd round of IterGVN, NotNull castings are removed. 1362 // Make sure the Bottom and NotNull variants alias the same. 1363 // Also, make sure exact and non-exact variants alias the same. 1364 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) { 1365 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset); 1366 } 1367 } 1368 1369 // Oop pointers need some flattening 1370 const TypeInstPtr *to = tj->isa_instptr(); 1371 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) { 1372 ciInstanceKlass *k = to->klass()->as_instance_klass(); 1373 if( ptr == TypePtr::Constant ) { 1374 if (to->klass() != ciEnv::current()->Class_klass() || 1375 offset < k->layout_helper_size_in_bytes()) { 1376 // No constant oop pointers (such as Strings); they alias with 1377 // unknown strings. 1378 assert(!is_known_inst, "not scalarizable allocation"); 1379 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1380 } 1381 } else if( is_known_inst ) { 1382 tj = to; // Keep NotNull and klass_is_exact for instance type 1383 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1384 // During the 2nd round of IterGVN, NotNull castings are removed. 1385 // Make sure the Bottom and NotNull variants alias the same. 1386 // Also, make sure exact and non-exact variants alias the same. 1387 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1388 } 1389 if (to->speculative() != NULL) { 1390 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id()); 1391 } 1392 // Canonicalize the holder of this field 1393 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1394 // First handle header references such as a LoadKlassNode, even if the 1395 // object's klass is unloaded at compile time (4965979). 1396 if (!is_known_inst) { // Do it only for non-instance types 1397 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset); 1398 } 1399 } else if (offset < 0 || offset >= k->layout_helper_size_in_bytes()) { 1400 // Static fields are in the space above the normal instance 1401 // fields in the java.lang.Class instance. 1402 if (to->klass() != ciEnv::current()->Class_klass()) { 1403 to = NULL; 1404 tj = TypeOopPtr::BOTTOM; 1405 offset = tj->offset(); 1406 } 1407 } else { 1408 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset); 1409 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1410 if (!k->equals(canonical_holder) || tj->offset() != offset) { 1411 if( is_known_inst ) { 1412 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id()); 1413 } else { 1414 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset); 1415 } 1416 } 1417 } 1418 } 1419 1420 // Klass pointers to object array klasses need some flattening 1421 const TypeKlassPtr *tk = tj->isa_klassptr(); 1422 if( tk ) { 1423 // If we are referencing a field within a Klass, we need 1424 // to assume the worst case of an Object. Both exact and 1425 // inexact types must flatten to the same alias class so 1426 // use NotNull as the PTR. 1427 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1428 1429 tj = tk = TypeKlassPtr::make(TypePtr::NotNull, 1430 TypeInstKlassPtr::OBJECT->klass(), 1431 offset); 1432 } 1433 1434 ciKlass* klass = tk->klass(); 1435 if( klass->is_obj_array_klass() ) { 1436 ciKlass* k = TypeAryPtr::OOPS->klass(); 1437 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs 1438 k = TypeInstPtr::BOTTOM->klass(); 1439 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset ); 1440 } 1441 1442 // Check for precise loads from the primary supertype array and force them 1443 // to the supertype cache alias index. Check for generic array loads from 1444 // the primary supertype array and also force them to the supertype cache 1445 // alias index. Since the same load can reach both, we need to merge 1446 // these 2 disparate memories into the same alias class. Since the 1447 // primary supertype array is read-only, there's no chance of confusion 1448 // where we bypass an array load and an array store. 1449 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1450 if (offset == Type::OffsetBot || 1451 (offset >= primary_supers_offset && 1452 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1453 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1454 offset = in_bytes(Klass::secondary_super_cache_offset()); 1455 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset ); 1456 } 1457 } 1458 1459 // Flatten all Raw pointers together. 1460 if (tj->base() == Type::RawPtr) 1461 tj = TypeRawPtr::BOTTOM; 1462 1463 if (tj->base() == Type::AnyPtr) 1464 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1465 1466 // Flatten all to bottom for now 1467 switch( _AliasLevel ) { 1468 case 0: 1469 tj = TypePtr::BOTTOM; 1470 break; 1471 case 1: // Flatten to: oop, static, field or array 1472 switch (tj->base()) { 1473 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break; 1474 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break; 1475 case Type::AryPtr: // do not distinguish arrays at all 1476 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break; 1477 case Type::KlassPtr: 1478 case Type::AryKlassPtr: 1479 case Type::InstKlassPtr: tj = TypeInstKlassPtr::OBJECT; break; 1480 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it 1481 default: ShouldNotReachHere(); 1482 } 1483 break; 1484 case 2: // No collapsing at level 2; keep all splits 1485 case 3: // No collapsing at level 3; keep all splits 1486 break; 1487 default: 1488 Unimplemented(); 1489 } 1490 1491 offset = tj->offset(); 1492 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1493 1494 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1495 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1496 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1497 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1498 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1499 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1500 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1501 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1502 assert( tj->ptr() != TypePtr::TopPTR && 1503 tj->ptr() != TypePtr::AnyNull && 1504 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1505 // assert( tj->ptr() != TypePtr::Constant || 1506 // tj->base() == Type::RawPtr || 1507 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1508 1509 return tj; 1510 } 1511 1512 void Compile::AliasType::Init(int i, const TypePtr* at) { 1513 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1514 _index = i; 1515 _adr_type = at; 1516 _field = NULL; 1517 _element = NULL; 1518 _is_rewritable = true; // default 1519 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL; 1520 if (atoop != NULL && atoop->is_known_instance()) { 1521 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1522 _general_index = Compile::current()->get_alias_index(gt); 1523 } else { 1524 _general_index = 0; 1525 } 1526 } 1527 1528 BasicType Compile::AliasType::basic_type() const { 1529 if (element() != NULL) { 1530 const Type* element = adr_type()->is_aryptr()->elem(); 1531 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1532 } if (field() != NULL) { 1533 return field()->layout_type(); 1534 } else { 1535 return T_ILLEGAL; // unknown 1536 } 1537 } 1538 1539 //---------------------------------print_on------------------------------------ 1540 #ifndef PRODUCT 1541 void Compile::AliasType::print_on(outputStream* st) { 1542 if (index() < 10) 1543 st->print("@ <%d> ", index()); 1544 else st->print("@ <%d>", index()); 1545 st->print(is_rewritable() ? " " : " RO"); 1546 int offset = adr_type()->offset(); 1547 if (offset == Type::OffsetBot) 1548 st->print(" +any"); 1549 else st->print(" +%-3d", offset); 1550 st->print(" in "); 1551 adr_type()->dump_on(st); 1552 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1553 if (field() != NULL && tjp) { 1554 if (tjp->klass() != field()->holder() || 1555 tjp->offset() != field()->offset_in_bytes()) { 1556 st->print(" != "); 1557 field()->print(); 1558 st->print(" ***"); 1559 } 1560 } 1561 } 1562 1563 void print_alias_types() { 1564 Compile* C = Compile::current(); 1565 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1566 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1567 C->alias_type(idx)->print_on(tty); 1568 tty->cr(); 1569 } 1570 } 1571 #endif 1572 1573 1574 //----------------------------probe_alias_cache-------------------------------- 1575 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1576 intptr_t key = (intptr_t) adr_type; 1577 key ^= key >> logAliasCacheSize; 1578 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1579 } 1580 1581 1582 //-----------------------------grow_alias_types-------------------------------- 1583 void Compile::grow_alias_types() { 1584 const int old_ats = _max_alias_types; // how many before? 1585 const int new_ats = old_ats; // how many more? 1586 const int grow_ats = old_ats+new_ats; // how many now? 1587 _max_alias_types = grow_ats; 1588 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1589 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1590 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1591 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1592 } 1593 1594 1595 //--------------------------------find_alias_type------------------------------ 1596 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1597 if (_AliasLevel == 0) 1598 return alias_type(AliasIdxBot); 1599 1600 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1601 if (ace->_adr_type == adr_type) { 1602 return alias_type(ace->_index); 1603 } 1604 1605 // Handle special cases. 1606 if (adr_type == NULL) return alias_type(AliasIdxTop); 1607 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1608 1609 // Do it the slow way. 1610 const TypePtr* flat = flatten_alias_type(adr_type); 1611 1612 #ifdef ASSERT 1613 { 1614 ResourceMark rm; 1615 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1616 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1617 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1618 Type::str(adr_type)); 1619 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1620 const TypeOopPtr* foop = flat->is_oopptr(); 1621 // Scalarizable allocations have exact klass always. 1622 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1623 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1624 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1625 Type::str(foop), Type::str(xoop)); 1626 } 1627 } 1628 #endif 1629 1630 int idx = AliasIdxTop; 1631 for (int i = 0; i < num_alias_types(); i++) { 1632 if (alias_type(i)->adr_type() == flat) { 1633 idx = i; 1634 break; 1635 } 1636 } 1637 1638 if (idx == AliasIdxTop) { 1639 if (no_create) return NULL; 1640 // Grow the array if necessary. 1641 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1642 // Add a new alias type. 1643 idx = _num_alias_types++; 1644 _alias_types[idx]->Init(idx, flat); 1645 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1646 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1647 if (flat->isa_instptr()) { 1648 if (flat->offset() == java_lang_Class::klass_offset() 1649 && flat->is_instptr()->klass() == env()->Class_klass()) 1650 alias_type(idx)->set_rewritable(false); 1651 } 1652 if (flat->isa_aryptr()) { 1653 #ifdef ASSERT 1654 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1655 // (T_BYTE has the weakest alignment and size restrictions...) 1656 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1657 #endif 1658 if (flat->offset() == TypePtr::OffsetBot) { 1659 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1660 } 1661 } 1662 if (flat->isa_klassptr()) { 1663 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1664 alias_type(idx)->set_rewritable(false); 1665 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1666 alias_type(idx)->set_rewritable(false); 1667 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1668 alias_type(idx)->set_rewritable(false); 1669 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1670 alias_type(idx)->set_rewritable(false); 1671 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1672 alias_type(idx)->set_rewritable(false); 1673 } 1674 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1675 // but the base pointer type is not distinctive enough to identify 1676 // references into JavaThread.) 1677 1678 // Check for final fields. 1679 const TypeInstPtr* tinst = flat->isa_instptr(); 1680 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1681 ciField* field; 1682 if (tinst->const_oop() != NULL && 1683 tinst->klass() == ciEnv::current()->Class_klass() && 1684 tinst->offset() >= (tinst->klass()->as_instance_klass()->layout_helper_size_in_bytes())) { 1685 // static field 1686 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1687 field = k->get_field_by_offset(tinst->offset(), true); 1688 } else { 1689 ciInstanceKlass *k = tinst->klass()->as_instance_klass(); 1690 field = k->get_field_by_offset(tinst->offset(), false); 1691 } 1692 assert(field == NULL || 1693 original_field == NULL || 1694 (field->holder() == original_field->holder() && 1695 field->offset() == original_field->offset() && 1696 field->is_static() == original_field->is_static()), "wrong field?"); 1697 // Set field() and is_rewritable() attributes. 1698 if (field != NULL) alias_type(idx)->set_field(field); 1699 } 1700 } 1701 1702 // Fill the cache for next time. 1703 ace->_adr_type = adr_type; 1704 ace->_index = idx; 1705 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1706 1707 // Might as well try to fill the cache for the flattened version, too. 1708 AliasCacheEntry* face = probe_alias_cache(flat); 1709 if (face->_adr_type == NULL) { 1710 face->_adr_type = flat; 1711 face->_index = idx; 1712 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1713 } 1714 1715 return alias_type(idx); 1716 } 1717 1718 1719 Compile::AliasType* Compile::alias_type(ciField* field) { 1720 const TypeOopPtr* t; 1721 if (field->is_static()) 1722 t = TypeInstPtr::make(field->holder()->java_mirror()); 1723 else 1724 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1725 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1726 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1727 return atp; 1728 } 1729 1730 1731 //------------------------------have_alias_type-------------------------------- 1732 bool Compile::have_alias_type(const TypePtr* adr_type) { 1733 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1734 if (ace->_adr_type == adr_type) { 1735 return true; 1736 } 1737 1738 // Handle special cases. 1739 if (adr_type == NULL) return true; 1740 if (adr_type == TypePtr::BOTTOM) return true; 1741 1742 return find_alias_type(adr_type, true, NULL) != NULL; 1743 } 1744 1745 //-----------------------------must_alias-------------------------------------- 1746 // True if all values of the given address type are in the given alias category. 1747 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1748 if (alias_idx == AliasIdxBot) return true; // the universal category 1749 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP 1750 if (alias_idx == AliasIdxTop) return false; // the empty category 1751 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1752 1753 // the only remaining possible overlap is identity 1754 int adr_idx = get_alias_index(adr_type); 1755 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1756 assert(adr_idx == alias_idx || 1757 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1758 && adr_type != TypeOopPtr::BOTTOM), 1759 "should not be testing for overlap with an unsafe pointer"); 1760 return adr_idx == alias_idx; 1761 } 1762 1763 //------------------------------can_alias-------------------------------------- 1764 // True if any values of the given address type are in the given alias category. 1765 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1766 if (alias_idx == AliasIdxTop) return false; // the empty category 1767 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP 1768 // Known instance doesn't alias with bottom memory 1769 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1770 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1771 1772 // the only remaining possible overlap is identity 1773 int adr_idx = get_alias_index(adr_type); 1774 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1775 return adr_idx == alias_idx; 1776 } 1777 1778 //---------------------cleanup_loop_predicates----------------------- 1779 // Remove the opaque nodes that protect the predicates so that all unused 1780 // checks and uncommon_traps will be eliminated from the ideal graph 1781 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) { 1782 if (predicate_count()==0) return; 1783 for (int i = predicate_count(); i > 0; i--) { 1784 Node * n = predicate_opaque1_node(i-1); 1785 assert(n->Opcode() == Op_Opaque1, "must be"); 1786 igvn.replace_node(n, n->in(1)); 1787 } 1788 assert(predicate_count()==0, "should be clean!"); 1789 } 1790 1791 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1792 if (!n->for_post_loop_opts_igvn()) { 1793 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1794 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1795 _for_post_loop_igvn.append(n); 1796 } 1797 } 1798 1799 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1800 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1801 _for_post_loop_igvn.remove(n); 1802 } 1803 1804 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1805 // Verify that all previous optimizations produced a valid graph 1806 // at least to this point, even if no loop optimizations were done. 1807 PhaseIdealLoop::verify(igvn); 1808 1809 C->set_post_loop_opts_phase(); // no more loop opts allowed 1810 1811 assert(!C->major_progress(), "not cleared"); 1812 1813 if (_for_post_loop_igvn.length() > 0) { 1814 while (_for_post_loop_igvn.length() > 0) { 1815 Node* n = _for_post_loop_igvn.pop(); 1816 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1817 igvn._worklist.push(n); 1818 } 1819 igvn.optimize(); 1820 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1821 1822 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1823 if (C->major_progress()) { 1824 C->clear_major_progress(); // ensure that major progress is now clear 1825 } 1826 } 1827 } 1828 1829 // StringOpts and late inlining of string methods 1830 void Compile::inline_string_calls(bool parse_time) { 1831 { 1832 // remove useless nodes to make the usage analysis simpler 1833 ResourceMark rm; 1834 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 1835 } 1836 1837 { 1838 ResourceMark rm; 1839 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1840 PhaseStringOpts pso(initial_gvn()); 1841 print_method(PHASE_AFTER_STRINGOPTS, 3); 1842 } 1843 1844 // now inline anything that we skipped the first time around 1845 if (!parse_time) { 1846 _late_inlines_pos = _late_inlines.length(); 1847 } 1848 1849 while (_string_late_inlines.length() > 0) { 1850 CallGenerator* cg = _string_late_inlines.pop(); 1851 cg->do_late_inline(); 1852 if (failing()) return; 1853 } 1854 _string_late_inlines.trunc_to(0); 1855 } 1856 1857 // Late inlining of boxing methods 1858 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 1859 if (_boxing_late_inlines.length() > 0) { 1860 assert(has_boxed_value(), "inconsistent"); 1861 1862 PhaseGVN* gvn = initial_gvn(); 1863 set_inlining_incrementally(true); 1864 1865 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 1866 for_igvn()->clear(); 1867 gvn->replace_with(&igvn); 1868 1869 _late_inlines_pos = _late_inlines.length(); 1870 1871 while (_boxing_late_inlines.length() > 0) { 1872 CallGenerator* cg = _boxing_late_inlines.pop(); 1873 cg->do_late_inline(); 1874 if (failing()) return; 1875 } 1876 _boxing_late_inlines.trunc_to(0); 1877 1878 inline_incrementally_cleanup(igvn); 1879 1880 set_inlining_incrementally(false); 1881 } 1882 } 1883 1884 bool Compile::inline_incrementally_one() { 1885 assert(IncrementalInline, "incremental inlining should be on"); 1886 1887 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 1888 1889 set_inlining_progress(false); 1890 set_do_cleanup(false); 1891 1892 for (int i = 0; i < _late_inlines.length(); i++) { 1893 _late_inlines_pos = i+1; 1894 CallGenerator* cg = _late_inlines.at(i); 1895 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 1896 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 1897 cg->do_late_inline(); 1898 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 1899 if (failing()) { 1900 return false; 1901 } else if (inlining_progress()) { 1902 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 1903 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 1904 break; // process one call site at a time 1905 } 1906 } else { 1907 // Ignore late inline direct calls when inlining is not allowed. 1908 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 1909 } 1910 } 1911 // Remove processed elements. 1912 _late_inlines.remove_till(_late_inlines_pos); 1913 _late_inlines_pos = 0; 1914 1915 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 1916 1917 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 1918 1919 set_inlining_progress(false); 1920 set_do_cleanup(false); 1921 1922 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 1923 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 1924 } 1925 1926 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 1927 { 1928 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 1929 ResourceMark rm; 1930 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 1931 } 1932 { 1933 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 1934 igvn = PhaseIterGVN(initial_gvn()); 1935 igvn.optimize(); 1936 } 1937 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 1938 } 1939 1940 // Perform incremental inlining until bound on number of live nodes is reached 1941 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 1942 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 1943 1944 set_inlining_incrementally(true); 1945 uint low_live_nodes = 0; 1946 1947 while (_late_inlines.length() > 0) { 1948 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 1949 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 1950 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 1951 // PhaseIdealLoop is expensive so we only try it once we are 1952 // out of live nodes and we only try it again if the previous 1953 // helped got the number of nodes down significantly 1954 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 1955 if (failing()) return; 1956 low_live_nodes = live_nodes(); 1957 _major_progress = true; 1958 } 1959 1960 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 1961 bool do_print_inlining = print_inlining() || print_intrinsics(); 1962 if (do_print_inlining || log() != NULL) { 1963 // Print inlining message for candidates that we couldn't inline for lack of space. 1964 for (int i = 0; i < _late_inlines.length(); i++) { 1965 CallGenerator* cg = _late_inlines.at(i); 1966 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 1967 if (do_print_inlining) { 1968 cg->print_inlining_late(msg); 1969 } 1970 log_late_inline_failure(cg, msg); 1971 } 1972 } 1973 break; // finish 1974 } 1975 } 1976 1977 for_igvn()->clear(); 1978 initial_gvn()->replace_with(&igvn); 1979 1980 while (inline_incrementally_one()) { 1981 assert(!failing(), "inconsistent"); 1982 } 1983 if (failing()) return; 1984 1985 inline_incrementally_cleanup(igvn); 1986 1987 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 1988 1989 if (failing()) return; 1990 1991 if (_late_inlines.length() == 0) { 1992 break; // no more progress 1993 } 1994 } 1995 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 1996 1997 if (_string_late_inlines.length() > 0) { 1998 assert(has_stringbuilder(), "inconsistent"); 1999 for_igvn()->clear(); 2000 initial_gvn()->replace_with(&igvn); 2001 2002 inline_string_calls(false); 2003 2004 if (failing()) return; 2005 2006 inline_incrementally_cleanup(igvn); 2007 } 2008 2009 set_inlining_incrementally(false); 2010 } 2011 2012 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2013 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2014 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2015 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == NULL" 2016 // as if "inlining_incrementally() == true" were set. 2017 assert(inlining_incrementally() == false, "not allowed"); 2018 assert(_modified_nodes == NULL, "not allowed"); 2019 assert(_late_inlines.length() > 0, "sanity"); 2020 2021 while (_late_inlines.length() > 0) { 2022 for_igvn()->clear(); 2023 initial_gvn()->replace_with(&igvn); 2024 2025 while (inline_incrementally_one()) { 2026 assert(!failing(), "inconsistent"); 2027 } 2028 if (failing()) return; 2029 2030 inline_incrementally_cleanup(igvn); 2031 } 2032 } 2033 2034 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2035 if (_loop_opts_cnt > 0) { 2036 debug_only( int cnt = 0; ); 2037 while (major_progress() && (_loop_opts_cnt > 0)) { 2038 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2039 assert( cnt++ < 40, "infinite cycle in loop optimization" ); 2040 PhaseIdealLoop::optimize(igvn, mode); 2041 _loop_opts_cnt--; 2042 if (failing()) return false; 2043 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2044 } 2045 } 2046 return true; 2047 } 2048 2049 // Remove edges from "root" to each SafePoint at a backward branch. 2050 // They were inserted during parsing (see add_safepoint()) to make 2051 // infinite loops without calls or exceptions visible to root, i.e., 2052 // useful. 2053 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2054 Node *r = root(); 2055 if (r != NULL) { 2056 for (uint i = r->req(); i < r->len(); ++i) { 2057 Node *n = r->in(i); 2058 if (n != NULL && n->is_SafePoint()) { 2059 r->rm_prec(i); 2060 if (n->outcnt() == 0) { 2061 igvn.remove_dead_node(n); 2062 } 2063 --i; 2064 } 2065 } 2066 // Parsing may have added top inputs to the root node (Path 2067 // leading to the Halt node proven dead). Make sure we get a 2068 // chance to clean them up. 2069 igvn._worklist.push(r); 2070 igvn.optimize(); 2071 } 2072 } 2073 2074 //------------------------------Optimize--------------------------------------- 2075 // Given a graph, optimize it. 2076 void Compile::Optimize() { 2077 TracePhase tp("optimizer", &timers[_t_optimizer]); 2078 2079 #ifndef PRODUCT 2080 if (env()->break_at_compile()) { 2081 BREAKPOINT; 2082 } 2083 2084 #endif 2085 2086 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2087 #ifdef ASSERT 2088 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2089 #endif 2090 2091 ResourceMark rm; 2092 2093 print_inlining_reinit(); 2094 2095 NOT_PRODUCT( verify_graph_edges(); ) 2096 2097 print_method(PHASE_AFTER_PARSING, 1); 2098 2099 { 2100 // Iterative Global Value Numbering, including ideal transforms 2101 // Initialize IterGVN with types and values from parse-time GVN 2102 PhaseIterGVN igvn(initial_gvn()); 2103 #ifdef ASSERT 2104 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2105 #endif 2106 { 2107 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2108 igvn.optimize(); 2109 } 2110 2111 if (failing()) return; 2112 2113 print_method(PHASE_ITER_GVN1, 2); 2114 2115 inline_incrementally(igvn); 2116 2117 print_method(PHASE_INCREMENTAL_INLINE, 2); 2118 2119 if (failing()) return; 2120 2121 if (eliminate_boxing()) { 2122 // Inline valueOf() methods now. 2123 inline_boxing_calls(igvn); 2124 2125 if (AlwaysIncrementalInline) { 2126 inline_incrementally(igvn); 2127 } 2128 2129 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2130 2131 if (failing()) return; 2132 } 2133 2134 // Remove the speculative part of types and clean up the graph from 2135 // the extra CastPP nodes whose only purpose is to carry them. Do 2136 // that early so that optimizations are not disrupted by the extra 2137 // CastPP nodes. 2138 remove_speculative_types(igvn); 2139 2140 // No more new expensive nodes will be added to the list from here 2141 // so keep only the actual candidates for optimizations. 2142 cleanup_expensive_nodes(igvn); 2143 2144 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2145 if (EnableVectorSupport && has_vbox_nodes()) { 2146 TracePhase tp("", &timers[_t_vector]); 2147 PhaseVector pv(igvn); 2148 pv.optimize_vector_boxes(); 2149 2150 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2151 } 2152 assert(!has_vbox_nodes(), "sanity"); 2153 2154 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2155 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2156 initial_gvn()->replace_with(&igvn); 2157 Unique_Node_List* old_worklist = for_igvn(); 2158 old_worklist->clear(); 2159 Unique_Node_List new_worklist(C->comp_arena()); 2160 { 2161 ResourceMark rm; 2162 PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist); 2163 } 2164 Unique_Node_List* save_for_igvn = for_igvn(); 2165 set_for_igvn(&new_worklist); 2166 igvn = PhaseIterGVN(initial_gvn()); 2167 igvn.optimize(); 2168 set_for_igvn(old_worklist); // new_worklist is dead beyond this point 2169 } 2170 2171 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2172 // safepoints 2173 remove_root_to_sfpts_edges(igvn); 2174 2175 // Perform escape analysis 2176 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2177 if (has_loops()) { 2178 // Cleanup graph (remove dead nodes). 2179 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2180 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2181 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2182 if (failing()) return; 2183 } 2184 bool progress; 2185 do { 2186 ConnectionGraph::do_analysis(this, &igvn); 2187 2188 if (failing()) return; 2189 2190 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2191 2192 // Optimize out fields loads from scalar replaceable allocations. 2193 igvn.optimize(); 2194 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2195 2196 if (failing()) return; 2197 2198 if (congraph() != NULL && macro_count() > 0) { 2199 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2200 PhaseMacroExpand mexp(igvn); 2201 mexp.eliminate_macro_nodes(); 2202 igvn.set_delay_transform(false); 2203 2204 igvn.optimize(); 2205 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2206 2207 if (failing()) return; 2208 } 2209 progress = do_iterative_escape_analysis() && 2210 (macro_count() < mcount) && 2211 ConnectionGraph::has_candidates(this); 2212 // Try again if candidates exist and made progress 2213 // by removing some allocations and/or locks. 2214 } while (progress); 2215 } 2216 2217 // Loop transforms on the ideal graph. Range Check Elimination, 2218 // peeling, unrolling, etc. 2219 2220 // Set loop opts counter 2221 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2222 { 2223 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2224 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2225 _loop_opts_cnt--; 2226 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2227 if (failing()) return; 2228 } 2229 // Loop opts pass if partial peeling occurred in previous pass 2230 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2231 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2232 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2233 _loop_opts_cnt--; 2234 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2235 if (failing()) return; 2236 } 2237 // Loop opts pass for loop-unrolling before CCP 2238 if(major_progress() && (_loop_opts_cnt > 0)) { 2239 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2240 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2241 _loop_opts_cnt--; 2242 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2243 } 2244 if (!failing()) { 2245 // Verify that last round of loop opts produced a valid graph 2246 PhaseIdealLoop::verify(igvn); 2247 } 2248 } 2249 if (failing()) return; 2250 2251 // Conditional Constant Propagation; 2252 PhaseCCP ccp( &igvn ); 2253 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2254 { 2255 TracePhase tp("ccp", &timers[_t_ccp]); 2256 ccp.do_transform(); 2257 } 2258 print_method(PHASE_CCP1, 2); 2259 2260 assert( true, "Break here to ccp.dump_old2new_map()"); 2261 2262 // Iterative Global Value Numbering, including ideal transforms 2263 { 2264 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2265 igvn = ccp; 2266 igvn.optimize(); 2267 } 2268 print_method(PHASE_ITER_GVN2, 2); 2269 2270 if (failing()) return; 2271 2272 // Loop transforms on the ideal graph. Range Check Elimination, 2273 // peeling, unrolling, etc. 2274 if (!optimize_loops(igvn, LoopOptsDefault)) { 2275 return; 2276 } 2277 2278 if (failing()) return; 2279 2280 C->clear_major_progress(); // ensure that major progress is now clear 2281 2282 process_for_post_loop_opts_igvn(igvn); 2283 2284 #ifdef ASSERT 2285 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2286 #endif 2287 2288 { 2289 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2290 PhaseMacroExpand mex(igvn); 2291 if (mex.expand_macro_nodes()) { 2292 assert(failing(), "must bail out w/ explicit message"); 2293 return; 2294 } 2295 print_method(PHASE_MACRO_EXPANSION, 2); 2296 } 2297 2298 { 2299 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]); 2300 if (bs->expand_barriers(this, igvn)) { 2301 assert(failing(), "must bail out w/ explicit message"); 2302 return; 2303 } 2304 print_method(PHASE_BARRIER_EXPANSION, 2); 2305 } 2306 2307 if (C->max_vector_size() > 0) { 2308 C->optimize_logic_cones(igvn); 2309 igvn.optimize(); 2310 } 2311 2312 DEBUG_ONLY( _modified_nodes = NULL; ) 2313 2314 assert(igvn._worklist.size() == 0, "not empty"); 2315 2316 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2317 2318 if (_late_inlines.length() > 0) { 2319 // More opportunities to optimize virtual and MH calls. 2320 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2321 process_late_inline_calls_no_inline(igvn); 2322 } 2323 } // (End scope of igvn; run destructor if necessary for asserts.) 2324 2325 check_no_dead_use(); 2326 2327 process_print_inlining(); 2328 2329 // A method with only infinite loops has no edges entering loops from root 2330 { 2331 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2332 if (final_graph_reshaping()) { 2333 assert(failing(), "must bail out w/ explicit message"); 2334 return; 2335 } 2336 } 2337 2338 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2339 DEBUG_ONLY(set_phase_optimize_finished();) 2340 } 2341 2342 #ifdef ASSERT 2343 void Compile::check_no_dead_use() const { 2344 ResourceMark rm; 2345 Unique_Node_List wq; 2346 wq.push(root()); 2347 for (uint i = 0; i < wq.size(); ++i) { 2348 Node* n = wq.at(i); 2349 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2350 Node* u = n->fast_out(j); 2351 if (u->outcnt() == 0 && !u->is_Con()) { 2352 u->dump(); 2353 fatal("no reachable node should have no use"); 2354 } 2355 wq.push(u); 2356 } 2357 } 2358 } 2359 #endif 2360 2361 void Compile::inline_vector_reboxing_calls() { 2362 if (C->_vector_reboxing_late_inlines.length() > 0) { 2363 _late_inlines_pos = C->_late_inlines.length(); 2364 while (_vector_reboxing_late_inlines.length() > 0) { 2365 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2366 cg->do_late_inline(); 2367 if (failing()) return; 2368 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2369 } 2370 _vector_reboxing_late_inlines.trunc_to(0); 2371 } 2372 } 2373 2374 bool Compile::has_vbox_nodes() { 2375 if (C->_vector_reboxing_late_inlines.length() > 0) { 2376 return true; 2377 } 2378 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2379 Node * n = C->macro_node(macro_idx); 2380 assert(n->is_macro(), "only macro nodes expected here"); 2381 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2382 return true; 2383 } 2384 } 2385 return false; 2386 } 2387 2388 //---------------------------- Bitwise operation packing optimization --------------------------- 2389 2390 static bool is_vector_unary_bitwise_op(Node* n) { 2391 return n->Opcode() == Op_XorV && 2392 VectorNode::is_vector_bitwise_not_pattern(n); 2393 } 2394 2395 static bool is_vector_binary_bitwise_op(Node* n) { 2396 switch (n->Opcode()) { 2397 case Op_AndV: 2398 case Op_OrV: 2399 return true; 2400 2401 case Op_XorV: 2402 return !is_vector_unary_bitwise_op(n); 2403 2404 default: 2405 return false; 2406 } 2407 } 2408 2409 static bool is_vector_ternary_bitwise_op(Node* n) { 2410 return n->Opcode() == Op_MacroLogicV; 2411 } 2412 2413 static bool is_vector_bitwise_op(Node* n) { 2414 return is_vector_unary_bitwise_op(n) || 2415 is_vector_binary_bitwise_op(n) || 2416 is_vector_ternary_bitwise_op(n); 2417 } 2418 2419 static bool is_vector_bitwise_cone_root(Node* n) { 2420 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2421 return false; 2422 } 2423 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2424 if (is_vector_bitwise_op(n->fast_out(i))) { 2425 return false; 2426 } 2427 } 2428 return true; 2429 } 2430 2431 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2432 uint cnt = 0; 2433 if (is_vector_bitwise_op(n)) { 2434 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2435 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2436 for (uint i = 1; i < inp_cnt; i++) { 2437 Node* in = n->in(i); 2438 bool skip = VectorNode::is_all_ones_vector(in); 2439 if (!skip && !inputs.member(in)) { 2440 inputs.push(in); 2441 cnt++; 2442 } 2443 } 2444 assert(cnt <= 1, "not unary"); 2445 } else { 2446 uint last_req = inp_cnt; 2447 if (is_vector_ternary_bitwise_op(n)) { 2448 last_req = inp_cnt - 1; // skip last input 2449 } 2450 for (uint i = 1; i < last_req; i++) { 2451 Node* def = n->in(i); 2452 if (!inputs.member(def)) { 2453 inputs.push(def); 2454 cnt++; 2455 } 2456 } 2457 } 2458 } else { // not a bitwise operations 2459 if (!inputs.member(n)) { 2460 inputs.push(n); 2461 cnt++; 2462 } 2463 } 2464 return cnt; 2465 } 2466 2467 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2468 Unique_Node_List useful_nodes; 2469 C->identify_useful_nodes(useful_nodes); 2470 2471 for (uint i = 0; i < useful_nodes.size(); i++) { 2472 Node* n = useful_nodes.at(i); 2473 if (is_vector_bitwise_cone_root(n)) { 2474 list.push(n); 2475 } 2476 } 2477 } 2478 2479 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2480 const TypeVect* vt, 2481 Unique_Node_List& partition, 2482 Unique_Node_List& inputs) { 2483 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2484 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2485 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2486 2487 Node* in1 = inputs.at(0); 2488 Node* in2 = inputs.at(1); 2489 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2490 2491 uint func = compute_truth_table(partition, inputs); 2492 2493 Node* pn = partition.at(partition.size() - 1); 2494 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : NULL; 2495 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2496 } 2497 2498 static uint extract_bit(uint func, uint pos) { 2499 return (func & (1 << pos)) >> pos; 2500 } 2501 2502 // 2503 // A macro logic node represents a truth table. It has 4 inputs, 2504 // First three inputs corresponds to 3 columns of a truth table 2505 // and fourth input captures the logic function. 2506 // 2507 // eg. fn = (in1 AND in2) OR in3; 2508 // 2509 // MacroNode(in1,in2,in3,fn) 2510 // 2511 // ----------------- 2512 // in1 in2 in3 fn 2513 // ----------------- 2514 // 0 0 0 0 2515 // 0 0 1 1 2516 // 0 1 0 0 2517 // 0 1 1 1 2518 // 1 0 0 0 2519 // 1 0 1 1 2520 // 1 1 0 1 2521 // 1 1 1 1 2522 // 2523 2524 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2525 int res = 0; 2526 for (int i = 0; i < 8; i++) { 2527 int bit1 = extract_bit(in1, i); 2528 int bit2 = extract_bit(in2, i); 2529 int bit3 = extract_bit(in3, i); 2530 2531 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2532 int func_bit = extract_bit(func, func_bit_pos); 2533 2534 res |= func_bit << i; 2535 } 2536 return res; 2537 } 2538 2539 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2540 assert(n != NULL, ""); 2541 assert(eval_map.contains(n), "absent"); 2542 return *(eval_map.get(n)); 2543 } 2544 2545 static void eval_operands(Node* n, 2546 uint& func1, uint& func2, uint& func3, 2547 ResourceHashtable<Node*,uint>& eval_map) { 2548 assert(is_vector_bitwise_op(n), ""); 2549 2550 if (is_vector_unary_bitwise_op(n)) { 2551 Node* opnd = n->in(1); 2552 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2553 opnd = n->in(2); 2554 } 2555 func1 = eval_operand(opnd, eval_map); 2556 } else if (is_vector_binary_bitwise_op(n)) { 2557 func1 = eval_operand(n->in(1), eval_map); 2558 func2 = eval_operand(n->in(2), eval_map); 2559 } else { 2560 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2561 func1 = eval_operand(n->in(1), eval_map); 2562 func2 = eval_operand(n->in(2), eval_map); 2563 func3 = eval_operand(n->in(3), eval_map); 2564 } 2565 } 2566 2567 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2568 assert(inputs.size() <= 3, "sanity"); 2569 ResourceMark rm; 2570 uint res = 0; 2571 ResourceHashtable<Node*,uint> eval_map; 2572 2573 // Populate precomputed functions for inputs. 2574 // Each input corresponds to one column of 3 input truth-table. 2575 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2576 0xCC, // (_, b, _) -> b 2577 0xF0 }; // (a, _, _) -> a 2578 for (uint i = 0; i < inputs.size(); i++) { 2579 eval_map.put(inputs.at(i), input_funcs[2-i]); 2580 } 2581 2582 for (uint i = 0; i < partition.size(); i++) { 2583 Node* n = partition.at(i); 2584 2585 uint func1 = 0, func2 = 0, func3 = 0; 2586 eval_operands(n, func1, func2, func3, eval_map); 2587 2588 switch (n->Opcode()) { 2589 case Op_OrV: 2590 assert(func3 == 0, "not binary"); 2591 res = func1 | func2; 2592 break; 2593 case Op_AndV: 2594 assert(func3 == 0, "not binary"); 2595 res = func1 & func2; 2596 break; 2597 case Op_XorV: 2598 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2599 assert(func2 == 0 && func3 == 0, "not unary"); 2600 res = (~func1) & 0xFF; 2601 } else { 2602 assert(func3 == 0, "not binary"); 2603 res = func1 ^ func2; 2604 } 2605 break; 2606 case Op_MacroLogicV: 2607 // Ordering of inputs may change during evaluation of sub-tree 2608 // containing MacroLogic node as a child node, thus a re-evaluation 2609 // makes sure that function is evaluated in context of current 2610 // inputs. 2611 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2612 break; 2613 2614 default: assert(false, "not supported: %s", n->Name()); 2615 } 2616 assert(res <= 0xFF, "invalid"); 2617 eval_map.put(n, res); 2618 } 2619 return res; 2620 } 2621 2622 // Criteria under which nodes gets packed into a macro logic node:- 2623 // 1) Parent and both child nodes are all unmasked or masked with 2624 // same predicates. 2625 // 2) Masked parent can be packed with left child if it is predicated 2626 // and both have same predicates. 2627 // 3) Masked parent can be packed with right child if its un-predicated 2628 // or has matching predication condition. 2629 // 4) An unmasked parent can be packed with an unmasked child. 2630 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2631 assert(partition.size() == 0, "not empty"); 2632 assert(inputs.size() == 0, "not empty"); 2633 if (is_vector_ternary_bitwise_op(n)) { 2634 return false; 2635 } 2636 2637 bool is_unary_op = is_vector_unary_bitwise_op(n); 2638 if (is_unary_op) { 2639 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2640 return false; // too few inputs 2641 } 2642 2643 bool pack_left_child = true; 2644 bool pack_right_child = true; 2645 2646 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2647 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2648 2649 int left_child_input_cnt = 0; 2650 int right_child_input_cnt = 0; 2651 2652 bool parent_is_predicated = n->is_predicated_vector(); 2653 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2654 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2655 2656 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : NULL; 2657 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : NULL; 2658 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : NULL; 2659 2660 do { 2661 if (pack_left_child && left_child_LOP && 2662 ((!parent_is_predicated && !left_child_predicated) || 2663 ((parent_is_predicated && left_child_predicated && 2664 parent_pred == left_child_pred)))) { 2665 partition.push(n->in(1)); 2666 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2667 } else { 2668 inputs.push(n->in(1)); 2669 left_child_input_cnt = 1; 2670 } 2671 2672 if (pack_right_child && right_child_LOP && 2673 (!right_child_predicated || 2674 (right_child_predicated && parent_is_predicated && 2675 parent_pred == right_child_pred))) { 2676 partition.push(n->in(2)); 2677 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2678 } else { 2679 inputs.push(n->in(2)); 2680 right_child_input_cnt = 1; 2681 } 2682 2683 if (inputs.size() > 3) { 2684 assert(partition.size() > 0, ""); 2685 inputs.clear(); 2686 partition.clear(); 2687 if (left_child_input_cnt > right_child_input_cnt) { 2688 pack_left_child = false; 2689 } else { 2690 pack_right_child = false; 2691 } 2692 } else { 2693 break; 2694 } 2695 } while(true); 2696 2697 if(partition.size()) { 2698 partition.push(n); 2699 } 2700 2701 return (partition.size() == 2 || partition.size() == 3) && 2702 (inputs.size() == 2 || inputs.size() == 3); 2703 } 2704 2705 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2706 assert(is_vector_bitwise_op(n), "not a root"); 2707 2708 visited.set(n->_idx); 2709 2710 // 1) Do a DFS walk over the logic cone. 2711 for (uint i = 1; i < n->req(); i++) { 2712 Node* in = n->in(i); 2713 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2714 process_logic_cone_root(igvn, in, visited); 2715 } 2716 } 2717 2718 // 2) Bottom up traversal: Merge node[s] with 2719 // the parent to form macro logic node. 2720 Unique_Node_List partition; 2721 Unique_Node_List inputs; 2722 if (compute_logic_cone(n, partition, inputs)) { 2723 const TypeVect* vt = n->bottom_type()->is_vect(); 2724 Node* pn = partition.at(partition.size() - 1); 2725 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : NULL; 2726 if (mask == NULL || 2727 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2728 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2729 #ifdef ASSERT 2730 if (TraceNewVectors) { 2731 tty->print("new Vector node: "); 2732 macro_logic->dump(); 2733 } 2734 #endif 2735 igvn.replace_node(n, macro_logic); 2736 } 2737 } 2738 } 2739 2740 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2741 ResourceMark rm; 2742 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2743 Unique_Node_List list; 2744 collect_logic_cone_roots(list); 2745 2746 while (list.size() > 0) { 2747 Node* n = list.pop(); 2748 const TypeVect* vt = n->bottom_type()->is_vect(); 2749 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2750 if (supported) { 2751 VectorSet visited(comp_arena()); 2752 process_logic_cone_root(igvn, n, visited); 2753 } 2754 } 2755 } 2756 } 2757 2758 //------------------------------Code_Gen--------------------------------------- 2759 // Given a graph, generate code for it 2760 void Compile::Code_Gen() { 2761 if (failing()) { 2762 return; 2763 } 2764 2765 // Perform instruction selection. You might think we could reclaim Matcher 2766 // memory PDQ, but actually the Matcher is used in generating spill code. 2767 // Internals of the Matcher (including some VectorSets) must remain live 2768 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2769 // set a bit in reclaimed memory. 2770 2771 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2772 // nodes. Mapping is only valid at the root of each matched subtree. 2773 NOT_PRODUCT( verify_graph_edges(); ) 2774 2775 Matcher matcher; 2776 _matcher = &matcher; 2777 { 2778 TracePhase tp("matcher", &timers[_t_matcher]); 2779 matcher.match(); 2780 if (failing()) { 2781 return; 2782 } 2783 } 2784 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2785 // nodes. Mapping is only valid at the root of each matched subtree. 2786 NOT_PRODUCT( verify_graph_edges(); ) 2787 2788 // If you have too many nodes, or if matching has failed, bail out 2789 check_node_count(0, "out of nodes matching instructions"); 2790 if (failing()) { 2791 return; 2792 } 2793 2794 print_method(PHASE_MATCHING, 2); 2795 2796 // Build a proper-looking CFG 2797 PhaseCFG cfg(node_arena(), root(), matcher); 2798 _cfg = &cfg; 2799 { 2800 TracePhase tp("scheduler", &timers[_t_scheduler]); 2801 bool success = cfg.do_global_code_motion(); 2802 if (!success) { 2803 return; 2804 } 2805 2806 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2807 NOT_PRODUCT( verify_graph_edges(); ) 2808 cfg.verify(); 2809 } 2810 2811 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2812 _regalloc = ®alloc; 2813 { 2814 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 2815 // Perform register allocation. After Chaitin, use-def chains are 2816 // no longer accurate (at spill code) and so must be ignored. 2817 // Node->LRG->reg mappings are still accurate. 2818 _regalloc->Register_Allocate(); 2819 2820 // Bail out if the allocator builds too many nodes 2821 if (failing()) { 2822 return; 2823 } 2824 } 2825 2826 // Prior to register allocation we kept empty basic blocks in case the 2827 // the allocator needed a place to spill. After register allocation we 2828 // are not adding any new instructions. If any basic block is empty, we 2829 // can now safely remove it. 2830 { 2831 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 2832 cfg.remove_empty_blocks(); 2833 if (do_freq_based_layout()) { 2834 PhaseBlockLayout layout(cfg); 2835 } else { 2836 cfg.set_loop_alignment(); 2837 } 2838 cfg.fixup_flow(); 2839 } 2840 2841 // Apply peephole optimizations 2842 if( OptoPeephole ) { 2843 TracePhase tp("peephole", &timers[_t_peephole]); 2844 PhasePeephole peep( _regalloc, cfg); 2845 peep.do_transform(); 2846 } 2847 2848 // Do late expand if CPU requires this. 2849 if (Matcher::require_postalloc_expand) { 2850 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 2851 cfg.postalloc_expand(_regalloc); 2852 } 2853 2854 // Convert Nodes to instruction bits in a buffer 2855 { 2856 TracePhase tp("output", &timers[_t_output]); 2857 PhaseOutput output; 2858 output.Output(); 2859 if (failing()) return; 2860 output.install(); 2861 } 2862 2863 print_method(PHASE_FINAL_CODE, 1); 2864 2865 // He's dead, Jim. 2866 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 2867 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 2868 } 2869 2870 //------------------------------Final_Reshape_Counts--------------------------- 2871 // This class defines counters to help identify when a method 2872 // may/must be executed using hardware with only 24-bit precision. 2873 struct Final_Reshape_Counts : public StackObj { 2874 int _call_count; // count non-inlined 'common' calls 2875 int _float_count; // count float ops requiring 24-bit precision 2876 int _double_count; // count double ops requiring more precision 2877 int _java_call_count; // count non-inlined 'java' calls 2878 int _inner_loop_count; // count loops which need alignment 2879 VectorSet _visited; // Visitation flags 2880 Node_List _tests; // Set of IfNodes & PCTableNodes 2881 2882 Final_Reshape_Counts() : 2883 _call_count(0), _float_count(0), _double_count(0), 2884 _java_call_count(0), _inner_loop_count(0) { } 2885 2886 void inc_call_count () { _call_count ++; } 2887 void inc_float_count () { _float_count ++; } 2888 void inc_double_count() { _double_count++; } 2889 void inc_java_call_count() { _java_call_count++; } 2890 void inc_inner_loop_count() { _inner_loop_count++; } 2891 2892 int get_call_count () const { return _call_count ; } 2893 int get_float_count () const { return _float_count ; } 2894 int get_double_count() const { return _double_count; } 2895 int get_java_call_count() const { return _java_call_count; } 2896 int get_inner_loop_count() const { return _inner_loop_count; } 2897 }; 2898 2899 // Eliminate trivially redundant StoreCMs and accumulate their 2900 // precedence edges. 2901 void Compile::eliminate_redundant_card_marks(Node* n) { 2902 assert(n->Opcode() == Op_StoreCM, "expected StoreCM"); 2903 if (n->in(MemNode::Address)->outcnt() > 1) { 2904 // There are multiple users of the same address so it might be 2905 // possible to eliminate some of the StoreCMs 2906 Node* mem = n->in(MemNode::Memory); 2907 Node* adr = n->in(MemNode::Address); 2908 Node* val = n->in(MemNode::ValueIn); 2909 Node* prev = n; 2910 bool done = false; 2911 // Walk the chain of StoreCMs eliminating ones that match. As 2912 // long as it's a chain of single users then the optimization is 2913 // safe. Eliminating partially redundant StoreCMs would require 2914 // cloning copies down the other paths. 2915 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) { 2916 if (adr == mem->in(MemNode::Address) && 2917 val == mem->in(MemNode::ValueIn)) { 2918 // redundant StoreCM 2919 if (mem->req() > MemNode::OopStore) { 2920 // Hasn't been processed by this code yet. 2921 n->add_prec(mem->in(MemNode::OopStore)); 2922 } else { 2923 // Already converted to precedence edge 2924 for (uint i = mem->req(); i < mem->len(); i++) { 2925 // Accumulate any precedence edges 2926 if (mem->in(i) != NULL) { 2927 n->add_prec(mem->in(i)); 2928 } 2929 } 2930 // Everything above this point has been processed. 2931 done = true; 2932 } 2933 // Eliminate the previous StoreCM 2934 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory)); 2935 assert(mem->outcnt() == 0, "should be dead"); 2936 mem->disconnect_inputs(this); 2937 } else { 2938 prev = mem; 2939 } 2940 mem = prev->in(MemNode::Memory); 2941 } 2942 } 2943 } 2944 2945 //------------------------------final_graph_reshaping_impl---------------------- 2946 // Implement items 1-5 from final_graph_reshaping below. 2947 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) { 2948 2949 if ( n->outcnt() == 0 ) return; // dead node 2950 uint nop = n->Opcode(); 2951 2952 // Check for 2-input instruction with "last use" on right input. 2953 // Swap to left input. Implements item (2). 2954 if( n->req() == 3 && // two-input instruction 2955 n->in(1)->outcnt() > 1 && // left use is NOT a last use 2956 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 2957 n->in(2)->outcnt() == 1 &&// right use IS a last use 2958 !n->in(2)->is_Con() ) { // right use is not a constant 2959 // Check for commutative opcode 2960 switch( nop ) { 2961 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 2962 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 2963 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 2964 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 2965 case Op_AndL: case Op_XorL: case Op_OrL: 2966 case Op_AndI: case Op_XorI: case Op_OrI: { 2967 // Move "last use" input to left by swapping inputs 2968 n->swap_edges(1, 2); 2969 break; 2970 } 2971 default: 2972 break; 2973 } 2974 } 2975 2976 #ifdef ASSERT 2977 if( n->is_Mem() ) { 2978 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 2979 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw || 2980 // oop will be recorded in oop map if load crosses safepoint 2981 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 2982 LoadNode::is_immutable_value(n->in(MemNode::Address))), 2983 "raw memory operations should have control edge"); 2984 } 2985 if (n->is_MemBar()) { 2986 MemBarNode* mb = n->as_MemBar(); 2987 if (mb->trailing_store() || mb->trailing_load_store()) { 2988 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 2989 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 2990 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 2991 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 2992 } else if (mb->leading()) { 2993 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 2994 } 2995 } 2996 #endif 2997 // Count FPU ops and common calls, implements item (3) 2998 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop); 2999 if (!gc_handled) { 3000 final_graph_reshaping_main_switch(n, frc, nop); 3001 } 3002 3003 // Collect CFG split points 3004 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3005 frc._tests.push(n); 3006 } 3007 } 3008 3009 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) { 3010 switch( nop ) { 3011 // Count all float operations that may use FPU 3012 case Op_AddF: 3013 case Op_SubF: 3014 case Op_MulF: 3015 case Op_DivF: 3016 case Op_NegF: 3017 case Op_ModF: 3018 case Op_ConvI2F: 3019 case Op_ConF: 3020 case Op_CmpF: 3021 case Op_CmpF3: 3022 case Op_StoreF: 3023 case Op_LoadF: 3024 // case Op_ConvL2F: // longs are split into 32-bit halves 3025 frc.inc_float_count(); 3026 break; 3027 3028 case Op_ConvF2D: 3029 case Op_ConvD2F: 3030 frc.inc_float_count(); 3031 frc.inc_double_count(); 3032 break; 3033 3034 // Count all double operations that may use FPU 3035 case Op_AddD: 3036 case Op_SubD: 3037 case Op_MulD: 3038 case Op_DivD: 3039 case Op_NegD: 3040 case Op_ModD: 3041 case Op_ConvI2D: 3042 case Op_ConvD2I: 3043 // case Op_ConvL2D: // handled by leaf call 3044 // case Op_ConvD2L: // handled by leaf call 3045 case Op_ConD: 3046 case Op_CmpD: 3047 case Op_CmpD3: 3048 case Op_StoreD: 3049 case Op_LoadD: 3050 case Op_LoadD_unaligned: 3051 frc.inc_double_count(); 3052 break; 3053 case Op_Opaque1: // Remove Opaque Nodes before matching 3054 case Op_Opaque2: // Remove Opaque Nodes before matching 3055 case Op_Opaque3: 3056 n->subsume_by(n->in(1), this); 3057 break; 3058 case Op_CallStaticJava: 3059 case Op_CallJava: 3060 case Op_CallDynamicJava: 3061 frc.inc_java_call_count(); // Count java call site; 3062 case Op_CallRuntime: 3063 case Op_CallLeaf: 3064 case Op_CallLeafVector: 3065 case Op_CallNative: 3066 case Op_CallLeafNoFP: { 3067 assert (n->is_Call(), ""); 3068 CallNode *call = n->as_Call(); 3069 // Count call sites where the FP mode bit would have to be flipped. 3070 // Do not count uncommon runtime calls: 3071 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3072 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3073 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3074 frc.inc_call_count(); // Count the call site 3075 } else { // See if uncommon argument is shared 3076 Node *n = call->in(TypeFunc::Parms); 3077 int nop = n->Opcode(); 3078 // Clone shared simple arguments to uncommon calls, item (1). 3079 if (n->outcnt() > 1 && 3080 !n->is_Proj() && 3081 nop != Op_CreateEx && 3082 nop != Op_CheckCastPP && 3083 nop != Op_DecodeN && 3084 nop != Op_DecodeNKlass && 3085 !n->is_Mem() && 3086 !n->is_Phi()) { 3087 Node *x = n->clone(); 3088 call->set_req(TypeFunc::Parms, x); 3089 } 3090 } 3091 break; 3092 } 3093 3094 case Op_StoreCM: 3095 { 3096 // Convert OopStore dependence into precedence edge 3097 Node* prec = n->in(MemNode::OopStore); 3098 n->del_req(MemNode::OopStore); 3099 n->add_prec(prec); 3100 eliminate_redundant_card_marks(n); 3101 } 3102 3103 // fall through 3104 3105 case Op_StoreB: 3106 case Op_StoreC: 3107 case Op_StorePConditional: 3108 case Op_StoreI: 3109 case Op_StoreL: 3110 case Op_StoreIConditional: 3111 case Op_StoreLConditional: 3112 case Op_CompareAndSwapB: 3113 case Op_CompareAndSwapS: 3114 case Op_CompareAndSwapI: 3115 case Op_CompareAndSwapL: 3116 case Op_CompareAndSwapP: 3117 case Op_CompareAndSwapN: 3118 case Op_WeakCompareAndSwapB: 3119 case Op_WeakCompareAndSwapS: 3120 case Op_WeakCompareAndSwapI: 3121 case Op_WeakCompareAndSwapL: 3122 case Op_WeakCompareAndSwapP: 3123 case Op_WeakCompareAndSwapN: 3124 case Op_CompareAndExchangeB: 3125 case Op_CompareAndExchangeS: 3126 case Op_CompareAndExchangeI: 3127 case Op_CompareAndExchangeL: 3128 case Op_CompareAndExchangeP: 3129 case Op_CompareAndExchangeN: 3130 case Op_GetAndAddS: 3131 case Op_GetAndAddB: 3132 case Op_GetAndAddI: 3133 case Op_GetAndAddL: 3134 case Op_GetAndSetS: 3135 case Op_GetAndSetB: 3136 case Op_GetAndSetI: 3137 case Op_GetAndSetL: 3138 case Op_GetAndSetP: 3139 case Op_GetAndSetN: 3140 case Op_StoreP: 3141 case Op_StoreN: 3142 case Op_StoreNKlass: 3143 case Op_LoadB: 3144 case Op_LoadUB: 3145 case Op_LoadUS: 3146 case Op_LoadI: 3147 case Op_LoadKlass: 3148 case Op_LoadNKlass: 3149 case Op_LoadL: 3150 case Op_LoadL_unaligned: 3151 case Op_LoadPLocked: 3152 case Op_LoadP: 3153 case Op_LoadN: 3154 case Op_LoadRange: 3155 case Op_LoadS: 3156 break; 3157 3158 case Op_AddP: { // Assert sane base pointers 3159 Node *addp = n->in(AddPNode::Address); 3160 assert( !addp->is_AddP() || 3161 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3162 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3163 "Base pointers must match (addp %u)", addp->_idx ); 3164 #ifdef _LP64 3165 if ((UseCompressedOops || UseCompressedClassPointers) && 3166 addp->Opcode() == Op_ConP && 3167 addp == n->in(AddPNode::Base) && 3168 n->in(AddPNode::Offset)->is_Con()) { 3169 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3170 // on the platform and on the compressed oops mode. 3171 // Use addressing with narrow klass to load with offset on x86. 3172 // Some platforms can use the constant pool to load ConP. 3173 // Do this transformation here since IGVN will convert ConN back to ConP. 3174 const Type* t = addp->bottom_type(); 3175 bool is_oop = t->isa_oopptr() != NULL; 3176 bool is_klass = t->isa_klassptr() != NULL; 3177 3178 if ((is_oop && Matcher::const_oop_prefer_decode() ) || 3179 (is_klass && Matcher::const_klass_prefer_decode())) { 3180 Node* nn = NULL; 3181 3182 int op = is_oop ? Op_ConN : Op_ConNKlass; 3183 3184 // Look for existing ConN node of the same exact type. 3185 Node* r = root(); 3186 uint cnt = r->outcnt(); 3187 for (uint i = 0; i < cnt; i++) { 3188 Node* m = r->raw_out(i); 3189 if (m!= NULL && m->Opcode() == op && 3190 m->bottom_type()->make_ptr() == t) { 3191 nn = m; 3192 break; 3193 } 3194 } 3195 if (nn != NULL) { 3196 // Decode a narrow oop to match address 3197 // [R12 + narrow_oop_reg<<3 + offset] 3198 if (is_oop) { 3199 nn = new DecodeNNode(nn, t); 3200 } else { 3201 nn = new DecodeNKlassNode(nn, t); 3202 } 3203 // Check for succeeding AddP which uses the same Base. 3204 // Otherwise we will run into the assertion above when visiting that guy. 3205 for (uint i = 0; i < n->outcnt(); ++i) { 3206 Node *out_i = n->raw_out(i); 3207 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3208 out_i->set_req(AddPNode::Base, nn); 3209 #ifdef ASSERT 3210 for (uint j = 0; j < out_i->outcnt(); ++j) { 3211 Node *out_j = out_i->raw_out(j); 3212 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3213 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3214 } 3215 #endif 3216 } 3217 } 3218 n->set_req(AddPNode::Base, nn); 3219 n->set_req(AddPNode::Address, nn); 3220 if (addp->outcnt() == 0) { 3221 addp->disconnect_inputs(this); 3222 } 3223 } 3224 } 3225 } 3226 #endif 3227 break; 3228 } 3229 3230 case Op_CastPP: { 3231 // Remove CastPP nodes to gain more freedom during scheduling but 3232 // keep the dependency they encode as control or precedence edges 3233 // (if control is set already) on memory operations. Some CastPP 3234 // nodes don't have a control (don't carry a dependency): skip 3235 // those. 3236 if (n->in(0) != NULL) { 3237 ResourceMark rm; 3238 Unique_Node_List wq; 3239 wq.push(n); 3240 for (uint next = 0; next < wq.size(); ++next) { 3241 Node *m = wq.at(next); 3242 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3243 Node* use = m->fast_out(i); 3244 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3245 use->ensure_control_or_add_prec(n->in(0)); 3246 } else { 3247 switch(use->Opcode()) { 3248 case Op_AddP: 3249 case Op_DecodeN: 3250 case Op_DecodeNKlass: 3251 case Op_CheckCastPP: 3252 case Op_CastPP: 3253 wq.push(use); 3254 break; 3255 } 3256 } 3257 } 3258 } 3259 } 3260 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3261 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3262 Node* in1 = n->in(1); 3263 const Type* t = n->bottom_type(); 3264 Node* new_in1 = in1->clone(); 3265 new_in1->as_DecodeN()->set_type(t); 3266 3267 if (!Matcher::narrow_oop_use_complex_address()) { 3268 // 3269 // x86, ARM and friends can handle 2 adds in addressing mode 3270 // and Matcher can fold a DecodeN node into address by using 3271 // a narrow oop directly and do implicit NULL check in address: 3272 // 3273 // [R12 + narrow_oop_reg<<3 + offset] 3274 // NullCheck narrow_oop_reg 3275 // 3276 // On other platforms (Sparc) we have to keep new DecodeN node and 3277 // use it to do implicit NULL check in address: 3278 // 3279 // decode_not_null narrow_oop_reg, base_reg 3280 // [base_reg + offset] 3281 // NullCheck base_reg 3282 // 3283 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3284 // to keep the information to which NULL check the new DecodeN node 3285 // corresponds to use it as value in implicit_null_check(). 3286 // 3287 new_in1->set_req(0, n->in(0)); 3288 } 3289 3290 n->subsume_by(new_in1, this); 3291 if (in1->outcnt() == 0) { 3292 in1->disconnect_inputs(this); 3293 } 3294 } else { 3295 n->subsume_by(n->in(1), this); 3296 if (n->outcnt() == 0) { 3297 n->disconnect_inputs(this); 3298 } 3299 } 3300 break; 3301 } 3302 #ifdef _LP64 3303 case Op_CmpP: 3304 // Do this transformation here to preserve CmpPNode::sub() and 3305 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3306 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3307 Node* in1 = n->in(1); 3308 Node* in2 = n->in(2); 3309 if (!in1->is_DecodeNarrowPtr()) { 3310 in2 = in1; 3311 in1 = n->in(2); 3312 } 3313 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3314 3315 Node* new_in2 = NULL; 3316 if (in2->is_DecodeNarrowPtr()) { 3317 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3318 new_in2 = in2->in(1); 3319 } else if (in2->Opcode() == Op_ConP) { 3320 const Type* t = in2->bottom_type(); 3321 if (t == TypePtr::NULL_PTR) { 3322 assert(in1->is_DecodeN(), "compare klass to null?"); 3323 // Don't convert CmpP null check into CmpN if compressed 3324 // oops implicit null check is not generated. 3325 // This will allow to generate normal oop implicit null check. 3326 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3327 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3328 // 3329 // This transformation together with CastPP transformation above 3330 // will generated code for implicit NULL checks for compressed oops. 3331 // 3332 // The original code after Optimize() 3333 // 3334 // LoadN memory, narrow_oop_reg 3335 // decode narrow_oop_reg, base_reg 3336 // CmpP base_reg, NULL 3337 // CastPP base_reg // NotNull 3338 // Load [base_reg + offset], val_reg 3339 // 3340 // after these transformations will be 3341 // 3342 // LoadN memory, narrow_oop_reg 3343 // CmpN narrow_oop_reg, NULL 3344 // decode_not_null narrow_oop_reg, base_reg 3345 // Load [base_reg + offset], val_reg 3346 // 3347 // and the uncommon path (== NULL) will use narrow_oop_reg directly 3348 // since narrow oops can be used in debug info now (see the code in 3349 // final_graph_reshaping_walk()). 3350 // 3351 // At the end the code will be matched to 3352 // on x86: 3353 // 3354 // Load_narrow_oop memory, narrow_oop_reg 3355 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3356 // NullCheck narrow_oop_reg 3357 // 3358 // and on sparc: 3359 // 3360 // Load_narrow_oop memory, narrow_oop_reg 3361 // decode_not_null narrow_oop_reg, base_reg 3362 // Load [base_reg + offset], val_reg 3363 // NullCheck base_reg 3364 // 3365 } else if (t->isa_oopptr()) { 3366 new_in2 = ConNode::make(t->make_narrowoop()); 3367 } else if (t->isa_klassptr()) { 3368 new_in2 = ConNode::make(t->make_narrowklass()); 3369 } 3370 } 3371 if (new_in2 != NULL) { 3372 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3373 n->subsume_by(cmpN, this); 3374 if (in1->outcnt() == 0) { 3375 in1->disconnect_inputs(this); 3376 } 3377 if (in2->outcnt() == 0) { 3378 in2->disconnect_inputs(this); 3379 } 3380 } 3381 } 3382 break; 3383 3384 case Op_DecodeN: 3385 case Op_DecodeNKlass: 3386 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3387 // DecodeN could be pinned when it can't be fold into 3388 // an address expression, see the code for Op_CastPP above. 3389 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3390 break; 3391 3392 case Op_EncodeP: 3393 case Op_EncodePKlass: { 3394 Node* in1 = n->in(1); 3395 if (in1->is_DecodeNarrowPtr()) { 3396 n->subsume_by(in1->in(1), this); 3397 } else if (in1->Opcode() == Op_ConP) { 3398 const Type* t = in1->bottom_type(); 3399 if (t == TypePtr::NULL_PTR) { 3400 assert(t->isa_oopptr(), "null klass?"); 3401 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3402 } else if (t->isa_oopptr()) { 3403 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3404 } else if (t->isa_klassptr()) { 3405 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3406 } 3407 } 3408 if (in1->outcnt() == 0) { 3409 in1->disconnect_inputs(this); 3410 } 3411 break; 3412 } 3413 3414 case Op_ReverseBytesV: 3415 case Op_ReverseV: { 3416 if ((uint)n->in(1)->Opcode() == nop) { 3417 if (n->is_predicated_vector() && n->in(1)->is_predicated_vector() && 3418 n->in(2) == n->in(1)->in(2)) { 3419 // Node (Node X , Mask) Mask => X 3420 n->subsume_by(n->in(1)->in(1), this); 3421 } else if (!n->is_predicated_using_blend() && !n->in(1)->is_predicated_using_blend()) { 3422 // Node (Node X) => X 3423 n->subsume_by(n->in(1)->in(1), this); 3424 } 3425 } 3426 break; 3427 } 3428 3429 case Op_Proj: { 3430 if (OptimizeStringConcat || IncrementalInline) { 3431 ProjNode* proj = n->as_Proj(); 3432 if (proj->_is_io_use) { 3433 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3434 // Separate projections were used for the exception path which 3435 // are normally removed by a late inline. If it wasn't inlined 3436 // then they will hang around and should just be replaced with 3437 // the original one. Merge them. 3438 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3439 if (non_io_proj != NULL) { 3440 proj->subsume_by(non_io_proj , this); 3441 } 3442 } 3443 } 3444 break; 3445 } 3446 3447 case Op_Phi: 3448 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3449 // The EncodeP optimization may create Phi with the same edges 3450 // for all paths. It is not handled well by Register Allocator. 3451 Node* unique_in = n->in(1); 3452 assert(unique_in != NULL, ""); 3453 uint cnt = n->req(); 3454 for (uint i = 2; i < cnt; i++) { 3455 Node* m = n->in(i); 3456 assert(m != NULL, ""); 3457 if (unique_in != m) 3458 unique_in = NULL; 3459 } 3460 if (unique_in != NULL) { 3461 n->subsume_by(unique_in, this); 3462 } 3463 } 3464 break; 3465 3466 #endif 3467 3468 #ifdef ASSERT 3469 case Op_CastII: 3470 // Verify that all range check dependent CastII nodes were removed. 3471 if (n->isa_CastII()->has_range_check()) { 3472 n->dump(3); 3473 assert(false, "Range check dependent CastII node was not removed"); 3474 } 3475 break; 3476 #endif 3477 3478 case Op_ModI: 3479 if (UseDivMod) { 3480 // Check if a%b and a/b both exist 3481 Node* d = n->find_similar(Op_DivI); 3482 if (d) { 3483 // Replace them with a fused divmod if supported 3484 if (Matcher::has_match_rule(Op_DivModI)) { 3485 DivModINode* divmod = DivModINode::make(n); 3486 d->subsume_by(divmod->div_proj(), this); 3487 n->subsume_by(divmod->mod_proj(), this); 3488 } else { 3489 // replace a%b with a-((a/b)*b) 3490 Node* mult = new MulINode(d, d->in(2)); 3491 Node* sub = new SubINode(d->in(1), mult); 3492 n->subsume_by(sub, this); 3493 } 3494 } 3495 } 3496 break; 3497 3498 case Op_ModL: 3499 if (UseDivMod) { 3500 // Check if a%b and a/b both exist 3501 Node* d = n->find_similar(Op_DivL); 3502 if (d) { 3503 // Replace them with a fused divmod if supported 3504 if (Matcher::has_match_rule(Op_DivModL)) { 3505 DivModLNode* divmod = DivModLNode::make(n); 3506 d->subsume_by(divmod->div_proj(), this); 3507 n->subsume_by(divmod->mod_proj(), this); 3508 } else { 3509 // replace a%b with a-((a/b)*b) 3510 Node* mult = new MulLNode(d, d->in(2)); 3511 Node* sub = new SubLNode(d->in(1), mult); 3512 n->subsume_by(sub, this); 3513 } 3514 } 3515 } 3516 break; 3517 3518 case Op_UModI: 3519 if (UseDivMod) { 3520 // Check if a%b and a/b both exist 3521 Node* d = n->find_similar(Op_UDivI); 3522 if (d) { 3523 // Replace them with a fused unsigned divmod if supported 3524 if (Matcher::has_match_rule(Op_UDivModI)) { 3525 UDivModINode* divmod = UDivModINode::make(n); 3526 d->subsume_by(divmod->div_proj(), this); 3527 n->subsume_by(divmod->mod_proj(), this); 3528 } else { 3529 // replace a%b with a-((a/b)*b) 3530 Node* mult = new MulINode(d, d->in(2)); 3531 Node* sub = new SubINode(d->in(1), mult); 3532 n->subsume_by(sub, this); 3533 } 3534 } 3535 } 3536 break; 3537 3538 case Op_UModL: 3539 if (UseDivMod) { 3540 // Check if a%b and a/b both exist 3541 Node* d = n->find_similar(Op_UDivL); 3542 if (d) { 3543 // Replace them with a fused unsigned divmod if supported 3544 if (Matcher::has_match_rule(Op_UDivModL)) { 3545 UDivModLNode* divmod = UDivModLNode::make(n); 3546 d->subsume_by(divmod->div_proj(), this); 3547 n->subsume_by(divmod->mod_proj(), this); 3548 } else { 3549 // replace a%b with a-((a/b)*b) 3550 Node* mult = new MulLNode(d, d->in(2)); 3551 Node* sub = new SubLNode(d->in(1), mult); 3552 n->subsume_by(sub, this); 3553 } 3554 } 3555 } 3556 break; 3557 3558 case Op_NoOvfModI: 3559 if (UseDivMod) { 3560 // Check if a%b and a/b both exist 3561 Node* d = n->find_similar(Op_NoOvfDivI); 3562 if (d) { 3563 // Replace them with a fused divmod if supported 3564 if (Matcher::has_match_rule(Op_NoOvfDivModI)) { 3565 NoOvfDivModINode* divmod = NoOvfDivModINode::make(n); 3566 d->subsume_by(divmod->div_proj(), this); 3567 n->subsume_by(divmod->mod_proj(), this); 3568 } else { 3569 // replace a%b with a-((a/b)*b) 3570 Node* mult = new MulINode(d, d->in(2)); 3571 Node* sub = new SubINode(d->in(1), mult); 3572 n->subsume_by(sub, this); 3573 } 3574 } 3575 } 3576 break; 3577 3578 case Op_NoOvfModL: 3579 if (UseDivMod) { 3580 // Check if a%b and a/b both exist 3581 Node* d = n->find_similar(Op_NoOvfDivL); 3582 if (d) { 3583 // Replace them with a fused divmod if supported 3584 if (Matcher::has_match_rule(Op_NoOvfDivModL)) { 3585 NoOvfDivModLNode* divmod = NoOvfDivModLNode::make(n); 3586 d->subsume_by(divmod->div_proj(), this); 3587 n->subsume_by(divmod->mod_proj(), this); 3588 } else { 3589 // replace a%b with a-((a/b)*b) 3590 Node* mult = new MulLNode(d, d->in(2)); 3591 Node* sub = new SubLNode(d->in(1), mult); 3592 n->subsume_by(sub, this); 3593 } 3594 } 3595 } 3596 break; 3597 3598 case Op_LoadVector: 3599 case Op_StoreVector: 3600 case Op_LoadVectorGather: 3601 case Op_StoreVectorScatter: 3602 case Op_LoadVectorGatherMasked: 3603 case Op_StoreVectorScatterMasked: 3604 case Op_VectorCmpMasked: 3605 case Op_VectorMaskGen: 3606 case Op_LoadVectorMasked: 3607 case Op_StoreVectorMasked: 3608 break; 3609 3610 case Op_AddReductionVI: 3611 case Op_AddReductionVL: 3612 case Op_AddReductionVF: 3613 case Op_AddReductionVD: 3614 case Op_MulReductionVI: 3615 case Op_MulReductionVL: 3616 case Op_MulReductionVF: 3617 case Op_MulReductionVD: 3618 case Op_MinReductionV: 3619 case Op_MaxReductionV: 3620 case Op_AndReductionV: 3621 case Op_OrReductionV: 3622 case Op_XorReductionV: 3623 break; 3624 3625 case Op_PackB: 3626 case Op_PackS: 3627 case Op_PackI: 3628 case Op_PackF: 3629 case Op_PackL: 3630 case Op_PackD: 3631 if (n->req()-1 > 2) { 3632 // Replace many operand PackNodes with a binary tree for matching 3633 PackNode* p = (PackNode*) n; 3634 Node* btp = p->binary_tree_pack(1, n->req()); 3635 n->subsume_by(btp, this); 3636 } 3637 break; 3638 case Op_Loop: 3639 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3640 case Op_CountedLoop: 3641 case Op_LongCountedLoop: 3642 case Op_OuterStripMinedLoop: 3643 if (n->as_Loop()->is_inner_loop()) { 3644 frc.inc_inner_loop_count(); 3645 } 3646 n->as_Loop()->verify_strip_mined(0); 3647 break; 3648 case Op_LShiftI: 3649 case Op_RShiftI: 3650 case Op_URShiftI: 3651 case Op_LShiftL: 3652 case Op_RShiftL: 3653 case Op_URShiftL: 3654 if (Matcher::need_masked_shift_count) { 3655 // The cpu's shift instructions don't restrict the count to the 3656 // lower 5/6 bits. We need to do the masking ourselves. 3657 Node* in2 = n->in(2); 3658 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3659 const TypeInt* t = in2->find_int_type(); 3660 if (t != NULL && t->is_con()) { 3661 juint shift = t->get_con(); 3662 if (shift > mask) { // Unsigned cmp 3663 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3664 } 3665 } else { 3666 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) { 3667 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3668 n->set_req(2, shift); 3669 } 3670 } 3671 if (in2->outcnt() == 0) { // Remove dead node 3672 in2->disconnect_inputs(this); 3673 } 3674 } 3675 break; 3676 case Op_MemBarStoreStore: 3677 case Op_MemBarRelease: 3678 // Break the link with AllocateNode: it is no longer useful and 3679 // confuses register allocation. 3680 if (n->req() > MemBarNode::Precedent) { 3681 n->set_req(MemBarNode::Precedent, top()); 3682 } 3683 break; 3684 case Op_MemBarAcquire: { 3685 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3686 // At parse time, the trailing MemBarAcquire for a volatile load 3687 // is created with an edge to the load. After optimizations, 3688 // that input may be a chain of Phis. If those phis have no 3689 // other use, then the MemBarAcquire keeps them alive and 3690 // register allocation can be confused. 3691 ResourceMark rm; 3692 Unique_Node_List wq; 3693 wq.push(n->in(MemBarNode::Precedent)); 3694 n->set_req(MemBarNode::Precedent, top()); 3695 while (wq.size() > 0) { 3696 Node* m = wq.pop(); 3697 if (m->outcnt() == 0) { 3698 for (uint j = 0; j < m->req(); j++) { 3699 Node* in = m->in(j); 3700 if (in != NULL) { 3701 wq.push(in); 3702 } 3703 } 3704 m->disconnect_inputs(this); 3705 } 3706 } 3707 } 3708 break; 3709 } 3710 case Op_Blackhole: 3711 break; 3712 case Op_RangeCheck: { 3713 RangeCheckNode* rc = n->as_RangeCheck(); 3714 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3715 n->subsume_by(iff, this); 3716 frc._tests.push(iff); 3717 break; 3718 } 3719 case Op_ConvI2L: { 3720 if (!Matcher::convi2l_type_required) { 3721 // Code generation on some platforms doesn't need accurate 3722 // ConvI2L types. Widening the type can help remove redundant 3723 // address computations. 3724 n->as_Type()->set_type(TypeLong::INT); 3725 ResourceMark rm; 3726 Unique_Node_List wq; 3727 wq.push(n); 3728 for (uint next = 0; next < wq.size(); next++) { 3729 Node *m = wq.at(next); 3730 3731 for(;;) { 3732 // Loop over all nodes with identical inputs edges as m 3733 Node* k = m->find_similar(m->Opcode()); 3734 if (k == NULL) { 3735 break; 3736 } 3737 // Push their uses so we get a chance to remove node made 3738 // redundant 3739 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3740 Node* u = k->fast_out(i); 3741 if (u->Opcode() == Op_LShiftL || 3742 u->Opcode() == Op_AddL || 3743 u->Opcode() == Op_SubL || 3744 u->Opcode() == Op_AddP) { 3745 wq.push(u); 3746 } 3747 } 3748 // Replace all nodes with identical edges as m with m 3749 k->subsume_by(m, this); 3750 } 3751 } 3752 } 3753 break; 3754 } 3755 case Op_CmpUL: { 3756 if (!Matcher::has_match_rule(Op_CmpUL)) { 3757 // No support for unsigned long comparisons 3758 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3759 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3760 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3761 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3762 Node* andl = new AndLNode(orl, remove_sign_mask); 3763 Node* cmp = new CmpLNode(andl, n->in(2)); 3764 n->subsume_by(cmp, this); 3765 } 3766 break; 3767 } 3768 default: 3769 assert(!n->is_Call(), ""); 3770 assert(!n->is_Mem(), ""); 3771 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3772 break; 3773 } 3774 } 3775 3776 //------------------------------final_graph_reshaping_walk--------------------- 3777 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3778 // requires that the walk visits a node's inputs before visiting the node. 3779 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) { 3780 Unique_Node_List sfpt; 3781 3782 frc._visited.set(root->_idx); // first, mark node as visited 3783 uint cnt = root->req(); 3784 Node *n = root; 3785 uint i = 0; 3786 while (true) { 3787 if (i < cnt) { 3788 // Place all non-visited non-null inputs onto stack 3789 Node* m = n->in(i); 3790 ++i; 3791 if (m != NULL && !frc._visited.test_set(m->_idx)) { 3792 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) { 3793 // compute worst case interpreter size in case of a deoptimization 3794 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3795 3796 sfpt.push(m); 3797 } 3798 cnt = m->req(); 3799 nstack.push(n, i); // put on stack parent and next input's index 3800 n = m; 3801 i = 0; 3802 } 3803 } else { 3804 // Now do post-visit work 3805 final_graph_reshaping_impl( n, frc ); 3806 if (nstack.is_empty()) 3807 break; // finished 3808 n = nstack.node(); // Get node from stack 3809 cnt = n->req(); 3810 i = nstack.index(); 3811 nstack.pop(); // Shift to the next node on stack 3812 } 3813 } 3814 3815 // Skip next transformation if compressed oops are not used. 3816 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3817 (!UseCompressedOops && !UseCompressedClassPointers)) 3818 return; 3819 3820 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3821 // It could be done for an uncommon traps or any safepoints/calls 3822 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3823 while (sfpt.size() > 0) { 3824 n = sfpt.pop(); 3825 JVMState *jvms = n->as_SafePoint()->jvms(); 3826 assert(jvms != NULL, "sanity"); 3827 int start = jvms->debug_start(); 3828 int end = n->req(); 3829 bool is_uncommon = (n->is_CallStaticJava() && 3830 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3831 for (int j = start; j < end; j++) { 3832 Node* in = n->in(j); 3833 if (in->is_DecodeNarrowPtr()) { 3834 bool safe_to_skip = true; 3835 if (!is_uncommon ) { 3836 // Is it safe to skip? 3837 for (uint i = 0; i < in->outcnt(); i++) { 3838 Node* u = in->raw_out(i); 3839 if (!u->is_SafePoint() || 3840 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3841 safe_to_skip = false; 3842 } 3843 } 3844 } 3845 if (safe_to_skip) { 3846 n->set_req(j, in->in(1)); 3847 } 3848 if (in->outcnt() == 0) { 3849 in->disconnect_inputs(this); 3850 } 3851 } 3852 } 3853 } 3854 } 3855 3856 //------------------------------final_graph_reshaping-------------------------- 3857 // Final Graph Reshaping. 3858 // 3859 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3860 // and not commoned up and forced early. Must come after regular 3861 // optimizations to avoid GVN undoing the cloning. Clone constant 3862 // inputs to Loop Phis; these will be split by the allocator anyways. 3863 // Remove Opaque nodes. 3864 // (2) Move last-uses by commutative operations to the left input to encourage 3865 // Intel update-in-place two-address operations and better register usage 3866 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3867 // calls canonicalizing them back. 3868 // (3) Count the number of double-precision FP ops, single-precision FP ops 3869 // and call sites. On Intel, we can get correct rounding either by 3870 // forcing singles to memory (requires extra stores and loads after each 3871 // FP bytecode) or we can set a rounding mode bit (requires setting and 3872 // clearing the mode bit around call sites). The mode bit is only used 3873 // if the relative frequency of single FP ops to calls is low enough. 3874 // This is a key transform for SPEC mpeg_audio. 3875 // (4) Detect infinite loops; blobs of code reachable from above but not 3876 // below. Several of the Code_Gen algorithms fail on such code shapes, 3877 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3878 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3879 // Detection is by looking for IfNodes where only 1 projection is 3880 // reachable from below or CatchNodes missing some targets. 3881 // (5) Assert for insane oop offsets in debug mode. 3882 3883 bool Compile::final_graph_reshaping() { 3884 // an infinite loop may have been eliminated by the optimizer, 3885 // in which case the graph will be empty. 3886 if (root()->req() == 1) { 3887 record_method_not_compilable("trivial infinite loop"); 3888 return true; 3889 } 3890 3891 // Expensive nodes have their control input set to prevent the GVN 3892 // from freely commoning them. There's no GVN beyond this point so 3893 // no need to keep the control input. We want the expensive nodes to 3894 // be freely moved to the least frequent code path by gcm. 3895 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3896 for (int i = 0; i < expensive_count(); i++) { 3897 _expensive_nodes.at(i)->set_req(0, NULL); 3898 } 3899 3900 Final_Reshape_Counts frc; 3901 3902 // Visit everybody reachable! 3903 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3904 Node_Stack nstack(live_nodes() >> 1); 3905 final_graph_reshaping_walk(nstack, root(), frc); 3906 3907 // Check for unreachable (from below) code (i.e., infinite loops). 3908 for( uint i = 0; i < frc._tests.size(); i++ ) { 3909 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 3910 // Get number of CFG targets. 3911 // Note that PCTables include exception targets after calls. 3912 uint required_outcnt = n->required_outcnt(); 3913 if (n->outcnt() != required_outcnt) { 3914 // Check for a few special cases. Rethrow Nodes never take the 3915 // 'fall-thru' path, so expected kids is 1 less. 3916 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 3917 if (n->in(0)->in(0)->is_Call()) { 3918 CallNode* call = n->in(0)->in(0)->as_Call(); 3919 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 3920 required_outcnt--; // Rethrow always has 1 less kid 3921 } else if (call->req() > TypeFunc::Parms && 3922 call->is_CallDynamicJava()) { 3923 // Check for null receiver. In such case, the optimizer has 3924 // detected that the virtual call will always result in a null 3925 // pointer exception. The fall-through projection of this CatchNode 3926 // will not be populated. 3927 Node* arg0 = call->in(TypeFunc::Parms); 3928 if (arg0->is_Type() && 3929 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 3930 required_outcnt--; 3931 } 3932 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 3933 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 3934 // Check for illegal array length. In such case, the optimizer has 3935 // detected that the allocation attempt will always result in an 3936 // exception. There is no fall-through projection of this CatchNode . 3937 assert(call->is_CallStaticJava(), "static call expected"); 3938 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 3939 Node* valid_length_test = call->in(call->req()-1); 3940 call->del_req(call->req()-1); 3941 if (valid_length_test->find_int_con(1) == 0) { 3942 required_outcnt--; 3943 } 3944 assert(n->outcnt() == required_outcnt, "malformed control flow"); 3945 continue; 3946 } 3947 } 3948 } 3949 // Recheck with a better notion of 'required_outcnt' 3950 if (n->outcnt() != required_outcnt) { 3951 record_method_not_compilable("malformed control flow"); 3952 return true; // Not all targets reachable! 3953 } 3954 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 3955 CallNode* call = n->in(0)->in(0)->as_Call(); 3956 if (call->entry_point() == OptoRuntime::new_array_Java() || 3957 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 3958 assert(call->is_CallStaticJava(), "static call expected"); 3959 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 3960 call->del_req(call->req()-1); // valid length test useless now 3961 } 3962 } 3963 // Check that I actually visited all kids. Unreached kids 3964 // must be infinite loops. 3965 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 3966 if (!frc._visited.test(n->fast_out(j)->_idx)) { 3967 record_method_not_compilable("infinite loop"); 3968 return true; // Found unvisited kid; must be unreach 3969 } 3970 3971 // Here so verification code in final_graph_reshaping_walk() 3972 // always see an OuterStripMinedLoopEnd 3973 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 3974 IfNode* init_iff = n->as_If(); 3975 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 3976 n->subsume_by(iff, this); 3977 } 3978 } 3979 3980 #ifdef IA32 3981 // If original bytecodes contained a mixture of floats and doubles 3982 // check if the optimizer has made it homogeneous, item (3). 3983 if (UseSSE == 0 && 3984 frc.get_float_count() > 32 && 3985 frc.get_double_count() == 0 && 3986 (10 * frc.get_call_count() < frc.get_float_count()) ) { 3987 set_24_bit_selection_and_mode(false, true); 3988 } 3989 #endif // IA32 3990 3991 set_java_calls(frc.get_java_call_count()); 3992 set_inner_loops(frc.get_inner_loop_count()); 3993 3994 // No infinite loops, no reason to bail out. 3995 return false; 3996 } 3997 3998 //-----------------------------too_many_traps---------------------------------- 3999 // Report if there are too many traps at the current method and bci. 4000 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4001 bool Compile::too_many_traps(ciMethod* method, 4002 int bci, 4003 Deoptimization::DeoptReason reason) { 4004 ciMethodData* md = method->method_data(); 4005 if (md->is_empty()) { 4006 // Assume the trap has not occurred, or that it occurred only 4007 // because of a transient condition during start-up in the interpreter. 4008 return false; 4009 } 4010 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 4011 if (md->has_trap_at(bci, m, reason) != 0) { 4012 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4013 // Also, if there are multiple reasons, or if there is no per-BCI record, 4014 // assume the worst. 4015 if (log()) 4016 log()->elem("observe trap='%s' count='%d'", 4017 Deoptimization::trap_reason_name(reason), 4018 md->trap_count(reason)); 4019 return true; 4020 } else { 4021 // Ignore method/bci and see if there have been too many globally. 4022 return too_many_traps(reason, md); 4023 } 4024 } 4025 4026 // Less-accurate variant which does not require a method and bci. 4027 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4028 ciMethodData* logmd) { 4029 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4030 // Too many traps globally. 4031 // Note that we use cumulative trap_count, not just md->trap_count. 4032 if (log()) { 4033 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason); 4034 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4035 Deoptimization::trap_reason_name(reason), 4036 mcount, trap_count(reason)); 4037 } 4038 return true; 4039 } else { 4040 // The coast is clear. 4041 return false; 4042 } 4043 } 4044 4045 //--------------------------too_many_recompiles-------------------------------- 4046 // Report if there are too many recompiles at the current method and bci. 4047 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4048 // Is not eager to return true, since this will cause the compiler to use 4049 // Action_none for a trap point, to avoid too many recompilations. 4050 bool Compile::too_many_recompiles(ciMethod* method, 4051 int bci, 4052 Deoptimization::DeoptReason reason) { 4053 ciMethodData* md = method->method_data(); 4054 if (md->is_empty()) { 4055 // Assume the trap has not occurred, or that it occurred only 4056 // because of a transient condition during start-up in the interpreter. 4057 return false; 4058 } 4059 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4060 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4061 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4062 Deoptimization::DeoptReason per_bc_reason 4063 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4064 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 4065 if ((per_bc_reason == Deoptimization::Reason_none 4066 || md->has_trap_at(bci, m, reason) != 0) 4067 // The trap frequency measure we care about is the recompile count: 4068 && md->trap_recompiled_at(bci, m) 4069 && md->overflow_recompile_count() >= bc_cutoff) { 4070 // Do not emit a trap here if it has already caused recompilations. 4071 // Also, if there are multiple reasons, or if there is no per-BCI record, 4072 // assume the worst. 4073 if (log()) 4074 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4075 Deoptimization::trap_reason_name(reason), 4076 md->trap_count(reason), 4077 md->overflow_recompile_count()); 4078 return true; 4079 } else if (trap_count(reason) != 0 4080 && decompile_count() >= m_cutoff) { 4081 // Too many recompiles globally, and we have seen this sort of trap. 4082 // Use cumulative decompile_count, not just md->decompile_count. 4083 if (log()) 4084 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4085 Deoptimization::trap_reason_name(reason), 4086 md->trap_count(reason), trap_count(reason), 4087 md->decompile_count(), decompile_count()); 4088 return true; 4089 } else { 4090 // The coast is clear. 4091 return false; 4092 } 4093 } 4094 4095 // Compute when not to trap. Used by matching trap based nodes and 4096 // NullCheck optimization. 4097 void Compile::set_allowed_deopt_reasons() { 4098 _allowed_reasons = 0; 4099 if (is_method_compilation()) { 4100 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4101 assert(rs < BitsPerInt, "recode bit map"); 4102 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4103 _allowed_reasons |= nth_bit(rs); 4104 } 4105 } 4106 } 4107 } 4108 4109 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4110 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4111 } 4112 4113 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4114 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4115 } 4116 4117 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4118 if (holder->is_initialized()) { 4119 return false; 4120 } 4121 if (holder->is_being_initialized()) { 4122 if (accessing_method->holder() == holder) { 4123 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4124 // <init>, or a static method. In all those cases, there was an initialization 4125 // barrier on the holder klass passed. 4126 if (accessing_method->is_static_initializer() || 4127 accessing_method->is_object_initializer() || 4128 accessing_method->is_static()) { 4129 return false; 4130 } 4131 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4132 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4133 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4134 // child class can become fully initialized while its parent class is still being initialized. 4135 if (accessing_method->is_static_initializer()) { 4136 return false; 4137 } 4138 } 4139 ciMethod* root = method(); // the root method of compilation 4140 if (root != accessing_method) { 4141 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4142 } 4143 } 4144 return true; 4145 } 4146 4147 #ifndef PRODUCT 4148 //------------------------------verify_graph_edges--------------------------- 4149 // Walk the Graph and verify that there is a one-to-one correspondence 4150 // between Use-Def edges and Def-Use edges in the graph. 4151 void Compile::verify_graph_edges(bool no_dead_code) { 4152 if (VerifyGraphEdges) { 4153 Unique_Node_List visited; 4154 // Call recursive graph walk to check edges 4155 _root->verify_edges(visited); 4156 if (no_dead_code) { 4157 // Now make sure that no visited node is used by an unvisited node. 4158 bool dead_nodes = false; 4159 Unique_Node_List checked; 4160 while (visited.size() > 0) { 4161 Node* n = visited.pop(); 4162 checked.push(n); 4163 for (uint i = 0; i < n->outcnt(); i++) { 4164 Node* use = n->raw_out(i); 4165 if (checked.member(use)) continue; // already checked 4166 if (visited.member(use)) continue; // already in the graph 4167 if (use->is_Con()) continue; // a dead ConNode is OK 4168 // At this point, we have found a dead node which is DU-reachable. 4169 if (!dead_nodes) { 4170 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4171 dead_nodes = true; 4172 } 4173 use->dump(2); 4174 tty->print_cr("---"); 4175 checked.push(use); // No repeats; pretend it is now checked. 4176 } 4177 } 4178 assert(!dead_nodes, "using nodes must be reachable from root"); 4179 } 4180 } 4181 } 4182 #endif 4183 4184 // The Compile object keeps track of failure reasons separately from the ciEnv. 4185 // This is required because there is not quite a 1-1 relation between the 4186 // ciEnv and its compilation task and the Compile object. Note that one 4187 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4188 // to backtrack and retry without subsuming loads. Other than this backtracking 4189 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4190 // by the logic in C2Compiler. 4191 void Compile::record_failure(const char* reason) { 4192 if (log() != NULL) { 4193 log()->elem("failure reason='%s' phase='compile'", reason); 4194 } 4195 if (_failure_reason == NULL) { 4196 // Record the first failure reason. 4197 _failure_reason = reason; 4198 } 4199 4200 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4201 C->print_method(PHASE_FAILURE, 1); 4202 } 4203 _root = NULL; // flush the graph, too 4204 } 4205 4206 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 4207 : TraceTime(name, accumulator, CITime, CITimeVerbose), 4208 _phase_name(name), _dolog(CITimeVerbose) 4209 { 4210 if (_dolog) { 4211 C = Compile::current(); 4212 _log = C->log(); 4213 } else { 4214 C = NULL; 4215 _log = NULL; 4216 } 4217 if (_log != NULL) { 4218 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 4219 _log->stamp(); 4220 _log->end_head(); 4221 } 4222 } 4223 4224 Compile::TracePhase::~TracePhase() { 4225 4226 C = Compile::current(); 4227 if (_dolog) { 4228 _log = C->log(); 4229 } else { 4230 _log = NULL; 4231 } 4232 4233 #ifdef ASSERT 4234 if (PrintIdealNodeCount) { 4235 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4236 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk()); 4237 } 4238 4239 if (VerifyIdealNodeCount) { 4240 Compile::current()->print_missing_nodes(); 4241 } 4242 #endif 4243 4244 if (_log != NULL) { 4245 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 4246 } 4247 } 4248 4249 //----------------------------static_subtype_check----------------------------- 4250 // Shortcut important common cases when superklass is exact: 4251 // (0) superklass is java.lang.Object (can occur in reflective code) 4252 // (1) subklass is already limited to a subtype of superklass => always ok 4253 // (2) subklass does not overlap with superklass => always fail 4254 // (3) superklass has NO subtypes and we can check with a simple compare. 4255 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) { 4256 if (StressReflectiveCode) { 4257 return SSC_full_test; // Let caller generate the general case. 4258 } 4259 4260 if (superk == env()->Object_klass()) { 4261 return SSC_always_true; // (0) this test cannot fail 4262 } 4263 4264 ciType* superelem = superk; 4265 ciType* subelem = subk; 4266 if (superelem->is_array_klass()) { 4267 superelem = superelem->as_array_klass()->base_element_type(); 4268 } 4269 if (subelem->is_array_klass()) { 4270 subelem = subelem->as_array_klass()->base_element_type(); 4271 } 4272 4273 if (!subk->is_interface()) { // cannot trust static interface types yet 4274 if (subk->is_subtype_of(superk)) { 4275 return SSC_always_true; // (1) false path dead; no dynamic test needed 4276 } 4277 if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) && 4278 !(subelem->is_klass() && subelem->as_klass()->is_interface()) && 4279 !superk->is_subtype_of(subk)) { 4280 return SSC_always_false; // (2) true path dead; no dynamic test needed 4281 } 4282 } 4283 4284 // If casting to an instance klass, it must have no subtypes 4285 if (superk->is_interface()) { 4286 // Cannot trust interfaces yet. 4287 // %%% S.B. superk->nof_implementors() == 1 4288 } else if (superelem->is_instance_klass()) { 4289 ciInstanceKlass* ik = superelem->as_instance_klass(); 4290 if (!ik->has_subklass() && !ik->is_interface()) { 4291 if (!ik->is_final()) { 4292 // Add a dependency if there is a chance of a later subclass. 4293 dependencies()->assert_leaf_type(ik); 4294 } 4295 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4296 } 4297 } else { 4298 // A primitive array type has no subtypes. 4299 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4300 } 4301 4302 return SSC_full_test; 4303 } 4304 4305 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4306 #ifdef _LP64 4307 // The scaled index operand to AddP must be a clean 64-bit value. 4308 // Java allows a 32-bit int to be incremented to a negative 4309 // value, which appears in a 64-bit register as a large 4310 // positive number. Using that large positive number as an 4311 // operand in pointer arithmetic has bad consequences. 4312 // On the other hand, 32-bit overflow is rare, and the possibility 4313 // can often be excluded, if we annotate the ConvI2L node with 4314 // a type assertion that its value is known to be a small positive 4315 // number. (The prior range check has ensured this.) 4316 // This assertion is used by ConvI2LNode::Ideal. 4317 int index_max = max_jint - 1; // array size is max_jint, index is one less 4318 if (sizetype != NULL) index_max = sizetype->_hi - 1; 4319 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4320 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4321 #endif 4322 return idx; 4323 } 4324 4325 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4326 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4327 if (ctrl != NULL) { 4328 // Express control dependency by a CastII node with a narrow type. 4329 value = new CastIINode(value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4330 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4331 // node from floating above the range check during loop optimizations. Otherwise, the 4332 // ConvI2L node may be eliminated independently of the range check, causing the data path 4333 // to become TOP while the control path is still there (although it's unreachable). 4334 value->set_req(0, ctrl); 4335 value = phase->transform(value); 4336 } 4337 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4338 return phase->transform(new ConvI2LNode(value, ltype)); 4339 } 4340 4341 void Compile::print_inlining_stream_free() { 4342 if (_print_inlining_stream != NULL) { 4343 _print_inlining_stream->~stringStream(); 4344 _print_inlining_stream = NULL; 4345 } 4346 } 4347 4348 // The message about the current inlining is accumulated in 4349 // _print_inlining_stream and transferred into the _print_inlining_list 4350 // once we know whether inlining succeeds or not. For regular 4351 // inlining, messages are appended to the buffer pointed by 4352 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4353 // a new buffer is added after _print_inlining_idx in the list. This 4354 // way we can update the inlining message for late inlining call site 4355 // when the inlining is attempted again. 4356 void Compile::print_inlining_init() { 4357 if (print_inlining() || print_intrinsics()) { 4358 // print_inlining_init is actually called several times. 4359 print_inlining_stream_free(); 4360 _print_inlining_stream = new stringStream(); 4361 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer()); 4362 } 4363 } 4364 4365 void Compile::print_inlining_reinit() { 4366 if (print_inlining() || print_intrinsics()) { 4367 print_inlining_stream_free(); 4368 // Re allocate buffer when we change ResourceMark 4369 _print_inlining_stream = new stringStream(); 4370 } 4371 } 4372 4373 void Compile::print_inlining_reset() { 4374 _print_inlining_stream->reset(); 4375 } 4376 4377 void Compile::print_inlining_commit() { 4378 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4379 // Transfer the message from _print_inlining_stream to the current 4380 // _print_inlining_list buffer and clear _print_inlining_stream. 4381 _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size()); 4382 print_inlining_reset(); 4383 } 4384 4385 void Compile::print_inlining_push() { 4386 // Add new buffer to the _print_inlining_list at current position 4387 _print_inlining_idx++; 4388 _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer()); 4389 } 4390 4391 Compile::PrintInliningBuffer* Compile::print_inlining_current() { 4392 return _print_inlining_list->at(_print_inlining_idx); 4393 } 4394 4395 void Compile::print_inlining_update(CallGenerator* cg) { 4396 if (print_inlining() || print_intrinsics()) { 4397 if (cg->is_late_inline()) { 4398 if (print_inlining_current()->cg() != cg && 4399 (print_inlining_current()->cg() != NULL || 4400 print_inlining_current()->ss()->size() != 0)) { 4401 print_inlining_push(); 4402 } 4403 print_inlining_commit(); 4404 print_inlining_current()->set_cg(cg); 4405 } else { 4406 if (print_inlining_current()->cg() != NULL) { 4407 print_inlining_push(); 4408 } 4409 print_inlining_commit(); 4410 } 4411 } 4412 } 4413 4414 void Compile::print_inlining_move_to(CallGenerator* cg) { 4415 // We resume inlining at a late inlining call site. Locate the 4416 // corresponding inlining buffer so that we can update it. 4417 if (print_inlining() || print_intrinsics()) { 4418 for (int i = 0; i < _print_inlining_list->length(); i++) { 4419 if (_print_inlining_list->at(i)->cg() == cg) { 4420 _print_inlining_idx = i; 4421 return; 4422 } 4423 } 4424 ShouldNotReachHere(); 4425 } 4426 } 4427 4428 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 4429 if (print_inlining() || print_intrinsics()) { 4430 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 4431 assert(print_inlining_current()->cg() == cg, "wrong entry"); 4432 // replace message with new message 4433 _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer()); 4434 print_inlining_commit(); 4435 print_inlining_current()->set_cg(cg); 4436 } 4437 } 4438 4439 void Compile::print_inlining_assert_ready() { 4440 assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data"); 4441 } 4442 4443 void Compile::process_print_inlining() { 4444 assert(_late_inlines.length() == 0, "not drained yet"); 4445 if (print_inlining() || print_intrinsics()) { 4446 ResourceMark rm; 4447 stringStream ss; 4448 assert(_print_inlining_list != NULL, "process_print_inlining should be called only once."); 4449 for (int i = 0; i < _print_inlining_list->length(); i++) { 4450 PrintInliningBuffer* pib = _print_inlining_list->at(i); 4451 ss.print("%s", pib->ss()->as_string()); 4452 delete pib; 4453 DEBUG_ONLY(_print_inlining_list->at_put(i, NULL)); 4454 } 4455 // Reset _print_inlining_list, it only contains destructed objects. 4456 // It is on the arena, so it will be freed when the arena is reset. 4457 _print_inlining_list = NULL; 4458 // _print_inlining_stream won't be used anymore, either. 4459 print_inlining_stream_free(); 4460 size_t end = ss.size(); 4461 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 4462 strncpy(_print_inlining_output, ss.base(), end+1); 4463 _print_inlining_output[end] = 0; 4464 } 4465 } 4466 4467 void Compile::dump_print_inlining() { 4468 if (_print_inlining_output != NULL) { 4469 tty->print_raw(_print_inlining_output); 4470 } 4471 } 4472 4473 void Compile::log_late_inline(CallGenerator* cg) { 4474 if (log() != NULL) { 4475 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4476 cg->unique_id()); 4477 JVMState* p = cg->call_node()->jvms(); 4478 while (p != NULL) { 4479 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4480 p = p->caller(); 4481 } 4482 log()->tail("late_inline"); 4483 } 4484 } 4485 4486 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4487 log_late_inline(cg); 4488 if (log() != NULL) { 4489 log()->inline_fail(msg); 4490 } 4491 } 4492 4493 void Compile::log_inline_id(CallGenerator* cg) { 4494 if (log() != NULL) { 4495 // The LogCompilation tool needs a unique way to identify late 4496 // inline call sites. This id must be unique for this call site in 4497 // this compilation. Try to have it unique across compilations as 4498 // well because it can be convenient when grepping through the log 4499 // file. 4500 // Distinguish OSR compilations from others in case CICountOSR is 4501 // on. 4502 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4503 cg->set_unique_id(id); 4504 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4505 } 4506 } 4507 4508 void Compile::log_inline_failure(const char* msg) { 4509 if (C->log() != NULL) { 4510 C->log()->inline_fail(msg); 4511 } 4512 } 4513 4514 4515 // Dump inlining replay data to the stream. 4516 // Don't change thread state and acquire any locks. 4517 void Compile::dump_inline_data(outputStream* out) { 4518 InlineTree* inl_tree = ilt(); 4519 if (inl_tree != NULL) { 4520 out->print(" inline %d", inl_tree->count()); 4521 inl_tree->dump_replay_data(out); 4522 } 4523 } 4524 4525 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4526 if (n1->Opcode() < n2->Opcode()) return -1; 4527 else if (n1->Opcode() > n2->Opcode()) return 1; 4528 4529 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4530 for (uint i = 1; i < n1->req(); i++) { 4531 if (n1->in(i) < n2->in(i)) return -1; 4532 else if (n1->in(i) > n2->in(i)) return 1; 4533 } 4534 4535 return 0; 4536 } 4537 4538 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4539 Node* n1 = *n1p; 4540 Node* n2 = *n2p; 4541 4542 return cmp_expensive_nodes(n1, n2); 4543 } 4544 4545 void Compile::sort_expensive_nodes() { 4546 if (!expensive_nodes_sorted()) { 4547 _expensive_nodes.sort(cmp_expensive_nodes); 4548 } 4549 } 4550 4551 bool Compile::expensive_nodes_sorted() const { 4552 for (int i = 1; i < _expensive_nodes.length(); i++) { 4553 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4554 return false; 4555 } 4556 } 4557 return true; 4558 } 4559 4560 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4561 if (_expensive_nodes.length() == 0) { 4562 return false; 4563 } 4564 4565 assert(OptimizeExpensiveOps, "optimization off?"); 4566 4567 // Take this opportunity to remove dead nodes from the list 4568 int j = 0; 4569 for (int i = 0; i < _expensive_nodes.length(); i++) { 4570 Node* n = _expensive_nodes.at(i); 4571 if (!n->is_unreachable(igvn)) { 4572 assert(n->is_expensive(), "should be expensive"); 4573 _expensive_nodes.at_put(j, n); 4574 j++; 4575 } 4576 } 4577 _expensive_nodes.trunc_to(j); 4578 4579 // Then sort the list so that similar nodes are next to each other 4580 // and check for at least two nodes of identical kind with same data 4581 // inputs. 4582 sort_expensive_nodes(); 4583 4584 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4585 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4586 return true; 4587 } 4588 } 4589 4590 return false; 4591 } 4592 4593 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4594 if (_expensive_nodes.length() == 0) { 4595 return; 4596 } 4597 4598 assert(OptimizeExpensiveOps, "optimization off?"); 4599 4600 // Sort to bring similar nodes next to each other and clear the 4601 // control input of nodes for which there's only a single copy. 4602 sort_expensive_nodes(); 4603 4604 int j = 0; 4605 int identical = 0; 4606 int i = 0; 4607 bool modified = false; 4608 for (; i < _expensive_nodes.length()-1; i++) { 4609 assert(j <= i, "can't write beyond current index"); 4610 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4611 identical++; 4612 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4613 continue; 4614 } 4615 if (identical > 0) { 4616 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4617 identical = 0; 4618 } else { 4619 Node* n = _expensive_nodes.at(i); 4620 igvn.replace_input_of(n, 0, NULL); 4621 igvn.hash_insert(n); 4622 modified = true; 4623 } 4624 } 4625 if (identical > 0) { 4626 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4627 } else if (_expensive_nodes.length() >= 1) { 4628 Node* n = _expensive_nodes.at(i); 4629 igvn.replace_input_of(n, 0, NULL); 4630 igvn.hash_insert(n); 4631 modified = true; 4632 } 4633 _expensive_nodes.trunc_to(j); 4634 if (modified) { 4635 igvn.optimize(); 4636 } 4637 } 4638 4639 void Compile::add_expensive_node(Node * n) { 4640 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4641 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4642 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4643 if (OptimizeExpensiveOps) { 4644 _expensive_nodes.append(n); 4645 } else { 4646 // Clear control input and let IGVN optimize expensive nodes if 4647 // OptimizeExpensiveOps is off. 4648 n->set_req(0, NULL); 4649 } 4650 } 4651 4652 /** 4653 * Track coarsened Lock and Unlock nodes. 4654 */ 4655 4656 class Lock_List : public Node_List { 4657 uint _origin_cnt; 4658 public: 4659 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4660 uint origin_cnt() const { return _origin_cnt; } 4661 }; 4662 4663 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4664 int length = locks.length(); 4665 if (length > 0) { 4666 // Have to keep this list until locks elimination during Macro nodes elimination. 4667 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4668 for (int i = 0; i < length; i++) { 4669 AbstractLockNode* lock = locks.at(i); 4670 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4671 locks_list->push(lock); 4672 } 4673 _coarsened_locks.append(locks_list); 4674 } 4675 } 4676 4677 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4678 int count = coarsened_count(); 4679 for (int i = 0; i < count; i++) { 4680 Node_List* locks_list = _coarsened_locks.at(i); 4681 for (uint j = 0; j < locks_list->size(); j++) { 4682 Node* lock = locks_list->at(j); 4683 assert(lock->is_AbstractLock(), "sanity"); 4684 if (!useful.member(lock)) { 4685 locks_list->yank(lock); 4686 } 4687 } 4688 } 4689 } 4690 4691 void Compile::remove_coarsened_lock(Node* n) { 4692 if (n->is_AbstractLock()) { 4693 int count = coarsened_count(); 4694 for (int i = 0; i < count; i++) { 4695 Node_List* locks_list = _coarsened_locks.at(i); 4696 locks_list->yank(n); 4697 } 4698 } 4699 } 4700 4701 bool Compile::coarsened_locks_consistent() { 4702 int count = coarsened_count(); 4703 for (int i = 0; i < count; i++) { 4704 bool unbalanced = false; 4705 bool modified = false; // track locks kind modifications 4706 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4707 uint size = locks_list->size(); 4708 if (size == 0) { 4709 unbalanced = false; // All locks were eliminated - good 4710 } else if (size != locks_list->origin_cnt()) { 4711 unbalanced = true; // Some locks were removed from list 4712 } else { 4713 for (uint j = 0; j < size; j++) { 4714 Node* lock = locks_list->at(j); 4715 // All nodes in group should have the same state (modified or not) 4716 if (!lock->as_AbstractLock()->is_coarsened()) { 4717 if (j == 0) { 4718 // first on list was modified, the rest should be too for consistency 4719 modified = true; 4720 } else if (!modified) { 4721 // this lock was modified but previous locks on the list were not 4722 unbalanced = true; 4723 break; 4724 } 4725 } else if (modified) { 4726 // previous locks on list were modified but not this lock 4727 unbalanced = true; 4728 break; 4729 } 4730 } 4731 } 4732 if (unbalanced) { 4733 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4734 #ifdef ASSERT 4735 if (PrintEliminateLocks) { 4736 tty->print_cr("=== unbalanced coarsened locks ==="); 4737 for (uint l = 0; l < size; l++) { 4738 locks_list->at(l)->dump(); 4739 } 4740 } 4741 #endif 4742 record_failure(C2Compiler::retry_no_locks_coarsening()); 4743 return false; 4744 } 4745 } 4746 return true; 4747 } 4748 4749 /** 4750 * Remove the speculative part of types and clean up the graph 4751 */ 4752 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4753 if (UseTypeSpeculation) { 4754 Unique_Node_List worklist; 4755 worklist.push(root()); 4756 int modified = 0; 4757 // Go over all type nodes that carry a speculative type, drop the 4758 // speculative part of the type and enqueue the node for an igvn 4759 // which may optimize it out. 4760 for (uint next = 0; next < worklist.size(); ++next) { 4761 Node *n = worklist.at(next); 4762 if (n->is_Type()) { 4763 TypeNode* tn = n->as_Type(); 4764 const Type* t = tn->type(); 4765 const Type* t_no_spec = t->remove_speculative(); 4766 if (t_no_spec != t) { 4767 bool in_hash = igvn.hash_delete(n); 4768 assert(in_hash, "node should be in igvn hash table"); 4769 tn->set_type(t_no_spec); 4770 igvn.hash_insert(n); 4771 igvn._worklist.push(n); // give it a chance to go away 4772 modified++; 4773 } 4774 } 4775 // Iterate over outs - endless loops is unreachable from below 4776 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4777 Node *m = n->fast_out(i); 4778 if (not_a_node(m)) { 4779 continue; 4780 } 4781 worklist.push(m); 4782 } 4783 } 4784 // Drop the speculative part of all types in the igvn's type table 4785 igvn.remove_speculative_types(); 4786 if (modified > 0) { 4787 igvn.optimize(); 4788 } 4789 #ifdef ASSERT 4790 // Verify that after the IGVN is over no speculative type has resurfaced 4791 worklist.clear(); 4792 worklist.push(root()); 4793 for (uint next = 0; next < worklist.size(); ++next) { 4794 Node *n = worklist.at(next); 4795 const Type* t = igvn.type_or_null(n); 4796 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types"); 4797 if (n->is_Type()) { 4798 t = n->as_Type()->type(); 4799 assert(t == t->remove_speculative(), "no more speculative types"); 4800 } 4801 // Iterate over outs - endless loops is unreachable from below 4802 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4803 Node *m = n->fast_out(i); 4804 if (not_a_node(m)) { 4805 continue; 4806 } 4807 worklist.push(m); 4808 } 4809 } 4810 igvn.check_no_speculative_types(); 4811 #endif 4812 } 4813 } 4814 4815 // Auxiliary methods to support randomized stressing/fuzzing. 4816 4817 int Compile::random() { 4818 _stress_seed = os::next_random(_stress_seed); 4819 return static_cast<int>(_stress_seed); 4820 } 4821 4822 // This method can be called the arbitrary number of times, with current count 4823 // as the argument. The logic allows selecting a single candidate from the 4824 // running list of candidates as follows: 4825 // int count = 0; 4826 // Cand* selected = null; 4827 // while(cand = cand->next()) { 4828 // if (randomized_select(++count)) { 4829 // selected = cand; 4830 // } 4831 // } 4832 // 4833 // Including count equalizes the chances any candidate is "selected". 4834 // This is useful when we don't have the complete list of candidates to choose 4835 // from uniformly. In this case, we need to adjust the randomicity of the 4836 // selection, or else we will end up biasing the selection towards the latter 4837 // candidates. 4838 // 4839 // Quick back-envelope calculation shows that for the list of n candidates 4840 // the equal probability for the candidate to persist as "best" can be 4841 // achieved by replacing it with "next" k-th candidate with the probability 4842 // of 1/k. It can be easily shown that by the end of the run, the 4843 // probability for any candidate is converged to 1/n, thus giving the 4844 // uniform distribution among all the candidates. 4845 // 4846 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 4847 #define RANDOMIZED_DOMAIN_POW 29 4848 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 4849 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 4850 bool Compile::randomized_select(int count) { 4851 assert(count > 0, "only positive"); 4852 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 4853 } 4854 4855 CloneMap& Compile::clone_map() { return _clone_map; } 4856 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 4857 4858 void NodeCloneInfo::dump() const { 4859 tty->print(" {%d:%d} ", idx(), gen()); 4860 } 4861 4862 void CloneMap::clone(Node* old, Node* nnn, int gen) { 4863 uint64_t val = value(old->_idx); 4864 NodeCloneInfo cio(val); 4865 assert(val != 0, "old node should be in the map"); 4866 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 4867 insert(nnn->_idx, cin.get()); 4868 #ifndef PRODUCT 4869 if (is_debug()) { 4870 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 4871 } 4872 #endif 4873 } 4874 4875 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 4876 NodeCloneInfo cio(value(old->_idx)); 4877 if (cio.get() == 0) { 4878 cio.set(old->_idx, 0); 4879 insert(old->_idx, cio.get()); 4880 #ifndef PRODUCT 4881 if (is_debug()) { 4882 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 4883 } 4884 #endif 4885 } 4886 clone(old, nnn, gen); 4887 } 4888 4889 int CloneMap::max_gen() const { 4890 int g = 0; 4891 DictI di(_dict); 4892 for(; di.test(); ++di) { 4893 int t = gen(di._key); 4894 if (g < t) { 4895 g = t; 4896 #ifndef PRODUCT 4897 if (is_debug()) { 4898 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 4899 } 4900 #endif 4901 } 4902 } 4903 return g; 4904 } 4905 4906 void CloneMap::dump(node_idx_t key) const { 4907 uint64_t val = value(key); 4908 if (val != 0) { 4909 NodeCloneInfo ni(val); 4910 ni.dump(); 4911 } 4912 } 4913 4914 // Move Allocate nodes to the start of the list 4915 void Compile::sort_macro_nodes() { 4916 int count = macro_count(); 4917 int allocates = 0; 4918 for (int i = 0; i < count; i++) { 4919 Node* n = macro_node(i); 4920 if (n->is_Allocate()) { 4921 if (i != allocates) { 4922 Node* tmp = macro_node(allocates); 4923 _macro_nodes.at_put(allocates, n); 4924 _macro_nodes.at_put(i, tmp); 4925 } 4926 allocates++; 4927 } 4928 } 4929 } 4930 4931 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 4932 EventCompilerPhase event; 4933 if (event.should_commit()) { 4934 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 4935 } 4936 #ifndef PRODUCT 4937 ResourceMark rm; 4938 stringStream ss; 4939 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 4940 if (n != nullptr) { 4941 ss.print(": %d %s ", n->_idx, NodeClassNames[n->Opcode()]); 4942 } 4943 4944 const char* name = ss.as_string(); 4945 if (should_print_igv(level)) { 4946 _igv_printer->print_method(name, level); 4947 } 4948 if (should_print_phase(cpt)) { 4949 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 4950 } 4951 #endif 4952 C->_latest_stage_start_counter.stamp(); 4953 } 4954 4955 // Only used from CompileWrapper 4956 void Compile::begin_method() { 4957 #ifndef PRODUCT 4958 if (_method != NULL && should_print_igv(1)) { 4959 _igv_printer->begin_method(); 4960 } 4961 #endif 4962 C->_latest_stage_start_counter.stamp(); 4963 } 4964 4965 // Only used from CompileWrapper 4966 void Compile::end_method() { 4967 EventCompilerPhase event; 4968 if (event.should_commit()) { 4969 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 4970 } 4971 4972 #ifndef PRODUCT 4973 if (_method != NULL && should_print_igv(1)) { 4974 _igv_printer->end_method(); 4975 } 4976 #endif 4977 } 4978 4979 bool Compile::should_print_phase(CompilerPhaseType cpt) { 4980 #ifndef PRODUCT 4981 if ((_directive->ideal_phase_mask() & CompilerPhaseTypeHelper::to_bitmask(cpt)) != 0) { 4982 return true; 4983 } 4984 #endif 4985 return false; 4986 } 4987 4988 bool Compile::should_print_igv(int level) { 4989 #ifndef PRODUCT 4990 if (PrintIdealGraphLevel < 0) { // disabled by the user 4991 return false; 4992 } 4993 4994 bool need = directive()->IGVPrintLevelOption >= level; 4995 if (need && !_igv_printer) { 4996 _igv_printer = IdealGraphPrinter::printer(); 4997 _igv_printer->set_compile(this); 4998 } 4999 return need; 5000 #else 5001 return false; 5002 #endif 5003 } 5004 5005 #ifndef PRODUCT 5006 IdealGraphPrinter* Compile::_debug_file_printer = NULL; 5007 IdealGraphPrinter* Compile::_debug_network_printer = NULL; 5008 5009 // Called from debugger. Prints method to the default file with the default phase name. 5010 // This works regardless of any Ideal Graph Visualizer flags set or not. 5011 void igv_print() { 5012 Compile::current()->igv_print_method_to_file(); 5013 } 5014 5015 // Same as igv_print() above but with a specified phase name. 5016 void igv_print(const char* phase_name) { 5017 Compile::current()->igv_print_method_to_file(phase_name); 5018 } 5019 5020 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5021 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5022 // This works regardless of any Ideal Graph Visualizer flags set or not. 5023 void igv_print(bool network) { 5024 if (network) { 5025 Compile::current()->igv_print_method_to_network(); 5026 } else { 5027 Compile::current()->igv_print_method_to_file(); 5028 } 5029 } 5030 5031 // Same as igv_print(bool network) above but with a specified phase name. 5032 void igv_print(bool network, const char* phase_name) { 5033 if (network) { 5034 Compile::current()->igv_print_method_to_network(phase_name); 5035 } else { 5036 Compile::current()->igv_print_method_to_file(phase_name); 5037 } 5038 } 5039 5040 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5041 void igv_print_default() { 5042 Compile::current()->print_method(PHASE_DEBUG, 0); 5043 } 5044 5045 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5046 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5047 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5048 void igv_append() { 5049 Compile::current()->igv_print_method_to_file("Debug", true); 5050 } 5051 5052 // Same as igv_append() above but with a specified phase name. 5053 void igv_append(const char* phase_name) { 5054 Compile::current()->igv_print_method_to_file(phase_name, true); 5055 } 5056 5057 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5058 const char* file_name = "custom_debug.xml"; 5059 if (_debug_file_printer == NULL) { 5060 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5061 } else { 5062 _debug_file_printer->update_compiled_method(C->method()); 5063 } 5064 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5065 _debug_file_printer->print(phase_name, (Node*)C->root()); 5066 } 5067 5068 void Compile::igv_print_method_to_network(const char* phase_name) { 5069 if (_debug_network_printer == NULL) { 5070 _debug_network_printer = new IdealGraphPrinter(C); 5071 } else { 5072 _debug_network_printer->update_compiled_method(C->method()); 5073 } 5074 tty->print_cr("Method printed over network stream to IGV"); 5075 _debug_network_printer->print(phase_name, (Node*)C->root()); 5076 } 5077 #endif 5078 5079 void Compile::add_native_invoker(RuntimeStub* stub) { 5080 _native_invokers.append(stub); 5081 } 5082 5083 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5084 if (type != NULL && phase->type(value)->higher_equal(type)) { 5085 return value; 5086 } 5087 Node* result = NULL; 5088 if (bt == T_BYTE) { 5089 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5090 result = new RShiftINode(result, phase->intcon(24)); 5091 } else if (bt == T_BOOLEAN) { 5092 result = new AndINode(value, phase->intcon(0xFF)); 5093 } else if (bt == T_CHAR) { 5094 result = new AndINode(value,phase->intcon(0xFFFF)); 5095 } else { 5096 assert(bt == T_SHORT, "unexpected narrow type"); 5097 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5098 result = new RShiftINode(result, phase->intcon(16)); 5099 } 5100 if (transform_res) { 5101 result = phase->transform(result); 5102 } 5103 return result; 5104 } 5105